Retek® Merchandising System
10.1.5

Operations Guide

&

Rete

WWW.RETEK.COM ‘ HELPING THE RETAIL INDUSTRY CREATE, MAMAGE AND FULFILL CONSUMER DEMAND™

Retek Merchandising System

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403

888.61.RETEK (toll free US)
+1 612 587 5000

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46
Fax: +44 (0)20 7563 46 10

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2003 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:
Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: +1 612-587-5800
EMEA: 011 44 1223 703 444
Asia Pacific: 61 425 792 927

Mail Retek Customer Support
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:
e Product version and program/module name.

e Functional and technical description of the problem (include business
impact).

o Detailed step by step instructions to recreate.
e Exact error message received.

e Screen shots of each step you take.

http://www.retek.com/support

Contents
New and Changed Upload from Supplier [ediupcat] 1
DESIGN OVEIVIBW ...ttt bbbttt b ene s 1
Scheduling CoNSLrAINTS.cceiiiie e 2
RESTAIT RECOVETY ... s 2
Program FIOWooviiieie ettt sttt nas 2
Shared MOAUIESccueeieeiice et ene e 2
Function Level DeSCHPLIONccviiieiiie et 3
1/O SPECITICALION ... 11
TECNNICAI ISSUESvveve et 17
(< T0 L TU] 11 g Y2 o o 19
DESIGN OVEIVIEW ...ttt bbbttt 19
Scheduling CoNSLrAINTS..........ccviieiicce e 19
Pre/Post LOgiC DESCIIPLIONccviieie et 19
RESTAIMT RECOVETY ..o 20
Logical Unit of Work (recommended Commit check points)cccocvvvveieeinnennn. 20
Shared MOAUIEScueeieiieciee e 20
Function Level DesCriPtiONcoviieiieie it 20
1/O SPECITICALION ... 27
TECNNICAI ISSUESovveveieciece et e 34
POSANIA.PC .o 35
DESIGN OVEIVIEW ...ttt bbbt 35
Program FIOWooviiieiieie ettt et et nae e 35
Stored Procedures / Shared Modules (Maintainability)cccccoiiiinninns 35
INPUL SPECITICALIONScvveiiiiccie e 35
OULPUL SPECITICALIONSeevieeeeeec et 36
Function Level DeSCrPtiONcceiiiiieie ettt 44
Scheduling CoNSIAEIALIONSccoiiiiiieieeie s 44
(0T a0] L LT | SRS 45

RESTAM/RECOVETY ...t 45

ii Retek Merchandising System

Performance CONSIAEIAtIONSccueierieerieiie e 45
SeCUrity CONSIAEIALIONS.eiveieiieieeieeie e ste e ste e e e aesnaesne s 45
DeSIgN ASSUMPLIONS.....cuviiiieitieitietesiee sttt ettt st nbe e nre e 45
Outstanding DESIGN ISSUESecvveiuveieiiesieeiesieseeieseesree e eseessae e sseesraessesneens 45
AAPPENTIX ottt ettt bbbt enes 45
RECISAIY.PC oo 47
DESIGN OVEIVIEWeivieieeie ettt ste ettt e st sae e ste e e e nneeneenee e 47
Function Level DeSCriPtIONccoiiiiiieieiie et 47
SABXPACN.PC .o 53
DESIGN OVEIVIEW ...ttt ste e ste e sb e e e ste e e s e nneeneenee e 53
Background information — Quick Overview of the ACH process..................... 54
D 1 BT oL U | YR 56
Scheduling CONSLIAINTS.ooiiieieee e e 56
RESTAI RECOVEIY ...ttt sttt st e et e e snae e st e e snaeesnneeens 56
Program FIOWoouiiiiiiiii e 58
SHared MOUUIES ...t et 58
Function Level DeSCriPtiONc.ccuviieiierie et 58
ACH File SIIUCTUIE.....eeeiii it 64
File Header RECOId.........ooiiiiiiieie e 64
TECNNICAL ISSUES ...ttt 75
ASSUMPLIONS ...ttt e et et este e te e s e s reesteeseeaneenreeeeenee e 75
STz 1o q 0 U =T o o PP 77
DESIGN OVEIVIEW ...ttt sttt sttt st eeene e 77
Scheduling CONSLIAINTS.........c.ccviieiiece e 77
RESTAIMT RECOVETIY ...ttt st stb e st e snbe e snreeen 78
Shared MOAUIES...........coiiiiieiee e 78
Function Level DeSCIIPIIONcveiiiiiieiesie e 79

1/O SPECITICALION ...t 83

SF= 11 141 0= To |0 o Lo 85
DESIGN OVEIVIEW ...ttt bbbt et ene e 85
Scheduling CONSLIAINTS.........c.ccviieiiere e 85
RESTAIMT RECOVETY ..ot 85

Logical Unit 0F WOTKcc.ooiie e 85
Program FIOWoouiiiiiiiii e 86
Function Level DeSCriPtiONccviieiieie it 87
1/O SPECITICALION ... 89
TECNNICAI ISSUES ...eovvevecie it 89

Sales audit import [saimptlog].....ccccooeeiiiiiiiiiiiii . 91

Function Level DeSCIIPIIONcuiiiiiiiiisiesceeeee e 98

SAIMPTLOG and SAIMPTLOGIc.cooiiiiiie et 98
Stored Procedures / Shared Modules (Maintainability)cccccocvvininnnnnn 113
INPUL SPECITICALIONS ...t 115
OULPUL SPECITICALIONS ... 115
Database INTEGIILYeoviiiiiie e 122
Parameter Validation............ccoiiiiiiiiiiee s 122
INtEQIItY CONSLIAINTScuiiiiiiie e 122
Scheduling CoNSIAEIALIONScceiiiiiieieie e 123

0103 ([0 RS = (=T | SRS 123

RESTA / RECOVEIY ... 123
PEITOIMANCE ...t bbb 123
SecUrity CONSIABIALIONS.ccviiieeieeiesie sttt 123
DeSIgN ASSUMPLIONS.....cvieiiiieiiesieeiesteesieee e sie e e e sae e sreesteeeesneenreeeas 124
AAPPENTIX ottt ettt b e b neenre s 124

Sales audit pre-export [Sapreexp] .coooveeeeiieereeiiineeeeeennnn 127
DESIGN OVEIVIEWeivieiieie et e ettt e et e et esne e taenaeaneesneenas 127
Scheduling CONSLrAINTS.couiiieee e e 127
RESTAINT RECOVETY ..ottt 127
Program FIOWooooiiii et 130

SNATEA MOAUIES.....ceeeee oottt e e e e e e e 130

iv Retek Merchandising System

Stock Count Snapshots Update [stkupd]cccccoeerreennnnn 133
DESIGN OVEIVIEW ...ttt ettt sttt sttt nas 133
Scheduling CONSLIAINTS.ccueiieieee e 133
RESTAIMT RECOVETY ..ot 134
Program FIOWccioiieie ettt e e e 135
Shared MOAUIESeoiiiie e e e 135
Function Level DeSCripPtiONc.coveeiieiiee e 135
1/O SPECITICALION ...t 135
TECNNICAI ISSUES ...t 135

Stock Count Stock on Hand Updates [stkvar]................. 137
DESIGN OVEIVIEW ...ttt ettt sttt sne e e 137
Scheduling CONSLIAINTS.cccueiiereeeceere e 138
RESTAIN RECOVETY ..o 138
Program FIOWocvoiieieiie sttt e e e 140
Shared MOAUIESeoiiiieie e 140
Function Level DeSCriPtiONcovieiieieeie e 140
1/O SPECITICALION ...t 140
TECNNICAI ISSUES ...ttt 140

Store Add [storeadd].......ccceveiiiiiiiiiii s 141
DESIGN OVEIVIEW ...ttt 141
Scheduling CoNSLrAINTS..........cceiieieiiecee e 141
RESTAM/RECOVETY ...ttt 141
Program FIOWccviiiioiiiic ettt nas 141
Function Level DEeSCIIPIIONcveiiiiieiieeie s 141
1/O SPECITICALION ... 143

TECNNICAL ISSUBS ...ttt eensneeeennennnennnes 143

New and Changed Upload from Supplier [ediupcat] 1

New and Changed Upload from Supplier
[ediupcat]

Design Overview

The purpose of the ediupcat batch program is to update the edi_new_item and
edi_cost_change tables. This will allow the users to view and implement the
vendor changes online instead of manually viewing and inserting information.

EDIUPCAT will read in a file and strip out the appropriate information. For
each line item, the supplier has the option of sending one or all of the following
as an item identifier: item, ref_item, and VPN. If an item is sent, this implies that
the item exists in Retek. This value is validated against the item tables. Ref_item
and VPN are also validated if present. If the item is not present in the file, the
program searches Retek for the item. If no item is found, the line item is
considered a new item. If either Reference Item or Case Reference Item is
provided, its Reference Item Type must be presented as well. To update an
existing item in the Retek, the Retek item number or VPN of the item must be
presented. The only exception for updating an item using Reference Item
number is that the Reference Item number exists in RMS tables.

The supplier can also provide item parent information including Item Parent or
Parent VPN to specify the relationship of the new item to the existing Retek item.
The item parent’s item description and item parent number type are then
retrieved from the internal Retek system and inserted to the edi_new_item table.

A new parent VPN may be sent as a regular VPN record. After validating the
parent VPN information, it is updated or inserted to the edi_new_item table
based on the data processed. In the online form, this record can then be created
as a parent item. It is permissible for new items to be sent with parent VPNs that
are new to the system, but only if the new parent VPN is also present in the file
as a separate VPN record (this constraint is for the purposes of creating a Retek
item parent in the EDI Item online form, which will then be applied to all items
with the associated parent VPN).

A case pack will be created or updated in the online form, if the supplier provides
the Case Reference Item and its associate case information in the EDI file in
addition to the item information. For a new item and case pack input, if case cost
is not in the input file, it will be calculated by multiplying the item unit cost and
the case pack quantity. Otherwise, if item unit cost is not presented in the input
file while case cost is provided, the item unit cost will be calculated by dividing
the case cost by case pack quantity.

To increase the flexibility of input new items, it is permissible to upload new
item information without the unit cost. However, these items will stay at the EDI
new item staging table — edi_new_item until the unit_cost is available. The
unit_cost can be provided later by the next EDI input file or inserted in the online
EDI item form.

All input file information is validated. Any erroneous data will cause the entire
transaction to be written to a run-time rejection file that can be reprocessed once
the appropriate adjustments are made.

2 Retek Merchandising System

The batch program will have the ability to process multiple transactions per file.

The input file format will be in a Retek standard file format, rather than EDI
format. The translation from EDI 888 and EDI 879 (unit cost and case cost) to
this standard format will be done by customers using an EDI translation product
such as the Gentran translator.

Note: The following text of this design specific to cost change functionality in
this program is not included in the March 31, 2001, pre release of RMS10.0, EDI
New Item:

For an item that exists in the Retek System (item_supp_country table), the Cost
Change of the item will be updated in the edi_cost_change table and then further
processed in the online Cost Change Form. Otherwise, no cost information will
be updated.

Scheduling Constraints

Processing Cycle: Daily, Phase 2

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: (File-based processing, don’t use multithreading)

Restart Recovery

The batch program will use restart/recovery initialization, close, and intermittent
commits (restart_commit)

Program Flow
N/A

Shared Modules

SQL_LIB.BATCH_MSG—to write error messages

CURRENCY_SQL.CONVERT_BY_LOCATION—convert unit cost and unit
retail

COUNTRY_VALIDATE_SQL.EXISTS_ON_TABLE—validates
origin_country_id

SYSTEM_OPTIONS_SQL.GET_ALL_DEFAULTS—retrieves default
standard_uom, dimension_uom, weight_uom and packing_method.

UOM_SQL.GET_CLASS—retrieves the class that the UOM exists in

New and Changed Upload from Supplier [ediupcat] 3

Function Level Description
init()
e et vdate
e Restart/recovery initialization
e open input file and read file header
e open output file (run-time reject file)
process()
¢ Read transaction header Loop:
* Read transaction detail

= Call validate_fdetl to validate each detail record provided by the input
file

= Call process_item:
. If new item or change to existing item, insert into edi_new_item
" If cost change, update edi_cost_change
format_FDETL():

e This function will be modified to format additional columns that are added to
the input file (reference the input file for details).

validate_FDETL()

o Validate that the input file has at least one of the item, VPN and ref _item
fields populated. If none of the above fields exists, issue an error message
and return NON_FATAL.

o Validate supplier by calling validate_supplier.

e When item parent passed in from the input file is not null, call
validate_item_parent.

e Call validate_parent_VPN to validate that the parent VPN exists in the
system and find the parent_item according to the parent_vpn.

o |f both item parent and parent VPN are not null, compare the input item
parent with the item parent retrieved from function validate_parent_ VPN, if
they are differnt, log an error and return NON_FATAL. Otherwise, if the
input item parent is null, the item parent retrieved from function
validate_parent_ VPN should be used.

e Call functions validate_origin_country_id and validate_uom.

o When both ref_item_type and ref_item are presented, call function
check_ref_item and passing the ref_item and ref_item_type to the function.

4 Retek Merchandising System

If the item field has value,

= call function validate_item;

= if the item does not equal ref_item, call function validate_ref_item;
= if the item VPN is not null, call validate_vpn.

If the record’s item field does not have a value, process as follows:

= Call get_item

If item parent is not null, item parent description or item parent number type
is null, call function get_item_info(). Pass in item parent number and
variables to hold the item_parent_desc and item_parent_number_type. Note
dummy variables are needed to hold other parameters.

If both VPN and ref_item are not null and their corresponding item exists in
RMS, call function validate VPN _vs_ref item to make sure that the item is
not above the transaction level. Since an item that is above the transaction
level could not have a ref_item. If the function call doesn’t return true, return
whatever the function returns.

If the case_ref_item field is not null, call function process_case.

validate_supplier():

First check if the supplier number has value.

If it has value, open the cursor c_val_supp to validate the supplier as the
current code does. If the supplier is found successfully, return true.

= Ifitdoesn’t have value, and there are duns number and duns loc in the
input, create a cursor ¢c_val_supp_duns to select the supplier number
from the SUPS table according to the duns_number and the duns_loc. If
the supplier number is found, return true. If no supplier number is found,
log an error message to state so and return NON-FATAL. This record
will then be rejected. If an error happened, return fatal.

= Otherwise, return NON-FATAL to reject the record. An error message
should be written to the error file to state the reject reason.

validate_item()

Check to see if the item is in the system. If it is not, non-fatal error.

Create a cursor to validate that the item exists in the item_master table, and is
not a sub-transaction item. If item_parent is not null, it needs to be added as
a validation criteria. At the same time, retrieve item_parent,
item_grandparent, item_number_type, item_level, tran_level and pack_ind in
the cursor. If the validation returns No Data Found, issue an error message
stating that either the item, or the item/item_parent relation doesn’t exist in
the system. Return a NON_FATAL error. If the item is a valid Retek item,
set the item exists indicator to 1.

New and Changed Upload from Supplier [ediupcat] 5

validate_ref _item()

¢ Since we know that the ref_item does not equal the item, then the ref_item
could either be a sub-transaction item or not exist in the Retek system.

o Ifthe ref_item is a sub_transaction level item, the item_parent found for the
ref_item from the item_master table should equal the item that passed in
from the input file.

e Create a cursor to perform the above validation. The cursor should select
item_parent from item_master table where the item equals the ref_item. If
NO DATA FOUND, return true. This means the ref_item might not be
stored in RMS. If the item_parent retrieved from the cursor equals the item
passed in from the input file, return true. Otherwise, log and error stating
that the transaction level item found for the ref_item does not match the item
in the record, return NON_FATAL error.

check_ref_item()

e Validate for reference item type of UPC-A, UPC-E, EANS8, EAN13 and
ISBN.

o If the reference item type is other than listed above, no validations will be
given and function should return success.

validate_parent_VPN()
Validate the parent_VPN against the item_supplier and edi_new_item tables.

e Ifitem is found in the item_supplier table, store the value in item_parent and
return successfully. Make sure the item_parent returned is unique.

o |fitem doesn’t found in the item_supplier table, further check the parent_vpn
against the edi_new_item table where supplier equals ps_supplier and VPN
equals the record’s parent_vpn. If data is found, return true. Otherwise,
issue an error message stating that the parent_VPN does not exist in the
system, therefore, the item/item_parent relationship can’t be established.
Return NON_FATAL.

validate_origin_country_id()

e If origin country id on file, call country_validate_sgl.exists_on_table to
validate the origin country. If origin country does not exist, return
NON_FATAL error.

validate_uom()

e Call function validate_each_uom() to validate the following unit of measures
when they have values:

= Standard UOM;
= Dimension UOMs of case, pallet and item unit;
= Weight UOMs of case, pallet and item unit;

= Volume UOMs of case, pallet and item unit.

6 Retek Merchandising System

Passing UOM object (example: case, pallet, etc.),UOM type (standard,
dimension, weight, volume) and UOM value to the function. If the call to
function validate_each_uom() returns fatal or non fatal error, return so.

e Otherwise, if the standard UOM is null, or any of the case, pallet or unit’s
dimension or weight has value, while their unit of measures are null, default
them to the Retek system default UOMs. Call
SYSTEM_OPTIONS_SQL.GET_ALL_DEFAULT_UOM to get the default
unit of measures.

o If the case liquid volume or unit liquid volume has a value, but their unit of
measure is null, return NON-FATAL error.

validate_each_uom()

This function will accept UOM object, UOM type and UOM value as input
parameters. It will call package function UOM_SQL.GET_CLASS to validate
the passed in UOM value. Check the following conditions:

e If the passed in UOM type is standard, the UOM class is ‘PACK’ or
‘MISC’, issue an error message and return a NON-FATAL error.

e |f the passed in UOM type is dimension, make sure the UOM class is
‘DIMEN"’. Ifitis not ‘DIMEN?’, issue an error message and return a NON-
FATAL error.

o If the passed in UOM type is weight and the UOM class found is not
‘MASS’, issue an error message and return a NON-FATAL error.

o |f the passed in UOM type is volume and the UOM class found is not ‘VOL’
or ‘LVVOL’, issue an error message and return a NON-FATAL error.

validate_vpn()

o Validate the vpn against the item_supplier table. If the inputted vpn is not
found on the table with the item and supplier, return a NON-FATAL error.

Validate_item_parent()

e This function will valid the input record’s item_parent exists in the
item_master table. It will select item_desc, item_number_type from
item_master table where item equals the item parent that passed in from the
input file.

o [f the item_parent doesn’t exist, log an error and return NON_FATAL.
Otherwise, return true.

New and Changed Upload from Supplier [ediupcat] 7

Find_ item_by ref_item()

e The function will find the transaction level item that corresponding to the
ref_item(item ref_item or case ref_item) passed in. It will take ref_item,
item and item_exists as parameters.

e Since aref_item could actually be a transaction level item or be a
sub_transaction level item, crease a cursor ¢_item_by_ref_item, do a decode
selection from item_master table to select item from item_master table if an
item equals the passed in ref_item and item_level equals tran_level, or to
select item_parent if the item equals the ref_item and the item_level =
tran_level +1.

o If data is found set the item_exist to 1 and store the found item in the passed
in variable. Otherwise, set the item_exist to 0. If no error occurred, return
true. Otherwise, return fatal.

get_item()
e [fitem has a diff, we must have the ref_item — if not, non-fatal error

e Passref_item to the function find_item_by_ref_item() and also pass in
variables to hold the item and the item exists indicator that will be retrieved
from the function.

e |f the item is not found and VPN is on file, validate the VPN on the
item_supplier table

e If the item was retrieved

= Call get_item_info() to retrieve the item’s parent, grandparent, type,
description, item level, tran level, and pack indicator.

e |f the item was not retrieved, check the edi_new_item table
e If the item was not retrieved, it is a new item
Get_item_info()

e This function will accept an item as input parameter. It’ll retrieve the
item_parent, item_grandparent, item_number_type, item_desc, item_level,
tran_level and pack_ind from the item_master table for the item.

convert_currency()

e Call currency_sql.convert_by location to convert unit_cost and case_cost
into primary currency.

8 Retek Merchandising System

process_item()

Check the edi_new_item table for the existence of
item/supplier/origin_country combo.

Call convert_currency() to convert currency into primary currency for
edi_new_item table.

If item is not on edi_new_item table
= |If item exists
= Call process_cost_change() to update/insert edi_cost_chg table.

= Call insert_new_item() to insert into edi_new_item table — do not
insert if item is a pack item.

= Ifitemisonedi_new item table
= If item exists
= Call process_cost_change() to update/insert edi_cost_chg table.

= Call update_item_info() to update edi_new_item table — do not insert if
item is a pack item.

insert_new_item()

The function inserts the item into the edi_new_item table, using the values in the
transaction detail record. Unit_cost and case_cost should only be inserted for
items not in RMS.

update_item_info()

The function updates the edi_new_item table when a record has not been
approved and still in the edi_new_item table. The function updates the following
columns:

vdate — processed date

NVL(item_desc, edi_new_item.item_desc)

NVL(short_desc, edi_new_item.short_desc)

NVL(case_cost, edi_new_item.case_cost) — for new items only
NVL(unit_cost, edi_new_item.unit_cost) — for new items only
NVL(packing_method, edi_new_item.packing_method)
NVL(gross_unit_weight, edi_new_item.gross_unit_weight)
NVL(net_unit_weight, edi_new_item.net_unit_weight)
NVL(unit_weight_uom, edi_new_item.unit_weight _uom)
NVL(unit_length, edi_new_item.unit_length)
NVL(unit_width, edi_new_item.unit_width)
NVL(unit_height, edi_new_item.unit_height)

NVL(unit_Iwh_uom, edi_new_item.unit_Iwh_uom)

New and Changed Upload from Supplier [ediupcat] 9

o NVL(unit_liquid_volume, edi_new_item.unit_liquid_volume)

o NVL(unit_liquid_volume_uom, edi_new_item.unit_liquid_volume_uom)
o NVL(gross_case_weight, edi_new_item.gross_case_weight)

o NVL(net_case_weight, edi_new_item.net_unit_weight)

o NVL(case_weight_uom, edi_new_item.case_weight_uom)

o NVL(case_length, edi_new_item.case_length)

o NVL(case width, edi_new_item.case_width)

o NVL(case_height, edi_new_item.case_height)

o NVL(case_Iwh _uom, edi_new_item.case_Iwh_uom)

o NVL(case_liquid_volume, edi_new_item.case_liquid_volume)

o NVL(case_liquid_volume_uom, edi_new_item.case_liquid_volume_uom)
o NVL(gross_pallet_weight, edi_new_item.gross_pallet_weight)

o NVL(net_pallet weight, edi_new_item.net_pallet_weight)

o NVL(pallet_weight_uom, edi_new_item.pallet_weight_uom)

o NVL(pallet_length, edi_new_item.pallet_length)

o NVL(pallet_width, edi_new_item.pallet_width)

o NVL(pallet_height, edi_new_item.pallet_height)

o NVL(pallet_Iwh_uom, edi_new_item.pallet_lwh_uom)

o NVL(lead time, edi_new_item.lead_time)

e NVL(min_ord_qty, edi_new_item.min_ord_qty)

o NVL(max_ord_qty, edi_new_item.max_ord_qty)

e NVL(uom_conversion_factor, edi_new_item.uom_conversion_factor)
o NVL(standard_uom, edi_new_item.standard_uom)

e NVL(supp_diff_1, edi_new_item.supp_diff_1)

e NVL(supp_diff_2, edi_new_item.supp_diff_2)

o NVL(supp_diff_3, edi_new_item.supp_diff_3)

e NVL(supp_diff_4, edi_new_item.supp_diff_4)

o NVL(supp_pack_size, edi_new_item.supp_pack_size)

o NVL(inner_pack_size, edi_new_item.inner_pack_size)

10 Retek Merchandising System

Validate_ VPN _vs_ref_item():

This function will validate that the VPN doesn’t correspond to an item that is
above the transaction level. Compare the item_level with the tran_level (the
item tran_level and item_level should have been retrieved in the previous
processes), if the item_level is less than the tran_level (item_level above the
tran_level), log an error stating that an item above transaction level can’t
have a ref_item, return NON_FATAL. Otherwise, return true.

process_case()

First, check if this is a new case pack. Call function find_item_by ref item
to find the pack no that corresponding to the case_ref item. Note this
indicator will be used to populate the edi_new_item table’s
new_case_pack_ind field if the case_ref item is valid. Pass in the
case_ref_item to the function and also the variables to hold the pack no and
the pack exists indicator. If the pack no is not found in RMS, check to make
sure a type for the case_ref _item was specified in the input file. If not, log an
error and return NON_FATAL. If pack no is found in the RMS, find the
component item from the packitem table for the pack_no. Compare the pack
component item found from the cursor with the item that from the input file,
if they are different, log an error and return NON_FATAL.

