

Oracle® Retail Merchandising System

Operations Guide Addendum
Release 11.0.12

August 2007

Oracle® Merchandising System Operations Guide Addendum, Release 11.0.12

Copyright © 2007, Oracle. All rights reserved.

Primary Author: Nathan Young

The Programs (which include both the software and documentation) contain proprietary
information; they are provided under a license agreement containing restrictions on use and
disclosure and are also protected by copyright, patent, and other intellectual and industrial
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the
extent required to obtain interoperability with other independently created software or as specified
by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any
problems in the documentation, please report them to us in writing. This document is not
warranted to be error-free. Except as may be expressly permitted in your license agreement for
these Programs, no part of these Programs may be reproduced or transmitted in any form or by
any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the
Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and
technical data delivered to U.S. Government customers are "commercial computer software" or
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and
adaptation of the Programs, including documentation and technical data, shall be subject to the
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the
Programs are used for such purposes, and we disclaim liability for any damages caused by such
use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation
and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to
purchase any products or services from a third party, the relationship is directly between you and
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products
or services and warranty obligations related to purchased products or services. Oracle is not
responsible for any loss or damage of any sort that you may incur from dealing with any third
party.

iii

Value-Added Reseller (VAR) Language

(i) the software component known as ACUMATE developed and licensed by Lucent Technologies
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory
Planning and Oracle Retail Demand Forecasting applications.

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications.

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application.

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management.

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in
Oracle Retail Store Inventory Management.

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington,
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags.

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization
application.

(viii) the software component known as Style Report™ developed and licensed by InetSoft
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value
Chain Collaboration application.

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET
Software Inc. of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and
Oracle Retail Back Office applications.

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of
San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration
application.

(xi) the software component known as DataBeacon™ developed and licensed by Cognos
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain
Collaboration application.

v

Contents
Preface .. ix

Audience .. ix
Related Documents... ix
Customer Support... ix
Review Patch Documentation ... ix
Oracle Retail Documentation on the Oracle Technology Network..................................x
Conventions...x

1 Introduction .. 1
Overview..1

2 Batch Designs.. 3
Sales Audit ACH Download [saexpach]...3

Functional Area..3
Module Affected ..3
Design Overview ...3
Background Information – Quick Overview of the ACH process4
Data Security ..5
Scheduling Constraints ...6
Restart Recovery ..6
Program Flow...7
Shared Modules ...7
Function Level Description ..7
I/O Specification..12

Sales Audit Export to GL [saexpgl] ..22
Design Overview ...22
Tables Affected...22
Program Flow...23
Global Variable Descriptions ...24
Function Level Description ..24
Input/Output Specifications ..28
Integrity Constraints..28
Restart / Recovery...28

Sales Audit Export to ReIM [saexpim]..29
Design Overview ...29
Stored Procedures / Shared Modules (Maintainability) ..30
Packages: ...31
Input Specifications ...31
Output Specifications ..32
Function Level Description ..32
Field Mapping between ReSA and Invoice Matching ..34
Scheduling Considerations...39

vi

Locking Strategy ..39
Restart/Recovery...39
Driving Cursors..40

Sales Audit Export to RDW [saexprdw] ...42
Design Overview ...42
Global Variable Descriptions ...43
Function Level Description ..44
Stored Procedures / Shared Modules (Maintainability) ..59
Output Files ..60
Scheduling Considerations...60
Locking Strategy ..60
Restart / Recovery...60
Performance..63
Security Considerations ..63

Sales Audit Export to RMS [saexprms]..64
Purpose..64
Design Overview ...64
Program Flow...65
Function Level Description ..66
Stored Procedures / Shared Modules (Maintainability) ..76
Input Specifications ...77
Output Specifications ..79
Database Integrity..79
Parameter Validation...79
Integrity Constraints..79
Scheduling Considerations...79
Locking Strategy ..79
Restart / Recovery...80

Sales Audit Export to UAR [saexpuar] ...80
Functional Area..80
Design Overview ...80
Scheduling Constraints ...81
Restart Recovery ..81
Program Flow...81
Shared Modules ...81
Function Level Description ..82
I/O Specification..85

Stock Ledger Append [salapnd] ...86
Design Overview ...86
Scheduling Constraints ...86
Restart Recovery ..86
Program Flow...86
Shared Modules ...86

vii

Function Level Description ..86
I/O Specification..87

Preface ix

Preface
Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:
 Key system administration configuration settings
 Technical architecture

Audience
Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting RMS functionality will find valuable information
in this guide. There are three audiences in general for whom this guide is written:
 Business analysts looking for information about processes and interfaces to validate

the support for business scenarios within RMS and other systems across the
enterprise.

 System analysts and system operations personnel:
Who are looking for information about RMS processes internally or in relation to the

systems across the enterprise.
Who operate RMS regularly.

 Integrators and implementation staff with overall responsibility for implementing
RMS.

Related Documents
For more information, see the following documents in the Oracle Retail Merchandising
System Release 11.0.12 documentation set:
 Oracle Retail Merchandising System Installation Guide
 Oracle Retail Merchandising System Release Notes
 Oracle Retail Merchandising System Data Model
 Oracle Retail Merchandising System Batch Schedule

Customer Support
https://metalink.oracle.com
When contacting Customer Support, please provide the following:
 Product version and program/module name
 Functional and technical description of the problem (include business impact)
 Detailed step-by-step instructions to re-create
 Exact error message received
 Screen shots of each step you take

Review Patch Documentation
For a base release (".0" release, such as 12.0), Oracle Retail strongly recommends that you
read all patch documentation before you begin installation procedures. Patch
documentation can contain critical information related to the base release, based on new
information and code changes that have been made since the base release.

https://metalink.oracle.com/

x Oracle Retail Merchandising System

Oracle Retail Documentation on the Oracle Technology Network
In addition to being packaged with each product release (on the base or patch level), all
Oracle Retail documentation is available on the following Web site:
http://www.oracle.com/technology/documentation/oracle_retail.html
Documentation should be available on this Web site within a month after a product
release. Note that documentation is always available with the packaged code on the
release date.

Conventions
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure
and ends with a screen shot of the starting point and the statement “the Window Name
window opens.”

Note: This is a note. It is used to call out information that is
important, but not necessarily part of the procedure.

This is a code sample
 It is used to display examples of code

A hyperlink appears like this.

http://www.oracle.com/technology/documentation/oracle_retail.html

Introduction 1

1
Introduction

Overview
The information in this document reflects modifications and updates to the Oracle Retail
Merchandising System 11.0 Operations Guide and any subsequent RMS 11.0.x Operations
Guide Addendums. (The RMS 11.0 Operations Guide is the most recent release of the full
Operations Guide for the 11.0 release of RMS.) Using this document in conjunction with
the Oracle Retail Merchandising System 11.0 Operations Guide provides retailers with a
complete overview of the application.
For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail
Merchandising System 11.0.12 Release Notes.

Batch Designs 3

2
Batch Designs

Retailers should refer to these sections in lieu of the corresponding batch designs in the
RMS 11.0 Operations Guide or any subsequent RMS 11.0.x Operation Guide
Addendums.
Batch designs describe how, on a technical level, an individual batch module works and
the database tables that it affects. In addition, batch designs contain file layout
information that is associated with the batch process.

Sales Audit ACH Download [saexpach]

Functional Area
Sales Audit Export – Automated Clearing House (ACH)

Module Affected
saexpach.pc

Design Overview
This module will post Store/day deposit totals to the SA_STORE_ACH table and bank
deposit totals for a given day to a standard ACH format file. The ACH export deviates
from the typical Sales Audit export in that store/days must be exported even though
errors may have occurred for a given day or store (depending on the unit of work
defined) and also the store/day does not need to be closed for the export to occur. The
nature of the ACH process is such that as much money as possible must be sent as soon
as possible to the consolidating bank. Any adjustments to the amount sent can be made
via the sabnkach form.
Also, we are assuming that there is only one total to be exported for ACH per store/day.
Deposits for store/days that have not been ‘F’ully loaded will not be transferred to the
consolidating bank. After they are fully loaded, their deposits will be picked up by the
next run of the program.
Furthermore, the program estimates a 0 for a store/day that is closed, for example due to
a holiday. An example is shown below (Wednesday is a holiday):

 Mon Tues Wed Thu Fri

Estimated deposit for next day 5 0 ⎯ 10

Adjustment to estimated deposit for this day … 5 ⎯ 15 0

Exported at close … 5 ⎯ 25 0

Actual deposit … 10 ⎯ 15 10

In this example, we export only 5 (the adjustment) at close of Tuesday. The program is
not run at close on Wednesday because it does not have a store_day_seq_no. Thus, on
Thursday, the estimate for that day is 0 and the adjustment equals the actual. Also, on
Thursday, we estimate that the total is going to be 10 and we export 25 at close of
Thursday. Thus, the bank account should return to the minimum balance at this point.

Sales Audit ACH Download [saexpach]

4 Oracle Retail Merchandising System

Operations Performed Table

Select Insert Update Delete

Period Yes No No No

Sa_store_day Yes No No No

Sa_export_log Yes No Yes No

Sa_exported No Yes No No

Sa_store_ach Yes Yes Yes No

Sa_bank_ach Yes Yes Yes No

Sa_total Yes No No No

Sa_bank_store Yes No No No

Sa_store_day_write_lock Yes No Yes No

Sa_store_day_read_lock Yes No No No

Store Yes No No No

Partner Yes No No No

Background Information – Quick Overview of the ACH process
ACH stands for Automated Clearing House and is a process by which funds can be
transferred electronically from one account to another, possibly at a different financial
institution. Instructions for each transaction are stored in a file, called an ACH file, which
is then transferred across the ACH Network to be processed. This document provides
only an overview of the process and will only describe points of interest for the saexpach
program. It is beyond the scope of this document to provide the details of this process.
Readers interested in knowing more about ACH should consult the 2000 ACH Rules
published by the National ACH Association (NACHA).
There are 5 participants in an ACH transaction:
1. The originating company (called the Originator). The Originator is the entity

requesting the transaction (i.e. this is where the transaction originates from).
2. The Originating Depository Financial Institution (ODFI).
3. The ACH Operator.
4. The Receiving Depository Financial Institution (RDFI).
5. The receiving company (called the Receiver).
*It is important to note that the above description refers to direction of file transfers and
not to direction of money flow.
Since the ReSA client has control over both the stores and the headquarters, the
Originator can be either the former or the latter. To simplify the process, the
headquarters will be the Originator, as this would require only one file to be produced,
requesting money from each individual store. Figure 1 gives a pictorial overview.

Sales Audit ACH Download [saexpach]

Batch Designs 5

Originator
ReSA Client’s
Headquarters

ODFI
Consolidating

Bank

ACH Operator
Third-party
institution

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

…

…

ACH
File $$$$

$$

Figure 1: Overview of an ACH Network

The file that is produced at the Originator is sent to the ODFI which then routes it to the
appropriate ACH operator(s). The latter will then contact the RDFI to request the money
transfer.
In ACH jargon, the type of transaction that is being requested is a Cash Concentration
and Disbursement (CCD). As of September 2000, however, transactions between
institutions in different countries require a Corporate Cross-Border (CBR) Transaction.
This program will meet this new requirement.
ACH is a US network of banks and therefore, this program should not be used for ACH
look-alike networks outside the US, such as in Europe, as the file formats may be
different. In other words, throughout this program, it is assumed that the country in
which the consolidating bank is based is the United States.
Furthermore, all amounts in the ACH file are expected to be in US dollars (USD).
Amounts for CBR transactions will have to be converted to USD.
Custom modifications can be made to this program such that output files that meet the
requirements of other networks can be created. It is expected that the general structure of
the program can be left unchanged and that only the functions that actually write the
data out would have to change.

Data Security
The fact that this program automates the transfer of funds on behalf of the user makes it a
likely target for electronic theft. It must be made clear that the responsibility of electronic
protection lies with the users themselves. Retek does not provide any kind of encryption
or authentication beyond what is provided by the operating system and the database
management system. Retek does provide some tips and recommendation to users:
1. A specific user should probably be used to run the program. This user would be the

only one (or one of a few) who has access to this program.
2. The umask for this user should be setup so as to prevent other users to read/write its

files. This would ensure that when the output file is created, it will not be accessible
to other users.

3. The appropriate permissions should be setup on the directory which holds the ACH
files. The most restrictive decision would be to not allow any other user to view the
contents of the directory.

Sales Audit ACH Download [saexpach]

6 Oracle Retail Merchandising System

4. The password to this user should be kept confidential.
5. A secure means of communication should be implemented for transferring the file

from where it has been created to the ACH network. This may be done via
encryption, or by copying the file to a disk and trusting the courier to deliver the files
intact.

6. Oracle Retail assumes that the ACH network is secure.

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle: Anytime – Sales Audit is a 24/7 system.
Scheduling Diagram: This module should be run after the ReSA Totaling process: satotals
and sarules. This module should not be run simultaneously with other modules:
saexprms, saexprdw, saexpim, saexpuar, and saexpgl.
Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)
Driving Cursor
This module is in two distinct parts, with two different logical units of work. Thus
restart/recovery has to be implemented so that the first part does not get reprocessed in
case the program is being restarted. Details on the implementation follow.
The first driving cursor in this module retrieves a store/day to generate ACH totals.
Once the first cursor is complete, the second retrieves bank locations by account
numbers.
The first Logical Unit of Work (LUW) is defined as a unique store/day combination.
Records will be fetched, using the first driving cursor, in batches of commit_max_ctr, but
processed one store/day at a time.
The first driving cursor will fetch all store/days that have been ‘F’ully Loaded, whose
audit status is ‘A’udited, ‘H’Q Errors Pending or ‘S’tore Errors Pending and that are
ready to be exported to ACH. Before processing starts, a write lock is obtained using
get_lock (). This driving cursor only fetches store/days with a sa_export_log.status of
SAES_R. After a store/day is processed, sa_export_log.status is set to SAES_P so that this
store/day will not be selected again if the program is restarted. We commit using
retek_force_commit after each store/day has been processed and sa_export_log updated,
so as to release the lock.
In case a store/day could not be processed due to locking, then the store/day
information is placed on a list (called locked store/day list) and the next store/day is
processed. This list is kept in memory and is available only during processing. If the
store for a store/day obtained from the first driving cursor, is on the locked store/day
list, then this store/day cannot be processed. This is the case because there is a data
dependency such that data from a particular store/day is dependent on data for the same
store but at an earlier date. Thus, if a store/day cannot be processed, then subsequent
store/days for the same store cannot be processed either. After the driving cursor returns
no more data, the program attempts to process each store/day on the list two more
times. If the store/day is still locked, then it is skipped entirely and a message is printed
to the error log.

Sales Audit ACH Download [saexpach]

Batch Designs 7

The second LUW is a bank account number. Again, records will be fetched in batches of
commit_max_ctr. The second driving cursor cannot retrieve information by the LUW
because it is possible for the store’s currency to be different from the local bank’s
currency. In that case, a currency conversion is needed.
For each store/day, the query should retrieve the required ACH transfer. The latter is
determined by adding the estimated deposit for the next day, the adjustment to the
estimate for the current day and any manual adjustment to the estimate.
Since a store can be associated with different accounts at different banks, only accounts
that are consolidated should be retrieved. Since it is possible for the local bank to be in a
different country than the consolidating bank, the currency of the partner should also be
fetched.
Since processing is dependent on the type of account at the RDFI, the account type
should be fetched by this cursor.
Due to differences in transaction processing in cases when the bank is outside the US, the
partner’s country should also be fetched. The results of the query should be sorted by
partner country.
The results of the query should also be ordered by accounts.

Program Flow
Structure Chart
Please see the following document for the complete structure chart of the standard export
for ReSA.
Functional Design – SA export.doc

Shared Modules
Listing of all externally referenced functions and Stored procedures and description of
usage
retek library functions:
 retek_init() – This function initializes restart/recovery.
 retek_close() – This function cleans up restart/recovery.
 retek_force_commit() – This function commits any change to the database.

Sales/Audit library functions (libresa):

 fetchVdate() – This function is used to get the vdate.
 fetchSysdate() – This function is used to get system date and time

 fetchStoreDayToBeExported() – This function contains the first driving cursor.
 get_lock() – This function is used to lock the store/day being processed.
 OraNumInit() – Initialize OraNum functions.
 OraNumAdd() – Add two large numbers passed in as strings.
 OraNumSub() –Subtract two large numbers passed in as strings.
 OraNumDiv() –Divide two large numbers passed in as strings.

Function Level Description
All database interactions required and error handling considerations
Init ()

 Initialize restart/recovery by calling restart_init().
 Get the vdate from the period table and the system time.

Sales Audit ACH Download [saexpach]

8 Oracle Retail Merchandising System

 Get the system level information: the sender id, the company id, the consolidating
bank name, the consolidating routing number and the consolidating account
number. These are on the sa_ach_info table.

Process ()
1. Get the next store/day to be processed (exported) by fetching from the first driving

cursor.
2. Attempt to lock the store/day with a call to get_lock(). If this fails, write the store to

a linked list (which contains all unprocessed store/days).
3. Skip to step 7 if the store of the store/day to be processed is for a store which is on

the linked list.
4. Call the function postStoreACH() for the current store/day.
5. Set sa_export_log.status to SAES_P by calling setProcessed() for the current

store/day, so that it will not be processed again in case of a restart.
6. Call retek_force_commit() to commit changes to the database and to release write

lock.
7. Loop from beginning until the driving cursor returns no more data.
8. Call the function postBankSummaryTotals().
Final ()
 Clean up restart/recovery by calling retek_close().
 If the program has successfully processed the data, call retek_refresh_thread().

PostStoreACH ()
This function will generate and post an estimate and adjustment to the SA_STORE_ACH
table for a given store/day. The function postStoreACH will accomplish the following
processes in the following order:
 Get the following pieces of data for the system code SYSE_ACH:

1. The total for the current business date,
2. Get the total for the following business date if it exists (by calling

GetTomorrowTotal),
3. Call the function GetPastData() to get the totals for the past 4 weeks and for

yesterday (that is, if the current store/day is for a Tuesday, then we want to get
the totals for the past 4 Wednesdays and for yesterday). The latter pieces of data
are obtained from the sa_store_ach table, by summing the estimate for a day
with the adjustment for the same day.

4. Call the function GetPartnerInfo() to get partner type and partner id
information.

 If there are more than one total for SYSE_ACH for a particular day, then this should
be noted in the error log. We expect only one total per store/day. Only the first total
returned by the function will be used, the rest will be ignored.

 Call the function CalculateData() to compute the estimate for the next business day
and adjustment for the current store/day.

 Call the function PostStoreACHTable().
GetTomorrowTotal ()

This function attempts to get the total for the next business day to be used as the
estimate. It returns a -1 if a fatal error occurred, a 0 if it was able to get the total. If a total
was not found, the estimate is assigned to -1. If a store/day is never opened (i.e. a
holiday), then a 0 is estimated for that store/day. Also, if a total is found, it should not
be marked as exported.

Sales Audit ACH Download [saexpach]

Batch Designs 9

GetPastData ()
This function retrieves totals for the same day of the week over the past 4 weeks and for
the previous business day.
GetPartnerInfo ()
This function retrieves the bank partner (partner type and partner id) for the given store
whose account is consolidated.
CalculateData ()

This function calculates the estimate for the next business day and adjustment for the
current store/day.
 Find the estimate for the following business date using the following rules:

 If the total for the following business date exists, then this is the estimate.
 Otherwise, the estimate is the average for the data for the past 4 weeks. If we

obtain data for fewer than 4 weeks, then we use the available data, but if we do
not obtain any data, then we use the current day’s total as the estimate.

 If the estimate is a 0, then we use the current day’s total as the estimate.
 Calculate the adjustment, which is the current date’s total minus the estimate for the

current date (which lies on the row for the previous day on the sa_store_ach table)
and minus the manual adjustment for the current date (which lies on the row for the
previous day on the sa_store_ach table).

