Retek® Merchandising System
11.0.1

Operations Guide Addendum

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000

Fax:
+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:

©2004 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Merchandising System

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

Hong Kong 800 96 4262

Korea 00 308 13 1342

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
o Detailed step-by-step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents

Chapter 1 — Publication And Subscription Designs...................... 1
Item Loc Publication APLAOC.cooiiiiiiiiieiceeee e 1
Merchandise Hierarchy Publishing APLAOC..........cccccveieiiiieee e 9
Regular Price Change Subscription APLAOCcooiiiiiieniiesieeeeee s 19
Transfers PUDIICAtION APLAOCccoiiiiiiieeiee e 25

Chapter 2 —Batch designscooieeiiiiiii e 39
Correction t0 POSUPLD.PC AESIN ...ccuviiiieieiiieieeie et see s sae e s 39
Deal Actuals [AealaCt].........ccoueiieiiiiieie e 41
Deal explode [AEalEX]ccuiiriiieieieiee s 47
Deals Forecast [dealfCt]ccoveiiiieiiiiiie e 53
Deal Income Calculation Daily — [dealinC]ccccooeiiiiiiniiiniieeeee e 59
Upload customs tariff files [NtSUpld]cccooveviieiieiie e, 67
Recommended Order QUantity [OCIFOQ]cceoveriririnirieieierese e 83
POS Upload [POSUPIA]ccveieeiece et 89
Pre/Post Functionality for Multi-Threadable Programs [prepost]c.ccccceovevvenn. 113
Item requisition eXtraction [FEgeXt]ccccvveveiiieiiieiesic e 127
Monthly Replenishment Purge [rplprg_month].........cccoooiiiiiniiniiicecee, 135
Sales Audit Get Reference [Sagetref].......cccovvveiiic i 137
Vendor Invoicing for Complex Deals [VeNdinVC]cccooereiinineninineniseeee, 147
Vendor Invoicing for Fixed Deals [vendinvf] ..o 153

Chapter 1 — Publication And Subscription Designs

Chapter 1 — Publication And
Subscription Designs

ltem Loc Publication APIl.doc

Business Overview:

RMS defines Item-Location relationships. In Retek XI, these will be published from RMS to ISO
and RPM via the RIB. The existing RMS Item Location publisher will be adapted to achieve this
publication.

To support ISO, RMS is adding a Store Price indicator to the Item-Location relationship. This
indicator specifies whether or not that Store can mark the price of the Item down. Retek
Integration will add this attribute to the Item-Location message.

RMS will also support the 1SO Initial Retail requirement. While all subsequent price changes
will be taken from RPM, 1SO needs RMS to send a starting set of Retails for each Item-Location.
To meet this requirement, Retek Integration will add Retail fields to the Item-Location message.
These fields will be published upon creation; subsequent updates to these Retail fields, however,
will not trigger an update message.

In addition to modifications for ISO requirements, the Item-Location publisher will be modified
to publish warehouses as well as stores. This is need for RPM purposes.

Functionality Checklist:

Description RMS RIB

RMS must publish item loc information

Create new Publisher X X

Form Impact

None.

Business Object Records

None.

Package Impact
e |tem Loc publishing — store price initialized the publishing of store_price on Item_LOC

e [tem Loc publishing — store price ind to verify the initial publishing of pricing info (unit
retail, selling unit retail and uom) on ITEM_LOC.

e Item Loc publishing — pricing, make an update of the pricing info on ITEM_LOC - should
NOT be published.

No Change.

Retek Merchandising System

Package name: RMSMFM_ITEMLOC
Spec file name: rmsmfm_itemlocs.pls

Body file name: rmsmfm_itemloch.pls

Package Specification — Global Variables

FAMILY CONSTANT VARCHARZ2(64) ‘ItemLoc’;
ITEMLOC_ADD CONSTANT VARCHAR2(20) ‘ItemLocCre',
ITEMLOC_UPD CONSTANT VARCHAR2(20) ‘ItemLocMod;
ITEMLOC_DEL CONSTANT VARCHAR2(20) ‘ItemLocDel’;
REPL_UPD CONSTANT VARCHAR2(20) ‘ItemLocReplMod';

Function Level Description — ADDTOQ
Function: ADDTOQ

(O_error_message ouT VARCHAR?2,

|_message_type IN ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
|_itemloc_record IN ITEM_LOC%ROWTYPE,

|_prim_repl_supplier IN REPL_ITEM_LOC.PRIMARY_REPL_SUPPLIER%TYPE,
|_repl_method IN REPL_ITEM_LOC.REPL_METHOD%TYPE,
|_reject_store_ord_ind IN REPL_ITEM_LOC.REJECT_STORE_ORD_IND%TYPE
I_next_delivery_date IN REPL_ITEM_LOC.NEXT_DELIVERY_DATE%TYPE);

This will call the API_LIBRARY.GET_RIB_SETTINGS if the LP_num_threads is NULL and
insert the family record into ITEMLOC_MFQUEUE table. The call for HASH_ITEM will insert
the |_itemloc_record.item information into ITEMLOC_MFQUEUE table.

Function Level Description — GETNXT
Procedure: GETNXT

(O_status_code ouT VARCHAR2,

O _error_msg ouT VARCHAR?2,
O_message_type ouT VARCHAR?2,

O_message ouT RIB_OBJECT,
O_bus_obj_id ouT RIB_BUSOBJID_TBL,
O_routing_info ouT RIB_ROUTINGINFO_TBL,
I_num_threads IN NUMBER DEFAULT 1,
|_thread_val IN NUMBER DEFAULT 1);

Make sure to initialize LP_error_status to API_CODES.HOSPITAL at the beginning of
GETNXT.

The RIB calls GETNXT to get messages. The driving cursor will query for unpublished records
on the ITEMLOC_MFQUEUE table (PUB_STATUS = ‘U’).

Chapter 1 — Publication And Subscription Designs

Since ITEMLOC records should not be published before ITEM records, include a clause in the
driving cursor that checks for ITEM CREATE messages on the ITEM_MFQUEUE table. The
ITEMLOC_MFQUEUE record should not be selected from the driving cursor if the ITEM
CREATE message still exists on ITEM_MFQUEUE. Also, ITEMLOC_MFQUEUE cleanup
should be included in ITEM_MFQUEUE cleanup. When the item publisher RMSMFM_ITEMS
encounters a DELETE message for an item that has never been published, it deletes all records
for the item from the ITEM_MFQUEUE table. This is done in the program unit
CLEAN_QUEUE. CLEAN_QUEUE should now also delete from ITEMLOC MFQUEUE when
a DELETE message for a non-published item is encountered.

After retrieving a record from the queue table, GETNXT should check for records on the queue
with a status of ‘H’ospital. If there are any such records for the current business object,
GETNXT should raise an exception to send the current message to the Hospital.

The information from the ITEMLOC_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully,
GETNXT should raise an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful call to
PROCESS QUEUE_RECORD, HANDLE_ERRORS should be called.

Function Level Description — PUB_RETRY
Procedure: PUB_RETRY

(O_status_code ouT VARCHAR?2,

O_error_msg ouT VARCHAR?2,

O_message ouT RIB_OBJECT,
O_message_type IN OUT VARCHAR?2,
O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

The record on ITEMLOC_MFQUEUE must match the passed in sequence number (contained
in the ROUTING_INFO).

Function Level Description — PROCESS_QUEUE_RECORD (local)
Procedure: PROCESS_QUEUE_RECORD

(O_error_message ouT VARCHAR?2,

O_message IN OUT nocopy RIB_OBJECT,

O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,
O_message_type IN OUT VARCHAR2,

|_item IN ITEMLOC_MFQUEUE.ITEM%TYPE);

This function controls the building of Oracle Objects given the business transaction’s key values
and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the record from ITEMLOC_MFQUEUE table is an add or update (ITEMLOC_ADD,
ITEMLOC_UPD)

Retek Merchandising System

o Call BUILD_DETAIL_OBJECTS to build the Oracle Object to publish to the RIB. This will
also take care of any ITEMLOC_MFQUEUE deletes and ROUTING_INFO logic.

If the record from ITEMLOC_MFQUEUE table is a delete (ITEMLOC_DEL)

e Call BUILD_DETAIL_DELETE_OBJECTS to build the Oracle Object to publish to the RIB.
This will also take care of any ITEMLOC_MFQUEUE deletes and the ROUTING_INFO
logic.

Function Level Description — BUILD_DETAIL_OBJECTS (local)
Procedure: BUILD DETAIL_OBJECTS

(O_error_msg INOUT VARCHARZ,

O_ilphys_tbl INOUT nocopy RIB_ITEMLOCPHYS_TBL,
O_routing_info INOUT nocopy RIB_ROUTINGINFO_TBL,
I_message_type IN ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
|_item IN ITEMLOC_MFQUEUE.ITEM%TYPE,
I_max_details IN rib_settings.max_details_to_publish%TYPE);

The function is responsible for the Oracle Object used for a DESC message (inserts and updates.)
It adds as many mfqueue records to the message as it can given the passed in message type and
business object keys.

e Select all records on the ITEMLOC_MFQUEUE that are for the same item. Fetch the
records in order of seq_no on the MFQUEUE table. Fetch the records into a table using
BULK COLLECT, with MAX_DETAILS_TO_PUBLISH as the LIMIT clause.

e Loop through records in the BULK COLLECT table. If the record’s message_type differs
from the message type passed into the function, exit from the loop. Otherwise, add the data
from the record to the Oracle Object being used for publication.

e Ensure that ITEMLOC_MFQUEUE is deleted from as needed.

o Ensure that ROUTING_INFO is constructed if routing information is stored at the detail level
in the business transaction.

Make sure to set LP_error_status to API_ CODES.UNHANDLED_ERROR before any DML
statements.

A concern here is making sure that we don’t delete records from the queue table that have not
been published. For this reason, we do our deletes by ROWID. We also try to get everything in
the same cursor. This should ensure that the message we published matches the deletes we
perform from the ITEMLOC_MFQUEUE table regardless of trigger execution during GETNXT
calls.

Chapter 1 — Publication And Subscription Designs

Function Level Description — BUILD_DETAIL_DELETE_OBJECTS (local)
Function: BUILD DETAIL DELETE OBJECTS

(O_error_msg INOUT VARCHARZ2,

O_ilphys_tbl INOUT nocopy RIB_ITEMLOCPHYSREF_TBL,
O_routing_info INOUT nocopy RIB_ROUTINGINFO_TBL,
I_message_type IN ITEMLOC_MFQUEUE.MESSAGE_TYPE%TYPE,
|_item IN ITEMLOC_MFQUEUE.ITEM%TYPE,
I_max_details IN rib_settings.max_details_to_publish%TYPE);

This function works the same way as BUILD_DETAIL_OBJECTS, except for the fact that a REF
object is being created instead of a DESC object.

Function Level Description — HANDLE_ERRORS (local)
PROCEDURE HANDLE_ERRORS

(O_status_code IN OUT VARCHAR2,

O _error_message IN OUT VARCHAR?2,

O_message IN OUT nocopy RIB_OBJECT,

O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,

O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,

I_item IN ITEMLOC_MFQUEUE.ITEM%TYPE,
I_physical_loc IN ITEMLOC_MFQUEUE.PHYSICAL_LOC%TYPE,
I_loc IN ITEMLOC_MFQUEUE.LOC%TYPE,

I_seqg_no IN ITEMLOC_MFQUEUE.SEQ_NO%TYPE);

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
ITEMLOC_MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a status
of “H’ospital to the RIB as well. It then updates the status of the queue record to ‘H’ospital, so
that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has occurred,
then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

Trigger Impact
Create a trigger on the ITEM_LOC to capture Inserts, Updates, and Deletes.

Only transaction-level items should be processed. If the item is not transaction-level, exit the
trigger before calling ADDTOQ

Trigger name: EC_TABLE_ITL_AIUDR.TRG (mod)
Trigger file name: ec_table_itl_aiudr.trg (mod)
Table: ITEMLOC

Inserts

e Send the L_record (I_item, I_loc, and the I_loc_type) to the ADDTOQ procedure in the
MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_ADD.

Updates

Retek Merchandising System

e Send the L_prim_repl_supplier, L_’repl_method,
L_reject_store_ord_ind,L_next_delivery_date to the ADDTOQ procedure in the MFM with
the message type RMSMFM_ITEMLOC.ITEMLOC_UPD.

e The only updates that need to be captured are updates to the columns RECEIVE_AS_TYPE,
SOURCE_WH, STORE_PRICE_IND, PRIMARY_SUPP, STATUS, SOURCE_METHOD,
LOCAL_ITEM_DESC, PRIMARY_CNTRY, LOCAL_SHORT_DESC, and
TAXABLE_IND

Deletes

e Sendthe L_record (I_item, |_loc, and the |_loc_type) to the ADDTOQ procedure in the
MFM with the message type RMSMFM_ITEMLOC.ITEMLOC_DEL.

The)trigger should fire not only for stores (loc_type = *S’) but also for warehouses (loc_type =
‘W),

Trigger name: EC_TABLE_RIL_AIUDR.TRG (mod)

Trigger file name: ec_table_ril_aiudr.trg (mod)

Table: REPL_ITEM_LOC

Create a trigger on the ITEM_LOC to capture Inserts, Updates, and Deletes.

Updates

e Send the L_prim_repl_supplier , L_repl_method,
L_reject_store_ord_ind,L_next_delivery_date and the L_record (|_item, I_loc, and the
I_loc_type) to the ADDTOQ procedure in the MFM with the message type
RMSMFM_ITEMLOC.REPL_UPD.

e The only updates that need to be captured are updates to the columns
PRIMARY_ REPL _SUPPLIER, REPL_METHOD, REJECT _STORE_ORD IND, and
NEXT_DELIVERY_DATE.

Deletes

e Send the L_record (I_item, I_loc, and the |_loc_type)to the ADDTOQ procedure in the
MFM with the message type RMSMFM_ITEMLOC.REPL_UPD

DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Types | Message Type Description Document Type
Definition (DTD)
ItemLocCre Item Loc Create Message ItemLocDesc.dtd
ItemLocMod Item Loc Modify Message ItemLocDesc.dtd
ItemLocDel Item Loc Delete Message ItemLocRef.dtd

ItemLocReplMod | Item Loc Replenishment Modify Message ItemLocDesc.dtd

Chapter 1 — Publication And Subscription Designs

Table Impact

TABLE SELECT INSERT UPDATE DELETE
ITEM_MFQUEUE Yes No No No
ITEMLOC_MFQUEUE Yes Yes Yes Yes
ITEM_MASTER Yes No No No

Design Assumptions
It is not possible for a detail trigger to accurately know the status of a header table.

In order for the detail triggers to accurately know when to add a message to the queue, RMS
should not allow approval of a business object while detail modifications are being made.

It is not possible for a header trigger or a detail trigger to know the status of anything modified by
GETNXT. If a header trigger or detail trigger is trying to delete queue records that GETNXT
currently has locked, it will have to wait until GETNXT is finished and removes the lock. It is
assumed that this time will be fairly short (ie at most 2-3 seconds.) It is also assumed that this
will occur rarely, as it involves updating/deleting detail records on a business object that has
already been approved. This also has to occur at the same time GETNXT is processing the
current business object.

Push off all DML statements as late as possible. Once DML statements have taken place, any
error becomes a fatal error rather than a hospital error.

Chapter 1 — Publication And Subscription Designs

Merchandise Hierarchy Publishing APl.doc

Business Overview:

RPM must know the merchandise hierarchy values that RMS contains. To ensure that RPM has
the most current merchandise hierarchy values that RMS has, a new publishing API will be
created to send the merchandise hierarchy information to the RIB so that RPM may subscribe to
it.

Functionality Checklist:

Description RMS RIB

RMS must publish Merchandise Hierarchy information

Create new Publisher X X

Form Impact

None.

Business Object Records
N/A

Package Impact

Business object id

The RIB uses the business object id to determine message dependencies when sending messages
to a subscribing application. If a Create message has already failed in the subscribing application,
and a Modify/Delete message is about to be sent from the RIB to the subscribing application, the
RIB will not send the Modify/Delete message if it has the same business object id as the failed
Create message. Instead, the Modify/Delete message will go directly to the hospital.

If the message relates to Districts, the business object id will be the district. If the message relates
to groups, the business object id will be the group number. If the message relates to a
department, the department number is the business object id. If the message relates to a class, the
business object id will be the department number and the class number. Finally, if the message
relates to a subclass, the business object id will be the department, class and subclass.

Package name: RMSMFM_MERCHHIER
Spec file name: rmsmfm_merchhiers.pls

Body file name: rmsmfm_merchhierb.pls

Retek Merchandising System

Package Specification — Global Variables

FAMILY
DIV_ADD
DIV_UPD
DIV_DEL
GRP_ADD
GRP_UPD
GRP_DEL
DEP_ADD
DEP_UPD
DEP_DEL
CLS_ADD
CLS_UPD
CLS_DEL
SUB_ADD
SUB_UPD
SUB_DEL

CONSTANT RIB_SETTINGS.FAMILY%TYPE

CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT
CONSTANT

VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)
VARCHAR2(64)

Package Body — Global Variables

LP_seq_no

MERCHHIER_MFQUEUE . SEQ_NO%TYPE

LP_error_status VARCHAR2(1)

cursor C_QUEUE(P_thread val in number) is

10

select g.rowid,

g-seg_no,

0 0 0o 0 0o o o 0o o0 o o

-division,
.group_no,
-dept,
.class,
-subclass,
.div_name,
-buyer,
.merch,
-total _market_amount,
-group_name,

.dept_name,

= 'merchhier";
:='divisioncre’;
:='divisionmod’;
:='divisiondel’;
:='groupcre’;
:='groupmod’;
:='groupdel’;

:= 'deptcre’;
:='deptmod’;
'deptdel’;

‘classcre’;

‘classmod’;

‘classdel’;

'subclasscre’;

'subclassmod’;

'subclassdel’;

:= NULL;
:= NULL;

Chapter 1 — Publication And Subscription Designs

-purchase_type,
-bud_int,
-bud_mkup,

.otb_calc_type,

.class_name,

.class_vat_ind,

-subclass_name,

0 0 0o 0o 0o 0o o o o0 o o

-message_type,

q.-pub_status

.dept_vat_incl_

-profit_calc_type,

-markup_calc_type,

ind,

from merchhier_mfqueue q

where g-.seq_no

from merchhier_mfqueue g2

g2-thread_no

and g2.pub_status = "U%))

nvl(LP_seq_no, (select min(g2.seq_no)

where

nvl(P_thread val, g2.thread_no)

for update NOWAIT;

Function Level Description — ADDTOQ
Function: ADDTOQ

(O_error_msg OUT VARCHARZ?,

I_message_type IN MERCHHIER_MFQUEUE.MESSAGE_TYPE%TYPE,
I_division IN DIVISION.DIVISION%TYPE,
|_division_rec IN DIVISION%ROWTYPE,
I_group_no IN GROUPS.GROUP_NO%TYPE,
I_groups_rec IN GROUPS%ROWTYPE,

|_dept IN DEPS.DEPT%TYPE,

|_deps_rec IN DEPS%ROWTYPE,

I_class IN CLASS.CLASS%TYPE,
I_class_rec IN CLASS%ROWTYPE,

I_subclass IN SUBCLASS.SUBCLASS%TYPE,
I_subclass_rec IN SUBCLASS%ROWTYPE)

If multi-threading is being used, call API_LIBRARY.RIB_SETTINGS to get the number of
threads used for the publisher. Using the number of threads, and the business object id, calculate

the thread value.

Insert a record into the MERCHHIER_MFQUEUE.

11

Retek Merchandising System

Function Level Description — GETNXT

Procedure: GETNXT
(O_status_code OUT VARCHAR?2,

O_error_msg OUT VARCHARZ2,
O_message_type OUT VARCHAR?2,
O_message OUT RIB_OBJECT,

O_bus_obj_id OUT RIB_BUSOBJID TBL,
O_routing_info OUT RIB_ROUTINGINFO_TBL,
| num_threads ~ IN NUMBER DEFAULT 1,
|_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. The procedure will use the C_QUEUE cursor defined
in the specification of the package body to find the next message on the
MERCHHIER_MFQUEUE to be published to the RIB.

After retrieving a record from the queue table, GETNXT checks for records on the queue with a
status of “H’ospital. If there are any such records for the current business object, GETNXT
should raise an exception to send the current message to the Hospital.

The information from the MERCHHIER_MFQUEUE table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully,
GETNXT should raise an exception.

After PROCESS_QUEUE_RECORD returns an oracle object to pass to the RIB, this
procedure will delete the record on MERCHHIER_MFQUEUE that was just processed.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful call to
PROCESS QUEUE_RECORD, HANDLE_ERRORS should be called.

Function Level Description — PUB_RETRY
Procedure: PUB_RETRY

(O_status_code ouT VARCHAR?2,

O_error_msg ouT VARCHAR?2,
O_message_type IN OUT VARCHAR2,

O_message ouT RIB_OBJECT,
O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
I_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

The record on MERCHHIER_MFQUEUE must match the passed in sequence number
(contained in the ROUTING_INFO).

12

Chapter 1 — Publication And Subscription Designs

Function Level Description — PROCESS QUEUE_RECORD (local)
Procedure: PROCESS_QUEUE_RECORD

(O_error_message ouT VARCHAR?2,

O_message IN OUT nocopy RIB_OBJECT,
O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,
I_message_type IN VARCHAR2,

I_rec IN C_QUEUE%ROWTYPE)

This function controls the building of Oracle Objects given the business transaction’s key values
and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the record from MERCHHIER_MFQUEUE table is an add or update (DIV_ADD, DIV_UPD,
GRP_ADD, etc...)

o Build the appropriate ref Oracle Object to publish to the RIB.
If the record from MERCHHIER _MFQUEUE table is a delete (DIV_DEL, GRP_DEL, etc...)
e Build the appropriate ref Oracle Object to publish to the RIB.

In addition to building the oracle objects, this function will populate the business object id. If the
message is for a division, group or department, the business object id will be the division, group,
or department respectively. If the message is for a class, the business object will be the class and
department combination. If the message is for a subclass, the business object id will be the
subclass, class and department combination.

Function Level Description — HANDLE_ERRORS (local)

PROCEDURE HANDLE_ERRORS
(O_status_code IN OUT VARCHAR2,

O_error_msg IN OUT VARCHARZ2,

O_message ouT RIB_OBJECT,

O _message _type IN OUT VARCHARZ2,
O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
I_rec IN C_QUEUE%TYPE)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is raised.

If the error is a non-fatal error, GETNXT passes the sequence number of the driving
MERCHHIER _MFQUEUE record back to the RIB in the ROUTING_INFO. It sends back a
status of ‘H’ospital to the RIB as well. It then updates the status of the queue record to
‘H’ospital, so that it will not get picked up again by the driving cursor in GETNXT.

If the error is a fatal error, a status of ‘E’rror is returned to the RIB.

The error is considered non-fatal if no DML has occurred yet. Whenever DML has occurred,
then the global variable LP_error_status is flipped from ‘H’ospital to ‘E’rror.

13

Retek Merchandising System

Trigger Impact
Trigger name: EC_TABLE_DIV_AIUDR.TRG

Trigger file name: ec_table_div_aiudr.trg

Table: DIVISION
Create a trigger on the DIVISION table to capture Inserts, Updates, and Deletes.
Inserts

¢ Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DIV_ADD.

Updates

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DIV_UPD.

Deletes

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DIV_DEL.

Trigger name: EC_TABLE_GRO_AIUDR.TRG
Trigger file name: ec_table_gro_aiudr.trg

Table: GROUPS
Create a trigger on the GROUPS table to capture Inserts, Updates, and Deletes.
Inserts

o Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.GRP_ADD.

Updates

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.GRP_UPD.

Deletes

¢ Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.GRP_DEL.

Trigger name: EC_TABLE _DEP_AIUDR.TRG
Trigger file name: ec_table_dep_aiudr.trg

14

Chapter 1 — Publication And Subscription Designs

Table: DEPS
Create a trigger on the DEPS table to capture Inserts, Updates, and Deletes.
Inserts

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DEP_ADD.

Updates

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DEP_UPD.

Deletes

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.DEP_DEL.

Trigger name: EC_TABLE_CLA_AIUDR.TRG

Trigger file name: ec_table_cla_aiudr.trg

Table: CLASS
Create a trigger on the CLASS table to capture Inserts, Updates, and Deletes.
Inserts

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.CLS_ADD.

Updates

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.CLS_UPD.

Deletes

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.CLS_DEL.

Trigger name: EC_TABLE_SCL_AIUDR.TRG

Trigger file name: ec_table_scl_aiudr.trg

15

Retek Merchandising System

Table: SUBCLASS

Create a trigger on the SUBCLASS table to capture Inserts, Updates, and Deletes.

Inserts

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.SUB_ADD.

Updates

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.SUB_UPD.

Deletes

e Send the appropriate column values to the ADDTOQ procedure in the MFM with the
message type RMSMFM_FAMILY.SUB_DEL.

DTD

Here are the filenames that correspond with each message type. Please consult the mapping

documents for each message type in order to get a detailed picture of the composition of each

message.
Message Message Type Description Document Type
Types Definition (DTD)
divisoncre Division Create Message MrchHrDivDesc.dtd
divisonmod Division Modify Message MrchHrDivDesc.dtd
divisiondel Division Delete Message MrchHrDivRef.dtd
groupcre Group Detail Create Message MrchHrGrpDesc.dtd
groupmod Group Detail Modify Message MrchHrGrpDesc.dtd
groupdel Group Detail Delete Message MrchHrGrpRef.dtd
deptcre Department Detail Create Message MrchHrDeptDesc.dtd
deptmod Department Detail Modify Message MrchHrDeptDesc.dtd
deptdel Department Detail Delete Message MrchHrDeptRef.dtd
classcre Class Detail Create Message MrchHrClsDesc.dtd
classmod Class Detail Modify Message MrchHrClsDesc.dtd
classdel Class Detail Delete Message MrchHrClsRef.dtd
subclasscre Subclass Detail Create Message MrchHrSclsDesc.dtd
subclassmod Subclass Detail Modify Message MrchHrSclstDesc.dtd
subclassdel Subclass Detail Delete Message MrchHrSclsRef.dtd

16

Chapter 1 — Publication And Subscription Designs

Table Impact

TABLE SELECT INSERT UPDATE DELETE
MERCHHIER_MFQUEUE Yes Yes Yes Yes
DIVISION Yes No No No
DEPT Yes No No No
CLASS Yes No No No
SUBCLASS Yes No No No

Assumptions

Push off all DML statements as late as possible. Once DML statements have taken place, any

error becomes a fatal error rather than a hospital error.

17

Chapter 1 — Publication And Subscription Designs

Regular Price Change Subscription APl.doc

Functional Area

RMS subscribing to regular price changes

Business Overview

RPM will now send approved Price Changes for Regular price items to SIM. However, RMS
also needs to know this information so it can set the effective date of the price change on the
TICKET_REQUEST table.

A new subscription family will be created to bring price changes from RPM to RMS. The new
sub family will be called RegPrcChg. RMS will subscribe the create, mod and delete of price
change messages.

The new subscription API will call the new functions within TICKET_SQL package to create,
modify or delete the price change record on the TICKET_REQUEST table. Packs and
Warehouse locations will be ignored.

Once the price changes have already been downloaded by tckdnld.pc, there could be instances
where a new price change is updated or deleted for the same price change 1D/ltem/Loc/Date
combination. In this case, the latest instance of price change will be inserted or updated in
TICKET_REQUEST table.

Package Impact

Filename: rmssub_regprcchgtkts/b.pls

CONSUME

(O_status_code ouT VARCHAR?2,

O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,
I_message IN RIB_OBJECT,

I_message_type IN VARCHAR?2);

This procedure initially checks that the passed in message type is a valid type for Regular Price
Change messages. The valid message types are: regprcchgCre, regprcchgMod and regprcchgDel.
If the message type is invalid, a status of “E” should be returned to the external system along with
an appropriate error message informing the external system that the status is invalid.

If the message type is valid, the generic RIB_OBJECT will need to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds with each
message type. If the downcast fails, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the object passed in is
invalid.

19

Retek Merchandising System

If the downcast is successful, then consume needs to verify that the message passes all of RMS’s
business validation. It does not actually perform any validation itself; instead, it calls the
RMSSUB_REGPRCCHG_TKT_VALIDATE.CHECK_MESSAGE function to determine
whether the message is valid. This function is overloaded so simply passing the object in should
be sufficient. If the message passed RMS business validation, then the function will return true,
otherwise it will return false. If the message has failed RMS business validation, a status of “E”
should be returned to the external system along with the error message returned from the
CHECK_MESSAGE function.

Once the message has passed RMS business validation, it can be persisted to the RMS database.
The consume function does not have to have any knowledge of how to persist the message to the
database, it calls the RMSSUB_REGPRCCHG_TKT_SQL.PERSIST() function. This function is
overloaded so simply passing the object should be sufficient. If the database persistence fails, the
function will return false. A status of “E” should be returned to the external system along with
the error message returned from the PERSIST() function.

Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, should be returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

RMSSUB_REGPRCCHG_TKT.HANDLE_ERROR() — This is the standard error handling
function that wraps the API_LIBRARY.HANDLE_ERROR function.

Business Validation Module
File name: rmssub_regprcchg_tktvals.pls
Global Function: CHECK_MESSAGE

(O_error_mesage ouT RTK_ERRORS.RTK_TEXT%TYPE,
O_ticket_thl ouT TICKET_SQL.TICKET_TBL,
I_message IN RIB_REGPRCCHGDESC REC,
I_message_type IN VARCHAR?2)

This overloaded function performs all business validation associated with ticket request create,
modify and delete messages. It is important that the signature uses IN for the message and not IN
OUT. When IN is used, the parameter is passed by reference. Passing by reference keeps the
server from duplicating the memory allocation.

Call the CHECK_REQUIRED_FIELDS function to make sure all required fields are not NULL.
Call the CHECK_EXISTENCE function to see if a record for the item/loc/price change 1D
already exists on TICKET_REQUEST table. If it exists and the message type is Create, treat it as
a Mod message type. If it does NOT exists and the message type is Mod, treat it as a Create
message type. If it does not exist and the message type is Delete, return TRUE since no further
processing is needed. Call VALIDATE_MESSAGE function to check for validity of the
required fields.

Finally, the ticket record used for DML is populated within the POPULATE_RECORD function
and passed back to RMSSUB_REGPRCCHG_TKT.CONSUME.

20

Chapter 1 — Publication And Subscription Designs

Internal Functions:

Function: CHECK_REQUIRED_FIELDS
(O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,
I_message IN RIB_REGPRCCHGDESC_REC)

This overloaded function ensures that all required fields in the message are NOT NULL.

VALIDATE_MESSAGE
(O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
I_message IN RIB_REGPRCCHGDESC_REC)

This overloaded function validates the values of the message. It will also populate the fields on
TICKET_REQUEST that were not included in the message.

o If the location type is warehouse or the item is a Pack, no further processing is needed.
o Stores are validated along with the currency code.

e Validate that the item is at the transactional level.

POPULATE_RECORD

(O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,
O_ins_ticket_tbl ouT TICKET_SQL.TICKET_TBL,
O_upd_ticket_tbl ouT TICKET_SQL.TICKET_TBL,
I_message IN RIB_REGPRCCHGDESC_REC)

This overloaded function populates the ticket request output record with the values sent in the
message.

