

Oracle® Retail Merchandising System

Operations Guide Addendum
Release 11.0.11

May 2007

Oracle® Retail Merchandising System Operations Guide Addendum, Release 11.0.11

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Contents
Preface ... v

Audience ... v
Related Documents.. v
Customer Support.. v
Conventions... vi

1 Introduction .. 1
Overview..1

2 Batch Designs.. 3
Distro Price Change Publish [distropcpub]...3
EDI location address to vendor download [edidladd] ..5
New and Changed Supplier Address Upload [ediupadd] ...9
Oracle Retail Demand Forecasting Purge [fcstprg]..12
Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass
[fcstrbld_sbc]..13
Oracle Retail Demand Forecasting Rollup [fcstrbld] ...14
Geocode Hierarchy Upload [gcupld] ...15
Inventory Adjustment Purge [invaprg] ...18
Price History Data Purge [prchstprg.pc] ...19
Pre/Post Functionality for Multi-Threadable Programs [prepost]20
Reclassification of Item [reclsdy] ...33

v

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture

Audience
Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting RMS functionality will find valuable information
in this guide. There are three audiences in general for whom this guide is written:
 Business analysts looking for information about processes and interfaces to validate

the support for business scenarios within RMS and other systems across the
enterprise.

 System analysts and system operations personnel:
 Who are looking for information about RMS processes internally or in relation to

the systems across the enterprise.
 Who operate RMS regularly.

 Integrators and implementation staff with overall responsibility for implementing
RMS.

Related Documents
For more information, see the following documents in the Oracle Retail Merchandising
System Release 11.0.11 documentation set:
 Oracle Retail Merchandising System Installation Guide
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Data Model
 Oracle Retail Merchandising System Batch Schedule

Customer Support
 https://metalink.oracle.com

When contacting Customer Support, please provide:
 Product version and program/module name.
 Functional and technical description of the problem (include business impact).
 Detailed step-by-step instructions to recreate.
 Exact error message received.
 Screen shots of each step you take.

https://metalink.oracle.com/

vi

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

Introduction 1

1
Introduction

Overview
The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 11.0 Operations Guide and any subsequent RMS 11.0.x Operations
Guide Addendums. (The RMS 11.0 Operations Guide is the most recent release of the full
Operations Guide for the 11.0 release of RMS.) Using this document in conjunction with
the Oracle Retail Merchandising System 11.0 Operations Guide provides retailers with a
complete overview of the application.
For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail
Merchandising System 11.0.11 Release Notes.

Batch Designs 3

2
Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 11.0 Operations Guide or any subsequent RMS 11.0.x Operation Guide
Addendums.
Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Distro Price Change Publish [distropcpub]
Functional Area
Pricing/Transfers/Allocations

Module Affected
DISTROPCPUB.PC

Design Overview
The DISTROPCPUB.PC program will get price change information for any allocations
and transfers and write the information to the corresponding queue table. This program
will ensure that Oracle Retail Warehouse Management will have access to any
item/location unit retail information that is changed after an allocation or transfer has
been published.
This program will loop through the PRICE_HIST table, selecting records whose unit
retail will change for vdate+1, and transaction type is in 4 (single unit retail was changed)
or 11(single unit retail and multi-unit retail were changed). It will then search for
allocations and transfers with matching item/locations. When a match is found,
depending on the distro type, the program calls allocation or transfer publishing logic to
insert the data into the allocation or transfer queue table, so that the RIB can publish the
change to the warehouse system.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 – Daily

Scheduling Considerations This program should run after RPM price event
execution batch process.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreading based on store.

Distro Price Change Publish [distropcpub]

4 Oracle Retail Merchandising System

Restart/Recovery
The logical unit of work is store. The driving cursor retrieves all item/locations that have
price changes in effect from the next day. It also gets all of the component items of the
non-sellable packs that have price changes.

Locking Strategy
N/A

Security Considerations
 N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

PRICE_HIST Yes No No No

V_RESTART_STORE Yes No No No

V_PACKSKU_QTY Yes No No No

ITEM_MASTER Yes No No No

ALLOC_HEADER Yes No No No

ALLOC_DETAIL Yes No No No

TSFHEAD Yes No No No

TSFDETAIL Yes No No No

ORDHEAD_REV Yes No No No

ORDHEAD Yes No No No

ALLOC_MFQUEUE No Yes No No

TSF_MFQUEUE No Yes No No

Shared Modules
N/A

I/O Specification
N/A

EDI Location Address to Vendor Download [edidladd]

Batch Designs 5

EDI Location Address to Vendor Download [edidladd]
Design Overview
The purpose of this module is to download addresses of stores and warehouses to
vendors. The address fields in the tables store and wh were removed and were
referenced instead to the table addr.
The output file format will be a standard Retek file format that will be translated into EDI
format by the Gentran translator. Addresses will be downloaded in two different
scenarios. The program will download changes made to store or warehouse addresses
into a flat file. Further, if a system_options table flag (addr_catalog) is set to true (Y),
then the addresses of all stores and warehouses will be downloaded into a different file
to be sent to suppliers. This program will run nightly.
When a store or warehouse address is changed a flag will be set to true to indicate that
that location should have its address changes submitted to suppliers. When the changes
occur on the location forms (store.fmb or wh.fmb form), the addr_change field is set to
true (Y) on the location tables (store or wh). After each changed location address is
processed by the EDIDL838.pc program its addr_change flag is reset to N.
The addr_catalog flag for sending address catalogs is set on the sys_ctrl.fmb form. When
this is set a catalog listing of all store and warehouse addresses are sent to suppliers, then
the addr_catalog field on system_options will be reset to N.

Tables Affected:

TABLE INDEX SELECT INSERT UPDATE DELETE

ADDR No Yes No Yes No

ADD_TYPE No Yes No No No

ADD_TYPE_MODULE No Yes No No No

PERIOD No Yes No No No

STORE No Yes No No No

SYSTEM_OPTIONS No Yes No Yes No

WH No Yes No No No

Stored Procedures / Shared Modules (Maintainability)
None.

Program Flow
N/A

EDI Location Address to Vendor Download [edidladd]

6 Oracle Retail Merchandising System

Function Level Description
Init()
Get system variables: current date and catalog indicator flag. Open output files: for
location address changes, address change rejects, canonical catalog listing, and catalog
listing rejects. (only open catalog and catalog reject files if a catalog is to be written). Call
restart_init. Set up format strings for ouput records.
Process()
For each record fetched from the driving cursor, call a function to process location
address changes, and if the catalog indicator flag is set to true to write catalog listing of
all locations.
Write FTAIL record to file.
The column addr_catalog in table system_options is then updated to ‘N’ if its previous
value was ‘Y’.
Write_records_loc()
This function should write out the address change record to the output file and update
the flag on the location table.
Write_records_cat()
This function writes address change records to the catalog file.
Final()
Call restart/recovery close.

