Retek® Merchandising System
11.0

Operations Guide — Volume 3

Batch Program Overview

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000

Fax:
+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Merchandising System

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
e Detailed step-by-step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents
Chapter 1 — INntroduCtioncouuiiiiiiiee e 1
Chapter 2 — Pro*C restart and reCOVeryccooeevvvviiieeeeeiiiiieeeeeennnn, 3
Table descriptions and definitioNScccevieiieieiieceee e 3
= e L o] 1 o] SR PRSSPSSRN 4
FEStArt_Program_SEALUScveviiiereresisietetee st tetee e ss ettt se st b et e e s s e s nsens 5
restart_Program_NISTOMYccviii it 6
FESTArT_DOOKMAIK.......ui ittt te e et teeaesteereenaesreenes 7
VA (=1 L D PRSP 8
Data MOUE] QISCUSSIONvveiieieeiiesieee ettt e e e et e e sae e e e reenteeneenneeneas 8
Why restart_program_status and restart_bookmark are separate tables..............ccccceuene.n. 8
o AT o= L= T USSR 8
Table and file-based reStart/rECOVEIY ..o 9
API fuNCtional deSCIIPLIONS........ccveieeieieee et nre e 12
=1 7= L A L PO SRS RROPRRPRRRN 12
restart_ file NIt ..o e 12
L=TS] v L A 1) 0 RSSO 13
restart_file _COMMIL: ..o e 13
(=] 1 o] - ST 13
PAISE _AITAY AITS: teeeereeirrerersrresstreassueesteeasseeesseresnseeessseeaseeasssnessesessseessessnsesessesessseesssnes 14
FESTAIT FIlE WITTE: Loeiiieiee et 14
FESEANT CAL: .oeeeei et e e e e e arre e 14
Restart headers and lDraries..........voivi i 14
Updated restart headers and HDrariescccvovveveeiieeiie e 15
New restart/recovery FUNCLIONScccvoeii i e 17
Query-based commit threSholdsccoeiiiiiiieiiic e 19
Chapter 3 — Pro*C multi-threading.........cccccoeeiiiiiiiiiii e 21
Threading AeSCIIPLIONcc.viie et e e nas 21
Threading function for QUEry-based............ccceiriiiii i 22
Restart View for qUEry-Dasedcooveiii i 22
Thread SCheme MaINTENANCEcccve i 24
T Lo 0T 7T USROS 24
QUENY-DASEA ... 25
BatCh MaINTENANCEcviiie et reenre e 25
Scheduling and initialization of restart Datch............ccooiiiiiic 25
Pre- and POSt-PrOCESSINGcveiieiieeieiiesteerteeeeste e e e s e e st e e reesre e e e sreesteseesreenreaneens 26

Retek Merchandising System

Chapter 4 — Pro*C array proCesSiNg ...ccooeevveeviiiiieeeeiiiineeeeeeiineeee 27
Chapter 5 — Pro*C input and output formatsceevvvvnneenee, 29
General INterface diSCUSSIONcouieiiiieiieie e 29
Standard File JTAYOULS.........oiee et 29
Detail ONY TIIES ... s 29
Master and detail FIlEScoo i e 30
Electronic data interchange (EDI)ccvoieiieiiciccicceee e 32
Chapter 6 — RETL architecture for RMS-RDF...........cccocvviiiieeene, 33
ATCITECTUNAL TESIGN ...t 33
Chapter 7 — RETL program overview for the RMS-RDF interface
... 35
INSTAHTALION. ... ettt b bbb e e 35
CONTIGUIALTION ...t b bbbt 36
Y= 1 ST RTUPTOPUPRPRRURN 36
RETL USEr and PEIMISSIONSeccueeieeieeiieiiesieeieesteesseesteesseesssesaeesseesseessesssessssesssesnees 36
ENVIrONmMENt VariabIeS.........cviiiiiiiiieeeee e 36
FMSE_CONTIQ.ENV SELLINGSveveiieieieiete sttt 36
Program FetUIN COOR.........eiieiieeieiieie ettt e e e sre e e e e sneeaeeneennees 37
Program status CONErol FIlEScooiiiiiiiei e 37
File NamMing CONVENTIONSccueiiiiiiiiee ittt st s 37
RESLAI ANG FECOVEIYvieiceiecie ettt ettt re et e b e sbeeraesbesre e e e 38
2070 4T Ty NG] =SSR 38
Y oo Vo e (oo o [SO SPR 39
Daily 10G Tl s 39
0] 0 T L TP U PP T PP PPPPUPR PRSPPI 39
Program error file ..o 40
RMSE I€JECE TIIES ... 40
SCREMA TS .t bbb 41
Command 1iNE PArAMETETScciiieieieieie e 41
RIMISE .ttt b e b e e e bt e s he e a bt be e nbe e nhe e she e nabe et e 41
Typical run and debugging SItUALIONSc.ccveiieieiieceere e 42

Chapter 1 — Introduction

Chapter 1 — Introduction

This document is divided into two sections.

The first section reflects features of Pro*C-based batch processing within RMS and describes the
following:

Restart and recovery
Multi-threading
Commit thresholds
Array processing

Input and output formats to external applications and entities

The second section reflects features of RETL batch processing and describes the following:

Architecture

Installation

Configuration

Program return code
Program status control files
Message logging

Reject files

Schema files

Command line parameters

Typical run and debugging situations

Chapter 2 — Pro*C restart and recovery

Chapter 2 — Pro*C restart and recovery

RMS has implemented a restart recovery process in most of its batch architecture. The general
purpose of restart/recovery is to:

o Recover a halted process from the point of failure
e Prevent system halts due to large numbers of transactions
o Allow multiple instances of a given process to be active at the same time

Further, the RMS restart/recovery tracks batch execution statistics and does not require DBA
authority to execute.

The restart capabilities revolve around a program’s logical unit of work (LUW). A batch program
processes transactions, and commit points are enabled based on the LUW. LUWSs consist of a
relatively unique transaction key (such as sku/store) and a maximum commit counter. Commit
events take place after the number of processed transaction keys meets or exceeds the maximum
commit counter. For example, every 10,000 sku/store combinations, a commit occurs. At the time
of the commit, key data information that is necessary for restart is stored in the restart tables. In
the event of a handled or un-handled exception, transactions will be rolled back to the last commit
point, and upon restart the key information will be retrieved from the tables so that processing can
continue from the last commit point.

Table descriptions and definitions

The RMS restart/recovery process is driven by a set of four tables. Refer to Diagram 1 for the
entity relationship diagram, followed by table descriptions.

restart control
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ ctr

restart program history
restart_name
thread_val

start_time
program_name
num_threads
commit_max_ctr
restart_time
finish _tim
R Bf
success_flag *

non_fatal_err_flag *
num_commits *

avg_time_btwn_commits *

restart program status
(PK) restart_name
(PK) thread_ val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

current_oracle_sid *
current_shadow_pid *

restart bookmark

restart_name

thread_val

bookmark_string

application_image
out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

L) Note: The fields with asterisks (*) are only used by new batch programs of release 9.0 or

later.

