

Oracle® Retail Merchandising System

Operations Guide Addendum
Release 11.0.10

February 2007

Oracle® Retail Merchandising System Operations Guide Addendum, Release 11.0.10

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Contents
Preface ... vii

Audience ... vii
Related Documents.. vii
Customer Support.. vii
Conventions...viii

1 Introduction .. 1
Overview..1

2 Modifications to RMS – Oracle Retail Predictive Application Server (RPAS)
Interface ... 3

Versions..3
RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool (IP)
Interface..3

Installation ..4
Configuration ..4

RETL ..4
RETL user and permissions..4
Environment Variables ...4
rmse_aip_config.env Settings for IP..4

Program Return Code ..5
Program Status Control Files...5

File Naming Conventions...5
Restart and Recovery...5

Message Logging ..6
Daily Log File ...6
Format ...7

RMSE and Transformation Reject Files..7
Schema Files Overview ..8
Command Line Parameters ...8

RMSE and Transformation ...8
Scripts that need Parameter to Run...8

Typical Run and Debugging Situations ...9
Program Flow Diagrams..10

RMS Pre/Post Extract Diagrams ...11
RMS Foundation Data Extract Diagrams ...12
Naming Conventions ..17

iv

RETL Programs that Extract from RMS...17
rmse_aip_alloc_in_well (RMS Extract of Allocations in the Well Quantities to a Time-
Phased Inventory Planning Tool) ...17
rmse_aip_banded_item (RMS Extract of Banded Item Information to a Time-Phased
Inventory Planning Tool)...19
rmse_aip_cl_po (RMS Extract of Cancelled or Closed IP POs and Transfers to a Time-
Phased Inventory Planning Tool) ...21
rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for Future
Delivery to a Time-Phased Inventory Planning Tool) ...23
rmse_aip_future_delivery_order (RMS Extract of Purchase Order Quantities for
Future Delivery to a Time-Phased Inventory Planning Tool) ..26
rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit Transfer
Quanties for Future Delivery to a Time-Phased Inventory Planning Tool)..................28
rmse_aip_item_loc_traits (RMS Extract of Item Location Traits to a Time-Phased
Inventory Planning Tool)...31
rmse_aip_item_master (RMS Extract of Items to a Time-Phased Inventory Planning
Tool) ..32
rmse_aip_item_retail (RMS Extract of Item Retail to a Time-Phased Inventory
Planning Tool) ...34
rmse_aip_item_sale (RMS Extract of On/Off Sale to a Time-Phased Inventory
Planning Tool) ...36
rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a Time-
Phased Inventory Planning Tool) ...38
rmse_aip_merchhier (RMS Extract of Merchandise Hierarchy to a Time-Phased
Inventory Planning Tool)...41
rmse_aip_orghier (RMS Extract of Organization Hierarchy to a Time-Phased
Inventory Planning Tool)...42
rmse_aip_rec_qty (RMS Extract of Received PO and Transfer Quantities to a Time-
Phased Inventory Planning Tool) ...44
rmse_aip_store (RMS Extract of Stores to a Time-Phased Inventory Planning Tool) .46
rmse_aip_store_cur_inventory (RMS Extract of Store Current Inventory data to a
Time-Phased Inventory Planning Tool)...47
rmse_aip_substitute_items (RMS Extract of Substitute Items to a Time-Phased
Inventory Planning Tool)...49
rmse_aip_suppliers (RMS Extract of Supplier to a Time-Phased Inventory Planning
Tool) ..50
rmse_aip_tsf_in_well (RMS Extract of Transfers in the Well Quantities to a Time-
Phased Inventory Planning Tool) ...52
rmse_aip_wh (RMS Extract of Warehouse to a Time-Phased Inventory Planning
Tool) ..54
rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory data to a
Time-Phased Inventory Planning Tool)...56

v

5 Subscription Designs.. 59
PO Subscription API...59

Functional Area..59
Design Overview ...59
Consume Module...59
Business Validation Module...60
Bulk or Single DML Module ..62
Message DTD ...63
Design Assumptions ...63
Tables...63

Transfer Subscription ...65
Functional Area..65
Design Overview ...65
Consume Module...65
Business Validation Module...66
Bulk or Single DML Module ..67
Message DTD ...68
Design Assumptions ...68
Tables...68

6 Batch Designs.. 69
Distro Price Change Publish [distropcpub]...69
EDI Location Address to Vendor Download [edidladd]..70
EDI Supplier Address Upload [ediupadd]...74
Oracle Retail Demand Forecasting Purge [fcstprg]..77
Oracle Retail Demand Forecasting Rollup [fcstrbld] ...78
Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass
[fcstrbld_sbc]..80
Geocode Hierarchy Upload [gcupld] ...81
Inventory Adjustment Purge [invaprg] ...83
End Of Year Inventory Position Purge [nwppurge] ...84
End of Year Inventory Position Snapshot [nwpyearend]...86
Sales Audit Get Reference [sagetref] ...87

vii

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture

Audience
Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting RMS functionality will find valuable information
in this guide. There are three audiences in general for whom this guide is written:
 Business analysts looking for information about processes and interfaces to validate

the support for business scenarios within RMS and other systems across the
enterprise.

 System analysts and system operations personnel:
 Who are looking for information about RMS processes internally or in relation to

the systems across the enterprise.
 Who operate RMS regularly.

 Integrators and implementation staff with overall responsibility for implementing
RMS.

Related Documents
For more information, see the following documents in the Oracle Retail Merchandising
System Release 11.0.10 documentation set:
 Oracle Retail Merchandising System Installation Guide
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Data Model
 Oracle Retail Merchandising System User Guide
 Oracle Retail Merchandising System Online Help
 Oracle Retail Merchandising System Batch Schedule

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

https://metalink.oracle.com/

viii

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

Introduction 1

1
Introduction

Overview
This addendum to the Oracle Retail Merchandising System (RMS) 11 Operations Guide
presents changes that have resulted from work completed during RMS 11.0.10
development and customer support.
RMS 11.0.10 can be configured to integrate with a time-phased inventory planning tool
through the RIB. RMS can capture the data that a time-phased inventory planning tool
requires and publish that data to the RIB. The following sections address the time-phased
inventory planning integration:
 Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface
 Subscription Designs

The ProC batch designs included in this document have been updated based on reported
defects.

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 3

2
Modifications to RMS – Oracle Retail
Predictive Application Server (RPAS)

Interface
Because RMS is the retailer’s central merchandising transactional processing system, the
system is the principle source of the foundation data needed in some of the Oracle Retail
suite of products. This chapter includes information regarding RETL programs related to
the RMS-RPAS interface.

Versions
Please note that the modifications that have been made to RMS code are specific to the
following versions:
 RMS 11.0.10

RETL Program Overview for the RMS-Time-Phased Inventory Planning
Tool Interface

This chapter summarizes the RETL program features utilized in the RMS Extractions
(RMSE) for the RMS–time-phased inventory planning tool integration. Starting with RMS
version 11, the RMS extract for a time-phased inventory planning tool is separate from
the RMS extracts for RPAS. In prior RMS version, time-phased inventory planning tool
and RPAS had common RETL extracts.
More installation information about the RETL tool is available in the latest RETL
Programmer’s Guide.

Note: In this section, some examples refer to RETL programs
that are not related to RMS or are related to other versions of
RMS than this document addresses. Such examples are
included for illustration purposes only.

Configuration

4 Oracle Retail Merchandising System

Installation
Select a directory where you would like to install RMS ETL. This directory (also called
MMHOME) is the location from which the RMS ETL files are extracted.
The following code tree is utilized for the RETL framework during the extractions,
transformations, and loads and is referred to in this documentation.
<base directory (MMHOME)>
 /data
 /error
 /log
 /rfx
 /bookmark
 /etc
 /lib
 /schema
 /src

Configuration
RETL

Before trying to configure and run RMS ETL, install RETL version 11.3 or later, which is
required to run RMS ETL. See the latest RETL Programmer’s Guide for thorough
installation information.

RETL user and permissions
RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up
as per the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes and updates
tables. If these permissions are not set up properly, extractions fail.

Environment Variables
See the RETL Programmer’s Guide for RETL environment variables that must be set up
for your version of RETL. You will need to set MMHOME to your base directory for RMS
RETL. This is the top level directory that you selected during the installation process (see
the section, ‘Installation’, above). In your .kshrc, you should add a line such as the
following:
export MMHOME=<base directory for RMS ETL>

rmse_aip_config.env Settings for IP
There are variables you must change depending upon your local settings:
For example:
export DBNAME=int9i
export RMS_OWNER=steffej_rms1011
export BA_OWNER=rmsint1011

You must set up the environment variable PASSWORD in the rmse_aip_config.env or
some other location that can be referenced. In the example below, adding the line to the
rmse_aip_config.env causes the password ‘mypasswd’ to be used to log into the
database:
export PASSWORD=mypasswd

Make sure to review the environmental parameters in the rmse_aip_config.env file file
before executing batch modules.

Program Return Code

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 5

Steps to Configure RETL
1. Log in to the UNIX server with a UNIX account that will run the RETL scripts.
2. Change directories to <base_directory>/rfx/etc.
3. Modify the rmse_aip_config.env script.
For example:

a. Change the DBNAME variable to the name of the RMS database.
b. Change the RMS_OWNER variable to the username of the RMS schema owner.
c. Change the BA_OWNER variable to the username of the RMSE batch user.

Program Return Code
RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program Status Control Files
To prevent a program from running while the same program is already running against
the same set of data, the code utilizes a program status control file. At the beginning of
each module, rmse_aip_config.env is run. These files check for the existence of the
program status control file. If the file exists, then a message stating,
‘${PROGRAM_NAME} has already started’, is logged and the module exits. If the file
does not exist, a program status control file is created and the module executes.
If the module fails at any point, the program status control file is not removed, and the
user is responsible for removing the control file before re-running the module.

File Naming Conventions
The naming convention of the program status control file allows a program whose input
is a text file to be run multiple times at the same time against different files.
The name and directory of the program status control file is set in the applicable
configuration file (rmse_aip_config.env). The directory defaults to $MMHOME/error.
The naming convention for the program status control file itself defaults to the following
dot separated file name:
 The program name
 ‘status’
 The business virtual date for which the module was run

For example, a program status control file for one program would be named as follows
for the batch run of January 5, 2001:
$MMHOME/error/rmse_aip_banded_item.status.20010105

Restart and Recovery
Because RETL processes all records as a set, as opposed to one record at a time, the
method for restart and recovery must be different from the method that is used for
Pro*C. The restart and recovery process serves the following two purposes:
1. It prevents the loss of data due to program or database failure.
2. It increases performance when restarting after a program or database failure by

limiting the amount of reprocessing that needs to occur.

Message Logging

6 Oracle Retail Merchandising System

The RMS Extract (RMSE) modules extract from a source transaction database or text file
and write to a text file. The RMS Load (RMSL) modules import data from flat files,
perform transformations if necessary and then load the data into the applicable RMS
tables.
Most modules use a single RETL flow and do not require the use of restart and recovery.
If the extraction process fails for any reason, the problem can be fixed, and the entire
process can be run from the beginning without the loss of data. For a module that takes a
text file as its input, the following two choices are available that enable the module to be
re-run from the beginning:
1. Re-run the module with the entire input file.
2. Re-run the module with only the records that were not processed successfully the

first time and concatenate the resulting file with the output file from the first time.
To limit the amount of data that needs to be re-processed, more complicated modules
that require the use of multiple RETL flows utilize a bookmark method for restart and
recovery. This method allows the module to be restarted at the point of last success and
run to completion. The bookmark restart/recovery method incorporates the use of a
bookmark flag to indicate which step of the process should be run next. For each step in
the process, the bookmark flag is written to and read from a bookmark file.

Note: If the fix for the problem causing the failure requires
changing data in the source table or file, then the bookmark
file must be removed and the process must be re-run from
the beginning in order to extract the changed data.

Message Logging
Message logs are written daily in a format described in this section.

Daily Log File
Every RETL program writes a message to the daily log file when it starts and when it
finishes. The name and directory of the daily log file is set in the configuration file
(rmse_aip_config.env). The directory defaults to $MMHOME/log. All log files are
encoded UTF-8.
The naming convention of the daily log file defaults to the following “dot” separated file
name:
 The business virtual date for which the modules are run
 ‘.log’

For example, the location and the name of the log file for the business virtual date of
January 5, 2001 would be the following:
$MMHOME/log/20010105.log

RMSE and Transformation Reject Files

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 7

Format
As the following examples illustrate, every message written to a log file has the name of
the program, a timestamp, and either an informational or error message:
aipt_item 17:07:43: Program started ...
aipt_item 17:07:50: Program completed successfully
rmse_aip_item_master 17:08:53: Program started ...
rmse_aip_item_master 17:08:59: Program completed successfully
rmse_item_retail 17:09:07: Program started ...
rmse_item_retail 17:09:12: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates where
the problem occurred in the process. There are some error messages written to the log
file, such as ‘No output file specified’, that require no further explanation written to the
error file.
Program Error File
In addition to the daily log file, each program also writes its own detail flow and error
messages. Rather than clutter the daily log file with these messages, each program writes
out its errors to a separate error file unique to each execution.
The name and directory of the program error file is set in the applicable configuration file
(rmse_aip_config.env). The directory defaults to $MMHOME/error. All errors and all
routine processing messages for a given program on a given day go into this error file (for
example, it will contain both the stderr and stdout from the call to RETL). All error files
are encoded UTF-8.
The naming convention for the program’s error file defaults to the following “dot”
separated file name:
 The program name
 The business virtual date for which the module was run

For example, all errors and detail log information for the rms_aip_item_master
program would be placed in the following file for the batch run of January 5, 2001:
$MMHOME/error/rms_aip_item_master.20010105

RMSE and Transformation Reject Files
RMSE extract and transformation modules may produce a reject file if they encounter
data related problems, such as the inability to find data on required lookup tables. The
module tries to process all data and then indicates that records were rejected so that all
data problems can be identified in one pass and corrected; then, the module can be re-run
to successful completion. If a module does reject records, the reject file is not removed,
and the user is responsible for removing the reject file before re-running the module.
The records in the reject file contain an error message and key information from the
rejected record. The following example illustrates a record that is rejected due to
problems within the currency conversion library:
Currency Conversion Failed|101721472|20010309

The following example illustrates a record that is rejected due to problems looking up
information on a source table:
Unable to find item_master record for Item|101721472

The name and directory of the reject file is set in the applicable configuration file
(rmse_config.env or config.env). The directory defaults to $MMHOME/data.

Schema Files Overview

8 Oracle Retail Merchandising System

Note: A directory specific to reject files can be created. The
rmse_config.env and/or config.env file would need to be
changed to point to that directory.

The naming convention for the reject file defaults to the following “dot” separated file
name:
 The program name
 The first filename, if one is specified on the command line
 ‘rej’
 The business virtual date for which the module was run

For example, all rejected records for the slsildmex program would be placed in the
following file for the batch run of January 5, 2001:
$MMHOME/data/slsildmex.slsildmdm.txt.rej.20010105

Schema Files Overview
RETL uses schema files to specify the format of incoming or outgoing datasets. The
schema file defines each column’s data type and format, which is then used within RETL
to format/handle the data. For more information about schema files, see the latest RETL
Programmer’s Guide. Schema file names are hard-coded within each module since they
do not change on a day-to-day basis. All schema files end with “.schema” and are placed
in the “rfx/schema” directory.

