Retek® Merchandising System
10.1.10

Operations Guide Addedum

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000

Fax:
+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

The functionality described herein applies to this version, as
reflected on the title page of this document, and to no other
versions of software, including without limitation subsequent
releases of the same software component. The functionality
described herein will change from time to time with the
release of new versions of software and Retek reserves the
right to make such modifications at its absolute discretion.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Merchandising System

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

Hong Kong 800 96 4262

Korea 00 308 13 1342

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
o Detailed step-by-step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents

Interface file - SA RTLOG........oooiiiii 1
Stock Upload Conversion [lifStkUp]....cccooevvviiiiiiiiiiiie e, 27
Clearance Pricing POS Download [pccdnld]coovvviiiiiiiiinnnnnee, 39
Clearance Reset Pricing POS Extract [pccrdnld]coevvvvnnnnnnee. 43
Retek Clearance Reset Price Update [pccrext].....ccccoeevveiieiinnnnnn. 47
PO SUBSCrIption APl ... 53
reclsdly Master BatCh DeSigncooovvveiiiiiiiiiiiiincecee e 59
Upload Stock Count Results [stkupld].....ccccooviiiriiiiiiiiiiiii, 65
TSF SUDSCHIPLION APl.....ce e 71

Interface file - SA RTLOG

Interface file - SA RTLOG

ReSA 10.0 RTLOG Layout

The following illustrates the file layout format of the Retek TLOG. The content of each Retek
TLOG file is per store per day. The filename convention will be
RTLOG_STORE_DATETIME.DAT (e.g. RTLOG_1234_01221989010000.DAT)

FHEAD (Only 1 per file, required)

THEAD (Multiple expected, one per transaction, required for
each transaction)
TCUST (Only 1 per THEAD record allowed, optional for some

transaction types, see table below)

CATT (Attribute record specific to the TCUST record —
Multiple allowed, only valid if TCUST exists)

TITEM (Multiple allowed per transaction, optional for some
transaction types, see table below)

IDISC (Discount record specific to the TITEM record —
Multiple allowed per item, optional see table below)

TTAX
below)

TTEND (Multiple allowed per transaction, optional for some
transaction types, see table below)

TTAIL (1 per THEAD, required)
FTAIL (1 per file, required)

(Multiple allowed per transaction, optional see table

The order of the records within the transaction layout above is important. It aids processing by
ensuring that information is present when it is needed.

Record Field Name Field Default Value Description Required? | Justification/
Name Type Padding
File File Type Record Char(5) FHEAD Identifies file Y Left/Blank
Header Descriptor record type
File Line Identifier Number(10 | Specified by ID of current line Y Right/0
) external system being processed by
input file.
File Type Definition | Char(4) RTLG Identifies file as Y Left/Blank
‘Retek TLOG’.
File Create Date Char(14) Create date Date and time file | Y Left/None
was written by
external system
(YYYYMMDDHH
MMSS).

Retek Merchandising System

Record Field Name Field Default Value Description Required? | Justification/
Name Type Padding
Business Date Char(8) Business Date to Business date of Y Left/None
process transactions.
(YYYYMMDD).
Location Number Char(10) Specified by Store or warehouse | Y Left/None
external system identifier.
Reference Number | Char(30) Specified by This may contain N Left/Blank
external system the Polling ID
associated with the
consolidated
TLOG file or used
for other purpose.
Transaction | File Type Char(b) THEAD Identifies file Y Left/Blank
Header Record record type.
Descriptor
File Line Number(10) | Specified by ID of current line Y Right/0
Identifier external system being processed by
input file.
Register Char(5) Till used at store. Y Left/Blank
Transaction Char(14) Transaction date Date transactions were | Y Left/None
Date processed at the POS
(YYYYMMDDHHM
MSS).
Transaction Number(10) Transaction identifier. | Y Right/0
Number
Cashier Char(10) Cashier identifier. N Left/Blank
Salesperson Char(10) Salesperson identifier. | N Left/Blank
Transaction Char(6) Refer to ' TRAT' Transaction type. Y Left/Blank
Type code_type for a
list of valid types.
Sub- Char(6) Refer to TRAS' Sub-transaction type. N Left/Blank
transaction code_type for a For sale, it can be
type list of valid types. | employee, drive-off
etc.
Orig_tran_no | Number(10) Populated only for N Right/0
post-void transactions.
Transaction number
for the original tran
that will be cancelled.

Interface file - SA RTLOG

Transaction | File Type Char(b) THEAD Identifies file Left/Blank
Header Record record type.
Descriptor
Orig_reg_no | Char(5) Populated only for Left/Blank
post-void transactions.
Register number from
the original tran.
Reason Code | Char(6) Refer to 'REAC' Reason entered by Left/Blank
code_type fora cashier for some
list of valid codes. | transaction types.
If the transaction Required for Paid In
type is ‘PAIDOU’ | and Paid out
and the sub transaction types, but
transaction type is | can also be used for
‘MV’ or ‘EV’ than | voids, returns, etc.
the valid codes
come from the
non_merch_code_
head table.
Vendor Char(10) Supplier id for a Left/Blank
Number merchandise vendor
paid out transaction,
partner id for an
expense vendor paid
out transaction.
Vendor Char(30) Invoice number for a Left/Blank
Invoice vendor paid out
Number transaction.
Payment Char(16) The reference number Left/Blank
Reference of the tender used for
Number a vendor payout. This
could be the money
order number, check
number, etc.
Proof of Char(30) Proof of receipt Left/Blank
Delivery number given by the
Number vendor at the time of

delivery. This field is
populated for a vendor
paid out transaction.

Retek Merchandising System

Transaction | File Type Char(b) THEAD Identifies file Y Left/Blank
Header Record record type.
Descriptor
Reference Char(30) Number associated N Left/Blank
Number 1 with a particular
transaction, for
example weather for a
Store Conditions
transaction.
The sa_reference table
defines what this field
can contain for each
transaction type.
Reference Char(30) Second generic N Left/Blank
Number 2 reference number.
Reference Char(30) Third generic N Left/Blank
Number 3 reference number.
Reference Char(30) Fourth generic N Left/Blank
Number 4 reference number.
Value Sign Char(1) Refer to *SIGN’ Sign of the value. Y if Value | Left/None
code_type for a is present
list of valid codes.
Value Number(20) Value with 4 implied | Y if tranis | Right/0
decimal places. a TOTAL. | when value
Populated by the is present.
retailer for TOTAL Blank when
trans, populated by no value is
Retek sales audit for sent.
SALE, RETURN
trans.
Transaction | File Type Char(b) TCUST Identifies file Y Left/Blank
Customer Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Y Right/0
Identifier external system being processed by
input file.
Customer ID | Char(16) Customer The ID number of a Y Left/Blank
identifier customer.
Customer ID | Char(6) Refer to 'CIDT' Customer 1D type. Y Left/Blank
type code_type for a

list of valid types

Interface file - SA RTLOG

Transaction | File Type Char(5) TCUST Identifies file Y Left/Blank
Customer Record record type
Descriptor
Customer Char(40) Customer name. N Left/Blank
Name
Address 1 Char(40) Customer address. N Left/Blank
Address 2 Char(40) Additional field for N Left/Blank
customer address.
City Char(20) City. N Left/Blank
State Char(3) State identifier State. N Left/Blank
Zip Code Char(10) Zip identifier Zip code. N Left/Blank
Country Char(3) Country. N Left/Blank
Home Phone | Char(20) Telephone numberat | N Left/Blank
home.
Work Phone | Char(20) Telephone numberat | N Left/Blank
work.
E-mail Char(100) E-mail address. N Left/Blank
Birthdate Char(8) Date of birth. N Left/Blank
(YYYYMMDD)
Customer File Type Char(5) CATT Identifies file Y Left/Blank
Attribute Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Y Right/0
Identifier external system being processed by
input file.
Attribute Char(6) Refer to ‘SACA' Type of customer Y Left/Blank
type code_type for a attribute
list of valid types
Attribute Char(6) Refer to members | Value of customer Y Left/Blank
value of ‘SACA' attribute.

code_type for a
list of valid values

Retek Merchandising System

Transaction | File Type Char(b) TITEM Identifies file Left/Blank
Iltem Record record type.
Descriptor
File Line Number(10) | Specified by ID of current line Right/0
Identifier external system being processed by
input file.
Item Status Char(6) Refer to ‘SASI’ Status of the item Left/Blank
code_type for a list | within the
of valid codes. transaction, V for
item void, S for sold
item, R for returned
item.
Item Type Char(6) Refer to ‘SAIT’ Identifies what type Left/Blank
code_type foralist | of item is
of valid codes. transmitted.
Item number | Char(6) Refer to ‘UPCT’ Identifies type of Left/Blank
type code_type for a list | item number if item
of valid codes. type is ITEM or REF.
Format ID Char(1) VPLU format ID. Used to interpret Left/Blank
VPLU items.
Item Char(25) Item identifier Identifies Left/Blank
merchandise item.
Reference Char(25) Item identifier Identifies sub- Left/Blank
Item transaction level
merchandise item.
Non- Char(25) Item identifier Identifies non- Left/Blank
Merchandise merchandise item.
Item
Voucher Char(16) Gift certificate Right/0
number
Department Number(4) Identifies the Right/Blank
department this item
belongs to.
This is filled in by
saimptlog.
Class Number(4) Item’s class Class of item sold or Right/Blank

returned. Not
required from a
retailer, populated by
Retek sales audit.

This is filled in by
saimptlog.

Interface file - SA RTLOG

Transaction | File Type Char(b) TITEM Identifies file Y Left/Blank
Iltem Record record type.
Descriptor
Subclass Number(4) Item’s subclass Subclass of item sold | N Right/Blank
or returned. Not
required from a
retailer, populated by
Retek sales audit.
This is filled in by
saimptlog.
Quantity Char(1) Refer to 'SIGN' Sign of the quantity | Y Left/None
Sign code_type for a list
of valid codes.
Quantity Number(12) Number of items Y Right/0
purchased with 4
decimal places.
SellingUnit Char(4) Unit of measure of Y Left/None
of Measure item’s quantity.
Unit Retail Number(20) Unit retail with 4 Y Right/0
implied decimal
places.
Override Char(6) Refer to 'ORRC' This column will be Y if unit Left/Blank
Reason code_type for a list | populated when an retail was
of valid codes. item's price has been | manually
overridden at the entered
POS to define why it
was overridden.
Original Unit | Number(20) Value with 4 implied | Y if unit Right/0
Retail decimal places. retail was
This column will be | manually
populated when the | entered
item'’s price was
overridden at the
POS and the item's
original unit retail is
known.
Taxable Char(1) Refer to "YSNO’ Indicates whetheror | Y Left/None
Indicator code_type fora list | not item is taxable.
of valid codes.
Pump Char(8) Fuel pump identifier. | N Left/Blank

Retek Merchandising System

Transaction | File Type Char(b) TITEM Identifies file Left/Blank
Iltem Record record type.
Descriptor
Reference Char(30) Number associated Left/Blank
Number 5 with a particular item
within a transaction,
for example special
order number.
The sa_reference
table defines what
this field can contain
for each transaction
type.
Reference Char(30) Second generic Left/Blank
Number 6 reference number at
the item level.
Reference Char(30) Third generic Left/Blank
Number 7 reference number at
the item level.
Reference Char(30) Fourth generic Left/Blank
Number 8 reference number at
the item level.
Item_swiped | Char(1) Refer to "YSNO’ Indicates if the item Left/None
_ind code_type for a list | was automatically
of valid codes. entered into the POS
system or if it had to
be manually keyed.
Return Char(6) Refer to ‘SARR’ The reason an item Left/Blank
Reason Code code_type for a list | was returned.
of valid codes.
Salesperson Char(10) The salesperson who Left/Blank
sold the item.
Expiration_d | Char(8) Gift certificate
ate expiration date
(YYYYMMDD).
Drop Ship Char(1) Refer to “YSNO’ Indicates whether Left/None
Ind code type for a list | item is part of a drop

of valid codes.

shipment.

Interface file - SA RTLOG

Iltem File Type Char(b) IDISC Identifies file Y Left/Blank
Discount Record record type

Descriptor
File Line Number(10) | Specified by ID of current line Y Right/0
Identifier external system being processed by

input file.
RMS Char(6) Refer to ‘PRMT’ The RMS promotion | Y Left/Blank
Promotion code_type for a list | type.
Number of valid types
Discount Number(10) Discount reference N Left/Blank
Reference number is associated
Number with the discount

type (e.g. if discount

type is a promotion,

this contains the

promotion number).
Discount Char(6) Refer to ‘SADT’ The type of discount | N Left/Blank
Type code_type for a list | within a promotion.

of valid types. This allows a retailer

to further break down

coupon discounts

within the “In-store”

promotion, for

example.
Coupon Char(16) Number of a store Y if Left/Blank
Number coupon used as a coupon

discount.
Coupon Char(16) Additional Y if Left/Blank
Reference information about the | coupon
Number coupon, usually

contained in a second

bar code on the

coupon.
Quantity Char(1) Refer to 'SIGN' Sign of the quantity. | Y Left/None
Sign code_type for a list

of valid codes.