Bulk or single DML module
All insert, update and delete SQL statements are located in the family packages. The private

functions call these packages.

File name: rmssub_regprcchg_tktsqls.pls

PERSIST

(O_error_mesage ouT RTK_ERRORS.RTK_TEXT%TYPE,
I_message IN TICKET_SQL.TICKET_TBL,
I_upd_message IN TICKET_SQL.TICKET_TBL,
I_message_type IN VARCHAR?2)

This function will perform INSERT/UPDATE/DELETE statements by calling the appropriate
functions according to the message type and passing the data in a record to these functions.

For the message type indicating a ticket request insert or update, call the
TICKET_SQL.NEW_PRICE_CHANGE and TICKET_SQL.UPDATE_PRICE_CHANGE
functions with the ticket record. For the message type indicating a delete, call
TICKET_SQL.DELETE_PRICE_CHANGE function to delete the record from
TICKET_REQUEST.

21

Retek Merchandising System

File name: tickets/b.pls
Add the following new functions to the existing package.

NEW_PRICE_CHANGE
(O_error_message OUT RTK _ERRORS.RTK_TEXT%TYPE,

|_ticket_tbl IN TICKET_SQL.TICKET_TBL)
This function inserts records into the TICKET_REQUEST table.
UPDATE_PRICE_CHANGE

(O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,

I_ticket_tbl IN TICKET_SQL.TICKET_TBL)

This function calls LOCK_TICKET function to lock and update the TICKET _REQUEST table.
LOCK_TICKET

(O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,

I_ticket_tbl IN TICKET_SQL. TICKET_TBL)

This function locks the records on TICKET _REQUEST table.

DELETE_PRICE_CHANGE
(O_error_message ouT RTK_ERRORS.RTK_TEXT%TYPE,
I_ticket_tbl IN TICKET_SQL.TICKET_TBL)

This function calls LOCK_TICKET function to lock and delete records from the
TICKET_REQUEST table.

Message DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Message Type Description Document Type
Types Definition (DTD)
RegPrcChgCre Regular Price Change Create Message RegPrcChgDesc.dtd
RegPrcChgMod Regular Price Change Modify Message RegPrcChgDesc.dtd
RegPrcChgDel Regular Price Change Delete Message RegPrcChgDesc.dtd

Design Assumptions

o One of the primary assumptions in the current APl approach is that ease of code will
outweigh performance considerations. It is hoped that the “trickle’ nature of the flow of data
will decrease the need to dwell on performance issues and instead allow developers to code in
the easiest and most straight forward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any public program
then needs to be a procedure.

22

Chapter 1 — Publication And Subscription Designs

Tables

TABLE SELECT INSERT UPDATE DELETE
TICKET_REQUEST Yes Yes Yes Yes
ITEM_LOC_SOH Yes No No No
STORE Yes No No No
ITEM_LOC Yes No No No
ITEM_TICKET Yes No No No
ITEM_MASTER Yes No No No

23

Chapter 1 — Publication And Subscription Designs

Transfers Publication APIl.doc

Business Overview:

Transfers consist of header level information in which source and destination locations are
specified, and detail information regarding what items and how much of each item is to be
transferred. Both of the transfer tables, tsfthead and tsfdetail, will now have triggers that track
inserts, deletes, and modifications. These triggers will insert or update into TSF_ MFQUEUE or
TRANSFERS_PUB_INFO tables. The transfer family manager will be responsible for pulling
transfer information from this queue and sending it to the external system(s) at the appropriate
time and in the correct order.

The transfer messages that will be published by the family manager will vary. A complete
message including header information, detail information, and component ticketing information
(if applicable) will be created when a transfer is approved. . When the transfer is unapproved, the
RIB treats it like a TransferDel message when publishing it to external systems. When the
transfer is re-approved, the transfer is treated like a new transfer for publishing.

RMS 11 Transfers include a Context information, at the header level. The context_type will
define the business reason for the Transfer, thus allowing users to distinguish one form of
Transfer from another. The context_value will further identify a specific context_type. For
example, when the Context of a Transfer is Promotion (i.e. the Transfer is being created to
support an RPM Promaotion), the ID of the Promotion being supported will be attached to the
Transfer as well, at the header level.

Functionality Checklist:

Description RMS RIB

RMS must publish Transfers information

Create new Publisher X X

Form Impact

None.

Business Object Records
Create the following table types in the RMSMFM_TRANSFERs package:
TYPE rowid_TBL s table of ROWID INDEX BY BINARY _INTEGER,;

25

Retek Merchandising System

Package Impact

Create Header
1 Prerequisites: None.
2 Activity Detail: The first step to creating a transfer is creating the header level information.

3 Messages: When a transfer is created, a record is inserted into TRANSERS _PUB_INFO table
and is not published onto the queue until the transfer has been approved.
Approve

Approve
1 Prerequisites: A transfer must exist and have at least one detail before it can be approved.

2 Activity Detail: Approving a transfer changes the status of the transfer. This change in status
signifies the first time systems external to RMS will have an interest in the existence of the
transfer, so this is the first part of the life cycle of a transfer that is published.

3 Messages: When a transfer is approved, a “TransferHdrMod” message is inserted into the
queue with the appr_ind on the queue set to ‘Y’ signifying that the transfer was approved.
The family manager uses this indicator to create a hierarchical message containing a full
snapshot of the transfer at the time the message is published.

Modify Header

1 Prerequisites: The transfer header can only be modified when the status is NOT approved.
Once the transfer is approved, the only fields that are modifiable are the status field and the
comments field.

2 Activity Detail: The user is allowed to modify the header but only certain fields at certain
times. If a transfer is in input status the to and from locations may be modified until details
have been added. Once details have been added, the locations are disabled. The freight code
is modifiable until the transfer has been approved. Comments can be modified at any time.

3 Messages: When the status of the header is either changed to ‘C’losed or ‘A’pproved, a
message (TransferHdrMod) is inserted into the queue. (Look above at Approve activity and
below at Close activity for further details).

Create Details
1 Prerequisites: A transfer header record must exist before transfer details can be created.

2 Activity Detail: The user is allowed to add items to a transfer but only until it has been
approved. Once a transfer has been approved, details can longer be added.

3 Messages: No messages are created on the queue until the transfer is approved.

26

Chapter 1 — Publication And Subscription Designs

Modify Details

1

Prerequisites: Only modifications to transfer quantities will be sent to the queue, and only
when the transfer quantity is decreased manually, and not because of an increase in cancelled
guantity will it be sent to the queue.

Activity Detail: The user is allowed to change transfer quantities provided they are not
reduced below those already shipped. The transfer quantity can also be decreased by an
increase in the cancelled quantity - which is always initiated by the external system. This
change, then, would be of no interest to the external system because it was driven by it.

Messages: No messages are created on the queue until the transfer is approved.

Delete Details

1

Prerequisites: Only a detail that hasn’t been shipped may be deleted and it cannot be deleted
if it is currently being worked on by an external system. A user is not allowed to delete
details from a closed transfer.

2 Activity Detail: A user is allowed to delete details from a transfer but only if the item hasn’t
been shipped.

3 Messages: No messages are created on the queue until the transfer is approved.

Close

1 Prerequisites: A transfer must be in shipped status before it can be closed, and it cannot be in
the process of being worked on by an external system.

2 Activity Detail: Closing a transfer changes the status, which prevents any further
modifications to the transfer. When a transfer is closed, a message is published to update the
external system(s) that the transfer has been closed and no further work (in RMS) will be
performed on it.

3 Messages: Closing a transfer queues a “TransferHdrMod” request. This is a flat message
containing a snapshot of the transfer header information at the time the message is published.

Delete

1 Prerequisites: A transfer can only be deleted when it is still in approved status or when it has
been closed.

2 Activity Detail: Deleting a transfer removes it from the system. External systems are notified
by a published Delete message that contains the number of the transfer to be deleted.

3 Message: When a transfer is deleted, a “TransferDel”, which is a flat notification message, is

queued.

27

Retek Merchandising System

Package name: RMSMFM_TRANSFERS

Spec file name: rmsmfm_transferss.pls

Body file name: rmsmfm_transfersb.pls

Package Specification — Global Variables

FAMILY VARCHAR2(64) := "transfers”;
HDR_ADD VARCHAR2(64) := "TransferCre-;
HDR_UPD VARCHAR2(64) := "TransferHdrMod~;
HDR_DEL VARCHAR2(64) := "TransferDel";
HDR_UNAPRV VARCHAR2(64) := "TransferUnapp”;
DTL_ADD VARCHAR2(64) := "TransferDtlICre~;
DTL_UPD VARCHAR2(64) := "TransferDtIMod";
DTL_DEL VARCHAR2(64) := "TransferDtlDel";

Function Level Description — ADDTOQ

FUNCTION ADDTOQ
(O_error_mesage OUT VARCHAR?2,
I_message_type IN VARCHAR?2,

|_tsf no IN tsfhead.tsf_no%TYPE,
|_tsf_type IN tsfhead.tsf_type%TYPE,
|_tsf_head_status IN tsfdetail.status%TYPE,
|_item IN tsfdetail.item%TYPE,
I_publish_ind IN tsfdetail.publish_ind%TYPE)

This function is called by both the tsfhead trigger and the tsfdetail trigger, ec_table_thd_aiudr and
ec_table_tdt_aiudr respectively.

28

Book Transfers, Non-Sellable Transfers and Externally Generated Transfers (except for
delete messages) are never published to external systems.

For header level insert messages (HDR_ADD), insert a record in the
TRANSFERS_PUB_INFO table. The published flag should be set to “N’. The correct thread
for the Business transaction should be calculated and written. Call
API_LIBRARY.RIB_SETTINGS to get the number of threads used for the publisher. Using
the number of threads, and the Business object id, calculate the thread value.

For all records except header level inserts (HDR_ADD), the thread_no and
initial_approval_ind should be queried from the TRANSFERS_PUB_INFO table.

If the Business transaction has not been approved (initial_approval_ind = “‘N”) and the
triggering message is one of DTL_ADD, DTL_UPD, DTL_DEL, HDR_DEL, no processing
should take place and the function should exit.

For detail level message deletes (DTL_DEL), we only need one (the most recent) record per
detail in the TSF_MFQUEUE. Delete any previous records that exist on the
TSF_MFQUEUE for the record that has been passed. If the publish_ind is ‘N’, do not add the
DTL_DEL message to the queue.

Chapter 1 — Publication And Subscription Designs

For detail level message updates (DTL_UPD), we only need one DTL_UPD (the most recent)
record per detail in the TSF_MFQUEUE. Delete any previous DTL_UPD records that exist
on the TSF_MFQUEUE for the record that has been passed. We don’t want to delete any
detail inserts that exist on the queue for the detail, we need to ensure subscribers have not
passed a detail modification message for a detail that they do not yet have.

For header level delete messages (HDR_DEL), delete every record in the queue for the
Business transaction.

For header level update message (HDR_UPD), update the
TRANSFERS PUB_INFO.INITIAL_APPROVAL _IND to ‘Y’ if the Business transaction is
in approved status.

For all records except header level inserts (HDR_ADD), insert a record into the
TSF_MFQUEUE.

It returns a status code of API_CODES.SUCCESS if successful,
API_CODES.UNHANDLED_ ERROR if not.

Function Level Description — GETNXT
PROCEDURE GETNXT

(O_status_code ouT VARCHAR2,

O_error_msg ouT VARCHAR?2,
O_message_type ouT VARCHAR2,

O_message ouT RIB_OBJECT,
O_bus_obj_id ouT RIB_BUSOBJID_TBL,
O_routing_info ouT RIB_ROUTINGINFO_TBL,
I_num_threads IN NUMBER DEFAULT 1,
I_thread_val IN NUMBER DEFAULT 1)

The RIB calls GETNXT to get messages. It performs a cursor loop on the unpublished records
on the TSF_MFQUEUE table (PUB_STATUS = ‘U’). It should only need to execute one loop
iteration in most cases. For each record retrieved, GETNXT gets the following:

1

2
3

A lock of the queue table for the current Business object. The lock is obtained by calling the
function LOCK_THE_BLOCK. If there are any records on the queue for the current Business
object that are already locked, the current message is skipped.

The published indicator from the TRANSFERS _PUB_INFO table.

A check for records on the queue with a status of ‘H’ospital. If there are any such records for
the current Business object, GETNXT raises an exception to send the current message to the
Hospital.

29

Retek Merchandising System

The loop will need to execute more than one iteration for the following cases:

1 When a header delete message exists on the queue for a Business object that has not been
initially published. In this case, simply remove the header delete message from the queue and
loop again.

2 A detail delete message exists on the queue for a detail record that has not been initially
published. In this case, simply remove the detail delete message from the queue and loop
again.

3 The queue is locked for the current Business object

The information from the TSF_MFQUEUE and TRANSFERS_PUB_INFO table is passed to
PROCESS_QUEUE_RECORD. PROCESS_QUEUE_RECORD will build the Oracle Object
message to pass back to the RIB. If PROCESS_QUEUE_RECORD does not run successfully,
GETNXT raises an exception.

If any exception is raised in GETNXT, including the exception raised by an unsuccessful call to
PROCESS_QUEUE_RECORD, HANDLE_ERRORS is called.

Function Level Description — PUB_RETRY
PROCEDURE PUB_RETRY

(O_status_code ouT VARCHAR2,

O_error_msg ouT VARCHAR?2,
O_message_type IN OUT VARCHAR?2,

O_message ouT RIB_OBJECT,
O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
|_REF_OBJECT IN RIB_OBJECT);

Same as GETNXT except:

It only loops for a specific row in the TSF_MFQUEUE table. The record on TSF_MFQUEUE
must match the passed in sequence number (contained in the ROUTING_INFO).

Function Level Description — PROCESS_QUEUE_RECORD (local)
FUNCTION PROCESS_QUEUE_RECORD

(O_error_msg ouT VARCHAR?2,

O_break_loop ouT BOOLEAN,

O_message IN OUT nocopy RIB_OBJECT,
O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
O_bus_obj_id IN OUT nocopy RIB_BUSOBJID_TBL,
O_message_type IN OUT VARCHAR2,

|_tsf no IN tsf_mfqueue.tsf no%TYPE,
I_hdr_published IN transfers_pub_info.published%TYPE,
|_item IN tsf_mfqueue.item%TYPE,
|_pub_status IN tsf_mfqueue.pub_status%TYPE,
|_seq_no IN tsf_mfqueue.seq_no%TYPE,
|_rowid IN ROWID,

O_keep_queue IN OUT BOOLEAN)

30

Chapter 1 — Publication And Subscription Designs

This function controls the building of Oracle Objects given the business transaction’s key values
and a message type. It contains all of the shared processing between GETNXT and
PUB_RETRY.

If the message type is HDR_DEL or HDR_UNAPRYV and it has not been published
e Call DELETE_QUEUE_REC to delete the record from TSF. MFQUEUE.
If the message type is HDR_DEL and the record has been published

o Generate a “flat” file to be sent to the RIB. Delete from TRANSFER_PUB_INFO and call
DELETE_QUEUE_REC to delete from the queue.

If the message type is HDR_UNAPRV

e Treat it just like a hdr_del except the published indicator on TRANSFRERS PUB_INFO is
setto ‘N’.

If the message type is HDR_ADD or DTL_ADD
e Call MAKE_CREATE to publish the entire transfer.
If the record from TSF_MFQUEUE table is HDR_UPD

o Call BUILD_HEADER_OBJECT to build the Oracle Object to publish to the RIB and delete
from the queue.

If the record from TSF_MFQUEUE table is DTL_ADD or DTL_UPD

e Call BUILD_HEADER_OBJECT and BUILD DETAIL_CHANGE_OBJECTS to build the
Oracle Object to publish to the RIB.

If the record from TSF_MFQUEUE table is a detail delete (DTL_DEL)

e Call BUILD HEADER_OBJECT and BUILD_DETAIL_DELETE_OBJECTS to build the
Oracle Object to publish to the RIB.

Function Level Description — MAKE_CREATE (local)
FUNCTION MAKE_CREATE

(O_error_msg IN OUT VARCHAR?,

O_message IN OUT nocopy RIB_OBJECT,

O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,

|_tsf no IN tsthead.tsf_no%TYPE,

|_seqg_no IN tsf_mfqueue.seq_no%TYPE,

|_item IN item_loc.item%TYPE,

I_max_details IN rib_settings.max_details_to_publish%TYPE,
I_rowid IN ROWID,

O_keep_queue IN OUT BOOLEAN)

31

Retek Merchandising System

This function is used to create the Oracle Object for the initial publication of a Business
transaction. It combines the current message and all previous messages with the same key in the
gueue table to create the complete hierarchical message. It first creates a new message with the
hierarchical document type. It then gets the header create message and adds it to the new
message. The remainder of this procedure gets each of the details grouped by their document
type and adds them to the new message. When it is finished creating the new message, it deletes
all the records from the queue with a sequence number less than or equal to the current records
sequence number. This new message is passed back to the bus. The MAKE_CREATE function
will not be called unless the appr_ind on the queue is “Y’es (meaning the transfer has been
approved, and it’s ready to be published for the first time to the external system(s)).

Function Level Description — BUILD_HEADER_OBJECT (local)
FUNCTION BUILD_HEADER_OBJECT

(O_error_msg IN OUT VARCHAR2,

O_message IN OUT nocopy RIB_OBJECT,
O_rib_tsfref rec IN OUT nocopy RIB_TSFREF_REC,
O_routing_info IN OUT nocopy RIB_ROUTINGINFO_TBL,
O_freight_code IN OUT tsfhead.freight_code%TYPE,
O_to_loc_type IN OUT item_loc.loc_type%TYPE,
O_from_loc_type IN OUT item_loc.loc_type%TYPE,

|_tsf no IN OUT tsfhead.tsf_no%TYPE)

Accepts header key values, performs necessary lookups, builds and returns a header level Oracle
Object.

Function Level Description — BUILD_DETAIL_OBJECTS (local)
FUNCTION BUILD DETAIL_OBJECTS

(O_error_msg IN OUT VARCHAR?2,

O_message IN OUT nocopy RIB_TSFDTL_TBL,
O_tsf_mfqueue_rowid IN OUT nocopy rowid_TBL,
O_tsf_mfqueue_size IN OUT BINARY_INTEGER,
O_tsfdetail_rowid IN OUT nocopy rowid TBL,
O_tsfdetail_size IN OUT BINARY_INTEGER,
O_delete_rowid_ind IN OUT VARCHAR2,

|_message_type IN OUT tsf_mfqueue.message_type%TYPE,
I_tsf_no IN tsfthead.tsf_no%TYPE,

I to loc IN item_loc.loc%TYPE,

|_to_loc_type IN item_loc.loc_type%TYPE,
I_max_details IN rib_settings.max_details_to_publish%TYPE,
|_freight_code IN VARCHAR?2)

This function is responsible for fetching the detail info and ticket type to be sent to RDM. The
logic that gets the detail info as well as the ticket type was separated to remove the primary key
constraint.

32

Chapter 1 — Publication And Subscription Designs

Function Level Description — BUILD_SINGLE_DETAIL (local)
FUNCTION BUILD_SINGLE_DETAIL

(O_error_msg IN OUT VARCHARZ2,

O_message IN OUT nocopy RIB_TSFDTL_TBL,
10_rib_tsfdtl_rec IN OUT nocopy RIB_TSFDTL_REC,

|_tsf no IN tsfhead.tsf_no%TYPE,

|_item IN item_master.item%TYPE,
|_pack_ind IN item_master.pack_ind%TYPE,
|_sellable_ind IN item_master.sellable_ind%TYPE,
|_store_ord_mult IN item_loc.store_ord mult%TYPE,
|_tsf po_link no IN tsfdetail.tsf_po_link_no%TYPE,
|_ticket_type_id IN item_ticket.ticket_type_id%TYPE,
I_tsf_qty IN tsfdetail.tsf_qty%TYPE,
|_freight_code IN tsfhead.freight_code%TYPE,
I_to_loc IN item_loc.loc%TYPE,
I_to_loc_type IN item_loc.loc_type%TYPE,
|_inv_status IN inv_status_types.inv_status%TYPE,
I_message_type IN tsf_mfqueue.message_type%TYPE)

Accept inputs and build a detail level Oracle Object. Perform any lookups needed to complete
the Oracle Object.

Function Level Description — GET_RETAIL(local)
FUNCTION GET_RETAIL

(O_error_msg IN OUT VARCHAR?2,

I_item IN item_loc.item%TYPE,

I_loc IN item_loc.loc%TYPE,

I_loc_type IN item_loc.loc_type%TYPE,

O_price IN OUT item_zone_price.unit_retail%TYPE,
O_selling_uom IN OUT item_zone_price.selling_uom%TYPE)

Calls PRICING_ATTRIB_SQL.GET_RETAIL to get the price and selling uom of the item.

Function Level Description — GET_GLOBALS(local)
FUNCTION GET_GLOBALS

(O_error_msg IN OUT VARCHAR?,
O_days ouT NUMBER,
O_default_order_type ouT system_options.default_order_type%TYPE)

Get all the system options and variables needed for processing.

33

Retek Merchandising System

Function Level Description — GET_TSF_ENTITIES(local)
FUNCTION GET_TSF_ENTITIES

(O_error_msg IN OUT VARCHAR?,
O_from_tsf_entity IN OUT tsf_entity.tsf_entity id%TYPE,
O_to_tsf_entity IN OUT tsf_entity.tsf_entity _id%TYPE,
I_from_loc IN item_loc.loc%TYPE,
I_from_loc_type IN item_loc.loc_type%TYPE,
|_to_loc IN item_loc.loc%TYPE,
I_to_loc_type IN item_loc.loc_type%TYPE)

Get the to and from location entities for the transfer.

Function Level Description — BUILD_DETAIL_CHANGE_OBJECTS (local)
FUNCTION BUILD_DETAIL_CHANGE_OBJECTS

(O_error_msg IN OUT VARCHAR2,

O_rib_tsfdesc_rec IN OUT nocopy RIB_TSFDESC_REC,
|_message_type IN OUT tsf_mfqueue.message_type%TYPE,
I_tsf_no IN tsfthead.tsf_no%TYPE,

|_item IN item_loc.item%TYPE,

I_freight_code IN tsfhead.freight_cod%TYPE,

I_max_details IN rib_settings.max_details_to_publish%TYPE)

Call BUILD_DETAIL_OBJECT to publish the record. Update TSFDETAIL.publish_ind to Y’
and delete the record from TSF_ MFQUEUE.

Function Level Description — BUILD_DETAIL_DELETE_OBJECTS (local)

FUNCTION BUILD_DETAIL_DELETE_OBJECTS

(O_error_msg IN OUT VARCHAR2,

O_rib_tsfref rec IN OUT nocopy RIB_TSFREF_REC,

I_tsf no IN tsthead.tsf_no%TYPE,

I_max_details IN rib_settings.max_details_to_ publish%TYPE)

Either pass in a header level ref Oracle Object or build a header level ref Oracle Object.

Perform a cursor for loop on TSF_ MFQUEUE and build as many detail ref Oracle Objects as
possible without exceeding the MAX_DETAILS TO_PUBLISH.

Delete from TSF_MFQUEUE when done.

Function Level Description — LOCK_THE_BLOCK (local)
FUNCTION LOCK_THE_BLOCK

(O_error_msg ouT VARCHAR?2,
O_queue_locked OUT BOOLEAN,
I_tsf no IN tsf_mfqueue.tsf no%TYPE)

This function locks all queue records for the current business object. This is to ensure that
GETNXT does not wait on any business processes that currently have the queue table locked and
have not committed. This can occur because ADDTOQ, which is called from the triggers, deletes
from from the queue table for DTL_UPD, DTL_DEL, and HDR_DEL messages.

34

Chapter 1 — Publication And Subscription Designs

Function Level Description — LOCK_THE_BLOCK (local)

FUNCTION LOCK_DETAILS
(O_error_msg ouT VARCHAR2,
|_tsf no IN tsf_head.tsf_no%TYPE)

Lock the transfer details before updating the publish_ind on TSFDETAIL.

Function Level Description — DELETE_QUEUE_REC (local)

FUNCTION DELETE_QUEUE_REC
(O_error_msg ouT VARCHAR?2,
|_seqg_no IN tsf_mfqueue.seq_no%TYPE)

This procedure deletes a specific record from TSF_MFQUEUE. It deletes based on the sequence

number passed in.

Function Level Description — HANDLE_ERRORS (local)
PROCEDURE HANDLE_ERRORS

(O_status_code IN OUT VARCHAR2,

O _error_msg IN OUT VARCHAR?2,

O_message ouT RIB_OBJECT,
O_message_type IN OUT VARCHAR?2,
O_bus_obj_id IN OUT RIB_BUSOBJID_TBL,
O_routing_info IN OUT RIB_ROUTINGINFO_TBL,
I_tsf_no IN tsf_mfqueue.tsf_no%TYPE,
|_seqg_no IN tsf_mfqueue.seq%TYPE,
|_item IN tsf_mfqueue.item%TYPE)

HANDLE_ERRORS is called from GETNXT and PUB_RETRY when an exception is raised.

The function was updated to conform with the changes made to the ADDTOQ function.

Trigger Impact

Create a trigger on the TSFHEAD and TSFDETAIL to capture Inserts, Updates, and Deletes.
Trigger name: EC_TABLE _THD_AIUDR.TRG

Trigger file name: ec_table_thd_aiudr.trg

Table: TSFHEAD
Inserts

e Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with the
message type RMSMFM_Transfers. HDR_ADD.

Updates

e Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with the
message type RMSMFM_ Transfers.HDR_UPD.

Deletes

e Send the tsf_no and tsf_type level info to the ADDTOQ procedure in the MFM with the
message type RMSMFM_Transfers. HDR_DEL.

35

Retek Merchandising System

Trigger name: EC_TABLE_TDT_AIUDR.TRG

Trigger file name: ec_table_tdt_aiudr.trg

Table: TSFDETAIL
Inserts

e Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_Transfers.DTL_ADD

Updates

e Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_Transfers.DTL_UPD.

Deletes

o Send the tsf_no and item level info to the ADDTOQ procedure in the MFM with the message
type RMSMFM_Transfers.DTL_DEL.

DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Types | Message Type Description Document Type
Definition (DTD)
TransferCre Transfer Create Message TransferDesc.dtd
TransferHdrMod Transfer Modify Message TransferDesc.dtd
TransferDel Transfer Delete Message TransferRef.dtd
TransferDtICre Transfer Detail Create Message TransferDtIDesc.dtd
TransferDtIMod Transfer Detail Modify Message TransferDtIDesc.dtd
TransferDtIDel Transfer Detail Delete Message TransferDtIRef.dtd

Table Impact

TABLE SELECT INSERT UPDATE DELETE
TRANSFERS_PUB_INFO Yes Yes Yes Yes
TSF_MFQUEUE Yes Yes Yes Yes
TSF_DETAIL Yes No Yes No
TSF_HEAD Yes No No No

WH Yes No No No
ORDCUST Yes No No No
CUSTOMER Yes No No No

36

Chapter 1 — Publication And Subscription Designs

TABLE SELECT INSERT UPDATE DELETE
ITEM_LOC Yes No No No
ITEM_MASTER Yes No No No
ITEM_TICKET Yes No No No
V_PACKSKU_QTY Yes No No No
CODE_DETAIL Yes No No No
SYSTEM_OPTIIONS Yes No No No
RIB_SETTINGS Yes No No No

Design Assumptions

o After a transfer has been approved we are assuming the freight code of the transfer (on the

tsfhead table) cannot be updated.

e One of the primary assumptions in the current approach is that ease of code will outweigh

performance considerations. It is hoped that the “trickle’ nature of the flow of data will
decrease the need to dwell on performance issues and instead allow developers to code in the

easiest and most straight forward manner.

e The adaptor is only setup to call stored procedures, not stored functions. Any public program

then needs to be a procedure.

37

Chapter 2 — Batch designs

Chapter 2 — Batch designs

Correction to POSUPLD.PC design

The description for the program POSUPLD.PC is inaccurate in the RMS 11.0 Operations Guide.
The RMS 11.0 Operations Guide incorrectly identifies the Vdate as the weekly PO/invoice
generation setting. The correct value is the ‘end of week’ date for the weekly/PO invoice
generation setting.

39

Chapter 2 — Batch designs

Deal Actuals [dealact]

Design Overview

For complex deals, this new batch will run on a daily basis and retrieve data from various sources
to calculate the actuals information to update the DEAL_ACTUALS_ITEM_LOC table.

Processing of actuals

The deal revenue batch runs daily to process active bill back deals. Using temporary tables
created by prepost.pc, records are Inserted (if new)/updated (accumulated - if it exists) to the
DEAL_ACTUALS_ITEM_LOC table at the deal, deal component, item location level for
reporting periods.

Tables Affected:

TABLE INDEX | SELECT | INSERT | UPDATE DELETE
DEAL_ACTUALS_FORCAST No Yes No No No
DEAL_BB_NO REBATE_TEMP No Yes No No No
DEAL_BB_REBATE_PO_TEMP No Yes No No No
DEAL_TRAN_DATA_TEMP No Yes No No No
DEAL_HEAD No Yes No No No
DEAL_ACTUALS_ITEM_LOC No Yes Yes Yes No

Stored Procedures / Shared Modules (Maintainability)
Batch library module: currconv.pc used for currency conversions
DB packaged function to convert Qtys between UOMs — UOM_SQL.CONVERT.

Function Level Description
main()

This function will Validate program arguments and logon to Oracle, call the init() function to
initialize restart / recovery and variables, call the process() to execute main program logic and
then call the final() to clean up all internal processing.

init()
This function calls the standard initialization function retek_init() to initialize restart / recovery.

41

Retek Merchandising System

It then retrieves system level variables using the following cursor:

SELECT NVL(so.stkldgr_vat_incl_retl_ind,"N"),
so.calendar_454 ind,
so.currency_code,
TO_CHAR(sv.last_eom date, "YYYYMMDD®),
TO_CHAR(sv.next_eom_date, "YYYYMMDD®),
TO_CHAR(p.vdate, "YYYYMMDD")

FROM system_options so,

system variables sv,
period p;

The function then calls the function size_arrays() to allocate memory for arrays used in this
program.

process()
Call process_actuals_by order() (For Bill Back Non Rebate deals)
Call process_actuals_all_orders() (For Bill Back Purchase Rebate Deals)
Call process_actuals_tran_data() (For Bill Back Sales and Receipts Deals)
process_actuals_by_order()

Retrieve rows from the C_ORDER_DATA cursor in a while loop.

For each row retrieved, if the deal has a threshold UOM that is different to the Standard
UOM, call uom_convert() to convert the units between the two.

If a row exists on DEAL_ACTUALS ITEM_LOC call add_dail_upd_row(), otherwise call
add_dail_ins_row().

When the commit point is reached, call insert_dail_rows() and update_dail_rows().
process_actuals_all_orders()
Retrieve rows from the C_ALL_ORDERS cursor in a while loop.

For each row retrieved, if the deal has a threshold UOM that is different to the Standard
UOM, call uom_convert() to convert the units between the two.

If a row exists on DEAL_ACTUALS ITEM_LOC call add_dail_upd_row(), otherwise call
add_dail_ins_row().