Next, compare the case pack exist indicator and the item exist indicator:

= If both case pack and item are new to RMS, if case_cost is null and
unit_cost is provided by the input file, calculate the case_cost by
multiplying the unit_cost and the pack_size. Otherwise, if unit_cost is
null and the case_cost is presented in the input file, divided the cast_cost
by the pack_size to populate the unit_cost field.

Finally, if both of the case_ref_item and case_ref_item_type are not null, call
function check_ref_item and pass in the case_ref_item and
case_ref_item_type. If the function doesn’t return successfully, return
whatever is returned from the function. Otherwise, return true.

final()

restart/recovery close, close files

I/O Specification
Input file structure: (reject file will have same file structure)
e FHEAD file header
e FDETL item info
o FTAIL file trailer

New and Changed Upload from Supplier [ediupcat] 11

Input Files
Record Field Name Field Type Default Value Description
Name
File Header | File Type Record Char(5) FHEAD Identifies file record type
Descriptor
File Line Identifier | Numeric Sequential ID of current line being created for output
ID(10) number file.
Created by
program.
File Type Char(4) UCAT Identifies program to use
Definition
File Create Date Char(14) create date current date, formatted to
‘YYYYMMDDHH24MISS’.
File Detail | File Type Record Char(5) FDETL Identifies file record type
Descriptor
File Line Identifier | Numeric Sequential ID of current line being created for output
ID(10) number file.
Created by
program.
Transaction Number(10 Sequential transaction #
sequence)
Supplier Number(10 Supplier id#
)
Sup Name Char(32) Supplier name
Duns Number Number(9) Dun and Bradstreet number identifies the
supplier. Note the Duns Number and Duns
Loc together, uniquely identifies a
supplier.
Duns Loc Number(4) Dun and Bradstreet number identifies the
location of the supplier.
item Char(25) Retek item (blank if none)
Ref item Char(25) Reference Item. For example, UPC (blank

if none).

12 Retek Merchandising System

differentiator 2

Record Field Name Field Type Default Value Description
Name

Ref item type Char(6) Reference item type. Valid reference types
are stored in the code_detail table under
Code Type of ‘UPCT’ and listed as
follows:

ITEM - Retek Item Number

UPC-A - UPC-A

UPC-AS - UPC-A with Supplement
UPC-E - UPC-E

UPC-ES - UPC-E with Supplement
EANS8 - EAN8

EAN13 - EAN13

EAN13S - EAN13 with Supplement
ISBN - ISBN

NDC - NDC/NHRIC - National Drug
Code

PLU - PLU

VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCC14 - SCC-14

(blank if none).

Item Parent Char (25) Retek Item Parent which uniquely
identifies the item/group at the level above
the item.

Parent VPN Char(30) Vendor style id

VPN Char(30) Vendor product number (blank if none)
Must be in all capitals

Supplier item Char(80) Item differentiator description. For

differentiator 1 example, color, size, descriptions. This
field is displayed later when entering the
item into Retek to use as a basis for
choosing an appropriate differentiator
within Retek.

Supplier item Char(80) Item differentiator description. For

example, color, size, descriptions. This
field is displayed later when entering the
item into Retek to use as a basis for
choosing an appropriate differentiator
within Retek.

New and Changed Upload from Supplier [ediupcat] 13

UOM

Record Field Name Field Type Default Value Description
Name
Supplier item Char(80) Item differentiator description. For
differentiator 3 example, color, size, descriptions. This
field is displayed later when entering the
item into Retek to use as a basis for
choosing an appropriate differentiator
within Retek.
Supplier item Char(80) Item differentiator description. For
differentiator 4 example, color, size, descriptions. This
field is displayed later when entering the
item into Retek to use as a basis for
choosing an appropriate differentiator
within Retek.
Item description Char(100) Item description
Short description Char(20) Item short description for point of sales.
Effective date Char(14) Effective date, YYYYMMDDHH24MISS
Min order qty Number(12 Minimum order quantity (4 implied
) decimal places)
Max order gty Number(12 Maximum order quantity (4 implied
) decimal places)
Lead time Number(4) Days from PO receipt to shipment
Unit cost Number(20 Unit cost, 4 implied decimal places
)
Gross unit weight Number(12 Gross unit weight (4 implied decimal
) places). The gross numeric value of
weight per unit.
Net unit weight Number(12 Net unit weight (4 implied decimal places).
) The net numeric value of weight per unit.
Unit weight UOM | Char(4) Item unit weight unit of measure
Unit length Number(12 Item unit length (4 implied decimal places)
)
Unit width Number(12 Item unit width (4 implied decimal places)
)
Unit height Number(12 Item unit height (4 implied decimal places)
)
Unit lwh UOM Char(4) Item unit dimension unit of measure.
Unit liquid volume | Number(12 Item unit liquid volume or capacity (4
) implied decimal places)
Unit liquid volume | Char(4) Unit of measure of the item liquid

volume/capacity

14 Retek Merchandising System

)

Record Field Name Field Type Default Value Description
Name

Case ref item Char(25) Case reference number. For example: case
UPC code.

Case ref item type | Char(6) Case reference number type. Valid case
reference item types are stored in the
code_detail table under Code Type of
*UPCT’ and listed as follows:

ITEM - Retek Item Number

UPC-A - UPC-A

UPC-AS - UPC-A with Supplement
UPC-E - UPC-E

UPC-ES - UPC-E with Supplement
EANS8 - EAN8

EAN13 - EAN13

EAN13S - EAN13 with Supplement
ISBN - ISBN

NDC - NDC/NHRIC - National Drug
Code

PLU -PLU

VPLU - Variable Weight PLU
SSCC - SSCC Shipper Carton
UCC14 - SCC-14

(blank if none).

Case item desc Char(100) Case item description

Case cost number(20) Case Cost (4 implied decimal places)

Gross case weight | Number(12 Gross weight of the case (4 implied

) decimal places)
Net case weight Number(12 Net weight of the case (4 implied decimal
) places)
Case weight UOM | Char(4) Unit of measure of the case weight
Case length Number(12 Case length (4 implied decimal places)
)
Case width Number(12 Case width (4 implied decimal places)
)
Case height Number(12 Case height (4 implied decimal places)
)
Case lwh UOM Char(4) Case dimension unit of measure.
Case liquid volume | Number(12 Case liquid volume or capacity (4 implied

decimal places)

New and Changed Upload from Supplier [ediupcat] 15

Record Field Name Field Type Default Value Description
Name
Case liquid volume | Char(4) Unit of measure of the case liquid
UuoM volume/capacity
Gross pallet weight | Number(12 Gross pallet weight (4 implied decimal
) places)
Net pallet weight Number(12 Net pallet weight (4 implied decimal
) places)
Pallet weight UOM | Char(4) Unit of measure of the pallet weight
Pallet length Number(12 Pallet length (4 implied decimal places)
)
Pallet width Number(12 Pallet width (4 implied decimal places)
)
Pallet height Number(12 Pallet height (4 implied decimal places)
)
Pallet lwh UOM Char(4) Pallet dimension unit of measure.
Ti Number(12 Shipping units (cases) in one tier of a
) pallet (4 implied decimal places)
Hi Number(12 Number of tiers in a pallet (height). (4
) implied decimal places)
Pack Size Number(12 Supplied pack size. l.e., Number of eaches
) per case pack. This is the quantity that
orders must be placed in multiples of for
the supplier for the item.
Inner pack size Number(12 Supplied inner pack size. 1.e., Number of
) eaches per inner container.
Origin Country ID | Char(3) Supplied origin country ID.
Standard UOM Char(4) Unit of measure in which stock of the item
is tracked at a corporate level.
UOM Conversion Number(20 Conversion Factor, 10 implied decimal
Factor) places. Conversion factor between an
"Each" and the standard_uom when the
standard_uom is not in the quantity class
(e.g. if standard_uom =1Iband 1 1b =10
eaches, this factor will be 10). This factor
will be used to convert sales and stock data
when an item is retailed in eaches but does
not have eaches as its standard unit of
measure.
Packing Method Char(6) Packing Method code (HANG,FLAT)

16 Retek Merchandising System

Record Field Name Field Type Default Value Description
Name
Location Number(10 RETEK location that the supplier
) distributes to or this may be a number used
by the supplier to identify a non-RETEK
location.
Location Type Char(1) This field will contain the type of location
(“S’ for store and “W’ for warehouse).
Bracket Value 1 Number This will contain the primary bracket value
(12,4) of the supplier.
Bracket UOM 1 Char(4) This field will contain the unit of measure
of the primary bracket.
Bracket Type 1 Char (6) This field will contain the UOM class.
Bracket Value 2 Number This will contain the secondary bracket
(12,4) value for the supplier.
Unit cost new Number This field will contain the new unit cost of
(20,4) the bracket.
Case Bracket Value | Number This will contain the primary bracket value
1 (12,4) of the supplier for a case UPC.
Case Bracket UOM | Char(4) This field will contain the unit of measure
1 of the primary bracket for a case UPC.
Case Bracket Type | Char (6) This field will contain the UOM class for a
1 case UPC.
Case Bracket VValue | Number This will contain the secondary bracket
2 (12,4) value for the supplier for a case UPC.
Case Unit cost new | Number This field will contain the new unit cost of
(20,4) the bracket for a case UPC.
File Trailer | File Type Record Char(5) FTAIL Identifies file record type
Descriptor
File Line Identifier | Numeric Sequential ID of current line being created for output
ID(10) number file.
Created by
program.
File Record Numeric Number of records/transactions processed
Counter ID(10) in current file (only records between head
& tail)

New and Changed Upload from Supplier [ediupcat] 17

Test Conditions

Conditions Expected Results Programmer
Sign-off

No records no processing

Missing required information | write TDETL line to reject file

Process a valid input file:

for a new item Insert edi_new_item record — include
the unit retail and cost

for existing items Insert edi_new_item record, if
changes to other than cost.

Only insert into edi_cost_change if
cost change present

for a new item with existing | Update the edi_new_item and
edi_new_item and edi_cost_change tables
edi_cost_change records

Input file contains item,
ref_item, and VPN:

invalid ref_item write TDETL to reject file
invalid vpn write TDETL to reject file
Input file contains ref_item

andVPN:

invalid ref_item write TDETL to reject file
invalid vpn write TDETL to reject file

item with no ref_item (in Insert/update edi_new_item and
Retek) but a valid VPN edi_cost_change tables

Technical Issues

1 Unit retail and cost will be inserted into edi_new_item table for new items
only.

2 We are not using permanent substitutions.

3 Itis assumed that currency will be in the supplier’s currency. This currency
must be converted to primary currency for the edi_new_item table. No
translation is necessary for the edi_cost_change table since that stores the
supplier’s currency.

4 All input/validation errors will be non-fatal. All Oracle errors will be fatal.

ediupinv.pc 19

ediupinv.pc

Design Overview

This program will upload invoice and credit memo information from an ASCI|I
file (which will be translated into Retek standard format by the client from an
EDI file) into the invoice matching tables.

Scheduling Constraints

Pre/Post Logic Description

Table Index Select Insert Update Delete
SYSTEM_OPTIONS Yes Yes No No No
PERIOD Yes Yes No No No
ORDHEAD Yes Yes No No No
UPC_EAN No Yes No No No
INVC_HEAD Yes Yes No No
INVC_DETAIL No Yes No No
INVC_XREF No Yes No No
INVC_MATCH_QUEU No Yes No No
E
INVC_MATCH_WKSH No Yes No No
T
INVC_NON_MERCH No Yes No No
INVC_MERCH_VAT No Yes No No
TERMS Yes No No No
VAT_CODES Yes No No No
RTV_HEAD Yes No No No

Processing Cycle: Phase | (daily)
Scheduling Diagram:
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A —file based.

20 Retek Merchandising System

Restart Recovery

Logical Unit of Work (recommended Commit check points)

The logical unit of work is the invoice.

Function

Commits should occur every 2500 records (subject to experimentation).

Shared Modules
INVC_SQL.NEXT_INVC_ID—get a new invoice id

INVC_SQL.APPLY_XREF—given an order number, insert that order and
received shipments (physical shipments) associated with the order into invc_xref

Level Description

Set up structures for each different type of file line.

Input and reject file names should be accepted from the command line at runtime.
init()

Restart/recovery initialization

Fetch vdate from period and vat_ind and invc_match_qty_ind from
system_options. VVdate will be used as the create date.

Open input file and reject file

Read in FHEAD line (or seek to the right place in the file, if doing a restart)

process()

Read in transactions from file (use get_line). As lines are read in, save to a linked
list for rejection if necessary. For each transaction:

1 Deal with header-level information (THEAD line)—format the line

(format_THEAD), do basic validation (validate_ THEAD), get a new invoice
number (get_new_invc_id) and insert into invc_head, invc_match_queue,
and invc_non_merch tables.

Deal with VAT information (TVATS lines—format_TVATS,
validate_ TVATS). If VAT is turned on in the system, call insert_merch_vat.
(if turned off, read through the lines but don’t process).

Deal with cross reference-level information (TXREF lines — format_xref,
validate_xref). If order numbers exist, call insert_order_xref to insert the
order number into invc_xref table. If ASN numbers exist, loop through all
shipment numbers containing the ASN number in the ext_shipment field on
the shipment table and call insert_shipment_xref to insert the shipment
numbers into the invc_xref table.

Deal with item_level information (TDETL line). Format, validate, insert into
invc_detail table.

ediupinv.pc 21

5 Deal with ASN/carton information (TSHIP line). Match ASN to shipment in
RMS. If ASN is not used, will use the order on INVC_XREF. Format,
validate, insert into invc_match_wksht. ASN and carton are now optional.

6 When get to TTAIL line, check number of lines in transaction from file
against number of lines read in by program. If they don’t match, reject the
transaction.

7 If atransaction failed validation anywhere, roll back to a savepoint set at the
beginning of the transaction and write the transaction to the reject file
(write_to_reject)

8 When transaction has been processed, call restart commit logic if necessary.
get_new_invc_id()

e Call the invc_sql.next_invc_id package to get a new invoice number
process_THEAD()

e Format and validate header variables and do necessary table inserts.
process_ TXREF()

e Format and validate cross-reference variables and do necessary table inserts
into the invc_xref table.

process_TDETL()

e Format and validate item-level variables and do necessary table inserts.
process TVATS()

e Format and validate TVATS variables and insert into invc_merch_vat.
process_TSHIP()

e Format and validate TSHIP variables and insert into invc_match_wksht.
process_FTAIL()

e Validate FTAIL line from input file and create new FTAIL line for reject file
(the total number of transaction lines will be different for the reject file).

format_header_fields()

e parse THEAD line into variables
format_tvats_fields()

o parse TVATS line into variables
format_txref_fields()

e parse TXREF line into variables
format_detail_fields()

e parse TDETL line into variables

22 Retek Merchandising System

Things that must be validated in validate_ THEAD, validate_ TVATS,
validate_ TXREF, and validate TDETL.: (if validation fails, reject transaction but
continue processing file)

item valid (check item_master) (If only given Ref. Item, get transaction —
level item from item_master)

partner/partner type valid if given (use validate_partner_id, and check against
partner table)

merchandise invoices cannot be associated with a partner, and must have
supplier

credit notes from a partner cannot have item records attached to it unless
partner type is in (S1,S2,S3).

order number valid if given (check ordhead)
reference invoice id valid if given (check invc_head)
RTV order number valid if given (check against rtv_head)

if total gty given, individual item qtys sum to total (only need to check this if
invc_match_qty_ind is “Y”” on system_options)

total merchandise cost on THEAD line matches sum of costs from TDETL
lines (sum of unit cost *qty)

Note: Keep a running sum of individual gtys/costs; if don’t match at end of
transaction, reject transaction and rollback to savepoint

Credit notes cannot have both a reference invoice id and a reference RTV

If reference invoice and reference RTV are null, then no terms are required.
If they are included, set due date to later of system date and sup_invoice_date
(use set_due_date).

If Item is not given, must have Ref. Item.

dates are valid dates, numbers are all numeric

If terms not given, default to supplier terms (from sups table)
terms must exist on terms table

VAT code must exist on vat_codes (validate on THEAD, and TVATS
lines—use a separate function validate_ VAT for this and pass in the VAT
code)

Addr_key must exist in the addr table for the partner os supplier given, if not
given, will default to primary address of partner or supplier

Paid_ind needs to be Y or N, if not given will default to that on the sups table
corresponding to the supplier. If only a partner is given, paid_ind will default
to N.

validate. THEAD()

Validate THEAD line variables as needed

ediupinv.pc 23

validate_ TVATS()

o Validate VAT code from TVATS line.
validate_ TXREF()

o validate TXREF line variables as needed.
validate TDETL()

o validate TDETL line variables as needed.

o If Ref. Item is given but Item isn’t, get the transaction-level Item from the
item_master table

validate_order(order_no)

e Check that a given order no exists on the ordhead table
validate_shipment(ship_no)

e Match ASN to shipments in RMS.
validate_carton(ship_no, carton_no)

o Check that the given ship_no/carton_no exists on the shipsku table. Use
shipments that matched from the ASN. Note that carton is now optional in
RMS.

validate_vatcode(vat_code)

e Check that a given VAT code exists on the vat_codes table
validate_partner_type

e Check that given partner_type is legal.

validate_addr_key

e Check that given addr_key is legal.

get_supplier_terms

e Fetch terms from the sups table for the given supplier, if terms not given in
file.

get_addr_key

e Fetch addr_key from the addr table, if not given in file.
get_paid_ind

e Fetch paid_ind from the sups table, if not given in file.
set_due_date()

e Sets due date to later of system date and sup_inv_date.

validate_terms()

e Check that terms exists on terms table.

insert_header()

24 Retek Merchandising System

e Insert arecord into the invc_head table.

A credit memo is treated as matched from the moment it is created (since it must
refer to another invoice or a return to vendor number). Regular merchandise
invoices and non-merchandise invoices are created in unmatched status.

Need to check for duplicate invoices (duplicate supplier invoice
number/(supplier)/(partner type/partner id)/supplier invoice date) . If a duplicate
is found, reject the duplicate transaction, but continue processing the rest of the

file.

The due date should be calculated as follows if terms are given:

Select duedays from the terms table for the terms from the file. Due_date =

invoice date + duedays.

The terms discount percent should be taken from the terms table if it is not in the

file.

Values to insert into invc_head should be as follows:

INVC_ID from invc_sql.next_invc_id

INVC_TYPE ‘I” for merchandise invoice, ‘C’ for credit note,
‘N’ for non-merchandise invoice (from file)

SUPPLIER supplier from file

EXT_REF_NO supplier invoice id from file

STATUS ‘U’ for merchandise and non merchandise
invoices, ‘M’ for credit invoices

EDI_INVC_IND ‘Y’

MATCH_FAIL_IND ‘N’

REF_INVC_ID null for invoice, reference invoice number for

credit note if given

REF_RTV_ORDER_NO

null for invoice, RTV order number for credit
note if given

REF_RSN_CODE

null

TERMS terms from file (or terms table if not given in
file)
DUE_DATE calculated as above

PAYMENT_METHOD

from file

TERMS_DSCNT_PCT

calculate as above

TERMS_DSCNT_APPL_IND | from file
FREIGHT_TERMS from file
CREATE_ID ‘EDIUPINV’

ediupinv.pc 25

CREATE_DATE vdate
INVC_DATE from file
MATCH_ID (null)
MATCH_DATE (null)
APPROVAL_ID (null)
APPROVAL_DATE (null)
FORCE_PAY_IND ‘N’
FORCE_PAY_ID (null)
POST_DATE (null)
CURRENCY_CODE from file

EXCHANGE_RATE

from file if given, null otherwise

TOTAL_MERCH_COST

from file

TOTAL_QTY from file if given

EDI_SENT_IND ‘N’

COMMENTS (null)

PARTNER_TYPE from file

PARTNER_ID from file

ADDR_KEY from file if given, addr table otherwise
PAID_IND from file if given, sups table otherwise

insert_detail()

Insert a record into the invc_detail table.

Default invoice unit cost to original unit cost , invoice gty to original gty, invoice
vat rate to original vat rate (“original” comes from the invoice file)

Values should be as follows:

INVC_ID created by program

ITEM from file

REF_ITEM only if given in file

INVC_UNIT_COST original cost from file

INVC_QTY original qty from file

INVC_VAT RATE original vat rate from file (if given)

STATUS ‘U’ (except for credit memo, which will
be ‘M)

ORIG_UNIT_COST from file

ORIG_QTY from file

26 Retek Merchandising System

ORIG_VAT_RATE from file
COST_DSCRPNCY_IND ‘N’
QTY_DSCRPNCY_IND ‘N’
VAT _DSCRPNCY_IND ‘N’
PROCESSED_IND ‘N’
COMMENTS (null)

insert_wksht()
Insert a record into the invc_match_wksht table.

Values should be as follows:

INVC_ID created by program

ITEM from file

INVC_UNIT_COST from file

SHIPMENT matched from ASN(s) in file

CARTON from file (carton is now optional)
INVC_MATCH_QTY (null)

MATCH_TO_COST If no ORDLOC_INVC_COST records exist

for the order/item/loc, this field will contain
the SHIPSKU cost. Otherwise it will be the
ORDLOC_INVC_COST cost.

MATCH_TO_QTY If no ORDLOC_INVC_COST records exist
for the order/item/loc, this field will contain
the SHIPSKU qgty. Otherwise it will be the

ORDLOC_INVC_COST qty.

MATCH_TO_SEQ NO If no ORDLOC_INVC_COST records exist
for the order/item/loc, this field will be
NULL. Otherwise it will contain the
corresponding sequence number from
ORDLOC_INVC_COST.

insert_order_xref(order_no)

(Only call this function if an order number was given—only call once for each
distinct order number for each invoice)

Call INVC_SQL.APPLY_XREF, which will insert the order number and all
received shipments with that order number into the invc_xref table. The
apply_to_future_ind parameter should be “Y’.

ediupinv.pc 27

insert_ship_xref(shipment)

e Make sure the shipment has been received. (If not, reject transaction). Check
to make sure that a record with this shipment and invoice does not already
exist on the invc_xref table; if it does not, insert (apply_to_future_ind should
be ‘N’, everything else except invoice_id and shipment will be null).

insert_match_queue()

e Insert a record into the invc_match_queue table with the new invoice ID.
(Don’t call this function for credit memos; they don’t need to go into the
match queue.)

insert_non_merch()

o If asalestax is given on the header line, insert it into the invc_non_merch
table (with a non_merch_code of “T’); if a freight charge is given, insert it
into invc_non_merch with a non_merch_code of ‘F’; if a miscellaneous
charge is given, insert with a code of ‘M’. If VAT codes are given, insert
them.

insert_merch_vat()

e Insert arecord into the invc_merch_vat table. Processing should continue
with no error if duplicate values are found.

write_to_reject()

e Write record to reject file (use linked list)

get_line()

e Read in a line from input file and determine the line type.
reset_variables()

e Set counters back to zero.

final()

o Restart/recovery close

e Close files, remove temporary file.

I/O Specification
Input file format:
FHEAD (start of file)
THEAD (Invoice level info)
TVATS (Summary level —cost at a VAT rate)
TXREF (Summary level — ASN and Order numbers)
TDETL (items within an invoice)
TSHIP (ASN (optional) and carton (optional) numbers within an invoice)

Note: All TSHIP records for a single item must follow immediately after the
TDETL record.

28 Retek Merchandising System

If running ediupinv.pc with no ASN in the upload file, then the TSHIP record
should leave the field blank.

TTAIL (marks end of invoice)
FTAIL (marks end of file)
An input file can contain multiple invoices.

Reject file will have an identical format. If no records are rejected, it will consist
of only the FHEAD and FTAIL lines.

All character variables should be right-padded with blanks and left justified; all
numerical variables should be left-padded with zeroes and right-justified.
Missing variables should be blank.

Record Field Name | Field Type | Default Description Comments
Name Value
FHEAD | File head Char(5) FHEAD | Describes file line
descriptor type
Line id Char(10) 0000000 | Sequential file line
001 number
Gentran ID Char(5) UPINV Identifies which
translation Gentran
uses
Current date | Char(14) File date in
YYYYMMDDHH24
MISS format
THEAD | File record Char(5) THEAD | Start of an invoice
descriptor transaction
Line id Char(10) Sequential file line
number
Transaction Number(10 Sequential
number) transaction number
Transaction Char(1) I=Invoice
type flag C=Credit note
N= non-merchandise
invoice
Supplier Char (30) Supplier’s identifier
invoice for this invoice
number
Cross- Number(10 Invoice that a credit
reference) note is for (blank for
invoice an invoice)
number

ediupinv.pc 29

Record
Name

Field Name

Field Type

Default
Value

Description

Comments

Cross-
reference
RTV number

Number(6)

RTV order that a
credit note is for
(blank for an invoice)

Partner Type

Char(6)

BK=Bank
AG=Agent
FF=Freight
Forwarder
IM=Importer
BR=Broker
FA=Factory
AP=Applicant
CO=Consolidator
CN=Consignee
S1=Supplier
hierarchy level 1
(e.g. manufacturer)
S2=Supplier
hierarchy level 2
(e.g. distributor)
S3=Supplier
hierarchy level 3
(e.g. wholesaler)

Partner ID

Char(10)

Credit note or non-
merchandise invoice
partner.

Supplier

Number(10
)

Invoice supplier

Supplier
invoice date

Char(14)

Invc_head.invc_date
YYYYMMDDHH24
MISS

Date invoice was
issued by supplier

Terms

Char(15)

Invc_head.terms

If not given in file,
take from supplier
terms

30 Retek Merchandising System

associated w/invoice

Record Field Name | Field Type | Default Description Comments
Name Value

Terms Number(12 Discount percent if

discount) invoice paid on time

percentage 4 implied decimal
places (optional—if
not in file, take from
terms table)

Discount Char(1) “Y’—discount HAS

apply been applied to

indicator total_merch_cost
‘N’—it has not

Discount Char(1) “Y’—discount HAS

apply been applied

non merch ‘N’—it has not

ind

Payment Char(6) Invc_head.payment

method method
LC=letter of credit
OA= Open Account
WT= wire transfer
(other values
possible)

Currency Char(3) Currency code of

code invoice currency

Exchange Number(20 From the invoice

rate) currency to the
primary currency. 10
implied decimal
places.
Optional.

Total Number(20 Total invoice cost,

merchandise |) including all items on

cost invoice (4 implied
decimal places)
(NOT including tax)
VAT EXCLUSIVE

Total Number(12 Total quantity of

guantity) items on invoice (4
implied decimal
places)

Freight terms | Char(30) Freight terms

ediupinv.pc 31

Record Field Name | Field Type | Default Description Comments
Name Value
Sales tax Number(20 Sales tax on invoice
) (4 implied decimal
places)
Optional
Sales tax char(6) VAT code for sales
VAT code tax (optional)
Freight Number(20 Freight charges for
charges) invoice (4 implied
decimal places)
Optional
Freight char(6) VAT code for freight
charge VAT charges (optional)
code
Miscellaneou | Number(20 4 implied decimal
s charge) places
Optional
Misc. charge | char(6) VAT code for
VAT code miscellaneous
charge—optional
Address key | Number(6) Address key for the
supplier or partner.
(optional)
Paid_ind Char(1) Paid index for the
invoice. ‘Y’ or ‘N’.
(optional)
TVATS | File record Char(5) TVATS | Marks costs at VAT
descriptor rate line
Line id Char(10) Sequential file line
number
Transaction Number(10 Sequential
number) transaction number
VAT code Char(6) VAT code that
applies to cost
Cost at this Number(20 4 implied decimal
VAT code) places

32 Retek Merchandising System

Record Field Name | Field Type | Default Description Comments
Name Value
TXREF | File record Char(5) TXREF Marks cross-
descriptor reference info line
Lineid Char(10) Sequential file line
number
Transaction Number(10 Sequential
number (10) |) transaction number
ASN number | Char(30) Suppliers shipment ASN must be used
number to map to RMS
shipments that are
written to the
invc_xref table.
Order Number(8) RMS Order Number
Number
TDETL | File record Char(5) TDETL | Marks item info line
descriptor
Lineid Char(10) Sequential file line
number
Transaction Number(10 Sequential
number) transaction number
Item Char(25) Item (optional but at
least one of Item/Ref.
Item must be present)
Ref Item Char(25) Ref. Item (optional,
see item)
Original Number(12 How many of this
Invoice) item on invoice (4
quantity implied decimal
places)
Original Unit | Number(20 Unit cost of item as
cost) reported by invoice
4 implied decimal
places
Original Number(20 VAT rate for this
VAT rate) item (10 implied
decimal places)
TSHIP File record Char(5) TSHIP Marks ASN/carton
descriptor info line
Line id Char(10) Sequential file line
number

ediupinv.pc 33

Record Field Name | Field Type | Default Description Comments
Name Value
Transaction Number(10 Sequential
number) transaction number
ASN number | Char(30) Vendor ASN number | ASN must be used
used to identify to map to RMS
shipment shipments that are
written to the
invc_match_wksht
table.
Carton Char(20) Carton ID if exists
number
TTAIL File record Char(5) TTAIL Marks end of
descriptor transaction
Line id Char(10) Sequential file line
number
Transaction Number(10 Sequential
number) transaction number
Transaction Number(6) Total number of
lines TXREF, TDETL,
TVATS, and TSHIP
lines in transaction
FTAIL | File record Char(5) FTAIL Marks end of file
descriptor
Line id Char(10) Sequential file line
number
Number of Number(10 Number of lines in
lines) file not counting
FHEAD and FTAIL

34 Retek Merchandising System

Technical Issues

The VAT rate column on invc_detail may be changed to a VAT code column, at
which point this program would need to be modified to read in a VAT code
rather than a VAT rate.

Extra Info

use linked list to hold lines in transaction (so can write whole transaction to
reject file at once)

remember this is file-based—use restart_file_init, restart_file_commit (and
restart_file_write for the reject file)

Similar programs to look at: ediupasn.pc, rcvupld.pc, ediupack.pc

General structure of process function:

Inside a while loop:
Set a savepoint

Read in a line (should be transaction header line. If it’s a FTAIL line, break.
If neither header not FTAIL, set error flag)

Validate transaction header line; set flag if fails validation

Read in a line. If it’s transaction tail line (TTAIL) break; else validate line
and process

= |f error occurred, rollback to savepoint and write transaction to reject file
= Call restart commit logic
End outer (invoice) loop

Call process_FTAIL to handle last line of file

posdnld.pc 35

posdnld.pc

Design Overview

The posdnld program is used to download pos_mods records created in the RMS
to the store POS systems. This program has one output file which contains all
records for all stores in a given run. This program uses the Retek standard file
format FHEAD, FDETL, FTAIL.

Program Flow

N
S

Pos_mods

~_ -

Output File

v

Stored Procedures / Shared Modules (Maintainability)
pos_config_sgl.check item - Updates POS item configuration information that is
downloaded to the stores by poscdnld.pc.

Input Specifications

All input comes from the pos_mods table. All columns of this table can be NULL
with the exception of tran_type and store. Most columns should default to blank
(spaces) with the exception of:

e new_price, new_multi_units, new_multi_units_retail, proportional_tare_pct
and fixed_tare_value. These should default to zero (0).

e start date, start_time and end_time. These should default to period.vdate + 1.

Output Specifications

36 Retek Merchandising System

Output File
Record Field Name Field Type Default Value Description
Name
File Header | File Type Char(5) FHEAD Identifies file record type
Record
Descriptor
File Line Number Sequential ID of current line being created for
Identifier ID(10) number output file.
Created by
program.
File Type Char(4) POSD Identifies file as ‘POS Download’
Definition
File Create Date | Char(8) Create date Current date, formatted to
(vdate). ‘YYYYMMDD’.
File Detail | File Type Char(5) FDETL Identifies file record type
Record
Descriptor
File Line Number Sequential ID of current line being created for
Identifier ID(10) number. output file.
Created by
program.
Location Number(10) | Store Contains the store location that has been
Number affected by the transaction
Update Type Char(1) Update type. Code used for client specific POS
Created by system.
program. 1 - Transaction Types 1 & 2.
2 - Transaction Types 10 thru 18, 31 &
32, 50 thru 57, 59 thru 64.
3 - Transaction Types 21 & 22
4 - Transaction Types 25 & 26
0 - All other Transaction Types. These
should never exist.
Start Date Char(8) Start_date or The effective date for the action

vdate + 1 if
NULL.

determined by the transaction type of the
record. Formatted to “YYYYMMDD".

posdnld.pc 37

Record Field Name Field Type Default Value Description
Name
Time Char(6) Start_time, This field will be used in conjunction
End_time or with starting a promotion (Transaction
start_date. Type = 31). Start time will indicate the

time of day that the promotion is
scheduled to start. This field will also be
used in conjunction with ending a
promotion (Transaction Type = 32). Any
other Transaction Type will use the time
from the start_date column. Formatted to
‘HH24MISS’.

38 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description

Transaction
Type

Number(2)

Tran_type

Indicates the type of transaction to
determine what Retek action is being
sent down to the stores from the Retek
pos_maods table.

Valid values include;
01 - Add new transaction level item

02 - Add new lower than transaction
level item

10 - Change Short Description of
existing item

11 - Change Price of an existing item
12 - Change Description of an existing
item

13 - Change Department/Class/Subclass
of an existing item

16 - Put Item on Clearance

17 - Change existing item's Clearance
Price

18 - Remove Item from Clearance and
Reset

20 - Change in VAT rate

21 - Delete existing transaction level
item

22 - Delete existing lower than
transaction level item

25 - Change item's status

26 - Change item's taxable indicator

31 - Promotional item - Start
maintenance

32 - Promotional item - End maintenance
50 - Change item's launch date

51 - Change item's quantity key options
52 - Change item's manual price entry
options

53 - Change item's deposit code

54 - Change item's food stamp indicator
55 - Change item's WIC indicator

56 - Change item's proportional tare
percent

57 - Change item's fixed tare value

58 - Change item's rewards eligible
indicator

59- Change item's electronic marketing
clubs

60 - Change item's return policy
61 - Change item's stop sale indicator
62 — Change item’s returnable indicator

posdnid.pc 39

Record Field Name Field Type Default Value Description
Name

Item Number ID | Char(25) Item This field identifies the unique
alphanumeric value for the transaction
level item. The ID number of a item
from the Retek item_master table.

Item Number Char(6) Item_number_typ | This field identifies the type of the item

Type e number ID.

Format ID Char(1) Format _id This field identifies the type of format
used if the item_number_type is
‘VPLU’.

Prefix Number(2) | Prefix This field identifies the prefix used if the
item_number_type is ‘VPLU’. In case of
single digit prefix, the field will be right-
justified with blank padding.

Reference Item | Char(25) Ref_item This field identifies the unique
alphanumeric value for an item one level
below the transaction level item.

Reference Item | Char(6) Ref_ltem_numbe | This field identifies the type of the ref

Number Type r_type item number ID.

Reference Item | Char(1) Ref Format _id This field identifies the type of format

Format ID used if the ref item_number_type is
‘VPLU’.

Reference Item | Number(2) | Ref_Prefix This field identifies the prefix used if the

Prefix ref item_number_type is “VPLU"’. In
case of single digit prefix, the field will
be right-justified with blank padding.

Item Short Char(20) Item_short_desc | Contains the short description associated

Description with the item.

Item Long Char(100) Item_long_desc | Contains the long description associated

Description with the item.

Department ID Number(4) | Dept Contains the item's associated
department.

Class ID Number(4) | Class Contains the item'’s associated class.

Subclass 1D Number(4) | Subclass Contains the item's associated subclass.

New Price Number(20) | New_price Contains the new effective price in the

selling unit of measure for an item when
the transaction type identifies a change in
price. Otherwise, the current retail price
is used to populate this field. This field is
stored in the local currency.

40 Retek Merchandising System

Record Field Name Field Type Default Value Description

Name
New Selling Char(4) New_selling_UO | Contains the new selling unit of measure
UOM M for an item's single-unit retail.
New Multi Units | Number(12) | New_multi_units | Contains the new number of units sold

together for multi-unit pricing. This field
is only filled when a multi-unit price
change is being made.

New Multi Units
Retail

Number(20)

New_multi_units
_retail

Contains the new price in the selling unit
of measure for units sold together for
multi-unit pricing. This field is only
filled when a multi-unit price change is
being made. This field is stored in the
local currency.

New Multi
Selling UOM

Char(4)

New_multi_sellin
g_UOM

Contains the new selling unit of measure
for an item's multi-unit retail.

Status

Char(1)

Status

Populates if tran_type for the item is
1(new item added) or 25 (change item
status) or 26 (change taxable indicator).

Contains the current status of the item at
the store.

Valid values are:
A = Active
I = Inactive
D = Delete
C = Discontinued

Taxable
Indicator

Char(1)

Taxable_ind

Populates if tran_type for the item is 1
(new item added) or 25 (change item
status) or 26 (change taxable indicator).

Indicates whether the item is taxable at
the store. Valid values are "Y' or 'N".

Promotion
Number

Number(10)

Promotion

This field contains the number of the
promotion for which the discount
originated. This field, along with the Mix
Match Number or Threshold Number is
used to isolate a list of items that tie
together with discount information.

Mix Match
Number

Number(10)

Mix_match_no

This field contains the number of the mix
and match in a promotion for which the
discount originated. This field, along
with the promotion, is used to isolate a
list of items which tie together with the
mix and match discount information.

posdnld.pc 41

Record Field Name Field Type Default Value Description
Name

Mix Match Type | Char(1) Mix_match_type | This field identifies which types of mix
and match record this item belongs to.
The item can either be a buy (exists on
PROM_MIX_MATCH_BUY) or a get
(exists on PROM_MIX_MATCH_GET)
item. This field is only populated when
the MIX_MATCH_NO is populated.

Valid values are:

B - Buy

G - Get
Threshold Number(10) | Threshold_no This field contains the number of the
Number threshold in a promotion for which the

discount originated. This field, along
with the promotion, is used to isolate a
list of items that tie together with
discount information.

Launch Date Char(8) Launch_date Date that the item should first be sold at
this location, formatted to
‘“YYYYMMDD’.

Quantity Key Char(6) Qty_key options | Determines whether the price can/should

Options be entered manually on a POS for this

item at the location. Valid values are in
the code_type 'RPQO'. Current values
include 'R - required’, 'P - Prohibited.

Manual Price Char(6) Manual_price_en | Determines whether the price can/should
Entry try be entered manually on a POS for this
item at the location. Valid values are in
the code_type 'RPO'. Current values
include 'R - required’, 'P - Prohibited’,
and 'O - Optional'.

Deposit Code Char(6) Deposit_code Indicates whether a deposit is associated
with this item at the location. Valid
values are in the code_type 'DEPO'.
Additional values may be added or
removed as needed. Deposits are not
subtracted from the retail of an item
uploaded to RMS, etc. This kind of
processing is the responsibility of the
client and should occur before sales are
sent to any Retek application.

Food Stamp Char(1) Food_stamp_ind | Indicates whether the item is approved
Indicator for food stamps at the location.

42 Retek Merchandising System

Record
Name

Field Name

Field Type

Default Value

Description

WIC Indicator

Char(1)

Wic_ind

Indicates whether the item is approved
for WIC at the location.

Proportional
Tare Percent

Number(12)

Proportional_tare
_pct

Holds the value associated of the
packaging in items sold by weight at the
location. The proportional tare is the
proportion of the total weight of a unit of
an item that is packaging (i.e. if the tare
item is bulk candy, this is the
proportional of the total weight of one
piece of candy that is the candy
wrapper). The only processing RMS
does involving the proportional tare
percent is downloading it to the POS.

Fixed Tare
Value

Number(12)

Fixed tare_value

Holds the value associated of the
packaging in items sold by weight at the
location. Fixed tare is the tare of the
packaging used to (i.e. if the tare item is
bulk candy, this is weight of the bag and
twist tie). The only processing RMS does
involving the fixed tare value is
downloading it to the POS. Fixed tare is
not subtracted from items sold by weight
when sales are uploaded to RMS, etc.
This kind of processing is the
responsibility of the client and should
occur before sales are sent to any Retek
application.

Fixed Tare
UOM

Char(4)

Fixed_tare_uom

Holds the unit of measure value
associated with the tare value. The only
processing RMS does involving the
proportional tare value and UOM is
downloading it to the POS. This kind of
processing is the responsibility of the
client and should occur before sales are
sent to any Retek application.

Reward Eligible
Indicator

Char(1)

Reward_eligible_
ind

Holds whether the item is legally valid
for various types of bonus point/award
programs at the location.

Elective
Marketing Clubs

Char(6)

Elect_mtk_clubs

Holds the code that represents the
marketing clubs to which the item
belongs at the location. Valid values can
belong to the code_type 'MTKC'.
Additional values can be added or
removed from the code type as needed

posdnid.pc 43

Record Field Name Field Type Default Value Description
Name
Return Policy Char(6) Return_pocily Holds the return policy for the item at the
location. Valid values for this field
belong to the code_type 'RETP".
Stop Sale Char(1) Stop_sale_ind Indicates that sale of the item should be
Indicator stopped immediately at the location (i.e.
in case of recall etc).
Returnable Char(1) Returnable_ind Indicates that the item is returnable at the
Indicator location when equal to “Y’es. Indicates
that the item is not returnable at the
location when equal to “N’o.
Refundable Char(1) Refundable_ind Indicates that the item is refundable at
Indicator the location when equal to “Y’es.
Indicates that the item is not refundable
at the location when equal to ‘N’o.
Back Order Char(1) Back_order_ind Indicates that the item is back orderable
Indicator at the location when equal to “Y”.
Indicates that the item is not back
orderable when equal to ‘N’o.
Vat Code Char(6) Indicates the VAT code used with this
item.
Vat Rate Number(20, Indicates the VAT rate associated with
10) this item and VAT code.
Class Vat Char(1) Indicates whether or not the class VAT
Indicator indicator is on or off for the class that
this item exists in.
File Trailer | File Type Char(5) FTAIL Identifies file record type
Record
Descriptor
File Line Number Sequential ID of current line being created for
Identifier ID(10) number. output file.
Created by
program.
File Record Number Number of Number of records/transactions
Counter ID(10) FDETL records. | processed in current file (only records
Created by between head & tail)

program.

44 Retek Merchandising System

Function Level Description

init - This function initializes restart/recovery for this program. It also retrieves
system variables (period.vdate and vdate + 1), opens the output file and write the
FHEAD record.

process - This function drives the processing of the program. It calls size_arrays()
function to size the arrays used in this program and also, when done, it calls
free_arrays() to release any memory it has been allocated. The driving cursor is
opened and fetched here, which retrieves all the records from pos_mods where
the pos_maods.store value is greater than zero.

If the Transaction Type is 31, then the time field returned by the cursor should be
the start time, else if the Transaction Type is 32, then the time field should be the
end time. If the Transaction Type is something else or if either the start time or
end time is NULL, blanks should be used.

Once the records are fetched, if the Transaction Type of the record fetched is 1 or
21 then pos_config_check() is called. The write_rec() function is called to
perform processing on all records fetched. Restart/Recovery and committing of
records is also performed here.

final - This function will finish restart/recovery logic, write the FTAIL record
and close the output.

size_arrays - This function initializes the size of the array used for the driving
cursor fetch the size of the restart max counter on restart_control.

free_arrays - This function frees the array allocated in size_arrays.

write_rec - This function will prepare records for insert into the output file and
write them as FDETL records. The Transaction Type will determine the Update
Type. If the Transaction Type is 1, 25 or 26 then the status and taxable_ind
columns must be outputted, otherwise these should remain blank.

pos_config_check - This function will call the package
pos_config_sql.check_item(). If the Transaction type is 1, then a status of 'A" will
be passed in. If the Transaction Type is 21, then a status of 'D' will be passed in.

Scheduling Considerations

Processing Cycle: PHASE 4 (daily)

Scheduling Diagram: This program is run towards the end of the batch run
when all pos_mods records have been created for the transaction day.

Pre-Processing: N/A

Post-Processing: prepost.pc - posdnld_post() — records in
POS_MODS are truncated.

Threading Scheme: V_restart_store

posdnld.pc 45

Locking Strategy

None.

Restart/Recovery

Restart/recovery for this program is set up at the store/item or item level.
Threading is done by store using the v_restart_store view to thread properly.

Performance Considerations

Both table and file restart/recovery must be used.

The commit_max_ctr field should be set to prevent excessive rollback space

usage, and to reduce the overhead of file I/0. The recommended commit counter

setting is 10000 records (subject to change based on experimentation).
Security Considerations

Price changes for all stores are stored in a Unix file with the processes default
permissions (umask). Care should be exercised so that this file cannot be
tampered with.

Design Assumptions

Data columns required by a particular Transaction Type are filled in and correct.

Outstanding Design Issues

Issue Description Priority | Issue Log
Updated?

The columns pos_config_item.item and pos_merch_criteria.sku are of type number H
and have a length of 8. These columns are updated and referenced by the
pos_config_sql.check_item() package function. These tables are then used by
poscdnld.pc.

Appendix

None.

Reclsdly.pc 47

Reclsdly.pc

Design Overview

Reclsdly will be modified to work with the new item dialog.

Function Level Description
Remove the following macros :
e NULL_PACK_TYPE.
e NULL_SYSTEM_IND.
Remove all EXEC SQL VARs.
Change the following variables :
e Os restart sku[NULL_SKU] to os_restart_item[NULL_ITEM].
e Os sku[NULL_SKU]to os_item[NULL_ITEM].

e Os system ind[NULL_SYSTEM_IND] to
os_item_num_type[NULL_ITEM_NUM_TYPE].

In the reclass_fetched_array, char (*ps_sku)[NULL_SKU] to char
(*ps_item)[NULL_ITEM]. Also add variables to this fetch array for a
pack_type, item_level, and tran_level.

Create variables os_pack_type, os_item_level, and os_tran_level.
The c_reclass cursor needs to something like the following :
SELECT ri.rowid,
Ri.reclass_no,
Ri.item,
Item_level,
Tran_level,
to_dept,
to_class,
to_subclass,
dept,
class,
subclass,
pack_type,
orderable_ind
FROM v_restart_reclass,
Reclass_item ri,

Reclass head,

48 Retek Merchandising System

Item_master

WHERE reclass_head.reclass _no

reclass_item.reclass _no

AND reclass head.reclass _date < vdate

AND reclass_item.item

item_master.item

AND item_master.item_level

UNION

SELECT ri.rowid,
Ri.reclass no,
im.item,
Item_level,
Tran_level,
rh_to_dept,
rh.to _class,
rh.to_subclass,
im.system_ind,
im.dept,
im.class,
im.subclass,
pack_type,

orderable_ind

FROM v_restart_reclass,

Reclass_item ri,
Reclass _head rh,
Item_master im

WHERE rh._reclass_no

ri.reclass _no

AND rh_reclass_date <= VDATE

AND ri.item =

im.item parent

AND im.item_level

UNION

SELECT ri.rowid,
Ri.reclass_no,
im.item,
Item_level,
Tran_level,
rh_to_dept,
rh_to _class,

rh_to_subclass,

Reclsdly.pc 49

im.system ind,
im.dept,
im_class,
im_subclass,
pack_type,
orderable_ind

FROM v_restart_reclass,
Reclass_item ri,
Reclass _head rh,
Item_master im

WHERE rh.reclass_no = ri.reclass_no

AND rh_reclass_date <= VDATE
AND ri_item = im.item_grandparent
AND im.item level = 3

The cursor should retain the current threading and driver functionality.
Process()

The DELETE FROM reclass_sku needs to be changed to DELETE FROM
reclass_item.

Check_domain_exists()
Process_sku()

Change name to Process_item(). The input parameter, char * is_sku, needs to be
changed to char * is_item.

The c_get_pack_type cursor and all related functionality needs to be deleted.
The parameters passed to RECLASS _SQL.ITEM_PROCESS have changed.
RECLASS SQL.ITEM_PROCESS(Is_error_message,
:os_sku,
cos_item level,
:os_tran_level,

TO_DATE(:ps_vdate,
“YYYYMMDD?),

:os_system forecast_ind,
:Ib_domain_exists,
:0s_new_domain_id,
os_old_dept,
tos_old_class,
:os_old_subclass,

:os_to _dept,

:os_to_class,

50 Retek Merchandising System

:os_to_subclass)

Comment out the last part of this function, starting here :
if((*is_system_ ind == “S”) || (*is_system ind == “f?))..

Process_security()

Local variable L_sku needs to be changed to L_item[NULL_ITEM];

C_sku cursor needs to be renamed to C_item, and to select ITEM from
ITEM_MASTER where ITEM_GRANDPARENT = :o0s_item.

The DELETE FROM sec_group_prod_matrix needs to be changed to :
DELETE FROM sec_group_prod_matrix

WHERE level_1
= :os_item

OR
level 2 = :os_item

OR level_3 = :os_item
The DELETE FROM sec_user_prod_matrix needs to be changed to :
DELETE FROM sec_user_prod_matrix
WHERE level_3 = :-os_item

The parameters passed to LOC_PROD_SECURITY_SQL.INSERT_USER_SEC
have changed.

LOC_PROD_SECURITY_SQL.INSERT USER_SEC(Is_error_message,
zos_to_dept,
os_to _class,
:os_to_subclass,

:os_sku, /*
item level 1 */

NULL, /* 1tem
level 2 */

NULL) /* item
level 3 */

Get_order_numbers()

The input parameter char * is_fetched_sku needs to be changed to char *
is_fetched_item.

All code relating to this function must be commented out.
Call_insert_deal_sku_temp()

The input parameter char * is_sku needs to be changed to char * is_item.
All code relating to this function must be commented out.
Get_supplier_origin_id()

The input parameter char * is_sku needs to be changed to char * is_item.
All code relating to this function must be commented out.

Reclsdly.pc 51

Order_exists()
All code relating to this function must be commented out.

saexpach.pc 53

saexpach.pc

Design Overview

This module will post Store/day deposit totals to the SA_STORE_ACH table and
bank deposit totals for a given day to a standard ACH format file. The ACH
export deviates from the typical Sales Audit export in that store/days must be
exported even though errors may have occurred for a given day or store
(depending on the unit of work defined) and also the store/day does not need to
be closed for the export to occur. The nature of the ACH process is such that as
much money as possible must be sent as soon as possible to the consolidating
bank. Any adjustments to the amount sent can be made via the sabnkach form.

Also, we are assuming that there is only one total to be exported for ACH per
store/day.

Deposits for store/days that have not been *F’ully loaded will not be transferred
to the consolidating bank. After they are fully loaded, their deposits will be
picked up by the next run of the program.

Furthermore, the program estimates a 0 for a store/day that is closed, for example
due to a holiday. An example is shown below (Wednesday is a holiday):

Mon | Tues | Wed | Thu Fri
Estimated deposit for next day | 5 0 10
Adjustment to estimated 5 15 0
deposit for this day
Exported at close 5 25 0
Actual deposit 10 15 10

In this example, we export only 5 (the adjustment) at close of Tuesday. The
program is not run at close on Wednesday because it does not have a
store_day_seq_no. Thus, on Thursday, the estimate for that day is 0 and the
adjustment equals the actual. Also, on Thursday, we estimate that the total is
going to be 10 and we export 25 at close of Thursday. Thus, the bank account
should return to the minimum balance at this point.

Table Operations Performed
Select | Insert | Update Delete
Period Yes No No No
Sa_store_day Yes No No No
Sa_export_log Yes No Yes No
Sa_exported No Yes No No
Sa_store_ach Yes Yes Yes No
Sa bank_ach Yes Yes Yes No

54 Retek Merchandising System

Table Operations Performed
Select | Insert | Update Delete
Sa_total Yes No No No
Sa_bank_store Yes No No No
Sa_store_day_write_lock Yes No Yes No
Sa_store_day _read_lock Yes No No No
Store Yes No No No
Partner Yes No No No

Background information — Quick Overview of the ACH
process

ACH stands for Automated Clearing House and is a process by which funds can
be transferred electronically from one account to another, possibly at a different
financial institution. Instructions for each transaction are stored in a file, called an
ACH file, which is then transferred across the ACH Network to be processed.
This document provides only an overview of the process and will only describe
points of interest for the saexpach program. It is beyond the scope of this
document to provide the details of this process. Readers interested in knowing
more about ACH should consult the 2000 ACH Rules published by the National
ACH Association (NACHA).

There are 5 participants in an ACH transaction:

1 The originating company (called the Originator). The Originator is the entity
requesting the transaction (i.e. this is where the transaction originates from).

2 The Originating Depository Financial Institution (ODFI).
3 The ACH Operator.

4 The Receiving Depository Financial Institution (RDFI).
5 The receiving company (called the Receiver).

It is important to note that the above description refers to direction of file
transfers and not to direction of money flow.

Since the ReSA client has control over both the stores and the headquarters, the
Originator can be either the former or the latter. To simplify the process, the
headquarters will be the Originator, as this would require only one file to be
produced, requesting money from each individual store. Figure 1 gives a pictorial
overview.

saexpach.pc 55

ODFI ACH Operator
Consolidating » Third-party ¢ ¢ ¢
Bank institution RDFI RDFI RDFI
4 Local Local Local
< ® bank bank bank
$$
o Receiver | Receiver Receiver
ACH QOriginator ReSA ReSA ReSA
File ReSA Client’s | $$ $$ | Client’s | Client’s Client’s
Headquarters Store Store | | Store

Figure 1: Overview of an ACH Network

The file that is produced at the Originator is sent to the ODFI which then routes it
to the appropriate ACH operator(s). The latter will then contact the RDFI to
request the money transfer.

In ACH jargon, the type of transaction that is being requested is a Cash
Concentration and Disbursement (CCD). As of September 2000, however,
transactions between institutions in different countries require a Corporate Cross-
Border (CBR) Transaction. This program will meet this new requirement.

ACH is a US network of banks and therefore, this program should not be used for
ACH look-alike networks outside the US, such as in Europe, as the file formats
may be different. In other words, throughout this program, it is assumed that the
country in which the consolidating bank is based is the United States.

Furthermore, all amounts in the ACH file are expected to be in US dollars
(USD). Amounts for CBR transactions will have to be converted to USD.

Custom maodifications can be made to this program such that output files that
meet the requirements of other networks can be created. It is expected that the
general structure of the program can be left unchanged and that only the
functions that actually write the data out would have to change.

56 Retek Merchandising System

Data Security

The fact that this program automates the transfer of funds on behalf of the user
makes it a likely target for electronic theft. It must be made clear that the
responsibility of electronic protection lies with the users themselves. Retek does
not provide any kind of encryption or authentication beyond what is provided by
the operating system and the database management system. Retek does provide
some tips and recommendation to users:

1 A specific user should probably be used to run the program. This user would
be the only one (or one of a few) who has access to this program.

2 The umask for this user should be setup so as to prevent other users to
read/write its files. This would ensure that when the output file is created, it
will not be accessible to other users.

3 The appropriate permissions should be setup on the directory which holds the
ACH files. The most restrictive decision would be to not allow any other user
to view the contents of the directory.

4 The password to this user should be kept confidential.

5 A secure means of communication should be implemented for transferring
the file from where it has been created to the ACH network. This may be
done via encryption, or by copying the file to a disk and trusting the courier
to deliver the files intact.

6 Retek assumes that the ACH network is secure.

Scheduling Constraints

Pre/Post Logic Description
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling
process: satotals and sarules.

Threading Scheme: N/A

Restart Recovery

This module is in two distinct parts, with two different logical units of work.
Thus restart/recovery has to be implemented so that the first part does not get
reprocessed in case the program is being restarted. Details on the implementation
follow.

The first driving cursor in this module retrieves a store/day to generate ACH
totals. Once the first cursor is complete, the second retrieves bank locations by
account numbers.

The first Logical Unit of Work (LUW) is defined as a unique store/day
combination. Records will be fetched, using the first driving cursor, in batches of
commit_max_ctr, but processed one store/day at a time.

saexpach.pc 57

The first driving cursor will fetch all store/days that have been ‘F’ully Loaded,
whose audit status is ‘A’udited, ‘H’Q Errors Pending or ‘S’tore Errors Pending
and that are ready to be exported to ACH. Before processing starts, a write lock
is obtained using get_lock (). This driving cursor only fetches store/days with a
sa_export_log.status of SAES_R. After a store/day is processed,
sa_export_log.status is set to SAES P so that this store/day will not be selected
again if the program is restarted. We commit using retek_force_commit after
each store/day has been processed and sa_export_log updated, so as to release the
lock.

In case a store/day could not be processed due to locking, then the store/day
information is placed on a list (called locked store/day list) and the next store/day
is processed. This list is kept in memory and is available only during processing.
If the store for a store/day obtained from the first driving cursor, is on the locked
store/day list, then this store/day cannot be processed. This is the case because
there is a data dependency such that data from a particular store/day is dependent
on data for the same store but at an earlier date. Thus, if a store/day cannot be
processed, then subsequent store/days for the same store cannot be processed
either. After the driving cursor returns no more data, the program attempts to
process each store/day on the list two more times. If the store/day is still locked,
then it is skipped entirely and a message is printed to the error log.

The second LUW is a bank account number. Again, records will be fetched in
batches of commit_max_ctr. The second driving cursor cannot retrieve
information by the LUW because it is possible for the store’s currency to be
different from the local bank’s currency. In that case, a currency conversion is
needed.

For each store/day, the query should retrieve the required ACH transfer. The
latter is determined by adding the estimated deposit for the next day, the
adjustment to the estimate for the current day and any manual adjustment to the
estimate.

Since a store can be associated with different accounts at different banks, only
accounts that are consolidated should be retrieved. Since it is possible for the
local bank to be in a different country than the consolidating bank, the currency
of the partner should also be fetched.

Since processing is dependent on the type of account at the RDFI, the account
type should be fetched by this cursor.

Due to differences in transaction processing in cases when the bank is outside the
US, the partner’s country should also be fetched. The results of the query should
be sorted by partner country.

The results of the query should also be ordered by accounts.

58 Retek Merchandising System

Program Flow
Structure Chart

Please see the following document for the complete structure chart of the
standard export for ReSA.

Functional Design — SA export.doc

Shared Modules

Function

retek library functions:

o retek _init() — This function initializes restart/recovery.

o retek close() — This function cleans up restart/recovery.

o retek force_commit() — This function commits any change to the database.
Sales/Audit library functions (libresa):

e fetchVdate() — This function is used to get the vdate.

o fetchSysdate() — This function is used to get system date and time

o fetchStoreDayToBeExported() — This function contains the first driving
cursor.

e get_lock() — This function is used to lock the store/day being processed.
o OraNuminit() — Initialize OraNum functions.

e OraNumAdd() — Add two large numbers passed in as strings.

e OraNumSub() —Subtract two large numbers passed in as strings.

e OraNumDiv() —-Divide two large numbers passed in as strings.

Level Description

Init ()

o Initialize restart/recovery by calling restart_init().

e Get the vdate from the period table and the system time.

e Get the system level information: the sender id, the company id, the
consolidating bank name, the consolidating routing number and the
consolidating account number. These are on the sa_ach_info table.

saexpach.pc 59

Process ()

1 Get the next store/day to be processed (exported) by fetching from the first
driving cursor.

2 Attempt to lock the store/day with a call to get_lock(). If this fails, write the
store to a linked list (which contains all unprocessed store/days).

3 Skip to step 7 if the store of the store/day to be processed is for a store which
is on the linked list.

4 Call the function postStoreACH() for the current store/day.

Set sa_export_log.status to SAES_P by calling setProcessed() for the current
store/day, so that it will not be processed again in case of a restart.

6 Call retek_force_commit() to commit changes to the database and to release
write lock.

7 Loop from beginning until the driving cursor returns no more data.
8 Call the function postBankSummaryTotals().

Final ()

e Clean up restart/recovery by calling retek_close().

e If the program has successfully processed the data, call
retek_refresh_thread().

PostStoreACH ()

This function will generate and post an estimate and adjustment to the
SA_STORE_ACH table for a given store/day. The function postStoreACH will
accomplish the following processes in the following order:

Get the following pieces of data for the system code SYSE_ACH:
1 The total for the current business date,

2 Get the total for the following business date if it exists (by calling
GetTomorrowTotal),

3 Call the function GetPastData() to get the totals for the past 4 weeks and for
yesterday (that is, if the current store/day is for a Tuesday, then we want to
get the totals for the past 4 Wednesdays and for yesterday). The latter pieces
of data are obtained from the sa_store_ach table, by summing the estimate
for a day with the adjustment for the same day.

4 Call the function GetPartnerinfo() to get partner type and partner id
information.

o If there are more than one total for SYSE_ACH for a particular day, then this
should be noted in the error log. We expect only one total per store/day.
Only the first total returned by the function will be used, the rest will be
ignored.

e Call the function CalculateData() to compute the estimate for the next
business day and adjustment for the current store/day.

e Call the function PostStoreACHTable().

60 Retek Merchandising System

GetTomorrowTotal ()

This function attempts to get the total for the next business day to be used as the
estimate. It returns a -1 if a fatal error occurred, a 0 if it was able to get the total.
If a total was not found, the estimate is assigned to -1. If a store/day is never
opened (i.e. a holiday), then a 0 is estimated for that store/day. Also, if a total is
found, it should not be marked as exported.

GetPastData ()

This function retrieves totals for the same day of the week over the past 4 weeks
and for the previous business day.

GetPartnerinfo ()

This function retrieves the bank partner (partner type and partner id) for the given
store whose account is consolidated.

CalculateData ()

This function calculates the estimate for the next business day and adjustment for
the current store/day.

o Find the estimate for the following business date using the following rules:
= If the total for the following business date exists, then this is the estimate.

= Otherwise, the estimate is the average for the data for the past 4 weeks. If
we obtain data for fewer than 4 weeks, then we use the available data,
but if we do not obtain any data, then we use the current day’s total as
the estimate.

= |If the estimate is a 0, then we use the current day’s total as the estimate.

e Calculate the adjustment, which is the current date’s total minus the estimate
for the current date (which lies on the row for the previous day on the
sa_store_ach table) and minus the manual adjustment for the current date
(which lies on the row for the previous day on the sa_store_ach table).

ProcessLockedSD ()

This function processes any store/days that were not in the process() function due
to locking. The list of such store/days is stored on the linked list.

1 Try to process the store/days that were not processed, that is, those that are
on the linked list. Thus, for each store/day on the linked list, we try to obtain
a lock. If one is not obtained, then we skip this store/day. If a lock is
obtained, then we remove the store/day from the list.

2 Skip to step 5 if the store of the store/day to be processed is for a store which
is on the linked list.

Call the function postStoreACH for the current store/day.

4 Setsa_export_log.status to SAES_P by calling setProcessed() for the current
store/day, so that it will not be processed again in case of a restart.

5 Loop through steps 1 to 3, until each store/day in the list has been looked at.

saexpach.pc 61

6 Loop through steps 1 to 5 NUM_LOCK_RETRIES times.
NUM_LOCK_RETRIES is by default 2. Thus, we try to attempt to process
store/days that are locked two more times before giving up and skipping all
locked store/days entirely.

7 For each store/day that was not processed, we write an error to the log.
PostStoreACHTable ()

This function inserts data into the sa_store_ach table. It updates if there is already
an entry for the store, business date and partner.

o If there is no entry in the sa_store_ach table for the current store/day.

o Create an entry in the SA_STORE_ACH table with the current
store_day_seq_no and the new estimate and adjustment deposits for the
current store_day_seq_no.

o Ifthere is an entry in the sa_store_ach table for the current store/day.

e Update the entry in sa_store_ach with the estimated deposit, and estimated
deposit adjustment.

postBankSummaryTotals ()

This procedure will summarize the bank transaction totals to the ACH output file.
Please see the section on 1/O specifications for more information about the
format of this file.

1 Open and fetch from the second driving cursor.

2 If any entries are to be made (i.e. there are results from the cursor), create
ACH file and write file header by calling WriteACHFileHeader().

3 If the country of the bank just retrieved is different from the country of the
previous bank, write a Batch Control Record by calling
WriteACHBatchControl(), unless no Batch Header records have been written
yet.

4 If the country of the bank just retrieved is different from the country of the
previous bank, a new Batch Header record needs to be written. If the bank’s
country is the US, the WriteACHCCDBatchHeader() function should be
called to write a Batch Header for CCD transactions. For all other countries,
the WriteACHCBRBatchHeader() function should be called to write a Batch
Header for CBR transactions.

5 If the store’s currency is different from the bank’s currency, do a conversion.
Sum all the deposits for each bank account.

6 For each account at a bank in the US, create a CCD record in the file by
calling WriteACHCCDERntry().

62 Retek Merchandising System

7

10

11
12
13

14

For each account at a bank outside the US, create a CBR record by calling
WriteACHCBRERNtry().

= |If the amount to be transferred is negative, the record should be skipped.
= |If the account is a checking account, the transaction code to use is ‘27’.
= If the account is a savings account, the transaction code to use is ‘37’.

If the amount to be transferred is positive, call the function
PostBankACHTable() to record the amount of the ACH entry, else do
nothing.

Keep running totals for the current batch’s total amount and the total ACH
amounts.

Commit after pl_commit_max_ctr LUW have been processed. Redefine the
SAVEPOINT after the commit because savepoints are lost after a commit.

Loop to step 3 until the cursor returns no data.
Write the ACH Batch Control record and the ACH File Control record

The ACH file format requires that the file size meet certain “block”
requirements. See the section on the ACH file format for more details. Write
the required number of “completion records” to meet the blocking
requirements.

Mark all store/days that were not locked (i.e. those with a
sa_export_log.status of SAES_P) as completed (SAES_E) in the
sa_export_log.

postBankACHTable ()

This function inserts into the table sa_bank_ach. It updates if there already exist a
record for the same partner and business date.

1

If an entry does not exist for the current bank and date in the sa_bank_ach
table:

= Make an entry in the sa_bank_ach table for the current bank and account
placing the sums of the store ACH amounts and adjustments in the ACH
amount field (sa_bank_ach.ach_amt).

If an entry exists for the current bank and date in the sa_bank_ach table:
Add the manual adjustment to the bank ACH deposit amount.

Update the sa_bank_ach table with the bank ACH deposit amount
(sa_bank_ach.ach_amt).

saexpach.pc 63

File Ouput functions

The functions WriteACHFileHeader(), WriteACHFileControl(),
WriteACHCCDBatchHeader(), WriteACHCBRBatchHeader(),
WriteACHBatchControl(), WriteACHCCDEntry(), WriteACHCBREnNtry(),
WriteACHCBRAddendum() and WriteACHCompleteBlock() write the File
Header Record, the File Control Record, the Batch Header Record for CCD
transactions, the Batch Header Record for CBR transactions, the Batch Control
Record, the CCD Entry Record, the CBR Entry Record, the CBR Addendum
Record and the Completion Blocks, respectively. The WriteACHCBRENtry()
function should call the WrittACHCBRAddendum() function after writing to the
file.

Linked list functions

The functions AddToList(), DeleteList(), GetNext() and RemoveFromList()
provide means to manipulate and to retrieve data from the linked list which
contains the store/days which were not processed due to locking issues.

MarkAllStoreDaysCompleted ()

This function sets the sa_export_log.status to SAES_E for store/days whose
status is SAES_P. These are the store/days that have been exported. If a store/day
was not exported, it will be picked up in the next run after it has met the
conditions for export.

SetCurrencyDecimals ()

Given a currency code and an amount with 4 implicit decimals, this function will
give out an amount with the appropriate number of decimals for the currency. For
more details, see the BAI file format documentation. For example, there are two
implicit decimals for the US Dollar, but none for the Japanese Yen. This function
may need to be expanded because only a select few currencies are being
processed. The last two decimal places are dropped for currencies that are not
explicitly defined.

TruncateDec ()

This function truncates a number at the decimal point, i.e. “1234.56” becomes
“1234”,

64 Retek Merchandising System

ACH File Structure

This section describes the structure of the output file of the saexpach.pc program.
The output file conforms to the requirements imposed by the National Automated
Clearing House Association (NACHA) and only the subset of records used by
this program is outlined here. For more information on the other types of records
and more information about the rules and regulations governing the ACH
network, please refer to the “2000 ACH Rules” book published by NACHA.

The ACH file format is similar in many ways to Retek’s flat file formats. The
most distinctive differences are:

e The record type is a one-digit number rather than a five-digit character field.
e All records are 94 characters in length.

e Records are organized in blocks, where 1 block = 940 characters = 10
records.

e The File Control Record (similar to an FTAIL) contains a “Block Count”
field which gives the total number of blocks in the file, including the File
Header Record and the File Trailer Record. Records containing 9’s must be
used to complete the last block. For example, a file with 15 records will need
5 such records to give it a Block Count of 2. These “completion records” go
at the end of the file.

e Transactions are organized in batches. Similar transactions make up one
batch. In ReSA’s case, the transactions are organized by the country of origin
of the funds.

File Header Record

This record contains information about the characteristics of the file, such as
sender and receiver, creation datetime, and so on.

Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘v 1 None
Priority Code Reserved for future scheme for priority ‘01’ 2 None
handling of files. ‘01’ should be used.
Immediate Routing number of the consolidating bank. | SA BANK_STORE | 10 None
Destination The field begins with a blank, followed by | .
the 4-digit Federal Reserve Routing CONSOLIDATING
Symbol, the 4-digit ABA Institution ROUTING NO
Identifier, and the Check Digit. - -
Immediate Origin | A unique identification to determine the SA_SYSTEM_OPT | 10 None
Originator. The ID and the format are IONS.
supplied by the consolidating bank. Note ACH SENDER ID
that the user is responsible for the padding. h h
That is, it is assumed that the data in the
field will be exactly 10 characters wide.

saexpach.pc 65

Field Name Field Description Value Length | Jstf/
Pad*
File Creation Date | Date when the file was created. YYMMDD 6 None
File Creation Time | Time when the file was created. HH24MM 4 None
File ID Modifier This is used to differentiate files created on | ‘0’ 1 None
the same date and between the same
Origin/Destination. Valid values are A
through Z and 0 through 9. It is expected
that only one file will be created per day, so
a ‘0’ should be used.
Record Size Number of characters per record. ‘094’ 3 None
Blocking Factor Number of physical records within a block. | ‘10’ 2 None
Format Code Reserved for future format variations. A ‘1’ | 1’ 1 None
should be used.
Immediate The name of the consolidating bank. SA SYSTEM OPT | 23 L/B
Destination Name IONS.
CONSOL_BANK _
NAME
Immediate Origin The name of the company. COMPHEAD. 23 L/B
Name CO_NAME
Reference Code Any reference code. This is an optional blanks 8 None
field. ReSA will not populate this field as
the create datetime should be enough to
reference the data that was exported by
comparing with SA_EXPORTED.
EXP_DATETIME.
Note: This column described the justification and padding involved in the field
being described. ‘L’ stands for left; ‘R’ stands for Right; ‘B’ stands for blank
padding and ‘0’ stands for O padding. None means that the field should be
completely filled.
Batch Header Record for CCD transactions
Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘5’ 1 None
Service Class Code | This field identifies the general ‘225’ 3 None

classification of dollar entries to be
exchanged. Funds will always flow from the
local banks to the consolidating bank.
Hence the code ‘225’ for “ACH Debits
only” should be used.

66 Retek Merchandising System

Field Name Field Description Value Length | Jstf/
Pad*
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Company Any kind of data specific to the company. blanks 20 None
Discretionary Data | ReSA will not use this field
Company An alphanumeric code identifying the SA_SYSTEM_OPT | 10 L/B
Identification company. The first character may be the IONS.
ANSI one-digit Identification Code COMPANY ID
Designators (ICD). For example, a
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company _id field on
the sa_system_options table will contain the
correct id.
Standard Entry This provides a way to distinguish between | ‘CCD’ 3 None
Class Code the various kinds of entries. Since ReSA
will be sending CCD entries, this field
should hold the value ‘CCD’.
Company Entry A short description from the Originator ‘CONSOL.’ 10 L/B
Description about the purpose of the entry.
Company Optional field providing a date to the YYMMDD format 6 None
Descriptive Date Receiver for descriptive purposes. ReSA of
will populate it with the next day’s date in PERIOD.VDATE +
the YYMMDD format. 1
Effective Entry The date by which the Originator intends YYMMDD format | 6 None
Date the batch of entries to be settled. Since the of
Originator will want this to be done as soon | pERIOD.VDATE +
as possible, ReSA will use the earliest 1
possible date, which is one banking day
after the processing date (the current date).
Settlement Date This is inserted by receiving ACH Operator. | blanks 3 None
ReSA will leave this blank.
Originator Status This field stores a code to describe the type | ‘1’ 1 None
Code of Originator. This should be a 1 to describe
the Originator as a depository financial
institution.
ODFI ldentification | 8-digit routing number of the ODFI. First 8 digits of 8 None

SA_BANK_STORE

CONSOLIDATING
_ROUTING_NO

saexpach.pc 67

Field Name Field Description Value Length | Jstf/
Pad*
Batch Number The batch number. 7 R/0
Batch Header Record for CBR transactions
Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘5’ 1 None
Service Class Code | This field identifies the general ‘225’ 3 None
classification of dollar entries to be
exchanged. Funds will always flow from the
local banks to the consolidating bank.
Hence the code 225’ for “ACH Debits
only” should be used.
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Foreign Exchange | Code used to indicate the foreign exchange | ‘FV’ 2 None
Indicator conversion methodology applied to a CBR
entry. Retek uses the “Fixed-to-Variable”
method to convert from the foreign currency
into US dollars. Therefore, this field should
be ‘FV’.
Foreign Exchange | Code used to indicate the contents of the ‘1 1 None
Reference Indicator | Foreign Exchange Reference field. The
latter will contain the conversion rate used
by Retek which means that the value should
be “1°.
Foreign Exchange | This should contain the foreign exchange 15 L/B
Reference rate used to compute the amounts in the
CBR Entry Record. No decimal places are
implied, that is, this field should contain the
exact rate used.
ISO Destination The country where the money is to be ‘us’ 2 None

Country Code

transferred to. Since ReSA assumes that the
consolidating bank will be in the US, this
should be ‘US’ — NOTE: verify that “US” is
the correct I1SO code for United States of
America.

68 Retek Merchandising System

Field Name Field Description Value Length | Jstf/
Pad*
Company An alphanumeric code identifying the SA_SYSTEM_OPTIONS. | 10 L/B
Identification company. The first character may be the COMPANY_ID
ANSI one-digit Identification Code
Designators (ICD). For example,
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id field on
the sa_system_options table will contain the
correct id.
Standard Entry This provides a way to distinguish between | ‘CBR’ 3 None
Class Code the various kinds of entries. Since ReSA
will be sending CBR entries, this field
should hold the value ‘CBR’.
Company Entry A short description from the Originator ‘CONSOL.’ 10 L/B
Description about the purpose of the entry.
ISO Originating Currency code in which the funds are PARTNER. 3 None
Currency Code originating from. This must be the ISO code | cURRENCY COD
of the currency. E B
ISO Destination Currency code in which the funds are to be | ‘USD’ 3 None
Currency Code received. This must be “USD”.
Effective Entry The date by which the Originator intends YYMMDD format 6 None
Date the batch of entries to be settled. Since the of
Originator will want this to be done as soon | pERIOD.VDATE +
as possible, ReSA will use the earliest 1
possible date, which is one banking day
after the processing date (the current date).
Settlement Date This is inserted by receiving ACH Operator. | blanks 3 None
ReSA will leave this blank.
Originator Status This field stores a code to describe the type | ‘1’ 1 None
Code of Originator. This should be a 1 to describe
the Originator as a depository financial
institution.
ODFI Identification | 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STORE
CONSOLIDATING
_ROUTING_NO
Batch Number The batch number. It is not expected that ‘1’ or 2’ 7 R/0

the file will have more than two batches.

CCD Entry Detail Record

saexpach.pc 69

Field Name

Field Description

Value

Length

Jstf/
Pad*

Record Type Code

The type of record.

‘67

None

Transaction Code

Code used to identify the type of debit and
credit. This is dependent on the type of
account and on the direction of funds
transfer.

‘27’ — if the account is a checking account,

‘37’ — if the account is a savings account.

‘27 or 37’

None

RDFI Identification

8-digit routing number of the RDFI.

First 8 digits of
SA_BANK_STORE

ROUTING_NO

None

Check Digit

This is the 9th digit from the routing
number.

o9th digit of
SA_BANK_STORE

ROUTING_NO

None

DFI Account
Number

The account number at the local bank.

SA_BANK_STORE

BANK_ACCT_NO

17

L/B

Amount

The amount involved in the transaction.
This field is numeric only and the last two
digits are automatically assumed to be
decimals. ReSA amounts are stored as 20
digit numbers, with 4 for decimals. ReSA
will truncate the last two digits of the
amount and should the resulting amount be
greater than 10 digits, this program will
abort with an error. It is not expected that a
client will send an ACH amount greater
than US$100 million. The values for this are
taken from the sa_store ach table. The
values from the columns

today adj _deposit_est,
next_day_man_adj_deposit, and
next_day_deposit_est are added up by
business_date and then multiplied by 10000
and later divided by 100 to obtain a dollar
amount.

10

R/0

Identification
Number

Optional field containing a number used by
Originator to insert its own number for
tracing purposes. ReSA will not populate
this field.

blanks

15

None

70 Retek Merchandising System

Field Name Field Description Value Length | Jstf/
Pad*
Receiving Name of the local store. STORE. 22 L/B
Company Name STORE_NAME
Discretionary Data | Any kind of data specific to the transaction. | blanks 2 None
ReSA will not use this field
Addenda Record This field identifies whether this entry ‘0’ 1 None
Indicator record contains addenda records. ReSA has
no use for such records in CCD and will use
the value of ‘0’
Trace Number Used to uniquely identify each entry within 15 None

a batch. The first 8 digits contain the routing
number of the ODFI and the other 7
contains a sequence number. This sequence
number should be ascending. Although the
ACH specification does not require the
numbers to be consecutive, ReSA will use
consecutive numbers. Trace numbers should
not be duplicated between batches.

CBR Entry Detail Record

saexpach.pc 71

Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘6’ 1 None
Transaction Code Code used to identify the type of debit and ‘27 or ‘37’ 2 None
credit. This is dependent on the type of
account and on the direction of funds
transfer.
‘27’ — if the account is a checking account,
‘37’ — if the account is a savings account.
RDFI Identification | 8-digit routing number of the RDFI. First 8 digits of 8 None
SA_BANK_STORE
ROUTING_NO
Check Digit This is the 9th digit from the routing o9th digit of 1 None
number. SA_BANK_STORE
ROUTING_NO
DFI Account The account number at the local bank. SA_BANK_STORE | 17 L/B
Number :
BANK_ACCT_NO
Amount The amount involved in the transaction. 10 R/0
This field is numeric only and the last two
digits are automatically assumed to be
decimals. This amount is in US dollars.
Identification Optional field containing a number used by | blanks 15 None
Number Originator to insert its own number for
tracing purposes. ReSA will not populate
this field.
Receiving Name of the local store. STORE. 22 L/B
Company Name STORE_NAME
Discretionary Data | Any kind of data specific to the transaction. | blanks 2 None
ReSA will not use this field
Addenda Record This field identifies whether this entry ‘v 1 None
Indicator record contains addenda records. Since

CBR records must be followed by an
addendum record, this value should be ‘1.

72 Retek Merchandising System

Field Name Field Description Value Length | Jstf/
Pad*
Trace Number Used to uniquely identify each entry within 15 None
a batch. The first 8 digits contain the routing
number of the ODFI and the other 7
contains a sequence number. This sequence
number should be ascending. Although the
ACH specification does not require the
numbers to be consecutive, ReSA will use
consecutive numbers. Trace numbers should
not be duplicated between batches.
CBR Addendum Record
Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘7 1 None
Addenda Type This code identifies the type of addendum ‘01’ 2 None
Code record. CBR has only one type of Addenda
Type Code: ‘01,
Payment Related 80 L/B
Information
Addenda Sequence | This is a sequence number denoting the ‘1 4 R/0
Number position of each addendum record. The first
record should always have a sequence
number of 1 and subsequent records must
be increasing and consecutive. ReSA will
create only one addendum record for the
CBR transaction.
Entry Detail This is the sequence number part of the 7 R/0
Sequence Number | Trace Number of the entry record to which
this addendum is referring.
Batch Control Record
Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record ‘8’ 1 None
Service Class Code | This field identifies the general ‘225’ 3 None

classification of dollar entries to be
exchanged. Since money is being requested,
this code should be 225 for “ACH Debits
only”.

saexpach.pc 73

Field Name Field Description Value Length | Jstf/
Pad*
Entry/Addenda The number of entries and addenda in the 6 R/0
Count batch. Basically, this is the number of
records between the Batch Header Record
and the Batch Control Record.
Entry Hash This is the sum of the RDFI IDs in the detail 10 R/0
records. It is the arithmetic sum of the 8-
digit routing number. Overflow on the high
order bits is ignored.
Total Debit Entry These fields contain the accumulated debit 12 R/0
Dollar Amount in and credit for the batch. This field is
batch numeric only and the last two digits are
Total Credit Entry automatically assumed to be decimals. 12 R/O
Dollar Amount in
batch
Company An alphanumeric code identifying the SA_SYSTEM_OPT | 10 L/B
Identification company. The first character may be the IONS.
ANSI one-digit Identification Code COMPANY ID
Designators (ICD). For example, B
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id field on
the sa_system_options table will contain the
correct id.
Message The first 8 characters represent a code from | blanks 19 None
Authentication the DES (Data Encryption Standard)
Code (MAC) algorithm. The remaining eleven characters
are blanks. ReSA will not populate this
field.
Reserved Reserved blanks 6 None
ODFI Identification | 8-digit routing number of the ODFI. First 8 digits of 8 None
SA BANK_STORE
CONSOLIDATING
_ROUTING_NO
Batch Number The batch number. 7 R/0

This record contains summary information about the file to verify its integrity.

74 Retek Merchandising System

File Control Record

Field Name Field Description Value Length | Jstf/
Pad*
Record Type Code | The type of record. ‘9’ 1 None
Batch Count The number of batches sent in the file. 6 R/0
Block Count The number of physical blocks in the file, [(Number of 6 R/0
including both File Header and File Control records)/lOW
Records. This is the ceiling of the number
of records divided by the blocking factor,
which is 10.
Entry/Addenda The number of entries and addenda in the 8 R/0
Count file. Basically, this is the number of records
between the Batch Header Record and the
Batch Control Record.
Entry Hash This is the sum of the Entry Hash fields on 10 R/0
the Batch Control Records.
Total Debit Entry These fields contain the accumulated debit 12 R/0
Dollar Amount in and credit for the file. This field is numeric
File only and the last two digits are
Total Credit Entry automatically assumed to be decimals. 12 R/O
Dollar Amount in
File
Reserved This field should be filled with blanks. It is | blank 39 None

used to ensure that each record is of length
94,

saexpach.pc 75

Technical Issues

Status Issue Resolution

Open Tables and forms changes are required to
ReSA to accommodate data that are
currently not possible to store on the
database. These are required before this
program can be fully tested.

Open It is possible for an adjustment to be
negative while the following day is a
holiday, resulting in a negative ACH
amount. ReSA expects these cases to be
rare and will simply skip records with a
negative ACH amount.

It would be an enhancement to the
product if the customer wants the system
to estimate the next open day’s deposit.
Such entries will have to be bunched into
a new batch with a different settlement
date.

Assumptions

1 This document assumes that the tables and forms changes are going to be
applied accordingly.

2 Itisassumed that the consolidating bank is US-based.

3 ReSA will assume that all country codes and all currency codes are ISO
compliant.

saexpuar.pc 77

saexpuar.pc

Design Overview

This module will post specified totals to the Driscoll UAR application. Using the
typical export process, this module will loop through all available store day
combinations. For each store day, all specified totals will be posted to their
appropriate output files. All driving cursors will be handled by the libresa library

functions.
Table Operations Performed
Select | Insert | Update | Delete
Period Yes No No No
Sa_store_day Yes No No No
Sa_export_log Yes No Yes No
Sa_exported No Yes No No
Sa_exported_rev Yes No No No
Sa_total head Yes No No No
Sa_total Yes No No No
Sa_bank_store Yes No No No
Sa_store_day read_lock Yes Yes No Yes
Sa_store_value Yes No No No
Sa_sys_value Yes No No No
Sa_pos_value Yes No No No
Sa_hqg_value Yes No No No

Scheduling Constraints
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling
process.

Threading Scheme: N/A

78 Retek Merchandising System

Restart Recovery

The logical unit of work for this module is defined as a unique store/day
combination. Records will be fetched, updated and inserted in batches of
pl_commit_max_ctr. Only two commits will be done. One to establish the
store/day lock (this will be done by the package) and one at the end after a
store/day has been completely processed.

Driving cursor 1

The libresa library function fetchStoreDayToBeExportedLike will drive the
stores to be processed for any usage type starting with ‘UAR’.

Driving Cursor 2

The libresa library function getTotalLike will drive the totals to be exported for
any usage type starting with ‘UAR’.

Program Flow

Please see the following document for the complete structure chart of the
standard export for ReSA:

e Functional Design — SA export.doc

Shared Modules

libresa library functions:

o fetchStoreDayToBeExportedLike
o fetchSaSystemOptions

o fetchSysdate

o fetchStoredayErrorCount
o markStoreDayExported

e updateStoreDayExported
o markTotalExported

e getTotalLike

o get lock

e OraNumlnit

e OraNumAdd

saexpuar.pc 79

Function Level Description
init ()
1 Call OraNumlnit to initialize string numbers arithmetic operations.
2 Get the current system date from the library function fetchSysdate.
3 Get the unit-of-work by calling the library function fetchSaSystemOptions.
process ()
1 Loop through the libresa library function fetchStoreDayToBeExportedLike.

2 Attempt to obtain a read lock on the store/day with a call to get_lock. If this
fails, go on to the next store/day and log the problem to the error log.

Call the function processStoreDay for the current store day.
Call the function markStoreDayExported.
Call the function retek_force_commit.

o o1 B~ W

Loop from beginning until the return result of the function
fetchStoreDayToBeExportedLike = 1.

final ()

1 Call the library function updateStoreDayExported to write any unwritten
store days to the database.

2 Close output files.
Clean up any memory used.
4 Call the function retek_close.
addNewOutputFile (char is_usage type,
char is_business date,

char is_sysdate) returns integer

This function will generate a new output file for any new usage types retrieved
from the getTotalLike function call. It will also add a new file item to a
collection of any files currently being written to.

The file collection should contain the following items:

1 Usage type — the usage type returned by getTotalLike.

2 File name - <usage type>_<business date>_<system date>

3 File pointer — Pointer to the output file.

4 Wrote header — file header written indicator (0 — no, 1 — yes)
5 File sum - ongoing sum of each transaction in file.
getOutputFilePointer (char is_usage_type) returns integer

This function will retrieve the output file pointer for the usage type passed by
checking to see if the usage type exists on the output file collection.

80 Retek Merchandising System

o If the usage type exists on the file collection, the item number for the
collection is returned.

o If the usage type does not exist, the function returns -1.

writeStoreDayDetail

char
char
char
char

char

(FILE *if_file_pointer,
is_total _id,

is_store,
is_business_date,
is_amount,

is_total_seq_no,

char is_UAR tran_code) returns integer

This function will write the current UAR total to the output file specified. Each
field is separated by commas and surrounded by double quotes.

UAR Detail record:

Field Description Sales Audit value

1 Detail flag 1

2 Serial number Store number

3 Amount Total value

4 Transaction date Transaction date

5 Transaction code Mapped value: see the
function getAdditionalInfo for
detailed explanation.

6 User defined value 1 Total sequence number

7 User defined value 2 Nothing

8 User defined value 3 Nothing

9 User defined value 4 Nothing

10 User defined value 5 Nothing

11 User defined value 6 Nothing

12 User defined value 7 Nothing

13 User defined value 8 Nothing

14 User defined value 9 Nothing

15 User defined value 10 Nothing

16 State Nothing

17 Account Total identifier

18 End of line \n

saexpuar.pc 81

o All 18 fields should be concatenated together.
writeStoreDayHeader (FILE *if_file pointer,
char is_total id,
char is_business_date) returns integer

This function will write the header record for the current store day to the output
file. Each field is separated by commas and surrounded by double quotes.

UAR Header record:

Field Description Sales Audit value
1 Header flag 0
2 Account number Total identifier
3 Source D
4 Transaction date Transaction date
5 Organization number Nothing
6 Format UAR34
7 End of line \n

All 7 fields should be concatenated together.

writeStoreDayFooter (FILE *if_file pointer,

This function will write the footer record for the current store day to the output

char is_amount) returns integer

file. Each field is separated by commas and surrounded by double quotes.
UAR Footer record:

Field Description Sales Audit value
1 Footer flag 9
2 Beginning balance +00000000000000
3 Ending balance “+” || the ongoing sum for the
file.
4 Available balance Nothing
5 End of line \n

82 Retek Merchandising System

All 5 fields should be concatenated together.
CloseOutputFiles () returns integer

This function will loop through the output file collection and call the “fclose’ C
function for each.

getOutputFileName (char is_usage type,
char is_business date,
char is_sysdate,

char os_filename) returns integer

This function will generate the unique file name for the total usage type passed.
The filename will have the following structure:

is_usage_type || “_” || is_business date || “_”]I
is_sysdate

getAdditionallnfo (char is_total_seq no,
char is_ref nol,
char os_total id,

char os_UAR_tran_code) returns integer

This function retrieves both the total identifier and UAR transaction code for the
current total sequence number. The UAR transaction code is retrieved as
follows:

o Ifref_nol is not null

= Ifref_nol maps to the SA_CONSTANTS table (ref_nol =
SA_CONSTANTS.CONSTANT_ID).

= UAR transaction code = SA_ CONSTANTS.CONSTANT_VALUE

= |If ref_nol does not map to the SA_CONSTANTS table (ref_nol !=
SA_CONSTANTS.CONSTANT_ID).

= UAR transaction code = ref nol
o Ifref nolisnull
= UAR transaction code = total identifier
processStoreDay (char is_store_day,
char is_sysdate,
char is_business_date,
char is_store) returns integer

saexpuar.pc 83

This function will process an entire store days UAR totals.

1 Loop through all UAR totals by calling the function getTotalLike until the
function returns anything but zero.

2 Call the function getAdditionallnfo.

3 Determine if the output file exists by calling the function
getOutputFilePointer.

4 If the pointer does not exist, call the function addNewOutputFile to create the
new file.

5 Check to see if the header detail record has already been written for the
current file by checking the current item on the output file collection.

6 If the head has not been written, call the function writeStoreDayHeader. Set
the header indicator to 1 in the output file collection for the current item.

7 Write the current total to the current output file by calling the function
writeStoreDayDetail.

8 Add the current total value to the running total sum in the output file
collection for the current item.

9 Call the function markTotalExported.

I/O Specification

The UAR output file specifications are listed in this document by the functions
that write the output:

o writeStoreDayHeader
o writeStoreDayDetail

o writeStoreDayFooter

saimpadj.pc 85

saimpadj.pc

Design Overview

This module will post external system adjustments to the Sales Audit total value
table. The module will be passed an input file name. The input files will be of a
standard format as detailed in the “Interface File — SA Import Adj.doc”

document.
Table Operations Performed
Select | Insert | Update | Delete
Period Yes No No No
Sa_store_day Yes No Yes No
Sa_export_log Yes Yes No No
Sa_total Yes No No No
System_options Yes No No No
Sa_total_usage Yes No No No
Sa_hq_value No Yes No No

Scheduling Constraints
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be executed after the ReSA transaction
import process, and before the ReSA totaling process.

Threading Scheme: N/A
Restart Recovery

Logical Unit of Work

The logical unit of work for this module will be a parameterized number of
records from the input file. Records will be processed until an internal counter
has been reached and a commit will be executed. The Retek library (retek_2.h)
function retek_commit will be called after each record processed. This function
will keep track of the internal counter and commit the work once it has been
reached.

Driving cursor

A standard while loop will read through all records in the input file. All file
processing will use the new Retek library (retek_2.h) functions: retek_init,
retek_get record, retek_write_rej, retek_commit, retek_close.

86 Retek Merchandising System

Program Flow

Input file I

Ty
4 Determine Insert a new S,
ny rgorte which total | total record for R —

e ?O is being "l thenew e sl

ISR adusted adjiustment e
A
F
T,
Update the P
status for the >
store day Sa_store_day

“‘-H.____'_,_,_/

Insert an entry
for each export|,

using this total [~
except source

—

Sa_export_log
_,q______,/

The module Determine which total is being adjusted (as shown above) will
depend on the source of the record being processed. If the record is from the
UAR application the uar_source field will determine which total is being used. If
the record is from the General ledger application the gl_account field will help
determine which total is being adjusted.

The current status of the program passes through the “determine which total is
being adjusted” section and just gives the program the total via the input file.
The UAR and GL application information is still in question and will be
modified when the best procedure is known.

saimpadj.pc 87

Function Level Description
Init ()
e Read in the header from the input file.
Process ()

Loop through the input file adjustment records by calling the Retek library
function retek_get_record.

1 Fetch the store_day_seq_no from the sa_total table.
2 Geta lock for the record by calling get_Lock.

= Call the function processAdjustment. If processAdjustment returns a
value <> 0 then call the Retek library function retek_write_rej in order to
document unidentifiable adjustment records.

Call the Retek library function retek_commit in order to commit on an
internally defined number of records processed.

3 If lock could not be obtained, write an error to the error log.
Final ()

e Call retek close

e Clean up any memory used.

processAdjustment (Char il_store_day_seq_no)

This function will complete one total adjustment by using the following
processes:

1 Call the function determineTotal in order to identify the total identifier for
the incoming adjustment.

2 Call the function postAdjustmentTotal in order to move the new adjustment
amount into the current total table.

3 Call the function updateStoreDayStatus in order to ensure that the store day
is re-calculated by the totaling process.

4 Call the function postExportLog in order to insert new records for all export
requests except the source application of the adjustment.

5 Return 0 if successful adjustment posting.
6 Return 1 if unable to identify total.
7 Return -1 if a database error occurs.

88 Retek Merchandising System

determineTotal (o_totalldentifier *char) as Long

This function will retrieve the total identifier for the current adjustment. This
function will be the only location that will be checking specific source
application data; any changes to the way applications handle exporting total
adjustments will only have to be modified in this function. The following
procedures will occur:

1 If the source of the current adjustment record is the General Ledger.

= Determine the total identifier by tracing the store, date and GL account
number back to the GL mapping table (depending on which financial
application is being used).

2 If the source of the current adjustment record is the UAR.

= Determine the total identifier by tracing the store, date and UAR source
type back to the total definition table.

3 If the source of the current adjustment record is not UAR or General Ledger.
= Return the Total field in the o_totalldentifier argument.

4 Return O if total identifier is found.

5 Return 1 if total identifier is not found.

6 Return -1 if a database error occurs.

postAdjustmentTotal () as Long

This function will insert the new total value record with the new data from the
adjustment record. The following procedures will occur:

1 Fetch the max value_rev_no from the four value tables.

2 Find the max of the values returned

3 Insert the new total value into sa_hq_value table.

4 Return 0 if successful.

5 Return 1 if the total was not found in the total value table.
6 Return -1 if a database error occurred.
updateStoreDayStatus () as Long

This function will update the status field in the sa_store_day table. The
following procedures will occur:

1 Update the sa_store_day table setting the audit status field to ‘Re-Totaling
required’ (‘R’) and the audit changed date to the sysdate.

2 Return 0 if successful.

3 Return 1 if the store day record was not found in the sa_store_day table.
4 Return -1 if a database error occurred.

postExportLog () as Long

saimpadj.pc 89

This function will make an entry in the export log (sa_export_log) for every
application that requires export data for the current total being adjusted except
the source application of the adjustment. The following procedures will occur:

1 Open acursor to retrieve all export applications for the current total
identifier:

Select usage type

From sa_total usage

Where total = :Is_total

And usage_type I=:Is_data_source

2 Fetch the max seq_no from the sa_export_log table.
3 Inastandard while loop

a Insert a record into the export log (sa_export_log) for each usage type
returned from the above query. Place the usage_type into the
system_type field, and enter the status as ‘R’ for ready to export.

4 Return 0 if successful.

5 Return -1 if a database error occurred.

I/O Specification

The standard adjustment input format file can be found in the “Interface File —
SA Import Adj.doc” document.

Technical Issues

Status Issue Resolution

Open How do we trace back the total identifier The export to UAR will contain the total
with only the store number, date and UAR |identifier, which can be passed back to
total specification (i.e. Lottery, etc.)? ReSA when adjustments are sent for that
total.

Sales audit import [saimptlog.pc] 91

Sales audit import [saimptlog]

Purpose

The Batch Detailed Design is a thorough definition of a single batch program /
module within one functional area. The documented information is derived from
this functional area’s Technical Design.

Objectives
This Batch Detailed Design must:
o Document specific functions for a single batch program,

e Enable project team review, validation and consensus regarding the
individual batch program’s scope,

e Document the batch program in preparation for and in response to
prototyping, and

e Prepare for and provide a defined and documented framework in which to
perform Development Phase activities.

Functional Area

Sales Audit import.

Module Affected
SAIMPTLOG (formerly saval.pc and saout.pc in 8.X)
e saimptlog.c

e saimptlog.h

e saimptlog_final.c

e saimptlog_init.c

e saimptlog_manval.c

e saimptlog_nexttsn.pc
e saimptlog_nextvhn.pc
e saimptlog_output.c

e saimptlog_uom.pc

e saimptlog_proto.h

e saimptlog_rtlog.c

e saimptlog_sqlldr.c”

The difference between SAIMPTLOG and SAIMPTLOGI is whether
saimptlog_sglldr.c or saimptlog_insert.pc is used. The former generates
SQL*Loader files while the later performs actual inserts into the database.

92 Retek Merchandising System

saimptlog_tdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog_ccval.c
saimptlog_ccval.h

saimptlog_proto.h

SAIMPTLOGI

saimptlog.c
saimptlog.h
saimptlog_final.c
saimptlog_init.c
saimptlog_insert.pc”
saimptlog_manval.c
saimptlog_nexttsn.pc
saimptlog_nextvhn.pc
saimptlog_output.c
saimptlog_uom.pc
saimptlog_proto.h
saimptlog_rtlog.c
saimptlog_tdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog_ccval.c
saimptlog_ccval.h

saimptlog_proto.h

SAIMPTLOGFIN

saimptlogfin.pc
saimptlog_nexttbgsn.pc

saimptlog.h

Sales audit import [saimptlog.pc] 93

Design Overview

Importing POS data is a four or five-step process depending on whether
saimptlogi or saimptlog is used. Saimptlog produces SQL*Loader files while
saimptlogi does inserts directly into the database. Saimptlogi is meant for use in a
trickle feed environment.

SAIMPTLOG SAIMPTLOGI

SAGETREF must be run to generate the current reference files:
e |tems

o \Wastage

e Sub-transaction level items
¢ Primary variant relationships
e Variable weight PLU

e Store business day

e Promotions

o Code types

e Error codes

o Credit card validation

e Store POS

e Tender type

e Merchant code types

e Partner vendors

e Supplier vendors

o Employee ids

These files are all used as input to SAIMPTLOG and SAIMPTLOGI. Since
SAIMPTLOG and SAIMPTLOGI can be threaded, this boosts performance by
limiting interaction with the database.

94 Retek Merchandising System

SAIMPTLOG

SAIMPTLOGI

SAIMPTLOG is run against each POS
file. SAIMPTLOG creates a write lock
for store/day and than sets the
data_status to loading until
SAIMPTLOGFIN is executed. This
generates distinct SQL*Loader files for
that store/day for the sa_tran_head,
sa_tran_item, sa_tran_disc, sa_tran_tax,
sa_tran_tender, sa_error, Sa_customer,
sa_cust_attrib and (optionally)
sa_missing_tran tables. A Retek
formatted voucher file is produced for
processing by SAVOUCH.
SAIMPTLOG may be threaded as long
as the parallel executions do not include
the same store/day.

SAIMPTLOGI is run against each POS
file. SAIMPTLOGI creates a write lock
for that store/day and then sets the
data_status to loading until
SAIMPTLOGFIN is executed. This
inserts data into sa_tran_head,
sa_tran_item, sa_tran_disc, sa_tran_tax,
sa_tran_tender, sa_error, sa_customer,
sa_cust_attrib and (optionally)
sa_missing_tran tables. A Retek
formatted voucher file is produced for
processing by SAVOUCH.
SAIMPTLOGI may be threaded as long
as the parallel executions do not include
the same store/day.

SQL*Loader is executed to load the
transaction tables from the files created
by SAIMPTLOG. The store/day
SQL*Loader files can be concatenated
into a single file per table to optimize
load times. Alternatively, multiple
SQL*Loader files can be used as input to
SQL*Loader. SQL*Loader may not be
run in parallel with itself when loading a
table. Header data (primary keys) must
be loaded before ancillary data (foreign
keys). This means that the sa_tran_head
table must be loaded first; sa_tran_item
before sa_tran_disc; and sa_customer
before sa_cust_attrib. The remaining
tables may be loaded in parallel.

SAVOUCH is executed to load each of the Retek formatted voucher files.

SAVOUCH may not be multiply threaded.

SAIMPTLOGFIN is executed to populate the sa_balance_group table, cancel post
voided transactions and vouchers, validate missing transactions, and to mark the
import as either partially or fully complete loaded. SAIMPTLOGFIN may not be

multiply threaded.

This design document encompasses SAIMPTLOG, SAIMPTLOGI and

SAIMPTLOGFIN.

Sales audit import [saimptlog.pc] 95

SAIMPTLOG
Table Operations Performed
Select Insert Update Delete
period yes no no no
store yes no no no
sa_system_options yes no no no
sa_store_day yes No Yes no
sa_store_day_ write_lock yes yes Yes no
SAIMPTLOGI
Table Operations Performed
Select Insert Update Delete
period Yes No No No
store Yes No No No
sa_system_options Yes No No No
sa_store_day Yes No Yes No
sa_store_day write_lock Yes No Yes No
sa_tran_head No Yes No No
sa_customer No Yes No No
sa_cust_attrib No Yes No No
sa_tran_item No Yes No No
sa_tran_disc No Yes No No
sa_tran_tax No Yes No No
sa_tran_tender No Yes No No
sa_error No Yes No No
sa_missing_tran No Yes No No
SAIMPTLOGFIN
Table Operations Performed
Select Insert Update Delete
period yes no No no
store yes no No no
sa_system_options yes no No no
sa_store_day yes no yes no

96 Retek Merchandising System

SAIMPTLOGFIN

Table Operations Performed
Select Insert Update Delete
sa_store_day_write_lock yes no Yes No
sa_import_log yes no yes no
sa_balance_group Yes Yes No No
sa_tran_head Yes No Yes Yes
sa_customer Yes No No Yes
sa_cust_attrib Yes No No Yes
sa_tran_item Yes No No Yes
sa_tran_disc Yes No No Yes
sa_tran_tax Yes No No Yes
sa_tran_tender Yes No No Yes
sa_error Yes No No Yes
sa_missing_tran Yes No No Yes
sa_tran_head rev No Yes No No
sa_tran_item_rev No Yes No No
sa_tran_disc_rev No Yes No No
sa_tran_tax_rev No Yes No No
sa_tran_tender_rev No Yes No No
sa_error_rev No Yes No No

Sales audit import [saimptlog.pc] 97

Program Flow
SAIMPTLOG and SAIMPTLOGI

get_lock for Get POS Validate POS Reformat POS

import of » transaction » transaction » transaction data

store/day. from data file. data. to SQL*Loader
or insert format.

A

A 4

Write SQL*Loader
files for transaction
Y data or insert
transaction data.

Save missing ¢
transaction Any more Write Voucher
data. — POS < data found in
N transactions? transaction.
Get store/day that has Create balance Cancel post _| Update missing
been loaded. ' group entries for | voided ”| transaction
the store/day. transactions. entries.

Mark store/day as either
partially of fully imported.

SAIMTLOGFIN

98 Retek Merchandising System

Function Level Description

SAIMPTLOG and SAIMPTLOGI

As noted earlier, the difference between SAIMPTLOG and SAIMPTLOGI is
whether saimptlog_sqglldr.c or saimptlog_insert.pc is used. Routines flagged with
a F denote that they exist in both of these modules and that behavior will depend
on which module is used.

main() [saimptlog.c]

This should be the standard Retek main. Call LOGON to connect to the Sales
Audit database. Call Init to initialize data structures and output file handles. Call
Process to translate the RTLOG POS data into either the SQL*Loader files or to
insert the data, and to produce a Retek formatted file for vouchers. Call Final to
close file handles and to generally clean up.

Process() [saimptlog.c]

For each transaction in the POS RTLOG file, call getNextTran to read in the data
and process it.

For each transaction, call WrOutputDatai and writeSAVoucherData to write the
voucher transaction data to a temporary file.

Init() [saimptlog_init.c]
Call retek_init to initialize threading.
Get the system options by calling fetchSaSystemOptions.

Get the current system data (SYSDATE) by calling fetchSysDate. This is used
later to validate the dates in the POS RTLOGs.

Initialize the RTLOG file parser by calling InitinputData.
Load the item data generated by SAGETREF by calling item_loadfile.

Load the sub-transaction level item data generated by SAGETREF by calling
ref_item_loadfile.

Load the variable weight PLU data generated by SAGETREF by calling
vupc_loadfile.

Load the primary variant data generated by SAGETREF by calling
primvariant_loadfile.

Load the store/day data generated by SAGETREF by calling store_day_loadfile.
Load the wastage data generated by SAGETREF by calling waste_loadfile.
Load the promotion data generated by SAGETREF by calling prom_loadfile.
Load the code type data generated by SAGETREF by calling code_loadfile.
Load the error data generated by SAGETREF by calling error_loadfile.

Load the store POS data generated by SAGETREF by calling storepos_loadfile.

Load the tender type group and ID data generated by SAGETREF by calling
tendertype_loadfile.

Sales audit import [saimptlog.pc] 99

Load the merchant code data generated by SAGETREF by calling
merchcode_loadfile.

Load the partner vendor data generated by SAGETREF by calling
partner_loadfile.

Load the supplier vendor data generated by SAGETREF by calling
supplier_loadfile.

Load the employee data generated by SAGETREF by calling employee_loadfile.
Initialize transaction output processing by calling InitOutputData*

Initialize voucher output processing by calling openSAVoucher.

Initialize Oracle number arithmetic by calling OraNuminit.

If either of these last 2 fail, call InitOutputClean®.

Final() [saimptlog_final.c]

If the system option check_dup_miss_tran is enabled, than call tdup_savedata to
keep track of missing transaction numbers between invocations of SAIMPTLOG
or SAIMPTLOGI and call tdup_misstran to create the SQL*Loader file for the
sa_missing_tran table.

Call CreateTermRecords' to mark the end of the data and than call
WrOutputData* to write them to the temporary files.

Terminate the RTLOG file parser by calling FinallnputData.
Call FinalOutputData® to finish any pending output processing.
Call closeSAVoucher to close and rename the voucher file.
Call retek_close to perform program status record keeping.

Call retek_refresh_thread to refresh the thread that was used during this
execution so that it can be reused.

InitinputData() [saimptlog_rtlog.c]

Open the POS RTLOG file for reading.

Open a bad transaction file for writing.
Initialize the POS RTLOG transaction parser.
getNextTran() [saimptlog_rtlog.c]

This function reads in each transaction (by calling getRTLRec for each
transaction) and validates each record contained within it (by calling
procRTLFHead, procRTLFTail, procRTLTHead, procRTLTTail,
procRTLTCust, procRTLCALt, procRTLTItem, procRTLIDisc, procRTLT Tax
and procRTLTTend as appropriate). To simplify processing, the FHEAD and
FTAIL records are treated as individual transactions. The function rtFind is used
to determine the type of the record read.

Some record types will require some extra processing:

100 Retek Merchandising System

FHEAD - Need to retain the location (store) and business date for later
validations. Also, the transaction structures must be reset by calling resetTran.
Write out a FHEAD record to the voucher file by calling
writeSAVoucherFHEAD.

FTAIL - Write out a FTAIL record to the voucher file by calling
writeSAVoucherFTAIL.

TTAIL - Call chkTranFormat to check for format and data problems. Call
chkTranTailCount to validate the number of records found in the transaction.
Call tdup_addtran to check for duplicate transactions and to keep track of
possible missing transactions, except when the transaction isa ‘TOTAL’ and its
tran_no is blank. Call reformatTran to format the RTLOG transaction data into
SQL*Loader flat file format. If any errors occur, call WrBadTran to write the
failing transaction to the bad transaction file and call resetTran to reinitialize the
RTLOG parser for the next transaction.

FinallnputData() [saimptlog_rtlog.c]

Close the POS RTLOG file.

Close the bad transaction file.

getRTLRec() [saimptlog_rtlog.c]

Read and return one record from the POS RTLOG file.
rtFind() [saimptlog_rtlog.c]

Return the type of the record that is passed in (i.e. THEAD, TCUST, TITEM,
etc).

procRTLFHead() [saimptlog_rtlog.c]

Check that this is the first record in the POS RTLOG file. Validate the business
date of the data. Call storeday_lookup to verify that there is a sa_import_log
entry. If an entry is not found, generate an error and do not load any data. Call
get_lock to lock the store/day for importing. If a lock is not obtained, keep trying
a set number of times. Call updateDataStatus to set the store/day’s data_status to
loading (SADS_L). If missing transactions are being tracked, call
storepos_lookup to get the transaction number starting and ending values and call
tdup_loaddata to load into memory past transaction number ranges for the current
store/day. Note that the maximum transaction number allowed is 2147483647.

procRTLFTail() [saimptlog_rtlog.c]

Process a FTAIL record, ensuring that it is the last record in the POS RTLOG
file. The record count in the FTAIL record is checked against the number of
records processed, if these do not match then records are missing and we should
abort.

procRTLTHead() [saimptlog_rtlog.c]

Validate that the THEAD record is located within a valid position in the POS
RTLOG file, after an FHEAD or TTAIL record.

Initialize the sale and tender transaction totals to 0.
procRTLTTail() [saimptlog_rtlog.c]

Sales audit import [saimptlog.pc] 101

Validate that the TTAIL record is located within a valid position in the POS
RTLOG file, after a TITEM, IDISC, TTAX, TTEND, TCUST or CATT record.

procRTLTCust() [saimptlog_rtlog.c]

Validate that the TCUST record is located within a transaction in the POS
RTLOG file.

procRTLCALt() [saimptlog_rtlog.c]

Validate that the CATT record is located within a transaction following either a
TCUST or CATT record in the POS RTLOG file.

procRTLTItem() [saimptlog_rtlog.c]

Validate that the TITEM record is located within a transaction in the POS
RTLOG file.

Convert selling unit of measure to standard, necessary.

Check if item number type is variable weight PLU. If so, decode it.
Add the quantity * the unit retail amount to the sale transaction total.
procRTLIDisc() [saimptlog_rtlog.c]

Validate that the IDISC record is located within a valid position in the POS
RTLOG file, after either a TITEM or IDISC record.

Convert selling unit of measure to standard, if necessary.
Subtract the quantity * the unit discount amount from the sale transaction total.
procRTLTTax() [saimptlog_rtlog.c]

Validate that the TTAX record is located within a transaction in the POS RTLOG
file.

Add the tax amount to the sale transaction total.
procRTLTTend() [saimptlog_rtlog.c]

Validate that the TTEND record is located within a transaction in the POS
RTLOG file.

Add the tender amount to the tender transaction total.
resetTran() [saimptlog_rtlog.c]

Reinitialize the transaction structures.
chkTranTailCount() [saimptlog_rtlog.c]

Checks the counters in a transaction’s TTAIL record and produce an error if this
figure does not match the actual number of records processed for this transaction.

chkTranFormat() [saimptlog_rtlog.c]

Checks the current transaction format and content. Produces an error if more than
one TCUST record is found, an IDISC record does not correspond to a TITEM
record, an unknown record type is encountered or the THEAD or TTAIL records
are missing from the transaction.

102 Retek Merchandising System

For each record in the transaction call rrchk to look for invalid characters in the
record.

Call trat_lookup to get the transaction type and then validate that type with the
number of records within the transaction.

rrchk() [saimptlog_rtlog.c]

Make sure that there are no embedded null, tab, carriage return or new line
characters in the record passed in.

WrBadTran() [saimptlog_rtlog.c]

Writes an erroneously formatted transaction out to the reject file for correction by
an auditor. These transactions do not contain enough information to be loaded to
the Sales Audit tables.

reformatTran() [saimptlog_rtlog.c]

Validate and reformat the data within the transaction into the SQL*Loader flat
file format (SAIMPTLOG) or insert the data into the database (SAIMPTLOGI).
This is accomplished by calling routines that know the validations and formats
for each tables SQL*Loader control file or insert statements. Start by calling
resetFmt* to initialize the formatting routines. The validation routines are
mvSATHead, mvSATCust, mvSACALtt, mvSATItem, mvSAIDisc, mvSATTax
and mvSATTend. The reformatting routines are fmtSATranHead",
fmtSACustomer?, fmtSACustAttrib*, fmtSATranltem*, fmtSATranDisc’,
fmtSATranTax* and fmtSATranTend®. If there are any errors that prevent loading
this transaction into the database, call abortFmt*. If there are correctable errors,
call saErrorSATHead* for THEAD, TCUST and CATT records, call
saErrorSATItem®, saErrorSATDisc*, saErrorSATTax* or saErrorSATTend* for
the other record types.

If the transaction type is TRAT_SALE, TRAT_RETURN or TRAT_EEXCH,
than check that the transaction balances by comparing the sale and tender
transaction totals. Generate an error if they do not match.

updateDataStatus() [saimptlog_datastat.pc]

If the data status for this store/day is ready to be loaded (SADS_R), loading
(SADS_L) or partially loaded (SADS_P) than update it to loading (SADS_L) and
commit the change.

mvSATHead() [saimptlog_manval.c]
Ensure that the transaction date and time has a valid value.

Ensure that, if they exist and sa_system_options.auto_validate_tran_employee_id
is YSNO_Y, the cashier and salesperson ids are valid by calling
employee_lookup.

Ensure that the transaction type has a valid value (code_type of TRAT) by
calling code_lookup.

Ensure that, if the balancing level is register (SABL_R) or
store.tran_no_generated is register (STRG_R), then the register field is
populated, and that if the balancing level is cashier (SABL_C), then the cashier
field is populated.

Sales audit import [saimptlog.pc] 103

Ensure that the transaction number exists for all transaction types except
TRAT_DCLOSE and TRAT_TOTAL. If transaction number exists, make sure
that it is numeric.

Ensure that the sub transaction type has a valid value if present (code_type of
TRAS) by calling code_lookup.

Ensure that the reason code has a valid value if present (code_type of REAC) by
calling code_lookup.

If the transaction type is TRAT_PAIDIN, ensure that a reason code is present.
If the transaction type is TRAT_PAIDOU:

If the sub transaction type is TRAS_MV or TRAS_EV, then validate the reason
code by calling merchcode_lookup, else validate the reason code by calling
code_lookup.

Ensure that the vendor number field is not empty.

If the sub transaction type is TRAS_MV then validate the vendor number against
the suppliers by calling supplier_lookup.

Else if the sub transaction type is TRAS_EV then validate the vendor number
against the partners by calling partner_lookup.

Else we do not validate.

If the sub transaction type is TRAS_MV or TRAS_EV then ensure that at least
one of the vendor invoice number, payment reference number and proof of
delivery number fields are present.

Else we do not validate.

If the transaction type is TRAT_TOTAL, ensure that ref_nol and value are not
empty.

Ensure that the value has a valid numeric value if present.
Return TRUE if all validations pass, else return FALSE.
mvSATCust() [saimptlog_manval.c]

Ensure that the customer ID has a value.

Ensure that the customer ID type has a valid value (code_type of CIDT) by
calling code_lookup.

Ensure that the customers birthdate has a valid value if present.
Return TRUE if all validations pass, else return FALSE.
mvSACALt() [saimptlog_manval.c]

Ensure that the customer attribute type has a valid value (code_type of SACA) by
calling code_lookup.

Ensure that the customer attribute value has a valid value (code_type of attribute
type) by calling code_lookup.

Return TRUE if all validations pass, else return FALSE.
mvSATItem() [saimptlog_manval.c]

104 Retek Merchandising System

Ensure that the item status has a valid value (code_type of SASI) by calling
code_lookup. Also, if the tran_type is ‘SALE’, ‘RETURN® or ‘EEXCH’, then the
only valid values are SASI_S, SASI_ R, and SASI_V. If the item status is
SASI_S than the quantity sign must be SIGN_P. If the item status is SASI_R
than the quantity sign must be SIGN_N.

Ensure that the item type has a valid value (code_type of SAIT) by calling
code_lookup.

Ensure that the item, sub-transaction level item, or voucher number has a valid
value depending on what the item type says should be present.

Ensure that the department, class, sub class and system indicator are valid if
present.

Ensure that the quantity has a valid numeric value.
Ensure that the unit retail amount has a valid numeric value.

Ensure that the override reason code has a valid value (code_type of ORRC) by
calling code_lookup if present.

Ensure that the original unit retail value has a valid numeric value if there is an
override reason code.

Ensure that the tax indicator has a valid value (code_type of YSNO) by calling
code_lookup. If the value is invalid, then an error is flagged and the value is
defaulted to YSNO_Y.

Ensure that the item swiped indicator has a valid value (code_type of YSNO) by
calling code_lookup. If the value is invalid, then an error is flagged and the value
is defaulted to YSNO_Y.

Ensure that the return reason code has a valid value (code_type SARR) by calling
code_lookup if present and the item status is SASI_R.

Ensure that, if it exists and sa_system_options.auto_validate_tran_employee_id
is YSNO_Y, the salesperson id is valid by calling employee_lookup.

Ensure that if an expiration date exists, that it is valid.
Return TRUE if all validations pass, else return FALSE.
mvSAIDisc() [saimptlog_manval.c]

Ensure that the RMS promotion number has a valid value (code_type of PRMT)
by calling code_lookup.

Ensure that the promotion has a valid value if present by calling prom_lookup.
Valid values are PRST_A, PRST_E and PRST_M.

Ensure that the discount type has a valid value (code_type of SADT) by calling
code_lookup.

Ensure that the quantity has a valid numeric value.

Ensure that the unit discount amount has a valid numeric value.

If the discount type is Coupon than ensure that the coupon number is present.
Return TRUE if all validations pass, else return FALSE.

Sales audit import [saimptlog.pc] 105

mvSATTax() [saimptlog_manval.c]

Ensure that the tax code has a valid value (code_type of TAXC) by calling
code_lookup.

Ensure that the tax amount has a valid numeric value.
Return TRUE if all validations pass, else return FALSE.
mvSATTend() [saimptlog_manval.c]

Ensure that the tender type group has a valid value (code_type of TENT) by
calling code_lookup.

Ensure that the tender type ID has a valid value by calling tendertype_lookup.
Ensure that the tender amount has a valid numeric value.
If the tender type group is TENT_CCARD or TENT_DCARD than:

Ensure that the credit card number and expiration date are valid by calling ccval.
The expiration date may be an empty field. If it is, no validation will be
performed and there is no check as to whether the credit card has expired.

Ensure that the credit card authorization source if present has a valid value
(code_type of CCAS) by calling code_lookup.

Ensure that the credit card cardholder verification if present has a valid value
(code_type of CCVF) by calling code_lookup.

Ensure that the credit card entry mode if present has a valid value (code_type of
CCEM) by calling code_lookup.

Ensure that the credit card special condition if present has a valid value
(code_type of CCSC) by calling code_lookup.

If the tender type group is Coupon than ensure that the coupon number is present.
Return TRUE if all validations pass, else return FALSE.
nextTranSeqNo() [saimptlog_nexttsn.c]

Gets the next free header sequence number for use. This routine goes and gets a
block of numbers when starting, and parcels them out as needed. Once they are
all used up, another block is gotten.

tdup_savedata() [saimptlog_tdup.c]

Writes out what is currently known about transaction numbers for the current
store/day.

tdup_misstran() [saimptlog_tdup.c]

Writes the entries for the sa_missing_tran table by calling fmtSAMissTrant.
The sa_missing_tran.status column will be filled in with SAMS_M.
tdup_loaddata() [saimptlog_tdup.c]

Loads the data file of transaction number past ranges.

tdup_addtran() [saimptlog_tdup.c]

106 Retek Merchandising System

Adds a transaction number to the list of numbers encountered. If
store.tran_no_generated is SRTG_S, than the transaction number must be unique
to the store. If store.tran_no_generated is SRTG_R, than the transaction number
must be unique to the store and register.

openSAVoucher() [saimptlog_output.c]
Generate a temporary filename for the voucher data and open it for writing.
closeSAVoucher() [saimptlog_output.c]

Close the voucher data file. If the RTLOG has been successfully processed,
rename the temporary filename to a permanent name, else remove the temporary
file.

writeSAVoucherFHEAD() [saimptlog_output.c]
Format and writes a FHEAD record to the voucher file.
writeSAVoucherFTAIL() [saimptlog_output.c]

Format and writes a FTAIL record to the voucher file.
writeSAVoucherData() [saimptlog_output.c]

If the current transaction type is a sale (SALE), or a return (RETURN) and the
TITEM records contain a voucher number, then reformat the TITEM records into
a sold voucher data by calling WrSoldSAVoucher. However, if the item was
voided (i.e. for the same transaction, there is an item with status “V’ for the
voucher), then do not call the function.

If the current transaction type is a sale (SALE), a paid in (PAIDIN), a return
(RETURN) or paid out (PAIDOU), and the tender type group is a voucher
(VOUCH) then:

o if the sign of the tender amount is positive, then reformat the TTEND records
into an issued voucher data by calling WrlssuedSAVoucher

o else, if the sign of the tender amount is negative, then reformat the TTEND
records into am issued voucher data by calling WrissuedSAVoucher.

Note: It is not possible to return a voucher).
WrSoldSAVoucher() [saimptlog_output.c]
Format and write a sold voucher record to the voucher file.

In addition to the fields that are currently output in this function, information
about the customer who purchased the gift certificate is required in the new
iss_cust fields. This information can be copied directly from the RTLTCust
record associated with the transaction being processed. The new recipient fields
(name, state and country) will be stored in the RTLTItem record reference
number fields for the Sale of a gift certificate. These values provide details on the
intended receiver for a gift certificate at the time of sale. This might not be
provided by every POS system, in which case they would be null. Expiration date
will also be stored on the RTLTItem record and should be populated; it may also
be null.

Sales audit import [saimptlog.pc] 107

Source Target
RTLTCust.name SA_VOUCHER.iss_cust_name
RTLTCust.addrl SA VOUCHER.iss_cust_addrl
RTLTCust.addr2 SA_VOUCHER.iss_cust_addr2
RTLTCust.city SA_VOUCHER:.city
RTLTCust.state SA_VOUCHER state
RTLTCust.postal_code SA_VOUCHER.postal_code
RTLTCust.country SA VOUCHER.country
RTLTItem.ref_no5 SA_VOUCHER:.recipient_name
RTLTItem.ref_no6 SA_VOUCHER:.recipient_state
RTLTItem.ref_no7 SA_VOUCHER:.recipient_country
RTLTItem.expiration_date | SA_ VOUCHER.exp_date

This function validates the datatype of numeric and date fields. The exp_date
should be added to the fields that are validated. If it is populated, it must be in a
valid date format.

WrRedeemedSAVoucher() [saimptlog_output.c]

Format and write a redeemed voucher record to the voucher file.
WrlssuedSAVoucher() [saimptlog_output.c]

Format and write an issued voucher record to the voucher file.

In the case of a credit voucher issued during a return transaction, the iss_cust
fields will also come from the RTLTCust fields as described above. The recipient
and exp_date fields are not relevant for this type of voucher; so do not need to be
copied in this function.

InitOutputData() [saimptlog_sqlldr.c]

Generate temporary filenames for the SQL*Loader files for the sa_tran_head,
sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer,
sa_cust_attrib and (optionally, depending on the value of the system option
check_dup_miss_tran) sa_missing_tran tables.

Open all of the temporary files for writing.
InitOutputClean() [saimptlog_sqlldr.c]

Close and remove the SQL*Loader files for the sa_tran_head, sa_tran_item,
sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib
and (optionally, depending on the value of the system option
check_dup_miss_tran) sa_missing_tran tables.

108 Retek Merchandising System

CreateTermRecords() [saimptlog_sqlldr.c]

Create terminating records for each record type. These records are used by
SAIMPTLOGFIN to determine if SQL*Loader has finished loading all of the
transaction data for a store/day. NOT NULL column values are given in the table
in the appendix. All other columns should be blank.

If check_dup_miss_tran is YSNO _Y than create a sa_missing_tran TERM record
and call putrec to write it to the SQL*Loader file.

WrOutputData() [saimptlog_sqlldr.c]
Writes the current transaction to the SQL*Loader files.
FinalOutputData() [saimptlog_sqlldr.c]

Close the temporary SQL*Loader files for the sa_tran_head, sa_tran_item,
sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib
and (optionally, depending on the value of the system option

check _dup_miss_tran) sa_missing_tran tables.

Rename the temporary files to record-type_store_business-date_sys-date.out (i.e.
sathead_1000_20000115 20000116053302.0ut).

resetFmt() [saimptlog_sqlldr.c]

Clears the arrays used for formatting the SQL*Loader files.
abortFmt() [saimptlog_sqlldr.c]

Dummy routine to support array inserts. See saimptlog_insert.pc.
saveFmt() [saimptlog_sglldr.c]

Dummy routine to support array inserts. See saimptlog_insert.pc.
fmtSATranHead() [saimptlog_sqlldr.c]

Formats a sa_tran_head record. The status of the current transaction is updated,
and the next sequential tran_seq_no is generated by nextTranSegNo for the
following transaction.

If the transaction type is nota “TOTAL’, than copy the sale transaction total to
the transaction value column.

fmtSACustomer() [saimptlog_sqlldr.c]
Formats a sa_customer record.
fmtSACustAttrib() [saimptlog_sqlldr.c]
Formats a sa_cust_attrib record.
fmtSATranltem() [saimptlog_sglldr.c]

Formats a sa_tran_item record. If the item contains a variable weight PLU, than
call waste_lookup to get the wastage type and percent. If the type is an REF, it
will be converted to an ITEM. The merchandise hierarchy information
(department, class, sub-class, and system indicator) associated with the item will
be retrieved for this item by calling item_lookup.

Sales audit import [saimptlog.pc] 109

Produce an error if the item cannot be found, the REF item was not converted to
an ITEM, the item type is not ITEM, REF or GCN, or non-numeric data is found
in the quantity or amount field.

fmtSATranDisc() [saimptlog_sqlldr.c]
Formats a sa_tran_disc record.
fmtSATranTax() [saimptlog_sglldr.c]
Formats a sa_tran_tax record.
fmtSATranTend() [saimptlog_sglldr.c]
Formats a sa_tran_tender record.
fmtSAMissTran() [saimptlog_sqlldr.c]

Formats a sa_missing_tran record and writes it out to the SQL*Loader file by
calling putrec.

setErrorSATHead() [saimptlog_sqlldr.c]

Sets the error indicator to YSNO _Y for the current THEAD record.
setErrorSATItem() [saimptlog_sqlldr.c]

Sets the error indicator to YSNO_Y for the current TITEM record.
setErrorSATDisc() [saimptlog_sqglldr.c]

Sets the error indicator to YSNO _Y for the current IDISC record.
setErrorSATTax() [saimptlog_sqlldr.c]

Sets the error indicator to YSNO _Y for the current TTAX record.
setErrorSATTend() [saimptlog_sqlldr.c]

Sets the error indicator to YSNO_Y for the current TTEND record.
InitOutputData() [saimptlog_insert.pc]

Allocate space for insert arrays for the sa_tran_head, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and
(optionally, depending on the value of the system option check dup_miss_tran)
sa_missing_tran tables.

InitOutputClean() [saimptlog_insert.pc]
Frees the space allocated by InitOutputData.
CreateTermRecords() [saimptlog_insert.pc]

Create terminating records for each record type. These records are used by
SAIMPTLOGFIN to determine if SQL*Loader has finished loading all of the
transaction data for a store/day. NOT NULL column values are given in the table
in the appendix. All other columns should be blank.

If check_dup_miss_tran is YSNO_Y than create a sa_missing_tran TERM
record. If the array is full, first call flushMissTranInsertArray.

WrOutputData() [saimptlog_insert.pc]

Dummy routine to support SQL*Loader. See saimptlog_sqlldr.c.

110 Retek Merchandising System

FinalOutputData() [saimptlog_insert.pc]

Flushes the final entries in the insert arrays by calling flushTranlInsertArray and
flushTranlInsertArray. Commit the work. Free the memory used for the arrays by
calling InitOutputClean®.

resetFmt() [saimptlog_insert.pc]

Dummy routine to support SQL*Loader. See saimptlog_sqlldr.c.
abortFmt() [saimptlog_insert.pc]

Reset array indexes to the last saved transaction.

saveFmt() [saimptlog_insert.pc]

Save the array indexes for inserting the current transaction.
fmtSATranHead() [saimptlog_insert.pc]

Formats a sa_tran_head record for array insert. If the array is full, first call
flushTranlInsertArray. The status of the current transaction is updated, and the
next sequential tran_seq_no is generated by nextTranSegNo for the following
transaction.

If the transaction type is not a “TOTAL’, than copy the sale transaction total to
the transaction value column.

fmtSACustomer() [saimptlog_insert.pc]

Formats a sa_customer record for array insert. If the array is full, first call
flushTranlInsertArray.

fmtSACustAttrib() [saimptlog_insert.pc]

Formats a sa_cust_attrib record for array insert. If the array is full, first call
flushTranlInsertArray.

fmtSATranltem() [saimptlog_insert.pc]

Formats a sa_tran_item record for array insert. If the array is full, first call
flushTranlInsertArray. If the item contains a variable weight PLU, than call
waste_lookup to get the wastage type and percent. If the type is a REF, it will be
converted to an ITEM. The merchandise hierarchy information (department,
class, sub-class, and system indicator) associated with the item will be retrieved
for this item by calling item_lookup.

Produce an error if the item cannot be found, the REF item was not converted to
an ITEM, the item type is not ITEM, REF or GCN, or non-numeric data is found
in the quantity or amount field.

fmtSATranDisc() [saimptlog_insert.pc]

Formats a sa_tran_disc record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSATranTax() [saimptlog_insert.pc]

Formats a sa_tran_tax record for array insert. If the array is full, first call
flushTranInsertArray.

fmtSATranTend() [saimptlog_insert.pc]

Sales audit import [saimptlog.pc] 111

Formats a sa_tran_tender record for array insert. If the array is full, first call
flushTranlInsertArray.

fmtSAMissTran() [saimptlog_insert.pc]

Formats a sa_missing_tran record for array insert. If the array is full, first call
flushMissTranlnsertArray.

setErrorSATHead() [saimptlog_insert.pc]

Sets the error indicator to YSNO _Y for the current THEAD record.
setErrorSATItem() [saimptlog_insert.pc]

Sets the error indicator to YSNO_Y for the current TITEM record.
setErrorSATDisc() [saimptlog_insert.pc]

Sets the error indicator to YSNO _Y for the current IDISC record.
setErrorSATTax() [saimptlog_insert.pc]

Sets the error indicator to YSNO_Y for the current TTAX record.
setErrorSATTend() [saimptlog_insert.pc]

Sets the error indicator to YSNO_Y for the current TTEND record.
flushTranlInsertArray() [saimptlog_insert.pc]

Inserts the contents of the transaction arrays and resets the indexes for more
loading.

flushMissTranlnsertArray() [saimptlog_insert.pc]

Inserts the contents of the missing transaction array and resets the index for more
loading.

SAIMPTLOGFIN
main() [saimptlogfin.pc]

This should be the standard Retek main. Call LOGON to connect to the Sales
Audit database. Call Init to initialize data structures and output file handles. Call
Process to populate the sa_balance_group table, to mark the import as either
partially or fully complete. Call final to close files and generally clean up.

init() [saimptlogfin.pc]

retek_init should be called to initialize g_|_restart_max_counter.

Get the system options by calling fetchSaSystemOptions.

Load the store/day data generated by SAGETREF by calling storeday_loadfile.

112 Retek Merchandising System

process() [saimptlogfin.pc]

Fetch all store/day’s that have a data status of loading (L) and that have the
terminating records (sa_tran_head.tran_type = TERM) on all of the tables
(sa_tran_head, sa_customer, sa_cust_attrib, sa_tran_item, sa_tran_disc,
sa_tran_tax, sa_tran_tender, sa_error and sa_missing_tran). Save the ROWID of
these terminating records so that they can be removed. Because of trickle polling,
there may be multiple records per table; they must all be present.

For each store/day fetched, get a write lock by calling get_lock. If this fails, go
onto the next store/day.

For each completed store/day if the DCLOSE transaction is found and the
number of files expected (contained in the ref_nol of DCLOSE) equales the
number of TERM records found, or if audit_after_imp_ind is YSNO_Y than
create the balance groups by calling balanceGroupCreate, remove
sa_missing_tran records that are now present by calling fixMissTran, and process
post voids by calling fixPostVoid.

Delete the terminating records, if any found.

For each store/day mark the import as either partially or complete by calling
markimportDone.

For each store/day release the import lock by calling release_lock.
Do a commit after each store/day by calling retek_force_commit.
final() [saimptlogfin.pc]

Call retek_close.

balanceGroupCreate() [saimptlogfin.pc]

Depending on the value of the system option balance_level_ind (store, register or
cashier), insert the necessary records into sa_balance_group. The start_datetime
and end_datetime columns should remain NULL. The bal_group_seq_no is
gotten from a call to nextBalGroupSeqgNo.

nextBalGroupSeqNo() [nextbgsn.pc]

Gets the next free balance group sequence number for use. This routine goes and
gets a block of numbers when starting, and parcels them out as needed. Once
they are all used up, another block is gotten.

fixPostVoid() [saimptlogfin.pc]

For each transaction that has a corresponding post void transaction (tran_type =
PVOID) where sale.tran_no = cancel.orig_tran_no and sale.register =
cancel.orig_reg_no and store_day_seq_no’s match, set the status to SAST_V.
Also, if that transaction contained a voucher (either as an item or as a tender),
then call the package function SA_ VOUCHER_SQL.POST_VOID_VOUCHER
to undo any processing on this voucher. Call
TRANSACTION_SQL.CREATE_REVISIONS to create revision. Update
sa_tran_head with the new revision number, setting the status to postvoided.

fixMissTran() [saimptlogfin.pc]

Remove sa_missing_tran records that may now be present because data was
processed out of order.

Sales audit import [saimptlog.pc] 113

markimportDone() [saimptlogfin.pc]

Get the current count of files loaded. Mark the import as either fully (F) or
partially (P) loaded by updating the sa_store_day table’s data_status column.
This is determined by the presence of a transaction with a type of store/day
closed (DCLOSE).

If there was a DCLOSE transaction, get the number of files expected contained in
the ref_no1l field, then if the number of files expected equals the number loaded,
update the sa_store_day table’s data_status, audit_status and files_loaded
columns. If a DCLOSE record was found and the numbers match, set data_status
to Fully Loaded, audit_status to Audited, else data_status = Partially Loaded,
audit_status = Unaudited. Increment files_loaded by the number of TERM
records found. If the import was expected, than set status to loaded (L), else set it
to unexpected (U). This is determined by calling storeday _lookup.

Stored Procedures / Shared Modules (Maintainability)
Refer to the following documents for more details:
e Package detail design - salock.doc
e Functional Design - SA_misc.doc

e Technical Design - SA_misc.doc

Retek _init

Retek close
Retek_refresh_thread

fetchSaSystemOptions Fetch the values from the sa_system_options

table.

fetchSysDate Fetch the current SYSDATE value.

trat_lookup Look up TRAT code types and convert them
to their sequence number.

tent_lookup Look up TENT code types and convert them
to their sequence number.

get_lock used to establish a read lock on a store/day.

release lock used to release a store/day lock.

storeday_loadfile Loads the store/day data file generated by
SAGETREF into memory.

storeday_lookup Checks that a store business day has an import
record.

item_loadfile Loads the item data file generated by
SAGETREF into memory.

item_lookup Looks up an item and returns the data

(department, class, sub-class and system
indicator) associated with it.

114 Retek Merchandising System

ref_item_loadfile

Loads the sub-transaction item (ref) data file
generated by SAGETREF into memory.

ref_item_lookup

Looks up a sub-transaction level item.

vupc_loadfile Loads the variable weight PLU data file
generated by SAGETREF into memory.

vupc_lookup Looks up a variable PLU. Call vupc_lookup
to see if it is a variable PLU. If it is a variable
UPC, than set the variable parts to zero.

prom_loadfile Loads the promotion data file generated by
SAGETREF into memory.

prom_lookup Checks that a promotion exists.

waste_loadfile

Loads the wastage data file generated by
SAGETREF into memory.

waste_lookup

Looks up the wastage for an item.

code_loadfile Loads the code type data file generated by
SAGETREF into memory.
code_lookup Checks that a code type/code exists.

error_loadfile

Loads the error data file generated by
SAGETREF into memory.

error_lookup

Looks up the error and the system codes that
we are interested in it.

storepos_loadfile

Loads the store POS data file generated by
SAGETREF into memory.

storepos_lookup

Looks up the store POS data that we are
interested in it.

tendertype_loadfile

Loads the tender type data file generated by
SAGETREF into memory.

tendertype_lookup

Checks that a tender type group and ID exists.

merchcode_loadfile

Loads the merchant code data file generated
by SAGETREF into memory.

merchcode_lookup

Looks up the merchant code data that we are
interested in it.

partner_loadfile

Loads the partner data file generated by
SAGETREF into memory.

partner_lookup

Looks up the partner data that we are
interested in it.

supplier_loadfile

Loads the supplier data file generated by
SAGETREF into memory.

Sales audit import [saimptlog.pc] 115

supplier_lookup Looks up the supplier data that we are
interested in it.

putrec Writes a record to a file.
LANGUAGE_SQL.GE | This function will retrieve the description of
T_CODE_DESC the passed in code and code type.

Input Specifications

The input files for Item, Wastage, sub-transaction level item (reference item),
Variable PLU, Store Day, Promotions, Code Types, and Errors are all
documented in Batch Design - SAGETREF.doc.

The RTLOG file format is documented in Interface file — SA RTLOG.doc.

Date columns should always be converted to characters with a format of
“YYYYMMDDHH24MISS’. Single digit MM, DD, HH24, MI and SS values
need to be 0 padded.

Char and Numeric 1D Field Types should be left justified and padded with
spaces.

Number Field types should be right justified and padded with zeros. If a Number
Field is NULL, than it should be blank not 0’s.

Output Specifications

The filename convention for the SQL*Loader output files will be

table store businessdate curdatetime.out where table is sathead, satitem,
satdisc, sattax, sattend, sacust, sacustatt, or samisstr (i.e.
sathead_1000_20000115 20000116053302.out for the sa_tran_head table).
Similarly, the filename convention for the VVoucher output file is
savouch_store_businessdate_curdatetime.out. The files should start out with a
temporary name generated by the Unix tempnam(3S) call and then be renamed
with Unix rename(2) call when the files are complete (see the Unix man pages in
the indicated sections for usage details).

The filename convention for storing missing transactions between invocations of
SAIMPTLOG is tdup_store_businessdate.dat.

Date columns should always be converted to characters with a format of
“YYYYMMDDHH24MISS’. Single digit MM, DD, HH24, Ml and SS values
need to be 0 padded.

When selecting columns that contain quantities or amounts from the database, the
value should be multiplied by 10000 to remove the decimal point. Decimal points
are not supposed to be in Retek files. The only exception to this is SQL*Loader
files.

Char and Numeric ID Field Types should be left justified and padded with
spaces.

Number Field types should be right justified and padded with zeros. If a Number
Field is NULL, than it should be blank not 0’s.

116 Retek Merchandising System

The voucher file format is documented in Interface file — SA VOUCH.doc.

SQL*Loader Control Files will be provided that match the format of the data
files. These files will be named table.ctl. The format of the SQL*Loader files is

as follows:
Table Name Column Name Field Type Field | Position | Description
Width
Sa_tran_head Tran_seq_no Integer external | 20 1:20

Rev_no Integer external | 3 21:23

Store_day_seq_no Integer external | 20 24:43

Tran_datetime date 14 44:57 Format is
YYYYMM
DDHH24MI
SS

Register char 5 58:62

Tran_no Integer external | 10 63:72

Cashier char 10 73:82

Salesperson char 10 83:92

Tran_type char 6 93:98

Sub_tran_type char 6 99:104

Orig_tran_no Integer external | 10 105:114

Orig_reg_no char 5 115:119

Ref_nol char 30 120:149

Ref_no2 char 30 150:179

Ref no3 char 30 180:209

Ref_no4 char 30 210:239

Reason_code char 6 240:245

Vendor_no char 10 246:255

Vendor_invc_no char 30 256:285

Payment_ref _no char 16 286:301

Proof of delivery n | char 30 302:331

0

Status char 6 332:337

Sales audit import [saimptlog.pc] 117

Table Name Column Name Field Type Field | Position | Description
Width

Value char 22 338:359 | Includes an
optional
negative sign
and a
decimal
point.

Pos_tran_ind char 1 360:360

Update_id char 30 361:390

Update_datetime date 14 391:404 | Format is
YYYYMM
DDHH24MI
SS

Error_ind char 1 405:405

Sa_tran_item Tran_seq_no Integer external | 20 1:20

Item_seq_no Integer external | 4 21:24

Item_status char 6 25:30

Item_type char 6 31:36

Item char 25 37:61

Ref_item char 25 62:86

Non_merch_item char 25 87:111

Voucher_no char 16 112:127

Dept Integer external | 4 128:131

Class Integer external | 4 132:135

Subclass Integer external |4 136:139

Qty decimal external | 14 140:153 | Includes an
optional
negative sign
and a
decimal
point.

Unit_retail decimal external |21 154:174 | Includes a
decimal
point.

Selling UOM char 4 175:178

Override_reason char 6 179:184

118 Retek Merchandising System

Table Name Column Name Field Type Field | Position | Description
Width

Orig_unit_retail decimal external |21 185:205 | Includes a
decimal
point.

Standard_orig_unit_r | decimal external |21 206:226

etail

Tax_ind char 1 227:227

Item_swiped_ind char 1 228:228

Error_ind char 1 229:229

Drop_ship_ind char 1 230:230

Waste_type char 6 231:236

Waste_pct decimal external | 12 237:248 | Includes a
decimal
point.

Pump char 8 249:256

Return_reason_code | char 6 257:262

Salesperson char 10 263:272

Expiration_date Date 8 273:280 | Format is
YYYYMM
DD

Standard_qty decimal external | 14 281:294 | Includes an
optional
negative sign
and a
decimal
point.

Standard_unit_retail | decimal external |21 295:315 | Includes a
decimal
point.

Standard_uom char 4 316:319

Ref_no5 char 30 320:349

Ref_no6 char 30 350:379

Ref_no7 char 30 380:409

Ref no8 char 30 410:439

Sa_tran_disc Tran_seq_no Integer external | 20 1:20
Item_seq_no Integer external | 4 21:24

Sales audit import [saimptlog.pc] 119

Table Name Column Name Field Type Field | Position | Description
Width

Discount_seq_no Integer external | 4 25:28

rms_promo_type char 6 29:34

Promotion Integer external | 10 35:44

Discount_type char 6 45:50

Coupon_no char 16 51:66

Coupon_ref no char 16 67:82

Qty decimal external | 14 83:96 Includes an
optional
negative sign
and a
decimal
point.

Unit_discount_amt | decimal external |21 97:117 Includes a
decimal
point.

Standard_qty decimal external | 14 118:131 | Includes an
optional
negative sign
and a
decimal
point.

Standard_unit_disco | decimal external |21 132:152 | Includes a

unt_amt decimal
point.

Ref nol3 char 30 153:182

Ref nol4 char 30 183:212

Ref nol5 char 30 213:242

Ref_nol6 char 30 243:272

Error_ind char 1 273:273

Sa tran_tax Tran_seq_no Integer external | 20 1:20
Tax_code char 6 21:26
Tax_seq_no Integer external | 4 27:30

120 Retek Merchandising System

Table Name Column Name Field Type Field | Position | Description
Width

Tax_amt decimal external |22 31:52 Includes an
optional
negative sign
and a
decimal
point.

Error_ind char 1 53:53

Ref_nol7 char 30 54:83

Ref nol8 char 30 84:113

Ref _nol9 char 30 114:143

Ref _no20 char 30 144:173

Sa_tran_tender | Tran_seq_no Integer external | 20 1:20

Tender_seq_no Integer external | 4 21:24

Tender_type _group | char 6 25:30

Tender_type_id Integer external | 6 31:36

Tender_amt decimal external | 22 37:58 Includes an
optional
negative sign
and a
decimal
point.

Cc_no Integer external | 16 59:74

Cc_cc_exp_date date 8 75:82 Format is
YYYYMM
DD

Cc_auth_no char 16 83:98

Cc_auth_src char 6 99:104

Cc_entry_mode char 6 105:110

Cc_cardholder_verf | char 6 111:116

Cc_term_id char 5 117:121

Cc_spec_cond char 6 122:127

Voucher_no char 16 128:143

Coupon_no char 16 144:159

Coupon_ref _no char 16 160:175

Ref _no9 char 30 176:205

Sales audit import [saimptlog.pc] 121

Table Name Column Name Field Type Field | Position | Description
Width
Ref nol0 char 30 206:235
Ref noll char 30 236:265
Ref _nol2 char 30 266:295
Error_ind char 1 296:296
Sa_customer Tran_seq_no Integer external | 20 1:20
Cust_id char 16 21:36
Cust_id_type char 6 37:42
Name char 40 43:82
Addrl char 40 83:122
Addr2 char 40 123:162
City char 30 163:192
Sate char 3 193:195
Postal_code char 10 196:205
Country char 3 206:208
Home_phone char 20 209:228
Work_phone char 20 229:248
E_mail char 100 249:348
birthdate date 8 349:356 | Format is
YYYYMM
DD
Sa_cust_attrib Tran_seq_no Integer external | 20 1:20
Attrib_seq_no char 4 21:24
Attrib_type char 6 25:30
Attrib_value char 6 31:36
Sa_error Error_seq_no Integer external | 20 1:20
Store_day_seq_no Integer external | 20 21:40
Bal_group_seq_no Integer external | 20 41:60
Total_seq_no Integer external | 20 61:80
Tran_seq_no Integer external | 20 81:100

122 Retek Merchandising System

Table Name Column Name Field Type Field | Position | Description
Width

Error_code char 25 101:125

Key value 1 Integer external | 4 126:129

Key_value 2 Integer external | 4 130:133

Rec_type char 6 134:139

Store_override_ind | char 1 140:140

Hqg_override_ind char 1 141:141

Update_id char 30 142:171

Update_datatime date 14 172:185 | Format is
YYYYMM
DDHH24MI
SS

Orig_value char 50 186:235

Sa_missing_tran | Miss_tran_seq_no Integer external | 20 1:20

Store_day_seq_no Integer external | 20 21:40

Register char 5 41:45

Tran_no Integer external | 10 46:55

status char 6 56:61

Database Integrity

This information derives from the Database Considerations within the Process /
Functional Overview (PFO), the Conversation Flow and Database Objects of the
Technical Design.

Parameter validation

Parameter validation focuses on validating parameter data that is being passed
from calling modules.

Integrity Constraints

Operations that affect other entities in the system must be validated to ensure that
integrity constraints have not been violated. If a record cannot exist in the
system without a related parent record existing first, it is essential that the
application enforce this constraint. Similarly, if a record cannot be deleted due to
the existence of child records in the system the application should prevent the
user from performing a delete operation.

Sales audit import [saimptlog.pc] 123

Scheduling Considerations

Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: These programs (SAIMPTLOG and SQL*Loader or
SAIMPTLOGI, and SAIMPTLOGFIN) are the second step in the batch process
for loading customer POS data into the Sales Audit database.

Pre-Processing: SAGETREF must be run before importing POS logs. POS logs
must be converted into the Retek TLOG format by the customer (Unless the
saimptlog_rtlog.c module is rewritten by the customer to handle their POS log
files).

Threading Scheme: N/A

Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section,
this section should describe the locking (and release) strategy required beyond
the preset Retek standards. It should describe how the module accesses data and
the *hold’ or “lock’ it has on a database and / or its records, during processing. It
should also describe the ‘lock’ release.

Restart / Recovery

The logical unit of work for SAIMPTLOG is defined as a single POS file. This
POS file may or may not represent a complete store day.

The logical unit of work for SAIMPTLOGFIN is defined as a store/day. This
does not follow the usual restart/recovery. A commit is done after each store/day
is processed. This program will than naturally pick up where it left off if it is
restarted.

Performance

In conjunction with the Scheduling Considerations and Locking Strategy
sections, the optimization considerations of a batch module must adhere to Retek
standards. This section should call out special performance considerations that
may exceed current documented Retek practices. Such considerations should be
the basis for update to Retek standards. Each database operation should be
optimized based on quantity and quality of the database transactions. Batch
modules are executed on the database or dedicated batch server and thus there are
no additional performance gains to forcing database interaction logic onto the
server.

Security Considerations

POS data contains credit card data. The RTLOG input file and satend
SQL*Loader output file both contain credit card numbers. Access to these files is
controlled solely by Unix file permissions.

124 Retek Merchandising System

Design Assumptions

Design assumptions are presumed design factors, inferred from current
information, expected to hold true over the life of the project. Design
assumptions must be documented in order to justify and validate derived design
considerations with the Business Requirements (documented within the BRD and
PFO).

Appendix
CreateTermRecords
Table Column Value
sa_tran_head tran_seq_no Determined by saimptlog.
rev_no 001

store_day_seq_no

Same as last transaction processed.

tran_datetime

Business Date at midnight

tran_no 0000000000
tran_type TERM
status W
pos_tran_ind N
ref_nol Corresponding sa_missing_tran.miss_tran_seq_no
if sa_system_options.check_dup_miss_tran =Y.
update_id 000000000000000000000000000000
update_datetime SYSDATE
error_ind N
sa_customer tran_seq_no Same as sa_tran_head.tran_seq_no.
cust_id 0000000000000000
cust_id_type TERM
sa_cust_attrib tran_seq_no Same as sa_tran_head.tran_seq_no.
attrib_type TERM
attrib_value TERM
sa_tran_item tran_seq_no Same as sa_tran_head.tran_seq_no.
item_seq_no 0001
Item_status S

Sales audit import [saimptlog.pc] 125
CreateTermRecords
Table Column Value

item_type TERM
qty 000000000000
unit_retail_sign P
unit_retail 00000000000000000000
tax_ind N
item_swiped_ind N
error_ind N

sa_tran_disc tran_seq_no Same as sa_tran_head.tran_seq_no.
item_seq_no 0001
rms_promo_type TERM
discount_seq_no 0001
discount_type TERM
qty 000000000000
unit_discount_amt_sign | P
unit_discount_amt 00000000000000000000
error_ind N

sa_tran_tax tran_seq_no Same as sa_tran_head.tran_seq_no.
tax_code TERM
tax_seq_no 0001
tax_amt_sign P
tax_amt 00000000000000000000
error_ind N

sa_tran_tender tran_seq_no Same as sa_tran_head.tran_seq_no.

tender_seq_no

0001

tran_type_group TERM

tran_type_id 000000

tender_amt_sign P

tender_amt 00000000000000000000

126 Retek Merchandising System

CreateTermRecords
Table Column Value
error_ind N
sa_error error_seq_no Determined by saimptlog.

store_day_seq_no

Same as last transaction processed.

tran_seq_no Same as sa_tran_head.tran_seq_no.
error_code TERM_MARKER_NO_ERROR
record_type THEAD

store_override_ind N

hg_override_ind N

update_id TLOG

update_datetime SYSDATE

This is present only if sa_system_options.check_dup_miss_tran =Y.

sa_missing_tran

miss_tran_seq_no

Determined by saimptlog.

store_day_seq_no

Same as last transaction processed.

tran_no

-000000001

status

M

Sales audit pre-export [sapreexp] 127

Sales audit pre-export [sapreexp]

Design Overview

When a user modifies or revises a transaction through the Sales Audit user
application, numerous totals will be affected through re-totaling. The sales audit
pre-export module is designed to compare the latest prioritized version of each
total defined for export with the version that was previously sent to each system.
If they are they same, an SA_EXPORTED entry should be created for the total
for that particular system so that the same value will not be exported twice. By
determining which totals have not changed since the last export date time
(SA_EXPORTED_REV), this module will then create entries on
SA_EXPORTED to prohibit any third party application from receiving multiple
export revisions.

Table Operations Performed
Select | Insert | Update Delete
Sa_store_day Yes No No No
Sa_export_log Yes No No No
Sa_exported Yes Yes No No
V _sa_total value Yes No No No
Sa_exported_rev Yes No No No

Scheduling Constraints

Pre/Post Logic Description
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA auditing process
and before any export processes.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)
Driving Cursor

The logical unit of work for this module is defined as a unique store/day
combination. Records will be fetched, updated and inserted in batches of
g_|_restart_max_counter. Only two commits will be done. One to establish the
store/day lock (this will be done by the package) and one at the end after a
store/day or store/day/total has been completely processed.

128 Retek Merchandising System

Driving cursor
SELECT DISTINCT a.store_day seq_no
FROM sa_export_log a
WHERE a.status = “R~
AND a.seq_no =
(SELECT MAX(b.seq_no)
FROM sa export_log b

WHERE b.store _day _seq _ho =
a.store_day seq_ho)

ORDER BY a.store_day_seq_no;

Work cursors

There are two work cursors. The first work cursor will get totals that were
previously exported. It is used in the fetch_already_exported() function.

EXEC SQL DECLARE c_already_exported CURSOR FOR
/* select all totals that have been exported already */
SELECT v.total_seq_no,
v.value * :tpl_multiplier,
el .system_code
FROM v_sa get_ total v,
sa_total usage tu,
sa_export_log el,
sa_exported _rev er
WHERE v.store_day seq_no = :is_store day_seq_no
AND el.store_day _seq_no = v.store_day_seq_no
AND el.status = :SAES R
AND el.seq_no > 1
AND tu.total_id = v.total_id
AND tu.total_rev_no = v.total_rev_no

AND substr(tu.usage type, 1, 3) =
el .system code

AND er.total_seq_no = v.total_seq_no

AND substr(er.system code, 1, 3) =
el _system_code

AND er.rev_no = v.value_rev_no

AND er.exp_datetime =
/* select the last one exported */
(SELECT MAX(exp_datetime)

FROM sa_exported_rev

Sales audit pre-export [sapreexp] 129

WHERE total_seq_no = v.total _seq _no

AND substr(system_code, 1, 3) =
el _system_code)

ORDER BY 1, 2, 3;
The second work cursor retrieves all the totals that are ready for export.
EXEC SQL DECLARE c_ready to_export CURSOR FOR
/* select all totals ready for export */
SELECT v.total _seq _no,
v.value * :pl_multiplier,
el .system code
FROM v_sa get_total v,
sa_total usage tu,
sa_export_log el
WHERE v.store_day seq _no = :is_store day_seq_no
AND v.precedence =
(SELECT min(v2.precedence)
FROM v_sa get total v2
WHERE v2.total _seq_no = v.total _seq _no)
AND v.value_rev_no =
(SELECT max(v2.value_rev_no)
FROM v_sa get_total v2
WHERE v2_total_seq_no = v.total _seq_no
AND v2.precedence = v.precedence)
AND el.store_day_seq_no = v.store_day_seq_no
AND el.status = :SAES R
AND el.seq_no > 1
AND tu.total id

AND tu.total _rev_no = v.total _rev_no

v.total _id

AND substr(tu.usage type, 1, 3) =
el.system code

AND NOT EXISTS
(SELECT 1
FROM sa_exported
WHERE total_seq_no = v.total _seq _no

AND substr(system_code, 1, 3) =
el _system_code);

The program then compares the values retrieved by these two cursors and if a
match is found, then an entry in the sa_exported table is created to prevent this
total value from being re-exported.

130 Retek Merchandising System

Program Flow

Structure Chart

Retrieve the store
days to process

Retrieve the
export entries
that have newer

Shared Modules

Listing of all externally referenced functions and Stored procedures and

description of usage

total entries.

ReSA Batch Library functions used:

get_lock — used to establish a read lock on a store/day.

release_lock — used to release a store/day lock.

Function Level Description

All database interactions required and error handling considerations

init()

e Call init_exported_array.
o Call retek_init
process()

The Driving Cursor should retrieve the first store day to process.

Attempt to lock the store/day with a call to get_lock library function. If this

fails, go on to the next store/day.

Call the procedure process_store_day_exported.

Release lock and commit sto

Loop through driving cursor.

re day work completed.

Sales audit pre-export [sapreexp] 131

final ()

o Call free_exported_array.

o Call retek_close for a final commit.

e Call retek_refresh_thread to refresh the current thread.
Process_store_day_exported()

e Call fetch_already_exported() to retrieve the first work cursor.
e Retrieve the working cursor for the current store day.

o Find if the current row from the second work cursor exists in the data fetched
by the first work cursor by calling already_exported_lookup().

o If it does exist, insert into the sa_exported table using the values from the
sa_exported_rev table for the total_seq_no and system_code. Else do
nothing.

fetch_already_exported()

e This function uses a global variable to hold all of the data fetched from the
first work cursor. The array holding this data is resized as necessary.

already_exported_lookup()

e This function uses the C library function bsearch to search the array
populated by fetch_already exported() for data that matches the parameter
passed in. The actual comparison is performed in nodecmp().

nodecmp()

e This function concatenates the two pa_export_data rows passed in as
parameter and compares them using strncmp.

init_exported_array()
o Allocate memory for il_size items for the working cursor arrays.
Free_exported_array()

e Free the working cursor arrays from memory.

Stock Count Snapshots Update [stkupd] 133

Stock Count Snapshots Update [stkupd]

Design Overview

Table Index Select Insert Update Delete
STAKE_SKU LOC Yes Yes No No No
PERIOD No Yes No No No
SYSTEM_OPTIONS | No Yes No No No
ITEM_MASTER No Yes No No No
STAKE_HEAD No Yes No No No
TSFDETAIL No Yes No No No
SHIPSKU No Yes No No No
SHIPMENT No Yes No No No
TSFHEAD No Yes No No No
ITEM_LOC Yes Yes No No No
ITEM_LOC_SOH No Yes No No No

Indexes: STAKE_DATE (stocktake_date),

TEM_LOC(item, loc)

Sets the stake_sku_loc snapshot_on_hand_qty to the current item_loc_soh stock
on hand for each store and warehouse for which a stocktake has been scheduled
for today. Also fetches snapshot_unit_retail & snapshot_unit_cost the same way.

Re_run:

If this program terminates normally/abnormally, the restart_program_status table
must be updated by setting restart_flag to "Y' for current restart_name, and
schema.

Scheduling Constraints

Processing Cycle: PHASE 3
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: STORE/WH

134 Retek Merchandising System

Restart Recovery
EXEC SQL DECLARE c_get_item loc CURSOR FOR
SELECT /*+ ORDERED */

stake_sku_loc.item,

stake_sku_ loc.store,
stake sku loc.wh,
DECODE(stake _sku_loc.store, -

1,stake_sku_loc.wh,stake sku loc.store),

DECODE(stake_sku_loc.store,-1,"W","S"),
stake_sku loc.cycle count,
ROWIDTOCHAR(stake sku_loc.ROWID),
NVL(item_loc_soh.stock_on_hand,0),
NVL(item_loc.unit_retail,b0),
DECODE(:ps_std_av_ind, "S-,

item _loc_soh.unit_cost,

NVL(item_loc_soh.av_cost,0))
FROM stake_sku_loc,

WHERE

stake head,
mv_restart_store wh rv,
item_loc,

item_loc_soh

stake sku_loc.cycle_count

stake head.cycle count

AND

stake head.stocktake date

TO_DATE(:ps_vdate, "YYYYMMDD")

AND
AND

item_loc.item stake_sku_loc.item

item_loc.loc =

DECODE(stake_sku_loc.store, -
1,stake_sku_ loc.wh,stake sku loc.store)

AND
AND

item_loc _soh.item = stake sku loc.item

item_loc_soh.loc =

DECODE(stake_sku_loc.store, -
1,stake_sku_ loc.wh,stake sku loc.store)

AND
AND

rv.driver_value = stake sku loc.store

rv.driver_name =

ps_restart_driver_name

AND

rv.num_threads =

TO_NUMBER(:ps_num_threads)

AND

rv.thread val =

TO_NUMBER(:ps_thread_val)

Stock Count Snapshots Update [stkupd] 135

AND (stake_sku loc.item >
NVL(:ps_restart_item, " ") OR

(stake_sku_loc.item = :ps_restart item
AND

(stake_sku_loc.store >
TO_NUMBER(NVL(:ps_restart_store,"-1")) OR

(stake_sku_loc.store =
TO_NUMBER(:ps_restart_store) AND

stake sku loc.wh >
TO_NUMBER(NVL(:ps_restart_wh,"-17))))))

ORDER BY stake_sku_loc.item, stake sku loc.store,
stake_sku loc.wh;

Program Flow
N/A

Shared Modules
N/A

Function Level Description
N/A

I/O Specification
N/A

Technical Issues
N/A

Stock Count Stock on Hand Updates [stkvar] 137

Stock Count Stock on Hand Updates [stkvar]

Design Overview

Table Index | Select Insert Update | Delete
STAKE_SKU LOC no yes no yes no
STAKE_CONT no yes no no yes
STAKE_HEAD no yes no no no
ITEM_LOC yes no no yes no
ITEM_LOC_SOH yes no no yes no
STAKE_PROD_LOC | yes no no yes no
ITEM_MASTER no yes no no no

Indexes: AKE_PROD_LOC (dept, store, wh, data_type)
This program updates the stock on hand for all items as a result of a stock take.

The program is driven by STAKE_CONT, in conjunction with
STAKE_SKU_LOC where the ITEM, store, warehouse and cycle count on
STAKE_SKU_LOC match those on STAKE_CONT, and where STAKE_CONT
run_type ="'A’ (for adjustment).

For each row retrieved from the above tables, the unit systems are processed as
follows:

A ITEM_LOC_SOH record is updated for every ITEM/store combination . The
new stock on hand = item_loc_soh .stock_on_hand -
snapshot_stock_on_hand_qty (from the STAKE_SKU_LOC table) + the physical
count quantity on STAKE_SKU_LOC. In addition, the pack_comp_soh field is
updated on ITEM_LOC when a pack is processed for each component ITEM in
the pack.

Total cost and total retail are computed as the snapshot unit retail times the sum
of the physical count quantity plus the snapshot in-transit (from the
STAKE_SKU_LOC table).

STAKE_PROD_LOC total cost and total retail amounts are updated with the
total cost and total retail for each department, class, subclass, store and
warehouse combination that exists on the cycle count. A record for each is
added. If arecord already exists on the table, the total cost or retail amount value
is adjusted to be the existing total cost or retail amount + the cycle count cost or
retail. If no record exists, a new one is added to the table with the value of total
cycle count cost or retail for the total cost or retail amount. If the stock ledger is
designated not to include VAT on the SYSTEM_OPTIONS table, the total retail
amount will have any VAT amount stripped from it.

Re-run: If this program terminates normally, , ITEM_LOC, STAKE_QTY,
ITEM_LOC_SOH,STAKE_PROD_LOC_STOCK and STAKE_CONT must be
recovered prior to restart. If this program terminates abnormally, restart without
recovery.

138 Retek Merchandising System

The syntax for invoking this program is:
stkvar userid/pswd [report_name].

Here are some examples:
e stkvar userid/pswd - it will not produce any report.)

e stkvar userid/pswd any.rpt - it will produce a report, any.rpt.)

Scheduling Constraints
Processing Cycle: PHASE 3
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: DEPT

Restart Recovery
EXEC SQL DECLARE c_skus CURSOR FOR
SELECT stake cont.item,
stake cont.store,
stake cont.wh,

stake_sku loc.snapshot _on_hand_qty,

nvl(stake_sku_ loc.snapshot_in_transit _qty, 0),
nvl(stake _sku_ loc.snapshot_unit_cost, 0),
nvl(stake_sku loc.snapshot _unit_retail,

0.

stake_sku_loc.physical_count_qty,

stake sku_loc.pack comp_qty,

nvl(stake_sku loc.dept, 0),

nvl(stake _sku loc.class, 0),

nvl(stake_sku loc.subclass, 0),
item_master.pack_ind,

stake head.stocktake date,

stake head.stocktake type,

stake head.cycle count,

";" || TO_CHAR(stake_cont.item) 11
";" |l TO_CHAR(stake cont.store) ||
";" |l TO_CHAR(stake cont.wh)

FROM stake head,

item _master,

Stock Count Stock on Hand Updates [stkvar] 139

stake_sku_ loc,

stake_cont,

V_restart_dept rv
WHERE stake cont.run_type = "A*
AND stake_cont.item = stake_sku_loc.item
AND stake_cont.store = stake sku loc.store
AND stake _cont.wh = stake sku loc.wh

AND stake cont.cycle_count =
stake_sku_loc.cycle_count

AND stake_head.cycle _count
stake cont.cycle count

AND item _master.item = stake_cont.item

AND item_master.item_level =
item_master.tran_level

AND rv.driver_value item_master.dept

AND rv.driver_name
sora_restart_driver_name

AND rv.num_threads =
ora_restart_num_threads

AND rv.thread_val =
sora_restart_thread val

AND (stake_cont.item >
NVL(:ora_restart_item,-999) OR

(stake_cont.item = :ora_restart_item AND

(stake_cont.store >
zora_restart_store OR

(stake_cont.store =
ora_restart_store AND

stake cont.wh >
tora_restart_wh)

)
)
)
ORDER BY stake_cont.item,

stake cont.store,

stake cont.wh;

140 Retek Merchandising System

Program Flow
N/A

Shared Modules
N/A

Function Level Description
N/A

I/O Specification
N/A

Technical Issues
N/A

Note: If a deadlock error occurs when stkvar runs in multiple threads, the
INITRANS parameter on the related tables and indexes need to be increased
depending on number of concurrent transactions as it could be due to ITL
(Interested Transaction List) shortage.

Store Add [storeadd] 141

Store Add [storeadd]

Design Overview

This program will add all information necessary for a new store to function
properly. When a store is added to the system, the store will be accessible in the
system only after storeadd.pc is run.

The batch program loops through each record on the store_add table.
Also, it supports the replenishment system in RMS

Scheduling Constraints

Processing Cycle: Daily, Ad Hoc Phase

Scheduling Diaram: N/A

Pre-Processing pcext.pc pcdnld.pc

Post-Processing: slocrbld.pc

Threading Scheme: Table based processing, don't use multithreading.
Restart/Recovery

Select ALL FIELDS from store_add.

After a record on store_add has been processed successfully, it is immediately
deleted. Thus, restart recovery is implicit in storeadd.pc.

Program Flow
N/A

Function Level Description_

init()
Declare restart variables
Get system variables (ELC indicator and pricing rule)
process()
Loop through store_add table
Set “new” variable indicators
Insert into store table
Call Insert_Pricing_Zone
Ifelc_ind =Y’

Call Insert_Cost_Zones

end if;

142 Retek Merchandising System

If repl_ind = *Y’
Call Copy_Repl_info
end if;

If copy_close_ind = *Y”

Call Copy_Close_Sched
End if;
If copy_dlvry_ind =Y’

Call Copy_Dlvry_Sched
End if;
Call Insert_Stock Loc_Traits
Delete from store_add
Insert_Pricing_Zone()

This function inserts records into pricing zone tables as is appropriate to the store
being created:

insert corporate pricing zone information
insert store pricing zone information
call Item_Zone_Price
if new_price_zone_ind = ‘N’
insert zone info for existing currency
else
insert new zone info
call Item_Zone_Price (to add appropriate record for the new zone)
Insert_Cost_Zones()

This function inserts records into cost zone table as is appropriate to the store
being created:

insert corporate cost zone information
insert store cost zone information
if new_cost_zone_ind = ‘N’
insert cost zone detail records
else
insert new zone
Item_Zone_Price()

This function inserts records into the item_zone_price table for a new pricing
zone after it’s been created.

Copy_Store_ltems()

Store Add [storeadd] 143

This function calls the like_store_execute_sgl.copy_store_items package
function, which copies all item/store records from the like_store and inserts them
for the new store.

Copy_Repl_Info()

This function copies all replenishment information for items from the selected
like_store and copies them into replenishment tables for the new store.

Copy_Close_Sched()

This function copies all the location closed information from the selected
like_store which the close_date are greater or equal to current and copies them
into location_closed and company_closed_excep tables for the new store.

Copy_Dlvry_Sched()

This function copies all the location delivery schedules from the selected
like_store and copies them into the loc_dlvry_sched, loc_dlvery sched_days, and
loc_dlvry_sched_exc tables for the new store.

Insert_Stock_Loc_Traits()

This function calls the stkledgr_sql.stock_ledger_insert and
loc_traits_sqgl.new_org_hier package functions, which insert records into the
stock ledger and hierarchy tables.

final ()

This function stops restart recovery.

I/O Specification
N/A

Technical Issues
N/A

	Contents
	New and Changed Upload from Supplier [ediupcat]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues

	ediupinv.pc
	Design Overview
	Scheduling Constraints
	Pre/Post Logic Description

	Restart Recovery
	Logical Unit of Work (recommended Commit check points)

	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues

	posdnld.pc
	Design Overview
	Program Flow
	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Function Level Description
	Scheduling Considerations
	Locking Strategy
	Restart/Recovery
	Performance Considerations
	Security Considerations
	Design Assumptions
	Outstanding Design Issues
	Appendix

	Reclsdly.pc
	Design Overview
	Function Level Description

	saexpach.pc
	Design Overview
	Background information – Quick Overview of the ACH process
	Data Security
	Scheduling Constraints
	Restart Recovery

	Program Flow
	Shared Modules

	Function Level Description
	ACH File Structure
	File Header Record
	Technical Issues
	Assumptions

	saexpuar.pc
	Design Overview
	Scheduling Constraints
	Restart Recovery

	Shared Modules
	Function Level Description
	I/O Specification

	saimpadj.pc
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Logical Unit of Work

	Program Flow
	Function Level Description
	I/O Specification
	Technical Issues

	Sales audit import [saimptlog]
	Function Level Description
	SAIMPTLOG and SAIMPTLOGI

	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Parameter validation
	Integrity Constraints
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery

	Performance
	Security Considerations
	Design Assumptions
	Appendix

	Sales audit pre-export [sapreexp]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules

	Stock Count Snapshots Update [stkupd]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues

	Stock Count Stock on Hand Updates [stkvar]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues

	Store Add [storeadd]
	Design Overview
	Scheduling Constraints
	Restart/Recovery
	Program Flow
	Function Level Description
	I/O Specification
	Technical Issues