Quantity Number(12) The quantity Y Right/0

purchased that

discount is applied

with 4 implied

decimal places.

Retek Merchandising System

Iltem File Type Char(b) IDISC Identifies file Left/Blank
Discount Record record type
Descriptor
Unit Number(20) Unit discount amount Right/0
Discount for this item with 4
Amount implied decimal
places.
Reference Char(30) Number associated Left/Blank
Number 13 with a particular
transaction type at the
discount level.
The sa_reference
table defines what
this field can contain
for each transaction
type.
Reference Char(30) Second generic Left/Blank
Number 14 reference number at
the discount level.
Reference Char(30) Third generic Left/Blank
Number 15 reference number at
the discount level.
Reference Char(30) Fourth generic Left/Blank
Number 16 reference number at
the discount level.
Transaction | File Type Char(b) TTAX Identifies file Left/Blank
Tax Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Right/0
Identifier external system being processed by
input file.
Tax Code Char(6) Refer to TAXC' Tax code to represent Left/Blank
code_type for a list | whether it is a state
of valid codes tax type, provincial
tax, etc.
Tax Sign Char(1) Refer to 'SIGN' Sign of Tax Amount. Left/None

code_type for a list
of valid codes.

10

Interface file - SA RTLOG

Transaction | File Type Char(b) TTAX Identifies file Y Left/Blank
Tax Record record type
Descriptor
Tax Amount | Number(20) Amount of tax Y Right/0
charged for this tax
code type ina
transaction with 4
implied decimal
places.
Reference Char(30) Generic reference N Left/Blank
Number 17 number.
Reference Char(30) Generic reference N Left/Blank
Number 18 number.
Reference Char(30) Generic reference N Left/Blank
Number 19 number.
Reference Char(30) Generic reference N Left/Blank
Number 20 number.
Transaction | File Type Char(b) TTEND Identifies file Y Left/Blank
Tender Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Y Right/0
Identifier external system being processed by
input file.
Tender Type | Char(6) Refer to TENT' High-level grouping | Y Left/Blank
Group code_type for as of tender types.
list of valid types
Tender Type | Number(6) Refer to the Low-level grouping Y Left/Blank
ID pos_tender_type_h | of tender types.
ead table for as list
of valid types
Tender Sign | Char(1) Refer to 'SIGN' Sign of the value. Y Left/None
code_type for a list
of valid codes.
Tender Number(20) Amount paid with Y Right/0
Amount this tender in the
transaction with 4
implied decimal
places.
Cc_no Number(16) Credit card number Y if credit | Left/Blank
card

11

Retek Merchandising System

Transaction | File Type Char(b) TTEND Identifies file Y Left/Blank
Tender Record record type
Descriptor
Cc_auth_no | Char(16) Authorization Y if credit | Left/Blank
number for a cc card
cc Char(6) Refer to 'CCAS' Y if credit | Left/Blank
authorization code_type for as card
source list of valid types
cc cardholder | Char(6) Refer to 'CCVF' Y if credit | Left/Blank
verification code_type for as card
list of valid types
cc expiration | Char(8) (YYYYMMDD) Y if credit | Left/Blank
date card
cc entry Char(6) Refer to 'CCEM' Indicates whether the | Y if credit | Left/Blank
mode code_type for as credit card was card
list of valid types swiped, thus
automatically
entered, or manually
keyed.
cc terminal id | Char(5) Terminal number N Left/Blank
transaction was sent
from.
cc special Char(6) Refer to 'CCSC' Y if credit | Left/Blank
condition code_type for as card
list of valid types
Voucher_no | Char(16) Gift certificate or Y if Right/0
credit voucher serial | voucher
number.
Coupon Char(16) Number of a Y if Left/Blank
Number manufacturer’s coupon
coupon used as a
tender.
Coupon Char(16) Additional Y if Left/Blank
Reference information about the | coupon
Number coupon, usually

contained in a second
bar code on the
coupon.

12

Interface file - SA RTLOG

Transaction | File Type Char(b) TTEND Identifies file Left/Blank
Tender Record record type
Descriptor
Reference No | Char(30) Number associated Left/Blank
9 with a particular
transaction type at the
tender level.
The sa_reference
table defines what
this field can contain
for each transaction
type.
Reference No | Char(30) Second generic Left/Blank
10 reference no at the
tender level.
Reference No | Char(30) Third generic Left/Blank
11 reference no at the
tender level.
Reference No | Char(30) Fourth generic Left/Blank
12 reference no at the
tender level.
Transaction | File Type Char(b) TTAIL Identifies file Left/Blank
Trailer Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Right/0
Identifier external system being processed by
input file.
Transaction Number(10) No of records
Record processed in current
Counter tran (only records
between trans head &
tail)
File Trailer File Type Char(b) FTAIL Identifies file Left/Blank
Record record type
Descriptor
File Line Number(10) | Specified by ID of current line Right/0
Identifier external system being processed by
input file.

13

Retek Merchandising System

File Trailer File Type Char(5) FTAIL Identifies file Y Left/Blank
Record record type
Descriptor
File Record Number(10) No of transactions Y Right/0
Counter processed in current

tail)

file (only records
between file head &

The RTLOG file is imported into the Sales Audit tables after validation by the batch program
saimptlog. This section describes the requirements and validations performed on the records.

Common requirements/validations

This section details the common requirements and validations performed on all transactions. The
following sections describe the specific requirements of each type of transaction. If a transaction
is not mentioned, then it does not have specific requirements.

1 Record Type Requirements:

Transaction | Includes item Includes tender | Includes tax Includes customer

Type records? records? records? records?

OPEN No No No No

NOSALE No Optional No No

VOID Optional Optional Optional Optional

PVOID No No No No

SALE Yes Yes Optional Optional

RETURN Yes Yes Optional Optional

EEXCH Yes No Optional Optional

PAIDIN No Yes No No

PAIDOU No Yes No No

PULL No Yes No No

LOAN No Yes No No

COND No No No No

CLOSE No No No No

TOTAL No No No No

REFUND This transaction is not sent through the RTLOG. It is entered at the HQ level. The TITEM and
TCUST records are optional. The TTEND record is required. A TTAX record should not be
included.

METER Yes No No No

PUMPT Yes No No No

14

Interface file - SA RTLOG

Transaction Includes item Includes tender | Includes tax Includes customer

Type records? records? records? records?

TANKDP Yes No No No

TERM TERM records are created by saimptlog and then loaded into the database. They do not come
from the RTLOG file. They require one TITEM, one TTEND, one TTAX, one TCUST record
and one CATT record.

DCLOSE No No No No

2 Requirements per record type:

Record Requirements

Type

IDISC IDISC records must immediately follow their associated TITEM record.
CATT CATT records must immediately follow their associated TCUST record.

3 Code Type Validations:

Record Name Field Name Code Type
Transaction Header | Transaction Type TRAT
Sub-transaction Type TRAS

Reason Code

REAC or values from non_merch_code_head if
the transaction type is ‘PAIDOU’ and the sub
transaction type is ‘MV’ or ‘EV’.

Value Sign SIGN

Vender No If the transaction type is ‘PAIDOU’ and the sub
transaction type is ‘MV’, this field is validated
against the supplier table. If the transaction type
is ‘PAIDOU’ and the sub transaction type is
‘EV’, this field is validated against the partner
table.

Transaction Item Item Type SAIT

Item Status SASI

Item Number Type UPCT

Quantity Sign SIGN

Taxable Indicator YSNO

Price Override Reason | ORRC

Code

Item Swiped Indicator | YSNO

Return Reason Code SARR

15

Retek Merchandising System

Record Name Field Name Code Type
Item Discount RMS Promotion Type | PRMT
Discount Type SADT
Quantity Sign SIGN
Transaction Customer ID Type CIDT
Customer
Customer Attribute | Attribute Type SACA
Attribute value Code types from codes in SACA.
Transaction Tax Tax code TAXC
Tax sign SIGN
Transaction Tender | Tender Type Group TENT
Tender Sign SIGN
Tender Type ID Pos_tender_type_head table
CC Authorization CCAS
Source
CC Cardholder CCVF
Verification
CC Entry Mode CCEM
CC Special Condition CCSC

4 Dates are validated: Business Date, Transaction Date, Expiration Date Also, saimptlog
accepts only business dates that are within the PERIOD.VDATE minus the
SA_SYSTEM_OPTIONS.DAYS_POST_SALE value.

5 Store number is validated against the STORE table.
6 Numeric fields are checked for non-numeric characters.

7 For transaction of type SALE, RETURN and EEXCH, saimptlog checks whether a
transaction is in balance:

Transaction Items (Unit Retail * Unit Retail Sign * Quantity)
+ Item Discounts (Unit Discount Amount * Unit Discount Sign * Quantity)
+ Transaction Tax (Tax Amount * Tax Sign)
= Transaction Tenders (Tender Amount * Tender Sign)

saimptlog will populate the Value field (on THEAD) with the transaction’s sales value (item
value — discount value + tax value) from the above calculation if it was not provided in the
RTLOG.

16

Interface file - SA RTLOG

Treatment of vouchers

o Ifanitem sold is a gift certificate (Transaction Item, Voucher field has a value), issued
information is written to the SA_ VOUCHER table.

o If the Transaction Type isa RETURN, and the Transaction Tender Type Group is voucher
(VOUCH), issued information is written to the SA_ VOUCHER table.

e |f the Transaction Type is a SALE, and the Transaction Tender Type Group is a voucher
(VOUCH), redeemed information is written to the SA_VOUCHER table.

o When a gift certificate is sold, customer information should always be included. A receiving
customer name value should be populated in the ref_no5 field, a receiving customer state
value should be populated in the ref_no6 field and a receiving customer country should be
populated in the ref_no7 field. These reference fields can be changed by updating the
sa_reference table but the code needs to be modified too. The expiration date is put on the
expiration_date field on the TITEM record.

Other validations/points of interest

e A ssalesperson in the TITEM record takes precedence over the salesperson in the THEAD
record.

e [fanitem sold is a sub-transaction (REF) item (Transaction Item, reference item field has a
value and item does not), it will be converted to the corresponding transaction level item
(ITEM).

e Ifanitemsold isan ITEM (Transaction Item, item field has a value), it will be validated
against RMS item tables.

e The corresponding Department, Class, Subclass, and Taxable Indicator will be selected from
the RMS tables and populated for an item.

The balancing level determines whether the register or the cashier fields are required.

o If the balancing level is ‘R’egister, then the register field on the THEAD must be populated.
o If the balancing level is ‘C’ashier, then the cashier field on the THEAD must be populated.
o If the balancing level is *S’tore, then neither field is required to be populated.

The tax_ind and the item_swiped_ind fields can only accept *Y” or *‘N’ values. If an invalid value
is passed through the RTLOG, an error will be flagged and the value will be defaulted to “Y”.

17

Retek Merchandising System

Transaction of type ‘SALE’

A transaction of type SALE is generated whenever an item is sold. A sale may be to an employee,
the sub-transaction type would be EMP in this case. Or it may be a drive-off sale (sub-transaction
type DRIVEOQ) when someone drives off with unpaid gas. A special type of sale is an “odd
exchange” (sub-transaction type EXCH) where items are sold and returned in the same
transaction. If the net value of the exchange is positive, then it is a sale. If the net value is
negative, it is a return.

e Requirements per record type (other than what is described in Layout section above):

Record Requirements

Type

THEAD

TITEM e Item Status is a required field; it determines whether the item is

‘S’old, ‘R’eturned or “V’oided. If the item status is S, the
quantity sign is expected to be P. If the item status is ‘R’, the
quantity sign is expected to be N.

o If the item status is V, the quantity sign is the reverse of the
quantity sign of the voided item. That is, if an item with status S
is voided, the quantity sign would be N. Furthermore, the sum of
the quantities being voided cannot exceed the sum of the
quantities ‘S’old or ‘R’eturned. Note: neither of the above two
validations are performed by saimptlog but an audit rule could be
created to check this.

¢ In atypical sale, the items would all have a status of ‘S’. In the
case of an odd exchange, some items will have a status of ‘R’.

