

Retek® Merchandising System
10.1.3

Addendum to
Operations Guide

2 Retek Merchandising System

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2003 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – ftmednld.pc ... 3

Functional Area ... 3

Module Affected ... 3

Design Overview... 3

Input Specifications... 4
‘Table-To-File’ ... 4
Driving Cursor:... 4

Output Specifications .. 4
Output Files .. 4

Function Level Description... 5

Scheduling Considerations .. 6

Restart/Recovery ... 6

Chapter 3 – POS Upload [posupld]....................................... 7

Design Overview... 7

Program Flow.. 8

Shared Modules... 8

Function Level Description... 12

Technical Issues .. 29

ii Retek Merchandising System

Chapter 4 – saexprdw.pc.. 31

Introduction ... 31
Purpose ... 31
Objectives ... 31

Functional Area ... 31
Design Overview .. 31

Program Flow.. 32

Global Variable Descriptions .. 33

Function Level Description... 34

Stored Procedures / Shared Modules (Maintainability) 50

Output Specifications .. 51
Output Files .. 51

Scheduling Considerations .. 51

Locking Strategy ... 51

Restart / Recovery ... 52

Performance .. 57

Security Considerations... 57

 Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 10.1.2 Operations
Guide contains updates to the following batch designs:

• Daily record deletion (dlyprg)

• Contract replenishment (cntrordb)

• Time hierarchy download (ftmednld)

• Upload stock count results (stkupld)

Chapter 2 – ftmednld.pc 3

Chapter 2 – ftmednld.pc

Functional Area
RDF Interfaces

Module Affected
ftmednld.pc (new) – Time Hierarchy Download

Design Overview
Currently, no extracts exist for the time dimension. So as not to have to maintain
the calendar in multiple places (i.e. RMS, RDF and RPP), a time dimension
extract is required that will download the RMS calendar, including the following
fields: year, half, quarter, month, week, day and date (in a yyyymmdd format).
The downloaded information would only use the 454 calendar format. The
download would include the entire calendar in the RMS. The extract must
account for a fiscal year that could be different than the standard year in the
calendar table. A field on the System Options table indicates the month in which
the fiscal year begins. For example, if the fiscal year begins on the 3rd month, the
following chart highlights how this impacts the extract (the following is a subset
of the data on the Calendar table):

First Day Year Month # of Weeks in
Month
25-OCT-99 1999 11 4
22-NOV-99 1999 12 5
27-DEC-99 2000 1 4
24-JAN-00 2000 2 4
21-FEB-00 2000 3 5
27-MAR-00 2000 4 4

If the fiscal year followed standard calendar, the first day of the year 2000 would
be 27-Dec-99. However, for the fiscal year which starts on the 3rd month, the
first day of the year 2000 would be 21-FEB-00. Therefore, 20-FEB-00 would be
extracted as 1999 (year), 2 (half), 4 (quarter), 12 (month), 4 (week), 7 (day),
20000220 (date). If the year followed the regular calendar, 20-FEB-00 would be
extracted as 2000 (year), 1 (half), 1 (quarter), 2 (month), 4 (week), 7 (day),
20000220 (date).

4 Retek Merchandising System

Input Specifications

‘Table-To-File’
This program fetches the earliest and latest dates from the calendar also
incorporating the start_of_half_month from the system_options table when
fetching the earliest date.

Driving Cursor:
NA

Output Specifications

Output Files
The file outputted will be named rmse_clndmstr.dat.

Output File Format:
Record
Name

Field Name Field Type Default Value Description

 Year Char(4) The 454 year

 Half Char(1) The 454 half of the year, valid
values are 1 or 2

 Quarter Char(1) The 454 quarter of the year, valid
values 1-4

 Month Char(2) The 454 month of the year, valid
values 1-12

 Week Char(2) The 454 week of the year, valid
values 1-53

 Day Char(1) The 454 day of the current week,
valid values 1-7

 Date Char(8) The date from which the 454 data
was derived, in YYYYMMDD
format

Chapter 2 – ftmednld.pc 5

Function Level Description
main():

The standard Retek main() function. Calls init(), process(), and final().

init():

Initialize restart recovery by calling retek_init() and set up the output file.

format_buffer():

Formats the string that will be used to write to the output file.

get_dates():

Mutates output arguments with first and last calendar date fetched from the
calendar.first_day field. First calendar date is determined by taking the first
record from the calendar table ordered in chronological order with respect to
first_date. The fetched record’s month_454 field must match the absolute value
of the system_options.start_of_half_month field. Last calendar date is
determined by fetching the first record while the calendar table records are
ordered in a descending order with respect to the first_day field.

increment_date()

Mutates input/output arguments to hold incremented date.

increment_454()

Mutates input/output arguments to hold incremented 454 date. Also fetches the
calendar.no_of_weeks field from the calendar table’s row whose first day field
corresponds to the present date.

To determine the 454 day, month, weeks, yearly weeks, quarter, half and year,
simply increment their current values by one if the corresponding date counters
justify the incrementation. If any one of them turns over reset them to 1. Note
that weeks turn over when the no_of_weeks value fetched from the calendar table
is no longer greater than or equal to the current week value.

init_454()

Initializes argument 454 date instance’s date fields.

write_fdetl()

Writes data from argument to output file.

process():

6 Retek Merchandising System

This function first makes a call to format_buffer(). Then allocates a date struct to
hold the 454 date. It then calls the init_454() function with a pointer to the 454
date struct as argument. It then fetches the earliest and latest values of
calendar.first_day into local variables by calling get_dates(). For each day in the
date range (including the earliest and latest dates), the current calendar and 454
dates are calculated by calling increment_date() and increment_454().

A record containing all of the 454 values for the date, in addition to the date itself
(in YYYYMMDD format) will then be written to the file by calling write_fdetl().

final():

Take care of file clean up and complete the restart recovery process by calling
retek_close().

Scheduling Considerations
This program can be run ad hoc.

Restart/Recovery
Due to the relatively small amount of processing this program performs, restart
recovery will not be used. The calls to retek_init() and retek_close() are used in
the program only for logging purposes (to prevent double-runs).

Chapter 3 – POS Upload [posupld] 7

Chapter 3 – POS Upload [posupld]

Design Overview
The purpose of this batch module is to process sales and return details from an
external point of sale system. The sales/return transactions will be validated
against Retek item/store relations to ensure the sale is valid, but this validation
process can be eliminated if the sales being passed in have already been screened
by sales auditing. The following common functions will be performed on each
sales/return record read from the input file:

• read sales/return transaction record

• lock associated record in RMS

• validate item sale

• check if VAT maintenance is required, if so determine the VAT amount for
the sale

• write all financial transactions for the sale and any relevant markdowns to the
stock ledger.

• post item/location/week sales to the relevant sales history tables

• if a late posting occurs in a previous week (i.e. not in the current week), if the
item for which the late posting occurred is forecastable, the
last_hist_export_date on the item_loc_soh table has to be updated to the end
of week date previous to the week of the late posting. This will result in the
sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the
external forecasting system.

Scheduling Constraints

Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of the
batch run during the POS polling cycle. It can be scheduled to run multiple times
throughout the day, as POS data becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

8 Retek Merchandising System

Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid item
sales transaction at a given store location. The location type will be inferred as a
store type and the item can be passed as an item or reference item type. The
logical unit of work will be defined as a number of these transaction records.
The commit_max_ctr field on the restart_control table will determine the number
of transactions that equal a logical unit of work.

The file records will be read in groups of numbers equal to the commit_max_ctr.
After all records in a given read are processed (or rejected either as a reject
record or a lock error record), the restart commit logic and restart file writing
logic will be called, and then the next group of file records will be read and
processed. The commit logic will save the current file pointer position in the
input file and any application image information (e.g. record and reject counters)
and commit all database transactions. The file writing logic will append the
temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space
usage, and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success,
non-fatal errors, and fatal errors. Item level validation will occur on all fields
before table processes are initiated. If all field-level validations return
successfully, inserts and updates will be allowed. If a non-fatal error is produced,
the remaining fields will be validated, but the record will be rejected and written
to the reject file or written to the lock file depending on the reject reason. If a
fatal error is returned, then file processing will end immediately. A restart will
be initiated from the file pointer position saved in the restart_bookmark string at
the time of the last commit point that was reached during file processing.

Program Flow
N/A

Shared Modules
validate_all_numeric: intrface library function.

validate_all_numeric_signed: intrface library function.

valid_date: intrface library function.

ORDER_ATTRIB_SQL.DELIVERY_MONTH: called from
consignment_data(), returns order delivery month into the :invoices variable.

VAT_SQL.GET_VAT_RATE: called from pack_check(), returns the composite
vat rate for a packitem.

Chapter 3 – POS Upload [posupld] 9

CURRENCY_SQL.CONVERT: returns the converted monetary amount from

Currency to currency.

NEW_ITEM_LOC: called from item_check() and pack_check(), creates a new
item if one doesn’t already exist for the item/location passed in.

UPDATE_SNAPSHOT_SQL.EXECUTE: called from update_snapshot(),
updates the stake_sku_loc and edi_daily_sales tables for late transactions. If the
item is a return, edi_daily_sales will not be updated.

NEXT_ORDER_NO: called from consignment_data(), returns the next available
generated order number.

STKLDGR_SQL.TRAN_DATA_INSERT: called from consignment_data(),
performs tran_data inserts (tran_type 20) for a consignment transaction.

Posupld and VAT:

There are three different data sources in POSUPLD.

1 the input file

2 RMS stock ledger tables (tran_data in this context)

3 RMS base tables (other that stock ledger)

Each of these data sources can be vat inclusive or vat exclusive.

There are five different system variables that are used to determine whether of
not the different inputs are vat inclusive or vat exclusive.

