Oracle® Retail Merchandising System
Operations Guide Addendum
Release 10.1.21

February 2008

ORACLE

Oracle® Retail Merchandising System Operations Guide Addendum, Release 10.1.21

Copyright © 2008, Oracle. All rights reserved.
Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third

party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server — Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc.
of San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(x) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

Contents

=) = 1o - vii
AUGIEIICE ..ttt sttt a et st s a et a et b et ne et eneneene vii
Related DOCUMENESc.evrieuiririeiininieiinirieitteietentsie ettt ettt ettt teb e sesesseseessenen vii
CUSLOMET SUPPOTL...cuiiiiiiiiiiiiiiiiiic s vii
Review Patch Documentationcccoeeereuecinereinineinnreeneneineseeeereeesrenesesneneesnene viii
Oracle Retail Documentation on the Oracle Technology Network...........ccccccceeueueee. viii
CONVENTIONS ...ttt ettt ettt ettt et et et e s bt e s bt e beetesatesatesseanbeanbeenseensesnsesseenseensesnsesas viii

I Lo T 10T 1T o 1

P = = L T D 1= [o 3
prechstprg.pe (Purge Price HiStOTy).....ocueuciiiiiiirecccccccceeeeeeeeeas 3

FUNCHONAL ATecuieiieiieieeieeieee ettt ettt ettt set e st et ess e se s e besseeseennensennans 3
MOAULE AFFECLEA. ...ttt sttt ettt ettt nnens 3
Design OVEIVIEW ..o s 3
Scheduling CoNStIaintscccueviiiiiiiciee s 3
Restart/ReCOVEIYccoviiiiiiiiiiiiiiiic s 3
LOCKING Sratey ...c.cvovviiecicieieieieccci s 4
Security Considerationsccoviiiiiiiiiiiiiiic e 4
Performance ConsSiderationscoccoeveueeeriereininreenieieinenieeneeiesesesseseessesesessesesessesenes 4
Key Tables Affected........c.cooiviiiiiiiiiiciiicc 4
Program FLOW ...t 4
Program Level Description.........cccooeiiciiiiininrnrccccccccrsee s 4
I/0 SPeCifiCation......cccoveuucuciiiiiiiiirecece s 4
saimptlog (Sales Audit IMpPort)........cccovviiiiiiiiiiiii 5
PUIPOSE. ...ttt 5
ODJECHIVES ... s 5
FUNCHONAL AT@& ...ttt sttt 5
Module AfECtEdcoueeriiriiiriiicirecree ettt 5
DeSign OVEIVIEWc.cooiiuiiiieieieiiicecicie ettt 6
Program FLOWc.ouoviiiiiii e 10
Function Level Descriptionccocuoviieiiciniicicec e 11
Stored Procedures/Shared Modules (Maintainability)ccoovviviiiniinnnnn 24
Input SPecifiCationscccceveveucicuiiiiiiirre e 25
Output SPecifiCationsc.cccuiuiiririririrceccceec e 25
Database INTEGIItYcccoviririiiiiiiiiiiiirrreeeee e 31
Scheduling Considerations.............cccovviiiiiiiiiiiiiiiiiiieec e 31
Threading SChemEccoviiiiiiiiiiiiii e 32
LocKINg Strate@ycccovuviviiiiiiiiiiiiiiiiiccc e 32
Restart / RECOVEIY ..o 32
PerfOrmanCe.coveoveuiriiiriirieieeretrte ettt sttt sttt 32
Security Considerationsco.ooiiiiieiiiiiice e 32

vi

saimptlogtdup_upd (tdup File Update)c.cccoeeiiiiiniiccccccccnnreeees 34
FUNCHONAL AT@a.....ocviiiiceiieeteeeeeee ettt ettt et be e be e beeate e enis 34
MOAUIE ASFECEEA ...ttt ettt e as 35
Design OVEIVIEW ...ttt 35
Scheduling CoNStraintscceveviiiiciiieieecce s 35
Restart/ReCOVEIY ... 35
LOCKING SrateZycvoviieieiieieieieicccie e 35
Security Considerationsccooiiiiiiiiiiieiiice e 35
Performance ConSiderationsccccevveivieiieeeiecienieniesreereeeereeeseeese e sre s e eveessessessenns 35
Key Tables Affected..........cooooiiiiiiiiiiciicc 35
Shared MOAUIESccoovieieriieiicieieteieiee ettt ettt sb s e s e sessessaesaessenes 35
I/ O SPeCifiCation........cccoveueeueuciciciiiiiiiirreee et 36

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:

= Key system administration configuration settings
= Technical architecture
= Functional integration dataflow across the enterprise

This Operations Guide Addendum should be used in conjunction with previously
released Oracle Retail Merchandising System 10.x documentation.

Audience

Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting Oracle Retail Merchandising System functionality
will find valuable information in this guide. There are three audiences in general for
whom this guide is written:

* Business analysts looking for information about processes and interfaces to validate
the support for business scenarios within and other systems across the enterprise.

= System analysts and system operations personnel:

— Who are looking for information about Oracle Retail Merchandising System’s
processes internally or in relation to the systems across the enterprise.

— Who operate Oracle Retail Merchandising System regularly.

= Integrators and implementation staff with overall responsibility for implementing
Oracle Retail Merchandising System.

Related Documents

For more information, see the following documents in the Oracle Retail Merchandising
System Release 10.1.21 documentation set:

= OQracle Retail Merchandising System Release Notes
= Oracle Retail Merchandising System Installation Guide
= Oracle Retail Merchandising System Batch Schedule

Customer Support

https:/ /metalink.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

vii

https://metalink.oracle.com/

Review Patch Documentation

For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:

http:/ /www.oracle.com/technology/documentation/oracle_retail. html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

viii

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
It is used to display examples of code

A hyperlink appears like this.

http://www.oracle.com/technology/documentation/oracle_retail.html

1

Introduction

The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 10.0 Operations Guide and any subsequent RMS 10.x.x Operations
Guide Addendums. Using this document in conjunction with the Oracle Retail
Merchandising System 10.0 Operations Guide provides retailers with a complete overview
of the application.

For the RMS 10.1.21 release, there is one new batch design (saimptlogtdup_upd) and two
updated batch designs (prchstprg.pc and saimptlog). For more specific information
regarding enhancements and modifications made to the previous Oracle Retail
Merchandising System release, see the Oracle Retail Merchandising System 10.1.21 Release
Notes.

Operations Guide Addendum 1

2

Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 10.0 Operations Guide or any subsequent RMS 10.x.x Operation Guide
Addendums.

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

prchstprg.pc (Purge Price History)

Functional Area

Pricing

Module Affected
PRCHSTPRG.PC

Design Overview

The PRCHSTPRG program deletes price_hist records, which are older than a number of
retention days specified in a new column added to system_options table as
system_options.price_hist_retention_days. This program keeps the latest record for the
combination of item, location and tran type and deletes the rest of the records, which fall
in the specified period of retention days.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE AD-HOC (daily)

Scheduling Considerations This program is run prior to phase 3 to improve

select operations.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi threaded. Threaded by table partition
Restart/Recovery

This program will use the commit_max_ctr on the restart_control table to periodically
commit SQL delete operations. Restart/Recovery is achieved by processing records that
have not been deleted. Table restart_bookmark stores the
ps_cur_restart_partition_position for partition position as bookmark_string to restart a
thread.

However, in cases where the price_hist table is very large, a particularly large rollback
segment may be specified to reduce the risk of exceeding rollback segment space. This
will depend on the size of normal rollback segments and the size of the price_hist table.

Operations Guide Addendum 3

prchstprg.pc (Purge Price History)

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

The commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The recommended commit counter setting is 10000
records (subject to change based on experimentation). In case price_hist table is very
large then the number of partitions on the table may be increased and then after the
number of threads for this program should be increased.

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
PRICE_HIST No No No Yes
DBA_TAB_PARTITIONS Yes No No No

Program Flow
N/A

Program Level Description
init():
Fetches system variable system_options.price_hist_retention_days from system_options
table and vdate from the period table.
process():

Fetches partition_name and partition_position from DBA_TAB_PARTITIONS for table
PRICE_HIST ,which is used in delete_history().

delete_history ():

Deletes records from price_hist in a specific partition, which are older than the date
calculated backward from vdate for the value in price_hist_retention_days except the
latest record for the combination of item, location and tran type, which fall in the
specified period of retention days

I/0O Specification

Output File Layout
N/A

4 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

saimptlog (Sales Audit Import)

Purpose
The Batch Detailed Design is a thorough definition of a single batch program / module
within one functional area. The documented information is derived from this functional
area’s Technical Design.

Objectives

This Batch Detailed Design must:
* Document specific functions for a single batch program,

* Enable project team review, validation and consensus regarding the individual batch
program’s scope,

* Document the batch program in preparation for and in response to prototyping, and

= Prepare for and provide a defined and documented framework in which to perform
Development Phase activities.

Functional Area
Sales Audit import

Module Affected
SAIMPTLOG (formerly saval.pc and saout.pc in 8.X)

saimptlog.c
saimptlog.h
saimptlog_final.c
saimptlog_init.c
saimptlog_manval.c
saimptlog_nexttsn.pc
saimptlog_nextvhn.pc
saimptlog_output.c
saimptlog_uom.pc
saimptlog_proto.h
saimptlog_rtlog.c
saimptlog_sqlldr.c”
saimptlog_tdup.c
saimptlog_loadtdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog_ccval.c
saimptlog_ccval.h

The difference between SAIMPTLOG and SAIMPTLOGI is whether saimptlog_sqlldr.c or
saimptlog_insert.pc is used. The former generates SQL*Loader files while the later
performs actual inserts into the database.

Operations Guide Addendum 5

saimptlog (Sales Audit Import)

saimptlog_proto.h
SAIMPTLOGI
saimptlog.c
saimptlog.h
saimptlog_final.c
saimptlog_init.c
saimptlog_insert.pc”
saimptlog_manval.c
saimptlog_nexttsn.pc
saimptlog_nextvhn.pc
saimptlog_output.c
saimptlog_uom.pc
saimptlog_proto.h
saimptlog_rtlog.c
saimptlog_tdup.c
saimptlog_loadtdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog_ccval.c
saimptlog_ccval.h
saimptlog_proto.h
SAIMPTLOGFIN
saimptlogfin.pc
saimptlog_nexttbgsn.pc
saimptlog.h

Design Overview

Importing POS data is a four or five-step process depending on whether saimptlogi or
saimptlog is used. Saimptlog produces SQL*Loader files while saimptlogi does inserts
directly into the database. Saimptlogi is meant for use in a trickle feed environment.

6 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

SAIMPTLOG

SAIMPTLOGI

SAGETREF must be run to generate the current reference files:

= [tems

= Wastage

= Sub-transaction level items
= Primary variant relationships
= Variable weight PLU

= Store business day

= Promotions

= Code types

= Error codes

= Credit card validation

= Store POS

= Tender type

= Merchant code types

= Partner vendors

= Supplier vendors

* Employee ids

These files are all used as input to SAIMPTLOG and SAIMPTLOGI. Since SAIMPTLOG and
SAIMPTLOGI can be threaded, this boosts performance by limiting interaction with the database.

SAIMPTLOG is run against each POS file.
SAIMPTLOG creates a write lock for store/day
and than sets the data_status to loading until
SAIMPTLOGEFIN is executed. This generates
distinct SQL*Loader files for that store/day for
the sa_tran_head, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error,
sa_customer, sa_cust_attrib and (optionally)
sa_missing_tran tables. A Retek formatted
voucher file is produced for processing by
SAVOUCH. SAIMPTLOG may be threaded as
long as the parallel executions do not include
the same store/day.

SQL*Loader is executed to load the transaction
tables from the files created by SAIMPTLOG.
The store/day SQL*Loader files can be
concatenated into a single file per table to
optimize load times. Alternatively, multiple
SQL*Loader files can be used as input to
SQL*Loader. SQL*Loader may not be run in

parallel with itself when loading a table. Header

data (primary keys) must be loaded before
ancillary data (foreign keys). This means that
the sa_tran_head table must be loaded first;
sa_tran_item before sa_tran_disc; and
sa_customer before sa_cust_attrib. The
remaining tables may be loaded in parallel.

SAIMPTLOGTI is run against each POS file.
SAIMPTLOGI creates a write lock for that
store/day and then sets the data_status to
loading until SAIMPTLOGFIN is executed. This
inserts data into sa_tran_head, sa_tran_item,
sa_tran_disc, sa_tran_tax, sa_tran_tender,
sa_error, sa_customer, sa_cust_attrib and
(optionally) sa_missing_tran tables. A Retek
formatted voucher file is produced for
processing by SAVOUCH. SAIMPTLOGI may
be threaded as long as the parallel executions
do not include the same store/day.

SAVOUCH is executed to load each of the Retek formatted voucher files. SAVOUCH may not be

multiply threaded.

Operations Guide Addendum 7

saimptlog (Sales Audit Import)

SAIMPTLOG SAIMPTLOGI

SAIMPTLOGEFIN is executed to populate the sa_balance_group table, cancel post voided
transactions and vouchers, validate missing transactions, and to mark the import as either
partially or fully complete loaded. SAIMPTLOGFIN may not be multiply threaded.

This design document encompasses SAIMPTLOG, SAIMPTLOGI and SAIMPTLOGFIN.

SAIMPTLOG
Operations Performed
Table Select Insert Update Delete
period yes no no no
store yes no no no
sa_system_options yes no no no
sa_store_day yes No Yes no
sa_store_day_write_lock yes yes Yes no
SAIMPTLOGI
Operations Performed

Table Select Insert Update Delete
period Yes No No No
store Yes No No No
sa_system_options Yes No No No
sa_store_day Yes No Yes No
sa_store_day_write_lock Yes No Yes No
sa_tran_head No Yes No No
sa_customer No Yes No No
sa_cust_attrib No Yes No No
sa_tran_item No Yes No No
sa_tran_disc No Yes No No
sa_tran_tax No Yes No No
sa_tran_tender No Yes No No
sa_error No Yes No No
sa_missing_tran No Yes No No

8 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

SAIMPTLOGFIN

Operations Performed

Table
Select Insert Update Delete

period yes no No no
store yes no No no
sa_system_options yes no No no
sa_store_day yes no yes no
sa_store_day_write_lock yes no Yes No
sa_import_log yes no yes no
sa_balance_group Yes Yes No No
sa_tran_head Yes No Yes Yes
sa_customer Yes No No Yes
sa_cust_attrib Yes No No Yes
sa_tran_item Yes No No Yes
sa_tran_disc Yes No No Yes
sa_tran_tax Yes No No Yes
sa_tran_tender Yes No No Yes
sa_error Yes No No Yes
sa_missing_tran Yes No No Yes
sa_tran_head_rev No Yes No No
sa_tran_item_rev No Yes No No
sa_tran_disc_rev No Yes No No
sa_tran_tax_rev No Yes No No
sa_tran_tender_rev No Yes No No
sa_error_rev No Yes No No

Operations Guide Addendum 9

saimptlog (Sales Audit Import)

Program Flow

SAIMPTLOG and SAIMPTLOGI
get_lock Get POS Validate Reformat POS
for import transaction POS transaction
of "l from data "l transaction | datato
store/day. file. data. SQL*Loader
or insert
A format.
\ 4
Write
SQL*Loader
files for
Y transaction data
or insert

transaction data.

Save |
missin :
. Any more Write
transaction
data «— POS < Voucher data
' N transaction found in
s? transaction.
SAIMTLOGFIN

Get store/day that Create balance Cancel post Update

has been loaded. »| group entries » Vvoided » MISSING
for the transactions. transaction
store/day. entries.

10 Oracle Retail Merchandising System

Mark store/day as either
partially of fully
imported.

saimptlog (Sales Audit Import)

Function Level Description

SAIMPTLOG and SAIMPTLOGI

As noted earlier, the difference between SAIMPTLOG and SAIMPTLOGI is whether
saimptlog_sqlldr.c or saimptlog_insert.pc is used. Routines flagged with a f denote that
they exist in both of these modules and that behavior will depend on which module is
used.

main() [saimptlog.c]

This should be the standard Retek main. Call LOGON to connect to the Sales Audit
database. Call Init to initialize data structures and output file handles. Call Process to
translate the RTLOG POS data into either the SQL*Loader files or to insert the data, and
to produce a Retek formatted file for vouchers. Call Final to close file handles and to
generally clean up.

Process() [saimptlog.c]

For each transaction in the POS RTLOG file, call getNextTran to read in the data and
process it.

For each transaction, call WrOutputDataf and writeSAVoucherData to write the voucher
transaction data to a temporary file.

Init() [saimptlog_init.c]
Call retek_init to initialize threading.
Get the system options by calling fetchSaSystemOptions.

Get the current system data (SYSDATE) by calling fetchSysDate. This is used later to
validate the dates in the POS RTLOGs.

Initialize the RTLOG file parser by calling InitInputData.
Load the item data generated by SAGETREF by calling item_loadfile.

Load the sub-transaction level item data generated by SAGETREF by calling
ref item_loadfile.

Load the variable weight PLU data generated by SAGETREEF by calling vupc_loadfile.
Load the primary variant data generated by SAGETREF by calling primvariant_loadfile.
Load the store/day data generated by SAGETREEF by calling store_day_loadfile.

Load the wastage data generated by SAGETREF by calling waste_loadfile.

Load the promotion data generated by SAGETREF by calling prom_loadfile.

Load the code type data generated by SAGETREF by calling code_loadfile.

Load the error data generated by SAGETREF by calling error_loadfile.

Load the store POS data generated by SAGETREF by calling storepos_loadfile.

Load the tender type group and ID data generated by SAGETREF by calling
tendertype_loadfile.

Load the merchant code data generated by SAGETREF by calling merchcode_loadfile.
Load the partner vendor data generated by SAGETREF by calling partner_loadfile.
Load the supplier vendor data generated by SAGETREF by calling supplier_loadfile.
Load the employee data generated by SAGETREF by calling employee_loadfile.
Initialize transaction output processing by calling InitOutputDataf.

Initialize voucher output processing by calling openSAVoucher.

Operations Guide Addendum 11

saimptlog (Sales Audit Import)

Initialize Oracle number arithmetic by calling OraNumlInit.
If either of these last 2 fail, call InitOutputCleant.

Final() [saimptlog_final.c]

If the system option check_dup_miss_tran is enabled, than call tdup_savedata to keep
track of missing transaction numbers between invocations of SAIMPTLOG or
SAIMPTLOGI and call tdup_misstran to create the SQL*Loader file for the
sa_missing_tran table.

Call CreateTermRecordst to mark the end of the data and than call WrOutputDataf to
write them to the temporary files.

Terminate the RTLOG file parser by calling FinallnputData.
Call FinalOutputDataf to finish any pending output processing.
Call closeSAVoucher to close and rename the voucher file.

Call retek_close to perform program status record keeping.

Call retek_refresh_thread to refresh the thread that was used during this execution so
that it can be reused.

InitinputData() [saimptlog_rtlog.c]

Open the POS RTLOG file for reading.

Open a bad transaction file for writing.
Initialize the POS RTLOG transaction parser.

getNextTran() [saimptlog_rtlog.c]

This function reads in each transaction (by calling getRTLRec for each transaction) and
validates each record contained within it (by calling procRTLFHead, procRTLFTail,
procRTLTHead, procRTLTTail, procRTLTCust, procRTLCAtt, procRTLTItem,
procRTLIDisc, procRTLTTax and procRTLTTend as appropriate). To simplify processing,
the FHEAD and FTAIL records are treated as individual transactions. The function
rtFind is used to determine the type of the record read.

Some record types will require some extra processing:

FHEAD - Need to retain the location (store) and business date for later validations. Also,
the transaction structures must be reset by calling resetTran. Write out a FHEAD record
to the voucher file by calling writeSAVoucherFHEAD.

FTAIL - Write out a FTAIL record to the voucher file by calling writeSAVoucherFTAIL.

TTAIL - Call chkTranFormat to check for format and data problems. Call
chkTranTailCount to validate the number of records found in the transaction. Call
tdup_addtran to check for duplicate transactions and to keep track of possible missing
transactions, except when the transaction is a “TOTAL’ and its tran_no is blank. Call
reformatTran to format the RTLOG transaction data into SQL*Loader flat file format. If
any errors occur, call WrBadTran to write the failing transaction to the bad transaction
file and call resetTran to reinitialize the RTLOG parser for the next transaction.

FinallnputData() [saimptlog_rtlog.c]
Close the POS RTLOG file.

Close the bad transaction file.

getRTLRec() [saimptlog_rtlog.c]
Read and return one record from the POS RTLOG file.

12 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

rtFind() [saimptlog_rtlog.c]
Return the type of the record that is passed in (i.e. THEAD, TCUST, TITEM, etc).

procRTLFHead() [saimptlog_rtlog.c]

Check that this is the first record in the POS RTLOG file. Validate the business date of the
data. Call storeday_lookup to verify that there is a sa_import_log entry. If an entry is not
found, generate an error and do not load any data. Call get_lock to lock the store/day for
importing. If a lock is not obtained, keep trying a set number of times. Call
updateDataStatus to set the store/day's data_status to loading (SADS_L). If missing
transactions are being tracked, call storepos_lookup to get the transaction number
starting and ending values and call tdup_loaddata to load into memory past transaction
number ranges for the current store/day. Note that the maximum transaction number
allowed is 2147483647.

procRTLFTail() [saimptlog_rtlog.c]

Process a FTAIL record, ensuring that it is the last record in the POS RTLOG file. The
record count in the FTAIL record is checked against the number of records processed, if
these do not match then records are missing and we should abort.

procRTLTHead() [saimptlog_rtlog.c]

Validate that the THEAD record is located within a valid position in the POS RTLOG file,
after an FHEAD or TTAIL record.

Initialize the sale and tender transaction totals to 0.

procRTLTTail() [saimptlog_rtlog.c]

Validate that the TTAIL record is located within a valid position in the POS RTLOG file,
after a TITEM, IDISC, TTAX, TTEND, TCUST or CATT record.

procRTLTCust() [saimptlog_rtlog.c]
Validate that the TCUST record is located within a transaction in the POS RTLOG file.

procRTLCALtt() [saimptlog_rtlog.c]

Validate that the CATT record is located within a transaction following either a TCUST
or CATT record in the POS RTLOG file.

procRTLTltem() [saimptlog_rtlog.c]

Validate that the TITEM record is located within a transaction in the POS RTLOG file.
Convert selling unit of measure to standard, necessary.

Check if item number type is variable weight PLU. If so, decode it.

Add the quantity * the unit retail amount to the sale transaction total.

procRTLIDisc() [saimptlog_rtlog.c]

Validate that the IDISC record is located within a valid position in the POS RTLOG file,
after either a TITEM or IDISC record.

Convert selling unit of measure to standard, if necessary.

Subtract the quantity * the unit discount amount from the sale transaction total.

procRTLTTax() [saimptlog_rtlog.c]
Validate that the TTAX record is located within a transaction in the POS RTLOG file.

Operations Guide Addendum 13

saimptlog (Sales Audit Import)

Add the tax amount to the sale transaction total.

procRTLTTend() [saimptlog_rtlog.c]
Validate that the TTEND record is located within a transaction in the POS RTLOG file.

Add the tender amount to the tender transaction total.

resetTran() [saimptlog_rtlog.c]
Reinitialize the transaction structures.

chkTranTailCount() [saimptlog_rtlog.c]

Checks the counters in a transaction’s TTAIL record and produce an error if this figure
does not match the actual number of records processed for this transaction.

chkTranFormat() [saimptlog_rtlog.c]

Checks the current transaction format and content. Produces an error if more than one
TCUST record is found, an IDISC record does not correspond to a TITEM record, an
unknown record type is encountered or the THEAD or TTAIL records are missing from
the transaction.

For each record in the transaction call rrchk to look for invalid characters in the record.

Call trat_lookup to get the transaction type and then validate that type with the number
of records within the transaction.

rrchk() [saimptlog_rtlog.c]

Make sure that there are no embedded null, tab, carriage return or new line characters in
the record passed in.

WrBadTran() [saimptlog_rtlog.c]
Writes an erroneously formatted transaction out to the reject file for correction by an

auditor. These transactions do not contain enough information to be loaded to the Sales
Audit tables.

reformatTran() [saimptlog_rtlog.c]

Validate and reformat the data within the transaction into the SQL*Loader flat file format
(SAIMPTLOG) or insert the data into the database (SAIMPTLOGI). This is accomplished
by calling routines that know the validations and formats for each tables SQL*Loader
control file or insert statements. Start by calling resetFmtf to initialize the formatting
routines. The validation routines are mvSATHead, mvSATCust, mvSACAtt, mvSATItem,
mvSAIDisc, mvSATTax and mvSATTend. The reformatting routines are
fmtSATranHeadt, fmtSACustomert, fmtSACustAttrib}, fmtSATranltemt,
fmtSATranDisct, fmtSATranTax} and fmtSATranTendt. If there are any errors that
prevent loading this transaction into the database, call abortFmtt. If there are correctable
errors, call saErrorSATHeadt for THEAD, TCUST and CATT records, call
saErrorSATItemt, saErrorSATDiscy, saErrorSATTaxt or saErrorSATTendf for the other
record types.

If the transaction type is TRAT_SALE, TRAT_RETURN or TRAT_EEXCH, than check
that the transaction balances by comparing the sale and tender transaction totals.
Generate an error if they do not match.

updateDataStatus() [saimptlog_datastat.pc]

14 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

If the data status for this store/day is ready to be loaded (SADS_R), loading (SADS_L) or
partially loaded (SADS_P) than update it to loading (SADS_L) and commit the change.

mvSATHead() [saimptlog_manval.c]
Ensure that the transaction date and time has a valid value.

Ensure that, if they exist and sa_system_options.auto_validate_tran_employee_id is
YSNO._Y, the cashier and salesperson ids are valid by calling employee_lookup.

Ensure that the transaction type has a valid value (code_type of TRAT) by calling
code_lookup.

Ensure that, if the balancing level is register (SABL_R) or store.tran_no_generated is
register (STRG_R), then the register field is populated, and that if the balancing level is
cashier (SABL_C), then the cashier field is populated.

Ensure that the transaction number exists for all transaction types except TRAT_DCLOSE
and TRAT_TOTAL. If transaction number exists, make sure that it is numeric.

Ensure that the sub transaction type has a valid value if present (code_type of TRAS) by
calling code_lookup.

Ensure that the reason code has a valid value if present (code_type of REAC) by calling
code_lookup.

If the transaction type is TRAT_PAIDIN, ensure that a reason code is present.
If the transaction type is TRAT_PAIDOU:

If the sub transaction type is TRAS_MYV or TRAS_EV, then validate the reason code by
calling merchcode_lookup, else validate the reason code by calling code_lookup.

Ensure that the vendor number field is not empty.

If the sub transaction type is TRAS_MYV then validate the vendor number against the
suppliers by calling supplier_lookup.

Else if the sub transaction type is TRAS_EV then validate the vendor number against the
partners by calling partner_lookup.

Else we do not validate.

If the sub transaction type is TRAS_MV or TRAS_EV then ensure that at least one of the
vendor invoice number, payment reference number and proof of delivery number fields
are present.

Else we do not validate.

If the transaction type is TRAT_TOTAL, ensure that ref_nol and value are not empty.
Ensure that the value has a valid numeric value if present.

Return TRUE if all validations pass, else return FALSE.

mvSATCust() [saimptlog_manval.c]
Ensure that the customer ID has a value.

Ensure that the customer ID type has a valid value (code_type of CIDT) by calling
code_lookup.

Ensure that the customers birthdate has a valid value if present.
Return TRUE if all validations pass, else return FALSE.

mvSACAtt() [saimptlog_manval.c]

Ensure that the customer attribute type has a valid value (code_type of SACA) by calling
code_lookup.

Operations Guide Addendum 15

saimptlog (Sales Audit Import)

Ensure that the customer attribute value has a valid value (code_type of attribute type)
by calling code_lookup.

Return TRUE if all validations pass, else return FALSE.

mvSATItem() [saimptlog_manval.c]

Ensure that the item status has a valid value (code_type of SASI) by calling code_lookup.
Also, if the tran_type is ‘SALE’, ‘'RETURN’ or ‘EEXCH’, then the only valid values are
SASI_S, SASI_R, and SASI_V. If the item status is SASI_S than the quantity sign must be
SIGN_P. If the item status is SASI_R than the quantity sign must be SIGN_N.

Ensure that the item type has a valid value (code_type of SAIT) by calling code_lookup.

Ensure that the item, sub-transaction level item, or voucher number has a valid value
depending on what the item type says should be present.

Ensure that the department, class, sub class and system indicator are valid if present.
Ensure that the quantity has a valid numeric value.
Ensure that the unit retail amount has a valid numeric value.

Ensure that the override reason code has a valid value (code_type of ORRC) by calling
code_lookup if present.

Ensure that the original unit retail value has a valid numeric value if there is an override
reason code.

Ensure that the tax indicator has a valid value (code_type of YSNO) by calling
code_lookup. If the value is invalid, then an error is flagged and the value is defaulted to
YSNO_Y.

Ensure that the item swiped indicator has a valid value (code_type of YSNO) by calling
code_lookup. If the value is invalid, then an error is flagged and the value is defaulted to
YSNO_Y.

Ensure that the return reason code has a valid value (code_type SARR) by calling
code_lookup if present and the item status is SASI_R.

Ensure that, if it exists and sa_system_options.auto_validate_tran_employee_id is
YSNO._Y, the salesperson id is valid by calling employee_lookup.

Ensure that if an expiration date exists, that it is valid.
Return TRUE if all validations pass, else return FALSE.

mvSAIDisc() [saimptlog_manval.c]

Ensure that the RMS promotion number has a valid value (code_type of PRMT) by
calling code_lookup.

Ensure that the promotion has a valid value if present by calling prom_lookup. Valid
values are PRST_A, PRST_E and PRST M.

Ensure that the discount type has a valid value (code_type of SADT) by calling
code_lookup.

Ensure that the quantity has a valid numeric value.

Ensure that the unit discount amount has a valid numeric value.

If the discount type is Coupon than ensure that the coupon number is present.
Return TRUE if all validations pass, else return FALSE.

mvSATTax() [saimptlog_manval.c]
Ensure that the tax code has a valid value (code_type of TAXC) by calling code_lookup.

Ensure that the tax amount has a valid numeric value.

16 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

Return TRUE if all validations pass, else return FALSE.

mvSATTend() [saimptlog_manval.c]

Ensure that the tender type group has a valid value (code_type of TENT) by calling
code_lookup.

Ensure that the tender type ID has a valid value by calling tendertype_lookup.
Ensure that the tender amount has a valid numeric value.
If the tender type group is TENT_CCARD or TENT_DCARD than:

Ensure that the credit card number and expiration date are valid by calling ccval. The
expiration date may be an empty field. If it is, no validation will be performed and there
is no check as to whether the credit card has expired.

Ensure that the credit card authorization source if present has a valid value (code_type of
CCAS) by calling code_lookup.

Ensure that the credit card cardholder verification if present has a valid value (code_type
of CCVF) by calling code_lookup.

Ensure that the credit card entry mode if present has a valid value (code_type of CCEM)
by calling code_lookup.

Ensure that the credit card special condition if present has a valid value (code_type of
CCSC) by calling code_lookup.

If the tender type group is Coupon than ensure that the coupon number is present.
Return TRUE if all validations pass, else return FALSE.

nextTranSeqNo() [saimptlog_nexttsn.c]

Gets the next free header sequence number for use. This routine goes and gets a block of
numbers when starting, and parcels them out as needed. Once they are all used up,
another block is gotten.

tdup_savedata() [saimptlog_tdup.c]
Writes out what is currently known about transaction numbers for the current store/day.

tdup_misstran() [saimptlog_tdup.c]
Writes the entries for the sa_missing_tran table by calling fmtSAMissTrant.

The sa_missing_tran.status column will be filled in with SAMS_M.

tdup_loaddata() [saimptlog_loadtdup.c]
Loads the data file of transaction number past ranges.

tdup_addtran() [saimptlog_tdup.c]

Adds a transaction number to the list of numbers encountered. If
store.tran_no_generated is SRTG_S, than the transaction number must be unique to the
store. If store.tran_no_generated is SRTG_R, than the transaction number must be unique
to the store and register.

openSAVoucher() [saimptlog_output.c]
Generate a temporary filename for the voucher data and open it for writing.

closeSAVoucher() [saimptlog_output.c]

Close the voucher data file. If the RTLOG has been successfully processed, rename the
temporary filename to a permanent name, else remove the temporary file.

Operations Guide Addendum 17

saimptlog (Sales Audit Import)

writeSAVoucherFHEAD() [saimptlog_output.c]
Format and writes a FHEAD record to the voucher file.

writeSAVoucherFTAIL() [saimptlog_output.c]
Format and writes a FTAIL record to the voucher file.

writeSAVoucherData() [saimptlog_output.c]

If the current transaction type is a sale (SALE), or a return (RETURN) and the TITEM
records contain a voucher number, then reformat the TITEM records into a sold voucher
data by calling WrSoldSAVoucher. However, if the item was voided (i.e. for the same
transaction, there is an item with status ‘V’ for the voucher), then do not call the function.

If the current transaction type is a sale (SALE), a paid in (PAIDIN), a return (RETURN) or
paid out (PAIDOU), and the tender type group is a voucher (VOUCH) then:

= if the sign of the tender amount is positive, then reformat the TTEND records
into an issued voucher data by calling WrlssuedSAVoucher

= else, if the sign of the tender amount is negative, then reformat the TTEND
records into am issued voucher data by calling WrlssuedSAVoucher.

(Note: it is not possible to return a voucher).

WrSoldSAVoucher() [saimptlog_output.c]
Format and write a sold voucher record to the voucher file.

In addition to the fields that are currently output in this function, information about the
customer who purchased the gift certificate is required in the new iss_cust fields. This
information can be copied directly from the RTLTCust record associated with the
transaction being processed. The new recipient fields (name, state and country) will be
stored in the RTLTItem record reference number fields for the Sale of a gift certificate.
These values provide details on the intended receiver for a gift certificate at the time of
sale. This might not be provided by every POS system, in which case they would be null.
Expiration date will also be stored on the RTLTItem record and should be populated; it
may also be null.

Source Target

RTLTCust.name SA_VOUCHER.iss_cust_name
RTLTCust.addrl SA_VOUCHER.iss_cust_addrl
RTLTCust.addr2 SA_VOUCHER:.iss_cust_addr2
RTLTCust.city SA_VOUCHER:.city
RTLTCust.state SA_VOUCHER: state
RTLTCust.postal_code SA_VOUCHER.postal_code
RTLTCust.country SA_VOUCHER.country
RTLTItem.ref_no5 SA_VOUCHER recipient_name
RTLTItem.ref_no6 SA_VOUCHER recipient_state
RTLTItem.ref_no7 SA_VOUCHER recipient_country
RTLTItem.expiration_date SA_VOUCHER.exp_date

This function validates the datatype of numeric and date fields. The exp_date should be
added to the fields that are validated. If it is populated, it must be in a valid date format.

WrRedeemedSAVoucher() [saimptlog_output.c]

18 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

Format and write a redeemed voucher record to the voucher file.

WrlssuedSAVoucher() [saimptlog_output.c]
Format and write an issued voucher record to the voucher file.

In the case of a credit voucher issued during a return transaction, the iss_cust fields will
also come from the RTLTCust fields as described above. The recipient and exp_date
fields are not relevant for this type of voucher; so do not need to be copied in this
function.

InitOutputData() [saimptlog_sqlidr.c]

Generate temporary filenames for the SQL*Loader files for the sa_tran_head,
sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer,
sa_cust_attrib and (optionally, depending on the value of the system option
check_dup_miss_tran) sa_missing_tran tables.

Open all of the temporary files for writing.

InitOutputClean() [saimptlog_sqlldr.c]

Close and remove the SQL*Loader files for the sa_tran_head, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and (optionally,
depending on the value of the system option check_dup_miss_tran) sa_missing_tran
tables.

CreateTermRecords() [saimptlog_sqlldr.c]

Create terminating records for each record type. These records are used by
SAIMPTLOGEFIN to determine if SQL*Loader has finished loading all of the transaction
data for a store/day. NOT NULL column values are given in the table in the appendix.
All other columns should be blank.

If check_dup_miss_tran is YSNO_Y than create a sa_missing_tran TERM record and call
putrec to write it to the SQL*Loader file.

WrOutputData() [saimptlog_sqlldr.c]
Writes the current transaction to the SQL*Loader files.

FinalOutputData() [saimptlog_sqlidr.c]

Close the temporary SQL*Loader files for the sa_tran_head, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and (optionally,
depending on the value of the system option check_dup_miss_tran) sa_missing_tran
tables.

Rename the temporary files to record-type_store_business-date_sys-date.out (i.e.
sathead_1000_20000115_20000116053302.out).

resetFmt() [saimptlog_sqlldr.c]
Clears the arrays used for formatting the SQL*Loader files.

abortFmt() [saimptlog_sqlldr.c]
Dummy routine to support array inserts. See saimptlog_insert.pc.

saveFmt() [saimptlog_sqlldr.c]
Dummy routine to support array inserts. See saimptlog_insert.pc.

Operations Guide Addendum 19

saimptlog (Sales Audit Import)

fmtSATranHead() [saimptlog_sqlldr.c]

Formats a sa_tran_head record. The status of the current transaction is updated, and the
next sequential tran_seq_no is generated by nextIranSeqNo for the following transaction.

If the transaction type is not a “TOTAL’, than copy the sale transaction total to the
transaction value column.

fmtSACustomer() [saimptlog_sqlldr.c]
Formats a sa_customer record.

fmtSACustAttrib() [saimptlog_sqlldr.c]
Formats a sa_cust_attrib record.

fmtSATranltem() [saimptlog_sqlidr.c]

Formats a sa_tran_item record. If the item contains a variable weight PLU, than call
waste_lookup to get the wastage type and percent. If the type is an REF, it will be
converted to an ITEM. The merchandise hierarchy information (department, class, sub-
class, and system indicator) associated with the item will be retrieved for this item by
calling item_lookup.

Produce an error if the item cannot be found, the REF item was not converted to an
ITEM, the item type is not ITEM, REF or GCN, or non-numeric data is found in the
quantity or amount field.

fmtSATranDisc() [saimptlog_sqlldr.c]
Formats a sa_tran_disc record.

fmtSATranTax() [saimptlog_sqlldr.c]
Formats a sa_tran_tax record.

fmtSATranTend() [saimptlog_sqlldr.c]
Formats a sa_tran_tender record.

fmtSAMissTran() [saimptlog_sqlldr.c]

Formats a sa_missing_tran record and writes it out to the SQL*Loader file by calling
putrec.

setErrorSATHead() [saimptlog_sqlidr.c]
Sets the error indicator to YSNO_Y for the current THEAD record.

setErrorSATltem() [saimptlog_sqlldr.c]
Sets the error indicator to YSNO_Y for the current TITEM record.

setErrorSATDisc() [saimptlog_sqlidr.c]
Sets the error indicator to YSNO_Y for the current IDISC record.

setErrorSATTax() [saimptlog_sqlidr.c]
Sets the error indicator to YSNO_Y for the current TTAX record.

setErrorSATTend() [saimptlog_sqlldr.c]
Sets the error indicator to YSNO_Y for the current TTEND record.

20 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

InitOutputData() [saimptlog_insert.pc]

Allocate space for insert arrays for the sa_tran_head, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and (optionally,
depending on the value of the system option check_dup_miss_tran) sa_missing_tran
tables.

InitOutputClean() [saimptlog_insert.pc]
Frees the space allocated by InitOutputData.

CreateTermRecords() [saimptlog_insert.pc]

Create terminating records for each record type. These records are used by
SAIMPTLOGEFIN to determine if SQL*Loader has finished loading all of the transaction
data for a store/day. NOT NULL column values are given in the table in the appendix.
All other columns should be blank.

If check_dup_miss_tran is YSNO_Y than create a sa_missing_tran TERM record. If the
array is full, first call flushMissTranInsertArray.

WrOutputData() [saimptlog_insert.pc]
Dummy routine to support SQL*Loader. See saimptlog_sqlldr.c.

FinalOutputData() [saimptlog_insert.pc]

Flushes the final entries in the insert arrays by calling flushTranInsertArray and
flushTranInsertArray. Commit the work. Free the memory used for the arrays by calling
InitOutputCleant.

resetFmt() [saimptlog_insert.pc]
Dummy routine to support SQL*Loader. See saimptlog_sqlldr.c.

abortFmt() [saimptlog_insert.pc]
Reset array indexes to the last saved transaction.

saveFmt() [saimptlog_insert.pc]
Save the array indexes for inserting the current transaction.

fmtSATranHead() [saimptlog_insert.pc]

Formats a sa_tran_head record for array insert. If the array is full, first call
flushTranInsertArray. The status of the current transaction is updated, and the next
sequential tran_seq_no is generated by nextIranSeqNo for the following transaction.

If the transaction type is not a “TOTAL’, than copy the sale transaction total to the
transaction value column.

fmtSACustomer() [saimptlog_insert.pc]

Formats a sa_customer record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSACustAttrib() [saimptlog_insert.pc]

Formats a sa_cust_attrib record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSATranltem() [saimptlog_insert.pc]

Operations Guide Addendum 21

saimptlog (Sales Audit Import)

Formats a sa_tran_item record for array insert. If the array is full, first call
flushTranInsertArray. If the item contains a variable weight PLU, than call waste_lookup
to get the wastage type and percent. If the type is a REF, it will be converted to an ITEM.
The merchandise hierarchy information (department, class, sub-class, and system
indicator) associated with the item will be retrieved for this item by calling item_lookup.

Produce an error if the item cannot be found, the REF item was not converted to an
ITEM, the item type is not ITEM, REF or GCN, or non-numeric data is found in the
quantity or amount field.

fmtSATranDisc() [saimptlog_insert.pc]

Formats a sa_tran_disc record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSATranTax() [saimptlog_insert.pc]

Formats a sa_tran_tax record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSATranTend() [saimptlog_insert.pc]

Formats a sa_tran_tender record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSAMissTran() [saimptlog_insert.pc]

Formats a sa_missing_tran record for array insert. If the array is full, first call
flushMissTranInsertArray.

setErrorSATHead() [saimptlog_insert.pc]
Sets the error indicator to YSNO_Y for the current THEAD record.

setErrorSATltem() [saimptlog_insert.pc]
Sets the error indicator to YSNO_Y for the current TITEM record.

setErrorSATDisc() [saimptlog_insert.pc]
Sets the error indicator to YSNO_Y for the current IDISC record.

setErrorSATTax() [saimptlog_insert.pc]
Sets the error indicator to YSNO_Y for the current TTAX record.

setErrorSATTend() [saimptlog_insert.pc]
Sets the error indicator to YSNO_Y for the current TTEND record.

flushTraninsertArray() [saimptlog_insert.pc]
Inserts the contents of the transaction arrays and resets the indexes for more loading.

flushMissTranlnsertArray() [saimptlog_insert.pc]

Inserts the contents of the missing transaction array and resets the index for more
loading.

SAIMPTLOGFIN

main() [saimptlogfin.pc]

22 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

This should be the standard Retek main. Call LOGON to connect to the Sales Audit
database. Call Init to initialize data structures and output file handles. Call Process to
populate the sa_balance_group table, to mark the import as either partially or fully
complete. Call final to close files and generally clean up.

init() [saimptlogfin.pc]

retek_init should be called to initialize g_l_restart_max_counter.

Get the system options by calling fetchSaSystemOptions.

Load the store/day data generated by SAGETREF by calling storeday_loadfile.

process() [saimptlogfin.pc]

Fetch all store/day’s that have a data status of loading (L) and that have the terminating
records (sa_tran_head.tran_type = TERM) on all of the tables (sa_tran_head,
sa_customer, sa_cust_attrib, sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender,
sa_error and sa_missing_tran). Save the ROWID of these terminating records so that they
can be removed. Because of trickle polling, there may be multiple records per table; they
must all be present.

For each store/day fetched, get a write lock by calling get_lock. If this fails, go onto the
next store/day.

For each completed store/day if the DCLOSE transaction is found and the number of
files expected (contained in the ref nol of DCLOSE) equales the number of TERM
records found, or if audit_after_imp_ind is YSNO_Y than create the balance groups by
calling balanceGroupCreate, remove sa_missing_tran records that are now present by
calling fixMissTran, and process post voids by calling fixPostVoid.

Delete the terminating records, if any found.

For each store/day mark the import as either partially or complete by calling
markImportDone.

For each store/day release the import lock by calling release_lock.

Do a commit after each store/day by calling retek_force_commit.

final() [saimptlogfin.pc]
Call retek_close.

balanceGroupCreate() [saimptlogfin.pc]

Depending on the value of the system option balance_level_ind (store, register or
cashier), insert the necessary records into sa_balance_group. The start_datetime and
end_datetime columns should remain NULL. The bal_group_seq_no is gotten from a call
to nextBalGroupSeqNo.

nextBalGroupSeqNo() [nextbgsn.pc]

Gets the next free balance group sequence number for use. This routine goes and gets a
block of numbers when starting, and parcels them out as needed. Once they are all used
up, another block is gotten.

fixPostVoid() [saimptlogfin.pc]

For each transaction that has a corresponding post void transaction (tran_type = PVOID)
where sale.tran_no = cancel.orig_tran_no and sale.register = cancel.orig_reg no and
store_day_seq_no’s match, set the status to SAST_V. Also, if that transaction contained a

voucher (either as an item or as a tender), then call the package function
SA_VOUCHER_SQL.POST_VOID_VOUCHER to undo any processing on this voucher.

Operations Guide Addendum 23

saimptlog (Sales Audit Import)

Call TRANSACTION_SQL.CREATE_REVISIONS to create revision. Update
sa_tran_head with the new revision number, setting the status to postvoided.

fixMissTran() [saimptlogfin.pc]
Remove sa_missing_tran records that may now be present because data was processed
out of order.

markimportDone() [saimptlogfin.pc]

Get the current count of files loaded. Mark the import as either fully (F) or partially (P)
loaded by updating the sa_store_day table’s data_status column. This is determined by
the presence of a transaction with a type of store/day closed (DCLOSE).

If there was a DCLOSE transaction, get the number of files expected contained in the
ref_nol field, then if the number of files expected equals the number loaded, update the
sa_store_day table’s data_status, audit_status and files_loaded columns. If a DCLOSE
record was found and the numbers match, set data_status to Fully Loaded, audit_status
to Audited, else data_status = Partially Loaded, audit_status = Unaudited. Increment
files_loaded by the number of TERM records found. If the import was expected, than set
status to loaded (L), else set it to unexpected (U). This is determined by calling
storeday_lookup.

Stored Procedures/Shared Modules (Maintainability)
Refer to the following documents for more details:
Package detail design 0 salock.doc
Functional Design 0 SA_misc.doc

Technical Design 0 SA_misc.doc

Retek_init

Retek_close

Retek_refresh_thread

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

trat_lookup Look up TRAT code types and convert them to their sequence number.
tent_lookup Look up TENT code types and convert them to their sequence number.
get_lock used to establish a read lock on a store/day.

release_lock used to release a store/day lock.

storeday_loadfile Loads the store/day data file generated by SAGETREF into memory.
storeday_lookup Checks that a store business day has an import record.

item_loadfile Loads the item data file generated by SAGETREF into memory.
item_lookup Looks up an item and returns the data (department, class, sub-class and

system indicator) associated with it.

ref_item_loadfile Loads the sub-transaction item (ref) data file generated by SAGETREF into
memory.

ref_item_lookup Looks up a sub-transaction level item.

vupc_loadfile Loads the variable weight PLU data file generated by SAGETREF into
memory.

24 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

vupc_lookup

prom_loadfile
prom_lookup
waste_loadfile
waste_lookup
code_loadfile
code_lookup
error_loadfile
error_lookup
storepos_loadfile
storepos_lookup
tendertype_loadfile
tendertype_lookup
merchcode_loadfile
merchcode_lookup
partner_loadfile
partner_lookup
supplier_loadfile
supplier_lookup

putrec

LANGUAGE_SQL.GET_CO

DE_DESC

Looks up a variable PLU. Call vupc_lookup to see if it is a variable PLU. If it
is a variable UPC, than set the variable parts to zero.

Loads the promotion data file generated by SAGETREF into memory.
Checks that a promotion exists.

Loads the wastage data file generated by SAGETREF into memory.
Looks up the wastage for an item.

Loads the code type data file generated by SAGETREF into memory.
Checks that a code type/code exists.

Loads the error data file generated by SAGETREF into memory.
Looks up the error and the system codes that we are interested in it.
Loads the store POS data file generated by SAGETREF into memory.
Looks up the store POS data that we are interested in it.