When the commit point is reached, call insert_dail_rows() and update_dail_rows().
process_actuals_tran_data()
Retrieve rows from the C_TRAN_DATA cursor in a while loop.

For each Item/Loc/Deal/Deal Detail retrieved, accumulate sales and returns (removing VAT
from tran code 4 records if STKLDGR_VAT_INCL_RETL_IND=Y).

If the deal has a threshold UOM that is different to the Standard UOM, call uom_convert() to
convert the units between the two.

42

Chapter 2 — Batch designs

If a row exists on DEAL_ACTUALS_ITEM_LOC call add_dail_upd_row(), otherwise call
add_dail_ins_row().

When the commit point is reached, call insert_dail_rows() and update_dail_rows().
add_dail_ins_row()

This function adds a new element to the pa_ins_item_loc array whilst ensuring that the array size
is not exceeded and if necessary resizing the array when required. If the array exceeds the
maximum size, resize it before adding the new row by calling the function resize_arrays(). Finally
this function adds the new data to the array and increments the array count.

insert_dail_rows()

This function inserts records into the deal_actuals_item_loc database table at two stages within
the function process(), when the commit point is reached and also before closing the driving
cursor. Upon completion of this function the insert count is reset to zero.

add_dail_upd_row()

This function adds a new element to the pa_upd_item_loc array, whilst ensuring that the array
size is not exceeded and if necessary resizing the array when required. If the array exceeds the
maximum size, resize it before adding the new row by calling the function resize_arrays(). Upon
completion of this function add the new data to the array and update the array count.

update_dail_rows()

This function updates records in the deal_actuals_item_loc database table at two stages within the
function process(), when the commit point is reached and also before closing the driving cursor.
Upon completion of this function the update count is reset to zero.

uom_convert()

Call database package function UOM_SQL.CONVERT to convert the input Item Qty from one
one UOM to the other.

size_arrays()
Allocate memory for elements of the structures used in the program.
resize_arrays()

Use the memory allocation macro to allocate memory for the elements of the structures used in
the program based upon the parameter passed to this function.

free_arrays()

Uses the memory deallocation macro to free the memory used by the elements of the structures
used in the program.

final()
This function calls the function free_arrays() to free all arrays.

Call standard retek close function retek_close() to tidy up restart / recovery.

43

Retek Merchandising System

Input Specifications
Cursor C_ORDER_DATA (used in process_actuals_by_order()):
SELECT dbnrt.order_no,
dbnrt._.deal _id,
dbnrt.deal _detail _id,
dbnrt.dai_id,
dbnrt.item,
dbnrt.loc_type,
dbnrt. location,
dbnrt.order_currency_code,
dbnrt.loc_currency_code,
dbnrt.total _units,
dbnrt.total_revenue,
dbnrt.reporting_date,
dh.threshold_limit_uom
FROM deal _bb no_rebate temp dbnrt,
deal _head dh
WHERE dh.deal id = dbnrt.deal _id

AND MOD(dbnrt.deal_id, TO_NUMBER(:ps_num_threads)) + 1 =
TO_NUMBER(:ps_thread_val)

AND (dbnrt.deal _id >
NVL(TO_NUMBER(:ps_restart _deal _id), -999)

OR (dbnrt.deal_id = TO_NUMBER(:ps_restart_deal_id)
AND

dbnrt.deal _detail _id >
NVL(TO_NUMBER(:ps_restart _deal detail _id), -999)

)

)
ORDER BY dbnrt.deal_id,

dbnrt.deal _detail_id;
Cursor C_ALL_ORDERS (used in process_actuals_all_orders()):
SELECT dbrpt.deal _id,
dbrpt.deal _detail _id,
dbrpt.dai_id,
dbrpt.item,
dbrpt.loc_type,
dbrpt.location,

44

Chapter 2 — Batch designs

dbrpt.
dbrpt.
dbrpt.
dbrpt.
dbrpt.

order_currency_code,
loc_currency_code,
total _units,
total_revenue,

reporting_date,

dh.threshold_limit_uom
FROM deal bb_ rebate po_ temp dbrpt,
deal _head dh
WHERE dh.deal_id = dbrpt.deal_id

AND MOD(dbrpt.deal_id, TO_NUMBER(:ps_num_threads)) + 1 =

TO_NUMBER(:ps_thread_val)

AND (dbrpt.deal _id >
NVL(TO_NUMBER(:ps_restart _deal _id), -999)

OR (

dbrpt.deal_id = TO_NUMBER(:ps_restart_deal _id)

AND
dbrpt.deal _detail _id >

NVL(TO_NUMBER(:ps_restart _deal detail _id), -999)

)

ORDER BY dbrpt.
dbrpt.

Cursor C_TRAN_DATA:

SELECT dtdt.
dtdt.
dtdt.
dtdt.
dtdt.
dtdt.
dtdt.
dtdt.
dtdt.
dtdt.

dtdt

deal _id,
deal _detail _id;

deal _id,

deal _detail _id,
item,

loc_type,
location,
dai_id,
tran_code,
reporting_date,
vat_rate,

units,

.total_revenue,

dh.threshold_limit_uom
FROM deal tran_data temp dtdt,
deal _head dh
WHERE dh.deal_id = dtdt.deal_id

AND (dtdt.deal id

-999)

> NVL(TO_NUMBER(:ps_restart deal _id),

45

Retek Merchandising System

OR (dtdt.deal _id = TO NUMBER(:ps_restart_deal id)
AND

dtdt.deal _detail _id >
NVL(TO_NUMBER(:ps_restart _deal _detail_id), -999)

)

)
ORDER BY dtdt.deal_id,

dtdt.deal _detail _id,
dtdt.reporting_date,
dtdt.item,
dtdt.loc_type,

dtdt. location,
dtdt.dai_id,
dtdt.tran_code;

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Must be run daily otherwise data will be lost and income can not be
calculated retrospectively.

Pre-Processing: salstage.pc
Post-Processing: N/A
Threading Scheme: v_restart_deal

Restart Recovery

The dealact.pc batch program has multi-threading capabilities (deal_id) as well as restart/recovery
functionality. The logical unit of work for this program is deal_id/deal_detail _id.

46

Chapter 2 — Batch designs

Deal explode [dealex]

Design Overview

This batch program will take the information held in DEAL_ITEMLOC and write them to
DEAL_ITEM_LOC_EXPLODE.

This should be run nightly before dealinc.pc where there are records that relate to deals that are
not at the item location level, these records need to be exploded down to the item/location detail
level before copying them to DEAL_ITEM_LOC_EXPLODE.

For all new approved deals (i.e. do not already exist on DEAL_ITEM_LOC_EXPLODE explode
all records down to item/location level (if required) and insert into
DEAL_ITEM_LOC_EXPLODE

In addition the deal_explode batch will also need to look at the reclass_cost_chg_queue table to
take into account any changes in item hierarchy location relationships since records are written

here when a new item is approved / reclassified or associated with a new item supplier country

location.

The following rules should also apply to reduce the data held on the
DEAL_ITEM_LOC_EXPLODE table:

¢ Non inventory items should not be on this table.
e Transaction-level items only

e In case the deal is receipt or sales based, packs should not be on this table either because we
are getting our information from tran_data which does not hold pack information

o If the deal is sales based, only sellable items should be on the table.
e If the deal is receipt based, only orderable items should be on the table.
o If the deal is purchases then it should contain orderable items and packs.

o If the deal is a VFP, off invoice or VFM then we do not need any explosion since posupld
and price extraction will create it for us.

Tables Affected:

Table Name Select | Insert | Update | Delete
DEAL_ITEM_LOC_EXPLODE Yes Yes No No
V_RESTART_DEAL Yes No No No
ITEM_LOC Yes No No No
GROUPS Yes No No No
DEPS Yes No No No
ITEM_MASTER Yes No No No
RECLASS_TRIGGER_TEMP Yes No No No
RECLASS COST_CHG QUEUE | Yes No No No

47

Retek Merchandising System

Table Name Select | Insert | Update | Delete
ITEM_SUPP_COUNTRY Yes No No No
STORE_HIERARCHY Yes No No No
WH Yes No No No
DEAL_ITEMLOC Yes No No No
Program Flow
Main() Init() Retek_Init()

A 4

A 4

A 4

Process()

A 4

Function Level Description

main()
int argc

char *argv[]

Final()

Insert/Select for

DEAL ITEM LOC EXPLODE

Standard RETEK main function.

Log on to DATABASE.

Call Init() to initialize the program.
Call process() to insert records to DEAL_ITEM_LOC_EXPLODE.

Call final() to cleanup.

Retek_Close()

Log appropriate messages for batch run based on return from above calls.

init()
int argc

char *argv[]

48

Chapter 2 — Batch designs

Call standard Retek restart/recovery function retek_init() to populate the ps_num_threads and
ps_thread_val restart variables.

Call fetch_vdate() to get the vdate.
process()
No arguments

Checks first if the program has already been run on the current vdate. If so, data has already been
written in the table DEAL_ITEM_LOC_EXPLODE and will issue an error message that the
program cannot be run more than once on the same date.

EXEC SQL DECLARE c_check date CURSOR FOR
SELECT /*+ FIRST_ROWS */ =X~
FROM v_restart_deal vrd,
deal _item loc_explode dile
WHERE dile.create_date = TO_DATE(:ps_vdate, "YYYYMMDD®)

AND dile.deal_id = vrd.driver_value

AND vrd.driver_name = :ps_driver_nhame
AND vrd.num_threads = TO_NUMBER(:ps_num_threads)
AND vrd.thread val = TO_NUMBER(:ps_thread val)

AND rownum < 2;

Call insert/select statement to select all new approved deals and any new item/locations and
reclassified items for insert into the new explode table DEAL_ITEM_LOC_EXPLODE.

The statement will select all new approved deals (as well as other item/location conditions) from
the deal tables.

final()

No arguments

Call standard Retek file function retek_close()

fetch_vdate()

No arguments

Populate variable ps_vdate with a call to database function GET_VDATE()

49

Retek Merchandising System

Input Specifications
EXEC SQL INSERT /*+ append */ INTO gtt dealex_ item_master
SELECT /* parallel(i, 8) */ g.division,
d.group_no,

i.dept,

.class,

.subclass,

.item,

.status,

-pack_ind,

-sellable_ind,

.orderable_ind,

.item parent,

.item _grandparent,
diff 1,

diff_2,

i.diff_3,

i.diff 4,

to_date(NULL) process date

FROM groups g,

deps d,
item _master i
WHERE d.dept = i.dept
AND g.group_no = d.group_no
AND i.inventory ind = "Y*
AND i.status = "A"
AND i.item level = i.tran_level;

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Daily
Scheduling Diagram: N/A
Pre-Processing: precostcalc.pc
Post-Processing: dealinc.pc

Threading Scheme: DEAL_ID

50

Chapter 2 — Batch designs

Restart Recovery

The module will run for a complete set of deal/item/location records multithreaded by DEAL_ID.
In the current design restart/recovery has not been included due to the nature and complexity of
the select statement required to perform the explosion to item/location level.

Performance Considerations

There is a performance concern regarding the size of the insert/select statement. Due to the
structure of the DEAL_ITEMLOC table the statement needs to take into account all levels of
organization hierarchy and merchandise hierarchy, and also deal exclusions. In order to enhance
performance two inline views (DILT and DIMT) will be used as data lookups for the statements.
These tables provide existing item/location and item/merch records as well as new item/location
and reclassified items.

The complete statement will be used by an “insert’ so as to maximize the performance and the
dataset will be multithreaded by DEAL_ID.

51

Chapter 2 — Batch designs

Deals Forecast [dealfct]

Design Overview

The purpose of this batch module is to maintain forecast periods, deal component totals and deal
totals. After determining which active deals need to have forecast periods updated with actuals,
the program will then sum up all the actuals for the deal reporting period and update the
deal_actuals_forecast table with the summed values and change the period from a forecast period
to a fixed period. The program will also adjust either the deal component totals (deal_detail) or
the remaining forecast periods (deal_actuals_forecast) to ensure that the deal totals remain
correct. For each deal, the program will also maintain values held at deal head level (e.g. growth
rates, etc.)

The program will be run on the same day as salmonth after the dealinc program has completed.

The program will call the following functions from the dealinclib library to maintain deal forecast
periods and deal components:

e Update_actual_fixed_totals — Called when the total_actual_fixed_ind from DEAL_DETAIL
is set to “Y’. This function recalculates and updates the forecast periods in response to a
change made to the actual/forecast value in a reporting period to ensure they still match the
deal component total. NOTE: If the current actuals exceed the forecast total then all forecasts
are set to zero and the total is updated with the sum of the actuals regardless of the fixed
indicator being set.

e Update_budget_fixed_totals — Called when the total_budget_fixed_ind from DEAL_DETAIL
is set to “Y’. This function recalculates and updates the forecast periods in response to a
change made to the budget value in a reporting period to ensure they still match the deal
component total. NOTE: If the current budgets exceed the forecast total then all forecasts are
set to zero and the total is updated with the sum of the actuals regardless of the fixed indicator
being set.

e Update_turnover_trend — This recalculates the actual_forecast_trend_turnover column for
forecast periods using the passed growth rate percentage and the forecast turnover.

e Forecast_income_calc —This function will calculate income based upon the budget turnover
and actual/forecast/trend turnover values from the DEAL_ACTUALS_FORECAST table.
The calculation performed will be determined by the deal income calculation type. The
results of the calculations will be written to the DEAL_ACTUALS_FORECAST table. If the
deal is in Worksheet status, budget_income is updated. If the deal is in Approved status,
actual_forecast_income and actual_forecast_trend _income are updated.

e Update deal detail actual totals — Called when the total_actual _fixed_ind from
DEAL_DETAIL is setto “N’. This recalculates the deal totals by summing up all the
reporting periods, it then updates the DEAL_DETAIL .total_actual_forecast_turnover row
totals with the summed values.

e Update deal detail budget totals — Called when the total_budget_fixed_ind from
DEAL_DETAIL is setto “‘N’. This recalculates the deal totals by summing up all the
reporting periods, it then updates the DEAL_DETAIL. total_budget_turnover row totals with
the summed values.

53

Retek Merchandising System

e Update_total baseline - This recalculates the baseline growth % in response to a change
made to the deal totals and updates the DEAL_DETAIL table. If the deal is in Worksheet
status, total_baseline_growth_budget is updated. If the deal is in Approved status,

total _baseline_growth_act_for is updated.

e Update_forecast_unit_amt - This function will update the total_forecast_revenue or

total_forecast_units on the DEAL_DETAIL table, determined by the deal's
threshold_limit_type: Quantity or Amount, respectively. The calculation will use the total

forecast revenue from the table and the passed amt_per_unit parameter.

o Deal to_date_calcs — This recalculates the deal-to-date budget growth rate, using the SUMs

of the actual turnover and budgeted turnover values for actuals only.

Tables Affected:

TABLE INDEX SELECT INSERT UPDATE | DELETE
DEALFCT_TEMP No Yes No No No
DEAL_DETAIL No No No No No
DEAL_ACTUALS_FORECAST No No No Yes No
DEAL_ACTUALS_ITEM_LOC No No No No No
STORE No No No No No
WH No No No No No

Stored Procedures / Shared Modules (Maintainability)

Header file included: DEALINCLIB.h using functions: update_actual_fixed_totals,
update_budget_fixed_totals, update_turnover_trend, forecast_income_calc,
update_deal_detail_actual_totals, update_deal_detail_budget_totals, update_total_baseline,
update_forecast_unit_amt, deal to_date calcs

Function Level Description
main()

This function will Validate the program arguments and logon to Oracle, call the init() function to
initialize restart / recovery and variables, call the process() function to execute main program
logic and then call the final() function to clean up all internal processing

init()

This function calls the standard retek initialization function retek_init() to initialize
restart/recovery.

It will then retrieve system level variables:
SYSTEM_OPTIONSNS.CURRENCY_CODE,

PERIOD.VDATE

Call the function size_arrays()

Process()

54

Chapter 2 — Batch designs

This function contains the driving cursor which will retrieve details of forecast periods for active
deal components that require processing. The cursor will also return a flag indicating if this is the
last reporting period for the component, this is required for Pro-Rate processing as the last period
for pro-rated deals requires special processing.

Looping through the fetched data, if the deal period has changed, call add_daf_upd_row() to add
totals for previous forecast period to pa_upd_daf array and add a new element to the array.

If last_period_ind is “‘N’, call calc_amount_per_unit() to add the reporting period details to the
appropriate forecast period update array, and call add_forecast_period_row() to add a new
element to the pa_upd_forecast_periods array. The period totals are then reset..

While processing, if the deal changes call add_deal _upd_row() to add a new element to the
pa_upd_deal array.

During processing in the loop, when a commit point has been reached, perform update processing
and commit the data to the database: call update_daf data(), update_forecast_periods(),
update_deal_components(), and update_deals().

If deal component has changed, update component data by calling calc_amount_per_unit() to add
the reporting period details to the appropriate forecast period update array then call
add_component_upd_row() to add a new element to the deal component array.

If the location currency is not the same as the deal currency then call the library function
convert() to convert the revenue and income.

Once finished loop processing, all valid data is then inserted/updated in the database.
add_daf_upd_row ()

Adds a new element to the update array whilst ensuring that the array size is not exceeded and if
necessary resizing the array when required.

update_daf data()

Array updates the DEAL_ACTUALS_FORECAST table from the pa_upd_daf _data array. Sets
actual_forecast_ind = ‘A’, actual_forecast_turnover, actual_forecast_income, actual_income,
actual_forecast_trend_turnover, and actual_forecast_trend_income.

add_deal_upd_row()

Adds a new element to the pa_upd_deal array whilst ensuring that the array size is not exceeded
and if necessary resizing the array when required.

add_component_upd_row()

Adds a new element to the pa_upd_deal_detail array whilst ensuring that the array size is not
exceeded and if necessary resizing the array when required.

add_forecast_period_row()

Adds a new element to the pa_upd_forecast_periods array whilst ensuring that the array size is
not exceeded and if necessary resizing the array when required.

update_forecast_periods ()

This function loops through the pa_upd_forecast_periods array and calls dealinclib library
function update_actual_fixed_totals() if total_actual_fixed_ind = “Y".

If rebate_ind = “Y”, library function forecast_income_calc() is called.

update_deal_components ()

55

Retek Merchandising System

This function loops through the pa_upd_deal_detail array and calls dealinclib library functions
update_deal_detail_actual_totals(), update_total_baseline(), and update_forecast_unit_amt().

update_deals ()

This function loops through the pa_upd_deal array and calls dealinclib library functions
update_turnover_trend() and forecast_income_calc().

calc_amount_per_unit ()

This function calculates forecast amounts per unit. The unit can be one of two threshold limit
types, Q or A.

‘Q’ means that if total actual forecast turnover is zero, then the amount per unit is zero. If the
total actual forecast turnover is NOT zero the amount per unit is equal to the
total_forecast_revenue divided by total actual forecast turnover.

‘A’ means that if total actual forecast units is zero, then the amount per unit is zero. If the total
actual forecast unit is NOT zero the amount per unit is equal to the total_forecast_units divided
by total actual forecast turnover

size_arrays ()
Allocate memory for elements of the structures used in the program.
resize_arrays ()

Use the memory allocation macro to allocate memory for the elements of the structures used in
the program.

free_arrays ()

Uses the memory deallocation macro to free the memory used by the elements of the structures
used in the program.

handle_shared_lib_error ()

Passing in the two parameters, the calling functions name and the function name being called.
Call the function get_lib_error_message()

Call standard retek close function retek_close().

final()

Free all arrays by calling function free_arrays().

Call standard retek close function retek_close().

56

Chapter 2 — Batch designs

Input Specifications
Driving cursor:
SELECT daf _rowid,
deal _id,
deal _detail _id,
dh_currency_code,
threshold_limit_type,
rebate_ind,
total_actual_fixed_ind,
total forecast_units,
total forecast_revenue,
total _actual_ forecast turnover,
reporting_date,
last _period_ind,
actual_ forecast_turnover,
vloc_currency_code,
actual _turnover_units,
actual_turnover_revenue,
actual_income
FROM dealfct_temp
WHERE restart_thread_return(deal _id, TO NUMBER(:ps_num_threads))

TO_NUMBER(:ps_thread_val)
AND deal _id > NVL(:ps_restart_deal_id, -999)
ORDER BY deal _id, deal _detail_id, reporting date;

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Ad hoc on the same day as salmonth.pc.
Pre-Processing: dealinc.pc

Post-Processing: N/A

Threading Scheme: v_restart_deal

Restart Recovery
The Logical Unit of Work (LUW) for the program is deal _id.

57

Chapter 2 — Batch designs

Deal Income Calculation Daily — [dealinc]

Design Overview

For complex deals, this program will retrieve deal attributes and actuals data from the deals
tables, it will then calculate the income and will update DEAL_ACTUALS_ITEM_LOC rows
with the calculated income value. Additionally the program will insert the income value into the
TEMP_TRAN_DATA table using the new tran data codes 6 (Deal Sales) and 7 (Deal Purchases).

Deal calculations are done in deal currency but data held on DEAL_ACTUALS_ITEM_LOC
table is in location currency, hence if the currencies differ then the values need to be converted to
deal currency before calculation and back to location currency after calculation for subsequent
updating of the rows. Currency convert routines in the currconv.pc library will be utilized.

Subsequent programs will run to perform forecast processing for active deals and to roll up
TEMP_TRAN_DATA rows inserted by the multiple instances of this module and insert/update
DAILY_DATA with the summed values and then insert details from TEMP_TRAN_DATA into

TRAN_DATA.

Income is calculated via a call to actual_income_calc() in the dealinclib.pc library, this module

will retrieve threshold details for each deal component and determine how to perform the

calculation i.e. Linear/Scalar, Actuals Earned/Pro-Rate, etc.

Tables Affected:

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
GTT_DEALINC_DEALS No Yes Yes No Yes
DEAL_HEAD Yes Yes No No No
DEAL_DETAIL Yes Yes No No No
DEAL_ACTUALS_ITEM_LOC Yes Yes No Yes No
ITEM_MASTER Yes Yes No No No
DEAL_ACTUALS_FORECAST Yes Yes No No No
TEMP_TRAN_DATA No No Yes No No
STORE Yes Yes No No No
WH Yes Yes No No No
SYSTEM_OPTIONS No Yes No No No
SYSTEM_VARIABLES No Yes No No No
PERIOD No Yes No No No

Stored Procedures / Shared Modules (Maintainability)

convert (library function)

actual_income_calc (library function)

59

Retek Merchandising System

Program Flow

Size_arrays()
-- Initialize & size arrays

Init()
-- litialize program &
retrieve program level

variables.

Trancate_table()

Truncate
GTT_DEALINC_DEALS

Calculate_period_income()
-- Calculate the income by
calling the external library

function actual_income_calc()

Process()
Fetch & Process Add_to_temp_tran_data()
pre-select -- Add record to

driving cursor. temp_tran_data insert array
detail cursor

|

A 4

A 4

Convert()

-- Convert the income from
deal currency to local
currency if the currencies are
different

-- Perform R/R

-- Array update rows on table

deal_actuals_item_loc using
the calculated income

-- Array insert rows on table
temp_tran_data using the
records stored in the
temp_tran_data insert array —
populated by function
add to temn tran datai

Final()
-- Cleanup program.

Free_arrays()
a| -- Free memory for arrays

60

Resize_arrays()
-- Re-allocate memory for the
temp_tran_data insert array

Chapter 2 — Batch designs

Function Level Description

Init()

EXEC SQL ALTER SESSION SET HASH_AREA_SIZE=104857600;

EXEC SQL ALTER SESSION SET SORT_AREA_SIZE=104857600;

Call standard retek initialization function retek_init() to initialize restart / recovery.
Gets the following system level variables (program variables):

e SYSTEM_OPTIONS.CURRENCY_CODE (ps_primary_currency_code)
e SYSTEM_VARIABLES.LAST_EOM_DATE (ps_last_stkldgr_close_date)
e PERIOD.VDATE (ps_vdate)

Call function size_arrays().

Call function truncate_table(), passing “GTT_DEALINC_DEALS".

Process()

e Pre-select the deals to be processed into a global temporary table (see “Input Specification”
below).

e Commit the inserted records.

e Define the driving cursor.

e Define the detail cursor.

e Inawhile loop array fetch required information from cursor C_DRIVER.

e For each row retrieved from C_DRIVER, retrieve each row from C_DETAIL in another
while loop.

o For each row retrieved call calculate_period_income() to calculate the income using the
information retrieved from the driving cursor. The calculated income is written to the
corresponding row of the fetch array.

o |f the deal currency and the location currency are not the same then the income value will
need to be converted back from the deal currency to the location currency as the
DEAL_ACTUAL_ITEM_LOC table stores the value in location currency. To do the
conversion the library function convert() is used.

e Add the current details to the temp_tran_data insert array using function
add_to_temp_tran_data().

o Forall rows in the fetch array, an array update is used to update rows on table
DEAL_ACTUALS_ITEM_LOC using the information from the driving cursor and the
income calculated by the function calculate_period_income(). Care is taken to limit each
bulk update to the maximum size defined in MAX_UPDATE_ARRAY_SIZE

e Anarray insert is used to insert all rows from the temp_tran_data array into table
TEMP_TRAN_DATA.. Care is taken to limit each bulk insert to the maximum size defined
in MAX_INSERT_ARRAY _SIZE

e For each change of Deal Id/Deal Detail Id, call standard retek function retek_force_commit()
to commit the changes to the database.

61

Retek Merchandising System

Calculate_period_income()

o This function will call the library function actual_income_calc() to perform the income
calculation for the current period row using the deal details passed into it. If necessary the
input values will be converted into the deal currency prior to income being calculated.

o If the deal currency and the location currency are not the same then the actuals value
retrieved from DEAL_ACTUALS_ITEM_LOC in the driving cursor need to be converted
from the location currency into the deal currency before the income is calculated. To do the
conversion the library function convert() is used. This is only required if the limit type is
Amount, also the act_for_turnover_total does not need to be converted as it comes from the
DEAL_ACTUALS_FORECAST table which is already in the deal currency.

e The amount_per_unit is calculated as follows: When threshold_limit_type is Quantity and
threshold_value_type is Percent-Off then the amount_per_unit = actual_turnover_revenue /
actual_turnover_units. When threshold_limit_type is Amount and threshold_value_type is
Amount-Off then the amount_per_unit = actual_turnover_units / actual_turnover_revenue. In
all other cases, the amount_per_unit is defaulted to zero.

o If the deal is prorated and the totals are not fixed, then we need to subtract the current
DEAL_ACTUALS_FORECAST.ACTUAL_FORECAST_TURNOVER from
actual_forecast_turnover_total as this will become an Actual, when program dealfct.pc runs.
The sum of the actual_forecast_turnover is retrieved from table
DEAL_ACTUALS FORECAST for rows where the actual_forecast_ind = ‘F’ (forecast) and
the reporting_date <= period.date. This amount is then subtracted from the
actual_forecast_turnover_total amount.

e The library function actual_income_calc() is then called using the
actual_forecast_turnover_total (if prorated this total will have actual_forecast_turnover
already subtracted — see above) and calculated amount_per_unit. All other information is
supplied by the driving cursor.

Add_to_temp_tran_data()

o If the temp_tran_data insert array has reached its initial size then need to add another entry to
the array using a call to function resize_arrays()

e Copy current record from the driving cursor into the temp_tran_data insert array.
Size_arrays()

e Allocate memory for the driving cursor fetch array and the temp_tran_data insert
array.
Resize_arrays()

e Re-allocate memory for the temp_tran_data insert array.

Free_arrays()

o Free memory allocated for the driving cursor fetch array and the temp_tran_data insert array.
Truncate_table()

o Truncate the table name specified by the is_table_name input parameter.

Final()

o Free all arrays by calling function free_arrays().

62

Chapter 2 — Batch designs

e Call standard retek close function retek_close().
Input Specifications

Driving cursors:

This pre-select, driving and detail cursors will retrieve active bill back deals rows which require
income to be calculated today and the relevant columns from the deal tables to perform this
calculation. Active bill back deal periods requiring income calculation are identified as forecast
periods where the reporting date <= today.

Pre-Select of Deals to be processed (into GTT_DEALINC_DEALS).
EXEC SQL INSERT INTO gtt dealinc_deals
SELECT dh.deal_id,
dd.deal _detail _id,
dh.stock ledger_ind,
dh.deal _income_calculation,
dh.threshold_limit_type,
dd.threshold_value_type,
dh.rebate_calc_type,

NVL(dh.currency_code, :ps_primary_currency_code)
currency_code,

dh.growth_rate to_date,
dd.calc_to zero_ind,
dd.total_actual_fixed_ind,

DECODE(dh.rebate_purch_sales ind, "P",
:TRAN_CODE_DEAL_PURCHASE,

:TRAN_CODE_DEAL_SALE) rebate purch_sales_ind,

daf.reporting_date,

dh.rebate_ind,

vdaF.last_reporting date,

vdaf.act_for_turnover_total

FROM deal head dh,

deal _detail dd,

deal _actuals_forecast daf,

(SELECT /*+ parallel(deal_actuals_ forecast, 8) */
daf2.deal _id,
daf2.deal _detail _id,
MAX(daf2.reporting_date) last reporting date,

SUM(daf2.actual_forecast_turnover)
act_for_turnover_total

63

Retek Merchandising System

FROM deal actuals_ forecast daf2

WHERE
RESTART_THREAD RETURN(daf2.deal_id, :ps_num_threads) =
TO_NUMBER(:ps_thread_val)

GROUP BY daf2.deal_id, daf2.deal_detail_id) vdaf

WHERE dh.billing_type = "BB"
AND dh.status = "A"
AND dh.deal_id = dd.deal_id
AND dd.deal id = daf.deal _id
AND dd.deal_detail_id = daf.deal_detail_id
AND dd.deal _id = vdaf.deal _id
AND dd.deal _detail _id = vdaf.deal detail _id
AND daf.reporting_date <= TO_DATE(:ps_vdate,
"YYYYMMDD™)
AND daf.reporting_date >

TO_DATE(:ps_last _stkldgr_close date, "YYYYMMDD®)

AND RESTART_THREAD RETURN(dh.deal id, :ps_num _threads) =
TO_NUMBER(:ps_thread_val)

AND (dd.deal _id > NVL(TO_NUMBER(:ps_restart_deal id), -
999)

OR (dd.deal _id = TO_NUMBER(:ps_restart_deal _id) AND

dd.deal _detail _id >
NVL(TO_NUMBER(:ps_restart _deal detail_id), -999)));

C_DRIVER.
EXEC SQL DECLARE c_driver CURSOR FOR
SELECT DISTINCT gdd.deal_id,
gdd.deal _detail_id
FROM gtt_dealinc_deals gdd
ORDER BY gdd.deal _id,
gdd.deal _detail_id;
C_DETAIL.
EXEC SQL DECLARE c_detail CURSOR FOR
SELECT /*+ ordered */
gdd.deal_id,
gdd.deal _detail _id,
gdd.stock_ledger_ind,
gdd.deal income_calculation,
gdd.threshold_limit_type,
gdd.threshold_value_type,
gdd.rebate_calc_type,

64

Chapter 2 — Batch designs

NVL(gdd.currency code, :ps_primary_currency_ code),
NVL(vloc.currency code, :ps_primary_currency_code),
gdd.growth_rate_to_date,

gdd.calc_to_zero_ind,

gdd.total_actual_ fixed_ind,

DECODE(gdd.rebate purch_sales_ind, "P",
:TRAN_CODE_DEAL_PURCHASE,

:TRAN_CODE_DEAL_SALE),
dail .dai_id,
dail.item,
dail.loc_type,
dail.location,
TO_CHAR(dail.reporting_date, "YYYYMMDD®),
NVL(dail.order_no, -1),
dail.actual_turnover_units,
dail.actual_turnover_revenue,
gdd.act_for_turnover_total,
im_dept,
im.class,
im.subclass,

DECODE(gdd. last_reporting_date,
dail _.reporting_date,"Y","N") last_period,

gdd.rebate_ind
FROM gtt_dealinc_deals gdd,
deal_actuals_item loc dail,
item_master im,
(SELECT st.store loc,
st.currency_code,
*S" loc_type
FROM store st
WHERE stockholding_ind
UNION ALL
SELECT wh.wh loc,

"y

wh.currency_code,
"W* loc_type
FROM wh
WHERE stockholding_ind

v

65

Retek Merchandising System

WHERE gdd.deal _id

AND finisher_ind = "N*) vloc
TO_NUMBER(: Is_deal_id)

AND gdd.deal_detail_id =
TO_NUMBER(:Is_deal _detail_id)

AND
AND
AND
AND
AND

AND
"YYYYMMDD*)

AND

dail.deal_id = gdd.deal_id

dail .deal _detail _id = gdd.deal _detail _id
dail.item = im.item
dail_location = vloc.loc
dail_loc_type = vloc.loc_type

dail .reporting_date <= TO_DATE(:ps_vdate,
dail .reporting_date >

TO_DATE(:ps_last_stkldgr_close_date, "YYYYMMDD®);

Output Specifications

N/A

Scheduling Considerations

Processing Cycle:

Scheduling Diagram:
Pre-Processing:
Post-Processing:

Threading Scheme:

Restart Recovery

Ad-Hoc. Must be run before salmth.pc, after dealact.pc and before the
new programs which perform forecast processing and DAILY_DATA
roll up. The order of the specific modules are: salstage.pc (daily),
salapnd.pc (daily), dealex.pc (daily), dealact.pc (daily),
salweek.pc/prepost.pc salweek post (weekly), dealinc.pc (monthly), Run
dealfct.pc (monhtly), prepost.pc dealday pre (monthly), dealday.pc
(monthly), prepost.pc dealday post (monthly), salweek.pc/prepost.pc
salweek post (monthly), salmth.pc (monthly)and prepost.pc salmth post
(monthly), vendinvc.pc/vendinvf.pc (daily for monthly processing
AFTER salmth), (optional prepost vendinv pre if pulling process does
not purge tables)

N/A
N/A
N/A
N/A

The logical unit of work is a transaction comprising deal_id, deal_detail _id. A commit will take
place after the number of deals records processed is equal to the max counter from the

restart_control table.

