

Oracle® Retail Merchandising System

Operations Guide Addendum
Release 10.1.22

September 2008

Oracle® Retail Merchandising System Operations Guide Addendum, Release 10.1.22

Copyright © 2008, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc.
of San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(x) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

v

Contents
Preface .. ix

Audience .. ix
Related Documents... ix
Customer Support... ix
Review Patch Documentation ...x
Oracle Retail Documentation on the Oracle Technology Network..................................x
Conventions...x

1 Introduction .. 1
2 Batch Designs.. 3

fifgldn1 (Financials General Ledger Download 1) ...3
Design Overview ...3
Scheduling Constraints ...4
Pre/Post Logic Description ..4
Restart Recovery ..4
Driving Cursor ...4
Functional Level Description ...5
I/O Specification..5

fifgldn2 (Financials General Ledger Download 2) ...5
Design Overview ...5
Scheduling Constraints ...6
Restart Recovery ..6
Driving Cursor ...6
Functional Level Description ...8
I/O Specification..8

fifgldn3 (Financials General Ledger Download 3) ...8
Design Overview ...8
Scheduling Constraints ...10
Restart Recovery ..10
Driving Cursor ...11
Program Flow...14
Functional Level Description ...16
I/O Specification..16

nwppurge (End Of Year Inventory Position Purge) ..16
Functional Area..16
Module Affected ..16
Design Overview ...16
Scheduling Constraints ...16
Restart/Recovery...17
Locking Strategy ..17
Security Considerations ..17

vi

Performance Considerations ..17
Key Tables Affected...17
I/O Specification..17

nwpyearend (End of Year Inventory Position Snapshot)..17
Functional Area..17
Module Affected ..17
Design Overview ...17
Scheduling Constraints ...17
Restart/Recovery...18
Locking Strategy ..18
Security Considerations ..18
Performance Considerations ..18
Key Tables Affected...18
I/O Specification..18

salmaint (Stock Ledger Table Maintenance) ...18
Functional Area..18
Module Affected ..18
Design Overview ...18
Scheduling Constraints ...19
Restart/Recovery...19
Locking Strategy ..19
Security Considerations ..19
Performance Considerations ..19
Key Tables Affected...19
I/O Specification..19

stkschedxpld (Scheduled Stock Count Explode) ..20
Functional Area..20
Module Affected ..20
Design Overview ...20
Scheduling Constraints ...20
Restart/Recovery...20
Locking Strategy ..21
Security Considerations ..21
Performance Considerations ..21
Key Tables Affected...21
Shared Modules ...21
I/O Specification..21

vrplbld (Vendor Replenished Order Build) ..22
Design Overview ...22
Scheduling Constraints ...23
Restart Recovery ..23
Program Flow...25
Shared Modules ...25

vii

Function Level Description ..26
I/O Specification..29

 ix

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture
 Functional integration dataflow across the enterprise

This Operations Guide Addendum should be used in conjunction with previously
released Oracle Retail Merchandising System 10.x documentation.

Audience
Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting Oracle Retail Merchandising System functionality
will find valuable information in this guide. There are three audiences in general for
whom this guide is written:
 Business analysts looking for information about processes and interfaces to validate

the support for business scenarios within and other systems across the enterprise.
 System analysts and system operations personnel:

– Who are looking for information about Oracle Retail Merchandising System’s
processes internally or in relation to the systems across the enterprise.

– Who operate Oracle Retail Merchandising System regularly.
 Integrators and implementation staff with overall responsibility for implementing

Oracle Retail Merchandising System.

Related Documents
For more information, see the following documents in the Oracle Retail Merchandising
System Release 10.1.22 documentation set:
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Installation Guide

Customer Support
https://metalink.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

https://metalink.oracle.com/

x

Review Patch Documentation
For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

http://www.oracle.com/technology/documentation/oracle_retail.html

Operations Guide Addendum 1

1
Introduction

The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 10.0 Operations Guide and any subsequent RMS 10.x.x Operations
Guide Addendums. Using this document in conjunction with the Oracle Retail
Merchandising System 10.0 Operations Guide provides retailers with a complete overview
of the application.
For the RMS 10.1.22 release, the following batch designs have been added in order to
address documentation bugs:
 fifgldnld1 (General Ledger Interface)
 fifgldnld2 (General Ledger Interface)
 fifgldnld3 (General Ledger Interface)
 nwppurge (End of Year Inventory Position Purge)
 nwpyearend (End of Year Inventory Position Snapshot)
 salmaint (Stock Ledger Table Maintenance)
 stkschedxpld (Scheduled Stock Count Explode)
 vrplbld (Vendor replenished order build)

For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail Merchandising
System 10.1.22 Release Notes.

Operations Guide Addendum 3

2
Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 10.0 Operations Guide or any subsequent RMS 10.x.x Operation Guide
Addendums.
Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

fifgldn1 (Financials General Ledger Download 1)

Design Overview
This process extracts detailed stock ledger information for certain transaction types on a
daily basis in order to bridge the information to an interfaced financial application. The
detailed information retains certain reference information, such as stock adjustment
reason codes, which are lost during the normal daily roll-up process (saldly.pc).
This process reads from the if_tran_data table, instead of the actual tran_data table itself.
Hence, it requires the ‘PRE-SALDLY’ and ‘PRE-FIFGLDN1’ run of prepost.pc to have
occurred prior to its initiation. It can run in parallel to fifglnd2.pc.

Codes Table Information
Concerning GL data, there are two factors that need to be addressed:
 Some transaction types/amount types need to be bridged at a low level to contain

detailed reference information, while others do not.
 There are only certain transaction types/amount types that need to be bridged for a

given client. For instance, net sales at retail may be needed for one client, while net
sales cost by be needed by another.

This process should allow the flexibility to bridge the required information without
coding efforts. Since users can manipulate the codes detail table through a dialogue, this
would be a good tool to allow this maintenance.
The code type that is created for this process is the General Ledger – Single Transaction
‘GLST’ type. This includes transaction types/amount types to go through the SKU-level
detailed processing if the feed to GL is to be daily. The code for this is a three-character
field, the first two characters determining the transaction code, the third character
determining if the cost or retail component of the amount is to be bridged (‘C’ for Cost,
‘R’ for Retail, and ‘B’ for Both). For instance, if the code 01R is on the table, the net sales
retail will be bridged at the skudetail level.
There are two other codes types in the total GL interface: General Ledger – Rolled
Transaction ‘GLRT’ and General Ledger – Monthly Transaction ‘GLMT’. These are part
of the FIFGLDN2 and FIFGLDN3 designs.
Note that there are several risks in the maintenance of these codes types:
 The codes table is not masked, and one could incorrectly enter an R12 instead of 12R,

etc.
This results in not sending the code 12 GL transactions.

fifgldn1 (Financials General Ledger Download 1)

4 Oracle Retail Merchandising System

 ‘12R’ could be entered in more than one codes type. This results in duplicate
processing, although at different levels of roll-up. There is no cross-checking to verify
that a code entered in one code type is not in the other.

Daily-Level GL Feed
The fifgldn1.pc program reads the if_tran_data table for each transaction type/amount
type in the codes table, and posts it to a Oracle Retail general ledger staging table
(stg_fif_gl_data) at the SKU detail level, complete with reference fields. These reference
fields are bridged to the financial application for segregation of stock adjustment codes,
mapping transfers to transfer numbers, etc., depending on the client need.
The fifgldn1.pc program can run in parallel to the saldly process, but must run after the
if_tran_data load process, as it processes rows on if_tran_data.
The local currency is retrieved for all locations from their corresponding
store/warehouse rows.

Scheduling Constraints
N/A

Pre/Post Logic Description
Processing Cycle: Daily, possibly in parallel to fifgldn2.pc, after PREPOST (PRE-
SALDLY) and PREPOST (PRE-FIFGLDN1).

Pre-Processing:
Prepost for PRE-SALDLY. Prepost for PRE-FIFGLDN1 (this creates indexes)

Post-Processing
Threading scheme: Based on store/wh.

Restart Recovery
Logical Unit of Work (recommended Commit check points)

Driving Cursor
This program is fully restartable. The LUW is based upon dept, class, and subclass.
Select distinct
Td.sku,
Td.Dept,
Td.Class,
Td.Subclass,
Td.Store,
Td.Wh,
Td.Tran_date,
Td.Tran_code,
Td.Adj_code,
Td.Total_cost,
Td.Total_retail,
Td.Ref_no_1,
Td.Ref_no_2,
St.currency_code,
Wh.currency_code,
cd.code
from if_tran_data td,
code_detail cd,

fifgldn2 (Financials General Ledger Download 2)

Operations Guide Addendum 5

store st,
wh
v_restart_store_wh
where (cd.code_type = ‘GLST’)
and (substr(cd.code, 1, 2) = td.tran_code)gns 197
and (td.store = st.store (+)
and td.wh = wh.wh (+))
and v.driver_name = :os_restart_driver_name
and v.driver_value = :td.store
and v.num_threads = :oi_restart_num_threads
and v.thread_val = :oi_restart_thread_val
and (td.dept > NVL(:ora_restart_dept, td.dept-1) OR
(td.dept = :ora_restart_dept AND
(td.class > :ora_restart_class OR
(td.class = :ora_restart_class AND
(td_subclass > :ora_restart_subclass)))))
order by dept,
class,
subclass;

Functional Level Description
All database interactions required and error handling considerations. All required stock
ledger data must be processed to the GL interface table within Oracle Retail. Errors are
handled in the normal batch method.

I/O Specification
N/A

fifgldn2 (Financials General Ledger Download 2)

Design Overview
This process summarizes stock ledger data from the transaction staging table
if_tran_data, based on the level of information required, and posts it to a staging table
within Oracle Retail for transfer to a financial application’s general ledger.
This process reads from the if_tran_data table, instead of the actual tran_data table itself.
Hence, it requires the ‘PRE-SALDLY’ and ‘PRE-FIFGLDN1’ run of prepost.pc to have
occurred prior to its initiation. It can run in parallel to fifglnd1.pc.

Codes Table Information
The code type that is created for this process is the General Ledger – Rolled Transaction
‘GLRT’ type. This includes transaction types/amount types to go through the roll-up
processing if the feed to GL is to be daily. The code for this is a three-character field, the
first two characters determining the transaction code, the third character determining if
the cost or retail component of the amount is to be bridged (‘C’ for Cost, ‘R’ for Retail,
and ‘B’ for Both). For instance, if the code 01R is on the table, the net sales retail is
bridged at the skudetail level.
Note that there are several risks in the maintenance of these codes types:
 The codes table is not masked, and one could incorrectly enter an R12 instead of 12R,

etc. This results in not sending the code 12 GL transactions.

fifgldn2 (Financials General Ledger Download 2)

6 Oracle Retail Merchandising System

 ‘12R’ could be entered in more than one codes type. This results in duplicate
processing, although at different levels of roll-up. There is no cross-checking to verify
that a code entered in one code type is not in the other.

Daily-Level GL Feed
 The fifgldn2.pc program reads and summarizes the if_tran_data table for all

transaction types/amount types in the codes table, and posts it to an Oracle Retail
general ledger staging table (stg_fif_gl_data) at the department, class, or subclass
level.

 The fifgldn2.pc program can run in parallel to the saldly process, as well as the
fifgldn1.pc process, but must run after the if_tran_data load process, as it processes
rows on if_tran_data.

 The local currency is retrieved for all locations from their corresponding
store/warehouse rows.

Scheduling Constraints

Schedule Information Description

Processing Cycle Daily, possibly in parallel to saldly, after
PREPOST(‘pre-saldly’ and ‘prefifgldn1’)

Scheduling Diagram N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme store/wh

Restart Recovery
Logical Unit of Work (recommended Commit check points)

Driving Cursor
This program is fully restartable. It uses three different driving cursors, based on the
input parameter (DEPT, CLASS, SUBCLASS).
If ‘DEPT’ is the input parameter, the following cursor is used:
Select td.Dept,
-1,
-1,
td.Store,
td.Wh,
td.tran_date,
Td.Tran_code,
sum(Td.Total_cost),
sum(Td.Total_retail),
cd.code,
';'||to_char(td.dept)
from if_tran_data td,
code_detail cd,
v_restart_store_wh v
where (cd.code_type = 'GLRT')
and (substr(cd.code,1,2)=td.tran_code)
and v.driver_name = :os_restart_driver_name
and v.driver_value = :td.store
and v.num_threads = :oi_restart_num_threads

fifgldn2 (Financials General Ledger Download 2)

Operations Guide Addendum 7

and v.thread_val = :oi_restart_thread_val
and td.dept > NVL(:ora_restart_dept, td.dept-1)
group by td.store,
td.wh,
td.dept,
td.tran_code,
td.tran_date,
cd.code
order by td.dept

If ‘CLASS’ is the input parameter, the following cursor is used:
Select td.Dept,
Td.class,
-1,
td.Store,
td.Wh,
td.tran_date,
Td.Tran_code,
sum(Td.Total_cost),
sum(Td.Total_retail),
cd.code,
';'||to_char(td.dept)||';'||to_char(td.class)igns 201
from if_tran_data td,
code_detail cd,
v_restart_store_wh v
where (cd.code_type = 'GLRT')
and (substr(cd.code,1,2)=td.tran_code)
and v.driver_name = :os_restart_driver_name
and v.driver_value = :td.store
and v.num_threads = :oi_restart_num_threads
and v.thread_val = :oi_restart_thread_val
and (td.dept > NVL(:ora_restart_dept, td.dept-1) OR
(td.dept = :ora_restart_dept AND
(td.class > :ora_restart_class)))
group by td.store,
td.wh,
td.dept,
td.class,
td.tran_code,
td.tran_date,
cd.code
order by td.dept,
td.class

If ‘SUBCLASS’ is the input parameter, the following cursor is used:
Select td.Dept,
Td.class,
Td.subclass,
td.Store,
td.Wh,
td.tran_date,
Td.Tran_code,
sum(Td.Total_cost),
sum(Td.Total_retail),
cd.code,
';'||to_char(td.dept)||';'||to_char(td.class)||';'||to_char(td.subclass)
from if_tran_data td,
code_detail cd,
v_restart_store_wh v
where (cd.code_type = 'GLRT')
and (substr(cd.code,1,2)=td.tran_code)
and v.driver_name = :os_restart_driver_name

fifgldn3 (Financials General Ledger Download 3)

8 Oracle Retail Merchandising System

and v.driver_value = :td.store
and v.num_threads = :oi_restart_num_threads
and v.thread_val = :oi_restart_thread_val
and (td.dept > NVL(:ora_restart_dept, td.dept-1) OR
(td.dept = :ora_restart_dept AND
(td.class > :ora_restart_class OR
(td.class = :ora_restart_class AND
(td.subclass > :ora_restart_subclass)))))
group by td.store,
td.wh,
td.dept,
td.class,
td.subclass,
td.tran_code,
td.tran_date,
cd.code
order by td.dept,
td.class,
td.subclass

Functional Level Description
All required stock ledger data must be processed to the GL interface table within Oracle
Retail. Errors are handled using the normal batch techniques.

I/O Specification
N/A

fifgldn3 (Financials General Ledger Download 3)

Design Overview
This process summarizes stock ledger data from the monthly stock ledger table
month_data, based on the level of information required, and posts it to a staging table
within Oracle Retail for transfer to a financial application’s general ledger.
Since this process reads from the month_data table, it requires the sales monthly process
SALMTH to have run. It can run any time after the close of the last day of the month.

Codes Table Information
The code type that has is used for this process is the General Ledger – Monthly
Transaction ‘GLMT’ type. This includes transaction types/amount types to go through
the roll-up processing if the feed to GL is to be monthly. The code for this is a three-
character field. The first two characters determine the transaction code, the third
character determines if the cost or retail component of the amount is to be bridged (‘C’
for Cost, ‘R’ for Retail, and ‘B’ for Both). For instance, if the code 01R is on the table, the
net sales retail is bridged at the department, class, or subclass level.
Since the monthly amounts are no longer maintained as transaction codes, this process
needs to map certain amounts back to tran_codes. Some amounts are calculated from
existing amount fields, and are not present on the tran_data level. These amounts are
given tran_codes specifically for bridging to a general ledger. The following list is the
field mapping for the process:

fifgldn3 (Financials General Ledger Download 3)

Operations Guide Addendum 9

Month_data field Tran

Code Tran
Code

Cost/Retail Comment

OPN_STK_RETAIL 50 Retail Monthly Calculated Figure

OPN_STK_COST 50 Cost Monthly Calculated Figure

STOCK_ADJ_RETAIL 22 Retail

STOCK_ADJ_COST 22 Cost

PURCH_RETAIL 20 Retail

PURCH_COST 20 Cost

RTV_RETAIL 24 Retail

RTV_COST 24 Cost

FREIGHT_COST 26 Cost

TSF_IN_RETAIL 30 Retail

TSF_IN_COST 30 Cost

TSF_OUT_RETAIL 32 Retail

TSF_OUT_COST 32 Cost

NET_SALES_RETAIL 01 Retail

NET_SALES_RETAIL_EX_VAT 02 Retail

NET_SALES_COST 01 Cost

RETURNS_RETAIL 04 Retail

RETURNS_COST 04 Cost

MARKUP_RETAIL 11 Retail

MARKUP_CAN_RETAIL 12 Retail

CLEAR_MARKDOWN_RETAIL 16 Retail

PERM_MARKDOWN_RETAIL 13 Retail

PROM_MARKDOWN_RETAIL 15 Retail

MARKDOWN_CAN_RETAIL 14 Retail

SHRINKAGE_COST 51 Cost Monthly Calculated Figure

SHRINKAGE_RETAIL 51 Retail Monthly Calculated Figure

EMPL_DISC_RETAIL 60 Retail

WORKROOM_AMT 80 Retail

CASH_DISC_AMT 81 Retail

CLS_STK_RETAIL 52 Retail Monthly Calculated Figure

CLS_STK_COST 52 Cost Monthly Calculated Figure

GROSS_MARGIN_AMT 53 Retail Monthly Calculated Figure

COST_VARIANCE_AMT 70 Cost

HTD_GAFS_RETAIL 54 Retail Monthly Calculated Figure

HTD_GAFS_COST 54 Cost Monthly Calculated Figure

fifgldn3 (Financials General Ledger Download 3)

10 Oracle Retail Merchandising System

Code Tran
Code

Cost/Retail Comment

INTER_STOCKTAKE_SALES_AMT 55 Cost Monthly Calculated Figure

INTER_STOCKTAKE_SHRINK_AMT 56 Cost Monthly Calculated Figure

STOCKTAKE_MTD_SALES_AMT 57 Cost Monthly Calculated Figure

STOCKTAKE_MTD_SHRINK_AMT 58 Cost Monthly Calculated Figure

STOCKTAKE_BOOKSTK_RETAIL 59 Retail Monthly Calculated Figure

STOCKTAKE_BOOKSTK_COST 59 Cost Monthly Calculated Figure

STOCKTAKE_ACTSTK_RETAIL 61 Retail Monthly Calculated Figure

STOCKTAKE_ACTSTK_COST 61 Cost Monthly Calculated Figure

RECLASS_IN_COST 34 Cost

RECLASS_IN_RETAIL 34 Retail

RECLASS_OUT_COST 36 Cost

RECLASS_OUT_RETAIL 36 Retail

The tran_codes of 50-59 and 61-69 need to be reserved specifically for this interface.
Note that there are several risks in the maintenance of these codes types:
 The codes table is not masked, and one could incorrectly enter an R12 instead of 12R,

etc. This results in not sending the code 12 GL transactions.
 ‘12R’ could be entered in more than one codes type. This results in duplicate

processing, although at different levels of roll-up or different processing times (daily
versus monthly). There is no cross-checking to verify that a code entered in one code
type is not in the other.

Monthly-level GL Feed
Processes:
 The program fifgldn3.pc reads and summarizes the month_data table for all

transaction types/amount types in the codes table, and posts it to an Oracle Retail
general ledger staging table (stg_fif_gl_data) at the department, class, or subclass
level.

 The program fifgldn3.pc must run after the salmth process, as it processes rows on
month_data. The local currency is retrieved for all locations from their corresponding
store/warehouse rows.

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle: Monthly, after salmth and sysdte have run.