¢ In atypical return, the items would all have a status of ‘R’. In the
case of an odd exchange, some items will have a status of ‘S’.

o If an item has status R, then the Return Reason Code field may
be populated. If it is, it will be validated against code type
‘SARR’.

o If the price of an item is overridden, then the Override Reason
and Original Unit Retail fields must be populated.

IDISC e The RMS Promotion Type field must always be populated with
values of code type ‘PRMT".

e The Promotion field is validated, when a value is passed, against
the promhead table.

¢ If the promotion is ‘In Store’ (code 1004), then the Discount
Type field must be populated with values of code type ‘SADT’.

e The Discount Reference Number is a promotion number which is
of status ‘A’, ‘E’ or ‘M".
o |f the Discount Type is ‘SCOUP’ for Store Coupon, then the

Coupon Number field must be populated. The Coupon Reference
Number field is optional.

18

Interface file - SA RTLOG

field must be populated. The Coupon Reference Number field is

optional.

¢ If the Transaction Tender Type Group is a credit card (CCARD),
the number will be validated against the SA_CC_VAL table. The

Record Requirements
Type
TTEND e |f the tender type group is ‘COUPON’, then the Coupon Number

other cc fields are optional.

e Meaning of reference number fields:

N

Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Transaction Sub- ltem Tender Reference Meaning of Reference | Req?
Type transaction Type | Type Number Field
Type Group Field
SALE 1 Speed Sale Number Y
SALE GCN 5 Recipient Name N
SALE GCN 6 Recipient State N
SALE GCN 7 Recipient Country N
SALE CHECK 9 Check Number N
SALE CHECK 10 Driver’s License Number | N
SALE CHECK 11 Credit Card Number N
SALE DRIVEO 1 Incident Number Y
SALE EMP 3 Employee Number of the | N
employee receiving the
goods.

o Expected values for sign fields

TRANSACTION TYPE

TITEM.Quantity Sign

TTEND.Tender Sign

TTAX.Tax Sign

IDISC.Quantity
Sign

SALE

P if item is sold;

N if item is returned;
reverse of original
item if item is voided.

P if item is sold;
N if item is
returned;

reverse of original
item if item is
voided.

19

Retek Merchandising System

Transaction of type ‘PVOID’

This transaction is generated at the register when another transaction is being post voided. The
orig_tran_no and orig_reg_no fields must be populated with the appropriate information for the
transaction being post voided. The PVOID transaction must be associated with the same store day
as the original transaction. If the PVOID needs to be generated after the store day is closed, the
transaction needs to be created using the forms.

Transaction of type ‘RETURN’

This transaction is generated when a customer returns an item.

This type of transaction has similar record type requirements as a ‘SALE’ transaction.

e Meaning of reference number fields:

L Note: The meaning of these reference number fields may be changed through the
sa_reference table.
Transaction | Sub- Reference Meaning of Reference Field Reqg?
Type transaction Number
Type Field
RETURN 1 Receipt Indicator (Y/N) Y
RETURN 2 Refund Reference Number N
RETURN EMP 3 Employee Number of the employee returning the N
goods.

e Expected values for sign fields
TRANSACTION | TITEM.Quantity TTEND.Tender TTAX.Tax IDISC.Quantity
TYPE Sign Sign Sign Sign
RETURN P if item is sold; N N P if item is sold;

N if item is returned;
reverse of original

item if item is voided.

N if item is returned;
reverse of original
item if item is
voided.

20

Interface file - SA RTLOG

Transaction of type ‘EEXCH’
This transaction is generated when there is an even exchange.
This type of transaction has similar record type requirements as a ‘SALE’ transaction.

It is expected that the number of items returned equals the number of items sold. However, this
validation is not performed by saimptlog. An audit rule could be created for this. Saimptlog only
expects that there would be at least two item records.

No tender changes hands in this transaction.

e Meaning of reference number fields:

L Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Transaction | Sub- Reference Meaning of Reference Field Req?
transaction Number
Type Field
EEXCH 1 Receipt Indicator (Y/N) Y
EEXCH EMP 3 Employee Number of the N
employee exchanging the goods.

Transaction of type ‘PAIDIN’
This type of transaction has only one TTEND record.
A reason code is required.

e Meaning of reference number fields:

LL Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Reason | Reference | Meaning Req?
Code Number

Column
NSF 1 NFS Check Credit Number | N
ACCT 1 Account Number N

Transaction of type ‘PAIDOU’
This type of transaction has only one TTEND record.

A reason code is required (code type REAC). If the sub-transaction type is ‘EV’ or ‘MV’, the
reason code comes from the non_merch_codes_head table.

If the sub-transaction type is ‘EV’ or ‘MV”’, then at least one field among the vendor number,
vendor invoice number, payment reference number and proof of delivery number fields should be
populated.

If the sub-transaction type is ‘EV’, then the vendor number comes from the partner table. If the
sub-transaction type is “MV’, then the vendor number comes from the supplier table.

21

Retek Merchandising System

e Meaning of reference number fields:

L Notes: The meaning of these reference number fields may be changed through the
sa_reference table.
Sub Reason | Reference Meaning Req?
Transaction | Code Number
Type Column
EV 2 Personal ID Number N
EV 3 Routing Number N
EV 4 Account Number N
PAYRL |1 Money Order Number N
PAYRL |2 Employee Number N
INC 1 Incident Number N

Transaction of type ‘PULL’
This transaction is generated when cash is withdrawn from the register.
This type of transaction has only one TTEND record.

e Expected values for sign fields

TRANSACTION | TITEM.Quantity | TTEND.Tender | TTAX.Tax IDISC.Quantity
TYPE Sign Sign Sign Sign
PULL N/A N N/A N/A
Transaction of type ‘LOAN’
This transaction is generated when cash is added to the register.
This type of transaction has only one TTEND record.
e Expected values for sign fields
TRANSACTION | TITEM.Quantity | TTEND.Tender | TTAX.Tax | IDISC.Quantity

TYPE

Sign

Sign

Sign

Sign

LOAN

N/A

]

N/A

N/A

22

Interface file - SA RTLOG

Transaction of type ‘COND’

This transaction records the condition at the store when it opens. There can be at most one COND
record containing weather information and at most one COND record containing temperature
information. Both these pieces of information may be in the same COND record. There may be
any number of COND records containing traffic and construction information.

This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.
Meaning of reference number fields:

L Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Reference | Meaning Req?
Number

Column

1 Weather — code type ‘WEAT’ N

2 Temperature — a signed 3 digit N

number.
3 Traffic — code_type ‘TRAF’ N
4 Construction — code_type ‘CONS’ N

Transaction of type ‘'TOTAL’

This transaction records the totals that are reported by the POS. The value field must be
populated. Some POS systems generate only one transaction number for all totals. In order to
avoid duplicate errors to be reported, only one total transaction can have a transaction number and
the subsequent ones can have blank transaction numbers. In other words, a TOTAL transaction is
not required to have a transaction number.

This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

Transaction of type ‘"METER’
This transaction is generated when a meter reading of a fuel pump is taken.
This type of transaction has only TITEM records.

e Meaning of reference number fields:

L Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Reference | Meaning Req?

Number

Column

1 Reading Type: (‘A’ Adjustment, ‘S’ shift change, ‘P’ price change, ‘C’ store Y
close)

5 Opening Meter Readings Y

23

Retek Merchandising System

Reference | Meaning Req?

Number

Column

6 Closing Meter Reading Y

7 If the reading type is ‘P’ for price change, the old unit retail should be placed Y
here. Decimal places are required.

8 Closing Meter Value Y

Transaction of type ‘PUMPT’

This transaction is generated when a pump test is performed. This type of transaction has only
TITEM records.

Transactions of type ‘TANKDP’

This transaction is generated when a tank dip measurement is taken.

This type of transaction has only TITEM records.

e Meaning of reference number fields:

L Note: The meaning of these reference number fields may be changed through the
sa_reference table.

Reference | Meaning Req?
Number

Column

1 Tank identifier Y

5 Dip Type (‘FUEL’, ‘WATER’, etc.) Y

6 Dip Height Major (decimal places required) Y

7 Dip Height Minor (decimal places required) Y

Transaction of type ‘DCLOSE’

This transaction is generated when day closed. Transaction number for this type of transaction
has to be blank.

24

Interface file - SA RTLOG

L

Note: Vouchers are minimally handled by saimptlog. Voucher information is written to
the savouch file which is passed to the program savouch.pc. For more information about
this interface, see Interface File — SA Vouch and Batch Design — savouch.

A voucher will appear on the TITEM record only if it was sold. Thus when saimptlog
encounters a ‘SALE’ transaction with a voucher, it writes the voucher to the savouch file
as an ‘I’ssued voucher.

A voucher will be issued when it appears on the TTEND record of transactions of type
‘RETURN’ and ‘PAIDOU’. In other words, saimptlog will write it to the savouch file
with status ‘I’

A voucher will be redeemed when it appears on the TTEND record of transactions of
type ‘SALE’ and ‘PAIDIN’. In other words, saimptlog will write it to the savouch file
with status ‘R’.

Vouchers may not be returned. However, a transaction of type ‘PAIDOU’ may be
generated when the customer exchanges a voucher for another form of tender.

25

Stock Upload Conversion [lifstkup]

Stock Upload Conversion [lifstkup]

Design Overview

This program converts the Nautilus inventory balance upload file into the Retek standard flat file
for stkupld.pc to process.

This program verifies that the inventory data is for the requested cycle count and warehouse
before proceeding. Other data needed for the RMS flat file will be obtained from RMS tables and
inserted in the RMS flat file.

Scheduling Constraints

Processing Cycle: N/A

Scheduling Diagram: This program should run before stkupld.pc and after the Nautilus
inv_bal_upload.sh program.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Program Flow
N/A

Function Level Description
Init()

Obtain the cycle_count from tables stake_head and stake_location by matching the warehouse
location and the stocktake_date with combination of the Nautilus input file, location(DC) and the
transaction date/time (date portion only).

If no match can be made, the program will terminate.
Call restart init

Write FHEAD record.

Process()

Loop through and read each line from the Nautilus file.
Format the data for the output file.

Call write_fdetl() function.

Write_fdetl()

Call check_catch_weight() function

Write a transaction record (FDETL) to the Retek flat file for each line found in the Nautilus flat
file.

Check_catch_weight()

Called within write_fdetl to check if item is check weight. Copies total weight value if it is a
check weight item, otherwise copies total units.

27

Retek Merchandising System

Final ()

Write a file trailer record (FTAIL).

Close files
Call restart close
Write status to log file

I/O Specification

Both input and output file should be accepted as a runtime parameter at the command line.

Input format:

DC_DEST_ID

11 - Number(10) +
1 for trailing
space.

Unique identifier for
the DC

TRANSACTION_DAT
E

13 - Date(12) + 1
for trailing space.

Date of the run

ITEM_ID

26 - Varchar2(25)
+ 1 for trailing
space.

Uniquely identifies the
item.

AVAILABLE_QTY

15 - Number(12) +
1 for leading sign
and + 1 for
decimal and + 1
for trailing space.

Units available for
distribution

DISTRIBUTED_QTY

14 Number(12) +
1 for decimal and
+ 1 for trailing
space.

Units distributed
include: Units
distributed but not yet
picked, units picked but
not yet manifested,
units manifested but not
yet shipped.

RECEIVED_QTY

14 Number(12) +
1 for leading sign
and + 1 for

decimal and +1
for trailing space.

Units received but not
put away.

TOTAL_QTY

14 Number(12) +
1 for decimal and
+ 1 for trailing
space.

Sum of all units that
physically exist:
container status of: I,
D,MR,T,X

AVAILABLE_WEIGH
T

15 - Number(12,4)
+ 1 for leading
sign + 1 for
decimal + 1 for
trailing space.

Weight available for
distribution of catch
weight items.

28

Stock Upload Conversion [lifstkup]

RECEIVED_WEIGHT

14 - Number(12,4)
+ 1 for decimal +

Weight received but not
put away for catch

1 for trailing weight items.
space.
DISTRIBUTED_WEIG | 14 - Number(12,4) | Weight distributed

HT

+ 1 for decimal +
1 for trailing
space.

includes: weight
distributed but not yet
picked, weight picked
but not yet manifested,
weight manifested but
not yet shipped (value
only catch weight
items)

TOTAL_WEIGHT

13 - Number(12,4)
+ 1 for decimal.

Sum of all weight that
physically exist:
container status of: I,
D,M,R, T, X. For
catch weight items.

