

Oracle® Retail Merchandising System

Operations Guide Addendum
Release 10.1.17

October 2006

Oracle® Merchandising System Operations Guide Addendum, Release 10.1.17

Copyright © 2003, 2006, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Contents
Preface ... v

Related Documents ..v
Customer Support ..v
Conventions ..vi

Introduction ... 1
1 Batch Designs.. 3

Sales Audit Get Reference (sagetref)...3
Design Overview ..3
Stored Procedures/Shared Modules (Maintainability) ..4
Function Level Description ..5
Input Specifications ..11
Output Specifications..12
Scheduling Considerations ...14
Restart Recovery...14

Sales Audit Voucher Upload (savouch)...15
Functional Area ..15
Module Affected...15
Design Overview ..15
Scheduling Constraints ...15
Restart Recovery...16
Program Flow/Technical Overview..16
Shared Modules ..17
Function Level Description ..17
I/O Specification...19

Preface v

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture
 Functional integration dataflow across the enterprise

This Operations Guide Addendum should be used in conjunction with previously
released Oracle Retail Merchandising System 10.x documentation.
Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting Oracle Retail Merchandising System functionality
will find valuable information in this guide. There are three audiences in general for
whom this guide is written:
 Business analysts looking for information about processes and interfaces to validate

the support for business scenarios within and other systems across the enterprise.
 System analysts and system operations personnel:

– Who are looking for information about Oracle Retail Merchandising System’s
processes internally or in relation to the systems across the enterprise.

– Who operate Oracle Retail Merchandising System regularly.
 Integrators and implementation staff with overall responsibility for implementing

Oracle Retail Merchandising System.

Related Documents
For more information, see the following documents in the Oracle Retail Merchandising
System Release 10.1.17 documentation set:
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Installation Guide
 Oracle Retail Merchandising System Batch Schedule

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

https://metalink.oracle.com/

vi Oracle Retail Merchandising System

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

Introduction 1

Introduction
The information in this document reflects modifications and updates to the latest Oracle
Retail Merchandising System Operations Guide. Using this document in conjunction
with that guide provides retailers with a complete overview of the application.
For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail Merchandising
System 10.1.17 Release Notes.

Batch Designs 3

1
Batch Designs

Sales Audit Get Reference (sagetref)
Design Overview

This RMS program will fetch all reference information needed by saimplog.pc and write
the information out to separate output files.
One file contains a listing of all items in the system.
A second file contains information about all items that have wastage associated with
them. A third file contains reference items.
 A fourth file contains primary variant information.
 A fifth file contains all variable weight UPC definitions in the system.
 A sixth file contains all of the valid store/day combinations in the system.
 A seventh file contains all code types and codes used in field level validation.
 An eighth file contains all error codes, error descriptions, and systems affected by the

error.
 A ninth file contains the credit card validation mappings.
 A tenth file contains the store_pos mappings.
 An eleventh file contains the tender type mappings.
 A twelfth file contains the merchant code mappings.
 A thirteenth file contains the partner mappings.
 A fourteenth file contains the supplier mappings.
 A fifteenth file contains employee mappings.
 Finally, a sixteenth file contains promotion information.

These files are used by the automated audit to validate information without repeatedly
hitting the database.

Batch Designs

4 Oracle Retail Merchandising System

The tables affected include:

Table Index Select Insert Update Delete

ITEM_MASTER No Yes No No No

ITEM_LOC No Yes No No No

VAR_UPC_EAN No Yes No No No

SA_IMPORT_LOG No Yes No No No

CURRENCIES No Yes No No No

STORE_DAY No Yes No No No

STORE No Yes No No No

SA_STORE_DAY No Yes No No No

CODE_DETAIL No Yes No No No

SA_ERROR_CODES No Yes No No No

SA_CC_VAL No Yes No No No

SA_STORE_POS No Yes No No No

POS_TENDER_TYPE_HEAD No Yes No No No

NON_MERCH_CODE_HEAD No Yes No No No

PARTNER No Yes No No No

SUPS No Yes No No No

SA_STORE_EMP No Yes No No No

PROMHEAD No Yes No No No

PROM_MIX_MATCH_HEAD No Yes No No No

PROM_THRESHOLD_DEPT No Yes No No No

PROM_THRESHOLD_SKU No Yes No No No

CHANNELS No Yes No No No

Stored Procedures/Shared Modules (Maintainability)
N/A

Oracle Retail Merchandising System 10.1.17

Batch Designs 5

Function Level Description
main()
The standard Oracle Retail Pro*C main function that calls init(), process(), and final().

