

Retek® Merchandising System
10.1.2

Addendum to
Operations Guide

2 Retek Merchandising System

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 - Daily record deletion [dlyprg]............................ 3

Design overview.. 3

Tables affected .. 3

Scheduling constraints... 3

Restart recovery... 3

Program flow... 4

Shared modules ... 4

Function level description ... 4

I/O specification .. 4

Technical issues... 4

Chapter 3 - Contract replenishment – Type ‘B’ contracts
[cntrordb] ... 5

Design overview.. 5

Scheduling constraints... 5

Restart recovery... 5

Program flow... 6

Shared modules ... 6

Function level description ... 6

I/O specification .. 8

Technical issues... 8

Chapter 4 – Time hierarchy download [ftmednld.pc)........... 9

Design overview.. 9

ii Retek Merchandising System

Input specifications ... 9

Output specifications... 10

Function level description ... 10

Scheduling considerations... 12

Restart/recovery .. 12

Chapter 5 - Upload stock count results [stkupld] 13

Design overview.. 13

Scheduling constraints... 14

Restart recovery... 15

Program flow... 15

Shared modules ... 15

Function level description ... 15

I/O specification .. 18

Technical issues... 19

Retek® Confidential

 Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 10.1.2 Operations
Guide contains updates to the following batch designs:

• Daily record deletion (dlyprg)

• Contract replenishment (cntrordb)

• Time hierarchy download (ftmednld)

• Upload stock count results (stkupld)

Chapter 2 - Daily record deletion [dlyprg] 3

Chapter 2 - Daily record deletion [dlyprg]

Design overview
The purpose of this program is to delete all of the records in the system marked
for delete (by having a record on the DAILY_PURGE table) during the day.
Before deleting the records, all relations will be checked to ensure that the record
can be deleted. For example, if an item has been marked for delete, this program
checks that the item was not put on order later in the day. If relations are found
to exist, a record is written to the DAILY_PURGE_ERROR_LOG table.
Records on this table will be used to generate a report itemizing any problems
found when running this program. If a record is written to the
DAILY_PURGE_ERROR_LOG table, meaning that relations exist, the record
will not be deleted that night.

Tables affected
TABLE INDEX SELECT INSERT UPDATE DELETE

DAILY_PURGE No Yes No Yes No

DAILY_PURGE_ERROR_LOG No No No Yes Yes

Scheduling constraints
Processing Cycle: PHASE 0 (daily)

Scheduling Diagram: This program must run first to avoid processing deleted
 entities.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A (single threaded)

Restart recovery
EXEC SQL DECLARE c_daily_purge CURSOR FOR

 SELECT key_value,

 table_name,

 delete_type

 FROM daily_purge

4 Retek Merchandising System

ORDER BY delete_order;

Program flow
N/A

Shared modules
N/A

Function level description
N/A

I/O specification
N/A

Technical issues
N/A

Retek® Confidential

Chapter 3 - Contract replenishment – Type ‘B’ contracts [cntrordb] 5

Chapter 3 - Contract replenishment – Type ‘B’
contracts [cntrordb]

Design overview
This batch module automatically creates replenished orders for type B contracts.
Orders will be created for all type B contract items that are ready to have orders
raised against them. Contract, item, and location information are selected from
the contracting tables where production dates are ready to be met. An order will
be written for each contract and all of the items and locations on the contract.

Scheduling constraints
Processing Cycle: Phase 3. Must be run after repladj

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: Update of system_variables, set last_cont_order_date =
 vdate

Threading Scheme: Contract_no (questionable whether this is necessary)

Restart recovery
The logical unit of work is a unique contract. A commit will take place after the
number of contracts processed is equal to the max counter from the
restart_control table.

Multi-threading issue: If the contract_header table is sizable, the threading
mechanism may have to be re-thought or omitted.

6 Retek Merchandising System

Program flow

Process
Select item/locs
that are ready
to be ordered

Create_header
(called when contract_no changes)

Select supplier info

Write Ordhead record

Create_ordsku
(called when item changes)

Get ref_item information

write landed cost records

get lead time from item_supplier

write ordsku reocrds

Create_ordloc

get item/loc retail

write ordloc records

update_ordhead

update ordhead
with date info

update contract_header

Shared modules
N/A

Function level description

Init

System level variables are selected here including the internal RMS date, the
date of the last type B contract ordering run, the minimum number of days before
a contracted ready date before an order can be raised, and landed cost
information. The restart/recovery process should be initialized.

Retek® Confidential

Chapter 3 - Contract replenishment – Type ‘B’ contracts [cntrordb] 7

Process

Contracted item/locations that are to have orders raised against them are selected
from the contracting tables. These are only for contracts of type B that are within
the production plan time frame. An order will be created for each contract, and
the create_header function will perform the inserts into the RMS ordhead table.
After the order has completed, the order header and contract header information
is updated by calling the update_ordhead function.

The add_ordsku function is called to insert item level information into the RMS
ordsku table. If the ELC indicator is “Y”, then each item on the order should be
sent to the add_cost_comp function.

The add_ordloc function is called for every record to insert location quantity and
retail information into the RMS ordloc table.

create_ordhead

Insert the order header information into the ordhead table. The
NEXT_ORDER_NUMBER stored function is called to retrieve the next
available order number for the insert. The package
CURRENCY_SQL.GET_RATE is also called to get the exchange rate to use in
the insert. The insert is in the form of an insert/select. It joins with the
sup_import_attr and addr tables to get the information necessary to create the
order.

Add_ordsku

This function adds item level order records. If the contract does not include
reference item information, the supplier’s primary reference item value is
retrieved for inserting into the ordering table. The item information, including
ref_item, is inserted into the ordsku table. The get_dates function is called to
retrieve the lead time for the item and supplier. These dates will be used to
determine the not before and not after dates on ordhead. This function calls the
item_defaults function.

Item_defaults

This function calls the stored procedure
ORDER_SETUP_SQL.DEFAULT_ORDSKU_DOCS. This package calls
defaults all the required documents that are needed when creating
ordsku_records.

Update_ordsku

This function is called whenever processing for a given item, on a given contract
is completed. It updates the latest_ship_date with the correct value given the
latest ready_date for the item on the contract. The item could have many
different ready_dates and the latest ship date should reflect the latest one.

8 Retek Merchandising System

Add_ordloc

This function first checks if an ordloc record has already been inserted. If a
record exists, it updates the ordered qty. If a record does not exist, this function
adds location level order records. The item/location retail value is retrieved by
the get_retail function. The item/location information will be inserted into ordloc.
The contracting item-level tables will be updated to reflect that the ordered
quantity was ordered against that contract, item, and production plan date. The
stored procedure CONTRACT_SQL.GET_UNIT_COST is called to get the unit
cost to use in the insert.

Get_retail

The retail value should be selected from the appropriate item/location (item_loc)
table.

Get_dates

This function determines the earliest and latest ready dates. These dates are then
used when updating ordhead and ordsku.

Add_cost_comp

This function updates the landed cost tables with the new order information. The
stored package ORDER_EXPENSE_SQL.INSERT_COST_COMP is called to
update the system tables. The package
ORDER_HTS_SQL.DEFAULT_CALC_HTS is called to default the hts
information for item.

ELC_CALC_SQL.CALC_COMP is called to recalculate expenses.

Update_ordhead

The information (on ordhead) is updated with the derived not before and not after
dates (determined by the item lead times).

Update_ordsku

The latest ship_date is updated based on the greatest ready_date determined by
get_dates.

I/O specification
N/A

Technical issues
N/A

Retek® Confidential

Chapter 4 – Time hierarchy download [ftmednld.pc) 9

Chapter 4 – Time hierarchy download
[ftmednld.pc)

Design overview
Currently, no extracts exist for the time dimension. So as to not maintain the
calendar in multiple places (e.g. RMS, RDF and RPP), a time dimension extract
is required that downloads the RMS calendar, including the following fields:
year, half, quarter, month, week, day and date (in a yyyymmdd format). The
downloaded information would only use the 454 calendar format. The download
includes the entire calendar in the RMS. The extract must account for a fiscal
year that could be different than the standard year in the calendar table. A field
on the System Options table indicates the month in which the fiscal year begins.
For example, if the fiscal year begins on the 3rd month, the following chart
highlights how this impacts the extract. The following is a subset of the data on
the Calendar table.

First Day Year Month # of Wks in
Month

25-OCT-99 1999 11 4

22-NOV-99 1999 12 5

27-DEC-99 2000 1 4

24-JAN-00 2000 2 4

21-FEB-00 2000 3 5

27-MAR-00 2000 4 4

If the fiscal year followed standard calendar, the first day of the year 2000 would
be 27-Dec-99. However, for the fiscal year, which starts on the 3rd month, the
first day of the year 2000 would be 21-FEB-00. Therefore, 20-FEB-00 would be
extracted as 1999 (year), 2 (half), 4 (quarter), 12 (month), 4 (week), 7 (day),
20000220 (date). If the year followed the regular calendar, 20-FEB-00 would be
extracted as 2000 (year), 1 (half), 1 (quarter), 2 (month), 4 (week), 7 (day),
20000220 (date).

Input specifications

Table-To-File

This program captures the earliest and latest dates from the calendar. It also
incorporates the start_of_half_month from the system_options table when
capturing the earliest date.

10 Retek Merchandising System

Driving Cursor

NA

Output specifications

Output Files

The file outputted will be named ftmehier.dat.

Record
Name

Field Name Field Type Default Value Description

 Year Char(4) The 454 year

 Half Char(1) The 454 half of the year,
valid values are 1 or 2

 Quarter Char(1) The 454 quarter of the
year, valid values 1-4

 Month Char(2) The 454 month of the
year, valid values 1-12

 Week Char(2) The 454 week of the year,
valid values 1-53

 Day Char(1) The 454 day of the current
week, valid values 1-7

 Date Char(8) The date from which the
454 data was derived, in
YYYYMMDD format

Function level description

main

The standard Retek main() function. Calls init(), process(), and final().

init

Initialize restart recovery by calling retek_init() and set up the output file.

format_buffer

Formats the string that will be used to write to the output file.

Retek® Confidential

Chapter 4 – Time hierarchy download [ftmednld.pc) 11

get_dates

Mutates output arguments with first and last calendar date captured from the
calendar.first_day field. First calendar date is determined by taking the first
record from the calendar table ordered in chronological order with respect to
first_date. The fetched record’s month_454 field must match the absolute value
of the system_options.start_of_half_month field. Last calendar date is
determined by capturing the first record while the calendar table records are
ordered in a descending order with respect to the first_day field.

increment_date

Mutates input/output arguments to hold incremented date.

increment_454

Mutates input/output arguments to hold incremented 454 date. Also captures the
calendar.no_of_weeks field from the calendar table’s row whose first day field
corresponds to the present date.

To determine the 454 day, month, weeks, yearly weeks, quarter, half and year,
simply increment their current values by one if the corresponding date counters
justify the incrementation. If any one of them turns over, reset them to 1. Note
that weeks turn over when the no_of_weeks value fetched from the calendar table
is no longer greater than or equal to the current week value.

init_454

Initializes argument 454 date instance’s date fields.

write_fdetl

Writes data from argument to output file.

process

This function first makes a call to format_buffer. It then allocates a date struct to
hold the 454 date. It then calls the init_454 function with a pointer to the 454 date
struct as an argument. It then captures the earliest and latest values of
calendar.first_day into local variables by calling get_dates. For each day in the
date range (including the earliest and latest dates), the current calendar and 454
dates are calculated by calling increment_date and increment_454.

A record containing all of the 454 values for the date, in addition to the date itself
(in YYYYMMDD format) is then written to the file by calling write_fdetl.

12 Retek Merchandising System

final

Take care of file clean up and complete the restart recovery process by calling
retek_close.

Scheduling considerations
This program can be run ad hoc.

Restart/recovery
Due to the relatively small amount of processing this program performs, restart
recovery will not be used. The calls to retek_init() and retek_close() are used in
the program only for logging purposes (to prevent double-runs).

Retek® Confidential

 Chapter 5 - Upload stock count results [stkupld] 13

Chapter 5 - Upload stock count results [stkupld]

Design overview
The purpose of this batch module is to accept cycle count details from an external
system. The cycle count transactions will be compared with Retek system
snapshots of stock on hand at the time of the cycle count to determine the stock
and/or dollar adjustments to be made. The following common functions are
performed on each stock record read from the input file:

• if record exists on STAKE_SKU_LOC then update it

• if record doesn’t exist on STAKE_SKU_LOC:

� validate that item/location exists in system

� insert a record into STAKE_SKU_LOC

� insert stock take record into STAKE_SKU_LOC.

• if record is a pack - update/insert information on STAKE_SKU_LOC for all
component items

TABLE SELECT INSERT UPDATE DELETE

stake_qty No Yes No No

stake_sku_loc No Yes Yes No

item_loc_soh Yes No No No

item_loc Yes No No No

item_master Yes No No No

wh Yes No No No

stake_head Yes No No No

stake_location Yes Yes No No

stake_prod_loc Yes No No No

v_packsku_qty Yes No No No

system_options Yes No No No

14 Retek Merchandising System

This program reads a user-created interface file of cycle counts. Files will be
unique to location and cycle count ID. All records will be validated for layout.
Invalid layouts will produce fatal errors. Fields will be validated for content.
Invalid contents will produce non-fatal errors. Valid records will update the
physical_count_qty field on STAKE_SKU_LOC for a given item/location/ cycle
count combination. If the item is a pack, component items will have their
component quantity added to the pack_comp_qty field on STAKE_SKU_LOC.
If an item does not exist on STAKE_SKU_LOC, the item/location combination
will be validated on the item/location tables and a new record will be inserted to
STAKE_SKU_LOC.

Fatal errors will terminate file processing. Non-fatal errors will discontinue
record processing and will write invalid record to a reject file.

File layout will be verified by interface library routines:

• get_record: validates common fields in file head record and fills structure of
remaining fields that are passed from this program.

• process_dtl_ftail: called after end-of-file is reached. Will process file trailer
record by validating its layout and verifying that the file record counter is set
properly.

Re-run:

• If this program terminates normally, restart without recovery.

• If this program terminates abnormally, restart without recovery.

Scheduling constraints
Processing Cycle: PHASE 3 (Daily)

Scheduling Diagram: This program will probably be run at the start of the
 batch cycle during POS polling, or possibly at the end of
 the batch run if pending warehouse transactions exist. It
 can be scheduled to run multiple times throughout the
 day, as WMS or POS data becomes available.

Pre-Processing: N/A

Post-Processing N/A

Threading Scheme: N/A

Retek® Confidential

 Chapter 5 - Upload stock count results [stkupld] 15

Restart recovery
The logical unit of work for the stock take upload module will be a count of
discrete inventory transactions. Each record will be uniquely identified by a
location and item. The logical unit of work will be defined as a number of these
transaction records, determined by the commit_max_ctr field on the
restart_control table.

The file records will be grouped in numbers equal to the commit_max_ctr. After
all records in a given read are processed (or rejected), the restart commit logic
and restart file writing logic will be called, after which the following group of file
records will be read and processed. The commit logic will save the current file
pointer position in the input file and any application image information (e.g.
record and reject counters) and commit all database transactions. The file writing
logic will append the temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space
usage and to reduce the overhead of file I/O. The recommended commit counter
setting is 10,000 records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success,
non-fatal errors, and fatal errors. Item level validation will occur on all fields
before table processes are initiated. If all field-level validations return
successfully, inserts and updates will be allowed. If a non-fatal error is produced,
the remaining fields will be validated but the record will be rejected and written
to the reject file. If a fatal error is returned, file processing will end immediately.
A restart will be initiated from the file pointer position saved in the
restart_bookmark string at the time of the last commit point that was reached
during file processing.

Program flow
N/A

Shared modules
validate_all_numeric: interface library function.

validate_all_numeric_signed: interface library function.

valid_date: interface library function.

Function level description

init

initialize restart recovery

16 Retek Merchandising System

open input file

 - file should be specified as input parameter to program

declare final output filename (used in restart_write_file logic)

open reject file (as a temporary file for restart)

 - file should be specified as input parameter to program

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject
counter (g_l_rej_cnt), cycle_count, stocktake date

if fresh start (l_file_start = 0)

read file header record (get_record)

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘STKU’

else fseek to l_file_start location

validate head (validate_head())

validate cycle count id & cycle count date are valid on stake_head

process

loop - fread rows (equal to commit counter) of input file

if end of file encountered, decrement for loop counter and set end of file flag to
true

for loop to process all records read

copy input detail structure elements to stake_sku_loc structure elements

validate elements (validate_detail())

if non-fatal error occurs write detail structure to reject file (write_to_rej_file) and
continue at the top of the for-loop

update stake_sku_loc

if record doesn’t exist, validate that item/location is valid

if invalid then non-fatal error -write record & continue

insert to stake_sku_loc (if display pack also insert component items)

Retek® Confidential

 Chapter 5 - Upload stock count results [stkupld] 17

end loop for loop to process individual records

insert structure of arrays (for valid record counter) into stake_sku_loc

restart file commit - save current input file position, and application image (cnt,
cycle count & date)

restart write file function

if end of file reached then break from while loop

end outer loop to read from file

restart commit final

validate_head

if file type != ‘STKU’ then fatal file type error

copy stocktake_date into variable

 nullpad stocktake_date

copy loc_type into variable (value will always be warehouse ‘W’) nullpad
stocktake_dat

 nullpad loc_type

copy loc_value into variable

 nullpad loc_value

copy store_value, wh_value, and loc_value into variables (store will always be –
1)

get cycle count for location and stocktake_date.

validate cycle count.

validate_detail

if record type != FDETL then fatal file layout error

do standard string validations - if any return non-fatal error then set non-fatal
error flag to true

 nullpad all fields

 left shift item and qty

18 Retek Merchandising System

 check that store and qty are all numeric

 place decimal in qty field

ON Fatal Error

� Exit Function with -1 return code

ON Non-Fatal Error

� write out rejected record to the reject file using write_to_rej_file
functionn, pass pointer to detail record structure, number of bytes in
structure, and reject file pointer

I/O specification

Input File

The input file should be accepted as a runtime parameter at the command line.

Record Name Field Name Field Type Description

File Header file type record
descriptor

Char(5) hardcode ‘FHEAD’

 file line identifier Number(10) Id of current line being
processed., hardcode
‘000000001’

 file type Char(4) hardcode ‘STKU’

 file create date Date(14)

YYYYMMDDHHMISS

date written by convert
program

 stocktake_date Date(14)

YYYYMMDDHHMISS

stake_head.stocktake_date

 cycle count Number(8) stake_head.cycle_count

 loc_type Char(1) hardcode ‘W’ or ‘S’

 location Number(10) stake_location.wh

Transaction record file type record
descriptor

Char(5) hardcode ‘FDETL’

 file line identifier Number(10) Id of current line being
processed, internally
incremented

 item type Char(3) hardcode ‘ITM’

Retek® Confidential

 Chapter 5 - Upload stock count results [stkupld] 19

Record Name Field Name Field Type Description

 item value Char(25) item id

 inventory quantity Number(12,4) total units or total weight

 location description Char(30) Where in the location the
item exists. Ex: Back
Stockroom or Front
Window Display

File trailer file type record
descriptor

Char(5) hardcode ‘FTAIL’

 file line identifier Number(10) Id of current line being
processed, internally
incremented

 file record count Number(10) Number of detail records.

Reject File

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will be created by the interface library routines and the detail records will be
created using the write_to_rej_file function. A reject line counter will be kept in
the program and is required to ensure that the file line count in the trailer record
matches the number of rejected records. A reject file will be created in all cases.
If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer
should be declared. The reject file pointer will identify the temporary reject file.
This is for the purposes of restart recovery. When a commit event takes place,
the restart_write_function should be called (passing the file pointer, the
temporary name and the final name). This will append all of the information that
has been written to the temp file since the last commit to the final file. Therefore,
in the event of a restart, the reject file will be in synch with the input file.

Error File

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

	Chapter 1 – Introduction
	Chapter 2 - Daily record deletion [dlyprg]
	Design overview
	Tables affected
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 3 - Contract replenishment – Type ‘B’ con
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 4 – Time hierarchy download [ftmednld.pc�
	Design overview
	Input specifications
	Output specifications
	Function level description
	Scheduling considerations
	Restart/recovery

	Chapter 5 - Upload stock count results [stkupld]
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