Output Format:

Record Name | Field Name Field Type | Description
File Header file type record Char(5) hardcode ‘FHEAD’
descriptor
file line identifier | Number(10) | Id of current line being
processed., hardcode
‘000000001”
file type Char(4) hardcode ‘STKU”
file create date Date(14) date written by convert
YYYYMMD | Program
DHHMISS
stocktake date Date(14) stake_head.stocktake_date
YYYYMMD
DHHMISS
cycle count Number(8) stake_head.cycle_count
loc_type Char(2) hardcode ‘W’
location Number(10) | stake location.wh
Transaction file type record Char(5) hardcode ‘FDETL’
record descriptor
file line identifier | Number(10) | Id of current line being
processed, internally
incremented
item type Char(3) hardcode ‘ITM’

29

Retek Merchandising System

Record Name | Field Name Field Type | Description
item value Number(25) | itemid
inventory Number(12,4 | total units or total weight
quantity)
location Char(30) NULL
description
File trailer file type record Char(5) hardcode ‘FTAIL’
descriptor
file line identifier | Number(10) | Id of current line being
processed, internally
incremented
file record count | Number(10) | Number of detail records.

Technical Issues

N/A

30

Stock Upload Conversion [lifstkup]

Like Store [likestore]

Design Overview

When a new store is created in RMS there is an option to specify a like store. When storeadd
batch is run it sets the store open date and close date of all the like stores far in the future, so that
those records will be picked up in the likestore batch. Likestore batch creates item location
relationships for all the items in the existing store with new store. The likestore batch will process
like stores and sets the store open and close dates back to original date in the post process. User
can specify whether to copy the Replenishment information, delivery schedules and activity
schedules from the existing store, which will be copied in the likestore post process. So it is
necessary to run the storeadd, likestore and likestore post in the same order to successfully add all
the stores in to RMS.

Likestore batch uses multi-threading by department along with array processing to copy item
expense information. It also utilizes array processing to fetch all items associated to the likestore
and their attributes. The array of these items and their attributes is then looped through, with the
NEW _ITEM_LOC procedure being called for each item to create the new relationship.

Scheduling Constraints

Processing Cycle: Ad Hoc Phase

Scheduling Diagram: N/A

Pre-Processing: storeadd.pc

Post-Processing: prepost(likestore post)

Threading Scheme: Table based processing, multithreading on Department.
Restart/Recovery

The logical unit of work is store, item, pack indicator. The following two cursors will keep track
of store, item, and pack indicator in the restart book mark. The ¢_add_store cursor restart the
program based on store and ¢_get_items will restart the program based on item, pack indicator.

EXEC SQL DECLARE c_add_store CURSOR for
SELECT sa.store,
sa.like_store,
ROWIDTOCHAR(st. rowid)
FROM store_add sa,
store st
WHERE sa.store = st.store
AND st.store open_date = sa.store_open_date + 500000
AND st.store close date = sa.store _open_date + 500000
AND (sa.store > NVL(:ps_restart _store,-999) OR
sa.store = :ps_restart_store)
ORDER BY sa.store;

EXEC SQL DECLARE c_get_items CURSOR FOR

31

Retek Merchandising System

SELECT il.item,
im.item _desc,
im.diff_1,
im.diff_2,
im.diff_3,
im.diff_4,
il_loc type,
il_daily waste pct,
iscl.unit _cost,
il_unit_retail,
il_selling unit retail,
il_selling _uom,
il _status,
il.taxable_ind,
il ti,
il_hi,
il_store_ord mult,
il _meas of each,
il _meas_of price,
il_uom_of price,
il _primary_variant,
il _primary_supp,
il _primary_cntry,
il._local _item desc,
il_local_short _desc,
il _primary_cost_pack,
il _receive_as_type,
im_item _parent,
im.item_grandparent,
im._dept,
im.class,
im.subclass,
im_status,
cl._class vat ind,
im_short_desc,
im.item level,

im_.tran_level,

32

Stock Upload Conversion [lifstkup]

FROM

WHERE
AND
AND
AND
AND
AND

im.retail_zone group_id,

pzgs.zone_id,

im.sellable_ind,

im.orderable_ind,

im.pack_ind,

im.pack_type,

im.waste_type,

st.lang,

il.source _method,

il.source_wh

Vv_restart_dept vrd,

store st,

price_zone_group_store pzgs,

item_master im,

class cl,

item loc il,

item _supp_country loc iscl

vrd._.num_threads = TO_NUMBER(:ps_num_threads)
vrd.thread_val = TO_NUMBER(:ps_thread_val)
vrd.driver_value = im.dept

st.store = TO NUMBER(:is_like_store)
st.store = il.loc

((im_.pack_ind = NVL(:ps_restart_pack ind, "N") AND

im_item > NVL(:ps_restart_item, " %))

m.item > * *

AND
AND
AND
AND

OR (im.pack_ind > NVL(:ps_restart_pack_ind, "N") AND
)

il.item = Iim.item

im_dept = cl.dept
im.class = cl.class

pzgs.store(+) = TO_NUMBER(:is_store)

AND im.retail_zone group_id = pzgs.zone_group_id(+)

AND il.CLEAR_IND = "N*©

AND il.ITEM = iscl.ITEM(+)

AND il.LOC = iscl.LOC(+)

AND il._primary_supp = iscl._supplier(+)

AND il.primary_cntry = iscl.origin_country_id(+)
ORDER BY im.pack ind asc,

il.item;

33

Retek Merchandising System

Program Flow
N/A

Function Level Description
init()
Initialize the restart variables

Get system variables (ELC indicator, VAT indicator, std_av_ind and rpm_ind)

process()

Select values from the STORE_ADD table for stores that the storeadd.pc program has
already processed, as evidenced by the store open date far in the future.

Loop through all the likestore records and call Copy_Store_Items function for each like store
record.

Copy_Store_ltems()

If the ELC indicator is “Y”, the item expenses tables are updated with the details of expenses
involved in moving the items from one location to other locations. This is done using array
possessing.

C_get_items cursor will fetch all the records for the item location combination of the old
store and create all the item location relationships with new store by calling the function
NEW_ITEM_LOC().

Inside the NEW_ITEM_LOC function

Item location records are inserted for all the parent and child items, all component items in
case of pack item.

New store zone is added.
Price history records are inserted.
Pos mod records are inserted.

Replenishment information, Delivery schedules and Activity schedules are copied if specified
in the likestore batch post process.

Size_exp_head()

Allocates memory to the exp_head structure

Size_exp_head_seq()

Allocates memory to the exp_head_seq structure

Size_exp_insert()

Allocates memory to the exp_insert structure

Size_new_itemloc()

Allocates memory to the new_itemloc structure

free_exp_head()

34

Releases the memory allocated in size_exp_head function.

Stock Upload Conversion [lifstkup]

free_exp_head_seq()

o Releases the memory allocated in size_exp_head_seq function.
free_exp_insert()

e Releases the memory allocated in size_exp_insert function.
free_new_itemloc()

o Releases the memory allocated in size_new_itemloc function.
final ()

e This function stops restart recovery.

I/O Specification
N/A

Technical Issues
N/A

Processing Cursors

/* Any changes made to c_count_item_exp_head must be replicated in
c_item exp_head */

/* The count returned in c_count_item_exp head determines the number
of records */

/* to be processed by c_item exp head. The "FROM®" and "WHERE*®
clauses must match. */

EXEC SQL DECLARE c_count_item_exp _head CURSOR FOR
SELECT count(ieh.item)
FROM v_restart_dept vrd,
cost_zone_group czg,
item_master im,
item_exp _head ieh
WHERE vrd.num_threads = TO_NUMBER(:ps_num_threads)
AND vrd.thread_val = TO_NUMBER(:ps_thread_val)
AND vrd.driver_value = im.dept
AND czg.cost level = "L*
AND czg.zone group_id = im.cost zone group_id
AND im.item = ieh.item
AND (:ps_restart_item = "-999" OR :ps_restart_item is NULL)
AND ieh.zone group_id = czg.zone_group_id
AND ieh.zone_ id = TO _NUMBER(:is_like store)
AND ieh.item_exp_type = "Z%;

35

Retek Merchandising System

36

/* Any changes made to c_item_exp_head must be replicated in
c_count_item_exp_head */

/* The count returned in c_count_item_exp head determines the number
of records */

/* to be processed by c_item exp head. The "FROM®" and "WHERE*®
clauses must match. */

EXEC SQL DECLARE c_item_exp_head CURSOR FOR
SELECT ieh.item,
ieh_supplier,
NVL(ieh.item _exp_seq,0),
ROWIDTOCHAR(ieh . rowid)
FROM v_restart_dept vrd,
cost_zone_group czg,
item_master im,
item_exp_head ieh
WHERE vrd.num_threads = TO_NUMBER(:ps_num_threads)
AND vrd.thread_val = TO_NUMBER(:ps_thread_val)
AND vrd.driver_value = im.dept
AND czg.cost_level = "L*
AND czg.zone _group_id = im.cost _zone group_id
AND im.item = ieh.item
AND (:ps_restart_item = "-999" OR :ps_restart_item is NULL)
AND ieh.zone_group_id = czg.zone_group_id
AND ieh.zone_id = TO_NUMBER(:is_like store)
AND ieh.item _exp_type = "Z°

ORDER BY ieh.item, ieh.supplier, ieh.item_exp seq desc;

/*Any changes made to c_count_item_exp head_seq must be replicated
in */

/*c_item_exp_head _seq. The count returned in
c_count_item _exp_head seq determines*/

/* the number of records to be processed by c_item_exp head _seq. The
"FROM®" and */

/* "WHERE®" clauses must match.
*/

EXEC SQL DECLARE c_count_item_exp_head _seq CURSOR FOR
SELECT COUNT(MAX(item_exp_seq))
FROM item_exp_head
WHERE item_exp_type = "Z°

Stock Upload Conversion [lifstkup]

GROUP BY item, supplier, item_exp_type;

/* Any changes made to c_item_exp head_seq must be replicated in
*/

/* c_count_item exp_head _seq. The count returned in
c_count_item_exp _head_seq */

/* determines the number of records to be processed by
c_item _exp_head_seq.- */

/* The "FROM®" and "WHERE®" clauses must match.
*/

EXEC SQL DECLARE c_item _exp _head seq CURSOR FOR
SELECT item,
supplier,
NVL(MAX(item_exp_seq),0)
FROM item_exp_head
WHERE item _exp_type = "Z°
GROUP BY item, supplier, item_exp_type;

/* Any changes made to c_count_items must be replicated in
Cc_get_items */

/* The count returned in c_count_items determines the number of
records */

/* to be processed by c _get items. The "FROM® and *"WHERE® clauses
must match. */

EXEC SQL DECLARE c_count_items CURSOR FOR
SELECT count(im.item)
FROM v_restart_dept vrd,
store st,
price_zone_group_store pzgs,
item_master im,
class cl,
item loc il,
item_supp_country loc iscl
WHERE vrd.num_threads = TO_NUMBER(:ps_num_threads)
AND vrd.thread_val = TO_NUMBER(:ps_thread_val)
AND vrd.driver_value = im.dept
AND st.store = TO _NUMBER(:is_like_store)
AND st.store = il.loc

AND ((im.pack_ind = NVL(:ps_restart_pack ind, "N") AND
im.item > NVL(:ps_restart_item, " 7))

37

Retek Merchandising System

38

OR (im.pack_ind > NVL(:ps_restart _pack ind, "N") AND

im.item > * 7))

AND

AND 1l.1tem = im.item
AND im.dept

cl._dept

AND im.class = cl.class

AND pzgs.store(+) = TO _NUMBER(:is_store)
im.retail_zone group_id = pzgs.zone group_id(+)
AND §1.CLEAR_IND = *N*©

AND il.ITEM = iscl.ITEM(+)

AND il.LOC = iscl.LOC(+)

AND il.primary_supp = iscl.supplier(+)

AND il.primary_cntry = iscl.origin_country_id(+);

Clearance Pricing POS Download [pccdnlid]

Clearance Pricing POS Download
[pccdnld]

Design Overview

The purpose of the Clearance Download (pccdnld) module is to send clearance markdown retail
prices to the point of sales system. Clearance markdowns that are to take effect within the
predetermined number of days are written out to the POS_MODS table, which will be used as an
interface point with the point of sale. Also, the clearance detail records are updated with the
current date as a downloaded date. The number of days prior to taking effect that clearance
markdowns are downloaded is maintained as a system option.