ProcessLockedSD ()
This function processes any store/days that were not in the process() function due to
locking. The list of such store/days is stored on the linked list.
1. Try to process the store/days that were not processed, that is, those that are on the

linked list. Thus, for each store/day on the linked list, we try to obtain a lock. If one
is not obtained, then we skip this store/day. If a lock is obtained, then we remove the
store/day from the list.

2. Skip to step 5 if the store of the store/day to be processed is for a store which is on
the linked list.

3. Call the function postStoreACH for the current store/day.
4. Set sa_export_log.status to SAES_P by calling setProcessed() for the current

store/day, so that it will not be processed again in case of a restart.
5. Loop through steps 1 to 3, until each store/day in the list has been looked at.
6. Loop through steps 1 to 5 NUM_LOCK_RETRIES times. NUM_LOCK_RETRIES is

by default 2. Thus, we try to attempt to process store/days that are locked two more
times before giving up and skipping all locked store/days entirely.

7. For each store/day that was not processed, we write an error to the log.
PostStoreACHTable ()
This function inserts data into the sa_store_ach table. It updates if there is already an
entry for the store, business date and partner.
 If there is no entry in the sa_store_ach table for the current store/day.
 Create an entry in the SA_STORE_ACH table with the current store_day_seq_no and

the new estimate and adjustment deposits for the current store_day_seq_no.
 If there is an entry in the sa_store_ach table for the current store/day.
 Update the entry in sa_store_ach with the estimated deposit, and estimated deposit

adjustment.
postBankSummaryTotals ()

Sales Audit ACH Download [saexpach]

10 Oracle Retail Merchandising System

This procedure will summarize the bank transaction totals to the ACH output file. Please
see the section on I/O specifications for more information about the format of this file.
1. Open and fetch from the second driving cursor.
2. If any entries are to be made (i.e. there are results from the cursor), create ACH file

and write file header by calling WriteACHFileHeader().
3. If the country of the bank just retrieved is different from the country of the previous

bank, write a Batch Control Record by calling WriteACHBatchControl(), unless no
Batch Header records have been written yet.

4. If the country of the bank just retrieved is different from the country of the previous
bank, a new Batch Header record needs to be written. If the bank’s country is the US,
the WriteACHCCDBatchHeader() function should be called to write a Batch Header
for CCD transactions. For all other countries, the WriteACHCBRBatchHeader()
function should be called to write a Batch Header for CBR transactions.

5. If the store’s currency is different from the bank’s currency, do a conversion. Sum all
the deposits for each bank account.

6. For each account at a bank in the US, create a CCD record in the file by calling
WriteACHCCDEntry().

7. For each account at a bank outside the US, create a CBR record by calling
WriteACHCBREntry().

8. If the amount to be transferred is negative, the record should be skipped.
9. If the account is a checking account, the transaction code to use is ‘27’.
10. If the account is a savings account, the transaction code to use is ‘37’.
11. If the amount to be transferred is positive, call the function PostBankACHTable() to

record the amount of the ACH entry, else do nothing.
12. Keep running totals for the current batch’s total amount and the total ACH amounts.
13. Commit after pl_commit_max_ctr LUW have been processed. Redefine the

SAVEPOINT after the commit because savepoints are lost after a commit.
14. Loop to step 3 until the cursor returns no data.
15. Write the ACH Batch Control record and the ACH File Control record
16. The ACH file format requires that the file size meet certain “block” requirements. See

the section on the ACH file format for more details. Write the required number of
“completion records” to meet the blocking requirements.

17. Mark all store/days that were not locked (i.e. those with a sa_export_log.status of
SAES_P) as completed (SAES_E) in the sa_export_log.

postBankACHTable ()
This function inserts into the table sa_bank_ach. It updates if there already exist a record
for the same partner and business date.
1. If an entry does not exist for the current bank and date in the sa_bank_ach table:

 Make an entry in the sa_bank_ach table for the current bank and account placing
the sums of the store ACH amounts and adjustments in the ACH amount field
(sa_bank_ach.ach_amt).

2. If an entry exists for the current bank and date in the sa_bank_ach table:
 Add the manual adjustment to the bank ACH deposit amount.
 Update the sa_bank_ach table with the bank ACH deposit amount

(sa_bank_ach.ach_amt).
File Output Functions

Sales Audit ACH Download [saexpach]

Batch Designs 11

The functions WriteACHFileHeader(), WriteACHFileControl(),
WriteACHCCDBatchHeader(), WriteACHCBRBatchHeader(), WriteACHBatchControl(),
WriteACHCCDEntry(), WriteACHCBREntry(), WriteACHCBRAddendum() and
WriteACHCompleteBlock() write the File Header Record, the File Control Record, the
Batch Header Record for CCD transactions, the Batch Header Record for CBR
transactions, the Batch Control Record, the CCD Entry Record, the CBR Entry Record, the
CBR Addendum Record and the Completion Blocks, respectively. The
WriteACHCBREntry() function should call the WriteACHCBRAddendum() function
after writing to the file.
Linked List Functions
The functions AddToList(), DeleteList(), GetNext() and RemoveFromList() provide
means to manipulate and to retrieve data from the linked list which contains the
store/days which were not processed due to locking issues.
MarkAllStoreDaysCompleted ()

This function sets the sa_export_log.status to SAES_E for store/days whose status is
SAES_P. These are the store/days that have been exported. If a store/day was not
exported, it will be picked up in the next run after it has met the conditions for export.
SetCurrencyDecimals ()
Given a currency code and an amount with 4 implicit decimals, this function will give
out an amount with the appropriate number of decimals for the currency. For more
details, see the BAI file format documentation. For example, there are two implicit
decimals for the US Dollar, but none for the Japanese Yen. This function may need to be
expanded because only a select few currencies are being processed. The last two decimal
places are dropped for currencies that are not explicitly defined.
TruncateDec ()
This function truncates a number at the decimal point, i.e. “1234.56” becomes “1234”.

Sales Audit ACH Download [saexpach]

12 Oracle Retail Merchandising System

I/O Specification

ACH File Structure
This section describes the structure of the output file of the saexpach.pc program. The
output file conforms to the requirements imposed by the National Automated Clearing
House Association (NACHA) and only the subset of records used by this program is
outlined here. For more information on the other types of records and more information
about the rules and regulations governing the ACH network, please refer to the “2000
ACH Rules” book published by NACHA.
The ACH file format is similar in many ways to Retek’s flat file formats. The most
distinctive differences are:

 The record type is a one-digit number rather than a five-digit character field.
 All records are 94 characters in length.
 Records are organized in blocks, where 1 block = 940 characters = 10 records.
 The File Control Record (similar to an FTAIL) contains a “Block Count” field

which gives the total number of blocks in the file, including the File Header
Record and the File Trailer Record. Records containing 9’s must be used to
complete the last block. For example, a file with 15 records will need 5 such
records to give it a Block Count of 2. These “completion records” go at the end of
the file.

 Transactions are organized in batches. Similar transactions make up one batch. In
ReSA’s case, the transactions are organized by the country of origin of the funds.

File Header Record
This record contains information about the characteristics of the file, such as sender and
receiver, creation datetime, and so on.

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘1’ 1 None

Priority Code Reserved for future scheme for
priority handling of files. ‘01’ should
be used.

‘01’ 2 None

Immediate Destination Routing number of the consolidating
bank. The field begins with a blank,
followed by the 4-digit Federal
Reserve Routing Symbol, the 4-digit
ABA Institution Identifier, and the
Check Digit.

SA_BANK_STOR
E.

CONSOLIDATIN
G_ROUTING_N
O

10 None

Immediate Origin A unique identification to determine
the Originator. The ID and the format
are supplied by the consolidating
bank. Note that the user is
responsible for the padding. That is,
it is assumed that the data in the field
will be exactly 10 characters wide.

SA_SYSTEM_OP
TIONS.

ACH_SENDER_I
D

10 None

File Creation Date Date when the file was created. YYMMDD 6 None

File Creation Time Time when the file was created. HH24MM 4 None

Sales Audit ACH Download [saexpach]

Batch Designs 13

Field Name Field Description Value Length Jstf/

Pad*

File ID Modifier This is used to differentiate files
created on the same date and
between the same
Origin/Destination. Valid values are
A through Z and 0 through 9. It is
expected that only one file will be
created per day, so a ‘0’ should be
used.

‘0’ 1 None

Record Size Number of characters per record. ‘094’ 3 None

Blocking Factor Number of physical records within a
block.

‘10’ 2 None

Format Code Reserved for future format variations.
A ‘1’ should be used.

‘1’ 1 None

Immediate Destination
Name

The name of the consolidating bank. SA_SYSTEM_OP
TIONS.

CONSOL_BANK
_NAME

23 L/B

Immediate Origin
Name

The name of the company. COMPHEAD.

CO_NAME

23 L/B

Reference Code Any reference code. This is an
optional field. ReSA will not populate
this field as the create datetime
should be enough to reference the
data that was exported by comparing
with SA_EXPORTED.

EXP_DATETIME.

blanks 8 None

Note: This column described the justification and padding
involved in the field being described. ‘L’ stands for left; ‘R’
stands for Right; ‘B’ stands for blank padding and ‘0’ stands
for 0 padding. None means that the field should be
completely filled.

Batch Header Record for CCD transactions

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘5’ 1 None

Service Class Code This field identifies the general
classification of dollar entries to be
exchanged. Funds will always flow
from the local banks to the
consolidating bank. Hence the code
‘225’ for “ACH Debits only” should
be used.

‘225’ 3 None

Sales Audit ACH Download [saexpach]

14 Oracle Retail Merchandising System

Field Name Field Description Value Length Jstf/

Pad*

Company Name The name of the company. First 16 characters
of COMPHEAD.

CO_NAME

16 L/B

Company
Discretionary Data

Any kind of data specific to the
company. ReSA will not use this field

blanks 20 None

Company
Identification

An alphanumeric code identifying
the company. The first character may
be the ANSI one-digit Identification
Code Designators (ICD). For
example,

“1” IRS Employer ID Number

“9” User Assigned Number.

ReSA assumes that the company_id
field on the sa_system_options table
will contain the correct id.

SA_SYSTEM_OP
TIONS.

COMPANY_ID

10 L/B

Standard Entry Class
Code

This provides a way to distinguish
between the various kinds of entries.
Since ReSA will be sending CCD
entries, this field should hold the
value ‘CCD’.

‘CCD’

3 None

Company Entry
Description

A short description from the
Originator about the purpose of the
entry.

‘CONSOL.’ 10 L/B

Company Descriptive
Date

Optional field providing a date to the
Receiver for descriptive purposes.
ReSA will populate it with the next
day’s date in the YYMMDD format.

YYMMDD format
of

PERIOD.VDATE
+ 1

6 None

Effective Entry Date The date by which the Originator
intends the batch of entries to be
settled. Since the Originator will
want this to be done as soon as
possible, ReSA will use the earliest
possible date, which is one banking
day after the processing date (the
current date).

YYMMDD format
of

PERIOD.VDATE
+ 1

6 None

Settlement Date This is inserted by receiving ACH
Operator. ReSA will leave this blank.

blanks 3 None

Originator Status
Code

This field stores a code to describe
the type of Originator. This should be
a 1 to describe the Originator as a
depository financial institution.

‘1’ 1 None

Sales Audit ACH Download [saexpach]

Batch Designs 15

Field Name Field Description Value Length Jstf/

Pad*

ODFI Identification 8-digit routing number of the ODFI. First 8 digits of
SA_BANK_STOR
E.

CONSOLIDATIN
G_ROUTING_N
O

8 None

Batch Number The batch number. 7 R/0

Batch Header Record for CBR transactions

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘5’ 1 None

Service Class Code This field identifies the general
classification of dollar entries to be
exchanged. Funds will always flow
from the local banks to the
consolidating bank. Hence the code
‘225’ for “ACH Debits only” should
be used.

‘225’ 3 None

Company Name The name of the company. First 16 characters
of COMPHEAD.

CO_NAME

16 L/B

Foreign Exchange
Indicator

Code used to indicate the foreign
exchange conversion methodology
applied to a CBR entry. Retek uses
the “Fixed-to-Variable” method to
convert from the foreign currency
into US dollars. Therefore, this field
should be ‘FV’.

‘FV’ 2 None

Foreign Exchange
Reference Indicator

Code used to indicate the contents of
the Foreign Exchange Reference field.
The latter will contain the conversion
rate used by Retek which means that
the value should be ‘1’.

‘1’ 1 None

Foreign Exchange
Reference

This should contain the foreign
exchange rate used to compute the
amounts in the CBR Entry Record.
No decimal places are implied, that
is, this field should contain the exact
rate used.

 15 L/B

ISO Destination
Country Code

The country where the money is to be
transferred to. Since ReSA assumes
that the consolidating bank will be in
the US, this should be ‘US’ – NOTE:
verify that “US” is the correct ISO
code for United States of America.

‘US’ 2 None

Sales Audit ACH Download [saexpach]

16 Oracle Retail Merchandising System

Field Name Field Description Value Length Jstf/

Pad*

Company
Identification

An alphanumeric code identifying
the company. The first character may
be the ANSI one-digit Identification
Code Designators (ICD). For
example,

“1” IRS Employer ID Number

“9” User Assigned Number.

ReSA assumes that the company_id
field on the sa_system_options table
will contain the correct id.

SA_SYSTEM_OP
TIONS.

COMPANY_ID

10 L/B

Standard Entry Class
Code

This provides a way to distinguish
between the various kinds of entries.
Since ReSA will be sending CBR
entries, this field should hold the
value ‘CBR’.

‘CBR’

3 None

Company Entry
Description

A short description from the
Originator about the purpose of the
entry.

‘CONSOL.’ 10 L/B

ISO Originating
Currency Code

Currency code in which the funds are
originating from. This must be the
ISO code of the currency.

PARTNER.

CURRENCY_CO
DE

3 None

ISO Destination
Currency Code

Currency code in which the funds are
to be received. This must be “USD”.

‘USD’ 3 None

Effective Entry Date The date by which the Originator
intends the batch of entries to be
settled. Since the Originator will want
this to be done as soon as possible,
ReSA will use the earliest possible
date, which is one banking day after
the processing date (the current date).

YYMMDD
format of

PERIOD.VDATE
+ 1

6 None

Settlement Date This is inserted by receiving ACH
Operator. ReSA will leave this blank.

blanks 3 None

Originator Status
Code

This field stores a code to describe the
type of Originator. This should be a 1
to describe the Originator as a
depository financial institution.

‘1’ 1 None

ODFI Identification 8-digit routing number of the ODFI. First 8 digits of
SA_BANK_STORE.

CONSOLIDATIN
G_ROUTING_N
O

8 None

Batch Number The batch number. It is not expected
that the file will have more than two
batches.

‘1’ or ‘2’ 7 R/0

Sales Audit ACH Download [saexpach]

Batch Designs 17

CCD Entry Detail Record

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘6’ 1 None

Transaction Code Code used to identify the type of
debit and credit. This is dependent on
the type of account and on the
direction of funds transfer.

 ‘27’ – if the account is a checking
account,

 ‘37’ – if the account is a savings
account.

 ‘27’ or ‘37’ 2 None

RDFI Identification 8-digit routing number of the RDFI. First 8 digits of
SA_BANK_STORE.

ROUTING_NO

8 None

Check Digit This is the 9th digit from the routing
number.

9th digit of
SA_BANK_STOR
E.

ROUTING_NO

1 None

DFI Account Number The account number at the local
bank.

SA_BANK_STOR
E.

BANK_ACCT_N
O

17 L/B

Amount The amount involved in the
transaction. This field is numeric only
and the last two digits are
automatically assumed to be
decimals. ReSA amounts are stored
as 20 digit numbers, with 4 for
decimals. ReSA will truncate the last
two digits of the amount and should
the resulting amount be greater than
10 digits, this program will abort
with an error. It is not expected that a
client will send an ACH amount
greater than US$100 million. The
values for this are taken from the
sa_store_ach table. The values from
the columns today_adj_deposit_est,
next_day_man_adj_deposit, and
next_day_deposit_est are added up
by business_date and then multiplied
by 10000 and later divided by 100 to
obtain a dollar amount.

 10 R/0

Identification Number Optional field containing a number
used by Originator to insert its own
number for tracing purposes. ReSA
will not populate this field.

blanks 15 None

Receiving Company
Name

Name of the local store. STORE.

STORE_NAME

22 L/B

Sales Audit ACH Download [saexpach]

18 Oracle Retail Merchandising System

Field Name Field Description Value Length Jstf/

Pad*

Discretionary Data Any kind of data specific to the
transaction. ReSA will not use this
field

blanks 2 None

Addenda Record
Indicator

This field identifies whether this
entry record contains addenda
records. ReSA has no use for such
records in CCD and will use the
value of ‘0’

‘0’ 1 None

Trace Number Used to uniquely identify each entry
within a batch. The first 8 digits
contain the routing number of the
ODFI and the other 7 contains a
sequence number. This sequence
number should be ascending.
Although the ACH specification does
not require the numbers to be
consecutive, ReSA will use
consecutive numbers. Trace numbers
should not be duplicated between
batches.

 15 None

CBR Entry Detail Record

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘6’ 1 None

Transaction Code Code used to identify the type of
debit and credit. This is dependent
on the type of account and on the
direction of funds transfer.

 ‘27’ – if the account is a checking
account,

 ‘37’ – if the account is a savings
account.

 ‘27’ or ‘37’ 2 None

RDFI Identification 8-digit routing number of the RDFI. First 8 digits of
SA_BANK_STORE.

ROUTING_NO

8 None

Check Digit This is the 9th digit from the routing
number.

9th digit of
SA_BANK_STOR
E.

ROUTING_NO

1 None

DFI Account Number The account number at the local
bank.

SA_BANK_STOR
E.

BANK_ACCT_N
O

17 L/B

Sales Audit ACH Download [saexpach]

Batch Designs 19

Field Name Field Description Value Length Jstf/

Pad*

Amount The amount involved in the
transaction. This field is numeric only
and the last two digits are
automatically assumed to be
decimals. This amount is in US
dollars.

 10 R/0

Identification Number Optional field containing a number
used by Originator to insert its own
number for tracing purposes. ReSA
will not populate this field.

blanks 15 None

Receiving Company
Name

Name of the local store. STORE.

STORE_NAME

22 L/B

Discretionary Data Any kind of data specific to the
transaction. ReSA will not use this
field

blanks 2 None

Addenda Record
Indicator

This field identifies whether this
entry record contains addenda
records. Since CBR records must be
followed by an addendum record,
this value should be ‘1’.

‘1’ 1 None

Trace Number Used to uniquely identify each entry
within a batch. The first 8 digits
contain the routing number of the
ODFI and the other 7 contains a
sequence number. This sequence
number should be ascending.
Although the ACH specification does
not require the numbers to be
consecutive, ReSA will use
consecutive numbers. Trace numbers
should not be duplicated between
batches.

 15 None

CBR Addendum Record

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘7’ 1 None

Addenda Type Code This code identifies the type of
addendum record. CBR has only one
type of Addenda Type Code: ‘01’.

‘01’ 2 None

Payment Related
Information

 80 L/B

Sales Audit ACH Download [saexpach]

20 Oracle Retail Merchandising System

Field Name Field Description Value Length Jstf/

Pad*

Addenda Sequence
Number

This is a sequence number denoting
the position of each addendum
record. The first record should
always have a sequence number of 1
and subsequent records must be
increasing and consecutive. ReSA
will create only one addendum
record for the CBR transaction.

‘1’ 4 R/0

Entry Detail Sequence
Number

This is the sequence number part of
the Trace Number of the entry record
to which this addendum is referring.

 7 R/0

Batch Control Record

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record ‘8’ 1 None

Service Class Code This field identifies the general
classification of dollar entries to be
exchanged. Since money is being
requested, this code should be 225 for
“ACH Debits only”.

‘225’ 3 None

Entry/Addenda
Count

The number of entries and addenda
in the batch. Basically, this is the
number of records between the Batch
Header Record and the Batch Control
Record.

 6 R/0

Entry Hash This is the sum of the RDFI IDs in the
detail records. It is the arithmetic sum
of the 8-digit routing number.
Overflow on the high order bits is
ignored.

 10 R/0

Total Debit Entry
Dollar Amount in
batch

 12 R/0

Total Credit Entry
Dollar Amount in
batch

These fields contain the accumulated
debit and credit for the batch. This
field is numeric only and the last two
digits are automatically assumed to
be decimals. 12 R/0

Company
Identification

An alphanumeric code identifying
the company. The first character may
be the ANSI one-digit Identification
Code Designators (ICD). For
example,

“1” IRS Employer ID Number

“9” User Assigned Number.

ReSA assumes that the company_id
field on the sa_system_options table
will contain the correct id.

SA_SYSTEM_OP
TIONS.

COMPANY_ID

10 L/B

Sales Audit ACH Download [saexpach]

Batch Designs 21

Field Name Field Description Value Length Jstf/

Pad*

Message
Authentication Code
(MAC)

The first 8 characters represent a code
from the DES (Data Encryption
Standard) algorithm. The remaining
eleven characters are blanks. ReSA
will not populate this field.

blanks 19 None

Reserved Reserved blanks 6 None

ODFI Identification 8-digit routing number of the ODFI. First 8 digits of
SA_BANK_STOR
E.

CONSOLIDATIN
G_ROUTING_N
O

8 None

Batch Number The batch number. 7 R/0

File Control Record
This record contains summary information about the file to verify its integrity.

Field Name Field Description Value Length Jstf/

Pad*

Record Type Code The type of record. ‘9’ 1 None

Batch Count The number of batches sent in the file. 6 R/0

Block Count The number of physical blocks in the
file, including both File Header and
File Control Records. This is the
ceiling of the number of records
divided by the blocking factor, which
is 10.

⎡(Number of
records)/10⎤

6 R/0

Entry/Addenda
Count

The number of entries and addenda in
the file. Basically, this is the number of
records between the Batch Header
Record and the Batch Control Record.

 8 R/0

Entry Hash This is the sum of the Entry Hash
fields on the Batch Control Records.

 10 R/0

Total Debit Entry
Dollar Amount in File

12 R/0

Total Credit Entry
Dollar Amount in File

These fields contain the accumulated
debit and credit for the file. This field
is numeric only and the last two digits
are automatically assumed to be
decimals.

12 R/0

Reserved This field should be filled with blanks.
It is used to ensure that each record is
of length 94.

blank 39 None

Sales Audit Export to GL [saexpgl]

22 Oracle Retail Merchandising System

Sales Audit Export to GL [saexpgl]

Design Overview
The purpose of this batch module is to post all properly configured user defined ReSA
totals to the User defined General ledger application (Oracle or PeopleSoft). Totals
without errors will be posted to the appropriate accounting ledger, as defined in the Sales
Audit Oracle cross-reference user module. Depending on the unit of work system option,
the data will be sent at either the store day or individual total level. Newly revised totals
that have already been posted to the ledger will have their previous revision reversed,
and the new total posted to the appropriate accounts. Transactions that are from
previous periods will be posted to the current period.
This version of the program is meant for the interface between RMS 11.0 and Oracle
Financials.

Tables Affected

TABLE SELECT INSERT UPDATE DELETE

period Yes No No No

sa_system_options Yes No No No

sa_store_day Yes No No No

sa_export_log Yes No Yes No

sa_error Yes No No No

sa_exported Yes Yes No No

sa_balance_group Yes No No No

sa_error_rev Yes No No No

sa_exported_rev Yes No No No

sa_store_day_lock Yes Yes No Yes

fif_gl_setup Yes No No No

store Yes No No No

sa_fif_gl_cross_ref Yes No No No

stg_fif_gl_data No Yes No No

if_errors No Yes No No

Sales Audit Export to GL [saexpgl]

Batch Designs 23

Program Flow
Below is a simple flow of the general ledger export and its generic and financial
application specific modules:

Get the user defined
financial ledger from
system_options.

Get financial ledger
specific attributes.
(i.e.: accounting
period, set of books,
etc.)

Get the current
vdate from the
period table.

Get the user defined
unit-of-work as
defined in the
system_options
table.

Get the financial
ledger specific
account mappings
for the current total.

Log the problem to
the error log and
skip to the next total.

Record the
completion of the
export for the
specific total.

Mappings
exist for

current total

Post
revision
required

Post the revision,
then, the total to the
specific ledger.

Post the total to the
specific ledger.

No

No

Yes

Yes

Initialize

For every Total within the Store/Day

For every Store/Day

Process specific to
user defined
financial application.

Process generic to
all financial
applications.

Legend:

Sales Audit Export to GL [saexpgl]

24 Oracle Retail Merchandising System

Global Variable Descriptions

Global Variable Description

pi_commit_max_ctr Commit max counter used for array fetch

ps_num_threads Commit max counter used for array fetch

ps_thread_val Commit max counter used for array fetch – Thread value

pi_proc_cnt Commit max counter used for array fetch

ps_sysdate Current sysdate value from the database.

ps_store_day_seq_no Restart/recovery variables used for bookmarking

ps_vdate Date value from the period table

ps_unit_of_work Unit of Work from sa_system_options.

ps_update_id Update ID from fif_gl_setup

ps_set of books_id Set of Books ID from fif_gl_setup

ps_period Period Name from fif_gl_setup

pi_num_locks_not_released Counter for the number of store/day locks that could not be
released.

pi_rec_ctr Counter for the number of records processed and inserted to
stg_fif_gl_data table..

pi_non_fatal Counter for the number of non-fatal errors encountered.

Function Level Description

main()
1. Check command line for required arguments.
2. Call LOGON to connect to the database.
3. Call Init to initialize the program.
4. Call process to export the available RMS data.
5. Report unlocking errors.
6. Call final to cleanup.

init()
1. Call retek_init.
2. Get the current vdate from the period table, using fetchVdate.
3. Get the user financial application type from system_options.financial_app.

‘O’ = Oracle GL
‘P’ = PeopleSoft GL

4. Get the Financial application specific attributes (i.e. accounting period information,
set of books identntifier, etc.)

Sales Audit Export to GL [saexpgl]

Batch Designs 25

5. If Oracle GL, retrieve the following details as defined in the RMS database:
Fif_gl_setup.set_of_books_id
Fif_gl_setup.last_update_id

6. Get and save the value of sa_system_options.unit_of_work, by calling the function
fetchSaSystemOptions.

process()
1. Retrieve a store/day by calling fetchStoreDayToBeExported.
2. Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next

store/day.
3. Find out the number of errors pending for the store/day by calling

fetchStoreDayErrorCount.
4. If the unit of work is store and the number of errors in the store/day is greater than

zero, then release the lock by calling release_lock and skip the store/day, otherwise
continue.

5. Retrieve a total to export by calling getTotal.
6. If Oracle GL, check to ensure that the selected total has a user defined cross-reference

in the sa_fif_ora_cross_ref table by calling the function getOracleMapping. If a
mapping (Oracle CCID) does not exist for the selected total log the problem in the
Retek error log and go onto the next total.

7. If the tran_sign is 'N' (code_type is SAFD), the currenct retrieved value will be post to
Oracle with negative sign.

8. Post the current total to the GL by calling the financial application specific function:
9. If Oracle, call postOracleGL
10. If there are more totals for the selected store/day, loop through the store day totals

(getTotal).
11. Call the library function markStoreDayExported.
12. Call release_lock and go on to the next store/day.

ProcessStoreDay()
1. Get all the totals for the store/day by calling getTotal().
2. For each Total_id, call getOracleMapping() for Oracle account.
3. If Status returned from getTotal() is 'N'. The opposite amounts will be posted to the

Stg_fif_gl_data table (that is, send a negative number).
4. Call UpdateGLArray() to populate gl_data_array for inserting stg_fif_gl_data table.
5. Call the library function markTotalExported and include the current period number.

This function has to be called once for each total that is exported.

CanProcess()
1. Calling fetchStoreDayErrorCount to find out the number of errors pending for the

store/day.
2. If the unit of work is store and the number of errors in the store/day is greater than

zero, skip the store/day and write to the if_errors for the store/day.

final()
1. Clean up – free any memory used.
2. Call retek_close.

Sales Audit Export to GL [saexpgl]

26 Oracle Retail Merchandising System

AddToList()
Setup linked list to hold locked store/day for later process.

DeleteList()
This function deletes linked list, and free the memory.

GetNext()
This function moves the pointer to the next unprocessed store/day.

RemoveFromList()
This function removes processed store/day from linked list.

SizeGlDataArray()
This function allocates memory for gl_data_array.

ProcessLockedSD()
This function locks the store/day to be processed.

GetOracleMapping()
This function will load local variables with the user-defined accounts and CCID’s for the
selected total/location combination from the SA_FIF_GL_CROSS_REF table. If no results
are returned, the total should be skipped with the appropriate message in the Retek error
log.

InsertToOracleGL()
This function inserts the record processed into STG_FIF_GL_DATA table.

UpdateGLArray()
This function writes store/day total to the gl_data array for inserting to stg_fif_gl_data.
Post the current total using the mapped local variables retrieved from the
getOracleMapping function. First insert a record for the debit side of the transaction,
then insert a record for the credit half of the transaction. (See STG_FIF_GL_DATA details
below). The following is a detailed explanation of the required columns in the Oracle
STG_FIF_GL_DATA table.

STG_FIF_GL_DATA column explanation

Column Description

status This column represents the type of posting being
applied. All inserts from this module, status should be
set to ‘NEW’.

set_of_books_id This column represents the identifier for the book of
accounts that this module will be posting to. This field
should always be set to the value found in
FIF_GL_SETUP.SET_BOOKS_ID

accounting_date The date of the transaction/total –
SA_STORE_DAY.BUSINESS_DATE.

currency_code The default system currency code

date_created period.vdate

Sales Audit Export to GL [saexpgl]

Batch Designs 27

Column Description

created_by This field represents the identifier of the
application/user whom created this journal entry. This
value should be populated with the
FIF_GL_SETUP.LAST_UPDATED_ID.

actual_flag The hard-coded value ‘A’ will represent actual amounts.

user_je_category_name Journal entry source name for the posted transaction.
This entry must exist in the Oracle
USER_JE_CATEGORY_NAME column in the Journal
Categories table prior to posting data to the GL. This
value should be hard-coded to ‘ReSA’.

user_je_source_name Journal entry source name for the posted transaction.
This entry must exist in the Oracle
USER_JE_SOURCE_NAME column in the Journal
Sources table prior to posting data to the GL. This value
should be hard-coded to ‘ReSA’.

currency_conversion_date The date in which the total was converted to the default
currency code. This value should be populated with the
store day bussiness date.

currency_conversion_type This value should be hard-coded to ‘Spot’.

segment1 – 10 These columns should be populated with either the debit
segment values or the credit values (depending on
which half of the total you are posting).

entered_dr_amount If you are entering the debit half of the total, place the
total amount in this column. If you are representing the
credit half of the total, place a 0 in this column.

entered_cr_amount If you are entering the credit half of the total, place the
total amount in this column. If you are representing the
debit half of the total, place a 0 in this column.

period_name This value should be populated with the
FIF_GL_SETUP.PERIOD_NAME.

code_combination_id If this is the debit half of the total adjustment, place the
SA_FIF_GL_CROSS_REF.DR_CCID. If this is the credit
half of the total adjustment, place the
SA_FIF_GL_CROSS_REF.CR_CCID.

WriteErrorTable()
This function writes to if_errors when error is encountered while inserting to Oracle
tables.

Stored Procedures / Shared Modules (Maintainability)

Shared Module Module Description

libresa.a ReSA Library

get_lock used to establish a read lock on a store/day

release_lock used to release a store/day lock

fetchStoreDayToBeExported This fetches all store days that are ready for export for a
given usage type.

Sales Audit Export to GL [saexpgl]

28 Oracle Retail Merchandising System

Shared Module Module Description

getTotal This fetches all totals that can be exported for the given usage
type and for the given store day.

fetchStoreDayErrorCount This functions returns the number of errors pending for a
given store day.

markTotalExported records the passed total as exported

markStoreDayExported records the passed store day as exported

fetchSaSystemOptions This function retrieves all entries in the sa_system_options
table.

fetchVdate This function retrieves the vdate from the period table.

Refer to the following documents for more details on the export library:

Shared Module Module Description

Library Design saexplib.doc.

libretek.a Retek Library

retek_init initialize restart/recovery

retek_close finalize restart/recovery

LANGUAGE_SQL.GET_CODE_DESC This function will retrieve the description of the passed
in code and code type.

Input/Output Specifications
There are no input or output files for this export. All data is retrieved from ReSA
database tables (as listed above) and posted to the Oracle GL staging table
STG_FIF_GL_DATA or the PeopleSoft staging table PS_CPI_GL_DATA.

Integrity Constraints
Processing Cycle: Anytime – Sales Audit 11.0 is a 24/7 system.
Scheduling Diagram: This program will be run after the ReSA totaling process:
satotals.pc and sarules.pc. This module should not be run simultaneously with other
modules: saexprms, saexprdw, saexpim, saexpuar, and saexpach.
Threading Scheme: N/A

Restart / Recovery
The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pi_commit_max_ctr. Only
one commit will be done: at the end, after a store/day has been completely processed, a
call to release_lock() performs a commit.
There are 2 driving cursors in this module. The first picks a store/day to work on. The
second fetches the totals to be posted for the store/day.

Driving cursor 1:
This driving cursor is embedded in the library function fetchStoreDayToBeExported().
Given a system code, of ‘SYSE’, this function fetches all store/days with a store_status of

Sales Audit Export to ReIM [saexpim]

Batch Designs 29

‘C’lose, a data_status of ‘F’ully loaded and an audit_status of ‘A’udited, ‘S’tore errors
pending or ‘H’Q errors pending that are ready to export to the given system.

Driving cursor 2:
This driving cursor is embedded in the library function getTotal(). Given a
store_day_seq_no and a usage type of ‘SAYT’, this function retrieves all totals.

Sales Audit Export to ReIM [saexpim]

Design Overview
The purpose of this program is to support invoices from Direct Store Delivery and
Escheatment sales audit transactions. Direct Store Delivery invoices refer to products or
services that are delivered to the store and paid out at the store. This program will take
DSD invoices that have been staged to the SA_TRAN_HEAD table by the saimptlog.pc
program and move them into the INVC_HEAD table. All DSD transactions will be
assumed paid. They can be assumed received if there is a proof of delivery number
listed on them. Transactions with a vendor invoice ID or a proof of delivery number
should be matched to any existing invoice in INVC_HEAD, and that invoice updated
with the new information being interfaced. Invoices that do not match an existing
invoice in INVC_HEAD will need to be inserted. Each transaction will be exported to
INVC_HEAD table only once.
The Sales Audit Transaction type used to identify invoices for Direct Store Delivery
transactions will be “Paid Out”. Transaction types are stored on the codes tables with a
code_type = ‘TRAT’. The Paid Out transaction has a code of ‘PAIDOU’. The Sales Audit
sub-transaction types will be used to identify whether the invoice is an “Expense Vendor
Payout” or a “Merchandise Vendor Payout”. These types are stored on the codes table
with a code_type = ‘TRAS’. The codes will be ‘EV’ for Expense Vendor Payout and ‘MV’
for Merchandise Vendor Payout. Any Paid Out transaction with a sub transaction type
of Expense Vendor will create a non-merchandise invoice and cause a record to be
written to the INVC_NON_MERCH table. ReSA will store non-merchandise codes in the
reason_code field on sa_tran_head. Valid values for these reason codes should
correspond to the codes stored on the non_merch_code_head table.
In addition to DSD invoices, this program will also interface Escheatment totals to
Invoice Matching. Escheatment is the process where an unredeemed gift
certificate/voucher or credit voucher will, after a set period of time, be paid out as
income to the issuing Retailer or in some states, the State receives this escheatment
income. ReSA will be the governing system that determines who receives this income,
but Invoice Matching will send the totals, with the related Partner, to Accounts Payable.
Escheatment information will be stored on the ReSA SA_TOTALS table and will be used
to create non-merchandise invoices in Invoice Matching. These invoices will be assumed
not paid.
To accommodate Escheatment, a new calculation should be added to Sales Audit to
create escheatment totals. ReSA automatically totals sales transactions based on
calculation definitions that the customer’s users have previously created using the online
wizard. Whenever users create new calculation definitions or edit existing ones, they
become part of the automated totaling process the next time that satotals.pc runs.

Sales Audit Export to ReIM [saexpim]

30 Oracle Retail Merchandising System

Operations Performed

Table
Select Insert Update Delete

Period Yes No No No

Sa_system_options Yes No No No

Sa_export_options Yes No No No

Sa_store_day Yes No No No

Sa_store_day_read_lock Yes Yes No Yes

Sa_export_log Yes No Yes No

Sa_tran_head Yes No No No

Sa_tran_tender Yes No No No

Sa_exported No Yes No No

Sa_exported_rev No Yes No No

Sa_total Yes No No No

Sa_error Yes No No No

Invc_head Yes Yes Yes No

Invc_non_merch Yes Yes Yes No

Terms Yes No No No

Currency_rates Yes No No No

Addr Yes No No No

Stored Procedures / Shared Modules (Maintainability)

libretek library functions:
retek_init/retek_close/retek_refresh_thread - to initialize and close Retek’s
restart/recovery module

libresa library functions:
 fetchSysdate – to get the current date and time

 fetchSaSystemOptions – to get ReSA system options

 fetchStoreDayErrorCount – to determine whether there are errors for the current
store_day

 markStoreDayExported – to mark a store day as updated

 updateStoreDayExported – to force commit of status ‘E’ on sa_export_log for store
days that have been exported

 getTotal – to fetch totals for escheatment invoices

 get_lock – to establish a read lock on a store_day
 release_lock – to release a store_day lock

Sales Audit Export to ReIM [saexpim]

Batch Designs 31

Packages:
 INVC_SQL.NEXT_INVC_ID—generates a new invoice id
 DIRECT_STORE_INVC_SQL.CHECK_INVC_DUPS – Checks if invoice exists.

Input Specifications

‘Table-To-Table’
Foundation tables used by this program for reference include:
Sa_store_data
Sa_system_options
Sa_export_options
Sa_error_codes
Sa_error_impact
Transaction data tables used to drive the processing includes:
Sa_tran_head
Sa_total
Sa_tran_tender
Sa_exported
Sa_error
Sa_total_usage – Add new Invoice Matching code (‘IM’) to the code_detail table where
code_type = ‘SAUT’ (Sales Audit Usage Type). This code will be used as the invoice
matching usage_type. Using the ReSA on-line wizard, add a new ‘Total’ calculation for
escheatment transactions.

Total_id Usage_type

ESCHEAT IM

Sa_store_data – add invoice matching code to code_detail table where code_type =
‘SYSE’

Code_detail

Code_type Code Code_desc Code_seq

SYSE IM IM Export 7

Sa_store_data – For each store that will require the Invoice Matching Export, add a
record to the sa_store_data table with a system_code of ‘IM’ (Invoice Matching) and
imp_exp of ‘E’ (Export).

Store System_code Imp_exp

e.g. 1009 IM E

Sa_export options – add IM code to the export options table to identify this new export
to Invoice Matching. Since this program will not follow full disclosure logic, the
multiple_export_ind should be ‘N’ (No).

Sales Audit Export to ReIM [saexpim]

32 Oracle Retail Merchandising System

System_code Multiple_export_ind Exp_detail_ind

SYSE N IM Export

Output Specifications

‘Table-To-Table’
Updates/Inserts made to Invoice Matching tables:
Invc_head
Invc_non_merch

Function Level Description

Init ()
1. Call retek_init to determine the max_commit_ctr.
2. Get the system date and time using fetchSysdate().
3. Call the function fetchSaSystemOptions() to retrieve the unit_of_work (UOW).