I/O Specification
Output file format (all characters should be right-padded with blanks and left justified;
all numbers should be left-padded with zeroes and right justified)

Record Name Field Name Field Type Default
Value

Description

File header File type
record
descriptor

Char(5) FHEAD Identifies file record type

 File line sequence Number(10) Start at 1 and
increment

Line number of file

 File type
definition

Char(5) DLADD Identifies file source

 Purpose code Char(2) 04 (change)
or
05 (replace)

Add/change location or
replace whole list

Transaction
Detail

File type record
descriptor

Char(5) TDETL Identifies file record type

 File line sequence Number(10) Increment Line number of file

 Transaction
number

Number(10) Start at
1,increment

Identifies transaction

EDI Location Address to Vendor Download [edidladd]

Batch Designs 7

Record Name Field Name Field Type Default
Value

Description

 Date Char(8) Period.vdate
YYYYMMDD

 Store or
warehouse

Char(2) SN (store) or
WH
(warehouse)

Location type

 Location Number(10) Store.store or wh.wh

 Location name Char(20) Store..store_name or
wh.wh_name

 Address line 1 Char(30) Store.store_add1/wh.wh_
add1

 Address line 2 Char(30) Store_add2 or wh_add2

 City Char(20) Store.store_city/wh.wh_c
ity

 State Char(3) Store.state/wh.state

 Postal code Char(10) Store_pcode/wh_pcode

 Country Char(3) Store/wh.country_id

 Address Type
Description

Char(40) atp.type_desc

File trailer

File type record
descriptor

Char(5) FTAIL Identifies file record type

 Total number
lines

Number(10) Total lines in file

 Total no. TDETL
lines

Number(10) (total lines – 2)

EDI Location Address to Vendor Download [edidladd]

8 Oracle Retail Merchandising System

Restart Recovery
Because of the lack of volume and the flexibility requirements of EDI, the program will
use Oracle Retail’s standard restart/recovery only minimally. The driving query volume
is limited to the volume of the store and warehouse tables. Further, the output files that
are created are created if they don’t exist and are overwritten if they already exist. In the
event of a fatal error it is, therefore, reasonable to expect clients to simply restart the job
from the beginning without recovery.
Driving cursor:

 SELECT :ps_str_type,
 s.store,
 s.store_name,
 a.add_1,
 a.add_2,
 a.city,
 a.state,
 a.post,
 a.country_id,
 a.edi_addr_chg,
 atp.type_desc,
 ROWIDTOCHAR(a.rowid)
 FROM store s,
 addr a,
 add_type_module atm,
 add_type atp
 WHERE a.addr_type = atm.address_type
 AND a.module = atm.module
 AND atm.address_type = atp.address_type
 AND a.key_value_1 = to_char(s.store)
 AND a.edi_addr_chg = DECODE(:pi_do_all,1,a.edi_addr_chg,'Y')
 AND a.primary_addr_ind = 'Y'
 AND a.module = 'ST'
 UNION ALL
 SELECT :ps_wh_type,
 w.wh,
 w.wh_name,
 a.add_1,
 a.add_2,
 a.city,
 a.state,
 a.post,
 a.country_id,
 a.edi_addr_chg,
 atp.type_desc,
 ROWIDTOCHAR(a.rowid)
 FROM wh w,
 addr a,
 add_type_module atm,
 add_type atp
 WHERE a.addr_type = atm.address_type
 AND a.module = atm.module
 AND atm.address_type = atp.address_type
 AND a.key_value_1 = to_char(w.wh)
 AND a.edi_addr_chg = DECODE(:pi_do_all,1,a.edi_addr_chg,'Y')
 AND a.primary_addr_ind = 'Y'
 AND a.module = 'WH';

New and Changed Supplier Address Upload [ediupadd]

Batch Designs 9

This selects all location information if the catalog is to be processed but only information
from locations where the addr_chg indicator is set to Y if the catalog shouldn’t be
processed. Pi_do_all will be an integer variable that should be initialized as zero and set
to 1 just before calling process_catalog.

Scheduling Constraints
Processing Cycle: PHASE 4 (DAILY)
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

New and Changed Supplier Address Upload [ediupadd]
Design Overview
The ediupadd.pc batch program will read vendor/supplier sent EDI 838 Profile Data
Files. These files will be processed by vendor/supplier and used to update Oracle Retail
supplier address information.
Five different types of supplier addresses can be changed via this EDI interface: business,
postal, returned to, pick up and payment mailing address. This program always
assumes that address information is primary for the address type.
If there is an error with a transaction set, write that transaction to the reject file so it can
be fixed and reprocessed later, then the program will continue to the next transaction set.
See EDI856 for an example.

TABLE INDEX SELECT INSERT UPDATE DELETE

STATE No Yes No No No

SUPPLIER No Yes No No No

SUPS_ADD No No Yes Yes No

Scheduling Constraints
Processing Cycle: Ad Hoc
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A (file based processing—single thread only)

Restart Recovery
Oracle Retail restart/recovery capability is minimal. The program uses non-fatal error
handling to process input files. There is not enough volume to warrant the use of restart
recovery. A commit will not occur until the end of file processing and therefore if fatal
errors are encountered updates will not have been committed and the program can be
restarted without recovery.

Program Flow
N/A

New and Changed Supplier Address Upload [ediupadd]

10 Oracle Retail Merchandising System

Shared Modules
N/A

Function Level Description
Init()
Open input & output files. Validate file header line. Call Retek API restart_init to
initializse restart/recovery process.
Process()
Loop through each line of input file. Call validate_FDETL to validate and format
variables.. Write to reject file if variables are not valid. Call update_supplier to update the
database with the new addresses.
Update_supplier()
Update sups_add table with new, modified address information. This program
presumes that address modification information is regarding a “primary” address. If the
action specified is “add”, then any existing primary address of that type will be changed
so that it is no longer primary, and the new address will be inserted as a primary address
of the specified type into the supplier address table. If the action is “update”, then the
existing primary address of the specified type will be modified to the new passed
information (if one does not exist for that type, it will be inserted).
validate_FDETL—validate supplier and address information

I/O Specification
Input file:
FHEAD File type identification
FDETL Supplier address info
FTAIL End of file marker

Record
Name

Field Name Field Type Default
Value

Description

FHEAD File record
descriptor

Char(5) FHEAD Describes file line type

 Line number Number(10) Sequential file line number

 Gentran_id Char(5) Identifies the file type

 File create
date

Char(14) YYYYMMDDHH24MISS
format

FDETL File record
descriptor

Char(5) FDETL Describes file line type

 Line number Number(10) Sequential file line number

 Transaction
number

Number(10) Sequential transaction
number

 Add or
Update

Char(1) ‘A’dd or ‘U’pdate address

New and Changed Supplier Address Upload [ediupadd]

Batch Designs 11

Record
Name

Field Name Field Type Default
Value

Description

 Address type Char(2) Will be translated into
sups_add.address_type:
01 – Business
02 – Postal
03 – returns
04 – Pick Up (Order)
05 – Payment

 Supplier Varchar(10) Sups.supplier

 Address line 1 Char(30) Sups_add.address_1

 Address line 2 Char(30) Sups_add.address_2

 Address line 3 Char(30) Sups_add.address_3

 Contact name Char(20) Sups_add.contact_name

 Contact Phone Char(20) Sups_add.contact_phone

 Contact fax Char(20) Sups_add.contact_fax

 City Char(20) Sups_add.city

 State Char(3) Sups_add.state

 Postal code Char(10) Sups_add.post_code

 Country Char(3) Sups_add.country_id

FTAIL File record
descriptor

Char(5) Describes file record type

 Line number Number(10) Sequential file line number
(total # lines in file)

 Number of
transactions

Number(10) Number of transactions in
file

Technical Issues
N/A

Oracle Retail Demand Forecasting Purge [fcstprg]

12 Oracle Retail Merchandising System

Oracle Retail Demand Forecasting Purge [fcstprg]
Functional Area
Demand Forecasting

Module Affected
FCSTPRG.PC

Design Overview
This program deletes data from forecast information tables. Data deletion is performed
by partition truncation, table truncation or deletion by domain. The method of deletion
is dependent on whether or not the table is partitioned. This program serves to delete
data by domains so that they can re-loaded with new forecast information from RDF.
This program must be run as either the RMS schema owner, or be run by a user that has
been granted the following system privileges:
‘drop any table’
‘alter any table’

Scheduling Constraints

Schedule Information Description

Processing Cycle AD-HOC

Scheduling Considerations N/A

Pre-Processing prepost fcstprg pre - disables indexes

Post-Processing prepost fcstprg post - rebuilds indexes

Threading Scheme N/A

Restart/Recovery
N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]

Batch Designs 13

Key Tables Affected

Table Select Insert Update Delete

ITEM_FORECAST No No No Yes

DEPT_SALES_FORECAST No No No Yes

CLASS_SALES_FORECAST No No No Yes

SUBCLASS_SALES_FORECAST No No No Yes

I/O Specification
N/A

Oracle Retail Demand Forecasting Rollup by Department, Class and
Subclass [fcstrbld_sbc]

Functional Area
Demand Forecasting

Module Affected
FCSTRBLD_SBC.PC

Design Overview
The module rolls up the sales forecast data at subclass and class level to class and
department level respectively and inserts the data. The program selects records from the
table SUBCLASS_SALES_FORECAST and writes the records to
CLASS_SALES_FORECAST and selects the data from CLASS_SALES_FORECAST and
writes into DEPT_SALES_FORECAST using the domain ID stored in the table
FORECAST_REBUILD. The record in FORECAST_REBUILD is deleted after the record is
written to the above destination tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle Phase 3 (Weekly)

Scheduling Considerations After completion of FCSTRBLD.PC.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
Restart/recovery is based on the values stored in restart_bookmark from the last commit
prior to failure. The values are for the last domain_id that was not rolled up completely.

Locking Strategy
N/A

Oracle Retail Demand Forecasting Rollup [fcstrbld]

14 Oracle Retail Merchandising System

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

FORECAST_REBUILD Yes No No Yes

CLASS_SALES_FORECAST Yes Yes No No

DEPT_SALES_FORECAST No Yes No No

SUBCLASS_SALES_FORECAST Yes No No No

STORE Yes No No No

I/O Specification
N/A

Oracle Retail Demand Forecasting Rollup [fcstrbld]
Functional Area
Demand Forecasting

Module Affected
FCSTRBLD.PC

Design Overview
This program is designed to roll-up new or updated forecasted unit sales data from the
item_forecast table. This data will be summarized into the subclass, class and
department level sales forecast tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 (weekly)

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing prepost fcstrbld post – truncates the
FORECAST_REBUILD table

Threading Scheme Threaded by domain id

Restart/Recovery
The logical unit of work is a domain id. The program commits each time the rollups
(dept, class and subclass) for a domain id is successfully processed.

Geocode Hierarchy Upload [gcupld]

Batch Designs 15

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

FORECAST_REBUILD Yes No No Yes

SUBCLASS_SALES_FORECAST Yes Yes No No

ITEM_MASTER Yes No No No

ITEM_FORECAST Yes No No No

STORE Yes No No No

CLASS_SALES_FORECAST Yes Yes No No

DEPT_SALES_FORECAST Yes Yes No No

I/O Specification
N/A

Geocode Hierarchy Upload [gcupld]
Functional Area
Geocode hierarchy

Module Affected
GCUPLD.PC

Design Overview
A geocode identifies a combination of the country, state, county and city in which
locations operate.
GCUPLD.PC (geocode hierarchy upload) provides the ability to upload geocodes from
an outside source into RMS. This batch module lets retailers delete current geocodes and
create new geocodes in the system. A flat file is used to feed the program the additions
and deletions to the geocode tables. Validation determines if duplicate records exist,
dependencies exist, and the flat file is in the correct format. If errors occur in the
validation of the record, it is written out to a reject file to allow further investigation of
the record.

Geocode Hierarchy Upload [gcupld]

16 Oracle Retail Merchandising System

Scheduling Constraints

Schedule Information Description

Processing Cycle Ad Hoc

Scheduling Considerations Ad Hoc

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
This is a file based upload and a file based restart/recovery logic. The commit_max_ctr
field should be set to prevent excessive rollback space usage, and to reduce the overhead
of the file I/O. The recommended commit counter setting is 10000 records (subject to
change based on implementation).

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

GEOCODE_TEMP YES YES NO YES

DISTRICT_GEOCODES YES YES NO YES

CITY_GEOCODES YES YES NO YES

COUNTY_GEOCODES YES YES NO YES

STATE_GEOCODES YES YES NO YES

COUNTRY_GEOCODES YES YES NO YES

GEOCODE_STORE YES NO NO NO

GEOCODE_TXCDE YES NO NO NO

Batch Designs 17

I/O Specification

Output File Layout

Record
Name

Field Name Field Type Default
Value

Description

File head
descriptor

Char(5) FHEAD Describes the file line type

Line id Char(10) 0000000001 Sequential file line number

Gentran ID Char(4) ‘GCUP’ Identifies which translation
Gentran uses

FHEAD

Current date Char(14) File date in
YYYYMMDDHH24MISS format

File record
descriptor

Char(5) FDETL Describes file line type

Line id Char(10) Sequential file line number

Country
Geocode

Char(4) Country Geocode

State Geocode Char(4) State Geocode

County Geocode Char(4) County Geocode

City Geocode Char(4) City Geocode

District Geocode Char(4) District Geocode

Geocode Level Char(6) Geocode Level Valid values are:
‘CNTRY,’STATE’,’COUNTY’,
‘CITY’, ‘DIST’

Geocode
Description

Char(40) Geocode Description

FDETL

Add Delete Ind Char(1) Add/delete Indicator
Valid values are: ‘A’, ‘D’

File record
descriptor

Char(5) FTAIL Marks end of file

Line id Char(10) Sequential file line number

FTAIL

Number of lines Number(10) Number of lines in file not
counting FHEAD and FTAIL

Inventory Adjustment Purge [invaprg]

18 Oracle Retail Merchandising System

Inventory Adjustment Purge [invaprg]
Functional Area
Inventory Adjustment

Module Affected
INVAPRG.PC

Design Overview
The Inventory Adjustment Purge module deletes all obsolete inventory adjustment
records whose adjustment date has elapsed by a pre-determined number of months. The
number of months that inventory adjustment records are kept before they are purged by
this batch is defined in the SYSTEM_OPTIONS table.

Scheduling Constraints

Schedule Information Description

Processing Cycle AD-HOC (monthly)

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery
N/A

Locking Strategy
N/A

Performance Considerations
N/A

Key Tables Affected

Table Select Insert Update Delete

UNIT_OPTIONS Yes No No No
PERIOD Yes No No No
INV_ADJ No No No Yes

Shared Modules
N/A

I/O Specification
N/A

Price History Data Purge [prchstprg.pc]

Batch Designs 19

Price History Data Purge [prchstprg.pc]
Functional Area
Pricing

Module Affected
PRCHSTPRG.PC

Design Overview
The PRCHSTPRG program deletes price_hist records, which are older than a number of
retention days specified in a new column added to system_options table as
system_options.price_hist_retention_days. This program keeps the latest record for the
combination of item, location and tran type and deletes the rest of the records, which fall
in the specified period of retention days.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE AD-HOC (daily)

Scheduling Considerations This program is run prior to phase 3 to improve
select operations.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi threaded. Threaded by table partition

Restart/Recovery
This program will use the commit_max_ctr on the restart_control table to
periodically commit SQL delete operations. Restart/Recovery is achieved by
processing records that have not been deleted. Table restart_bookmark stores the
ps_cur_restart_partition_position for partition position as bookmark_string to restart a
thread.
However, in cases where the price_hist table is very large, a particularly large rollback
segment may be specified to reduce the risk of exceeding rollback segment space. This
will depend on the size of normal rollback segments and the size of the price_hist table.

Locking Strategy
N/A

Security Considerations
N/A.

Performance Considerations
The commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The recommended commit counter setting is 10000
records (subject to change based on experimentation). In case price_hist table is very
large then the number of partitions on the table may be increased and then after the
number of threads for this program should be increased.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

20 Oracle Retail Merchandising System

Key Tables Affected

Table Select Insert Update Delete

PERIOD Yes No No No

SYSTEM_OPTIONS Yes No No No

PRICE_HIST No No No Yes

DBA_TAB_PARTITIONS Yes No No No

I/O Specification

Output File Layout
N/A

Pre/Post Functionality for Multi-Threadable Programs [prepost]
Design Overview
The Pre/Post module facilitates multi-threading by allowing general system
administration functions (such as table deletions or mass updates) to be completed after
all threads of a particular program have been processed. A brief description of all pre- or
post-processing functions included in this program can be found in the Function-Level
Description section.
This program will take three parameters: username/password to log on to Oracle, a
program before or after which this script must run and an indicator telling whether the
script is a pre or post function. It will act as a shell script for running all pre-program
and post-program updates and purges (the logic was removed from the programs
themselves to enable multi-threading & restart/recovery).
For example, to run the pre-program script for the ccext program, the following should
be entered on the command line:
 prepost user/password rpl pre

Tables Affected

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

all_constraints Y N N N N N N
all_ind_partitions Y N N N N N N
all_policies Y N N N N N N
alloc_detail Y N N N N N Y
alloc_header Y N N N N N Y
class Y N N N N N N
class_sales_forecast N N N Y N Y N
class_sales_hist N N N N Y N N
class_sales_hist_mth Y N N N Y N N
cost_change_trigger_temp Y N N Y N Y N
cost_susp_head N N Y N N N N
daily_data Y N N N N N N
daily_data_temp Y N N N N Y N

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 21

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

dba_indexes Y N N N N N N
dba_triggers Y N N N N N N
dealfct_temp N Y N N N N N
deal_actuals_forecast Y N N N N N N
deal_actuals_item_loc Y Y N N N N N
deal_bb_no_rebate_temp N Y N N N Y N
deal_bb_rebate_po_temp N Y N N N Y N
deal_bb_receipt_sales_tempp N Y N N N Y N
deal_head Y N N N N N N
deal_item_loc_explode Y N N N N N N
deal_sku_temp N N N Y N Y N
deps Y N N N N N N
dept_sales_forecast N N N Y N Y N
dept_sales_hist N N N N Y N N
dept_sales_hist_mth Y N N N Y N N
domain_class N N Y N N N N
domain_dept N N Y N N N N
domain_subclass N N Y N N N N
edi_daily_sales N N N N Y N N
edi_ord_temp N N N Y N Y N
fif_receiving N Y N Y N Y N
fixed_deal Y N Y N N N N
forecast_rebuild N N N Y N Y N
groups Y N N N N N N
hist_rebuild_mask Y N N Y N Y N
ib_results N N Y N N N N
if_tran_data Y N N N N N N
invc_detail N N Y N N N N
invc_detail_temp Y N N N N Y N
invc_detail_temp2 N N N N N Y N
invc_head N N Y N N N N
invc_head_temp Y N N N N Y N
item_forecast N N N Y N N N
item_loc Y N N N N N N
item_loc_temp N Y N N N Y N
item_master Y N N N N N N
item_supp_country Y N N N N N N
item_supp_country_loc Y N N N N N N
mc_rejections N N N Y N Y N
mod_order_item_hts N N N Y N Y N
on_order_temp N N N Y N Y N
ord_missed N N N Y N Y N

Pre/Post Functionality for Multi-Threadable Programs [prepost]

22 Oracle Retail Merchandising System

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

ord_temp N N N Y N Y N
ordhead Y N N N N N N
ordsku Y N N N N N N
packitem Y N N N N N N
period Y N N N N N N
pos_button_head N N Y N N N N
pos_coupon_head N N Y N N N N
pos_merch_criteria N N Y N N N N
pos_mods N Y N Y N Y N
pos_money_ord_head N N Y N N N N
pos_payinout_head N N Y N N N N
pos_prod_rest_head N N Y N N N N
pos_store N N Y N N N N
pos_sup_pay_criteria N N Y N N N N
pos_tender_type_head N N Y N N N N
reclass_cost_chg_queue Y Y Y N N N N
reclass_head Y N N N N N N
reclass_item Y N N N N N Y
reclass_trigger_temp Y N N Y Y Y N
repl_attr_update_exclude Y N N N Y N N
repl_attr_update_head Y N N N Y N N
repl_attr_update_item Y N N N Y N N
repl_attr_update_loc Y N N N Y N N
repl_day Y Y N N N N N
repl_item_loc Y Y N N N N N
repl_item_loc_updates N Y N Y N Y N
rpl_alloc_in_tmp N Y N N N Y N
rpl_distro_tmp N Y N N N Y N
salweek_c_daily N Y N N N Y N
salweek_c_week Y Y N N N Y N
salweek_restart_dept N Y N N N Y N
sec_user_zone_matrix N N N Y N Y N
stage_complex_deal_detail N N N N N Y N
stage_complex_deal_head N N N N N Y N
stage_fixed_deal_detail N N N N N Y N
stage_fixed_deal_head N N N N N Y N
stake_head Y N N N N N N
stake_prod_loc Y N N N N N N
stake_sku_loc Y N N N N N N
store Y N Y N N N N
store_add Y N N N Y N N
subclass_sales_forecast N N N Y N N N

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 23

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

subclass_sales_hist N N N N Y N N
subclass_sales_hist_mth Y N N N Y N N
sup_data N N N N Y N N
sups_min_fail N N N Y N Y N
system_options Y N N N N N N
system_variables Y N Y N N N N
temp_tran_data Y N N N N Y N
temp_tran_data_sum N Y N N N Y N
tif_explode N N N Y N Y N
tran_data N Y N N N N N
tsf_head N N Y N N N N
vat_code_rates Y N N N N N N
vat_item Y N N N N N N
week_data_temp N N N N N Y N
wh Y N N N N N N
wh_store_assign N N N N Y N N

Pre/Post Functionality for Multi-Threadable Programs [prepost]

24 Oracle Retail Merchandising System

Scheduling Constraints
Processing Cycle: PHASE ALL (daily)
Scheduling Diagram: See scheduling flow for description of all pre-post
requirements in the daily run.
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A (single threaded)

Restart Recovery
N/A

Program Flow
N/A

Shared Modules
FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
UDA_SQL.CHECK_REQD_NO_VALUE
FORECASTS_SQL.GET_DOMAIN
ITEM_ATTRIB_SQL.GET_PACK_INDS
FORECASTS_SQL.GET_ITEM_FORECAST_IND
POS_UPDATE_SQL.POS_INVC_DETAIL_INSERT
CAL_TO_454_LDOM
CAL_TO_454_HALF
CAL_TO_CAL_HALF
CAL_TO_CAL_LDOM
CAL_TO_454_WEEKNO
CAL_TO_CAL_WEEKNO
CAL_TO_454
HALF_TO_CAL_FDOH
HALF_TO_CAL_LDOH
HALF_TO_454_FDOH
HALF_TO_454_LDOH
DBMS_RLS.ENABLE_POLICY

Function Level Description
Functions to be used by the individual program functions:
modify_indexes()
This function allows indexes to be disabled or rebuilt before and/or after the action that
affects them. The individual program passes in the table name and mode (what action to
take “disable” or “rebuild”) and performs that action. The owner of the index is
determined using the synonym_trace function in the library oracle.pc.
get_lock()
This function locks the table that is passed to it. If this function fails to acquire a lock to
the specified table, it retries MAX_LOCK_TRIES times before returning a fatal error.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 25

modify_partition_indexes()
This is called by the modify_indexes function to determine if the indexes that need
modified are partitioned indexes. If so, then the statement is modified to take that into
account to accomplish the action. Index_owner, index_name and mode is passed to this
function. Nothing is passed back out.
truncate_table()
The table_name is passed to this function so that it can be truncated. The owner of the
table is determined by using the synonym_trace function in the library oracle.pc.
modify_trigger()
Allows triggers to be disabled or enabled before or after certain processes. The
table_name, trigger name and mode(“DISABLE” or “ENABLE”) are passed to this
function and the appropriate action is taken. No values are passed back to the calling
function.
alter_constraints()
This function diables, enables, or rebuilds a table constraint based on the table name and
the mode passed into it. It is called by vendinv_pre().
truncate_user_sec_table()
This is a function used to run the szonrbld pre functions that will truncate the
sec_user_zone_matrix table. Disables any indexes prior to the truncation on the
associated table and rebuilds/enables them following the truncation.The user running
this program for this function must have been granted the ‘drop any table’ and ‘alter any
index’ system privilege, or be the owning schema user.
get_454_ldom()
This function calls the procedure CAL_TO_454_LDOM to get the 454 last day of month.
get_454_half()
This function calls the procedure CAL_TO_454_HALF to get the 454 calendar half
number.
get_next_454_half()
This function calls the procedure CAL_TO_454_HALF to get the next end-of-month 454
calendar half number.
get_next_cal_half()
This function calls the procedure CAL_TO_CAL_HALF to get the next end-of-month half
number on the regular calendar.
get_cal_half()
This function calls the procedure CAL_TO_CAL_HALF to get the half number on the
regular calendar
get_cal_ldom()
This function calls the procedure CAL_TO_CAL_LDOM to get the end of the month on
the regular calendar.
get_454_weekno()
This function calls the procedure CAL_TO_454_WEEKNO to get the 454 week number in
half.
get_cal_weekno()
This function calls the procedure CAL_TO_CAL_WEEKNO to get the week number in
half on the regular calendar.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

26 Oracle Retail Merchandising System

get_454_date()
This function calls the procedure CAL_TO_454 to get the 454 calendar week number.
get_cal_fdoh()
This function calls the procedure HALF_TO_CAL_FDOH to get the first day of half.
get_cal_ldoh()
This function calls the procedure HALF_TO_CAL_LDOH to get the last day of half.
get_454_fdoh(void);
This function calls the procedure TO_454_FDOH to get the first day of half in 454
calendar.
get_454_ldoh(void)
This function calls the procedure HALF_TO_454_LDOH to get the last day of half in 454
calendar.
get_tomorrow()
This function gets the next day after the vdate.
get_forecast_ind()
This function cals FORECASTS_SQL.GET_SYSTEM_FORECAST_IND to get the
system_forecast_ind.
validate_reclassify()
Validates the reclassification. If the reclassification is rejected, then the data from the
RECLASS_TRIGGER_TEMP table is deleted, else the data is inserted into
RECLASS_COST_CHG_QUEUE table.
check_stock_count()
This function checks for the existence of a stock count of an item in the
STAKE_SKU_LOC or STAKE_PROD_LOC.
check_order()
This function checks for the existence of an order for an item in the ORDHEAD and
ORDSKU tables.
check_uda()
This function calls UDA_SQL.CHECK_REQD_NO_VALUE which determines if an
item's new hierarchy has any required UDA defaults that the item is not currently
associated with.
check_domain_exists()
This function calls FORECASTS_SQL.GET_DOMAIN to check for the existence of the
domain for a merchandise hierarchy.
check_forecast()
This function validates the reclassification of an item based on forecast indicator. First, it
checks if the item passed is a pack through the package call to
ITEM_ATTRIB_SQL.GET_PACK_INDS. Then for non-pack items, it calls
FORECASTS_SQL.GET_ITEM_FORECAST_IND to get the item forecast indicator.
delete_reclass_trigger_temp()
This function deletes the records for a given item from the RECLASS_TRIGGER_TEMP.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 27

Individual Program Functions
rpl_pre()
This function truncates the following tables before replenishment extracts are performed:

 ORD_TEMP
 ORD_MISSED

It also disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system
privilege, or be the owning schema user.
salweek_pre()
This function truncates, then populates the tables SALWEEK_C_WEEK,
SALWEEK_C_DAILY, and SALWEEK_RESTART_DEPT.
SALWEEK_C_WEEK is populated with records from the tables DAILY_DATA_TEMP,
and WEEK_DATA whose eow_date are between the last eow date and the current eow
date.
SALWEEK_C_DAILY is populated with records from the tables DAILY_DATA and
DAILY_DATA_TEMP whose eow_date are between the last eow date and the current
eow date.
SALWEEK_RESTART_DEPT is populated with the departments, threads, and the count
of department records in the SALWEEK_C_WEEK.
salweek_post()
Updates the last end-of-week date on the SYSTEM_VARIABLES table to the run date
after all weekly stock ledger data has been processed.
salmth_post()
Updates the following SYSTEM_VARIABLES columns to reflect the current date’s values
after all monthly stock ledger data has been processed:

 last_eom_half_no
 last_eom_month_no
 last_eom_date
 next_eom_date
 last_eom_start_half
 last_eom_end_half
 last_eom_start_month
 last_eom_mid_month
 last_eom_next_half_no
 last_eom_day
 last_eom_week
 last_eom_month
 last_eom_year
 last_eom_week_in_half

rplapprv_pre()

Pre/Post Functionality for Multi-Threadable Programs [prepost]

28 Oracle Retail Merchandising System

This function truncates the SUPS_MIN_FAIL table. It disables any indexes prior to the
truncation on the associated table and rebuilds/enables it after being truncated. The user
running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.
rplatupd_pre()
This function truncates the MC_REJECTIONS table so that it is free to hold new mass
change rejections. It disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation. The user running this program for
this function must have been granted the ‘drop any table’ and ‘alter any index’ system
privilege, or be the owning schema user.
rplatupd_post()
This function truncates the holding tables REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC after their records have been processed. It disables any
indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been
granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the owning
schema user.
rilmaint_post()
This function locks then truncates the REPL_ITEM_LOC_UPDATES table after these
records are processed so the table is free to hold new updates. It disables any indexes
prior to the truncation on the associated tables and rebuilds/enables them following the
truncation. The user running this program for this function must have been granted the
‘drop any table’ and ‘alter any index’ system privilege, or be the owning schema user.
supmth_post()
Deletes records from table SUP_DATA after all daily supplier data records have been
rolled up to month level.
sccext_post()
Updates all processed supplier cost change record status to ‘Extracted’.
hstbld_pre()
Deletes sales history data for the dept exists in the table hist_rebuild_mask from the three
tables subclass_sales_hist, class_sales_hist and dept_sales_hist prior to running hstbld in
rebuild mode.
hstbld_post()
This function truncates the holding table MASK_REBUILD after building history records.
It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system
privilege, or be the owning schema user.
posdnld_post()
This clears the POS_MODS table after all records have been downloaded to the POS. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables
them following the truncation. The user running this program for this function must
have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 29

poscdnld_post()
This clears the config_status and loc_grp_status in POS_LOC_GRP and sets all values of
extract_req_ind to ‘N’. It clears the status column in POS_MERCH_CRITERIA. It also sets
the status_ind column in POS_STORE to ‘N’.
reqext_post()
This function updates the TSFHEAD table and sets the status to ‘A’, approval_id to
‘BATCH’, approval_date to the vdate, and the repl_tsf_approve_ind to ‘N’ where the
repl_tsf_approve_ind is equal to ‘Y’.
likestore_post()
This function should only be run after both storeadd.pc and all threads of likestore.pc
have successfully completed.
In the REPL_ITEM_LOC, table, likestore_post selects and inserts all information from the
a like store for the new store.
stkupd_pre()
Calls the stored function DBMS_MVIEW.REFRESH.
stkupd_post()
This function disables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC.
dtesys_post()
Enables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC table.
ociroq_pre()
This function truncates the rpl_net_inventory_tmp table, which is populated by the
ociroq.c and queried from reqext.pc. This function also inserts records into
RPL_DISTRO_TMP values from ALLOC_DETAIL, and ALLOC_HEAD table, and into
RPL_ALLOC_IN_TMP values from ALLOC_DETAIL, ALLOC_HEAD, and ORDHEAD
table. This function also creates a unique index in these two destination tables.
rplext_post()
Truncates the tables RPL_DISTRO_TMP, and RPL_ALLOC_IN_TMP.
posupld_post()
This updates the columns total_merch_cost , total_qty, invc_qty, INVC_HEAD tables
based on the corresponding columns in the INVC_HEAD_TEMP table.
vatdlxpl_post()
This inserts into pos_mods all transaction level items on the vat_item table where the
item has a new tran_code. Also, if a sub-transaction level item is on vat_item, it is
inserted into the pos_mods table, along with its parent item. These items are not picked
up by the vatdlxpl program because the vat_code rate has not changed.
saleoh_pre()
Calculates the next_eom_date, and updates the SYSTEM_VARIABLES.
dealday_pre()
This gets the total sales and purchases from the TEMP_TRAN_DATA table and inserts a
new record in TEMP_TRAN_DATA_SUM based on dept, class, subclass, loc_type,
location, tran_date, and tran_code.
dealday_post()
Copies the contents of the table TEMP_TRAN_DATA_SUM into TRAN_DATA table.
Afterwards, then TEMP_TRAN_DATA_SUM is truncated.

Pre/Post Functionality for Multi-Threadable Programs [prepost]

30 Oracle Retail Merchandising System

hstbldmth_post()
This is responsible for deleting records in the following tables:

 CLASS_SALES_HIST_MTH
 SUBCLASS_SALES_HIST_MTH
 CLASS_SALES_HIST_MTH
 DEPT_SALES_HIST_MTH

THE FOLLOWING FUNCTIONS SHOULD BE RUN AFTER THE edidlprd PROGRAM!
edidlprd_post()
Deletes old records from the EDI_DAILY_SALES table after they have been processed.
fcstrbld_post()
This truncates the holding table FORECAST_REBUILD after all records have been
processed. It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system
privilege, or be the owning schema user.
vrplbld_post()
This truncates the EDI_ORD_TEMP table after all replenishment orders have been build
from the data held there. Disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any
index’ system privilege, or be the owning schema user.
cntrordb_post()
Sets the last_cont_order_date on system_variables to vdate.
fifgldn1_post()
If Oracle Financials is being used, delete everything from the fif_receiving table and
repopulate it from the if_tran_data table. Disables any indexes prior to the truncation on
the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.
fsadnld_post()
Updates the load_sales_ind to ‘N’ for all records on the appropriate domain table –
domain_dept, domain_class, or domain_subclass, where system_options.domain_level =
‘D’, ‘C’, or ‘S’, respectively.
policy_enable()
Enables or disables policies.
whstrasg_post ()
Deletes all warehouse store assignment records from the warehouse store assignment
table if the assignment date (wh_store_assign.assign_date) is less than or equal to the
current date (period.vdate) minus the warehouse store assignment history days
(system_options.wh_store_assign_hist_days).

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Batch Designs 31

costcalc_post()
This truncates the deal_sku_temp table. This disables any indexes prior to the truncation
on the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.
tifposdn_post()
This truncates tif_explode table. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running
this program for this function must have been granted the ‘drop any table’ and ‘alter any
index’ system privilege, or be the owning schema user. It disables any indexes prior to
the truncation on the associated tables and rebuilds/enables them following the
truncation.
htsupld_pre()
This truncates the mod_order_item_hts table so that reports will be correct and not
include data from previous runs of htsupld. It disables any indexes prior to the
truncation on the associated tables and rebuilds/enables them following the truncation.
The user running this program for this function must have been granted the ‘drop any
table’ and ‘alter any index’ system privilege, or be the owning schema user.
onordext_pre()
This truncates the on_order_temp table. It disables any indexes prior to the truncation on
the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.
precostcalc_pre()
This processeses records from the COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP tables. Reclass_trigger_temp is populated only by database
trigger and cost_change_trigger_temp is populated by database trigger and
edi_cost_change_sql.create_cost_chg.
This function will either insert new records or update existing ones on
reclass_cost_chg_queue. Both tables, COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP are truncated and their indexes rebuilt at the end of this
function. The user running this program for this function must have been granted the
‘drop any table’ and ‘alter any index’ system privilege, or be the owning schema user.
reclsdly_pre()
This disables the trigger RMS_TABLE_RCS_BIDR on the reclass_item table. The user
running this program for this function must have been granted the ‘alter any trigger’
system privilege, or be the owning schema user.
Reclsdly_post()
Call the packaged function RECLASS_SQL.POST_PROCESS which does the following
tasks:
If the item is moving to a new dept, class, or subclass a record is inserted to the table
hist_rebuild_mask.
If the item is reclassified to a new department, and the single_style_po_ind = ‘Y’ then the
order in the table ordhead is updated with the new department.
If the item is reclassified to a new department, then determine if the item is included in
an item-list and insert a record into skulist_dept if the item is in an item-list and the new
department is not associated to the item-list..

Pre/Post Functionality for Multi-Threadable Programs [prepost]

32 Oracle Retail Merchandising System

Delete item records associated with the old hierarchy that exist on the
DEAL_ITEM_LOC_EXPLODE table.
Also, Clear the dept field in the ordhead table when the item has changed departments
ibcalc_pre()
This updates the status on ib_results to ‘U’nprocessed where the status = ‘W’orksheet so
after ibcalc is run, multiple records in ‘W’orksheet status will not exist for each
item/location.
fcstprg_pre()
This disables any indexes prior to the truncation on following tables. This is run
BEFORE the fcstprg.pc program on PARTITIONED TABLES only:
 ITEM_FORECAST
 DEPT_SALES_FORECAST
 CLASS_SALES_FORECAST
 SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the ‘alter any
index’ system privilege, or be the owning schema user.
fcstprg_post()
This rebuilds the indexes following truncation of following tables:
 ITEM_FORECAST
 DEPT_SALES_FORECAST
 CLASS_SALES_FORECAST
 SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the ‘alter any
index’ system privilege, or be the owning schema user.
dealinc_pre()
Call get_sys_date()
Call size_arrays()
Loops through the deal actuals item loc table and create any item/loc/order
combinations in the table that have previous turnovers but do not exist in future periods.
dealfct_pre()
This inserts details of forecast periods for active deal components that require processing
into dealfct_temp table.
dealact_pre_no_rebate()
Truncates the deal_bb_no_rebate_temp table.
Then inserts billback NO Rebate type of deal into deal_bb_no_rebate_temp.
dealact_pre_rebate_po()
Truncates the deal_bb_rebate_po_temp table.
Then inserts billback rebate PO type of deal into deal_bb_rebate_po_temp.
dealact_pre_receipt_sales ()
Truncates the deal_bb_receipt_sales_temp.
Then inserts billback rebate Sales and Receipt type of deal into
deal_bb_receipt_sales_temp.
vendinvc_pre()

Reclassification of Item [reclsdy]

Batch Designs 33

Truncate the STAGE_COMPLEX_DEAL_HEAD table.
Truncate the STAGE_COMPLEX_DEAL_DETAIL table.
Then inserts complex deals for invoicing into vendinvc_temp.
vendinvf_pre()
Truncate the STAGE_FIXED_DEAL_HEAD table.
Truncate the STAGE_FIXED_DEAL_DETAIL table.
vendinvc_post()
Get vdate.
Call process_deal_head().
vendinvf_post()
Get vdate.
Call process_fixed_deal().
process_fixed_deal()
For each active Fixed Deal record where the Collect End Date is earlier than the vdate, set
it’s status to Inactive.
process_deal_head()
For each active Deal Head record where Est Next Invoice Date, Close Date, Last Invoice
Date and Last EOM Date are earlier than vdate, AND Billing Type is Off Invoice and
Invoice processing Logic !=’NO’, set the Est Next Invoice Date to null.

I/O Specification
N/A

Technical Issues
N/A

Reclassification of Item [reclsdy]
Design Overview
The Item Reclassification batch program is executed in order to reclassify items from one
department, class or subclass to another. The reclassification of items into a different
merchandise hierarchy level is initiated or requested online in the Item Reclassification
dialog, with an effective date specified. A parameter passed to the program dictates
whether validation (P) or validation and execution (E) logic is performed. Each record
that is processed is written to the reclass_error_log with a success_ind of ‘S’ if successful
or ‘R’ if rejected. In the event that the record fails it will also be written to the
mc_rejections table which provides details as to the reason for the rejection.

Reclassification of Item [reclsdy]

34 Oracle Retail Merchandising System

As noted above, the logic executed by the program is directed by the process mode. If the
process mode = ‘P’ (pre-validation), only the logic validating the item reclassification is
performed. The item will NOT be reclassified and the only impact to the item will be a
record written to the reclass_error_log table. If the item passes the reclassification
validation a record is written to the reclass_error_log with success_ind = ‘S’. If the item
fails the reclassification validation a record is written to the reclass_error_log with
success_ind = ‘R’ and a record is also written to the mc_rejections table. In pre-validation
mode the program reads in all reclassification requests for each item being reclassified
and performs the following logic:
 check if item is forecastable and if it is, then check for the existence of a domain. If the

item is forecastable and no domain association to the new merchandise hierarchy
level exists, the item fails validation. This only holds for non-pack Items since pack
items are not forecastable.

 check if the item has UDA (user defined attributes) defined for all required UDA’s of
the new merchandise hierarchy level, if not the item fails validation

 check if the item has UDA defined for all UDA’s that have default set up for the new
merchandise hierarchy level, if not, a warning message is written to the report, but
the item passes validation

 check if the item exists on an approved order. If the item exists on an approved order
and the system level variable single_style_po_ind = N, the item fails validation

If the process mode = ‘E’ the program first performs the same validation logic that is
listed for pre-validation mode, and for those items that pass validation the program
executes the item reclassification. In execution mode the program reads in reclassification
events that are scheduled for tomorrow (vdate +1) or earlier. In addition to the validation
noted above the following logic is executed:
 check if the item exists on an approved order. If the item exists on an approved

order, the system level variable single_style_po_ind = ‘Y’, and the item is being
moved to a new department the order will be updated with the new department.
Also, the OTB table is updated to transfer cancel_amt, approved_amt and
received_amt from the old merchandise hierarchy level to the new merchandise
hierarchy level

 check if the item is scheduled for a stock count. If the item is scheduled for a stock
count, the stock count is scheduled by item-list, and the stock date has not yet been
reached update the dept, class, subclass (as appropriate) for the stock count. If the
item is scheduled for a unit stock count*, the stock count is scheduled by
merchandise hierarchy, and the reclassification is scheduled between the stock
lockout date and the stock take date one of three updates will occur:
 if reclassified item’s new dept, class, and subclass and item’s old dept, class,

subclass are both included in stock count update stake_sku_loc with new dept,
class, subclass

 if reclassified item’s new dept, class, and subclass are included in stock count but
item’s old dept, class, subclass are not included in stock count add the item to
stake_sku_loc

 if reclassified item’s new dept, class, and subclass are not included in stock count
but item’s old dept, class, subclass are included in stock count delete the item
from stake_sku_loc

Reclassification of Item [reclsdy]

Batch Designs 35

* If the item is scheduled for a unit and dollar stock count the reclassification will fail
validation.
 update item_master with the new merchandise hierarchy
 insert records into pos_mods with a transaction code of 13 (item reclassification) for

each item/store combination
 insert records into tran_data with transaction types of 34 (reclassification in) and 36

(reclassification out) for each sku/store combination
 if the reclassification causes a change of domains for the item, the item store tables

are updated, setting the last_sales_export_date to NULL. A NULL will result in all
the item store's sales history to be downloaded during the sales download process to
the external forecasting system. This is required because of the domain change.

 if an item that is part of an item-list is reclassified to a new department, and the new
department is not associated to the item-list, insert a record into skulist_dept with the
new department/item-list

 insert new and old dept number into hist_rebuild_mask so that the sales history of
the dept where the reclassified items moved from/to can be rebuilt later when
calling hstbld.pc.

Tables Affected

TABLE INDEX SELECT INSERT UPDATE DELETE

DEAL_CALC_QUEUE No Yes Yes No No

HIST_REBUILD_MASK No No Yes No No

ITEM_MASTER No Yes No Yes No

MC_REJECTIONS No No Yes No No

ORDHEAD No Yes No Yes No

ORDSKU No Yes No No No

POS_MODS No No Yes No No

RECLASS_ERROR_LOG No No Yes Yes Yes

RECLASS_HEAD No Yes No No Yes

RECLASS_ITEM No Yes No No Yes

SYSTEM_OPTIONS No Yes No No No

TRAN_DATA No No Yes No No

Stored Procedures / Shared Modules (Maintainability)
FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
FORECASTS_SQL.GET_DOMAIN
RECLASS_SQL.ITEM_PROCESS
ITEMLIST_ATTRIB_SQL.ITEM_IN_SKULIST
ITEMLIST_MC_REJECTIONS_SQL.INSERT_REJECTS

Reclassification of Item [reclsdy]

36 Oracle Retail Merchandising System

Function Level Description
main()
 standard Oracle Retail main function that calls init(), process(), and final()
init()
Retrieve system level variables; single_style_po_ind, otb_system_ind and
stake_lockout_days
Initialize restart/recovery
Declare a structure of arrays to store rows read in from the driving cursor
Set up arrays to receive fetches in table_process() – memory should be dynamically
allocated so that the cursor fetches arrays the size of max counter on restart_control
(pi_commit_max_ctr)
Get the current date
Call delete_log() function to purge reclass_error_log of all records with the same
process_ind as the program is currently running
Process()
Open driving cursor

Get the system forecast indicator
Enter while loop
Fetch pi_commit_max_ctr records at a time into the structure, exiting loop when
all rows are processed
If process_mode = ‘E’:

o Call delete_reclass_head() function to delete previous reclassification
event

o Call check_domain_exists() function
o If the item group has changed issue a commit and set a new savepoint
o Call delete_reclass_item() function to delete the reclass item
o If any item in the item group has failed reclassification skip the rest of

the items in the group, else call process_item() function to process the
item reclassification.

o Finally, if the reclass has not failed, call the delete_dile() function.
Else if process_mode = ‘P’:

o If the item group has changed set a new savepoint and call the
check_domain_exists() and process_item() functions to process the item
reclassification validation

o If the item reclassification has failed rollback to the last savepoint and
call insert_reject_record() function to write a reject record to the
mc_rejections table and call insert_log() function to insert a record to the
reclass_error_log with a success_ind = ‘R’. If process_mode = ‘E’ call
delete_reclass_item() function to delete the item from reclass_item

Else if item reclassification is successful call insert_log() function to write a
record to the reclass_error_log with a success_ind = ‘S’.

Check_domain_exists()
If system_forecast_ind = ‘Y’ get domain for new dept/class/subclass

Process_item()

Reclassification of Item [reclsdy]

Batch Designs 37

Call PL/SQL function RECLASS_SQL.ITEM_PROCESS to perform
reclassification validation or validation/execution logic.

Delete_reclass_head()
Delete the reclassification event from reclass_head

Delete_reclass_item()
Delete the reclassification item from reclass_item

Insert_log()
Insert reclass log error record into the reclass_error_log table.

Insert_reject_record()
Call PL/SQL function ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS to
insert a record to the mc_rejections table

Delete_log()
Delete reclass_error_log records where the process_ind is equal to the
process_mode in which the program is currently running

Size_arrays()
Size the reclass_recs structure members.

Input Specifications
Driving cursor:
SELECT ROWIDTOCHAR(ri.rowid),
 ri.reclass_no,
 ri.item, /* This is a level 1 item */
 im.item,
 NVL(im.item_parent,' '),
 NVL(im.item_grandparent,' '),
 im.item_level,
 im.tran_level,
 rh.to_dept,
 rh.to_class,
 rh.to_subclass,
 rh.reclass_date,
 im.dept,
 im.class,
 im.subclass
 FROM v_restart_reclass rv,
 reclass_item ri,
 reclass_head rh,
 item_master im
 WHERE rh.reclass_no = ri.reclass_no
 AND rh.reclass_date <= decode(:ps_process_mode, 'E', TO_DATE(:ps_vdate,
'YYYYMMDD'), rh.reclass_date)
 AND (ri.item = im.item
 OR ri.item = im.item_parent

Reclassification of Item [reclsdy]

38 Oracle Retail Merchandising System

 OR ri.item = im.item_grandparent)
 AND rv.driver_value = rh.reclass_no
 AND rv.driver_name = :ps_driver_name
 AND rv.num_threads = TO_NUMBER(:ps_num_threads)
 AND rv.thread_val = TO_NUMBER(:ps_thread_val)
 AND (rh.reclass_no > NVL(:ps_restart_reclass_no, -999) OR
 (rh.reclass_no = :ps_restart_reclass_no AND
 ri.item > :ps_restart_item))
 UNION
 -- This is for simple pack
 SELECT ROWIDTOCHAR(ri.rowid),
 ri.reclass_no,
 ri.item,
 im.item,
 NVL(im.item_parent,' '),
 NVL(im.item_grandparent,' '),
 im.item_level,
 im.tran_level,
 rh.to_dept,
 rh.to_class,
 rh.to_subclass,
 rh.reclass_date,
 im.dept,
 im.class,
 im.subclass
 FROM v_restart_reclass rv,
 reclass_item ri,
 reclass_head rh,
 packitem pi,
 item_master im
 WHERE rh.reclass_no = ri.reclass_no
 AND rh.reclass_date <= decode(:ps_process_mode, 'E', TO_DATE(:ps_vdate,
'YYYYMMDD'), rh.reclass_date)
 AND im.simple_pack_ind = 'Y'
 AND (im.item = pi.pack_no OR
 im.item_parent = pi.pack_no OR
 im.item_grandparent = pi.pack_no)
 AND EXISTS (SELECT 'x'
 FROM item_master im1
 WHERE pi.item = im1.item
 AND im1.item_level = im1.tran_level
 AND (ri.item = im1.item

Reclassification of Item [reclsdy]

Batch Designs 39

 OR ri.item = im1.item_parent
 OR ri.item = im1.item_grandparent))
 AND rv.driver_value = rh.reclass_no
 AND rv.driver_name = :ps_driver_name
 AND rv.num_threads = TO_NUMBER(:ps_num_threads)
 AND rv.thread_val = TO_NUMBER(:ps_thread_val)
 AND (rh.reclass_no > NVL(:ps_restart_reclass_no, -999) OR
 (rh.reclass_no = :ps_restart_reclass_no AND
 ri.item > :ps_restart_item))
 ORDER BY 2,
 3;

Output Specifications
N/A

Scheduling Considerations
Processing Cycle: PHASE 3 (daily)
Pre-Processing: cremhierdly.pc
Post-Processing: prepost reclsdly post
Threading Scheme: v_restart_reclass

Restart Recovery
The reclsdly.pc batch program has multi-threading capabilities (reclass_no) as well as
restart/recovery functionality. The logical unit of work for this program is reclass_no,
item.

	Preface
	Audience
	Related Documents
	Customer Support
	Conventions

	Introduction
	Overview

	Batch Designs
	Distro Price Change Publish [distropcpub]
	EDI Location Address to Vendor Download [edidladd]
	New and Changed Supplier Address Upload [ediupadd]
	Oracle Retail Demand Forecasting Purge [fcstprg]
	Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]
	Oracle Retail Demand Forecasting Rollup [fcstrbld]
	Geocode Hierarchy Upload [gcupld]
	Inventory Adjustment Purge [invaprg]
	Price History Data Purge [prchstprg.pc]
	Pre/Post Functionality for Multi-Threadable Programs [prepost]
	Reclassification of Item [reclsdy]