init()
This function initializes the necessary restart recovery variables. It calls the function
retek_init().

process()
This function calls process_item_master_info() to retrieve item information from the
database and writes it to a item and waste output file.
This function then calls:
 process_ref_item_info() to retrieve reference item information from the database and

writes it to the reference item output file.
 process_prim_variant_info() to retrieve primary variant information from the

database and writes it to a primary variant output file.
 process_var_upc_ean_info() to retrieve all variable weight UPC mappings from the

database and writes it to the variable weight UPC output file.
 process_store_day_info() to retrieve all valid store day combinations from the

database and writes it to the store day output file.
 process_codes_info() to retrieve all codes from the database that are used in file

validation and writes it to the codes output file.
 process_error_info() to retrieve all errors from the database that are used in file

validation and writes it to the error output file.
 process_cc_info() to retrieve all credit card validation mappings from the database

and writes it to the credit card validation output file.
 process_store_pos_info() to retrieve all store/pos mappings from the database and

writes it to the store POS output file.
 process_tender_type_info() to retrieve all tender type mappings from the database

and writes it to the tender type output file.
 process_merch_codes_info() to retrieve all merchant code mappings from the

database and writes it to the merchant code output file.
 process_partner_info() to retrieve all partner mappings from the database and writes

it to the partner output file.
 process_supplier_info() to retrieve all supplier mappings from the database and

writes it to the supplier output file.
 process_employee_info() to retrieve all employee mappings from the database and

writes it to the employee output file.
 Finally, this function calls process_prom_info() to retrieve promotion information

from the database and writes it to the promotion output file.

Batch Designs

6 Oracle Retail Merchandising System

process_item_master_info()
This function queries information for all sellable items from the item_master table and
uses this information to populate the item master array. This includes all items (whose
item status = ‘A’ and tran_level = item_level and sellable_ind = ‘Y’). This function also
calls size_item_master_arrays() to allocate memory for the item master array. The
columns that are selected for this process include item, dept, class, subclass, waste_type,
waste_pct, and standard_uom. The information is ordered by item. All records in the
item master array should be written to the item data output file by calling
write_item_data(). Only records in which waste_type or waste_pct are not null should be
written to the waste data file by calling write_waste_data().

size_item_master_arrays()
This function allocates memory for the item master array used in
process_item_master_info.

write_item_data()
This function writes all elements of the item master array to the item data output file. The
file format for the item data file can be found in the I/O section of this document. The
information should be ordered by item.

write_waste_data()
This function accepts the entire item master array as input, but will only write records to
the waste data file if the waste_type or waste_pct for the item are not null. This function
then checks to make sure that data that came back as NULL is actually blank. The file
format for the waste data file can be found in the I/O section of this document. The
information should be ordered by item.

process_ref_item_info()
This function queries item reference information for all sellable items from the
item_master table and uses this information to populate the ref item array. This includes
all items (whose item status = ‘A’ and item_level – tran_level = 1 and sellable_ind = ‘Y’).
This function also calls size_ref_item_arrays() to allocate memory for the ref item array.
The columns that are selected for this process include item and item_parent. The
information is ordered by item. All records in the ref item array should be written to the
ref item data out put file by calling write_ref_item_data().

size_ref_item_arrays()
This function allocates memory for the ref item array used in process_ref_item_info.

write_ref_item_data()
This function writes all elements of the ref item array. The file format for the ref item data
file can be found in the I/O section of this document. The information should be ordered
by item.

Oracle Retail Merchandising System 10.1.17

Batch Designs 7

process_prim_variant_info()
This function queries primary variant information for all items from the item loc and
item_master tables and uses this information to populate the primary variant array. This
includes all items (whose item status = ‘A’ and item_level – tran_level = 1 and
primary_variant is NOT NULL). This function also calls size_prim_variant_arrays() to
allocate memory for the primary variant array. The columns that are selected for this
process include loc, item, and primary variant. The information is ordered by loc
(alphabetically not numerically) and then by item. All records in the primary variant
array should be written to the primary variant data out put file by calling
write_prim_variant_data().

size_prim_variant_arrays()
This function allocates memory for the primary variant array used in
process_prim_variant_info.