Process ()
1. Process() gets the store_days to be exported using the first driving cursor.
2. For each store_day to be exported, process() checks whether there are errors

associated with this store_day (fetchStoreDayErrorCount()). If so, processing for this
store_day is skipped and step 2 is repeated for the next store_day.

3. Process() then attempts to obtain a read lock for this store day. If unsuccessful,
processing for this store_day is skipped and step 2 is repeated for the next store_day.

4. Call processStoreDay() to process the store day transactions for DSD invoices.
5. Call postInvoices() to create the appropriate invc_head and/or invc_non_merch

records.
6. Call processStoreDayTotals() to process the escheatment totals
7. Call markStoreDayExported() – updates sa_export_log, sets status to exported
8. Call release_lock() to release the lock on the store/day.
9. Steps 2-7 are repeated until there are no more store_days.

Final ()
1. Clean up any memory used.
2. Call updateStoreDayExported() to update sa_export_log for the last store day and

system code (SYSE_IM).
3. Call retek_close()

4. Call retek_refresh_thread()

Sales Audit Export to ReIM [saexpim]

Batch Designs 33

processStoreDay()
1. This function uses the second driving cursor to retrieve all transactions associated

with direct store delivery invoice transactions. This function should fetch the
appropriate data for inserts into invc_head and invc_non_merch tables.

2. Calls PostInvoices() posts the invoices to invc_head and invc_non_merch tables.
3. Calls the library function markTransactionExported() to insert a record into

sa_exported.

processStoreDayTotals()
This function will loop through the library function getTotals() for the current store day
and SYSE_IM usage type.
The getTotals() function is being modified to include pass back ref_no1, ref_no2 and
ref_no3. Ref_no1 will contain the partner_id, ref_no2 the partner_type and ref_no3 the
escheat amount.
int getTotal(
 char *is_store_day_seq_no,
 const char *is_usage_type,
 char *os_total_seq_no,
 char *os_total_value,
 char *os_rev_no,
 char *os_total_type
 char *os_total_type_id,
 char os_ref_no1,
 char os_ref_no2,
 char os_ref_no3
 char *os_status,
 long il_max_counter,
 long il_multiplier);

1. Call post_escheat_invoice() to create the appropriate invc_head and/or
invc_non_merch records.

2. Mark the total exported by calling the library function markTotalExported().

calcDueDate()
Select duedays from the terms table for the terms associated with the supplier or partner
on sa_tran_head.vendor_no. Due_date = invoice date + duedays. Invoice dates should
be sa_tran_head.tran_datetime that was fetched in the first cursor. The terms discount
percent should be taken from the terms table.
 SELECT TO_CHAR((TO_DATE(invoice date, 'YYYYMMDDHH24MISS') +
duedays),'YYYYMMDD'),
 percent
 FROM terms
 WHERE terms = terms of the supplier or partner

getNewInvcId()
This function should call the package INVC_SQL.NEXT_INVC_ID to retrieve the next
invoice id in the sequence. Include standard package error handling around the package
call.

postInvoices()
Note * Partner, supplier, and date information will all be validated in ReSA so there is
no need to validate in the export. ReSA validates to ensure that merchandise invoices are
only associated with a supplier, not a partner. Validates partner, date, and numbers as
well.

Sales Audit Export to ReIM [saexpim]

34 Oracle Retail Merchandising System

Calls check_invc_exists() to check if the invoice exists on the invc_head tables. If a record
is found, update it, otherwise call GetNewInvcId() and insert a new record to invc_head.
For non-merchandise invoices, be sure to update/insert the invc_non_merch record as
well. A record should only be written to invc_non_merch if the invoice is a non-
merchandise invoice. This can be determined by looking at the sub_tran_type on
sa_tran_head. If the sub_tran_type is ‘EV’, then it’s a non-merchandise invoice. If it’s
‘MV’, then it’s a merchandise invoice. If the invoice does not exist on the invc_head table
call post_new_invoice(). If the invoice already exists on the invc_head table call
update_invoice().

1. Call calcDueDate() to determine what the due date is for each invoice.
2. Call get_invc_head_data() to get other columns :

terms,payment_method,freight_terms,currency_code,exchange_rate,addr_key
3. for the invoice associated with a supplier or partner.
4. Use the mapping below to determine what values to use when inserting into

invc_head and/or invc_non_merch.

Field Mapping between ReSA and Invoice Matching

INVC_HEAD Required? Datatype Sales Audit Value

INVC_ID NOT NULL NUMBER(10) If the invoice is not matched
with an existing one, invc_id
will be a system generated
number
(invc_sql.next_invc_id).

 INVC_TYPE NOT NULL VARCHAR2(1) ‘I’ for Merchandise Invoice,

‘N’ for Non-merchandise
Invoice

 SUPPLIER NUMBER(10) DSD - Sa_tran_head.vendor_no

Escheat – NULL

 EXT_REF_NO VARCHAR2(30) DSD -
Sa_tran_head.vendor_invc_no

Escheat – ‘E’ concatinated with
State or Partner ID (Which will
be state)

 STATUS NOT NULL VARCHAR2(1) Code for the status of the
invoice. Valid values are U for
unmatched, R for partially
matched, M for matched, A for
approved and P for posted.
Invoice statuses are held on the
codes table under the code type
'IMST'.

DSD - Default to ‘U’ using
IMST_U.

Escheat – Default to ‘A’ using
IMST_A

 EDI_INVC_IND NOT NULL VARCHAR2(1) ‘N’

 EDI_SENT_IND NOT NULL VARCHAR2(1) ‘N’

Sales Audit Export to ReIM [saexpim]

Batch Designs 35

INVC_HEAD Required? Datatype Sales Audit Value

 MATCH_FAIL_IND NOT NULL VARCHAR2(1) Indicates whether or not an
invoice has failed a match
attempt. Valid values are 'Y' or
'N'. Default to ‘N’ using
YSNO_N.

 REF_INVC_ID NUMBER(10) N/A – Used for types ‘C’, ‘D’,
‘R’. Default to NULL.

 REF_RTV_ORDER_NO NUMBER(6) N/A – Used for types ‘C’, ‘D’,
‘R’. Default to NULL.

 REF_PRICE_CHANGE NUMBER(8) N/A – Used for types ‘C’, ‘D’,
‘R’. Default to NULL.

 REF_RSN_CODE VARCHAR2(6) N/A – Used for types ‘C’, ‘D’,
‘R’. Default to NULL.

 TERMS VARCHAR2(15) Defaulted from sups or partner
table if DSD transaction or
partner table if escheatment.

 DUE_DATE NOT NULL DATE Defaulted based on terms of the
supplier or partner.

 PAYMENT_METHOD VARCHAR2(6) Code identifying the payment
method for the invoice,
indicating how the invoice will
be paid. Valid values include
'LC' for letter of credit, 'WT' for
wire transfer, and 'OA' for open
account. Other values maybe
added by the client as desired.

Payment methods will be held
on the codes table under a code
type of 'PAYM'.

Defaulted based on the
payment_method of the vendor
on the invoice for Merchandise
Invoice.

Default to NULL for Non
merchandise Invoice.

 TERMS_DSCNT_PCT NUMBER(12,4) Discount that will be applied to
the invoice if the invoice is paid
by the due date. Default to the
terms.pct of the terms
associated with the vendor on
the invoice.

TERMS_DSCNT_APPL_IND NOT NULL VARCHAR2(1) Indicates whether or not the
terms discount has been
applied to the total cost of the
invoice or not. Valid values are
'Y' or 'N'.

Default to ‘N’ using YSNO_N.

Sales Audit Export to ReIM [saexpim]

36 Oracle Retail Merchandising System

INVC_HEAD Required? Datatype Sales Audit Value

TERMS_DSCNT_APPL_NON_MRCH_I
ND

NOT NULL VARCHAR2(1) This field will indicate if the
specified terms discount should
be applied to non-merchandise
costs.

Default to ‘N’ using YSNO_N.

 FREIGHT_TERMS VARCHAR2(2) Indicator that references the
freight terms associated with
the invoice. Default from sups
table for merchandise invoice.

Non Merchandise Invoice:
NULL.

 CREATE_ID NOT NULL VARCHAR2(30) ‘ReSA’

 CREATE_DATE NOT NULL DATE The data the invoice was
entered in the system – vdate

 INVC_DATE NOT NULL DATE Date the invoice was issued by
the supplier –
sa_tran_head.tran_datetime for
existing invoice.

For New Invoice default to
vdate.

 MATCH_ID VARCHAR2(30) Oracle user ID of the user that
matched the invoice. Default to
NULL.

 MATCH_DATE DATE Date the invoice was matched.
Default to NULL.

 APPROVAL_ID VARCHAR2(30) Oracle user ID of the user that
approved the invoice match.
Default to NULL.

 APPROVAL_DATE DATE Date the invoice match was
approved. Default to NULL.

 FORCE_PAY_IND NOT NULL VARCHAR2(1) Indicates whether or not the
invoice is to be force paid (paid
before being matched to
receipts). Valid values are Y or
N.

Default to ‘N’ using YSNO_N.

 FORCE_PAY_ID VARCHAR2(30) Oracle ID of the user that
marked the invoice for force
payment. This field will only
have a value if the
force_pay_ind = 'Y'. Default to
NULL.

 POST_DATE DATE Date the invoice was posted to
the AP staging tables.

Default to NULL.

Sales Audit Export to ReIM [saexpim]

Batch Designs 37

INVC_HEAD Required? Datatype Sales Audit Value

 CURRENCY_CODE NOT NULL VARCHAR2(3) Code identifying the currency
in which the invoice is held.

Default the supplier’s or
partner’s currency.

 EXCHANGE_RATE NUMBER(20,10) Exchange rate at which the
invoice is held. Default from
currency_rates table based on
the currency of the
supplier/partner.

 TOTAL_MERCH_COST NUMBER(20,4) Total merchandise cost for the
invoice. This field will be held
in the invoice currency. For
DSD merchandise invoices, this
field should hold the total cost
of the invoice
(sa_tran_tender.tender_amt).
Default to NULL for DSD non-
merchandise and escheatment
invoices.

 TOTAL_QTY NUMBER(12,4) Total quantity of items on the
invoice. This field is optional,
and only needs to be entered if
total quantity matching will be
performed on the invoice.

Quantity will not be captured
in ReSA. Default to NULL.

 DIRECT_IND NOT NULL VARCHAR2(1) Indicates whether the invoice
was created for a direct store
delivery order via the Quick
Order Entry form in which the
invoice was already paid.
Valid values are 'Y' –Yes and
'N' -No.

Default to ‘Y’ using YSNO_Y.

 PARTNER_TYPE VARCHAR2(6) Type of partner assigned to the
invoice. This field will always
be ‘EV’ for Expense Vendor.
Default using PTAL_EV.

 PARTNER_ID VARCHAR2(10) DSD - Sa_tran_head.vendor_no

Escheatment – ref_no1
(partner_id)

Partner assigned to the invoice.
Partners can be assigned to any
invoice type except
merchandise invoices.

Sales Audit Export to ReIM [saexpim]

38 Oracle Retail Merchandising System

INVC_HEAD Required? Datatype Sales Audit Value

 ADDR_KEY NOT NULL NUMBER(6) Indicates which vendor invoice
address should be associated
with the invoice.

Default to the primary address
for the invoice address type on
ADDR table (Addr_type = 05
and primary_addr_ind = ‘Y’).

 PAID_IND NOT NULL VARCHAR2(1) Default to ‘Y’ (YSNO_Y) for all
DSD transactions –they will be
assumed paid. Set to ‘N’
(YSNO_N) for Escheatment
invoices – they will be assumed
not paid .

 PAYMENT_REF_NO VARCHAR2(13) DSD -
Sa_tran_head.payment_ref_no

Escheat – NULL

 PAYMENT_DATE DATE Date that the invoice was paid
from the POS system –
sa_tran_head.tran_datetime.

Escheat – NULL

 PROOF_OF_DELIVERY_NO VARCHAR2(30) DSD –
Sa_tran_head.proof_of_deliver
y_no

Escheat – NULL

CE_ID NUMBER(10) NULL

OBLIGATION_KEY NUMBER(10) NULL

 COMMENTS VARCHAR2(255) NULL

INVC_NON_MERCH Required? Datatype Sales Audit Value

INVC_ID NOT NULL NUMBER(10) The invc_id on
invc_non_merch should
correspond to the one on
invc_head.

NON_MERCH_CODE NOT NULL VARCHAR2(6) Code identifying the non-
merchandise cost being added
to the invoice. These codes will
be held on the
non_merch_code_head table .

For DSD transactions, this field
should be set to the
reason_code from
sa_tran_head. Should be ‘E’ for
Escheatment invoices.

Sales Audit Export to ReIM [saexpim]

Batch Designs 39

INVC_NON_MERCH Required? Datatype Sales Audit Value

NON_MERCH_AMT NUMBER(20,4) Amount of the non-
merchandise cost, specified by
the non-merchandise code that
has been invoiced for. This
field will be held in the invoice
currency.

DSD –
sa_tran_tender.tender_amt

Escheat – total_value from
getTotals()

VAT_CODE VARCHAR2(6) Default to NULL.

 SERVICE_PERF_IND NOT NULL VARCHAR2(1) Indicates if a service non-
merchandise cost has actually
been performed. Valid values
are 'Y' (service has been
performed) or 'N' (service has
not been performed or non-
merchandise cost is not a
service cost).

For DSD, if proof of delivery is
provided, this field should be
‘Y’ (YSNO_Y).

Should be set to ‘N’ (YSNO_N)
for escheatment invoices.

STORE NUMBER(4) Indicates the store at which the
service was performed. Should
be populated with the DSD
invoice store number. Null for
escheatment.

Scheduling Considerations
Processing Cycle: Anytime – Sales Audit is a 24/7 system.
Scheduling Diagram: This module should be executed after the ReSA transaction import
process. This module should not be run simultaneously with other modules: saexprms,
saexprdw, saexpach, saexpuar, and saexpgl.
Threading Scheme: N/A

Locking Strategy
Locking will be performed via the get_lock and release_lock library functions to lock the
store-day during processing.

Restart/Recovery
The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted based on the commit_max_ctr specified on
the restart_control table. Only two commits will be done, one to establish the store/day
lock and another at the end, to release the lock after a store/day has been completely
processed.

Sales Audit Export to ReIM [saexpim]

40 Oracle Retail Merchandising System

In case of failure, we rollback all work done to the point right after the call to get_lock()
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock().
Restart recovery is implicit in the program, as only store_days with a
sa_export_log.status of ‘R’eady (SAES_R) will be selected for processing. Since we set this
status to ‘E’xported (SAES_R) after a store_day is processed, then on restart, store_days
that have been processed will be skipped.

Driving Cursors
The program has three driving cursors: one to fetch store_days to be exported, another to
fetch invoice matching transactions to be exported for the store_days fetched in the first
cursor, and the last to fetch escheatment totals to be exported to Invoice Matching.
The following cursor will be used to retrieve the valid store/day identifiers that must be
processed:
SELECT sd.store_day_seq_no,
 TO_CHAR(sd.business_date, 'YYYYMMDD'),
 el.seq_no,
 sd.store
 FROM sa_store_day sd, sa_export_log el
 WHERE sd.store_day_seq_no = el.store_day_seq_no
 AND sd.store_status = :SASS_C /* Closed */
 AND sd.data_status = :SADS_F /* Fully Loaded */
 AND sd.audit_status IN (:SAAS_A, :SAAS_S, :SAAS_H) / *Audit Pending, Store
Errors Pending, HQ Errors Pending */
 AND el.system_code = :SYSE_IM
 AND el.status = :SAES_R /* Ready to be exported */
ORDER BY sd.store, sd.business_date;

The second driving cursor selects DSD invoice transactions from transaction tables
(‘PADIOU’).

SELECT h.tran_seq_no,
 h.rev_no,
 TO_CHAR(h.tran_datetime,'YYYYMMDDHH24MISS'),
 h.tran_no,
 h.tran_type,
 h.sub_tran_type,
 h.reason_code,
 h.vendor_no,
 h.vendor_invc_no,
 h.payment_ref_no,
 h.proof_of_delivery_no,
 h.status,
 t.tender_amt
 :SAFD_P /* Positive Transaction/Total */
 FROM sa_tran_head h
 WHERE h.store_day_seq_no = :is_store_day_seq_no
 AND h.tran_seq_no = t.tran_seq_no
 AND h.tran_type IN (:TRAT_PAIDOU)
 AND h.status != :SAST_D
 AND h.sub_tran_type IN (‘EV’,’MV’)
 AND NOT EXISTS
 (SELECT ex.tran_seq_no
 FROM sa_exported ex
 WHERE ex.tran_seq_no = h.tran_seq_no

Sales Audit Export to ReIM [saexpim]

Batch Designs 41

 AND ex.store_day_seq_no = :is_store_day_seq_no)
AND NOT EXISTS /* and no errors for the transaction. */
 (SELECT er.tran_seq_no
 FROM sa_error er, sa_error_impact ei, sa_tran_head h
 WHERE h.tran_seq_no = er.tran_seq_no
 AND er.error_code = ei.error_code
 AND ei.system_code = :SYSE_IM
 AND er.hq_override_ind != :YSNO_Y))
ORDER BY h.tran_datetime;

The last driving cursor is embedded in the getTotals() function. This function is called
with a usage type of SYSE_IM. For each escheatment transaction that is processed, write
to the invc_head and invc_non_march tables.

Sales Audit Export to RDW [saexprdw]

42 Oracle Retail Merchandising System

Sales Audit Export to RDW [saexprdw]

Design Overview
The purpose of this batch module is to fetch all corrected sale and return transactions that
do not have RDW errors from the Retek Sales Audit (ReSA) database tables for
transmission to the Retek Merchandising SystemData Warehouse (RDW). The data will
be sent at the store day level. If the transaction has a status of Deleted and it has
previously been transmitted, a reversal of the transaction will be sent.
Four files of type RDWT, RDWF, RDWS and RDWC will be created for each store_day.
See the file Interface File – SA to RDW.doc for more information.
RDW requires that the employee id be sent. saexprdw is expected to do this by mapping
a cashier ID to an employee ID using the sa_store_emp table. However, the latter may
not always be populated and thus, we send a blank field to RDW in this case.
Multi threading based on store was added to this program in version 11.0.X.

Tables Affected:

TABLES SELECT INSERT UPDATE DELETE

sa_store_day Yes No No No

sa_export_log Yes No Yes No

sa_error Yes No No No

sa_error_impact Yes No No No

sa_tran_head Yes No No No

sa_tran_item Yes No No No

sa_tran_disc Yes No No No

sa_tran_tender Yes No No No

sa_customer Yes No No No

sa_tran_head_rev Yes No No No

sa_tran_item_rev Yes No No No

sa_tran_disc_rev Yes No No No

sa_tran_tender_rev Yes No No No

sa_store_emp Yes No No No

Sasa_total Yes No No No

sa_exported Yes No No No

sa_exported_rev Yes No No No

sa_store_price_hist_temp Yes Yes No Yes

Sales Audit Export to RDW [saexprdw]

Batch Designs 43

Global Variable Descriptions

Gobal Variable Description

pi_commit_max_ctr Commit max counter used for array fetches.

ps_num_threads Maximum number of threads

ps_thread_val Thread value

pi_proc_cnt Commit max counter used for array fetches.

pl_multiplier Multipliers to remove decimals from numbers.

ps_sysdate Current sysdate value from the database.

ps_store Store ID from store/day driving cursor.

ps_business_date Business date from store/day driving cursor.

ps_temp_rdwtfile Temporary file name to be used for the RDWT file.

ps_temp_siftenderfilerdwffile Temporary file name to be used for the RDWF file.

ps_temp_rdwsfile Temporary file name to be used for the RDWS file.

ps_temp_rdwcfile Temporary file name to be used for the RDWC file.

ps_TranHeadNo Current transactions tran_seq_no.

pi_curtrat Current transactions transaction type converted to an enum.

pi_tdetl_count TDETL record count for TTAIL record in the RDWT file.

ps_total_sales_value Total sales value of a TITEM record minus any discounts
from associated IDISC records.

pl_rdwc_line_ctr Line counter for the RDWC file.

pl_rdwf_line_ctr Line counter for the RDWF file.

pl_rdws_line_ctr Line counter for the RDWS file.

pl_rdwt_line_ctr Line counter for the RDWT file.