Table Index | Select | Insert Update | Delete
PERIOD No Yes No No No
UNIT_OPTIONS No Yes No No No
CLEAR_SUSP _DETAIL No Yes No Yes No
CLEAR_SUSP_HEAD No Yes No No No
PRICE_ZONE_GROUP_S | No Yes No No No
TORE

ITEM_LOC No Yes No No No
ITEM_MASTER No Yes No No No
ITEM_ZONE_PRICE No Yes No No No
POS_MODS No No Yes No No
RESTART_CONTROL No Yes No No No

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle: Phase 1
Scheduling Diagram: N/A

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: Clearance

39

Retek Merchandising System

Restart Recovery

Logical Unit of Work (recommended Commit checkpoints)

Driving Cursor
EXEC SQL DECLARE c_clear CURSOR FOR

40

SELECT

csd. item,

csd.clearance,

TO_CHAR(csd.active _date, "DDMMYYYY®),

csd.zone_group_id,

csd.zone_id,
csd.unit_retai

pzgs.store,

ROWIDTOCHAR(csd.rowed),
csd.selling_uom,

FROM clear_susp_detail csd,

clear_susp_head csh,

price_zone_group_store pzgs,

item_master im,

restart_control

WHERE :prc_ext_days
TO_DATE(:vdate, “DDMMYYYY™))

AND
“DDMMYYYY ™)

AND
AND
AND
AND
AND
AND
AND
AND
AND
AND

AND
AND
AND
ORDER BY

csd.active_date

csh.status
csd.downloaded date is
csd.clearance
pzgs.zone_group_id
pzgs.zone_id

csd.item
rc.driver_name
rc.num_threads

rc.program_name

rc

>= (csd.active _date -

>=

NULL

csd.

“pcc

TO_DATE(:vdate + 1,

= "A"

= csh.clearance
zone_group_id
csd.zone_id
= im.item
ora_restart_driver_name
ora_restart_num_threads
dnld”

restart_thread return(csh.clearance, rc.num_threads) =
sora_restart_thread val

im_status
im_item_level
im_pack_ind

csd.clearance,

= ‘A’
im_tran_level
°N”

Clearance Pricing POS Download [pccdnlid]

csd.item,
csd.zone_group_id,

csd.zone_group_id;

Program Flow
N/A

Shared Modules
UOM_SQL.CONVERTS
POS_UPDATE_SQL.POS_MODS_INSERT

Function Level Description
init()
This function will, in addition to performing standard restart tasks, fetch the pos_extract_days

from the unit_options table, current date from the period table and the current date plus 1 also
from the period table. Size_arrays function is also called to allocate memory size to arrays.

process()

This function selects the impending clearance records for processing. The records are selected
into arrays (size determined by commit_max_ctr on the RESTART_CONTROL table) and then
each record in the array is processed by a for-loop.

Inside this internal loop, the ITEM information is retrieved from the ITEM_MASTER table
(item, status, & pack_ind). If the status is approved, then the set of clearance records are
considered for processing. If the clearance number has changed since the last check then the
update_clear_susp_detail() function is called to update the header status. When the
CLEAR_SUSP_DETAIL rowid changes then a row is added to an array that will update the
status of the CLEAR_SUSP_DETAIL table.

After the internal loop has processed the individual records, the insert_tran_type() function is
called to insert POS_MODS records and the clear_susp_detail rows that have completed
processing are updated by calling the update_clear_susp_detail() function.

convert_old_unit_retail()

Calls the UOM_SQL.CONVERTS to evaluate whether the classes are the same or different, and
then it will call the corresponding internal function to convert between the given unit of measures.

insert_tran_type()

Calls the POS_UPDATE_SQL.POS_MODS_INSERT function to insert the clearance records
into pos_maods. If the is_clear_ind column in the ITEM_LOC table is not NULL, the tran_type is
17, otherwise, the tran_type is 16. The package first validates input parameters, making sure
fields are null or not null as required. It then does an insert into the table with appropriate values
as determined by the tran_type.

get_pc_unit_retail()

The sole function of this function will simply be to populate the arrays for current unit retail and
price change from the PRICE_SUSP_DETAIL table, with references to the
CLEAR_SUSP_DETAIL and PRICE_SUSP_DETAIL tables.

update_clear_susp_detail()

41

Retek Merchandising System

The CLEAR_SUSP_DETAIL table is updated, the downloaded_date is set to the current date, for
all of the records whose rowids are in the update array.

size_arrays()

This function allocates memory sizes to the arrays that have been fetched into by the driving
cursor.

final()

This function closes restart recovery.

I/O Specification
N/A

Technical Issues
N/A

42

Clearance Reset Pricing POS Extract [pccrdnld]

Clearance Reset Pricing POS Extract

[pccrdnlid]

Design Overview

The Clearance Reset Pricing Information (pccrdnld) module is used to send clearance reset
pricing information to the point of sale system. When a clearance event is within a pre-
determined number of days of its reset date, this program will gather current clearance pricing

information and the pricing information to which an item will be reset. This information will be

written out to a table that will be used as an interface point with the point of sale. Clearance

records will be updated to indicate that they have had reset prices downloaded to the point of sale

by setting a reset downloaded date with the current date.

Tables Index | Selec | Insert | Updat | Delet
t e e
PERIOD No Yes No No No
UNIT_OPTIONS No Yes No No No
CLEAR_RESET_CALC No Yes No Yes No
CLEAR_SUSP_HEAD No Yes No No No
CLEAR_SUSP DETAIL No Yes No No No
PRICE_ZONE_GROUP_STORE | Yes Yes No No No
POS_MODS No No Yes No No
ITEM_MASTER Yes Yes No No No
ITEM_LOC Yes Yes No No No
ITEM_ZONE_PRICE Yes Yes No No No

Scheduling Constraints
Processing Cycle: Phase 1
Scheduling Diagram: N/A
Pre-Processing:
Post-Processing: N/A

Threading Scheme: Clearance

pcdnld should complete processing before this module begins

43

Retek Merchandising System

Restart Recovery

The driving cursor was changed because of changes to the tables and also the system indicator is
no longer used.

EXEC SQL DECLARE c_get_reset CURSOR FOR

SELECT crc.clearance,
crc.item,
TO_CHAR(crc.reset_date, "DDMMYYYY®),
pzgs.store,
ROWIDTOCHAR(crc.rowid),
im.item _level,
";" |l TO_CHAR(crc.clearance) ||
;" |l crc.item ||
";" || TO_CHAR(crc.zone_group_id) ||
";" |l TO_CHAR(crc.zone_id)

FROM clear_reset calc crc,
clear_susp_head csh,
price_zone_group_store pzgs,
item_master im,
v_restart_clearance rv

WHERE crc.reset date is NOT NULL
AND (
(csh.status = "C*
AND EXISTS (SELECT "x*
FROM clear_susp_detail csd
WHERE csd.clearance = csh.clearance

AND csd.item = crc.item

AND csd.zone_group_id
crc.zone_group_id

AND csd.zone_id = crc.zone_id
AND csd.downloaded _date is NOT NULL))

OR
(csh.status = "A"
AND :pd_pos_extract _days >= (crc.reset _date -
to_date(:ps_vdate, "DDMMYYYY ™)))}
)

AND csh.clearance crc.clearance

AND crc.zone_group_id = pzgs.zone_group_id

AND crc.zone_id = pzgs.zone_id

44

Clearance Reset Pricing POS Extract [pccrdnld]

AND crc.reset _downloaded date is NULL

AND crc.item = im.item

AND im.status = "A"

AND im.pack_ind = "N°©

AND im.item_level = im.tran_level

csh.clearance

AND rv.driver_value

AND rv.driver_name = :ps_restart _driver_name

AND rv.num_threads
AND rv.thread val

pi_restart_num_threads

pi_restart_thread_val
ORDER BY crc.clearance,

crc.item,

crc.zone_group_id,

crc.zone_id;

Program Flow
N/A

Shared Modules
POS_UPDATE_SQL.POS_MODS_INSERT

Function Level Description

Init()

Initialize restart recovery.

Determine pos_extract_days, vdate and vdate + 1.
Process()

Select all clearance details with status in 'A’ or 'C' to send clearance reset pricing information to
the point of sale system. It will call function get_item_info to obtain the dept, selling_unit_retail,
selling_uom, multi_selling_uom, multi_unit_retail, zone_group_id and zone_id. If the item/store
location exists, it will call function price_check, pos_mods and update_clear_reset_calc
functions. Price_check is a function to check for any extracted price_susp records that exist.
Pos_mods is a function which calls POS_UPDATE_SQL.POS_MODS_INSERT package. It
writes price resets to the POS_MODS table. A reset price is one that existed prior to a clearance
price period. The reset prices are scheduled to take effect in a pre-determined number of days.
Update_clear_reset_calc is a function which updates the reset_downloaded_date of
clear_reset_calc table with the current vdate.

Get_Item_Info()

This function gets the dept, selling_unit_retail, selling_uom, multi_selling_uom,
multi_unit_retail, zone_group_id and zone_id from the ITEM_MASTER, ITEM_ZONE_PRICE,
PRICE_ZONE_GROUP_STORE and ITEM_LOC tables.

45

Retek Merchandising System

Price_Check ()

This function selects item_parent, item_grandparent, diff_1, diff_2, diff_3, diff_4 from the
ITEM_MASTER table. Use the retrieved values in selecting the unit_retail, multi_units,
multi_unit_retail, selling_uom and multi_selling_uom from PRICE_SUSP_HEAD and
PRICE_SUSP_DETAIL tables.

Pos_Mods ()

This function calls POS_UPDATE_SQL.POS_MODS_INSERT package. It writes price resets to
the POS_MODS table. It uses 18 as tran_type to remove clearance item and reset.

Update_Clear_Reset_Calc()

This function will update the reset_downloaded_date of clear_reset_calc table with the current
vdate when the rowid changes, this is the equivalent of the restart_string changing and will not
affect restart_recovery

Final()
This function closes restart recovery.

I/O Specification
N/A

Technical Issues
N/A

46

Retek Clearance Reset Price Update [pccrext]

Retek Clearance Reset Price Update
[pccrext]

Design Overview

The function of this program is to reset the SKU/store retail prices back to the regular retail
prices. Clearance events with reset dates on the following business day are selected and the
appropriate sku/location tables are updated with the regular retail price and a new clearance
indicator value. Transaction-level stock ledger, price history, supplier history and clearance sell
through records are also written.

Tables Index Select | Insert | Update Delete
PERIOD No Yes No No No
CLEAR_SUSP_DETAIL No Yes No No No
CLEAR_SUSP_HEAD No Yes No Yes No
WIN_SKUS Yes Yes No No No
WIN_WH Yes No No Yes No
WIN_STORE Yes Yes No Yes No
RAG_STYLE Yes Yes No No No
RAG_SKUS Yes Yes No No No
RAG_SKUS_WH Yes No No Yes No
RAG_SKUS_ST Yes Yes No Yes No
TRAN_DATA No No Yes No No
SUP_DATA No No Yes No No
PRICE_HIST No No Yes No No
ITEM_ZONE_PRICE Yes Yes No No No
PRICE_ZONE_GROUP_STO | Yes Yes No No No
RE

CLEAR_RESET_CALC No Yes No No No
SKU_SUPPLIER Yes Yes No No No

47

Retek Merchandising System

Indexes: WIN_SKUS(sku),
WIN_WH(sku),
WIN_STORE(sku), (sku, store),
RAG_STYLE(style),
RAG_SKUS(style),
RAG_SKUS_WH(style),
RAG_SKUS_ST(style, store),
ITEM_ZONE_PRICE(zone_group_id, zone_id),
PRICE_ZONE_GROUP_STORE(zone_group_id, zone_id),

(zone_group_id, store),

SKU_SUPPLIER(sku)

Scheduling Constraints

Processing Cycle:
Scheduling Diagram:
Pre-Processing:
Post-Processing:
Threading Scheme:

Restart Recovery

Phase 3

N/A

pcext and pccext must complete before this module begins
N/A

Clearance

EXEC SQL DECLARE c_reset CURSOR FOR

SELECT csh
csh
csh
crc.
crc

Ccrc

.clearance,
.status,
.reason,

sku,
.zone_group_id,

.zone_id,

TO_CHAR(crc.reset_date, "DDMMYYYY"™),
pzgs.store,
"; "1 1TO_CHAR(csh.clearance) ||
";"11TO_CHAR(crc.sku)]|
"; "] ITO_CHAR(pzgs-store)

FROM v_restart_clearance rv,

price_zone_group_store pzgs,

clear_reset _calc crc,

clear_susp_head csh
WHERE ((csh.status = "A*

AND crc.reset_date = to_date(:tomorrow, “DDMMYYYY "))
OR (csh.status = "C*
AND EXISTS (SELECT *"x*

48

FROM clear_susp_detail csd

Retek Clearance Reset Price Update [pccrext]

WHERE csd.clearance =
csh.clearance

AND csd.sku = crc.sku

AND csd.zone_group_id =
crc.zone_group_id

AND csd.zone_id = crc.zone_id

AND csd.downloaded date is not

nul1)))

AND csh.clearance

crc.clearance

AND crc.zone_group_id pzgs.zone_group_id

AND crc.zone_id = pzgs.zone_id

AND rv.driver_value csh.clearance

AND rv.driver_name = :ora_restart driver_name
AND rv.num_threads = :ora restart num threads
AND rv.thread_val = :ora_restart_thread val

AND (csh.clearance > NVL(:ora_restart_clearance, -999)
OR (csh.clearance = :ora_restart_clearance

AND (crc.sku > :ora_restart_sku OR (crc.sku =
ora_restart_sku

AND (pzgs-.store > :ora_restart_store)))))
ORDER BY csh.clearance, sku, store;

Program Flow
main()
{
accept the userid/password as an argument from the command line
init()
initialize restart variables
copy start string variables from the restart_start_array
fetch today’s date and currency code
process()
declare driving cursor
Initialize temporary variables
While(1)
{
Ensure that item is not a pack item
Get item information

Insert records into tran_data, sup_data, price_hist tables

49

Retek Merchandising System

update the item_loc table by resetting the unit retail to the original unit retail and set
clear_ind = ‘N’

¥

for the last clearance event check if all items have been reset if so, update
clear_susp_head.status to completed ('O")

final()

close restart recove ry

Shared Modules

e |ITEM_ATTRIB_SQL.GET_STANDARD_UOM - This packaged function will return the
standard UOM and the UOM class of the item passed.

e UOM_SQL.CONVERT - This packaged function will convert the unit retail between the
given unit of measures.

o PRCCHGTYP - This stored procedure is used to determine the tran_type

o STKLEDGR_SQL.TRAN_DATA _INSERT - This packaged function performs the
insertion of records into tran_data

o Cl_JRRENCY_SQL.CONVERT — This packaged function will convert the dollar amount to
primary currency

Function Level Description

init()

Initialize restart recovery.