write_prim_variant_data()
This function writes all elements of the prime variant array. The file format for the
primary variant data file can be found in the I/O section of this document. The
information should be ordered by loc (alphabetically not numerically) and then by item.

process_var_upc_ean_info()
This function queries variable weight UPC information from the var_upc_ean and
item_master tables and uses this information to populate the variable weight UPC array.
This includes all distinct var_upc_ean records whose format_id = item_master.format_id
and item status = ‘A’. This function also calls size_var_upc_ean_arrays() to allocate
memory for the variable weight UPC array. The columns that are selected for this process
include format_id, format_desc, prefix_length, begin_item_digit, begin_var_digit,
check_digit, default_prefix, and prefix. The information is ordered by format_id. All
records in the variable weight UPC array should be written to the variable weight UPC
output file by calling write_var_upc_info()

size_var_upc_ean_arrays()
This function allocates memory for the variable weight UPC array used in
process_var_upc_ean_info.

write_var_upc_data()
This function writes all elements of the variable weight UPC array. The file format for the
variable weight UPC file can be found in the I/O section of this document. The
information should be ordered format_id.

process_store_day_info()
This function queries all valid store/day combinations from the sa_store_day, store,
sa_import_log, and currencies tables and uses this information to populate the store day
array. This includes all stores which sa_import_log.system_code = ‘POS’. This function
also calls size_store_day_arrays() to allocate memory for the store day array. The
columns that are selected for this process include store, business_date, store_day_seq_no,
day, tran_no_generated, decode system_code (code = ‘POS’), and currency_rtl_desc. The
information should be ordered by store (alphabetically not numerically) and business
date. All records in the store day array should be written to the store day output file by
calling write_store_day_data().

Batch Designs

8 Oracle Retail Merchandising System

size_store_day_arrays()
This function allocates memory for the store day array used in process_store_day_info.

write_store_day_data()
This function writes all elements of the store day array to the store day output file. The
file format for the store day file can be found in the I/O section of this document. The
information should be ordered by store (alphabetically not numerically) and business
date.

process_codes_info()
This function queries codes information from the code_detail table and uses this
information to populate the codes array. This function also calls size_codes_arrays() to
allocate memory for the codes array. The columns selected in this process include code,
code_type, and code_seq. The information should be ordered by code_type and code. All
records in the codes array should be written to the codes output file by calling
write_codes_data().

size_codes_arrays()
This function allocates memory for the codes array used in process_codes_info.

write_codes_data()
This function writes all elements of the codes array to the codes output file. The file
format for the codes file can be found in the I/O section of this document. This
information should be ordered by code_type and code.

process_error_info()
This function queries error code information from the sa_error_codes table and uses this
information to populate the errors array. This function also calls size_error_arrays() to
allocate memory for the error array. The columns selected in this process include
error_code, error_desc, and rec_solution (recommended solution). The information
should be ordered by error_code. All records in the errors array should be written to the
errors output file by calling write_error_data().

size_error_arrays()
This function allocates memory for the error array used in process_error_info.

write_error_data()
This function writes all elements of the error array to the error output file. The file format
for the error file can be found in the I/O section of this document. This information
should be ordered by error_code.

process_cc_val_info()
This function queries credit card validation information from the sa_cc_val table and
uses this information to populate the credit card validation array. This function also calls
size_cc_val_arrays() to allocate memory for the credit card validation array. The columns
selected in this process include length, from_prefix, to_prefix, tender_type_id, and value
type. The information should be ordered by length (alphabetically not numerically) and
from_prefix. All records in the credit card validation array should be written to the credit
card validation output file by calling write_cc_val_data().

Oracle Retail Merchandising System 10.1.17

Batch Designs 9

size_cc_val_arrays()
This function allocates memory for the credit card valdiation array used in
process_cc_val_info.

write_cc_val_data()
This function writes all elements of the credit card validation array to the credit card
validation output file. The file format for the credit card validation file can be found in
the I/O section of this document. This information should be ordered by length
(alphabetically not numerically) and from_prefix.

process_store_pos_info()
This function queries store POS information from the sa_store_pos table and uses this
information to populate the store POS array. This function also calls
size_store_pos_arrays() to allocate memory for the store POS array. The columns selected
in this process include store, pos_type, start_tran_no, and end_tran_no. The information
should be ordered by store (alphabetically not numerically) and pos_type. All records in
the store POS array should be written to the store POS output file by calling
write_store_pos_data().