1 system_options.vat_ind (assume Y for this document)

2 system_options.class_level_vat_ind

3 system_options.stkldgr_vat_incl_retl_ind

4 class.class_vat_ind

5 store.vat_include_ind (this is retrieved from the table when RESA is on and
read from the input file when RESA is off)

10 Retek Merchandising System

Given the three different data source and all combinations of vat inclusive or vat
exclusive, we are left with the 8 potential combinations of inputs to POSUPLD.

Possible POSUPLD inputs
SCENARIO FILE RMS STOCK LEDGER

1 Y Y Y

2 Y Y N

3* Y N Y

4* Y N N

5 N Y Y

6 N Y N

7 N N Y

8 N N N

* Scenarios 3 and 4 are not possible – the file will never have vat when RMS
does not.

The combinations of system variables and the resulting scenarios:

System_options
Class_level_vat_ind

System_options
Stkldgr vat ind

Class
Class_vat_ind

Store
Vat_include_ind

Resulting
Scenario

Y Y Y Y - Ignored 1

Y Y Y N - Ignored 1

Y Y N Y - Ignored 7

Y Y N N - Ignored 7

Y N Y Y - Ignored 2

Y N Y N - Ignored 2

Y N N Y - Ignored 8

Y N N N - Ignored 8

N Y Y – Ignored Y 1

N Y Y – Ignored N 5

N Y N – Ignored Y 1

N Y N – Ignored N 5

N N Y – Ignored Y 2

N N Y – Ignored N 6

Chapter 3 – POS Upload [posupld] 11

System_options
Class_level_vat_ind

System_options
Stkldgr vat ind

Class
Class_vat_ind

Store
Vat_include_ind

Resulting
Scenario

N N N – Ignored Y 2

N N N – Ignored N 6

POSUPLD table writes

Scenario 1:

tran code 1 from file retail.

tran code 2 from file retail with vat removed.

retail from file is compared directly with price_hist for off retail check.

Scenario 2:

tran code 1 from file retail with vat removed.

tran code 2 not written.

retail from file is compared directly with price_hist for off retail check.

Scenario 5:

tran code 1 from file retail with vat added.

tran code 2 from file retail.

retail from file has vat added for compare with price_hist for off retail check.

Scenario 7:

tran code 1 from file retail with vat added.

tran code 2 from file retail.

retail from file is compared directly with price_hist for off retail check.

Scenario 8:

tran code 1 from file retail.

tran code 2 not written.

retail from file is compared directly with price_hist for off retail check.

12 Retek Merchandising System

Function Level Description
Declarations:

declare input structures: file header (only date and type) & detail (all fields)

init()

initialize restart recovery

open input file (posupld)

 - file should be specified as input parameter to program

fetch system variables, including the
SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND.

Retrieve all valid promotion types

declare final output filename (used in restart_write_file logic)

open reject file (as a temporary file for restart)

file should be specified as input parameter to program

open lock reject file (as a temporary file for restart)

- file should be specified as input parameter to program

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject
counter (g_l_rej_cnt), lock reject file counters (pl_lock_cnt, pl_lock_dtl_cnt),
store, transaction_date

if fresh start (l_file_start = 0)

read file header record (get_record)

write FHEAD to lock reject file

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘POSU’

else fseek to l_file_start location

validate location and date are valid

set restart variables to ones from restart image

Chapter 3 – POS Upload [posupld] 13

file_process()

This function will perform the primary processing for transaction records
retrieved from the input file. It will first perform validation on the THEAD
record that was fetched. If the transaction was found to be invalid, a record will
be written to the reject file, a non-fatal error will be returned, and the next
transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the
get_unit_retail() function. The retail retrieved from this function will be
compared with the actual retail sent in from the input file to determine any
discrepencies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being
processed until a TTAIL record is encountered. Perform validation on the
transaction detail records. If a detail record is found to be invalid, the entire
transaction will be written to the reject file, a non-fatal error will be returned, and
the next record will be fetched. If a valid promotion type (code for mix & match,
threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily_sales_discount table. If it is an
employee discount record write an employee discount record to tran_data.
Finally, accumulate the discount amounts for all transaction detail records for the
current transaction, unless the record was an employee discount.

Call the item_process() function to perform item specific processing. Once all
records have been processed, write FTAIL record to lock reject file and call
posting_and_restart to commit the final records processed since the last commit
and exit the function.

item_process()

Check to see if any validation failed for the item before this function was called.
If a lock error was found, call write_lock_rej() then return. If an other error was
found, call write_rej() and process_detail_error() then return.

Set the item sales type for the current transaction. Valid sales types are ‘R’egular
sales, ‘C’learance sales, and ‘P’romotional sales. These will be used when
populating the sales types for the item-location history tables. If an item is both
on promotion and clearance, the transaction will be written as a clearance
transaction.

If the system’s VAT indicator is turned to on, VAT processing will be
performed. The function vat_calc() will retrieve the vat rate and vat code for the
current item-location. The total sales including and excluding VAT will be
calculated for use in writing transaction data records. If any VAT errors occur,
the entire transaction will be written to the reject file, a non-fatal error will be
returned, and the next record will be fetched. A record will be written to
vat_history for the item, location, transaction date.

14 Retek Merchandising System

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost
sold, etc.). If VAT is turned on in the system, calculate exclusive and inclusive
VAT sales totals.

Calculate any promotional markdowns that may exist by calling the
calc_prom_totals() function. The markdown information calculated here will be
used when writing tran_data (tran_type 15) records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to it’s price_hist
record. Since we do not create price_hist records of type 9 (promotional retail
change) when the system_options.multi_prom_ind = ‘Y’, we do not know what
the promotional retail for this item is. Therefore, we will take the total sales
reported from the header record plus the total of sales discounts reported in the
TDETL records, divided by the total sales quantity for the item to calculate its
unit retail. If the system_options.multi_prom_ind = ‘N’, we can do a comparison
of the price_hist record and the unit retail (total retail / total sales) inputted from
the POS file. Any difference using either method will write to the
daily_sales_discount table with a promotion type of ‘in store’ and tran_data
(tran_type 15) If the transaction is a return, no daily_sales_discount record will
be written, and tran_data records will be written as opposite of what they were
sold as (i.e. if the sale was written as a markup, which would be written as a
negative retail with a tran_data 15, the return would be written as a 15 with a
positive retail).

If the item is a packitem and the transaction is a Sale, the process_pack() function
will update the last_hist_export_date field on the item_loc_soh table to the
transaction date and the item_loc_hist table will be updated with the transaction
information.

If the item currently being processed is a packitem, calculate the retail markdown
the item takes for being included in the pack and write a transaction data record
as a promotional markdown. This markdown is calculated by comparing the
retail contribution of the packitem’s component item to the packitem to the
component item’s regular retail found on the price_hist table. The retail
contribution for a component item is calculated by taking the component item’s
unit retail from price_hist, divided by the total retail of all component items in
the packitem, and multiplying the packitem’s unit retail. So if the retail
contribution of a component item within packitem A is $10, and the same
component item’s price_hist record has a retail of $14, and there is only one
packitem sold, and this component item has a quantity of one, a tran_data

Record (tran_type 15) will be written for $4 (assume no vat is used).

Chapter 3 – POS Upload [posupld] 15

Write transaction data records for sales and returns. If the transaction is a sale,
write a tran_data record with a transaction code of 1 with the total sales. If the
system VAT indicator is on and the system_options.stkldgr_vat_incl_retl_ind is
on, write a tran_data record with a transaction code of 2 for VAT exclusive sales.
If the transaction is a return, write a tran_data record (tran_type 1) with negative
quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data
record (tran_type 2) and negative quantities and retails for the VAT exclusive
return. Also, write a tran_data record with a transaction code of 4 for the total
return. Any tran_data record that is written should be either VAT exclusive or
VAT inclusive, depending on the system_options.stkldgr_vat_incl_retl_ind. If it
is set to ‘Y’, all tran_data retails should be VAT inclusive. If it is set to ‘N’, all
tran_data retails should be VAT exclusive. When writing tran_data records for
packitems, always break them down to the packitem level, writing the retail as
the packitem multiplied by the component item’s price ratio. The packitem itself
should never be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date) and it is not a
drop shipment, call update_snapshot() to update the stake_sku_loc and
edi_daily_sales tables. If the transaction is current, update the edi_daily_sales
table only (stake_sku_loc will be updated in a batch program later down the
stream). The edi_daily_sales table should only be updated if the items supplier
edi sales report frequency = ‘D’.

If VAT is turned on in the system, write a record to the vat_history table to
record the vat amount applied to the transaction. The VAT amount is calculated
by taking the sales including VAT minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are Sale
transactions. Do not update for returns. Also, update stock count on the item-
location table for Sales and Returns unless the item is on consignment or is drop
shipped.

If the dropship indicator is set to ‘Y’, then the sale is drop shipped and there is no
update for stock on hand. Drop shipments are used for sales at a virtual or
physical location where an order is taken from a customer, but the goods are
shipped directly from the vendor to the customer (not via any store or warehouse
owned by the retailer). If an item is used only for drop shipments and there is no
stock on hand before or after the cost price is changed, the weighted average cost
is never updated when average cost accounting method is used. The average cost
will be the initial cost price at the time the item is set up. Over a period of time,
under average cost accounting method, the cost price used to charge these items
will drift away from the actual supplier cost. See
SYSTEM_OPTIONS.STD_AV_IND for further details on cost accounting
method.