66

Chapter 2 — Batch designs

Upload customs tariff files [htsupld]

Design Overview

This batch program will be run whenever an updated US customs tariff file is available (probably

twice a year) to upload HTS tariff information from the file into RMS HTS tables. The program
will handle both the initial HTS information load as well as mid-year HTS updates that are
supplied by the US government. The initial upload is handled by inserting information from the

file into the tables; updating information already in the tables is handled by adjusting the effective
dates of the existing HTS records and inserting a new set of HTS records into the tables.

Updating HTS records should follow the following guidelines:

o No HTS records with the same HTS and import country should have overlapping effect_from
and effect_to dates. Import country is passed as an input parameter to the program, so that the

program can support different import countries.

e The new HTS effective dates will never chop up the effective dates of an existing HTS, and
there will never be any rollback in dates. Therefore, a new HTS can only start in the middle

of an existing HTS or cover a completely different time frame after the existing HTS.

e When loading a new HTS that starts in the middle of an existing HTS, the effect_to date of

the existing HTS should be adjusted to one day before the new effect_from date.

o No existing HTS information should be purged by the program. It’s the client’s responsibility

to handle that.
Tables Affected:

TABLE SELECT | INSERT | UPDATE | DELETE
HTS Yes Yes Yes Yes
HTS_TAX No Yes Yes Yes
HTS_FEE No Yes Yes Yes
HTS_OGA No Yes Yes Yes
HTS_TARIFF_TREATMENT Yes Yes Yes Yes
HTS_TT_EXCLUSIONS No Yes Yes Yes
TARIFF_TREATMENT Yes No No No
COUNTRY_TARIFF_TREATMENT | Yes No No No
HTS_CHAPTER Yes No No No
OGA Yes No No No
UOM_CLASS Yes No No No
CODE_DETAIL Yes No No No
QUOTA_CATEGORY Yes No No No
COUNTRY Yes No No No

67

Retek Merchandising System

TABLE SELECT | INSERT | UPDATE | DELETE
HTS _CVD No No Yes No
HTS_AD No No Yes No
HTS REFERENCE No No Yes No
ITEM_HTS Yes Yes Yes No
ITEM_HTS_ASSESS No No Yes No
ORDSKU _HTS Yes Yes Yes Yes
MOD_ORDER_ITEM_HTS No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
DUAL Yes No No No
ORDSKU_HTS_ASSESS No No No Yes
ORDHEAD Yes No No No
ORDLOC Yes No No No
ORDSKU Yes No No No
CE_CHARGES Yes No No Yes
CE_ORD_ITEM Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ORDSKU_TEMP Yes No No No

Stored Procedures / Shared Modules (Maintainability)
ITEM_HTS_SQL.DELETE_ASSESS - given the item, hts, import_country_id,

origin_country _id, effect_to and effect_from, this function deletes the corresponding record from
item_hts_assess.

ITEM_HTS_SQL.DEFAULT_CALC_ASSESS - given the item, hts, import_country _id,

origin_country _id, effect_to and effect_from, this function inserts into item_hts_assess, it also
will potentially call other package functions and update other tables.

LC_SQL.DELETE_LCORDAPP - given the order_no, this function deletes from Ic_ordapply
table.

OTB_SQL.ORD_UNAPPROVE - given the order_no, this function updates the otb table.

ITEM_ATTRIB_SQL.GET_STANDARD_UOM - given the item_no, item_type and indicator,
this function returns the standard_uom, standard_class, and conv_factor.

UOM_SQL.CONVERT - given the to_uom, from_value, from_uom, item, supplier and
origin_country, this function returns the to_value.
SQL_LIB.BATCH_MSG - returns error message information.

68

Chapter 2 — Batch designs

ORDER_HTS_SQL.DELETE_ASSESS -- given the order_no and seq_no, this function deletes
from the ordsku_hts_assess table.

ORDER_HTS_SQL.DEFAULT_CALC_ASSESS -- given the order_no, seq_no, pack or item,
hts, import_country_id, origin_country_id, effect_to and effect_from, this function inserts into
ordsku_hts_assess, it also will potentially call other package functions and update other tables.

CE_CHARGES_SQL.INSERT_COMPS - given the ce_id, vessel_id, voyage_ flt ind, order_no,
item, pack_item, hts, import_country_id, effect_from, effect_to, cvb_code this function inserts
into the ce_charges table.

Function Level Description
main()

Standard Retek main function. This program takes in four parameters: userid/passwd, input file,
reject file, import country id.

init()
e A global variable is used to hold the import country id that is passed in as a program input

parameter. Call check _country to make sure that import country exists on the COUNTRY
table; return with fatal error if not. It is used as the import country throughout the program.

e Open input file for read and open reject file for write.

o Call retek_init() for restart/recovery initialization.

o Ifitis a fresh start, call retek_get_record to read the FHEAD line into the fhead structure.
e Fetch vdate from period table.

o Fetch max_item from hts table and max ct from ordsku_hts and max ct from ce_charges.
e Fetch update_item_hts_ind and update_order_hts_ind from the system_options table

o Call check_spi to make sure that ‘C1’ and ‘C2’ exist in the TARIFF_TREATMENT table as
SPI’s. “C1’ and ‘C2’ are default tariff treatments for every HTS. Return with fatal error if not.

file_process()

e Call function retek_get _record in a while loop to read the THEAD line into the thead
structure:

e if the record type returned is ‘FTAIL’, exit the loop; set a save point.

e If the record type returned is *“THEAD?, read the THEAD line into the thead structure that
contains V1, V2, V3, V4 fields. The V4 record is not currently used in RMS/RTM.

e If the record type returned is other than ‘FTAIL’ or “THEAD?, give a fatal error (wrong
record type).

o Call function process_ THEAD to further process data contained in the THEAD. Set process
error flag to indicate non-fatal process error.

69

Retek Merchandising System

Call function retek_get_record in a while loop to read the TDETL line into the tdetl structure:

= if the record type returned is “TTAIL’, exit to the outer loop to continue reading THEAD
records if any exists;

= if the record type returned is other than “TDETL’ or “TTAIL’, give a fatal error (wrong
record type).

Call function process_ TDETL to further process data contained in the TDETL.
Set process error flag to indicate non-fatal process error.
If update_item_hts_ind = “Y”,

= Iftran_code is “A” or “R”, call item_hts_update function. “A” stands for Update only
and “R” stands for Replace. In both of these cases (as opposed to the other possibility of
“D” for Delete) item tables will need to be updated.

If update_order_hts_ind = “Y”, call ordsku_hts_search function.

If process error flag is set. Rollback database process to the save point. Write rejected records
to the reject file.

Call restart_force_commit to perform intermittent commit for restart/recovery.

process THEAD()

70

Fill the hts_keys structure with data from THEAD.

After filling in the hts_keys, verify that effect_from < effect_to date. If not, reject the record
right away. Call valid_all_numeric function to check effect_from, and effect_to field. If
invalid reject the record. This function processes the information in V1, V2 and V3 records
based on the transaction code ("A","R", "D") in the V1 record. It compares the new effective
dates against those of any existing HTS records with the same HTS code and import country.

If the transaction code type is “‘A’, insert a record into the HTS table; if the transaction code
type is ‘R’, update the HTS record that has the same HTS code, import country id,
effect_from and effect_to dates

For transaction code "A":

= If new HTS covers a time period different than and after any existing HTS, or no HTS
exists for the given HTS/import country, is a valid record for inserting.

= If new the HTS record is overlapping with existing record and its effect_from date >
existing record and effect_to >= existing effect_to date, it is a valid record. Process is as
follows:

+ Insert an HTS record with the same data as the existing overlapping HTS, except that
the effect_to date should be 1 day before the effect_from date of the new HTS record.

+ Update the effect_to date of all corresponding child records to 1 day before the
effect_from date of the new HTS record. Insert new hts to the related tables.

Chapter 2 — Batch designs

Detailed technical description:

e Call function validate_hts_update to verify that the record is valid for insert/update to the
database or reject to the reject file. For the valid record call hts_child_update function to
prepare child table processing.

e Call hts_table_insert function to insert record to the hts table. if any invalid information
exists, write to error file.

e Call hts_oga_insert function to insert record/s to the hts_oga table. if any invalid information
exists, write to error file.

e Call hts_spi_insert function to insert record/s to the hts_tariff_treatment table. if any invalid
information exists, write to error file.

e Call hts_gsp_insert function to insert record/s to the hts_tt_exclusions table. if any invalid
information exists, write to error message log file.

e Set process error flag if non fatal error occurs. Return error flag.
e For transaction code "R™:

= Search for the HTS with the same HTS, import country id, effect_from and effect_to
dates. If no record found, reject the record.

= [farecord is found, delete the following child table records with the same HTS, import
country id, effect_from and effect_to dates.

= Insert to update the HTS table and re-insert child table information from the input file.

o Detailed Techincal Description:
= Call function search_hts_update to find record that can be updated in the database tables.
= |If one exists, prepare child tables for processing.

= Call hts_table_insert function to insert record to the hts table. if any invalid information
exists, write to error file.

= Call hts_oga_insert function to insert record/s to the hts_oga table. if any invalid
information exists, write to error file.

= Call hts_spi_insert function to insert record/s to the hts_tariff_treatment table. if any
invalid information exists, write to error file.

= Call hts_gsp_insert function to insert record/s to the hts_tt_exclusions table. if any invalid
information exist, write to error message log file.

e Set process error flag if non fatal error occurs. Return error flag.
e For transaction code "D":
= Seach for the HTS with same HTS, import country id , effect_from and effect_to dates.

= [farecord is found update HTS and all its child records to yesterday.

L) Note: since the dates are still presented in 2-digit year in the 99 tape, we assume that
the year coming in as 00-49 means 2000-2049, and 50-99 means 1950-1999. The
customs uses ‘999999’ to mean Dec 31 st , 2039.

71

Retek Merchandising System

Detailed Technical Description:

e Call function search_hts_reset to find updateable record in the hts table. If one exists, insert
new hts record.

e Call function hts_child_update to update all the child records, then delete the existing hts
record.

validate_hts_update()

e Calloutc_hts date invalid cursor to select HTS records which starts before or on the same
day as any existing HTS, or starts after and ends before any existing HTS:

= effect_from >= new effect from OR
= effect_from < new effect_from and effect_to > new effect_to
If record exists:

e Call out c_hts_date_invalid2 cursor to select HTS records which starts before any existing
HTS and ends on Dec 31 st, 2039.

e [If record is not found, Write the record to the reject file, write an error message to the
message log file, and return to the calling function with a non-fatal error.
Else, set indictor =true (so that the existing record will be truncated to end 1 day before new
HTS starts).
o New HTS starts after and overlaps with an existing HTS:
= effect_from < new effect_from and effect_to >= new effect_from or new HTS starts after
old end date and therefore does not overlap at all. The ranges are completely separate.

This is a valid record, and a most likely scenario. Fetch the effect_from and effect_to of
the existing HTS. Insert a new record with effect_from date same as existing overlapping
hts record and effect_to date is 1 day before the new effect_from date to hts table.

= Call function hts_child_update function to update effect_to date of all child records to 1
day before the new effect_from date.

= Delete the old record from hts table.
search_hts_update()

e Search for the HTS with the same HTS, import country id, effect_from and effect_to dates. If
no record found, reject the record.

o Ifarecord is found, delete the following child table records with the same HTS, import
country id, effect_from and effect_to dates:

= HTS_TT_EXCLUSIONS
» HTS_TARIFF_TREATMENT

= HTS_OGA
= HTS_TAX
= HTS_FEE

72

Chapter 2 — Batch designs

L) Note: HTS table record cannot be deleted due to the other child tables on HTS:
ITEM_HTS, ITEM_HTS_ASSESS, ORDSKU_HTS, HTS_CVD, HTS_AD,
HTS REFERENCE, HTS_CHAPTER. The information on these tables won’t be
loaded in the HTS upload process.

search_hts_reset()

e Search for the HTS with the same HTS, import country id, effect_from and effect_to dates. If
no record found, reject the record.

e Insert into HTS, all the same information, but inserting yesterday as the new to_date.

e [farecord is found, call hts_child_update function to update the records in the child tables
with effect_to date to yesterday:

hts_child_update()

This function updates the effect_to date of the existing overlapping HTS record on child tables.
Since the child tables have referential constraints on the effective dates of the parent table HTS.

e Update the effect_to date of all corresponding child records to 1 day before the effect_from
date of the new HTS record.
The following child tables should be updated:
» HTS_TARIFF_TREATMENT

HTS_TT_EXCLUSIONS

= HTS_AD

= HTS_CVD

= HTS_OGA

= HTS_REFERENCE
= HTS_TAX

» HTS_FEE

= ITEM_HTS

» ITEM_HTS_ASSESS
= ORDSKU_HTS
» CE_CHARGES

L Note: Since table HTS_TT_EXCLUSIONS has a foreign key on the effect_to date
of table HTS_TARIFF_TREATMENT, we cannot update the effect_to date of
HTS_TARIFF_TREATMENT directly. Likewise, insert an
HTS_TARIFF_TREATMENT record with the new effect_to date first; then update
the effect_to date of the HTS_TT_EXCLUSIONS table; at the end delete the
HTS_TARIFF_TREATMENT record with the original effect_to date.

o Call delete_ord_temp_tables and pass in the value “-1” because there is no known order_no
at this point.

73

Retek Merchandising System

item_hts_update()

e Call size_item_array function to allocate space for the items

e Fetch item, origin_country_id and status from item_hts into struct

o If no data found, call free_itemlist and go to the next record. If data is found, Loop

= |ftran_code = “A” the item will need to be inserted with the same data as the fetched
record but with new effect_to and effect_from dates.

+ Insert dates into item_hts.

+ Delete old record from item_hts

+ Call the package SQL Delete assess to delete the old records from item_hts_assess.
= [ftran_code = “R”

+ Call SQL Delete_assess to delete the old records from item_hts_assess

+ Call SQL Default_calc_assess to update the item_hts_assess table (ie insert record
with new dates and recalculate)

+ Call ECL_CALC_SQL.CALC_COMP to recalculate expenses based on new
aSSeSSES.

+ Insert into mod_order_item_hts a new record with same data but new dates.
+ Call free_itemlist

ordsku_hts_search()

Call size_ord_array function to allocate space for the order information

e Fetch values from ordhead, ordsku_hts, ordsku and ordloc into struct (all necessary values to
be able to do a complete insert into the mod_order_item, ordsku_hts, and ordsku_hts_assess
tables.

o If no data found, call free_ordlist and go to next record. If data is found, Loop

= If order status = “A”, (the order needs to be updated) set status from approved back to
worksheet by calling SQL functions (LC_SQL.DELETE_LCORDAPP and

= OTB_SQL.ORD_UNAPPROVE).
= Insert into mod_order_item_hts table (just the order_no and indicator set to “Y’)
= Call ordsku_hts_update
= Call free_ordlist
ordsku_hts_update()
o Callsize_ce_array to allocate space for the custom entry information
= Fetch custom entry values from ce_ord_item, ce_head, item_supp_country into struct
= If no data found, call ordhts_update. If data is found:
+ If CE status = “W”, (worksheet status)
+ Call ordhts_update
+ Loop for each custom entry record

74

Chapter 2 — Batch designs

Call ce_update

+ If status I= “W” then the quantity cleared will need to be compared to the total
guantity. In order to do that they will need to be converted to the standard uom
format

+ Loop

Call uom_convert to get the total quantity.

If total_qty < qty_ordered
Call ordhts_update

Call free_ceordlist

ordhts_update()

If tran_code = “A” or “D”

Delete old record (record with old dates) from ordsku_hts_assess
Delete old record (record with old dates) from ordsku_hts

Insert record with new dates into ordsku_hts

Else if tran_code = “A”

Insert record with new dates into ordsku_hts

Else if tran_code = “D”

Call SQL Delete_assess by calling order_del_assess function
Call SQL calc_comp

If the item is a pack item check to see if a record already exists on mod_order_item_hts —

if it does not, insert one with the pack_item
If it is not a pack item, insert with item_no into mod_order_item_hts.
Return 0

Else if tran_code = “R”

Call delete_ord_temp_tables and pass in the order_no.

Call SQL Delete_assess by calling order_del_assess function

Call ORDER_HTS _SQL.DEFAULT_CALC_ASSESS with either the pack_no or item_no
depending on if it is a pack or not.

Call ELC_CALC.CALC_COMP

If it is a pack item insert into mod_order_hts with the pack_no

If it is not a pack item, insert into mod_order_item_hts with the item_no

75

Retek Merchandising System

ce_update()

Delete from ce_charges.
Ifitisa“D”, call CE_CHARGES SQL.INSERT_COMPS

hts_table_insert()
Before inserting into or updating the HTS table,

Call function check_chapter to make sure that the chapter already exists on the
HTS_CHAPTER table. If not, reject the record;
Call check valid_all_numeric function to check unit for all numeric value.

Call function check_uom to make sure that the UOMs (UOM1, UOM2, UOM3) already exist
on the UOM_CLASS table. Reject the record if UOM does not exist.

Call function check_duty to make sure that the duty code already exists on the
CODE_DETAIL table. If not, reject the record.

Call valid_all_numeric function to verify that the quota is all numeric. Then calling function
check_quota to make sure that the quota category already exists on the

QUOTA_CATEGORY table. If not, reject the record.

Update the existing hts record with the updated hts_desc, chapter, units, units_1, units_2, units_3,
duty_comp_code, more_hts_ind, quota_cat, quota_ind, ad_ind, cvd_ind.

Insert the following into the HTS table:

76

hts: tariff number (V1c)

import_country_id: import country from the program input parameter
effect_from: begin effective date (V1e)

effect_to: end effective date (V1f)

hts_desc: commaodity description (V1)

chapter: 1 st 4 (leftmost) digits of tariff number

units: number of reporting units (V1g)

units_1: first unit of measure (V1h) (If the number of reporting units is zero, this should
be defaulted to “X’)

units_2: second unit of measure (V1) -NULL if not given

units_3: third unit of measure (V1j)—NULL if not given
duty_comp_code: duty code (V1k)

more_hts:Y if additional tariff indicator (V2] is ‘R’, N otherwise
quota_cat: category number (V3h) but only if quota indicator (V3g) is 1
quota_ind “Y” if there is a quota,”’N’ otherwise

ad_ind “Y” if the anti-dumping flag (V3f) is 1, N otherwise

Chapter 2 — Batch designs

e cvd_ind “Y’if the countervailing duty flag (V2k) is 1, N otherwise
hts_oga_insert()

For each OGA code, call function check_oga to verify that the OGA code exists on the OGA
table. If not, reject the record; otherwise, call hts_oga_insert to insert into HTS_OGA.

o Insert the following into the HTS_OGA table:

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

e code: OGA code from OGA codes field (V3f)

reference_id: NULL

e comments: NULL

hts_spi_insert()

For each SPI, call function check_spi to check if the SPI exists on the tariff_treatment table; if
not, reject the record. Call function hts_tariff_treatment_insert to insert into

HTS TARIFF_TREATMENT. In addition to the SPI records in V3, ‘C1’ and ‘C2’ are default
tariff_treatments for every HTS. So, two extra records should be inserted into

HTS TARIFF_TREATMENT with SPI codes ‘C1’ and ‘C2’. “‘C1’ takes the special_duty rate
from V1 and Column 1 rates from V2; ‘C2’ takes Column 2 rates from V2. Before inserting, call
function check_spi to make sure that the SPI code (tariff treatment) exists on the
TARIFF_TREATMENT table; reject the record if it does not.

Call valid_all_numeric function to check specific_rate, ad_rate, other_rate for all numeric value.
If not, reject the record.

Reject HTS lines that have rate greater than 9999999999. A brief explanation of why this is done
is located at the end of the function level description section.

Insert the following into the HTS_TARIFF_TREATMENT table:

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tariff_treatment: SPI code from Va3i

e specific_rate: 0,coll or col2 specific rate, as appropriate (O for SPI’s,col 1 for coll, col 2 for
col2)

e av _rate: 0,coll, or col2 ad valorem rate, as appropriate (0 for SPI’s)
e other_rate: 0,coll, or col2 other rate, as appropriate (0 for SPI’s)

hts_gsp_insert()

77

Retek Merchandising System

For each GSP excluded country, call function check_country_tariff_treatment to check that the
country and tariff treatment combination exists on the COUNTRY_TARIFF_TREATMENT
table; if not, reject the record.

Insert the following into the HTS_TT_EXCLUSIONS table

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter

o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tariff_treatment: first SPI code from V3i

e origin_country_id: excluded country code from V3d (GSP excluded countries)
check_spi()

Check to see if SPI exists on TARIFF_TREATMENT table; reject the record if it doesn’t.
check_country()

Check to see if country exists on COUNTRY table; reject the record if it doesn’t.
check_chapter()

Check to see if chapter exists on the HTS_CHAPTER table and reject the record if it doesn’t.
check_uom()

Check to see if uom exists on UOM_CLASS table; reject the record if it doesn’t.
check_duty()

Check to see if duty code exists on CODE_DETAIL table (check for the code where
code_type="DCMP’); reject the record if it doesn’t.

check_quota()

Check to see if the quota_category exists on the QUOTA_CATEGORY table; reject the record if
it doesn’t.

check_oga()

Check to see if the oga code exists on the OGA table; reject the record if it doesn’t.
check_comb_country_tt()

Check to see if the country and tariff_treatment combination exists on the
COUNTRY_TARIFF_TREATMENT table; reject the record if it doesn’t.

process TDETL()

e Format the tax line information from tdetl structure.

o Call function process_taxfees, if no non-fatal error in the process_ THEAD function.

process_taxfees()

78

Chapter 2 — Batch designs

If tax specific rate or tax ad rate is not null, call hts_taxfee_insert to insert the tax rates into
HTS_TAX or HTS_FEE tables. If special rates exist on the tax line, call function
hts_tariff_treatment_insert to insert into the HTS _TARIFF_TREATMENT table using the ISO
country code as the tariff treatment (SPI). If the SPI given on the tax line already exists for the
HTS, the record should be updated, as the tax line special rate takes precedence over the V3 line
SPI’s rate

Call valid_all_numeric function to check tax_specific_rate, tax_av_rate, fee_specific_rate,
fee_av_rate for all numeric value, if not reject the record.

Reject HTS lines that have rate greater than 9999999999. A brief explanation of why this is done
is located at the end of the function level description section.

hts_taxfee_insert()

If the tax class code is 016,017,018,0r 022 it is a tax; insert into HTS_TAX
If the tax class code is 038,053,054,055,056,057,079,090,103 it is a fee; insert into HTS_FEE
Insert the following into the HTS_TAX or HTS_FEE table:

o hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tax_type/fee_type: tax class code (V5h)

e tax_comp_code/fee_comp_code: tax comp code (V5i)

o tax_specific_rate/fee_specific_rate: tax specific rate (\V5Kk)
tax_av_rate/fee_av_rate: tax ad valorem rate (V/5I)
hts_tariff_treatment_insert()

Before calling this function, call function check_spi to make sure that the SPI code (tariff
treatment) exists on the TARIFF_TREATMENT table; reject the record if it does not.

Insert the following into the HTS_TARIFF_TREATMENT table:

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect from: begin effective date (V1e)

o effect _to: end effective date (V1f)

o tariff_treatment: SPI code from V3i

e specific_rate: 0,coll or col2 specific rate, as appropriate (0 for SPI’s,col 1 for coll, col 2 for
col2)

e av_rate: 0,coll or col2 ad valorem rate, as appropriate (0 for SPI’s)
e other_rate: 0,coll or col2 other rate, as appropriate (0 for SPI’s)
size_item_array()

Allocates space for the item array struct

79

Retek Merchandising System

size_ord_array()

Allocates space for the order array struct
size_ce_array()

Allocates space for the custom entry array struct
free_orditemlist()

Frees the space in the array

free_itemlist()

Frees the space in the array

free_ceordlist()

Frees the space in the array

uom_convert()

e Calls ITEM_ATTRIB_SQL.GET_STANDARD_UOM
e Calls UOM_SQL.CONVERT
order_del_assess()

e Calls ORDER_HTS_SQL.DELETE_ASSESS
delete_ord temp_tables()

If an order no is not passed in, look at the hts table and see if there is an order that exists for that
hts. If so, loop and for each record see if there is a record to delete on the temp tables by calling
ORDER_SETUP_SQL.DELTE_TEMP_TABLES.

If the order number was passed in, call ORDER_SETU_SQL.DELETE_TEMP_TABLES right
away.

final ()
Restart/recovery close and close input and reject file.
Why HTS lines that have a rate greater than 9999999999 need to be rejected:

For fields specific_rate, av_rate, other_rate, RMS has the data type Number(12,8) and numbers
coming in from the customs tape also have 8 implied digits. However, when storing the number
into the Retek database, we need to divide the number coming in from the customs tape by
1000000 (left shift 6 digits) instead of 100000000 (left shift 8 digits). This is because Retek stores
the percent part of the rate only. In other words, rate 11.5% (0.115) is stored as 11.5 in Retek
database, whereas it will come in from the customs tape as 11500000 (=0.115). Therefore, the
highest rate that can be represented in Retek is 9999.99999999% (= 99.9999999999, or < 100
times). So we need to reject HTS lines that have rate greater than 9999999999.

L) Note: This is true for hts spi and hts tax/fee specific_rate and av_rate, except that when
999999999999

80

Chapter 2 — Batch designs

Input Specifications

Record Field Name Field Type | Default Description
Name Value
FHEAD Record Char(5) FHEAD Describes file line type
Descriptor
Line number Number(10) | 0000000001 Sequential file line number
Retek file ID Char(5) HTSUP Describes file type
THEAD Record Char(5) THEAD Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction id | Number(14) Unique transaction id
HTS Line Char(320) V1 through V4 records
from the customs HTS file
concatenated together
TDETL Record Char(5) TDETL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction id | Number(10) Unique transaction id
Tax/fee line Char(80) V5 through V9 records
from the customs HTS file,
each on a separate TDETL
line
TTAIL Record Char(5) TTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Detail lines Number(6) Number of lines between
THEAD and TTAIL
FTAIL Record Char(5) FTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction Number(10) Number of lines between

Lines

FHEAD and FTAIL

Output Specifications

N/A

81

Retek Merchandising System

Scheduling Considerations

Processing Cycle: Ad hoc

Scheduling Diagram: Run anytime as needed.

Pre-Processing: after hts upload conversion (hts2rms — PERL script).
Post-Processing: None

Threading Scheme: None

Restart Recovery

This program supports Retek standard intermittent commit and file upload restart/recovery.
Recommended commit counter is 2000 (commit after every 2000 tariff records are read). Input
file names must end in a “.1” for the restart mechanism to properly parse the file name. Since
there is only 1 input file to be uploaded, only 1 thread is used. A reject file is used to hold records
that have failed processing. The user can fix the rejected records and process the reject file again.

82

Chapter 2 — Batch designs

Recommended Order Quantity [ociroq]

Design Overview

The purpose of this batch program is to call the PL/SQL packages used to calculate the Net
Inventory position of the items on replenishment. The results are stored in the database to be used
by REQEXT (Item Requisition Extraction).

Tables Affected:

TABLE SELECT INSERT | UPDATE | DELETE
DOMAIN_CLASS Y N N
DOMAIN_DEPT Y N N
DOMAIN_SUBCLASS Y N N N
ITEM_SUPP_COUNTRY Y N N N
PERIOD Y N N N
REPL_DAY Y N N N
REPL_ITEM_LOC Y N N N
RPL_NET_INVENTORY_TMP | N Y N N
STORE Y N N N
SYSTEM_OPTIONS Y N N N
WH Y N N N
WIN_WH Y N N N

Scheduling Constraints
Processing Cycle: PHASE 3

Scheduling Diagram: Prepost (ociroq pre), rplatupd, rpladjf and rpladjs need to run before
regext so that all replenishment calculation attributes are up to date.
Posupld needs to run before regext so that all stock information is up to

date.
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: POSIX threads - The restart_control.num_threads will control the

number of POSIX threads that are run within ocirog. The batch program
ocirog.c itself will only need to be run with one thread.

Restart Recovery

The program processes all items on repl_day for the current day. If the program fails, the
rpl_net_inventory _tmp table should be truncated prior to restarting (prepost ociroq pre)

83

Retek Merchandising System

Program Flow

These operations execute
in parallel

Process DriverRoutine ServerRoutine

%

A

Y

InitWorkQ

Y

While Loop

While Loop

A

Start the
DriverRoutime

No Data Found Queue Empty

ThreadRoutine
Wait Until the Driver AddWorkQ
'routine has completed

DestroyWorkQ \

Insert Array
Full

Postlinsert

End Loop

Quit
-

A

End Loop

C Quit -

Shared Modules

GET_REPL_ORDER_QTY_SQL.REPL_METHOD: Stored PL/SQL procedure for calculating
the ROQ of an item at a location.

REPLENISHMENT_SQL.GET_STORE_REVIEW_TIME: Stored PL/SQL procedure for
calculating the time between scheduled shipments to a store from a warehouse. This time is used
by GET_REPL_ORDER_QTY_SQL in its calculations.

OcilnitLogon(): C library function that validates the program usage and performs initial
environment set-up; including opening the daily log file for writing. It also calls OciConnect().

OciConnect(): C library function that connects to the database and performs some initial
environment set-up. This function calls numerous OCI library routines that create the appropriate
OCI handles.

84

Chapter 2 — Batch designs

OciDisconnet(): C library function that disconnects from the database and free the OCI handles
created by the OCIConnect() call.

ReportError(): C library function that calls the OCIErrorGet() function and returns the appropriate
error message.

WriteError(): C library function writes the appropriate message to the error file; indicating the
type of error encountered and the Oracle Error number and message.

LogMessage(): C library function writes the appropriate message to the log file; indicating start
time, end time and time of failure if the program terminated with errors.

RaiseError(): C library function responsible for passing the error code back to the parent process
to ensure correct error handling.

Data Structures
repl_info_struct: Holds information fetched from the driving cursor.

GetOltsStruct: Holds the information passed into and returned from the
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME procedure.

GetReplStruct: Holds the information passed into and returned from the
GET_REPL_ORDER_QTY_SQL.REPL_METHOD procedure.

InsertStruct: Used to buffer the inserts into the rpl_net_inventory tmp table.
DomainStruct: Used to cache forecasting domain information.

Driver_Info: Used by the Driver thread as a container to pass in all the appropriate parameters
to the thread routine.

Thread_Info: Used by the Work Queue threads as a container to pass in all the appropriate
parameters to the thread routine.

WorkQueue_List: This linked list is used to hold the actual data fetched by the Driver thread to
be then consumed by the Work Queue threads.

WorkQueue_Info: Holds all the Work Queue thread control information.

domain_struct: Used to cache forecasting domain information.

Function Level Description
General Controlling Functions
main()

The standard Retek main function, this calls init(), process() and final(), and posts messages to the
daily log files.

init()

Fetches system-level global variables and calls other functions to fetch additional global level
data; GetNumThreads(), GetStoreCount() and LoadDomainlInfo()

Process()

Controls the bulk of the processing. It initializes the Work Queue threads, creates the Driver
thread and waits until the Driver thread has completed prior to calling the DestroyWorkQ() and
ThreadCleanUp() functions.

85

Retek Merchandising System

final ()

The standard Retek final function, this closes down the process and posts messages to the daily
logs.

Thread Controlling Functions
InitWorkQ()

Initializes the specific POSIX Pthread library variables used by the Work Queue threads. It then
initializes the WorkQueue_Info structure variables and creates the specified number of threads;
Each thread calls the ServerRoutine(). The function performs a loop, allocating memory for each
threads data structures and connects each thread to the database by calling the OciConnect()
library routine. Finally it calls the DefineWorkerStmts() function.

ServerRoutine()

Controls the consumption of the WorkQueue_L.ist. Each Work Queue thread monitors and
consumes data from the list until they are instructed to quit or the queue is empty. Initially while
the queue is empty the threads poll the queue every 2 seconds checking the status. All thread
synchronization is handled by the use of a mutually exclusive lock (mutex). Each node taken
from the list is passed to the ThreadRoutine() function.

ThreadRoutine()

Executed by the Work Queue threads; it calls the PL/SQL packages and buffers the result in the
InsertStruct. When an individual thread reaches the MAX_INSERT_SIZE the buffer is inserted
into the rpl_net_inventory tmp table.

GetOlts()

Called by the ThreadRoutine(), this function calls the
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME PL/SQL package.

GetRepl()

Called by the ThreadRoutine(), this function calls the
GET_REPL_ORDER_QTY_SQL.REPL_METHOD PL/SQL package.

DriverRoutine()

Executed by the Driver thread; it’s responsible for defining and fetching the driving cursor and
adding the batch to the queue. The execution of this function by a thread allows it to run in
parallel with the Work Queue threads. The Work Queue threads will start after the first batch has
been placed on the WorkQueue_L.ist.

AddWorkQ()

Loads the array fetched by the DriverRoutine() onto the WorkQueue_L.ist. It allocates memory
for each node and will continue to load the queue while the number of records on the queue has
not exceeded the MAX_QUEUE_SIZE. All thread synchronization is handled by the use of a
mutually exclusive lock (mutex). The function will wait until the queue less than half full prior to
recommencing.

DestroyWorkQ()

Waits until all the Work Queue threads have consumed all the data from the list; it then performs
some cleanup duties. All thread synchronization is handled by the use of a mutually exclusive
lock (mutex).

86

Chapter 2 — Batch designs

ThreadCleanUp()

Frees the memory allocated to each threads data structures (including statement handles) and
disconnects from the database.

Database DML Handling
Postinsert()

When the Insert buffer reaches the MAX_INSERT_SIZE the array is posted to the database and
the work committed.

OCI Statement Functions
DefineDriver()

Performs OCI specific statement set-up; including statement handle preparation, statement handle
attribute set-up (pre-fetch size), statement column definition and the array of structure definition
(skip size etc.) for the Driving Cursor.

DefineGetRepl() **

Performs OCI specific statement set-up; including statement handle allocation, statement handle
preparation and statement column binding for the PL/SQL package call
GET_REPL_ORDER_QTY_SQL.REPL_METHOD.

DefineGetOlts() **

Performs OCI specific statement set-up; including statement handle allocation, statement handle
preparation and statement column binding for the PL/SQL package call
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME.

Definelnsert() **

Performs OCI specific statement set-up; including statement handle preparation, statement handle
attribute set-up (pre-fetch size), statement column definition and the array of structure definition
(skip size etc.) for the rpl_net_inventory_tmp insert Statement.

LLJ Note: These functions are called for each Work Queue thread. Each thread will have its
own database connection and statement handles.

87

Chapter 2 — Batch designs

POS Upload [posupld]

Design Overview

The purpose of this batch module is to process sales and return details from an external point of
sale system. The sales/return transactions will be validated against Retek item/store relations to
ensure the sale is valid, but this validation process can be eliminated if the sales being passed in
have already been screened by sales auditing. The following common functions will be performed
on each sales/return record read from the input file:

e read sales/return transaction record

e |ock associated record in RMS

o validate item sale

e check if VAT maintenance is required, if so determine the VAT amount for the sale

o write all financial transactions for the sale and any relevant markdowns to the stock ledger.
e post item/location/week sales to the relevant sales history tables

o if a late posting occurs in a previous week (i.e. not in the current week), if the item for which
the late posting occurred is forecastable, the last_hist_export_date on the item_loc_soh table
has to be updated to the end of week date previous to the week of the late posting. This will
result in the sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the external forecasting
system.

Stored Procedures / Shared Modules (Maintainability)
validate_all_numeric: intrface library function.
validate_all_numeric_signed: intrface library function.
valid_date: intrface library function.

PM_API_SQL. GET_RPM_SYSTEM_OPTIONS: called from init(), returns
complex_promo_allowed_ind to set pi_multi_prom_ind

CAL_TO_CAL_LDOM database procedure called from get eow_eom_date() function
CAL_TO_454 LDOM database procedure called from get_eow_eom_date() function

VAT_SQL.GET_VAT_RATE: called from pack_check(), fill_packitem_array() returns the
composite vat rate for a pack item.

CURRENCY_SQL.CONVERT: returns the converted monetary amount from Currency to
currency.

NEW_ITEM_LOC: called from item_check(), item_check_orderable(), pack_check_orderable()
and pack_check(), creates a new item if one doesn’t already exist for the item/location passed in.

UPDATE_SNAPSHOT_SQL.EXECUTE: called from update_snapshot(), updates the
stake_sku_loc and edi_daily_sales tables for late transactions. If the item is a return,
edi_daily_sales will not be updated.

89

Retek Merchandising System

NEXT_ORDER_NO: called from consignment_data(), returns the next available generated order
number.

STKLDGR_SQL.TRAN_DATA _INSERT: called from consignment_data(), performs tran_data
inserts (tran_type 20) for a consignment transaction.

DATES_SQL.GET_EOW_DATE: called from get_eow_eom_date(), returns eow and eom dates.
UOM_SQL.CONVERT: called from validate_ THEAD(), converts selling uom to standard uom.

SUPP_ATTRIB_SQL.GET_SUP_PRIMARY_ADDR: called from invc_data(), returns primary
supplier address.

INVC_SQL.NEXT_INVC_ID: called from invc_data(), returns invoice_id
Posupld and VAT:

There are three different data sources in POSUPLD.

1 theinputfile

2 RMS stock ledger tables (tran_data in this context)

3 RMS base tables (other that stock ledger)

Each of these data sources can be vat inclusive or vat exclusive.

There are five different system variables that are used to determine whether of not the different
inputs are vat inclusive or vat exclusive.

1 system_options.vat_ind (assume Y for this document)
2 system_options.class_level_vat_ind

3 system_options.stkldgr_vat_incl_retl_ind

4 class.class vat_ind
5

store.vat_include_ind (this is retrieved from the table when RESA is on and read from the
input file when RESA is off)

Given the three different data source and all combinations of vat inclusive or vat exclusive, we
are left with the 8 potential combinations of inputs to POSUPLD.

Possible POSUPLD inputs

SCENARIO FILE RMS STOCK LEDGER
1 Y Y Y

2 Y Y N

3* Y N Y

4* Y N N

5 N Y Y

6 N Y N

7 N N Y

8 N N N

90

Chapter 2 — Batch designs

Scenarios 3 and 4 are not possible — the file will never have vat when RMS does not.

The combinations of system variables and the resulting scenarios

System_options System_options | Class Store Resulting
Class_level_vat_ind | Stkldgr vat ind Class_vat_ind | Vat_include_ind | Scenario
Y Y Y Y - Ignored 1
Y Y Y N - Ignored 1
Y Y N Y - Ignored 7
Y Y N N - Ignored 7
Y N Y Y - Ignored 2
Y N Y N - Ignored 2
Y N N Y - Ignored 8
Y N N N - Ignored 8
N Y Y - Ignored Y 1
N Y Y - Ignored N 5
N Y N - Ignored Y 1
N Y N — Ignored N 5
N N Y - Ignored Y 2
N N Y - Ignored N 6
N N N - Ignored Y 2
N N N — Ignored N 6

POSUPLD table writes

Scenario 1:

e tran code 1 from file retail.

o tran code 2 from file retail with vat removed.

o retail from file is compared directly with price_hist for off retail check.
Scenario 2:

e tran code 1 from file retail with vat removed.

e tran code 2 not written.

o retail from file is compared directly with price_hist for off retail check.

91

Retek Merchandising System

Scenario 5:

o tran code 1 from file retail with vat added.

o tran code 2 from file retail.

o retail from file has vat added for compare with price_hist for off retail check.
Scenario 6:

o tran code 1 from file retail.

e tran code 2 not written.

o retail from file has vat added for compare with price_hist for off retail check.
Scenario 7:

e tran code 1 from file retail with vat added.

e tran code 2 from file retail.

o retail from file is compared directly with price_hist for off retail check.

e Scenario 8:

tran code 1 from file retail.

e tran code 2 not written.

o retail from file is compared directly with price_hist for off retail check.

Function Level Description

main()

standard Retek main function that calls init(), process(), and final()
init()

initialize restart recovery

open input file (posupld)

o file should be specified as input parameter to program

fetch system variables, including the SYSTEM_OPTIONS.CLASS LEVEL VAT _IND.
fetch pi_multi_prom_ind from RPM interface

retrieve all valid promotion types and uom class types

fetch uom class types for look up during THEAD processing
declare memory required for all arrays setup for array processing
declare final output filename (used in restart_write_file logic)
open reject file (as a temporary file for restart)

o file should be specified as input parameter to program

open lock reject file (as a temporary file for restart)

o file should be specified as input parameter to program

92

Chapter 2 — Batch designs

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject counter (g_I_rej_cnt),
lock reject file counters (pl_lock_cnt, pl_lock_dtl_cnt), store, transaction_date

if fresh start (1_file_start = 0)

read file header record (get_record)

write FHEAD to lock reject file

if (record type <> ‘FHEAD’) Fatal Error
validate file type = ‘POSU’

else fseek to |_file_start location

validate location and date are valid

set restart variables to ones from restart image
file_process()

This function will perform the primary processing for transaction records retrieved from the input
file. 1t will first perform validation on the THEAD record that was fetched. If the transaction
was found to be invalid, a record will be written to the reject file, a non-fatal error will be
returned, and the next transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the get_unit_retail() function. The
retail retrieved from this function will be compared with the actual retail sent in from the input
file to determine any discrepancies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being processed until a
TTAIL record is encountered. Perform validation on the transaction detail records. If a detail
record is found to be invalid, the entire transaction will be written to the reject file, a non-fatal
error will be returned, and the next record will be fetched. If a valid promotion type (code for
mix & match, threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily_sales_discount table. If it is an employee
discount record write an employee discount record to tran_data. Finally, accumulate the discount
amounts for all transaction detail records for the current transaction, unless the record was an
employee discount. Next, establish any vendor funding of promotions. This information is
expressed as a percentage of the allowed discount and is retrieved by querying the
rpm_promo_xxx tables for the promotion_id and component_id. If the promotion type is 9999
(i.e., all promotion types), call get_deal_contribs to append to pr_deals_contribs arrays zero or
more lines of deal and vendor contribution information for the current item

Call the item_process() function to perform item specific processing. Once all records have been
processed, write FTAIL record to lock reject file and call posting_and_restart to commit the final
records processed since the last commit and exit the function.

item_process()

Check to see if any validation failed for the item before this function was called. If a lock error
was found, call write_lock_rej() then return. If an other error was found, call write_rej() and
process_detail_error() then return.

93

Retek Merchandising System

Set the item sales type for the current transaction. Valid sales types are ‘R’egular sales,
‘C’learance sales, and ‘P’romotional sales. These will be used when populating the sales types
for the item-location history tables. If an item is both on promotion and clearance, and the
promotion price is less than the clearance price, than the transaction will be written as a
promotion transaction, otherwise as a clearance transaction.

If the system’s VAT indicator is turned on, VAT processing will be performed. The function
vat_calc() will retrieve the vat rate and vat code for the current item-location. The total sales
including and excluding VAT will be calculated for use in writing transaction data records. If
any VAT errors occur, the entire transaction will be written to the reject file, a non-fatal error
will be returned, and the next record will be fetched. A record will be written to vat_history for
the item, location, transaction date.

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost sold, etc.). If
VAT is turned on in the system, calculate exclusive and inclusive VAT sales totals.

Calculate any promotional markdowns that may exist by calling the calc_prom_totals() function.
The markdown information calculated here will be used when writing tran_data (tran_type 15)
records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to its price_hist record. (The
complex_promo_allowed_ind indicator is retrieved from RPM by calling
PM_API_SQL.GET_SYSTEM_OPTIONS.) Since we do not create price_hist records of type 9
(promotional retail change) when the complex_promo_allowed_ind = “Y”’, we do not know what
the promotional retail for this item is. Therefore, we will take the total sales reported from the
header record plus the total of sales discounts reported in the TDETL records, divided by the total
sales guantity for the item to calculate its unit retail. If the complex_promo_allowed_ind = *N’,
we can do a comparison of the price_hist record and the unit retail (total retail / total sales)
inputted from the POS file. Any difference using either method will write to the
daily_sales_discount table with a promotion type of ‘in store’ and tran_data (tran_type 15) If the
transaction is a return, no daily_sales_discount record will be written, and tran_data records will
be written as opposite of what they were sold as (i.e. if the sale was written as a markup, which
would be written as a negative retail with a tran_data 15, the return would be written as a 15 with
a positive retail).

If the item is a pack item and the transaction is a Sale, the process_pack() function will update the
last_hist_export_date field on the item_loc_soh table to the transaction date and the item_loc_hist
table will be updated with the transaction information.

If the item currently being processed is a pack item, calculate the retail markdown the item takes
for being included in the pack and write a transaction data record as a promotional markdown.
This markdown is calculated by comparing the retail contribution of the pack item’s component
item to the pack item to the component item’s regular retail found on the price_hist table. The
retail contribution for a component item is calculated by taking the component item’s unit retail
from price_hist, divided by the total retail of all component items in the pack item, and
multiplying the pack item’s unit retail. So if the retail contribution of a component item within
pack item A is $10, and the same component item’s price_hist record has a retail of $14, and
there is only one pack item sold, and this component item has a quantity of one, a tran_data

Record (tran_type 15) will be written for $4 (assume no vat is used).

94

Chapter 2 — Batch designs

Write transaction data records for sales and returns. If the transaction is a sale, write a tran_data
record with a transaction code of 1 with the total sales. If the system VAT indicator is on and the
system_options.stkldgr_vat_incl_retl ind is on, write a tran_data record with a transaction code
of 2 for VAT exclusive sales. If the transaction is a return, write a tran_data record (tran_type 1)
with negative quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data record (tran_type 2)
and negative quantities and retails for the VAT exclusive return. Also, write a tran_data record
with a transaction code of 4 for the total return. Any tran_data record that is written should be
either VAT exclusive or VAT inclusive, depending on the
system_options.stkldgr_vat_incl_retl_ind. Ifitis setto “Y’, all tran_data retails should be VAT
inclusive. Ifitissetto ‘N’ all tran_data retails should be VAT exclusive. When writing
tran_data records for pack items, always break them down to the pack item level, writing the
retail as the pack item multiplied by the component item’s price ratio. The pack item itself should
never be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date) and it is not a drop shipment,
call update_snapshot() to update the stake sku_loc and edi_daily_sales tables. If the transaction
is current, update the edi_daily_sales table only (stake_sku_loc will be updated in a batch
program later down the stream). The edi_daily_sales table should only be updated if the items
supplier edi sales report frequency = ‘D’.

If VAT is turned on in the system, write a record to the vat_history table to record the vat amount
applied to the transaction. The VAT amount is calculated by taking the sales including VAT
minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are Sale transactions. Do not
update for returns. Also, update stock count on the item-location table for Sales and Returns
unless the item is on consignment or is drop shipped.

If the dropship indicator is set to “Y’, then the sale is drop shipped and there is no update for
stock on hand. Drop shipments are used for sales at a virtual or physical location where an order
is taken from a customer, but the goods are shipped directly from the vendor to the customer (not
via any store or warehouse owned by the retailer). If an item is used only for drop shipments and
there is no stock on hand before or after the cost price is changed, the weighted average cost is
never updated when average cost accounting method is used. The average cost will be the initial
cost price at the time the item is set up. Over a period of time, under average cost accounting
method, the cost price used to charge these items will drift away from the actual supplier cost.
See SYSTEM_OPTIONS.STD_AV_IND for further details on cost accounting method.

If an off_retail amount was identified for the item/location, call the write_off_retail_markdowns()
function to write tran_data records (tran_type 15) to record the difference. If the
complex_promo_allowed_ind = ‘N’ and the item is on promotion, or if the
complex_promo_allowed_ind = “Y” and the TDETL total discount amount is greater than zero,
write a promotional markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion number in order to
record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record with tran_code
60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be written. This record is
used to balance the stock ledger, it accounts for the amount of the item that was wasted in
processing.

95

Retek Merchandising System

process_detail_error()
e This function writes a record to the load_err table for every non-fatal error that occurs.
set_counters()

Depending on the action passed into this function, it will either set a savepoint and store the
values of counters or rollback a savepoint and reset the values of certain counters back to where
they were originally set. This function is called when a non-fatal error occurs in the
item_process() function to rollback and changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding VAT, depending
upon the store.vat_include_ind, system_options.vat_ind, complex_promo_allowed_ind, and the
system_options.stkldgr_vat_incl_retl_ind.

calc_prom_totals()

This function will set promotional markdown values including and excluding VAT, depending
upon the complex_promo_allowed_ind and the system_options.stkldgr_vat_incl_retl_ind. If the
multi_prom_ind is on, the promotional markdown is the sum of the TDETL discount amounts. If
the multi_prom_ind is off, the promotional markdown is the difference between the price_hist
record with a tran_code of 0,4,8,11 and the price_hist record with a tran_code of 9 multiplied by
the total sales quantity. Also, the tran_data old and new retail fields are only written if the
multi_prom_ind is off.

Where vendor funding is present, compute the vendor contributions of the promotional discount
in local and deal currencies, write local currency vendor funding invoices with tran_code = 6 to
tran_data, and write deal currency vendor funding details to the deal_actuals_item_loc in deal
currency. Call calc_vendor_funding (passing in the ex-vat total promotional mark down), to
compute each vendor contribution (if any) in local currency for writing to the stock ledger and in
deal currency for writing to deal_actuals_item_loc.

calc_vendor_funding()

This function accepts an ex-vat promotional discount amount and splits it by percentage for each
of the vendors and deals in the list in both local and deal currency. A call is made to de-
encapsulated currency conversion module convert(...), for efficiency in place of calling the
PL/SQL equivalent function

process_sales_and_returns()

If a non-pack concession item is being processed, concession_data() is called to write accounts
receivable data to the concession_data table. If the item is on consignment and not a pack item,
the consignment_data() function will be called to perform consignment processing. The function
write_tran_data() will be called to write a tran_data record with a tran_type 1 (always written), a
tran_type 2 (if the system_options. vat_ind = Y and system_options.stkldgr_vat_incl_retl_ind =
Y), a tran_type 3 (for non-inventory/non-deposit container item sales and returns), and a
tran_type 4 (if the transaction was a return). If the transaction is a return, any tran_data records
with tran_types of 1 and 2 will be written with negative retails. Also the update_price_hist()
function will be called to update the most recent price_hist record.

If the retail price has changed since the sale occurred, process_cancel_records() function is called
to write a tran_data record to reverse the price change for the items sold. Either a cancel markup
or cancel markdown code is written. The retail amount to be cancelled is the difference between
the retail sale price and current retail price multiplied by the total number of items sold or
returned.

96

Chapter 2 — Batch designs

process_cancel_records()

If the retail price has changed since the sale occurred, an unjustified loss on the stock ledger vs.
the store tables is created. To correct this, this function writes a record to tran_data reversing the
price change for the items sold. Either a cancel markup or cancel markdown code is written. The
retail amount to be cancelled is the difference between the retail sale price and current retail price
multiplied by the total number of items sold or returned.

validate FHEAD()

Do standard string validations on input fields. This includes null padding fields, checking that
numeric fields are all numeric, and validating the date field. If any errors arise out of these
validation checks, return non-fatal error then set non-fatal error flag to true. This function will
also validate the store location exists.

If the sales audit indicator is on currency and vat information will be provided in the file that has
already been validated.

get_eow_eom_date()

This function returns the eow_date and eom_date for the current tran_date. For the eom_date, the
appropriate base function is called to return the correct date for Gregorian or 454 calendar.

validate. THEAD()

Do standard string validations on input fields. This includes null padding fields, left shifting
fields, checking that numeric fields are all numeric, placing decimal in all quantity and value
fields, and validating the date field. If any errors arise out of these validation checks, return non-
fatal error then set non-fatal error flag to true. This function will also validate the reference item
exists.

If a reference item is passed in from the input file, retrieve the item for the reference item. Once
the item is an item, retrieve the transaction and item level values, pack indicator, department,
class, subclass, waste_type, waste_pct. Once this information is retrieved, check that the
item/location relationship exists for the appropriate item type and call check item_lock() and/or
check_pack_lock depending on item type to lock this item’s ITEM_LOC record.

If the sale audit indicator is ‘Y’ on system_options, the item will be a item and the dept, class,
subclass, item level, transaction level and pack_ind will be included in the file. The UOM is
assumed to already by have been converted to the standard UOM by Sales Audit.

If the Sales Audit indicator is 'N' on system_options, the UOM at which the item was sold will be
compared with the items standard UOM value. If they are different, the quantity will be converted
to the standard UOM amount. The ratio of the difference will also be computed and saved for use
by validate TDETL().

If an item is a wastage item set the wastage qty. The gty sent in the file shows the weight of the
item sold. The wastage qty is the gty that was processed to come up with the gty sold. So if .99
of an item was sold, and item wastage percent is 10. The wastage qty is .99/ (1-.10) = 1.1 The
wastage qty will be used through out the program except when writing tran_data records(see
write_wastage_markdown) and daily_sales_discount records which will uses the processed gty
from the file.

Class-level vat functionality is addressed here. The ¢_ get_class_vat cursor is fetched into the
pi_vat_store_include_ind variable if vat is tracked at the class level in RMS
(SYSTEM_OPTIONS.VAT_IND = ‘Y’ and SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND
=‘Y’). The vat inclusion indicator passed in the input file is overwritten with the vat indicator
for the class passed in the THEAD record of the input file.

97

Retek Merchandising System

If catchweight_ind is Y, call valid_all_numeric() to check that the actualweight_qty is all
numeric, else call all_blank() to validate that it is blank. If the catchweight_ind is Y, convert
actualweight_qty to 4 places of decimals reflecting the correct sign. Validate that the
subtrans_type is either A, D or null.

If the item is part of an item transformation (pi_item_xform is TRUE), call
get_item_xform_detail() to populate the pr_xform_items structure with the associated orderables,
and return the total yield for all rows retrieved and also the calculated unit cost of the sellable
item based on its component orderable items. This value overwrites pd_unit_cost_loc, which for
standard items is populated by function item_check(...). If the returned sum of all retrieved
pr_xform_items.as_yield does not equal 1, reject the record

get_ref_item()

This function is being called by the validate_ THEAD function if the item_type is ‘REF’. This
function will return the item_parent of a specific item.

get_item_info()
This function gets item data from item_master and deps for an item_id passed in.
validate TDETL()

This function will perform validation on the TDETL records passed into the program. The
standard string validation on these fields includes null padding fields, left shifting fields, checking
that numeric fields are all numeric, placing decimal in all quantity and value fields, and validating
the date field. If any errors arise out of these validation checks, return non-fatal error then set
non-fatal error flag to true.

The quantity is multiplied by the UOM ratio determined in validate_ THEAD().

If a promotional transaction type is passed in, verify it is valid. If a promotional transaction type
is passed in, but it is not valid, return non-fatal error then set non-fatal error flag to true.

If the item is a wastage item set the tdetl wastage gty. This is done the same way as setting the
THEAD wastage qty.

If the promotion type is 9999 (i.e., all promotion types), verify that the promotion and promotion
component are all numeric. If the promotion type is not 9999 (i.e., non-promotional), then verify
that the promotion and promotion component are blank. If the promotion type is 9999, call
validate_prom_info.

uom_convert()
This function is called by validate_ THEAD to convert the selling UOM to the standard UOM.
validate_prom_info()

This function looks up the promotion in the rpm_promo table and the promotion_component in
the rpm_promo_comp table. If either row does not exist, an error is reported and the function
returns non-fatal. At the same time, any promotional consignment rate is retrieved and returned to
the calling function

get_deal_contribs()

This function re-sizes the arrays to receive the list of vendor funding details if necessary and then
appends the arrays with data, leaving a contribution count of zero or more in
pl_deal_contribs_ctr. The function also fetches records from the deal _head, deal_comp_prom and
deal_actuals_forecast tables to variables that will be used by the batch program in later
processing. This function can process multiple promotions per deal component.

98

Chapter 2 — Batch designs

item_store_cursors()

This function checks the item_loc for the item / store combination. It is called by the
item_check() and item_check_orderable().

new_item_loc()
This function creates a new store item relationship for items. It is called by item_check.
item_check()

This function verifies the fashion item/location relationship exists. It is only called when the item
being processed is a fashion item. If the item/location relationship does not exist, it is created and
a record is written to the Invalid item/location output file.

item_check_orderable()

This function gets the item information of a transform orderable item. If orderable pack indicator
of the item is “Y’, call pack_check_orderable(). Else, it calls on the item_store_cursors function
to check if location exists for the item. If none, it calls on procedure NEW _ITEM_LOC to create
new store item relationship for the items.

pack_check_orderable()

This function calls on procedure NEW_ITEM_LOC to create new store item relationship for the
items.

get_vat_rate()

This function calls on package VAT_SQL.GET_VAT_RATE and returns the vat rate of a
specific item. This is being called by pack_check() and fill_packitem_array().

pack_check()

This function verifies the pack item/location relationship exists and retrieves the component items
for the packitem. It is only called when the item being processed is a packitem. The component
item, system indicator, department, class, subclass, cost, retail, price_hist retail, and component
item quantity are fetched. If the packitem/location relationship does not exist, it is created for the
Packitem and all of its components and a record is written to the Invalid item/location output file
for the packitem.

The component items price ratios are also calculated. This indicates the retail contribution the
component item gives towards the unit retail of the packitem. This ratio is calculated by taking
the price_hist unit retail of the component divided by the total price_hist retail of all the
component items for the packitem. Below is an example of how this ratio is calculated:

Unit Retail Qty Retail Calculation Ratio

pack item A | $60

item 1 $15 2 $30 ($30/$90) * $60 | .3333

item 2 $10 6 $60 ($60/$90) * $60 | .6667

99

Retek Merchandising System

item_supplier()

This function populates item information for the given item's supplier. This is called from the
item_process() function, if the item_type is not = ‘PACK” item.

get_unit_retail()

This function retrieves the current unit retail and the retail price of the item at the time of the sale
from price_hist for the item/location being processed. If a tran_code of 8 is returned, the item is
on clearance. The function will always return retail that are vat inclusive. If retail is stored in
RMS with out vat (system_options.class_level_vat_ind =Y and class.class_vat_ind =Y) it will
add vat to the retails.

get_base_price()
This function gets the unit_retail from price_hist (tran_type 0).
daily_sales_insert_update()

This function is called by write_off _retail, write_in_store, and process_daily sales_discount. It
performs the actual insert or fills a update array for the daily_sales_discount table.

check_daily_exists()

This function will check the daily_sales_discount for the existence of a record matching the input
parameters.

process_daily_sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL record that has
a promotional transaction type except employee discounts. Employee discount records are not
written to daily_sales_discount, they are put on tran_data with a tran_code of 60. When
employee discount records are encountered, values are set for the tran_data insert and the
discount amount is added to the total sales value. This is done so employee discounts do figure
into the promotional and in store calculations. When the multi_prom_ind is on all promotion
types except employee discount will be ignored.

write_in_store()

This function will handle record sent in as ‘is store’ discounts amounts. It will call
check_daily_exists and daily_sales_insert_update.

write_off_retail()

This function will calculate discrepancies between the amount sold for an item, and the amount it
should have sold for (price_hist record). If these amounts are not in balance, a record is written to
the daily_sales_discount table with a prom_type of ‘in store’ for reporting.

remove_stklgdr_vat()

This function will remove vat from 3 fields after the daily_sales_discount processing is complete.
The variables od_off_retail_amt, od_new_retail, and od_old_retail are stripped of vat by calling
vat_convert if the stock ledger does not contain vat.

write_off_retail_markdowns()

The write_tran_data() function will be called to write the off_retail markdown unless the item is
on consignment or the off_retail amount is zero.

100

Chapter 2 — Batch designs

write_promotional_markdowns()

The write_tran_data() function will be called to write the promotional markdown unless the item
multi_prom_ind is off and the transaction is a return, the item is on consignment, or the
promotional markdown amount is zero. The tran_data new and old retails are only written if the
multi_prom_ind is off. If any vendor funding rows are in the pr_deal_contribs arrays, call
function write_vendor_tran_data to write the vat-inclusive vendor funding information to
tran_data, and call function write_vendor_deal_actuals to write the vat-exclusive vendor funding
information to deal actuals_item_loc

write_vendor_tran_data()

This function writes a deal contribution record to the stock ledger for each of the vendor
contributions stored in the deal contributions arrays by calling write_tran_data for the
TRAN_CODE_VENDOR_FUNDING tran_type (type 6).

write_wastage _markdown()

This function will call to the write_tran_data() function if the item is a wastage item. A wastage
item is an item that loses some of its weight (value) in processing. For example, a 1 pound
chicken is broiled and loses 10% of its weight. The item is sold at .9 pounds, but in reality selling
that .9 pounds of chicken removes 1 pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was lost due to
wastage in processing.

process_items()

Update the stock on hand on the item_loc_soh table for Sales and Returns unless the item is on
consignment, drop shipped, non-inventory or concession. The SOH is updated for all the
orderable components of a transformed item, but not the sellable component. Also, update the
item_loc_hist table for Sale transactions. Do not update for returns.

Sales history is updated at week level and also, if the Gregorian calendar is in use
(ps_cal_454_ind=“N"), at month level. Additionally, sales history is updated for both sellable and
orderable components of transformed items.

process_pack()

Update the stock on hand on the item_loc_soh table for Sales and Returns. Also, update the
item_loc_hist table for Sale transactions (week-level sales history for pack items, and also month-
level sales history if the Gregorian calendar is in use). Do not update for returns.

process_packitems()

This function performs processing for the component items of the pack items. This would
include updates/inserts into stake_item_loc, edi_daily_sales, item_loc, item_loc_hist,
vat_history_data, and tran_data. All of these tables do not write records at the pack item level,
but at the component item level. When figuring retails to write to these tables, the component
items price ratio should always be applied against the pack items retail to come up with the
correct retail for each component item. If an employee discount TDETL record has been
encountered, an tran_data record with tran_code 60 will be written for each component item.

write_tran_data()
Writes a record to the tran_data insert array.
write_edi_sales()

Writes a record to edi_daily_sales.

101

Retek Merchandising System

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the stake_sku_loc and
edi_daily_sales tables for late transactions.

get_454 info()
Calls on the CAL_TO_454 procedure to get the equivalent 454 info of a given date.
write_vat_err_message()

This function will create and write to the VAT output file when an item does not have VAT
information setup when it is expected.

vat_history_data()

Writes a record to the vat_history table. History will only be written for the sellable item, not the
orderable, and the orderable will never appear in the POS file.

consignment_data()

This function will perform processing for consignment items. Consignment items are such when
the item_supplier table has a consignment rate applied to it. Consignment is when a retailer will
allow a third party to operate under its umbrella and be paid for what it sells. An example of
consignment may be a mass-merchant who consigns the magazine section of their store to a
magazine vendor. The magazine vendor would have control over keeping the product stocked
within the store. When a magazine is sold, the retailer would get paid for the magazine, then the
retailer would essentially buy the magazine from the vendor. The consignment cost paid by the
retailer to the vendor is the VAT-inclusive retail multiplied by the consignment rate divided by
100. So if the VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier with an orig_ind =
4 (consignment). Consignment type invoices will be created for all PO’s created for
consignments if the system_options.self_bill_ind is “Y’.

Purchase order headers are created at supplier, supplier/dept, supplier/dept/location or
supplier/dept/location/item levels depending on the system_options flag
gen_con_invc_itm_sup_loc being S, L or I. Purchase orders are matched 1 to 1 with sales
invoices, but for returns there is no purchase order and an invoice is created for every transaction
regardless of the consolidation level. The flag system_options.gen_con_inv_freq can have values
P (multiPle), W (Weekly) or M (Monthly). This controls the date used for the 1 to 1 matching
which is vdate, vdate or eom_date respectively.

Also a tran_data record (tran_type 20) will be written to record the consignment transaction to the
stock ledger. The retails should be VAT inclusive or exclusive, depending on the
system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions: check_order(), order_head(), invc_data(), to handle the
order creation-update and the invoice creation-update.

If a promotional consignment rate is present for the current promotion, over-write that returned
from item_supplier

102

Chapter 2 — Batch designs

order_head()

This function inserts records into ordhead to create new orders (except for return consignment
items). It sets the location to the current store number if the gen_con_invc_itm_sup_loc_ind flag
is | or L, otherwise (for S) should set null. The order date is set depending on
system_options.gen_con_inv_freq. The values are P (multiPle), W (Weekly) or M (Monthly).
This controls the date used for the 1 to 1 matching which is vdate, vdate or eom_date
respectively.

invc_data()

This function inserts/updates invc_head, invc_detail records if invc_match ind is "Y'. Before
writing the invoice records, the retail and consignment cost are converted to the associated order's
currency.

The system_options parameter system_options.gen_con_invc_itm_sup_loc_ind carries values S,
L or | and states the level at which separate invoices are to be generated for each supplier/dept(S),
supplier/dept/location(L) or item/supplier/location(l). When a new invoice at the appropriate level
is created, then for gen_con_invc_itm_sup_loc_ind values L and I, an invc_xref row is also
created to link the invoice to the target location

find_and_fill_invc_detail ()
This function fills the invc_detail, updates the array and posts if the array is full
get_prom_type_info()

This function will retrieve all valid promotional transaction types from the code_detail table.
Valid promotional transaction types are those where the code_type = ‘PRMT’.

get_uom_classes()

This function loads all the uom codes and their classes into a global table for look up during
THEAD processing.

get_item_xform_details()

This function populates the pr_xform_items structure with the associated orderables, and returns
the total yield for all rows retrieved, and also the calculated unit cost of the sellable item based on
its component orderable items. This value overwrites pd_unit_cost_loc, which for standard items
is populated by function item_check(...). If the returned sum of all retrieved
pr_xform_items.as_yield does not equal 1, reject the record.

The processing to do this is de-encapsulated from packaged function ITEM_ XFORM _
SQL.CALCULATE_COST, as this is expected to be more efficient than calling the packaged
function directly. The de-encapsulated logic is performed by the following three functions:
get_loc_item_retail(), get_orderable_cost(), get_orderable_retail().

get_loc_item_retail()

This function returns the unit_retail from item_loc or item_zone_price.
get_orderable_cost()

This function returns unit_cost from item_supp_country_loc or item_supp_country.
get_orderable_retail()

This function returns the unit_retail for each sellable item, computes the apportioned sellable
retail and adds it into the returned total orderable retail.

103

Retek Merchandising System

fill_packitem_array()

This function will retrieve the component items for a pack item with the appropriate item level
information into an array.

write_item_store_report()

This function will create and write to the Invalid item/location output file when an item does not
exist at a location it was sold/returned at.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to perform a commit
the records to the database and restart_file_write to append temporary files to output files.

post_tran_data()
This function inserts records in the tran_data table. This is called by posting_and_restart function.
post_item_loc()

This function updates the stock_on_hand of the item_loc_soh table. This is called by
posting_and_restart function.

post_item_loc_hist()

This function updates the various fields (sales_issues, value, gp, last_update datetime and
last_update_id) of the item_loc_hist table. This is called by posting_and_restart function.

post_item_loc_hist_mth()

This function updates the various fields (sales_issues, value, gp, last_update_datetime and
last_update_id) of the item_loc_hist_mth table. This is called by posting_and_restart function.

post_pack()

This function updates the various fields (last_hist_export_date, first_sold, last_sold, qty_soldm,
last_update_datetime and last_update_id) of the item_loc_soh table. This is called by
posting_and_restart function.

post_packstore_hist()

This function updates the various fields (sales_issues, value, retail, last_update_datetime and
last_update_id) of the item_loc_hist table. This is called by posting_and_restart function

post_packstore_hist()

This function updates the various fields (sales_issues, value and retail) of the item_loc_hist_mth
table. This is called by posting_and_restart function.

post_vat_hist_upd()

This function updates the various fields (vat_amt, last_update_datetime and last_update_id) of the
vat_history table. This is called by posting_and_restart function.

post_edi_daily sales upd ()

This function updates sales_qty of the edi_daily_sales table. This is called by posting_and_restart
function.

104

Chapter 2 — Batch designs

post_daily_sales_discount ()

This function updates the various fields (sales_qty, sales_retail, discount_amt, expected_retail
and actual_retail) of the daily_sales_discount table. This is called by posting_and_restart
function.

post_invc_detail_upd ()

This function inserts into the invc_detail_temp table. This is called by posting_and_restart
function.

post_invc_detail_upd ()

This function inserts into invc_head_temp table. This is called by posting_and_restart function.
size_arrays()

This function allocates memory for the arrays used in this program.

resize_arrays()

This function reallocates memory for the insert arrays.

write_lock_rej()

This function will write the current record set from the input file (THEAD-{TDETL}-TTAIL)
that was rejected due to lock error to the lock file.

concession_data()
This function inserts records into concession_data for non-pack concession items.
deal_actuals_insert_update ()

This function accepts a list of primary key values and update values for the deal_actuals_item_loc
table, and a row_id which is null if the row does not exist yet. If it does not exist, a new row is
inserted, otherwise the row_id and update values are written to the holding array, for bulk update
later.

check_deal_actuals_exists()

This function accepts a list of primary keys for table deal_actuals_item_loc, does a look up and
returns the row_id or null if it exists, or not.

write_vendor_deal_actuals ()

This function causes actual vendor contribution amounts to be written to the
deal_actuals_item_loc table for each of the computed vendor funding contributions held in the
pr_deal_contribs array. Calls check_deal_actuals_exists to check if each target primary key set
exists, and calls deal_actuals_insert_update to insert a new row, or write update information to
the holding array if a row already exists.

post_deal actuals ()

This function updates the various fields (actual_turnover_units, actual_turnover_revenue and
actual_income) of the deal_actuals_item_loc. This is called by posting_and_restart function.

ON Fatal Error

e Exit Function with -1 return code

105

Retek Merchandising System

ON Non-Fatal Error

e write out rejected record to the reject file using write_to_rej_file function by passing pointer
to detail record structure, number of bytes in structure, and reject file pointer, or use the
write_lock_rej() function to write to the lock reject file in case the non-fatal error was a lock
error,

Input File:

The input file should be accepted as a runtime parameter at the command line. All number fields
with the number(x,4) format assume 4 implied decimal included in the total length of “x’.

When the system_options field sa_ind is ‘Y’ the following FHEAD fields will be populated and
already validated: Vat include indicator, Vat region, Currency code, and Currency retail decimals.
When the sa_ind is ‘N’ these values will not be used and retrieved from the system.

When the system_options field sa_ind is “Y’ the following FHEAD fields will be populated and
already validated: Item Level, Transaction Level, Pack_ind, Dept, Class, and Subclass. When the
sa_ind is ‘N’ these values will not be used and retrieved from the system. Also, the UOM at
which the item was sold will been converted to the standard UOM for the item. When the sa_ind
is on, all items are assumed to be items.

Record Field Name Field Type | Default Description
Name Value
File Header File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Char(10) specified by ID of current line
Identifier external being processed
system by input file.
File Type Char(4) POSU Identifies file as
Definition ‘POS Upload’
File Create Char(14) create date date file was
Date written by
external system
Location Number(10) | specified by Store identifier
Number external
system
Vat include Char(1) Determines
indicator whether or not
the store stores
values including
vat. Not required
but populated by
Retek sales audit

106

Chapter 2 — Batch designs

Record
Name

Field Name

Field Type

Default
Value

Description

Vat region

Number(4)

Vat region the

given location is
in. Not required
but populated by
Retek sales audit

Currency code

Char(3)

Currency of the
given location.
Not required but
populated by
Retek sales audit

Currency retail
decimals

Number(1)

Number of
decimals
supported by
given currency
for retails. Not
required but
populated by
Retek sales audit

Transaction
Header

File Type
Record
Descriptor

Char(5)

THEAD

Identifies
transaction record

type

File Line
Identifier

Char(10)

specified by
external
system

ID of current line
being processed
by input file.

Transaction
Date

Char(14)

transaction
date

date sale/return
transaction was
processed at the
POS

Item Type

Char(3)

REF
I™

item type will be
represented as a
REF or ITM

Item Value

Char(25)

item identifier

the id number of
an ITM or REF

Dept

Number(4)

Item’s dept

Dept of item sold
or returned. Not
required but
populated by
Retek sales audit

107

Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

Class

Number(4)

Item’s class

Class of item sold
or returned. Not
required but
populated by
Retek sales audit

Subclass

Number(4)

Item’s
subclass

Subclass of item
sold or returned.
Not required but
populated by

Retek sales audit

Pack Indicator

Char(1)

Item's pack
indicator

Pack indicator of
item sold or
returned. Not
required but
populated by
Retek sales audit

Item level

Number(1)

Item's item
level

Item level of item
sold or returned.
Not required but
populated by
Retek sales audit

Tran level

Number(1)

Item's tran
level

Tran level of item
sold or returned.
Not required but
populated by
Retek sales audit

Wastage Type

Char(6)

Item’s
wastage type

Wastage type of
item sold or
returned. Not
required but
populated by
Retek sales audit

Wastage
Percent

Number(12)

Item’s
wastage
percent

Wastage percent
of item sold or
returned. Not
required but
populated by
Retek sales audit

Transaction
Type

Char(1)

‘S’ —sales

‘R’ - return

Transaction type
code to specify
whether
transaction is a
sale or a return

108

Chapter 2 — Batch designs

Record
Name

Field Name

Field Type

Default
Value

Description

Drop Shipment
Indicator

Char(1)

IYI
INI

Indicates whether
the transaction is
a drop shipment
or not. Ifitisa
drop shipment,
indicator will be
"Y'. This field is
not required, but
will be defaulted
to 'N'"if blank.

Total Sales
Quantity

Number(12)

Number of units
sold ata
particular
location with 4
implied decimal
places.

Selling UOM

Char(4)

UOM at which
this item was
sold.

Sales Sign

Char(1)

‘P’ - positive

‘N’ - negative

Determines if the
Total Sales
Quantity and
Total Sales Value
are positive or
negative.

Total Sales
Value

Number(20)

Sales value, net
sales value of
goods
sold/returned
with 4 implied
decimal places.

Last Modified
Date

Char(14)

For VBO future
use

Catchweight
Indicator

Char(1)

NULL

Indicates if item
is a catchweight
item. Valid
values are ‘Y’ or
NULL

Actual Weight
Quantity

Number(12)

NULL

The actual weight
of the item, only
populated if
catchweight_ind
=Y’

109

Retek Merchandising System

Record Field Name Field Type | Default Description
Name Value
Sub Trantype Char(1) NULL Tran type for
Indicator ReSA
Valid values are
‘A’, ‘D’, NULL
Transaction File Type Char(5) TDETL Identifies
Detail Record transaction record
Descriptor type
File Line Char(10) specified by ID of current line
Identifier external being processed
system by input file.
Promotional Char(6) promotion code for
Tran Type type — valid promotional type
values see from code_detail,
code_detail code_type =
table. ‘PRMT’
Promotion Number(10) | promotion promotion
Number number number from the
RMS
Sales Quantity | Number(12) number of units
sold in this prom
type with 4
implied decimal
places.
Sales Value Number(20) value of units
sold in this prom
type with 4
implied decimal
places.
Discount Value | Number(20) Value of discount
given in this
prom type with 4
implied decimal
places.
Promotion Number(10) | NULL Links the
Component promotion to
additional pricing
attributes
Transaction File Type Char(5) TTAIL Identifies file
Trailer Record record type
Descriptor

110

Chapter 2 — Batch designs

Record Field Name Field Type | Default Description
Name Value
File Line Char(10) specified by ID of current line
Identifier external being processed
system by input file.
Transaction Number(6) | specified by Number of
Count external TDETL records
system in this transaction
set
File Trailer File Type Char(5) FTAIL Identifies file
Record record type
Descriptor
File Line Number(10) | specified by ID of current line
Identifier external being processed
system by input file.
File Record Number(10) Number of
Counter records/transactio
ns processed in
current file (only
records between
head & tail)

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item that does not
exist at the processed location. In the event this happens, the relationship will be created during
the program execution and processing will continue with the item and store number being written
to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate when one is
expected (e.g. the system_options.vat_ind is on). In this event, a non-fatal error will occur
against the transaction and a record will be written to this file and the Reject file.

Reject File:

The reject file should be able to be re-processed directly. The file format will therefore be
identical to the input file layout. The file header and trailer records will be created by the
interface library routines and the detail records will be created using the write_to_rej file
function. A reject line counter will be kept in the program and is required to ensure that the file
line count in the trailer record matches the number of rejected records. A reject file will be
created in all cases. If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer should be declared.
The reject file pointer will identify the temporary reject file. This is for the purposes of restart
recovery. When a commit event takes place, the restart_write_function should be called (passing
the file pointer, the temporary name and the final name). This will append all of the information
that has been written to the temp file since the last commit to the final file. Therefore, in the
event of a restart, the reject file will be in synch with the input file.

111

Retek Merchandising System

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal & non-fatal) will
be written to an error log for the program execution instance. These errors can be viewed on-line
with the batch error handling report.

Technical Issues

Assumption: Variable weight UPCs are expected to already be converted to a VPLU with the
appropriate quantity.

Scheduling Considerations
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of the batch run during
the POS polling cycle. It can be scheduled to run multiple times
throughout the day, as POS data becomes available.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid item sales transaction
at a given store location. The location type will be inferred as a store type and the item can be
passed as an item or reference item type. The logical unit of work will be defined as a number of
these transaction records. The commit_max_ctr field on the restart_control table will determine
the number of transactions that equal a logical unit of work.

The file records will be read in groups of numbers equal to the commit_max_ctr. After all
records in a given read are processed (or rejected either as a reject record or a lock error record),
the restart commit logic and restart file writing logic will be called, and then the next group of file
records will be read and processed. The commit logic will save the current file pointer position in
the input file and any application image information (e.g. record and reject counters) and commit
all database transactions. The file writing logic will append the temporary holding files to the
final output files.

The commit_max_ctr field should be set to prevent excessive rollback space usage, and to reduce
the overhead of file 1/0. The recommended commit counter setting is 10000 records (subject to
change based on experimentation).

Error handling will recognize three levels of record processing: process success, non-fatal errors,
and fatal errors. Item level validation will occur on all fields before table processes are initiated.
If all field-level validations return successfully, inserts and updates will be allowed. If a non-fatal
error is produced, the remaining fields will be validated, but the record will be rejected and
written to the reject file or written to the lock file depending on the reject reason. If a fatal error is
returned, then file processing will end immediately. A restart will be initiated from the file
pointer position saved in the restart_bookmark string at the time of the last commit point that was
reached during file processing.

112

Chapter 2 — Batch designs

Pre/Post Functionality for Multi-Threadable
Programs [prepost]

Design Overview

The Pre/Post module facilitates multi-threading by allowing general system administration
functions (such as table deletions or mass updates) to be completed after all threads of a particular
program have been processed. A brief description of all pre- or post-processing functions
included in this program can be found in the Function-Level Description section.

This program will take three parameters: username/password to log on to Oracle, a program
before or after which this script must run and an indicator telling whether the script is a pre or
post function. It will act as a shell script for running all pre-program and post-program updates
and purges (the logic was removed from the programs themselves to enable multi-threading &
restart/recovery).

For example, to run the pre-program script for the ccext program, the following should be entered
on the command line:

prepost user/password rpl pre

Tables affected:

TABLE SELECT | INSERT | UPDATE | INDEX | DELETE | TRUNCATE | TRIGGER
all_constraints Y N N N N N
all_ind_partitions Y N N N N N
all_policies Y N N N N N N
alloc_detail Y N N N N N Y
alloc_header Y N N N N N Y
class Y N N N N N N
class_sales_forecast N N N Y N Y N
class_sales_hist N N N N Y N N
class_sales_hist_mth Y N N N Y N N
cost_change_trigger temp | Y N N Y N Y N
cost_susp_head N N Y N N N N
daily_data_temp N N N N N Y N
dba_indexes Y N N N N N N
dba_triggers Y N N N N N N
dealfct_temp N Y N N N N N
deal_actuals_forecast Y N N N N N N
deal_actuals_item loc Y Y N N N N N

113

Retek Merchandising System

TABLE SELECT | INSERT | UPDATE | INDEX | DELETE | TRUNCATE | TRIGGER
deal _bb_no_rebate_temp N Y N N N Y N
deal_bb_rebate po_temp N Y N N N Y N
deal_bb_receipt_sales_temp N vy N N N v N

p

deal _head

deal_item_loc_explode

deal_sku_temp

deps

dept_sales_forecast

dept_sales_hist

dept_sales_hist_mth

domain_class

domain_dept

domain_subclass

edi_daily_sales

edi_ord_temp

fif_receiving

fixed_deal

forecast_rebuild

groups

hist_rebuild_mask

ib_results

if_tran_data

invc_detail

invc_detail _temp

invc_detail_temp2

invc_head

invc_head_temp

item_forecast

item_loc

item_loc_temp

item_master

<|Z2| <K |Z2|I¥K|Z2|Z2|K|Z2|IX|Z|¥X || Z|IK|Z2|Zz2|Z2|Z2z|Z2z|1Z2|K|Z2|Z2|X|Z2|X|X

Z|\ < |IZ2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|K|Z2|Z2|Z2|1Z2|Z2|2|Z2|Z2|2|2|Z2|Z2

2|22 Z2|Z2|<K|Z2|Z2|K|Z2|X|Z2|IZ2|Z2|K|Z2|IZ2|Z2|X|K¥K|K|Z2|Z2|Z2|l2|Z2|2 |2

Z|Z2z|Z2|K|Z2|IZ2|Z2|Z2|Z2|IZ2| 2| |Z2|K|Z2|IX|X|Z2|Z2|Z2|1Z2|2|Z2|<X|Z2|X|Z2|Z

Z|IZ|Zz|Zz|Z2z|1Z2|Z2|Z2|Z2z|Z2|Z2|Z2|Z2|Z2|Z2|Z2|1Z2|K|Z2|Z2|Z2|<X|<K|Z2|Z2|Z2|2|2

Z| < | Z2|Z2|IXK|Z2|¥K|K|Z2|I1Z2|Z2|X|Z2|K|Z2|IX|X|Z2|Z2|Z2|1Z2|2|Z2|X|Z2|X|Z2|Z

Z|lZz|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|2Z2

114

Chapter 2 — Batch designs

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

item_supp_country

pd

pd

item_supp_country_loc

mc_rejections

mod_order_item_hts

on_order_temp

ord_missed

ord_temp

ordhead

ordsku

packitem

period

pos_button_head

pos_coupon_head

pos_merch_criteria

pos_mods

pos_money_ord_head

pos_payinout_head

pos_prod_rest_head

pos_store

pos_sup_pay_criteria

pos_tender_type head

reclass_cost_chg_queue

reclass_head

reclass_item

reclass_trigger_temp

repl_attr_update_exclude

repl_attr_update_head

repl_attr_update_item

repl_attr_update_loc

repl_day

repl_item_loc

repl_item_loc_updates

ZIX|IX XXX X|KXIKIK|Z2|IZ2|IZz2|Z2|Z2z2|12|2|Z2|2|Z2|X|X|X|IK|Z|Zz|Z2|l2|Z2|<|<

| < |<K|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|X|Z2|Z2|Z2|Z2|Z2|Z2|X|Z2|Z2|1Z2|Z2|Z2|2|2|Z2|Z2|2|2|=2|Z2

zZ|lZ2|Z2z|1Z2|Z2|Z2z|1Z2|2|Z2|Z2|X|X|X|X|X|X|KX|Z2|¥X|K¥K|K|zZz|lz|z|z|lz|z|Z2|2|2|Z

<|Z2|Z2|Z2|Z2|Z2|Z2|<|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|XK|Z2|Z2|1Z2|Z2|Z2|2|2|X|X|<X|[X|X]|Z2

Z|IZ2|Z2 | X | X ||| K|Z2|IZ2|lZ2|1Z2|Z2|2|Z2|Z2|1Z2|2|Z2|Z2|1Z2|Z2|Z2|2|2|Z2|Z2|2|2|=2|Z2

<|z|lz|lz|Z2|lz|lZz|<|Z2|Z2|2|Z2|Z2|Z2|l2|Z2|2|<|Z|Z2|Z2|2|Z2|Z2|Z2|<|<|<X|<X|<|2|2

2|\ Z2|1Z2|Z2|Z2|Z2|1Z2|Z2|<|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|Z2|Z2|2|2|Z2|Z2|2|2

115

Retek Merchandising System

vat_code_rates

vat_item

week data_temp

wh

TABLE SELECT | INSERT | UPDATE | INDEX | DELETE | TRUNCATE | TRIGGER
rpl_alloc_in_tmp Y N N Y N
rpl_distro_tmp N Y N N N Y N
Sec_user_zone_matrix N N N Y N Y N
stage_complex_deal_detail | N N N N N Y N
stage_complex_deal head N N N N N Y N
stage_fixed_deal_detail N N N N N Y N
stage_fixed_deal_head N N N N N Y N
stake _head Y N N N N N N
stake_prod_loc Y N N N N N N
store Y N Y N N N N
store_add Y N N N Y N N
subclass_sales_forecast N N N Y N N N
subclass_sales_hist N N N N Y N N
subclass_sales_hist_mth Y N N N Y N N
sup_data N N N N Y N N
system_options Y N N N N N N
system_variables Y N Y N N N N
temp_tran_data Y N N N N Y N
temp_tran_data_sum N Y N N N Y N
tif_explode N N N Y N Y N
tran_data N Y N N N N N
tsf_head N N Y N N N N
Y N N N N N N
Y N N N N N N
N N N N N Y N
Y N N N N N N
N N N N Y N N

wh_store_assign

116

Chapter 2 — Batch designs

Scheduling Constraints

Processing Cycle: PHASE ALL (daily)

Scheduling Diagram: See scheduling flow for description of all pre-post requirements in the
daily run.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A (single threaded)

Shared Modules
FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
UDA_SQL.CHECK_REQD_NO_VALUE
FORECASTS_SQL.GET_DOMAIN
ITEM_ATTRIB_SQL.GET_PACK_INDS
FORECASTS_SQL.GET_ITEM_FORECAST_IND
POS_UPDATE_SQL.POS_INVC_DETAIL_INSERT
CAL_TO_454 LDOM

CAL_TO_454 HALF

CAL_TO_CAL_HALF

CAL_TO_CAL_LDOM

CAL_TO_454 WEEKNO
CAL_TO_CAL_WEEKNO

CAL_TO_454

HALF_TO_CAL_FDOH

HALF_TO_CAL_LDOH

HALF_TO_454 FDOH

HALF_TO_454 LDOH
DBMS_RLS.ENABLE_POLICY

117

Retek Merchandising System

Function Level Description
Functions to be used by the individual program functions:
modify_indexes()

This function allows indexes to be disabled or rebuilt before and/or after the action that affects
them. The individual program passes in the table name and mode (what action to take “disable”
or “rebuild”) and performs that action. The owner of the index is determined using the
synonym_trace function in the library oracle.pc.

modify_partition_indexes()

This is called by the modify_indexes function to determine if the indexes that need modified are
partitioned indexes. If so, then the statement is modified to take that into account to accomplish
the action. Index_owner, index_name and mode is passed to this function. Nothing is passed
back out.

truncate_table()

The table_name is passed to this function so that it can be truncated. The owner of the table is
determined by using the synonym_trace function in the library oracle.pc.

modify_trigger()

Allows triggers to be disabled or enabled before or after certain processes. The table_name,
trigger name and mode(“DISABLE” or “ENABLE”) are passed to this function and the
appropriate action is taken. No values are passed back to the calling function.

alter_constraints()

This function diables, enables, or rebuilds a table constraint based on the table name and the
mode passed into it. It is called by vendinv_pre().

truncate_user_sec_table()

This is a function used to run the szonrbld pre functions that will truncate the
sec_user_zone_matrix table. Disables any indexes prior to the truncation on the associated table
and rebuilds/enables them following the truncation.The user running this program for this
function must have been granted the “‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

get_454 ldom()

This function calls the procedure CAL_TO_454 LDOM to get the 454 last day of month.
get_454 half()

This function calls the procedure CAL_TO_454 HALF to get the 454 calendar half number.
get_next_454_half()

This function calls the procedure CAL_TO_454 HALF to get the next end-of-month 454
calendar half number.

get_next_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the next end-of-month half
number on the regular calendar.

118

Chapter 2 — Batch designs

get_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the half number on the regular
calendar

get_cal_Idom()

This function calls the procedure CAL_TO_CAL_LDOM to get the end of the month on the
regular calendar.

get_454 weekno()
This function calls the procedure CAL_TO_454 WEEKNO to get the 454 week number in half.
get_cal_weekno()

This function calls the procedure CAL_TO_CAL_WEEKNO to get the week number in half on
the regular calendar.

get_454 date()

This function calls the procedure CAL_TO_454 to get the 454 calendar week number.
get_cal_fdoh()

This function calls the procedure HALF_TO_CAL_FDOH to get the first day of half.
get_cal_ldoh()

This function calls the procedure HALF_TO_CAL_LDOH to get the last day of half.
get_454 fdoh(void);

This function calls the procedure TO_454 FDOH to get the first day of half in 454 calendar.
get_454 ldoh(void)

This function calls the procedure HALF_TO_454 LDOH to get the last day of half in 454
calendar.

get_tomorrow()
This function gets the next day after the vdate.
get_forecast_ind()

This function cals FORECASTS_SQL.GET_SYSTEM_FORECAST_IND to get the
system_forecast_ind.

validate_reclassify()

Validates the reclassification. If the reclassification is rejected, then the data from the
RECLASS_TRIGGER_TEMP table is deleted, else the data is inserted into
RECLASS_COST_CHG_QUEUE table.

check_stock_count()

This function checks for the existence of a stock count of an item in the STAKE_SKU_LOC or
STAKE_PROD_LOC.

check_order()

This function checks for the existence of an order for an item in the ORDHEAD and ORDSKU
tables.

119

Retek Merchandising System

check_uda()

This function calls UDA_SQL.CHECK_REQD_NO_VALUE which determines if an item's new
hierarchy has any required UDA defaults that the item is not currently associated with.

check_domain_exists()

This function calls FORECASTS_SQL.GET_DOMAIN to check for the existence of the domain
for a merchandise hierarchy.

check_forecast()

This function validates the reclassification of an item based on forecast indicator. First, it checks
if the item passed is a pack through the package call to
ITEM_ATTRIB_SQL.GET_PACK_INDS. Then for non-pack items, it calls
FORECASTS_SQL.GET_ITEM_FORECAST_IND to get the item forecast indicator.

delete_reclass_trigger_temp()
This function deletes the records for a given item from the RECLASS_TRIGGER_TEMP.

Individual Program Functions

rpl_pre()

This function truncates the following tables before replenishment extracts are performed:
e ORD_TEMP

e ORD_MISSED

It also disables any indexes prior to the truncation on the associated tables and rebuilds/enables
them following the truncation. The user running this program for this function must have been
granted the ‘drop any table’ and “alter any index’ system privilege, or be the owning schema user.

salweek_post()

Updates the last end-of-week date on the SYSTEM_VARIABLES table to the run date after all
weekly stock ledger data has been processed.

salmth_post()

Updates the following SYSTEM_VARIABLES columns to reflect the current date’s values after
all monthly stock ledger data has been processed:

e last eom_ half no

e last_eom_month_no

o last_eom_date

e next_eom_date

e last eom start half

e last eom end_half

e last eom start month
o last_eom_mid_month

o last_eom_next_half _no

120

Chapter 2 — Batch designs

o last_eom_day

o last_eom_week

e last_eom_month

o last_eom_year

o last_eom_week_in_half
rplatupd_pre()

This function truncates the MC_REJECTIONS table so that it is free to hold new mass change
rejections. It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

rplatupd_post()

This function truncates the holding tables REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC after their records have been processed. It disables any indexes
prior to the truncation on the associated tables and rebuilds/enables them following the truncation.
The user running this program for this function must have been granted the *‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.

rilmaint_post()

This function truncates the REPL_ITEM_LOC_UPDATES table after these records are processed
so the table is free to hold new updates. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

supmth_post()

Deletes records from table SUP_DATA after all daily supplier data records have been rolled up to
month level.

sccext_post()
Updates all processed supplier cost change record status to ‘Extracted’.
hstbld_pre()

Deletes sales history data for the dept exists in the table hist_rebuild_mask from the three tables
subclass_sales_hist, class_sales_hist and dept_sales_hist prior to running hstbld in rebuild mode.

hstbld_post()

This function truncates the holding table MASK_REBUILD after building history records. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the “drop any table’ and ‘alter any index’ system privilege, or be the owning schema user.

posdnld_post()

This clears the POS_MODS table after all records have been downloaded to the POS. It disables
any indexes prior to the truncation on the associated tables and rebuilds/enables them following

the truncation. The user running this program for this function must have been granted the ‘drop
any table’ and “alter any index’ system privilege, or be the owning schema user.

121

Retek Merchandising System

poscdnld_post()

This clears the config_status and loc_grp_status in POS_LOC_GRP and sets all values of
extract_reqg_ind to “N’. It clears the status column in POS_MERCH_CRITERIA. It also sets the
status_ind column in POS_STORE to ‘N’.

regext_post()

This function updates the TSFHEAD table and sets the status to “‘A’, approval_id to ‘BATCH’,
approval_date to the vdate, and the repl_tsf _approve_ind to ‘N’ where the repl_tsf_approve_ind
is equal to “Y”.

likestore_post()

This function should only be run after both storeadd.pc and all threads of likestore.pc have
successfully completed.

In the REPL_ITEM_LOC, table, likestore_post selects and inserts all information from the a like
store for the new store.

stkupd_pre()

Calls the stored function DBMS_MVIEW.REFRESH.

stkupd_post()

This function disables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC.
dtesys_post()

Enables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC table.
ocirog_pre()

This function truncates the rpl_net_inventory_tmp table, which is populated by the ocirog.c and
queried from regext.pc. This function also inserts records into RPL_DISTRO_TMP values from
ALLOC DETAIL, and ALLOC_HEAD table, and into RPL_ALLOC_IN_TMP values from
ALLOC _DETAIL, ALLOC_HEAD, and ORDHEAD table. This function also creates a unique
index in these two destination tables.

rplext_post()
Truncates the tables RPL_DISTRO_TMP, and RPL_ALLOC_IN_TMP.
posupld_post()

This updates the columns total_merch_cost , total_qgty, invc_qty, INVC_HEAD tables based on
the corresponding columns in the INVC_HEAD_TEMP table.

vatdIxpl_post()

This inserts into pos_mods all transaction level items on the vat_item table where the item has a
new tran_code. Also, if a sub-transaction level item is on vat_item, it is inserted into the
pos_maods table, along with its parent item. These items are not picked up by the vatdlxpl
program because the vat_code rate has not changed.

saleoh_pre()
Calculates the next_eom_date, and updates the SYSTEM_VARIABLES.

122

Chapter 2 — Batch designs

dealday_pre()

This gets the total sales and purchases from the TEMP_TRAN_DATA table and inserts a new
record in TEMP_TRAN_DATA_SUM based on dept, class, subclass, loc_type, location,
tran_date, and tran_code.

dealday_post()

Copies the contents of the table TEMP_TRAN_DATA_SUM into TRAN_DATA table.
Afterwards, then TEMP_TRAN_DATA_SUM is truncated.

hstbldmth_post()

This is responsible for deleting records in the following tables:

e CLASS_SALES_HIST_MTH

e SUBCLASS_SALES_HIST_MTH

e CLASS_SALES_HIST_MTH

e DEPT_SALES HIST_MTH

The following functions should be run after the edidlprd program.

edidlprd_post()

Deletes old records from the EDI_DAILY_SALES table after they have been processed.
festrbld_post()

This truncates the holding table FORECAST_REBUILD after all records have been processed. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the “drop any table’ and “alter any index’ system privilege, or be the owning schema user.

vrplbld_post()

This truncates the EDI_ORD_TEMP table after all replenishment orders have been build from the
data held there. Disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

cntrordb_post()
Sets the last_cont_order_date on system_variables to vdate.
fifgldn1_post()

If Oracle Financials is being used, delete everything from the fif_receiving table and repopulate it
from the if_tran_data table. Disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

fsadnld_post()

Updates the load_sales_ind to “N’ for all records on the appropriate domain table — domain_dept,
domain_class, or domain_subclass, where system_options.domain_level = ‘D’, ‘C’, or ‘S’,
respectively.

123

Retek Merchandising System

policy_enable()
Enables or disables policies.
whstrasg_post ()

Deletes all warehouse store assignment records from the warehouse store assignment table if the
assignment date (wh_store_assign.assign_date) is less than or equal to the current date
(period.vdate) minus the warehouse store assignment history days
(system_options.wh_store_assign_hist_days).

costcalc_post()

This truncates the deal_sku_temp table. This disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

tifposdn_post()

This truncates tif_explode table. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user. It disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation.

htsupld_pre()

This truncates the mod_order_item_hts table so that reports will be correct and not include data
from previous runs of htsupld. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

onordext_pre()

This truncates the on_order_temp table. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

precostcalc_pre()

This processeses records from the COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP tables. Reclass_trigger_temp is populated only by database trigger
and cost_change_trigger_temp is populated by database trigger and
edi_cost_change_sql.create_cost_chg.

This function will either insert new records or update existing ones on reclass_cost_chg_queue.
Both tables, COST_CHANGE_TRIGGER_TEMP and RECLASS_TRIGGER_TEMP are
truncated and their indexes rebuilt at the end of this function. The user running this program for
this function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege,
or be the owning schema user.

reclsdly_pre()

This disables the trigger RMS_TABLE_RCS_BIDR on the reclass_item table. The user running
this program for this function must have been granted the “alter any trigger’ system privilege, or
be the owning schema user.

124

Chapter 2 — Batch designs

ibcalc_pre()

This updates the status on ib_results to ‘U’nprocessed where the status = “W’orksheet so after
ibcalc is run, multiple records in *“W’orksheet status will not exist for each item/location.

festprg_pre()

This disables any indexes prior to the truncation on following tables. This is run BEFORE the
festprg.pe program on PARTITIONED TABLES only:

e |ITEM_FORECAST

e DEPT_SALES_FORECAST

e CLASS SALES_FORECAST

e SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

festprg_post()

This rebuilds the indexes following truncation of following tables:
e [TEM_FORECAST

e DEPT_SALES_FORECAST

e CLASS SALES FORECAST

e SUBCLASS_SALES FORECAST

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

dealinc_pre()
Call get_sys_date()
Call size_arrays()

Loops through the deal actuals item loc table and create any item/loc/order combinations in the
table that have previous turnovers but do not exist in future periods.

dealfct_pre()

This inserts details of forecast periods for active deal components that require processing into
dealfct_temp table.

dealact_pre_no_rebate()

Truncates the deal_bb_no_rebate_temp table.

Then inserts billback NO Rebate type of deal into deal _bb_no_rebate_temp.
dealact_pre_rebate_po()

Truncates the deal_bb_rebate_po_temp table.

Then inserts billback rebate PO type of deal into deal_bb_rebate_po_temp.

125

Retek Merchandising System

dealact_pre_receipt_sales ()

Truncates the deal_bb_receipt_sales_temp.

Then inserts billback rebate Sales and Receipt type of deal into deal_bb_receipt_sales_temp.
vendinvc_pre()

Truncate the STAGE_COMPLEX_DEAL_HEAD table.
Truncate the STAGE_COMPLEX_DEAL_DETAIL table.
Then inserts complex deals for invoicing into vendinvc_temp.
vendinvf_pre()

Truncate the STAGE_FIXED_DEAL_HEAD table.

Truncate the STAGE_FIXED_DEAL_DETAIL table.
vendinvc_post()

Get vdate.

Call process_deal _head().

vendinvf_post()

Get vdate.

Call process_fixed_deal().

process_fixed_deal()

For each active Fixed Deal record where the Collect End Date is earlier than the vdate, set it’s
status to Inactive.

process_deal head()

For each active Deal Head record where Est Next Invoice Date, Close Date, Last Invoice Date
and Last EOM Date are earlier than vdate, AND Billing Type is Off Invoice and Invoice
processing Logic '="NQ’, set the Est Next Invoice Date to null.

126

Chapter 2 — Batch designs

Item requisition extraction [regext]

Design Overview

Regext (Item Requisition Extraction) handles automatic replenishment of items from warehouses
to stores. It cycles through every item-store combination that is set to be reviewed on the current
day, and calculates the quantity of the item that needs to be transferred to the store (if any). In
addition, it distributes this Recommended Order Quantity (ROQ) over any applicable alternate
items associated with the item. The program then takes this information and either creates new
transfer line items or adds to existing ones.

Alternate items are either simple packs or substitute items. Simple packs are sellable and
orderable packs that contain only a single item, such as a six-pack of cola or twelve-pack of
socks. Substitute items are items predefined to be interchangeable with the item being
replenished (referred to as the master item).

When an item is set up to use simple packs (designated by an indicator on the REPL_ITEM_LOC
table), the ROQ must be distributed among these packs according to desirability. If a master item
has no simple packs associated with it, it will be requested as itself. If there is only one pack
associated with the item (referred to as the primary simple pack), then there is no distribution
needed — the item will be transferred in this simple pack, since the cost per item for a pack is
always less than that of an individual item. If multiple simple packs can be substituted for an
item, then the distribution of the ROQ over these packs is determined by comparing the packs’
relative sales history. Replenishing an item through multiple simple packs can have a severely
negative effect on the performance of this program! Because the pack distribution depends on
access to the huge sales history tables (ITEM_LOC_HIST), it is not recommended that many
items be placed on replenishment through multiple simple packs. Whenever possible, it is better
to assign a primary simple pack to the item, since this does not require distribution calculation.

If an item is not set up to use simple packs, the program will see if any substitute items are
associated with it. If there are no substitute items associated with the master item, it will be
transferred alone. If there are substitute items, they will be fetched into a list and the master item
placed at either the head or tail end of the list, depending on the fill priority (set on the
SUB_ITEMS_HEAD table). The priority determines which items are transferred first.

No matter what type of alternate items (if any) are used, the program will account for availability
when building transfer line items. For simple packs, the share of ROQ allocated to each pack
may be decreased or increased if the source warehouse has a shortage of some packs but a surplus
of others. For substitute items, transfer quantities are prorated by calculating the ratio of total
availability to total need, and items are transferred in order of priority until all need is filled or
until no stock is available.

Once the transfer quantity of an item has been calculated, the transfer line item is posted to the
database if 1) the actual quantity to transfer is greater than zero, and 2) the replenishment order
control indicator for the item-store combination is either Automatic or Semi-Automatic. If it is
Manual, a record will be written to another table (REPL_RESULTS) for reporting purposes. If
the system-level All Replenishment Results indicator is set to “Yes”, all line items will be written
to REPL_RESULTS, even if the quantity to order is zero. Whenever a transfer line item is
placed, the appropriate item-location table (ITEM_LOC_SOH) is updated to reflect the fact that
stock is now reserved for transfer at the warehouse and expected at the store.

127

Retek Merchandising System

Tables Affected:

TABLE SELECT INSERT | UPDATE | DELETE
ITEM_LOC Yes No No No
ITEM_LOC_SOH No No Yes No
ITEM_MASTER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
PACKHEAD Yes No No No
PACKITEM Yes No No No
PACKSTORE_HIST Yes No No No
PERIOD Yes No No No
RAG_SKUS_ST HIST Yes No No No
REPL_DAY Yes No No No
REPL_ITEM_LOC Yes No Yes No
REPL_RESULTS No Yes No No
RPL_NET_INVENTORY_TMP | Yes No No No
STORE Yes No No No
SUB_ITEMS_DETAIL Yes No No No
SUB_ITEMS_HEAD Yes No No No
SUPS Yes No No No
SYSTEM_OPTIONS Yes No No No
TSFDETAIL Yes Yes Yes No
TSFHEAD Yes Yes No No
WH Yes No No No
Scheduling Constraints

Processing Cycle: PHASE 3

Scheduling Diagram:

any transfers created.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: ITEM

The restart_control.num_threads for the batch program regext.pc should be equal to the number
of partitions on the rpl_net_inventory tmp table.

128

Rplatupd, repladj, prepost ociroq and ociroq need to run before regext so
that all replenishment calculation attributes are up to date. Posupld need
to run before regext so that all stock information is up to date. Rplext
should run after regext, since the ROQ for a warehouse is influenced by

Chapter 2 — Batch designs

Restart Recovery

The logical unit of work is item, source warehouse. The driving cursor is ordered by item, source
warehouse, order control indicator and simple pack indicator. When any of these values change
during the course of processing (i.e., the current value is different than that of the previous
record), then a transfer will be created, taking total quantities and availability into consideration
(see replenish_item(), below).

Shared Modules

ITEM_ATTRIB_SQL.GET_ITEM_MASTER: Stored PL/SQL procedure for getting a record
containing every attribute from ITEM_MASTER for the entered item.

TRANSFER_SQL.AUTOMATIC_BT_EXECUTE: Stored PL/SQL procedure that will
automatically handle inventory updates and close out a transfer by calling two other functions,
TRANSFER_OUT_SQL.EXECUTE_BT, and TRANSFER_IN_SQL.EXECUTE_BT.

TRANSFER_SQL.NEXT_TSF_PO_LINK_NO: Stored PL/SQL procedure that generates the
next tsf_po_link sequence number.

ITEMLOC_QUANTITY_SQL.GET_LOC_CURRENT_AVAIL: Stored PL/SQL procedure for
calculating the current available stock of a given item available at a given location.

NEXT_TRANSFER_NUMBER: Stored PL/SQL procedure used for getting the next valid
transfer number for use in creating new transfers.

Function Level Description
main()

The standard Retek main function, this calls init(), process() and final(), and posts messages to the
daily log files.

init()
Initializes the Restart-Recovery API and fetches system-level global variables.
driving_cursor()

Opens, fetches data from, or closes the driving cursor. The driving cursor uses dynamic SQL that
accepts the partition number from the rpl_net_inventory_tmp table as an argument. This isa
support function for process().

process()

This function fetches records from the driving cursor (driving_cursor()), passes them to
replenish_item() to perform all appropriate actions, and commits work when appropriate
(post_all(), restart_commit()).

replenish_item()

The controlling function for replenishment calculations. This function copies records out of the
driving cursor buffer (copy_repl_to_store()). If a change in item, source warehouse, order control
indicator, or simple pack indicator has occurred, the appropriate functions are called to calculate
distribution of need over all appropriate alternate items and stores, and to place the transfers. If
item's ROQ is zero or negative, no mater simple pack indicator is on the master item will be used
for replenishment (build_pack_ratio(), calc_pack_dist(), calc_sub_dist()).

place_tsf_line_item()

129

Retek Merchandising System

This function takes a item-location combination and a transfer quantity, and actually builds the
transfer line item (handle_tsf()). It then updates the item-location tables to reflect the change in
stock (handle_item_loc()), and writes a record to the reporting table (handle_repl_results()) when
appropriate.

final()
The standard Retek final function, this closes down the Restart-Recovery API.

Substitute Item Distribution and Transfer
calc_sub_dist()

Calculate distribution of the ROQ over substitute items. Substitute items are items (selected by
the user beforehand) that can be requested in place of a given item to cover situations where
availability is too low or demand is too high.

If the total ROQ for the item is equal or less than zero then only the master item is used. Call out
function add_master_item(). If stock category is anything other than WH/Cross Link, call out
get_sub_items else if the stock category is WH/Cross Link, substitute items won't be supported.
Instead, another path will be provided in the program to add in the master item and retrieve its
availability, which is to call function get_mbr_items.

After calling get_sub_items() to generate a list of appropriate items for transfer, the function
loops through every item-location combination and performs the following steps to make sure
that both need and availability are accounted for when placing transfers from the warehouse to
the stores:

o |f the total availability of all items in the substitute list cannot cover the full need over all
stores, then the ratio of the total availability to the total ROQ is calculated. If total
availability can cover total ROQ, the ratio is set to 1.

e The initial transfer quantity for the item at the location is calculated as the store’s need
adjusted by the availability ratio, and rounded up to a receivable pack size.

o If there is not enough of the item available at the warehouse to fill the calculated transfer
guantity, the quantity will be decremented to an orderable amount.

e The transfer line item is placed by calling place_tsf_line_item().

e The store’s ROQ, total ROQ, availability of the item, and total availability are all
decremented by the amount just transferred to prepare for the next item-location’s
calculation.

get_sub_items()

Retrieves substitute items for the current master item and information about them from the
database (receiving pack size, availability, etc.). If the fill priority for this set of items
(SUB_ITEMS_HEAD fill_priority) is set to ‘M’aster, the master item will be the first one in the
list, and will be used first to fill need. If it is set to ‘S’ubstitute, the master item will be placed at
the tail end of the list. This is a support function calc_sub_dist().

get_mbr_items()

Retrieves the master item and its source wh availability in order to process warehouse
docked/crossdocked transfers for market based replenishment. Because this new stock category
doesn't currently support the use of substitute items, this simple master item retrieval path is
being provided. This is a support function for calc_sub_dist().

130

Chapter 2 — Batch designs

add_master_item()

Adds the master item to the appropriate position in the substitutes list. This is a support function
for get_sub_items().

shift_subs()

If the fill priority for the substitutes list is set to “M’aster, the master item must be placed at the
head of the list. This function clears out the first position by moving each substitute item ‘back’ a
slot. This is a support function for get_sub_items().

get_item_loc_info()

Retrieves a store order multiple and rounding information for every item-store combination. Also,
retrieve the status of the substitution item at the store it is potentially being transferred to. If the
item is Inactive at the store location, then the transfer won't be created for that item. This is a
support function for calc_sub_dist().

Database DML Handling
post_all()

The DML handling functions (handle_tsf(), handle_item_loc(), handle_repl_results()) normally
only post information to the database tables when their respective buffers are full. When a
commit point is reached, however, all buffers must be flushed to ensure restartability. This
function forces all the buffers to be posted to the database.

handle_tsf()
Controls handling of inserts and updates to the Transfer tables.
add_tsfhead()

Deals with transfer header information. Either finds an appropriate transfer to add line items to
(matching to/from locations, department and freight code), or creates a new one. passes back the
transfer number for use in add_tsfdetail(). This is a supporting function for handle_tsf().

add_tsfdetail()

Deals with transfer detail information. Either finds an appropriate record on the TSFDETAIL
table to add guantity to (matching transfer number and item), or creates a new one if none is
found. This is a supporting function for handle_tsf().

get_next_seq_no()

Every line item on a transfer has a unique identifier within that transfer. This function gets the
next sequence number for a new line item. This is a supporting function for add_tsfdetail().

post_tsf()

Posts transfer information to the database. Inserts to TSFHEAD, inserts and updates to
TSFDETAIL. This is a supporting function for handle_tsf().

handle_item_loc()

Whenever a transfer is created or modified, the source location's reserved quantity and the
receiving location's expected quantity must be adjusted to reflect the new stock status. This
function controls the handling of updates to the item-location tables

131

Retek Merchandising System

add_item_loc()

Adds records to arrays for update of expected and reserved quantities on the item-location table
(ITEM_LOC_SOH) based on the appropriate item types. This is a support function for
handle_item_loc().

post_item_loc()

Posts item-location stock status changes to the database (ITEM_LOC_SOH). This is a support
function for handle_item_loc().

handle_repl_item_loc()
Controlling function for handling updates to the REPL_ITEM_LOC table.
add_repl_item_loc()

This function adds records to the repl_item_loc array for the update of the REPL_ITEM_LOC
table.

post_repl_item_loc()

This function posts repl_item_loc records to the database. Also updates the the last_review_date
and last_delivery_date columns on REPL_ITEM_LOC to reflect the fact that item-location
combinations have just been evaluated.

handle_repl_results()
Controls posting of report information to the REPL_RESULTS table.
add_repl_results()

Adds records to the replenishment results structure for reporting. This is a supporting function
for handle_repl_results().

post_repl_results()

Posts replenishment information to the REPL_RESULTS table. This is a supporting function for
handle_repl_results().

PL/SQL Stored Procedure Calls
handle_wh_current_avail()

Gets the available quantity of a given item at a given warehouse. Calls out
get_wh_current_avail() and create_book _transfer()

create_book_transfer()

Creates transfers from one VWH to another when one VWH in a physical WH fails to have
enough available inventory to satisfy a store's ROQ for a particular item. This function is also a
wrapper for TRANSFER_SQL.AUTOMATIC_BT_EXECUTE stored PL/SQL procedure

get_wh_current_avail()

Gets the available quantity of a given item at a given warehouse. This function is a wrapper for
the ITEMLOC_QUANTITY_SQL.GET_LOC_CURRENT_AVAIL stored PL/SQL procedure.

132

Chapter 2 — Batch designs

next_transfer_number()

Gets the next transfer number in the Oracle stored sequence for creating new transfer headers.
This function is a wrapper for the NEXT_TRANSFER_NUMBER stored procedure.

next_tsf_po_link_no()

Gets the next tsf_po_link_no in the stored sequence for creating market based warehouse
stocked/cross-docked transfers. This function is a wrapper for the
TRANSFER_SQL.NEXT_TSF_PO_LINK_NO stored PL/SQL procedure.

Domain Validation
Support Functions
copy_repl_to_store()

Copies a record from the structure holding rows from the driving cursor into a structure holding
item-location information for ROQ calculation, distribution, and transfer placement.

reset_store_struct()

Resets summary variables in a store information structure to prepare it for the next set of line
items.

reset_alt_item_struct()

Resets summary variables in an alternate item structure to prepare it for the next set of alternates.
Array Sizing

size_repl_info_struct()

Allocates memory to the structure used to buffer fetches from the driving cursor.
size_store_struct()

Allocates memory to the structure used to hold item-location level information.
size_alt_item_struct()

Allocates memory to the structure used to hold information about alternate items (either simple
packs or substitute items).

size_tsfhead_struct()

Allocates memory to the structure used to buffer inserts to the Transfer Header table.
size_tsfdetail_struct()

Allocates memory to structures used to buffer inserts and updates to the Transfer Detail table.
size_item_loc_struct()

Allocates memory to structures used to buffer updates of the item-location tables
size_repl_results_struct()

Allocates memory to the structure used to buffer inserts to the Replenishment Results table.
size_book_transfer_struct()

Allocates memory for the elements of a item_loc insert structure.

size_repl_update_struct()

133

Retek Merchandising System

Allocates memory for the elements of a repl_item_loc update structure.

134

Chapter 2 — Batch designs

Monthly Replenishment Purge [rplprg_month]

Design Overview

The replenishment extraction programs (rplext, regext) write a number of records to
REPL_RESULTS, the investment buy process writes records to IB_RESULTS and the Buyer
Worksheet Form populates BUYER_WKSHT _MANUAL. These tables hold information that is
relevant to replenishment processes. Over time, records on these tables become unneeded and
should be cleared out. The Monthly Replenishment Purge Program goes through these tables and
clears out those records that are older than a predetermined number of days and drops the
partitions created in the REPL_RESULTS table. The eways ewlnvAdjustToRMS,
ewRecieptToRMS need to be shutdown when rplprg_month.pc is run..

Tables Affected:

TABLE INDEX | SELECT INSERT UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No No No
ALL_TAB_PARTITIONS No Yes No No No
REPL_RESULTS No No No No Yes
BUYER_WKSHT_MANUAL No No No No Yes
STORE_ORDERS No No No No Yes
IB_RESULTS No No No No Yes

Function Level Description

main()

Standard Retek main function that calls init(), process(), and final()

init()

This function fetches various threshold dates. These dates are the current processing date
(PERIOD.vdate) minus SYSTEM_OPTIONS.repl_results_purge_days, PERIOD.vdate minus
SYSTEM_OPTIONS.store_orders_purge_days and SYSTEM_OPTIONS.ib_results_purge_days.

This function should also fetch the commit_max_ctr from RESTART_CONTROL to determine
how many records can be deleted between commits

process()

This program will, in four different loops, delete from REPL_RESULTS,
BUYER_WKSHT_MANUAL, STORE_ORDERS and IB_RESULTS where the repl_date,
create_date, need_date and create_date are less than their associated threshold date and the
rownum is less than the commit counter. The BUYER_WKSHT MANUAL table will be purged
using the replenishment results purge days threshold date. If REPL_RESULTS is partitioned, this
program will drop the partitions that were created and then validate all the invalid objects of the
schema owner.

135

Retek Merchandising System

If this statement processes no rows, then the table has been fully purged and the function should
return successfully. Otherwise, it should commit and return to the top of the loop. The loop with
intermittent commits is necessary in order to ensure that rollback segments are not in danger of
overflowing.

final()

This function will terminate restart-recovery. It also calls retek close() to refresh the current
thread.

Scheduling Considerations

Processing Cycle: Phase 3 (monthly).
Scheduling Diagram: Can run anytime.
Pre-Processing: N/A.
Post-Processing: N/A.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit check points)
Driving Cursor

Because this program performs only deletes, there is no need for restart/recovery or
multithreading, and there is no driving cursor. However, this program still needs an entry on
RESTART_CONTROL to determine the number of records to be deleted between commits.

Technical Issues
Think about using Parallel Query in the delete.

If the client doesn’t want to hold on to their results, it’s probably better to remove this program
from the schedule and modify rpl_pre to truncate REPL_RESULTS nightly (similar to the current
treatment of ORD_SUGG/F).

Testing Scenarios

Insert records onto REPL_RESULTS, BUYER_WKSHT_MANUAL, STORE_ORDERS and
IB_RESULTS some with a repl_date, create_date or need_date earlier than the threshold date,
some later. Run rplprg_month. Those records earlier than the threshold should be deleted, while
those later should remain.

Process enough records (or set the commit_max_ctr low enough) so that the program must
perform multiple deletes in process ().

136

Chapter 2 — Batch designs

Sales Audit Get Reference [sagetref]

Design Overview

This program will fetch all reference information needed by saimplog.pc and write this
information out to separate output files. One file will contain a listing of all items in the system.
A second file will contain information about all items that have wastage associated with them. A
third file will contain reference items. A fourth file will contain primary variant information. A
fifth file will contain all variable weight UPC definitions in the system. A sixth file will contain
all of the valid store/day combinations in the system. A seventh file will contain all code types
and codes used in field level validation. An eighth file will contain all error codes, error
descriptions and systems affected by the error. A ninth file will contain the credit card validation
mappings. A tenth file will contain the store_pos mappings. An eleventh file will contain the
tender type mappings. A twelfth file will contain the merchant code mappings. A thirteenth file
will contain the partner mappings. A fourteenth file will contain the supplier mappings. A
fifteenth file will contain employee mappings. Finally a sixteenth file will contain banner
information. These files will be used by the automated audit to validate information without
repeatedly hitting the database.

Tables Affected:

TABLE INDEX | SELECT INSERT UPDATE | DELETE
ITEM_MASTER No Yes No No No
ITEM_LOC No Yes No No No
VAR_UPC_EAN No Yes No No No
SA_IMPORT_LOG No Yes No No No
CURRENCIES No Yes No No No
STORE_DAY No Yes No No No
STORE No Yes No No No
SA_STORE_DAY No Yes No No No
CODE_DETAIL No Yes No No No
SA_ERROR_CODES No Yes No No No
SA CC VAL No Yes No No No
SA_STORE_POS No Yes No No No
POS_TENDER_TYPE_HEAD | No Yes No No No
NON_MERCH_CODE_HEAD | No Yes No No No
PARTNER No Yes No No No
SUPS No Yes No No No
SA_STORE_EMP No Yes No No No
BANNER No Yes No No No

137

Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE
CHANNELS No Yes No No No
ADDR No Yes No No No

Function Level Description

main()

Standard Retek main function that calls init(), process(), and final()

init()

This function will initialize the necessary restart recovery variables.

Calls the function retek _init().

process()

This will call process_item_master_info() to retrieve item information from the database and
write it to a item and waste output file. This function will then call process_ref item_info() to
retrieve reference item information from the database and write it to the reference item output

file. This function will also call process_prim_variant_info() to retrieve primary variant

information from the database and write it to a primary variant output file. This function will
then call process_var_upc_ean_info() to retrieve all variable weight UPC mappings from the
database and write them to the variable weight UPC output file. This function will then call
process_store_day_info() to retrieve all valid store day combinations from the database and write
them to the store day output file. This function will then call process_codes_info() to retrieve all
codes from the database that are used in file validation and write them to the codes output file.
This function will then call process_error_info() to retrieve all errors from the database that are

used in file validation and write them to the error output file. This function will then call

process_cc_info() to retrieve all credit card validation mappings from the database and write them
to the credit card validation output file. This function will then call process_store_pos_info() to
retrieve all store/pos mappings from the database and write them to the store POS output file.
This function will then call process_tender_type_info() to retrieve all tender type mappings from
the database and write them to the tender type output file. This function will then call
process_merch_codes_info() to retrieve all merchant code mappings from the database and write
them to the merchant code output file. This function will then call process_partner_info() to
retrieve all partner mappings from the database and write them to the partner output file. This
function will then call process_supplier_info() to retrieve all supplier mappings from the database
and write them to the supplier output file. This function will then call process_employee_info() to
retrieve all employee mappings from the database and write them to the employee output file.
Finally this function will call process_banner_info() to retrieve banner information from the
database and write them to the banner output file.

138

Chapter 2 — Batch designs

process_item_master_info()

This function will query information for all sellable items from the item_master table and uses
this information to populate the item master array. This includes all items (whose item status =
‘A’ and tran_level = item_level and sellable_ind = “Y”). This function also calls
size_item_master_arrays() to allocate memory for the item master array. The columns that are
selected for this process include item, dept, class, subclass, waste_type, waste_pct, standard_uom,
and catch_weight_ind. The information is ordered by item. All records in the item master array
should be written to the item data output file by calling write_item_data(). Only records in which
waste_type or waste_pct are not null should be written to the waste data file by calling
write_waste_data().

size_item_master_arrays()
This function allocates memory for the item master array used in process_item_master_info.
write_item_data()

This function will write all elements of the item master array to the item data output file. The file
format for the item data file can be found in the 1/O section of this document. The information
should be ordered by item.

write_waste_data()

This function will accept the entire item master array as input, but will only write records to the
waste data file if the waste_type or waste_pct for the item are not null. This function then checks
to make sure that data that came back as NULL is actually blank. The file format for the waste
data file can be found in the I/O section of this document. The information should be ordered by
item.

process_ref item_info()

This function will query item reference information for all sellable items from the item_master
table and uses this information to populate the ref item array. This includes all items (whose item
status = “A” and item_level — tran_level = 1 and sellable_ind = *Y”). This function also calls
size_ref_item_arrays() to allocate memory for the ref item array. The columns that are selected
for this process include item and item_parent. The information is ordered by item. All records in
the ref item array should be written to the ref item data out put file by calling
write_ref_item_data().

size_ref_item_arrays()
This function allocates memory for the ref item array used in process_ref_item_info.
write_ref_item_data()

This function will write all elements of the ref item array. The file format for the ref item data
file can be found in the 1/0 section of this document. The information should be ordered by item.

process_prim_variant_info()

This function will query primary variant information for all items from the item loc and
item_master tables and uses this information to populate the primary variant array. This includes
all items (whose item status = ‘A’ and item_level — tran_level = 1 and primary_variant is NOT
NULL). This function also calls size_prim_variant_arrays() to allocate memory for the primary
variant array. The columns that are selected for this process include loc, item and primary
variant. The information is ordered by loc (alphabetically not numerically) and then by item. All
records in the primary variant array should be written to the primary variant data out put file by
calling write_prim_variant_data().

139

Retek Merchandising System

size_prim_variant_arrays()
This function allocates memory for the primary variant array used in process_prim_variant_info.
write_prim_variant_data()

This function will write all elements of the prime variant array. The file format for the primary
variant data file can be found in the 1/O section of this document. The information should be
ordered by loc (alphabetically not numerically) and then by item.

process_var_upc_ean_info()

This function will query variable weight UPC information from the var_upc_ean and item_master
tables and uses this information to populate the variable weight UPC array. This includes all
distinct var_upc_ean records whose format_id = item_master.format_id and item status = ‘A’.
This function also calls size_var_upc_ean_arrays() to allocate memory for the variable weight
UPC array. The columns that are selected for this process include format_id, format_desc,
prefix_length, begin_item_digit, begin_var_digit, check_digit, default_prefix and prefix. The
information is ordered by format_id. All records in the variable weight UPC array should be
written to the variable weight UPC output file by calling write_var_upc_info()

size_var_upc_ean_arrays()

This function allocates memory for the variable weight UPC array used in
process_var_upc_ean_info.

write_var_upc_data()

This function will write all elements of the variable weight UPC array. The file format for the
variable weight UPC file can be found in the /O section of this document. The information
should be ordered format_id.

process_store_day_info()

This function will query all valid store/day combinations from the sa_store_day, store,
sa_import_log and currencies tables and uses this information to populate the store day array.
This includes all stores which sa_import_log.system_code = ‘POS’. This function also calls
size_store_day_arrays() to allocate memory for the store day array. The columns that are selected
for this process include store, business_date, store_day_seq_no, day, tran_no_generated, decode
system_code (code = ‘POS’) and currency_rtl_desc. The information should be ordered by store
(alphabetically not numerically) and business date. All records in the store day array should be
written to the store day output file by calling write_store_day_data().

size_store_day_arrays()
This function allocates memory for the store day array used in process_store_day _info.
write_store_day_data()

This function will write all elements of the store day array to the store day output file. The file
format for the store day file can be found in the 1/O section of this document. The information
should be ordered by store (alphabetically not numerically) and business date.

process_codes_info()

This function will query codes information from the code_detail table and uses this information to
populate the codes array. This function also calls size_codes_arrays() to allocate memory for the
codes array. The columns selected in this process include code, code_type, and code_seq. The
information should be ordered by code_type and code. All records in the codes array should be
written to the codes output file by calling write_codes_data().

140

Chapter 2 — Batch designs

size_codes_arrays()
This function allocates memory for the codes array used in process_codes_info.
write_codes_data()

This function will write all elements of the codes array to the codes output file. The file format
for the codes file can be found in the I/O section of this document. This information should be
ordered by code_type and code.

process_error_info()

This function will query error code information from the sa_error_codes table and uses this
information to populate the errors array. This function also calls size_error_arrays() to allocate
memory for the error array. The columns selected in this process include error_code, error_desc,
and rec_solution (recommended solution). The information should be ordered by error_code. All
records in the errors array should be written to the errors output file by calling write_error_data().

size_error_arrays()
This function allocates memory for the error array used in process_error_info.
write_error_data()

This function will write all elements of the error array to the error output file. The file format for
the error file can be found in the I/O section of this document. This information should be
ordered by error_code.

process_cc_val_info()

This function will query credit card validation information from the sa_cc_val table and uses this
information to populate the credit card validation array. This function also calls
size_cc_val_arrays() to allocate memory for the credit card validation array. The columns
selected in this process include length, from_prefix, to_prefix, tender_type_id, and value type.
The information should be ordered by length (alphabetically not numerically) and from_prefix.
All records in the credit card validation array should be written to the credit card validation output
file by calling write_cc_val_data().

size_cc_val_arrays()
This function allocates memory for the credit card valdiation array used in process_cc_val_info.
write_cc_val_data()

This function will write all elements of the credit card validation array to the credit card
validation output file. The file format for the credit card validation file can be found in the I/O
section of this document. This information should be ordered by length (alphabetically not
numerically) and from_prefix.

process_store_pos_info()

This function will query store POS information from the sa_store_pos table and uses this
information to populate the store POS array. This function also calls size_store_pos_arrays() to
allocate memory for the store POS array. The columns selected in this process include store,
pos_type, start_tran_no, and end_tran_no. The information should be ordered by store
(alphabetically not numerically) and pos_type. All records in the store POS array should be
written to the store POS output file by calling write_store_pos_data().

size_store_pos_arrays()
This function allocates memory for the store POS array used in process_store_pos_info.

141

Retek Merchandising System

write_store_pos_data()

This function will write all elements of the store POS array to the store POS output file. The file
format for the store POS file can be found in the I/O section of this document. This information
should be ordered by store (alphabetically not numerically) and pos_type.

process_tender_type_info()

This function will query tender type information from the pos_tender_type head table and uses
this information to populate the tender type array. This function also calls
size_tender_type_arrays() to allocate memory for the tender type array. The columns selected in
this process include tender_type_group, tender_type_id, and tender_type_desc. The information
should be ordered by tender_type_group and tender_type_id (alphabetically not numerically). All
records in the tender array should be written to the tender type output file by calling
write_tender_type_data().

size_tender_type_arrays()
This function allocates memory for the tender type array used in process_tender type_info.
write_tender_type_data()

This function will write all elements of the tender type array to the tender type output file. The
file format for the tender type file can be found in the /O section of this document. This
information should be ordered by tender_type_group and tender_type_id (alphabetically not
numerically).

process_merch_codes_info()

This function will query merch code information from the non_merch_code_head table and uses
this information to populate the merch codes array. This function also calls
size_merch_codes_arrays() to allocate memory for the merch codes array. The columns selected
in this process include non_merch_code. The information should be ordered by
non_merch_code. All records in the merch codes array should be written to the merchant codes
output file by calling write_merch_codes_data().

size_merch_codes_arrays()
This function allocates memory for the merch codes array used in process_merch_codes_info.
write_merch_codes_data()

This function will write all elements of the merch codes array to the merchant codes output file.
The file format for the merchant codes file can be found in the 1/0 section of this document. This
information should be ordered by non_merch_code.

process_partner_info()

This function will query partner information from the partner table and uses this information to
populate the partner array. This function also calls size_partner_arrays() to allocate memory for
the partner array. The columns selected in this process include partner_type, and partner_id. The
information should be ordered by partner_id. All records in the partner array should be written to
the partner output file by calling write_partner_data().

size_partner_arrays()

This function allocates memory for the partner array used in process_partner_info.

142

Chapter 2 — Batch designs

write_partner_data()

This function will write all elements of the partner array to the partner output file. The file format
for the partner file can be found in the 1/0 section of this document. This information should be
ordered by partner_id.

process_supplier_info()

This function will query supplier information from the sups table and uses this information to
populate the supplier array. This function also calls size_supplier_arrays() to allocate memory for
the supplier array. The columns selected in this process include supplier, and sups_status. The
information should be ordered by supplier (alphabetically not numerically). All records in the
supplier array should be written to the supplier output file by calling write_supplier_data().

size_supplier_arrays()
This function allocates memory for the supplier array used in process_supplier_info.
write_supplier_data()

This function will write all elements of the supplier array to the supplier output file. The file
format for the supplier file can be found in the 1/0 section of this document. This information
should be ordered by supplier (alphabetically not numerically).

process_employee_info()

This function will query employee information from the sa_store_emp table and uses this
information to populate the employee array. This includes all stores where pos_id is NOT
NULL. This function also calls size_employee_arrays() to allocate memory for the employee
array. The columns selected in this process include store, pos_id, and emp_id. The information
should be ordered by store (alphabetically not numerically) and pos_id. All records in the
employee array should be written to the employee output file by calling write_employee_data().

size_employee_arrays()
This function allocates memory for the employee array used in process_employee_info.
write_employee_data()

This function will write all elements of the employee array to the employee output file. The file
format for the employee file can be found in the 1/O section of this document. This information
should be ordered by store (alphabetically not numerically) and pos_id.

process_banner_info()

This function will query banner information from the store, banner and channels tables and uses
this information to populate the banner array. This function also calls size_banner_arrays() to
allocate memory for the banner array. The columns selected in this process include store, and
banner_id. The information should be ordered by store (alphabetically not numerically). All
records in the banner array will be written to the banner output file by calling
write_banner_data().

size_banner_arrays()
This function allocates memory for the banner array used in process_banner_info.
write_banner_data()

This function will write all elements of the banner array to the banner output file. The file format
for the banner file can be found in the 1/0 section of this document. This information should be
ordered by store (alphabetically not numerically).

143

Retek Merchandising System

final ()

This function will terminate restart-recovery. It also calls retek_refresh_thread() to refresh the

current thread.

Output Specifications

As all files produced by this program are used only internally, they consist of only detail records.

Char field types are left justified and blank padded.

Number field types are right justified and zero padded.

Record Name | Field Name Field Default | Description
Type Value

Item Data Item char(25) Unique item identifier
Dept char(4) Department identifier
Class char(4) Class identifier
Subclass char(4) Subclass identifier
Standard_uom char(4) Standard UOM
Catch_weight_ind | char(1) Catch weight indicator

Waste Data Item char(25) Unique item identifier
Waste_type char(6) Waste type identifier
Waste pct number(16) Waste percent

Ref Item Data Item_parent char(25) Item Parent
Item char(25) Unique item identifier

Primary Variant | Item_loc number(10) Item location

Data
Item char(25) Unique item identifier
Primary_variant char(25) Primary variant

Variable UPC Format_id char(1) Format identifier

Data
Format_desc char(20) Format description
Prefix_length number(1) Prefix length
Begin_item_digit number(2) Determines the first digit of the

item number.
Begin_var_digit number(2) Determines the first digit of the
variable weight/price.

Check_digit number(2) Position of the check digit.
Prefix number(2) Item master prefix

Store Day Data | Store number(10) Store number

144

Chapter 2 — Batch designs

Record Name | Field Name Field Default | Description
Type Value

Business_date char(8) Business date — format:
YYYYMMDD

Store_day_seq_no | number(20) Unique store/day identifier

Day number(3) Day

Tran_no_generated | char(6) If NULL then blank

System_code char(6) System code

Currency_rtl_dec number(1) Currency retail decimal places

Code Data Code_type char(4) Unique code type identifier

Code char(6) Unique code identifier

Code_seq number(4) Unique code sequence identifier

Error Data Error_code char(25) Error identifier

Error_desc char(255) Error description

Rec_solution char(255) Recommended solution (If
NULL then ‘there is no
solution’)

Credit Card Length number(2) Card number length
Validation Data

From_prefix number(6) Start value for range of valid
prefixes.

To_prefix number(6) End value for range of valid
prefixes.

Tender_type_id number(6) Credit card ID

Val_type char(6) Validation type. If NULL, than
use “NONE”".

Store POS Data | Store number(10) Store identifier

Pos_type char(6) POS type identifier

Start_tran_no number(10) First transaction number
produced. Right justified and
zero padded.

End_tran_no number(10) Last transaction number
produced. Right justified and
zero padded.

Tender Type Tender_type_group | char(6) Tender type group
Data
Tender_type_id number(6) Tender type identifier. Right

justified and zero padded.

145

Retek Merchandising System

Record Name | Field Name Field Default | Description
Type Value
Tender_type_desc | char(40) Tender type description.
Merchant Code | Non_merch_code | char(6) Code identifying a non-
Data merchandise cost that can be
added to an invoice.
Partner Data Partner_type char(6) Specifies the type of partner.
Valid values are Bank 'BK',
Agent 'AG', Freight Forwarder
'FF', Importer 'IM', Broker 'BR’,
Factory 'FA', Applicant 'AP’,
Consolidator 'CO’, and
Consignee 'CN', Supplier
hierarchy level 1 'S1', Supplier
hierarchy level 2 'S2', Supplier
hierarchy level 3'S3".
Partner_id char(10) Partner vendor number.
Supplier Data Supplier number(10) Supplier vendor number.
Sup_status char(1) Determines whether the supplier
is currently active. Valid
values include: 'A'’ for an active
supplier or 'I' for an inactive
supplier.
Employee Data | Store number(10) Store number.
Pos_id char(10) The POS ID of the employee.
Emp_id char(10) The employee ID of the
employee.
Banner Data Store number(10) Store number
Banner_id number(4) Banner identifier

Scheduling Considerations

Processing Cycle:

Scheduling Diagram:

Pre-Processing:

Post-Processing:

Threading Scheme:

Restart Recovery

Anytime — Sales Audit is a 24/7 system.

sastdycr.pc

saimptlog.pc

N/A

This module should be executed in the earliest phase, before the first
import of RTLOGs into ReSA.

Restart recovery does not apply in the typical sense because sagetref writes to output files and
will not need to have restart capabilities, however restart is used for bookmarking purposes.

146

Chapter 2 — Batch designs

Vendor Invoicing for Complex Deals [vendinvc]

Design Overview
This batch module creates records in staging tables dealing with complex type deals.

The invoicing logic will be driven from the billing period estimated next invoice date for complex
deals. The amount to be invoiced will be the sum of the income accruals of the deal since the
previous invoice date (or the deal start date for the first collection).

The processing will be as follows:

1 Write a header record to the holding table for the deal

2 Determine which reporting periods are to be invoiced

3 For Complex Deals Aggregate the income for the reporting periods
4 Write a deal detail record to the holding table for each item, location
5 Update the next invoice date to vdate, and update estimated next date
Tables Affected:

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No No No
SYSTEM_VARIABLES No Yes No No No
VENDINVC_TEMP No Yes No No No
DEAL_HEAD No Yes No Yes No
DEAL_ACTUALS_ITEM_LOC No Yes No No No
STORE No Yes No No No
WH No Yes No No No
VAT _ITEM No Yes No No No
DEAL_ACTUALS_FORECAST No Yes No No No
STAGE_COMPLEX_DEAL_HEAD No No Yes No No
STAGE_COMPLEX_DEAL_DETAIL No No Yes No No

Stored Procedures / Shared Modules (Maintainability)

DEAL_FINANCE_SQL.CALC_NEXT_REPORT_DATE - Function to get the next reporting
date

147

Retek Merchandising System

Program Flow

Init()
Populate the system level
variables variables.

A 4

Size_arrays()
-- Initialize & size arrays

Process()
-- Fetch & Process driving
cursor.
-- Perform R/R

|

Process complex deals

Final()

-- Cleanup program.

Insert Records from
Complex_insert arrays

Call Retek Restart to
deal_id, deal_detail_id

148

Free_arrays()

-- Free memory for arrays

Chapter 2 — Batch designs

Function Level Description

main()

Validate the program arguments and logon to Oracle.

Call the init() function to initialize restart / recovery and variables.

Call the process() function to execute main program logic.

Call the final() function to clean up all internal processing.

init()

Call standard retek initialization function retek_init() to initialize restart / recovery.
Gets the following system level variables (program variables):

e SYSTEM_OPTIONS.CURRENCY_CODE SYSTEM_VARIABLES.LAST_EOM_DATE
e SYSTEM_VARIABLES.NEXT_EOM_DATE -7

e PERIOD.VDATE (ps_vdate)

e SYSTEM_OPTIONS.VAT_IND

final()

Free all arrays by calling function free_arrays().

Call standard retek close function retek_close().

process()

Initialize the array structures by calling size_arrays() .

Call out get_location_info().

In a while loop fetch required information from the driving cursor c_get_deals and fetch into the
array structure pa_complex_fetch.

If this is the first found invoicable reporting period for this location, item, order no, call out
check_date().

Process complex deals by calling out the following functions:
calculate_start_invoice_date(),post_complex_head(),insert_complex_head(),insert_complex_deta
il(),update_deal_head() and post_complex_detai().

Call retek_force_commit() to commit the entries.

149

Retek Merchandising System

Driving Cursor
EXEC SQL DECLARE c_get_deals CURSOR FOR
SELECT /*+ no_expand */ vt.deal _id,
vt.deal detail _id,
vt.item,
vt.location,
vt.loc_type,
vt.order_no,
NVL(vt.actual _income, 0),
NVL(vt.actual turnover_units, 0),
NVL(vt.actual_turnover_revenue, 0),
TO_CHAR(vt.reporting_date, "YYYYMMDDHH24MISS®),
vt.bill_back period,
vt.deal reporting_level,
vt.active_date,
vt.close_date,

DECODE(vt.partner_type, "S", vt.supplier,
vt.partner_id),

vt._partner_type,
vt.currency_code,
vt.bill _back method,
vt.invoice processing_logic,
vt.include vat_ind

FROM vendinvc_temp vt

WHERE MOD(vt.deal id, TO NUMBER(:ps_restart num_threads)) + 1
= TO_NUMBER(:ps_restart_thread_val)

AND (vt.deal _id > nvl(:ps_restart _deal _id, -999)
OR
(vt.deal _id

NVL(:ps_restart_deal id, -
999)

AND vt.deal detail _id >
NVL(:ps_restart_deal _detail _id, -999))

)
ORDER BY vt.deal id ASC,
vt.deal _detail _id ASC,
vt.location ASC,
vt.item ASC,
vt.order_no,
vt.reporting_date DESC;

150

Chapter 2 — Batch designs

check_date()

All reporting dates that are to be summed for a given invoicing period must fit with the following
rules, however as the calling cursor is ordered by reporting date DESC this routine need only be
called for the first reporting date for each location.

For a Weekly Reporting Period against a Weekly Invoicing Period you can not invoice the last
week in the month until the EOM has closed, so check if the reporting date is within 8 days of the
Next EOM date.

For a Monthly Reporting Period against a Monthly, Quarterly, Half Yearly or Annual Invoicing
Period you can not invoice until after EOM, so check if the reporting is on or before EOM.

calculate_start_invoice_date()

Calculate the START_INVOICE_DATE as being the Day after the Reporting Date prior to the
earliest Reporting Date selected for invoicing OR if the earliest Reporting Date selected is the
first for the deal, then the deal start date.

get_location_info()

Cursor c_get_location_info retrieves all location data from STORE and WH tables.
Loop on location_info cursor, copy the values to the holding array pa_fetch_loc_info.
Copy fetched data from pa_fetch_loc_info into array structure pa_loc_info.

if pa_fetch_loc_info.i_vat_region_ind =0, then pa_loc_info.i_vat_region_ind = -1.
Validate the array size and complete a resize as required.

get_loc_details()

Check if the current location is the same as the previous location, if so set the vat region to be the
same. If the location has changed, find the new vat region, new location and loc type.

post_complex_head()

Populate the current record in the insert array pa_complex_head_insert, data comes from the
values passed to the function.

Call the stored procedure DEAL_FINANCE_SQL.CALC_NEXT_REPORT_DATE() and
populate the complex insert (and update) array with the return value

Validate the array size and complete a resize as required
post_complex_detail()

Populate the current record in the insert array pa_complex_detail _insert, data comes from the
values passed to the function.

Get the location details by calling function get_loc_details()

If the local currency and the deal currency are different convert the amount by calling library
function convert().

Validate the array size and complete a resize as required.
insert_complex_head ()

Insert the contents of the holding array pa_complex_head_insert into the fixed deal staging table,
STAGE_COMPLEX_DEAL_HEAD.

insert_complex_detail ()

151

Retek Merchandising System

Insert the contents of the holding array pa_complex_detail_insert into the fixed deal staging table,
STAGE_COMPLEX_DEAL_DETAIL.

update_deal_head()

Update the last_invoice_date, last_update_datetime and est_next_invoice date on deal head for
the invoiced deals from the complex head update structure, pa_complex_head_insert.

size_arrays ()

Allocate memory for elements of following structures : - driving cursor fetch array -
pa_complex_fetch, pa_complex_head_insert, pa_complex_detail_insert, pa_fetch_loc_info and
pa_loc_info.

resize_arrays ()

Use the memory allocation macro to allocate memory for the elements of following structures:-
driving cursor fetch array - pa_complex_head_insert, pa_complex_detail_insert and pa_loc_info.

free_arrays ()

Uses the memory deallocation macro to free the memory used by the elements of the following
structures:- driving cursor fetch array - pa_complex_fetch, pa_complex_head_insert,
pa_complex_detail_insert and pa_loc_info..

Scheduling Considerations

Processing Cycle: Ad-Hoc. Must be run before salmnth, after dealact and before the new
programs which perform forecast processing and DAILY_DATA roll up.

Scheduling Diagram: N/A - The program should be run daily

Pre-Processing: Truncate STAGE_FIXED _DEAL_HEAD and
STAGE_FIXED_DEAL_DETAIL tables. (vendinvf_pre)
Post-Processing: Call out process_deal_head() function to update status of the fixed_deal

to “I’. (vendinvf_post)
Threading Scheme: N/A

Restart Recovery

The Logical Unit of Work (LUW) for the program is a transaction consisting of deal_id,
deal_detail_id.

152

Chapter 2 — Batch designs

Vendor Invoicing for Fixed Deals [vendinvf]

Design Overview
This batch module creates records in staging tables dealing with fixed type deals.

The invoicing logic will be driven by the collection dates for fixed deals. The amount to be
invoiced will be retrieved directly from fixed deal tables for a given deal date.

The processing will be as follows:

1 Write a header record to the holding table for the deal

2 Determine which reporting periods are to be invoiced

3 Distribute the income for the reporting period across location / subclass
4 Write a deal detail record to the holding table for each location / subclass
Tables Affected:

TABLE INDEX | SELECT |INSERT | UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No No No
FIXED_DEAL No Yes No No No
FIXED_DEAL_DATES No Yes No No No
FIXED_DEAL_MERCH No Yes No No No
FIXED_DEAL_MERCH_LOC No Yes No No No
SUBLASS No Yes No No No
STAGE_FIXED_DEAL_HEAD No No Yes No No
STAGE_FIXED_DEAL_DETAIL No No Yes No No

153

Retek Merchandising System

Program Flow

Init()
Populate the system level
variables variables.

A 4

Size_arrays()
-- Initialize & size arrays

Process()
-- Fetch & Process driving
cursor.
-- Perform R/R

|

Process_fixed_deal()

Final()

-- Cleanup program.

Insert Records from
Fixed_insert arrays

Call Retek Restart to store
deal_id, deal_detail_id

154

Free_arrays()

-- Free memory for arrays

Chapter 2 — Batch designs

Function Level Description

main()

Validate the program arguments and logon to Oracle.

Call the init() function to initialize restart / recovery and variables
Call the process() function to execute main program logic

Call the final() function to clean up all internal processing

init()

Call standard retek initialization function retek_init() to initialize restart / recovery.
Gets the following system level variables (program variables):

e SYSTEM_OPTIONS.CURRENCY_CODE

e SYSTEM_OPTIONS.VAT_IND

e PERIOD.VDATE (ps_vdate)

final()

Free all arrays by calling function free_arrays().

Call standard retek close function retek_close().

process()

Initialize the array structures by calling size_arrays().

In a while loop fetch required information from the driving cursor c_get_deals and fetch into the
array structure pa_deals_fetch.

Call out process_fixed_deal().

Insert the data that is buffered in the Insert Arrays and reset the Insert record counts by
insert_fixed_head() and insert_fixed_detail().

Call retek_force_commit() to commit the entries.
Driving Cursor
EXEC SQL DECLARE c_get deals CURSOR FOR

SELECT fd.deal _no
deal _id,

TO_CHAR(fdd.collect _date, "YYYYMMDDHH24MISS™)
inv_period_start,

fd.merch_ind
merch_ind,

fdd.fixed deal_ amt
fd_amount,

DECODE(Ffd.partner_type, "S", fd.supplier,
fd.partner_id) vendor,

fd.partner_type
vendor_type,

155

Retek Merchandising System

/* Retek CR required to get the currency code from */
/* fixed _deal once it has been added to the table */

Ips_currency
currency_code,

fd.deb_cred_ind
deb _cred_ind,

fd.invoice processing_logic
invoice_processing_logic,

fd.non_merch_code
non_merch_code,

fd.vat_ind
vat_ind,

fd.vat _code
vat_code,

fd.vat_rate
vat_rate

FROM Fixed deal fd,
fixed _deal dates fdd
WHERE fd.status = "A"
AND fd.deal_no fdd.deal_no

AND TO_DATE(:ps_vdate, "YYYYMMDDHH24MISS®") =
fdd.collect date

AND fd.invoice_processing_logic !'= "NO*

AND MOD(fd.deal _no, TO _NUMBER(:ps_restart _num_threads)) + 1
= TO_NUMBER(:ps_restart_thread val)

ORDER BY fd.deal _no;

process_fixed_deal()

Contains a cursor ¢_get_fixed and identifies a set of potential Fixed Deals for invoicing.
Process the Merchandise deal types from the global driving cursor fetched array ps_deal fetch.
Loop through the fetched cursor pa_fixed_fetch.

Call out post_fixed_head to post the fixed deal header record.

Validate if the current deal merchandise Indicator = *Y’, if “Y’ then call the function
local_calculate_income() then post the calculated income record to the fixed detail insert array,
pa_fixed_fetch by calling function post_fixed_detail().

If the current deal merchandise Indicator = “‘N’, No details need for non-merchandised deals, so
there’s no point in proessing the remaining records

Exit the Loop of the fetched cursor pa_fixed_fetch.

Process non-Merchandise deal type from the global driving cursor fetched array ps_deal_fetch.
Loop through the fetched cursor pa_fixed_fetch.

Call the function post_fixed_head().

156

Chapter 2 — Batch designs

Because of Processing for a merchandised Fixed Deal, the final total needs to be corrected by
calling function correct_fixed_total().

post_fixed_head()

Populate the next record in the insert array pr_fixed_head_insert, data comes from the current
fixed deal cursor record, pa_fixed_fetch.

With nullable merch_ind and want non_merch_ind, validate null and reverse "Y" and "N".

Check the system vat and local vat indicators are “Y”, if yes set to the current fixed deal cursor
record, pa_fixed_fetch, else set to -1.

post_fixed_detail()

Populate the next record in the insert array pr_fixed_detail_insert, data comes from the current
fixed deal cursor record, pa_fixed_fetch.

The insert array may need to be resized if full.
correct_fixed_total()

To allow for rounding errors, etc. and ensure that the total amount distributed across the location
hierarchy is equal to the total amount available for the fixed deal period, a correction is applied to
the last location within a group. So, this becomes the fixed deal total minus the sum of the
amounts allocated to the other locations.

Adjust the income amount the most recently posted fixed detail record new
fixed_deal.total_amount = fixed_deal.total_amount + (fixed_head.total_amount - total_to_date).

insert_fixed_head ()

Insert the contents of the holding array pa_fixed_head_insert into the fixed deal staging table,
STAGE_FIXED_DEAL_HEAD.

insert_fixed_detail ()

Insert the contents of the holding array pa_fixed_detail_insert into the fixed deal staging table,
STAGE_FIXED _DEAL_DETAIL.

local_calculate_income()
Populate the fixed deal calculate income structure from the current record of the fixed deal array.

Fixed deal calculate income structure passed to the calculate_income function
calculate_income().

Update the current fixed deal array record with the income amount from calculate income.
calculate_income()

LI Note: This is the same function as used in dealfinc.pc This function will calculate the
income for each deal/dept/class/subclass/ location split.

First count if the deal or the subclass has changed, or first time by fetching cursor
c_subclass_count.

Calculate the factor for the whole deal, this is used for pro-rating at location level by fetching
cursor ¢_multipler_factor. Only do this for a change of deal, or first time.

Calculate the amount for this dept / class / subclass / location.

Keep the cumulative total for this deal.

157

Retek Merchandising System

Keep track of the previous deal_no and seq_no by copying to variables.
size_arrays ()

Allocate memory for elements of following structures : - driving cursor fetch array -
pa_deals_fetch, pa_fixed_fetch, pa_fixed_head _insert and pa_fixed_detail_insert.

resize_arrays ()

Use the memory allocation macro to allocate memory for the elements of following structures:-
driving cursor fetch array - pa_fixed_head_insert and pa_fixed_detail_insert.

free_arrays ()

Uses the memory deallocation macro to free the memory used by the elements of the following
structures:- driving cursor fetch array - pa_deals_fetch, pa_fixed_fetch, pa_fixed_head_insert and
pa_fixed_detail_insert.

Scheduling Considerations

Processing Cycle: Ad-Hoc. Must be run before salmnth, after dealact and before the new
programs which perform forecast processing and DAILY_DATA roll up.

Scheduling Diagram: N/A - The program should be run daily

Pre-Processing: Truncate STAGE_COMPLEX_DEAL_DETAIL,
STAGE_COMPLEX_DEAL_HEAD and VENDINVC_TEMP tables.
Then insert into VENDINVC_TEMP. (vendinvc_pre)

Post-Processing: N/A
Threading Scheme: N/A

Restart Recovery

The Logical Unit of Work (LUW) for the program is a transaction consisting of deal_id,
deal_detail_id.

158

	Contents
	Chapter 1 – Publication And Subscription Designs
	Item Loc Publication API.doc
	Merchandise Hierarchy Publishing API.doc
	Regular Price Change Subscription API.doc
	Transfers Publication API.doc

	Chapter 2 – Batch designs
	Correction to POSUPLD.PC design
	Deal Actuals [dealact]
	Deal explode [dealex]
	Deals Forecast [dealfct]
	Deal Income Calculation Daily – [dealinc]
	Upload customs tariff files [htsupld]
	Recommended Order Quantity [ociroq]
	POS Upload [posupld]
	Pre/Post Functionality for Multi-Threadable Programs [prepost]
	Item requisition extraction [reqext]
	Monthly Replenishment Purge [rplprg_month]
	Sales Audit Get Reference [sagetref]
	Vendor Invoicing for Complex Deals [vendinvc]
	Vendor Invoicing for Fixed Deals [vendinvf]