Determine the vdate and the currency code.

process()

Select all clearance events with reset date of tomorrow. It will call the function check_item to
ensure that the item is not a pack item. Then it will call the function get_item_info to retrieve
clearance items dept, class, subclass, and primary item supplier. Update_item_loc is then called to
update the item_loc table to reset the unit_retail and set the clear_ind = “Y”’, insert into tran_data,
sup_data and price_hist tables. Lasty, the function update_clear_head function is called check if
all the items have been reset. If so, clear_susp_head.status is updated to completed (‘O”).

check_item()

This function checks the item to ensure that it is not a pack item since pack items are not allowed
for clearance.

get_item_info()

This function selects the items dept, class, subclass, and supplier and fetches them into variables
to be inserted into tables later in program.

update_item_loc()

50

Retek Clearance Reset Price Update [pccrext]

This function selects the unit retail, in transit gty, unit cost and stock on hand from the
ITEM_LOC and ITEM_LOC_SOH tables. It then converts the new reset unit retail to the
standard unit retail by calling the get_reset_retail function. The function also calls calc_tran_type
to compute tran_type, insert_tran to insert into the TRAN_DATA and SUP_DATA tables, and
price_hist to insert into the PRICE_HIST table. The function also updates the ITEM_LOC table
with the new unit retail, reset selling uom, reset selling unit retail and set the clear_ind = ‘N’.

get_reset_retail()

This function will retrieve the reset retail price from the ITEM_ZONE_PRICE table and it will
also check if a price change has been extracted. If a price change has been extracted, then this
would be the new unit retail price. It would then call the
ITEM_ATTRIB_SQL.GET_STANDARD_UOM package to retrieve the standard uom and UOM
class of the item. The new selling unit retail will then be converted to the standard unit retail by
calling the UOM_SQL.CONVERT package.

calc_tran_type()
This function computes the tran type by calling the stored procedure PRCCHGTYP.
insert_tran()

If the selected item’s stock gty > 0, this function calls the package
STKLEDGR_SQL.TRAN_DATA_INSERT to insert into the TRAN_DATA table. If the local
currency is not the same as the primary currency, this function calls function convert_currency to
convert to the primary currency. Then insert into the SUP_DATA table. If there is a second tran
type and tran type amt, then the function calls STKLEDGR_SQL.TRAN_DATA_INSERT again
and inserts into the SUP_DATA table again.

convert_currency()

Function is called to compute the dollar amount in primary currency by calling the package
CURRENCY_SQL.CONVERT.

price_hist()
This function inserts into the PRICE_HIST table.
update_clear_head()

This function will update the clear_susp_head table where all clearance details has been reset or
with a previous status of ‘C’. Status of the clearance will be set to ‘O’

final()

This function closes restart recovery.

I/O Specification
N/A

Technical Issues
N/A

51

PO Subscription API

PO Subscription API

Functional Area

PO subscription

Design Overview

RMS will expose an API that will allow external systems to create, edit, and delete purchase
orders within RMS. The transaction will be performed immediately upon message receipt so
success or failure can be communicated to the calling application.

Purchase order messages will be sent across the Retek Integration Bus (RIB). POs can be
created, modified or deleted at the header or the detail level, each with its own message

type.

Consume Module
Filename: rmssub_xorders/b.pls

RMSSUB_XORDER.CONSUME

(O_status_code INOUT VARCHAR2,

O _error_message INOUT RTK _ERRORS.RTK _TEXT%TYPE,
I_message IN RIB_OBJECT,

I_message_type IN VARCHAR?2)

This procedure will need to initially ensure that the passed in message type is a valid type for
purchase order messages. The valid message types for purchase order messages are listed in a
section below.

If the message type is invalid, a status of “E” should be returned to the external system along
with an appropriate error message informing the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual object
using the Oracle’s treat function. There will be an object type that corresponds with each message
type. If the downcast fails, a status of “E” is returned to the external system along with an
appropriate error message informing the external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of RMS’s
business validation. It calls the RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE function
to determine whether the message is valid. If the message passed RMS business validation, then
the function returns true, otherwise it returns false. If the message fails RMS business validation,
a status of “E” is returned to the external system along with the error message returned from the
CHECK_MESSAGE function.

Once the message has passed RMS business validation, it is persisted to the RMS database. It
calls the RMSSUB_XORDER_SQL.PERSIST() function. If the database persistence fails, the
function returns false. A status of “E” is returned to the external system along with the error
message returned from the PERSIST() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that the
message has been successfully received and persisted to the RMS database.

53

Retek Merchandising System

Business Validation Module
Filename: rmssub_xordervals/b.pls

It should be noted that some of the business validation is referential or involves uniqueness. This
validation is handled automatically by the referential integrity constraints and the unique indexes
implemented on the database.

RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE

(O_error_message INOUT RTK_ERRORS.RTK TEXT%TYPE,
O_order_rec ouT NOCOPY ORDER_SQL.ORDER_REC,
I_message IN RIB_XORDERDESC_REC,
I_message_type IN VARCHAR?2)

This overloaded function performs all business validation associated with create/modify messages
and builds the order API record with default values for persistence in the order related tables.
Any invalid records passed at any time results in message failure.

Like other APIs, the purchase order APl expects a snapshot of the record on both a header modify
and a detail modify message, instead of only the fields that are changed. For a detail create or a
detail modify message, only the order number will be validated at the header level; all other
header fields are ignored.

Defaulted fields that are not included in the message structure of the object must be populated in
a package business record, ORDER_SQL.ORDER_REC. This record is used as input to the
database DML functions in the persist package.

ORDER CREATE

o Check required fields on both header and detail nodes.

o Verify order number does NOT already exist.

o Verify attributes in the message header are correct.

o Verify attributes in the message detail are correct.

o Verify that item/supplier and item/supp/country exist for a non-pack item.

o Verify that item/supplier and item/supp/country exist for all components of a pack item.
o Create item/supplier and item/supp/country if they don’t exist for a pack item.

o Create item/supp/country/loc if it does not exist for an item/location.

o Create item/loc relation if not already exist, including creating item_loc_soh,
item_supp_country_loc, and price_hist records. If a pack item is involved, these records will
be created for all component items.

e Populate record ORDER_REC with message data for both header and detail.
o Default the following fields if they are populated in the message:

= orig_ind

= edi_po_ind

= premark_ind

= origin_country_id

54

PO Subscription API

ORDER MODIFY

Check required fields on the header node.

Verify order number already exists.

Verify attributes in the message header are correct.

Verify attributes that cannot be modified are not changed.

Update ordloc appropriately if closing or reinstating an order.
Populate record ORDER_REC.ORDHEAD_ROW with message data.

ORDER DETAIL CREATE

Check required fields on the detail node.

Verify order number already exists.

Verify order/item/loc does NOT already exist.

Verify that item/supplier and item/supp/country exist for a non-pack item.

Verify that item/supplier and item/supp/country exist for all components of a pack item.
Create item/supplier and item/supp/country if they don’t exist for a pack item.

Create item/supp/country/loc if it does not exist for an item/location.

Create item/loc relation if not already exists, including creating item_loc_soh,
item_supp_country_loc, and price_hist records. If a pack item is involved, these records will
be created for all component items.

Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS with
message data.

ORDER DETAIL MODIFY

Check required fields on the detail node.
Verify order/item/loc already exists.
Verify attributes that cannot be modified are not changed.

If order quantity is reduced, verify the new order quantity is not below what has already been
received plus what is being shipped or expected.

If the order line is cancelled or reinstated via the indicators, calculate the new quantity
buckets.

Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS with
message data.

55

Retek Merchandising System

RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE

(O_error_message INOUT RTK_ERRORS.RTK _TEXT%TYPE,
O_order_rec OUT NO COPY ORDER_SQL.ORDER_REC,
I_message IN RIB_XORDERREF_REC,
I_message_type IN VARCHAR?2)

This overloaded function performs all business validation associated with delete messages and
builds the order API record with default values for persistence in the order related tables. Any
invalid records passed at any time results in message failure.

ORDER DELETE

e Check required fields.

o Verify order number already exists.

o Verify that order is not already shipped or received.

o Delete any allocations tied to the order

e Populate record ORDER_REC.ORDHEAD_ROW with the order number for delete.
ORDER DETAIL DELETE

e Check required fields.

o Verify order/item/loc already exists.

o Verify that order line is not already shipped or received.

o Delete any allocations tied to the order line.

e Populate record ORDER_REC.ORDLOCS with the order/item/location for delete.

Bulk or single DML module
Filename: rmssub_xorders/b.pls

All insert, update and delete SQL statements are located in package ORDER_SQL. The private
functions call these packages.

RMSSUB_XORDER_SQL.PERSIST

(O_error_message INOUT RTK_ERRORS.RTK TEXT%TYPE,
|_order_rec IN ORDER_SQL.ORDER_REC,
I_message_type IN VARCHAR?)

This function checks the message type to route the object to the appropriate internal functions that
perform DML insert, update and delete processes.

ORDER CREATE

e Inserts records in the ORDHEAD, ORDSKU, ORDLOC tables
ORDER MODIFY

e Updates a record in the ORDHEAD table.

ORDER DELETE

e Delete an order from ORDHEAD, ORDSKU, ORDLOC tables.

56

PO Subscription API

ORDER DETAIL CREATE

e Inserts records in the ORDLOC and optionally, ORDSKU tables

ORDER DETAIL MODIFY

e Updates records in the ORDLOC and/or ORDSKU table.

e Also verify it doesn’t end up with an Approved order with O total order quantity.
ORDER DETAIL DELETE

o Delete records from ORDLOC and optionally, ORDSKU tables.

o Also verify it doesn’t end up with an Approved order with no detail or with 0 total order
quantity.

After all inserts, updates and deletes have taken place, this function will call order inventory
management, order expense, deals, order rounding, OTB and bracket costing functionality for the
order that was created, modified or deleted.

Message DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Message Type Description Document Type
Types Definition (DTD)
XorderCre Order Create Message XOrderDesc.dtd
XorderMod Order Modify Message XOrderDesc.dtd
XorderDel Order Delete Message XOrderRef.dtd
XorderDtICre Order Detail Create Message XOrderDesc.dtd
XorderDtIMod Order Detail Modify Message XOrderDesc.dtd
XorderDtIDel Order Detail Delete Message XOrderRef.dtd

Design Assumptions
Required fields are shown in mapping document.

Many ordering functionalities that are available on-line are not supported via this API. See the
SAE and the story document for a list of that. Triggers related to these functionalities should be
turned off.