size_store_pos_arrays()
This function allocates memory for the store POS array used in process_store_pos_info.

write_store_pos_data()
This function writes all elements of the store POS array to the store POS output file. The
file format for the store POS file can be found in the I/O section of this document. This
information should be ordered by store (alphabetically not numerically) and pos_type.

process_tender_type_info()
This function queries tender type information from the pos_tender_type_head table and
uses this information to populate the tender type array. This function also calls
size_tender_type_arrays() to allocate memory for the tender type array. The columns
selected in this process include tender_type_group, tender_type_id, and
tender_type_desc. The information should be ordered by tender_type_group and
tender_type_id (alphabetically not numerically). All records in the tender array should be
written to the tender type output file by calling write_tender_type_data().

size_tender_type_arrays()
This function allocates memory for the tender type array used in process_tender
type_info.

write_tender_type_data()
This function writes all elements of the tender type array to the tender type output file.
The file format for the tender type file can be found in the I/O section of this document.
This information should be ordered by tender_type_group and tender_type_id
(alphabetically not numerically).

Batch Designs

10 Oracle Retail Merchandising System

process_merch_codes_info()
This function queries merch code information from the non_merch_code_head table and
uses this information to populate the merch codes array. This function also calls
size_merch_codes_arrays() to allocate memory for the merch codes array. The columns
selected in this process include non_merch_code. The information should be ordered by
non_merch_code. All records in the merch codes array should be written to the merchant
codes output file by calling write_merch_codes_data().

size_merch_codes_arrays()
This function allocates memory for the merch codes array used in
process_merch_codes_info.

write_merch_codes_data()
This function writes all elements of the merch codes array to the merchant codes output
file. The file format for the merchant codes file can be found in the I/O section of this
document. This information should be ordered by non_merch_code.

process_partner_info()
This function queries partner information from the partner table and uses this
information to populate the partner array. This function also calls size_partner_arrays()
to allocate memory for the partner array. The columns selected in this process include
partner_type, and partner_id. The information should be ordered by partner_id. All
records in the partner array should be written to the partner output file by calling
write_partner_data().

size_partner_arrays()
This function allocates memory for the partner array used in process_partner_info.

write_partner_data()
This function writes all elements of the partner array to the partner output file. The file
format for the partner file can be found in the I/O section of this document. This
information should be ordered by partner_id.

process_supplier_info()
This function queries supplier information from the sups table and uses this information
to populate the supplier array. This function also calls size_supplier_arrays() to allocate
memory for the supplier array. The columns selected in this process include supplier,
and sups_status. The information should be ordered by supplier (alphabetically not
numerically). All records in the supplier array should be written to the supplier output
file by calling write_supplier_data().

size_supplier_arrays()
This function allocates memory for the supplier array used in process_supplier_info.

write_supplier_data()
This function writes all elements of the supplier array to the supplier output file. The file
format for the supplier file can be found in the I/O section of this document. This
information should be ordered by supplier (alphabetically not numerically).

Oracle Retail Merchandising System 10.1.17

Batch Designs 11

process_employee_info()
This function queries employee information from the sa_store_emp table and uses this
information to populate the employee array. This includes all stores where pos_id is
NOT NULL. This function also calls size_employee_arrays() to allocate memory for the
employee array. The columns selected in this process include store, pos_id, and emp_id.
The information should be ordered by store (alphabetically not numerically) and pos_id.
All records in the employee array should be written to the employee output file by
calling write_employee_data().

size_employee_arrays()
This function allocates memory for the employee array used in process_employee_info.

write_employee_data()
This function writes all elements of the employee array to the employee output file. The
file format for the employee file can be found in the I/O section of this document. This
information should be ordered by store (alphabetically not numerically) and pos_id.

Process_prom_info()
This function queriesy promotion information from the promotion tables and uses this
information to populate the promotion array. This function also calls size_prom_arrays()
to allocate memory for the promotion array. The column selected is promotion. The
information should be ordered by promotion. All records in the promotion array will be
written to the promotion output file by calling write_prom_data().

size_prom_arrays()
This function allocates memory for the promotion array used in process_prom_info.

write_prom_data()
This function writes all elements of the promotion array to the promotion output file. The
file format for the promotion file can be found in the I/O section of this document. This
information should be ordered by promotion.

final()
This function terminates restart-recovery. It also calls retek_refresh_thread() to refresh
the current thread.

