Oracle® Retail Merchandising System
Operations Guide Addendum
Release 11.0.11

May 2007

ORACLE

Oracle® Retail Merchandising System Operations Guide Addendum, Release 11.0.11

Copyright © 2007, Oracle. All rights reserved.
Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software —
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third

party.

Contents

Preface ...oouoiie s v
AUAIENCE ... v
Related DOCUMENLS........ooooiriiiiiiciciiccee e v
CUSEOMET SUPPOTL....cviiiiiiiiiiciic e Y
CONVENEIONS ...ttt vi

1 INtrOQUCTION oo e 1
OVEIVIEW ...ttt et 1

A = 7= (o] I TS Yo | o RSOSSN 3
Distro Price Change Publish [distropcpub].........c.cccoiiiiiiiiiiiicccccccne 3
EDI location address to vendor download [edidladd].........ccccevvevieviiiiiinieieieieieieen, 5
New and Changed Supplier Address Upload [ediupadd]cccccoeeuvvniiiiiinnnnans 9
Oracle Retail Demand Forecasting Purge [festprg].........coovviiiiiiiiiiiiinies 12
Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass
[£CSEIDIA_SDC] ...ttt s 13
Oracle Retail Demand Forecasting Rollup [festrbld]cccooeeiiiiiiiiinnnnes 14
Geocode Hierarchy Upload [Geupld]......ccccoceiiinnnnnieieccccccnrnseeeeeeieeeeeens 15
Inventory Adjustment Purge [Invaprg] ..o 18
Price History Data Purge [prchstprg.pc]coevevciiiiiiiiiccccccccccccnreeines 19
Pre/Post Functionality for Multi-Threadable Programs [prepost].........cccccccevrrnunneee 20
Reclassification of Item [reclsdy]cccocoviiiiiiiiiniiiiicccccceene 33

Audience

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s “behind-the-scenes’ processing, including such information as the
following;:

= Key system administration configuration settings

= Technical architecture

Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting RMS functionality will find valuable information
in this guide. There are three audiences in general for whom this guide is written:

* Business analysts looking for information about processes and interfaces to validate
the support for business scenarios within RMS and other systems across the
enterprise.

= System analysts and system operations personnel:

+ Who are looking for information about RMS processes internally or in relation to
the systems across the enterprise.

* Who operate RMS regularly.

= Integrators and implementation staff with overall responsibility for implementing
RMS.

Related Documents

For more information, see the following documents in the Oracle Retail Merchandising
System Release 11.0.11 documentation set:

= Oracle Retail Merchandising System Installation Guide
= Oracle Retail Merchandising System Release Notes

= Oracle Retail Merchandising System Data Model

= Oracle Retail Merchandising System Batch Schedule

Customer Support

= https://metalink.oracle.com

When contacting Customer Support, please provide:

* Product version and program/module name.

= Functional and technical description of the problem (include business impact).
= Detailed step-by-step instructions to recreate.

= Exact error message received.

= Screen shots of each step you take.

https://metalink.oracle.com/

Conventions

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
It is used to display examples of code

A hyperlink appears like this..

Vi

1

Introduction

Overview

The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 11.0 Operations Guide and any subsequent RMS 11.0.x Operations
Guide Addendums. (The RMS 11.0 Operations Guide is the most recent release of the full
Operations Guide for the 11.0 release of RMS.) Using this document in conjunction with
the Oracle Retail Merchandising System 11.0 Operations Guide provides retailers with a
complete overview of the application.

For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail
Merchandising System 11.0.11 Release Notes.

Introduction 1

2

Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 11.0 Operations Guide or any subsequent RMS 11.0.x Operation Guide
Addendums.

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Distro Price Change Publish [distropcpub]

Functional Area
Pricing/ Transfers/ Allocations

Module Affected
DISTROPCPUB.PC

Design Overview

The DISTROPCPUB.PC program will get price change information for any allocations
and transfers and write the information to the corresponding queue table. This program
will ensure that Oracle Retail Warehouse Management will have access to any
item/location unit retail information that is changed after an allocation or transfer has
been published.

This program will loop through the PRICE_HIST table, selecting records whose unit
retail will change for vdate+1, and transaction type is in 4 (single unit retail was changed)
or 11(single unit retail and multi-unit retail were changed). It will then search for
allocations and transfers with matching item/locations. When a match is found,
depending on the distro type, the program calls allocation or transfer publishing logic to
insert the data into the allocation or transfer queue table, so that the RIB can publish the
change to the warehouse system.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 - Daily

Scheduling Considerations This program should run after RPM price event
execution batch process.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multithreading based on store.

Batch Designs 3

Distro Price Change Publish [distropcpub]

Restart/Recovery

The logical unit of work is store. The driving cursor retrieves all item/locations that have
price changes in effect from the next day. It also gets all of the component items of the
non-sellable packs that have price changes.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected
Table Select Insert Update Delete
PERIOD Yes No No No
PRICE_HIST Yes No No No
V_RESTART_STORE Yes No No No
V_PACKSKU_QTY Yes No No No
ITEM_MASTER Yes No No No
ALLOC_HEADER Yes No No No
ALLOC_DETAIL Yes No No No
TSFHEAD Yes No No No
TSFDETAIL Yes No No No
ORDHEAD_REV Yes No No No
ORDHEAD Yes No No No
ALLOC_MFQUEUE No Yes No No
TSF_MFQUEUE No Yes No No
Shared Modules

N/A

/0 Specification

N/A

4 Oracle Retail Merchandising System

EDI Location Address to Vendor Download [edidladd]

EDI Location Address to Vendor Download [edidladd]

Design Overview

The purpose of this module is to download addresses of stores and warehouses to
vendors. The address fields in the tables store and wh were removed and were
referenced instead to the table addr.

The output file format will be a standard Retek file format that will be translated into EDI
format by the Gentran translator. Addresses will be downloaded in two different
scenarios. The program will download changes made to store or warehouse addresses
into a flat file. Further, if a system_options table flag (addr_catalog) is set to true (Y),
then the addresses of all stores and warehouses will be downloaded into a different file
to be sent to suppliers. This program will run nightly.

When a store or warehouse address is changed a flag will be set to true to indicate that
that location should have its address changes submitted to suppliers. When the changes
occur on the location forms (store.fmb or wh.fmb form), the addr_change field is set to
true (Y) on the location tables (store or wh). After each changed location address is
processed by the EDIDL838.pc program its addr_change flag is reset to N.

The addr_catalog flag for sending address catalogs is set on the sys_ctrl.fmb form. When
this is set a catalog listing of all store and warehouse addresses are sent to suppliers, then
the addr_catalog field on system_options will be reset to N.

Tables Affected:
TABLE INDEX SELECT INSERT UPDATE DELETE
ADDR No Yes No Yes No
ADD_TYPE No Yes No No No
ADD_TYPE_MODULE No Yes No No No
PERIOD No Yes No No No
STORE No Yes No No No
SYSTEM_OPTIONS No Yes No Yes No
WH No Yes No No No

Stored Procedures / Shared Modules (Maintainability)

None.

Program Flow
N/A

Batch Designs 5

EDI Location Address to Vendor Download [edidladd]

Function Level Description
Init()

Get system variables: current date and catalog indicator flag. Open output files: for
location address changes, address change rejects, canonical catalog listing, and catalog
listing rejects. (only open catalog and catalog reject files if a catalog is to be written). Call
restart_init. Set up format strings for ouput records.

Process()

For each record fetched from the driving cursor, call a function to process location
address changes, and if the catalog indicator flag is set to true to write catalog listing of
all locations.

Write FTAIL record to file.

The column addr_catalog in table system_options is then updated to ‘N’ if its previous
value was "Y’.

Write_records_loc()

This function should write out the address change record to the output file and update
the flag on the location table.

Write_records_cat()
This function writes address change records to the catalog file.
Final()

Call restart/recovery close.

/0 Specification

Output file format (all characters should be right-padded with blanks and left justified;
all numbers should be left-padded with zeroes and right justified)

Record Name Field Name Field Type Default Description
Value
File header File type Char(5) FHEAD Identifies file record type
record
descriptor
File line sequence Number(10) Startat1and Line number of file
increment
File type Char(5) DLADD Identifies file source
definition
Purpose code Char(2) 04 (change) Add/change location or
or replace whole list

05 (replace)

Transaction File type record Char(5) TDETL Identifies file record type
Detail descriptor
File line sequence Number(10) Increment Line number of file
Transaction Number(10) Start at Identifies transaction
number 1,increment

6 Oracle Retail Merchandising System

EDI Location Address to Vendor Download [edidladd]

Record Name Field Name Field Type Default Description
Value
Date Char(8) Period.vdate
YYYYMMDD
Store or Char(2) SN (store) or Location type
warehouse WH
(warehouse)
Location Number(10) Store.store or wh.wh
Location name Char(20) Store..store_name or
wh.wh_name
Address line 1 Char(30) Store.store_add1/wh.wh_
add1
Address line 2 Char(30) Store_add2 or wh_add2
City Char(20) Store.store_city/wh.wh_c
ity
State Char(3) Store.state/ wh.state
Postal code Char(10) Store_pcode/wh_pcode
Country Char(3) Store/wh.country_id
Address Type Char(40) atp.type_desc
Description
File trailer File type record Char(5) FTAIL Identifies file record type
descriptor
Total number Number(10) Total lines in file
lines
Total no. TDETL ~ Number(10) (total lines - 2)

lines

Batch Designs 7

EDI Location Address to Vendor Download [edidladd]

Restart Recovery

Because of the lack of volume and the flexibility requirements of EDI, the program will
use Oracle Retail’s standard restart/recovery only minimally. The driving query volume
is limited to the volume of the store and warehouse tables. Further, the output files that
are created are created if they don’t exist and are overwritten if they already exist. In the
event of a fatal error it is, therefore, reasonable to expect clients to simply restart the job
from the beginning without recovery.

Driving cursor:

SELECT :ps_str_type,
.store,
.store_name,
.add 1,

.add 2,

.city,

.State,

-post,
.country_id,
a.edi_addr_chg,
atp.type_desc,
ROWIDTOCHAR(a.-rowid)

DYDYV

FROM store s,
addr a,
add_type_module atm,
add_type atp
WHERE a.addr_type atm.address_type
AND a.module atm.module

AND atm.address_type
AND a.key value 1
AND a.edi_addr_chg
AND a.primary_addr_ind
AND a.module
UNION ALL
SELECT :ps_wh_type,
w.wh,
w.wh_name,
a.add 1,
a.add 2,
a.city,
a.state,
a.post,
a.country_id,
a.edi_addr_chg,
atp.type_desc,
ROWIDTOCHAR(a- rowid)

atp.address_type

to_char(s.store)
DECODE(:pi_do_all,1,a.edi_addr_chg,"Y")
e

-ST"

FROM wh w,
addr a,
add_type_module atm,
add_type atp
WHERE a.addr_type atm.address_type
AND a.module atm.module

AND atm.address_type
AND a.key value 1

AND a.edi_addr_chg
AND a.primary_addr_ind
AND a.module

atp.address_type

to_char(w.wh)
DECODE(:pi_do_all,1,a.edi_addr_chg,"Y")
e

“WH* -

8 Oracle Retail Merchandising System

New and Changed Supplier Address Upload [ediupadd]

This selects all location information if the catalog is to be processed but only information
from locations where the addr_chg indicator is set to Y if the catalog shouldn’t be
processed. Pi_do_all will be an integer variable that should be initialized as zero and set
to 1 just before calling process_catalog.

Scheduling Constraints

Processing Cycle: PHASE 4 (DAILY)
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing;: N/A

Threading Scheme: N/A

New and Changed Supplier Address Upload [ediupadd]

Design Overview

The ediupadd.pc batch program will read vendor/supplier sent EDI 838 Profile Data
Files. These files will be processed by vendor/supplier and used to update Oracle Retail
supplier address information.

Five different types of supplier addresses can be changed via this EDI interface: business,
postal, returned to, pick up and payment mailing address. This program always
assumes that address information is primary for the address type.

If there is an error with a transaction set, write that transaction to the reject file so it can
be fixed and reprocessed later, then the program will continue to the next transaction set.
See EDI856 for an example.

TABLE INDEX SELECT INSERT UPDATE DELETE
STATE No Yes No No No
SUPPLIER No Yes No No No
SUPS_ADD No No Yes Yes No

Scheduling Constraints

Processing Cycle: Ad Hoc
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing;: N/A

Threading Scheme: N/ A (file based processing —single thread only)

Restart Recovery

Oracle Retail restart/recovery capability is minimal. The program uses non-fatal error
handling to process input files. There is not enough volume to warrant the use of restart
recovery. A commit will not occur until the end of file processing and therefore if fatal
errors are encountered updates will not have been committed and the program can be
restarted without recovery.

Program Flow
N/A

Batch Designs 9

New and Changed Supplier Address Upload [ediupadd]

Shared Modules
N/A

Function Level Description

Init()

Open input & output files. Validate file header line. Call Retek API restart_init to
initializse restart/recovery process.

Process()

Loop through each line of input file. Call validate_ FDETL to validate and format
variables.. Write to reject file if variables are not valid. Call update_supplier to update the
database with the new addresses.

Update_supplier()

Update sups_add table with new, modified address information. This program
presumes that address modification information is regarding a “primary” address. If the
action specified is “add”, then any existing primary address of that type will be changed
so that it is no longer primary, and the new address will be inserted as a primary address
of the specified type into the supplier address table. If the action is “update”, then the
existing primary address of the specified type will be modified to the new passed
information (if one does not exist for that type, it will be inserted).

validate_FDETL — validate supplier and address information

/O Specification

Input file:

FHEAD File type identification
FDETL Supplier address info

FTAIL End of file marker

Record Field Name Field Type Default Description

Name Value

FHEAD File record Char(5) FHEAD Describes file line type
descriptor
Line number Number(10) Sequential file line number
Gentran_id Char(5) Identifies the file type
File create Char(14) YYYYMMDDHH24MISS
date format

FDETL File record Char(5) FDETL Describes file line type
descriptor
Line number ~ Number(10) Sequential file line number
Transaction Number(10) Sequential transaction
number number
Add or Char(1) ‘A’dd or "U’pdate address
Update

10 Oracle Retail Merchandising System

New and Changed Supplier Address Upload [ediupadd]

Record Field Name Field Type Default Description
Name Value
Address type Char(2) Will be translated into
sups_add.address_type:
01 - Business
02 - Postal
03 - returns
04 - Pick Up (Order)
05 - Payment
Supplier Varchar(10) Sups.supplier
Addressline1l Char(30) Sups_add.address_1
Address line2 Char(30) Sups_add.address_2
Address line3 Char(30) Sups_add.address_3
Contact name Char(20) Sups_add.contact_name
Contact Phone Char(20) Sups_add.contact_phone
Contact fax Char(20) Sups_add.contact_fax
City Char(20) Sups_add.city
State Char(3) Sups_add.state
Postal code Char(10) Sups_add.post_code
Country Char(3) Sups_add.country_id
FTAIL File record Char(5) Describes file record type
descriptor
Line number ~ Number(10) Sequential file line number
(total # lines in file)
Number of Number(10) Number of transactions in
transactions file

Technical Issues
N/A

Batch Designs 11

Oracle Retail Demand Forecasting Purge [fcstprg]

Oracle Retail Demand Forecasting Purge [fcstprg]

Functional Area
Demand Forecasting

Module Affected
FCSTPRG.PC

Design Overview

This program deletes data from forecast information tables. Data deletion is performed
by partition truncation, table truncation or deletion by domain. The method of deletion
is dependent on whether or not the table is partitioned. This program serves to delete
data by domains so that they can re-loaded with new forecast information from RDF.

This program must be run as either the RMS schema owner, or be run by a user that has
been granted the following system privileges:

‘drop any table’
‘alter any table’

Scheduling Constraints

Schedule Information Description
Processing Cycle AD-HOC
Scheduling Considerations N/A
Pre-Processing prepost fcstprg pre - disables indexes
Post-Processing prepost fcstprg post - rebuilds indexes
Threading Scheme N/A

Restart/Recovery

N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

12 Oracle Retail Merchandising System

Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]

Key Tables Affected

Table Select Insert Update Delete
ITEM_FORECAST No No No Yes
DEPT_SALES_FORECAST No No No Yes
CLASS_SALES_FORECAST No No No Yes
SUBCLASS_SALES_FORECAST No No No Yes
/O Specification

N/A

Oracle Retail Demand Forecasting Rollup by Department, Class and
Subclass [fcstrbld_sbc]

Functional Area
Demand Forecasting

Module Affected
FCSTRBLD_SBC.PC

Design Overview

The module rolls up the sales forecast data at subclass and class level to class and
department level respectively and inserts the data. The program selects records from the
table SUBCLASS SALES FORECAST and writes the records to
CLASS_SALES_FORECAST and selects the data from CLASS_SALES_FORECAST and
writes into DEPT_SALES_FORECAST using the domain ID stored in the table
FORECAST REBUILD. The record in FORECAST REBUILD is deleted after the record is
written to the above destination tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle Phase 3 (Weekly)

Scheduling Considerations After completion of FCSTRBLD.PC.
Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

Restart/recovery is based on the values stored in restart_bookmark from the last commit
prior to failure. The values are for the last domain_id that was not rolled up completely.

Locking Strategy
N/A

Batch Designs 13

Oracle Retail Demand Forecasting Rollup [fcstrbid]

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected

Table Select Insert Update Delete
FORECAST_REBUILD Yes No No Yes
CLASS_SALES_FORECAST Yes Yes No No
DEPT_SALES_FORECAST No Yes No No
SUBCLASS_SALES_FORECAST Yes No No No
STORE Yes No No No

/O Specification

N/A

Oracle Retail Demand Forecasting Rollup [fcstrbid]

Functional Area
Demand Forecasting

Module Affected
FCSTRBLD.PC

Design Overview

This program is designed to roll-up new or updated forecasted unit sales data from the
item_forecast table. This data will be summarized into the subclass, class and
department level sales forecast tables.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 (weekly)

Scheduling Considerations N/A

Pre-Processing N/A

Post-Processing prepost fcstrbld post - truncates the
FORECAST_REBUILD table

Threading Scheme Threaded by domain id

Restart/Recovery

The logical unit of work is a domain id. The program commits each time the rollups
(dept, class and subclass) for a domain id is successfully processed.

14 Oracle Retail Merchandising System

Geocode Hierarchy Upload [gcupld]

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected

Table Select Insert Update Delete
FORECAST_REBUILD Yes No No Yes
SUBCLASS_SALES_FORECAST Yes Yes No No
ITEM_MASTER Yes No No No
ITEM_FORECAST Yes No No No
STORE Yes No No No
CLASS_SALES_FORECAST Yes Yes No No
DEPT_SALES_FORECAST Yes Yes No No
/0 Specification

N/A

Geocode Hierarchy Upload [gcupld]

Functional Area
Geocode hierarchy

Module Affected
GCUPLD.PC

Design Overview

A geocode identifies a combination of the country, state, county and city in which
locations operate.

GCUPLD.PC (geocode hierarchy upload) provides the ability to upload geocodes from
an outside source into RMS. This batch module lets retailers delete current geocodes and
create new geocodes in the system. A flat file is used to feed the program the additions
and deletions to the geocode tables. Validation determines if duplicate records exist,
dependencies exist, and the flat file is in the correct format. If errors occur in the
validation of the record, it is written out to a reject file to allow further investigation of
the record.

Batch Designs 15

Geocode Hierarchy Upload [gcupld]

Scheduling Constraints

Schedule Information Description
Processing Cycle Ad Hoc
Scheduling Considerations Ad Hoc
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery

This is a file based upload and a file based restart/recovery logic. The commit_max_ctr
field should be set to prevent excessive rollback space usage, and to reduce the overhead
of the file I/O. The recommended commit counter setting is 10000 records (subject to
change based on implementation).

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected
Table Select Insert Update Delete
GEOCODE_TEMP YES YES NO YES
DISTRICT_GEOCODES YES YES NO YES
CITY_GEOCODES YES YES NO YES
COUNTY_GEOCODES YES YES NO YES
STATE_GEOCODES YES YES NO YES
COUNTRY_GEOCODES YES YES NO YES
GEOCODE_STORE YES NO NO NO
GEOCODE_TXCDE YES NO NO NO

16 Oracle Retail Merchandising System

/0 Specification

Output File Layout

Record Field Name Field Type Default Description
Name Value
FHEAD File head Char(5) FHEAD Describes the file line type
descriptor
Line id Char(10) 0000000001 Sequential file line number
Gentran ID Char(4) ‘GCUr Identifies which translation
Gentran uses
Current date Char(14) File date in
YYYYMMDDHH24MISS format
FDETL File record Char(5) FDETL Describes file line type
descriptor
Line id Char(10) Sequential file line number
Country Char(4) Country Geocode
Geocode
State Geocode Char(4) State Geocode
County Geocode Char(4) County Geocode
City Geocode Char(4) City Geocode
District Geocode Char(4) District Geocode
Geocode Level ~ Char(6) Geocode Level Valid values are:
‘CNTRY,STATE’,/COUNTY’,
‘CITY’, 'DIST”
Geocode Char(40) Geocode Description
Description
Add Delete Ind Char(1) Add/delete Indicator
Valid values are: “‘A’, ‘D’
FTAIL File record Char(5) FTAIL Marks end of file
descriptor
Line id Char(10) Sequential file line number
Number of lines Number(10) Number of lines in file not

counting FHEAD and FTAIL

Batch Designs 17

Inventory Adjustment Purge [invaprg]

Inventory Adjustment Purge [invaprg]

Functional Area
Inventory Adjustment

Module Affected
INVAPRG.PC

Design Overview
The Inventory Adjustment Purge module deletes all obsolete inventory adjustment
records whose adjustment date has elapsed by a pre-determined number of months. The

number of months that inventory adjustment records are kept before they are purged by
this batch is defined in the SYSTEM_OPTIONS table.

Scheduling Constraints

Schedule Information Description
Processing Cycle AD-HOC (monthly)
Scheduling Considerations N/A
Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A

Restart/Recovery

N/A

Locking Strategy

N/A

Performance Considerations

N/A
Key Tables Affected
Table Select Insert Update Delete
UNIT_OPTIONS Yes No No No
PERIOD Yes No No No
INV_AD]J No No No Yes

Shared Modules
N/A

/O Specification
N/A

18 Oracle Retail Merchandising System

Price History Data Purge [prchstprg.pc]

Price History Data Purge [prchstprg.pc]

Functional Area

Pricing

Module Affected
PRCHSTPRG.PC

Design Overview

The PRCHSTPRG program deletes price_hist records, which are older than a number of
retention days specified in a new column added to system_options table as
system_options.price_hist_retention_days. This program keeps the latest record for the
combination of item, location and tran type and deletes the rest of the records, which fall
in the specified period of retention days.

Scheduling Constraints

Schedule Information Description
Processing Cycle PHASE AD-HOC (daily)
Scheduling Considerations This program is run prior to phase 3 to improve

select operations.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme Multi threaded. Threaded by table partition
Restart/Recovery

This program will use the commit_max_ctr on the restart_control table to
periodically commit SQL delete operations. Restart/Recovery is achieved by
processing records that have not been deleted. Table restart_bookmark stores the
ps_cur_restart_partition_position for partition position as bookmark_string to restart a
thread.

However, in cases where the price_hist table is very large, a particularly large rollback
segment may be specified to reduce the risk of exceeding rollback segment space. This
will depend on the size of normal rollback segments and the size of the price_hist table.

Locking Strategy
N/A

Security Considerations
N/A.

Performance Considerations

The commit_max_ctr field should be set to prevent excessive rollback space usage, and to
reduce the overhead of file I/O. The recommended commit counter setting is 10000
records (subject to change based on experimentation). In case price_hist table is very
large then the number of partitions on the table may be increased and then after the
number of threads for this program should be increased.

Batch Designs 19

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Key Tables Affected

Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
PRICE_HIST No No No Yes
DBA_TAB_PARTITIONS Yes No No No
/O Specification

Output File Layout
N/A

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Design Overview

The Pre/Post module facilitates multi-threading by allowing general system
administration functions (such as table deletions or mass updates) to be completed after
all threads of a particular program have been processed. A brief description of all pre- or
post-processing functions included in this program can be found in the Function-Level
Description section.

This program will take three parameters: username/password to log on to Oracle, a
program before or after which this script must run and an indicator telling whether the
script is a pre or post function. It will act as a shell script for running all pre-program
and post-program updates and purges (the logic was removed from the programs
themselves to enable multi-threading & restart/recovery).

For example, to run the pre-program script for the ccext program, the following should
be entered on the command line:

prepost user/password rpl pre

Tables Affected

TABLE

SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

all_constraints

all_ind_partitions

all_policies
alloc_detail
alloc_header

class

class_sales_forecast

class_sales_hist

class_sales_hist_mth

cost_change_trigger_temp

cost_susp_head
daily_data
daily_data_temp

KR Z R ZZ R KRR
Z2 Z 2 2 Z Z Z Z Z Z Z Z Z
ZzR~X22222Z2Z2Z2Z2ZZ
Z 2z 22X 2222 2Z2Z
Z 22 z2R~RXRKR2Z2222Z2Z2ZZ
K zZ2zR~X2z2z2~X2222Z2ZZ
Z 2 2 2 Z Z 2Z 2Z XX 2ZZ2Z

20 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

TABLE

SELECT

INSERT UPDATE

INDEX

DELETE TRUNCATE TRIGGER

dba_indexes
dba_triggers
dealfct_temp
deal_actuals_forecast
deal_actuals_item_loc
deal_bb_no_rebate_temp
deal_bb_rebate_po_temp
deal_bb_receipt_sales_tempp
deal_head
deal_item_loc_explode
deal_sku_temp

deps
dept_sales_forecast
dept_sales_hist
dept_sales_hist_mth
domain_class
domain_dept
domain_subclass
edi_daily_sales
edi_ord_temp
fif_receiving
fixed_deal
forecast_rebuild
groups
hist_rebuild_mask
ib_results

if_tran_data
invc_detail
invc_detail_temp
invc_detail_temp2
invc_head
invc_head_temp
item_forecast

item_loc
item_loc_temp
item_master
item_supp_country
item_supp_country_loc
mc_rejections
mod_order_item_hts
on_order_temp

ord_missed

Z 2272 ZRRRZRZRKZ2Z2RKZRZRKRZRZ22222Z<22Z<2z2<X<X2Z2ZZ<X<Z<XX

Z 72 72 Z Z Z Z X2 2 2 272 72 Z Z Z Z Z ZZ2ZZA<X2ZZZZZZZZZZZZ~<X<X<X<KZ<XKZZ

Z Z Z ZZ Z ZZ Z ZZXZZXZRZZ2Z2Z2RKZZZKKKZZZZZZZZ2ZZZZZZLZ

KRR RZZ2Z2Z22<2222Z2Z272ZR2Z<RZRKKZZ2Z2Z2Z2z2<2Z<X22Z2Z2Z2ZZZZZZZ

Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z ZZ ZZXZZZXXZZZZZZ2ZZZZZZZ

KRR ZZ22Z2ZR2Z22RKZRRZ2Z2ZRZRZRRZ2Z22Z2Z2<2Z<R2Z2Z<KZZZZZ

22272 222z Z 22 2222 ZZ2ZZZ2ZZZZ2ZZZZZZZZZZZZZZZZZZZZZ

Batch Designs 21

Pre/Post Functionality for Multi-Threadable Programs [prepost]

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

ord_temp

ordhead

ordsku

packitem

period
pos_button_head
pos_coupon_head
pos_merch_criteria
pos_mods
pos_money_ord_head
pos_payinout_head
pos_prod_rest_head
pos_store
pos_sup_pay_criteria
pos_tender_type_head
reclass_cost_chg_queue
reclass_head
reclass_item
reclass_trigger_temp
repl_attr_update_exclude
repl_attr_update_head
repl_attr_update_item
repl_attr_update_loc
repl_day

repl_item_loc
repl_item_loc_updates
rpl_alloc_in_tmp
rpl_distro_tmp
salweek_c_daily
salweek_c_week
salweek_restart_dept
sec_user_zone_matrix
stage_complex_deal_detail
stage_complex_deal_head
stage_fixed_deal_detail
stage_fixed_deal_head
stake_head
stake_prod_loc
stake_sku_loc

store

store_add

Z R R R ZZ2222Z<ZZZ2ZZRKRRRKKLIK KKK ZZZ2Z2Z22Z2Z2ZZ<X<XXXZ
2222 222 2Z2ZZZZRXRXKKKLKKKZZZZZZZX2Z222Z2Z2<2ZZZZZZZZ
Z Z R Z2Z2ZZZZZZZZ ZZZZZZZZZZZZZRSRXRRKRKLKKZLKKKZZZZZ
X Z2Z2ZZ 2 ZZ2Z ZX2Z22Z22Z2z2XZZZZZZRXZZZZZZZZZXZZZZZZZKX
Z R Z 2 2Z2ZZZZZZZZZZZZZZRKXKXKKKZZZZZZZZZZZZZZZZZZ
222 2 2ZZ<XRXRXKKK LK LK KKK ZZZZ2Z2ZZRXZZ2ZZZZZZZXZZZZZZZKX
22722 222 Z 22 2 22 2 ZZ2ZZZ2ZZZZZZ<XZZZZZZZZZZZZZZZZZ

subclass_sales_forecast

22 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

TABLE SELECT INSERT UPDATE INDEX DELETE TRUNCATE TRIGGER

vat_code_rates
vat_item
week_data_temp
wh

wh_store_assign

subclass_sales_hist N N N N Y N N
subclass_sales_hist_mth Y N N N Y N N
sup_data N N N N Y N N
sups_min_fail N N N Y N Y N
system_options Y N N N N N N
system_variables Y N Y N N N N
temp_tran_data Y N N N N Y N
temp_tran_data_sum N Y N N N Y N
tif_explode N N N Y N Y N
tran_data N Y N N N N N
tsf_head N N Y N N N N
Y N N N N N N
Y N N N N N N
N N N N N Y N
Y N N N N N N
N N N N Y N N

Batch Designs 23

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Scheduling Constraints

Processing Cycle: PHASE ALL (daily)

Scheduling Diagram: See scheduling flow for description of all pre-post
requirements in the daily run.

Pre-Processing;: N/A

Post-Processing: N/A

Threading Scheme: N/ A (single threaded)

Restart Recovery
N/A

Program Flow
N/A

Shared Modules
FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
UDA_SQL.CHECK_REQD_NO_VALUE
FORECASTS_SQL.GET_DOMAIN
ITEM_ATTRIB_SQL.GET_PACK_INDS
FORECASTS_SQL.GET_ITEM_FORECAST_IND
POS_UPDATE_SQL.POS_INVC_DETAIL_INSERT
CAL_TO_454_LDOM

CAL_TO_454_HALF

CAL_TO_CAL_HALF

CAL_TO_CAL_LDOM

CAL_TO_454_WEEKNO
CAL_TO_CAL_WEEKNO

CAL_TO_454

HALF_TO_CAL_FDOH

HALF_TO_CAL_LDOH

HALF_TO_454 FDOH

HALF_TO_454_LDOH
DBMS_RLS.ENABLE_POLICY

Function Level Description
Functions to be used by the individual program functions:
modify_indexes()

This function allows indexes to be disabled or rebuilt before and/ or after the action that
affects them. The individual program passes in the table name and mode (what action to
take “disable” or “rebuild”) and performs that action. The owner of the index is
determined using the synonym_trace function in the library oracle.pc.

get_lock()

This function locks the table that is passed to it. If this function fails to acquire a lock to
the specified table, it retries MAX_LOCK_TRIES times before returning a fatal error.

24 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

modify_partition_indexes()

This is called by the modify_indexes function to determine if the indexes that need
modified are partitioned indexes. If so, then the statement is modified to take that into
account to accomplish the action. Index_owner, index_name and mode is passed to this
function. Nothing is passed back out.

truncate_table()

The table_name is passed to this function so that it can be truncated. The owner of the
table is determined by using the synonym_trace function in the library oracle.pc.

modify_trigger()

Allows triggers to be disabled or enabled before or after certain processes. The
table_name, trigger name and mode(“DISABLE” or “ENABLE”) are passed to this
function and the appropriate action is taken. No values are passed back to the calling
function.

alter_constraints()

This function diables, enables, or rebuilds a table constraint based on the table name and
the mode passed into it. It is called by vendinv_pre().

truncate_user_sec_table()

This is a function used to run the szonrbld pre functions that will truncate the
sec_user_zone_matrix table. Disables any indexes prior to the truncation on the
associated table and rebuilds/enables them following the truncation.The user running
this program for this function must have been granted the ‘drop any table” and ‘alter any
index’ system privilege, or be the owning schema user.

get_454_ldom()
This function calls the procedure CAL_TO_454_LDOM to get the 454 last day of month.
get_454_half()

This function calls the procedure CAL_TO_454_HALF to get the 454 calendar half
number.

get_next_454_half()

This function calls the procedure CAL_TO_454_HALF to get the next end-of-month 454
calendar half number.

get_next_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the next end-of-month half
number on the regular calendar.

get_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the half number on the
regular calendar

get_cal_ldom()

This function calls the procedure CAL_TO_CAL_LDOM to get the end of the month on
the regular calendar.

get_454_weekno()

This function calls the procedure CAL_TO_454_WEEKNO to get the 454 week number in
half.

get_cal_weekno()

This function calls the procedure CAL_TO_CAL_WEEKNO to get the week number in
half on the regular calendar.

Batch Designs 25

Pre/Post Functionality for Multi-Threadable Programs [prepost]

get_454_date()

This function calls the procedure CAL_TO_454 to get the 454 calendar week number.
get_cal_fdoh()

This function calls the procedure HALF_TO_CAL_FDOH to get the first day of half.
get_cal_ldoh()

This function calls the procedure HALF_TO_CAL_LDOH to get the last day of half.
get_454_fdoh(void);

This function calls the procedure TO_454_FDOH to get the first day of half in 454
calendar.

get_454_ldoh(void)

This function calls the procedure HALF_TO_454_LDOH to get the last day of half in 454
calendar.

get_tomorrow()
This function gets the next day after the vdate.
get_forecast_ind()

This function cals FORECASTS_SQL.GET_SYSTEM_FORECAST_IND to get the
system_forecast_ind.

validate_reclassify()

Validates the reclassification. If the reclassification is rejected, then the data from the
RECLASS_TRIGGER_TEMP table is deleted, else the data is inserted into
RECLASS_COST_CHG_QUEUE table.

check_stock_county()

This function checks for the existence of a stock count of an item in the
STAKE_SKU_LOC or STAKE_PROD_LOC.

check_order()

This function checks for the existence of an order for an item in the ORDHEAD and
ORDSKU tables.

check_uda()

This function calls UDA_SQL.CHECK_REQD_NO_VALUE which determines if an
item's new hierarchy has any required UDA defaults that the item is not currently
associated with.

check_domain_exists()

This function calls FORECASTS_SQL.GET_DOMAIN to check for the existence of the
domain for a merchandise hierarchy.

check_forecast()

This function validates the reclassification of an item based on forecast indicator. First, it
checks if the item passed is a pack through the package call to
ITEM_ATTRIB_SQL.GET_PACK_INDS. Then for non-pack items, it calls
FORECASTS_SQL.GET_ITEM_FORECAST_IND to get the item forecast indicator.
delete_reclass_trigger_temp()

This function deletes the records for a given item from the RECLASS_TRIGGER_TEMP.

26 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Individual Program Functions

rpl_pre()

This function truncates the following tables before replenishment extracts are performed:
= ORD_TEMP

ORD_MISSED

It also disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index” system
privilege, or be the owning schema user.

salweek_pre()

This function truncates, then populates the tables SALWEEK_C_WEEK,
SALWEEK_C_DAILY, and SALWEEK_RESTART_DEPT.

SALWEEK_C_WEEK is populated with records from the tables DAILY_DATA_TEMP,
and WEEK_DATA whose eow_date are between the last eow date and the current eow
date.

SALWEEK_C_DAILY is populated with records from the tables DAILY_DATA and
DAILY_DATA_TEMP whose eow_date are between the last eow date and the current
eow date.

SALWEEK_RESTART_DEPT is populated with the departments, threads, and the count
of department records in the SALWEEK_C_WEEK.

salweek_post()

Updates the last end-of-week date on the SYSTEM_VARIABLES table to the run date
after all weekly stock ledger data has been processed.

salmth_post()

Updates the following SYSTEM_VARIABLES columns to reflect the current date’s values
after all monthly stock ledger data has been processed:

= last_eom_half_no

= Jast_eom_month_no

= Jast_eom_date

= next_eom_date

= Jast eom_start half

= Jast_eom_end_half

= Jast_eom_start month
= last_eom_mid_month
= Jast_eom_next_half no
= last_eom_day

= Jast_eom_week

= last_eom_month

= last_eom_year

= Jast_eom_week_in_half

rplapprv_pre()

Batch Designs 27

Pre/Post Functionality for Multi-Threadable Programs [prepost]

This function truncates the SUPS_MIN_FAIL table. It disables any indexes prior to the
truncation on the associated table and rebuilds/enables it after being truncated. The user
running this program for this function must have been granted the “drop any table” and
‘alter any index” system privilege, or be the owning schema user.

rplatupd_pre()

This function truncates the MC_REJECTIONS table so that it is free to hold new mass
change rejections. It disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation. The user running this program for
this function must have been granted the ‘drop any table” and “alter any index” system
privilege, or be the owning schema user.

rplatupd_post()

This function truncates the holding tables REPL_ ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC after their records have been processed. It disables any
indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been
granted the “drop any table” and “alter any index” system privilege, or be the owning
schema user.

rilmaint_post()

This function locks then truncates the REPL_ITEM_LOC_UPDATES table after these
records are processed so the table is free to hold new updates. It disables any indexes
prior to the truncation on the associated tables and rebuilds/enables them following the
truncation. The user running this program for this function must have been granted the
‘drop any table” and “alter any index” system privilege, or be the owning schema user.
supmth_post()

Deletes records from table SUP_DATA after all daily supplier data records have been
rolled up to month level.

sccext_post()

Updates all processed supplier cost change record status to ‘Extracted’.

hstbld_pre()

Deletes sales history data for the dept exists in the table hist_rebuild_mask from the three
tables subclass_sales_hist, class_sales_hist and dept_sales_hist prior to running hstbld in
rebuild mode.

hstbld_post()

This function truncates the holding table MASK_REBUILD after building history records.
It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table” and ‘alter any index” system
privilege, or be the owning schema user.

posdnld_post()

This clears the POS_MODS table after all records have been downloaded to the POS. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables
them following the truncation. The user running this program for this function must
have been granted the ‘drop any table” and “alter any index’ system privilege, or be the
owning schema user.

28 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

poscdnld_post()

This clears the config_status and loc_grp_status in POS_LOC_GRP and sets all values of
extract_req_ind to ‘N’". It clears the status column in POS_MERCH_CRITERIA. It also sets
the status_ind column in POS_STORE to ‘N’.

regext_post()

This function updates the TSFHEAD table and sets the status to “A’, approval_id to
‘BATCH’, approval_date to the vdate, and the repl_tsf_approve_ind to ‘N’ where the
repl_tsf_approve_ind is equal to ‘Y.

likestore_post()

This function should only be run after both storeadd.pc and all threads of likestore.pc
have successfully completed.

In the REPL_ITEM_LOC, table, likestore_post selects and inserts all information from the
a like store for the new store.

stkupd_pre()

Calls the stored function DBMS_MVIEW .REFRESH.

stkupd_post()

This function disables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC.
dtesys_post()

Enables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC table.

ocirog_pre()

This function truncates the rpl_net_inventory_tmp table, which is populated by the
ociroq.c and queried from reqgext.pc. This function also inserts records into
RPL_DISTRO_TMP values from ALLOC_DETAIL, and ALLOC_HEAD table, and into
RPL_ALLOC_IN_TMP values from ALLOC_DETAIL, ALLOC_HEAD, and ORDHEAD
table. This function also creates a unique index in these two destination tables.
rplext_posty()

Truncates the tables RPL_DISTRO_TMP, and RPL_ALLOC_IN_TMP.

posupld_post()

This updates the columns total_merch_cost, total_gty, invc_qty, INVC_HEAD tables
based on the corresponding columns in the INVC_HEAD_TEMP table.

vatdIxpl_post()

This inserts into pos_mods all transaction level items on the vat_item table where the
item has a new tran_code. Also, if a sub-transaction level item is on vat_item, it is
inserted into the pos_mods table, along with its parent item. These items are not picked
up by the vatdlxpl program because the vat_code rate has not changed.

saleoh_pre()

Calculates the next_eom_date, and updates the SYSTEM_VARIABLES.

dealday_pre()

This gets the total sales and purchases from the TEMP_TRAN_DATA table and inserts a
new record in TEMP_TRAN_DATA_SUM based on dept, class, subclass, loc_type,
location, tran_date, and tran_code.

dealday_post()

Copies the contents of the table TEMP_TRAN_DATA_SUM into TRAN_DATA table.
Afterwards, then TEMP_TRAN_DATA_SUM is truncated.

Batch Designs 29

Pre/Post Functionality for Multi-Threadable Programs [prepost]

hstbldmth_post()
This is responsible for deleting records in the following tables:
= CLASS_SALES_HIST_MTH
= SUBCLASS_SALES_HIST_MTH
= CLASS_SALES_HIST_MTH
= DEPT_SALES_HIST _MTH

THE FOLLOWING FUNCTIONS SHOULD BE RUN AFTER THE edidlprd PROGRAM!
edidlprd_post()

Deletes old records from the EDI_DAILY_SALES table after they have been processed.
festrbld_post()

This truncates the holding table FORECAST_REBUILD after all records have been
processed. It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table” and “alter any index” system
privilege, or be the owning schema user.

vrplbld_post()

This truncates the EDI_ORD_TEMP table after all replenishment orders have been build
from the data held there. Disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any
index’ system privilege, or be the owning schema user.

cntrordb_post()
Sets the last_cont_order_date on system_variables to vdate.
fifgldnl_post()

If Oracle Financials is being used, delete everything from the fif receiving table and
repopulate it from the if_tran_data table. Disables any indexes prior to the truncation on
the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the “drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.

fsadnld_post()

Updates the load_sales_ind to ‘N’ for all records on the appropriate domain table -
domain_dept, domain_class, or domain_subclass, where system_options.domain_level =
‘D’,"C, or ‘S, respectively.

policy_enable()

Enables or disables policies.

whstrasg_post ()

Deletes all warehouse store assignment records from the warehouse store assignment
table if the assignment date (wh_store_assign.assign_date) is less than or equal to the
current date (period.vdate) minus the warehouse store assignment history days
(system_options.wh_store_assign_hist_days).

30 Oracle Retail Merchandising System

Pre/Post Functionality for Multi-Threadable Programs [prepost]

costcalc_post()

This truncates the deal_sku_temp table. This disables any indexes prior to the truncation
on the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.

tifposdn_post()

This truncates tif_explode table. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running
this program for this function must have been granted the ‘drop any table” and ‘alter any
index’ system privilege, or be the owning schema user. It disables any indexes prior to
the truncation on the associated tables and rebuilds/enables them following the
truncation.

htsupld_pre()

This truncates the mod_order_item_hts table so that reports will be correct and not
include data from previous runs of htsupld. It disables any indexes prior to the
truncation on the associated tables and rebuilds/enables them following the truncation.
The user running this program for this function must have been granted the ‘drop any
table’ and “alter any index’ system privilege, or be the owning schema user.
onordext_pre()

This truncates the on_order_temp table. It disables any indexes prior to the truncation on
the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the “drop any table” and
‘alter any index” system privilege, or be the owning schema user.

precostcalc_pre()

This processeses records from the COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP tables. Reclass_trigger_temp is populated only by database
trigger and cost_change_trigger_temp is populated by database trigger and
edi_cost_change_sql.create_cost_chg.

This function will either insert new records or update existing ones on
reclass_cost_chg_queue. Both tables, COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP are truncated and their indexes rebuilt at the end of this
function. The user running this program for this function must have been granted the
‘drop any table” and ‘alter any index” system privilege, or be the owning schema user.
reclsdly_pre()

This disables the trigger RMS_TABLE_RCS_BIDR on the reclass_item table. The user
running this program for this function must have been granted the ‘alter any trigger’
system privilege, or be the owning schema user.

Reclsdly_post()

Call the packaged function RECLASS_SQL.POST_PROCESS which does the following
tasks:

If the item is moving to a new dept, class, or subclass a record is inserted to the table
hist_rebuild_mask.

If the item is reclassified to a new department, and the single_style_po_ind =“Y’ then the
order in the table ordhead is updated with the new department.

If the item is reclassified to a new department, then determine if the item is included in
an item-list and insert a record into skulist_dept if the item is in an item-list and the new
department is not associated to the item-list..

Batch Designs 31

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Delete item records associated with the old hierarchy that exist on the
DEAL_ITEM_LOC_EXPLODE table.

Also, Clear the dept field in the ordhead table when the item has changed departments
ibcalc_pre()

This updates the status on ib_results to “U’'nprocessed where the status = “W’orksheet so
after ibcalc is run, multiple records in “W’orksheet status will not exist for each
item/location.

festprg_pre()
This disables any indexes prior to the truncation on following tables. This is run
BEFORE the fcstprg.pc program on PARTITIONED TABLES only:

= JTEM_FORECAST

= DEPT_SALES_FORECAST

= CLASS_SALES_FORECAST

= SUBCLASS _SALES_FORECAST

The user running this program for this function must have been granted the “alter any
index’ system privilege, or be the owning schema user.

festprg_post()

This rebuilds the indexes following truncation of following tables:
= ITEM_FORECAST

= DEPT_SALES FORECAST

= CLASS_SALES _FORECAST

= SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the “alter any
index’ system privilege, or be the owning schema user.

dealinc_pre()
Call get_sys_date()
Call size_arrays()

Loops through the deal actuals item loc table and create any item/loc/order
combinations in the table that have previous turnovers but do not exist in future periods.

dealfct_pre()

This inserts details of forecast periods for active deal components that require processing
into dealfct_temp table.

dealact_pre_no_rebate()

Truncates the deal_bb_no_rebate_temp table.

Then inserts billback NO Rebate type of deal into deal_bb_no_rebate_temp.
dealact_pre_rebate_po()

Truncates the deal_bb_rebate_po_temp table.

Then inserts billback rebate PO type of deal into deal_bb_rebate_po_temp.
dealact_pre_receipt_sales ()

Truncates the deal_bb_receipt_sales_temp.

Then inserts billback rebate Sales and Receipt type of deal into
deal_bb_receipt_sales_temp.

vendinvc_pre()

32 Oracle Retail Merchandising System

Reclassification of Item [reclsdy]

Truncate the STAGE_COMPLEX_DEAL_HEAD table.
Truncate the STAGE_COMPLEX_DEAL_DETAIL table.
Then inserts complex deals for invoicing into vendinvc_temp.
vendinvf_pre()

Truncate the STAGE_FIXED_DEAL_HEAD table.
Truncate the STAGE_FIXED_DEAL _DETAIL table.
vendinvc_post()

Get vdate.

Call process_deal_head().

vendinvf_post()

Get vdate.

Call process_fixed_deal().

process_fixed_deal()

For each active Fixed Deal record where the Collect End Date is earlier than the vdate, set
it’s status to Inactive.

process_deal_head()

For each active Deal Head record where Est Next Invoice Date, Close Date, Last Invoice
Date and Last EOM Date are earlier than vdate, AND Billing Type is Off Invoice and
Invoice processing Logic |="NO’, set the Est Next Invoice Date to null.

/O Specification
N/A

Technical Issues
N/A

Reclassification of Item [reclsdy]

Design Overview

The Item Reclassification batch program is executed in order to reclassify items from one
department, class or subclass to another. The reclassification of items into a different
merchandise hierarchy level is initiated or requested online in the Item Reclassification
dialog, with an effective date specified. A parameter passed to the program dictates
whether validation (P) or validation and execution (E) logic is performed. Each record
that is processed is written to the reclass_error_log with a success_ind of ‘S’ if successful
or ‘R’ if rejected. In the event that the record fails it will also be written to the
mc_rejections table which provides details as to the reason for the rejection.

Batch Designs 33

Reclassification of Item [reclsdy]

As noted above, the logic executed by the program is directed by the process mode. If the
process mode = ‘P’ (pre-validation), only the logic validating the item reclassification is
performed. The item will NOT be reclassified and the only impact to the item will be a
record written to the reclass_error_log table. If the item passes the reclassification
validation a record is written to the reclass_error_log with success_ind = ‘S’. If the item
fails the reclassification validation a record is written to the reclass_error_log with
success_ind = ‘R’ and a record is also written to the mc_rejections table. In pre-validation
mode the program reads in all reclassification requests for each item being reclassified
and performs the following logic:

= check if item is forecastable and if it is, then check for the existence of a domain. If the
item is forecastable and no domain association to the new merchandise hierarchy
level exists, the item fails validation. This only holds for non-pack Items since pack
items are not forecastable.

= check if the item has UDA (user defined attributes) defined for all required UDA’s of
the new merchandise hierarchy level, if not the item fails validation

= check if the item has UDA defined for all UDA’s that have default set up for the new
merchandise hierarchy level, if not, a warning message is written to the report, but
the item passes validation

= check if the item exists on an approved order. If the item exists on an approved order
and the system level variable single_style_po_ind = N, the item fails validation

If the process mode = ‘E’ the program first performs the same validation logic that is
listed for pre-validation mode, and for those items that pass validation the program
executes the item reclassification. In execution mode the program reads in reclassification
events that are scheduled for tomorrow (vdate +1) or earlier. In addition to the validation
noted above the following logic is executed:

= check if the item exists on an approved order. If the item exists on an approved
order, the system level variable single_style_po_ind = “Y’, and the item is being
moved to a new department the order will be updated with the new department.
Also, the OTB table is updated to transfer cancel_amt, approved_amt and
received_amt from the old merchandise hierarchy level to the new merchandise
hierarchy level

= check if the item is scheduled for a stock count. If the item is scheduled for a stock
count, the stock count is scheduled by item-list, and the stock date has not yet been
reached update the dept, class, subclass (as appropriate) for the stock count. If the
item is scheduled for a unit stock count*, the stock count is scheduled by
merchandise hierarchy, and the reclassification is scheduled between the stock
lockout date and the stock take date one of three updates will occur:

= if reclassified item’s new dept, class, and subclass and item’s old dept, class,
subclass are both included in stock count update stake_sku_loc with new dept,
class, subclass

= if reclassified item’s new dept, class, and subclass are included in stock count but
item’s old dept, class, subclass are not included in stock count add the item to
stake_sku_loc

= if reclassified item’s new dept, class, and subclass are not included in stock count
but item’s old dept, class, subclass are included in stock count delete the item
from stake_sku_loc

34 Oracle Retail Merchandising System

Reclassification of Item [reclsdy]

* If the item is scheduled for a unit and dollar stock count the reclassification will fail
validation.

update item_master with the new merchandise hierarchy

insert records into pos_mods with a transaction code of 13 (item reclassification) for
each item/store combination

insert records into tran_data with transaction types of 34 (reclassification in) and 36
(reclassification out) for each sku/store combination

if the reclassification causes a change of domains for the item, the item store tables
are updated, setting the last_sales_export_date to NULL. A NULL will result in all
the item store's sales history to be downloaded during the sales download process to
the external forecasting system. This is required because of the domain change.

if an item that is part of an item-list is reclassified to a new department, and the new
department is not associated to the item-list, insert a record into skulist_dept with the
new department/item-list

insert new and old dept number into hist_rebuild_mask so that the sales history of
the dept where the reclassified items moved from/to can be rebuilt later when
calling hstbld.pc.

Tables Affected
TABLE INDEX SELECT INSERT UPDATE DELETE
DEAL_CALC_QUEUE No Yes Yes No No
HIST_REBUILD_MASK No No Yes No No
ITEM_MASTER No Yes No Yes No
MC_REJECTIONS No No Yes No No
ORDHEAD No Yes No Yes No
ORDSKU No Yes No No No
POS_MODS No No Yes No No
RECLASS_ERROR_LOG No No Yes Yes Yes
RECLASS_HEAD No Yes No No Yes
RECLASS_ITEM No Yes No No Yes
SYSTEM_OPTIONS No Yes No No No
TRAN_DATA No No Yes No No

Stored Procedures / Shared Modules (Maintainability)
FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
FORECASTS_SQL.GET_DOMAIN
RECLASS_SQL.ITEM_PROCESS

ITEMLIST _ATTRIB_SQL.ITEM_IN_SKULIST

ITEMLIST_MC_REJECTIONS_SQL.INSERT_REJECTS

Batch Designs 35

Reclassification of Item [reclsdy]

Function Level Description
main()
standard Oracle Retail main function that calls init(), process(), and final()
init()
Retrieve system level variables; single_style_po_ind, otb_system_ind and
stake_lockout_days
Initialize restart/recovery
Declare a structure of arrays to store rows read in from the driving cursor

Set up arrays to receive fetches in table_process() - memory should be dynamically
allocated so that the cursor fetches arrays the size of max counter on restart_control
(pi_commit_max_ctr)

Get the current date

Call delete_log() function to purge reclass_error_log of all records with the same
process_ind as the program is currently running

Process()

Open driving cursor
Get the system forecast indicator
Enter while loop

Fetch pi_commit_max_ctr records at a time into the structure, exiting loop when
all rows are processed

If process_mode =“E":

0 Call delete_reclass_head() function to delete previous reclassification
event

Call check_domain_exists() function
If the item group has changed issue a commit and set a new savepoint

Call delete_reclass_item() function to delete the reclass item

O O O ©O

If any item in the item group has failed reclassification skip the rest of
the items in the group, else call process_item() function to process the
item reclassification.

0 Finally, if the reclass has not failed, call the delete_dile() function.
Else if process_mode = ‘P’

0 If the item group has changed set a new savepoint and call the
check_domain_exists() and process_item() functions to process the item
reclassification validation

0 If the item reclassification has failed rollback to the last savepoint and
call insert_reject_record() function to write a reject record to the
mc_rejections table and call insert_log() function to insert a record to the
reclass_error_log with a success_ind = ‘R’. If process_mode = “E’ call
delete_reclass_item() function to delete the item from reclass_item

Else if item reclassification is successful call insert_log() function to write a
record to the reclass_error_log with a success_ind =S’.

Check_domain_exists()
If system_forecast_ind = ‘Y’ get domain for new dept/class/subclass

Process_item()

36 Oracle Retail Merchandising System

Reclassification of Item [reclsdy]

Call PL/SQL function RECLASS_SQL.ITEM_PROCESS to perform
reclassification validation or validation/execution logic.

Delete_reclass_head()

Delete the reclassification event from reclass_head
Delete_reclass_item()

Delete the reclassification item from reclass_item
Insert_log()

Insert reclass log error record into the reclass_error_log table.
Insert_reject_record()

Call PL/SQL function ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS to
insert a record to the mc_rejections table

Delete_log()

Delete reclass_error_log records where the process_ind is equal to the
process_mode in which the program is currently running

Size_arrays()

Size the reclass_recs structure members.

Input Specifications
Driving cursor:
SELECT ROWIDTOCHAR(ri.rowid),
ri.reclass_no,
ri.item, /* Thisis alevel 1 item */
im.item,
NVL(im.item_parent,' "),
NVL(im.item_grandparent,'),
im.item_level,
im.tran_level,
rh.to_dept,
rh.to_class,
rh.to_subclass,
rh.reclass_date,
im.dept,
im.class,
im.subclass
FROM v_restart_reclass rv,
reclass_item ri,
reclass_head rh,
item_master im
WHERE rh.reclass_no = ri.reclass_no

AND rh.reclass_date <= decode(:ps_process_mode, 'E', TO_DATE(:ps_vdate,
YYYYMMDD"), rh.reclass_date)

AND (ri.item = im.item

OR ri.item = im.item_parent

Batch Designs 37

Reclassification of Item [reclsdy]

OR ri.item = im.item_grandparent)
AND rv.driver_value = rh.reclass_no
AND rv.driver_name =:ps_driver_name
AND rv.num_threads = TO_NUMBER(:ps_num_threads)
AND rv.thread_val =TO_NUMBER(:ps_thread_val)
AND (rh.reclass_no > NVL(:ps_restart_reclass_no, -999) OR
(rh.reclass_no = :ps_restart_reclass_no AND
ri.item > :ps_restart_item))
UNION
-- This is for simple pack
SELECT ROWIDTOCHAR(ri.rowid),
ri.reclass_no,
ri.item,
im.item,
NVL(im.item_parent,' "),
NVL(im.item_grandparent,' '),
im.item_level,
im.tran_level,
rh.to_dept,
rh.to_class,
rh.to_subclass,
rh.reclass_date,
im.dept,
im.class,
im.subclass
FROM v_restart_reclass rv,
reclass_item ri,
reclass_head rh,
packitem pi,
item_master im
WHERE rh.reclass_no = ri.reclass_no

AND rh.reclass_date <= decode(:ps_process_mode, 'E', TO_DATE(:ps_vdate,
YYYYMMDD'), rh.reclass_date)

AND im.simple_pack_ind ="Y"

AND (im.item = pi.pack_no OR
im.item_parent = pi.pack_no OR
im.item_grandparent = pi.pack_no)

AND EXISTS (SELECT 'x'

FROM item_master im1

WHERE pi.item = im1.item
AND iml.item_level = im1.tran_level
AND (ri.item = im1.item

38 Oracle Retail Merchandising System

Reclassification of Item [reclsdy]

OR ri.item = iml.item_parent
OR ri.item = iml.item_grandparent))
AND rv.driver_value = rh.reclass_no
AND rv.driver_name = :ps_driver_name
AND rv.num_threads = TO_NUMBER((:ps_num_threads)
AND rv.thread_val = TO_NUMBER(:ps_thread_val)
AND (rh.reclass_no > NVL(:ps_restart_reclass_no, -999) OR
(rh.reclass_no = :ps_restart_reclass_no AND

riitem > :ps_restart_item))

ORDER BY 2,
3;

Output Specifications
N/A
Scheduling Considerations
Processing Cycle: PHASE 3 (daily)
Pre-Processing;: cremhierdly.pc
Post-Processing;: prepost reclsdly post
Threading Scheme: v_restart_reclass

Restart Recovery

The reclsdly.pc batch program has multi-threading capabilities (reclass_no) as well as
restart/recovery functionality. The logical unit of work for this program is reclass_no,

item.

Batch Designs 39

	Preface
	Audience
	Related Documents
	Customer Support
	Conventions

	Introduction
	Overview

	Batch Designs
	Distro Price Change Publish [distropcpub]
	EDI Location Address to Vendor Download [edidladd]
	New and Changed Supplier Address Upload [ediupadd]
	Oracle Retail Demand Forecasting Purge [fcstprg]
	Oracle Retail Demand Forecasting Rollup by Department, Class and Subclass [fcstrbld_sbc]
	Oracle Retail Demand Forecasting Rollup [fcstrbld]
	Geocode Hierarchy Upload [gcupld]
	Inventory Adjustment Purge [invaprg]
	Price History Data Purge [prchstprg.pc]
	Pre/Post Functionality for Multi-Threadable Programs [prepost]
	Reclassification of Item [reclsdy]