Tables

TABLE SELECT INSERT UPDATE DELETE
ORDHEAD Yes Yes Yes Yes
ORDSKU Yes Yes Yes Yes
ORDLOC Yes Yes Yes Yes

57

Retek Merchandising System

TABLE SELECT INSERT UPDATE DELETE
ITEM_SUPPLIER Yes Yes No No
ITEM_SUPP_COUNTRY Yes Yes No No
ITEM_SUPP_COUNTRY_LOC Yes Yes No No
ITEM_LOC Yes Yes No No
ITEM_LOC_SOH Yes Yes No No
PRICE_HIST No Yes No No
ITEM_ZONE_PRICE Yes No No No
ITEM_MASTER Yes No No No
PACKITEM_BREAKOUT Yes No No No
SHIPMENT Yes No No No
SHIPSKU Yes No No No
APPT_DETAIL Yes No No No
ALLOC HEADER Yes No No Yes
ALLOC_DETAIL Yes No No Yes
STORE Yes No No No
WAREHOUSE Yes No No No
SUPS Yes No No No
DEPS Yes No No No
CURRENCIES Yes No No No
CURRENCY_RATES Yes No No No
TERMS Yes No No No
SYSTEM_OPTIONS Yes No No No
UNIT_OPTIONS Yes No No No
ADDR Yes No No No
OoTB No Yes Yes Yes
ORD_INV_MGMT No Yes Yes Yes
ORDLOC_EXP No Yes Yes Yes
DEAL_CALC_QUEUE No Yes No Yes

58

reclsdly Master Batch Design

reclsdly Master Batch Design

Functional Area

Reclassification

Module Affected
Reclsdly.pc

Design Overview

The Item Reclassification batch program is executed in order to reclassify items from one
department, class or subclass to another. This reclassification of items into different merchandise
hierarchy level is initiated or requested online in the item reclassification dialog, with an effective
date specified. This program reads in the reclassification requests that are effective the following
day, and for each item being reclassified, the following functions are executed:

e Checks if the item is forecastable and if it is, then checks for the existence of a domain. If the
item is forecastable and no domain association to the new merchandise hierarchy level exists,
reject the item (i.e. the item will not be reclassified).

e Updates the appropriate item table, e.g. item_master, with the new merchandise hierarchy.

o Ifanitem is reclassified, the product securities of the item are then updated.

Stored Procedures / Shared Modules (Maintainability)

FORECASTS_SQL.GET_SYSTEM_FORECAST_IND:
Stored PL/SQL procedure for returning the value of the forecast_ind from the system_options
table.

FORECASTS_SQL.GET_DOMAIN:
Stored PL/SQL procedure for retrieving the domain for a merchandise hierarchy.

RECLASS_SQL.ITEM_PROCESS:

Stored PL/SQL procedure for updating or inserting records into the item_master, pos_modS, and
tran_data tables. If the item cannot be reclassified, the IO_RECLASS FAILED variable returns a
value of TRUE. Otherwise, it returns a value of FALSE. If reclassification failed, the function
returns the reason for failure.

LOC_PROD_SECURITY_SQL.INSERT_USR_SEC:
Stored PL/SQL procedure for creating new records on to the sec_user_prod_matrix table for all
users that have security access to the new item.

ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS:
Stored PL/SQL procedure for inserting reclass failed reasons into the mc_rejections table.

Input Specifications

Select from: V_RESTART_RECLASS, RECLASS_ITEM, RECLASS_HEAD,
ITEM_MASTER, PACKITEM, ORDSKU, DEAL_CALC_QUEUE, DEAL_ORDER_TEMP,
SYSTEM_OPTIONS, and PERIOD

59

Retek Merchandising System

Output Specifications
‘Table-To-Table’

Delete from: RECLASS_HEAD, RECLASS_ITEM, SEC_GROUP_PROD_MATRIX, and
SEC_USER_PROD_MATRIX

Insert into: DEAL_ORDER_TEMP

Function Level Description
init()

This function initializes restart/recovery and fetches global options and variables. Calls
size_arrays function.

process()

This is the main control function of the program. Each reclass_head record fetched from the
driving cursor is checked for domain association to the new merchandise hierarchy if the
forecast_ind is “Y’. This existence check will be used during the call to the

RECLASS SQL.ITEM_PROCESS function to determine if the record will be rejected from
reclassification. Calls the process_item function to perform the item reclassification. If
reclassification failed, the insert_reject_record and delete_reclass_item functions are called.
Otherwise, all order numbers associated to the item are inserted into the
DEAL_ORDER_TEMP table by calling update_deal_calc_queue function for later
processing during prepost. Also, reclassified items are deleted from the RECLASS_ITEM
table and the product securities of the items are updated by calling the process_security
function. After processing, the reclass_head record is then deleted from the
RECLASS_HEAD table.

delete_reclass_head()

This function deletes the reclassification record from the RECLASS HEAD table.

delete_reclass_item()

This function deletes the record from the RECLASS_ITEM table based on the row_id.

check_domain_exists()

If forecast_ind is Y, this function checks if a domain association to the new merchandise
hierarchy exist for the given dept/class/subclass.

process_item()

This function calls the RECLASS_SQL.ITEM_PROCESS function to perform the item
reclassification.

size_arrays()

This function sizes the fetched array to the commit size.

process_security()

60

This function deletes the records of the reclassified item in the
SEC_GROUP_PROD_MATRIX and SEC_USER_PROD_MATRIX tables. Calls the
LOC PROD_SECURITY_SQL.INSERT_USR_SEC function.

reclsdly Master Batch Design

get_order_numbers()

e This function finds all the order numbers that are associated to the input item in the
ORDSKU table.

update_deal calc_queue()

e This function is passed an array of order numbers and a long telling the number of order
numbers in the array. This function then inserts the order numbers into the
DEAL_ORDER_TEMRP table, prepost post processing will select from this table and insert
into DEAL_CALC_QUEUE table, along with 'N' for the recalc_all_ind and
override_manual_ind columns.

order_exists()

e This function checks to see whether or not the passed order number already exists in the
DEAL_CALC_QUEUE or the DEAL_ORDER_TEMP table. A zero is returned if the order
number is not in the DEAL_CALC_QUEUE OR in the DEAL_ORDER_TEMP table, a one
if it is in the table, or a negative one if there was a SQL_ERROR found.

insert_reject_record()

e This function calls the ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS function to
insert the reclassification failed reason in the MC_REJECTIONS table.

final ()

o Standard Retek final function. Calls retek_close().

Scheduling Considerations
Processing Cycle: Daily

Scheduling Diagram: This module is scheduled to run daily during Phase 4 of the batch
schedule. The requirement is for all the batch modules that update
inventory and retail / cost prices to be completed before this module can

run.
Pre-Processing: Prepost (reclsdly pre)

Post-Processing: Prepost (reclsdly post)

Threading Scheme: If desired, this program can be threaded by reclass_no to process several

reclassifications at once.

Restart/Recovery

The logical unit of work for the reclassification is reclass_no/item. The restart commit counter
will need to be carefully determined by each client according to the number of item/store
combinations that will be affected by the reclassification since processing is done inside the
packages rather than directly from the batch program. Large reclassifications with thousands of
items held at many stores need smaller commit counters to avoid reprocessing large amounts of
data in the event of program failure. Small reclassifications affecting just a few item/store
combinations can have much larger commit counters since fewer rows will be inserted into the
database each time an item is processed.

61

Retek Merchandising System

Driving cursor:
SELECT ROWIDTOCHAR(ri.rowid),

ri.reclass no,
ri.item, /* This is a level 1 item */
im.item,
NVL(im.item_parent,®),
NVL(im.item_grandparent,®),
im_item level,
im_tran_level,
rh_to_dept,
rh.to _class,
rh_to_subclass,
im.dept,
im.class,
im.subclass

FROM v_restart_reclass rv,
reclass_item ri,
reclass head rh,
item_master im

WHERE rh.reclass_no = ri.reclass _no
AND rh.reclass_date <= TO _DATE(:ps_vdate, "YYYYMMDD")
AND (ri.item = im.item
OR ri.item = iIm.item_parent
OR ri.item = im.item_grandparent)

AND rv.driver_value = rh.reclass _no

AND rv.driver_name = :ps_driver_name
AND rv.num_threads = TO_NUMBER(:ps_num_threads)
AND rv.thread val = TO_NUMBER(:ps_thread val)

AND (rh.reclass no > NVL(:ps_restart_reclass no, -999)
OR

(rh_.reclass _no = :ps_restart_reclass no AND
ri.item > :ps_restart_item))
UNION
-— This is for simple pack
SELECT ROWIDTOCHAR(ri.rowid),
ri.reclass no,
ri.item,

im.item,

62

reclsdly Master Batch Design

NVL(im.item_parent,® "),
NVL(im.item_grandparent,® "),
im.item _level,
im.tran_level,
rh_to_dept,
rh_.to _class,
rh_.to_subclass,
im_dept,
im.class,
im.subclass
FROM v_restart_reclass rv,
reclass_item ri,
reclass _head rh,
packitem pi,
item_master im
WHERE rh.reclass_no = ri.reclass_no
AND rh.reclass_date <= TO DATE(:ps_vdate, "YYYYMMDD")
AND im.simple_pack ind = "Y*
AND (im.item = pi.pack no OR
im.item_parent = pi.pack_no OR
im.item grandparent = pi.pack _no)
AND EXISTS (SELECT "x*
FROM item master iml
WHERE pi.item = iml.item

AND iml.item_level =
iml.tran_level

AND (ri.item = iml.item

OR ri.item =
iml.item_parent

OR ri.item

iml.item_grandparent))

AND rv.driver_value rh_.reclass_no

AND rv.driver_name ps_driver_name
TO_NUMBER(:ps_num_threads)
AND rv.thread_val = TO_NUMBER(:ps_thread_val)

AND (rh.reclass no > NVL(:ps_restart_reclass no, -999)

AND rv.num_threads

OR
(rh_.reclass no = :ps_restart_reclass no AND

ri_.item > :Ips_restart_item))

63

Retek Merchandising System

ORDER BY 2, 3;

64

Upload Stock Count Results [stkupld]

Upload Stock Count Results [stkupld]

Design Overview

The purpose of this batch module is to accept cycle count details from an external system. The
cycle count transactions will be compared with Retek system snapshots of stock on hand at the
time of the cycle count to determine the stock and/or dollar adjustments to be made. The
following common functions will be performed on each stock record read from the input file:

o ifrecord exists on STAKE_SKU_LOC then update it
e ifrecord doesn’t exist on STAKE_SKU_LOC

= validate that item/location exists in system

= inserta record into STAKE_SKU_LOC

= insert stock take record into STAKE_SKU_LOC.

o ifrecord is a pack - update/insert information on STAKE_SKU_LOC for all component items

TABLE SELECT INSERT | UPDATE | DELETE
stake_qty No Yes No No
stake_sku_loc No Yes Yes No
item_loc_soh Yes No No No
item_loc Yes No No No
item_master Yes No No No
wh Yes No No No
stake_head Yes No No No
stake_location Yes Yes No No
stake_prod_loc Yes No No No
v_packsku_qty Yes No No No
system_options Yes No No No

This program reads a user-created interface file of cycle counts. Files will be unique to location
and cycle count ID. All records will be validated for layout. Invalid layouts will produce fatal
errors. Fields will be validated for content. Invalid contents will produce non-fatal errors. Valid
records will update the physical_count_qty field on STAKE_SKU_LOC for a given
item/location/ cycle count combination. If the item is a pack, component items will have their
component quantity added to the pack_comp_qty field on STAKE_SKU_LOC. If an item does
not exist on STAKE_SKU_LOC, the item/location combination will be validated on the
item/location tables and a new record will be inserted to STAKE_SKU_LOC.

Fatal errors will terminate file processing. Non-fatal errors will discontinue record processing
and will write invalid record to a reject file.

65

Retek Merchandising System

File layout will be verified by interface library routines:

e get_record: validates common fields in file head record and fills structure of remaining fields
that are passed from this program

e process_dtl_ftail: called after end-of-file is reached. Will process file trailer record by
validating its layout and verifying that the file record counter is set properly.

Re-run:
e If this program terminates normally, restart without recovery.

o If this program terminates abnormally, restart without recovery.

Scheduling Constraints
Processing Cycle: PHASE 3 (Daily)

Scheduling Diagram: This program will probably be run at the start of the batch cycle during
POS polling, or possibly at the end of the batch run if pending warehouse
transactions exist. It can be scheduled to run multiple times throughout
the day, as WMS or POS data becomes available.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Restart Recovery

The logical unit of work for the stock take upload module will be a count of discrete inventory
transactions. Each record will be uniquely identified by a location and item. The logical unit of
work will be defined as a number of these transaction records, determined by the
commit_max_ctr field on the restart_control table.

The file records will be grouped in numbers equal to the commit_max_ctr. After all records in a
given read are processed (or rejected), the restart commit logic and restart file writing logic will
be called, after which the following group of file records will be read and processed. The commit
logic will save the current file pointer position in the input file and any application image
information (e.g. record and reject counters) and commit all database transactions. The file
writing logic will append the temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space usage and to reduce
the overhead of file 1/0. The recommended commit counter setting is 10,000 records (subject to
change based on experimentation).

Error handling will recognize three levels of record processing: process success, non-fatal errors,
and fatal errors. Item level validation will occur on all fields before table processes are initiated.
If all field-level validations return successfully, inserts and updates will be allowed. If a non-fatal
error is produced, the remaining fields will be validated but the record will be rejected and written
to the reject file. If a fatal error is returned, file processing will end immediately. A restart will
be initiated from the file pointer position saved in the restart_bookmark string at the time of the
last commit point that was reached during file processing.

Program Flow
N/A

66

Upload Stock Count Results [stkupld]

Shared Modules
validate_all_numeric: interface library function.
validate_all_numeric_signed: interface library function.

valid_date: interface library function.

Function Level Description

init():

initialize restart recovery

open input file

o file should be specified as input parameter to program
declare final output filename (used in restart_write_file logic)
open reject file (as a temporary file for restart)

o file should be specified as input parameter to program
call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject counter (g_I_rej_cnt),
cycle_count, stocktake date

if fresh start (1_file_start = 0)

read file header record (get_record)

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘STKU”’

else fseek to |_file_start location

validate head (validate_head())

validate cycle count id & cycle count date are valid on stake_head
process()

loop - fread rows (equal to commit counter) of input file

if end of file encountered, decrement for loop counter and set end of file flag to true
for loop to process all records read

copy input detail structure elements to stake _sku_loc structure elements
validate elements (validate_detail())

if non-fatal error occurs write detail structure to reject file (write_to_rej_file) and continue at the
top of the for-loop

update stake_sku_loc

if record doesn’t exist, validate that item/location is valid

if invalid then non-fatal error -write record & continue

insert to stake_sku_loc (if display pack also insert component items)

end loop for loop to process individual records

67

Retek Merchandising System

insert structure of arrays (for valid record counter) into stake_sku_loc

restart file commit - save current input file position, and application image (cnt, cycle count &
date)

restart write file function

if end of file reached then break from while loop
end outer loop to read from file

restart commit final

validate_head()

if file type I= ‘STKU’ then fatal file type error

copy stocktake date, cycle count, location type, location value into variables, nullpad the value
and perform necessary validation for each variables.

If the location type is a Store, populate the warehouse variable with —1 and the store value to a
variable. If the location type is a Warehouse, populate the store variable with -1 and the
warehouse value to a variable. Otherwise, return fatal error.

Open the c_valid_cc cursor to get the stocktake type for each cycle count and the stocktake_date.
If there is no data found, return an error message.

validate_detail()
if record type = FDETL then fatal file layout error.
Copy the item type and also the item value into variables. Check the item type.

If the item_type is ITM, then copy the item value into a variable. If the item_type is REF, then
get the item_parent, transaction level and item level information from the c¢_get_item cursor. If
the transaction level is equal to the item level, copy the item value into a variable. If the item
level is greater than the transaction level, copy the value of the parent item into a variable.

Copy the quantity, location description into variables, nullpad all fields, left shift item and qty,
check that store and gty are all numeric, place decimal in gty field.

ON Fatal Error
e Exit Function with -1 return code
ON Non-Fatal Error

e write out rejected record to the reject file using write_to_rej_file functionn, pass pointer to
detail record structure, number of bytes in structure, and reject file pointer

68

Upload Stock Count Results [stkupld]

I/O Specification

Input File

The input file should be accepted as a runtime parameter at the command line.

Record Field Name Field Type | Description
Name
File Header file type record Char(5) hardcode ‘FHEAD’
descriptor
file line identifier | Number(10) | Id of current line being
processed., hardcode
‘000000001’
file type Char(4) hardcode ‘STKU’
file create date Date(14) date written by convert
YYYYMMD | Program
DHHMISS
stocktake_date Date(14) stake_head.stocktake date
YYYYMMD
DHHMISS
cycle count Number(8) stake_head.cycle_count
loc_type Char(1) hardcode ‘W’ or ‘S’
location Number(10) | stake location.wh or
stake_location.store
Transaction file type record Char(5) hardcode ‘FDETL’
record descriptor
file line identifier | Number(10) | Id of current line being
processed, internally
incremented
item type Char(3) hardcode ‘ITM’
item value Char(25) item id
inventory Number(12,4 | total units or total weight
quantity)
location Char(30) Where in the location the
description item exists. Ex: Back
Stockroom or Front
Window Display
File trailer file type record Char(5) hardcode ‘FTAIL’
descriptor
file line identifier | Number(10) | Id of current line being

processed, internally
incremented

69

Retek Merchandising System

Record Field Name Field Type | Description
Name

file record count | Number(10) | Number of detail records.

Reject File

The reject file should be able to be re-processed directly. The file format will therefore be
identical to the input file layout. The file header and trailer records will be created by the
interface library routines and the detail records will be created using the write_to_rej_file
function. A reject line counter will be kept in the program and is required to ensure that the file
line count in the trailer record matches the number of rejected records. A reject file will be
created in all cases. If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer should be declared.
The reject file pointer will identify the temporary reject file. This is for the purposes of restart
recovery. When a commit event takes place, the restart_write_function should be called (passing
the file pointer, the temporary name and the final name). This will append all of the information
that has been written to the temp file since the last commit to the final file. Therefore, in the
event of a restart, the reject file will be in synch with the input file.

Error File

Standard Retek batch error handling modules will be used and all errors (fatal & non-fatal) will
be written to an error log for the program execution instance. These errors can be viewed on-line
with the batch error handling report.

Technical Issues
N/A

70

TSF Subscription API

TSF Subscription API

Functional Area

Transfer Subscription

Design Overview

RMS will expose an API that will allow external systems to create, edit, and delete transfers
within RMS. The transaction will be performed immediately upon message receipt so success or
failure can be communicated to the calling application.

Transfer messages will be sent across the Retek Integration Bus (RIB). Transfers can be created,
modified or deleted at the header or modified or deleted the detail level, each with its own
message type.

Consume Module
File name: rmssub_xtsfs/b.pls

RMSSUB_XTSF.CONSUME

(O_status_code INOUT VARCHAR2,

O _error_message INOUT RTK_ERRORS.RTK_TEXT%TYPE,

I_message IN RIB_OBJECT,

I_message_type IN VARCHAR?2)

This procedure will need to initially ensure that the passed in message type is a valid type for
transfer messages. The valid message types for transfer messages are listed in a section below.

If the message type is invalid, a status of “E” should be returned to the external system along
with an appropriate error message informing the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual object
using the Oracle’s treat function. There will be an object type that corresponds with each message
type. If the downcast fails, a status of “E” is returned to the external system along with an
appropriate error message informing the external system that the object passed in is invalid.

If the downcast is successful, then consume needs to verify that the message passes all of RMS’s
business validation. It calls the RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE function to
determine whether the message is valid. If the message passed RMS business validation, then the
function returns true, otherwise it returns false. If the message fails RMS business validation, a
status of “E” is returned to the external system along with the error message returned from the
CHECK_MESSAGE function.

Once the message has passed RMS business validation, it is persisted to the RMS database. It
calls the RMSSUB_XTSF_SQL.PERSIST() function. If the database persistence fails, the
function returns false. A status of “E” is returned to the external system along with the error
message returned from the PERSIST() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that the
message has been successfully received and persisted to the RMS database.

71

Retek Merchandising System

Business Validation Module
File name: rmssub_xtsfvals/b.pls
RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
O_tsf_rec OUT NOCOPY RMSSUB_XTSF_SQL.TSF_REC,
I_message IN RIB_XTSFDESC_REC,
I_message_type IN VARCHAR?2)

This overloaded function performs all business validation associated with create/modify messages
and builds the transfer API record with default values for persistence in the transfer related tables.
Any invalid records passed at any time results in message failure.

Like other APIs, the transfer APl expects a snapshot of the record on both a header modify and a
detail modify message, instead of only the fields that are changed. For a detail modify message,
the transfer number, locations and location types will be validated at the header level; all other
header fields are ignored. For a header modify message, no details should be included in the
message.

All populated fields in the message will be used to create an instance of the
RMSSUB_XTSF.TSF_REC object. A number of fields will be defaulted if they are not
populated and others will be left as null.

TRANSFER CREATE:

o Check required fields on both header and detail nodes.
o Verify transfer number does NOT already exist.

o Verify attributes in the message header are correct.

o Verify attributes in the message detail are correct.

o Create item/loc relation if not already exist, including creating item_loc_soh,
item_supp_country_loc, and price_hist records. If a pack item is involved, these records will
be created for all component items.

e Populate record TSF_REC with message data for both header and detail.
o Default the following fields if they are populated in the message:
= freight_code
= tsf_type
» supp_pack size
TRANSFER MODIFY
o Check required fields on the header node.
o Verify transfer number already exists.
o Verify attributes in the message header are correct.
e Populate record TSF_REC.HEADER with message data.

72

TSF Subscription API

TRANSFER DETAIL MODIFY
o Check required fields on the detail node.
o Verify transfer/items/inventory statuses already exist.

e Check that the new transfer quantity is not less than the current distribution, selected or
shipped quantity, the quantity that has currently been processed, for that item on the transfer.

e Populate record ORDER_REC.TSF_DETAIL with message data.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE

(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
O_tsf_rec OUT NOCOPY RMSSUB_XTSF_SQL.TSF_REC,
I_message IN RIB_XTSFREF_REC,
I_message_type IN VARCHAR?2)

This overloaded function performs all business validation associated with delete messages and
builds the transfer API record with default values for persistence in the transfer related tables.
Any invalid records passed at any time results in message failure.

TRANSFER DELETE

e Check required fields.

o Verify transfer number already exists.

o Verify that transfer is not already in progress.

e Populate record TSF_REC.HEADER with the transfer number and locations for delete.
TRANSFER DETAIL DELETE

e Check required fields.
e Verify transfer/item/inventory status already exists.
e Verify that transfer detail is not already in progress

e If any of the following have values, the detail is in progress: distribution qty, selected
qgty, received qty, shipped qty, or cancelled qty.

e Populate record TSF_REC.TSF_DETAIL with the transfer/item/quantities for delete.
e If this is the last detail for this transfer, delete the header record as well.

73

Retek Merchandising System

Bulk or single DML module
Filename: rmssub_xtsfsqgls/b.pls
RMSSUB_XTSF_SQL.PERSIST

(O_error_message INOUT RTK_ERRORS.RTK_TEXT%TYPE,
|_tsf_rec IN RTMSSUB_XTSF_SQL.TSF_REC,
I_message_type IN VARCHAR?2)

This function checks the message type to route the object to the appropriate internal functions that
perform DML insert, update and delete processes.

TRANSFER CREATE
e Inserts records in the TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

e Update ITEM_LOC_SOH records for all item/location combinations and all pack
comp/location combinations.

TRANSFER MODIFY

e Updates a record in the TSFHEAD table.

TRANSFER DELETE

e Delete an order from TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

o Update ITEM_LOC_SOH records for all item/location combinations and all pack
comp/location combinations.

TRANSFER DETAIL MODIFY
e Updates records in the TSFDETAIL table.

e Update ITEM_LOC_SOH records for all item/location combinations and all pack
comp/location combinations.

TRANSFER DETAIL DELETE

e Delete records from TSFDETAIL table.

e Update ITEM_LOC_SOH records for all item/location combinations and all pack
comp/location combinations.

Message DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Message Type Description Document Type
Types Definition (DTD)
XTsfCre Transfer Create Message XTsfDesc.dtd
XTsfMod Transfer Modify Message XTsfDesc.dtd
XTsfDel Transfer Delete Message XTsfRef.dtd
XTsfDtIMod Transfer Detail Modify Message XTsfDesc.dtd

74

TSF Subscription API

Message Message Type Description Document Type
Types Definition (DTD)
XTsfDtlDel Transfer Detail Delete Message XTsfRef.dtd
Design Assumptions

Required fields are shown in mapping documents.

Tables

TABLE SELECT INSERT UPDATE DELETE
TSFHEAD YES YES YES YES
TSFDETAIL YES YES YES YES
TSFDETAIL_CHRG NO YES YES YES
ITEM_LOC_SOH YES YES YES NO
ITEM_LOC YES YES NO NO
WH YES NO NO NO
STORE YES NO NO NO
ITEM_MASTER YES NO NO NO
DEPS YES NO NO NO

75

	Contents
	Interface file - SA RTLOG
	Stock Upload Conversion [lifstkup]
	Clearance Pricing POS Download [pccdnld]
	Clearance Reset Pricing POS Extract [pccrdnld]
	Retek Clearance Reset Price Update [pccrext]
	PO Subscription API
	reclsdly Master Batch Design
	Upload Stock Count Results [stkupld]
	TSF Subscription API