Input Specifications
N/A

Batch Designs

12 Oracle Retail Merchandising System

Output Specifications
As all files produced by this program are used only internally, they consist of only detail
records.
Character field types are left-justified and blank padded.
Number field types are right-justified and zero padded.

Record Name Field Name Field Type Default Value Description

Item Data Item char(25) Unique item identifier

 Dept char(4) Department identifier

 Class char(4) Class identifier

 Subclass char(4) Subclass identifier

 Standard_uom char(4) Standard UOM

Waste Data Item char(25) Unique item identifier

 Waste_type char(6) Waste type identifier

 Waste_pct number(16) Waste percent

Ref Item Data Item_parent char(25) Item Parent

 Item char(25) Unique item identifier

Primary Variant
Data

Item_loc number(10) Item location

 Item char(25) Unique item identifier

 Primary_varia
nt

char(25) Primary variant

Variable UPC
Data

Format_id char(1) Format identifier

 Format_desc char(20) Format description

 Prefix_length number(1) Prefix length

 Begin_item_di
git

number(2) Determines the first digit of
the item number.

 Begin_var_digi
t

number(2) Determines the first digit of
the variable weight/price.

 Check_digit number(2) Position of the check digit.

 Prefix number(2) Item master prefix

Store Day Data Store number(10) Store number

 Business_date char(8) Business date – format:
YYYYMMDD

 Store_day_seq
_no

number(20) Unique store/day identifier

 Day number(3) Day

 Tran_no_gener
ated

char(6) If NULL then blank

Oracle Retail Merchandising System 10.1.17

Batch Designs 13

Record Name Field Name Field Type Default Value Description

 System_code char(6) System code

 Currency_rtl_
dec

number(1) Currency retail decimal
places

Code Data Code_type char(4) Unique code type identifier

 Code char(6) Unique code identifier

 Code_seq number(4) Unique code sequence
identifier

Error Data Error_code char(25) Error identifier

 Error_desc char(255) Error description

 Rec_solution char(255) Recommended solution (If
NULL then ‘there is no
solution’)

Credit Card
Validation Data

Length number(2) Card number length

 From_prefix number(6) Start value for range of
valid prefixes.

 To_prefix number(6) End value for range of valid
prefixes.

 Tender_type_i
d

number(6) Credit card ID

 Val_type char(6) Validation type. If NULL,
than use “NONE”.

Store POS Data Store number(10) Store identifier

 Pos_type char(6) POS type identifier

 Start_tran_no number(10) First transaction number
produced. Right justified
and zero padded.

 End_tran_no number(10) Last transaction number
produced. Right justified
and zero padded.

Tender Type
Data

Tender_type_g
roup

char(6) Tender type group

 Tender_type_i
d

number(6) Tender type identifier.
Right justified and zero
padded.

 Tender_type_d
esc

char(40) Tender type description.

Merchant Code
Data

Non_merch_co
de

char(6) Code identifying a non-
merchandise cost that can
be added to an invoice.

Batch Designs

14 Oracle Retail Merchandising System

Record Name Field Name Field Type Default Value Description

Partner Data Partner_type char(6) Specifies the type of
partner. Valid values are
Bank 'BK', Agent 'AG',
Freight Forwarder 'FF',
Importer 'IM', Broker 'BR',
Factory 'FA', Applicant 'AP',
Consolidator 'CO', and
Consignee 'CN', Supplier
hierarchy level 1 'S1',
Supplier hierarchy level 2
'S2', Supplier hierarchy level
3 'S3'.

 Partner_id char(10) Partner vendor number.

Supplier Data Supplier number(10) Supplier vendor number.

 Sup_status char(1) Determines whether the
supplier is currently active.
Valid values include: 'A' for
an active supplier or 'I' for
an inactive supplier.

Employee Data Store number(10) Store number.

 Pos_id char(10) The POS ID of the
employee.

 Emp_id char(10) The employee ID of the
employee.

Promotion Data Promotion number(11) Promotion number

Scheduling Considerations
Schedule Information Description

Processing Cycle Anytime – Sales Audit is a 24/7 system.

Scheduling Diagram This module should be executed in the earliest phase, before
the first import of RTLOGs into ReSA.

Pre-Processing sastdycr.pc

Post-Processing saimptlog.pc

Threading Scheme N/A

Restart Recovery
Restart recovery does not apply in the typical sense because sagetref writes to output
files and does not need restart capabilities; however restart is used for bookmarking
purposes.

Batch Designs 15

Sales Audit Voucher Upload (savouch)
Functional Area

Automated Audit

Module Affected
savouch.pc

Design Overview
Gift certificates are unique in that they are sold by the retailer and then redeemed by the
consumer. They are both items and tender. Gift certificate tracking is an important
component of loss prevention and profit tracking. Gift certificate validation ensures that
gift certificates are valid (and not counterfeited or previously redeemed) and that
merchandise leaving the store has been paid for. Gift certificate tracking allows retailers
to see their gift certificate liability, or how much in dollar terms they have outstanding
and how much merchandise they owe consumers.
As gift certificates can enter the Sales Audit system as either items or tender, processing
must be done to match up the sales and redemptions. This program will be used to
aggregate gift certificate and voucher records.
Some retailers assign gift certificates to a given store, meaning that before a gift certificate
is sold at a store, it is assigned to a given store. When a retailer assigns a gift certificate to
a given store, a record is written to the database. When the gift certificate is then sold by
the store and redeemed by the consumer, this existing record must be updated to include
the sale and redemption information. Some retailers choose not to assign gift certificates
and instead simply sell gift certificates. In this case, the record will be inserted into the
database when the gift certificate is sold and updated when the gift certificate is
redeemed.
This program will compare records in the files (produced by either saimptlog or a gift
certificate application) to the database. If a record for the voucher does not exist on the
database, the record should be inserted. If the voucher already exists on the database, the
record should be updated with the appropriate information.
This program will use arrays to insert into and update the database.

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle This program should be run daily, after saimptlog.

Scheduling Diagram

Pre-Processing: saimptlog.pc

Post-Processing

Threading Schema As this program processes an input file, it will have only one
thread.

Sales Audit Voucher Upload (savouch)

16 Oracle Retail Merchandising System

Restart Recovery
Logical Unit of Work (Recommended Commit Checkpoints) Driving Cursor
The logical unit of work for the voucher upload module is the voucher detail record
(FDETL).

Program Flow/Technical Overview

Structure Chart

Init

Process

Final

Validate_record

Find_in_update_array

Process_fhead

Validate_voucher_no

Validate_status

Validate_voucher_type

Validate_voucher_seq_no

Process_fdetl Find_in_insert_array

Find_on_database

Update_update_array

Update_insert_array

Add_to_update_array

Add_to_insert_array

Post_update_array

Post_insert_array

Size_arrays

Oracle Retail Merchandising System 10.1.17

Batch Designs 17

Shared Modules
Listing of all externally referenced functions and stored procedures and description of
usage

Function Level Description
All Database Interactions Required and Error Handling Considerations
init()
This function initializes the necessary restart recovery variables, set up a reject file and
open the input file, and call process_fhead.
process_fhead()
This function reads the first record - FHEAD - and validates that it contains the
appropriate file type definition.
size_arrays()
This function allocates memories for the insert and update arrays used in process.
process()
This function contains the main process loop, which retrieves records from the file, and
validates them by calling the function validate_record(). If the validation succeeds, the
record is processed by process_fdetl(). If the validation returns a non-fatal error write to
the reject file, it continues to process record. Two arrays are needed – one to update
records that already exists on the database and another to insert new records into the
database. The arrays are initialized by size_arrays, which should be called at the
beginning of the function. This function should also insure that all records are posted to
the database, so after all records have been processed, it should call post_insert_array()
and post_update_array().
validate_record()
This function accepts a record as input and calls the validation sub-functions:
validate_voucher_no(), validate_status(), validate_voucher_type(), and
validate_voucher_seq_no. If any of these functions return a non-fatal error, this function
should also return a non-fatal error.
validate_voucher_no()
This function accepts the voucher_no field from the input files and ensures that the
voucher_no from the input file is either all blank or all numeric. If voucher_no is neither
of these, the function should return a non-fatal error.
validate_status()
This function takes the status field from the input file and checks that the status field
contains a SAVS_A, SAVS_I, or SAVS_R for assigned, issued, or redeemed. If the status is
not one of these values, the function should return a non-fatal error. The function should
then ensure that if the status is SAVS_A, that either ass_date or ass_store are either all
blank or all numeric. If the status is SAVS_I, the function should ensure that the 'iss_'
values are either all blank or all numeric. If the status is SAVS_R, the function should
ensure that the 'red_' values are either all blank or all numeric.
validate_type()
This function takes the type field from the input file and check that it contains either the
tender type id of 4000 or 4030 (gift certificate or voucher). If the type is not 4000 or 4030,
this function should return a non-fatal error.

Sales Audit Voucher Upload (savouch)

18 Oracle Retail Merchandising System

validate_voucher_head_no
This function takes the voucher_seq_no from the input file and checks that
voucher_seq_no is not NULL. If the voucher_seq_no is NULL, the function should return
a non-fatal error.
process_fdetl()
This function processes an inputted FDETL record. It determines whether the record
needs to be inserted into the database or used to update an existing database record. To
determine whether the record should be inserted or updated, several functions must be
called.
If a record for the current voucher is already in the update array, additional information
needs to be added to the record, rather than creating a new record. Check to see if
information for the voucher already exists on the update array by calling
find_in_update(). If it finds a record in the update array, update_update_array() should
be call to add the new data to the correct update record.
If a record for the voucher does not exist on the update array, check the insert array by
calling find_in_insert(). If the record already exists on the insert array, the additional
information can be added to the record by calling update_insert_array().
If the voucher is not in either of the arrays, check to see if the voucher already exists on
the database by calling find_on_database(). If it exists on the database, the record
retrieved from the database should be added to the update array by calling
add_to_update_array(). Then calling update_update_array should aggregate the
information from the file(). If a record for the voucher does not exist on the database,
add_to_insert_array() should be called to add the record from the file to the insert array.
find_in_update_array()
This function takes a voucher_no as input and searches the update array for it. If the
voucher is in the array, the function should return the row/index number (the location of
the record in the array). If the voucher is not in the array, it should return –1.
update_update_array()
This function updates the update array (hence the name). It takes the record from the file
and the array index of the record already on the array for the voucher. It copies any
values that are not null from the record into null values on the array. The status fields
require additional logic – the ‘greater’ of the two statuses should end up on the database
(‘I’ trumps ‘A’, ‘R’ trumps all).
find_in_insert_array()
This function takes a voucher_no as input and searches the insert array for it. If the
voucher is in the array, the function should return the row/index number (the location of
the record in the array). If the voucher is not in the array, it should return –1.
update_insert_array()
This function updates the insert array (hence the name). It takes the record from the file
and the array index of the record already on the array for the voucher. It will copy any
values that are not null from the record into null values on the array. The status fields
require additional logic – the ‘greater’ of the two statuses should end up on the database
(‘I’ trumps ‘A’, ‘R’ trumps all).
find_on_database()
This function queries the database for all information from the sa_voucher table for a
given voucher_no. This function should return 1 if it finds a record on the database and 0
if it does not.

Oracle Retail Merchandising System 10.1.17

Batch Designs 19

add_to_update_array()
This function adds a record to the update array. This record consists of the information
fetched from the database. If the array becomes too large, call post_update_array to post
the information to the database and clear out the array. Make sure that fields that have
no values (are NULL) are blanked out with an empty string.
add_to_insert_array()
This function adds a record to the insert array. This record consists of the information
from the file. If the array becomes too large, call post_insert_array to post the information
to the database and clear out the array. Make sure that fields that have no values (are
NULL) are blanked out with an empty string.
post_update_array()
The function posts the updated records to the sa_voucher table using the information
from the update array. It then clears out the array setting the array counter back to zero.
post_insert_array()
The function posts the inserted records to the sa_voucher table using the information
from the insert array. It then clears out the array setting the array counter back to zero.
final()
This function calls restart_close and closes the input and rejects files.

I/O Specification
All File Layouts Input and Output
The input to this module is described in the Batch Design for the saimptlog.pc program.
The output of this program is written to the sa_vouch table.

	Contents
	Preface
	Customer Support
	Conventions

	Introduction
	Batch Designs
	Sales Audit Get Reference (sagetref)
	Design Overview
	Stored Procedures/Shared Modules (Maintainability)
	Function Level Description
	Input Specifications
	Output Specifications
	Scheduling Considerations
	Restart Recovery

	Sales Audit Voucher Upload (savouch)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow/Technical Overview
	Shared Modules
	Function Level Description
	I/O Specification