16 Retek Merchandising System

If an off_retail amount was identified for the item/location, call the
write_off_retail_markdowns() function to write tran_data records (tran_type 15)
to record the difference. If the system_options.multi_prom_ind = ‘N’ and the
item is on promotion, or if the system_options.multi_prom_ind = ‘Y’ and the
TDETL total discount amount is greater than zero, write a promotional
markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion
number in order to record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record
with tran_code 60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be
written. This record is used to balance the stock ledger, it accounts for the
amount of the item that was wasted in processing.

process_detail_error()

This function writes a record to the load_err table for every non-fatal error that
occurs.

set_counters()

Depending on the action passed into this function, it will either set a savepoint
and store the values of counters or rollback a savepoint and reset the values of
certain counters back to where they were originally set. This function is called
when a non-fatal error occurs in the item_process() function to rollback and
changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding
VAT, depending upon the store.vat_include_ind, system_options.vat_ind,
system_options.multi_prom_ind, and the
system_options.stkldgr_vat_incl_retl_ind.

calc_prom_totals()

This function will set promotional markdown values including and excluding
VAT, depending upon the system_options.multi_prom_ind and the
system_options.stkldgr_vat_incl_retl_ind. If the multi_prom_ind is on, the
promotional markdown is the sum of the TDETL discount amounts. If the
multi_prom_ind is off, the promotional markdown is the difference between the
price_hist record with a tran_code of 0,4,8,11 and the price_hist record with a
tran_code of 9 multiplied by the total sales quantity. Also, the tran_data old and
new retail fields are only written if the multi_prom_ind is off.

process_sales_and_returns()

Chapter 3 – POS Upload [posupld] 17

If the item is on consignment and not a packitem, the consignment_data()
function will be called to perform consignment processing. The function
write_tran will be called to write a tran_data record with a tran_type 1 (always
written), a tran_type 2 (if the system_options.stkldgr_vat_incl_retl_ind = Y), and
a tran_type 4 (if the transaction was a return). If the transaction is a return, any
tran_data records with tran_types of 1 and 2 will be written with negative retails.
Also the update_price_hist() function will be called to update the most recent
price_hist record.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to
perform a commit the records to the database and restart_file_write to append
temporary files to output files.

validate_FHEAD()

Do standard string validations on input fields. This includes null padding fields,
checking that numeric fields are all numeric, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true. This function will also validate the store location exists.

If the sales audit indicator is on currency and vat information will be provided in
the file that has already been validated.

validate_THEAD()

Do standard string validations on input fields. This includes null padding fields,
left shifting fields, checking that numeric fields are all numeric, placing decimal
in all quantity and value fields, and validating the date field. If any errors arise
out of these validation checks, return non-fatal error then set non-fatal error flag
to true. This function will also validate the reference item exists.

If a reference item is passed in from the input file, retrieve the item for the
reference item. Once the item is an item, retrieve the tranasaction and item level
values, pack indicator, department, class, subclass, waste_type, waste_pct. Once
this information is retrieved, check that the item/location relationship exists for
the appropriate item type and call check_item_lock() and/or check_pack_lock
depending on item type to lock this item’s ITEM_LOC record.

If the sale audit indicator is ‘Y’ on system_options, the item will be a item and
the dept, class, subclass, item level, transaction level and pack_ind will be
included in the file. The UOM is assumed to already by have been converted to
the standard UOM by Sales Audit.

If the Sales Audit indicator is 'N' on system_options, the UOM at which the item
was sold will be compared with the items standard UOM value. If they are
different, the quantity will be converted to the standard UOM amount. The ratio
of the difference will also be computed and saved for use by validate_TDETL().

18 Retek Merchandising System

If an item is a wastage item set the wastage qty. The qty sent in the file shows
the weight of the item sold. The wastage qty is the qty that was processed to
come up with the qty sold. So if .99 of an item was sold, and item wastage
percent is 10. The wastage qty is .99 / (1-.10) = 1.1 The wastage qty will be
used through out the program except when writing tran_data records(see
write_wastage_markdown) and daily_sales_discount records which will uses the
processed qty from the file.

Class-level vat functionality is addressed here. The c_ get_class_vat cursor is
fetched into the pi_vat_store_include_ind variable if vat is tracked at the class
level in RMS (SYSTEM_OPTIONS.VAT_IND = ‘Y’ and
SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND = ‘Y’). The vat inclusion
indicator passed in the input file is overwritten with the vat indicator for the class
passed in the THEAD record of the input file.

Check_item_lock

This function will lock this item/location’s record in the RMS item_loc table.
Returns a lock error if lock failed due to contention, otherwise returns 0 if no
errors occurred, or fatal if other errors occurred.

Check_pack_lock

This function will call check_item_lock for every component item of the current
pack item.

validate_TDETL

This function will perform validation on the TDETL records passed into the
program. The standard string validation on these fields includes null padding
fields, left shifting fields, checking that numeric fields are all numeric, placing
decimal in all quantity and value fields, and validating the date field. If any
errors arise out of these validation checks, return non-fatal error then set non-
fatal error flag to true.

The quantity is multiplied by the UOM ratio determined in validate_THEAD().

If a promotional transaction type is passed in, verify it is valid. If a promotional
transaction type is passed in, but it is not valid, return non-fatal error then set
non-fatal error flag to true. If a promotion number is passed in, validate it by
checking the promhead table and set the promotional indicator to True.

If the item is a wastage item set the tdetl wastage qty. This is done the same way
as setting the THEAD wastage qty.

New_item_loc

This function creates a new store item relationship for items. It is called by
item_check.

item_store_cursors

Chapter 3 – POS Upload [posupld] 19

This function checks the item_loc for the item / store combination. It is called by
the item_check function.

item_check

This function verifies the fashion item/location relationship exists. It is only
called when the item being processed is a fashion item. If the item/location
relationship does not exist, it is created and a record is written to the Invalid
item/location output file.

New_pack_loc

This function creates a new store item relationship for pack items. It is called by
pack_check.

pack_check

This function verifies the pack item/location relationship exists and retrieves the
component items for the packitem. It is only called when the item being
processed is a packitem. The component item, system indicator, department,
class, subclass, cost, retail, price_hist retail, and component item quantity are
fetched. If the packitem/location relationship does not exist, it is created for the
Packitem and all of its components and a record is written to the Invalid
item/location output file for the packitem.

The component items price ratios are also calculated. This indicates the retail
contribution the component item gives towards the unit retail of the packitem.
This ratio is calculated by taking the price_hist unit retail of the component
divided by the total price_hist retail of all the component items for the packitem.
Below is an example of how this ratio is calculated:

Unit Retail Qty Retail Calculation Ratio
packitem A $60
 item 1 $15 2 $30 ($30/$90) * $60 .3333
 item 2 $10 6 $60 ($60/$90) * $60 .6667

get_unit_retail

This function retrieves the current unit retail and the retail price of the item at the
time of the sale from price_hist for the item/location being processed. If a
tran_code of 8 is returned, the item is on clearance. The function will always
return retail that are vat inclusive. If retail is stored in RMS with out vat
(system_options.class_level_vat_ind = Y and class.class_vat_ind = Y) it will add
vat to the retails.

process_packitems

20 Retek Merchandising System

This function performs processing for the component items of the packitems.
This would include updates/inserts into stake_item_loc, edi_daily_sales,
item_loc, item_loc_hist, vat_history_data, and tran_data. All of these tables do
not write records at the packitem level, but at the component item level. When
figuring retails to write to these tables, the component items price ratio should
always be applied against the packitems retail to come up with the correct retail
for each component item. If an employee discount TDETL record has been
encountered, an tran_data record with tran_code 60 will be written for each
component item.

process_daily_sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL
record that has a promotional transaction type except employee discounts.
Employee discount records are not written to daily_sales_discount, they are put
on tran_data with a tran_code of 60. When employee discount records are
encountered, values are set for the tran_data insert and the discount amount is
added to the total sales value. This is done so employee discounts do figure into
the promotional and in store calculations. When the multi_prom_ind is on all
promotion types except employee discount will be ignored.

write_in_store()

This function will handle record sent in as ‘is store’ discounts amounts. It will
call check_daily_exist and daily_sales_insert_update.

Remove_stklgdr_vat()

This fuction will remove vat from 3 fields after the dailiy_sales_discount
processing is complete. The variables od_off_retail_amt, od_new_retail, and
od_old_retail are stripped of vat by calling vat_convert if the stock ledger does
not contain vat.

Write_off_retail()

This function will calculate discrepancies between the amount sold for an item,
and the amount it should have sold for (price_hist record). If these amounts are
not in balance, a record is written to the daily_sales_discount table with a
prom_type of ‘in store’ for reporting.

Daily_sales_exist()

This function will check the daily_sales_discount for the existence of a record
matching the input parameters

Daily_sales_insert_update()

This function is called by write_off_retail, write_in_store, and
process_daily_sales_discount. It performs the actual insert or fills a update array
for the daily_sales_discount table.

Chapter 3 – POS Upload [posupld] 21

write_off_retail_markdown()

The write_tran_data() function will be called to write the off_retail markdown
unless the item is on consignment or the off_retail amount is zero.

write_promotional_markdown()

The write_tran_data() function will be called to write the promotional markdown
unless the item multi_prom_ind is off and the transaction is a return, the item is
on consignment, or the promotional markdown amount is zero. The tran_data
new and old retails are only written if the multi_prom_ind is off.

Write_wastage_markdown()

This function will call to the write_tran_data() function if the item is a wastage
item. A wastage item is an item that loses some of its weight (value) in
processing. For example, a 1 pound chicken is broiled and loses 10% of its
weight. The item is sold at .9 pounds, but in reality selling that .9 pounds of
chicken removes 1 pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was
lost due to wastage in processing.

vat_convert()

This function will either add or remove vat from a retail value.

process_items()

Update the stock on hand on the item_loc_soh table for Sales and Returns unless
the item is on consignment or is drop shipped. Also, update the item_loc_hist
table for Sale transactions. Do not update for returns.

process_pack()

Update the stock on hand on the item_loc_soh table for Sales and Returns. Also,
update the item_loc_hist table for Sale transactions. Do not update for returns.

write_tran_data()

Writes a record to the tran_data insert array.

Write_edi_daily_sales()

Writes a record to edi_daily_sales.

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the
stake_sku_loc and edi_daily_sales tables for late transactions.

write_vat_err_message()

22 Retek Merchandising System

This function will create and write to the VAT output file when an item does not
have VAT infomation setup when it is expected.

vat_history_data()

Writes a record to the vat_history table.

consignment_data()

This function will perform processing for consignment items. Consignment
items are such when the item_supplier table has a consignment rate applied to it.
Consignment is when a retailer will allow a third party to operate under its
umbrella and be paid for what it sells. An example of consignment may be a
mass-merchant who consigns the magazine section of their store to a magazine
vendor. The magazine vendor would have control over keeping the product
stocked within the store. When a magazine is sold, the retailer would get paid for
the magazine, then the retailer would essentially buy the magazine from the
vendor. The consignment cost paid by the retailer to the vendor is the VAT-
inclusive retail multiplied by the consignment rate divided by 100. So if the
VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier
with an orig_ind = 4 (consignment). Consignment type invoices will be created
for all PO’s created for consignments

Also a tran_data record (tran_type 20) will be written to record the consignment
transaction to the stock ledger. The retails should be VAT inclusive or exclusive,
depending on the system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions: check_order(), order_head(), invc_data(), to
handle the order creation-update and the invoice creation-update.

get_prom_type_info()

This function will retrieve all valid promotional transaction types from the
code_detail table. Valid promotional transaction types are those where the
code_type = ‘PRMT’.

fill_packitem_array()

This function will retrieve the component items for a packitem with the
appropriate item level information into an array.

Write_lock_rej

This function will write the current record set from the input file (THEAD-
{TDETL}-TTAIL) that was rejected due to lock error to the lock file.

write_item_store_report()

Chapter 3 – POS Upload [posupld] 23

This function will create and write to the Invalid item/location output file when
an item does not exist at a location it was sold/returned at.

ON Fatal Error

• Exit Function with -1 return code

ON Non-Fatal Error

• write out rejected record to the reject file using write_to_rej_file functionby
passing pointer to detail record structure, number of bytes in structure, and
reject file pointer, or use the write_lock_rej() function to write to the lock
reject file in case the non-fatal error was a lock error,

Input File

The input file should be accepted as a runtime parameter at the command line.
All number fields with the number(x,4) format assume 4 implied decimal
included in the total length of ‘x’.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Vat include indicator, Vat region, Currency
code, and Currency retail decimals. When the sa_ind is ‘N’ these values will not
be used and retrieved from the system.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Item Level, Transaction Level, Pack_ind, Dept,
Class, and Subclass. When the sa_ind is ‘N’ these values will not be used and
retrieved from the system. Also, the UOM at which the item was sold will been
converted to the standard UOM for the item. When the sa_ind is on, all items are
assumed to be items.

Record
Name

Field Name Field Type Default Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed
by input file.

 File Type
Definition

Char(4) POSU Identifies file as
‘POS Upload’

 File Create
Date

Char(14) create date date file was
written by
external system

 Location
Number

Number(10) specified by
external

Store identifier

24 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

system

 Vat include
indicator

Char(1) Determines
whether or not
the store stores
values including
vat. Not required
but populated by
Retek sales audit

 Vat region Number(4) Vat region the
given location is
in. Not required
but populated by
Retek sales audit

 Currency code Char(3) Currency of the
given location.
Not required but
populated by
Retek sales audit

 Currency retail
decimals

Number(1) Number of
decimals
supported by
given currency
for retails. Not
required but
populated by
Retek sales audit

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed
by input file.

 Transaction
Date

Char(14) transaction
date

date sale/return
transaction was
processed at the
POS

 Item Type Char(3) REF

ITM

item type will be
represented as a
REF or ITM

 Item Value Char(25) item identifier the id number of
an ITM or REF

 Dept Number(4) Item’s dept Dept of item sold
or returned. Not

Chapter 3 – POS Upload [posupld] 25

Record
Name

Field Name Field Type Default Value Description

required but
populated by
Retek sales audit

 Class Number(4) Item’s class Class of item sold
or returned. Not
required but
populated by
Retek sales audit

 Subclass Number(4) Item’s
subclass

Subclass of item
sold or returned.
Not required but
populated by
Retek sales audit

 Pack Indicator Char(1) Item's pack
indicator

Pack indicator of
item sold or
returned. Not
required but
populated by
Retek sales audit

 Item level Number(1) Item's item
level

Item level of item
sold or returned.
Not required but
populated by
Retek sales audit

 Tran level Number(1) Item's tran
level

Tran level of item
sold or returned.
Not required but
populated by
Retek sales audit

 Wastage Type Char(6) Item’s
wastage type

Wastage type of
item sold or
returned. Not
required but
populated by
Retek sales audit

 Wastage
Percent

Number(12) Item’s
wastage
percent

Wastage percent
of item sold or
returned. Not
required but
populated by
Retek sales audit

 Transaction
Type

Char(1) ‘S’ – sales

‘R’ - return

Transaction type
code to specify
whether

26 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

transaction is a
sale or a return

 Drop Shipment
Indicator

Char(1) 'Y'

'N'

Indicates whether
the transaction is
a drop shipment
or not. If it is a
drop shipment,
indicator will be
'Y'. This field is
not required, but
will be defaulted
to 'N' if blank.

 Total Sales
Quantity

Number(12) Number of units
sold at a
particular
location with 4
implied decimal
places.

 Selling UOM Char(4) UOM at which
this item was
sold.

 Sales Sign Char(1) ‘P’ - positive

‘N’ - negative

Determines if the
Total Sales
Quantity and
Total Sales Value
are positive or
negative.

 Total Sales
Value

Number(20)

 Sales value, net
sales value of
goods
sold/returned
with 4 implied
decimal places.

 Last Modified
Date

Char(14) For VBO future
use

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed
by input file.

 Promotional
Tran Type

Char(6) promotion
type – valid
values see

code for
promotional type
from code_detail,

Chapter 3 – POS Upload [posupld] 27

Record
Name

Field Name Field Type Default Value Description

code_detail
table.

code_type =
‘PRMT’

 Promotion
Number

Number(10) promotion
number

promotion
number from the
RMS

 Sales Quantity Number(12) number of units
sold in this prom
type with 4
implied decimal
places.

 Sales Value Number(20) value of units
sold in this prom
type with 4
implied decimal
places.

 Discount Value Number(20) Value of discount
given in this
prom type with 4
implied decimal
places.

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Char(10) specified by
external
system

ID of current line
being processed
by input file.

 Transaction
Count

Number(6) specified by
external
system

Number of
TDETL records
in this transaction
set

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external
system

ID of current line
being processed
by input file.

 File Record
Counter

Number(10) Number of
records/transactio
ns processed in
current file (only
records between
head & tail)

28 Retek Merchandising System

Chapter 3 – POS Upload [posupld] 29

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item
that does not exist at the processed location. In the event this happens, the
relationship will be created during the program execution and processing will
continue with the item and store number being written to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate
when one is expected (e.g. the system_options.vat_ind is on). In this event, a
non-fatal error will occur against the transaction and a record will be written to
this file and the Reject file.

Reject File:

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will be created by the interface library routines and the detail records will be
created using the write_to_rej_file function. A reject line counter will be kept in
the program and is required to ensure that the file line count in the trailer record
matches the number of rejected records. A reject file will be created in all cases.
If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer
should be declared. The reject file pointer will identify the temporary reject file.
This is for the purposes of restart recovery. When a commit event takes place,
the restart_write_function should be called (passing the file pointer, the
temporary name and the final name). This will append all of the information that
has been written to the temp file since the last commit to the final file. Therefore,
in the event of a restart, the reject file will be in synch with the input file.

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical Issues
Assumption: Variable weight UPCs are expected to already be converted to a
VPLU with the appropriate quantity.

Chapter 4 – saexprdw.pc 31

Chapter 4 – saexprdw.pc

Introduction

Purpose
The Batch Detailed Design is a thorough definition of a single batch program /
module within one functional area. The documented information is derived from
this functional area’s Technical Design.

Objectives
This Batch Detailed Design must:

• Document specific functions for a single batch program,

• Enable project team review, validation and consensus regarding the
individual batch program’s scope,

• Document the batch program in preparation for and in response to
prototyping, and

• Prepare for and provide a defined and documented framework in which to
perform Development Phase activities.

Functional Area

Design Overview
The purpose of this batch module is to fetch all corrected sale and return
transactions that do not have RDW errors from the Retek Sales Audit (ReSA)
database tables for transmission to the Retek Data Warehouse (RDW). The data
will be sent at the store day level. If the transaction has a status of Deleted and it
has previously been transmitted, a reversal of the transaction will be sent.

Four files of type RDWT, RDWF, RDWS and RDWC will be created for each
store_day. See the file Interface File – SA to RDW.doc for more information.

RDW requires that the employee id be sent. saexprdw is expected to do this by
mapping a cashier ID to an employee ID using the sa_store_emp table.
However, the latter may not always be populated and thus, we send a blank field
to RDW in this case.

32 Retek Merchandising System

Operations Performed Table

Select Insert Update Delete

sa_store_day Yes No No No

sa_export_log Yes No Yes No

sa_error Yes No No No

sa_error_impact Yes No No No

sa_tran_head Yes No No No

sa_tran_item Yes No No No

sa_tran_disc Yes No No No

sa_tran_tender Yes No No No

sa_customer Yes No No No

sa_tran_head_rev Yes No No No

sa_tran_item_rev Yes No No No

sa_tran_disc_rev Yes No No No

sa_tran_tender_rev Yes No No No

sa_store_emp Yes No No No

sa_total Yes No No No

sa_exported Yes Yes No No

sa_exported_rev Yes No No No

Program Flow
This is a detailed diagram (structure chart type or function level text) that will
define all functions performed in the module. This section will require the
designer to specify the program flow and activities performed in each code
segment without detailing SQL.