Retek Merchandising System

restart_control

The restart_control table is the master table in the restart/recovery table set. One record exists on
this table for each batch program that is run with restart/recovery logic in place. The
restart/recovery process uses this table to determine:

o whether the restart/recovery is table-based or file-based,
o the total number of threads used for each batch program,
o the maximum records that will be processed before a commit event takes place,

o and the driver for the threading (multi-processing) logic.

restart_control

(PK) varchar2 | 25 | batch program name

program_name

program_desc varchar2 | 50 | a brief description of the program function

driver_name varchar2 | 25 | driver on query, for example, department (non-updatable)
num_threads num 10 | number of threads used for current process

update_allowed | varchar2 | 2 | indicates whether user can update thread numbers or if done
programmatically

process_flag varchar2 | 1 | indicates whether process is table-based (T) or file-based (F)

commit_max_ctr | num 6 | numeric maximum value for counter before commit occurs

Chapter 2 — Pro*C restart and recovery

restart_program_status

The restart_program_status table is the table that holds record keeping information about current
program processes. The number of rows for a program on the status table will be equal to its
num_threads value on the restart_control table. The status table is modified during
restart/recovery initialization and close logic. For table-based processing, the restart/recovery
initialization logic will assign the next available thread to a program based on the program status
and restart flag. For file-based processing, the thread value is passed in from the input file name.
Once a thread has been assigned the program_status is updated to prevent the assignment of that
thread to another process. Information will be logged on the current status of a given thread, as
well as record keeping information such as operator and process timing information.

L1 Setup note: Allow row level locking and “dirty reads’ (do not wait for rows to be
unlocked for table read).

restart_program_status

(PK)restart_name varchar2 | 50 | Program name

(PK)thread_val num 10 | thread counter

start_time date dd-mon-yy hh:mi:ss

program_name varchar2 | 25 | program name

program_status varchar2 | 25 | started, aborted, aborted in init, aborted in process,
aborted in final, completed, ready for start

restart_flag varchar2 | 1 automatically set to ‘N’ after abnormal end, must be
manually set to *Y’ for program to restart

restart_time date dd-mon-yy hh:mi:ss

finish_time date dd-mon-yy hh:mi:ss

current_pid num 15 | starting program id

current_operator_id | varchar2 | 20 | operator that started the program

err_message varchar2 | 255 | record that caused program abort & associated error
message

current_oracle_sid | num 15 | Oracle SID for the session associated with the current
process

current_shadow_pid | num 15 | O/S process ID for the shadow process associated with

the current process. It is used to locate the session trace
file when a process is not finished successfully.

Retek Merchandising System

restart_program_history

The restart_program_history table will contain one record for every successfully completed
program thread with restart/recovery logic. Upon the successful completion of a program thread,
its record on the restart_program_status table will be inserted into the history table. Table
purgings will be at user discretion.

restart_program_history

(PK) restart_name varchar2 | 50

(PK) thread_val Num 10

(PK) start_time Date

program_name varchar2 | 25

num_threads Num 10

commit_max_ctr num 6

restart_time date

finish_time date

shadow_pid num 15 | O/S process ID for the shadow process associated
with the process. It is used to locate the session trace
file.

success_flag varchar2 | 1 Indicates whether the process finished successfully
(reserved for future use)

non_fatal_err_flag varchar2 | 1 Indicates whether non-fatal errors have occurred for
the process

num_commits num 12 | Total number of commits for the process. The
possible last commit when restart/recovery is closed
is not counted.

avg_time_btwn_commits | num 12 | Accumulated average time between commits for the

process. The possible last commit when
restart/recovery is closed is not counted.

Chapter 2 — Pro*C restart and recovery

restart_bookmark

When a restart/recovery program thread is currently active, its state is started or aborted, and a
record for it exists on the restart_bookmark table. Restart/recovery initialization logic inserts the
record into the table for a program thread. The restart/recovery commit process updates the record
with the following restart information:

e aconcatenated string of key values for table processing
o afile pointer value for file processing
e application context information such as counters and accumulators

The restart/recovery closing process will delete the program thread record if the program finishes
successfully. In the event of a restart, the program thread information on this table will allow the
process to begin from the last commit point.

restart_bookmark

restart_name varchar2 | 50

thread_val num 10

bookmark_string varchar2 | 255 | character string of key of last committed record

application_image varchar2 | 1000 | application parameters from the last save point

out_file string varchar2 | 255 | Concatenated file pointers (Unix sometimes refers
to these as stream positions) of all the output files
from the last commit point of the current process.
It is used to return to the right restart point for all
the output files during restart process.

non_fatal_err_flag varchar2 | 1 Indicates whether non-fatal errors have occurred
for the current process.

num_commits num 12 number of commits for the current process. The
possible last commit when restart/recovery is
closed is not counted.

avg_time_btwn_commits | num 12 average time between commits for the current
process. The possible last commit when
restart/recovery is closed is not counted.

Retek Merchandising System

V_restart_x

Restart views will be used for query-based programs that require multi-threading. Separate views
will be created for each threading driver, for example, department or store. A join will be made to
a view based on threading driver to force the separation of discrete data into particular threads.
Please see the threading discussion for more details.

v_restart_x
driver_name varchar2 - example dept, store, region, etc.
num_threads number total number of threads in set (defined on restart control)
driver_value number - will be the numeric value of the driver_name
thread_val number thread value defined for driver_value and num_threads
combination

Data model discussion

Why restart_program_status and restart_bookmark are separate tables

The initialization process needs to fetch all of the rows associated with restart_name/schema, but
will only update one row. The commit process will continually lock a row with a specific
restart_name and thread_val. The data involved with these two processes is separated into two
tables to reduce the number of hangs that could occur due to locked rows. Even if you allow
‘dirty reads’ on locked rows, a process will still hang if it attempts to do an update on a locked
row. The commit process is only interested in a unique row, so if we move the commit process
data to a separate table with row level (not page level) locking, there will not be contention issues
during the commit. With the separate tables, the initialization process will now see fewer
problems with contention because rows will only be locked twice, at the beginning and end of the
process.

Physical set-up

The restart/recovery process needs to be as robust as possible in the event of database related
failure. The costs outweigh the benefits of placing the restart/recovery tables in a separate
database. The tables should, however, be set up in a separate, mirrored table space with a separate
rollback segment.

Chapter 2 — Pro*C restart and recovery

Table and file-based restart/recovery

The restart/recovery process works by storing all the data necessary to resume processing from
the last commit point. Therefore, the necessary information will be updated on the
restart_bookmark table before the processed data is committed. Query-based and file-based
modules will store different information on the restart tables, and will therefore call different
functions within the restart/recovery API to perform their tasks.

When a program’s process is query-based, that is, a module is driven by a driving query that
processes the retrieved rows, then the information that is stored on the restart_bookmark table is
related to the data retrieved in the driving query. If the program fails while processing, the
information that is stored on the restart-tables can be used in the conditional where-clause of the
driving query to only retrieve data that has yet to be processed since the last commit event.

File-based processing, however, simply needs to store the file location at the time of the last
commit point. This file’s byte location is stored on the restart_bookmark table and will be
retrieved at the time of a restart. This location information will be used to seek forward in the re-
opened file to the point at which the data was last committed.

Because there is different information being saved to and retrieved from the restart_bookmark
table for each of the different types of processing, different functions will need to be called to
perform the restart/recovery logic. The query-based processing will call the restart_init or
retek_init and restart_commit or retek_commit functions while the file-based processing will call
the restart_file_init and restart_file_commit functions.

In addition to the differences in API function calls, the batch processing flow of the
restart/recovery will differ between the files. Table-based restart/recovery will need to use a
priming fetch logical flow, while the file-based processing will usually read lines in a batch.
Table-based processing requires its structure to ensure that the LUW key has changed before a
commit event can be allowed to occur, while the file-based processing does not need to evaluate
the LUW, which can typically be thought of as the type of transaction being processed by the
input file.

Retek Merchandising System

The following diagram depicts table-based Restart/Recovery program flow:

Initialization Logic
(call restart_init)
I

Process Function
I
Priming fetch
I

Process

I
Fetch

Commit

I
Close Logic

The following diagram depicts file-based Restart/Recovery program flow

Initialization Logic
(call restart_init)

[
File Open & Seek

Outer Loop
feed multiple records into buffer

Inner Loop
process individual records

[
Process
[

End Inner Loop
[
Commit
[

End Outer Loop
[

Close Logic

10

Chapter 2 — Pro*C restart and recovery

Initialization logic:

e Variable declarations

o File initialization

e Call restart_init() function - will determine start or restart logic
o First fetch on driving query

Start logic: initialize counters/accumulators to start values

Restart logic:

o Parse application_image field on bookmark table into counters/accumulators
o Initialize counters/accumulators to values of parsed fields
Process/commit loop:

e Process updates and manipulations

e Fetch new record

e Create varchar from counters/accumulators to pass into application_image field on
restart_bookmark table

e Call restart_commit()
Close logic:

e Reset pointers

o Close files/cursors

o Call restart_close()

11

Retek Merchandising System

API functional descriptions

restart_init:

An initialization function for table-based batch processing.

The process gathers information from the restart control tables

Total number of threads for a program and thread value assigned to current process.
Number of records to loop through in driving cursor before commit (LUW).

Start string - bookmark of last commit to be used for restart or a null string if current process
is an initial start and initializes the restart record-keeping (restart_program_status).

Program status is changed to ‘started” for the first available thread.

Operational information is updated: operator, process, start_time, etc. and bookmarking
(restart_bookmark) tables.

On an initial start, a record is inserted.

On restart, the start string and application context information from the last commit is
retrieved.

restart_file_init:

An initialization function for file-based batch processing. It is called from program modules.

1

12

The process gathers information from the restart control tables:

= number of records to read from file for array processing and for commit cycle

= file start point- bookmark of last commit to be used for restart or O for initial start
The process initializes the restart record-keeping (restart_program_status):

= program status is changed to ‘started’ for the current thread

= operational information is updated: operator, process, start_time, etc.

The process initializes the restart bookmarking (restart_bookmark) tables:

= onan initial start, a record is inserted

= on restart, the file starting point information and application context information from the
last commit is retrieved

Chapter 2 — Pro*C restart and recovery

restart_commit:

A function that commits the processed transaction for a given number of driving query fetches. It
is called from program modules.

The process updates the restart_bookmark start string and application image information if a
commit event has taken place:

o the current number of driving query fetches is greater than or equal to the maximum set in the
restart_program_status table (and fetched in the restart_init function)

o the bookmark string of the last processed record is greater than or equal to the maximum set
in the restart_program_status table (and fetched in the restart_init function)

o the bookmark string increments the counter

o the bookmark string sets the current string to be the most recently fetched key string

restart_file_commit:

A function that commits processed transactions after reading a number of lines from a flat file. It
is called from program modules.

The process updates the restart_bookmark table:
e start_string is set to the file pointer location in the current read of the flat file

e application image is updated with context information

restart_close:
A function that updates the restart tables after program completion.

The process determines whether the program was successful. If the program finished
successfully:

o the restart_program_status table is updated with finish information and the status is reset
o the corresponding record in the restart_bookmark table is deleted

o the restart_program_history table has a copy of the restart_program_status table record
inserted into it

o the restart_program_status is re-initialized
If the program ends with errors
o the transactions are rolled back

e the program_status column on the restart_program_status table is set to ‘aborted in *” where
* is one of the three main functions in batch: init, process or final

e the changes are committed

13

Retek Merchandising System

parse_array_args:

This function parses a string into components and places results into multidimensional array. It is
only called within API functions and will never be called in program modules.

The process is passed a string to parse and a pointer to an array of characters.
The first character of the passed string is the delimiter.

restart_file_write:

This function will append output in temporary files to final output files when a commit point is
reached. It is called from program modules.

restart_cat:

This function contains the logic that appends one file to another. It is only called within the
restart/recovery API functions and will never be called directly in program modules.

Restart headers and libraries

The restart.h and the std_err.h header files are included in retek.h to utilize the restart/recovery
functionality.

restart.h

This library header file contains constant, macro substitutions, and external global variable
definitions as well as restart/recovery function prototypes.

The global variables that are defined include:
o the thread number assigned to the current process
o the value of the current process’s thread maximum counter

= for table-based processing, it is equal to the number of iterations of the driving query
before a commit can take place

= for file-based processing, it is equal to the number of lines that will be read from a flat
file and processed using a structured array before a commit can take place

¢ the current count of driving query iterations used for table-based processing or the current
array index used in file-based processing

o the name assigned to the program/logical unit of work by the programmer. It is the same as
the restart_name column on the restart_program_status, restart_program_history, and
restart_bookmark tables

14

Chapter 2 — Pro*C restart and recovery

std_rest.h

This library header file contains standard restart variable declarations that are used visible in
program modules.

The variable definitions that are included are:

the concatenated string value of the fetched driving query key that is currently being
processed

the concatenated string value of the fetched driving query key that is next to be processed

the error message passed to the restart_close function and updated to restart_program_status
concatenated string of application context information, for example, counters & accumulators
the name of the threading driver, for example, department, store, warehouse, etc.

the total number of threads used by this program

the pointer to pass to initialization function to retail number of threads value

Updated restart headers and libraries

The current RMS restart/recovery library has been updated in RMS versions 9, 10, and 11 to
enhance maintainability, enable easier coding and improve performance. While the current
mechanism and functionality of batch restart/recovery are preserved, the following improvements
and enhancements have been done:

Organize global variables associated with restart recovery

Allow the batch developer full control of restart recovery variables parameter passing during
initialization

Remove temporary write files to speed up the commit process

Move more information and processing from the batch code into the library code

Add more information into the restart recovery tables for tuning purposes

15

Retek Merchandising System

retek_2.h

This library header file is included by all C code within Retek and serves to centralize system
includes, macro defines, globals, function prototypes, and, especially, structs for use in the new
restart/recovery library.

The globals used by the old restart/recovery library are all discarded. Instead, each batch program
declares variables needed and calls retek_init() to get them populated from restart/recovery tables.
Therefore, only the following variables are declared:

e gi_no_commit; flag for NO_COMMIT command line option (used for tuning purposes)
e gi_error_flag: fatal error flag
e gi_non_fatal _err_flag: non-fatal error flag

In addition, a rtk_file struct is defined to handle all file interfaces associated with restart/recovery.
Operation functions on the file struct are also defined.

#define NOT_PAD 1000 /* Flag not to pad thread val */
#define PAD 1001 /* Flag to pad thread_val at the
end */

#define TEMPLATE 1002 /* Flag to pad thread_val using

filename template */
#define MAX_FILENAME_LEN 50
typedef struct

{

FILE* fp; /* File pointer */

char Filename[MAX _FILENAME LEN + 1]; /* Filename */

int pad_flag; /* Flag whether to pad thread val to filename
*/
} rtk_file;

int set filename(rtk file* file_struct, char* file_name, int
pad_flag);

FILE* get FILE(rtk_file* file_struct);
int rtk_print(rtk_file* file_struct, char* format, ...);
int rtk_seek(rtk_file* file_struct, long offset, int whence);

The parameters retek_init() needs to populate are required to be passed in using a format known
to retek_init(). A struct is defined here for this purpose. An array of parameters of this struct type
is needed at each batch program. Other requirements are:

16

Chapter 2 — Pro*C restart and recovery

Need to be initialized at each batch program.

The lengths of name, type and sub_type should not exceed the definitions here.

Type can only be: "int", “uint”, "long", "string", or "'rtk_file".

For type "int",

uint” or "long", use """ as sub_type.

For type "string", sub_type can only be "S" (start string) unless the string is the thread value
or number of threads, in which case use “” as sub_type or "I" (image string).

For type "rtk_file", sub_type can only be "I" (input) or "O" (output).
#define NULL_PARA NAME 51
#define NULL_PARA TYPE 21
#define NULL_PARA SUB_TYPE 2
typedef struct
{
char name[NULL_PARA_NAME];
char type[NULL_PARA_TYPE];
char sub_type[NULL_PARA_SUB_TYPE];

} init_parameter;

New restart/recovery functions

Starting from release 9.0, all new batch programs are coded using the new restart/recovery
functions. Batch programs using the old restart/recovery API functions are still in use. Therefore,
Retek is currently maintaining two sets of restart/recovery libraries.

int retek_init(int num_args, init_parameter *parameter, ...)

retek_init initializes restart/recovery (for both table- and file-based):

1

g B~ W DN

Pass in num_args as the number of elements in the init_parameter array, then the
init_parameter array, then variables a batch program needs to initialize in the order and types
defined in the init_parameter array. Note that all int, uint and long variables need to be passes
by reference.

Get all global and module level values from databases.
Initialize records for RESTART_PROGRAM_STATUS and RESTART_BOOKMARK.
Parse out user-specified initialization variables (variable arg list).

Return NO_THREAD_AVAILABLE if no qualified record in RESTART_CONTROL or
RESTART_PROGRAM_STATUS.

Commit work.

17

Retek Merchandising System

int retek_commit(int num_args, ...)

retek_commit checks and commits if needed (for both table- and file-based):

1

5

Pass in num_args, then variables for start_string first, and those for image string (if needed)
second. The num_args is the total number of these two groups. All are string variables and
are passed in the same order as in retek_init();

Concatenate start_string either from passed in variables (table-based) or from ftell of input
file pointers (file-based);

Check if commit point reached (counter check and, if table-based, start string comparison);

If reached, concatenated image_string from passed in variables (if needed) and call
internal_commit() to get out_file_string and update RESTART_BOOKMARK;

If table-based, increment pl_current_count and update ps_cur_string.

int commit_point_reached(int num_args, ...)

commit_point_reached checks if the commit point has been reached (for both table- and file-
based). The difference between this function and the check in retek_commit() is that here the
pl_current_count and ps_cur_string are not updated. This checking function is designed to be
used with retek_force_commit(), and the logic to ensure integrity of LUW exists in user batch
program. It can also be used together with retek_commit() for extra processing at the time of
commit.

1

3

Pass in num_args, then all string variables for start_string in the same order as in retek_init().
The num_args is the number of variables for start_string. If no start_string (as in file-based),
pass in NULL.

For table-based, if pl_curren_count reaches pl_max_counter and if newly concatenated
bookmark string is different from ps_cur_string, return 1; otherwise return 0.

For file-based, if pl_curren_count reaches pl_max_counter return 1; otherwise return 0.

int retek_force_commit(int num_args, ...)

retek_force_commit always commits (for both table- and file-based):

1

18

Pass in num_args, then variables for start_string first, and those for image string (if needed)
second. The num_args is the total number of these two groups. All are string variables and
are passed in the same order as in retek_init().

Concatenate start_string either from passed in variables (table-based) or from ftell of input
file pointers (file-based).

Concatenated image_string from passed in variables (if needed) and call internal_commit() to
get out_file_string and update RESTART_BOOKMARK.

If table-based, increment pl_current_count and update ps_cur_string.

Chapter 2 — Pro*C restart and recovery

int retek_close(void)
retek_close closes restart/recovery (for both table- and file-based):

1 Ifgi_error_flag or NO_COMMIT command line option is TRUE, rollback all database
changes.

2 Update RESTART_PROGRAM_STATUS according to gi_error_flag.

3 Ifnogi_error_flag, insert record into RESTART_PROGRAM_HISTORY with information
fetched from RESTART_CONTROL, RESTART_PROGRAM_BOOKMARK and
RESTART_PROGRAM_STATUS tables.

4 Ifnogi_error_flag, delete RESTART_BOOKMARK record.
5 Commit work.

6 Close all opened file streams.

Int retek_refresh_thread(void)
Refreshes a program’s thread so that it can be run again.

1 Updates the RESTART _PROGRAM_STATUS record for the current program’s
PROGRAM_STATUS to be ‘ready for start’.

2 Deletes any RESTART _BOOKMARK records for the current program.

3 Commits work.

void increment_current_count(void)
increment_current_count increases pl_current_count by 1.

L) Note: This is called from get_record() of intrface.pc for file-based 1/0.

int parse_name_for_thread_val(char* name)

parse_name_for_thread_val parses thread value from the extension of the specified file name.

intis_new_start(void)

is_new_start checks if current run is a new start; if yes, return 1; otherwise 0.

Query-based commit thresholds

The restart capabilities revolve around a program’s logical unit of work (LUW). A batch program
processes transactions and enables commit points based on the LUW. An LUW is comprised of a
transaction key (such as item-store) and a maximum commit counter. Commit events occur after
a given number of transaction keys are processed. At the time of the commit, key data
information that is necessary for restart is stored in the restart table. In the event of a handled or
un-handled exception, transactions will be rolled back to the last commit point. Upon restart the
restart key information will be retrieved from the tables so that processing can resume with the
unprocessed data.

19

Chapter 3 — Pro*C multi-threading

Chapter 3 — Pro*C multi-threading

Processing multiple instances of a given program can be accomplished through “threading”. This
requires driving cursors to be separated into discrete segments of data to be processed by different
threads. This will be accomplished through stored procedures that will separate threading
mechanisms (for example, departments or stores) into particular threads given value (for example,
department 1001) and the total number of threads for a given process.

File-based processing will not truly “thread” its processing. The same data file will never be acted
upon by multiple processes. Multi-threading will be accomplished by dividing the data into
separate files each of which will be acted upon by a separate process. The thread value is related
to the input file. This is necessary to ensure that the appropriate information can be tied back to
the relevant file in the event of a restart.

RMS has a store length of ten digits. Therefore, thread values, which can be based upon the store
number, should allow ten digits as well. Due to the thread values being declared as ‘C’ variables
of type int (long), the system is restricting thread values to nine digits.

This does not mean that you cannot use ten digit store numbers. It means that if you do use ten
digit store numbers you cannot use them as thread values.

Threading description

The use of multiple threads or processes in Retek batch processing will increase efficiency and
decrease processing time. The design of the threading process has allowed maximum flexibility to
the end user in defining the number of processes over which a program should be divided.

Originally, the threading function was going to be used directly in the driving queries. This was
found, however, to be unacceptably slow. Instead of using the function call directly in the driving
queries, the designs call for joining driving query tables to a view (for example, v_restart_store)
that includes the function.

21

Retek Merchandising System

Threading function for query-based

A stored procedure has been created to determine thread values. Restart_thread_return returns a
thread value derived from a numeric driver value, such as department number, and the total
number of threads in a given process. Retailers should be able to determine the best algorithm for
their design, and if a different means of segmenting data is required, then either the
restart_thread_return function can be altered, or a different function can be used in any of the
views in which the function is contained.

Currently the restart_thread_return function is a very simple modulus routine:

CREATE OR REPLACE FUNCTION RESTART_THREAD_RETURN(in_unit_value
NUMBER,

in_total_threads NUMBER)
RETURN NUMBER IS
ret_val NUMBER;

BEGIN
ret val := MOD(ABS(in_unit _value),in_total threads) + 1;
RETURN ret val;

END;

Restart view for query-based

Each restart view will have four elements:

¢ the name of the threading mechanism, driver_name

o the total number of threads in a grouping, num_threads
o the value of the driving mechanism, driver_value

o the thread value for that given combination of driver_name, num_threads, and driver value,
thread_val

The view will be based on the restart_control table and an information table such as DEPS or
STORES. A row will exist in the view for every driver value and every total number of threads
value. Therefore, if a retailer were to always use the same number of threads for a given driver
(dept, store, etc.), then the view would be relatively small. As an example, if all of a retailer’s
programs threaded by department have a total of 5 threads, then the view will contain only one
value for each department. For example, if there are 10 total departments, 10 rows will exist in
v_restart_dept. However, if the retailer wants to have one of the programs to have ten threads,
then there will bet 2 rows for every department: one for five total threads and one for ten total
threads (for example, if 10 total departments, 20 rows will exist in v_restart_dept). Obviously,
retailers should be advised to to keep the number of total thread values for a thread driver to a
minimum to reduce the scope of the table join of the driving cursor with the view.

Below is an example of how the same driver value can result in differing thread values. This
example uses the restart_thread_return function as it currently is written to derive thread values.

22

Chapter 3 — Pro*C multi-threading

Driver_name num_threads driver_val thread_val
DEPT 1 101 1

DEPT 2 101 2

DEPT 3 101 3

DEPT 4 101 2

DEPT 5 101 2

DEPT 6 101 6

DEPT 7 101 4

Below is an example of what a distribution of stores might look like given 10 stores and 5 total
threads:

Driver_name num_threads driver_val thread_val
STORE 5 1 2

STORE 5 2 3

STORE 5 3 4

STORE 5 4 5

STORE 5 5 1

STORE 5 6 2

STORE 5 7 3

STORE 5 8 4

STORE 5 9 5

STORE 5 10 1

View syntax:

The following is an example of the syntax needed to create the view for the multi-threading join,

created with script (see threading discussion for details on restart_thread_return function):

create or replace view v_restart_store as

select rc.driver_name driver_name,

rc.num_threads num_threads,

s.store driver_value,

restart_thread return(s.store, rc.num_threads) thread val

from restart_control rc, store s

where rc.driver_name = "STORE*®

23

Retek Merchandising System

There is a different threading scheme used within Retek Sales Audit (ReSA). Because ReSA
needs to run 24 hours a day and seven days a week, there is no batch window. This means that
there may be batch programs running at the same time that there are online users. ReSA solved
this concurrency problem by creating a locking mechanism for data that is organized by store
days. These locks provide a natural threading scheme. Programs that cycle through all of the store
day data attempt to lock the store day first. If the lock fails, the program simply goes on to the
next store day. This has the affect of automatically balancing the workload between all of the
programs executing.

Thread scheme maintenance

All program names will be stored on the restart_control table along with a functional description,
the query driver (dept, store, class, etc.) and the user-defined number of threads associated with
them. Users should be able to scroll through all programs to view the name, description, and
query driver, and if the update_allowed flag is set to true, to modify the number of threads
(update is set to true).

File-based

File based processing does not truly “multi-thread” and therefore the number of threads defined
on restart_control will always be one. However, a restart_program_status record will need to be
created for each input file that is to be processed for the program module. Further, the thread
value that is assigned should be part of the input file name. The restart_parse_name function that
is included in the program module will parse the thread value from the program name and use
that to determine the availability and restart requirements on the restart_program_status table.

Refer to the beginning of this multi-threading section for a discussion of limits on using large
(greater than nine digits) thread values.

24

Chapter 3 — Pro*C multi-threading

Query-based

When the number of threads is modified in the restart_control table, the form should first validate
that no records for that program are currently being processed in the restart_program_status_table
(that is, all records = “‘Completed”). The program should insert or delete rows depending on
whether the new thread number is greater than or less than the old thread number. In the event
that the new number is less than the previous number, all records for that program_name with a
thread number greater than the new thread number will be deleted. If the new number is greater
than the old number, new rows will be inserted. A new record will be inserted for each
restart_name/thread_val combination.

For example if the batch program SALDLY has its number of processes changed from 2 to 3,
then an additional row (3) will be added to the restart_program_status table. Likewise, if the
number of threads was reduced to 1 in this example, rows 2 and 3 would be deleted.

Original restart_program_status table:
row# restart name thread val program_name etc...
1 WinSal -main 1 WinSal
2 WinSal -main 2 WinSal

restart_program_status table after insert:

row # restart name thread val program name etc...

1 WinSal -main 1 WinSal
2 WinSal -main 2 WinSal
3 WinSal -main 3 WinSal

restart_program_status table after delete:
row # restart name thread val program name etc...
1 WinSal -main 1 WinSal

Users should also be able to modify the commit_max_ctr column in restart_program_status table.
This will control the number of iterations in driving query or the number of lines read from a flat
file that determine the logical unit of work (LUW).

Batch maintenance

Users should be able to view the status of all records in restart_program_status table. This is
where the user will come to view error messages from aborted programs, and statistics and
histories of batch runs. The only fields that will be modifiable will be program_status and
restart_flag. The user should be able to reset the restart_flag to Y’ from ‘N’ on records with a
status of aborted, started records to aborted in the event of an abend (abnormal termination), and
all records in the event of a restore from tape/re-run of all batch.

Scheduling and initialization of restart batch

Before any batch with restart/recovery logic is run, an initialization program should be run to
update the status in the restart_program_status table. This program should update the
program_status to ‘ready for start’ wherever a record’s program_status is ‘completed’. This will
leave unchanged all programs that ended unsuccessfully in the last batch run.

25

Retek Merchandising System

Pre- and post-processing

Due to the nature of the threading algorithm, individual programs might need a pre or a post
program run to initialize variables or files before any of the threads have run or to update final
data once all the threads are run. The decision was made to create pre-programs and post-
programs in these cases rather than let the restart/recovery logic decide whether the currently
processed thread is the first thread to start or the last thread to end for a given program.

26

Chapter 4 — Pro*C array processing

Chapter 4 — Pro*C array processing

Retek batch architecture uses array processing to improve performance wherever possible.
Instead of processing SQL statements using scalar data, data is grouped into arrays and used as
bind variables in SQL statements. This improves performance by reducing the server/client and
network traffic.

Array processing is used for select, insert, delete, and update statements. Retek typically does not
statically define the array sizes, but uses the restart maximum commit variable as a sizing
multiple. Users should keep this in mind when defining the system's maximum commit counters.

An important factor to keep in mind when using array processing is that Oracle does not allow a
single array operation to be performed for more than 32000 records in one step. The Retek
restart/recovery libraries have been updated to define macros for this value:
MAX_ORACLE_ARRAY_SIZE.

All batch programs that use array processing need to limit the size of their array operations to
MAX_ORACLE_ARRAY_SIZE.

If the commit max counter is used for array processing size, check it after the call to restart_init()
and, if necessary, reset it to the maximum value if greater. If retek_init() is used to initialize,
check the returned commit max counter and reset it to the maximum size if it is greater. In case of
retek_init(), reset the library’s internal commit max counter by calling extern int
limit_commit_max_ctr(unsigned int new_max_ctr).

If some other variable is used for sizing the array processing, the actual array-processing step will
have to be encapsulated in a calling loop that performs the array operation in sub segments of the
total array size where each sub-segment is at most MAX_ORACLE_ARRAY _SIZE large.
Currently all Retek batch programs are implemented this way.

27

Chapter 5 — Pro*C input and output formats

Chapter 5 — Pro*C input and output
formats

Retek batch processing will utilize input from both tables and flat files. Further, the outcome of
processing can both modify data structures and write output data. Interfacing Retek with external
systems is the main use of file based 1/0.

General interface discussion

To simplify the interface requirements, Retek requires that all in-bound and out-bound file-based
transactions adhere to standard file layouts. There are two types of file layouts, detail-only and
master-detail, which are described below.

An interfacing API exists within Retek to simplify the coding and the maintenance of input files.
The API provides functionality to read input from files, ensure file layout integrity, and write and
maintain files for rejected transactions.

Standard file layouts

The RMS interface library supports two standard file layouts; one for master/detail processing,
and one for processing detail records only. True sub-details are not supported within the RMS
base package interface library functions.

A 5-character identification code or record type identifies all records within an 1/O file, regardless
of file type. Valid record type values include the following:

e FHEAD—File Header
FDETL—File Detail

o FTAIL—File Tail

e THEAD—Transaction Header
e TDETL—Transaction Detail
e TTAIL—Transaction Tail

Each line of the file must begin with the record type code followed by a 10-character record ID.

Detail only files

File layouts have a standard file header record, a detail record for each transaction to be
processed, and a file trailer record. Valid record types are FHEAD, FDETL, and FTAIL.

Example:
FHEADOOOOOOOO00STKU1996010100000019960929
FDETLOOO0O000001SKU100000040000011011
FDETLOOO0O000001SKU100000050003002001
FDETLOO0O0000001SKU100000050003002001
FTAI1LOO000000020000000003

29

Retek Merchandising System

Master and detail files

File layouts will have a standard file header record, a set of records for each transaction to be
processed, and a file trailer record. The transaction set will consist of a transaction set header
record, a transaction set detail for detail within the transaction, and a transaction trailer record.
Valid record types are FHEAD, THEAD, TDETL, TTAIL, and FTAIL.

Example:

FHEADOOOOOOOOO1RTV 19960908172000
THEADOOOOO0000200000000001234199609091202000000000003R
TDETLOO0O000000300000000001234000001SKU10000012
TTAI1LOO0O0000004000001
THEADOOO0O00000500000000001234199609091202001215720131R
TDETLO0O0O000000600000000001234000001UPC400100002667
TDETLOOO000000700000000001234000001UPC400100002643 0O
TTAI1LOO0O0000008000002

FTA1LO0O000000090000000007

Record Name | Field Name Field Type | Default Value Description
File Header File Type Record | Char(5) FHEAD Identifies file
Descriptor record type
File Line Number(10) | Specified by external | Line number of
Identifier system the current file
File Type Char(4) n/a Identifies
Definition transaction type
File Create Date | Date Create date Date file was
written by
external system
Transaction File Type Record | Char(5) THEAD Identifies file
Header Descriptor record type
File Line Number(10) | Specified by external | Line number of
Identifier system the current file
Transaction Set Char(14) Specified by external | Used to force
Control Number system unique
transaction check
Transaction Date | Char(14) Specified by external | Date the
system transaction was
created in

external system

30

Chapter 5 — Pro*C input and output formats

Record Name | Field Name Field Type | Default Value Description
Transaction File Type Record | Char(5) TDETL Identifies file
Detail Descriptor record type
File Line Number(10) | Specified by external | Line number of
Identifier system the current file
Transaction Set | Char(14) Specified by external | Used to force
Control Number system unique
transaction check
Detail Sequence | Char(6) Specified by external | Sequential
Number system number assigned
to detail records
within a
transaction
Transaction File Type Record | Char(5) TTAIL Identifies file
Trailer Descriptor record type
File Line Number(10) | Specified by external | Line number of
Identifier system the current file
Transaction Number(6) Sum of detail lines Sum of the detail
Detail Line lines within a
Count transaction
File Trailer File Type Record | Char(5) FTAIL Identifies file
Descriptor record type
File Line Number(10) | Specified by external | Line number of
Identifier system the current file
Total Number(10) | Sum of all All lines in file

Transaction Line
Count

transaction lines

less the file
header and trailer
records

31

Retek Merchandising System

Electronic data interchange (EDI)

Starting with release 7.0, EDI files used or created by RMS are in a generic format: RMS no
longer supports particular EDI standards. By processing EDI output and input in a generic format,
RMS is no longer limited to a single standard, which allows Retek customers to better utilize any
and all standards they choose to use. Translating EDI input and output files into any format from
any format by third-party software is an industry “best practice”.

Formerly, EDI transactions in RMS conformed to ASC X12/VICS (version 3040) and
ANA/TRADACOMS standards. EDI transactions are now expected to be in a format that adheres
to the RMS file interfacing standards. Both in-bound and out-bound files are written in a fixed
field layout with standard file header and trailer records. Transaction information is included in
master/detail or detail-only records. The layouts are consistent with interface files used elsewhere
in the RMS.

RMS EDI batch processes write out-bound transaction files into the generic layout format, which
are then translated by the third-party software into the standard required by each trading partner.
The post-translated versions are transmitted to the trading partner. In-bound transactions should
be formatted by the trading partner in a predetermined standard, transmitted, and then translated
by the Retek retailer’s translation software into the generic file layout. The generic file is used as
the input file for RMS EDI batch processing.

It is impractical for Retek to continue to maintain code that supports any particular EDI standard.
There are multiple viable standards that are utilized by vendors and retailers. Further, those
standards have multiple versions. Most retailers are already using software to map and translate
EDI transactions into the required standard or version. There are excellent third-party software
packages, such as Sterling Software’s Gentran™ translator, that effectively translate in-bound and
out-bound transactions into the necessary formats. The use of third-party translation software is
not only the common business practice, but also the best business practice of today’s retailer.

32

Chapter 6 — RETL architecture for RMS-RDF

Chapter 6 — RETL architecture for RMS-
RDF

RMS works in conjunction with the Retek Extract Transform and Load (RETL) framework. This
architecture optimizes a high performance data processing tool that allows database batch
processes to take advantage of parallel processing capabilities.

The RETL framework runs and parses through the valid operators composed in XML scripts.

This chapter provides an overview of RMS RETL processing. More information about the RETL
tool is available in the latest RETL Programmer’s Guide.

Architectural design

The diagram below illustrates the extraction processing architecture. Instead of managing the
change captures as they occur in the source system during the day, the process involves extracting
the current data from the source system. The extracted data is output to flat files. These flat files
are then available for consumption by products such as Retek Data Warehouse (RDW) and Retek
Demand Forecasting (RDF).

The target system, (RDW or RDF, for example), has its own way of completing the
transformations and loading the necessary data into its system, where it can be used for further
processing in the environment.

The architecture relies upon two distinct stages, shown in the diagram below. Stage 1 is the
extraction from the RMS database using well-defined flows specific to the RMS database. The
resulting output is comprised of data files written in a well-defined schema file format. This stage
includes no destination specific code.

Stage 2 introduces a flow specific to the destination. In this case, flows for the RDF/RPAS
product are designed to transform the data so that RDF can import the data properly.

33

Retek Merchandising System

Q Stage 1

process

A

RMS extraction |4

RMS extraction
flows and output
schemas

RMS extraction files
(in output schema format)

Stage 2

process

Transformation |«

Load files

Destination DB

Transformation
flows

The two stages of RETL processing

34

Chapter 7 — RETL program overview for the RMS-RDF interface

Chapter 7 — RETL program overview for
the RMS-RDF interface

This chapter summarizes the RETL program features utilized in the RMS Extractions (RMSE).
More information about the RETL tool is available in the latest RETL Programmer’s Guide.

L) Note: In this section, some examples refer to RETL programs that are not related to
RMS. References to these programs are included for illustration purposes only.

Installation

Select a directory where you would like to install RMS ETL. This directory (also called
MMHOME) is the location from which the RMS ETL files are extracted.

The following code tree is utilized for the RETL framework during the extractions,
transformations, and loads and is referred to in this documentation.

<base directory (MMHOME)>

/data

/error

/log

/rfx
/bookmark
/etc
/lib
/schema

/src

35

Retek Merchandising System

Configuration

RETL

Before trying to configure and run RMS ETL, install RETL version 11.2 or later, which is
required to run RMS ETL. Run the “verify_retl” script (included as part of the RETL installation)
to ensure that RETL is working properly before proceeding.

RETL user and permissions

RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up as per
the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes and updates tables. If these
permissions are not set up properly, extractions fail.

Environment variables

See the RETL Programmer’s Guide for RETL environment variables that must be set up for your
version of RETL. You will need to set MMHOME to your base directory for RMS RETL. This is
the top level directory that you selected during the installation process (see the section,
‘Installation’, above). In your .kshrc, you should add a line such as the following:

export MMHOME=<base directory for RMS ETL>

rmse_config.env settings
There are variables you must change depending upon your local settings:

For example:
export DBNAME=Int9i
export RMS_OWNER=steffej rms1011
export BA OWNER=rmsintl011

You must set up the environment variable PASSWORD in either the rmse_config.env, .kshrc or
some other location that can be referenced. In the example below, adding the line to the
rmse_config.env causes the password ‘mypasswd’ to be used to log into the database:

export PASSWORD=mypasswd
On the RMSE side, make sure to review the environmental parameters in the rmse_config.env file
before executing batch modules.
Steps to configure RETL
1 Log in to the Unix server with a Unix account that will run the RETL scripts.
2 Change directories to <base_directory>/rfx/etc.
3 Modify the rmse_config.env script:
a Change the DBNAME variable to the name of the RMS database.
b Change the RMS_OWNER variable to the username of the RMS schema owner.
¢ Change the BA_OWNER variable to the username of the RMSE batch user.

36

Chapter 7 — RETL program overview for the RMS-RDF interface

Program return code

RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program status control files

To prevent a program from running while the same program is already running against the same
set of data, the RMSE code utilizes a program status control file. At the beginning of each
module, rmse_config.env is run. It checks for the existence of the program status control file. If
the file exists, then a message stating, ‘${PROGRAM_NAMEY} has already started’, is logged
and the module exits. If the file does not exist, a program status control file is created and the
module executes.

If the module fails at any point, the program status control file is not removed, and the user is
responsible for removing the control file before re-running the module.
File naming conventions

The naming convention of the program status control file allows a program whose input is a text
file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(rmse_config.env). The directory defaults to SMMHOME/error. The naming convention for the
program status control file itself defaults to the following dot separated file name:

e The program name
e ‘status’
e The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named as follows
for the batch run of January 5, 2001:

$MMHOME/error/rmse_daily_sales.status.20010105

37

Retek Merchandising System

Restart and recovery

Because RETL processes all records as a set, as opposed to one record at a time, the method for
restart and recovery must be different from the method that is used for Pro*C. The restart and
recovery process serves the following two purposes:

1 It prevents the loss of data due to program or database failure.

2 Itincreases performance when restarting after a program or database failure by limiting the
amount of reprocessing that needs to occur.

The RMS Extract (RMSE) modules extract from a source transaction database or text file and
write to a text file. The RMS Load (RMSL) modules import data from flat files, perform
transformations if necessary and then load the data into the applicable RMS tables.

Most modules use a single RETL flow and do not require the use of restart and recovery. If the
extraction process fails for any reason, the problem can be fixed, and the entire process can be run
from the beginning without the loss of data. For a module that takes a text file as its input, the
following two choices are available that enable the module to be re-run from the beginning:

1 Re-run the module with the entire input file.

2 Re-run the module with only the records that were not processed successfully the first time
and concatenate the resulting file with the output file from the first time.

To limit the amount of data that needs to be re-processed, more complicated modules that require
the use of multiple RETL flows utilize a bookmark method for restart and recovery. This method
allows the module to be restarted at the point of last success and run to completion. The
bookmark restart/recovery method incorporates the use of a bookmark flag to indicate which step
of the process should be run next. For each step in the process, the bookmark flag is written to
and read from a bookmark file.

L) Note: If the fix for the problem causing the failure requires changing data in the source
table or file, then the bookmark file must be removed and the process must be re-run
from the beginning in order to extract the changed data.

Bookmark file

The name and directory of the restart and recovery bookmark file is set in the configuration file
(rmse_config.env). The directory defaults to SMMHOME/rfx/bookmark. The naming convention
for the bookmark file itself defaults to the following “dot” separate file name:

e The program name

e The first filename, if one is specified on the command line
o ‘bkm’

e The business virtual date for which the module was run

For example, the bookmark flag for the invi Idex program would be written to the following file
for the batch run of January 5, 2001:

$MMHOME/ r fx/bookmark/invildex. invilddm.txt._.bkm.20010105

38

Chapter 7 — RETL program overview for the RMS-RDF interface

Message logging

Message logs are written daily in a format described in this section.

Daily log file

Every RETL program writes a message to the daily log file when it starts and when it finishes.
The name and directory of the daily log file is set in the configuration file (rmse_config.env). The
directory defaults to SMMHOME/log. All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following “dot” separated file name:
e The business virtual date for which the modules are run
o ‘log’

For example, the location and the name of the log file for the business virtual date of January 5,
2001 would be the following:

$MMHOME/10g/20010105 - log

Format

As the following examples illustrate, every message written to a log file has the name of the
program, a timestamp, and either an informational or error message:

cusdemogdm 13:20:01: Program Starting...

cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table rdwlOdev.cust demog_dm_upd
cusdemogdm 13:20:14: Insert/Update target table.

cusdemogdm 13:20:23: Analyze table rdwlOdm.cust_demog_dm
cusdemogdm 13:20:27: Program Completed. ..

If a program finishes unsuccessfully, an error file is usually written that indicates where the
problem occurred in the process. There are some error messages written to the log file, such as
‘No output file specified’, that require no further explanation written to the error file.

39

Retek Merchandising System

Program error file

In addition to the daily log file, each program also writes its own detail flow and error messages.
Rather than clutter the daily log file with these messages, each program writes out its errors to a
separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file
(RMSE_config.env). The directory defaults to SMMHOME/error. All errors and all routine
processing messages for a given program on a given day go into this error file (for example, it
will contain both the stderr and stdout from the call to RETL). All error files are encoded UTF-8.

The naming convention for the program’s error file defaults to the following “dot” separated file
name:

e The program name
e The business virtual date for which the module was run

For example, all errors and detail log information for the rms_item_master program would be
placed in the following file for the batch run of January 5, 2001:

$MMHOME/error/rms_item_master.20010105

RMSE reject files

RMSE extract modules may produce a reject file if they encounter data related problems, such as
the inability to find data on required lookup tables. The module tries to process all data and then
indicates that records were rejected so that all data problems can be identified in one pass and
corrected; then, the module can be re-run to successful completion. If a module does reject
records, the reject file is not removed, and the user is responsible for removing the reject file
before re-running the module.

The records in the reject file contain an error message and key information from the rejected
record. The following example illustrates a record that is rejected due to problems within the
currency conversion library:

Currency Conversion Failed]|101721472]20010309

The following example illustrates a record that is rejected due to problems looking up information
on a source table:

Unable to find item_master record for Item|101721472

The name and directory of the reject file is set in the configuration file (rmse_config.env). The
directory defaults to $MMHOME/data.

L Note: A directory specific to reject files can be created. The rmse_config.env file would
need to be changed to point to that directory.

40

Chapter 7 — RETL program overview for the RMS-RDF interface

The naming convention for the reject file defaults to the following “dot” separated file name:
e The program name

e The first filename, if one is specified on the command line

o ‘rej’
e The business virtual date for which the module was run

For example, all rejected records for the slsildmex program would be placed in the following
file for the batch run of January 5, 2001:

$MMHOME/data/slIsildmex.slsildmdm. txt.rej.20010105

Schema files

RETL uses schema files to specify the format of incoming or outgoing datasets. The schema file
defines each column’s data type and format, which is then used within RETL to format/handle the
data. For more information about schema files, see the latest RETL Programmer’s Guide. Schema
file names are hard-coded within each module since they do not change on a day-to-day basis. All
schema files end with “.schema” and are placed in the “rfx/schema” directory.

Command line parameters

In order for each RETL module to run, the input/output data file paths and names may need to be
passed in at the Unix command line.

RMSE

RMSE extraction modules do not require passing in any parameters. The output path/filename
defaults to $DATA_DIR/(RMSE program name).dat. Similarly, the schema format for the
records in these files are specified in the file - $SSCHEMA_DIR/(RMSE program name).schema

41

Retek Merchandising System

Typical run and debugging situations

The following examples illustrate typical run and debugging situations for types of programs. The
log, error, and so on file names referenced below assume that the module is run on the business
virtual date of March 9, 2001. See the previously described naming conventions for the location
of each file.

For example:
To run rmse_stores.ksh:
1 Change directories to SMMHOME/rfx/src.
2 AtaUnix prompt enter:
%rmse_stores.ksh
If the module runs successfully, the following results:

1 Logfile: Today’s log file, 20010309.log, contains the messages “Program started ...” and
“Program completed successfully” for rmse_stores.

2 Data: The rmse_stores.dat file exists in the data directory and contains the extracted records.

3 Schema: The rmse_stores.schema file exists in the schema directory and contains the
definition of the data file in #2 above.

4 Error file: The program’s error file, rmse_stores.20010309, contains the standard RETL
flow (ending with “All threads complete” and “Flow ran successfully”) and no additional
error messages.

5 Program status control: The program status control file, rmse_stores.status.20010309, does
not exist.

6 Reject file: The reject file, rmse_stores.rej.20010309, does not exist.
If the module does not run successfully, the following results:

1 Logfile: Today’s log file, 20010309.log, does not contain the “Program completed
successfully” message for rmse_stores.

2 Data: The rmse_stores.dat file may exist in the data directory but may not contain all the
extracted records.

3 Schema: The rmse_stores.schema file exists in the schema directory and contains the
definition of the data file in #2 above.

4 Error file: The program’s error file, rmse_stores.20010309, may contain an error message.

Program status control: The program status control file, rmse_stores.status.20010309,
exists.

6 Reject file: The reject file, rmse_stores.status.20010309, does not exist because this module
does not reject records.

7 Bookmark file: The bookmark file, rmse_stores.bkm.20010309, does not exist because this
module does not utilize restart and recovery.

42

Chapter 7 — RETL program overview for the RMS-RDF interface

To re-run the module, perform the following actions:

1 Determine and fix the problem causing the error.

2 Remove the program’s status control file.

3 Change directories to SMMHOME/rfx/src. At a Unix prompt, enter:

%rmse_stores.ksh

43

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Pro*C restart and recovery
	Table descriptions and definitions
	restart_control
	restart_program_status
	restart_program_history
	restart_bookmark
	v_restart_x

	Data model discussion
	Why restart_program_status and restart_bookmark are separate

	Physical set-up
	Table and file-based restart/recovery
	API functional descriptions
	restart_init:
	restart_file_init:
	restart_commit:
	restart_file_commit:
	restart_close:
	parse_array_args:
	restart_file_write:
	restart_cat:
	Restart headers and libraries
	Updated restart headers and libraries
	New restart/recovery functions

	Query-based commit thresholds

	Chapter 3 – Pro*C multi-threading
	Threading description
	Threading function for query-based
	Restart view for query-based
	Thread scheme maintenance
	File-based
	Query-based

	Batch maintenance
	Scheduling and initialization of restart batch
	Pre- and post-processing

	Chapter 4 – Pro*C array processing
	Chapter 5 – Pro*C input and output formats
	General interface discussion
	Standard file layouts

	Detail only files
	Master and detail files

	Electronic data interchange (EDI)

	Chapter 6 – RETL architecture for RMS-RDF
	Architectural design

	Chapter 7 – RETL program overview for the RMS-RDF interface
	Installation
	Configuration
	RETL
	RETL user and permissions
	Environment variables
	rmse_config.env settings

	Program return code
	Program status control files
	File naming conventions
	Restart and recovery
	Bookmark file

	Message logging
	Daily log file
	Format
	Program error file

	RMSE reject files
	Schema files
	Command line parameters
	RMSE

	Typical run and debugging situations