Command Line Parameters
In order for each RETL module to run, the input/output data file paths and names may
need to be passed in at the UNIX command line.

RMSE and Transformation
Most RMSE and transformation modules do not require the passing in of any parameters.
The output path/filename defaults to $DATA_DIR/(RMSE and transfer program
name).dat. Similarly, the schema format for the records in these files are specified in the
file - $SCHEMA_DIR/(RMSE program name).schema

Scripts that need Parameter to Run
The scripts below are run on a full snapshot basis. The parameter is F (for full snapshot).
 rmse_aip_store_cur_inventory.ksh
 rmse_aip_wh_cur_inventory.ksh

Typical Run and Debugging Situations

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 9

Typical Run and Debugging Situations
The following examples illustrate typical run and debugging situations for types of
programs. The log, error, and so on file names referenced below assume that the module
is run on the business virtual date of March 9, 2001. See the previously described naming
conventions for the location of each file.
For example:
To run rmse_aip_store.ksh:
1. Change directories to $MMHOME/rfx/src.
2. At a UNIX prompt enter:
%rmse_aip_store.ksh

If the module runs successfully, the following results:
1. Log file: Today’s log file, 20010309.log, contains the messages “Program started …”

and “Program completed successfully” for rmse_aip_store.
2. Data: The rmse_aip_store.dat file exists in the data directory and contains the

extracted records.
3. Schema: The rmse_aip_store.schema file exists in the schema directory and contains

the definition of the data file in #2 above.
4. Error file: The program’s error file, rmse_aip_store.20010309, contains the standard

RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
additional error messages.

5. Program status control: The program status control file,
rmse_aip_store.status.20010309, does not exist.

6. Reject file: The reject file, rmse_aip_store.rej.20010309, does not exist because this
module does not reject records.

If the module does not run successfully, the following results:
1. Log file: Today’s log file, 20010309.log, does not contain the “Program completed

successfully” message for rmse_stores.
2. Data: The rmse_aip_store.dat file may exist in the data directory but may not contain

all the extracted records.
3. Schema: The rmse_aip_store.schema file exists in the schema directory and contains

the definition of the data file in #2 above.
4. Error file: The program’s error file, rmse_aip_store.20010309, may contain an error

message.
5. Program status control: The program status control file,

rmse_aip_store.status.20010309, exists.
6. Reject file: The reject file, rmse_aip_store.status.20010309, does not exist because this

module does not reject records.

Program Flow Diagrams

10 Oracle Retail Merchandising System

To re-run the module, perform the following actions:
1. Determine and fix the problem causing the error.
2. Remove the program’s status control file.
3. Change directories to $MMHOME/rfx/src. At a UNIX prompt, enter:
%rmse_aip_store.ksh

Program Flow Diagrams
This section presents flow diagrams for data processing from sources. The source
system’s program or output file is illustrated along with the program or process that
interfaces with the source. After initial interface processing of the source, the diagrams
illustrate the flow of the data.
Before setting up a program schedule, familiarize yourself with the functional and
technical constraints associated with each program.

Program Flow Diagrams

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 11

RMS Pre/Post Extract Diagrams

Program Flow Diagrams

12 Oracle Retail Merchandising System

RMS Foundation Data Extract Diagrams
RMS
EXT

1

reclsdly
(RMS)

dlyprg
(RMS)

rmse_aip_item_
supp_country.ksh

rmse_aip_
merchhier.ksh

rmse_aip_item_
master.ksh

rmse_aip_item_
retail.ksh

rmse_aip_substitute_
items.ksh

rmse_aip_item_loc_
traits.ksh

rmse_aip_banded_
items.ksh

rmse_aip_item_
sale.ksh

dmx_prdspl
lks.txt

rmse_aip_
item_supp_
country.dat

rmse_aip_
merchhier.

dat

rmse_aip_
item_

master.dat

rmse_aip_
purged_
item.dat

rmse_aip_
item_

retail.dat

rmse_aip_
substitute_
items.dat

rmse_aip_
item_loc_
traits.dat

dmx_bndpr
dasc.txt

dm0_onseff
dt_.txt

dm0_ofseff
dt_.txt

RMS
EXT

2

RMS
EXT

3

RMS
EXT

4

RMS
EXT

6

RMS
EXT

7

RMS
EXT

8

RMS
EXT
10

RMS
EXT
11

RMS
EXT
12

RMS
EXT
13

RMS
EXT
14

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

TO
IP

sitmain
(RMS)

IP = Time-phased inventory planning tool

Program Flow Diagrams

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 13

rmse_aip_store.ksh

RMS
EXT

1

rmse_aip_wh.ksh

RMS
EXT

1 rmse_supplier.ksh

RMS
EXT

1

rmse_aip_orghier.ksh

RMS
EXT

1

RMS
EXT
15

RMS
EXT
16

RMS
EXT
21

RMS
EXT
18

rmse_aip_
store.dat

rmse_aip_
orghier.dat

rmse_aip_
wh.dat

splr.txt

storeadd
(RMS)

dlyprg
(RMS)

dlyprg
(RMS)

dlyprg
(RMS)

likestore
(RMS)

TO IP

TO IP

whadd
(RMS)

rmse_aip_
wh.txt

rmse_aip_
wh_type.dat

TO IP

TO IP

RMS
EXT
22

dmx_dirspl.txt

TO IP

IP = Time-phased inventory planning tool

Program Flow Diagrams

14 Oracle Retail Merchandising System

Program Flow Diagrams

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 15

Program Flow Diagrams

16 Oracle Retail Merchandising System

rmse_aip_cl_
po.ksh

RMS
EXT
37

TO
IP

RMS
EXT

1

Closed_ord
er.txt

rmse_aip_rec_
qty.ksh

RMS
EXT
38

TO
IP

RMS
EXT

1

Received_q
ty.txt

reqext
(RMS)

cntrordb
(RMS)

vrpbld
(RMS)

IP = Time-phased inventory planning tool

RETL Programs that Extract from RMS

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 17

Naming Conventions
Notes on the columns in the following RETL extraction programs table:
 The “Extraction Program Name” column includes the full name of the extract script.

The results of these scripts are stored in “rmse_rpas_<basename>.dat”, and the
schemas are specified in “rmse_rpas_<basename>.schema”.

 The “Column extracted” column refers to the column name in the source database
table.

 The “Column type” column refers to the datatype in the source database table.
 The “Target field” column refers to the name of the field as specified in the schema

file for the related extract.
 The “Field type and length “column refers to the datatype of the field as specified in

the schema file for the related extract.

RETL Programs that Extract from RMS

rmse_aip_alloc_in_well (RMS Extract of Allocations in the Well Quantities
to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_alloc_in_well.ksh

Design Overview
This script extracts RMS “in the well” allocation quantities for integration with a time-
phased inventory planning tool. In the well pertains to inventory that has been reserved
by allocations in approved or reserved status. The expected release date is also included
in the extract.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

rmse_aip_alloc_in_well (RMS Extract of Allocations in the Well Quantities to a Time-Phased Inventory Planning Tool)

18 Oracle Retail Merchandising System

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPPLIER Yes No No No

ORDHEAD Yes No No No

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

PACKITEM Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_alloc_in_well.dat is in fixed-length format matching the schema
definition in rmse_aip_alloc_in_well.schema.

Field Name Field Type Required Description

DAY Char(9) Yes Current date if alloc_header.release_date is
less than current date else
alloc_header.release_date

LOC Integer(20) Yes Alloc_header.wh

ITEM Char(20) Yes Formal Case Type:
If simple pack then and
alloc_detail.to_loc_type = ‘S’ then this
would be the component of the pack in
v_packsku_qty else item_master.item.

Informal Case Type:
Item_master.item

rmse_aip_banded_item (RMS Extract of Banded Item Information to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 19

Field Name Field Type Required Description

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
If simple pack and alloc_detail.to_loc_type
= ‘W’ then this would be
v_packsku_qty.qty of the pack component
else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

ALLOC_RESERVE_QTY Integer(8) Yes Formal Case Type:
Alloc_detail.qty_allocated –
alloc_detail.qty_received. Resulting
quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Alloc_detail.qty_allocated –
alloc_detail.qty_received expressed in
multiples of the primary case size. The
remainder is expressed in Standard UOM.

rmse_aip_banded_item (RMS Extract of Banded Item Information to a
Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_banded_item.ksh

Design Overview
This script extracts RMS banded items and their associated “promotional item” or
substitute item.
The association between the banded item (component) and its promotional item
(substitute item) is established by joining item_master, sub_items_detail and
v_packsku_qty for formal pack items, and item_master, sub_items_detail and
item_supp_country for informal pack items. Items that have a banded item ind = 'Y' are
joined with sub_items_detail on item. The associated promotional item would be the
sub_item. For formal pack items, v_pack_sku.qty gives the order_multiple for both the
standard item and its promotional item. Form informal pack items, the different pack
sizes (inner, case, pallet) are obtained from item_supp_country for both the standard and
promotional item. The standard item’s time-phased inventory planning tool case type
decides whether we get the pack sizes for both standard and promotional items from
v_packsku_qty or item_supp_country.

rmse_aip_banded_item (RMS Extract of Banded Item Information to a Time-Phased Inventory Planning Tool)

20 Oracle Retail Merchandising System

Additional conditions on the extract are as follows:
 Both banded and promotional item are in approved status.
 Both banded and promotional item should be forecastable (item_master.forecast_ind

= ‘Y’).
 In case of informal pack items, the pack size extracted for both banded and

promotional item is for the primary supplier and primary supplier country.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

SUB_ITEMS_DETAIL Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

V_PACKSKU_QTY Yes No No No

rmse_aip_cl_po (RMS Extract of Cancelled or Closed IP POs and Transfers to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 21

I/O Specification

Output File Layout
The dmx_bndprdasc.txt is in fixed-length format matching the schema definition in
rmse_aip_dmx_bndprdasc.schema.

Field Name Field Type Required Description

STANDARD_SKU Char(20) Yes Item_master.item

STANDARD_ORDER_
MULTIPLE

Integer(4) Yes For informal pack items: 1,
Item_supp_country.inner_pack_size,
Item_supp_country.supp_pack_size,
Item_supp_country.supp_pack_size * hi *
ti
For formal pack items:
V_packsku_qty.qty, 1

PROMOTIONAL_SKU Char(20) Yes Sub_items_detail.sub_item

PROMOTIONAL_ORDER_MU
LTIPLE

Integer(4) Yes For informal pack items: 1,
Item_supp_country.inner_pack_size,
Item_supp_country.supp_pack_size,
Item_supp_country.supp_pack_size * hi *
ti
For formal pack items:
V_packsku_qty.qty, 1

rmse_aip_cl_po (RMS Extract of Cancelled or Closed IP POs and Transfers
to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_cl_po.ksh

Design Overview
This script extracts from RMS cancelled or closed purchase orders and transfers for
integration with a time-phased inventory planning tool. Only records that meet the
following criteria below are extracted:
For Purchase Orders:
 Ordhead.close_date is not NULL
 Ordhead.orig_ind = 6 (external system generated)
 Ordhead.close_date > Retl_extract_dates.last_extr_closed_pot_date

For Transfers:
 Tsfhead.close_date is not NULL
 Tsfhead.tsf_type = ‘AIP’ (generated by the time-phased inventory planning tool)
 Ordhead.close_date > Retl_extract_dates.last_extr_closed_pot_date

rmse_aip_cl_po (RMS Extract of Cancelled or Closed IP POs and Transfers to a Time-Phased Inventory Planning Tool)

22 Oracle Retail Merchandising System

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations Before tsfprg.pc and ordprg.pc. After
pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ORDHEAD Yes No No No

TSFHEAD Yes No No No

Rmse_aip_cl_po.ksh calls another script rmsl_aip_update_retl_date.ksh, which updates
the IP RETL extract dates. The table affected by this script is:

Table Select Insert Update Delete

RETL_EXTRACT_DATES No No Yes No

I/O Specification

Output File Layout
The output file closed_order.txt is in fixed-length format matching the schema definition
in rmse_aip_cl_po.schema.

Field Name Field Type Required Description

ORDER_NUMBER Integer(10) Yes Ordhead.order_no or tsfhead.tsf_no

ORDER_TYPE Char(1) Yes ‘P’ for purchase orders or ‘T’ for transfers

rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 23

rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for
Future Delivery to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_future_delivery_alloc.ksh

Design Overview
This script extracts RMS in-transit and on-order allocation quantities for future delivery
for integration with a time-phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPPLIER Yes No No No

ORDHEAD Yes No No No

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)

24 Oracle Retail Merchandising System

Table Select Insert Update Delete

PACKITEM Yes No No No

TRANSIT_TIMES Yes No No No

V_WH Yes No No No

rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 25

I/O Specification

Output File Layout
The output file rmse_aip_future_delivery_alloc.dat is in fixed-length format matching the
schema definition in rmse_aip_future_delivery_alloc.schema.

Field Name Field Type Required Description

DAY Char(9) Yes ‘D’ || Current date if
Alloc_header.release_date +
transit_times.transit_time is less than
current date else ‘D’ ||
Alloc_header.release_date +
transit_times.transit_time

SUPPLIER Integer(20) No If there is no associated order then primary
supplier on item_supplier.supplier else
ordhead.supplier

LOC Integer(20) Yes Alloc_detail.to_loc

ITEM Char(20) Yes Formal Case Type:
If simple pack then and
alloc_detail.to_loc_type = ‘S’ then this
would be the component of the pack in
v_packsku_qty else item_master.item.

Informal Case Type:
Item_master.item

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

IN_TRANSIT_ALLOC_QT
Y

Integer(8) Yes Formal Case Type:
Alloc_detail.Qty_transferred –
Alloc_detail.Qty_received. Resulting
quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Alloc_detail.Qty_transferred –
Alloc_detail.Qty_received expressed in the
primary case size. Remainder is in
Standard UOM

rmse_aip_future_delivery_order (RMS Extract of Purchase Order Quantities for Future Delivery to a Time-Phased Inventory Planning
Tool)

26 Oracle Retail Merchandising System

Field Name Field Type Required Description

ON_ORDER_ALLOC_QT
Y

Integer(8) Yes Formal Case Type:
Alloc_detail.Qty_allocated –
Alloc_detail.Qty_transferred. Resulting
quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Alloc_detail.Qty_allocated –
Alloc_detail.Qty_transferred expressed in
the primary case size. Remainder is in
Standard UOM

rmse_aip_future_delivery_order (RMS Extract of Purchase Order
Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_future_delivery_order.ksh

Design Overview
This script extracts RMS purchase order quantities for future delivery for integration
with a time-phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After vrplbld.pc, cntrordb.pc and
pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

rmse_aip_future_delivery_order (RMS Extract of Purchase Order Quantities for Future Delivery to a Time-Phased Inventory Planning
Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 27

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_SUPP_COUNTRY Yes No No No

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ORDHEAD Yes No No No

ORDLOC Yes No No No

ALLOC_HEADER Yes No No No

V_PACKSKU_QTY Yes No No No

PACKITEM Yes No No No

I/O Specification

Output File Layout
The item output file is in fixed-length format matching to the schema definition in
rmse_aip_future_delivery_order.schema.

Field Name Field Type Required Description

DAY Char(9) Yes ‘D’ || Period.vdate if
ordhead.not_after_date < period.vdate
else
‘D’ || Ordhead.not_after_date

SUPPLIER Integer(20) Yes Ordhead.supplier

LOC Integer(20) Yes Ordloc.location

ITEM Char(20) Yes Formal Case Type:
If simple pack and ordloc.loc_type = ‘S’
then this would be the component of the
pack in v_packsku_qty else
item_master.item.

Informal Case Type:
Item_master.item

rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit Transfer Quanties for Future Delivery to a Time-Phased Inventory
Planning Tool)

28 Oracle Retail Merchandising System

Field Name Field Type Required Description

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
If ordloc.loc_type = ‘S’ then 1
If ordloc.loc_type = ‘W’ and
(ordloc.qty_ordered – ordloc.qty_received)
>= item_supp_country.supp_pack_size
and a simple pack then V_packsku_qty.qty
else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti
* hi * supp_packsize)

PO_QTY Integer(8) Yes (Ordloc.qty_ordered –
Ordloc.qty_received) or 0

CUST_ORDER Char(1) Yes Ordhead.cust_order

LOC_TYPE Char(1) Yes Ordloc.loc_type

rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit
Transfer Quanties for Future Delivery to a Time-Phased Inventory Planning
Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_future_delivery_tsf.ksh

Design Overview
This script extracts RMS on-order and in-transit transfer quantities for future delivery for
integration with a time-phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After reqext.pc and pre_rmse_aip.ksh

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit Transfer Quanties for Future Delivery to a Time-Phased Inventory
Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 29

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPPLIER Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

SHIPITEM_INV_FLOW Yes No No No

V_PACKSKU_QTY Yes No No No

PACKITEM Yes No No No

TRANSIT_TIMES Yes No No No

V_WH Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_future_delivery_tsf.dat is in fixed-length format matching the
schema definition in rmse_aip_future_delivery_tsf.schema.

Field Name Field Type Required Description

DAY Char(9) Yes ‘D’ || current date if tsfhead.delivery_date
+ transit_times.transit_time is less than
current date else
‘D’ || tsfhead.delivery_date +
transit_times.transit_time

SUPPLIER Integer(20) No Item_supp_country.supplier

LOC Integer(20) Yes Shipitem_inv_flow.to_loc if
tsfhead.to_loc_type = ‘W’ and
tsfhead.tsf_type = ‘EG else
Tsfhead.to_loc

rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit Transfer Quanties for Future Delivery to a Time-Phased Inventory
Planning Tool)

30 Oracle Retail Merchandising System

Field Name Field Type Required Description

ITEM Char(20) Yes Formal Case Type:
If simple pack and tsfhead.to_loc_type = ‘S’
then this would be the component of the
pack in v_packsku_qty else
item_master.item.

Informal Case Type:
Item_master.item

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
If simple pack and tsfhead.to_loc_type =
‘W’ the v_packsku_qty.qty else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

TSF_QTY Integer(8) Yes Formal Case Type:
Tsfdetail.tsf_qty – tsfdetail.received_qty.
Resulting quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Tsfdetail.tsf_qty – tsfdetail.received_qty
expressed in the primary case size.
Remainder is in Standard UOM

IN_TRANSIT_TSF_QTY Integer(8) Yes Formal Case Type:
Tsfdetail.ship_qty – tsfdetail.received_qty.
Resulting quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Tsfdetail.ship_qty – tsfdetail.received_qty
expressed in the primary case size.
Remainder is in Standard UOM

ON_ORDER_TSF_QTY Integer(8) Yes Formal Case Type:
Tsfdetail.tsf_qty – tsfdetail.ship_qty.
Resulting quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Tsfdetail.tsf_qty – tsfdetail.ship_qty
expressed in the primary case size.
Remainder is in Standard UOM.

LOC_TYPE Char(1) Yes Tsfhead.to_loc_type

TSF_TYPE Char(6) Yes Tsfhead.tsf_type

rmse_aip_item_loc_traits (RMS Extract of Item Location Traits to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 31

rmse_aip_item_loc_traits (RMS Extract of Item Location Traits to a Time-
Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_item_loc_traits.ksh

Design Overview
This script extracts from RMS item location traits information for integration with a time-
phased inventory planning tool. Only the following items are extracted:
 Approved, non-pack and forecastable
 Approved and a simple pack item whose component is forecastable.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_LOC_TRAITS Yes No No No

ITEM_MASTER Yes No No No

rmse_aip_item_master (RMS Extract of Items to a Time-Phased Inventory Planning Tool)

32 Oracle Retail Merchandising System

I/O Specification

Output File Layout
The output file rmse_aip_item_loc_traits.dat is in fixed-length format matching the
schema definition in rmse_aip_item_loc_traits.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Item_master.item

LOC Integer(10) Yes Item_loc_traits.loc

REQ_SHELF_LIFE_
ON_RECEIPT

Integer(8) No Item_loc_traits.req_shelf_life_on_
receipt

rmse_aip_item_master (RMS Extract of Items to a Time-Phased Inventory
Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_item_master.ksh

Design Overview
This script extracts RMS item information for integration with a time-phased inventory
planning tool.
Two output files are produced by this extract. One contains approved transaction-level
items while the other contains purged items from the daily_purge table.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After sitmain.pc, reclsdly.pc and pre_rmse_aip.ksh.
Before dlyprg.pc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

rmse_aip_item_master (RMS Extract of Items to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 33

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

V_PACKSKU_QTY Yes No No No

UOM_CLASS Yes No No No

CODE_DETAIL Yes No No No

DAILY_PURGE Yes No No No

I/O Specification

Output File Layout
The item output file is in fixed-length format matching to the schema definition in
rmse_aip_item_master.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Item_master.item

ITEM_DESC Char(100) Yes Item_master.item_desc

RMS_SKU_DESCRIPTION Char(60) Yes First 60 characters of
Item_master.item_desc

ITEM_PARENT Char(25) No Item_master.item_parent

ITEM_GRANDPARENT Char(25) No Item_master.item_grandparent

AIP_SKU Char(25) Yes V_packsku_qty.item or
Item_master.item

SUBCLASS Integer(5) Yes Item_master.subclass

CLASS Integer(5) Yes Item_master.class

DEPT Integer(5) Yes Item_master.dept

FORECAST_IND Char(1) Yes Item_master.forecast_ind

SUPPLIER Integer(11) Yes Item_supplier.supplier

PRIMARY_SUPP_IND Char(1) Yes Item_supplier.primary_supp_i
nd

STANDARD_UOM Char(4) Yes Item_master.standard_uom

STANDARD_UOM_DESCRIPTION Char(20) Yes Uom_class.uom_desc

SKU_TYPE Char(6) No Item_master.handling_temp or
0

SKU_TYPE_DESCRIPTION Char(40) No Code_detail.code_desc (for
code_type ‘HTMP’)

PACK_QUANTITY Integer(4) No V_packsku_qty.qty or 0

rmse_aip_item_retail (RMS Extract of Item Retail to a Time-Phased Inventory Planning Tool)

34 Oracle Retail Merchandising System

Field Name Field Type Required Description

PACK_IND Char(1) Yes Item_master.pack_ind

SIMPLE_PACK_IND Char(1) Yes Item_master.simple_pack_ind

ITEM_LEVEL Integer(1) Yes Item_master.item_level

TRAN_LEVEL Integer(1) Yes Item_master.tran_level

RETAIL_LABEL_TYPE Char(6) No Item_master.retail_label_type

BANDED_ITEM_IND Char(1) No 1 if
Item_master.banded_item_ind
= ‘Y’ and 0 if
Item_master.banded_item_ind
= ‘N’

CATCH_WEIGHT_IND Char(1) Yes Item_master.catch_weight_ind

SELLABLE_IND Char(1) Yes Item_master.sellable_ind

ORDERABLE_IND Char(1) Yes Item_master.orderable_ind

DEPOSIT_ITEM_TYPE Char(6) No Item_master.deposit_item_type

The purged items output file is in fixed-length format matching to the schema definition
in rmse_aip_purged_item.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Daily_purge.key_value

rmse_aip_item_retail (RMS Extract of Item Retail to a Time-Phased
Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_item_retail.ksh

Design Overview
This script extracts from RMS item information required by the item transformation
script aipt_item.ksh for integration with a time-phased inventory planning tool. Records
that meet the following criteria are extracted:
Non-pack items
 Approved and transaction level items
 Have supplier pack sizes greater than 1
 Forecastable (item_master.forecast_ind = ‘Y’)
 Inventory items

Simple pack components
 Component of approved and transaction level simple packs
 Components are forecastable (item_master.forecast_ind = ‘Y’)
 Simple packs are inventory items

rmse_aip_item_retail (RMS Extract of Item Retail to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 35

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPPLIER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

UOM_CLASS Yes No No No

CODE_DETAIL Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_item_retail.dat is in fixed-length format matching the schema
definition in rmse_aip_item_retail.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Item_master.item

RMS_SKU_DESCRIPTION Char(60) Yes First 60 characters of
item_master.item_desc

AIP_SKU Char(25) Yes Item_master.item

SUBCLASS Integer(5) Yes Item_master.subclass

CLASS Integer(5) Yes Item_master.class

DEPT Integer(5) Yes Item_master.dept

rmse_aip_item_sale (RMS Extract of On/Off Sale to a Time-Phased Inventory Planning Tool)

36 Oracle Retail Merchandising System

Field Name Field Type Required Description

STANDARD_UOM Char(4) Yes Item_master.standard_uom

STANDARD_UOM_
DESCRIPTION

Char(20) Yes Uom_class.uom_desc_standard

SKU_TYPE Char(6) No Non-pack items
Item_master.handling_temp. “0” if
NULL.

Simple pack components
Item_master.handling_temp or
NULL.

SKU_TYPE_
DESCRIPTION

Char(40) No Non-pack items
Code_detail.code_desc . “0” if
NULL.

Simple pack components
Code_detail.code_desc or NULL.

ORDER_MULTIPLE Integer(4) Yes 1

PACK_QUANTITY Integer(4) No 0

BANDED_ITEM_IND Char(1) No “1” if
item_master.banded_item_ind =
“Y’ else “0”

rmse_aip_item_sale (RMS Extract of On/Off Sale to a Time-Phased
Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_item_sale.ksh

Design Overview
This script extracts from RMS on/off sale information for integration with a time-phased
inventory planning tool. This information contains the status, status update date and
order multiple for an item/location. A status of ‘A’ indicates that an item/location is
valid and can be ordered and sold. A status of ‘C’ indicates than an item/location is
invalid and cannot be ordered or sold. The script only extracts items that meet the
following criteria:
 In active status
 Transaction-level
 Either non-pack or a simple pack
 Sit_detail.status is either ‘A’ or ‘C’
 Sit_detail.status_update_date is greater than the current date

rmse_aip_item_sale (RMS Extract of On/Off Sale to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 37

Only the order multiple for the primary supplier and primary supplier country is
extracted.
The script produces two output files, one containing on sale records (sit_detail.status =
‘A’) and the other off sale records (sit_detail.status = ‘C’).

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After sitmain.pc and pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

SIT_EXPLODE Yes No No No

SIT_DETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

I/O Specification

Output File Layout
The output file dm0_onseffdt_.txt is in fixed-length format matching the schema
definition in rmse_aip_item_on_sale.schema.

Field Name Field Type Required Description

STORE Integer(20) Yes Sit_explode.location

RMS_SKU Char(20) Yes Sit_explode.item

rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a Time-Phased Inventory Planning Tool)

38 Oracle Retail Merchandising System

Field Name Field Type Required Description

ORDER_MULTIPLE Integer(4) Yes If item_master.pack_ind = ‘Y’ then
v_packsku_qty.qty (for the component item)
else item_supp_country.order_multiple

ON_SALE_EFFECTIVE
_DATE

Date Yes Sit_detail.status_update_date

The output file dm0_ofseffdt_.txt is in fixed-length format matching the schema
definition in rmse_aip_item_off_sale.schema.

Field Name Field Type Required Description

STORE Integer(20) Yes Sit_explode.location

RMS_SKU Char(20) Yes Sit_explode.item

ORDER_MULTIPLE Integer(4) Yes If item_master.pack_ind = ‘Y’ then
v_packsku_qty.qty (for the component item)
else item_supp_country.order_multiple

OFF_SALE_EFFECTIVE
_DATE

Date Yes Sit_detail.status_update_date

rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a
Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_item_supp_country.ksh

Design Overview
This script extracts RMS item-supplier information for integration with a time-phased
inventory planning tool.
Three output files are produced by this extract. Two contain item-supplier information.
The other is a reject file containing item suppliers with rejected order multiples.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After sitmain.pc, reclsdly.pc, pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 39

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

V_PACKSKU_QTY Yes No No No

PACKITEM Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_item_supp_country.dat is in fixed-length format matching the
schema definition in rmse_aip_item_supp_country.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Item_supp_country.item

SUPPLIER Integer(11) Yes Item_supp_country.supplier

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

PRIMARY_SUPP_IND Char(1) Yes Item_supp_country.primary_supp_ind

rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a Time-Phased Inventory Planning Tool)

40 Oracle Retail Merchandising System

The output file aip_dmx_prdsplks.txt is in fixed-length format matching the schema
definition in rmse_aip_dmx_prdspllks.schema.

Field Name Field Type Required Description

SUPPLIER Integer(20) Yes Item_supp_country.supplier

RMS_SKU Char(20) Yes Item_supp_country.item

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

COMMODITY_SUPPLIER
_LINKS

Char(1) Yes 1

The reject file rmse_aip_item_supp_country_reject_ord_mult.txt is in pipe delimited (|)
format.

Field Name Field Type Required Description

ITEM Char(25) Yes Item_supp_country.item

SUPPLIER Integer(10) Yes Item_supp_country.supplier

ORDER_MULTIPLE N/A (can
exceed
default limit
of Integer
(4) for order
multiples

Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

PRIMARY_SUPP_IND Char(1) Yes Item_supp_country.primary_supp_ind

rmse_aip_merchhier (RMS Extract of Merchandise Hierarchy to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 41

rmse_aip_merchhier (RMS Extract of Merchandise Hierarchy to a Time-
Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_merchhier.ksh

Design Overview
This script extracts RMS merchandise hierarchy information for integration with a time-
phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After dlyprg.pc and pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

SUBCLASS Yes No No No

CLASS Yes No No No

DEPS Yes No No No

GROUPS Yes No No No

DIVISION Yes No No No

COMPHEAD Yes No No No

rmse_aip_orghier (RMS Extract of Organization Hierarchy to a Time-Phased Inventory Planning Tool)

42 Oracle Retail Merchandising System

I/O Specification

Output File Layout
The output file is in fixed-length format matching to the schema definition in
rmse_aip_merchhier.schema.

Field Name Field Type Required Description

SUBCLASS Integer(5) Yes Subclass.subclass

SUB_NAME Char(20) Yes Subclass.sub_name

CLASS Integer(5) Yes Subclass.class

CLASS_NAME Char(20) Yes Class.class_name

DEPT Integer(5) Yes Class.dept

DEPT_NAME Char(20) Yes Deps.dept_name

GROUP_NO Integer(5) Yes Deps.Group_no

GROUP_NAME Char(20) Yes Groups.group_name

DIVISION Integer(5) Yes Groups.division

DIV_NAME Char(20) Yes Division.div_name

COMPANY Integer(5) Yes Comphead.company

CO_NAME Char(20) Yes Comphead.co_name

PURCHASE_TYPE Integer(1) Yes Deps.purchase_type

rmse_aip_orghier (RMS Extract of Organization Hierarchy to a Time-
Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_orghier.ksh

Design Overview
This script extracts from RMS organizational hierarchy information for integration with a
time-phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After dlyprg.pc and pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

rmse_aip_orghier (RMS Extract of Organization Hierarchy to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 43

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

COMPHEAD Yes No No No

CHAIN Yes No No No

AREA Yes No No No

REGION Yes No No No

DISTRICT Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_orghier.dat is in fixed-length format matching to the schema
definition in rmse_aip_orghier.schema.

Field Name Field Type Required Description

DISTRICT Integer(11) No District.district

DISTRICT_NAME Char(20) No District.district_name

REGION Integer(11) No Region.region

REGION_NAME Char(20) No Region.region_name

AREA Integer(11) No Area.area

AREA_NAME Char(20) No Area.area_name

CHAIN Integer(11) Yes Chain.chain

CHAIN_NAME Char(20) Yes Chain.chain_name

COMPANY Integer(5) Yes Comphead.company

CO_NAME Char(20) Yes Comphead.co_name

rmse_aip_rec_qty (RMS Extract of Received PO and Transfer Quantities to a Time-Phased Inventory Planning Tool)

44 Oracle Retail Merchandising System

rmse_aip_rec_qty (RMS Extract of Received PO and Transfer Quantities to
a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_rec_qty.ksh

Design Overview
This script extracts from RMS received PO and transfer quantities for integration with a
time-phased inventory planning tool. Only records that meet the following criteria
below are extracted:
For Purchase Orders:
 Ordhead.close_date is NULL or ordhead.close_date >= (current date -

1max_notafter_days)
 Ordhead.not_after_date is not NULL
 Ordhead.orig_ind = 6 (external system generated)
 Ordloc.received_qty is not NULL

For Transfers:
 Tsfhead.close_date is NULL or tsfhead.close_date >= (current date -

1max_notafter_days)
 Tsfhead.tsf_type = ‘AIP’ (generated by the time-phased inventory planning tool)
 Tsfhead.delivery_date is not NULL
 Tsfdetail.received_qty is not NULL

1Defined in <etc_directory>/max_notafter_days.txt

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After vrplbld.pc, cntrordb.pc, reqext.pc and
pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

rmse_aip_rec_qty (RMS Extract of Received PO and Transfer Quantities to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 45

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ORDHEAD Yes No No No

ORDLOC Yes No No No

ORDSKU Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

V_PACKSKU_QTY Yes No No No

I/O Specification

Output File Layout
The output file received_qty.txt is in fixed-length format matching the schema definition
in rmse_aip_rec_qty.schema.

Field Name Field Type Required Description

ORDER_NUMBER Integer(10) Yes Ordhead.order_no or tsfhead.tsf_no

ORDER_TYPE Char(1) Yes ‘P’ for purchase orders or ‘T’ for transfers

RMS_SKU Char(25) Yes Ordsku.item or tsfdetail.item

ORDER_MULTIPLE Integer(8) Yes Ordsku.supp_pack_size or
tsfdetail.supp_pack_size

PACK_QTY Integer(8) Yes If pack item then sum of V_packsku_qty.qty
else 0

STORE Integer(10) No If ordloc.loc_type = ‘S’ then ordloc.location
or
If tsfhead.to_loc_type = ‘S’ then
tsfhead.to_loc

WAREHOUSE Integer(10) No If ordloc.loc_type = ‘W’ then ordloc.location
or
If tsfhead.to_loc_type = ‘W’ then
tsfhead.to_loc

RECEIVED_DATE Date Yes Ordhead.not_after_date or
tsfhead.delivery_date

QUANTITY Integer(8) Yes Ordloc.qty_received or
tsfdetail.received_qty

rmse_aip_store (RMS Extract of Stores to a Time-Phased Inventory Planning Tool)

46 Oracle Retail Merchandising System

rmse_aip_store (RMS Extract of Stores to a Time-Phased Inventory
Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_store.ksh

Design Overview
This script extracts RMS store information for integration with a time-phased inventory
planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After storeadd.pc, likestore.pc, dlyprg.pc and
pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

STORE Yes No No No

STORE_FORMAT Yes No No No

CODE_DETAIL Yes No No No

rmse_aip_store_cur_inventory (RMS Extract of Store Current Inventory data to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 47

I/O Specification

Output File Layout
The item output file is in fixed-length format matching to the schema definition in
rmse_aip_store.schema.

Field Name Field Type Required Description

STORE Integer(11) Yes Store.store

STORE_NAME Char(20) Yes Store.store_name

DISTRICT Integer(11) Yes Store.district

STORE_CLOSE_DATE Date No Store.store_close_date

STORE_OPEN_DATE Date Yes Store.store_open_date

STORE_CLASS Char(1) Yes Store.store_class

STORE_CLASS_DESCRIPTION Char(40) Yes Code_detail.code_desc

STORE_FORMAT Integer(5) No Store.store_format

FORMAT_NAME Char(20) No Store_format.format_name

STOCKHOLDING_IND Char(1) Yes Store.stockholding_ind

REMERCH_IND Char(1) Yes Store.remerch_ind

CLOSING_STORE_IND Char(1) Yes ‘N’ if Store.store_close_date is
empty, else ‘Y’

rmse_aip_store_cur_inventory (RMS Extract of Store Current Inventory
data to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_store_cur_inventory.ksh

Design Overview
This script extracts RMS current inventory for store locations for integration with a time-
phased inventory planning tool. This script requires an ‘F’ or ‘D’ parameter:
 F - full extract of items/locations. Multiple output files. One file per item_loc_soh

partition.
 D - delta extract of items/locations for the current day’s transactions. Single output

file.

rmse_aip_store_cur_inventory (RMS Extract of Store Current Inventory data to a Time-Phased Inventory Planning Tool)

48 Oracle Retail Merchandising System

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations This program is run towards the end of the batch
cycle where all inventory transactions are
completed for the day.
After stkvar.pc, wasteadj.pc, salstage.pc, reqext.pc
and pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme One thread per partition of item_loc_soh will be
invoked if the script is run with a parameter of ‘F’.

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_LOC_SOH Yes No No No

STORE Yes No No No

IF_TRAN_DATA Yes No No No

IF_TRAN_DATA_TEMP Yes Yes No No

PACKITEM Yes No No No

DBA_TAB_PARTITIONS Yes No No No

rmse_aip_substitute_items (RMS Extract of Substitute Items to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 49

I/O Specification

Output File Layout
The output file sr0_curinv_{THREAD_NO}.txt is in fixed-length format matching the
schema definition in rmse_aip_store_cur_inventory.schema.

Field Name Field Type Required Description

STORE Integer(20) Yes Item_loc_soh.loc

RMS_SKU Char(20) Yes Item_master.item

STORE_CUR_INV Integer(8) Yes Item_loc_soh.stock_on_hand –
(item_loc_soh.tsf_reserved_qty +
item_loc_soh.rtv_qty +
item_loc_soh.non_sellable_qty +
item_loc_soh.customer_resv +
item_loc_soh.customer_backorder)

rmse_aip_substitute_items (RMS Extract of Substitute Items to a Time-
Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_substitute_item.ksh

Design Overview
This script extracts from RMS substitute item information for integration with a time-
phased inventory planning tool.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

rmse_aip_suppliers (RMS Extract of Supplier to a Time-Phased Inventory Planning Tool)

50 Oracle Retail Merchandising System

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

SUB_ITEMS_DETAIL Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_substitute_items.dat is in fixed-length format matching the
schema definition in rmse_aip_substitute_items.schema.

Field Name Field Type Required Description

ITEM Char(25) Yes Sub_items_detail.item

LOCATION Integer(10) Yes Sub_items_detail.location

SUB_ITEM Char(25) Yes Sub_items_detail.sub_item

LOC_TYPE Char(1) Yes Sub_items_detail.loc_type

START_DATE Date No Sub_items_detail.start_date

END_DATE Date No Sub_items_detail.end_date

rmse_aip_suppliers (RMS Extract of Supplier to a Time-Phased Inventory
Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_suppliers.ksh

Design Overview
This script extracts from RMS supplier information for integration with a time-phased
inventory planning tool. The script produces three extract files: rmse_aip_suppliers.dat,
splr.txt and dmx_dirspl.txt. Splr.txt and dmx_dirspl.txt only contain active suppliers
(sups.sup_status = ‘A’).

rmse_aip_suppliers (RMS Extract of Supplier to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 51

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

SUPS Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_suppliers.dat is in fixed-length format matching the schema
definition in rmse_aip_suppliers.schema.

Field Name Field Type Required Description

SUPPLIER Integer(11) Yes Sups.supplier

SUP_NAME Char(32) Yes Sups.sup_name

The output file splr.txt is in fixed-length format matching the schema definition in
rmse_aip_splr.schema.

Field Name Field Type Required Description

SUPPLIER Integer(20) Yes Sups.supplier

SUPPLIER_DESCRIPTION Char(40) Yes Sups.sup_name

rmse_aip_tsf_in_well (RMS Extract of Transfers in the Well Quantities to a Time-Phased Inventory Planning Tool)

52 Oracle Retail Merchandising System

The output file dmx_dirspl.txt is in fixed-length format matching the schema definition
in rmse_aip_dmx_dirspl.schema.

Field Name Field Type Required Description

SUPPLIER Integer(20) Yes Sups.supplier

DIRECT_SUPPLIER Char(1) Yes If sup.dsd_ind = ‘Y’ then 1,
else if sup.dsd_ind = ‘N’ then
0

rmse_aip_tsf_in_well (RMS Extract of Transfers in the Well Quantities to a
Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_tsf _in_well.ksh

Design Overview
This script extracts RMS “in the well” transfer quantities for integration with a time-
phased inventory planning tool. In the well pertains to inventory that has been reserved
by an approved or shipped transfer. The expected delivery date is also included in the
extract.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After reqext.pc and pre_rmse_aip.ksh

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

rmse_aip_tsf_in_well (RMS Extract of Transfers in the Well Quantities to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 53

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_SUPPLIER Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

SHIPITEM_INV_FLOW Yes No No No

TRANSIT_TIMES Yes No No No

V_WH Yes No No No

V_PACKSKU_QTY Yes No No No

PACKITEM Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_tsf_in_well.dat is in fixed-length format matching the schema
definition in rmse_aip_tsf_in_well.schema.

Field Name Field Type Required Description

DAY Char(9) Yes Current date if tsfhead.delivery_date –
transit_times.transit_time is less than
current date else tsfhead.delivery_date –
transit_times.transit_time

LOC Integer(20) Yes If tsfhead.from_loc type = ‘W’ and
tsfhead.tsf_type = ‘EG’ then
shipitem_inv_flow.from_loc else
tsfhead.from_loc

ITEM Char(20) Yes Formal Case Type:
If simple pack then and tsfhead.to_loc_type
= ‘S’ then this would be the component of
the pack in v_packsku_qty else
item_master.item.

Informal Case Type:
Item_master.item

ORDER_MULTIPLE Integer(4) Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

rmse_aip_wh (RMS Extract of Warehouse to a Time-Phased Inventory Planning Tool)

54 Oracle Retail Merchandising System

Field Name Field Type Required Description

TSF_RESERVED_QTY Integer(8) Yes Formal Case Type:
Tsfdetail.tsf_qty – tsfdetail.ship_qty.
Resulting quantity is multiplied by
V_packsku_qty.qty if item is a pack.

Informal Case Type:
Tsfdetail.tsf_qty – tsfdetail.ship_qty
expressed in the primary case size.
Remainder is in Standard UOM

rmse_aip_wh (RMS Extract of Warehouse to a Time-Phased Inventory
Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_wh.ksh

Design Overview
This script extracts from RMS warehouse information for integration with a time-phased
inventory planning tool. The script produces three extract files: rmse_aip_wh.dat,
rmse_aip_wh.txt and rmse_aip_wh_type.txt. Only stock holding warehouses are
extracted to the rmse_aip_wh.txt and rmse_aip_wh_type.txt files

rmse_aip_wh (RMS Extract of Warehouse to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 55

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After whadd.pc and dlyprg.pc.
After pre_rmse_aip.ksh.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

WH Yes No No No

I/O Specification

Output File Layout
The output file rmse_aip_wh.dat is in fixed-length format matching the schema
definition in rmse_aip_wh_dat.schema.

Field Name Field Type Required Description

WH Integer(11) Yes Wh.wh

WH_NAME Char(20) Yes Wh.wh_name

FORECAST_WH_IND Char(1) Yes Wh.forecast_wh_ind

STOCKHOLDING_IND Char(1) Yes Wh.stockholding_ind

WH_TYPE Char(6) No Wh.vwh_type

rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory data to a Time-Phased Inventory Planning Tool)

56 Oracle Retail Merchandising System

The output file rmse_aip_wh.txt is in fixed-length format matching the schema definition
in rmse_aip_wh.schema.

Field Name Field Type Required Description

WAREHOUSE_CHAMBER Char(20) Yes Wh.wh

WAREHOUSE_CHAMBER_
DESCRIPTION

Char(40) Yes Wh.wh_name

WAREHOUSE Integer(20) Yes Wh.wh

WAREHOUSE_DESCRIPTION Char(40) Yes Wh.wh_name

The output file rmse_aip_wh_type.txt is in fixed-length format matching the schema
definition in rmse_aip_wh_type.schema.

Field Name Field Type Required Description

WAREHOUSE Integer(20) Yes Wh.wh

WH_TYPE Char(6) No Wh.wh_type

rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory
data to a Time-Phased Inventory Planning Tool)

Functional Area
RMS to time-phased inventory planning tool Integration

Module Affected
rmse_aip_wh_cur_inventory.ksh

Design Overview
This script extracts RMS current warehouse inventory information for integration with a
time-phased inventory planning tool.
This script requires an ‘F’ or ‘D’ parameter:
 F - full extract of items/locations. Creates multiple files per warehouse. Files are

concatenated into a single file upon successful completion.
 D - delta extract of items/locations for the current day’s transactions. Creates a

single extract file.
The script creates a backup of the previous day’s data file labeled with the date on which
they were created.

rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory data to a Time-Phased Inventory Planning Tool)

Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface 57

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc Interface

Scheduling Considerations After stkvar.pc, wasteadj.pc, salstage.pc, reqext.pc
and pre_rmse_aip.ksh.
After rmse_aip_store_cur_inventory.ksh if running
a delta extract (‘D’ parameter).

Pre-Processing N/A

Post-Processing N/A

Threading Scheme One thread per warehouse will be invoked if the
script is run with a parameter of ‘F’.

Restart/Recovery
This is a standard Oracle Retail RETL script. No restart/recovery is used.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_MASTER Yes No No No

ITEM_SUPP_COUNTRY Yes No No No

ITEM_LOC_SOH Yes No No No

WH Yes No No No

ALLOC_DETAIL Yes No No No

ALLOC_HEADER Yes No No No

ORDHEAD Yes No No No

ITEM_SUPPLIER Yes No No No

PACKITEM Yes No No No

V_PACKSKU_QTY Yes No No No

IF_TRAN_DATA_TEMP Yes No No No

rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory data to a Time-Phased Inventory Planning Tool)

58 Oracle Retail Merchandising System

I/O Specification

Output File Layout
The output file wr1_curinv.txt is in fixed-length format matching the schema definition
in rmse_aip_wh_cur_inventory.schema.

Field Name Field Type Required Description

WAREHOUSE Integer(20) Yes Item_loc_soh.loc

RMS_SKU Char(20) Yes Item_master.item

ORDER_MULT Integer(4) Yes Formal Case Type:
V_packsku_qty.qty for simple pack, else 1

Informal Case Type:
One unique record for each item/supplier
with order multiples of:
1, supp_pack_size, inner_pack_size and (ti *
hi * supp_packsize)

WH_CUR_INV Integer(8) Yes Formal Case Type:
((Item_loc_soh.stock_on_hand –
(item_loc_soh.tsf_reserved_qty +
item_loc_soh.rtv_qty +
item_loc_soh.non_sellable_qty +
item_loc_soh.customer_resv +
item_loc_soh.customer_backorder)) -
alloc_detail.qty_distro *
(v_packsku_qty.qty for simple pack, else 1)

Informal Case Type:
((Item_loc_soh.stock_on_hand –
(item_loc_soh.tsf_reserved_qty +
item_loc_soh.rtv_qty +
item_loc_soh.non_sellable_qty +
item_loc_soh.customer_resv +
item_loc_soh.customer_backorder)) -
alloc_detail.qty_distro)

Subscription Designs 59

5
Subscription Designs

PO Subscription API
Functional Area

PO subscription

Design Overview
RMS will expose an API that will allow external systems to create, edit, and delete
purchase orders within RMS. The transaction will be performed immediately upon
message receipt so success or failure can be communicated to the calling application.
Purchase order messages will be sent across the Oracle Retail Integration Bus (RIB). POs
can be created, modified or deleted at the header or the detail level, each with its own
message type.

Consume Module
Filename: rmssub_xorders/b.pls
RMSSUB_XORDER.CONSUME
(O_status_code IN OUT VARCHAR2,
O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
I_message IN RIB_OBJECT,
I_message_type IN VARCHAR2)
This procedure will need to initially ensure that the passed in message type is a valid
type for purchase order messages. The valid message types for purchase order messages
are listed in a section below.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
RMS’s business validation. It calls the
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE function to determine whether the
message is valid. If the message passed RMS business validation, then the function
returns true, otherwise it returns false. If the message fails RMS business validation, a
status of “E” is returned to the external system along with the error message returned
from the CHECK_MESSAGE function.
Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XORDER_SQL.PERSIST() function. If the database
persistence fails, the function returns false. A status of “E” is returned to the external
system along with the error message returned from the PERSIST() function.

PO Subscription API

60 Oracle Retail Merchandising System

For messages that creates or modifies purchase order, the
ORDER_SETUP_SQL.POP_CONTAINER_ITEM() function is called. This function
retrieves the container item for any deposit contents item in the message and adds them
to the purchase order items. The order quantity of the container item is always equal to
the order quantity of its contents item.
Once the message has been successfully persisted and processed for deposit container
items, there is nothing more for the consume procedure to do. A success status, “S”, is
returned to the external system indicating that the message has been successfully
received and persisted to the RMS database.

Business Validation Module
Filename: rmssub_xordervals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
(O_error_message IN OUT
 RTK_ERRORS.RTK_TEXT%TYPE,
O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
I_message IN
 RIB_XORDERDESC_REC,
I_message_type IN VARCHAR2)
This overloaded function performs all business validation associated with create/modify
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time results in message failure.
Like other APIs, the purchase order API expects a snapshot of the record on both a
header modify and a detail modify message, instead of only the fields that are changed.
For a detail create or a detail modify message, only the order number will be validated at
the header level; all other header fields are ignored.
Defaulted fields that are not included in the message structure of the object must be
populated in a package business record, ORDER_SQL.ORDER_REC. This record is used
as input to the database DML functions in the persist package.
ORDER CREATE
 Check required fields on both header and detail nodes.
 Verify order number does NOT already exist.
 Verify attributes in the message header are correct.
 Verify attributes in the message detail are correct.
 Verify that item/supplier and item/supp/country exist for a non-pack item.
 Verify that item/supplier and item/supp/country exist for all components of a pack

item.
 Create item/supplier and item/supp/country if they don’t exist for a pack item.
 Create item/supp/country/loc if it does not exist for an item/location.
 Create item/loc relation if not already exist, including creating item_loc_soh,

item_supp_country_loc, and price_hist records. If a pack item is involved, these
records will be created for all component items.

 Populate record ORDER_REC with message data for both header and detail.
ORDER MODIFY

PO Subscription API

Subscription Designs 61

 Check required fields on the header node.
 Verify order number already exists.
 Verify attributes in the message header are correct.
 Verify attributes that cannot be modified are not changed.
 Update ordloc appropriately if closing or reinstating an order.
 Populate record ORDER_REC.ORDHEAD_ROW with message data.

ORDER DETAIL CREATE
 Check required fields on the detail node.
 Verify order number already exists.
 Verify order/item/loc does NOT already exist.
 Verify that item/supplier and item/supp/country exist for a non-pack item.
 Verify that item/supplier and item/supp/country exist for all components of a pack

item.
 Create item/supplier and item/supp/country if they don’t exist for a pack item.
 Create item/supp/country/loc if it does not exist for an item/location.
 Create item/loc relation if not already exists, including creating item_loc_soh,

item_supp_country_loc, and price_hist records. If a pack item is involved, these
records will be created for all component items.

 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS
with message data.

ORDER DETAIL MODIFY
 Check required fields on the detail node.
 Verify order/item/loc already exists.
 Verify attributes that cannot be modified are not changed.
 If order quantity is reduced, verify the new order quantity is not below what has

already been received plus what is being shipped or expected.
 If the order line is cancelled or reinstated via the indicators, calculate the new

quantity buckets.
 Populate record ORDER_REC.ORDLOCS and optionally, ORDER_REC.ORDSKUS

with message data.
RMSSUB_XORDER_VALIDATE.CHECK_MESSAGE
(O_error_message IN OUT
 RTK_ERRORS.RTK_TEXT%TYPE,
O_order_rec OUT NOCOPY ORDER_SQL.ORDER_REC,
I_message IN
 RIB_XORDERREF_REC,
I_message_type IN VARCHAR2)
This overloaded function performs all business validation associated with delete
messages and builds the order API record with default values for persistence in the order
related tables. Any invalid records passed at any time results in message failure.

PO Subscription API

62 Oracle Retail Merchandising System

ORDER DELETE
 Check required fields.
 Verify order number already exists.
 Verify that order is not already shipped or received.
 Delete any allocations tied to the order
 Populate record ORDER_REC.ORDHEAD_ROW with the order number for delete.

ORDER DETAIL DELETE
 Check required fields.
 Verify order/item/loc already exists.
 Verify that order line is not already shipped or received.
 Delete any allocations tied to the order line.
 Populate record ORDER_REC.ORDLOCS with the order/item/location for delete.

Bulk or Single DML Module
Filename: rmssub_xorders/b.pls
All insert, update and delete SQL statements are located in package ORDER_SQL. The
private functions call these packages.
RMSSUB_XORDER_SQL.PERSIST
(O_error_message IN OUT
 RTK_ERRORS.RTK_TEXT%TYPE,
I_order_rec IN
 ORDER_SQL.ORDER_REC,
I_message_type IN VARCHAR2)
This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.
ORDER CREATE
 Inserts records in the ORDHEAD, ORDSKU, ORDLOC tables

ORDER MODIFY
 Updates a record in the ORDHEAD table.

ORDER DELETE
 Delete an order from ORDHEAD, ORDSKU, ORDLOC tables.

ORDER DETAIL CREATE
 Inserts records in the ORDLOC and optionally, ORDSKU tables

ORDER DETAIL MODIFY
 Updates records in the ORDLOC and/or ORDSKU table.
 Also verify it doesn’t end up with an Approved order with 0 total order quantity.

ORDER DETAIL DELETE
 Delete records from ORDLOC and optionally, ORDSKU tables.
 Delete the container items for any deposit contents items from ORDLOC and

ORDSKU tables.
 Also verify it doesn’t end up with an Approved order with no detail or with 0 total

order quantity.

PO Subscription API

Subscription Designs 63

Message DTD
Here are the filenames that correspond with each message type. Please consult the
mapping documents for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description Document Type Definition
(DTD)

XorderCre Order Create Message XOrderDesc.dtd

XorderMod Order Modify Message XOrderDesc.dtd

XorderDel Order Delete Message XOrderRef.dtd

XorderDtlCre Order Detail Create Message XOrderDesc.dtd

XorderDtlMod Order Detail Modify Message XOrderDesc.dtd

XorderDtlDel Order Detail Delete Message XOrderRef.dtd

Design Assumptions
Required fields are shown in mapping document.
Many ordering functionalities that are available on-line are not supported via this API.
See the SAE and the story document for a list of these. Triggers related to these
functionalities should be turned off. Oracle Retail 11 deposit item functionality is not
available in this API; that is to say a deposit contents item on the order does not
automatically create the corresponding container item for the deposit item.

Tables
TABLE SELECT INSERT UPDATE DELETE

ORDHEAD Yes Yes Yes Yes

ORDSKU Yes Yes Yes Yes

ORDLOC Yes Yes Yes Yes

ITEM_SUPPLIER Yes Yes No No

ITEM_SUPP_COUNTRY Yes Yes No No

ITEM_SUPP_COUNTRY_LOC Yes Yes No No

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_ZONE_PRICE Yes No No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

SHIPMENT Yes No No No

SHIPSKU Yes No No No

APPT_DETAIL Yes No No No

ALLOC_HEADER Yes No No Yes

PO Subscription API

64 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE DELETE

ALLOC_DETAIL Yes No No Yes

STORE Yes No No No

WAREHOUSE Yes No No No

SUPS Yes No No No

DEPS Yes No No No

CURRENCIES Yes No No No

CURRENCY_RATES Yes No No No

TERMS Yes No No No

SYSTEM_OPTIONS Yes No No No

UNIT_OPTIONS Yes No No No

ADDR Yes No No No

Transfer Subscription

Subscription Designs 65

Transfer Subscription
Functional Area

Transfer subscription

Design Overview
RMS subscribes to transfers from external subsystems that provide only basic
information about these transactions, namely item, supplier, location and quantity.
It will be expected that RMS users will be responsible for updating and monitoring the
financial and execution data such as transfer costs.
RMS monitors all of the shipments and receipts and will close the transfer once the
received quantity equals the quantity requested or an outside system cancels the
outstanding quantity. RMS will maintain the perpetual inventory for each location as it
currently does.
The transfer RIB API will have defaulting logic which the API uses to populated
defaulted fields. This is designed so that multiple sources can use the transfer API
without having to conform to the same default values. Retailers can set-up their own set
of default values or logic without having to modify the API code. For fields that are
exposed on the message, if a value is provided, it will be used. Default values will only
be used if a value is not provided on the message.

Consume Module
Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF.CONSUME
 (O_status_code IN OUT VARCHAR2,
 O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_message IN RIB_OBJECT,
 I_message_type IN VARCHAR2)

This procedure will need to initially ensure that the passed in message type is a valid
type for transfer messages.
If the message type is invalid, a status of “E” should be returned to the external system
along with an appropriate error message informing the external system that the status is
invalid.
If the message type is valid, the generic RIB_OBJECT needs to be downcast to the actual
object using the Oracle’s treat function. There will be an object type that corresponds
with each message type. If the downcast fails, a status of “E” is returned to the external
system along with an appropriate error message informing the external system that the
object passed in is invalid.
If the downcast is successful, then consume needs to verify that the message passes all of
the RMS business validation. It calls the RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
function to determine whether the message is valid. If the message passed RMS business
validation, then the function returns true, otherwise it returns false. If the message fails
RMS business validation, a status of “E” is returned to the external system along with the
error message returned from the CHECK_MESSAGE function.

Transfer Subscription

66 Oracle Retail Merchandising System

Once the message has passed RMS business validation, it is persisted to the RMS
database. It calls the RMSSUB_XTSF_SQL.PERSIST() function. If the database persistence
fails, the function returns false. A status of “E” is returned to the external system along
with the error message returned from the PERSIST() function.
Once the message has been successfully persisted, there is nothing more for the consume
procedure to do. A success status, “S”, is returned to the external system indicating that
the message has been successfully received and persisted to the RMS database.

Business Validation Module
Filename: rmssub_xtsfvals/b.pls
It should be noted that some of the business validation is referential or involves
uniqueness. This validation is handled automatically by the referential integrity
constraints and the unique indexes implemented on the database.

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with create/modify
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time results in message failure.
Like other APIs, the transfer API expects a snapshot of the record on both a header
modify and a detail modify message, instead of only the fields that are changed. For a
detail create or a detail modify message, only the TSF number will be validated at the
header level; all other header fields are ignored.
TRANSFER CREATE
 Check required fields.
 Validate fields.
 Verify that the delivery date is not NULL if RMS is integrated with AIP (Advanced

Inventory Planning).
 Default fields (status at header,freight type and tsf type)
 Build transfer records.

TRANSFER MODIFY
 Check required fields on the header nodes.
 Verify TSF number already exists.
 Verify that the delivery date is not NULL if RMS is integrated with AIP (Advanced

Inventory Planning).
 Validate fields.
 Populate record.

TRANSFER DETAIL CREATE
 Check required fields on the detail node.
 Verify TSF number already exists.
 Verify tsf/item/loc does not already exist.
 Create item/loc relation if not already exists, including creating ITEM_LOC_SOH,

ITEM_SUPP_COUNTRY_LOC, and PRICE_HIST records. If a pack item is involved,
these records will be created for all component items.

 Populate record.

Transfer Subscription

Subscription Designs 67

TRANSFER DETAIL MODIFY
 Check required fields on the detail node.
 Verify transfer/item/loc already exists.
 If TSF quantity is reduced, verify the new quantity is not below what has already

been received plus what is being shipped or expected.
 Populate record.

RMSSUB_XTSF_VALIDATE.CHECK_MESSAGE
This overloaded function performs all business validation associated with delete
messages and builds the transfer API record with default values for persistence in the
transfer related tables. Any invalid records passed at any time results in message failure.
TRANSFER DELETE
 Check required fields.
 Verify TSF number already exists.
 Verify that TSF is not already shipped or received.
 Populate record for delete.

TRANSFER DETAIL DELETE
 Check required fields.
 Verify TSF/item/loc already exists.
 Verify that TSF line is not already shipped or received.
 Populate record with the TSF no/item/location for delete.

Bulk or Single DML Module
Filename: rmssub_xtsfs/b.pls
RMSSUB_XTSF_SQL.PERSIST
 (O_error_message IN OUT RTK_ERRORS.RTK_TEXT%TYPE,
 I_tsf_rec IN RMSSUB_XTSF.TSF_REC,
 I_message_type IN VARCHAR2)

This function checks the message type to route the object to the appropriate internal
functions that perform DML insert, update and delete processes.
TRANSFER CREATE
 Inserts records in the TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.
 Updates records in the ITEM_LOC_SOH table.

TRANSFER MODIFY
 Updates a record in the TSFHEAD table.

TRANSFER DELETE
 Delete a transfer from TSFHEAD, TSFDETAIL, TSFDETAIL_CHRG tables.

TRANSFER DETAIL CREATE
 Inserts records in the TSFDETAIL, TSFDETAIL_CHRG tables.
 Updates records in the ITEM_LOC_SOH table.

TRANSFER DETAIL MODIFY
 Updates records in the TSFDETAIL, ITEM_LOC_SOH tables.

Transfer Subscription

68 Oracle Retail Merchandising System

TRANSFER DETAIL DELETE
 Delete records from TSFDETAIL, TSFDETAIL_CHRG tables.

Message DTD
Here are the filenames that correspond with each message type. Please consult the RIB
documentation for each message type in order to get a detailed picture of the
composition of each message.

Message Types Message Type Description Document Type Definition
(DTD)

xtsfcre Transfer Create Message XTsfDesc.dtd

xtsfmod Transfer Modify Message XTsfDesc.dtd

xtsfdel Transfer Delete Message XTsfRef.dtd

xtsfdtlcre Transfer Detail Create Message XTsfDesc.dtd

xtsfdtlmod Transfer Detail Modify Message XTsfDesc.dtd

xtsfdtlcel Transfer Detail Delete Message XTsfRef.dtd

Design Assumptions
Required fields are shown in RIB documentation.

Tables
TABLE SELECT INSERT UPDATE DELETE

TSFHEAD Yes Yes Yes Yes

TSFDETAIL Yes Yes Yes Yes

TSFDETAIL_CHRG Yes Yes Yes Yes

ITEM_LOC Yes Yes No No

ITEM_LOC_SOH Yes Yes No No

PRICE_HIST No Yes No No

ITEM_MASTER Yes No No No

PACKITEM_BREAKOUT Yes No No No

STORE Yes No No No

WH Yes No No No

SYSTEM_OPTIONS Yes No No No

Batch Designs 69

6
Batch Designs

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Distro Price Change Publish [distropcpub]
Functional Area
Pricing/Transfers/Allocations

Module Affected
DISTROPCPUB.PC

Design Overview
The DISTROPCPUB.PC program will get price change information for any allocations
and transfers and write the information to the corresponding queue table. This program
will ensure that Oracle Retail Warehouse Management will have access to any
item/location unit retail information that is changed after an allocation or transfer has
been published.
This program will loop through the PRICE_HIST table, selecting records whose unit
retail will change for vdate+1, and transaction type is in 4 (single unit retail was changed)
or 11(single unit retail and multi-unit retail were changed). It will then search for
allocations and transfers with matching item/locations. When a match is found,
depending on the distro type, the program calls allocation or transfer publishing logic to
insert the data into the allocation or transfer queue table, so that the RIB can publish the
change to the warehouse system.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 – Daily

Scheduling Considerations This program should run after RPM price event
execution batch process.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreading based on store.

Restart/Recovery
The logical unit of work is store. The driving cursor retrieves all item/locations that have
price changes in effect from the next day. It also gets all of the component items of the
non-sellable packs that have price changes.

Locking Strategy
N/A

EDI Location Address to Vendor Download [edidladd]

70 Oracle Retail Merchandising System

Security Considerations
 N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PRICE_HIST Yes No No No

V_RESTART_STORE Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_MASTER Yes No No No

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

ORDHEAD_REV Yes No No No

ORDHEAD Yes No No No

ALLOC_MFQUEUE No Yes No No

TSF_MFQUEUE No Yes No No

Shared Modules
N/A

I/O Specification
N/A

EDI Location Address to Vendor Download [edidladd]
Design Overview
The purpose of this module is to download addresses of stores and warehouses to
vendors. The address fields in the tables store and wh were removed and were
referenced instead to the table addr.
The output file format will be a standard Oracle Retail file format that will be translated
into EDI format by the Gentran translator. Addresses will be downloaded in two
different scenarios. The program will download changes made to store or warehouse
addresses into a flat file. Further, if a system_options table flag (addr_catalog) is set to
true (Y), then the addresses of all stores and warehouses will be downloaded into a
different file to be sent to suppliers. This program will run nightly.

EDI Location Address to Vendor Download [edidladd]

Batch Designs 71

When a store or warehouse address is changed a flag will be set to true to indicate that
that location should have its address changes submitted to suppliers. When the changes
occur on the location forms (store.fmb or wh.fmb form), the addr_change field is set to
true (Y) on the location tables (store or wh). After each changed location address is
processed by the EDIDL838.pc program its addr_change flag is reset to N.
The addr_catalog flag for sending address catalogs is set on the sys_ctrl.fmb form. When
this is set a catalog listing of all store and warehouse addresses are sent to suppliers, then
the addr_catalog field on system_options will be reset to N.

Tables Affected:

TABLE INDEX SELECT INSERT UPDATE DELETE

ADDR No Yes No Yes No

ADD_TYPE No Yes No No No

ADD_TYPE_MODULE No Yes No No No

PERIOD No Yes No No No

STORE No Yes No No No

SYSTEM_OPTIONS No Yes No Yes No

WH No Yes No No No

Stored Procedures / Shared Modules (Maintainability)
None

Program Flow
N/A

Function Level Description
Init()
Get system variables: current date and catalog indicator flag. Open output files: for
location address changes, address change rejects, canonical catalog listing, and catalog
listing rejects. (only open catalog and catalog reject files if a catalog is to be written). Call
restart_init. Set up format strings for ouput records.
Process()
For each record fetched from the driving cursor, call a function to process location
address changes, and if the catalog indicator flag is set to true to write catalog listing of
all locations.
Write FTAIL record to file.
The column addr_catalog in table system_options is then updated to ‘N’ if its previous
value was ‘Y’.
Write_records_loc()
This function should write out the address change record to the output file and update
the flag on the location table.
Write_records_cat()
This function writes address change records to the catalog file.

EDI Location Address to Vendor Download [edidladd]

72 Oracle Retail Merchandising System

Final()
Call restart/recovery close.

I/O Specification
Output file format (all characters should be right-padded with blanks and left justified;
all numbers should be left-padded with zeroes and right justified)

Record Name Field Name Field Type Default
Value

Description

File header File type record
descriptor

Char(5) FHEAD Identifies file record type

 File line sequence Number(10) Start at 1 and
increment

Line number of file

 File type
definition

Char(5) DLADD Identifies file source

 Purpose code Char(2) 04 (change)
or
05 (replace)

Add/change location or
replace whole list

Transaction
Detail

File type record
descriptor

Char(5) TDETL Identifies file record type

 File line sequence Number(10) Increment Line number of file

 Transaction
number

Number(10) Start at
1,increment

Identifies transaction

 Date Char(8) Period.vdate
YYYYMMDD

 Store or
warehouse

Char(2) SN (store) or
WH
(warehouse)

Location type

 Location Number(10) Store.store or wh.wh

 Location name Char(20) Store..store_name or
wh.wh_name

 Address line 1 Char(30) Store.store_add1/wh.wh_
add1

 Address line 2 Char(30) Store_add2 or wh_add2

 City Char(20) Store.store_city/wh.wh_c
ity

 State Char(3) Store.state/wh.state

 Postal code Char(10) Store_pcode/wh_pcode

 Country Char(3) Store/wh.country_id

 Address Type
Description

Char(40) atp.type_desc

EDI Location Address to Vendor Download [edidladd]

Batch Designs 73

Record Name Field Name Field Type Default
Value

Description

File trailer

File type record
descriptor

Char(5) FTAIL Identifies file record type

 Total number
lines

Number(10) Total lines in file

 Total no. TDETL
lines

Number(10) (total lines – 2)

Restart/Recovery
Because of the lack of volume and the flexibility requirements of EDI, the program will
use Oracle Retail’s standard restart/recovery only minimally. The driving query volume
is limited to the volume of the store and warehouse tables. Further, the output files that
are created are created if they don’t exist and are overwritten if they already exist. In the
event of a fatal error it is, therefore, reasonable to expect clients to simply restart the job
from the beginning without recovery.
Driving cursor:
 SELECT :ps_str_type,
 s.store,
 s.store_name,
 a.add_1,
 a.add_2,
 a.city,
 a.state,
 a.post,
 a.country_id,
 a.edi_addr_chg,
 atp.type_desc,
 ROWIDTOCHAR(a.rowid)
 FROM store s,
 addr a,
 add_type_module atm,
 add_type atp
 WHERE a.addr_type = atm.address_type
 AND a.module = atm.module
 AND atm.address_type = atp.address_type
 AND a.key_value_1 = to_char(s.store)
 AND a.edi_addr_chg = DECODE(:pi_do_all,1,a.edi_addr_chg,'Y')
 AND a.primary_addr_ind = 'Y'
 AND a.module = 'ST'
 UNION ALL
 SELECT :ps_wh_type,
 w.wh,
 w.wh_name,
 a.add_1,
 a.add_2,
 a.city,
 a.state,
 a.post,
 a.country_id,
 a.edi_addr_chg,
 atp.type_desc,
 ROWIDTOCHAR(a.rowid)
 FROM wh w,
 addr a,
 add_type_module atm,

EDI Supplier Address Upload [ediupadd]

74 Oracle Retail Merchandising System

 add_type atp
 WHERE a.addr_type = atm.address_type
 AND a.module = atm.module
 AND atm.address_type = atp.address_type
 AND a.key_value_1 = to_char(w.wh)
 AND a.edi_addr_chg = DECODE(:pi_do_all,1,a.edi_addr_chg,'Y')
 AND a.primary_addr_ind = 'Y'
 AND a.module = 'WH';

This selects all location information if the catalog is to be processed but only information
from locations where the addr_chg indicator is set to Y if the catalog shouldn’t be
processed. Pi_do_all will be an integer variable that should be initialized as zero and set
to 1 just before calling process_catalog.

Scheduling Constraints
Processing Cycle: PHASE 4 (DAILY)
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

EDI Supplier Address Upload [ediupadd]
Design Overview
The ediupadd.pc batch program will read vendor/supplier sent EDI 838 Profile Data
Files. These files will be processed by vendor/supplier and used to update Oracle Retail
supplier address information.
Five different types of supplier addresses can be changed via this EDI interface: business,
postal, returned to, pick up and payment mailing address. This program always
assumes that address information is primary for the address type.
If there is an error with a transaction set, write that transaction to the reject file so it can
be fixed and reprocessed later, then the program will continue to the next transaction set.
See EDI856 for an example.

TABLE INDEX SELECT INSERT UPDATE DELETE

STATE No Yes No No No

SUPPLIER No Yes No No No

SUPS_ADD No No Yes Yes No

Scheduling Constraints
Processing Cycle: Ad Hoc
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A (file based processing—single thread only)

EDI Supplier Address Upload [ediupadd]

Batch Designs 75

Restart Recovery
Oracle Retail restart/recovery capability is minimal. The program uses non-fatal error
handling to process input files. There is not enough volume to warrant the use of restart
recovery. A commit will not occur until the end of file processing and therefore if fatal
errors are encountered updates will not have been committed and the program can be
restarted without recovery.

Program Flow
N/A

Shared Modules
N/A

Function Level Description
Init()
Open input & output files. Validate file header line. Call Oracle Retail API restart_init to
initializse restart/recovery process.
Process()
Loop through each line of input file. Call validate_FDETL to validate and format
variables.. Write to reject file if variables are not valid. Call update_supplier to update the
database with the new addresses.
Update_supplier()
Update sups_add table with new, modified address information. This program
presumes that address modification information is regarding a “primary” address. If the
action specified is “add”, then any existing primary address of that type will be changed
so that it is no longer primary, and the new address will be inserted as a primary address
of the specified type into the supplier address table. If the action is “update”, then the
existing primary address of the specified type will be modified to the new passed
information (if one does not exist for that type, it will be inserted).
validate_FDETL—validate supplier and address information

EDI Supplier Address Upload [ediupadd]

76 Oracle Retail Merchandising System

I/O Specification
Input file:
FHEAD File type identification
FDETL Supplier address info
FTAIL End of file marker

Record Name Field Name Field Type Default
Value

Description

FHEAD File record
descriptor

Char(5) FHEAD Describes file line type

 Line number Number(10) Sequential file line number

 Gentran_id Char(5) Identifies the file type

 File create date Char(14) YYYYMMDDHH24MISS
format

FDETL File record
descriptor

Char(5) FDETL Describes file line type

 Line number Number(10) Sequential file line number

 Transaction
number

Number(10) Sequential transaction
number

 Add or Update Char(1) ‘A’dd or ‘U’pdate address

 Address type Char(2) Will be translated into
sups_add.address_type:
01 – Business
02 – Postal
03 – returns
04 – Pick Up (Order)
05 – Payment

 Supplier varChar(10) Sups.supplier

 Address line 1 Char(30) Sups_add.address_1

 Address line 2 Char(30) Sups_add.address_2

 Address line 3 Char(30) Sups_add.address_3

 Contact name Char(20) Sups_add.contact_name

 Contact Phone Char(20) Sups_add.contact_phone

 Contact fax Char(20) Sups_add.contact_fax

 City Char(20) Sups_add.city

Oracle Retail Demand Forecasting Purge [fcstprg]

Batch Designs 77

Record Name Field Name Field Type Default
Value

Description

 State Char(3) Sups_add.state

 Postal code Char(10) Sups_add.post_code

 Country Char(3) Sups_add.country_id

FTAIL File record
descriptor

Char(5) Describes file record type

 Line number Number(10) Sequential file line number
(total # lines in file)

 Number of
transactions

Number(10) Number of transactions in file

Technical Issues
N/A

Oracle Retail Demand Forecasting Purge [fcstprg]
Functional Area
Demand Forecasting

Module Affected
FCSTPRG.PC

Design Overview
This program deletes data from forecast information tables. Data deletion is performed
by partition truncation, table truncation or deletion by domain. The method of deletion
is dependent on whether or not the table is partitioned. This program serves to delete
data by domains so that they can re-loaded with new forecast information from RDF.
This program must be run as either the RMS schema owner, or be run by a user that has
been granted the following system privileges:
 ‘drop any table’
 ‘alter any table’

Scheduling Constraints

Schedule Information Description

Processing Cycle AD-HOC

Scheduling Considerations N/A

Pre-Processing prepost fcstprg pre - disables indexes

Post-Processing prepost fcstprg post - rebuilds indexes

Threading Scheme N/A

Oracle Retail Demand Forecasting Rollup [fcstrbld]

78 Oracle Retail Merchandising System

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

ITEM_FORECAST No No No Yes

DEPT_SALES_FORECAST No No No Yes

CLASS_SALES_FORECAST No No No Yes

SUBCLASS_SALES_FORECAST No No No Yes

I/O Specification
N/A

Oracle Retail Demand Forecasting Rollup [fcstrbld]
Functional Area
Demand Forecasting

Module Affected
FCSTRBLD.PC

Design Overview

This program is designed to roll-up new or updated forecasted unit sales data from the
item_forecast table. This data will be summarized into the subclass, class and department
level sales forecast tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 (weekly)

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing prepost fcstrbld post – truncates the
FORECAST_REBUILD table

Threading Scheme Threaded by domain id

Oracle Retail Demand Forecasting Rollup [fcstrbld]

Batch Designs 79

Restart/Recovery
The logical unit of work is a domain id. The program commits each time the rollups
(dept, class and subclass) for a domain id is successfully processed.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

FORECAST_REBUILD Yes No No Yes

SUBCLASS_SALES_FORECAST Yes Yes No No

ITEM_MASTER Yes No No No

ITEM_FORECAST Yes No No No

STORE Yes No No No

CLASS_SALES_FORECAST Yes Yes No No

DEPT_SALES_FORECAST Yes Yes No No

I/O Specification
N/A

Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]

80 Oracle Retail Merchandising System

Oracle Retail Demand Forecasting Rollup by Department, Class and
Subclass [fcstrbld_sbc]

Functional Area
Demand Forecasting

Module Affected
FCSTRBLD_SBC.PC

Design Overview
The module rolls up the sales forecast data at subclass and class level to class and
department level respectively and inserts the data. The program selects records from the
table SUBCLASS_SALES_FORECAST and writes the records to
CLASS_SALES_FORECAST and selects the data from CLASS_SALES_FORECAST and
writes into DEPT_SALES_FORECAST using the domain ID stored in the table
FORECAST_REBUILD. The record in FORECAST_REBUILD is deleted after the record is
written to the above destination tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle Phase 3 (Weekly)

Scheduling Considerations After completion of FCSTRBLD.PC.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
Restart/recovery is based on the values stored in restart_bookmark from the last commit
prior to failure. The values are for the last domain_id that was not rolled up completely.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Geocode Hierarchy Upload [gcupld]

Batch Designs 81

Key Tables Affected

Table Select Insert Update Delete

FORECAST_REBUILD Yes No No Yes

CLASS_SALES_FORECAST Yes Yes No No

DEPT_SALES_FORECAST No Yes No No

SUBCLASS_SALES_FORECAST Yes No No No

STORE Yes No No No

I/O Specification
N/A

Geocode Hierarchy Upload [gcupld]
Functional Area
Geocode hierarchy

Module Affected
GCUPLD.PC

Design Overview
A geocode identifies a combination of the country, state, county and city in which
locations operate.
GCUPLD.PC (geocode hierarchy upload) provides the ability to upload geocodes from
an outside source into RMS. This batch module lets retailers delete current geocodes and
create new geocodes in the system. A flat file is used to feed the program the additions
and deletions to the geocode tables. Validation determines if duplicate records exist,
dependencies exist, and the flat file is in the correct format. If errors occur in the
validation of the record, it is written out to a reject file to allow further investigation of
the record.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc

Scheduling Considerations Ad Hoc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Geocode Hierarchy Upload [gcupld]

82 Oracle Retail Merchandising System

Restart/Recovery
This is a file based upload and a file based restart/recovery logic. The commit_max_ctr
field should be set to prevent excessive rollback space usage, and to reduce the overhead
of the file I/O. The recommended commit counter setting is 10000 records (subject to
change based on implementation).

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

GEOCODE_TEMP YES YES NO YES

DISTRICT_GEOCODES YES YES NO YES

CITY_GEOCODES YES YES NO YES

COUNTY_GEOCODES YES YES NO YES

STATE_GEOCODES YES YES NO YES

COUNTRY_GEOCODES YES YES NO YES

GEOCODE_STORE YES NO NO NO

GEOCODE_TXCDE YES NO NO NO

I/O Specification

Output File Layout

Record
Name

Field Name Field Type Default
Value

Description

File head
descriptor

Char(5) FHEAD Describes the file line type

Line id Char(10) 0000000001 Sequential file line number

Gentran ID Char(4) ‘GCUP’ Identifies which translation
Gentran uses

FHEAD

Current date Char(14) File date in
YYYYMMDDHH24MISS format

File record
descriptor

Char(5) FDETL Describes file line type

Line id Char(10) Sequential file line number

FDETL

Country
Geocode

Char(4) Country Geocode

Inventory Adjustment Purge [invaprg]

Batch Designs 83

Record
Name

Field Name Field Type Default
Value

Description

State Geocode Char(4) State Geocode

County Geocode Char(4) County Geocode

City Geocode Char(4) City Geocode

District Geocode Char(4) District Geocode

Geocode Level Char(6) Geocode Level Valid values are:
‘CNTRY,’STATE’,’COUNTY’,
‘CITY’, ‘DIST’

Geocode
Description

Char(40) Geocode Description

Add Delete Ind Char(1) Add/delete Indicator
Valid values are: ‘A’, ‘D’

File record
descriptor

Char(5) FTAIL Marks end of file

Line id Char(10) Sequential file line number

FTAIL

Number of lines Number(10) Number of lines in file not
counting FHEAD and FTAIL

Inventory Adjustment Purge [invaprg]
Functional Area
Inventory Adjustment

Module Affected
INVAPRG.PC

Design Overview
The Inventory Adjustment Purge module deletes all obsolete inventory
adjustment records whose adjustment date has elapsed by a pre-determined
number of months. The number of months that inventory adjustment records are
kept before they are purged by this batch is defined in the SYSTEM_OPTIONS
table.

Scheduling Constraints

Schedule Information Description

Processing Cycle AD-HOC (monthly)

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

End Of Year Inventory Position Purge [nwppurge]

84 Oracle Retail Merchandising System

Restart/Recovery
N/A

Locking Strategy
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

UNIT_OPTIONS Yes No No No
PERIOD Yes No No No
INV_ADJ No No No Yes

Shared Modules
N/A

I/O Specification
N/A

End Of Year Inventory Position Purge [nwppurge]
Functional Area
Stock Ledger

Module Affected
NWPPURGE.PC

Design Overview
This program purges the records from the table NWP after a certain amount of years
have passed. The number of years is a configurable parameter setup in
SYSTEM_OPTIONS.nwp_retention_period.

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad-Hoc

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

End Of Year Inventory Position Purge [nwppurge]

Batch Designs 85

Restart/Recovery
Restart/recovery is not applicable, but the records will be committed based on the
commit max counter setup in the restart control table.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

NWP Yes No No Yes

I/O Specification
N/A

End of Year Inventory Position Snapshot [nwpyearend]

86 Oracle Retail Merchandising System

End of Year Inventory Position Snapshot [nwpyearend]
Functional Area
Stock count

Module Affected
NWPYEAREND.PC

Design Overview
This program takes a snapshot of the item’s stock position and cost at the end of the year.
When the end of year NWP snapshot process runs, it takes a snapshot of stock and
weighted average cost (WAC) for every item/location combination currently holding
stock. If there is not a record already on the NWP table for an item/location/year
combination in the snapshot, a new record is added for that item/location/year
combination.

Scheduling Constraints

Schedule Information Description

Processing Cycle Phase 4 (Yearly)

Scheduling Considerations Needs to run on the last day of the year in phase 4.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreaded by store_wh

Restart/Recovery
The logical unit of work for this program is set at the location/item level. Threading is
done by supplier using the v_restart_store_wh view to thread properly.
The commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The changes will be posted when the commit_max_ctr
value is reached and the value of the counter is subject to change based on
implementation.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Sales Audit Get Reference [sagetref]

Batch Designs 87

Key Tables Affected

Table Select Insert Update Delete

NWP_FREEZE_DATE Yes No No No

ITEM_MASTER Yes No No No

NWP Yes Yes Yes No

ITEM_LOC_SOH Yes No No No

I/O Specification
N/A

Sales Audit Get Reference [sagetref]
Design Overview
This program will fetch all reference information needed by saimplog.pc and write this
information out to separate output files. One file will contain a listing of all items in the
system. A second file will contain information about all items that have wastage
associated with them. A third file will contain reference items. A fourth file will contain
primary variant information. A fifth file will contain all variable weight UPC definitions
in the system. A sixth file will contain all of the valid store/day combinations in the
system. A seventh file will contain all code types and codes used in field level validation.
An eighth file will contain all error codes, error descriptions and systems affected by the
error. A ninth file will contain the credit card validation mappings. A tenth file will
contain the store_pos mappings. An eleventh file will contain the tender type mappings.
A twelfth file will contain the merchant code mappings. A thirteenth file will contain the
partner mappings. A fourteenth file will contain the supplier mappings. A fifteenth file
will contain employee mappings. Finally a sixteenth file will contain banner information.
These files will be used by the automated audit to validate information without
repeatedly hitting the database.
Tables Affected:

TABLE INDEX SELECT INSERT UPDATE DELETE

ITEM_MASTER No Yes No No No

ITEM_LOC No Yes No No No

VAR_UPC_EAN No Yes No No No

SA_IMPORT_LOG No Yes No No No

CURRENCIES No Yes No No No

STORE_DAY No Yes No No No

STORE No Yes No No No

SA_STORE_DAY No Yes No No No

CODE_DETAIL No Yes No No No

SA_ERROR_CODES No Yes No No No

Sales Audit Get Reference [sagetref]

88 Oracle Retail Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

SA_CC_VAL No Yes No No No

SA_STORE_POS No Yes No No No

POS_TENDER_TYPE_HEAD No Yes No No No

NON_MERCH_CODE_HEAD No Yes No No No

PARTNER No Yes No No No

SUPS No Yes No No No

SA_STORE_EMP No Yes No No No

BANNER No Yes No No No

CHANNELS No Yes No No No

ADDR No Yes No No No

Stored Procedures / Shared Modules (Maintainability)
N/A

Function Level Description

main()
Standard Oracle Retail main function that calls init(), process(), and final()

init()
This function will initialize the necessary restart recovery variables.
Calls the function retek_init().

Sales Audit Get Reference [sagetref]

Batch Designs 89

process()
This will call process_item_master_info() to retrieve item information from the database
and write it to a item and waste output file. This function will then call
process_ref_item_info() to retrieve reference item information from the database and
write it to the reference item output file. This function will also call
process_prim_variant_info() to retrieve primary variant information from the database
and write it to a primary variant output file. This function will then call
process_var_upc_ean_info() to retrieve all variable weight UPC mappings from the
database and write them to the variable weight UPC output file. This function will then
call process_store_day_info() to retrieve all valid store day combinations from the
database and write them to the store day output file. This function will then call
process_codes_info() to retrieve all codes from the database that are used in file
validation and write them to the codes output file. This function will then call
process_error_info() to retrieve all errors from the database that are used in file
validation and write them to the error output file. This function will then call
process_cc_info() to retrieve all credit card validation mappings from the database and
write them to the credit card validation output file. This function will then call
process_store_pos_info() to retrieve all store/pos mappings from the database and write
them to the store POS output file. This function will then call process_tender_type_info()
to retrieve all tender type mappings from the database and write them to the tender type
output file. This function will then call process_merch_codes_info() to retrieve all
merchant code mappings from the database and write them to the merchant code output
file. This function will then call process_partner_info() to retrieve all partner mappings
from the database and write them to the partner output file. This function will then call
process_supplier_info() to retrieve all supplier mappings from the database and write
them to the supplier output file. This function will then call process_employee_info() to
retrieve all employee mappings from the database and write them to the employee
output file. Finally this function will call process_banner_info() to retrieve banner
information from the database and write them to the banner output file.

process_item_master_info()
This function will query information for all sellable items from the item_master table and
uses this information to populate the item master array. This includes all items (whose
item status = ‘A’ and tran_level = item_level and sellable_ind = ‘Y’). This function also
calls size_item_master_arrays() to allocate memory for the item master array. The
columns that are selected for this process include item, dept, class, subclass, waste_type,
waste_pct, standard_uom, and catch_weight_ind. The information is ordered by item.
All records in the item master array should be written to the item data output file by
calling write_item_data(). Only records in which waste_type or waste_pct are not null
should be written to the waste data file by calling write_waste_data().

size_item_master_arrays()
This function allocates memory for the item master array used in
process_item_master_info.

write_item_data()
This function will write all elements of the item master array to the item data output file.
The file format for the item data file can be found in the I/O section of this document.
The information should be ordered by item.

Sales Audit Get Reference [sagetref]

90 Oracle Retail Merchandising System

write_waste_data()
This function will accept the entire item master array as input, but will only write records
to the waste data file if the waste_type or waste_pct for the item are not null. This
function then checks to make sure that data that came back as NULL is actually blank.
The file format for the waste data file can be found in the I/O section of this document.
The information should be ordered by item.

process_ref_item_info()
This function will query item reference information for all sellable items from the
item_master table and uses this information to populate the ref item array. This includes
all items (whose item status = ‘A’ and item_level – tran_level = 1 and sellable_ind = ‘Y’).
This function also calls size_ref_item_arrays() to allocate memory for the ref item array.
The columns that are selected for this process include item and item_parent. The
information is ordered by item. All records in the ref item array should be written to the
ref item data out put file by calling write_ref_item_data().

size_ref_item_arrays()
This function allocates memory for the ref item array used in process_ref_item_info.

write_ref_item_data()
This function will write all elements of the ref item array. The file format for the ref item
data file can be found in the I/O section of this document. The information should be
ordered by item.

process_prim_variant_info()
This function will query primary variant information for all items from the item loc and
item_master tables and uses this information to populate the primary variant array. This
includes all items (whose item status = ‘A’ and item_level – tran_level = 1 and
primary_variant is NOT NULL). This function also calls size_prim_variant_arrays() to
allocate memory for the primary variant array. The columns that are selected for this
process include loc, item and primary variant. The information is ordered by loc
(alphabetically not numerically) and then by item. All records in the primary variant
array should be written to the primary variant data out put file by calling
write_prim_variant_data().

size_prim_variant_arrays()
This function allocates memory for the primary variant array used in
process_prim_variant_info.

write_prim_variant_data()
This function will write all elements of the prime variant array. The file format for the
primary variant data file can be found in the I/O section of this document. The
information should be ordered by loc (alphabetically not numerically) and then by item.

Sales Audit Get Reference [sagetref]

Batch Designs 91

process_var_upc_ean_info()
This function will query variable weight UPC information from the var_upc_ean and
item_master tables and uses this information to populate the variable weight UPC array.
This includes all distinct var_upc_ean records whose format_id = item_master.format_id
and item status = ‘A’. This function also calls size_var_upc_ean_arrays() to allocate
memory for the variable weight UPC array. The columns that are selected for this
process include format_id, format_desc, prefix_length, begin_item_digit,
begin_var_digit, check_digit, default_prefix and prefix. The information is ordered by
format_id. All records in the variable weight UPC array should be written to the variable
weight UPC output file by calling write_var_upc_info()

size_var_upc_ean_arrays()
This function allocates memory for the variable weight UPC array used in
process_var_upc_ean_info.

write_var_upc_data()
This function will write all elements of the variable weight UPC array. The file format for
the variable weight UPC file can be found in the I/O section of this document. The
information should be ordered format_id.

process_store_day_info()
This function will query all valid store/day combinations from the sa_store_day, store,
sa_import_log and currencies tables and uses this information to populate the store day
array. This includes all stores which sa_import_log.system_code = ‘POS’. This function
also calls size_store_day_arrays() to allocate memory for the store day array. The
columns that are selected for this process include store, business_date, store_day_seq_no,
day, tran_no_generated, decode system_code (code = ‘POS’) and currency_rtl_desc. The
information should be ordered by store (alphabetically not numerically) and business
date. All records in the store day array should be written to the store day output file by
calling write_store_day_data().

size_store_day_arrays()
This function allocates memory for the store day array used in process_store_day_info.

write_store_day_data()
This function will write all elements of the store day array to the store day output file.
The file format for the store day file can be found in the I/O section of this document.
The information should be ordered by store (alphabetically not numerically) and
business date.

process_codes_info()
This function will query codes information from the code_detail table and uses this
information to populate the codes array. This function also calls size_codes_arrays() to
allocate memory for the codes array. The columns selected in this process include code,
code_type, and code_seq. The information should be ordered by code_type and code.
All records in the codes array should be written to the codes output file by calling
write_codes_data().

size_codes_arrays()
This function allocates memory for the codes array used in process_codes_info.

Sales Audit Get Reference [sagetref]

92 Oracle Retail Merchandising System

write_codes_data()
This function will write all elements of the codes array to the codes output file. The file
format for the codes file can be found in the I/O section of this document. This
information should be ordered by code_type and code.

process_error_info()
This function will query error code information from the sa_error_codes table and uses
this information to populate the errors array. This function also calls size_error_arrays()
to allocate memory for the error array. The columns selected in this process include
error_code, error_desc, and rec_solution (recommended solution). The information
should be ordered by error_code. All records in the errors array should be written to the
errors output file by calling write_error_data().

size_error_arrays()
This function allocates memory for the error array used in process_error_info.

write_error_data()
This function will write all elements of the error array to the error output file. The file
format for the error file can be found in the I/O section of this document. This
information should be ordered by error_code.

process_cc_val_info()
This function will query credit card validation information from the sa_cc_val table and
uses this information to populate the credit card validation array. This function also calls
size_cc_val_arrays() to allocate memory for the credit card validation array. The columns
selected in this process include length, from_prefix, to_prefix, tender_type_id, and value
type. The information should be ordered by length (alphabetically not numerically) and
from_prefix. All records in the credit card validation array should be written to the
credit card validation output file by calling write_cc_val_data().

size_cc_val_arrays()
This function allocates memory for the credit card valdiation array used in
process_cc_val_info.

write_cc_val_data()
This function will write all elements of the credit card validation array to the credit card
validation output file. The file format for the credit card validation file can be found in
the I/O section of this document. This information should be ordered by length
(alphabetically not numerically) and from_prefix.

process_store_pos_info()
This function will query store POS information from the sa_store_pos table and uses this
information to populate the store POS array. This function also calls
size_store_pos_arrays() to allocate memory for the store POS array. The columns
selected in this process include store, pos_type, start_tran_no, and end_tran_no. The
information should be ordered by store (alphabetically not numerically) and pos_type.
All records in the store POS array should be written to the store POS output file by
calling write_store_pos_data().

Sales Audit Get Reference [sagetref]

Batch Designs 93

size_store_pos_arrays()
This function allocates memory for the store POS array used in process_store_pos_info.

write_store_pos_data()
This function will write all elements of the store POS array to the store POS output file.
The file format for the store POS file can be found in the I/O section of this document.
This information should be ordered by store (alphabetically not numerically) and
pos_type.

process_tender_type_info()
This function will query tender type information from the pos_tender_type_head table
and uses this information to populate the tender type array. This function also calls
size_tender_type_arrays() to allocate memory for the tender type array. The columns
selected in this process include tender_type_group, tender_type_id, and
tender_type_desc. The information should be ordered by tender_type_group and
tender_type_id (alphabetically not numerically). All records in the tender array should
be written to the tender type output file by calling write_tender_type_data().

size_tender_type_arrays()
This function allocates memory for the tender type array used in process_tender
type_info.

write_tender_type_data()
This function will write all elements of the tender type array to the tender type output
file. The file format for the tender type file can be found in the I/O section of this
document. This information should be ordered by tender_type_group and
tender_type_id (alphabetically not numerically).

process_merch_codes_info()
This function will query merch code information from the non_merch_code_head table
and uses this information to populate the merch codes array. This function also calls
size_merch_codes_arrays() to allocate memory for the merch codes array. The columns
selected in this process include non_merch_code. The information should be ordered by
non_merch_code. All records in the merch codes array should be written to the
merchant codes output file by calling write_merch_codes_data().

size_merch_codes_arrays()
This function allocates memory for the merch codes array used in
process_merch_codes_info.

write_merch_codes_data()
This function will write all elements of the merch codes array to the merchant codes
output file. The file format for the merchant codes file can be found in the I/O section of
this document. This information should be ordered by non_merch_code.

Sales Audit Get Reference [sagetref]

94 Oracle Retail Merchandising System

process_partner_info()
This function will query partner information from the partner table and uses this
information to populate the partner array. This function also calls size_partner_arrays()
to allocate memory for the partner array. The columns selected in this process include
partner_type, and partner_id. The information should be ordered by partner_id. All
records in the partner array should be written to the partner output file by calling
write_partner_data().

size_partner_arrays()
This function allocates memory for the partner array used in process_partner_info.

write_partner_data()
This function will write all elements of the partner array to the partner output file. The
file format for the partner file can be found in the I/O section of this document. This
information should be ordered by partner_id.

process_supplier_info()
This function will query supplier information from the sups table and uses this
information to populate the supplier array. This function also calls
size_supplier_arrays() to allocate memory for the supplier array. The columns selected
in this process include supplier, and sups_status. The information should be ordered by
supplier (alphabetically not numerically). All records in the supplier array should be
written to the supplier output file by calling write_supplier_data().

size_supplier_arrays()
This function allocates memory for the supplier array used in process_supplier_info.

write_supplier_data()
This function will write all elements of the supplier array to the supplier output file. The
file format for the supplier file can be found in the I/O section of this document. This
information should be ordered by supplier (alphabetically not numerically).

process_employee_info()
This function will query employee information from the sa_store_emp table and uses this
information to populate the employee array. This includes all stores where pos_id is
NOT NULL. This function also calls size_employee_arrays() to allocate memory for the
employee array. The columns selected in this process include store, pos_id, and emp_id.
The information should be ordered by store (alphabetically not numerically) and pos_id.
All records in the employee array should be written to the employee output file by
calling write_employee_data().

size_employee_arrays()
This function allocates memory for the employee array used in process_employee_info.

write_employee_data()
This function will write all elements of the employee array to the employee output file.
The file format for the employee file can be found in the I/O section of this document.
This information should be ordered by store (alphabetically not numerically) and pos_id.

Sales Audit Get Reference [sagetref]

Batch Designs 95

process_banner_info()
This function will query banner information from the store, banner and channels tables
and uses this information to populate the banner array. This function also calls
size_banner_arrays() to allocate memory for the banner array. The columns selected in
this process include store, and banner_id. The information should be ordered by store
(alphabetically not numerically). All records in the banner array will be written to the
banner output file by calling write_banner_data().

size_banner_arrays()
This function allocates memory for the banner array used in process_banner_info.

write_banner_data()
This function will write all elements of the banner array to the banner output file. The
file format for the banner file can be found in the I/O section of this document. This
information should be ordered by store (alphabetically not numerically).

final()
This function will terminate restart-recovery. It also calls retek_refresh_thread() to refresh
the current thread.

Input Specifications
N/A

Output Specifications
As all files produced by this program are used only internally, they consist of only detail
records.
Char field types are left justified and blank padded.
Number field types are right justified and zero padded.

Record Name Field Name Field Type Default
Value

Description

Item Data Item char(25) Unique item identifier

 Dept char(4) Department identifier

 Class char(4) Class identifier

 Subclass char(4) Subclass identifier

 Standard_uom char(4) Standard UOM

 Catch_weight_ind char(1) Catch weight indicator

Waste Data Item char(25) Unique item identifier

 Waste_type char(6) Waste type identifier

 Waste_pct number(16) Waste percent

Ref Item Data Item_parent char(25) Item Parent

 Item char(25) Unique item identifier

Sales Audit Get Reference [sagetref]

96 Oracle Retail Merchandising System

Record Name Field Name Field Type Default
Value

Description

Primary Variant
Data

Item_loc number(10) Item location

 Item char(25) Unique item identifier

 Primary_variant char(25) Primary variant

Variable UPC
Data

Format_id char(1) Format identifier

 Format_desc char(20) Format description

 Prefix_length number(1) Prefix length

 Begin_item_digit number(2) Determines the first digit of the item
number.

 Begin_var_digit number(2) Determines the first digit of the
variable weight/price.

 Check_digit number(2) Position of the check digit.

 Prefix number(2) Item master prefix

Store Day Data Store number(10) Store number

 Business_date char(8) Business date – format:
YYYYMMDD

 Store_day_seq_no number(20) Unique store/day identifier

 Day number(3) Day

 Tran_no_generate
d

char(6) If NULL then blank

 System_code char(6) System code

 Currency_rtl_dec number(1) Currency retail decimal places

Code Data Code_type char(4) Unique code type identifier

 Code char(6) Unique code identifier

 Code_seq number(4) Unique code sequence identifier

Error Data Error_code char(25) Error identifier

 Error_desc char(255) Error description

 Rec_solution char(255) Recommended solution (If NULL
then ‘there is no solution’)

Credit Card
Validation Data

Length number(2) Card number length

 From_prefix number(6) Start value for range of valid
prefixes.

Sales Audit Get Reference [sagetref]

Batch Designs 97

Record Name Field Name Field Type Default
Value

Description

 To_prefix number(6) End value for range of valid
prefixes.

 Tender_type_id number(6) Credit card ID

 Val_type char(6) Validation type. If NULL, than use
“NONE”.

Store POS Data Store number(10) Store identifier

 Pos_type char(6) POS type identifier

 Start_tran_no number(10) First transaction number produced.
Right justified and zero padded.

 End_tran_no number(10) Last transaction number produced.
Right justified and zero padded.

Tender Type Data Tender_type_grou
p

char(6) Tender type group

 Tender_type_id number(6) Tender type identifier. Right
justified and zero padded.

 Tender_type_desc char(40) Tender type description.

Merchant Code
Data

Non_merch_code char(6) Code identifying a non-merchandise
cost that can be added to an invoice.

Partner Data Partner_type char(6) Specifies the type of partner. Valid
values are Bank 'BK', Agent 'AG',
Freight Forwarder 'FF', Importer
'IM', Broker 'BR', Factory 'FA',
Applicant 'AP', Consolidator 'CO',
and Consignee 'CN', Supplier
hierarchy level 1 'S1', Supplier
hierarchy level 2 'S2', Supplier
hierarchy level 3 'S3'.

 Partner_id char(10) Partner vendor number.

Supplier Data Supplier number(10) Supplier vendor number.

 Sup_status char(1) Determines whether the supplier is
currently active. Valid values
include: 'A' for an active supplier or
'I' for an inactive supplier.

Employee Data Store number(10) Store number.

 Pos_id char(10) The POS ID of the employee.

 Emp_id char(10) The employee ID of the employee.

Sales Audit Get Reference [sagetref]

98 Oracle Retail Merchandising System

Record Name Field Name Field Type Default
Value

Description

Banner Data Store number(10) Store number

 Banner_id number(4) Banner identifier

Scheduling Considerations
 Processing Cycle: Anytime – Sales Audit is a 24/7 system.
 Scheduling Diagram: This module should be executed in the earliest phase, before

the first import of RTLOGs into ReSA.
 Pre-Processing: sastdycr.pc
 Post-Processing: saimptlog.pc
 Threading Scheme: N/A

Restart Recovery
Restart recovery does not apply in the typical sense because sagetref writes to output
files and will not need to have restart capabilities, however restart is used for
bookmarking purposes.

	Introduction
	Overview

	Modifications to RMS – Oracle Retail Predictive Application Server (RPAS) Interface
	Versions
	RETL Program Overview for the RMS-Time-Phased Inventory Planning Tool Interface
	Installation

	Configuration
	RETL
	RETL user and permissions
	Environment Variables
	rmse_aip_config.env Settings for IP

	Program Return Code
	Program Status Control Files
	File Naming Conventions
	Restart and Recovery

	Message Logging
	Daily Log File
	Format

	RMSE and Transformation Reject Files
	Schema Files Overview
	Command Line Parameters
	RMSE and Transformation
	Scripts that need Parameter to Run

	Typical Run and Debugging Situations
	Program Flow Diagrams
	RMS Pre/Post Extract Diagrams
	RMS Foundation Data Extract Diagrams
	Naming Conventions

	RETL Programs that Extract from RMS
	rmse_aip_alloc_in_well (RMS Extract of Allocations in the Well Quantities to a Time-Phased Inventory Planning Tool)
	rmse_aip_banded_item (RMS Extract of Banded Item Information to a Time-Phased Inventory Planning Tool)
	rmse_aip_cl_po (RMS Extract of Cancelled or Closed IP POs and Transfers to a Time-Phased Inventory Planning Tool)
	rmse_aip_future_delivery_alloc (RMS Extract of Allocation Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)
	rmse_aip_future_delivery_order (RMS Extract of Purchase Order Quantities for Future Delivery to a Time-Phased Inventory Planning Tool)
	rmse_aip_future_delivery_tsf (RMS Extract of On-order and In-transit Transfer Quanties for Future Delivery to a Time-Phased Inventory Planning Tool)
	rmse_aip_item_loc_traits (RMS Extract of Item Location Traits to a Time-Phased Inventory Planning Tool)
	rmse_aip_item_master (RMS Extract of Items to a Time-Phased Inventory Planning Tool)
	rmse_aip_item_retail (RMS Extract of Item Retail to a Time-Phased Inventory Planning Tool)
	rmse_aip_item_sale (RMS Extract of On/Off Sale to a Time-Phased Inventory Planning Tool)
	rmse_aip_item_supp_country (RMS Extract of Item Supplier Country to a Time-Phased Inventory Planning Tool)
	rmse_aip_merchhier (RMS Extract of Merchandise Hierarchy to a Time-Phased Inventory Planning Tool)
	rmse_aip_orghier (RMS Extract of Organization Hierarchy to a Time-Phased Inventory Planning Tool)
	rmse_aip_rec_qty (RMS Extract of Received PO and Transfer Quantities to a Time-Phased Inventory Planning Tool)
	rmse_aip_store (RMS Extract of Stores to a Time-Phased Inventory Planning Tool)
	rmse_aip_store_cur_inventory (RMS Extract of Store Current Inventory data to a Time-Phased Inventory Planning Tool)
	rmse_aip_substitute_items (RMS Extract of Substitute Items to a Time-Phased Inventory Planning Tool)
	rmse_aip_suppliers (RMS Extract of Supplier to a Time-Phased Inventory Planning Tool)
	rmse_aip_tsf_in_well (RMS Extract of Transfers in the Well Quantities to a Time-Phased Inventory Planning Tool)
	rmse_aip_wh (RMS Extract of Warehouse to a Time-Phased Inventory Planning Tool)
	rmse_aip_wh_cur_inventory (RMS Extract of Warehouse Current Inventory data to a Time-Phased Inventory Planning Tool)

	Subscription Designs
	PO Subscription API
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message DTD
	Design Assumptions
	Tables

	Transfer Subscription
	Functional Area
	Design Overview
	Consume Module
	Business Validation Module
	Bulk or Single DML Module
	Message DTD
	Design Assumptions
	Tables

	Batch Designs
	Distro Price Change Publish [distropcpub]
	EDI Location Address to Vendor Download [edidladd]
	EDI Supplier Address Upload [ediupadd]
	Oracle Retail Demand Forecasting Purge [fcstprg]
	Oracle Retail Demand Forecasting Rollup [fcstrbld]
	Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]
	Geocode Hierarchy Upload [gcupld]
	Inventory Adjustment Purge [invaprg]
	End Of Year Inventory Position Purge [nwppurge]
	End of Year Inventory Position Snapshot [nwpyearend]
	Sales Audit Get Reference [sagetref]