Loads the tender type data file generated by SAGETREF into memory.
Checks that a tender type group and ID exists.

Loads the merchant code data file generated by SAGETREF into memory.
Looks up the merchant code data that we are interested in it.

Loads the partner data file generated by SAGETREF into memory.
Looks up the partner data that we are interested in it.

Loads the supplier data file generated by SAGETREF into memory.
Looks up the supplier data that we are interested in it.

Wirites a record to a file.

This function will retrieve the description of the passed in code and code
type.

Input Specifications

The input files for Item, Wastage, sub-transaction level item (reference item), Variable
PLU, Store Day, Promotions, Code Types, and Errors are all documented in the sagetref

batch design.

The RTLOG file format is documented in the SA RTLog Interface.

Date columns should always be converted to characters with a format of
YYYYMMDDHH24MISS'. Single digit MM, DD, HH24, MI and SS values need to be 0

padded.

Char and Numeric ID Field Types should be left justified and padded with spaces.

Number Field types should be right justified and padded with zeros. If a Number Field is
NULL, then it should be blank not 0’s.

Output Specifications

The filename convention for the SQL*Loader output files will be
table_store_businessdate_curdatetime.out where table is sathead, satitem, satdisc, sattax,
sattend, sacust, sacustatt, or samisstr (i.e. sathead_1000_20000115_20000116053302.out for
the sa_tran_head table). Similarly, the filename convention for the Voucher output file is
savouch_store_businessdate_curdatetime.out. The files should start out with a temporary
name generated by the Unix tempnam (3S) call and then be renamed with Unix rename

Operations Guide Addendum 25

saimptlog (Sales Audit Import)

(2) call when the files are complete (see the UNIX man pages in the indicated sections for
usage details).

The filename convention for storing missing transactions between invocations of
SAIMPTLOG is tdup_store_businessdate.dat.

Date columns should always be converted to characters with a format of
YYYYMMDDHH24MISS'. Single digit MM, DD, HH24, MI and SS values need to be 0
padded.

When selecting columns that contain quantities or amounts from the database, the value
should be multiplied by 10000 to remove the decimal point. Decimal points are not
supposed to be in Retek files. The only exception to this is SQL*Loader files.

Char and Numeric ID Field Types should be left justified and padded with spaces.

Number Field types should be right justified and padded with zeros. If a Number Field is
NULL, then it should be blank not 0’s.

The voucher file format is documented in Interface file — SA VOUCH.doc.

SQL*Loader Control Files will be provided that match the format of the data files. These
files will be named table.ctl. The format of the SQL*Loader files is as follows:

Table Name Column Name Field Type Field Position Description
Width
Sa_tran_head Tran_seq_no Integer external 20 1:20
Rev_no Integer external 3 21:23
Store_day_seq_no Integer external 20 24:43
Tran_datetime date 14 44:57 Format is
YYYYMMDD
HH24MISS
Register char 5 58:62
Tran_no Integer external 10 63:72
Cashier char 10 73:82
Salesperson char 10 83:92
Tran_type char 6 93:98
Sub_tran_type char 6 99:104
Orig_tran_no Integer external 10 105:114
Orig_reg_no char 5 115:119
Ref_nol char 30 120:149
Ref_no2 char 30 150:179
Ref_no3 char 30 180:209
Ref no4 char 30 210:239
Reason_code char 6 240:245
Vendor_no char 10 246:255
Vendor_inve_no char 30 256:285
Payment_ref_no char 16 286:301
Proof_of_delivery_no char 30 302:331

26 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

Table Name Column Name Field Type Field Position Description
Width

Status char 6 332:337

Value char 22 338:359 Includes an
optional
negative sign
and a decimal
point.

Pos_tran_ind char 1 360:360

Update_id char 30 361:390

Update_datetime date 14 Format is

391:404 YYYYMMDD

HH24MISS

Error_ind char 1 405:405

Sa_tran_item Tran_seq_no Integer external 20 1:20

Item_seq_no Integer external 4 21:24

Item_status char 6 25:30

Item_type char 6 31:36

Item char 25 37:61

Ref_item char 25 62:86

Non_merch_item char 25 87:111

Voucher_no char 16 112:127

Dept Integer external 4 128:131

Class Integer external 4 132:135

Subclass Integer external 4 136:139

Qty decimal external 14 140:153 Includes an
optional
negative sign
and a decimal
point.

Unit_retail decimal external 21 154:174 Includes a
decimal point.

Selling UOM char 4 175:178

Override_reason char 6 179:184

Orig_unit_retail decimal external 21 185:205 Includes a
decimal point.

Standard_orig_unit_ret decimal external 21 206:226

ail

Tax_ind char 1 227:227

Item_swiped_ind char 1 228:228

Operations Guide Addendum 27

saimptlog (Sales Audit Import)

Table Name Column Name Field Type Field Position Description
Width

Error_ind char 1 229:229

Drop_ship_ind char 1 230:230

Waste_type char 6 231:236

Waste_pct decimal external 12 237:248 Includes a
decimal point.

Pump char 8 249:256

Return_reason_code char 6 257:262

Salesperson char 10 263:272

Expiration_date Date 8 273:280 Format is
YYYYMMDD

Standard_qty decimal external 14 281:294 Includes an
optional
negative sign
and a decimal
point.

Standard_unit_retail decimal external 21 295:315 Includes a
decimal point.

Standard_uom char 4 316:319

Ref_no5 char 30 320:349

Ref_no6 char 30 350:379

Ref_no7 char 30 380:409

Ref_no8 char 30 410:439

Sa_tran_disc Tran_seq_no Integer external 20 1:20

Item_seq_no Integer external 4 21:24

Discount_seq_no Integer external 4 25:28

rms_promo_type char 6 29:34

Promotion Integer external 10 35:44

Discount_type char 6 45:50

Coupon_no char 16 51:66

Coupon_ref_no char 16 67:82

Qty decimal external 14 83:96 Includes an
optional
negative sign
and a decimal
point.

Unit_discount_amt decimal external 21 97:117 Includes a

28 Oracle Retail Merchandising System

decimal point.

saimptlog (Sales Audit Import)

Table Name Column Name Field Type Field Position Description
Width
Standard_qty decimal external 14 118:131 Includes an
optional
negative sign
and a decimal
point.
Standard_unit_discount decimal external 21 132:152 Includes a
_amt decimal point.
Ref_nol3 char 30 153:182
Ref nol4 char 30 183:212
Ref_nol5 char 30 213:242
Ref_nolé6 char 30 243:272
Error_ind char 1 273:273
Sa_tran_tax Tran_seq_no Integer external 20 1:20
Tax_code char 6 21:26
Tax_seq_no Integer external 4 27:30
Tax_amt decimal external 22 31:52 Includes an
optional
negative sign
and a decimal
point.
Error_ind char 1 53:53
Ref_nol7 char 30 54:83
Ref_nol8 char 30 84:113
Ref nol9 char 30 114:143
Ref_no20 char 30 144:173
Sa_tran_tender Tran_seq_no Integer external 20 1:20
Tender_seq_no Integer external 4 21:24
Tender_type_group char 6 25:30
Tender_type_id Integer external 6 31:36
Tender_amt decimal external 22 37:58 Includes an
optional
negative sign
and a decimal
point.
Cc_no Integer external 16 59:74
Cc_cc_exp_date date 8 75:82 Format is
YYYYMMDD
Cc_auth_no char 16 83:98
Cc_auth_src char 6 99:104

Operations Guide Addendum 29

saimptlog (Sales Audit Import)

Table Name Column Name Field Type Field Position Description
Width
Cc_entry_mode char 6 105:110
Cc_cardholder_verf char 6 111:116
Cc_term_id char 5 117:121
Cc_spec_cond char 6 122:127
Voucher_no char 16 128:143
Coupon_no char 16 144:159
Coupon_ref_no char 16 160:175
Ref_no9 char 30 176:205
Ref_nol0 char 30 206:235
Ref noll char 30 236:265
Ref_nol2 char 30 266:295
Error_ind char 1 296:296
Sa_customer Tran_seq_no Integer external 20 1:20
Cust_id char 16 21:36
Cust_id_type char 6 37:42
Name char 40 43:82
Addrl char 40 83:122
Addr2 char 40 123:162
City char 30 163:192
Sate char 3 193:195
Postal_code char 10 196:205
Country char 3 206:208
Home_phone char 20 209:228
Work_phone char 20 229:248
E_mail char 100 249:348
birthdate date 8 349:356 Format is
YYYYMMDD
Sa_cust_attrib Tran_seq_no Integer external 20 1:20
Attrib_seq_no char 4 21:24
Attrib_type char 6 25:30
Attrib_value char 6 31:36
Sa_error Error_seq_no Integer external 20 1:20
Store_day_seq_no Integer external 20 21:40

30 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

Table Name Column Name Field Type Field Position Description
Width
Bal_group_seq_no Integer external 20 41:60
Total_seq_no Integer external 20 61:80
Tran_seq_no Integer external 20 81:100
Error_code char 25 101:125
Key_value_1 Integer external 4 126:129
Key_value_2 Integer external 4 130:133
Rec_type char 6 134:139
Store_override_ind char 1 140:140
Hq_override_ind char 1 141:141
Update_id char 30 142:171
Update_datatime date 14 172:185 Format is
YYYYMMDD
HH24MISS
Orig_value char 50 186:235
Sa_missing_tran Miss_tran_seq_no Integer external 20 1:20
Store_day_seq_no Integer external 20 21:40
Register char 5 41:45
Tran_no Integer external 10 46:55
status char 6 56:61
Database Integrity

This information derives from the Database Considerations within the Process /
Functional Overview (PFO), the Conversation Flow and Database Objects of the
Technical Design.

Parameter validation

Parameter validation focuses on validating parameter data that is being passed from
calling modules.

Integrity Constraints

Operations that affect other entities in the system must be validated to ensure that
integrity constraints have not been violated. If a record cannot exist in the system
without a related parent record existing first, it is essential that the application enforce
this constraint. Similarly, if a record cannot be deleted due to the existence of child
records in the system the application should prevent the user from performing a delete
operation.

Scheduling Considerations
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Operations Guide Addendum 31

saimptlog (Sales Audit Import)

Scheduling Diagram: These programs (SAIMPTLOG and SQL*Loader or SAIMPTLOG],
and SAIMPTLOGFIN) are the second step in the batch process for loading customer POS
data into the Sales Audit database.

Pre-Processing: SAGETREF must be run before importing POS logs. POS logs must be
converted into the Retek TLOG format by the customer (Unless the saimptlog_rtlog.c
module is rewritten by the customer to handle their POS log files).

Threading Scheme
N/A

Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section, this
section should describe the locking (and release) strategy required beyond the preset
Retek standards. It should describe how the module accesses data and the ‘hold’ or ‘lock’
it has on a database and / or its records, during processing. It should also describe the
“lock’ release.

Restart / Recovery

The logical unit of work for SAIMPTLOG is defined as a single POS file. This POS file
may or may not represent a complete store day.

The logical unit of work for SAIMPTLOGFIN is defined as a store/day. This does not
follow the usual restart/recovery. A commit is done after each store/day is processed.
This program will than naturally pick up where it left off if it is restarted.

Performance

In conjunction with the Scheduling Considerations and Locking Strategy sections, the
optimization considerations of a batch module must adhere to Oracle Retail standards.
This section should call out special performance considerations that may exceed current
documented Oracle Retail practices. Such considerations should be the basis for update
to Oracle Retail standards. Each database operation should be optimized based on
quantity and quality of the database transactions. Batch modules are executed on the
database or dedicated batch server and thus there are no additional performance gains to
forcing database interaction logic onto the server.

Security Considerations

POS data contains credit card data. The RTLOG input file and satend SQL*Loader output
file both contain credit card numbers. Access to these files is controlled solely by UNIX
file permissions.

Appendix

CreateTermRecords

Table Column Value

sa_tran_head tran_seq_no Determined by saimptlog.
rev_no 001
store_day_seq_no Same as last transaction processed.
tran_datetime Business Date at midnight
tran_no 0000000000

32 Oracle Retail Merchandising System

saimptlog (Sales Audit Import)

CreateTermRecords

Table Column Value
tran_type TERM
status W
pos_tran_ind N

sa_customer

sa_cust_attrib

sa_tran_item

sa_tran_disc

ref_nol

update_id
update_datetime

error_ind

tran_seq_no
cust_id

cust_id_type

tran_seq_no
attrib_type

attrib_value

tran_seq_no
item_seq_no
[tem_status
item_type

qty
unit_retail_sign
unit_retail
tax_ind
item_swiped_ind

error_ind

tran_seq_no
item_seq_no
rms_promo_type
discount_seq_no

discount_type
qty

unit_discount_amt_sign

unit_discount_amt

Corresponding sa_missing_tran.miss_tran_seq_no if
sa_system_options.check_dup_miss_tran =Y.

000000000000000000000000000000
SYSDATE
N

Same as sa_tran_head.tran_seq_no.
0000000000000000
TERM

Same as sa_tran_head.tran_seq_no.
TERM
TERM

Same as sa_tran_head.tran_seq_no.
0001

S

TERM

000000000000

P

00000000000000000000

N

N

N

Same as sa_tran_head.tran_seq_no.
0001

TERM

0001

TERM

000000000000

P

00000000000000000000

Operations Guide Addendum 33

saimptlogtdup_upd (tdup File Update)

CreateTermRecords
Table Column Value
error_ind N
sa_tran_tax tran_seq_no Same as sa_tran_head.tran_seq_no.

sa_tran_tender

Sa_error

tax_code
tax_seq_no
tax_amt_sign
tax_amt

error_ind

tran_seq_no
tender_seq_no
tran_type_group
tran_type_id
tender_amt_sign
tender_amt

error_ind

error_seq_no
store_day_seq_no
tran_seq_no
error_code
record_type
store_override_ind
hq_override_ind
update_id

update_datetime

TERM

0001

P
00000000000000000000
N

Same as sa_tran_head.tran_seq_no.
0001

TERM

000000

P

00000000000000000000

N

Determined by saimptlog.

Same as last transaction processed.
Same as sa_tran_head.tran_seq_no.
TERM_MARKER_NO_ERROR
THEAD

N

N

TLOG

SYSDATE

This is present only if sa_system_options.check_dup_miss_tran =Y.

sa_missing_tran

miss_tran_seq_no
store_day_seq_no
tran_no

status

Determined by saimptlog.

Same as last transaction processed.
-000000001

M

saimptlogtdup_upd (tdup File Update)

Functional Area

ReSA (Oracle Retail Sales Audit)

34 Oracle Retail Merchandising System

saimptlogtdup_upd (tdup File Update)

Module Affected
SAIMPTLOGTDUP_UPD.PC

Design Overview

The purpose of this batch module is to fetch all deleted transactions for a store day and
modify the tdup<Store>.dat file to remove deleted transactions from the tdup range to
facilitate saimptlog/saimptlogi batch to upload deleted transactions again. The batch will
process all the store day's having data status in ('Partially Loaded' and 'Ready For
Import') and business date lies between (vdate-sa_syatem_options. day_post_sale) and
vdate. The batch will not process a store day, if tdup<Store>.dat file does not exist. The
batch has been designed to work only if sa_system_options.check_dup_miss_tran is “Y’,
otherwise do nothing and come out with successful completion.Also, the batch will not
terminate with error, if the deleted transaction to be removed from tdup range doesn’t

exist in tdup<Store>.dat file.

Scheduling Constraints

Schedule Information Description
Processing Cycle Sales Audit (Daily)
Scheduling Considerations Run towards the delete of store day or delete transaction.
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery
N/A
Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select

Update Delete

SA_STORE_DAY Yes
SA_TRAN_HEAD Yes

No No
No No

Shared Modules
N/A

Operations Guide Addendum 35

saimptlogtdup_upd (tdup File Update)

I/0 Specification
N/A

36 Oracle Retail Merchandising System

	Preface
	Audience
	Related Documents
	Customer Support
	 Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Batch Designs
	prchstprg.pc (Purge Price History)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	Program Flow
	Program Level Description
	I/O Specification

	saimptlog (Sales Audit Import)
	Purpose
	Objectives
	Functional Area
	Module Affected
	Design Overview
	Program Flow
	Function Level Description
	Stored Procedures/Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Scheduling Considerations
	Threading Scheme
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations
	Appendix

	saimptlogtdup_upd (tdup File Update)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	Shared Modules
	I/O Specification