Restart Recovery
Logical Unit of Work (recommended Commit check points)

fifgldn3 (Financials General Ledger Download 3)

Operations Guide Addendum 11

Driving Cursor
There is one cursor for DEPT-level roll-up:
select md.dept,
-1,
-1,
md.store,
md.wh,
NVL(decode(cd.code, '50R',sum(md.opn_stk_retail),
'50C',sum(md.opn_stk_cost),
'22R',sum(md.stock_adj_retail),
'22C',sum(md.stock_adj_cost),
'20R',sum(md.purch_retail),
'20C',sum(md.purch_cost),
'24R',sum(md.rtv_retail),
'24C',sum(md.rtv_cost),
'26C',sum(md.freight_cost),
'30R',sum(md.tsf_in_retail),
'30C',sum(md.tsf_in_cost),
'32R',sum(md.tsf_out_retail),
'32C',sum(md.tsf_out_cost),
'01R',sum(md.net_sales_retail),
'02R',sum(md.net_sales_retail_ex_vat),
'01C',sum(md.net_sales_cost),
'04R',sum(md.returns_retail),
'04C',sum(md.returns_cost),
'11R',sum(md.markup_retail),
'12R',sum(md.markup_can_retail),Designs 207
'16R',sum(md.clear_markdown_retail),
'13R',sum(md.perm_markdown_retail),
'15R',sum(md.prom_markdown_retail),
'14R',sum(md.markdown_can_retail),
'51C',sum(md.shrinkage_cost),
'51R',sum(md.shrinkage_retail),
'60R',sum(md.empl_disc_retail),
'80R',sum(md.workroom_amt),
'81R',sum(md.cash_disc_amt),
'52R',sum(md.cls_stk_retail),
'52C',sum(md.cls_stk_cost),
'53R',sum(md.gross_margin_amt),
'70C',sum(md.cost_variance_amt),
'54R',sum(md.htd_gafs_retail),
'54C',sum(md.htd_gafs_cost),
'55C',sum(md.inter_stocktake_sales_amt),
'56C',sum(md.inter_stocktake_shrink_amt),
'57C',sum(md.stocktake_mtd_sales_amt),
'58C',sum(md.stocktake_mtd_shrink_amt),
'59R',sum(md.stocktake_bookstk_retail),
'59C',sum(md.stocktake_bookstk_cost),
'61R',sum(md.stocktake_actstk_retail),
'61C',sum(md.stocktake_actstk_cost),
'34C',sum(md.reclass_in_cost),
'34R',sum(md.reclass_in_retail),
'36C',sum(md.reclass_out_cost),
'36R',sum(md.reclass_out_retail),
0),0),
cd.code,
';'||to_char(md.dept)
from month_data md,
v_restart_store_wh v,
code_detail cd
where cd.code_type = 'GLMT'

fifgldn3 (Financials General Ledger Download 3)

12 Oracle Retail Merchandising System

and md.half_no = :last_half_no
and md.month_no = :last_month_no
and md.currency_ind = 'L'
and v.driver_name = :os_restart_driver_name
and v.driver_value = md.store
and v.num_threads = :oi_restart_num_threads
and v.thread_val = :oi_restart_thread_val
and md.dept > NVL(:ora_restart_dept, md.dept - 1)
group by md.store,
md.wh,
md.dept,
cd.code
order by md.dept

Also, one for CLASS-level roll-up:
SELECT md.dept,
md.class,
-1,
md.store,
md.wh,
NVL(decode(cd.code, '50R',sum(md.opn_stk_retail),
'50C',sum(md.opn_stk_cost),
'22R',sum(md.stock_adj_retail),
'22C',sum(md.stock_adj_cost),
'20R',sum(md.purch_retail),
'20C',sum(md.purch_cost),
'24R',sum(md.rtv_retail),
'24C',sum(md.rtv_cost),
'26C',sum(md.freight_cost),
'30R',sum(md.tsf_in_retail),
'30C',sum(md.tsf_in_cost),
'32R',sum(md.tsf_out_retail),
'32C',sum(md.tsf_out_cost),
'01R',sum(md.net_sales_retail),
'02R',sum(md.net_sales_retail_ex_vat),
'01C',sum(md.net_sales_cost),
'04R',sum(md.returns_retail),
'04C',sum(md.returns_cost),
'11R',sum(md.markup_retail),
'12R',sum(md.markup_can_retail),
'16R',sum(md.clear_markdown_retail),
'13R',sum(md.perm_markdown_retail),
'15R',sum(md.prom_markdown_retail),
'14R',sum(md.markdown_can_retail),
'51C',sum(md.shrinkage_cost),
'51R',sum(md.shrinkage_retail),
'60R',sum(md.empl_disc_retail),
'80R',sum(md.workroom_amt),
'81R',sum(md.cash_disc_amt),
'52R',sum(md.cls_stk_retail),
'52C',sum(md.cls_stk_cost),
'53R',sum(md.gross_margin_amt),
'70C',sum(md.cost_variance_amt),
'54R',sum(md.htd_gafs_retail),
'54C',sum(md.htd_gafs_cost),
'55C',sum(md.inter_stocktake_sales_amt),
'56C',sum(md.inter_stocktake_shrink_amt),
'57C',sum(md.stocktake_mtd_sales_amt),
'58C',sum(md.stocktake_mtd_shrink_amt),
'59R',sum(md.stocktake_bookstk_retail),
'59C',sum(md.stocktake_bookstk_cost),
'61R',sum(md.stocktake_actstk_retail),
'61C',sum(md.stocktake_actstk_cost),

fifgldn3 (Financials General Ledger Download 3)

Operations Guide Addendum 13

'34C',sum(md.reclass_in_cost),
'34R',sum(md.reclass_in_retail),
'36C',sum(md.reclass_out_cost),
'36R',sum(md.reclass_out_retail),
0),0),
cd.code,
';'||to_char(md.dept)||';'||to_char(md.class)
FROM month_data md,
v_restart_store_wh v,
code_detail cd
WHERE cd.code_type = 'GLMT'
AND md.half_no = :last_half_no
AND md.month_no = :last_month_no
AND md.currency_ind = 'L'
AND v.driver_name = :os_restart_driver_nameDesigns 209
AND v.driver_value = md.store
AND v.num_threads = :oi_restart_num_threads
AND v.thread_val = :oi_restart_thread_val
AND (md.dept > NVL(:ora_restart_dept, md.dept - 1) OR
(md.dept = :ora_restart_dept and
(md.class > :ora_restart_class)))
GROUP BY md.store,
md.wh,
md.dept,
md.class,
cd.code
ORDER BY md.dept,
md.class

Lastly, there is one for SUBCLASS-level roll-up:
SELECT md.dept,
md.class,
md.subclass,
md.store,
md.wh,
NVL(decode(cd.code, '50R',sum(md.opn_stk_retail),
'50C',sum(md.opn_stk_cost),
'22R',sum(md.stock_adj_retail),
'22C',sum(md.stock_adj_cost),
'20R',sum(md.purch_retail),
'20C',sum(md.purch_cost),
'24R',sum(md.rtv_retail),
'24C',sum(md.rtv_cost),
'26C',sum(md.freight_cost),
'30R',sum(md.tsf_in_retail),
'30C',sum(md.tsf_in_cost),
'32R',sum(md.tsf_out_retail),
'32C',sum(md.tsf_out_cost),
'01R',sum(md.net_sales_retail),
'02R',sum(md.net_sales_retail_ex_vat),
'01C',sum(md.net_sales_cost),
'04R',sum(md.returns_retail),
'04C',sum(md.returns_cost),
'11R',sum(md.markup_retail),
'12R',sum(md.markup_can_retail),
'16R',sum(md.clear_markdown_retail),
'13R',sum(md.perm_markdown_retail),
'15R',sum(md.prom_markdown_retail),
'14R',sum(md.markdown_can_retail),
'51C',sum(md.shrinkage_cost),
'51R',sum(md.shrinkage_retail),
'60R',sum(md.empl_disc_retail),
'80R',sum(md.workroom_amt),

fifgldn3 (Financials General Ledger Download 3)

14 Oracle Retail Merchandising System

'81R',sum(md.cash_disc_amt),
'52R',sum(md.cls_stk_retail),
'52C',sum(md.cls_stk_cost),
'53R',sum(md.gross_margin_amt),
'70C',sum(md.cost_variance_amt),
'54R',sum(md.htd_gafs_retail),
'54C',sum(md.htd_gafs_cost),
'55C',sum(md.inter_stocktake_sales_amt),
'56C',sum(md.inter_stocktake_shrink_amt),
'57C',sum(md.stocktake_mtd_sales_amt),
'58C',sum(md.stocktake_mtd_shrink_amt),
'59R',sum(md.stocktake_bookstk_retail),
'59C',sum(md.stocktake_bookstk_cost),
'61R',sum(md.stocktake_actstk_retail),
'61C',sum(md.stocktake_actstk_cost),
'34C',sum(md.reclass_in_cost),
'34R',sum(md.reclass_in_retail),
'36C',sum(md.reclass_out_cost),
'36R',sum(md.reclass_out_retail),
0),0),
cd.code,
';'||to_char(md.dept)||';'||to_char(md.class)||';'||to_char(md.subclass)
FROM month_data md,
v_restart_store_wh v,
code_detail cd
WHERE cd.code_type = 'GLMT'
AND md.half_no = :last_half_no
AND md.month_no = :last_month_no
AND md.currency_ind = 'L'
AND v.driver_name = :os_restart_driver_name
AND v.driver_value = md.store
AND v.num_threads = :oi_restart_num_threads
AND v.thread_val = :oi_restart_thread_val
AND (md.dept > NVL(:ora_restart_dept, md.dept - 1) OR
(md.dept = :ora_restart_dept and
(md.class > :ora_restart_class or
(md.class = :ora_restart_class and
(md.subclass > :ora_restart_subclass)))))
GROUP BY md.store,
md.wh,
md.dept,
md.class,
md.subclass,
cd.code
ORDER BY md.dept,
md.class,
md.subclass

Program Flow
 This program takes the value of system_options.gl_rollup. There is a value of 'D' for

department, 'C' for class, or 'S' for subclass.
 To facilitate the dept/class/subclass nature of this program, three integer global bind

vars will be declared: Dept_rollup, class_rollup, and sclass_rollup. Depending on the
system_options value described above, the appropriate variable is set to 1 and the
others to 0 (zero). If/then calls such as "if (dept_rollup) { <statement> };" allow for
easy readability of the code.

 In addition to the insert array structure (with fields mirroring the stg_fif_gl_data
table structure), one structure (mirroring the subclass cursor field list) should be
declared. Depending on the level of rollup desired, the class or class and subclass

fifgldn3 (Financials General Ledger Download 3)

Operations Guide Addendum 15

fields are populated with '-1', but this method is cleaner than having three structures
to track.

 stg_fif_gl_data.tran_date is always populated with system_variables.last_eom_date

init() -
 Initialize restart recovery.
 Set up array structures for the driving cursor fetch as well as one for inserts into the

STG_FIF_GL_DATA table (dept, class, subclass, location, loc_type, tran_date,
tran_code, adj_code, amount, cost_retail_flag, ref_no_1, ref_no_2, sku, currency_code
in the structure).

 Normal array sizing should occur [size_arrays()]
 Get value from system_options (as described above). If it is a department level

rollup, initialize only the ora_restart_dept var. If it's class, initialize only
ora_restart_dept and ora_restart_class, etc.

 Get values from system_vars: last_eom_half_no, last_eom_month_no, &
last_eom_date

process() -
 open the appropriate driving cursor
 WHILE(1)
 fetch g_l_restart_max_counter records from appropriate driving cursor into the array
 if NO_DATA_FOUND, this means there were fewer than g_l_restart_max_counter

records fetched or none were fetched. Set a flag to eventually break from the loop.
 Calculate the num_records_to_process in the array by subtracting previously

processed records from NUM_RECORDS_PROCESSED (this is an automatically kept
variable that keeps how many records have been fetched from a cursor).

 If restart_string is NULL (happens on a fresh start only)
 Populate it with the first LUW information
 For 0 to < num_records_to_process, loop
 If LUW has NOT changed
 fill_array()
 ELSE
 Write_array() to stg_fif_gl_data
 Call restart_commit()
 Set restart_string to new LUW
 fill_array() for cost
 Add num_records_to_process to the previously processed records
 If loop breaking flag is set
 break
 END WHILE
 Call write_array() -- this will insert the final LUW from the insert_array

fill_array(array_index, cost_retail_flag) -
 Fetch currency code from store or wh table.
 write cost/retail depending on flag passed in
 increment array_size variable
 if array_size = g_l_restart_max then call resize_array()

nwppurge (End Of Year Inventory Position Purge)

16 Oracle Retail Merchandising System

write_array() -
 For insert_array_size records, an array insert into stg_fif_gl_data. If -1's are in class

and/or subclass, insert them as normal.
 Set insert_array_size counter = 0.
 If there are insertion errors, the program should return fatally.

size_arrays() -
 Allocates the memory for the two array structures. (the fetch array and the insert

array)

resize_array() -
 increase the size of the insert array by another g_l_restart_max slots

final() -
 Close off restart recovery processing

Functional Level Description
All database interactions required and error handling considerations
All required stock ledger data must be processed to the GL interface table within Oracle
Retail. Errors with the download will require an abort.