SIFTenderFileRDWFFile File pointer for the RDWF file.

RDWTFile File pointer for the RDWT file.

RDWSFile File pointer for the RDWS file.

RDWCFile File pointer for the RDWC file.

pi_num_locks_not_released Counter for the number of store/day locks that could not be
released.

pi_num_non_fatal_errors Counter for the number of non-fatal errors encountered:

Store/day lock could not be release.

An unexpected total was encountered.

Could not translate a cashier POS ID to an employee ID.

Could not translate a salesperson POS ID to an employee
ID.

Sales Audit Export to RDW [saexprdw]

44 Oracle Retail Merchandising System

Function Level Description

main()
int argc
char *argv[]
Check command line for required arguments.
Call LLOGON to connect to the database.
Call Init to initialize the program.
Call process to export the available RDW data.
Report unlocking errors.
Report non-fatal errors.
Call final to cleanup.

init()
No arguments
This function initializes Restart recovery.
Get the value of sa_system_options.unit_of_work by calling the library function
fetchSaSystemOptions.
Initialize Oracle Number functions by calling OraNumInit.
Get a temporary filenames to use for generating the output files. Store these names in
ps_temp_rdwtfile, ps_temp_siftenderfilerdwffile, ps_temp_rdwsfile, and
ps_temp_rdwcfile.

process()
No arguments
Picks a store/day to be processed by fetching using the first driving cursor. Save the
store ID in ps_store and the date in ps_business_date.
Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next
store/day.
Open RDWTFile, RDWSFile, RDWCFile and RDWFile, using temporary names
generated in init.
Set pl_rdwc_line_ctr, pl_rdwf_line_ctr, pl_rdws_line_ctr and pl_rdwt_line_ctr to 0.
Call fetchSysDate to get the current date/time. Store it in ps_sysdate.
Increment pl_file_counter.
Write records into sa_store_price_hist_temp table. Get latest tran_type for all items in a
given store and write it to the temp table.
Call WrRDWFHead to write a RDWT FHEAD record to the RDWT file.
Call WrRDWFHead to write a RDWF FHEAD record to the RDWF file.
Call processStoreDay to process the store/days transactions.
Increment pl_rdwt_line_ctr.
Call WrRDWFTail to write a RDWT FTAIL record to the RDWT file.
Call WrRDWFTail to write a RDWF FTAIL record to the RDWF file.
Call processStoreDayTotals to process all totals for a given store day.
Update the status in sa_export_log to Complete by calling the library function
markStoreDayExported.

Sales Audit Export to RDW [saexprdw]

Batch Designs 45

Close the RDWTFile, SIFTenderFileRDWFFile, RDWSFile and RDWCFile and rename
them appropriately (file-type_store_business-date_current-datetime).
Call to release_lock and go on to the next store/day. This function commits as a side
effect, thus committing the changes to the database.

final()
int ii_process_ret
Remove the temporary file, if we failed to finish (ii_proces_ret is not OK).
Call retek_close.
Call trace_threading to clean up all internal processing
Call retek_refresh_thread.

processStoreDay()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_LOC]
char ps_sysdate[NULL_DATETIME]
For each transaction from the store/day being processed, get the following information
from the second driving cursor and call processTransHead with the information.

Table Column Description

Sa_tran_head Tran_seq_no

Sa_tran_head Rev_no

Sa_tran_head Tran_datetime Format YYYYMMDDHH24MISS

Sa_tran_head Register

Sa_tran_head Tran_no

Sa_customer Cust_id_type via an outer join

Sa_customer Cust_id via an outer join

Sa_tran_head Reason_code

Sa_tran_head Tran_type

Sa_tran_head Sub_tran_type

Sa_tran_head Orig_tran_no

Sa_tran_head Orig_reg_no

Sa_tran_head Ref_no1

Sa_tran_head Ref_no2

Sa_tran_head Ref_no3

Sa_tran_head Ref_no4

Sa_tran_head Vendor_no

Sa_tran_head Status

Sa_tran_head Value ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of value.

Sa_tran_head Value Absolute value multiplied by 10000.

Sales Audit Export to RDW [saexprdw]

46 Oracle Retail Merchandising System

Table Column Description

 Transaction Sign ‘SAFD_P’ if the transaction has not been deleted
(status != ‘SAST_D’) and there are no errors and it has
not been exported.

‘SAFD_N’ if the transaction has been deleted (status =
‘SAST_D’) and it has been exported after being
exported.

Sa_exported Exp_datetime Only for transactions with a Transaction Sign of
‘SAFD_N’.

Format YYYYMMDDHH24MISS

Sa_store_emp Emp_id Pos_id = cashier

Sa_store_emp Emp_id Pos_id = salesperson

Sa_tran_head Banner_no

Sa_tran_head Cust_order_no Customer order number

Sa_tran_head Cust_order_date Format YYYYMMDD

Copy the cashier and salesperson employee ID’s to ps_last_cash_id and ps_last_sp_id.
Calls the library function markTransactionExported to insert a record into sa_exported
for each transaction.

processTransHead()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day[NULL_DAY]
struct pt_sa_tran_head ir_sa_tran_head
If the transaction status is deleted (SAST_D) and it has been previously exported, then
call retrieveTransHeadRev. Also, if the revision number of the transaction is not 1, then a
previous revision may have been exported; call retrieveTransHeadRev to get the
exported revision (for full disclosure purposes).
Call retrieveTransItem, retrieveTransDisc and retrieveTransTender to obtain the items,
discounts and tenders for the transaction, both Positive transactions and Negative ones.
Call saveData for both the Positive and Negative transactions to write the information
into memorythe RDW files.
The cust_id_type, cust_id, and emp_ids for cashier and salesperson have to be copied to
global variables for future use in WrRDWTHead.

retrieveTransHeadRev()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day[NULL_DAY]
struct pt_sa_tran_head *or_sa_tran_head_rev
This function gets the sa_tran_head_rev record that needs to be processed. A record
needs to be processed if it has been previously exported.

Sales Audit Export to RDW [saexprdw]

Batch Designs 47

Table Column Description

Sa_tran_head_rev Tran_seq_no

Sa_tran_head_rev Rev_no

Sa_tran_head_rev Tran_datetime Format YYYYMMDDHH24MISS

Sa_tran_head_rev Register

Sa_tran_head_rev Tran_no

Sa_store_empSa_tran
_head_rev

Emp_idCashier Pos_id = cashier via an outer join separate from
salesperson

Sa_store_empSa_tran
_head_rev

Emp_idSalespers
on

Pos_id = salesperson via an outer join separate from
cashier

Sa_customer Cust_id_type via an outer join

Sa_customer Cust_id via an outer join

Sa_tran_head_rev Reason_code

Sa_tran_head_rev Tran_type

Sa_tran_head_rev Sub_tran_type

Sa_tran_head_rev Orig_tran_no

Sa_tran_head_rev Orig_reg_no

Sa_tran_head_rev Ref_no1

Sa_tran_head_rev Ref_no2

Sa_tran_head_rev Ref_no3

Sa_tran_head_rev Ref_no4

Sa_tran_head_rev Vendor_no

Sa_tran_head_rev Status

Sa_tran_head_rev Value ‘SIGN_N’ or ‘SIGN_P’ depending on the sign of value.

Sa_tran_head_rev Value Absolute value multiplied by 10000.

 Transaction Sign ‘SAFD_N’

Sa_exported_rev Exp_datetime Only for transactions with a Transaction Sign of
‘SAFD_N’.

Format YYYYMMDDHH24MISS

Sa_tran_head_rev Banner_no

Sa_tran_head_rev Cust_order_no Customer order number

Sa_tran_head_rev Cust_order_date Format YYYYMMDD

If no data is found, than set or_sa_tran_head_rev->s_rev_no to –1.

retrieveTransItem()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day
char is_rev_no[NULL_SA_REV_NO]
long *ol_num_sa_tran_item

Sales Audit Export to RDW [saexprdw]

48 Oracle Retail Merchandising System

struct pt_sa_tran_item **or_sa_tran_item
This function gets all sa_tran_item records or sa_tran_item_rev (if is_rev_no is not –1)
that need to be processed for a tran_seq_no.

Table Column Description

Sa_tran_item Tran_seq_no

Sa_tran_item Item_seq_no

Sa_tran_item Item_status

Sa_tran_item SkuItem

Sa_tran_itemSa_tran_
item

Ref_itemUpc

Sa_tran_itemSa_tran_
item

Non_merch_itemUpc_suppli
ment

Sa_tran_item Voucher_no

Sa_tran_item Dept

Sa_tran_item Class

Sa_tran_item Subclass

Sa_tran_item Standard_qty ‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of qty.

Sa_tran_item Standard_qty Absolute value multiplied by 10000.

Sa_tran_item Standard_unit_retail ‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of unit_retail.

Sa_tran_item Standard_unit_retail Absolute value multiplied by 10000.

Sa_tran_item Tax_ind

Sa_tran_item
Sa_tran_item

Item_swiped_indItem_swipp
ed_ind

Sa_tran_item Standard_orig_unit_retail ‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of orig_unit_retail.

Sa_tran_item Standard_orig_unit_retail Absolute value multiplied by 10000.

Sa_tran_item Item_type

Sa_tran_item Override_reason

Sa_store_emp Emp_id

Sa_tran_item Return_reason_code

Sa_tran_item Drop_ship_ind

Sa_tran_item Selling_item

Sa_tran_item Customer_order_line_no

Sa_tran_item Media_id

Sa_store_price_hist_t
emp

Retail_type

The same columns as above are select from the sa_tran_item_rev table if the rev_no
passed in is not –1.
Set *ol_num_sa_tran_item to the total number of records fetched.

Sales Audit Export to RDW [saexprdw]

Batch Designs 49

retrieveTransDisc()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day[NULL_DAY]
char is_rev_no[NULL_SA_REV_NO]
long *ol_num_sa_tran_disc
struct pt_sa_tran_disc **or_sa_tran_disc
This function gets all sa_tran_disc or sa_tran_disc_rev records (if is_rev_no is not –1) for
a tran_seq_no that needs to be processed.

Table Column Description

Sa_tran_disc Tran_seq_no

Sa_tran_disc Item_seq_no

Sa_tran_disc Discount_seq_no

Sa_tran_disc Rms_promoDiscount_type

Sa_tran_disc Promotion

Sa_tran_disc Discount_type

Sa_tran_disc Coupon_no

Sa_tran_disc Coupon_ref_noCoupon_ref
_no

Sa_tran_disc Standard_qty ‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of qty.

Sa_tran_disc Standard_qty Absolute value multiplied by 10000.

Sa_tran_disc

Sa_tran_item

(Unit_retail * standard_qty)
– (unit_discount_amt * qty)

Absolute value multiplied by 10000.

Sa_tran_disc

Sa_tran_item

(Unit_retail * standard_qty)
– (unit_discount_amt * qty)

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of the expression.

Sa_tran_disc Standard_unit_discount_am
t

‘SIGN_N’ or ‘SIGN_P’ depending on the
sign of unit_discount_amt.

Sa_tran_disc Standard_unit_discount_am
t

Absolute value multiplied by 10000.

Sa_tran_disc

The same columns as above are select from the sa_tran_disc_rev table if the rev_no
passed in is not –1.
Set *ol_num_sa_tran_disc to the total number of records fetched.

Sales Audit Export to RDW [saexprdw]

50 Oracle Retail Merchandising System

retrieveTransTender()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day[NULL_DAY]
char is_rev_no[NULL_SA_REV_NO]
long *ol_num_sa_tran_tender
struct pt_sa_tran_tender **or_sa_tran_tender
This function gets all sa_tran_tender or sa_tran_tender_rev records (if is_rev_no is not –1)
for a tran_seq_no that needs to be processed.

Table Column Description

Sa_tran_tender Tran_seq_no

Sa_tran_tender Tender_seq_no

Sa_tran_tender Tender_type_group

Sa_tran_tender Tender_type_id

Sa_tran_tender Tender_amt ‘SIGN_N’ or ‘SIGN_P’ depending on the sign
of tender_amt.

Sa_tran_tender Tender_amt Absolute value multiplied by 10000.

Sa_tran_tender Cc_no

Sa_tran_tender Cc_auth_no

Sa_tran_tender Cc_auth_src

Sa_tran_tender Cc_cardholder_verf

Sa_tran_tender Cc_exp_date Format YYYYMMDD

Sa_tran_tender Cc_entry_mode

Sa_tran_tender Cc_term_id

Sa_tran_tender Cc_spec_cond

Sa_tran_tender Voucher_no

Sa_tran_head

Sa_voucher

Business_date –
iss_date

Voucher age

Sa_voucher Escheat_date

Sa_tran_tender Coupon_no

Sa_tran_tender Coupon_ref_no

The same columns as above are select from the sa_tran_tender_rev table if the rev_no
passed in is not –1.
Set *ol_num_sa_tran_tender to the total number of records fetched.

saveData()
struct pt_sa_tran_head ir_sa_tran_head
long il_num_sa_tran_item
struct pt_sa_tran_item *ia_sa_tran_item
long il_num_sa_tran_disc
struct pt_sa_tran_disc *ia_sa_tran_disc

Sales Audit Export to RDW [saexprdw]

Batch Designs 51

long il_num_sa_tran_tender
struct pt_sa_tran_tender *ia_sa_tran_tender
Creates RTLOG buffers for each transaction.
Set pi_curtrat to the current transaction type by calling trat_lookup.
Call ProcRecord WrRDWTHead to process the THEAD buffercurrent ia_sa_tran_head
record if the transaction type (pi_curtrat) is TRATTT_COND, TRATTT_PAIDIN or
TRATTT_PAIDOU.
For each item record:
Blank pad NULL values so we do not get all zeros in the VRTLOG.
Call tsv_lookahead to calculate the total sales value for later use.
Call ProcRecord WrRDWTHead to process the TITEM buffercurrent ia_sa_tran_item
record.
For each item’s discount record:
Call ProcRecord WrRDWTDetl to process the IDISC buffercurrent ia_sa_tran_disc record.
Increment ll_cur_sa_tran_disc.
For each tender record:
Call WRITE_TTEND to create a TTEND buffer.
Call ProcRecord WrRDWFDetl to process the TTEND buffercurrent ia_sa_tran_tender.
Increment cur_sa_tran_tender.

ProcessStoreDayTotals()
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char is_store[NULL_STORE]
char is_day[NULL_DAY]
const char is_usage_type[NULL_CODE]
This function will loop through the library function getBalTotals for the current store
day.
Call WrRDWFHead to write this header to the RDWS file.
Increment pl_rdwc_line_ctr.
Call WrRDWFHead to write this header to the RDWC file.
For each total returned:
1. If the total_id is “OVRSHT_B”, call WrRDWCTDetl then write the data to the

RDWC file.
2. Else, if the cashier_id and the register_id are both nulls, call WrRDWSTDetl then

write to the RDWS file.
3. Else, mark this as an error, since the RDWS file can only handle store level totals.
4. If the total is not a ‘N’egative total, mark the total exported by calling the library

function markTotalExported.
Increment pl_rdws_line_ctr.
Call WrRDWFTail to write this header to the RDWS file.
Increment pl_rdwc_line_ctr.
Call WrRDWFTail to write this header to the RDWC file.

WrRDWFHead()
char *is_file_type

Sales Audit Export to RDW [saexprdw]

52 Oracle Retail Merchandising System

FILE *is_file
long *iol_line_ctr
Set *iol_line_ctr to 1L. This is the appropriate global line counter variable for the file type.
Writes an RDW_FHEAD record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

Frecdesc char RDW_FRECDESC_SIZE RDW_FHEAD_FRECDESC

Flineid char LEN_FILE_LINE_NO *iol_line_ctr

file_type_definition char LEN_FILE_TYPE_DEF is_file_type

file_create_date char LEN_DATETIME p->file_create_dateps_sysdate

Call putrec to write the record out to the RDWT or RDWF file.

WrRDWTHead()
RTL_TITEMpt_sa_tran_head *pir_head
Pt_sa_tran_item *ir_item
Set pi_tdetl_count to 0.
Increment pl_rdwt_line_ctr.
This function writes a RDW_THEAD record (as defined in salib.h) to the output file. This
must match the definition of the record in Interface File – SA to RDW.doc.
If currently in a transaction block (pi_inTranBlock) than write it out by calling
WrRDWTTail.
Increment pl_rdwt_line_ctr.

Field Type Size Source

Fredesc char RDW_FRECDESC_SIZE RDW_THEAD_FRECDESC

Flineid char FT_NUMBER pl_rdwt_line_ctr

Business_date Date FT_DATE ps_business_date

tran_datetime char FT_DATE ir_head->s_tran_datetime

Location char FT_NUMBER RTLFHead.locationps_store

register_id char FT_VARCHAR ir_head->s_register

cashier_id char FT_VARCHAR ir_head->s_cashier

Salesperson_id char FT_VARCHAR ir_item->s_salesperson

if NULL then use ir_head->
s_salesperson

cust_id_type char FT_VARCHAR ir_head->s_cust_id_type

cust_id_number char FT_VARCHAR ir_head->s_cust_id

tran_no char FT_NUMBER ir_head->s_tran_no

Orig_register Char FT_VARCHAR ir_head->s_orig_reg_no

Orig_tran_no Char FT_NUMBER Ir_head-> s_orig_tran_no

tran_seq_no char FT_VARCHAR ir_head->s_tran_seq_no,

rev_no char FT_NUMBER ir_head->s_rev_no

Sales Audit Export to RDW [saexprdw]

Batch Designs 53

Field Type Size Source

tran_sign char FT_VARCHAR ir_head->s_tran_sign

tran_type char FT_VARCHAR ir_head->s_tran_type

tran_type char FT_VARCHAR TRAT_SALE

tran_type char FT_VARCHAR TRAT_RETURN

tran_type char FT_VARCHAR TRAT_VOID

sub_tran_type char FT_VARCHAR ir_head->s_sub_tran_type

If NULL then use - 1

emp_cashier_no char FT_VARCHAR ir_head->s_ref_no1 if
sub_tran_type = TRAS_EMP

else use -1

receipt_ind char FT_VARCHAR ir_head->s_ref_no1

if tran_type =
TRAT_RETURN

reason_code char FT_VARCHAR ir_head->s_reason_code

if NULL use -1

vendor_no char FT_VARCHAR ir_head->s_vendor_no

if tran_type =
TRAT_PAIDOU

item_type char FT_VARCHAR ir_item->s_item_type if
ir_item->s_item_type is
either SAIT_ITEM or
SAIT_REF.

SAIT_GCN if ir_item-
>s_item_type is SAIT_GCN.

item_no char FT_VARCHAR ir_item->s_item if ir_item-
>s_item_type is SAIT_ITEM.

ir_item->s_voucher_no if
ir_item->s_item_type is
SAIT_GCN.

tax_ind char FT_VARCHAR ir_item->s_tax_ind

drop_ship_ind char FT_VARCHAR ir_item->s_drop_ship_ind

item_swiped_ind char FT_VARCHAR ir_item->s_item_swiped_ind

Dept char FT_NUMBER ir_item->s_dept

Class char FT_NUMBER ir_item->s_class

Subclass char FT_NUMBER ir_item->s_subclass

total_sales_qty char FT_NUMBER ir_item->s_qty

total_sales_value char FT_NUMBER ps_total_sales_value

override_reason char FT_VARCHAR ir_item->s_override_reason if
ir_item->s_override_reason is
NULL, else use -1

Sales Audit Export to RDW [saexprdw]

54 Oracle Retail Merchandising System

Field Type Size Source

Return_reason_code Char FT_VARCHAR ir_item-
>s_return_reason_code if
ir_item-
>s_return_reason_code is
NULL, else use - 1

total_orig_sign char FT_VARCHAR ir_itemp->s_qty_sign

total_sales_value char FT_NUMBER ir_head->s_value

Weather char FT_VARCHAR ir_head->s_ref_no1 if
tran_type is TRAT_COND

Temperature char FT_VARCHAR ir_head->s_ref_no2 if
tran_type is TRAT_COND

Traffic char FT_VARCHAR ir_head->s_ref_no3 if
tran_type is TRAT_COND

Construction char FT_VARCHAR ir_head->s_ref_no4 if
tran_type is TRAT_COND

banner_id char FT_VARCHAR ir_head->s_banner_id if
ir_head->s_banner_id is
NULL else use - 1

Media_id char FT_VARCHAR ir_item->s_media_id if
ir_item!=NULL &&
strcmp(ir_item->s_media_id
is NULL else use - 1

customer_order_no char FT_VARCHAR ir_head-
>s_customer_order_no if
ir_head-
>s_customer_order_no is
NULL else use -1

customer_order_date char FT_VARCHAR ir_head-
>s_customer_order_date

selling_item char FT_VARCHAR ir_item->s_selling_item if
ir_item!=NULL &&
strcmp(ir_item-
>s_selling_item is NULL else
use - 1

customer_order_line_no char FT_VARCHAR ir_item-
>s_customer_order_line_no if
ir_item!=NULL &&
strcmp(ir_item-
>s_customer_order_line_no
is NULL else, use - 1

Call putrec to write the record out to the RDWT file.

WrRDWTDetl()
pt_sa_tran_head *ir_head
RTL_IDISCps_sa_tran_disc *pir_disc
Increment both pl_rdwt_line_ctr and pl_tdetl_count.

Sales Audit Export to RDW [saexprdw]

Batch Designs 55

Writes an RDW_TDETL record (as defined in salib.h) to the RDWT output file. This must
match the definition of the record in Interface File – SA to RDW.doc.
Increment both pl_rdwt_line_ctr and pl_tdetl_count.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_TDETL_FRECDESC

flineid char FT_NUMBER ls_file_line_no

Discount_type Char FT_VARCHAR ir_disc->s_disc_type

promo_tran_type char FT_VARCHAR ir_disc->s_rms_promo_type

promo_no char FT_VARCHAR ir_disc->s_promotion

Promo_comp char FT_VARCHAR ir_disc->s_promo_comp

Coupon_no Char FT_VARCHAR ir_disc->s_coupon_no

Coupon_ref_no Char FT_VARCHAR ir_disc->s_coupon_ref_no

sales_qty char FT_NUMBER ir_disc->s_qty

sales_sign char FT_VARCHAR ir_disc->s_qty_sign

sales_value char FT_NUMBER ps_total_sales_value

disc_value char FT_NUMBER ir_discp-> s_unit_disc_amt

Call putrec to write the record out to the RDWT file.

Sales Audit Export to RDW [saexprdw]

56 Oracle Retail Merchandising System

WrRDWTTail()
No arguments
Writes an RDW_TTAIL record (as defined in salib.h) to the RDWT output file. This must
match the definition of the record in Interface File – SA to RDW.doc.
Increment pl_rdwt_line_ctr.
Set pi_inTranBlock to FALSE.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_TTAIL_FRECDESC

flineid char FT_NUMBER pl_rdwt_line_ctr

tran_rec_counter char LEN_DTL_LINE_CNT pi_tdetl_count

Call putrec to write the record out to the RDWT file.

WrRDWFTail()
FILE *is_file
long *iol_line_ctr
Increments *iol_line_ctr. This is the appropriate global line counter variable for the file
type.
Writes an RDW_FTAIL record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File – SA to RDW.doc.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FTAIL_FRECDESC

flineid char FT_NUMBER *iol_line_ctr

file_rec_counter char FT_NUMBER *iol_line_ctr – 2

Call putrec to write the record out to the RDWT or RDWF file.

WrRDWFDetl()
struct pt_sa_tran_head *ir_head,
struct pt_sa_tran_tender *ir_tend
Increment pl_rdwf_line_ctr.

field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC

flineid char FT_NUMBER pl_rdws_line_ctr

business_date char FT_DATE ps_business_date

tran_date char FT_DATE ir_head->s_tran_datetime

location char FT_NUMBER ps_store

cashier_id char FT_VARCHAR ir_head->s_cashier if ir_head-
>s_cashier is NULL else use - 1

Sales Audit Export to RDW [saexprdw]

Batch Designs 57

field Type Size Source

register_id char FT_VARCHAR ir_head->s_register if ir_head-
>s_register is NULL else, use -1

tran_sign char FT_VARCHAR ir_head->s_tran_sign

Tran_seq_no char FT_VARCHAR ir_head->s_tran_seq_no

Rev_no ir_head->s_rev_no

Tran_type FT_VARCHAR ir_head->s_tran_type

Tender_type_group FT_VARCHAR ir_tend->s_tender_type_group

tender_type_id FT_VARCHAR ir_tend->s_tender_type_id

tender_amt FT_VARCHAR ir_tend->s_tender_amt

cc_no FT_VARCHAR ir_tend->s_cc_no

cc_exp_date ir_tend->s_cc_exp_date

cc_auth_no FT_VARCHAR ir_tend->s_cc_auth_no

cc_auth_src FT_VARCHAR ir_tend->s_cc_auth_src

cc_entry_mode FT_VARCHAR ir_tend->s_cc_entry_mode

c_cardholder_verf FT_VARCHAR ir_tend->s_cc_cardholder_verf

cc_terminal_id FT_VARCHAR ir_tend->s_cc_terminal_id

cc_special_cond FT_VARCHAR ir_tend->s_cc_special_cond

voucher_no FT_VARCHAR ir_tend->s_voucher_no

voucher_age FT_VARCHAR ir_tend->s_voucher_age

escheat_date FT_VARCHAR ir_tend->s_escheat_date

coupon_no FT_VARCHAR ir_tend->s_coupon_no

coupon_ref_no FT_VARCHAR ir_tend->s_coupon_no

Call putrec to write the record out to the RDWT or RDWF file.

WrRDWSTDetl()
char *is_status
char *is_total_id
char *is_ref_no1
char *is_ref_no2
char *is_ref_no3
char *is_total_value
Increment pl_rdws_line_ctr.
Writes an RDWS_TDETL record (as defined in salib.h) to the RDWS output file. This
must match the definition of the record in Interface File – SA to RDW.doc.
Increment pl_rdws_line_ctr.

Sales Audit Export to RDW [saexprdw]

58 Oracle Retail Merchandising System

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC

flineid char FT_NUMBER ls_file_line_no

tran_date char FT_DATE ps_business_date

location char FT_NUMBER ps_store

sales_sign char FT_VARCHAR is_status

total_id char FT_VARCHAR is_total_id

Ref_no1 char FT_VARCHAR Is_ref_no1

Ref_no2 char FT_VARCHAR Is_ref_no2

Ref_no3 char FT_VARCHAR Is_ref_no3

total_sign char FT_VARCHAR SIGN_N or SIGN_P
depending on whether or
not is_total_value is
negative.

total_amount char FT_NUMBER Absolute value of
is_total_value.

Call putrec to write the record out to the RDWT file.

WrRDWCTDetl()
char *is_cashier_id
char *is_register_id
char *is_status
char *is_total_id
char *is_ref_no1
char *is_ref_no2
char *is_ref_no3
char *is_total_value
Increment pl_rdwc_line_ctr.
Writes an RDWC_FDETL record (as defined in salib.h) to the RDWC output file. This
must match the definition of the record in Interface File – SA to RDW.doc.
Increment pl_rdwc_line_ctr.

Field Type Size Source

frecdesc char RDW_FRECDESC_SIZE RDW_FDETL_FRECDESC

flineid char FT_NUMBER ls_file_line_no

tran_date char FT_DATE RTLFHead.ps_business_date

location char FT_NUMBER RTLFHead.location ps_store

cashier_id char FT_VARCHAR is_cashier_id if is_cashier_id is
NULL else use - 1

register_id char FT_VARCHAR is_register_id if is_register_id is
NULl else use -1

sales_sign char FT_VARCHAR is_status

Sales Audit Export to RDW [saexprdw]

Batch Designs 59

Field Type Size Source

total_id char FT_VARCHAR is_total_id

Ref_no1 char FT_VARCHAR Is_ref_no1

Ref_no2 char FT_VARCHAR Is_ref_no1

Ref_no3 char FT_VARCHAR Is_ref_no1

total_sign char FT_NUMBER SIGN_N or SIGN_P depending on
whether or not is_total_value is
negative.

total_amount char FT_NUMBER Absolute value of is_total_value.

Call putrec to write the record out to the RDWC file.

tsv_lookahead()
int i
This function calculates the total sales value (ps_total_sales_value) by “looking ahead”
and summing up the item values and discounts for the current item record (i).

Blank_field()
char *is_field
int ii_len
This function fills the character array with spaces up to ii_len

Log_and_exit()
No arguments
This function logs message, calls the final function and exists with code 1.

Stored Procedures / Shared Modules (Maintainability)

Shared Module Module Description

libretek.a functions Refer to Library Design – retek.doc for details.

retek_init Initialize restart recovery.

retek_close Close restart recovery functions.

Retek_refresh_thread Refresh the current thread so that it may be used again.

Libresa.a functions: Refer to Library Design – ReSA.doc for details.

get_lock used to establish a read lock on a store/day.

release_lock used to release a store/day lock.

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

fetchStoreDayErrorCount Fetch the number of errors that corresponds to a particular
store/day and system.

markStoreDayExported Mark a particular store/day and system as exported

markTransactionExported Mark a particular transaction and system as exported.

Sales Audit Export to RDW [saexprdw]

60 Oracle Retail Merchandising System

Shared Module Module Description

OraNum functions (Add, Sub,
Mul, Div)

 Used to perform arithmetic operations on strings containing
large numbers.

getBalTotal Get the specified balance totals.

putrec Writes a record to a file.

Output Files
Data is output in the RDW file format. This is described in the file Interface File – SA to
RDW.doc.
The filename convention for these valid RDWT, SIF Tender, RDWS and RDWC files will
be rdwt_store_businessdate_curdatetime, rdwf_store_businessdate_curdatetime,
rdws_store_businessdate_curdatetime and rdwt_store_businessdate_curdatetime. The files
should start out with a temporary name generated by the Unix tempnam (3S) call and
then be renamed with Unix rename (2) call when the files are complete.

Scheduling Considerations
Processing Cycle: Anytime – Sales Audit 3.0 is a 24/7 system.
Scheduling Diagram: This will be run after auditors have made corrections to the data.
This module should not be run simultaneously with other modules: saexprms, saexpim,
saexpuar, saexpach, and saexpgl.

Pre-Processing:
sagetref.pc to get waste data, and saimptlog.pc and saimptlogfin.pc to get post-void data.

Post-Processing:
 stsldmat.pc (Sales Transaction SKU-Loc-Day-Minute ATomic) should be run to

import data from the RDWT file into the RDW system.
 ttldmat.pc (Transaction Tender Loc-Day-Minute ATomic) should be run to import

data from the RDWF file into the RDW system.
 lptotcldat.pc (Loss Prevention Totals Cashier-Loc-Day ATomic) should be run to

import data from the RDWC file into the RDW system.
 lptotldat.pc (Loss Prevention Totals Loc-Day ATomic) should be run to import data

from the RDWS file into the RDW system.
Threading Scheme: v_restart_store

Locking Strategy
In conjunction with the Performance and the Scheduling Considerations section, this
section should describe the locking (and release) strategy required beyond the preset
Retek standards. It should describe how the module accesses data and the ‘hold’ or ‘lock’
it has on a database and / or its records, during processing. It should also describe the
‘lock’ release.

Restart / Recovery
The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done, one to establish the store/day lock and another at the end, to
release the lock after a store/day has been completely processed. The RDWT, RDWF,

Sales Audit Export to RDW [saexprdw]

Batch Designs 61

RDWS and RDWC formatted output files will be created with temporary names and
renamed just before the end of store/day commit.
In case of failure, we rollback all work done to the point right after the call to get_lock
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock.
There are 3 driving cursors in this module. The first picks a store/day to work on:
c_store_day CURSOR FOR
SELECT
 sd.store_day_seq_no,
 el.seq_no,
 sd.store,
 TO_CHAR(sd.business_date, 'YYYYMMDD'),
 ROWIDTOCHAR(el.rowid)
 FROM sa_store_day sd, sa_export_log el, v_restart_store vrs
 WHERE sd.store_day_seq_no = el.store_day_seq_no
 AND sd.store_status = :SASS_C /* Closed */
 AND sd.data_status = :SADS_F /* Fully loaded */
 AND sd.audit_status = :SAAS_A /* Audited, but no Errors */
 AND el.system_code = :SYSE_RDW
 AND el.status = :SAES_R /* 'R'eady to be exported */
 AND vrs.num_threads = TO_NUMBER(:ps_num_threads)

 AND vrs.thread_val = TO_NUMBER(:ps_thread_val)
 AND vrs.driver_value = sd.store
 ORDER BY sd.store_day_seq_no, sd.store, sd.business_date;

Since RDW cannot accept data from a store_day with errors pending, we select
store_days that have audit_status ‘A’ only. The library function
fetchStoreDayToBeExported cannot be used here because it fetches store_days with an
audit_status of ‘E’ (Errors pending).
The second driving cursor fetches the store/day transaction data to be output:
 c_tran_head CURSOR FOR
 SELECT h.tran_seq_no,
 h.rev_no,
 TO_CHAR(h.tran_datetime, 'YYYYMMDDHH24MISS'),
 NVL(h.register, ' '),
 NVL(TO_CHAR(h.tran_no), ' '),
 NVL(em.emp_id, ' '),
 NVL(em2.emp_id, ' '),
 NVL(c.cust_id_type, ' '),
 NVL(c.cust_id, ' '),
 NVL(h.reason_code, ' '),
 h.tran_type,
 NVL(h.sub_tran_type, ' '),
 NVL(TO_CHAR(h.orig_tran_no), ' '),
 NVL(h.orig_reg_no, ' '),
 NVL(h.ref_no1, ' '),
 NVL(h.ref_no2, ' '),
 NVL(h.ref_no3, ' '),
 NVL(h.ref_no4, ' '),
 NVL(h.vendor_no, ' '),
 h.status,
 DECODE(SIGN(h.value), -1, :SIGN_N, :SIGN_P),
 NVL(TO_CHAR(ABS(h.value) * :pl_multiplier), '0'),
 :SAFD_P,
 ' '
 ,
 NVL(to_char(h.banner_no), ' '),

Sales Audit Export to RDW [saexprdw]

62 Oracle Retail Merchandising System

 NVL(h.cust_order_no,' '),
 NVL(to_char(h.cust_order_date, 'YYYYMMDD'), ' ')
 FROM sa_tran_head h,
 sa_customer c,
 sa_store_emp em,
 sa_store_emp em2
 WHERE h.store_day_seq_no = TO_NUMBER(:is_store_day_seq_no)
 AND h.store = TO_NUMBER(:is_store)
 AND h.day = TO_NUMBER(:is_day)
 AND em.pos_id(+) = h.cashier
 AND em.store(+) = h.store
 AND em2.pos_id(+) = h.salesperson
 AND em2.store(+) = h.store
 AND h.tran_seq_no = c.tran_seq_no(+)
 AND h.store = c.store(+)
 AND h.day = c.day(+)
 AND h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH,
 :TRAT_PAIDIN, :TRAT_PAIDOU, :TRAT_NOSALE,
 :TRAT_VOID, :TRAT_PVOID, :TRAT_COND)
 AND (h.status = :SAST_P
 AND NOT EXISTS /* and no errors for the
transaction. */
 (SELECT er.tran_seq_no
 FROM sa_error er, sa_error_impact ei
 WHERE h.tran_seq_no = er.tran_seq_no
 AND h.store = er.store
 AND h.day = er.day
 AND er.error_code = ei.error_code
 AND ei.system_code = :SYSE_RDW
 AND er.hq_override_ind != :YSNO_Y))
 AND NOT EXISTS
 (SELECT e.store_day_seq_no
 FROM sa_exported e
 WHERE h.store_day_seq_no = e.store_day_seq_no
 AND h.store = e.store
 AND h.day = e.day
 AND h.tran_seq_no = e.tran_seq_no
 AND e.system_code = :SYSE_RDW)
 UNION ALL
 SELECT h.tran_seq_no,
 h.rev_no,
 TO_CHAR(h.tran_datetime, 'YYYYMMDDHH24MISS'),
 NVL(h.register, ' '),
 NVL(TO_CHAR(h.tran_no), ' '),
 NVL(em.emp_id, ' '),
 NVL(em2.emp_id, ' '),
 NVL(c.cust_id_type, ' '),
 NVL(c.cust_id, ' '),
 NVL(h.reason_code, ' '),
 h.tran_type,
 NVL(h.sub_tran_type, ' '),
 NVL(TO_CHAR(h.orig_tran_no), ' '),
 NVL(h.orig_reg_no, ' '),
 NVL(h.ref_no1, ' '),
 NVL(h.ref_no2, ' '),
 NVL(h.ref_no3, ' '),
 NVL(h.ref_no4, ' '),
 NVL(h.vendor_no, ' '),
 h.status,
 DECODE(SIGN(h.value), -1, :SIGN_N, :SIGN_P),
 NVL(TO_CHAR(ABS(h.value) * :pl_multiplier), '0'),
 :SAFD_N,
 NVL(TO_CHAR(e.exp_datetime, 'YYYYMMDDHH24MISS'), ' ')

Sales Audit Export to RDW [saexprdw]

Batch Designs 63

 ,
 NVL(to_char(h.banner_no), ' '),
 NVL(h.cust_order_no,' '),
 NVL(to_char(h.cust_order_date, 'YYYYMMDD'), ' ')
 FROM sa_tran_head h,
 sa_exported e,
 sa_customer c,
 sa_store_emp em,
 sa_store_emp em2
 WHERE h.store_day_seq_no = TO_NUMBER(:is_store_day_seq_no)
 AND h.store = TO_NUMBER(:is_store)
 AND h.day = TO_NUMBER(:is_day)
 AND em.pos_id(+) = h.cashier
 AND em.store(+) = h.store
 AND em2.pos_id(+) = h.cashier
 AND em2.store(+) = h.store
 AND h.tran_seq_no = c.tran_seq_no(+)
 AND h.store = c.store (+)
 AND h.day = c.day (+)
 AND h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH,
 :TRAT_PAIDIN, :TRAT_PAIDOU, :TRAT_NOSALE,
 :TRAT_VOID, :TRAT_PVOID, :TRAT_COND)
 AND h.status in (:SAST_V, :SAST_D)
 AND h.tran_seq_no = e.tran_seq_no(+)
 AND h.store = e.store (+)
 AND h.day = e.day (+)
 AND e.status = :SAST_P
 AND e.system_code = :SYSE_RDW
 ORDER BY 3;

The third driving cursor is encapsulated in the getBalTotal function, which fetches all
totals with a usage_type of ‘RDW’. It returns, among other things, the total_id, the
cashier id and the register id. These are then used to determine whether to write a record
to the RDWS file or the RDWC file. Only totals with a total_id of “OVRSHT_B”
(over/short balance level) are exported to the RDWC file. The other totals are exported to
the RDWS file only if both their register and their cashier ids are empty, i.e. the total is at
the store level. If the total cannot be written to neither the RDWC nor the RDWS file, then
we write an error to the log and continue.

Performance
In conjunction with the Scheduling Considerations and Locking Strategy sections, the
optimization considerations of a batch module must adhere to Retek standards. This
section should call out special performance considerations that may exceed current
documented Retek practices. Such considerations should be the basis for update to Retek
standards. Each database operation should be optimized based on quantity and quality
of the database transactions. Batch modules are executed on the database or dedicated
batch server and thus there are no additional performance gains to forcing database
interaction logic onto the server.

Security Considerations
Credit card numbers and other customer information are present in the output files.
Access to these files is controlled only by the Unix permissions that these files have.

Sales Audit Export to RMS [saexprms]

64 Oracle Retail Merchandising System

Sales Audit Export to RMS [saexprms]

Purpose
The Batch Detailed Design is a thorough definition of a single batch program / module
within one functional area. The documented information is derived from this functional
area’s Technical Design.

Design Overview
The purpose of this batch module is to fetch all corrected sale and return transactions that
do not have RMS errors from the Retek Sales Audit (ReSA) database tables for
transmission to the Retek Merchandising System (RMS). If
sa_system_options.unit_of_work is ‘S’, then the whole store/day is skipped if any RMS
error is found. If this value is ‘T’, then only transactions with RMS errors are skipped. If
the transaction has a status of Deleted and it has previously been transmitted, a reversal
of the transaction will be sent.
If the transaction has a status of ‘D’eleted and it has previously been transmitted, a
reversal of the transaction will be sent.
Multi-threading based on store was added to this program in version 11.0.6.
A file of type POSU is generated for each store/day.

Tables Affected:

TABLE SELECT INSERT UPDATE DELETE

sa_system_options Yes No No No

sa_store_day Yes No No No

sa_export_log Yes No No No

sa_error Yes No No No

sa_tran_head Yes No No No

sa_tran_item Yes No No No

sa_tran_disc Yes No No No

sa_tran_head_rev Yes No No No

sa_tran_item_rev Yes No No No

sa_tran_disc_rev Yes No No No

store Yes No No No

currencies Yes No No No

sa_exported Yes No No No

sa_exported_rev Yes No No No

Sales Audit Export to RMS [saexprms]

Batch Designs 65

Program Flow

Global Variable Descriptions

Global Variable Description

Pi_commit_max_ctr Commit max counter used for array fetch

ps_num_threads Commit max counter used for array fetch

ps_thread_val Commit max counter used for array fetch

pl_multiplier Multiplier to remove decimals from numbers

Ps_unit_of_work Unit of Work from sa_system_options.

Ps_sysdate Current sysdate value from the database.

Ps_temp_file Temporary file name to be used for the RMS file.

Ps_file_name Final file name of the RMS output file.

*RMSoutFile RMS output file

FileRecOutCount Record count out for FTAIL.

N

Pick store/day
to work on from

first driving
cursor

Lock
store/da

y
Lock?

Pick
transaction

from second
driving cursor

sa_system_opti
ons.unit_of_wor
k = store/day?

Any
error

Process

transactio
n

Mark
transactio

n
exported

Any more
transactio

Output data.
Rename file.

Commit work.

Unlock
store/day

sa_system_opti
ons.unit_of_wor
k = store/day?

Update
sa_export_log to
show store/day

Any
errors

?

Sales Audit Export to RMS [saexprms]

66 Oracle Retail Merchandising System

Global Variable Description

pi_tdetl_count Tdetl record count for ttail

Pi_tdetl_count TDETL record count for TTAIL record in the RMS file.

Current_item Pointer to the current item node of the binary tree.

Itemroot Root of the binary tree.

RMSoutFile RMS output file pointer.

Ps_store Current store/location ID.

Ps_business_date Business date of store/day combination

Ps_vat_region VAT Region for the current store/day.

Ps_vat_include_ind VAT Include Indicator for the current store/day.

Ps_currency_code Currency Code for the current store/day.

Ps_currency_rtl_dec Currency Retail Decimal places for the current store/day.

Pi_num_locks_not_released Counter for the number of store/day locks that could not be
released.

pa_sa_tran_item Array for tran_item record

pl_num_sa_tran_item Size of tran_item record

pa_sa_tran_disc Array for tran_disc record

pl_num_sa_tran_disc Size of tran_disc record

Function Level Description

main()
int argc
char *argv[]

Check command line for required arguments.
Call LOGON to connect to the database.
Call Init to initialize the program.
Call process to export the available RMS data.
Report unlocking errors.
Call final to cleanup.

init()
No arguments
This function initializes Restart recovery.
Initialize OraNum functions by calling OraNumInit.
Get the value of sa_system_options.unit_of_work by calling the library function
fetchSaSystemOptions.
Get a temporary filename to use for generating the output files. Store this name in
ps_temp_file.

Sales Audit Export to RMS [saexprms]

Batch Designs 67

process()
No arguments
Picks a store/day to be processed by using the first driving cursor.
Multi threading is implemented using Store as the threading scheme.
Attempt to lock the store/day with a call to get_lock. If this fails, go on to the next
store/day.
If sa_system_options.unit_of_work is store/day, than check to see if any of the
store/days transactions have RMS errors by calling the library function
fetchStoreDayErrorCount. If they do, unlock the store/day with a call to release_lock and
go on to the next store/day.
Get VAT information by calling fetchVatCur.
Call fetchSysDate to get the current date/time.
Save the store/location ID in ps_store.
Initialize itemroot and current_item to NULL.
Call processStoreDay to process the store/days transactions.
Call WrOutputData to format and write the RMS output records.
Update the status in sa_export_log to ‘E’xported ‘C’omplete by calling the library
function markStoreDayExported
Rename temporary output file to posu_store_businessdate_curdatetime.
Call to release_lock and go on to the next store/day. This function commits as a side
effect, thus committing the changes to the database.

final()
No arguments
Remove the temporary file.
Call retek_close.

FetchVatCur()
Char is_store_day_seq_no[NULL_BIG_SEQ_NO]

Call a cursor that will retrieve the vat_include_ind, vat_region, currency_code and
currency_rtl_dec. Gets vat_include_ind, vat_region, currency_code, currency_rtl_dec
from sa_store_day and store tables for RMSFHead record in output file.

processStoreDay()
char *is_store_day_seq_no
char *is_store
char *is_day
char *is_sysdate

For each transaction from the store/day being processed, get the following information
from the second driving cursor and call processTransHead with the information.

Table Column Description

Sa_tran_head Tran_seq_no

Sa_tran_head Rev_no

Sa_tran_head Tran_datetime Format YYYYMMDDHH24MISS

Sales Audit Export to RMS [saexprms]

68 Oracle Retail Merchandising System

Table Column Description

Sa_tran_head Status

 Transaction Sign SAFD_P if the transaction has not been deleted (status !=
SAST_D) and there are no errors and it has not been
exported.

SAFD_N if the transaction has been deleted (status =
SAST_D) and it has been exported after being exported.

Sa_tran_head Sub_tran_type

Sa_tran_head Tran_type

Calls the library function markTransactionExported to insert a record into sa_exported.

processTransHead()
struct pt_sa_tran_head *ir_sa_tran_head
char is_store_day_seq_no[NULL_BIG_SEQ_NO]
char *is_store
char *is_day

If the transaction status is deleted (SAST_D) and it has been previously exported, then
call retrieveTransHeadRev. Also, if the revision number of the transaction is not 1, then a
previous revision may have been exported; call retrieveTransHeadRev to get the
exported revision (for full disclosure purposes).
Call retrieveTransItem and retrieveTransDisc to obtain the items and discounts for the
transaction, both Positive transactions and Negative ones.
Call saveData for both the Positive and Negative transactions to write the information
into memory.

retrieveTransHeadRev()
char *is_tran_seq_no
char *is_store
char *is_day
struct pt_sa_tran_head *or_sa_tran_head_rev

This function gets the sa_tran_head_rev record that needs to be processed. A record
needs to be processed if it has been previously exported.

Table Column Description

Sa_tran_head_rev Tran_seq_no

Sa_tran_head_rev Rev_no

Sa_tran_head_rev Tran_datetime Format YYYYMMDDHH24MISS

Sa_tran_head_rev Status

 Transaction Sign SAFD_N

Sa_exported_rev Exp_datetime Only for transactions with a Transaction Sign of
SAFD_N.

Format YYYYMMDDHH24MISS

Sa_exported_rev Sub_tran_type

If no data is found, then set or_sa_tran_head_rev->s_rev_no to –1.

Sales Audit Export to RMS [saexprms]

Batch Designs 69

retrieveTransItem()
char *is_tran_seq_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item

This function gets all the tran_item records for a tran_seq_no that needs to be processed.

retrieveTransItemRev()
char *is_tran_seq_no,
char *is_store,
char *is_day,
char *is_rev_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item

This function gets all sa_tran_item records or sa_tran_item_rev (if is_rev_no is not –1)
that need to be processed for a tran_seq_no.
Records should be limited to those with an item_type of SAIT_ITEM and SAIT_REF.

Table Column Description

Sa_tran_item_rev Tran_seq_no

Sa_tran_item_rev Item_seq_no

Sa_tran_item_rev Item_status

Sa_tran_item_rev Item_type

Sa_tran_item_rev Item

Sa_tran_item_rev Ref_item

Sa_tran_item_rev Dept

Sa_tran_item_rev Class

Sa_tran_item_rev Subclass

Sa_tran_item_rev Pack_ind

Sa_tran_item_rev Item_level

Sa_tran_item_rev Tran_level

Sa_tran_item_rev Waste_type

Sa_tran_item_rev Waste_pct Value multiplied by 10000.

Sa_tran_item_rev Qty Absolute value multiplied by 10000.

Sa_tran_item_rev Unit_retail Absolute value multiplied by 10000.

Sa_tran_item_rev Selling_uom

Sa_tran_item_rev Drop_ship_ind

Sa_tran_item_rev Catchweight_ind

Item_master Uom_quantity

The same columns as above are selected from the sa_tran_item_rev table if the rev_no
passed in is not –1.
Set *ol_num_sa_tran_item to the total number of records fetched.

Sales Audit Export to RMS [saexprms]

70 Oracle Retail Merchandising System

retrieveTransDisc()
char *is_tran_seq_no
long *ol_num_sa_tran_disc
struct pt_sa_tran_disc **oa_sa_tran_disc

This function gets the tran_disc records for a tran_seq_no that needs to be processed.

retrieveTransDiscRev()
char *is_tran_seq_no,
char *is_store,
char *is_day,
char *is_rev_no,
long *ol_num_sa_tran_disc,
struct pt_sa_tran_disc **oa_sa_tran_disc

This function gets all sa_tran_disc or sa_tran_disc_rev records (if is_rev_no is not –1) for
a tran_seq_no that needs to be processed.
Records should be limited to those with an item_type of SAIT_ITEM and SAIT_REF.

Table Column Description

Sa_tran_disc_rev Tran_seq_no

Sa_tran_disc_rev Item_seq_no

Sa_tran_disc_rev rms_promo_type

Sa_tran_disc_rev Promotion

Sa_tran_disc_rev Discount_type

Sa_tran_disc_rev Qty SIGN_N or SIGN_P depending on the sign
of qty.

Sa_tran_disc_rev Qty Absolute value multiplied by 10000.

Sa_tran_disc_rev Unit_discount_amt Value multiplied by 10000.

Sa_tran_disc_rev Promo_comp

The same columns as above are selected from the sa_tran_disc_rev table if the rev_no
passed in is not –1.
Set *ol_num_sa_tran_disc to the total number of records fetched.

saveData()
struct pt_sa_tran_head *ir_sa_tran_head
long il_num_sa_tran_item
struct pt_sa_tran_item *ia_sa_tran_item
long il_num_sa_tran_disc
struct pt_sa_tran_disc *ia_sa_tran_disc

Set ll_cur_sa_tran_item and ll_cur_sa_tran_disc to 0.
For each item record:
 Call Blank_field to blank pad NULL values so there would be no zeros in the
VRTLOG.
Call AddItem to add the new item to the tree.

Sales Audit Export to RMS [saexprms]

Batch Designs 71

For each item’s discount record:
Call AddDiscData to add discount data onto the existing item.

populateArrays
char *os_store_day_seq_no,
long *ol_num_sa_tran_item,
struct pt_sa_tran_item **oa_sa_tran_item,
long *ol_num_sa_tran_disc,
struct pt_sa_tran_disc **oa_sa_tran_disc

This function will fetch all required information for a store_day from the sa_tran_item
and sa_tran_disc tables and populate the global arrays with the data.

Table Column Description

Sa_tran_item Tran_seq_no

Sa_tran_item Item_seq_no

Sa_tran_item Item_status

Sa_tran_item Item_type

Sa_tran_item Item

Sa_tran_item Ref_item

Sa_tran_item Dept

Sa_tran_item Class

Sa_tran_item Subclass

Item_master Pack_ind

Item_master Item_level

Item_master Tran_level

Sa_tran_item Waste_type

Sa_tran_item Waste_pct Value multiplied by 10000.

Sa_tran_item Qty Absolute value multiplied by 10000.

Sa_tran_item Unit_retail Absolute value multiplied by 10000.

Sa_tran_item Selling_uom

Sa_tran_item Drop_ship_ind

Sa_tran_item Catchweight_ind

 Uom_quantity Value multiplied by 10000

Table Column Description

Sa_tran_disc Tran_seq_no

Sa_tran_disc Item_seq_no

Sa_tran_disc rms_promo_type

Sa_tran_disc Promotion

Sales Audit Export to RMS [saexprms]

72 Oracle Retail Merchandising System

Table Column Description

Sa_tran_disc Discount_type

Sa_tran_disc Qty Value multiplied by 10000.

Sa_tran_disc Unit_discount_amt Value multiplied by 10000.

Sa_tran_disc Promo_comp

For each item record:
Set current_item to NULL.

Call c_sa_tran_item to retrieve transaction records from sa_tran_item.
 If no data is found set li_end to 1.
Reset ll_alloc_size, ll_records_to_process and li_end to 0.
For each item record:
 Call c_sa_tran_disc to retrieve transaction records from sa_tran_disc.
 If no data is found set li_end to 1.
Processes a RTLFTail record from the input file.
Calls delete_item_tree to delete all the items in memory.

AddItem()
RTL_TITEM *tip
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item

Finds an item or adds a new item to the tree. Returns pointer if OK, or NULL if failure.
If item_status is SASI_V, then it needs to be reset depending on the sign of qty. Either
SASI_R if it is negative or SASI_S if it is positive.
Nextitem is called to do the rollups that happen when a subsequent item of the same
type is encountered.
If the item is not found, than newitem is called to create it and add it to the tree.

Newitem()
char *pricepoint
int hv
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item

This function allocates memory to a new item and returns a pointer or NULL.

Nextitem()
Struct pt_sa_tran_head *ir_sa_tran_head
Struct pt_sa_tran_item *irs_sa_tran_item
Struct ITEM_TAG *item_tag_ptr

This function performs the rollups when a subsequent item of the same type is
encountered.

AddDiscData()
Struct pt_sa_tran_head *ir_sa_tran_head

Sales Audit Export to RMS [saexprms]

Batch Designs 73

Struct pt_sa_tran_disc *ir_sa_tran_disc
char is_item_status[NULL_CODE]
Struct ITEM_TAG *i_item

Adds discount data into the existing item.
Calls finddiscdata to find a discount or adds a new discount to the item. Returns pointer
to the data if OK, or NULL if failure. Nextdiscdat is called to do the rollups that happen
when a subsequent discount of the same type is encountered.
If the discount is not found, than newdiscdat is called to create it and add it to the item.

Finddiscdata()
struct DISCDAT_TAG *discdat_tag_ptr
Char *is_type
Char *is_amt
Char *is_promotion

Searches the ITEM for the matching discount type.

Nextdiscdat()
Struct ITEM_TAG *item_tag_ptr
struct DISCDAT_TAG *discdat_tag_ptr
char is_item_status[NULL_CODE]
char is_tran_sign[NULL_IND]
Struct pt_sa_tran_disc *ir_sa_tran_disc

This functionnextitem does the rollups that happen when an subsequent item of the same
type is encountered. These 2 functions nee d to update the last_time_modified field each
time they are called. The value for this field will come from the FHEAD and the THEAD
records. The FHEAD record contains the date portion and the THEAD record contains
the time portion.
performs the rollups when a subsequent discount of the same type is encountered.
Does the rollups that happen when a subsequent discount of the same type is
encountered.

Newdiscdat()
Struct ITEM_TAG *item_tag_ptr
char is_item_status[NULL_CODE]
char is_tran_sign[NULL_IND]
Struct pt_sa_tran_disc *ir_sa_tran_disc

This function allocates memory to a discdat node and returns a pointer or NULL.

WrOutputData()
No arguments
Open the RMS output temporary file (ps_temp_file).
Write a RMS FHEAD record by calling WrRMSFHead.
Write the RMS transaction records by calling wod.
Write a RMS FTAIL record by calling WrRMSFTail.
Close the RMS temporary output file.

Sales Audit Export to RMS [saexprms]

74 Oracle Retail Merchandising System

Wod
Struct ITEM_TAG *item_tag_ptr

Calls itself recursively to output data from the entire binary tree.
If item_tag_ptr is not NULL
Call wod to recurse down the left branch.
If the total negative sales quantity is not zero than process the reverse sale.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total positive sales quantity is not zero than process the positive sale.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total negative return quantity is not zero than process the reverse return.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
If the total positive return quantity is not zero than process the positive return.
Call WrRMSTHead to write the THEAD record.
For each of the discount records attached to this item, call WrRMSTDetl to write TDETL.
Call WrRMSTTail to write the reversed sales TTAIL record.
Call wod to recurse down the right branch.

WrRMSFHead()
No arguments
Writes an RMS_FHEAD record (as defined in salib.h) to the specified output file. This
must match the definition of the record in Interface File – SA to RRMS.doc.
Set FileRecOutCount to 1.

Field Type Size Source

Frecdesc char RMS_FRECDESC_SIZE RMS_FHEAD_FRECDESC

Flineid char FT_NUMBER ls_file_line_no

file_type_definition char FT_VARCHAR ‘POSU’

file_create_date char FT_DATE ps_sysdate

Location Char FT_NUMBER ps_store

Vat_include_ind Char FT_VARCHAR ps_vat_include_ind

Vat_region Char FT_NUMBER ps_vat_region

Currency_code Char FT_VARCHAR ps_currency_code

Currency_rtl_dec char FT_NUMBER ps_currency_rtl_dec

Call putrec to write the record out to the RMS file.

WrRMSTHead()
Struct ITEM_TAG *item_tag_ptr

Sales Audit Export to RMS [saexprms]

Batch Designs 75

Const char is_tran_sign[NULL_CODE]
Char is_tran_sign[NULL_CODE]

This function writes a RMSTHead record to the output file. This function needs to copy
the last_time_modified from the ITEM_TAG struct into the RMS_THEAD struct before
calling putrec.

Field Type Size Source

Frecdesc char RMS_FRECDESC_SIZE RMS_THEAD_FRECDESC

Flineid char FT_NUMBER ls_file_line_no

Business_date char FT_DATE ps_business_date

Item_type char FT_VARCHAR item_tag_ptr->item_type

Item char FT_VARCHAR item_tag_ptr->item

Dept char FT_NUMBER item_tag_ptr->dept

Class char FT_NUMBER item_tag_ptr->class

Subclass char FT_NUMBER item_tag_ptr->subclass

Pack_ind char FT_VARCHAR item_tag_ptr->pack_ind

Item_level char FT_NUMBER item_tag_ptr->item_level

Tran_level char FT_NUMBER item_tag_ptr->tran_level

Waste_type char FT_NUMBER item_tag_ptr->waste_type

Waste_pct char FT_NUMBER item_tag_ptr->waste_pct

Selling_uom char FT_VARCHAR item_tag_ptr->selling_uom

Drop_ship_ind char FT_VARCHAR item_tag_ptr-
>drop_ship_ind

Tran_type char FT_VARCHAR SASI_S if is_item_status =
SASI_S else SASI_R

Catchweight_ind char FT_VARCHAR item_tag_ptr-
>catchweight_ind

Substrans_type_ind char FT_VARCHAR item_tag_ptr-
>subtrans_type_ind

WrRMSTDetl()
Struct DISCDAT_TAG *discdat_tag_ptr

Writes a RMSTDetl record to the output file.

WrRMSTTail()
No arguments
Writes a RMSTTail record to the output file.

WrRMSFTail()
No arguments
Writes a RMSFTail record to the output file.

Alloc_item()
No arguments

Sales Audit Export to RMS [saexprms]

76 Oracle Retail Merchandising System

This allocates memory for an item node.

delete_item_tree()
struct ITEM_TAG *itemroot

This function recursively deletes all items in memory.
Calls delete_discounts to delete discount information from the tree (before deleting the
current node).

Alloc_discount()
No arguments
This allocates memory on discounts for a particular item.

delete_discounts ()
struct DISCDAT_TAG *discdat_tag_ptr

This function recursively deletes all discounts for a particular item in memory.

Blank_field ()
char *is_field
int ii_len

This function fills the character array with spaces up to ii_len.

log_and_exit ()
char *is_message

This function writes is_message to the message log, calls final() and then exits.

Stored Procedures / Shared Modules (Maintainability)

Shared Module Module Description

libretek.a functions Refer to Library Design – retek.doc for details.

retek_init Initialize restart recovery.

retek_close Close restart recovery functions.

Retek_refresh_thread Refresh the current thread so that it may be used again.

Libresa.a functions: Refer to Library Design – ReSA.doc for details.

get_lock Used to establish a read lock on a store/day.

release_lock Used to release a store/day lock.

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

fetchStoreDayErrorCount Fetch the number of errors that corresponds to a particular
store/day and system.

markStoreDayExported Mark a particular store/day and system as exported

markTransactionExported Mark a particular transaction and system as exported.

OraNum functions (Add, Sub,
Mul, Div)

 Used to perform arithmetic operations on strings containing
large numbers.

Sales Audit Export to RMS [saexprms]

Batch Designs 77

Shared Module Module Description

Putrec Writes a record to a file.

Input Specifications
There are 2 driving cursors in this module. The first picks a store/day to work on:
 SELECT sd.store_day_seq_no,
 el.seq_no,
 sd.store,
 sd.day,
 TO_CHAR(sd.business_date, 'YYYYMMDD'),
 sd.data_status,
 ROWIDTOCHAR(el.rowid)
 FROM sa_store_day sd, sa_export_log el, v_restart_store vrs
 WHERE sd.store_day_seq_no = el.store_day_seq_no
 AND sd.store = el.store
 AND sd.day = el.day
 AND sd.store_status IN (:SASS_W, :SASS_C) /* Worksheet or Closed */
 AND sd.data_status IN (:SADS_P, :SADS_F) /* Partially or Fully loaded */
 AND el.system_code = :SYSE_RMS
 AND el.status = :SAES_R /* 'R'eady to be exported */
 AND vrs.num_threads = TO_NUMBER(:ps_num_threads)
 AND vrs.thread_val = TO_NUMBER(:ps_thread_val)
 AND vrs.driver_value = sd.store
 ORDER BY sd.store_day_seq_no, sd.store, sd.business_date;

The second fetches the transaction data to be output:
SELECT h.tran_seq_no,
 LTRIM(h.rev_no, '0'),
 TO_CHAR(h.tran_datetime, 'YYYYMMDDHH24MISS'),
 h.status,
 :SAFD_P,
 ' ',
 nvl(h.sub_tran_type,' '),
 h.tran_type
 FROM sa_tran_head h
 WHERE h.store_day_seq_no = TO_NUMBER(:is_store_day_seq_no)
 AND h.store = TO_NUMBER(:is_store)
 AND h.day = TO_NUMBER(:is_day)
 AND ((h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH)
 OR (h.tran_type = :TRAT_PAIDOU and h.sub_tran_type =
:TRAS_CACCOM)))
 AND (h.status = :SAST_P
 AND NOT EXISTS /* and no errors for the transaction */
 (SELECT er.tran_seq_no
 FROM sa_error er, sa_error_impact ei
 WHERE h.tran_seq_no = er.tran_seq_no
 AND h.store = er.store
 AND h.day = er.day
 AND er.error_code = ei.error_code
 AND ei.system_code = :SYSE_RMS
 AND er.hq_override_ind != :YSNO_Y))
 AND NOT EXISTS
 (SELECT e.store_day_seq_no
 FROM sa_exported e
 WHERE h.store_day_seq_no = e.store_day_seq_no
 AND h.store = e.store
 AND h.day = e.day
 AND h.tran_seq_no = e.tran_seq_no

Sales Audit Export to RMS [saexprms]

78 Oracle Retail Merchandising System

 AND e.system_code = :SYSE_RMS)
 UNION ALL
 SELECT h.tran_seq_no,
 LTRIM(h.rev_no, '0'),
 TO_CHAR(h.tran_datetime, 'YYYYMMDDHH24MISS'),
 h.status,
 :SAFD_N,
 NVL(TO_CHAR(e.exp_datetime, 'YYYYMMDDHH24MISS'), ' '),
 nvl(h.sub_tran_type,' '),
 h.tran_type
 FROM sa_tran_head h,
 sa_exported e
 WHERE h.store_day_seq_no = TO_NUMBER(:is_store_day_seq_no)
 AND h.store = TO_NUMBER(:is_store)
 AND h.day = TO_NUMBER(:is_day)
 AND ((h.tran_type IN (:TRAT_SALE, :TRAT_RETURN, :TRAT_EEXCH)
 OR (h.tran_type = :TRAT_PAIDOU and h.sub_tran_type =
:TRAS_CACCOM)))
 AND h.status IN (:SAST_D, :SAST_V)
 AND h.tran_seq_no = e.tran_seq_no(+)
 AND h.store = e.store
 AND h.day = e.day
 AND e.status = :SAST_P
 AND e.system_code = :SYSE_RMS
 ORDER BY 3;

Sales Audit Export to RMS [saexprms]

Batch Designs 79

Output Specifications
Data is output in the POSU file format. This is described in Interface File – SA to
RMS.doc.
The filename convention for these valid POSU files will be
posu_store_businessdate_curdatetime. The file should start out with a temporary name
generated by the Unix tempnam (See Unix man page 3S) call and then be renamed with
Unix rename (See Unix man page 2) call when the file is complete.

Database Integrity
This information derives from the Database Considerations within the Process /
Functional Overview (PFO), the Conversation Flow and Database Objects of the
Technical Design.

Parameter Validation
Parameter validation focuses on validating parameter data that is being passed from
calling modules.

Integrity Constraints
Operations that affect other entities in the system must be validated to ensure that
integrity constraints have not been violated. If a record cannot exist in the system
without a related parent record existing first, it is essential that the application enforce
this constraint. Similarly, if a record cannot be deleted due to the existence of child
records in the system the application should prevent the user from performing a delete
operation.

Scheduling Considerations
Processing Cycle: Anytime – Sales Audit 10.0 is a 24/7 system.
Scheduling Diagram: This program will be run after auditors have made corrections to
the data. This module should not be run simultaneously with other modules: saexprdw,
saexpim, saexpuar, saexpach, and saexpgl.
Pre-Processing: sagetref.pc to get reference data.
Post-Processing: posupld.pc should be run after saexprms.pc to import the data into the
RMS system.
Threading Scheme: v_restart_store

Locking Strategy
In conjunction with the Performance and the Scheduling Considerations section, this
section should describe the locking (and release) strategy required beyond the preset
Retek standards. It should describe how the module accesses data and the ‘hold’ or ‘lock’
it has on a database and / or its records, during processing. It should also describe the
‘lock’ release.

Sales Audit Export to UAR [saexpuar]

80 Oracle Retail Merchandising System

Restart / Recovery
The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done, one to establish the store/day lock and another at the end, to
release the lock after a store/day has been completely processed. The POSU formatted
output file will be created with a temporary name and renamed just before the end of
store/day commit.
In case of failure, we rollback all work done to the point right after the call to get_lock()
and then we release the lock. Thus, we assume that the rollback segment is large enough
to hold all inserts into sa_exported for one store_day. If this is not the case, we need to
increase the size of the rollback segment. The EXEC SQL SAVEPOINT statement is used
to save the state of the database after the call to get_lock().

Sales Audit Export to UAR [saexpuar]

Functional Area
Universal Account Reconciliation - UAR Export

Design Overview
This module will post specified totals to the Driscoll UAR application. Using the typical
export process, this module will loop through all available store day combinations. For
each store day, all specified totals will be posted to their appropriate output files. All
driving cursors will be handled by the libresa library functions.

Operations Performed

Table
Select Insert Update Delete

Period Yes No No No

Sa_store_day Yes No No No

Sa_export_log Yes No Yes No

Sa_exported No Yes No No

Sa_exported_rev Yes No No No

Sa_total_head Yes No No No

Sa_total Yes No No No

Sa_bank_store Yes No No No

Sa_store_day_read_lock Yes Yes No Yes

Sa_store_value Yes No No No

Sa_sys_value Yes No No No

Sa_pos_value Yes No No No

Sa_hq_value Yes No No No

Sales Audit Export to UAR [saexpuar]

Batch Designs 81

Scheduling Constraints

Pre/Post Logic Description
Processing Cycle: Anytime – Sales Audit is a 24/7 system.
Scheduling Diagram: This module should be run after the ReSA Totaling process. This
module should not be run simultaneously with other modules: saexprms, saexprdw,
saexpim, saexpach, and saexpgl.
Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)
Driving Cursor
The logical unit of work for this module is defined as a unique store/day combination.
Records will be fetched, updated and inserted in batches of pl_commit_max_ctr. Only
two commits will be done. One to establish the store/day lock (this will be done by the
package) and one at the end after a store/day has been completely processed.

Driving cursor 1:
The libresa library function fetchStoreDayToBeExportedLike will drive the stores to be
processed for any usage type starting with ‘UAR’.

Driving Cursor 2:
The libresa library function getTotalLike will drive the totals to be exported for any
usage type starting with ‘UAR’.

Program Flow
Structure Chart
Please see the following document for the complete structure chart of the standard export
for ReSA.
Functional Design – SA export.doc

Shared Modules
Listing of all externally referenced functions and Stored procedures and description of
usage
libresa library functions:
 fetchStoreDayToBeExportedLike
 fetchSaSystemOptions
 fetchSysdate
 fetchStoredayErrorCount
 markStoreDayExported
 updateStoreDayExported
 markTotalExported
 getTotalLike
 get_lock
 OraNumInit
 OraNumAdd

Sales Audit Export to UAR [saexpuar]

82 Oracle Retail Merchandising System

Function Level Description
All database interactions required and error handling considerations

init ()
1. Call OraNumInit to initialize string numbers arithmetic operations.
2. Get the current system date from the library function fetchSysdate.
3. Get the unit-of-work by calling the library function fetchSaSystemOptions.

process ()
1. Loop through the libresa library function fetchStoreDayToBeExportedLike.
2. Attempt to obtain a read lock on the store/day with a call to get_lock. If this fails, go

on to the next store/day and log the problem to the error log.
3. Call the function processStoreDay for the current store day.
4. Call the function markStoreDayExported.
5. Call the function retek_force_commit.
6. Loop from beginning until the return result of the function

fetchStoreDayToBeExportedLike = 1.

final ()
1. Call the library function updateStoreDayExported to write any unwritten store days

to the database.
2. Close output files.
3. Clean up any memory used.
4. Call the function retek_close.

addNewOutputFile (char is_usage_type,
char is_business_date,
char is_sysdate) returns integer

This function will generate a new output file for any new usage types retrieved from the
getTotalLike function call. It will also add a new file item to a collection of any files
currently being written to.
The file collection should contain the following items:
1. Usage type – the usage type returned by getTotalLike.
2. File name - <usage type>_<business date>_<system date>
3. File pointer – Pointer to the output file.
4. Wrote header – file header written indicator (0 – no, 1 – yes)
5. File sum – ongoing sum of each transaction in file.

getOutputFilePointer (char is_usage_type) returns integer
This function will retrieve the output file pointer for the usage type passed by checking
to see if the usage type exists on the output file collection.
 If the usage type exists on the file collection, the item number for the collection is

returned.
 If the usage type does not exist, the function returns -1.

Sales Audit Export to UAR [saexpuar]

Batch Designs 83

writeStoreDayDetail (FILE *if_file_pointer,
char is_total_id,
char is_store,
char is_business_date,
char is_amount,
char is_total_seq_no,
char is_UAR_tran_code) returns integer

This function will write the current UAR total to the output file specified. Each field is
separated by commas and surrounded by double quotes.

UAR Detail record:

Field Description Sales Audit value

1 Detail flag 1

2 Serial number Store number

3 Amount Total value

4 Transaction date Transaction date

5 Transaction code Mapped value: see the
function
getAdditionalInfo for
detailed explanation.

6 User defined value 1 Total sequence number

7 User defined value 2 Nothing

8 User defined value 3 Nothing

9 User defined value 4 Nothing

10 User defined value 5 Nothing

11 User defined value 6 Nothing

12 User defined value 7 Nothing

13 User defined value 8 Nothing

14 User defined value 9 Nothing

15 User defined value 10 Nothing

16 State Nothing

17 Account Total identifier

18 End of line \n

All 18 fields should be concatenated together.

writeStoreDayHeader (FILE *if_file_pointer,
char is_total_id,
char is_business_date) returns integer

This function will write the header record for the current store day to the output file.
Each field is separated by commas and surrounded by double quotes.

Sales Audit Export to UAR [saexpuar]

84 Oracle Retail Merchandising System

UAR Header record:

Field Description Sales Audit Value

1 Header flag 0

2 Account number Total identifier

3 Source D

4 Transaction date Transaction date

5 Organization number Nothing

6 Format UAR34

7 End of line \n

All 7 fields should be concatenated together.

writeStoreDayFooter (FILE *if_file_pointer,
char is_amount) returns integer

This function will write the footer record for the current store day to the output file. Each
field is separated by commas and surrounded by double quotes.

UAR Footer record:

Field Description Sales Audit value

1 Footer flag 9

2 Beginning balance +00000000000000

3 Ending balance “+” || the ongoing
sum for the file.

4 Available balance Nothing

5 End of line \n

All 5 fields should be concatenated together.

CloseOutputFiles () returns integer
This function will loop through the output file collection and call the ‘fclose’ C function
for each.

getOutputFileName (char is_usage_type,
char is_business_date,
char is_sysdate,
char os_filename) returns integer

This function will generate the unique file name for the total usage type passed. The
filename will have the following structure:
is_usage_type || “_” || is_business_date || “_” || is_sysdate

Sales Audit Export to UAR [saexpuar]

Batch Designs 85

getAdditionalInfo (char is_total_seq_no,
char is_ref_no1,
char os_total_id,
char os_UAR_tran_code) returns integer

This function retrieves both the total identifier and UAR transaction code for the current
total sequence number. The UAR transaction code is retrieved as follows:
 If ref_no1 is not null

 If ref_no1 maps to the SA_CONSTANTS table (ref_no1 =
SA_CONSTANTS.CONSTANT_ID).

– UAR transaction code = SA_CONSTANTS.CONSTANT_VALUE
 If ref_no1 does not map to the SA_CONSTANTS table (ref_no1 !=

SA_CONSTANTS.CONSTANT_ID).

– UAR transaction code = ref_no1
 If ref_no1 is null

 UAR transaction code = total identifier

processStoreDay (char is_store_day,
char is_sysdate,
char is_business_date,
char is_store) returns integer

This function will process an entire store days UAR totals.
1. Loop through all UAR totals by calling the function getTotalLike until the function

returns anything but zero.
2. Call the function getAdditionalInfo.
3. Determine if the output file exists by calling the function getOutputFilePointer.
4. If the pointer does not exist, call the function addNewOutputFile to create the new

file.
5. Check to see if the header detail record has already been written for the current file

by checking the current item on the output file collection.
6. If the head has not been written, call the function writeStoreDayHeader. Set the

header indicator to 1 in the output file collection for the current item.
7. Write the current total to the current output file by calling the function

writeStoreDayDetail.
8. Add the current total value to the running total sum in the output file collection for

the current item.
9. Call the function markTotalExported.

I/O Specification

All files layouts input and output
The UAR output file specifications are listed in this document by the functions that write
the output:
 writeStoreDayHeader
 writeStoreDayDetail
 writeStoreDayFooter

Stock Ledger Append [salapnd]

86 Oracle Retail Merchandising System

Stock Ledger Append [salapnd]

Design Overview
The sole purpose of this program is to move data from the transaction staging table into
the historical transaction table. This requires placing a lock on the staging table to ensure
that no new data will be added to it while the movement is occurring (to handle trickling
or real-time processing), moving the data to the historical table.

Scheduling Constraints
Processing Cycle: Should occur after all extractions have completed (RMS – saldly,
RDW etc.)
Scheduling Diagram: N/A
Pre-Processing: salstage, all extraction, and all processing
Post-Processing: N/A
Threading Scheme: Threading will be implicit via the use of the Oracle Parallel
Query Option. The insert/select query should be tuned for each specific environment to
achieve the best throughput.

Restart Recovery
No specific restart/recovery scheme needs to be defined because of the limited scope of
the module. However, in cases where the tran_data table is very large, a particularly
large rollback segment may be specified to reduce the risk of exceeding rollback segment
space. This will depend on the size of normal rollback segments and the size of the
tran_data table.

Program Flow
N/A

Shared Modules
N/A

Function Level Description

Init():
The rollback segment should be specified to a large enough size so that the entire rollup
will complete in a single transaction.

Process()
This function first calls the lock_table function to lock the if_tran_data table. It then calls
the append_history function to append the data from if_tran_data on to the
tran_data_history table. Finally, it calls lock table to release the lock on the tran_data
table.

Lock_table()
This function places or remove a lock on a table passed in. It will place or release the
lock depending on a input parameter.

Stock Ledger Append [salapnd]

Batch Designs 87

Append_history()
This function appends the data on if_tran_data on to the tran_data_history table.. This is
done using an insert/select statement with a hint for parallelism. The degree of
parallelism should be customized to each run-time environment.

I/O Specification
N/A

	Preface
	Audience
	Related Documents
	Customer Support
	Review Patch Documentation
	Oracle Retail Documentation on the Oracle Technology Network
	Conventions

	Introduction
	Overview

	Batch Designs
	Sales Audit ACH Download [saexpach]
	Functional Area
	Module Affected
	Design Overview
	Background Information – Quick Overview of the ACH process
	Data Security
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

	Sales Audit Export to GL [saexpgl]
	Design Overview
	Tables Affected
	Program Flow
	Global Variable Descriptions
	Function Level Description
	Input/Output Specifications
	Integrity Constraints
	Restart / Recovery

	Sales Audit Export to ReIM [saexpim]
	Design Overview
	Stored Procedures / Shared Modules (Maintainability)
	Packages:
	Input Specifications
	Output Specifications
	Function Level Description
	Field Mapping between ReSA and Invoice Matching
	Scheduling Considerations
	Locking Strategy
	Restart/Recovery
	Driving Cursors

	 Sales Audit Export to RDW [saexprdw]
	Design Overview
	Global Variable Descriptions
	Function Level Description
	Stored Procedures / Shared Modules (Maintainability)
	Output Files
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations

	Sales Audit Export to RMS [saexprms]
	Purpose
	Design Overview
	Program Flow
	Function Level Description
	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Parameter Validation
	Integrity Constraints
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery

	Sales Audit Export to UAR [saexpuar]
	Functional Area
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

	 Stock Ledger Append [salapnd]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification

