Oracle® Retail Merchandising System
Operations Guide Addendum
Release 10.1.23

May 2009

ORACLE

Oracle® Retail Merchandising System Operations Guide Addendum, Release 10.1.23

Copyright © 2009, Oracle. All rights reserved.
Primary Author: Nathan Young

This software and related documentation are provided under a license agreement containing
restrictions on use and disclosure and are protected by intellectual property laws. Except as
expressly permitted in your license agreement or allowed by law, you may not use, copy,
reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or
display any part, in any form, or by any means. Reverse engineering, disassembly, or
decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be
error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it
on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, the use, duplication, disclosure, modification, and
adaptation shall be subject to the restrictions and license terms set forth in the applicable
Government contract, and, to the extent applicable by the terms of the Government contract, the
additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December
2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It
is not developed or intended for use in any inherently dangerous applications, including
applications which may create a risk of personal injury. If you use this software in dangerous
applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy,
and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates
disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be
trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and
services from third parties. Oracle Corporation and its affiliates are not responsible for and
expressly disclaim all warranties of any kind with respect to third-party content, products, and
services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages
incurred due to your access to or use of third-party content, products, or services.

Value-Added Reseller (VAR) Language

Oracle Retail VAR Applications

The following restrictions and provisions only apply to the programs referred to in this section and
licensed to you. You acknowledge that the programs may contain third party software (VAR
applications) licensed to Oracle. Depending upon your product and its version number, the VAR
applications may include:

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server — Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning, Oracle Retail Demand Forecasting, Oracle Retail Regular Price Optimization, Oracle
Retail Size Profile Optimization, Oracle Retail Replenishment Optimization applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Mobile Store Inventory
Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by SAP and imbedded in Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

You acknowledge and confirm that Oracle grants you use of only the object code of the VAR
Applications. Oracle will not deliver source code to the VAR Applications to you.
Notwithstanding any other term or condition of the agreement and this ordering document, you
shall not cause or permit alteration of any VAR Applications. For purposes of this section,
“alteration” refers to all alterations, translations, upgrades, enhancements, customizations or
modifications of all or any portion of the VAR Applications including all reconfigurations,
reassembly or reverse assembly, re-engineering or reverse engineering and recompilations or
reverse compilations of the VAR Applications or any derivatives of the VAR Applications. You
acknowledge that it shall be a breach of the agreement to utilize the relationship, and/or
confidential information of the VAR Applications for purposes of competitive discovery.

The VAR Applications contain trade secrets of Oracle and Oracle’s licensors and Customer shall
not attempt, cause, or permit the alteration, decompilation, reverse engineering, disassembly or
other reduction of the VAR Applications to a human perceivable form. Oracle reserves the right to
replace, with functional equivalent software, any of the VAR Applications in future releases of the
applicable program.

Contents

= - o S vii
AUIENCE ..o s vii
Related DOCUIMENTS........ccoovrireiieiiciciciccc et vii
CUSLOMET SUPPOTL...cuiiiiiiiiiiiiiiiiiic s vii
Review Patch Documentation ... viii
Oracle Retail Documentation on the Oracle Technology Network...........ccccccceeueueee. viii
CONVENEIONS ...ttt viii

T INrOdUCLION ... e s 1

P = = L T D 1= [o 3
Order PUrge [Ordprg] -....ccoveveveueueiiiiiiinrreeceecce e eas 3

FUNCHONAL ATA.....ovieiiiiiiciciccc ettt 3
Module Affected ... 3
Design OVEIVIEW ..o s 3
Tables Affected.......ccco s 4
Stored Procedures/Shared Modules (Maintainability).........c.cccocovviiiiiiiininnn 6
Program FLOWc.c.ooiiiie s 6
Input Specificationsoccueviiiiiiiciic e 7
Output SPecifiCationscueviuriiiiieiice e 8
Scheduling Considerations.............cocevieiniiieinicie e 9
Reclassification of Item [reclsdly] ..o 9
FUNCHONAL ATEQ......oiiiiiiiic s 9
Module AffEcted ..o s 9
Design OVEIVIEW ..ot s 9
Stored Procedures/Shared Modules (Maintainability)...........cccccoceviiiiiiiiinnnne. 9
Input Specificationscceuiiiiiiiiiiiiiii 10
Output Specificationscceueieieiiiie e 10
Function Level Description ... 10
Scheduling Considerations............coocciieieieiiiiicicie s 11
LOCKING StrateZyc.ovovieiiiieieieieiccci e 12
Restart/RECOVETYccvuimiiiiiiiiiiiici s 12
Item Requisition Extraction [reqeXt]..........ccccoomeioiiiiiiniiiiiicc 13
Design OVEIVIEW ..ot s 13
Scheduling Considerations............cccccovvririiieieieieiciiii e 14
Restart RECOVETYcoiiiiiiiiiii s 14
Program FLOW ... 14
Shared MOAUIEScociiiiiiiiciccc ettt 14
Data STIUCLUTES.......ccuiiiiiiiiiic e 15
Function Level Descriptioncccocciioiiiiiiiiciceeccc s 15

vi

Database INEETACHIONeiieuiieeieieie ettt ete et eeenaeeenaeeeneeeans

I/O SPeCfiCation........ccceveueieiciciciiiiiiiirreeee e

Technical Issues

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:

= Key system administration configuration settings
= Technical architecture
= Functional integration dataflow across the enterprise

This Operations Guide Addendum should be used in conjunction with previously
released Oracle Retail Merchandising System 10.x documentation.

Audience

Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting Oracle Retail Merchandising System functionality
will find valuable information in this guide. There are three audiences in general for
whom this guide is written:

* Business analysts looking for information about processes and interfaces to validate
the support for business scenarios within and other systems across the enterprise.

= System analysts and system operations personnel:

— Who are looking for information about Oracle Retail Merchandising System’s
processes internally or in relation to the systems across the enterprise.

— Who operate Oracle Retail Merchandising System regularly.

= Integrators and implementation staff with overall responsibility for implementing
Oracle Retail Merchandising System.

Related Documents

For more information, see the following documents in the Oracle Retail Merchandising
System Release 10.1.23 documentation set:

* Oracle Retail Merchandising System Installation Guide
= Oracle Retail Merchandising System Release Notes
= Oracle Retail Merchandising System Batch Schedule

Customer Support
To contact Oracle Customer Support, access My Oracle Support at the following URL:

https:/ /metalink.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

vii

https://metalink.oracle.com/

Review Patch Documentation

If you are installing the application for the first time, you install either a base release (for
example, 13.0) or a later patch release (for example, 13.0.2). If you are installing a
software version other than the base release, be sure to read the documentation for each
patch release (since the base release) before you begin installation. Patch documentation
can contain critical information related to the base release and code changes that have
been made since the base release.

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site (with the exception of
the Data Model which is only available with the release packaged code):

http:/ /www.oracle.com/technology /documentation/oracle_retail.html

Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

viii

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
It is used to display examples of code

A hyperlink appears like this.

http://www.oracle.com/technology/documentation/oracle_retail.html

1

Introduction

The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 10.0 Operations Guide and any subsequent RMS 10.x.x Operations
Guide Addendums. Using this document in conjunction with the Oracle Retail
Merchandising System 10.0 Operations Guide provides retailers with a complete overview
of the application.

For the RMS 10.1.23 release, the following batch designs have been added in order to
address documentation bugs:

= Order Purge [ordprg]
= Reclassification of Item [reclsdly]
= Item Requisition Extraction [reqext]

For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail Merchandising
System 10.1.23 Release Notes.

Operations Guide Addendum 1

2

Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 10.0 Operations Guide or any subsequent RMS 10.x.x Operation Guide
Addendums.

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Order Purge [ordprg]

Functional Area

Purchase Orders

Module Affected
ORDPRG.PC

Design Overview
The purpose of this module is to remove old orders and allocations from the system.

If the import indicator on the SYSTEM OPTIONS table (import_ind) is 'N' and if invoice
matching is not installed, then all details associated with an order are deleted when the
order has been closed for more months than specified in UNIT_OPTIONS
(order_history_months). If invoice matching is installed, then all details associated with
an order are deleted when the order has been closed for more months than specified in
UNIT_OPTIONS (order_history_months). Orders are deleted only if shipments from the
order have been completely matched to invoices or closed, and all those invoices have
been posted.

If the import indicator on the SYSTEM OPTIONS table (import_ind) is "Y' and if invoice
matching is not installed, then all details associated with the order are deleted when the
order has been closed for more months than specified in UNIT_OPTIONS
(order_history_months), as long as all ALC records associated with an order are in
"Processed' status, specified in ALC_HEAD (status). If invoice matching is installed, then
all details associated with an order are deleted when the order has been closed for more
months than specified in UNIT_OPTIONS (order_history_months), as long as all ALC
records associated with an order are in 'Processed’ status, specified in ALC_HEAD
(status), and as long as all shipments from the order have been completely matched to
invoices or closed, and all those invoices have been posted.

This program will also create a PO header flat file to interface with the Nautilus system.
When orders are deleted, a record with the action type = ‘D’eleted will be written to an
output file. Nautilus will then process this file and delete the PO from the warehouse’s
database to maintain consistency between the host and warehouse environment.

Removed existing driving cursor declaration, open, fetch and close (the same logic has
been moved to Prepost ordprg_pre).

A new driving cursor added using doc_purge_queue which is populated in ordprg_pre.

Operations Guide Addendum 3

Added a new function ORDER_SQL.VALIDATE_DOC call to validate the PO (to decide
candidate for purging or not).

Removed purge_alloc function, since stand-alone allocations (with and w/o shipments)
will be purged in tsfprg.
Logic for document validation in ordprg.pc :-
/*
For each allocation for the given PO
Check the allocation exists in doc_purge queue populated in ordprg pre
if exists
for each shipment for the allocation
check if all the docs in shipment exists in doc_purge _queue (multi
doc shipment)
if exists
purge shipments
else
don"t purge the po and allocation (I_valid = 0)
if no shipment exists for allocation
purge the po and allocation (I_valid = 1)
else (if doc doesn"t exists in doc_purge _gqueue)
don"t purge the po (I_valid = 0)
if no allocation exists then purge the PO (I_valid = 1)

*/
Tables Affected
TABLE INDEX SELECT INSERT UPDATE DELETE
ALC_COMP_LOC No No No No Yes
ALC_HEAD No Yes No No Yes
ALLOC_CHRG No No No No Yes
ALLOC_DETAIL No No No No Yes
ALLOC_HEADER Yes No No No Yes
ALLOC_REV No No No No Yes
APPT_HEAD No Yes No No Yes
APPT_DETAIL No Yes No No Yes
CE_LIC_VISA No No No No Yes
CE_CHARGES No No No No Yes
CE_ORD_ITEM No Yes No No Yes
CE_SHIPMENT No No No No Yes
CE_HEAD No No No No Yes
DOC_CLOSE_QUEUE No No No No Yes
INVC_DETAIL Yes No No No Yes
INVC_HEAD Yes Yes No No Yes
INVC_MATCH_WKSHT Yes No No No Yes
INVC_MATCH_QUEUE Yes No No No Yes
INVC_MERCH_VAT Yes No No No Yes
INVC_NON_MERCH Yes No No No Yes

4 Oracle Retail Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE
INVC_XREF Yes No No No Yes
OBLIGATION No No No No Yes
OBLIGATION_COMP No No No No Yes
OBLIGATION_COMP_LOC No No No No Yes
ORDCUST No No No No Yes
ORDHEAD_DISCOUNT No No No No Yes
ORDHEAD Yes Yes No No Yes
ORDLOC Yes No No No Yes
ORDSKU_INVC_COST No No No No Yes
ITEM_MASTER Yes No No No Yes
LC_ORDAPPLY No No No No Yes
DEAL_HEAD No No No No Yes
DEAL_DETAIL No No No No Yes
DEAL_ITEMLOC No No No No Yes
DEAL_THRESHOLD No No No No Yes
DEAL_QUEUE No No No No Yes
DEAL_CALC_QUEUE No No No No Yes
ORD_INV_MGMT No No No No Yes
REPL_RESULTS No No No No Yes
PERIOD No Yes No No No
QC Yes No No No Yes
RTV_DETAIL No No No No Yes
SHIPMENT Yes Yes No No Yes
SHIPSKU Yes No No No Yes
SYSTEM_OPTIONS No Yes No No No
TRANS_CLAIMS No No No No Yes
TRANS_DELIVERY No No No No Yes
TRANS_LIC_VISA No No No No Yes
TRANS_PACKING No No No No Yes
TRANSPORTATION No Yes No No Yes
TSFDETAIL Yes No No No Yes
TSFHEAD Yes No No No Yes
UNIT_OPTIONS No Yes No No No
DOC_PURGE_QUEUE Yes Yes No No No

Operations Guide Addendum 5

Stored Procedures/Shared Modules (Maintainability)
INV_SQL.DELETE_INVC
ORDER_SQL.VALIDATE_DOC

Program Flow

Function Level Description

Delete from the appropriate ordering tables and any tables that may have referential
integrity constraints for the fetched order number. Fetch order numbers appropriately
based on whether or not invoice matching is installed.

Init()

Select the following fields values:

* invc_match_ind, import_ind, repl_order_history_days, edi_rev_days, rws_ind from
the system_options table

= order_history_months from the unit_options table

= vdate from period table

Init_logistics()
Initialize the format of the output file.

Process()
Call del_rev to delete order revision
Open the particular driving cursor based on the indicator inv_match_ind

For each order:

Fetch the particular driving cursor based on inv_match ind

ITf ordlc.Ic_ind = “Y” then skip and fetch next record;

If import_ind = “Y” and alc_head.status =’PR” then

Call delete_landed_costs;

End if;

Delete from related tables associated with orders being purged by.

Calling del_appts, delete_invc data, delete deals and delete_repl_orders

Delete from ordhead table.
Removed purge_alloc function, since stand-alone allocations (with and w/o shipments)
will be purged in tsfprg.
Call ORDER_SQL.VALIDATE_DOC function which will validate the given PO and
decides whether it’s need to be purged or not.

Delete_invc_data()

Call INVC_SQL.DELETE_INVC function to delete the invoice data for the specific orders
being purged.

Del_rev()

Delete records from the tables ordloc_rev, ordsku_rev, ordhead_rev and alloc_rev
associated with the orders which have been closed for more days than specified in
edi_rev_days(in table UNIT_OPTIONS). But deleting occurs only:

= when a letter of credit is not present(ordlc.lc_ind="N").
* Import indicator equals ‘N’. Or

6 Oracle Retail Merchandising System

= import indicator equals “Y’, and the landed costs are completed (alc_head.status =
‘PR’). In this case, purge these landed costs before deleteing the above tables.

Also, before deleting from these tables, purge all related transportation and custom
entries.

Purge_transport()

Delete from the table transportation for specific orders being purged as well as child
records from tables missing_doc, trans_packing, trans_delivery, trans_claims and
trans_lic_visa(based on transportation_id).

Purge_customs_entry()
Delete from customs entry for specific orders being purged.

Delete_landed_costs()

Delete landed costs and obligations as well as their child records for specific orders being
purged. Involved tables include: alc_head, alc_comp_loc, obligation, obligation_comp,
obligation_comp_loc.

Write_logistic_details()
Write the deleted order to the output file with action type = ‘D’eleted.

Delete_deals()

Delete all PO-specific deals assigned to the order being purged. PO-specific deals are
identified by the existence of a value in deal_head.order_no.

Del_repl_orders ()

Delete records from the table ord_inv_mgmt and repl_results associated with the order
being purged.

Final()
Close the output file.

Del_appts()

Deletes records from appt_detail, first saving distinct appt/loc combination into a local
array that is dynamically sized based on the number of records to be deleted from
appt_head. Then array deletes records based on the array from appt_head. Also deletes
from doc_close_queue. Calls size_appt_array() to size the appt_head delete array.

Size_appt_array()
Sizes the array used to hold appt_head appt/loc info between deletes from appt_detail
and appt_head.

Input Specifications
Driving cursor:

EXEC SQL DECLARE c_orders CURSOR FOR
SELECT dpq-doc,
NVL(Ic.Ic_ind,0)
FROM doc_purge_queue dpq,
ordlc Ic
WHERE doc = Ic.order_no(+)
AND doc_type = P

Operations Guide Addendum 7

ORDER by 1;

EXEC SQL DECLARE c_check_import_ind CURSOR FOR

SELECT import_order_ind

FROM ordhead

WHERE order_no = :ps_order_no;

Output Specifications

Output file: Format will be as in table given below. Each order is a separate transaction;
multiple orders can be given in each file. The skeleton of file is:

FHEAD (file identification — only one line per file) REQUIRED
FDETL detail lines — one line for every record on ordhead. NOT REQUIRED.
FTAIL (total number lines) One line per file. REQUIRED.

Output File
Record Field Name Field Type Default Value Description
Name
File Header File Type Record CHAR(5) FHEAD Value that identifies the record
Descriptor type.
Line Identifier NUMBER(10) identifies file line number
File Type CHAR(4) POHD identifies file type
Definition
File Create Date CHAR(14) YYYYMMDDHH24MISS format
File Detail File Type Record CHAR(5) "FDETL" Value that identifies the record
Descriptor type.
Line Number NUMBER(10) identifies file line number
Action type CHAR(1) D identifies the action type ‘D’elete
Location CHAR(4) ordloc.location number
File create date CHAR(12) vdate
Order number CHAR(8)
Vendor CHAR(?)
Preassigned Flag CHAR(1)
Dev not before CHAR(8)
Dev not after CHAR(8)
Shipping terms CHAR(3)
Buyer code CHAR(12)
File Trailer File Type Record CHAR(5) FTAIL Value that identifies the record
Descriptor type.
Line number NUMBER(10) identifies file line number
File Record NUMBER(6) number of records/transactions
Counter processed in current file

8 Oracle Retail Merchandising System

Scheduling Considerations

Schedule Information Description

Processing Cycle PHASE AD-HOC (monthly)
Scheduling Diagram N/A

Pre-Processing YES

Post-Processing N/A

Threading Scheme N/A (single threaded)

Reclassification of ltem [reclsdly]

Functional Area
Reclassification

Module Affected
RECLSDLY.PC

Design Overview

The Item Reclassification batch program is executed in order to reclassify items from one

department, class or subclass to another. This reclassification of items into different

merchandise hierarchy level is initiated or requested online in the item reclassification

dialog, with an effective date specified. This program reads in the reclassification

requests that are effective the following day, and for each item being reclassified, the

following functions are executed:

= Checks if the item is forecastable and if it is, then checks for the existence of a
domain. If the item is forecastable and no domain association to the new
merchandise hierarchy level exists, reject the item (i.e. the item will not be
reclassified).

= Updates the appropriate item table, e.g. item_master, with the new merchandise
hierarchy.

= If anitem is reclassified, the product securities of the item are then updated.

Stored Procedures/Shared Modules (Maintainability)

FORECASTS_SQL.GET_SYSTEM_FORECAST _IND:

Stored PL/SQL procedure for returning the value of the forecast_ind from the
SYSTEM_OPTIONS table.

FORECASTS_SQL.GET_DOMAIN:
Stored PL/SQL procedure for retrieving the domain for a merchandise hierarchy.

RECLASS_SQL.ITEM_PROCESS:

Stored PL/SQL procedure for updating or inserting records into the ITEM_MASTER,
POS_MODS, and TRAN_DATA tables. If the item cannot be reclassified, the
IO_RECLASS_FAILED variable returns a value of TRUE. Otherwise, it returns a value of
FALSE. If reclassification failed, the function returns the reason for failure.

Operations Guide Addendum 9

LOC_PROD_SECURITY_SQL.INSERT_USR_SEC:

Stored PL/SQL procedure for creating new records on to the
SEC_USER_PROD_MATRIX table for all users that have security access to the new item.

ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS:

Stored PL/SQL procedure for inserting reclass failed reasons into the MC_REJECTIONS
table.

Input Specifications

Select from: V_RESTART_RECLASS, RECLASS_ITEM, RECLASS_HEAD,
ITEM_MASTER, PACKITEM, ORDSKU, DEAL_CALC_QUEUE, DEAL_ORDER_TEMP,
SYSTEM_OPTIONS, and PERIOD

Output Specifications
‘Table-To-Table’

Delete from: RECLASS_HEAD, RECLASS_ITEM, SEC_GROUP_PROD_MATRIX, and
SEC_USER_PROD_MATRIX

Insert into: DEAL_ORDER_TEMP

Function Level Description

init()
This function initializes restart/recovery and fetches global options and variables. Calls
size_arrays function.

process()

This is the main control function of the program. Each reclass_head record fetched from
the driving cursor is checked for domain association to the new merchandise hierarchy if
the forecast_ind is “Y’. This existence check will be used during the call to the
RECLASS_SQL.ITEM_PROCESS function to determine if the record will be rejected from
reclassification. Calls the process_item function to perform the item reclassification. If
reclassification failed, the insert_reject_record and delete_reclass_item functions are
called. Otherwise, all order numbers associated to the item are inserted into the
DEAL_ORDER_TEMP table by calling update_deal_calc_queue function for later
processing during prepost. Also, reclassified items are deleted from the RECLASS_ITEM
table and the product securities of the items are updated by calling the process_security
function. After processing, the reclass_head record is then deleted from the
RECLASS_HEAD table.

delete_reclass_head()
This function deletes the reclassification record from the RECLASS HEAD table.

delete_reclass_item()
This function deletes the record from the RECLASS_ITEM table based on the row_id.

check_domain_exists()

If forecast_ind is “Y’, this function checks if a domain association to the new merchandise
hierarchy exist for the given dept/class/subclass.

process_item()

10 Oracle Retail Merchandising System

This function calls the RECLASS_SQL.ITEM_PROCESS function to perform the item
reclassification.

size_arrays()
This function sizes the fetched array to the commit size.

process_security()

This function deletes the records of the reclassified item in the
SEC_GROUP_PROD_MATRIX and SEC_USER_PROD_MATRIX tables. Calls the
LOC_PROD_SECURITY_SQL.INSERT_USR_SEC function.

get_order_numbers()

This function finds all the order numbers that are associated to the input item in the
ORDSKU table.

update_deal_calc_queue()

This function is passed an array of order numbers and a long telling the number of order
numbers in the array. This function then inserts the order numbers into the
DEAL_ORDER_TEMP table, prepost post processing will select from this table and insert
into DEAL_CALC_QUEUE table, along with 'N' for the recalc_all_ind and
override_manual_ind columns.

order_exists()

This function checks to see whether or not the passed order number already exists in the
DEAL_CALC_QUEUE or the DEAL_ORDER_TEMP table. A zero is returned if the
order number is not in the DEAL_CALC_QUEUE OR in the DEAL_ORDER_TEMP table,
a one if it is in the table, or a negative one if there was a SQL_ERROR found.

insert_reject_record()

This function calls the ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS function to
insert the reclassification failed reason in the MC_REJECTIONS table.

final()
Standard Retek final function. Calls retek_close().

Scheduling Considerations

Schedule Information Description
Processing Cycle Daily
Scheduling Diagram This module is scheduled to run daily during Phase

4 of the batch schedule. The requirement is for all
the batch modules that update inventory and retail
/ cost prices to be completed before this module

can run.

Pre-Processing Prepost (reclsdly pre)

Post-Processing Prepost (reclsdly post)

Threading Scheme If desired, this program can be threaded by
reclass_no to process several reclassifications at
once.

Operations Guide Addendum 11

Locking Strategy

N/A

Restart/Recovery

The logical unit of work for the reclassification is reclass_no/item. The restart commit
counter will need to be carefully determined by each client according to the number of
item/store combinations that will be affected by the reclassification since processing is
done inside the packages rather than directly from the batch program. Large
reclassifications with thousands of items held at many stores need smaller commit
counters to avoid reprocessing large amounts of data in the event of program failure.
Small reclassifications affecting just a few item/store combinations can have much larger
commit counters since fewer rows will be inserted into the database each time an item is
processed.

Driving cursor:

The main driving cursor is executed in prepost reclasdly pre function by calling
RECLASS_SQL.PRE_PROCESS to perform contract validation before reclassification and
inserts rejection message for the problem items. These can't be multithreaded so they are
performed in the pre process. RECLASS_ITEM_TEMP and
CONTRACT_UPDATE_TEMP tables are populated by this pre process.
RECLASS_ITEM_TEMP is used as a driving table in RECLSDLY batch.
CONTRACT_UPDATE_TEMP table is used in the POST_PROCESS function to update
contract department. GTT_RECLASS_ITEM_TEMP and
GTT_CONTRACT_UPDATE_TEMP global temporary tables are used to help the
processing.

SELECT ri_rowid,
reclass_no,
reclass_item,
item,
NVL(item parent,” *),
NVL(item_grandparent,” *),
item level,
tran_level,
new_dept,
new_class,
new_subclass,
old_dept,
old class,
old_subclass,
new_division,
new_group,
old_division,
old_group,
NVL(reclass_validated, "N*)
FROM reclass_item temp rit,
v_restart_reclass rv
WHERE rv.driver_value = rit.reclass _no
AND rv.driver_name :ps_driver_name
AND rv.num_ threads TO_NUMBER(:ps_num_threads)
AND rv.thread val TO_NUMBER(:ps_thread val)
AND (rit.reclass_no > NVL(:ps_restart reclass no, -999) OR
(rit.reclass no = :ps_restart_reclass no AND
rit.reclass_item >= :ps_restart_item))
ORDER BY 2,
3;

Ve onon

12 Oracle Retail Merchandising System

Item Requisition Extraction [reqext]

Design Overview

Regext (Item Requisition Extraction) handles automatic replenishment of items from
warehouses to stores. It cycles through every item-store combination that is set to be
reviewed on the current day, and calculates the quantity of the item that needs to be
transferred to the store (if any). In addition, it distributes this Recommended Order
Quantity (ROQ) over any applicable alternate items associated with the item. The program
then takes this information and either creates new transfer line items or adds to existing
ones.

Alternate items are either simple packs or substitute items. Simple packs are sellable and
orderable packs that contain only a single item, such as a six-pack of cola or twelve-pack
of socks. Substitute items are items predefined to be interchangeable with the item being
replenished (referred to as the master item).

When an item is set up to use simple packs (designated by an indicator on the
REPL_ITEM_LOC table), the ROQ must be distributed among these packs according to
desirability. If a master item has no simple packs associated with it, it will be requested
as itself. If there is only one pack associated with the item (referred to as the primary
simple pack), then there is no distribution needed - the item will be transferred in this
simple pack, since the cost per item for a pack is always less than that of an individual
item. If multiple simple packs can be substituted for an item, then the distribution of the
ROQ over these packs is determined by comparing the packs’ relative sales history.
Replenishing an item through multiple simple packs can have a severely negative effect
on the performance of this program! Because the pack distribution depends on access to
the huge sales history tables (ITEM_LOC_HIST), it is not recommended that many items
be placed on replenishment through multiple simple packs. Whenever possible, it is
better to assign a primary simple pack to the item, since this does not require distribution
calculation.

If an item is not set up to use simple packs, the program will see if any substitute items
are associated with it. If there are no substitute items associated with the master item, it
will be transferred alone. If there are substitute items, they will be fetched into a list and
the master item placed at either the head or tail end of the list, depending on the fill
priority (set on the SUB_ITEMS_HEAD table). The priority determines which items are
transferred first.

No matter what type of alternate items (if any) are used, the program will account for
availability when building transfer line items. For simple packs, the share of ROQ
allocated to each pack may be decreased or increased if the source warehouse has a
shortage of some packs but a surplus of others. For substitute items, transfer quantities
are prorated by calculating the ratio of total availability to total need, and items are
transferred in order of priority until all need is filled or until no stock is available.

Once the transfer quantity of an item has been calculated, the transfer line item is posted
to the database if 1) the actual quantity to transfer is greater than zero, and 2) the
replenishment order control indicator for the item-store combination is either Automatic
or Semi-Automatic. If it is Manual, a record will be written to another table
(REPL_RESULTS) for reporting purposes. If the system-level All Replenishment Results
indicator is set to “Yes”, all line items will be written to REPL_RESULTS, even if the
quantity to order is zero. Whenever a transfer line item is placed, the appropriate item-
location table (ITEM_LOC_SOH) is updated to reflect the fact that stock is now reserved
for transfer at the warehouse and expected at the store.

Operations Guide Addendum 13

Scheduling Considerations

Schedule Information Description
Processing Cycle PHASE 3
Scheduling Diagram Rplatupd, repladj, prepost ociroq and ociroq need

to run before regext so that all replenishment
calculation attributes are up to date. Posupld need
to run before reqext so that all stock information is
up to date. Rplext should run after regext, since the
ROQ for a warehouse is influenced by any transfers
created.

Pre-Processing PREPOST REQEXT PRE - Create the TSFHEAD
records for unique combination of Warehouse and
Store, stock category and department.

Post-Processing PREPOST REQEXT POST -Delete all the TSFHEAD
records created those do not have the TSFDETAILS
record created through replenishment. Update
transfer status to approved.

Threading Scheme DEPT

Restart Recovery

The logical unit of work is item, source warehouse. The driving cursor is ordered by
item, source warehouse, order control indicator and simple pack indicator. When any of
these values change during the course of processing (i.e., the current value is different
than that of the previous record), then a transfer will be created, taking total quantities
and availability into consideration (see replenish_item(), below).

Program Flow
N/A

Shared Modules

REPLENISHMENT_SQL.GET_STORE_REVIEW_TIME:

Stored PL/SQL procedure for calculating the time between scheduled shipments to a
store from a warehouse. This time is used by GET_REPL_ORDER_QTY_SQL in its
calculations.

ITEMLOC_QUANTITY_SQL.GET_WH_CURRENT_AVAIL:

Stored PL/SQL procedure for calculating the amount of a given item available at a given
warehouse.

NEXT_TRANSFER_NUMBER:

Stored PL/SQL procedure used for getting the next valid transfer number for use in
creating new transfers.

RMS_ROUND_TO_PACKSIZE:

Shared C function (see rpl.h) used in rounding an item’s quantity up to the size of a
simple pack, or for rounding an order quantity up to a receivable pack size.

14 Oracle Retail Merchandising System

Data Structures

repl_info_struct:
Holds information fetched from the driving cursor.

store_struct:

Holds information about item-location combinations, used for ROQ and distribution
calculations.

alt_item_struct:

Holds information about alternate items associated with a given master item. Used in
distribution calculations.

tsthead_struct:
Used to buffer inserts to the TSFHEAD table.

tsfdetail_struct:
Used to buffer inserts and updates to the TSFDETAIL table.

item_loc_struct:

Used to buffer updates to the item-location tables (RAG_SKUS_ST, RAG_SKUS_WH,
WIN_STORE, WIN_WH, PACKWH).

repl_results_struct:
Used to buffer inserts to the REPL_RESULTS table.

domain_struct:
Used to cache forecasting domain information.

Function Level Description
General Controlling Functions

main()

The standard Retek main function, this calls init(), process() and final(), and posts
messages to the daily log files.

init()
Initializes the Restart-Recovery API and fetches system-level global variables.

driving_cursor()

Opens, fetches data from, or closes the driving cursor. This is a support function for
process().

process()

This function fetches records from the driving cursor (driving_cursor()), passes them to
replenish_item() to perform all appropriate actions, and commits work when appropriate
(post_all(), restart_commit()).

Operations Guide Addendum 15

replenish_item()

The controlling function for replenishment calculations. This function copies records out
of the driving cursor buffer (copy_repl_to_store()), and calculates the ROQ for each
record (get_repl_order_qty()). If a change in item, source warehouse, order control
indicator, or simple pack indicator has occurred, the appropriate functions are called to
calculate distribution of need over all appropriate alternate items and stores, and to place
the transfers. If item's ROQ is zero or negative, no mater simple pack indicator is on the
master item will be used for replenishment (build_pack_ratio(), calc_pack_dist(),
calc_sub_dist()).

place_tsf_line_item()

This function takes a item-location combination and a transfer quantity, and actually
builds the transfer line item (handle_tsf()). It then updates the item-location tables to
reflect the change in stock (handle_item_loc()), and writes a record to the reporting table
(handle_repl_results()) when appropriate.

final()
The standard Oracle Retail final function, this closes down the Restart-Recovery APIL.

Simple Pack Distribution and Transfer

build_pack_ratio()

Calculates distribution of the master item’s recommended order quantity (ROQ) over
simple packs. Simple packs are sellable and orderable packs containing only a single
item (e.g., six-pack of cola). Since the cost per item will always be less in a pack than
singularly, the item will only be ordered in terms of simple packs (if any are applicable).
This function tries to divide the total ROQ for the item among all applicable simple packs
by using the packs' relative sales history to build a distribution 'mask' containing ratios
used to calculate each pack's share of the ROQ. This mask is then adjusted to account for
availability (shortages of some packs, surpluses of others).

This function performs the following steps to optimally distribute the ROQ among any

and all simple packs:

= If a primary simple pack was defined for this item, that pack will be the only one
used to supply the item (add_primary_pack()).

= If no primary pack was defined, the program will build a list of all simple packs
associated with the item (get_multi_simple_pack()).

= Ifno appropriate simple packs are found, the item will be ordered as itself
(add_single_item()).

= The historical sales for all simple packs and the master item are added up.

= The ROQ is distributed among the simple packs by taking the ratio of each pack’s
historical sales to the total historical sales (first_ratio_pass()).

= If the first pass through the list did not account for the entire ROQ because of lack of
availability for some packs, the program must keep cycling through the items until it
has either distributed the ROQ among all available packs or there is simply no
available stock left to supply the need (next_ratio_pass()).

first_ratio_pass()

Performs initial distribution of an item's ROQ among its associated simple packs.
Calculates each pack's share as a ratio of its historical sales to the total historical sales
(adjust_pack_ratio()). The historical sales of the master item are added to those of the

16 Oracle Retail Merchandising System

simple pack with the lowest cost to give it a greater share of the ROQ. This is a support
function for build_pack_ratio().

next_ratio_pass()

This function readjusts the ratios of still-available packs to try and cover the share of
ROQ not yet allocated, still distributing the leftover ROQ proportionally by historical
sales. This is a support function for build_pack_ratio().

adjust_pack_ratio()

Sets a simple pack’s share of the ROQ to reflect its desirability (in terms of historical sales
patterns), adjusting for availability. This is a support function for first_ratio_pass() and
next_ratio_pass().

add_primary_pack()

If an item is flagged to have a primary simple pack, that pack is the only one that will be
transferred. This function adds the primary pack to the simple pack distribution array
and assigns it the full share of the ROQ. This is a support function for build_pack_ratio().

get_multi_simple_pack()

Finds all simple packs associated with a given master item and information about them
(historical sales, availability, etc). This is a support function for build_pack_ratio().

get_single_sales_hist()

Gets the historical sales of the master item at all stores supplied by the given warehouse
for use in calculating distribution among simple packs. Since the master item will only
be transferred as a pack, this sales amount will be added to that of the pack with the
lowest cost, increasing its share of the ROQ. This is a support function for
build_pack_ratio().

add_single_item()
If an item is flagged to use simple packs, but none are found, it will be ordered as itself.

This function adds the master item to the simple pack distribution structure and assigns
it the full share of the ROQ. This is a support function for build_pack_ratio().

calc_pack_dist()

Once each simple pack’s share of the item’s ROQ has been calculated in
build_pack_ratio(), this function calculates actual transfer quantities and places the
transfer line items (place_tsf_line_item()). The function loops through each pack in the
list, calculating the amount of the pack to transfer to each store (calc_pack_tsf_qty()). If
the total transfer quantity of the pack exceeds its availability at the warehouse, each store
will have its quantity reduced by one receivable pack until a reasonable number has been
reached. Finally, a transfer line item is placed for the pack to the store.

calc_pack_tsf_qty()

Calculate the actual quantity to transfer for a store based on an alternate item's share of
the ROQ at a store, adjusted for any applicable simple pack and/or shipping pack sizes.
This is a support function for calc_pack_dist().

Operations Guide Addendum 17

Substitute Item Distribution and Transfer

calc_sub_dist()

Calculate distribution of the ROQ over substitute items. Substitute items are items
(selected by the user beforehand) that can be requested in place of a given item to cover
situations where availability is too low or demand is too high.

After calling get_sub_items() to generate a list of appropriate items for transfer, the
function loops through every item-location combination and performs the following
steps to make sure that both need and availability are accounted for when placing
transfers from the warehouse to the stores:

= If the total availability of all items in the substitute list cannot cover the full need over
all stores, then the ratio of the total availability to the total ROQ is calculated. If total
availability can cover total ROQ, the ratio is set to 1.

= The initial transfer quantity for the item at the location is calculated as the store’s
need adjusted by the availability ratio, and rounded up to a receivable pack size.

= If there is not enough of the item available at the warehouse to fill the calculated
transfer quantity, the quantity will be decremented to an orderable amount.

= The transfer line item is placed by calling place_tsf_line_item().
= The store’s ROQ, total ROQ, availability of the item, and total availability are all

decremented by the amount just transferred to prepare for the next item-location’s
calculation.

get_sub_items()

Retrieves substitute items for the current master item and information about them from
the database (receiving pack size, availability, etc.). If the fill priority for this set of items
(SUB_ITEMS_HEAD fill_priority) is set to ‘M’aster, the master item will be the first one
in the list, and will be used first to fill need. If it is set to ‘S’ubstitute, the master item will
be placed at the tail end of the list. This is a support function calc_sub_dist().

add_master()

Adds the master item to the appropriate position in the substitutes list. This is a support
function for get_sub_items().

shift_subs()

If the fill priority for the substitutes list is set to ‘M’aster, the master item must be placed
at the head of the list. This function clears out the first position by moving each
substitute item ‘back” a slot. This is a support function for get_sub_items().

Database DML Handling

post_all()

The DML handling functions (handle_tsf(), handle_item_loc(), handle_repl_results())
normally only post information to the database tables when their respective buffers are
full. When a commit point is reached, however, all buffers must be flushed to ensure
restartability. This function forces all the buffers to be posted to the database.

handle_tsf()
Controls handling of inserts and updates to the Transfer tables.

18 Oracle Retail Merchandising System

add_tsfhead()

Deals with transfer header information. Either finds an appropriate transfer to add line
items to (matching to/from locations, department and freight code), or creates a new one.
passes back the transfer number for use in add_tsfdetail(). This is a supporting function
for handle_tsf().

add_tsfdetail()

Deals with transfer detail information. Either finds an appropriate record on the
TSFDETAIL table to add quantity to (matching transfer number and item), or creates a
new one if none is found. This is a supporting function for handle_tsf().

get_next_seq_no()
Every line item on a transfer has a unique identifier within that transfer. This function

gets the next sequence number for a new line item. This is a supporting function for
add_tsfdetail().

post_tsf()

Posts transfer information to the database. Inserts to TSFHEAD, inserts and updates to
TSFDETAIL. This is a supporting function for handle_tsf().

handle_item_loc()

Whenever a transfer is created or modified, the source location's reserved quantity and
the receiving location's expected quantity must be adjusted to reflect the new stock
status. This function controls the handling of updates to the RAG_SKUS_ST,
RAG_SKUS_WH, WIN_STORE, WIN_WH and PACKWH tables.

add_item_loc()

Adds records to arrays for update of expected and reserved quantities on the item-
location tables (RAG_SKUS_ST, RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH)
based on the appropriate item types. This is a support function for handle_item_loc().

post_item_loc()

Posts item-location stock status changes to the database (RAG_SKUS_ST,
RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH). This is a support function for
handle_item_loc().

handle_repl_results()
Controls posting of report information to the REPL_RESULTS table.

add_repl_results()

Adds records to the replenishment results structure for reporting. This is a supporting
function for handle_repl_results().

post_repl_results()

Posts replenishment information to the REPL_RESULTS table. This is a supporting
function for handle_repl_results().

update_review_date()

Updates the last_review_date column on the REPL_ITEM_LOC table to reflect the fact
that item-location combinations have just been evaluated.

Operations Guide Addendum 19

PL/SQL Stored Procedure Calls

get_wh_current_avail()

Gets the available quantity of a given item at a given warehouse. This function is a
wrapper for the ITEMLOC_QUANTITY_SQL.GET_WH_CURRENT_AVAIL stored
PL/SQL procedure.

next_transfer_number()

Gets the next transfer number in the Oracle stored sequence for creating new transfer
headers. This function is a wrapper for the NEXT_TRANSFER_NUMBER stored
procedure.

Domain Validation

Domain validation is done in the ociroq.c batch program.
Support Functions

copy_repl_to_store()

Copies a record from the structure holding rows from the driving cursor into a structure
holding item-location information for ROQ calculation, distribution, and transfer
placement.

reset_store_struct()

Resets summary variables in a store information structure to prepare it for the next set of
line items.

reset_alt_item_struct()

Resets summary variables in an alternate item structure to prepare it for the next set of
alternates.

Array Sizing

size_repl_info_struct()
Allocates memory to the structure used to buffer fetches from the driving cursor.

size_store_struct()
Allocates memory to the structure used to hold item-location level information.

size_alt_item_struct()

Allocates memory to the structure used to hold information about alternate items (either
simple packs or substitute items).

size_tsfhead_struct()
Allocates memory to the structure used to buffer inserts to the Transfer Header table.

size_tsfdetail_struct()

Allocates memory to structures used to buffer inserts and updates to the Transfer Detail
table.

20 Oracle Retail Merchandising System

size_item_loc_struct()

Allocates memory to structures used to buffer updates of the item-location tables
(RAG_SKUS_ST, RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH).

size_repl_results_struct()

Allocates memory to the structure used to buffer inserts to the Replenishment Results
table.

Database Interaction

Tables Selected From:

= RPL_NET_INVENTORY_TMP
= ITEM_SUPP_COUNTRY

= PACKHEAD

= PACKITEM

= PACKSTORE_HIST

= PERIOD

= RAG_SKUS_ST_HIST
= REPL_DAY

= REPL_ITEM_LOC

= STORE

= SUB_ITEMS_HEAD

= SUB_ITEMS_DETAIL
= SYSTEM_OPTIONS

= TSFDETAIL

= TSFHEAD

= WH

Tables Inserted To:

= REPL_RESULTS
= TSFDETAIL

= TSFHEAD

Tables Updated:

= ITEM_LOC_SOH
= REPL_ITEM_LOC
= TSFDETAIL

I/0 Specification
N/A

Technical Issues
N/A

Operations Guide Addendum 21

	Contents
	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Batch Designs
	Order Purge [ordprg]
	Functional Area
	Module Affected
	Design Overview
	Tables Affected
	Stored Procedures/Shared Modules (Maintainability)
	Program Flow
	Input Specifications
	Output Specifications
	Scheduling Considerations

	Reclassification of Item [reclsdly]
	Functional Area
	Module Affected
	Design Overview
	Stored Procedures/Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Function Level Description
	Scheduling Considerations
	Locking Strategy
	Restart/Recovery

	Item Requisition Extraction [reqext]
	Design Overview
	Scheduling Considerations
	Restart Recovery
	Program Flow
	Shared Modules
	Data Structures
	Function Level Description
	Database Interaction
	I/O Specification
	Technical Issues