I/O Specification
N/A

nwppurge (End Of Year Inventory Position Purge)

Functional Area
Stock Ledger

Module Affected
NWPPURGE.PC

Design Overview
This program purges the records from the table NWP after a certain amount of years
have passed. The number of years is a configurable parameter setup in
SYSTEM_OPTIONS.nwp_retention_period.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad-Hoc

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

nwpyearend (End of Year Inventory Position Snapshot)

Operations Guide Addendum 17

Restart/Recovery
Restart/recovery is not applicable, but the records will be committed based on the
commit max counter setup in the restart control table.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

NWP Yes No No Yes

I/O Specification
NA

nwpyearend (End of Year Inventory Position Snapshot)

Functional Area
Stock count

Module Affected
NWPYEAREND.PC

Design Overview
This program takes a snapshot of the item’s stock position and cost at the end of the year.
When the end of year NWP snapshot process runs, it takes a snapshot of stock and
weighted average cost (WAC) for every item/location combination currently holding
stock. If there is not a record already on the NWP table for an item/location/year
combination in the snapshot, a new record is added for that item/location/year
combination.

Scheduling Constraints

Schedule Information Description

Processing Cycle Phase 4 (Yearly)

Scheduling Considerations Needs to run on the last day of the year in phase 4.

Pre-Processing N/A

Post-Processing N/A

salmaint (Stock Ledger Table Maintenance)

18 Oracle Retail Merchandising System

Schedule Information Description

Threading Scheme Multithreaded by store_wh

Restart/Recovery
The logical unit of work for this program is set at the location/item level. Threading is
done by supplier using the v_restart_store_wh view to thread properly.
The commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The changes are posted when the commit_max_ctr value
is reached and the value of the counter is subject to change based on implementation.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

NWP_FREEZE_DATE Yes No No No

ITEM_MASTER Yes No No No

NWP Yes Yes Yes No

ITEM_LOC_SOH Yes No No No

I/O Specification
N/A

salmaint (Stock Ledger Table Maintenance)

Functional Area
Stock Ledger

Module Affected
SALMAINT.PC

Design Overview
This module is run as either salmaint pre or salmaint post. The salmaint pre functionality
adds partitions to the HALF_DATA, DAILY_DATA, WEEK_DATA and MONTH_DATA
tables. The salmaint post functionality drops partitions or purges the above tables (if the
table is not partitioned) for an old half.

salmaint (Stock Ledger Table Maintenance)

Operations Guide Addendum 19

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad-Hoc

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

SYSTEM_OPTIONS Yes No No No

SYSTEM_VARIABLES Yes No No No

HALF_DATA No No No Yes

DAILY_DATA No No No Yes

WEEK_DATA No No No Yes

MONTH_DATA No No No Yes

I/O Specification
N/A

stkschedxpld (Scheduled Stock Count Explode)

20 Oracle Retail Merchandising System

stkschedxpld (Scheduled Stock Count Explode)

Functional Area
Stock Count

Module Affected
STKSCHEDXPLD.PC

Design Overview
This batch program (STKSCHEDXPLD.PC) is used to create the scheduled stock counts
for the location. It finds all the stock count schedules, which are set for the location using
the SYSTEM_OPTIONS.STAKE_REVIEW_DAYS. The schedule can be set to fire on daily
basis or else the user can specify the days (Sunday, Monday, and so on) on which the
stock count can be created. In essence, the users specify the cycles such as “every third
Monday” and “every second Tuesday and Thursday.”
If the count is a Unit Only Count, then the item list is specified in the detail record. In this
case, the item list is exploded out to the SKU, and every SKU is added to the
count/item/location tables. The SKU which belongs to the item list in a
department/class/subclass is added to the count/item/location tables.
If the count is a unit and amount count, then the department/class/subclass is fully
exploded out to the subclass level. All the department/class/subclass combinations are
added to the count/location/subclass tables.
If the location is a location list, then the list is exploded out to the locations before the
detail record is processed.
If the location is a warehouse, then the already existing warehouse is not added to
current count and also the processing is moved to the next location.
If the location is a store and any simple pack exists for an item list on the count, then the
simple pack and the item list is added for the count. If the simple pack is on the count,
then its component SKU is also added along with any other simple packs containing the
SKU which is not already in the count.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 0 - Daily

Scheduling Considerations Run before STKXPLD.PC.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi-threaded by location (store and warehouse).

Restart/Recovery
The logical unit of work for this module is schedule, location. The changes are posted
when the commit_max_ctr value is reached.

stkschedxpld (Scheduled Stock Count Explode)

Operations Guide Addendum 21

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

STAKE_SCHEDULE Yes No Yes No

V_RESTART_STORE_WH Yes No No No

PERIOD Yes No No No

CODE_DETAIL Yes No No No

STAKE_HEAD No Yes No No

STAKE_LOCATION No Yes No No

STAKE_PRODUCT No Yes No No

STAKE_PROD_LOC No Yes No No

STAKE_SKU_LOC Yes Yes No No

ITEM_MASTER Yes No No No

DEPS Yes No No No

SUBCLASS Yes No No No

PACKITEM Yes No No No

ITEM_LOC Yes No No No

SKULIST_DETAIL Yes No No No

LOC_LIST_DETAIL Yes No No No

LOCATION_CLOSED Yes No No No

COMPANY_CLOSED Yes No No No

Shared Modules
N/A

I/O Specification
N/A

vrplbld (Vendor Replenished Order Build)

22 Oracle Retail Merchandising System

vrplbld (Vendor Replenished Order Build)

Design Overview

Table Index Select Insert Update Delete

EDI_ORD_TEMP No Yes No No No

ORDHEAD Yes Yes Yes No No

ORDSKU No No Yes Yes No

ORDLOC No No Yes No No

PERIOD Yes Yes No No No

STORE Yes Yes No No No

WH Yes Yes No No No

UNIT_OPTIONS No Yes No No No

ITEM_SUPP_COUNTRY Yes Yes No No No

SUPP_IMPORT_ATTR Yes Yes No No No

SUPS Yes Yes No No No

ORDSKU_HTS Yes Yes Yes No No

SYSTEM_OPTIONS No Yes No No No

DEAL_CALC_QUEUE No Yes Yes Yes No

ORD_INV_MGMT No No Yes No No

Note: ORDHEAD (select via index) is referenced via the
function
ORDER_NUMBER_SQL.NEXT_ORDER_NUMBER.

Indexes: ORDHEAD(order_no),
ORDSKU(order_no,item)

Function: To continue the process started by the program ediupack of building Oracle
Retail orders that reflect the vendor-generated orders as received through the EDI 855.
The program ediupack.pc processes the EDI 855's that have been received from vendors.
Rows have been inserted onto the table EDI_ORD_TEMP for use by this program. The
EDI_ORD_TEMP table contains all items which were included on the EDI 855, along
with the vendor order number with which they were originally associated.
The items are then consolidated so that one Oracle Retail order is created for each
vendor-order-number/supplier.
Some details for each item are retrieved from the item/location tables and
ITEM_SUPPLIER_COUNTRY and stored in ORDSKU and ORDLOC so that subsequent
changes to the item do not affect the outstanding order.
A_order_amt is updated on the OTB table. If the supplier is foreign and OTB is
calculated at cost, the added amount is total_duty + total_cost. If the supplier is not
foreign and OTB is calculated at cost, the added amount is total_cost. Finally, if OTB is
calculated at retail, the added amount is total_retail.
In records written to the ORDHEAD table:
 FREIGHT_TERMS is given the value fetched from SUPS.FREIGHT_TERMS

vrplbld (Vendor Replenished Order Build)

Operations Guide Addendum 23

 ORIG_APPROVAL_DATE is assigned the value of the PERIOD.VDATE
 ORIG_APPROVAL_ID is assigned the value 'EDI855'

If an item is ordered for a location at which it does not have an item/location record, a
record is built by calling the stored procedure NEW_ITEM_LOC.
For cross-dock VMI PO creation, it allows having multiple shipping locations for same
item/supplier combination. Among multiple shipping locations, one is source
warehouse and the other can be store or warehouse, which will be sourced from source
warehouse. The quantity given for source warehouse in TSHIP record should be greater
than or equal to sum of quantities given in TSHIP record for cross docked locations.
The vendor-order-number is used as the order number if it is a valid RMS pre-issued
order number for the supplier. If the vendor-order-number is not a valid RMS pre-issued
order number then the order number is allocated automatically on a 'next available' basis.

Note: The vendor minimum order quantity is not considered
when writing to the order tables because the quantity is
determined by vendor. Thus, this quantity is not stored in
the edi_ord_temp table.

Re-run: If this program aborts and terminates normally or terminates abnormally restart
after setting restart_flag = 'Y' on restart_program_status table for current restart_name,
schema, and thread_val.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3

Scheduling Diagram N/A

Pre-Processing N/A

Post-Processing Vrplbld_post in prepost.pc truncates edi_ord_temp
table

Threading Scheme SUPPLIER

Restart Recovery
The logical unit of work (LUW) for vrplbld.pc is a count of records pulled from the
edi_temp_ord table. The number of records is determined by the commit_max_ctr field
on the restart_control table. Further, one or more of the key values (vendor_order_no,
supplier, dept) must change before a commit event can take place. This ensures that only
whole order is saved, that is, that a commit never takes place before all of the order detail
records have been processed.
The commit_max_ctr field should be set to prevent excessive rollback space usage. Given
the use of multiple threading, the recommended commit counter setting is 5000 records
(subject to change based on experimentation).
Two cursors are defined, but only one cursor is opened for fetching (the criteria are based
on whether or not departmental level ordering is allowed.)
EXEC SQL DECLARE c_items_d CURSOR FOR
 SELECT isc.origin_country_id,
 isc.supp_pack_size,
 NVL(isc.lead_time, 0),
 sia.agent,

vrplbld (Vendor Replenished Order Build)

24 Oracle Retail Merchandising System

 sia.lading_port,
 sia.discharge_port,
 s.currency_code,
 e.vendor_order_no,
 e.supplier,
 e.dept,
 e.wh_or_store_c,
 e.wh_or_store,
 e.item,
 e.item_desc,
 e.ref_item,
 e.unit_retail,
 DECODE(:edi_cost_override_ind, ‘Y’, iscl.unit_cost, e.unit_cost),
 e.qty_ordered,
 TO_CHAR(e.written_date, 'YYYYMMDD'),
 TO_CHAR(e.not_before_date,'YYYYMMDD'),
 TO_CHAR(e.not_after_date, 'YYYYMMDD'),
 TO_CHAR(e.not_after_date, 'DD'),
 TO_CHAR(e.not_after_date, 'MM'),
 TO_CHAR(e.not_after_date, 'YYYY'),
 ';' || e.vendor_order_no ||
 ';' || TO_CHAR(e.dept) ||
 ';' || TO_CHAR(e.supplier)
 FROM item_supp_country isc,
 item_supp_country_loc iscl,
 sup_import_attr sia,
 sups s,
 edi_ord_temp e,
 v_restart_supplier rv
 WHERE isc.item = e.item
 AND isc.primary_country_ind = 'Y'
 AND isc.supplier = e.supplier
 AND sia.supplier (+) = e.supplier
 AND s.supplier = e.supplier
 AND rv.driver_value = e.supplier
 AND rv.driver_name = :os_restart_driver_name
 AND rv.num_threads = :oi_restart_num_threads
 AND rv.thread_val = :oi_restart_thread_val
 AND (e.vendor_order_no > NVL(:os_restart_vndr_ord_no,-999) OR
 (e.vendor_order_no = :os_restart_vndr_ord_no AND
 (e.dept > :os_restart_dept OR
 (e.dept = :os_restart_dept AND
 e.supplier > :os_restart_supplier)
)
)
)
 ORDER BY e.vendor_order_no,
 e.dept,
 e.supplier,
 e.wh_or_store_c,
 e.wh_or_store,
 e.item;

EXEC SQL DECLARE c_items_s CURSOR FOR
 SELECT isc.origin_country_id,
 isc.supp_pack_size,
 NVL(isc.lead_time, 0),
 sia.agent,
 sia.lading_port,
 sia.discharge_port,
 s.currency_code,
 e.vendor_order_no,

vrplbld (Vendor Replenished Order Build)

Operations Guide Addendum 25

 e.supplier,
 e.dept,
 e.wh_or_store_c,
 e.wh_or_store,
 e.item,
 e.item_desc,
 e.ref_item,
 e.unit_retail,
 DECODE(:edi_cost_override_ind, ‘Y’, iscl.unit_cost, e.unit_cost),
 e.qty_ordered,
 TO_CHAR(e.written_date, 'YYYYMMDD'),
 TO_CHAR(e.not_before_date,'YYYYMMDD'),
 TO_CHAR(e.not_after_date, 'YYYYMMDD'),
 TO_CHAR(e.not_after_date, 'DD'),
 TO_CHAR(e.not_after_date, 'MM'),
 TO_CHAR(e.not_after_date, 'YYYY'),
 ';' || e.vendor_order_no ||
 ';' || TO_CHAR(e.dept) ||
 ';' || TO_CHAR(e.supplier)
 FROM item_supp_country isc,
 item_supp_country_loc iscl,
 sup_import_attr sia,
 sups s,
 edi_ord_temp e,
 v_restart_supplier rv
 WHERE isc.item = e.item
 AND isc.primary_country_ind = 'Y'
 AND isc.supplier = e.supplier
 AND sia.supplier (+) = e.supplier
 AND s.supplier = e.supplier
 AND rv.driver_value = e.supplier
 AND rv.driver_name = :os_restart_driver_name
 AND rv.num_threads = :oi_restart_num_threads
 AND rv.thread_val = :oi_restart_thread_val
 AND (e.vendor_order_no > NVL(:os_restart_vndr_ord_no,-999) OR
 (e.vendor_order_no = :os_restart_vndr_ord_no AND
 e.supplier > :os_restart_supplier)
)
 ORDER BY e.vendor_order_no,
 e.supplier,
 e.wh_or_store_c,
 e.wh_or_store,
 e.item;

Program Flow
N/A

Shared Modules
 NEW_ITEM_LOC
 ORDER_NUMBER_SQL.GET_NEXT_ORDER_NUMBER
 CURRENCY_SQL.GET_RATE
 CAL_TO_454_LDOW
 ORDER_SETUP_SQL.DEFAULT_ORDHEAD_DOCS
 ORDER_SETUP_SQL.DEFAULT_ORDSKU_DOCS
 ORDBA_CALC_SQL.ORDER_COST
 ORDER_EXPENSE_SQL.INSERT_COST_COMP
 ORDER_HTS_SQL.DEFAULT_CALC_HTS

vrplbld (Vendor Replenished Order Build)

26 Oracle Retail Merchandising System

 OTB_SQL.ORD_APPROVE
 ORDER_SETUP_SQL.DEFAULT_ORDER_INV_MGMT_INFO
 ORDER_ATTRIB_SQL.MULTIPLE_LOCS_EXIST
 SUP_INV_MGMT_SQL.GET_PURCHASE_PICKUP

Function Level Description

init()
 select department level orders flag from unit options
 select base country, latest ship days, FOB information, ELC indicator, EDI cost

override inidicator, calendar 454 indicator, bill-to location, and multi-channel
indicator from system options

 select vdate from period
 call restart initialization logic

process()
 call open_cursor to open appropriate cursor (department level or multi-department

orders)
 call fetch_cursor for prime fetch of driving cursor
 while

– if supplier or vendor order number changed then call create_header

– if item changed call create_item

– if multi-channel = ‘N’ or the location fetched is a store call add_loc

– if multi-channel is on and the location is a warehouse, then distribute:

– call dist_init

– call dist_set_distribution_rule

– for every replenishable warehouse
 call dist_expected_quantity
 call dist_distributed_quantity
 call add_loc

– call dist_final

– call add_loc

– call fetch_cursor

– if supplier or vendor order number changed then
 if the ELC indicator is Y, call add_cost_comp
 call item_defaults

– call apply_disc
 call header_defaults
 call update_header
 call update_order
 call check_vmi_order

vrplbld (Vendor Replenished Order Build)

Operations Guide Addendum 27

– else if the item changed
 if the ELC indicator is Y, call add_cost_comp
 call item_defaults

– call restart commit logic
 end while
 call item_defaults
 call apply_disc
 call header_defaults
 call update_header
 call update_order
 call check_vmi_order

open _cursor()
 open appropriate cursor depending on what type of orders are allowed.

fetch _cursor()
 fetch records from appropriate cursor

get_min_max()
 finds the minimum and maximum lead times for the current order

item_active ()
 returns 1 if item is active (0 if inactive) on item_loc

create_header()
 call function to determine if vendor-order-number is a valid pre-issued order

number (ORDER_NUMBER_SQL.CHECK_ORDER_PREISSUE)
 If not pre-issued order number call function to get the next order number

(ORDER_NUMBER_SQL.NEXT_ORDER_NUMBER)
 call CAL_TO_454_LDOW procedure to convert order’s not_after_date to the end-of-

week date to update otb_eow_date field
 call CURRENCY_SQL.GET_RATE to get the exchange rate for the supplier’s

currency.
 insert record into ordhead

header_defaults()
 Call ORDER_ATTRIB_SQL.MULTIPLE_LOCS_EXIST to retrieve the location if the

order is a single location order. Call
ORDER_SETUP_SQL.DEFAULT_ORDHEAD_DOCS to default the necessary
documents for the order header. Also call ORDER_SETUP_SQL.

 DEFAULT_ORDER_INV_MGMT to appropriate supplier inventory management
information to the order with NULL inserted for the scaling constraints, since a
vendor generated order is not eligible for scaling. If no values are found for the
purchase type or pickup location, call
SUP_INV_MGMT_SQL.GET_PURCHASE_PICKUP to retrieve the default values. If
no value is found for the pickup date, use the longest lead-time to calculate the
pickup date.

vrplbld (Vendor Replenished Order Build)

28 Oracle Retail Merchandising System

update_header()
 Check to see if any items on the order come from a country other than the ordhead

import country. If so, update the import_order_ind to ‘Y’ on ordhead.

update_order()
 Update the Order Header table with the following values

– Purchase Type

– Pickup Location (only enter if the Purchase Type is ‘FOB’ or ‘BACK’)

– Pickup Date (only enter if the Purchase Type is ‘FOB’ or ‘BACK’) – if value is
later than the Not After Date, set equal to the Not After Date

– Earliest Ship Date – minimum of Order/Item ESDs

– Latest Ship Date – maximum of Order/Item LSDs
 Update Order Item table. Set the pickup location if the purchase type is ‘FOB’ or

‘BACK’.

item_defaults()
 Call ORDER_SETUP_SQL.DEFAULT_ORDSKU_DOCS to default necessary

documents for items in order.

apply_disc()
 if edi_cost_override_ind = ‘Y’ then insert a record into the DEAL_CALC_QUEUE

table if the current order number is not in the table, or update the order_appr_ind
field to ‘Y’ if the order number is already in the table.

 call update_OTB

add_cost_comp()
 Call ORDER_EXPENSE_SQL.INSERT_COST_COMP,

ORDER_HTS_SQL.DEFAULT_CALC_HTS and ELC_CALC_SQL.CALC_COMP.

create_item ()
 if edi_cost_override_ind = ‘Y’ insert record into ordsku with the cost_source =

‘MANL’. If edi_cost_override_ind != ‘Y’, insert a record into ordsku with the
cost_source = ‘NORM’;

add_loc ()
 insert into ordloc

set_worksheet_status()
 For a given order number and reject code, update the status on the ordhead table to

‘W’orksheet and update the reject code to whatever was passed in.

order_exists()
 For a given order number, check to see whether or not the order number is on the

DEAL_CALC_QUEUE table.

final()
 Call restart/recovery close logic.

vrplbld (Vendor Replenished Order Build)

Operations Guide Addendum 29

I/O Specification
N/A

	Preface
	Audience
	Related Documents
	Customer Support
	 Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Batch Designs
	fifgldn1 (Financials General Ledger Download 1)
	Design Overview
	Scheduling Constraints
	Pre/Post Logic Description
	Restart Recovery
	Driving Cursor
	Functional Level Description
	I/O Specification

	fifgldn2 (Financials General Ledger Download 2)
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Driving Cursor
	Functional Level Description
	I/O Specification

	fifgldn3 (Financials General Ledger Download 3)
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Driving Cursor
	Program Flow
	Functional Level Description
	I/O Specification

	nwppurge (End Of Year Inventory Position Purge)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	I/O Specification

	nwpyearend (End of Year Inventory Position Snapshot)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	I/O Specification

	salmaint (Stock Ledger Table Maintenance)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	I/O Specification

	stkschedxpld (Scheduled Stock Count Explode)
	Functional Area
	Module Affected
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Locking Strategy
	Security Considerations
	Performance Considerations
	Key Tables Affected
	Shared Modules
	I/O Specification

	vrplbld (Vendor Replenished Order Build)
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