Thoroughly analyze the module with the sole objective of achieving the most
efficient implementation. Uncover parallelism inherent in the application.
Identify functional modules executed concurrently and the dependencies between
these modules. In addition, identify standard computational modules, scope,
performance, scheduling constraints, common functions, maintainability, and
overall module integrity.

This should provide an overall picture of the LUW performed by the batch
module, derived from the Technical Design.

Chapter 4 – saexprdw.pc 33

Global Variable Descriptions
Gobal Variable Description

pl_commit_max_ctr Commit max counter used for array fetches.

ps_sysdate Current sysdate value from the database.

ps_store Store ID from store/day driving cursor.

ps_business_date Business date from store/day driving cursor.

ps_temp_rdwtfile Temporary file name to be used for the RDWT file.

ps_temp_rdwffile Temporary file name to be used for the RDWF file.

ps_temp_rdwsfile Temporary file name to be used for the RDWS file.

ps_temp_rdwcfile Temporary file name to be used for the RDWC file.

pi_curtrat Current transactions transaction type converted to an enum.

pi_tdetl_count TDETL record count for TTAIL record in the RDWT file.

ps_total_sales_value Total sales value of a TITEM record minus any discounts from
associated IDISC records.

pl_rdwc_line_ctr Line counter for the RDWC file.

pl_rdwf_line_ctr Line counter for the RDWF file.

pl_rdws_line_ctr Line counter for the RDWS file.

pl_rdwt_line_ctr Line counter for the RDWT file.

RDWFFile File pointer for the RDWF file.

RDWTFile File pointer for the RDWT file.

RDWSFile File pointer for the RDWS file.

RDWCFile File pointer for the RDWC file.

pi_num_locks_not_released Counter for the number of store/day locks that could not be
released.

pi_num_non_fatal_errors Counter for the number of non-fatal errors encountered:

Store/day lock could not be release.

An unexpected total was encountered.

Could not translate a cashier POS ID to an employee ID.

Could not translate a salesperson POS ID to an employee ID.

34 Retek Merchandising System

Function Level Description
main()

int argc

char *argv[]

Check command line for required arguments.

Call LOGON to connect to the database.

Call Init to initialize the program.

Call process to export the available RDW data.

Report unlocking errors.

Report non-fatal errors.

Call final to cleanup.

init()

No arguments

This function initializes Restart recovery.

Get the value of sa_system_options.unit_of_work by calling the library function
fetchSaSystemOptions.

Initialize Oracle Number functions by calling OraNumInit.

Get temporary filenames to use for generating the output files. Store these names
in ps_temp_rdwtfile, ps_temp_rdwffile, ps_temp_rdwsfile, and
ps_temp_rdwcfile.

process()

No arguments

Picks a store/day to be processed by fetching using the first driving cursor. Save
the store ID in ps_store and the date in ps_business_date.

Attempt to lock the store/day with a call to get_lock. If this fails, go on to the
next store/day.

Open RDWTFile, RDWSFile, RDWCFile and RDWFile, using temporary names
generated in init.

Chapter 4 – saexprdw.pc 35

Set pl_rdwc_line_ctr, pl_rdwf_line_ctr, pl_rdws_line_ctr and pl_rdwt_line_ctr to
0.

Call fetchSysDate to get the current date/time. Store it in ps_sysdate.

Call WrRDWFHead to write a RDWT FHEAD record to the RDWT file.

Call WrRDWFHead to write a RDWF FHEAD record to the RDWF file.

Call processStoreDay to process the store/days transactions.

Call WrOutputData to write the data in memory to the appropriate file.

Increment pl_rdwt_line_ctr.

Call WrRDWFTail to write a RDWT FTAIL record to the RDWT file.

Call WrRDWFTail to write a RDWF FTAIL record to the RDWF file.

Call processStoreDayTotals to process all totals for a given store day.

Update the status in sa_export_log to Complete by calling the library function
markStoreDayExported.

Close the RDWTFile, RDWFFile, RDWSFile and RDWCFile and rename them
appropriately (file-type_store_business-date_current-datetime).

Call to release_lock and go on to the next store/day. This function commits as a
side effect, thus committing the changes to the database.

final()

int ii_process_ret

Remove the temporary file, if we failed to finish (ii_proces_ret is not OK).

Call retek_close.

Call retek_refresh_thread.

processStoreDay()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

For each transaction from the store/day being processed, get the following
information from the second driving cursor and call processTransHead with the
information.

36 Retek Merchandising System

Table Column Description

Sa_tran_head Tran_seq_no

Sa_tran_head Rev_no

Sa_tran_head Tran_datetime Format YYYYMMDDHH24MISS

Sa_tran_head Tran_no

Sa_tran_head Register

Sa_store_emp Emp_id Pos_id = cashier via an outer join separate from salesperson

Sa_store_emp Emp_id Pos_id = salesperson via an outer join separate from cashier

Sa_customer Cust_id_type via an outer join

Sa_customer Cust_id via an outer join

Sa_tran_head Reason_code

Sa_tran_head Tran_type

Sa_tran_head Sub_tran_type

Sa_tran_head Orig_tran_no

Sa_tran_head Orig_reg_no

Sa_tran_head Ref_no1

Sa_tran_head Ref_no2

Sa_tran_head Ref_no3

Sa_tran_head Ref_no4

Sa_tran_head Vendor_no

Sa_tran_head Status

Sa_tran_head Value ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of value.

Sa_tran_head Value Absolute value multiplied by 10000.

 Transaction Sign ‘SAFD_P’ if the transaction has not been deleted (status !=
‘SAST_D’) and there are no errors and it has not been
exported.

‘SAFD_N’ if the transaction has been deleted (status =
‘SAST_D’) and it has been exported after being exported.

Sa_exported Exp_datetime Only for transactions with a Transaction Sign of ‘SAFD_N’.

Format YYYYMMDDHH24MISS

Calls the library function markTransactionExported to insert a record into
sa_exported for each transaction.

processTransHead()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

Chapter 4 – saexprdw.pc 37

struct pt_sa_tran_head ir_sa_tran_head

If the transaction status is deleted (SAST_D) and it has been previously exported,
then call retrieveTransHeadRev. Also, if the revision number of the transaction is
not 1, then a previous revision may have been exported; call
retrieveTransHeadRev to get the exported revision (for full disclosure purposes).

Call retrieveTransItem, retrieveTransDisc and retrieveTransTender to obtain the
items, discounts and tenders for the transaction, both Positive transactions and
Negative ones.

Call saveData for both the Positive and Negative transactions to write the
information into the RDW files.

retrieveTransHeadRev()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

struct pt_sa_tran_head *or_sa_tran_head_rev

This function gets the sa_tran_head_rev record that needs to be processed. A
record needs to be processed if it has been previously exported.

Table Column Description

Sa_tran_head_rev Tran_seq_no

Sa_tran_head_rev Rev_no

Sa_tran_head_rev Tran_datetime Format YYYYMMDDHH24MISS

Sa_tran_head_rev Tran_no

Sa_tran_head_rev Register

Sa_store_emp Emp_id Pos_id = cashier via an outer join separate from salesperson

Sa_store_emp Emp_id Pos_id = salesperson via an outer join separate from cashier

Sa_customer Cust_id_type via an outer join

Sa_customer Cust_id via an outer join

Sa_tran_head_rev Reason_code

Sa_tran_head_rev Tran_type

Sa_tran_head_rev Sub_tran_type

Sa_tran_head_rev Orig_tran_no

Sa_tran_head_rev Orig_reg_no

Sa_tran_head_rev Ref_no1

Sa_tran_head_rev Ref_no2

Sa_tran_head_rev Ref_no3

38 Retek Merchandising System

Table Column Description

Sa_tran_head_rev Ref_no4

Sa_tran_head_rev Vendor_no

Sa_tran_head_rev Status

Sa_tran_head_rev Value ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of value.

Sa_tran_head_rev Value Absolute value multiplied by 10000.

 Transaction
Sign

‘SAFD_N’

Sa_exported_rev Exp_datetime Only for transactions with a Transaction Sign of ‘SAFD_N’.

Format YYYYMMDDHH24MISS

If no data is found, than set or_sa_tran_head_rev->s_rev_no to –1.

retrieveTransItem()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_item

struct pt_sa_tran_item **or_sa_tran_item

This function gets all sa_tran_item records or sa_tran_item_rev (if is_rev_no is
not –1) that need to be processed for a tran_seq_no.

Table Column Description

Sa_tran_item Tran_seq_no

Sa_tran_item Item_seq_no

Sa_tran_item Item_status

Sa_tran_item Item

Sa_tran_item Ref_item

Sa_tran_item Non_merch_item

Sa_tran_item Voucher_no

Sa_tran_item Dept

Sa_tran_item Class

Sa_tran_item Subclass

Sa_tran_item Standard_qty ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of qty.

Sa_tran_item Standard_qty Absolute value multiplied by 10000.

Chapter 4 – saexprdw.pc 39

Table Column Description

Sa_tran_item Standard_unit_retail ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of
unit_retail.

Sa_tran_item Standard_unit_retail Absolute value multiplied by 10000.

Sa_tran_item Tax_ind

Sa_tran_item Item_swiped_ind

Sa_tran_item Standard_orig_unit_r
etail

‘SIGN_N’ or ‘SIGN_P’ depending on the sign of
orig_unit_retail.

Sa_tran_item Standard_orig_unit_r
etail

Absolute value multiplied by 10000.

Sa_tran_item Item_type

Sa_tran_item Override_reason

Sa_store_emp Emp_id

Sa_tran_item Return_reason_code

Sa_tran_item Drop_ship_ind

The same columns as above are select from the sa_tran_item_rev table if the
rev_no passed in is not –1.

Set *ol_num_sa_tran_item to the total number of records fetched.

retrieveTransDisc()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_disc

struct pt_sa_tran_disc **or_sa_tran_disc

This function gets all sa_tran_disc or sa_tran_disc_rev records (if is_rev_no is
not –1) for a tran_seq_no that needs to be processed.

Table Column Description

Sa_tran_disc Tran_seq_no

Sa_tran_disc Item_seq_no

Sa_tran_disc Discount_seq_no

Sa_tran_disc Rms_promo_type

Sa_tran_disc Promotion

Sa_tran_disc Discount_type

Sa_tran_disc Coupon_no

40 Retek Merchandising System

Table Column Description

Sa_tran_disc Coupon_ref_no

Sa_tran_disc Standard_qty ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of
qty.

Sa_tran_disc Standard_qty Absolute value multiplied by 10000.

Sa_tran_disc

Sa_tran_item

(Unit_retail *
standard_qty) –
(unit_discount_amt *
qty)

Absolute value multiplied by 10000.

Sa_tran_disc

Sa_tran_item

(Unit_retail *
standard_qty) –
(unit_discount_amt *
qty)

‘SIGN_N’ or ‘SIGN_P’ depending on the sign of the
expression.

Sa_tran_disc Standard_unit_discount_
amt

‘SIGN_N’ or ‘SIGN_P’ depending on the sign of
unit_discount_amt.

Sa_tran_disc Standard_unit_discount_
amt

Absolute value multiplied by 10000.

Sa_tran_disc

The same columns as above are select from the sa_tran_disc_rev table if the
rev_no passed in is not –1.

Set *ol_num_sa_tran_disc to the total number of records fetched.

retrieveTransTender()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_tender

struct pt_sa_tran_tender **or_sa_tran_tender

This function gets all sa_tran_tender or sa_tran_tender_rev records (if is_rev_no
is not –1) for a tran_seq_no that needs to be processed.

Table Column Description

Sa_tran_tender Tran_seq_no

Sa_tran_tender Tender_seq_no

Sa_tran_tender Tender_type_group

Sa_tran_tender Tender_type_id

Sa_tran_tender Tender_amt ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of
tender_amt.

Chapter 4 – saexprdw.pc 41

Table Column Description

Sa_tran_tender Tender_amt Absolute value multiplied by 10000.

Sa_tran_tender Cc_no

Sa_tran_tender Cc_auth_no

Sa_tran_tender Cc_auth_src

Sa_tran_tender Cc_cardholder_verf

Sa_tran_tender Cc_exp_date Format YYYYMMDD

Sa_tran_tender Cc_entry_mode

Sa_tran_tender Cc_term_id

Sa_tran_tender Cc_spec_cond

Sa_tran_tender Voucher_no

Sa_tran_head

Sa_voucher

Business_date –
iss_date

Voucher age

Sa_voucher Escheat_date

Sa_tran_tender Coupon_no

Sa_tran_tender Coupon_ref_no

The same columns as above are select from the sa_tran_tender_rev table if the
rev_no passed in is not –1.

Set *ol_num_sa_tran_tender to the total number of records fetched.

saveData()

struct pt_sa_tran_head ir_sa_tran_head

long il_num_sa_tran_item

struct pt_sa_tran_item *ia_sa_tran_item

long il_num_sa_tran_disc

struct pt_sa_tran_disc *ia_sa_tran_disc

long il_num_sa_tran_tender

struct pt_sa_tran_tender *ia_sa_tran_tender

Set pi_curtrat to the current transaction type by calling trat_lookup.

Call WrRDWTHead to process the current ia_sa_tran_head record if the
transaction type (pi_curtrat) is TRATTT_COND, TRATTT_PAIDIN or
TRATTT_PAIDOU.

42 Retek Merchandising System

For each item record:

Call tsv_lookahead to calculate the total sales value for later use.

Call WrRDWTHead to process the current ia_sa_tran_item record.

For each item’s discount record:

Call WrRDWTDetl to process the current ia_sa_tran_disc record.

For each tender record:

Call WrRDWFDetl to process the current ia_sa_tran_tender.

Call WrRDWTTail to create a TTAIL record for the RDWT file.

ProcessStoreDayTotals()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]

const char is_usage_type[NULL_CODE]

This function will loop through the library function getBalTotals for the current
store day.

Call WrRDWFHead to write this header to the RDWS file.

Call WrRDWFHead to write this header to the RDWC file.

For each total returned:

1 If the total_id is “OVRSHT_B” then write the data to the RDWC file.

2 Else, if the cashier_id and the register_id are both nulls, then write to the
RDWS file.

3 Else, mark this as an error, since the RDWS file can only handle store level
totals.

4 If the total is not a ‘N’egative total, mark the total exported by calling the
library function markTotalExported.

Call WrRDWFTail to write this header to the RDWS file.

Call WrRDWFTail to write this header to the RDWC file.

tsv_lookahead()

int i

Chapter 4 – saexprdw.pc 43

This function calculates the total sales value (ps_total_sales_value) by “looking
ahead” and summing up the item values and discounts for the current item record
(i).

WrRDWFHead()

char *is_file_type

FILE *is_file

long *iol_line_ctr

Set *iol_line_ctr to 1. This is the appropriate global line counter variable for the
file type.

Writes an RDW_FHEAD record (as defined in salib.h) to the specified output
file. This must match the definition of the record in Interface File – SA to
RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZ
E

RDW_FHEAD_FRECDESC

flineid char LEN_FILE_LINE_NO *iol_line_ctr

file_type_definition char LEN_FILE_TYPE_DEF is_file_type

file_create_date char LEN_DATETIME ps_sysdate

Call putrec to write the record out to the RDWT or RDWF file.

WrRDWTHead()

pt_sa_tran_head *ir_head

Pt_sa_tran_item *ir_item

Increment pl_rdwt_line_ctr.

Set pi_tdetl_count to 0.

This function writes a RDW_THEAD record (as defined in salib.h) to the output
file. This must match the definition of the record in Interface File – SA to
RDW.doc.

Field Type Size Source

fredesc char RDW_FRECDESC_SIZ
E

RDW_THEAD_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdwt_line_ctr

tran_datetime char LEN_DATETIME ir_head->s_tran_datetime

44 Retek Merchandising System

Field Type Size Source

Location char LEN_LOC ps_store

register_id char LEN_REGISTER ir_head->s_register

cashier_id char LEN_EMP_ID ir_head-> s_cashier

Salesperson_id char LEN_EMP_ID ir_item-> s_sales_person

if NULL than use ir_head->
s_salesperson

cust_id_type char CIDT_SIZE ir_head-> s_cust_id_type

cust_id_number char LEN_CUST_ID ir_head-> s_cust_id

tran_no char LEN_TRAN_NO ir_head-> s_tran_no

Orig_register Char LEN_REGISTER Ir_head-> s_orig_register

Orig_tran_no Char LEN_TRAN_NO Ir_head-> s_orig_tran_no

tran_seq_no char LEN_BIG_SEQ_NO ir_head-> s_tran_seq_no

rev_no char LEN_SA_REV_NO ir_head-> s_rev_no

tran_sign char LEN_IND ir_head-> s_tran_sign

tran_type char TRAT_SIZE ir_head-> s_tran_type

sub_tran_type char TRAS_SIZE ir_head-> s_tran_sub_type

emp_cashier_no char LEN_EMP_ID ir_head-> s_ref_no1 if sub_tran_type =
TRAS_EMP

receipt_ind char LEN_IND ir_head-> s_ref_no1 if tran_type =
TRAT_RETURN

reason_code char REAC_SIZE ir_head->s_reason_code

vendor_no char LEN_VENDOR_NO ir_head->s_ref_no1 if tran_type =
TRAT_PAIDOU

item_type char SAIT_SIZE SAIT_ITEM if ir_item->s_item_type is
either SAIT_ITEM or SAIT_REF.

SAIT_GCN if ir_item->s_item_type is
SAIT_GCN.

item_no char LEN_ITEM_NO Ir_item->s_item if ir_item->s_item_type
is SAIT_ITEM.

Ir_item->s_voucher_no if ir_item-
>s_item_type is SAIT_GCN.

tax_ind char LEN_IND ir_item->s_tax_ind

item_swiped_ind char LEN_IND ir_item->s_item_swiped_ind

Dept char LEN_DEPT ir_item->s _dept

Class char LEN_CLASS ir_item->s _class

Chapter 4 – saexprdw.pc 45

Field Type Size Source

Subclass char LEN_SUBCLASS ir_item->s _subclass

total_sales_qty char LEN_QTY ir_item->s_qty

total_sales_value char LEN_AMT ps_total_sales_value if tran_type is not
TRAT_COND, TRAT_PADIN or
TRAT_PAIDOU.

ir_head->value if tran_type is
TRAT_PAIDIN or TRAT_PAIDOU.

override_reason char ORRC_SIZE ir_item->s_override_reason

Return_reason_code Char SARR_SIZE Ir_item->s_return_reason_code

total_orig_sign char LEN_SALES_SIGN ir_item->s_qty_sign

total_orig_value char LEN_AMT ir_item->s_qty * ir_item-
>s_orig_unit_retail / 10000

Weather char LEN_CODE ir_head->s_ref_no1 if tran_type is
TRAT_COND

Temperature char LEN_CODE ir_head->s_ref_no2 if tran_type is
TRAT_COND

Traffic char LEN_CODE ir_head->s_ref_no3 if tran_type is
TRAT_COND

Construction char LEN_CODE ir_head->s_ref_no4 if tran_type is
TRAT_COND

Call putrec to write the record out to the RDWT file.

WrRDWTDetl()

pt_sa_tran_head *ir_head

ps_sa_tran_disc *ir_disc

Increment both pl_rdwt_line_ctr and pl_tdetl_count.

Writes an RDW_TDETL record (as defined in salib.h) to the RDWT output file.
This must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZ
E

RDW_TDETL_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdwt_line_ctr

Discount_type Char SADT_SIZE Ir_disc-> s_discount_type

promo_tran_type char PRMT_SIZE ir_disc-> s_rms_promo_type

promo_no char LEN_PROMOTION ir_disc-> s_disc_ref_no

46 Retek Merchandising System

Field Type Size Source

tran_sign char LEN_IND ir_head-> s_tran_sign

Coupon_no Char LEN_COUPON_NO Ir_disc-> s_coupon_no

Coupon_ref_no Char LEN_COUPON_REF_N
O

Ir_disc-> s_coupon_ref_no

sales_qty char LEN_QTY ir_disc-> s_qty

sales_sign char LEN_SALES_SIGN ir_disc->s_qty_sign

sales_value char LEN_AMT ps_total_sales_value

disc_value char LEN_AMT ir_disc-> s_unit_disc_amt

Call putrec to write the record out to the RDWT file.

WrRDWTTail()

No arguments

Increment pl_rdwt_line_ctr.

Writes an RDW_TTAIL record (as defined in salib.h) to the RDWT output file.
This must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZ
E

RDW_TTAIL_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdwt_line_ctr

tran_rec_counter char LEN_DTL_LINE_CNT pi_tdetl_count

Call putrec to write the record out to the RDWT file.

WrRDWFTail()

FILE *is_file

long *iol_line_ctr

Increments *iol_line_ctr. This is the appropriate global line counter variable for
the file type.

Chapter 4 – saexprdw.pc 47

Writes an RDW_FTAIL record (as defined in salib.h) to the specified output file.
This must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZ
E

RDW_FTAIL_FRECDESC

Flineid char LEN_FILE_LINE_NO *iol_line_ctr

file_rec_counter char LEN_DTL_LINE_CNT *iol_line_ctr – 2

Call putrec to write the record out to the RDWT or RDWF file.

WrRDWSTDetl()

char *is_status

char *is_total_id

char *is_ref_no1

char *is_ref_no2

char *is_ref_no3

char *is_total_value

Increment pl_rdws_line_ctr.

Writes an RDWS_TDETL record (as defined in salib.h) to the RDWS output file.
This must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZ
E

RDW_FDETL_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdws_line_ctr

tran_date char LEN_DATEONLY ps_business_date

location char LEN_LOC ps_store

sales_sign char LEN_SALES_SIGN is_status

total_id char LEN_TOTAL_ID is_total_id

Ref_no1 char LEN_REF_NO Is_ref_no1

Ref_no2 char LEN_REF_NO Is_ref_no2

Ref_no3 char LEN_REF_NO Is_ref_no3

total_sign char LEN_SALES_SIGN SIGN_N or SIGN_P depending on
whether or not is_total_value is
negative.

48 Retek Merchandising System

Field Type Size Source

total_amount char LEN_AMT Absolute value of is_total_value.

Call putrec to write the record out to the RDWT file.

WrRDWCTDetl()

char *is_cashier_id

char *is_register_id

char *is_status

char *is_total_id

char *is_ref_no1

char *is_ref_no2

char *is_ref_no3

char *is_total_value

Increment pl_rdwc_line_ctr.

Writes an RDWC_FDETL record (as defined in salib.h) to the RDWC output
file. This must match the definition of the record in Interface File – SA to
RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdwc_line_ctr

tran_date char LEN_DATEONLY ps_business_date

location char LEN_LOC ps_store

cashier_id char LEN_EMP_ID is_cashier_id

register_id char LEN_REGISTER is_register_id

sales_sign char LEN_SALES_SIGN is_status

total_id char LEN_TOTAL_ID is_total_id

Ref_no1 char LEN_REF_NO Is_ref_no1

Ref_no2 char LEN_REF_NO Is_ref_no1

Ref_no3 char LEN_REF_NO Is_ref_no1

total_sign char LEN_SALES_SIGN SIGN_N or SIGN_P depending on
whether or not is_total_value is
negative.

Chapter 4 – saexprdw.pc 49

Field Type Size Source

total_amount char LEN_AMT Absolute value of is_total_value.

Call putrec to write the record out to the RDWC file.

WrRDWFDetl()

pt_sa_tran_head *ir_head

pt_sa_tran_tender *ir_tend

Increment pl_rdwf_line_ctr.

Writes an RDWF_FDETL record (as defined in salib.h) to the RDWF output file.
This must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC

flineid char LEN_FILE_LINE_NO pl_rdwf_line_ctr

business_date char LEN_DATEONLY ps_business_date

tran_datetime char LEN_DATETIME ir_head->s_tran_datetime

location char LEN_LOC ps_store

casher_id char LEN_EMP_ID ir_head->s_cashier

register_id char LEN_REGISTER ir_head->s_register

tran_sign char LEN_SALES_SIGN ir_head ->s_tran_sign

tran_seq_no char LEN_BIG_SEQ_NO ir_head->s_tran_seq_no

rev_no char LEN_SA_REV_NO ir_head ->s_rev_no

tran_type char TRAT_SIZE ir_head ->s_tran_type

tender_type_group char TENT_SIZE ir_tend->s_tender_type_group

tender_type_id char TENS_SIZE ir_tend->s_tender_type_id

tender_amt char LEN_AMT ir_tend->s_tender_amt

cc_no char LEN_CC_NO ir_tend->s_cc_no

cc_exp_date char LEN_DATEONLY ir_tend->s_cc_exp_date

cc_auth_no char LEN_CC_AUTH_NO ir_tend->cc_auth_no

cc_auth_src char CCAS_SIZE ir_tend->s_cc_auth_src

cc_entry_mode char CCEM_SIZE ir_tend->s_cc_entry_mode

cc_cardholder_verf char CCVF_SIZE ir_tend->s_cc_cardholder_verf

cc_terminal_id char LEN_TERM_ID ir_tend->s_cc_terminal_id

cc_special_cond char CCSC_SIZE ir_tend->s_cc_special_cond

50 Retek Merchandising System

Field Type Size Source

voucher_no char LEN_VOUCHER_NO ir_tend->s_voucher_no

Voucher_age Char LEN_VOUCHER_AGE Ir_tend->s_voucher_age

Escheat_date Char LEN_DATEONLY Ir_tend->s_escheat_date

Coupon_no Char LEN_COUPON_NO ir_tend->s_coupon_no

Coupon_ref_no char LEN_COUPON_REF_NO ir_tend->s_coupon_ref_no

Call putrec to write the record out to the RDWF file.

Stored Procedures / Shared Modules (Maintainability)
Shared Module Module Description

libretek.a functions Refer to Library Design – retek.doc for details.

Retek_init Initialize restart recovery.

Retek_close Close restart recovery functions.

Retek_refresh_thread Refresh the current thread so that it may be used again.

Libresa.a functions: Refer to Library Design – ReSA.doc for details.

get_lock used to establish a read lock on a store/day.

release_lock used to release a store/day lock.

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

fetchStoreDayErrorCount Fetch the number of errors that corresponds to a particular store/day and
system.

markStoreDayExported Mark a particular store/day and system as exported

markTransactionExported Mark a particular transaction and system as exported.

OraNum functions (Add,
Sub, Mul, Div)

 Used to perform arithmetic operations on strings containing large
numbers.

getBalTotal Get the specified balance totals.

putrec Writes a record to a file.

Chapter 4 – saexprdw.pc 51

Output Specifications

Output Files
Data is output in the RDW file format. This is described in the file Interface File
– SA to RDW.doc.

The filename convention for these valid RDWT, SIF Tender, RDWS and RDWC
files will be rdwt_store_businessdate_curdatetime,
rdwf_store_businessdate_curdatetime, rdws_store_businessdate_curdatetime and
rdwt_store_businessdate_curdatetime. The files should start out with a temporary
name generated by the Unix tempnam (3S) call and then be renamed with Unix
rename (2) call when the files are complete.

Scheduling Considerations
Processing Cycle: Anytime – Sales Audit 3.0 is a 24/7 system.

Scheduling Diagram: This program will be run after auditors have made
corrections to the data.

Pre-Processing: sagetref.pc to get waste data, and saimptlog.pc and
saimptlogfin.pc to get post-void data.

Post-Processing:

• resa2rdw should be run on all output files created by saexprdw.pc. This will
reformat the files for RIB-ETL loads by RDW.

Threading Scheme: saexprdw can be threaded for up to 6 concurrent threads.
The threading scheme is based on the cursor c_store_day in the process()
function. Since the thread values are used within the ORDER BY clause, the
maximum number of concurrent threads equals the number of columns in this
cursor.

Locking Strategy
In conjunction with the Performance and the Scheduling Considerations section,
this section should describe the locking (and release) strategy required beyond
the preset Retek standards. It should describe how the module accesses data and
the ‘hold’ or ‘lock’ it has on a database and / or its records, during processing. It
should also describe the ‘lock’ release.

52 Retek Merchandising System

Restart / Recovery
The logical unit of work for this module is defined as a unique store/day
combination. Records will be fetched, updated and inserted in batches of
pl_commit_max_ctr. Only two commits will be done, one to establish the
store/day lock and another at the end, to release the lock after a store/day has
been completely processed. The RDWT, RDWF, RDWS and RDWC formatted
output files will be created with temporary names and renamed just before the
end of store/day commit.

In case of failure, we rollback all work done to the point right after the call to
get_lock and then we release the lock. Thus, we assume that the rollback segment
is large enough to hold all inserts into sa_exported for one store_day. If this is not
the case, we need to increase the size of the rollback segment. The EXEC SQL
SAVEPOINT statement is used to save the state of the database after the call to
get_lock.

There are 3 driving cursors in this module. The first picks a store/day to work on:
c_store_day CURSOR FOR

SELECT /*+ rule */

 sd.store_day_seq_no,

 el.seq_no,

 sd.store,

 TO_CHAR(sd.business_date, 'YYYYMMDD'),

 ROWIDTOCHAR(el.rowid)

FROM sa_store_day sd, sa_export_log el

WHERE sd.store_day_seq_no = el.store_day_seq_no

AND sd.store_status = :SASS_C /* Closed
*/

AND sd.data_status = :SADS_F /* Fully loaded
*/

AND sd.audit_status = :SAAS_A /* Audited, but no
Errors */

AND el.system_code = :SYSE_RDW

AND el.status = :SAES_R /* 'R'eady to be
exported */

ORDER BY MOD(TRUNC(sd.store_day_seq_no / :pi_num_threads)

 + :pi_thread_val, :pi_num_threads),

 sd.store, sd.business_date;

Since RDW cannot accept data from a store_day with errors pending, we select
store_days that have audit_status ‘A’ only. The library function
fetchStoreDayToBeExported cannot be used here because it fetches store_days
with an audit_status of ‘E’ (Errors pending).

The second driving cursor fetches the store/day transaction data to be output:

Chapter 4 – saexprdw.pc 53

 SELECT h.tran_seq_no,

 h.rev_no,

 TO_CHAR(h.tran_datetime,
'YYYYMMDDHH24MISS'),

 NVL(h.register, ' '),

 NVL(TO_CHAR(h.tran_no), ' '),

 NVL(em.emp_id, ' '),

 NVL(em2.emp_id, ' '),

 NVL(c.cust_id_type, ' '),

 NVL(c.cust_id, ' '),

 NVL(h.reason_code, ' '),

 h.tran_type,

 NVL(h.sub_tran_type, ' '),

 NVL(TO_CHAR(h.orig_tran_no), ' '),

 NVL(h.orig_reg_no, ' '),

 NVL(h.ref_no1, ' '),

 NVL(h.ref_no2, ' '),

 NVL(h.ref_no3, ' '),

 NVL(h.ref_no4, ' '),

 NVL(h.vendor_no, ' '),

 h.status,

 DECODE(SIGN(h.value), -1, :SIGN_N,
:SIGN_P),

 NVL(TO_CHAR(ABS(h.value) *
:pl_multiplier), '0'),

 :SAFD_P,

 ' '

 FROM sa_tran_head h,

 sa_customer c,

 sa_store_emp em,

 sa_store_emp em2,

 /* This temporary view selects all cashiers for
the given store */

 (SELECT DISTINCT th.cashier,

 sd.store

 FROM sa_tran_head th,

 sa_store_day sd

 WHERE sd.store_day_seq_no =
th.store_day_seq_no

 AND sd.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)) temp_view1,

 /* This temporary view selects all salespersons
for the given store */

54 Retek Merchandising System

 (SELECT DISTINCT th.salesperson,

 sd.store

 FROM sa_tran_head th,

 sa_store_day sd

 WHERE sd.store_day_seq_no =
th.store_day_seq_no

 AND sd.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)) temp_view2

 WHERE h.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)

 AND em.pos_id(+) = temp_view1.cashier

 AND em.store(+) = temp_view1.store

 AND (temp_view1.cashier = h.cashier

 OR (temp_view1.cashier IS NULL

 AND h.cashier IS NULL))

 AND em2.pos_id(+) = temp_view2.salesperson

 AND em2.store(+) = temp_view2.store

 AND (temp_view2.salesperson = h.salesperson

 OR (temp_view2.salesperson IS NULL

 AND h.salesperson IS NULL))

 AND h.tran_seq_no = c.tran_seq_no(+)

 AND h.tran_type IN (:TRAT_SALE, :TRAT_RETURN,
:TRAT_EEXCH,

 :TRAT_PAIDIN, :TRAT_PAIDOU,
:TRAT_NOSALE,

 :TRAT_VOID, :TRAT_PVOID,
:TRAT_COND)

 AND (h.status = :SAST_P

 AND NOT EXISTS /* and no
errors for the transaction. */

 (SELECT er.tran_seq_no

 FROM sa_error er, sa_error_impact ei

 WHERE h.tran_seq_no = er.tran_seq_no

 AND er.error_code = ei.error_code

 AND ei.system_code = :SYSE_RDW

 AND er.hq_override_ind != :YSNO_Y))

 AND NOT EXISTS

 (SELECT e.store_day_seq_no

 FROM sa_exported e

 WHERE h.store_day_seq_no =
e.store_day_seq_no

 AND h.tran_seq_no = e.tran_seq_no

 AND e.system_code = :SYSE_RDW)

Chapter 4 – saexprdw.pc 55

 UNION ALL

 SELECT h.tran_seq_no,

 h.rev_no,

 TO_CHAR(h.tran_datetime,
'YYYYMMDDHH24MISS'),

 NVL(h.register, ' '),

 NVL(TO_CHAR(h.tran_no), ' '),

 NVL(em.emp_id, ' '),

 NVL(em2.emp_id, ' '),

 NVL(c.cust_id_type, ' '),

 NVL(c.cust_id, ' '),

 NVL(h.reason_code, ' '),

 h.tran_type,

 NVL(h.sub_tran_type, ' '),

 NVL(TO_CHAR(h.orig_tran_no), ' '),

 NVL(h.orig_reg_no, ' '),

 NVL(h.ref_no1, ' '),

 NVL(h.ref_no2, ' '),

 NVL(h.ref_no3, ' '),

 NVL(h.ref_no4, ' '),

 NVL(h.vendor_no, ' '),

 h.status,

 DECODE(SIGN(h.value), -1, :SIGN_N,
:SIGN_P),

 NVL(TO_CHAR(ABS(h.value) *
:pl_multiplier), '0'),

 :SAFD_N,

 NVL(TO_CHAR(e.exp_datetime,
'YYYYMMDDHH24MISS'), ' ')

 FROM sa_tran_head h,

 sa_exported e,

 sa_customer c,

 sa_store_emp em,

 sa_store_emp em2,

 /* This temporary view selects all cashiers for
the given store */

 (SELECT DISTINCT th.cashier,

 sd.store

 FROM sa_tran_head th,

 sa_store_day sd

 WHERE sd.store_day_seq_no =
th.store_day_seq_no

56 Retek Merchandising System

 AND sd.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)) temp_view1,

 /* This temporary view selects all salespersons
for the given store */

 (SELECT DISTINCT th.salesperson,

 sd.store

 FROM sa_tran_head th,

 sa_store_day sd

 WHERE sd.store_day_seq_no =
th.store_day_seq_no

 AND sd.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)) temp_view2

 WHERE h.store_day_seq_no =
TO_NUMBER(:is_store_day_seq_no)

 AND em.pos_id(+) = temp_view1.cashier

 AND em.store(+) = temp_view1.store

 AND (temp_view1.cashier = h.cashier

 OR (temp_view1.cashier IS NULL

 AND h.cashier IS NULL))

 AND em2.pos_id(+) = temp_view2.salesperson

 AND em2.store(+) = temp_view2.store

 AND (temp_view2.salesperson = h.salesperson

 OR (temp_view2.salesperson IS NULL

 AND h.salesperson IS NULL))

 AND h.tran_seq_no = c.tran_seq_no(+)

 AND h.tran_type IN (:TRAT_SALE, :TRAT_RETURN,
:TRAT_EEXCH,

 :TRAT_PAIDIN, :TRAT_PAIDOU,
:TRAT_NOSALE,

 :TRAT_VOID, :TRAT_PVOID,
:TRAT_COND)

 AND h.status in (:SAST_V, :SAST_D)

 AND h.tran_seq_no = e.tran_seq_no(+)

 AND e.status = :SAST_P

 AND e.system_code = :SYSE_RDW

 ORDER BY 3;

The third driving cursor is encapsulated in the getBalTotal function, which
fetches all totals with a usage_type of ‘RDW’. It returns, among other things, the
total_id, the cashier id and the register id. These are then used to determine
whether to write a record to the RDWS file or the RDWC file. Only totals with a
total_id of “OVRSHT_B” (over/short balance level) are exported to the RDWC
file. The other totals are exported to the RDWS file only if both their register and
their cashier ids are empty, i.e. the total is at the store level. If the total cannot be
written to neither the RDWC nor the RDWS file, then we write an error to the
log and continue.

Chapter 4 – saexprdw.pc 57

Performance
In conjunction with the Scheduling Considerations and Locking Strategy
sections, the optimization considerations of a batch module must adhere to Retek
standards. This section should call out special performance considerations that
may exceed current documented Retek practices. Such considerations should be
the basis for update to Retek standards. Each database operation should be
optimized based on quantity and quality of the database transactions. Batch
modules are executed on the database or dedicated batch server and thus there are
no additional performance gains to forcing database interaction logic onto the
server.

Security Considerations
Credit card numbers and other customer information are present in the output
files. Access to these files is controlled only by the Unix permissions that these
files have.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – ftmednld.pc
	Functional Area
	Module Affected
	Design Overview
	Input Specifications
	‘Table-To-File’
	Driving Cursor:

	Output Specifications
	Output Files

	Function Level Description
	Scheduling Considerations
	Restart/Recovery

	Chapter 3 – POS Upload [posupld]
	Design Overview
	Program Flow
	Shared Modules
	Function Level Description
	Technical Issues

	Chapter 4 – saexprdw.pc
	Introduction
	Purpose
	Objectives

	Functional Area
	Design Overview

	Program Flow
	Global Variable Descriptions
	Function Level Description
	Stored Procedures / Shared Modules (Maintainability)
	Output Specifications
	Output Files

	Scheduling Considerations
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations

