Oracle® Retail Merchandising System
Operations Guide Addendum
Release 11.0.12

August 2007

ORACLE

Oracle® Merchandising System Operations Guide Addendum, Release 11.0.12

Copyright © 2007, Oracle. All rights reserved.
Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third

party.

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server — Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in

Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET
Software Inc. of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and
Oracle Retail Back Office applications.

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of
San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(xi) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

Contents

= - o ix
AUAIEIICE ..o ix
Related DOCUMENLS..........coiviiiiiiiniiiiiiiii e ix
CUSLOMET SUPPOTL...coiiiiiiiiiiiiiiiic s ix
Review Patch Documentation ... ix
Oracle Retail Documentation on the Oracle Technology Network..........c.ccccccciiiinncne. X
CONVENEIONS ...t st s X

T INrOdUCLION ... e s 1
OVEIVIEW ..ottt 1

P = = L (o T D 1= [o 3
Sales Audit ACH Download [saexpach]........cccccevvvininniiiiiiiiiiiniccccccccnes 3

FUNCHONAL ATA.....ovieiiiiiiciciiccec ettt 3
Module Affected ... 3
DeSigN OVEIVIEWcoooiuiiiiiieieieiicccicie ettt 3
Background Information — Quick Overview of the ACH process...........c.cccoceuneee. 4
Data SECUTLILY «..oeeeiviiiece s 5
Scheduling ConStraintscoceviiiieiicieicec e 6
Restart RECOVETY ...ttt s 6
Program FLOWc.cuoviiiiii s 7
Shared MOUIES ... s 7
Function Level DeSCIiptioncccoeueucueuiiiiiininnineieieeeiccccenseeeeee s 7
I/0 SPeCfiCation........ccceveueeueiciciiiiiiiiiiirece et 12
Sales Audit Export to GL [SaeXPgI]cccovuviviiiiiiiiiiiiiiiininiccccccccces 22
Design OVEIVIEW ..o 22
Tables Affected.. ... 22
Program FLOWc.couiiiiiit s 23
Global Variable Descriptionsccccceieieieieiiicicie s 24
Function Level Descriptioncccoociioiiiiiiiiciceec s 24
Input/Output Specifications..........cccoveveiieiiiiii 28
Integrity CONSTIAiNtS.......ccoviveieieiiiiccc e 28
Restart / RECOVETYcoiiiiiiiiiiiiiiiiiii s 28
Sales Audit Export to ReIM [SaeXPIm].......cccovueuiuiuiiiiiiiiiinrrccicccecccc e 29
Design OVEIVIEW ... s 29
Stored Procedures / Shared Modules (Maintainability)ccccccceeeveevvnnccennes 30
PaCKaGeS: ..o 31
Input Specificationsccceuiiiiiiiiiiiiiii 31
Output SpecifiCationsccccciiiiiiiiiiiiiici e 32
Function Level Descriptioncccocciioiiiiiiiiciceeccc s 32
Field Mapping between ReSA and Invoice Matchingcccooooviiiieiiinnnn 34
Scheduling Considerations............coocciieieieiiiiiiciciec s 39

LOCKING SErate@yccoveeeeviririeieieiciciiiirereree e 39

ReStart/ RECOVETY ..ot 39
DrivINgG CUISOTS....oouiiiiiiiiiciicic s s 40
Sales Audit Export to RDW [saeXprdw]cccccoeviiiiiiiiiiiiiccceecccceeae 42
Design OVEIVIEW ...ttt 42
Global Variable DeScriptionscccceueieieiiiiicicieeecce s 43
Function Level Description ..o 44
Stored Procedures / Shared Modules (Maintainability)ccccoovvinnninnnnns 59
OUtPUL FIIES ... 60
Scheduling Considerations............ccoeevrueinieiniiiciic e 60
LOCKING StrateZycvovvieiiiicieieiecct s 60
Restart / RECOVETY ... 60
PeIfOIMANCE......cocviviiiiiiiciicc s 63
Security Considerationscccociioiriiiniririeieecii e 63
Sales Audit Export to RMS [SaeXPImS]........cccoeiuiiiiiiniiiiieiieieicccieee e 64
PUIPOSE. ...ttt s 64
Design OVEIVIEW ...t 64
Program FLOWc.couiiiiie s 65
Function Level Descriptionccooiiioioiiiiiicicecccc s 66
Stored Procedures / Shared Modules (Maintainability)ccoevniiniinnnnns 76
Input SPecificationscooeueiiieiicieiicic 77
Output SPecificationscccueviueiiicieiieece e 79
Database INtegrity........cocoooiiiriiiiiiiic e 79
Parameter Validation..........cccocoviviiiiiiiiiiiiiiccc s 79
Integrity CONSLraints. ..o 79
Scheduling Considerations............cccccorrriririeieieieiiiiii e 79
LocKINg Strate@yccovvviviriiiiiiiiiiiiiiiicc e 79
Restart / RECOVETY ... 80
Sales Audit Export to UAR [SaeXpuar]ccccceeveiiiiininiiiicceeeecceee e 80
Functional AT€a........ccoviiiiiiiiiiiiiiiiiiii 80
DeSign OVEIVIEWc.coiiuiiiiiiiiiccecicie et 80
Scheduling CoNStraintsccceveiiiiicicieiee s 81
Restart RECOVETYovoviiiiiiiiiiiiiiiiiiit s 81
Program FLOWc.ouoviiiiiciiei e 81
Shared MOULES ... s 81
Function Level DeSCriptionccccoviiiiiieiiiiiiiiiiineeeeeeeeeeecc e 82
I/ 0O SPeCfiCation........ccceveurerieiciciciiiiiiiire e 85
Stock Ledger Append [salapnd] ..o 86
Design OVEIVIEWccccviviiiiiiiiiiiiic s 86
Scheduling CONSLraintsccccciiiiiiiiiiiiiic e 86
Restart RECOVETY ..o s 86
Program FLOWc.c.ouoiiiiie s 86

SRATEA MOAULES ...ttt et e ettt e e e e e s ate e e seaaeeessnaeeessnnes 86

Function Level DeScriptionccccoviiiiiirieiiiiiiiirreeeeeeeeeeece e 86
I/O SPeCfiCation........ccceveueieiciciciiiiiiiirreeee e 87

vii

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:

= Key system administration configuration settings
= Technical architecture

Audience

Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting RMS functionality will find valuable information
in this guide. There are three audiences in general for whom this guide is written:

* Business analysts looking for information about processes and interfaces to validate
the support for business scenarios within RMS and other systems across the
enterprise.

= System analysts and system operations personnel:

Who are looking for information about RMS processes internally or in relation to the
systems across the enterprise.

Who operate RMS regularly.

* Integrators and implementation staff with overall responsibility for implementing
RMS.

Related Documents

For more information, see the following documents in the Oracle Retail Merchandising
System Release 11.0.12 documentation set:

= Oracle Retail Merchandising System Installation Guide
= Oracle Retail Merchandising System Release Notes

= Oracle Retail Merchandising System Data Model

= Oracle Retail Merchandising System Batch Schedule

Customer Support

https:/ /metalink.oracle.com

When contacting Customer Support, please provide the following:

= Product version and program/module name

= Functional and technical description of the problem (include business impact)
= Detailed step-by-step instructions to re-create

= Exact error message received

= Screen shots of each step you take

Review Patch Documentation

For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

Preface ix

https://metalink.oracle.com/

Oracle Retail Documentation on the Oracle Technology Network

In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:

http:/ /www.oracle.com/technology /documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions

Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
It is used to display examples of code

Ahyperlink appears like this..

x Oracle Retail Merchandising System

http://www.oracle.com/technology/documentation/oracle_retail.html

1

Overview

Introduction

The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 11.0 Operations Guide and any subsequent RMS 11.0.x Operations
Guide Addendums. (The RMS 11.0 Operations Guide is the most recent release of the full
Operations Guide for the 11.0 release of RMS.) Using this document in conjunction with
the Oracle Retail Merchandising System 11.0 Operations Guide provides retailers with a
complete overview of the application.

For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail
Merchandising System 11.0.12 Release Notes.

Introduction 1

2

Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 11.0 Operations Guide or any subsequent RMS 11.0.x Operation Guide
Addendums.

Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Sales Audit ACH Download [saexpach]

Functional Area
Sales Audit Export — Automated Clearing House (ACH)

Module Affected

saexpach.pc

Design Overview

This module will post Store/day deposit totals to the SA_STORE_ACH table and bank
deposit totals for a given day to a standard ACH format file. The ACH export deviates
from the typical Sales Audit export in that store/days must be exported even though
errors may have occurred for a given day or store (depending on the unit of work
defined) and also the store/day does not need to be closed for the export to occur. The
nature of the ACH process is such that as much money as possible must be sent as soon
as possible to the consolidating bank. Any adjustments to the amount sent can be made
via the sabnkach form.

Also, we are assuming that there is only one total to be exported for ACH per store/day.

Deposits for store/days that have not been ‘F'ully loaded will not be transferred to the
consolidating bank. After they are fully loaded, their deposits will be picked up by the
next run of the program.

Furthermore, the program estimates a 0 for a store/day that is closed, for example due to
a holiday. An example is shown below (Wednesday is a holiday):

Mon [Tues |Wed [Thu |Fri
Estimated deposit for next day 5 0 — 10
Adjustment to estimated deposit for this day | ... 5 — 15 0
Exported at close 5 — 25 0
Actual deposit 10 — 15 10

In this example, we export only 5 (the adjustment) at close of Tuesday. The program is
not run at close on Wednesday because it does not have a store_day_seq_no. Thus, on
Thursday, the estimate for that day is 0 and the adjustment equals the actual. Also, on
Thursday, we estimate that the total is going to be 10 and we export 25 at close of

Thursday. Thus, the bank account should return to the minimum balance at this point.

Batch Designs 3

Sales Audit ACH Download [saexpach]

Table Operations Performed

Select Insert Update Delete

Period Yes No No No
Sa_store_day Yes No No No
Sa_export_log Yes No Yes No
Sa_exported No Yes No No
Sa_store_ach Yes Yes Yes No
Sa_bank_ach Yes Yes Yes No
Sa_total Yes No No No
Sa_bank_store Yes No No No
Sa_store_day_write_lock Yes No Yes No
Sa_store_day_read_lock Yes No No No
Store Yes No No No
Partner Yes No No No

Background Information — Quick Overview of the ACH process

ACH stands for Automated Clearing House and is a process by which funds can be
transferred electronically from one account to another, possibly at a different financial
institution. Instructions for each transaction are stored in a file, called an ACH file, which
is then transferred across the ACH Network to be processed. This document provides
only an overview of the process and will only describe points of interest for the saexpach
program. It is beyond the scope of this document to provide the details of this process.
Readers interested in knowing more about ACH should consult the 2000 ACH Rules
published by the National ACH Association (NACHA).

There are 5 participants in an ACH transaction:

1. The originating company (called the Originator). The Originator is the entity
requesting the transaction (i.e. this is where the transaction originates from).

The Originating Depository Financial Institution (ODFI).
The ACH Operator.
The Receiving Depository Financial Institution (RDFI).

o N

The receiving company (called the Receiver).
*It is important to note that the above description refers to direction of file transfers and
not to direction of money flow.

Since the ReSA client has control over both the stores and the headquarters, the
Originator can be either the former or the latter. To simplify the process, the
headquarters will be the Originator, as this would require only one file to be produced,
requesting money from each individual store. Figure 1 gives a pictorial overview.

4 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

ODFI ACH Operator
Consolidating » Third-party ¢ # ¢
Bank institution RDFI RDFI RDFI
1 Local Local Local
< ° bank bank bank
$$
A 4
o Receiver | Receiver Receiver
ACH QOriginator ReSA ReSA ReSA
File ReSA Client’s | $$ $8 | Client’s | Client’s Client’s
Headquarters Store Store | Store

Figure 1: Overview of an ACH Network

The file that is produced at the Originator is sent to the ODFI which then routes it to the
appropriate ACH operator(s). The latter will then contact the RDFI to request the money
transfer.

In ACH jargon, the type of transaction that is being requested is a Cash Concentration
and Disbursement (CCD). As of September 2000, however, transactions between
institutions in different countries require a Corporate Cross-Border (CBR) Transaction.
This program will meet this new requirement.

ACH is a US network of banks and therefore, this program should not be used for ACH
look-alike networks outside the US, such as in Europe, as the file formats may be
different. In other words, throughout this program, it is assumed that the country in
which the consolidating bank is based is the United States.

Furthermore, all amounts in the ACH file are expected to be in US dollars (USD).
Amounts for CBR transactions will have to be converted to USD.

Custom modifications can be made to this program such that output files that meet the
requirements of other networks can be created. It is expected that the general structure of
the program can be left unchanged and that only the functions that actually write the
data out would have to change.

Data Security

The fact that this program automates the transfer of funds on behalf of the user makes it a
likely target for electronic theft. It must be made clear that the responsibility of electronic
protection lies with the users themselves. Retek does not provide any kind of encryption
or authentication beyond what is provided by the operating system and the database
management system. Retek does provide some tips and recommendation to users:

1. A specific user should probably be used to run the program. This user would be the
only one (or one of a few) who has access to this program.

2. The umask for this user should be setup so as to prevent other users to read /write its
files. This would ensure that when the output file is created, it will not be accessible
to other users.

3. The appropriate permissions should be setup on the directory which holds the ACH
files. The most restrictive decision would be to not allow any other user to view the
contents of the directory.

Batch Designs 5

Sales Audit ACH Download [saexpach]

The password to this user should be kept confidential.

A secure means of communication should be implemented for transferring the file
from where it has been created to the ACH network. This may be done via
encryption, or by copying the file to a disk and trusting the courier to deliver the files
intact.

6. Oracle Retail assumes that the ACH network is secure.

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling process: satotals
and sarules. This module should not be run simultaneously with other modules:
saexprms, saexprdw, saexpim, saexpuar, and saexpgl.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)
Driving Cursor

This module is in two distinct parts, with two different logical units of work. Thus
restart/recovery has to be implemented so that the first part does not get reprocessed in
case the program is being restarted. Details on the implementation follow.

The first driving cursor in this module retrieves a store/day to generate ACH totals.
Once the first cursor is complete, the second retrieves bank locations by account
numbers.

The first Logical Unit of Work (LUW) is defined as a unique store/day combination.
Records will be fetched, using the first driving cursor, in batches of commit_max_ctr, but
processed one store/day at a time.

The first driving cursor will fetch all store/days that have been ‘F'ully Loaded, whose
audit status is “A’udited, ‘H'Q Errors Pending or ‘S’tore Errors Pending and that are
ready to be exported to ACH. Before processing starts, a write lock is obtained using
get_lock (). This driving cursor only fetches store/days with a sa_export_log.status of
SAES_R. After a store/day is processed, sa_export_log.status is set to SAES_P so that this
store/day will not be selected again if the program is restarted. We commit using
retek_force_commit after each store/day has been processed and sa_export_log updated,
so as to release the lock.

In case a store/day could not be processed due to locking, then the store/day
information is placed on a list (called locked store/day list) and the next store/day is
processed. This list is kept in memory and is available only during processing. If the
store for a store/day obtained from the first driving cursor, is on the locked store/day
list, then this store/day cannot be processed. This is the case because there is a data
dependency such that data from a particular store/day is dependent on data for the same
store but at an earlier date. Thus, if a store/day cannot be processed, then subsequent
store/days for the same store cannot be processed either. After the driving cursor returns
no more data, the program attempts to process each store/day on the list two more
times. If the store/day is still locked, then it is skipped entirely and a message is printed
to the error log.

6 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

The second LUW is a bank account number. Again, records will be fetched in batches of
commit_max_ctr. The second driving cursor cannot retrieve information by the LUW
because it is possible for the store’s currency to be different from the local bank’s
currency. In that case, a currency conversion is needed.

For each store/day, the query should retrieve the required ACH transfer. The latter is
determined by adding the estimated deposit for the next day, the adjustment to the
estimate for the current day and any manual adjustment to the estimate.

Since a store can be associated with different accounts at different banks, only accounts
that are consolidated should be retrieved. Since it is possible for the local bank to be in a
different country than the consolidating bank, the currency of the partner should also be
fetched.

Since processing is dependent on the type of account at the RDFI, the account type
should be fetched by this cursor.

Due to differences in transaction processing in cases when the bank is outside the US, the
partner’s country should also be fetched. The results of the query should be sorted by
partner country.

The results of the query should also be ordered by accounts.

Program Flow
Structure Chart

Please see the following document for the complete structure chart of the standard export
for ReSA.

Functional Design — SA export.doc

Shared Modules

Listing of all externally referenced functions and Stored procedures and description of
usage

retek library functions:

= retek_init() — This function initializes restart/recovery.

= retek_close() — This function cleans up restart/recovery.

= retek_force_commit() — This function commits any change to the database.
Sales/Audit library functions (libresa):

= fetchVdate() — This function is used to get the vdate.

= fetchSysdate() — This function is used to get system date and time

= fetchStoreDayToBeExported() — This function contains the first driving cursor.
= get_lock() — This function is used to lock the store/day being processed.

* OraNumlnit() - Initialize OraNum functions.

= OraNumAdd() - Add two large numbers passed in as strings.

= OraNumSub() -Subtract two large numbers passed in as strings.

= OraNumDiv() -Divide two large numbers passed in as strings.

Function Level Description
All database interactions required and error handling considerations
Init ()
= Initialize restart/recovery by calling restart_init().
* Get the vdate from the period table and the system time.

Batch Designs 7

Sales Audit ACH Download [saexpach]

= Get the system level information: the sender id, the company id, the consolidating
bank name, the consolidating routing number and the consolidating account
number. These are on the sa_ach_info table.

Process ()

1. Get the next store/day to be processed (exported) by fetching from the first driving
cursor.

2. Attempt to lock the store/day with a call to get_lock(). If this fails, write the store to
a linked list (which contains all unprocessed store/days).

3. Skip to step 7 if the store of the store/day to be processed is for a store which is on
the linked list.
Call the function postStore ACH() for the current store/day.

5. Set sa_export_log.status to SAES_P by calling setProcessed() for the current
store/day, so that it will not be processed again in case of a restart.

6. Call retek_force_commit() to commit changes to the database and to release write
lock.

7. Loop from beginning until the driving cursor returns no more data.

8. Call the function postBankSummaryTotals().

Final ()

* (lean up restart/recovery by calling retek_close().

= If the program has successfully processed the data, call retek_refresh_thread().

PostStoreACH ()

This function will generate and post an estimate and adjustment to the SA_STORE_ACH
table for a given store/day. The function postStoreACH will accomplish the following
processes in the following order:

= Get the following pieces of data for the system code SYSE_ACH:
1. The total for the current business date,

2. Get the total for the following business date if it exists (by calling
GetTomorrowTotal),

3. Call the function GetPastData() to get the totals for the past 4 weeks and for
yesterday (that is, if the current store/day is for a Tuesday, then we want to get
the totals for the past 4 Wednesdays and for yesterday). The latter pieces of data
are obtained from the sa_store_ach table, by summing the estimate for a day
with the adjustment for the same day.

4. Call the function GetPartnerInfo() to get partner type and partner id
information.
= If there are more than one total for SYSE_ACH for a particular day, then this should
be noted in the error log. We expect only one total per store/day. Only the first total
returned by the function will be used, the rest will be ignored.

= (Call the function CalculateData() to compute the estimate for the next business day
and adjustment for the current store/day.

= (Call the function PostStoreACHTable().
GetTomorrowTotal ()

This function attempts to get the total for the next business day to be used as the
estimate. It returns a -1 if a fatal error occurred, a 0 if it was able to get the total. If a total
was not found, the estimate is assigned to -1. If a store/day is never opened (i.e. a
holiday), then a 0 is estimated for that store/day. Also, if a total is found, it should not
be marked as exported.

8 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

GetPastData ()

This function retrieves totals for the same day of the week over the past 4 weeks and for
the previous business day.

GetPartnerInfo ()

This function retrieves the bank partner (partner type and partner id) for the given store
whose account is consolidated.

CalculateData ()

This function calculates the estimate for the next business day and adjustment for the
current store/day.

* Find the estimate for the following business date using the following rules:
= If the total for the following business date exists, then this is the estimate.

= Otherwise, the estimate is the average for the data for the past 4 weeks. If we
obtain data for fewer than 4 weeks, then we use the available data, but if we do
not obtain any data, then we use the current day’s total as the estimate.

= If the estimate is a 0, then we use the current day’s total as the estimate.

= Calculate the adjustment, which is the current date’s total minus the estimate for the
current date (which lies on the row for the previous day on the sa_store_ach table)
and minus the manual adjustment for the current date (which lies on the row for the
previous day on the sa_store_ach table).

ProcessLockedSD ()

This function processes any store/days that were not in the process() function due to
locking. The list of such store/days is stored on the linked list.

1. Try to process the store/days that were not processed, that is, those that are on the
linked list. Thus, for each store/day on the linked list, we try to obtain a lock. If one
is not obtained, then we skip this store/day. If a lock is obtained, then we remove the
store/day from the list.

2. Skip to step 5 if the store of the store/day to be processed is for a store which is on
the linked list.

3. Call the function postStoreACH for the current store/day.

Set sa_export_log.status to SAES_P by calling setProcessed() for the current
store/day, so that it will not be processed again in case of a restart.

Loop through steps 1 to 3, until each store/day in the list has been looked at.

Loop through steps 1 to 5 NUM_LOCK_RETRIES times. NUM_LOCK_RETRIES is
by default 2. Thus, we try to attempt to process store/days that are locked two more
times before giving up and skipping all locked store/days entirely.

7. For each store/day that was not processed, we write an error to the log.
PostStoreACHTable ()

This function inserts data into the sa_store_ach table. It updates if there is already an
entry for the store, business date and partner.

= If there is no entry in the sa_store_ach table for the current store/day.

= Create an entry in the SA_STORE_ACH table with the current store_day_seq_no and
the new estimate and adjustment deposits for the current store_day_seq_no.

= If there is an entry in the sa_store_ach table for the current store/day.

= Update the entry in sa_store_ach with the estimated deposit, and estimated deposit
adjustment.

postBankSummaryTotals ()

Batch Designs 9

Sales Audit ACH Download [saexpach]

This procedure will summarize the bank transaction totals to the ACH output file. Please
see the section on I/O specifications for more information about the format of this file.

1. Open and fetch from the second driving cursor.

2. If any entries are to be made (i.e. there are results from the cursor), create ACH file
and write file header by calling Write ACHFileHeader().

3. If the country of the bank just retrieved is different from the country of the previous
bank, write a Batch Control Record by calling WriteACHBatchControl(), unless no
Batch Header records have been written yet.

4. If the country of the bank just retrieved is different from the country of the previous
bank, a new Batch Header record needs to be written. If the bank’s country is the US,
the WriteACHCCDBatchHeader() function should be called to write a Batch Header
for CCD transactions. For all other countries, the Write ACHCBRBatchHeader()
function should be called to write a Batch Header for CBR transactions.

5. If the store’s currency is different from the bank’s currency, do a conversion. Sum all
the deposits for each bank account.

6. For each account at a bank in the US, create a CCD record in the file by calling
Write ACHCCDEntry().

7. For each account at a bank outside the US, create a CBR record by calling
Write ACHCBREntry().

If the amount to be transferred is negative, the record should be skipped.
9. If the account is a checking account, the transaction code to use is 27’.
10. If the account is a savings account, the transaction code to use is ‘37’.

11. If the amount to be transferred is positive, call the function PostBankACHTable() to
record the amount of the ACH entry, else do nothing.

12. Keep running totals for the current batch’s total amount and the total ACH amounts.

13. Commit after pl_commit_max_ctr LUW have been processed. Redefine the
SAVEPOINT after the commit because savepoints are lost after a commit.

14. Loop to step 3 until the cursor returns no data.
15. Write the ACH Batch Control record and the ACH File Control record

16. The ACH file format requires that the file size meet certain “block” requirements. See
the section on the ACH file format for more details. Write the required number of
“completion records” to meet the blocking requirements.

17. Mark all store/days that were not locked (i.e. those with a sa_export_log.status of
SAES_P) as completed (SAES_E) in the sa_export_log.

postBankACHTable ()

This function inserts into the table sa_bank_ach. It updates if there already exist a record
for the same partner and business date.

1. If an entry does not exist for the current bank and date in the sa_bank_ach table:

* Make an entry in the sa_bank_ach table for the current bank and account placing
the sums of the store ACH amounts and adjustments in the ACH amount field
(sa_bank_ach.ach_amt).

2. If an entry exists for the current bank and date in the sa_bank_ach table:
* Add the manual adjustment to the bank ACH deposit amount.

= Update the sa_bank_ach table with the bank ACH deposit amount
(sa_bank_ach.ach_amt).

File Output Functions

10 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

The functions WriteACHFileHeader(), Write ACHFileControl(),

Write ACHCCDBatchHeader(), Write ACHCBRBatchHeader(), Write ACHBatchControl(),
WriteACHCCDEntry(), Write ACHCBREntry(), Write ACHCBRAddendum() and
WriteACHCompleteBlock() write the File Header Record, the File Control Record, the
Batch Header Record for CCD transactions, the Batch Header Record for CBR
transactions, the Batch Control Record, the CCD Entry Record, the CBR Entry Record, the
CBR Addendum Record and the Completion Blocks, respectively. The

Write ACHCBREntry() function should call the Write ACHCBRAddendum() function
after writing to the file.

Linked List Functions
The functions AddToList(), DeleteList(), GetNext() and RemoveFromList() provide

means to manipulate and to retrieve data from the linked list which contains the
store/days which were not processed due to locking issues.
MarkAllStoreDaysCompleted ()

This function sets the sa_export_log.status to SAES_E for store/days whose status is
SAES_P. These are the store/days that have been exported. If a store/day was not
exported, it will be picked up in the next run after it has met the conditions for export.
SetCurrencyDecimals ()

Given a currency code and an amount with 4 implicit decimals, this function will give
out an amount with the appropriate number of decimals for the currency. For more
details, see the BAI file format documentation. For example, there are two implicit
decimals for the US Dollar, but none for the Japanese Yen. This function may need to be
expanded because only a select few currencies are being processed. The last two decimal
places are dropped for currencies that are not explicitly defined.

TruncateDec ()

This function truncates a number at the decimal point, i.e. “1234.56” becomes “1234”.

Batch Designs 11

Sales Audit ACH Download [saexpach]

I/0 Specification

ACH File Structure

This section describes the structure of the output file of the saexpach.pc program. The
output file conforms to the requirements imposed by the National Automated Clearing
House Association (NACHA) and only the subset of records used by this program is
outlined here. For more information on the other types of records and more information
about the rules and regulations governing the ACH network, please refer to the “2000
ACH Rules” book published by NACHA.

The ACH file format is similar in many ways to Retek’s flat file formats. The most
distinctive differences are:

The record type is a one-digit number rather than a five-digit character field.
All records are 94 characters in length.
Records are organized in blocks, where 1 block = 940 characters = 10 records.

The File Control Record (similar to an FTAIL) contains a “Block Count” field
which gives the total number of blocks in the file, including the File Header
Record and the File Trailer Record. Records containing 9’s must be used to
complete the last block. For example, a file with 15 records will need 5 such

records to give it a Block Count of 2. These “completion records” go at the end of
the file.

Transactions are organized in batches. Similar transactions make up one batch. In
ReSA'’s case, the transactions are organized by the country of origin of the funds.

File Header Record

This record contains information about the characteristics of the file, such as sender and
receiver, creation datetime, and so on.

Field Name Field Description Value Length Jstf/
Pad*
Record Type Code The type of record. gy 1 None
Priority Code Reserved for future scheme for ‘01 2 None
priority handling of files. ‘01" should
be used.
Immediate Destination Routing number of the consolidating SA_BANK_STOR 10 None

bank. The field begins with a blank, E.

followed by the 4-digit Federal CONSOLIDATIN
Reserve Routing Symbol, the 4-digit G ROUTING N
ABA Institution Identifier, and the 18

Check Digit.

Immediate Origin A unique identification to determine SA_SYSTEM_OP 10 None

the Originator. The ID and the format TIONS.

are supplied by the consolidating ACH SENDER 1
bank. Note that the user is

responsible for the padding. That is,

it is assumed that the data in the field

will be exactly 10 characters wide.

File Creation Date Date when the file was created. YYMMDD 6 None

File Creation Time Time when the file was created. HH24MM 4 None

12 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
File ID Modifier This is used to differentiate files ‘0 1 None
created on the same date and
between the same
Origin/Destination. Valid values are
A through Z and 0 through 9. It is
expected that only one file will be
created per day, so a ‘0’ should be
used.
Record Size Number of characters per record. ‘094’ 3 None
Blocking Factor Number of physical records withina ‘10 2 None
block.
Format Code Reserved for future format variations. ‘1’ 1 None
A ‘1’ should be used.
Immediate Destination The name of the consolidating bank. ~ SA_SYSTEM_OP 23 L/B
Name TIONS.
CONSOL_BANK
_NAME
Immediate Origin The name of the company. COMPHEAD. 23 L/B
Name CO_NAME
Reference Code Any reference code. This is an blanks 8 None
optional field. ReSA will not populate
this field as the create datetime
should be enough to reference the
data that was exported by comparing
with SA_EXPORTED.
EXP_DATETIME.
Note: This column described the justification and padding
involved in the field being described. ‘L stands for left; ‘R’
stands for Right; ‘B” stands for blank padding and ‘0’ stands
for 0 padding. None means that the field should be
completely filled.
Batch Header Record for CCD transactions
Field Name Field Description Value Length Jstf/
Pad*
Record Type Code The type of record. ‘5’ 1 None
Service Class Code This field identifies the general 225’ 3 None

classification of dollar entries to be
exchanged. Funds will always flow
from the local banks to the
consolidating bank. Hence the code
225" for “ACH Debits only” should
be used.

Batch Designs 13

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Company Any kind of data specific to the blanks 20 None
Discretionary Data company. ReSA will not use this field
Company An alphanumeric code identifying SA_SYSTEM_OP 10 L/B
Identification the company. The first character may TIONS.

be the ANSI one-digit Identification ~ cOMPANY ID
Code Designators (ICD). For B
example,

“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id

field on the sa_system_options table
will contain the correct id.

Standard Entry Class ~ This provides a way to distinguish ‘CCD’ 3 None
Code between the various kinds of entries.

Since ReSA will be sending CCD

entries, this field should hold the

value ‘CCD’.
Company Entry A short description from the ‘CONSOL.’ 10 L/B
Description Originator about the purpose of the

entry.
Company Descriptive Optional field providing a date to the YYMMDD format 6 None
Date Receiver for descriptive purposes. of

ReSA will populate it with thenext pERIOD.VDATE
day’s date in the YYMMDD format. | 1

Effective Entry Date The date by which the Originator YYMMDD format 6 None
intends the batch of entries to be of
settled. Since the Originator will PERIOD.VDATE
want this to be done as soon as +1

possible, ReSA will use the earliest
possible date, which is one banking
day after the processing date (the
current date).

Settlement Date This is inserted by receiving ACH blanks 3 None
Operator. ReSA will leave this blank.

Originator Status This field stores a code to describe 1 1 None

Code the type of Originator. This should be

a 1 to describe the Originator as a
depository financial institution.

14 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
ODFI Identification 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STOR
E.
CONSOLIDATIN
G_ROUTING_N
@)
Batch Number The batch number. 7 R/0
Batch Header Record for CBR transactions
Field Name Field Description Value Length Jstf/
Pad*
Record Type Code The type of record. ‘5 1 None
Service Class Code This field identifies the general 225 3 None
classification of dollar entries to be
exchanged. Funds will always flow
from the local banks to the
consolidating bank. Hence the code
225’ for “ACH Debits only” should
be used.
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Foreign Exchange Code used to indicate the foreign ‘FV’ 2 None
Indicator exchange conversion methodology
applied to a CBR entry. Retek uses
the “Fixed-to-Variable” method to
convert from the foreign currency
into US dollars. Therefore, this field
should be ‘FV’.
Foreign Exchange Code used to indicate the contents of ‘1’ 1 None
Reference Indicator the Foreign Exchange Reference field.
The latter will contain the conversion
rate used by Retek which means that
the value should be “1’.
Foreign Exchange This should contain the foreign 15 L/B
Reference exchange rate used to compute the
amounts in the CBR Entry Record.
No decimal places are implied, that
is, this field should contain the exact
rate used.
ISO Destination The country where the money is tobe ‘US’ 2 None
Country Code transferred to. Since ReSA assumes

that the consolidating bank will be in
the US, this should be ‘US’ - NOTE:
verify that “US” is the correct ISO
code for United States of America.

Batch Designs 15

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
Company An alphanumeric code identifying SA_SYSTEM_OP 10 L/B
Identification the company. The first character may TIONS.
be the ANSI one-digit Identification ~ cOMPANY ID
Code Designators (ICD). For -
example,
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id
field on the sa_system_options table
will contain the correct id.
Standard Entry Class ~ This provides a way to distinguish ‘CBR’ 3 None
Code between the various kinds of entries.
Since ReSA will be sending CBR
entries, this field should hold the
value ‘CBR’.
Company Entry A short description from the ‘CONSOL.’ 10 L/B
Description Originator about the purpose of the
entry.
ISO Originating Currency code in which the funds are PARTNER. 3 None
Currency Code originating from. This must be the CURRENCY CO
ISO code of the currency. DE -
ISO Destination Currency code in which the funds are ‘USD’ 3 None
Currency Code to be received. This must be “USD”.
Effective Entry Date The date by which the Originator YYMMDD 6 None
intends the batch of entries to be format of
settled. Since the Originator will want pgERIOD.VDATE
this to be done as soon as possible, +1
ReSA will use the earliest possible
date, which is one banking day after
the processing date (the current date).
Settlement Date This is inserted by receiving ACH blanks 3 None
Operator. ReSA will leave this blank.
Originator Status This field stores a code to describe the ‘1’ 1 None
Code type of Originator. This should be a 1
to describe the Originator as a
depository financial institution.
ODFI Identification 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STORE.
CONSOLIDATIN
G_ROUTING_N
0]
Batch Number The batch number. It is not expected ‘1" or 2’ 7 R/0

that the file will have more than two
batches.

16 Oracle Retail Merchandising System

Sales Audit ACH Download [saexpach]

CCD Entry Detail Record

Field Name

Field Description Value

Length

Jstf/
Pad*

Record Type Code

Transaction Code

RDFI Identification

Check Digit

DFI Account Number

Amount

Identification Number

Receiving Company
Name

The type of record. ‘6’ 1

Code used to identify the type of 27" or ‘37’ 2
debit and credit. This is dependent on
the type of account and on the

direction of funds transfer.
‘27" — if the account is a checking
account,

‘37" — if the account is a savings
account.

8-digit routing number of the RDFI. First 8 digits of 8

SA_BANK_STORE.
ROUTING_NO

9" digit of 1
SA_BANK_STOR

E.

ROUTING_NO
The account number at the local SA_BANK_STOR 17
bank. E.

BANK_ACCT_N
o

This is the 9" digit from the routing
number.

The amount involved in the 10
transaction. This field is numeric only
and the last two digits are
automatically assumed to be
decimals. ReSA amounts are stored
as 20 digit numbers, with 4 for
decimals. ReSA will truncate the last
two digits of the amount and should
the resulting amount be greater than
10 digits, this program will abort
with an error. It is not expected that a
client will send an ACH amount
greater than US$100 million. The
values for this are taken from the
sa_store_ach table. The values from
the columns today_adj_deposit_est,
next_day_man_adj_deposit, and
next_day_deposit_est are added up
by business_date and then multiplied
by 10000 and later divided by 100 to
obtain a dollar amount.

Optional field containing a number blanks 15
used by Originator to insert its own
number for tracing purposes. ReSA

will not populate this field.

STORE. 22
STORE_NAME

Name of the local store.

None

None

None

None

L/B

R/0

None

L/B

Batch Designs 17

Sales Audit ACH Download [saexpach]

Field Name

Field Description Value

Length

Jstf/
Pad*

Discretionary Data

Addenda Record
Indicator

Trace Number

Any kind of data specific to the blanks
transaction. ReSA will not use this

field

This field identifies whether this ‘0
entry record contains addenda

records. ReSA has no use for such

records in CCD and will use the

value of ‘0’

Used to uniquely identify each entry
within a batch. The first 8 digits
contain the routing number of the
ODFI and the other 7 contains a
sequence number. This sequence
number should be ascending.
Although the ACH specification does
not require the numbers to be
consecutive, ReSA will use
consecutive numbers. Trace numbers
should not be duplicated between
batches.

15

None

None

None

CBR Entry Detail Record

Field Name

Field Description Value

Length

Jstf/
Pad*

Record Type Code

Transaction Code

RDFI Identification

Check Digit

DFI Account Number

18 Oracle Retail Merchandising System

The type of record. ‘6’

Code used to identify the type of
debit and credit. This is dependent
on the type of account and on the
direction of funds transfer.

‘27’ — if the account is a checking
account,

‘37’ — if the account is a savings
account.

8-digit routing number of the RDFI.

This is the 9" digit from the routing
number.

E.

ROUTING_NO
SA_BANK_STOR 17

The account number at the local
bank. E.

BANK_ACCT_N

O

27" or ‘37

First 8 digits of
SA_BANK_STORE.

ROUTING_NO
9" digit of
SA_BANK_STOR

8

None

None

None

None

L/B

Sales Audit ACH Download [saexpach]

Field Name

Field Description Value

Length

Jstf/
Pad*

Amount

Identification Number

Receiving Company
Name

Discretionary Data

Addenda Record
Indicator

Trace Number

The amount involved in the
transaction. This field is numeric only
and the last two digits are
automatically assumed to be
decimals. This amount is in US
dollars.

Optional field containing a number ~ blanks
used by Originator to insert its own
number for tracing purposes. ReSA

will not populate this field.

Name of the local store. STORE.

STORE_NAME

Any kind of data specific to the blanks
transaction. ReSA will not use this

field

This field identifies whether this 1’
entry record contains addenda

records. Since CBR records must be
followed by an addendum record,

this value should be “1’.

Used to uniquely identify each entry
within a batch. The first 8 digits
contain the routing number of the
ODFI and the other 7 contains a
sequence number. This sequence
number should be ascending.
Although the ACH specification does
not require the numbers to be
consecutive, ReSA will use
consecutive numbers. Trace numbers
should not be duplicated between
batches.

10

15

22

15

R/0

None

L/B

None

None

None

CBR Addendum Record

Field Name

Field Description Value

Length

Jstf/
Pad*

Record Type Code
Addenda Type Code

Payment Related
Information

The type of record. 7

This code identifies the type of ‘01’
addendum record. CBR has only one
type of Addenda Type Code: ‘01".

80

None

None

L/B

Batch Designs 19

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
Addenda Sequence This is a sequence number denoting ‘1’ 4 R/0
Number the position of each addendum
record. The first record should
always have a sequence number of 1
and subsequent records must be
increasing and consecutive. ReSA
will create only one addendum
record for the CBR transaction.
Entry Detail Sequence This is the sequence number part of 7 R/0
Number the Trace Number of the entry record
to which this addendum is referring.
Batch Control Record
Field Name Field Description Value Length Jstf/
Pad*
Record Type Code The type of record ‘8 1 None
Service Class Code This field identifies the general 225 3 None
classification of dollar entries to be
exchanged. Since money is being
requested, this code should be 225 for
“ACH Debits only”.
Entry/Addenda The number of entries and addenda 6 R/0
Count in the batch. Basically, this is the
number of records between the Batch
Header Record and the Batch Control
Record.
Entry Hash This is the sum of the RDFI IDs in the 10 R/0
detail records. It is the arithmetic sum
of the 8-digit routing number.
Overflow on the high order bits is
ignored.
Total Debit Entry These fields contain the accumulated 12 R/0
Dollar Amount in debit and credit for the batch. This
batch field is numeric only and the last two
Total Credit Entry digits are automatically assumed to 1 R/0
. be decimals.
Dollar Amount in
batch
Company An alphanumeric code identifying SA_SYSTEM_OP 10 L/B
Identification the company. The first character may TIONS.

20 Oracle Retail Merchandising System

be the ANSI one-digit Identification
Code Designators (ICD). For
example,

“1” IRS Employer ID Number
“9” User Assigned Number.

ReSA assumes that the company_id
field on the sa_system_options table
will contain the correct id.

COMPANY_ID

Sales Audit ACH Download [saexpach]

Field Name Field Description Value Length Jstf/
Pad*
Message The first 8 characters represent a code blanks 19 None
Authentication Code from the DES (Data Encryption
(MACQ) Standard) algorithm. The remaining
eleven characters are blanks. ReSA
will not populate this field.
Reserved Reserved blanks 6 None
ODFI Identification 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STOR
E.
CONSOLIDATIN
G_ROUTING_N
o
Batch Number The batch number. 7 R/0
File Control Record
This record contains summary information about the file to verify its integrity.
Field Name Field Description Value Length Jstf/
Pad*
Record Type Code The type of record. 9’ 1 None
Batch Count The number of batches sent in the file. 6 R/0
Block Count The number of physical blocks in the [(Number of 6 R/0
file, including both File Header and records)/ 10]
File Control Records. This is the
ceiling of the number of records
divided by the blocking factor, which
is 10.
Entry/Addenda The number of entries and addenda in 8 R/0
Count the file. Basically, this is the number of
records between the Batch Header
Record and the Batch Control Record.
Entry Hash This is the sum of the Entry Hash 10 R/0
fields on the Batch Control Records.
Total Debit Entry These fields contain the accumulated 12 R/0
Dollar Amount in File debit and credit for the file. This field
Total Credit Entry is numeric o.nly and the last two digits 1 R/0
L are automatically assumed to be
Dollar Amount in File deci
ecimals.
Reserved This field should be filled with blanks. blank 39 None

It is used to ensure that each record is
of length 94.

Batch Designs 21

Sales Audit Export to GL [saexpgl]

Sales Audit Export to GL [saexpgl]

Design Overview

The purpose of this batch module is to post all properly configured user defined ReSA
totals to the User defined General ledger application (Oracle or PeopleSoft). Totals
without errors will be posted to the appropriate accounting ledger, as defined in the Sales
Audit Oracle cross-reference user module. Depending on the unit of work system option,
the data will be sent at either the store day or individual total level. Newly revised totals
that have already been posted to the ledger will have their previous revision reversed,
and the new total posted to the appropriate accounts. Transactions that are from
previous periods will be posted to the current period.

This version of the program is meant for the interface between RMS 11.0 and Oracle

Financials.
Tables Affected
TABLE SELECT INSERT UPDATE DELETE
period Yes No No No
sa_system_options Yes No No No
sa_store_day Yes No No No
sa_export_log Yes No Yes No
sa_error Yes No No No
sa_exported Yes Yes No No
sa_balance_group Yes No No No
sa_error_rev Yes No No No
sa_exported_rev Yes No No No
sa_store_day_lock Yes Yes No Yes
fif gl setup Yes No No No
store Yes No No No
sa_fif gl cross_ref Yes No No No
stg_fif gl data No Yes No No
if_errors No Yes No No

22 Oracle Retail Merchandising System

Sales Audit Export to GL [saexpgl]

Program Flow

Below is a simple flow of the general ledger export and its generic and financial
application specific modules:

Initialize

Get the user defined
financial ledger from
system_options.

A 4

Get financial ledger
specific attributes.
(i.e.: accounting
period, set of books,
etc.)

\ 4

Get the current
vdate from the
period table.

\ 4

Get the user defined
unit-of-work as
defined in the
system_options
table.

Legend:

Process specific to
user defined
financial application.

Process generic to
all financial
applications.

For every Total within the Store/Day

Get the financial
ledger specific
account mappings
for the current total.

Mappings
exist for
current total

Post
revision
required

Post the revision,
then, the total to the
specific ledger.

Post the total to the

specific ledger.

Log the problem to
the error log and
skip to the next total.

Record the
completion of the
export for the
specific total.

Batch Designs 23

Sales Audit Export to GL [saexpgl]

Global Variable Descriptions

Global Variable Description

pi_commit_max_ctr Commit max counter used for array fetch

ps_num_threads Commit max counter used for array fetch

ps_thread_val Commit max counter used for array fetch — Thread value

pi_proc_cnt Commit max counter used for array fetch

ps_sysdate Current sysdate value from the database.

ps_store_day_seq_no Restart/recovery variables used for bookmarking

ps_vdate Date value from the period table

ps_unit_of_work Unit of Work from sa_system_options.

ps_update_id Update ID from fif_gl_setup

ps_set of books_id Set of Books ID from fif_gl_setup

ps_period Period Name from fif_gl_setup

pi_num_locks_not_released =~ Counter for the number of store/day locks that could not be
released.

pi_rec_ctr Counter for the number of records processed and inserted to

stg_fif gl data table..

pi_non_fatal Counter for the number of non-fatal errors encountered.

Function Level Description

main()

Check command line for required arguments.
Call LOGON to connect to the database.

Call Init to initialize the program.

Call process to export the available RMS data.
Report unlocking errors.

o o s wbhd=

Call final to cleanup.

init()

1. Call retek_init.

2. Get the current vdate from the period table, using fetchVdate.

3. Get the user financial application type from system_options.financial_app.
‘O’ = Oracle GL
‘P’ = PeopleSoft GL

4. Get the Financial application specific attributes (i.e. accounting period information,
set of books identntifier, etc.)

24 Oracle Retail Merchandising System

Sales Audit Export to GL [saexpgl]

5.

If Oracle GL, retrieve the following details as defined in the RMS database:
Fif gl setup.set_of_books_id
Fif gl setup.last_update_id

Get and save the value of sa_system_options.unit_of_work, by calling the function
fetchSaSystemOptions.

process()

1.
2.

10.

11.
12.

Retrieve a store/day by calling fetchStoreDayToBeExported.

Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next
store/day.

Find out the number of errors pending for the store/day by calling
fetchStoreDayErrorCount.

If the unit of work is store and the number of errors in the store/day is greater than
zero, then release the lock by calling release_lock and skip the store/day, otherwise
continue.

Retrieve a total to export by calling getTotal.

If Oracle GL, check to ensure that the selected total has a user defined cross-reference
in the sa_fif ora_cross_ref table by calling the function getOracleMapping. If a
mapping (Oracle CCID) does not exist for the selected total log the problem in the
Retek error log and go onto the next total.

If the tran_sign is 'N' (code_type is SAFD), the currenct retrieved value will be post to
Oracle with negative sign.

Post the current total to the GL by calling the financial application specific function:
If Oracle, call postOracleGL

If there are more totals for the selected store/day, loop through the store day totals
(getTotal).

Call the library function markStoreDayExported.
Call release_lock and go on to the next store/day.

ProcessStoreDay()

1.
2.
3.

Get all the totals for the store/day by calling getTotal().
For each Total_id, call getOracleMapping() for Oracle account.

If Status returned from getTotal() is 'N'. The opposite amounts will be posted to the
Stg_fif gl data table (that is, send a negative number).

Call UpdateGLArray() to populate gl_data_array for inserting stg_fif gl data table.

Call the library function markTotalExported and include the current period number.
This function has to be called once for each total that is exported.

CanProcess()

1.

2.

Calling fetchStoreDayErrorCount to find out the number of errors pending for the
store/day.

If the unit of work is store and the number of errors in the store/day is greater than
zero, skip the store/day and write to the if_errors for the store/day.

final()

1.
2.

Clean up — free any memory used.
Call retek_close.

Batch Designs 25

Sales Audit Export to GL [saexpgl]

AddToList()
Setup linked list to hold locked store/day for later process.

DeleteList()
This function deletes linked list, and free the memory.

GetNext()
This function moves the pointer to the next unprocessed store/day.

RemoveFromList()
This function removes processed store/day from linked list.

SizeGlDataArray()
This function allocates memory for gl_data_array.

ProcessLockedSD()
This function locks the store/day to be processed.

GetOracleMapping()

This function will load local variables with the user-defined accounts and CCID’s for the

selected total /location combination from the SA_FIF_GL_CROSS_REF table. If no results
are returned, the total should be skipped with the appropriate message in the Retek error
log.

InsertToOracleGL()
This function inserts the record processed into STG_FIF_GL_DATA table.

UpdateGLArray()

This function writes store/day total to the gl_data array for inserting to stg_fif gl _data.
Post the current total using the mapped local variables retrieved from the
getOracleMapping function. First insert a record for the debit side of the transaction,
then insert a record for the credit half of the transaction. (See STG_FIF_GL_DATA details
below). The following is a detailed explanation of the required columns in the Oracle
STG_FIF_GL_DATA table.

STG_FIF_GL_DATA column explanation

Column Description

status This column represents the type of posting being
applied. All inserts from this module, status should be
set to 'NEW".

set_of_books_id This column represents the identifier for the book of

accounts that this module will be posting to. This field
should always be set to the value found in
FIF_GL_SETUP.SET_BOOKS_ID

accounting_date The date of the transaction/total —

SA_STORE_DAY.BUSINESS_DATE.
currency_code The default system currency code
date_created period.vdate

26 Oracle Retail Merchandising System

Sales Audit Export to GL [saexpgl]

Column Description

created_by This field represents the identifier of the
application/user whom created this journal entry. This
value should be populated with the
FIF_GL_SETUP.LAST _UPDATED_ID.

actual_flag The hard-coded value ‘A’ will represent actual amounts.

user_je_category_name

user_j e_source_name

Currency_conversion_date

currency_conversion_type

segment] — 10

entered_dr_amount

entered_cr_amount

period_name

code_combination_id

Journal entry source name for the posted transaction.
This entry must exist in the Oracle
USER_JE_CATEGORY_NAME column in the Journal
Categories table prior to posting data to the GL. This
value should be hard-coded to ‘ReSA’.

Journal entry source name for the posted transaction.
This entry must exist in the Oracle
USER_JE_SOURCE_NAME column in the Journal
Sources table prior to posting data to the GL. This value
should be hard-coded to ‘ReSA’.

The date in which the total was converted to the default
currency code. This value should be populated with the
store day bussiness date.

This value should be hard-coded to ‘Spot’.

These columns should be populated with either the debit
segment values or the credit values (depending on
which half of the total you are posting).

If you are entering the debit half of the total, place the
total amount in this column. If you are representing the
credit half of the total, place a 0 in this column.

If you are entering the credit half of the total, place the
total amount in this column. If you are representing the
debit half of the total, place a 0 in this column.

This value should be populated with the
FIF_GL_SETUP.PERIOD_NAME.

If this is the debit half of the total adjustment, place the
SA_FIF_GL_CROSS_REF.DR_CCID. If this is the credit
half of the total adjustment, place the
SA_FIF_GL_CROSS_REF.CR_CCID.

WriteErrorTable()

This function writes to if_errors when error is encountered while inserting to Oracle

tables.

Stored Procedures / Shared Modules (Maintainability)

Shared Module

Module Description

libresa.a
get_lock
release_lock

fetchStoreDayToBeExported

ReSA Library
used to establish a read lock on a store/day
used to release a store/day lock

This fetches all store days that are ready for export for a
given usage type.

Batch Designs 27

Sales Audit Export to GL [saexpgl]

Shared Module Module Description

getTotal This fetches all totals that can be exported for the given usage
type and for the given store day.

fetchStoreDayErrorCount This functions returns the number of errors pending for a
given store day.

markTotalExported records the passed total as exported

markStoreDayExported records the passed store day as exported

fetchSaSystemOptions This function retrieves all entries in the sa_system_options
table.

fetchVdate This function retrieves the vdate from the period table.

Refer to the following documents for more details on the export library:

Shared Module Module Description
Library Design saexplib.doc.

libretek.a Retek Library

retek_init initialize restart/recovery
retek_close finalize restart/recovery

LANGUAGE_SQL.GET_CODE_DESC This function will retrieve the description of the passed
in code and code type.

Input/Output Specifications

There are no input or output files for this export. All data is retrieved from ReSA
database tables (as listed above) and posted to the Oracle GL staging table
STG_FIF_GL_DATA or the PeopleSoft staging table PS_CPI_GL_DATA.

Integrity Constraints
Processing Cycle: Anytime — Sales Audit 11.0 is a 24/7 system.

Scheduling Diagram: This program will be run after the ReSA totaling process:
satotals.pc and sarules.pc. This module should not be run simultaneously with other
modules: saexprms, saexprdw, saexpim, saexpuar, and saexpach.

Threading Scheme: N/A

Restart / Recovery

The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pi_commit_max_ctr. Only
one commit will be done: at the end, after a store/day has been completely processed, a
call to release_lock() performs a commit.

There are 2 driving cursors in this module. The first picks a store/day to work on. The
second fetches the totals to be posted for the store/day.

Driving cursor 1:

This driving cursor is embedded in the library function fetchStoreDayToBeExportedy().
Given a system code, of ‘SYSE’, this function fetches all store/days with a store_status of

28 Oracle Retail Merchandising System

Sales Audit Export to RelM [saexpim]

‘C’lose, a data_status of ‘F'ully loaded and an audit_status of ‘A’udited, ‘S’tore errors
pending or ‘H’Q errors pending that are ready to export to the given system.

Driving cursor 2:

This driving cursor is embedded in the library function getTotal(). Given a
store_day_seq_no and a usage type of ‘SAYT’, this function retrieves all totals.

Sales Audit Export to RelM [saexpim]

Design Overview

The purpose of this program is to support invoices from Direct Store Delivery and
Escheatment sales audit transactions. Direct Store Delivery invoices refer to products or
services that are delivered to the store and paid out at the store. This program will take
DSD invoices that have been staged to the SA_TRAN_HEAD table by the saimptlog.pc
program and move them into the INVC_HEAD table. All DSD transactions will be
assumed paid. They can be assumed received if there is a proof of delivery number
listed on them. Transactions with a vendor invoice ID or a proof of delivery number
should be matched to any existing invoice in INVC_HEAD, and that invoice updated
with the new information being interfaced. Invoices that do not match an existing
invoice in INVC_HEAD will need to be inserted. Each transaction will be exported to
INVC_HEAD table only once.

The Sales Audit Transaction type used to identify invoices for Direct Store Delivery
transactions will be “Paid Out”. Transaction types are stored on the codes tables with a
code_type = “TRAT’. The Paid Out transaction has a code of ‘'PAIDOU’. The Sales Audit
sub-transaction types will be used to identify whether the invoice is an “Expense Vendor
Payout” or a “Merchandise Vendor Payout”. These types are stored on the codes table
with a code_type = “TRAS’. The codes will be ‘EV’ for Expense Vendor Payout and ‘MV’
for Merchandise Vendor Payout. Any Paid Out transaction with a sub transaction type
of Expense Vendor will create a non-merchandise invoice and cause a record to be
written to the INVC_NON_MERCH table. ReSA will store non-merchandise codes in the
reason_code field on sa_tran_head. Valid values for these reason codes should
correspond to the codes stored on the non_merch_code_head table.

In addition to DSD invoices, this program will also interface Escheatment totals to
Invoice Matching. Escheatment is the process where an unredeemed gift

certificate /voucher or credit voucher will, after a set period of time, be paid out as
income to the issuing Retailer or in some states, the State receives this escheatment
income. ReSA will be the governing system that determines who receives this income,
but Invoice Matching will send the totals, with the related Partner, to Accounts Payable.
Escheatment information will be stored on the ReSA SA_TOTALS table and will be used
to create non-merchandise invoices in Invoice Matching. These invoices will be assumed
not paid.

To accommodate Escheatment, a new calculation should be added to Sales Audit to
create escheatment totals. ReSA automatically totals sales transactions based on
calculation definitions that the customer’s users have previously created using the online
wizard. Whenever users create new calculation definitions or edit existing ones, they
become part of the automated totaling process the next time that satotals.pc runs.

Batch Designs 29

Sales Audit Export to RelM [saexpim]

Operations Performed

Table
Select Insert Update Delete

Period Yes No No No
Sa_system_options Yes No No No
Sa_export_options Yes No No No
Sa_store_day Yes No No No
Sa_store_day_read_lock Yes Yes No Yes
Sa_export_log Yes No Yes No
Sa_tran_head Yes No No No
Sa_tran_tender Yes No No No
Sa_exported No Yes No No
Sa_exported_rev No Yes No No
Sa_total Yes No No No
Sa_error Yes No No No
Invc_head Yes Yes Yes No
Invc_non_merch Yes Yes Yes No
Terms Yes No No No
Currency_rates Yes No No No
Addr Yes No No No

Stored Procedures / Shared Modules (Maintainability)

libretek library functions:

retek_init/retek_close/retek_refresh_thread - to initialize and close Retek’s
restart/recovery module

libresa library functions:
= fetchSysdate — to get the current date and time
= fetchSaSystemOptions — to get ReSA system options

= fetchStoreDayErrorCount - to determine whether there are errors for the current
store_day

= markStoreDayExported — to mark a store day as updated

= updateStoreDayExported — to force commit of status ‘E’ on sa_export_log for store
days that have been exported

= getTotal - to fetch totals for escheatment invoices
= get_lock — to establish a read lock on a store_day
* release_lock — to release a store_day lock

30 Oracle Retail Merchandising System

Sales Audit Export to RelM [saexpim]

Packages:

= INVC_SQL.NEXT_INVC_ID—generates a new invoice id

* DIRECT_STORE_INVC_SQL.CHECK_INVC_DUPS - Checks if invoice exists.
Input Specifications

‘Table-To-Table’

Foundation tables used by this program for reference include:
Sa_store_data

Sa_system_options

Sa_export_options

Sa_error_codes

Sa_error_impact

Transaction data tables used to drive the processing includes:
Sa_tran_head

Sa_total

Sa_tran_tender

Sa_exported

Sa_error

Sa_total_usage — Add new Invoice Matching code (‘IM’) to the code_detail table where
code_type = ‘SAUT’ (Sales Audit Usage Type). This code will be used as the invoice
matching usage_type. Using the ReSA on-line wizard, add a new ‘Total’ calculation for
escheatment transactions.

Total_id Usage_type

ESCHEAT M
Sa_store_data — add invoice matching code to code_detail table where code_type =
‘SYSE’
Code_detail

Code_type Code Code_desc Code_seq

SYSE M IM Export 7

Sa_store_data — For each store that will require the Invoice Matching Export, add a
record to the sa_store_data table with a system_code of ‘IM’ (Invoice Matching) and
imp_exp of ‘E” (Export).

Store System_code Imp_exp

e.g. 1009 M E

Sa_export options — add IM code to the export options table to identify this new export
to Invoice Matching. Since this program will not follow full disclosure logic, the
multiple_export_ind should be ‘N” (No).

Batch Designs 31

Sales Audit Export to RelM [saexpim]

System_code Multiple_export_ind Exp_detail_ind
SYSE N IM Export
Output Specifications
‘Table-To-Table’

Updates/Inserts made to Invoice Matching tables:

Invc_head

Invc_non_merch

Function Level Description

Init ()

1.

Call retek_init to determine the max_commit_ctr.

2. Get the system date and time using fetchSysdate().

3. Call the function fetchSaSystemOptions() to retrieve the unit_of work (UOW).

Process ()

1. Process() gets the store_days to be exported using the first driving cursor.

2. For each store_day to be exported, process() checks whether there are errors
associated with this store_day (fetchStoreDayErrorCount()). If so, processing for this
store_day is skipped and step 2 is repeated for the next store_day.

3. Process() then attempts to obtain a read lock for this store day. If unsuccessful,
processing for this store_day is skipped and step 2 is repeated for the next store_day.

4. Call processStoreDay() to process the store day transactions for DSD invoices.

5. Call postInvoices() to create the appropriate invc_head and/or invc_non_merch
records.

6. Call processStoreDayTotals() to process the escheatment totals

7. Call markStoreDayExported() — updates sa_export_log, sets status to exported

8. Call release_lock() to release the lock on the store/day.

9. Steps 2-7 are repeated until there are no more store_days.

Final ()

1. Clean up any memory used.

2. Call updateStoreDayExported() to update sa_export_log for the last store day and
system code (SYSE_IM).

3. Call retek_close()

4. Call retek_refresh_thread()

32 Oracle Retail Merchandising System

Sales Audit Export to RelM [saexpim]

processStoreDay()

1. This function uses the second driving cursor to retrieve all transactions associated
with direct store delivery invoice transactions. This function should fetch the
appropriate data for inserts into invc_head and invc_non_merch tables.

Calls PostInvoices() posts the invoices to invc_head and invc_non_merch tables.

Calls the library function markTransactionExported() to insert a record into
sa_exported.

processStoreDayTotals()

This function will loop through the library function getTotals() for the current store day
and SYSE_IM usage type.

The getTotals() function is being modified to include pass back ref nol, ref_no2 and
ref no3. Ref nol will contain the partner_id, ref no2 the partner_type and ref_no3 the
escheat amount.

int getTotal (

char *is_store_day_seq no,
const char *is_usage type,
char *os_total_seq ho,
char *os_total_value,
char *0S_rev_no,

char *os_total_type
char *os_total_type id,
char os_ref nol,

char os_ref no2,

char os_ref _no3

char *0s_status,

long il_max_counter,
long il_multiplier);

1. Call post_escheat_invoice() to create the appropriate invc_head and/or
invc_non_merch records.

2. Mark the total exported by calling the library function markTotalExported().

calcDueDate()

Select duedays from the terms table for the terms associated with the supplier or partner
on sa_tran_head.vendor_no. Due_date = invoice date + duedays. Invoice dates should
be sa_tran_head.tran_datetime that was fetched in the first cursor. The terms discount
percent should be taken from the terms table.
SELECT TO_CHAR((TO_DATE(invoice date, “YYYYMMDDHH24MISS®) +
duedays) , "YYYYMVDD®),
percent
FROM terms
WHERE terms = terms of the supplier or partner

getNewlnvcld()

This function should call the package INVC_SQL.NEXT_INVC_ID to retrieve the next

invoice id in the sequence. Include standard package error handling around the package
call.

postinvoices()

Note * Partner, supplier, and date information will all be validated in ReSA so there is
no need to validate in the export. ReSA validates to ensure that merchandise invoices are

only associated with a supplier, not a partner. Validates partner, date, and numbers as
well.

Batch Designs 33

Sales Audit Export to RelM [saexpim]

Calls check_invc_exists() to check if the invoice exists on the invc_head tables. If a record
is found, update it, otherwise call GetNewInvcld() and insert a new record to invc_head.
For non-merchandise invoices, be sure to update/insert the invc_non_merch record as
well. A record should only be written to invc_non_merch if the invoice is a non-
merchandise invoice. This can be determined by looking at the sub_tran_type on
sa_tran_head. If the sub_tran_type is ‘EV’, then it’s a non-merchandise invoice. If it’s
‘MV’, then it’s a merchandise invoice. If the invoice does not exist on the invc_head table
call post_new_invoice(). If the invoice already exists on the invc_head table call
update_invoice().

1. Call calcDueDate() to determine what the due date is for each invoice.

2. Call get_invc_head_data() to get other columns :
terms,payment_method, freight_terms,currency_code,exchange_rate,addr_key

3. for the invoice associated with a supplier or partner.

4. Use the mapping below to determine what values to use when inserting into
invc_head and/or invc_non_merch.

Field Mapping between ReSA and Invoice Matching

INVC_HEAD Required? Datatype Sales Audit Value

INVC_ID NOT NULL NUMBER(10) If the invoice is not matched
with an existing one, invc_id
will be a system generated
number
(inve_sql.next_invc_id).

INVC_TYPE NOT NULL VARCHAR2(1) ‘T" for Merchandise Invoice,
‘N’ for Non-merchandise
Invoice

SUPPLIER NUMBER(10) DSD - Sa_tran_head.vendor_no
Escheat - NULL

EXT_REF_NO VARCHAR2(30) DSD -
Sa_tran_head.vendor_invc_no

Escheat — “E’ concatinated with
State or Partner ID (Which will
be state)

STATUS NOT NULL VARCHAR2(1) Code for the status of the
invoice. Valid values are U for
unmatched, R for partially
matched, M for matched, A for
approved and P for posted.
Invoice statuses are held on the
codes table under the code type
'TMST".

DSD - Default to ‘U’ using
IMST_U.

Escheat — Default to ‘A’ using
IMST_A

EDI_INVC_IND NOT NULL VARCHAR2(1) ‘N’
EDI_SENT_IND NOT NULL VARCHAR2(1) ‘N’

34 Oracle Retail Merchandising System

Sales Audit Export to RelM [saexpim]

INVC_HEAD

Required? Datatype

Sales Audit Value

MATCH_FAIL_IND

REF_INVC_ID

REF_RTV_ORDER_NO

REF_PRICE_CHANGE

REF_RSN_CODE

TERMS

DUE_DATE

PAYMENT_METHOD

TERMS_DSCNT_PCT

TERMS_DSCNT_APPL_IND

NOTNULL VARCHAR2(1)

NUMBER(10)

NUMBER(6)

NUMBER(8)

VARCHAR2(6)

VARCHAR2(15)

NOT NULL DATE

VARCHAR2(6)

NUMBER(12,4)

NOTNULL VARCHAR2(1)

Indicates whether or not an
invoice has failed a match
attempt. Valid values are "Y' or
'N'. Default to ‘N’ using
YSNO_N.

N/A - Used for types ‘C’, ‘'D’,
‘R’. Default to NULL.

N/A - Used for types ‘C’, ‘'D’,
‘R’. Default to NULL.

N/A - Used for types ‘C’, ‘'D’,
‘R’. Default to NULL.

N/A - Used for types ‘C’, ‘'D’,
‘R’. Default to NULL.

Defaulted from sups or partner
table if DSD transaction or
partner table if escheatment.

Defaulted based on terms of the
supplier or partner.

Code identifying the payment
method for the invoice,
indicating how the invoice will
be paid. Valid values include
'LC' for letter of credit, 'WT' for
wire transfer, and 'OA' for open
account. Other values maybe
added by the client as desired.

Payment methods will be held
on the codes table under a code
type of PAYM'.

Defaulted based on the
payment_method of the vendor
on the invoice for Merchandise
Invoice.

Default to NULL for Non
merchandise Invoice.

Discount that will be applied to
the invoice if the invoice is paid
by the due date. Default to the
terms.pct of the terms
associated with the vendor on
the invoice.

Indicates whether or not the
terms discount has been
applied to the total cost of the
invoice or not. Valid values are
"Y' or 'N'".

Default to ‘N’ using YSNO_N.

Batch Designs 35

Sales Audit Export to RelM [saexpim]

INVC_HEAD Required?

Datatype

Sales Audit Value

TERMS_DSCNT_APPL_NON_MRCH_I
ND

NOT NULL

FREIGHT_TERMS

CREATE_ID
CREATE_DATE

NOT NULL
NOT NULL

INVC_DATE NOT NULL

MATCH_ID

MATCH_DATE

APPROVAL_ID

APPROVAL_DATE

FORCE_PAY_IND NOT NULL

FORCE_PAY_ID

POST_DATE

36 Oracle Retail Merchandising System

VARCHAR2(1)

VARCHAR2(2)

VARCHAR2(30)
DATE

DATE

VARCHAR2(30)

DATE

VARCHAR2(30)

DATE

VARCHAR2(1)

VARCHAR2(30)

DATE

This field will indicate if the
specified terms discount should
be applied to non-merchandise
costs.

Default to ‘N’ using YSNO_N.

Indicator that references the
freight terms associated with
the invoice. Default from sups
table for merchandise invoice.

Non Merchandise Invoice:
NULL.

‘ReSA’

The data the invoice was
entered in the system — vdate

Date the invoice was issued by
the supplier —
sa_tran_head.tran_datetime for
existing invoice.

For New Invoice default to
vdate.

Oracle user ID of the user that
matched the invoice. Default to
NULL.

Date the invoice was matched.
Default to NULL.

Oracle user ID of the user that
approved the invoice match.
Default to NULL.

Date the invoice match was
approved. Default to NULL.

Indicates whether or not the
invoice is to be force paid (paid
before being matched to
receipts). Valid values are Y or
N.

Default to ‘N’ using YSNO_N.

Oracle ID of the user that
marked the invoice for force
payment. This field will only
have a value if the
force_pay_ind ='Y'. Default to
NULL.

Date the invoice was posted to
the AP staging tables.

Default to NULL.

Sales Audit Export to RelM [saexpim]

INVC_HEAD Required?

Datatype

Sales Audit Value

CURRENCY_CODE NOT NULL

EXCHANGE_RATE

TOTAL_MERCH_COST

TOTAL_QTY

DIRECT_IND NOT NULL

PARTNER_TYPE

PARTNER_ID

VARCHAR2(3)

NUMBER(20,10)

NUMBER(20,4)

NUMBER(12,4)

VARCHAR2(1)

VARCHAR2(6)

VARCHAR2(10)

Code identifying the currency
in which the invoice is held.

Default the supplier’s or
partner’s currency.

Exchange rate at which the
invoice is held. Default from
currency_rates table based on
the currency of the
supplier/partner.

Total merchandise cost for the
invoice. This field will be held
in the invoice currency. For
DSD merchandise invoices, this
field should hold the total cost
of the invoice
(sa_tran_tender.tender_amt).
Default to NULL for DSD non-
merchandise and escheatment
invoices.

Total quantity of items on the
invoice. This field is optional,
and only needs to be entered if
total quantity matching will be
performed on the invoice.

Quantity will not be captured
in ReSA. Default to NULL.

Indicates whether the invoice
was created for a direct store
delivery order via the Quick
Order Entry form in which the
invoice was already paid.
Valid values are 'Y' —Yes and
'N' -No.

Default to “Y’ using YSNO_Y.

Type of partner assigned to the
invoice. This field will always
be “EV’ for Expense Vendor.
Default using PTAL_EV.

DSD - Sa_tran_head.vendor_no

Escheatment — ref_nol
(partner_id)

Partner assigned to the invoice.
Partners can be assigned to any
invoice type except
merchandise invoices.

Batch Designs 37

Sales Audit Export to RelM [saexpim]

INVC_HEAD

Required?

Datatype

Sales Audit Value

ADDR_KEY

PAID_IND

PAYMENT_REF_NO

PAYMENT_DATE

PROOF_OF_DELIVERY_NO

CE_ID
OBLIGATION_KEY
COMMENTS

NOT NULL

NOT NULL

NUMBER(6)

VARCHAR2(1)

VARCHAR2(13)

DATE

VARCHAR2(30)

NUMBER(10)
NUMBER(10)
VARCHAR2(255)

Indicates which vendor invoice
address should be associated
with the invoice.

Default to the primary address
for the invoice address type on
ADDR table (Addr_type = 05
and primary_addr_ind = “Y’).

Default to “Y’ (YSNO_Y) for all
DSD transactions —they will be
assumed paid. Set to ‘N’
(YSNO_N) for Escheatment
invoices — they will be assumed
not paid .

DSD -
Sa_tran_head.payment_ref_no
Escheat - NULL

Date that the invoice was paid

from the POS system —
sa_tran_head.tran_datetime.

Escheat — NULL

DSD -
Sa_tran_head.proof_of_deliver
y_no

Escheat - NULL
NULL
NULL
NULL

INVC_NON_MERCH

Required?

Datatype

Sales Audit Value

INVC_ID

NON_MERCH_CODE

38 Oracle Retail Merchandising System

NOT NULL

NOT NULL

NUMBER(10)

VARCHAR2(6)

The invc_id on
invc_non_merch should
correspond to the one on
invc_head.

Code identifying the non-
merchandise cost being added
to the invoice. These codes will
be held on the
non_merch_code_head table .

For DSD transactions, this field
should be set to the
reason_code from
sa_tran_head. Should be ‘E’ for
Escheatment invoices.

Sales Audit Export to RelM [saexpim]

INVC_NON_MERCH Required? Datatype

Sales Audit Value

NON_MERCH_AMT NUMBER(20,4)

VAT_CODE VARCHAR2(6)
SERVICE_PERF_IND NOT NULL VARCHAR?2(1)

STORE NUMBER(4)

Amount of the non-
merchandise cost, specified by
the non-merchandise code that
has been invoiced for. This
field will be held in the invoice
currency.

DSD -
sa_tran_tender.tender_amt

Escheat — total_value from
getTotals()

Default to NULL.

Indicates if a service non-
merchandise cost has actually
been performed. Valid values
are "Y' (service has been
performed) or 'N' (service has
not been performed or non-
merchandise cost is not a
service cost).

For DSD, if proof of delivery is
provided, this field should be
Y’ (YSNO_Y).

Should be set to ‘N’ (YSNO_N)
for escheatment invoices.

Indicates the store at which the
service was performed. Should
be populated with the DSD
invoice store number. Null for
escheatment.

Scheduling Considerations

Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be executed after the ReSA transaction import
process. This module should not be run simultaneously with other modules: saexprms,

saexprdw, saexpach, saexpuar, and saexpgl.
Threading Scheme: N/A

Locking Strategy

Locking will be performed via the get_lock and release_lock library functions to lock the

store-day during processing.

Restart/Recovery

The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted based on the commit_max_ctr specified on
the restart_control table. Only two commits will be done, one to establish the store/day
lock and another at the end, to release the lock after a store/day has been completely

processed.

Batch Designs 39

Sales Audit Export to RelM [saexpim]

In case of failure, we rollback all work done to the point right after the call to get_lock()
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock().

Restart recovery is implicit in the program, as only store_days with a
sa_export_log.status of ‘R’eady (SAES_R) will be selected for processing. Since we set this
status to ‘E’xported (SAES_R) after a store_day is processed, then on restart, store_days
that have been processed will be skipped.

Driving Cursors

The program has three driving cursors: one to fetch store_days to be exported, another to
fetch invoice matching transactions to be exported for the store_days fetched in the first
cursor, and the last to fetch escheatment totals to be exported to Invoice Matching.

The following cursor will be used to retrieve the valid store/day identifiers that must be
processed:

SELECT sd.store_day seq no,
TO_CHAR(sd.business_date, "YYYYMMDD®),
el _seq no,
sd.store
FROM sa_store_day sd, sa_export log el
WHERE sd.store_day seq no = el_store_day_seq no
AND sd.store_status = :SASS C /* Closed */
AND sd.data_status = :SADS F /* Fully Loaded */
AND sd.audit_status IN (:SAAS A, :SAAS S, :SAAS H) / *Audit Pending, Store
Errors Pending, HQ Errors Pending */
AND el .system code = :SYSE_IM
AND el ._status = :-SAES R /* Ready to be exported */
ORDER BY sd.store, sd.business_date;

The second driving cursor selects DSD invoice transactions from transaction tables
(‘PADIOU).

SELECT h.tran_seq_ho,
h.rev_no,
TO_CHAR(h.tran_datetime, "YYYYMMDDHH24MISS ™),
-tran no,
-tran_type,
-sub_tran_type,
-reason_code,
.vendor_no,
-vendor_invc_no,
-payment_ref _no,
-proof_of _delivery no,
.status,
-tender_amt
:SAFD_P /* Positive Transaction/Total */
FROM sa_tran head h
WHERE h.store_day seq ho = :is_store_day_seq no
AND h.tran_seq no t.tran_seq no
AND h.tran_type IN (ZTRAT_PAIDOU)
AND h.status !'= :SAST D
AND h.sub_tran_type IN (“EV?,”’MWV*)
AND NOT EXISTS
(SELECT ex.tran_seq _ho
FROM sa_exported ex
WHERE ex.tran_seq no = h.tran_seq no

[== s piien pilien piien piien pifen pifen Mies 3

40 Oracle Retail Merchandising System

Sales Audit Export to RelM [saexpim]

AND ex.store_day seq no = :is_store_day seq ho)
AND NOT EXISTS /* and no errors for the transaction. */
(SELECT er.tran_seq ho
FROM sa_error er, sa error_impact ei, sa _tran _head h
WHERE h_tran_seq ho = er.tran_seq no
AND er.error_code = ei.error_code
AND ei.system code = :SYSE_IM
AND er.hg_override_ind = :YSNO_Y))
ORDER BY h.tran datetime;

The last driving cursor is embedded in the getTotals() function. This function is called
with a usage type of SYSE_IM. For each escheatment transaction that is processed, write
to the invc_head and invc_non_march tables.

Batch Designs 41

Sales Audit Export to RDW [saexprdw]

Sales Audit Export to RDW [saexprdw]

Design Overview
The purpose of this batch module is to fetch all corrected sale and return transactions that
do not have RDW errors from the Retek Sales Audit (ReSA) database tables for
transmission to the Retek Merchandising SystemData Warehouse (RDW). The data will
be sent at the store day level. If the transaction has a status of Deleted and it has
previously been transmitted, a reversal of the transaction will be sent.
Four files of type RDWT, RDWF, RDWS and RDWC will be created for each store_day.
See the file Interface File — SA to RDW.doc for more information.
RDW requires that the employee id be sent. saexprdw is expected to do this by mapping
a cashier ID to an employee ID using the sa_store_emp table. However, the latter may
not always be populated and thus, we send a blank field to RDW in this case.

Multi threading based on store was added to this program in version 11.0.X.

Tables Affected:
TABLES SELECT INSERT UPDATE DELETE
sa_store_day Yes No No No
sa_export_log Yes No Yes No
sa_error Yes No No No
sa_error_impact Yes No No No
sa_tran_head Yes No No No
sa_tran_item Yes No No No
sa_tran_disc Yes No No No
sa_tran_tender Yes No No No
sa_customer Yes No No No
sa_tran_head_rev Yes No No No
sa_tran_item_rev Yes No No No
sa_tran_disc_rev Yes No No No
sa_tran_tender_rev Yes No No No
sa_store_emp Yes No No No
Sasa_total Yes No No No
sa_exported Yes No No No
sa_exported_rev Yes No No No
sa_store_price_hist_temp Yes Yes No Yes

42 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Global Variable Descriptions

Gobal Variable

Description

pi_commit_max_ctr
ps_num_threads
ps_thread_val
pi_proc_cnt
pl_multiplier
ps_sysdate

ps_store
ps_business_date
ps_temp_rdwtfile
ps_temp_siftenderfilerdwffile
ps_temp_rdwsfile
ps_temp_rdwcfile
ps_TranHeadNo
pi_curtrat
pi_tdetl_count

ps_total_sales_value

pl_rdwc_line_ctr
pl_rdwf_line_ctr
pl_rdws_line_ctr
plrdwt_line_ctr
SIFTenderFileRDWEFFile
RDWTFile

RDWSFile

RDWCFile

pi_num_locks_not_released

pi_num_non_fatal_errors

Commit max counter used for array fetches.

Maximum number of threads

Thread value

Commit max counter used for array fetches.

Multipliers to remove decimals from numbers.

Current sysdate value from the database.

Store ID from store/day driving cursor.

Business date from store/day driving cursor.
Temporary file name to be used for the RDWT file.
Temporary file name to be used for the RDWEF file.
Temporary file name to be used for the RDWS file.
Temporary file name to be used for the RDWC file.
Current transactions tran_seq_no.

Current transactions transaction type converted to an enum.
TDETL record count for TTAIL record in the RDWT file.

Total sales value of a TITEM record minus any discounts
from associated IDISC records.

Line counter for the RDWC file.
Line counter for the RDWF file.
Line counter for the RDWS file.
Line counter for the RDWT file.
File pointer for the RDWEF file.
File pointer for the RDWT file.
File pointer for the RDWS file.
File pointer for the RDWC file.

Counter for the number of store/day locks that could not be
released.

Counter for the number of non-fatal errors encountered:
Store/day lock could not be release.

An unexpected total was encountered.

Could not translate a cashier POS ID to an employee ID.

Could not translate a salesperson POS ID to an employee
ID.

Batch Designs 43

Sales Audit Export to RDW [saexprdw]

Function Level Description

main()

int argc

char *argv([]

Check command line for required arguments.
Call LLOGON to connect to the database.

Call Init to initialize the program.

Call process to export the available RDW data.
Report unlocking errors.

Report non-fatal errors.

Call final to cleanup.

init()
No arguments
This function initializes Restart recovery.

Get the value of sa_system_options.unit_of_work by calling the library function
fetchSaSystemOptions.

Initialize Oracle Number functions by calling OraNumInit.

Get a temporary filenames to use for generating the output files. Store these names in
ps_temp_rdwtfile, ps_temp_siftenderfilerdwffile, ps_temp_rdwsfile, and
ps_temp_rdwcfile.

process()
No arguments

Picks a store/day to be processed by fetching using the first driving cursor. Save the
store ID in ps_store and the date in ps_business_date.

Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next
store/day.

Open RDWTFile, RDWSFile, RDWCFile and RDWFile, using temporary names
generated in init.

Set pl_rdwec_line_ctr, pl_rdwf_line_ctr, pl_rdws_line_ctr and pl_rdwt_line_ctr to 0.
Call fetchSysDate to get the current date/time. Store it in ps_sysdate.
Increment pl_file_counter.

Write records into sa_store_price_hist_temp table. Get latest tran_type for all items in a
given store and write it to the temp table.

Call WrRDWFHead to write a RDWT FHEAD record to the RDWT file.
Call WrRDWFHead to write a RDWF FHEAD record to the RDWF file.
Call processStoreDay to process the store/days transactions.
Increment pl_rdwt_line_ctr.

Call WrRDWFTail to write a RDWT FTAIL record to the RDWT file.
Call WrRDWFTail to write a RDWF FTAIL record to the RDWEF file.
Call processStoreDayTotals to process all totals for a given store day.

Update the status in sa_export_log to Complete by calling the library function
markStoreDayExported.

44 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Close the RDWTFile, SIFTenderFileRDWFFile, RDWSFile and RDWCFile and rename
them appropriately (file-type_store_business-date_current-datetime).

Call to release_lock and go on to the next store/day. This function commits as a side
effect, thus committing the changes to the database.

final()

int ii_process_ret

Remove the temporary file, if we failed to finish (ii_proces_ret is not OK).
Call retek_close.

Call trace_threading to clean up all internal processing

Call retek_refresh_thread.

processStoreDay()

char is_store_day_seq_no[NULL_BIG_SEQ NO]
char is_store[NULL_LOC]

char ps_sysdate[NULL_DATETIME]

For each transaction from the store/day being processed, get the following information
from the second driving cursor and call processTransHead with the information.

Table Column Description

Sa_tran_head Tran_seq_no

Sa_tran_head Rev_no

Sa_tran_head Tran_datetime Format YYYYMMDDHH24MISS
Sa_tran_head Register

Sa_tran_head Tran_no

Sa_customer Cust_id_type via an outer join

Sa_customer Cust_id via an outer join

Sa_tran_head Reason_code

Sa_tran_head Tran_type

Sa_tran_head Sub_tran_type

Sa_tran_head Orig_tran_no

Sa_tran_head Orig_reg no

Sa_tran_head Ref_nol

Sa_tran_head Ref_no2

Sa_tran_head Ref_no3

Sa_tran_head Ref_no4

Sa_tran_head Vendor_no

Sa_tran_head Status

Sa_tran_head Value ‘SIGN_N’ or “‘SIGN_P’ depending on the sign of value.
Sa_tran_head Value Absolute value multiplied by 10000.

Batch Designs 45

Sales Audit Export to RDW [saexprdw]

Table Column Description

Transaction Sign ‘SAFD_P’ if the transaction has not been deleted
(status != "‘SAST_D’) and there are no errors and it has
not been exported.

‘SAFD_N if the transaction has been deleted (status =
‘SAST_D’) and it has been exported after being
exported.

Sa_exported Exp_datetime Only for transactions with a Transaction Sign of
‘SAFD_N'.

Format YYYYMMDDHH24MISS

Sa_store_emp Emp_id Pos_id = cashier
Sa_store_emp Emp_id Pos_id = salesperson
Sa_tran_head Banner_no

Sa_tran_head Cust_order_no Customer order number
Sa_tran_head Cust_order_date Format YYYYMMDD

Copy the cashier and salesperson employee ID’s to ps_last_cash_id and ps_last_sp_id.

Calls the library function markTransactionExported to insert a record into sa_exported
for each transaction.

processTransHead()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]

char is_day[NULL_DAY]

struct pt_sa_tran_head ir_sa_tran_head

If the transaction status is deleted (SAST_D) and it has been previously exported, then
call retrieveTransHeadRev. Also, if the revision number of the transaction is not 1, then a
previous revision may have been exported; call retrieveTransHeadRev to get the
exported revision (for full disclosure purposes).

Call retrieveTransltem, retrieveTransDisc and retrieveTransTender to obtain the items,
discounts and tenders for the transaction, both Positive transactions and Negative ones.

Call saveData for both the Positive and Negative transactions to write the information
into memorythe RDW files.

The cust_id_type, cust_id, and emp_ids for cashier and salesperson have to be copied to
global variables for future use in WrRDWTHead.

retrieveTransHeadRev()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]

char is_day[NULL_DAY]

struct pt_sa_tran_head *or_sa_tran_head_rev

This function gets the sa_tran_head_rev record that needs to be processed. A record
needs to be processed if it has been previously exported.

46 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Table

Column

Description

Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev

Sa_tran_head_rev

Sa_store_empSa_tran

_head_rev

Sa_store_empSa_tran

_head_rev
Sa_customer
Sa_customer
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev
Sa_tran_head_rev

Sa_tran_head_rev

Sa_exported_rev

Sa_tran_head_rev
Sa_tran_head_rev

Sa_tran_head_rev

Tran_seq_no
Rev_no
Tran_datetime
Register
Tran_no

Emp_idCashier

Emp_idSalespers
on

Cust_id_type
Cust_id
Reason_code
Tran_type
Sub_tran_type
Orig_tran_no
Orig_reg_no
Ref_nol

Ref no2
Ref_no3
Ref_no4
Vendor_no
Status

Value

Value
Transaction Sign

Exp_datetime

Banner_no
Cust_order_no

Cust_order_date

Format YYYYMMDDHH24MISS

Pos_id = cashier via an outer join separate from
salesperson

Pos_id = salesperson via an outer join separate from
cashier

via an outer join

via an outer join

‘SIGN_N’ or ‘SIGN_P’ depending on the sign of value.
Absolute value multiplied by 10000.
‘SAFD_N’

Only for transactions with a Transaction Sign of
‘SAFD_N'.

Format YYYYMMDDHH24MISS

Customer order number

Format YYYYMMDD

If no data is found, than set or_sa_tran_head_rev->s_rev_no to —1.

retrieveTransltem()

char is_store_day_seq_no[NULL_BIG_SEQ _NO]
char is_store[NULL_STORE]

char is_day

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_item

Batch Designs 47

Sales Audit Export to RDW [saexprdw]

struct pt_sa_tran_item **or_sa_tran_item

This function gets all sa_tran_item records or sa_tran_item_rev (if is_rev_no is not —1)
that need to be processed for a tran_seq_no.

Table

Column Description

Sa_tran_item
Sa_tran_item
Sa_tran_item
Sa_tran_item

Sa_tran_itemSa_tran_
item

Sa_tran_itemSa_tran_
item

Sa_tran_item
Sa_tran_item
Sa_tran_item
Sa_tran_item

Sa_tran_item

Sa_tran_item

Sa_tran_item

Sa_tran_item
Sa_tran_item

Sa_tran_item
Sa_tran_item

Sa_tran_item

Sa_tran_item
Sa_tran_item
Sa_tran_item
Sa_store_emp
Sa_tran_item
Sa_tran_item
Sa_tran_item
Sa_tran_item
Sa_tran_item

Sa_store_price_hist_t
emp

Tran_seq_no
Item_seq_no
Item_status
Skultem

Ref_itemUpc

Non_merch_itemUpc_suppli
ment

Voucher_no
Dept

Class
Subclass

Standard_qty ‘SIGN_N’ or ‘SIGN_P’ depending on the

sign of qty.
Standard_qty Absolute value multiplied by 10000.

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of unit_retail.

Standard_unit_retail

Standard_unit_retail

Tax_ind

Absolute value multiplied by 10000.

Item_swiped_indItem_swipp
ed_ind

Standard_orig_unit_retail ‘SIGN_N’ or ‘SIGN_P’ depending on the

sign of orig_unit_retail.
Standard_orig_unit_retail Absolute value multiplied by 10000.
Item_type
Override_reason
Emp_id
Return_reason_code
Drop_ship_ind
Selling_item
Customer_order_line_no
Media_id
Retail_type

The same columns as above are select from the sa_tran_item_rev table if the rev_no

passed in is not —1.

Set *ol_num_sa_tran_item to the total number of records fetched.

48 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

retrieveTransDisc()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]

char is_day[NULL_DAY]

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_disc

struct pt_sa_tran_disc **or_sa_tran_disc

This function gets all sa_tran_disc or sa_tran_disc_rev records (if is_rev_no is not -1) for
a tran_seq_no that needs to be processed.

Table

Column

Description

Sa_tran_disc
Sa_tran_disc
Sa_tran_disc
Sa_tran_disc
Sa_tran_disc
Sa_tran_disc
Sa_tran_disc

Sa_tran_disc

Sa_tran_disc

Sa_tran_disc

Sa_tran_disc

Sa_tran_item

Sa_tran_disc

Sa_tran_item

Sa_tran_disc

Sa_tran_disc

Sa_tran_disc

Tran_seq_no

Item_seq_no
Discount_seq_no
Rms_promoDiscount_type
Promotion

Discount_type

Coupon_no

Coupon_ref_noCoupon_ref
no

Standard_qty

Standard_qty

(Unit_retail * standard_qty)
— (unit_discount_amt * qty)

(Unit_retail * standard_qty)
— (unit_discount_amt * qty)

Standard_unit_discount_am
t

Standard_unit_discount_am
t

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of qty.

Absolute value multiplied by 10000.
Absolute value multiplied by 10000.

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of the expression.

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of unit_discount_amt.

Absolute value multiplied by 10000.

The same columns as above are select from the sa_tran_disc_rev table if the rev_no

passed in is not —1.
Set *ol_num_sa_tran_disc to the total number of records fetched.

Batch Designs 49

Sales Audit Export to RDW [saexprdw]

retrieveTransTender()

char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]

char is_day[NULL_DAY]

char is_rev_no[NULL_SA_REV_NO]

long *ol_num_sa_tran_tender

struct pt_sa_tran_tender **or_sa_tran_tender

This function gets all sa_tran_tender or sa_tran_tender_rev records (if is_rev_no is not —1)
for a tran_seq_no that needs to be processed.

Table

Column

Description

Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender

Sa_tran_tender

Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender
Sa_tran_tender

Sa_tran_head

Sa_voucher
Sa_voucher
Sa_tran_tender

Sa_tran_tender

Tran_seq_no
Tender_seq_no
Tender_type_group
Tender_type_id

Tender_amt

Tender_amt

Cc_no

Cc_auth_no
Cc_auth_src
Cc_cardholder_verf
Cc_exp_date
Cc_entry_mode
Cc_term_id
Cc_spec_cond
Voucher_no

Business_date —
iss_date

Escheat_date
Coupon_no

Coupon_ref_no

‘SIGN_N’ or ‘SIGN_P’ depending on the sign

of tender_amt.

Absolute value multiplied by 10000.

Format YYYYMMDD

Voucher age

The same columns as above are select from the sa_tran_tender_rev table if the rev_no

passed in is not —1.

Set *ol_num_sa_tran_tender to the total number of records fetched.

saveData()

struct pt_sa_tran_head ir_sa_tran_head

long il_num_sa_tran_item

struct pt_sa_tran_item *ia_sa_tran_item

long il_num_sa_tran_disc

struct pt_sa_tran_disc *ia_sa_tran_disc

50 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

long il_num_sa_tran_tender

struct pt_sa_tran_tender *ia_sa_tran_tender

Creates RTLOG buffers for each transaction.

Set pi_curtrat to the current transaction type by calling trat_lookup.

Call ProcRecord WrRDWTHead to process the THEAD buffercurrent ia_sa_tran_head
record if the transaction type (pi_curtrat) is TRATTT_COND, TRATTT_PAIDIN or
TRATTT_PAIDOU.

For each item record:
Blank pad NULL values so we do not get all zeros in the VRTLOG.
Call tsv_lookahead to calculate the total sales value for later use.

Call ProcRecord WrRDWTHead to process the TITEM buffercurrent ia_sa_tran_item
record.

For each item’s discount record:

Call ProcRecord WrRDWTDetl to process the IDISC buffercurrent ia_sa_tran_disc record.
Increment 1l_cur_sa_tran_disc.

For each tender record:

Call WRITE_TTEND to create a TTEND buffer.

Call ProcRecord WrRDWEFDetl to process the TTEND buffercurrent ia_sa_tran_tender.

Increment cur_sa_tran_tender.

ProcessStoreDayTotals()

char is_store_day_seq_no[NULL_BIG_SEQ NO]

char is_store[NULL_STORE]

char is_day[NULL_DAY]

const char is_usage_type[NULL_CODE]

This function will loop through the library function getBalTotals for the current store
day.

Call WrRDWFHead to write this header to the RDWS file.
Increment pl_rdwc_line_ctr.

Call WrRDWFHead to write this header to the RDWC file.
For each total returned:

1. If the total_id is “OVRSHT_B”, call WrRDWCTDetl then write the data to the
RDW(C file.

2. Else, if the cashier_id and the register_id are both nulls, call WrRDWSTDetl then
write to the RDWS file.

3. Else, mark this as an error, since the RDWS file can only handle store level totals.

If the total is not a ‘N’egative total, mark the total exported by calling the library
function markTotalExported.

Increment pl_rdws_line_ctr.
Call WrRDWFTail to write this header to the RDWS file.
Increment pl_rdwc_line_ctr.
Call WrRDWFTail to write this header to the RDWC file.

WrRDWFHead()
char *is_file_type

Batch Designs 51

Sales Audit Export to RDW [saexprdw]

FILE *is_file
long *iol_line_ctr
Set *iol_line_ctr to 1L. This is the appropriate global line counter variable for the file type.

Writes an RDW_FHEAD record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File - SA to RDW.doc.

Field Type Size Source

Frecdesc char RDW_FRECDESC_SIZE RDW_FHEAD_FRECDESC
Flineid char LEN_FILE_LINE_NO *iol_line_ctr
file_type_definition char LEN_FILE_TYPE_DEF is_file_type

file_create_date char LEN_DATETIME p->file_create_dateps_sysdate

Call putrec to write the record out to the RDWT or RDWEFE file.

WrRDWTHead()
RTL_TITEMpt_sa_tran_head *pir_head
Pt_sa_tran_item *ir_item

Set pi_tdetl_count to 0.

Increment pl_rdwt_line_ctr.

This function writes a RDW_THEAD record (as defined in salib.h) to the output file. This
must match the definition of the record in Interface File — SA to RDW.doc.

If currently in a transaction block (pi_inTranBlock) than write it out by calling
WrRDWTTail.

Increment pl_rdwt_line_ctr.

Field Type Size Source
Fredesc char RDW_FRECDESC_SIZE RDW_THEAD_FRECDESC
Flineid char FT_NUMBER pl_rdwt_line_ctr
Business_date Date FT_DATE ps_business_date
tran_datetime char FT_DATE ir_head->s_tran_datetime
Location char FT_NUMBER RTLFHead.locationps_store
register_id char FT_VARCHAR ir_head->s_register
cashier_id char FT_VARCHAR ir_head->s_cashier
Salesperson_id char FT_VARCHAR ir_item->s_salesperson
if NULL then use ir_head->
s_salesperson
cust_id_type char FT_VARCHAR ir_head->s_cust_id_type
cust_id_number char FT_VARCHAR ir_head->s_cust_id
tran_no char FT_NUMBER ir_head->s_tran_no
Orig_register Char FT_VARCHAR ir_head->s_orig_reg_no
Orig_tran_no Char FT_NUMBER Ir_head-> s_orig_tran_no
tran_seq_no char FT_VARCHAR ir_head->s_tran_seq_no,
rev_no char FT_NUMBER ir_head->s_rev_no

52 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Field Type Size Source
tran_sign char FT_VARCHAR ir_head->s_tran_sign
tran_type char FT_VARCHAR ir_head->s_tran_type
tran_type char FT_VARCHAR TRAT_SALE
tran_type char FT_VARCHAR TRAT_RETURN
tran_type char FT_VARCHAR TRAT_VOID
sub_tran_type char FT_VARCHAR ir_head->s_sub_tran_type
If NULL then use - 1
emp_cashier_no char FT_VARCHAR ir_head->s_ref nol if
sub_tran_type = TRAS_EMP
else use -1
receipt_ind char FT_VARCHAR ir_head->s_ref_nol
if tran_type =
TRAT_RETURN
reason_code char FT_VARCHAR ir_head->s_reason_code
if NULL use -1
vendor_no char FT_VARCHAR ir_head->s_vendor_no
if tran_type =
TRAT_PAIDOU
item_type char FT_VARCHAR ir_item->s_item_type if
ir_item->s_item_type is
either SAIT_ITEM or
SAIT_REF.
SAIT_GCN if ir_item-
>s_item_type is SAIT_GCN.
item_no char FT_VARCHAR ir_item->s_item if ir_item-
>s_item_type is SAIT_ITEM.
ir_item->s_voucher_no if
ir_item->s_item_type is
SAIT_GCN.
tax_ind char FT_VARCHAR ir_item->s_tax_ind
drop_ship_ind char FT_VARCHAR ir_item->s_drop_ship_ind
item_swiped_ind char FT_VARCHAR ir_item->s_item_swiped_ind
Dept char FT_NUMBER ir_item->s_dept
Class char FT_NUMBER ir_item->s_class
Subclass char FT_NUMBER ir_item->s_subclass
total_sales_qty char FT_NUMBER ir_item->s_qty
total_sales_value char FT_NUMBER ps_total_sales_value
override_reason char FT_VARCHAR ir_item->s_override_reason if

ir_item->s_override_reason is
NULL, else use -1

Batch Designs 53

Sales Audit Export to RDW [saexprdw]

Field

Type

Size

Source

Return_reason_code

total_orig_sign
total_sales_value

Weather

Temperature

Traffic

Construction

banner_id

Media_id

customer_order_no

customer_order_date

selling_item

customer_order_line_no

Char

char
char

char

char

char

char

char

char

char

char

char

char

FT_VARCHAR

FT_VARCHAR
FT_NUMBER
FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

FT_VARCHAR

ir_item-
>s_return_reason_code if
ir_item-
>s_return_reason_code is
NULL, else use - 1

ir_itemp->s_qty_sign
ir_head->s_value

ir_head->s_ref nol if
tran_type is TRAT_COND

ir_head->s_ref no?2 if
tran_type is TRAT_COND

ir_head->s_ref _no3 if
tran_type is TRAT_COND

ir_head->s_ref_no4 if
tran_type is TRAT_COND

ir_head->s_banner_id if
ir_head->s_banner_id is
NULL else use - 1

ir_item->s_media_id if
ir_item!=NULL &&
stremp(ir_item->s_media_id
is NULL else use - 1

ir_head-
>s_customer_order_no if
ir_head-
>s_customer_order_no is
NULL else use -1

ir_head-
>s_customer_order_date

ir_item->s_selling_item if
ir_item!=NULL &&
stremp(ir_item-
>s_selling_item is NULL else
use - 1

ir_item-
>s_customer_order_line_no if
ir_item!=NULL &&
stremp(ir_item-
>s_customer_order_line_no
is NULL else, use - 1

Call putrec to write the record out to the RDWT file.

WrRDWTDetl()

pt_sa_tran_head *ir_head
RTL_IDISCps_sa_tran_disc *pir_disc
Increment both pl_rdwt_line_ctr and pl_tdetl_count.

54 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Writes an RDW_TDETL record (as defined in salib.h) to the RDWT output file. This must
match the definition of the record in Interface File — SA to RDW.doc.

Increment both pl_rdwt_line_ctr and pl_tdetl_count.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_TDETL_FRECDESC
flineid char FT_NUMBER 1s_file line no
Discount_type Char FT_VARCHAR ir_disc->s_disc_type
promo_tran_type char FT_VARCHAR ir_disc->s_rms_promo_type
promo_no char FT_VARCHAR ir_disc->s_promotion
Promo_comp char FT_VARCHAR ir_disc->s_promo_comp
Coupon_no Char FT_VARCHAR ir_disc->s_coupon_no
Coupon_ref_no Char FT_VARCHAR ir_disc->s_coupon_ref_no
sales_qty char FT_NUMBER ir_disc->s_qty

sales_sign char FT_VARCHAR ir_disc->s_qty_sign
sales_value char FT_NUMBER ps_total_sales_value
disc_value char FT_NUMBER ir_discp-> s_unit_disc_amt

Call putrec to write the record out to the RDWT file.

Batch Designs 55

Sales Audit Export to RDW [saexprdw]

WrRDWTTail()
No arguments

Writes an RDW_TTAIL record (as defined in salib.h) to the RDWT output file. This must
match the definition of the record in Interface File — SA to RDW.doc.

Increment pl_rdwt_line_ctr.
Set pi_inTranBlock to FALSE.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_TTAIL_FRECDESC
flineid char FT_NUMBER pl_rdwt_line_ctr
tran_rec_counter char LEN_DTL_LINE_CNT pi_tdetl_count

Call putrec to write the record out to the RDWT file.

WrRDWFTail()

FILE *is_file

long *iol_line_ctr

Increments *iol_line_ctr. This is the appropriate global line counter variable for the file
type.

Writes an RDW_FTAIL record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File — SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FTAIL_FRECDESC
flineid char FT_NUMBER *iol_line_ctr
file_rec_counter char FT_NUMBER *iol_line_ctr —2

Call putrec to write the record out to the RDWT or RDWFE file.

WrRDWFDetl()
struct pt_sa_tran_head *ir_head,
struct pt_sa_tran_tender *ir_tend

Increment pl_rdwf_line_ctr.

field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC
flineid char FT_NUMBER pl_rdws_line_ctr
business_date char FT_DATE ps_business_date

tran_date char FT_DATE ir_head->s_tran_datetime
location char FT_NUMBER ps_store

cashier_id char FT_VARCHAR ir_head->s_cashier if ir_head-

>s_cashier is NULL else use - 1

56 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

field Type Size Source
register_id char FT_VARCHAR ir_head->s_register if ir_head-
>s_register is NULL else, use -1
tran_sign char FT_VARCHAR ir_head->s_tran_sign
Tran_seq_no char FT_VARCHAR ir_head->s_tran_seq_no
Rev_no ir_head->s_rev_no
Tran_type FT_VARCHAR ir_head->s_tran_type
Tender_type_group FT_VARCHAR ir_tend->s_tender_type_group
tender_type_id FT_VARCHAR ir_tend->s_tender_type_id
tender_amt FT_VARCHAR ir_tend->s_tender_amt
cc_no FT_VARCHAR ir_tend->s_cc_no
cc_exp_date ir_tend->s_cc_exp_date
cc_auth_no FT_VARCHAR ir_tend->s_cc_auth_no
cc_auth_src FT_VARCHAR ir_tend->s_cc_auth_src
cc_entry_mode FT_VARCHAR ir_tend->s_cc_entry_mode
c_cardholder_verf FT_VARCHAR ir_tend->s_cc_cardholder_verf
cc_terminal_id FT_VARCHAR ir_tend->s_cc_terminal_id
cc_special_cond FT_VARCHAR ir_tend->s_cc_special_cond
voucher_no FT_VARCHAR ir_tend->s_voucher_no
voucher_age FT_VARCHAR ir_tend->s_voucher_age
escheat_date FT_VARCHAR ir_tend->s_escheat_date
coupon_no FT_VARCHAR ir_tend->s_coupon_no
coupon_ref_no FT_VARCHAR ir_tend->s_coupon_no

Call putrec to write the record out to the RDWT or RDWFE file.

WrRDWSTDetl()
char *is_status
char *is_total_id
char *is_ref_nol
char *is_ref_no2
char *is_ref_no3

char *is_total_value

Increment pl_rdws_line_ctr.

Writes an RDWS_TDETL record (as defined in salib.h) to the RDWS output file. This
must match the definition of the record in Interface File — SA to RDW.doc.

Increment pl_rdws_line_ctr.

Batch Designs 57

Sales Audit Export to RDW [saexprdw]

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC
flineid char FT_NUMBER Is_file_line_no
tran_date char FT_DATE ps_business_date
location char FT_NUMBER ps_store

sales_sign char FT_VARCHAR is_status

total_id char FT_VARCHAR is_total_id

Ref_nol char FT_VARCHAR Is_ref nol

Ref no2 char FT_VARCHAR Is_ref no2

Ref_no3 char FT_VARCHAR Is_ref no3
total_sign char FT_VARCHAR SIGN_N or SIGN_P

depending on whether or
not is_total_value is
negative.

total_amount char FT_NUMBER Absolute value of
is_total_value.

Call putrec to write the record out to the RDWT file.

WrRDWCTDetl()

char *is_cashier_id

char *is_register_id

char *is_status

char *is_total_id

char *is_ref_nol

char *is_ref _no2

char *is_ref_no3

char *is_total_value
Increment pl_rdwc_line_ctr.

Writes an RDWC_FDETL record (as defined in salib.h) to the RDWC output file. This
must match the definition of the record in Interface File — SA to RDW.doc.

Increment pl_rdwc_line_ctr.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC
flineid char FT_NUMBER Is_file_line_no

tran_date char FT_DATE RTLFHead.ps_business_date
location char FT_NUMBER RTLFHead.location ps_store
cashier_id char FT_VARCHAR is_cashier_id if is_cashier_id is

NULL else use - 1

register_id char FT_VARCHAR is_register_id if is_register_id is
NULI else use -1

sales_sign char FT_VARCHAR is_status

58 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Field Type Size Source

total_id char FT_VARCHAR is_total_id

Ref nol char FT_VARCHAR Is_ref nol

Ref no2 char FT_VARCHAR Is_ref nol

Ref_no3 char FT_VARCHAR Is_ref_nol

total_sign char FT_NUMBER SIGN_N or SIGN_P depending on
whether or not is_total_value is
negative.

total_amount char FT_NUMBER Absolute value of is_total_value.

Call putrec to write the record out to the RDWC file.

tsv_lookahead()

inti

This function calculates the total sales value (ps_total_sales_value) by “looking ahead”
and summing up the item values and discounts for the current item record (i).

Blank_field()
char *is_field
intii_len

This function fills the character array with spaces up to ii_len

Log_and_exit()
No arguments

This function logs message, calls the final function and exists with code 1.

Stored Procedures / Shared Modules (Maintainability)

Shared Module Module Description

libretek.a functions Refer to Library Design — retek.doc for details.

retek_init Initialize restart recovery.

retek_close

Retek_refresh_thread

Libresa.a functions:
get_lock

release_lock
fetchSaSystemOptions
fetchSysDate

fetchStoreDayErrorCount

markStoreDayExported

markTransactionExported

Close restart recovery functions.

Refresh the current thread so that it may be used again.

Refer to Library Design — ReSA.doc for details.
used to establish a read lock on a store/day.

used to release a store/day lock.

Fetch the values from the sa_system_options table.
Fetch the current SYSDATE value.

Fetch the number of errors that corresponds to a particular
store/day and system.

Mark a particular store/day and system as exported

Mark a particular transaction and system as exported.

Batch Designs 59

Sales Audit Export to RDW [saexprdw]

Shared Module Module Description

OraNum functions (Add, Sub, Used to perform arithmetic operations on strings containing

Mul, Div) large numbers.
getBalTotal Get the specified balance totals.
putrec Writes a record to a file.
Output Files
Data is output in the RDW file format. This is described in the file Interface File — SA to
RDW.doc.

The filename convention for these valid RDWT, SIF Tender, RDWS and RDWC files will
be rdwt_store_businessdate_curdatetime, rdwf_store_businessdate_curdatetime,
rdws_store_businessdate_curdatetime and rdwt_store_businessdate_curdatetime. The files
should start out with a temporary name generated by the Unix tempnam (3S) call and
then be renamed with Unix rename (2) call when the files are complete.

Scheduling Considerations
Processing Cycle: Anytime — Sales Audit 3.0 is a 24/7 system.

Scheduling Diagram: This will be run after auditors have made corrections to the data.
This module should not be run simultaneously with other modules: saexprms, saexpim,
saexpuar, saexpach, and saexpgl.

Pre-Processing:
sagetref.pc to get waste data, and saimptlog.pc and saimptlogfin.pc to get post-void data.

Post-Processing:

= stsldmat.pc (Sales Transaction SKU-Loc-Day-Minute ATomic) should be run to
import data from the RDWT file into the RDW system.

= ttldmat.pc (Transaction Tender Loc-Day-Minute ATomic) should be run to import
data from the RDWF file into the RDW system.

= Iptotcldat.pc (Loss Prevention Totals Cashier-Loc-Day ATomic) should be run to
import data from the RDWC file into the RDW system.

* Iptotldat.pc (Loss Prevention Totals Loc-Day ATomic) should be run to import data
from the RDWE file into the RDW system.

Threading Scheme: v_restart_store

Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section, this
section should describe the locking (and release) strategy required beyond the preset
Retek standards. It should describe how the module accesses data and the ‘hold” or ‘lock’
it has on a database and / or its records, during processing. It should also describe the
‘lock’ release.

Restart / Recovery

The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done, one to establish the store/day lock and another at the end, to
release the lock after a store/day has been completely processed. The RDWT, RDWF,

60 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

RDWS and RDWC formatted output files will be created with temporary names and
renamed just before the end of store/day commit.

In case of failure, we rollback all work done to the point right after the call to get_lock
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock.

There are 3 driving cursors in this module. The first picks a store/day to work on:

c_store_day CURSOR FOR
SELECT
sd.store_day_seq no,
el .seq no,
sd.store,
TO_CHAR(sd.business_date, "YYYYMMDD®),
ROWIDTOCHAR(el . rowid)
FROM sa_store _day sd, sa_export_log el, v_restart store vrs
WHERE sd.store day seq no = el.store_day seq no

AND el.status
AND vrs.num_threads

AND sd.store_status = :SASS C /* Closed */
AND sd.data status = :SADS F /* Fully loaded */
AND sd.audit status = :SAAS A /* Audited, but no Errors */
AND el .system code = :SYSE RDW

:SAES R /* "R"eady to be exported */
TO_NUMBER(:ps_num_threads)

AND vrs.thread val = TO_NUMBER(:ps_thread val)
AND vrs.driver_value = sd.store
ORDER BY sd.store_day seq ho, sd.store, sd.business_date;

Since RDW cannot accept data from a store_day with errors pending, we select
store_days that have audit_status ‘A’ only. The library function
fetchStoreDayToBeExported cannot be used here because it fetches store_days with an
audit_status of ‘E” (Errors pending).

The second driving cursor fetches the store/day transaction data to be output:

c_tran_head CURSOR FOR
SELECT h._tran_seq ho,
h.rev_no,
TO_CHAR(h.tran datetime, "YYYYMVDDHH24MISS®),
NVL(h.register, " *),
NVL(TO_CHAR(h.tran_no), " ©),
NVL(em.emp_id, " *),
NVL(em2.emp_id, * *),
NVL(c.cust_id type, "),
NVL(c.cust_id, " 7),
NVL(h.reason code, " *),
h.tran_type,
NVL(C h.sub_tran_type, * *),
NVL(TO_CHAR(h.orig_tran_no), " 7),
NVL(C h.orig_reg no, * *),
NVL(h.ref nol, *),
NVL(h.ref_no2, = %)
NVL(h.ref no3, ")
NVL(h.ref_no4, = *)
NVL(h.vendor_no, *©
h.status,
DECODE(SIGN(h.value), -1, :SIGN_N, :SIGN_P),
NVL(TO_CHAR(ABS(h.value) * :pl_multiplier), "0%),
:SAFD P,

N\’/L(to_char(h -banner_no), " *),

Batch Designs 61

Sales Audit Export to RDW [saexprdw]

NVL(h.cust_order_no," %),
NVL(to_char(h.cust_order_date, "YYYYMMDD®), * *)
FROM sa_tran head h,

sa_customer c,

sa_store_emp em,

sa_store_emp em2

WHERE h._store_day seq no = TO NUMBER(:is_store day seq ho)

AND h._store = TO_NUMBER(:is_store)
AND h.day = TO_NUMBER(:is_day)
AND em.pos_id(+) = h.cashier

AND em.store(+) = h.store

AND em2.pos_id(+) = h.salesperson

AND em2.store(+) = h.store

AND h_tran_seq _no = c.tran_seq no(+)
AND h.store = c.store(+)

AND h.day = c.day(®+)

AND h.tran _type IN (-TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH,
-TRAT_PAIDIN, :TRAT_PAIDOU, :TRAT _NOSALE,
cTRAT_VOID, :TRAT_PVOID, :TRAT_COND)

AND (h.status = :-SAST P

AND NOT EXISTS /* and no errors for the
transaction. */
(SELECT er.tran_seq no
FROM sa_error er, sa error_impact ei
WHERE h.tran_seq no = er.tran_seq _no
AND h._store = er.store
AND h.day = er.day
AND er.error_code = ei.error_code
AND ei.system code = :-SYSE_RDW
AND er.hg override_ind = :YSNO_Y))
AND NOT EXISTS
(SELECT e.store _day seq no
FROM sa_exported e
WHERE h.store_day seq no = e.store_day_seq no
AND h._store = e.store
AND h.day = e.day
AND h._tran_seq no
AND e.system_code

e. tran_seq_no
:SYSE_RDW)

UNION ALL
SELECT h.tran_seq _ho,

h.rev_no,
TO CHAR(h.tran_datetime, "YYYYMMDDHH24MISS®),
NVL(h.register, * °),
NVL(TO_CHAR(C h.tran_no), * %),
NVL(em.emp_id, * 7),
NVL(em2.emp_id, " *),
NVL(c.cust_id type, "),
NVL(c.cust_id, " %),
NVL(h.reason_code, *),
h.tran_type,
NVL(h.sub_tran_type, " *),
NVL(TO_CHAR(h.orig_tran_no), ",
NVL(h.orig reg_no, * %),
NVL(h.ref_nol, * ©),
NVL(C h.ref_no2, * *),
NVL(h.ref_no3, * 7),
NVLC h.ref_no4, * *),
NVL(h.vendor_no, = %),
h.status,
DECODE(SIGN(h.value), -1, :SIGN_N, :SIGN_P),
NVL(TO_CHAR(C ABS(h.value) * :pl_multiplier), "0%),
:SAFD N,
NVL(TO_CHAR(e.exp_datetime, "YYYYMVMDDHH24MISS™), " ™)

62 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

NVL(to_char(h.banner_no), * *),
NVL(h.cust_order_no," %),
NVL(to_char(h.cust_order_date, "YYYYMMDD®"), ")
FROM sa_tran head h,
sa_exported e,
sa_customer c,
sa_store_emp em,
sa_store_emp em2
WHERE h_store_day seq no = TO NUMBER(:is_store day_seq ho)
AND h.store = TO_NUMBER(:is_store)
AND h.day = TO_NUMBER(:is_day)
AND em.pos_id(+) = h.cashier
AND em.store(+) = h.store
AND em2.pos_id(+) = h.cashier
AND em2.store(+) = h.store
AND h.tran_seq no = c.tran_seq no(+)
AND h_store = c.store (+)
AND h.day = c.day (+)
h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT EEXCH,
-TRAT_PAIDIN, :TRAT_PAIDOU, :TRAT _NOSALE,
cTRAT_VOID, :TRAT_PVOID, :TRAT_COND)

AND h._status in (:SAST_V, :SAST D)
AND h._tran_seq no = e.tran_seq no(+)
AND h_store = e.store (+)

AND h.day = e.day (+)

AND e.status = :SAST P

AND e.system code = :SYSE RDW

ORDER BY 3;

The third driving cursor is encapsulated in the getBalTotal function, which fetches all
totals with a usage_type of 'RDW". It returns, among other things, the total_id, the
cashier id and the register id. These are then used to determine whether to write a record
to the RDWS file or the RDWC file. Only totals with a total_id of “OVRSHT_B”
(over/short balance level) are exported to the RDWC file. The other totals are exported to
the RDWS file only if both their register and their cashier ids are empty, i.e. the total is at
the store level. If the total cannot be written to neither the RDWC nor the RDWS file, then
we write an error to the log and continue.

Performance

In conjunction with the Scheduling Considerations and Locking Strategy sections, the
optimization considerations of a batch module must adhere to Retek standards. This
section should call out special performance considerations that may exceed current
documented Retek practices. Such considerations should be the basis for update to Retek
standards. Each database operation should be optimized based on quantity and quality
of the database transactions. Batch modules are executed on the database or dedicated
batch server and thus there are no additional performance gains to forcing database
interaction logic onto the server.

Security Considerations

Credit card numbers and other customer information are present in the output files.
Access to these files is controlled only by the Unix permissions that these files have.

Batch Designs 63

Sales Audit Export to RMS [saexprms]

Sales Audit Export to RMS [saexprms]

Purpose

The Batch Detailed Design is a thorough definition of a single batch program / module
within one functional area. The documented information is derived from this functional
area’s Technical Design.

Design Overview

The purpose of this batch module is to fetch all corrected sale and return transactions that
do not have RMS errors from the Retek Sales Audit (ReSA) database tables for
transmission to the Retek Merchandising System (RMS). If
sa_system_options.unit_of_work is ‘S’, then the whole store/day is skipped if any RMS
error is found. If this value is “T’, then only transactions with RMS errors are skipped. If
the transaction has a status of Deleted and it has previously been transmitted, a reversal
of the transaction will be sent.

If the transaction has a status of ‘D’eleted and it has previously been transmitted, a
reversal of the transaction will be sent.

Multi-threading based on store was added to this program in version 11.0.6.
A file of type POSU is generated for each store/day.

Tables Affected:
TABLE SELECT INSERT UPDATE DELETE
sa_system_options Yes No No No
sa_store_day Yes No No No
sa_export_log Yes No No No
sa_error Yes No No No
sa_tran_head Yes No No No
sa_tran_item Yes No No No
sa_tran_disc Yes No No No
sa_tran_head_rev Yes No No No
sa_tran_item_rev Yes No No No
sa_tran_disc_rev Yes No No No
store Yes No No No
currencies Yes No No No
sa_exported Yes No No No
sa_exported_rev Yes No No No

64 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Program Flow

Pick store/day
to work on from

first driving
clirenr

A\ 4

Lock
store/da

y

sa_system_opti
ons.unit_of_wor

A

1

k = store/day?

Commit work.
Unlock

ctnral/dav

A

A

Any more
transactio

Output data.
Rename file.

\ 4

Mark Pick
transactio |4 Process |« transaction |¢
n transactio from second

avnnrtad n driviinn crirenr

sa_system_opti
ons.unit_of_wor >
k = store/day?

Any
errors

Update

sa_export_log to
show store/day

Global Variable Descriptions

Global Variable

Description

Pi_commit_max_ctr

ps_num_threads

ps_thread_val

pl_multiplier

Ps_unit_of work

Ps_sysdate

Ps_temp_file
Ps_file_name

*RMSoutFile

FileRecOutCount

Commit max counter used for array fetch
Commit max counter used for array fetch
Commit max counter used for array fetch
Multiplier to remove decimals from numbers
Unit of Work from sa_system_options.

Current sysdate value from the database.
Temporary file name to be used for the RMS file.
Final file name of the RMS output file.

RMS output file

Record count out for FTAIL.

Batch Designs 65

Sales Audit Export to RMS [saexprms]

Global Variable

Description

pi_tdetl_count
Pi_tdetl_count
Current_item
Itemroot
RMSoutFile
Ps_store
Ps_business_date
Ps_vat_region
Ps_vat_include_ind
Ps_currency_code
Ps_currency_rtl_dec

Pi_num_locks_not_released

pa_sa_tran_item
pl.num_sa_tran_item
pa_sa_tran_disc

pl.num_sa_tran_disc

Tdetl record count for ttail

TDETL record count for TTAIL record in the RMS file.
Pointer to the current item node of the binary tree.
Root of the binary tree.

RMS output file pointer.

Current store/location ID.

Business date of store/day combination

VAT Region for the current store/day.

VAT Include Indicator for the current store/day.
Currency Code for the current store/day.

Currency Retail Decimal places for the current store/day.

Counter for the number of store/day locks that could not be
released.

Array for tran_item record
Size of tran_item record
Array for tran_disc record

Size of tran_disc record

Function Level Description

main()
int argc

char *argv([]

Check command line for required arguments.
Call LOGON to connect to the database.
Call Init to initialize the program.

Call process to export the available RMS data.

Report unlocking errors.
Call final to cleanup.
init()

No arguments

This function initializes Restart recovery.

Initialize OraNum functions by calling OraNumlInit.

Get the value of sa_system_options.unit_of_work by calling the library function

fetchSaSystemOptions.

Get a temporary filename to use for generating the output files. Store this name in

ps_temp_file.

66 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

process()

No arguments

Picks a store/day to be processed by using the first driving cursor.
Multi threading is implemented using Store as the threading scheme.

Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next
store/day.

If sa_system_options.unit_of_work is store/day, than check to see if any of the
store/days transactions have RMS errors by calling the library function
fetchStoreDayErrorCount. If they do, unlock the store/day with a call to release_lock and
go on to the next store/day.

Get VAT information by calling fetchVatCur.

Call fetchSysDate to get the current date/time.

Save the store/location ID in ps_store.

Initialize itemroot and current_item to NULL.

Call processStoreDay to process the store/days transactions.
Call WrOutputData to format and write the RMS output records.

Update the status in sa_export_log to ‘E'xported ‘C’omplete by calling the library
function markStoreDayExported

Rename temporary output file to posu_store_businessdate_curdatetime.

Call to release_lock and go on to the next store/day. This function commits as a side
effect, thus committing the changes to the database.

final()
No arguments
Remove the temporary file.

Call retek_close.

FetchVatCur()
Char is_store_day_seq_no[NULL_BIG_SEQ NOJ

Call a cursor that will retrieve the vat_include_ind, vat_region, currency_code and
currency_rtl_dec. Gets vat_include_ind, vat_region, currency_code, currency_rtl_dec
from sa_store_day and store tables for RMSFHead record in output file.

processStoreDay()
char *is_store_day_seq_no
char *is_store
char *is_day
char *is_sysdate

For each transaction from the store/day being processed, get the following information
from the second driving cursor and call processTransHead with the information.

Table Column Description

Sa_tran_head Tran_seq_no

Sa_tran_head Rev_no

Sa_tran_head Tran_datetime Format YYYYMMDDHH24MISS

Batch Designs 67

Sales Audit Export to RMS [saexprms]

Table Column Description
Sa_tran_head Status
Transaction Sign SAFD_P if the transaction has not been deleted (status !=
SAST_D) and there are no errors and it has not been
exported.

SAFD_N if the transaction has been deleted (status =
SAST_D) and it has been exported after being exported.

Sa_tran_head Sub_tran_type
Sa_tran_head Tran_type

Calls the library function markTransactionExported to insert a record into sa_exported.

processTransHead()
struct pt_sa_tran_head *ir_sa_tran_head
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char *is_store
char *is_day

If the transaction status is deleted (SAST_D) and it has been previously exported, then
call retrieveTransHeadRev. Also, if the revision number of the transaction is not 1, then a
previous revision may have been exported; call retrieveTransHeadRev to get the
exported revision (for full disclosure purposes).

Call retrieveTransItem and retrieveTransDisc to obtain the items and discounts for the
transaction, both Positive transactions and Negative ones.

Call saveData for both the Positive and Negative transactions to write the information
into memory.

retrieveTransHeadRev()
char *is_tran_seq_no
char *is_store
char *is_day
struct pt_sa_tran_head *or_sa_tran_head_rev

This function gets the sa_tran_head_rev record that needs to be processed. A record
needs to be processed if it has been previously exported.

Table Column Description
Sa_tran_head_rev Tran_seq_no
Sa_tran_head_rev Rev_no

Sa_tran_head_rev Tran_datetime Format YYYYMMDDHH24MISS
Sa_tran_head_rev Status
Transaction Sign SAFD_N

Sa_exported_rev Exp_datetime Only for transactions with a Transaction Sign of
SAFD_N.

Format YYYYMMDDHH24MISS

Sa_exported_rev Sub_tran_type

If no data is found, then set or_sa_tran_head_rev->s_rev_no to —1.

68 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

retrieveTransltem()
char *is_tran_seq_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item

This function gets all the tran_item records for a tran_seq_no that needs to be processed.

retrieveTransltemRev()
char *is_tran_seq_no,
char *is_store,
char *is_day,
char *is_rev_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item

This function gets all sa_tran_item records or sa_tran_item_rev (if is_rev_no is not —1)
that need to be processed for a tran_seq_no.

Records should be limited to those with an item_type of SAIT_ITEM and SAIT_REF.

Table

Column

Description

Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev
Sa_tran_item_rev

Item_master

Tran_seq_no
Item_seq_no
Item_status
Item_type
Item

Ref_item

Dept

Class

Subclass
Pack_ind
Item_level
Tran_level
Waste_type
Waste_pct

Qty
Unit_retail
Selling_uom
Drop_ship_ind
Catchweight_ind

Uom_quantity

Value multiplied by 10000.
Absolute value multiplied by 10000.
Absolute value multiplied by 10000.

The same columns as above are selected from the sa_tran_item_rev table if the rev_no

passed in is not —1.

Set *ol_num_sa_tran_item to the total number of records fetched.

Batch Designs 69

Sales Audit Export to RMS [saexprms]

retrieveTransDisc()
char *is_tran_seq_no
long *ol_num_sa_tran_disc
struct pt_sa_tran_disc **oa_sa_tran_disc

This function gets the tran_disc records for a tran_seq_no that needs to be processed.

retrieveTransDiscRev()
char *is_tran_seq_no,
char *is_store,
char *is_day,
char *is_rev_no,
long *ol_num_sa_tran_disc,
struct pt_sa_tran_disc **oa_sa_tran_disc

This function gets all sa_tran_disc or sa_tran_disc_rev records (if is_rev_no is not —1) for
a tran_seq_no that needs to be processed.

Records should be limited to those with an item_type of SAIT_ITEM and SAIT_REF.

Table Column Description

Sa_tran_disc_rev Tran_seq_no

Sa_tran_disc_rev Item_seq_no

Sa_tran_disc_rev rms_promo_type

Sa_tran_disc_rev Promotion

Sa_tran_disc_rev Discount_type

Sa_tran_disc_rev Qty SIGN_N or SIGN_P depending on the sign
of qty.

Sa_tran_disc_rev Qty Absolute value multiplied by 10000.

Sa_tran_disc_rev Unit_discount_amt Value multiplied by 10000.

Sa_tran_disc_rev Promo_comp

The same columns as above are selected from the sa_tran_disc_rev table if the rev_no
passed in is not —1.

Set *ol_num_sa_tran_disc to the total number of records fetched.

saveData()

struct pt_sa_tran_head *ir_sa_tran_head

long il num_sa_tran_item

struct pt_sa_tran_item *ia_sa_tran_item

long il_num_sa_tran_disc

struct pt_sa_tran_disc *ia_sa_tran_disc
Setll_cur_sa_tran_item and 1l_cur_sa_tran_disc to 0.
For each item record:

Call Blank_field to blank pad NULL values so there would be no zeros in the
VRTLOG.

Call AddItem to add the new item to the tree.

70 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

For each item’s discount record:
Call AddDiscData to add discount data onto the existing item.

populateArrays
char *os_store_day_seq_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item,
long *ol_num_sa_tran_disc,
struct pt_sa_tran_disc **oa_sa_tran_disc

This function will fetch all required information for a store_day from the sa_tran_item
and sa_tran_disc tables and populate the global arrays with the data.

Table

Column

Description

Sa_tran_item
Sa_tran_item

Sa_tran_item

Tran_seq_no
Item_seq_no

Item_status

Sa_tran_item Item_type

Sa_tran_item Item

Sa_tran_item Ref_item

Sa_tran_item Dept

Sa_tran_item Class

Sa_tran_item Subclass

Item_master Pack_ind

Item_master Item_level

Item_master Tran_level

Sa_tran_item Waste_type

Sa_tran_item Waste_pct Value multiplied by 10000.
Sa_tran_item Qty Absolute value multiplied by 10000.

Sa_tran_item
Sa_tran_item
Sa_tran_item

Sa_tran_item

Unit_retail
Selling_uom
Drop_ship_ind
Catchweight_ind

Uom_quantity

Absolute value multiplied by 10000.

Value multiplied by 10000

Table

Column

Description

Sa_tran_disc
Sa_tran_disc
Sa_tran_disc

Sa_tran_disc

Tran_seq_no
Item_seq_no
rms_promo_type

Promotion

Batch Designs 71

Sales Audit Export to RMS [saexprms]

Table Column Description

Sa_tran_disc Discount_type

Sa_tran_disc Qty Value multiplied by 10000.
Sa_tran_disc Unit_discount_amt Value multiplied by 10000.
Sa_tran_disc Promo_comp

For each item record:
Set current_item to NULL.

Call c¢_sa_tran_item to retrieve transaction records from sa_tran_item.
If no data is found set li_end to 1.

Reset 11_alloc_size, 11_records_to_process and li_end to 0.

For each item record:
Call c_sa_tran_disc to retrieve transaction records from sa_tran_disc.
If no data is found set li_end to 1.

Processes a RTLFTail record from the input file.

Calls delete_item_tree to delete all the items in memory.

Additem()
RTL_TITEM *tip
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item
Finds an item or adds a new item to the tree. Returns pointer if OK, or NULL if failure.

If item_status is SASI_V, then it needs to be reset depending on the sign of qty. Either
SASI_R if it is negative or SASI_S if it is positive.

Nextitem is called to do the rollups that happen when a subsequent item of the same
type is encountered.

If the item is not found, than newitem is called to create it and add it to the tree.

Newitem()
char *pricepoint
int hv
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item

This function allocates memory to a new item and returns a pointer or NULL.

Nextitem()
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item
Struct ITEM_TAG *item_tag_ptr

This function performs the rollups when a subsequent item of the same type is
encountered.

AddDiscData()
Struct pt_sa_tran_head *ir_sa_tran_head

72 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Struct pt_sa_tran_disc *ir_sa_tran_disc
char is_item_statusINULL_CODE]
Struct ITEM_TAG *i_item

Adds discount data into the existing item.

Calls finddiscdata to find a discount or adds a new discount to the item. Returns pointer
to the data if OK, or NULL if failure. Nextdiscdat is called to do the rollups that happen
when a subsequent discount of the same type is encountered.

If the discount is not found, than newdiscdat is called to create it and add it to the item.

Finddiscdata()
struct DISCDAT_TAG *discdat_tag_ptr
Char *is_type
Char *is_amt
Char *is_promotion
Searches the ITEM for the matching discount type.

Nextdiscdat()
Struct ITEM_TAG *item_tag_ptr
struct DISCDAT_TAG *discdat_tag_ptr
char is_item_statusINULL_CODE]
char is_tran_sign[NULL_IND]
Struct pt_sa_tran_disc *ir_sa_tran_disc

This functionnextitem does the rollups that happen when an subsequent item of the same
type is encountered. These 2 functions nee d to update the last_time_modified field each
time they are called. The value for this field will come from the FHEAD and the THEAD
records. The FHEAD record contains the date portion and the THEAD record contains
the time portion.

performs the rollups when a subsequent discount of the same type is encountered.

Does the rollups that happen when a subsequent discount of the same type is
encountered.

Newdiscdat()
Struct ITEM_TAG *item_tag_ptr
char is_item_statusINULL_CODE]
char is_tran_sign[NULL_IND]
Struct pt_sa_tran_disc *ir_sa_tran_disc
This function allocates memory to a discdat node and returns a pointer or NULL.

WrOutputData()

No arguments

Open the RMS output temporary file (ps_temp_file).
Write a RMS FHEAD record by calling WrRMSFHead.
Write the RMS transaction records by calling wod.
Write a RMS FTAIL record by calling WrRMSFTail.
Close the RMS temporary output file.

Batch Designs 73

Sales Audit Export to RMS [saexprms]

Wod
Struct ITEM_TAG *item_tag_ptr
Calls itself recursively to output data from the entire binary tree.
If item_tag_ptris not NULL
Call wod to recurse down the left branch.
If the total negative sales quantity is not zero than process the reverse sale.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total positive sales quantity is not zero than process the positive sale.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total negative return quantity is not zero than process the reverse return.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total positive return quantity is not zero than process the positive return.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
Call wod to recurse down the right branch.

WrRMSFHead()
No arguments

Writes an RMS_FHEAD record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File - SA to RRMS.doc.

Set FileRecOutCount to 1.

Field Type Size Source

Frecdesc char RMS_FRECDESC_SIZE RMS_FHEAD_FRECDESC
Flineid char FT_NUMBER Is_file_line_no
file_type_definition char FT_VARCHAR “POSU’

file_create_date char FT_DATE ps_sysdate

Location Char FT_NUMBER ps_store

Vat_include_ind Char FT_VARCHAR ps_vat_include_ind
Vat_region Char FT_NUMBER ps_vat_region
Currency_code Char FT_VARCHAR ps_currency_code
Currency_rtl_dec char FT_NUMBER ps_currency_rtl_dec

Call putrec to write the record out to the RMS file.

WrRMSTHead()
Struct ITEM_TAG *item_tag_ptr

74 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Const char is_tran_sign[NULL_CODE]
Char is_tran_sign[NULL_CODE]

This function writes a RMSTHead record to the output file. This function needs to copy
the last_time_modified from the ITEM_TAG struct into the RMS_THEAD struct before

calling putrec.

Field Type Size Source
Frecdesc char RMS_FRECDESC_SIZE RMS_THEAD_FRECDESC
Flineid char FT_NUMBER Is_file_line_no
Business_date char FT_DATE ps_business_date
Item_type char FT_VARCHAR item_tag_ptr->item_type
Item char FT_VARCHAR item_tag_ptr->item
Dept char FT_NUMBER item_tag_ptr->dept
Class char FT_NUMBER item_tag_ptr->class
Subclass char FT_NUMBER item_tag_ptr->subclass
Pack_ind char FT_VARCHAR item_tag_ptr->pack_ind
Item_level char FT_NUMBER item_tag_ptr->item_level
Tran_level char FT_NUMBER item_tag_ptr->tran_level
Waste_type char FT_NUMBER item_tag_ptr->waste_type
Waste_pct char FT_NUMBER item_tag_ptr->waste_pct
Selling_uom char FT_VARCHAR item_tag_ptr->selling_uom
Drop_ship_ind char FT_VARCHAR item_tag_ptr-
>drop_ship_ind
Tran_type char FT_VARCHAR SASI_S if is_item_status =
SASI_S else SASI_R
Catchweight_ind char FT_VARCHAR item_tag_ptr-
>catchweight_ind
Substrans_type_ind char FT_VARCHAR item_tag_ptr-

>subtrans_type_ind

WrRMSTDetl()

Struct DISCDAT_TAG *discdat_tag_ptr
Writes a RMSTDetl record to the output file.

WrRMSTTail()
No arguments

Writes a RMSTTail record to the output file.

WrRMSFTail()
No arguments

Writes a RMSFTail record to the output file.

Alloc_item()
No arguments

Batch Designs 75

Sales Audit Export to RMS [saexprms]

This allocates memory for an item node.

delete_item_tree()
struct ITEM_TAG *itemroot
This function recursively deletes all items in memory.

Calls delete_discounts to delete discount information from the tree (before deleting the
current node).

Alloc_discount()
No arguments

This allocates memory on discounts for a particular item.

delete_discounts ()
struct DISCDAT_TAG *discdat_tag_ptr
This function recursively deletes all discounts for a particular item in memory.

Blank_field ()
char *is_field
intii_len

This function fills the character array with spaces up to ii_len.

log_and_exit ()
char *is_message

This function writes is_message to the message log, calls final() and then exits.

Stored Procedures / Shared Modules (Maintainability)

Shared Module Module Description

libretek.a functions Refer to Library Design — retek.doc for details.

retek_init Initialize restart recovery.

retek_close Close restart recovery functions.

Retek_refresh_thread Refresh the current thread so that it may be used again.

Libresa.a functions: Refer to Library Design — ReSA.doc for details.

get_lock Used to establish a read lock on a store/day.

release_lock Used to release a store/day lock.

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

fetchStoreDayErrorCount Fetch the number of errors that corresponds to a particular
store/day and system.

markStoreDayExported Mark a particular store/day and system as exported

markTransactionExported Mark a particular transaction and system as exported.

OraNum functions (Add, Sub, Used to perform arithmetic operations on strings containing
Mul, Div) large numbers.

76 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Shared Module Module Description
Putrec Writes a record to a file.
Input Specifications

There are 2 driving cursors in this module. The first picks a store/day to work on:

SELECT sd.store_day seq no,
el.seq no,
sd.store,
sd.day,
TO_CHAR(sd.business _date, "YYYYMMDD®),
sd.data_status,
ROWIDTOCHAR(el -rowid)
FROM sa_store day sd, sa_export_log el, v_restart _store vrs
WHERE sd.store_day seq no = el.store _day seq no
AND sd.store = el.store
AND sd.day = el.day
AND sd.store_status IN (zSASS W, :SASS C) /* Worksheet or Closed */
AND sd.data status IN (:SADS P, :SADS F) /* Partially or Fully loaded */
AND el .system code = :SYSE RMS
AND el.status = :SAES R /* "R"eady to be exported */
AND vrs.num_threads = TO_NUMBER(:ps_num_threads)
AND vrs.thread val = TO_NUMBER(:ps_thread val)
AND vrs._driver_value = sd.store
ORDER BY sd.store _day seq no, sd.store, sd.business_date;

The second fetches the transaction data to be output:

SELECT h._tran_seq ho,
LTRIM(h.rev_no, "0%),
TO_CHAR(h.tran_datetime, "YYYYMMDDHH24MISS®),
h.status,
:SAFD P,
nvi(h.sub_tran type," %),
h.tran_type
FROM sa_tran head h
WHERE h_store_day seq no = TO NUMBER(:is_store day _seq ho)
AND h.store = TO_NUMBER(:is_store)
AND h.day = TO_NUMBER(:is_day)
AND ((h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH)
OR (h-tran_type = :TRAT_PAIDOU and h.sub_tran_type =
-TRAS_CACCOM)))
AND (h.status = :SAST_P
AND NOT EXISTS /* and no errors for the transaction */
(SELECT er.tran_seq ho
FROM sa_error er, sa error_impact ei
WHERE h_tran_seq ho = er.tran_seq no
AND h.store = er.store
AND h.day = er.day
AND er.error_code = ei.error_code
AND ei.system code = :SYSE_RMS
AND er.hg_override_ind = :YSNO_Y))
AND NOT EXISTS
(SELECT e.store_day_seq _no
FROM sa_exported e
WHERE h._store_day seq ho = e.store _day_seq nho
AND h.store = e.store
AND h.day = e.day
AND h.tran_seq no = e.tran_seq no

Batch Designs 77

Sales Audit Export to RMS [saexprms]

AND e._system code = :SYSE _RMS)
UNION ALL
SELECT h._tran_seq ho,
LTRIM(h.rev_no, "0%),
TO_CHAR(h.tran_datetime, "YYYYMMDDHH24MISS®),
h.status,
:SAFD N,
NVL(TO_CHAR(e.exp_datetime, "YYYYMMDDHH24MISS®™), * *),
nvi(h.sub_tran type,"),
h.tran_type
FROM sa_tran_head h,
sa_exported e
WHERE h.store _day seq no = TO NUMBER(:is_store day seq no)
AND h_store = TO_NUMBER(:is_store)
AND h.day = TO_NUMBER(:is_day)
AND ((h.tran_type IN (:TRAT_SALE, :TRAT RETURN, :TRAT EEXCH)
OR (h.tran_type = :TRAT_PAIDOU and h.sub_tran_type =
-TRAS_CACCOM)))
AND h.status IN (:SAST D, :SAST V)
AND h_tran_seq no = e.tran_seq no(+)
AND h.store = e.store
AND h.day = e.day
AND e.status = :SAST P
AND e._system code = :SYSE RMS
ORDER BY 3;

78 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Output Specifications

Data is output in the POSU file format. This is described in Interface File — SA to
RMS.doc.

The filename convention for these valid POSU files will be
posu_store_businessdate_curdatetime. The file should start out with a temporary name
generated by the Unix tempnam (See Unix man page 3S) call and then be renamed with
Unix rename (See Unix man page 2) call when the file is complete.

Database Integrity

This information derives from the Database Considerations within the Process /
Functional Overview (PFO), the Conversation Flow and Database Objects of the
Technical Design.

Parameter Validation

Parameter validation focuses on validating parameter data that is being passed from
calling modules.

Integrity Constraints

Operations that affect other entities in the system must be validated to ensure that
integrity constraints have not been violated. If a record cannot exist in the system
without a related parent record existing first, it is essential that the application enforce
this constraint. Similarly, if a record cannot be deleted due to the existence of child
records in the system the application should prevent the user from performing a delete
operation.

Scheduling Considerations
Processing Cycle: Anytime — Sales Audit 10.0 is a 24/7 system.

Scheduling Diagram: This program will be run after auditors have made corrections to
the data. This module should not be run simultaneously with other modules: saexprdw,
saexpim, saexpuar, saexpach, and saexpgl.

Pre-Processing: sagetref.pc to get reference data.

Post-Processing: posupld.pc should be run after saexprms.pc to import the data into the
RMS system.

Threading Scheme: v_restart_store

Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section, this
section should describe the locking (and release) strategy required beyond the preset
Retek standards. It should describe how the module accesses data and the “hold” or ‘lock’
it has on a database and / or its records, during processing. It should also describe the
“lock’ release.

Batch Designs 79

Sales Audit Export to UAR [saexpuar]

Restart / Recovery

The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done, one to establish the store/day lock and another at the end, to
release the lock after a store/day has been completely processed. The POSU formatted
output file will be created with a temporary name and renamed just before the end of
store/day commit.

In case of failure, we rollback all work done to the point right after the call to get_lock()
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock().

Sales Audit Export to UAR [saexpuar]

Functional Area

Universal Account Reconciliation - UAR Export

Design Overview

This module will post specified totals to the Driscoll UAR application. Using the typical
export process, this module will loop through all available store day combinations. For
each store day, all specified totals will be posted to their appropriate output files. All
driving cursors will be handled by the libresa library functions.

Operations Performed

Table
Select Insert Update Delete

Period Yes No No No
Sa_store_day Yes No No No
Sa_export_log Yes No Yes No
Sa_exported No Yes No No
Sa_exported_rev Yes No No No
Sa_total_head Yes No No No
Sa_total Yes No No No
Sa_bank_store Yes No No No
Sa_store_day_read_lock Yes Yes No Yes
Sa_store_value Yes No No No
Sa_sys_value Yes No No No
Sa_pos_value Yes No No No
Sa_hq_value Yes No No No

80 Oracle Retail Merchandising System

Sales Audit Export to UAR [saexpuar]

Scheduling Constraints

Pre/Post Logic Description
Processing Cycle: Anytime — Sales Audit is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling process. This
module should not be run simultaneously with other modules: saexprms, saexprdw,
saexpim, saexpach, and saexpgl.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)
Driving Cursor

The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done. One to establish the store/day lock (this will be done by the
package) and one at the end after a store/day has been completely processed.

Driving cursor 1:

The libresa library function fetchStoreDayToBeExportedLike will drive the stores to be
processed for any usage type starting with ‘UAR’.

Driving Cursor 2:

The libresa library function getTotalLike will drive the totals to be exported for any
usage type starting with ‘UAR’.

Program Flow
Structure Chart

Please see the following document for the complete structure chart of the standard export
for ReSA.

Functional Design — SA export.doc

Shared Modules

Listing of all externally referenced functions and Stored procedures and description of
usage

libresa library functions:

= fetchStoreDayToBeExportedLike
= fetchSaSystemOptions

= fetchSysdate

= fetchStoredayErrorCount
= markStoreDayExported

* updateStoreDayExported
* markTotalExported

= getTotalLike

= get_lock

* OraNumlnit

* OraNumAdd

Batch Designs 81

Sales Audit Export to UAR [saexpuar]

Function Level Description
All database interactions required and error handling considerations

init ()

1. Call OraNumlnit to initialize string numbers arithmetic operations.

2. Get the current system date from the library function fetchSysdate.

3. Get the unit-of-work by calling the library function fetchSaSystemOptions.

process ()
1. Loop through the libresa library function fetchStoreDayToBeExportedLike.

2. Attempt to obtain a read lock on the store/day with a call to get_lock. If this fails, go
on to the next store/day and log the problem to the error log.

Call the function processStoreDay for the current store day.
Call the function markStoreDayExported.

Call the function retek_force_commit.

A U S

Loop from beginning until the return result of the function
fetchStoreDayToBeExportedLike = 1.

final ()

1. Call the library function updateStoreDayExported to write any unwritten store days
to the database.

Close output files.
Clean up any memory used.
Call the function retek_close.

addNewOutputFile (char is_usage_type,
char is_business_date,
char is_sysdate) returns integer

This function will generate a new output file for any new usage types retrieved from the
getTotalLike function call. It will also add a new file item to a collection of any files
currently being written to.

The file collection should contain the following items:

1. Usage type — the usage type returned by getTotalLike.

File name - <usage type>_<business date>_<system date>
File pointer — Pointer to the output file.

Wrote header - file header written indicator (0 - no, 1 —yes)

a N

File sum - ongoing sum of each transaction in file.

getOutputFilePointer (char is_usage_type) returns integer

This function will retrieve the output file pointer for the usage type passed by checking
to see if the usage type exists on the output file collection.

= If the usage type exists on the file collection, the item number for the collection is
returned.

= If the usage type does not exist, the function returns -1.

82 Oracle Retail Merchandising System

Sales Audit Export to UAR [saexpuar]

writeStoreDayDetail (FILE *if_file_pointer,

char is_total_id,

char is_store,

char is_business_date,
char is_amount,

char is_total_seq_no,

char is UAR_tran_code) returns integer

This function will write the current UAR total to the output file specified. Each field is

separated by commas and surrounded by double quotes.

UAR Detail record:

Field Description Sales Audit value

1 Detail flag 1

2 Serial number Store number

3 Amount Total value

4 Transaction date Transaction date

5 Transaction code Mapped value: see the
function
getAdditionallnfo for
detailed explanation.

6 User defined value 1 Total sequence number

7 User defined value 2 Nothing

8 User defined value 3 Nothing

9 User defined value 4 Nothing

10 User defined value 5 Nothing

11 User defined value 6 Nothing

12 User defined value 7 Nothing

13 User defined value 8 Nothing

14 User defined value 9 Nothing

15 User defined value 10 Nothing

16 State Nothing

17 Account Total identifier

18 End of line \n

All 18 fields should be concatenated together.

writeStoreDayHeader (FILE *if_file_pointer,

char is_total_id,

char is_business_date) returns integer

This function will write the header record for the current store day to the output file.
Each field is separated by commas and surrounded by double quotes.

Batch Designs 83

Sales Audit Export to UAR [saexpuar]

UAR Header record:
Field Description Sales Audit Value
1 Header flag 0
2 Account number Total identifier
3 Source D
4 Transaction date Transaction date
5 Organization number Nothing
6 Format UAR34
7 End of line \n

All 7 fields should be concatenated together.

writeStoreDayFooter (FILE *if_file_pointer,
char is_amount) returns integer

This function will write the footer record for the current store day to the output file. Each

field is separated by commas and surrounded by double quotes.

UAR Footer record:
Field Description Sales Audit value
1 Footer flag 9
2 Beginning balance +00000000000000
3 Ending balance “+” || the ongoing
sum for the file.
4 Available balance Nothing
5 End of line \n

All 5 fields should be concatenated together.

CloseOutputFiles () returns integer

This function will loop through the output file collection and call the ‘fclose’ C function

for each.

getOutputFileName (char is_usage_type,

char is_business_date,
char is_sysdate,

char os_filename) returns integer

This function will generate the unique file name for the total usage type passed. The
filename will have the following structure:

is_usage type || “_” || is_business date || “_ || is_sysdate

84 Oracle Retail Merchandising System

Sales Audit Export to UAR [saexpuar]

getAdditionalinfo (char is_total_seq_no,
char is_ref_nol,
char os_total_id,
char os_UAR_tran_code) returns integer

This function retrieves both the total identifier and UAR transaction code for the current
total sequence number. The UAR transaction code is retrieved as follows:

= Ifref nolis notnull

= Ifref nol maps to the SA_CONSTANTS table (ref_nol =
SA_CONSTANTS.CONSTANT_ID).

— UAR transaction code = SA_ CONSTANTS.CONSTANT _VALUE

= Ifref nol does not map to the SA_CONSTANTS table (ref_nol !=
SA_CONSTANTS.CONSTANT_ID).

— UAR transaction code = ref_nol
= Jfref nol is null
= UAR transaction code = total identifier

processStoreDay (char is_store_day,
char is_sysdate,
char is_business_date,
char is_store) returns integer
This function will process an entire store days UAR totals.

1. Loop through all UAR totals by calling the function getTotalLike until the function
returns anything but zero.

Call the function getAdditionallnfo.
Determine if the output file exists by calling the function getOutputFilePointer.

If the pointer does not exist, call the function addNewOutputFile to create the new
file.

5. Check to see if the header detail record has already been written for the current file
by checking the current item on the output file collection.

6. If the head has not been written, call the function writeStoreDayHeader. Set the
header indicator to 1 in the output file collection for the current item.

7. Write the current total to the current output file by calling the function
writeStoreDayDetail.

8. Add the current total value to the running total sum in the output file collection for
the current item.

9. Call the function markTotalExported.

I/0 Specification

All files layouts input and output

The UAR output file specifications are listed in this document by the functions that write
the output:

= writeStoreDayHeader
= writeStoreDayDetail
= writeStoreDayFooter

Batch Designs 85

Stock Ledger Append [salapnd]

Stock Ledger Append [salapnd]

Design Overview

The sole purpose of this program is to move data from the transaction staging table into
the historical transaction table. This requires placing a lock on the staging table to ensure
that no new data will be added to it while the movement is occurring (to handle trickling
or real-time processing), moving the data to the historical table.

Scheduling Constraints

Processing Cycle: Should occur after all extractions have completed (RMS — saldly,
RDW etc.)

Scheduling Diagram: N/A

Pre-Processing;: salstage, all extraction, and all processing

Post-Processing: N/A

Threading Scheme: Threading will be implicit via the use of the Oracle Parallel
Query Option. The insert/select query should be tuned for each specific environment to
achieve the best throughput.

Restart Recovery

No specific restart/recovery scheme needs to be defined because of the limited scope of
the module. However, in cases where the tran_data table is very large, a particularly
large rollback segment may be specified to reduce the risk of exceeding rollback segment
space. This will depend on the size of normal rollback segments and the size of the
tran_data table.

Program Flow
N/A

Shared Modules
N/A

Function Level Description

Init():
The rollback segment should be specified to a large enough size so that the entire rollup
will complete in a single transaction.

Process()

This function first calls the lock_table function to lock the if tran_data table. It then calls
the append_history function to append the data from if_tran_data on to the
tran_data_history table. Finally, it calls lock table to release the lock on the tran_data
table.

Lock_table()

This function places or remove a lock on a table passed in. It will place or release the
lock depending on a input parameter.

86 Oracle Retail Merchandising System

Stock Ledger Append [salapnd]

Append_history()

This function appends the data on if_tran_data on to the tran_data_history table.. This is
done using an insert/select statement with a hint for parallelism. The degree of
parallelism should be customized to each run-time environment.

I/0 Specification
N/A

Batch Designs 87

	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview

	Batch Designs
	Sales Audit ACH Download [saexpach]
	Functional Area
	Module Affected
	Design Overview
	Background Information – Quick Overview of the ACH process
	Data Security
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

	Sales Audit Export to GL [saexpgl]
	Design Overview
	Tables Affected
	Program Flow
	Global Variable Descriptions
	Function Level Description
	Input/Output Specifications
	Integrity Constraints
	Restart / Recovery

	Sales Audit Export to ReIM [saexpim]
	Design Overview
	Stored Procedures / Shared Modules (Maintainability)
	Packages:
	Input Specifications
	Output Specifications
	Function Level Description
	Field Mapping between ReSA and Invoice Matching
	Scheduling Considerations
	Locking Strategy
	Restart/Recovery
	Driving Cursors

	 Sales Audit Export to RDW [saexprdw]
	Design Overview
	Global Variable Descriptions
	Function Level Description
	Stored Procedures / Shared Modules (Maintainability)
	Output Files
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations

	Sales Audit Export to RMS [saexprms]
	Purpose
	Design Overview
	Program Flow
	Function Level Description
	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Parameter Validation
	Integrity Constraints
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery

	Sales Audit Export to UAR [saexpuar]
	Functional Area
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

	 Stock Ledger Append [salapnd]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

