Retek® Merchandising System
11.0.2

Operations Guide

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000

Fax:
+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

The functionality described herein applies to this version, as
reflected on the title page of this document, and to no other
versions of software, including without limitation subsequent
releases of the same software component. The functionality
described herein will change from time to time with the
release of new versions of software and Retek reserves the
right to make such modifications at its absolute discretion.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:

©2004 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Merchandising System

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

Hong Kong 800 96 4262

Korea 00 308 13 1342

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
o Detailed step-by-step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents
Chapter 1 — INntroduCtioncouuiiiiiiiee e 1

Chapter 2 — RETL program overview for RMS/ReSA extractions 3

OVBIVIBW ...ttt bbbt b bbbt bt e bt e et b e bbbt e st e s 3
ATCRITECTUAl UESIGN ...t nre s 3
RMS eXtraction arChiteCIUNE.cceiiiii e e 4
RESA eXtraction arChiteCIUNE.........cveiviii e 4

(@00) T[0T L1 o] USSP 5
RE T L ettt bbb b h bttt bbb e 5
RETL USEr and PEIMISSIONScveiuveiierieiieeiesiestesiestesee e steesaesteeseessessaesaessesseessnsseessessessens 5
ENVIroNmMent VAriables. ..o 5
AWI_CONTIG.ENV SELLINGSeivieeeitieiie ittt sttt sre e e 6
Program fRATUIESccueiiiiie ettt et e eeene e 6
Program status CONTrOl FIlES.........coviiieie e e 6
RESLAI QNG FECOVETYviieieie ettt ettt esbeeta e besaeeaesteaneeneas 7
BOOKMAIK FIl.. . eiiieiee ettt sre e 8
MESSAGE TOGTING ..ttt bbb 8
U] 0 oo i] -SSR 8
0] 1 T L T TSP P TP PPPOTP 8
Program @rror FIHlEooi ettt eneas 9
LAY ST o T Tt 1= 9
SCNEMA TIES .. 10
RESOUICE FIIBS ...ttt re s teen e sbesneentenne e 10
CommaNd 1IN PATAMELEISecueeie ettt ettt e e sneeseeseeeree e 10
Multi-threading for RMSE RESA MOAUIESccviieiieiiie e 11
Typical run and debugging SItUALIONScoveiieiiiie e s 12
Running the time 454 extraCt MOAUIEccceviieiiirc e 13
Chapter 3 — RETL extractions program liSt........cccccceeveeviiiiinnnnne, 15
OVBIVIBW ...ttt sttt s et e st e sbe e et es e e be e teeneesne e e e eneenbeeneeaneenneas 15
RMS extract data (based on RDW dimension data)cccccevveeieiiieieereseeseenenn, 15
RMS extract data (based on RDW fact data)..........ccovvririeieieienenesc e 20
MaINTENANCE PrOGIAIMS.....cuviivieteereetresteesteeseesteeste e tessaesreeeesreesreessesssesseessesseesraeaseeneens 28

Retek Merchandising System

Chapter 4 — RETL extract program flow diagrams....................... 31
Legend: RMS 11.02 PrOQIaMSoceeiueaeerieeieaiesieesieaeesiesstesseessesssesseessesssesseessesssenns 32
Chapter 5 — RETL API flat file specificationsccccccooevvviiinnnee. 45
APTTOIMAL .. 45
FAIE TAYOUL. ...ttt e ba e e b e et e besaeeneesteere e 45
General business rules and standards common to all APIS ..., 46
Chapter 6 — Pro*C batch designsS......cccoovvviiiiiiiniieiieiiieeeeeei 209
Deals Forecast [dealfCt]coovoieiieiiiie e 209
Deal Income Calculation Daily — [dealinC]ccccceveriiiiiniiinieeeeecce 215
Like StOre [HKESLOIE]ccvveieiiieiieeie ettt nneas 225
Order Update [Ordupd]......ccveiueeieiieiieie e 231
Pre/Post Functionality for Multi-Threadable Programs [prepost]......c.cccccccvvvenenne. 235
Replenishment item-location maintenance [rilmaint]...........cccooiviiiiiiiiininienne. 249
Automatic replenishment order approval [rplapprv]ccccoeevevieiiiienieecese e, 257
Replenishment attribute update [rplatupd]........ccooceeiiiiiiiiniiie e 261
Vendor replenishment extraction [rplext].......cccccvvieiieiiiiieiieseere e 271
StOre/Day [SASTAYCI]...c.eiieieiiieieiie sttt et ae e 277
Upload stock count results [StKUPIA].......c.ccoveveiieiiiie e 281
Store Add [SEOreadd]........coeeieiieiiiie e 289
Vendor Invoicing for Complex Deals [VENdINVC]ccovevviierveieiie e 293
Chapter 8 — Subscription designcccooevvviiiiieeiiiii e, 299
RTV SUDSCIIPLION AP ..ot 299

Chapter 1 — Introduction

Chapter 1 — Introduction

This addendum to the RMS 11 Operations Guide presents changes that have resulted from work
completed during RMS 11.02 development. The RMS 11 Operations Guide volumes impacted
include:

e Volume 1, Functional Overviews

e Volume 2, Message Publication and Subscription Designs
e Volume 3, Batch Program Overview

e Volume 4, Batch Designs

The modified Pro*C batch schedule diagram is included with the documentation associated with
this release. See the filename: rms-1102-batchschedule.pdf.

Chapter 2 — RETL program overview for RMS/ReSA extractions

Chapter 2 — RETL program overview for
RMS/ReSA extractions

This chapter summarizes the configuration, architecture and features for many RETL programs
utilized in RMS/ReSA extractions. These extractions were initially designed for Retek Data
Warehouse (RDW) and can be used for some other application in the retailer’s enterprise.

For information about RMS RETL extractions for an application such as Advanced Inventory
Planning (AIP), see the RMS 10.1.9 Addendum to the Operations Guide.

For information about RMS RETL extractions for an application such as Retek Demand
Forecasting (RDF), see the RMS 11.0 Operations Guide.

For more information about the RETL tool, see the latest RETL Programmer’s Guide.

Overview

RMS works in conjunction with the Retek Extract Transform and Load (RETL) framework. This
architecture optimizes a high performance data processing tool that allows database batch
processes to take advantage of parallel processing capabilities.

The RETL framework runs and parses through the valid operators composed in XML scripts.

Architectural design

The diagrams below illustrate the extraction processing architecture for RMS and for ReSA.
Instead of managing the change captures as they occur in the source system during the day, the
process involves extracting the current data from the source system. The extracted data is output
to flat files. These flat files are then available for consumption by a product such as Retek Data
Warehouse (RDW).

The target system, (RDW, for example), has its own way of completing the transformations and
loading the necessary data into its system, where it can be used for further processing in the
environment.

Retek Merchandising System

RMS extraction architecture

The architecture relies upon the use of well-defined flows specific to the RMS database. The
resulting output is comprised of data files written in a well-defined schema file format. This
extraction includes no destination specific code.

— =

RMS DB

I

RMS RETL
extraction process

A 4

RMS extraction files
(in output schema format)

RETL extraction processing for RMS

ReSA extraction architecture

The architecture relies upon the use of well-defined flows specific ReSA input schema files. The
resulting output is comprised of data files written in a well-defined schema file format. This
extraction includes no destination specific code.

ReSA output files in input
schema format

process

RETL extraction

h 4

ReSA extraction files in
output schema format

RETL extraction processing for ReSA

Chapter 2 — RETL program overview for RMS/ReSA extractions

Configuration

RETL

Before trying to configure and run RMS ETL, install RETL version 11.2 or later, which is
required to run RMS 11.0.2 RETL. Run the “verify_retl’ script (included as part of the RETL
installation) to ensure that RETL is working properly before proceeding.

RETL user and permissions

RMS ETL is installed and run as the RETL user. Additionally, the permissions are set up as per
the RETL Programmer’s Guide. RMS ETL reads data, creates, deletes and updates tables. If these
permissions are not set up properly, extractions fail.

Environment variables

See the RETL Programmer’s Guide for RETL environment variables that must be set up for your
version of RETL. You will need to set MMHOME to your base directory for RMS RETL. This is
the top level directory that you selected during the installation process. In your .kshrc, you should
add a line such as the following:

export MMHOME=<base directory for RMS ETL>\dwill.O\dev

Retek Merchandising System

dwi_config.env settings

Make sure to review the environmental parameters in the dwi_config.env file before executing
batch modules. There are several variables you must change depending upon your local settings:

For example:
export DBNAME=Int9i
export RMS_OWNER=steffej rms1011
export BA OWNER=rmsintl1011
export ORACLE_PORT="1524"
export ORACLE_HOST="mspdev38"

You must set up the environment variable PASSWORD in dwi_config.env. In the example
below, adding the line to the dwi_config.env causes the password ‘mypasswd’ to be used to log
into the database:

export PASSWORD=mypasswd

Steps to configure RETL
1 Log in to the Unix server with a Unix account that will run the RETL scripts.
2 Change directories to $MMHOME/rfx/etc.
3 Modify the dwi_config.env script:
a Change the DBNAME variable to the name of the RMS database.

b Change the RMS_OWNER variable to the username of the RMS schema owner.

¢ Change the BA_OWNER variable to the username of the RMSE batch user.

d Change the ORACLE_HOST variable to the database server name.

e Change the ORACLE_PORT variable to the database port number

f Change the MAX_NUM_COLS variable to modify the maximum number of columns

from which RETL selects records.

Program features

RETL programs use one return code to indicate successful completion. If the program
successfully runs, a zero (0) is returned. If the program fails, a non-zero is returned.

Program status control files

To prevent a program from running while the same program is already running against the same
set of data, the RMSE code utilizes a program status control file. At the beginning of each
module, dwi_config.env is run. It checks for the existence of the program status control file. If the
file exists, then a message stating, ‘${PROGRAM_NAME} has already started’, is logged and
the module exits. If the file does not exist, a program status control file is created and the module
executes.

Chapter 2 — RETL program overview for RMS/ReSA extractions

If the module fails at any point, the program status control file is not removed, and the user is
responsible for removing the control file before re-running the module.

File naming conventions

The naming convention of the program status control file allows a program whose input is a text
file to be run multiple times at the same time against different files.

The name and directory of the program status control file is set in the configuration file
(dwi_config.env). The directory defaults to SMMHOME/error. The naming convention for the
program status control file itself defaults to the following dot separated file name:

e The program name

e The first filename, if one is specified on the command line
e ‘status’

e The business virtual date for which the module was run

For example, the program status control file for the invildex program would be named as follows
for the VDATE of March 21, 2004:

$MMHOME/Zerror/invildex. invi lddm. txt.status.20040321

Restart and recovery

Because RETL processes all records as a set, as opposed to one record at a time, the method for
restart and recovery must be different from the method that is used for Pro*C. The restart and
recovery process serves the following two purposes:

1 It prevents the loss of data due to program or database failure.

2 Itincreases performance when restarting after a program or database failure by limiting the
amount of reprocessing that needs to occur.

Most modules use a single RETL flow and do not require the use of restart and recovery. If the
extraction process fails for any reason, the problem can be fixed, and the entire process can be run
from the beginning without the loss of data. For a module that takes a text file as its input, the
following two choices are available that enable the module to be re-run from the beginning:

1 Re-run the module with the entire input file.

2 Re-run the module with only the records that were not processed successfully the first time
and concatenate the resulting file with the output file from the first time.

To limit the amount of data that needs to be re-processed, more complicated modules that require
the use of multiple RETL flows utilize a bookmark method for restart and recovery. This method
allows the module to be restarted at the point of last success and run to completion. The
bookmark restart/recovery method incorporates the use of a bookmark flag to indicate which step
of the process should be run next. For each step in the process, the bookmark flag is written to
and read from a bookmark file.

L) Note: If the fix for the problem causing the failure requires changing data in the source
table or file, then the bookmark file must be removed and the process must be re-run from the
beginning in order to extract the changed data.

Retek Merchandising System

Bookmark file

The name and directory of the restart and recovery bookmark file is set in the configuration file
(dwi_config.env). The directory defaults to SMMHOME/rfx/bookmark. The naming convention
for the bookmark file itself defaults to the following ‘dot’-separated file name:

e The program name

e The first filename, if one is specified on the command line
e ‘bkm’

e The business virtual date for which the module was run

The example below illustrates the bookmark flag for the invildex program run on the VDATE of
January 5, 2004:

$MMHOME/ r Fx/bookmark/Zinvildex. invilddm. txt.bkm.20040105

Message logging

Message logs are written daily in a format described in this section.

Daily log file

Every RETL program writes a message to the daily log file when it starts and when it finishes.
The name and directory of the daily log file is set in the configuration file (dwi_config.env). The
directory defaults to SMMHOME/log. All log files are encoded UTF-8.

The naming convention of the daily log file defaults to the following ‘dot’ separated file name:
e The business virtual date for which the modules are run
o ‘log

For example, the location and the name of the log file for the business virtual date (VDATE) of
March 21, 2004 would be the following:

$MMHOME/ 109720040321 . 1og

Format
As the following examples illustrate, every message written to a log file has the name of the
program, a timestamp, and either an informational or error message:
invildex 16:22:52: Program starting...
invildex 16:22:52: Stepl - process current day data change
invildex 16:22:59: Analyze table rmsintll10buserl.GET_ITEM_MASTER_TEMP
invildex 16:22:59: Step2 - Stock-on-hand and in-transit info
invildex 16:23:04: Analyze table rmsintl10buserl.GET_ITEM_LOC_TEMP
invildex 16:23:04: Step3 - process on-order quantity and unit cost

invildex 16:23:12: Analyze table
rmsintl10buserl.FINAL_COMP_ITEM_ON_ORDER_TEMP

invildex 16:23:12: Step4 - Process on-order and original item/loc
information

invildex 16:23:18: Drop table rmsintl10buser1_GET_ITEM_LOC_TEMP

Chapter 2 — RETL program overview for RMS/ReSA extractions

invildex 16:23:19: Drop table rmsintl10buserl_GET_ITEM_MASTER_TEMP
invildex 16:23:19: Drop table rmsintll0Obuserl.FINAL_COMP_ITEM_ON_ORDER_TEMP

invildex 16:23:19: Number of records in
/projects/dwill.0/dev/data/Zinvilddm.txt = 37

invildex 16:23:19: Program completed successfully

If a program finishes unsuccessfully, an error file is usually written that indicates where the
problem occurred in the process. There are some error messages written to the log file, such as
‘No output file specified’, that require no further explanation written to the error file.

Program error file

In addition to the daily log file, each program also writes its own detail flow and error messages.
Rather than clutter the daily log file with these messages, each program writes out its errors to a
separate error file unique to each execution.

The name and directory of the program error file is set in the configuration file (dwi_config.env).
The directory defaults to SMMHOME/error. All errors and all routine processing messages for a
given program on a given day go into this error file (for example, it will contain both the stderr
and stdout from the call to RETL). All error files are encoded UTF-8.

The naming convention for the program’s error file defaults to the following ‘dot” separated file
name:

e The program name
o The first filename, if one is specified on the command line
e The business virtual date for which the module was run

For example, all errors and detail log information for the invildex program would be placed in the
following file for the batch run of March 21, 2004:

$MMHOME/Zerror/Zinvildex. invilddm.txt.20040321

RMSE reject files

RMSE extract modules may produce a reject file if they encounter data related problems, such as
an inability to find data on required lookup tables. The module tries to process all data and then
indicates that records were rejected so that all data problems can be identified in one pass and
corrected; then, the module can be re-run to successful completion. If a module does reject
records, the reject file is not removed, and the user is responsible for removing the reject file
before re-running the module.

The records in the reject file contain an error message and key information from the rejected
record. The following example illustrates a record that is rejected due to problems within the
currency conversion library:

Unable to convert currency for LOC_IDNT, DAY_DT]3]20011002

The name and directory of the reject file is set in the configuration file (dwi_config.env). The
directory defaults to $SMMHOME/data.

L Note: A directory specific to reject files can be created. The dwi_config.env file would
need to be changed to point to that directory.

Retek Merchandising System

Schema files

RETL uses schema files to specify the format of incoming or outgoing datasets. The schema file
defines each column’s data type and format, which is then used within RETL to format/handle the
data. For more information about schema files, see the latest RETL Programmer’s Guide. Schema
file names are hard-coded within each module since they do not change on a day-to-day basis. All
schema files end with “.schema” and are placed in the “$SMMHOME/rfx/schema” directory.

Resource files

RMSE Kornshell programs use resource files so that the same RETL programs can run in various
language environments. For each language, there is one resource file.

Resource files contain hard-coded strings that are used by extract programs. The name and
directory of the resource file is set in the configuration file (dwi_config.env). The default
directory is ${MMHOME}/rfx/include.

The naming convention for the resource file follows the two-letter 1ISO code standard
abbreviation for languages (for example, en for English, fr for French, ja for Japanese, es for
Spanish, de for German, and so on).

Command line parameters

A module handles command line parameters in one of the three ways described in this section.
See “Chapter 3 — RETL program reference lists” to determine the command line parameters for a
module.

L) Note: For some modules, default output file names and schema names correspond to
RDW program names.

Modules that do not require parameters

Some RMSE extraction modules do not require passing in any parameters. The output
path/filename defaults to $DATA_DIR/(RDW program name).txt. Similarly, the schema format
for the records in these files are specified in the file - $SSCHEMA_DIR/(RDW program
name).schema.

Non-file based modules that require parameters

In order for some non-file based RETL modules to run, command line parameters need to be
passed in at the Unix command line. These RMSE modules require an output_file_path and
output_file_name to be passed in. These modules may allow the operator to specify more than
one output file.

For example:
invildex.ksh output_file_path/output_file_name

10

Chapter 2 — RETL program overview for RMS/ReSA extractions

ReSA file-based modules that require parameters

In order for some file-based RETL modules to run, command line parameters need to be passed
in at the Unix command line. ReSA file-based modules require the following to be passed in:

e output_file_path and output_file_name
e input_file_path and input_file_name

For example:
Iptotldex output_File_path/output_file_name input_file_path/input_file_name

Multi-threading for RMSE ReSA modules

In contrast to the way in which multi-threading is defined in Unix, RMSE modules use ‘multi-
threading’ to refer to the running of a single RETL program multiple times on separate groups of
data simultaneously. Multi-threading is only available for RMSE ReSA extraction modules that
take a text file as input. Depending upon how it is implemented, multi-threading can reduce the
total amount of processing time.

File-based extraction modules have to be run once for each input file. A different output file must
be specified for each input file. It is the responsibility of the client to set up, as part of the daily
batch operation, a process to combine all the resulting text files into one file using the Unix
concatenation (“cat’) command.

The example below represents a scenario in which the Iptotldex.ksh module is run three times for
three input files.

Iptotldex ${MMHOME}/data/Ilptotlddm.1000000009
${MMHOME}/data/RDWS_1000000009_20020310_20020311

Iptotldex ${MMHOME}/data/lptotlddm.1000000010
${MMHOME}/data/RDWS_1000000010_20020310_20020311

Iptotldex ${MMHOME}/data/Ilptotlddm.1000000011
${MMHOME}/data/RDWS_1000000011_20020310_20020311

To concatenate the three output files, run the following command in the ${MMHOME}/data
directory:

cat Iptotlddm.1000000009 Iptotlddm.1000000010 Iptotlddm.1000000011 >
Iptotlddm.txt

In this example, Iptotlddm.txt becomes the combined text file.

11

Retek Merchandising System

Typical run and debugging situations

The following examples illustrate typical run and debugging situations for types of programs. The
log, error, and so on file names referenced below assume that the module is run on the business
virtual date of March 9, 2004. See the previously described naming conventions for the location
of each file.

For example:
To run invildex.ksh:
1 Change directories to SMMHOME/rfx/src.
2 AtaUnix prompt enter:
%invildex.ksh $MMHOME/data/invilddm.txt
If the module runs successfully, the following results:

1 Logfile: Today’s log file, 20040309.log, contains the messages “Program started ...” and
“Program completed successfully” for invildex.ksh.

2 Data: The invilddm.txt file exists in the SMMHOME/data directory and contains the
extracted records.

3 Error file: The program’s error file, invildex.invilddm.txt.20040309, contains the standard
RETL flow (ending with “All threads complete” and “Flow ran successfully”) and no
additional error messages.

4 Program status control: The program status control file, invildex.invilddm.txt
.status.20040309, does not exist.

5 Reject file: The reject file, invildex.invilddm.txt.rej.20040309, does not exist.
If the module does not run successfully, the following results:

1 Logfile: Today’s log file, 20040309.log, does not contain the “Program completed
successfully” message for invildex.ksh.

2 Data: The invilddm.txt file may exist in the data directory but may not contain all the
extracted records.

3 Error file: The program’s error file, invildex.invilddm.txt.20040309, may contain an error
message.

4 Program status control: The program status control file,
invildex.invilddm.txt.status.20040309, exists.

5 Reject file: The reject file, invildex.invilddm.txt.rej.20040309, does not exist because this
module does not reject records.

6 Bookmark file (in certain conditions): The bookmark file,
invildex.invilddm.txt.okm.20040309, exists because this module contains more than one
flow. The error occurred after the first flow (for example, during the second flow).

12

Chapter 2 — RETL program overview for RMS/ReSA extractions

To re-run a module from the beginning, perform the following actions:

1

2
3
4

Determine and fix the problem causing the error.
Remove the program’s status control file.
Remove the bookmark file from $SMMHOME/rfx/bookmark

Change directories to SMMHOME/rfx/src. At a Unix prompt, enter:
%invildex.ksh $MMHOME/data/invilddm.txt

L) Note: To understand how to engage in the restart and recovery process, see the section,

‘Restart and recovery’ earlier in this chapter.

Running the time 454 extract module

The time 454 extract module requires the steps below to run successfully:

1

Log in to the RMS database server as dwidev. Run the profile and verify that the MMUSER
and PASSWORD variables are set to the batch user, dwidev, and the appropriate password.
Verify the RETL executable is in the path of your Unix session by typing:

Y%which rfx
Change directories to SMMHOME!/install.

Modify the variable |_path in the extract_time.sqgl script to reference the UTL_FILE directory
specified in the RMS database parameter file.

At the Unix prompt enter:
%extract time.ksh

This script generates three files called time_454* txt, wkday*.txt, and
start_of_half_month*.txt located in the utl_file_dir directory specified in your RMS database
parameter file.

Change directories on the Unix server to SMMHOME/log. Review the log file that was
created or modified.

Change directories on the Unix server to SMMHOME/error. Review the error files that were
created.

Move the three output files to SMMHOME!/install directory.

13

Chapter 3 — RETL extractions program list

Chapter 3 — RETL extractions program

list

Overview

This chapter serves as a reference to the RETL extraction RMS programs. Note that the data in
this chapter is organized according to the logic of RDW (dimension data and table data), though a
retailer can use the data to suit its business needs.

RMS extract data (based on RDW dimension data)

The extraction modules that were designed originally for RDW dimension data do not have an
“argument” column in the table below. These modules do not require a path/file_name parameter.
These modules assume output text files will be located in ${MMHOME}/data and named <DM
KSH module name>.txt. If retailers wish to change this default path, they will need to pass in
their own path/file_name at the command line.

Program Functional Source Table or File Schema Target File
Area File or Table

cdedtlex.ksh Codes CODE_DETAIL cdedtldm.sc |cdedtldm.txt
hema

cmptrex.ksh Competitor COMPETITOR cmptrdm.sch | cmptrdm.txt
ema

cmptrimex.ksh Competitor COMP_STORE_LINK, cmptrimdm. |cmptrimdm.txt

CODE_DETAIL schema

cmptrlocex.ksh Competitor COMP_STORE cmptrlocdm. | cmptrlocdm.txt
schema

crncycdex.ksh Currency Code |CURRENCIES crncycddm.s | crncycddm.txt
chema

emplyex.ksh Employee SA_EMPLOYEE emplydm.sc |emplydm.txt
hema

orgaraex.ksh

Organization

AREA

orgaradm.sc
hema

orgaradm.txt

orgchanex.ksh

Organization

CHANNELS, BANNER

orgchandm.s
chema

orgchandm.txt

orgchnex.ksh

Organization

CHAIN, COMPHEAD

orgchndm.sc
hema

orgchndm.txt

orgdisex.ksh

Organization

DISTRICT

orgdisdm.sc
hema

orgdisdm.txt

15

Retek Merchandising System

Program Functional Source Table or File Schema |[Target File
Area File or Table
orglimex.ksh Organization LOC_LIST DETAIL orglimdm.sc |orglimdm.txt
hema
orglocex.ksh Organization STORE, DISTRICT, orglocdm.sc |orglocdm.txt
CURRENCIES, hema
COUNTRY,
STORE_ATTRIBUTES,
STORE_FORMAT,STATE
, TSFZONE,
PROMOZONE, WH,
SYSTEM_OPTIONS,
WH_ATTRIBUTES,
PROMO_ZONE,
CHANNELS,
BANNER
USER_TAB_
COLUMNS
orglolex.ksh Organization LOC_LIST_HEAD orgloldm.sc |orgloldm.txt
hema
orgltmex.ksh Organization LOC_TRAITS_ orgltmdm.sc | orgltmdm.txt
MATRIX hema
orgltrex.ksh Organization LOC_TRAITS orgltrdm.sch |orgltrdm.txt
ema
orgrgnex.ksh Organization REGION orgrgndm.sc | orgrgndm.txt
hema
phasex.ksh Product Season |PHASES phasdm.sche | phasdm.txt
ma
prdclsex.ksh Product CLASS, MERCHANT, prdclsdm.sc | prdclsdm.txt
BUYER,DEPS hema
prdcmpex.ksh Company COMPHEAD prdcmpdm.s | prdcmpdm.txt
chema
prddepex.ksh Product DEPS, CODE_DETAIL, prddepdm.sc | prddepdm.txt
MERCHANT, BUYER hema
prddiffex.ksh Product DIFF_IDS prddiffdm.sc | prddiffdm.txt
hema
prddivex.ksh Product DIVISION, COMPHEAD, |prddivdm.sc |prddivdm.txt
MERCHANT, BUYER hema

16

Chapter 3 — RETL extractions program list

Program Functional Source Table or File Schema Target File
Area File or Table
prddtypex.ksh Product DIFF_TYPES prddtypdm.s | prddtypdm.txt
chema
prdgrpex.ksh Product GROUPS, MERCHANT, |[prdgrpdm.sc | prdgrpdm.txt
BUYER hema
Prdislex.ksh Item-Supplier- |ITEM_SUPP_ prdisldm.sch | prdisldm.txt
Location COUNTRY_ ema
LOC,
ITEM_MASTER,
ITEM_SUPP_
COUNTRY_
DIM, ITEM_SUPP_
COUNTRY, ITEM_LOC,
ITEM_SUPPLIER
prditmex.ksh Product ITEM_MASTER, prditmdm.sc | prditmdm.txt
Dimension UOM_CLASS, hema
CODE_DETAIL,
USER_TAB_
COLUMNS
prditmlex.ksh Product SKULIST_HEAD prditmldm.s |prditmldm.txt
chema
prditmlmex.ksh Product SKULIST_DETAIL, prditmimdm | prditmimdm.tx
ITEM_MASTER .schema t
prditmltmex.ksh | Item-Location [ITEM_LOC_TRAITS, prditmltmd | prditmltmdm.t
Trait ITEM_MASTER, m.schema xt

CODE_DETAIL

17

Retek Merchandising System

Program Functional Source Table or File Schema Target File
Area File or Table

prditmsmex.ksh | Product ITEM_SEASONS, prditmsmdm | prditmsmdm.tx

Note: PHASES, .schema t

prditmsmex.ksh ITEM_MASTER

extracts the latest

season/phase

combination for

all tracking level

and above items.

In other words, if

item A is attached

to season A/phase

A and season

Al/phase B in

RMS, and phase B

starts after phase

A, only season

A/phase B will

show up in the

matrix association

to item A.

prdpimex.ksh Product PACKITEM_ prdpimdm.s |prdpimdm.txt
BREAKOUT, chema
ITEM_MASTER

prdsbcex.ksh Product SUBCLASS, DEPS, prdsbcdm.sc | prdsbecdm.txt
CLASS, BUYER, hema
MERCHANT

prdudaex.ksh Product ITEM_MASTER, prditmuhdm. | prditmuhdm.tx
UDA schema, t
UDA_ITEM_DATE, prditmuddm. | prditmuddm.tx
UDA_ITEM_FF, schema t
UDA VALUES prditmumdm | prditmumdm.t
UDA_ITEM_LOV .schema xt

regngrpex.ksh Regionality SEC_GROUP, regngrpdm.s |regngrpdm.txt
CODE_DETAIL chema

regnmtxex.ksh Regionality REGIONALITY_MATRIX | regnmtxdm. |regnmtxdm.txt
, ITEM_MASTER, schema

ITEM_SUPP_COUNTRY _
LOC

18

Chapter 3 — RETL extractions program list

Program Functional Source Table or File Schema Target File
Area File or Table
Rsnex.ksh Reason CODE_DETAIL, rsndm.sche |rsndm.txt
INV_ADJ_REASON, ma

INV_STATUS_TYPES,
QC_FAILURE_CODES,
CODE_HEAD,
NON_MERCH_CODE_
HEAD

seasnex.ksh Product Season |SEASONS seasndm.sch |seasndm.txt
ema
subtrantypex.ksh | Sub-Transaction | CODE_DETAIL subtrantypd |subtrantypdm.t
Type m.schema |xt
supctrex.ksh Supplier CONTRACT_ supctrdm.sc |supctrdm.txt
HEADER, hema
CODE_DETAIL
Supsupex.ksh Supplier SUPS, CURRENCIES, supsupdm.sc | supsupdm.txt
SYSTEM_OPTIONS, hema
USER_TAB_
COLUMNS
Suptrmex.ksh Supplier SUP_TRAITS _MATRIX |suptrmdm.sc |suptrmdm.txt
hema
suptrtex.ksh Supplier SUP_TRAITS suptrtdm.sch | suptrtdm.txt
ema
tndrtypex.ksh Tender Type POS_TENDER_TYPE_ tndrtypedm. |tndrtypedm.txt
HEAD, schema
CODE_DETAIL
ttltypex.ksh ReSA Total SA TOTAL_HEAD ttlitypdm.sch | ttltypdm.txt
Type Dimension ema

19

Retek Merchandising System

RMS extract data (based on RDW fact data)

The *Arguments’ column lists all the command line parameters that exist in addition to the
module name itself. For the extraction modules below, the data file path/file_name is a required
command line parameter. The “Arguments” column contains the extraction data file directory
path and file name, such as ${MMHOME}/data/cmptrcilddm.txt. If retailers wish to change this
path, they will need to substitute their own path/file_name at the command line.

Unless otherwise noted, the number of days that a transaction can be back posted is limited by the
stock ledger. If a transaction is extracted with a date prior to or equal to the last closed end-of-
month, then the date will be changed during the extraction to the current business virtual date.

Program |Functional |External |Source [Schema(Target Arguments [Notes
Area Data Table or [File File or
Source [File Table
cmptrprcild [Competitor |RMS COMP_STO|cmptrprcil cmptrprcildd| output_file_pat | Back
ex.ksh Pricing RE_LINK,C |[ddm.sche |m.txt h/filename posting of
OMP_PRIC ma competitor
E pricing data
HIST,CURR is not
ENCY_RAT limited by
ES,COMP_S the RMS
TORE, stock ledger.
ITEM_MAS JV?I'IS module
TER
accurately
back post
competitor
pricing
facts,
regardless
of whether
the facts
occurred
before the
RMS
SYSTEM_
VARIABLE
S.LAST_E
OM_DATE.
cstisldex.ks [Cost RMS PRICE_HIS |cstislddm. [cstislddm.txt| output_file pat
h T, schema h/filename
ITEM_SUPP
| COUNTRY]
| LOC,
ITEM_LOC,
ITEM_MAS
TER

20

Chapter 3 — RETL extractions program list

Program |[Functional |External |Source [SchemalTarget Arguments [Notes
Area Data Table or [File File or
Source [File Table
exchngratex|Exchange RMS CURRENC |exchngrat |exchngrated | output file pat
.ksh Rates Y RATES, |edm.sche [m.txt h/filename
EURO_EXC|ma
HANGE_
RATE
invildex.ksh|inventory RMS ORDLOC_R|invilddm.sfinvilddm.txt | out_file_path/f | This module
Position EV,V_PAC [chema ilename only pulls
KSKU_QTY the
JF_TRAN_ inventory
DATA, position for
ITEM_MAS item-
TER, location
ITEM_LOC, combination
ITEM_LOC s that
| SOH, underwent a
REPL_ITE change in
M_LOC, inventory
ORDHEAD, position for
ORDLOC, the given
PACKITEM day. The
fact that
something
changed is
communicat
edtoa
target
system
(such as
RDW) by a
record for
the item-
location on
the
IF_TRAN_
DATA table
or a record
on the
ORDLOC _
REV table
for the item-
location
with the
rev_date
equal to the
business
virtual date
for the batch
run.

21

Retek Merchandising System

Program |[Functional |External |Source [SchemalTarget Arguments [Notes
Area Data Table or [File File or
Source |[File Table
ivaildex.ksh|Inventory RMS IF_TRAN_D|ivailddm.s fivailddm.txt | out_file_path/f
IAdjustment ATA, chema ilename
ITEM_MAS
TER
ivrcpildex.k|Inventory RMS IF_TRAN_Dlivrcpildd [ivrcpilddm.t |out_file_path/f
sh Receipts ATA, m.schema [xt ilename
ITEM_MAS
TER
ivrildex.ksh|Return to RMS RTV_HEADIivrilddm.s [ivrilddm.txt |output_file_ pat
'Vendor : chema h/filename
RTV_DETA
IL,
ITEM_LOC,
ITEM_MAS
TER
ivtildex.ksh [Inventory RMS IF_TRAN_D|ivtilddm.s fivtilddm.txt |output file pat
Transfers ATA, chema h/filename
ITEM_MAS
TER
ivuildex.kshlUnavailable [RMS INV_STAT |ivuilddm.sfivuilddm.txt | out_file_path/f
Inventory US QTY, [chema ilename
ITEM_LOC,
ITEM_LOC
| SOH,
IF_TRAN_D
ATAV_
PACKSKU _
QTY,
ITEM_MAS
TER
Iptotcldex.k|Loss ReSA(RD [RDWC file |Input Iptotclddm.t |output file_pat | 1. Input file
sh Prevention WC file) (formats |xt h/filename name must
Totals (cashier input data input_file_path | begin with
over or short) from [filename RDWC.
ReSA):
Iptotcldex. 2. Before
schema running
Iptotcldex,
Output RDWC
(formats input file
output text must have

22

Chapter 3 — RETL extractions program list

Program |[Functional |External |Source [SchemalTarget Arguments [Notes
Area Data Table or [File File or
Source [File Table
file): been
Iptotclddm properly
.schema formatted
by running
ReSA Perl
script
resa2rdw.
Iptotldex.ks |Loss ReSA(RD [RDWS file |Input Iptotlddm.txt| output_file_pat | 1. Input file
h Prevention |WS file) (formats h/filename name must
Totals (user input data input_file_path | begin with
defined totals) from [filename RDWS.
ReSA):
Iptotldex.s 2. Before
chema running
Iptotldex,
Output RDWS
(formats input file
output text must have
file): been
Iptotlddm. properly
schema formatted
by running
ReSA Perl
script
resa2rdw.
ncstuildex.k[Net Cost RMS FUTURE_C |ncstuildd |ncstuilddm.t | output_file_pat
sh OST, m.schema [xt h/filename
ITEM_SUPP
| COUNTRY]
ITEM_LOC,
ITEM_MAS
TER
prcildex.kshlPricing RMS PRICE_HIS |prcilddm.s|prcilddm.txt | output file pat
T, chema h/filename
ITEM_MAS
TER
rplcildex.ks [Replacements [RMS IF_TRAN_Drplcilddm. [rplcilddm.txt| output_file pat
h ATA, schema h/filename
STORE,
CHANNELS
savidex.ksh{Supplier RMS SUP_AVAI [saviddm.s [saviddm.txt [output_file_pat
Availability L chema h/filename

23

Retek Merchandising System

Program

Functional
Area

External
Data
Source

Source
Table or
File

Schema
File

Target
File or
Table

Arguments

Notes

scmialdex.k
sh

Supplier
Compliance

RMS

SHIPMENT,
ORDHEAD

scmialdd
m.schema

scmialddm.t
Xt

output_file_pat
h/filename

scmioldex.k
sh

Supplier
Compliance

RMS

ORDHEAD,
ORDLOC,
STORE,
WH,SHIPM
ENT

scmioldd
m.schema

scmiolddm.t
Xt

output_file_pat
h/filename

scratldex.ks
h

Supplier
Compliance

RMS

SHIPMENT,
ORDLOC,
SHIPSKU,
ORDHEAD,
IF_TRAN_D,
ATA,
ITEM_MAS
TER,
\/_PACKSK
U_QTY

scratlddm.
schema

scratlddm.txt

output_file_pat
h/filename

scrtlldex.ks
h

Supplier
Compliance

RMS

IF_TRAN_D,
ATA,
ORDHEAD,
SHIPMENT,
WH,
SOURCE_D
LVRY _
SCHED,
SOURCE_D
LVRY _
SCHED_DA
YsS

scrtllddm.
schema

scrtllddm.txt

output_file_pat
h/filename

sctidex.ksh

Supplier
Contract

RMS

CONTRAC
T_HEADER

CONTRAC
T DETAIL,
CONTRAC
T _COST,
ORDHEAD,
ORDLOC,
ITEM_MAS
TER

sctiddm.sc
hema

sctiddm.txt

output_file_pat
h/filename

Only DWI
module that
can extract
facts above
tracking
level (RMS
allows
contract
facts at the
tracking
level and
above, even
in the same
item
family).
Item_key

24

Chapter 3 — RETL extractions program list

Program |[Functional |External |Source [SchemalTarget Arguments [Notes
Area Data Table or [File File or
Source [File Table
can be
tracking
level or
above.
sfcilwex.ks [Sales RMS ITEM_FOR |[sfcilwdm.sisfcilwdm.txt | output_file_pat | This module
h Forecasts ECAST, chema h/filename runs weekly.
DOMAIN_D,
EPT,
ITEM_MAS
TER,
DOMAIN_C
LASS,
DOMAIN_S
UBCLASS
slsildmex.k [Sales and ReSA(RD (ITEM_MAS |Input Iptidmdm.txt|st_sls_out_file [1. This
sh Returns WT file) [TER, (formats |, _path/st_sls_o | module
Transactions VAT _ITEM,|input data [slsildmdm.tx| ut_file takes one
STORE, from t st_Ip_out_file_ |input file
ITEM_LOC |ReSA): [slsprmilnimd| path/st_Ip_out |from ReSA
| SOH, sIsildmex. |m.txt _file (RDWT
CLASS schema st_prm_out_fil |file), and
e_path/st_prm |outputs
Outputs _out_file three flat
(formats in_file_path/in |files: a sales
output text _file transaction
files): thread_number |file, a sales
slsildmdm transaction
.schema loss
Iptldmdm. prevention
schema file, and a
slsprmilnl sales
mdm.sche promotion
ma detail file.
2. Input file
name must
begin with
RDWT.
3. Before
running

25

Retek Merchandising System

Program

Functional
Area

External
Data
Source

Source
Table or
File

Schema
File

Target
File or
Table

Arguments

Notes

slsildmex,
the RDWT
input file
must have
been
properly
formatted
by running
ReSA Perl
script
resa2rdw.

4,
Thread_num
ber should
uniquely
identify an
instance of
slsildmex.
This will
allow two
different
stores’
RDWT files
to be
processed
by two
concurrent
instances of
the module.

SIsmkdnild
ex.ksh

Markdowns

RMS

IF_TRAN_D
ATA,
ITEM_MAS
TER

sIsmkdnil
ddm.sche
ma

slsmkdnildd
m.txt

output_file_pat
h/filename
with path

stIblmthex.
ksh

Stock Ledger

RMS

MONTH_D
ATA

stiblmthd
m.schema

stiblmthdm.t
Xt

output_file_pat
h/filename

This module
runs weekly

stiblwex.ks
h

Stock Ledger

RMS

WEEK_DA
TA

stiblwdm.s
chema

stiblwdm.txt

output_file_pat
h/filename

This module
runs weekly.

ittldmex.ksh

Tender
Transaction(L
0SS
Prevention)

ReSA
(RDWF
file)

RDWEF file

Input
(formats
input data
from
ReSA):

ttldmdm.txt

output_file_pat
h/filename
input_file_path
[filename

1. Input file
name must
begin with

RDWF.

26

Chapter 3 — RETL extractions program list

Program |[Functional |External |Source [SchemalTarget Arguments [Notes
Area Data Table or [File File or
Source |[File Table
ttldmex.sc 2. Before
hema running
ttldmex, the
Output RDWF
(formats input file
output text must have
file): been
ttldmdm.s properly
chema formatted
by running
ReSA Perl
script
resa2rdw.
vchreschde [Escheated RMS SA_VOUCH)vchreschd vchreschdd |output file pat
x.ksh \Vouchers ER dm.schem |m.txt h/filename
a
vchrmoveld|Voucher RMS SA_VOUCH)vchrmovelvchrmovelds| output_file_pat
sgex.ksh [Movement ER dsg.schem|g.txt h/filename
a
\vchroutlwe [Outstanding [RMS SA_VOUCH)vchroutlw vchroutlwd | output file_pat | This module
X.ksh 'Vouchers ER dm.schem [m.txt h/filename runs weekly.
a

27

Retek Merchandising System

Maintenance programs

Program |Functio |Module External Source |Target File or [Notes
nal Area |Type Data Table or |Table
Source File
Post_dwi_t |Post-DWI|Maintenance | N/A N/A N/A Drop temp
emp.ksh maintena tables
nce
pre_dwi_ex [Pre-DWI | Maintenance | RMS PERIOD, |class_level vat i|This
tract.ksh maintena SYSTEM_ | nd.txt, module
nce OPTIONS, |consolidation_co |expects
SYSTEM_ |de.txt, these text
VARIABL |domain_level.txt |files to exist
ES, , in
CURREN |last_eom_date.tx [${MMHO
CY_RATE |t, ME}/rfx/etc
S max_backpost_d |when it
ays.txt, runs. Text
multi_currency i |files
nd.txt, containing
prime_currency_ | default
code.txt, values for
prime_exchng_r |the very
ate.txt, first run are
stkldgr_vat_incl |included in
_retl_ind.txt, the
vat_ind.txt, installation
vdate.txt process.

28

Chapter 3 — RETL extractions program list

Program |Functio |Module External Source |Target File or |Notes
nal Area |Type Data Table or |Table
Source File
pre_dwi_te [Pre-DWI |Maintenance |[RMS CURREN |curr_tran_day_te
mp.ksh maintena CY_RATE | mp,
nce S, loc_exchng_rate
WH, _temp,
EURO_EX |supp_exchng_rat
CHANGE |e_temp,
_RATE, [cntrct_exchng_ra
STORE, te_temp,
SUPS, invc_exchng_rat
CONTRA |e_temp
CT_HEAD
ER,
INVC_DE
TAIL,
INVC_HE
AD

29

Chapter 4 — RETL extract program flow diagrams

Chapter 4 — RETL extract program flow diagrams

This section presents flow diagrams for data processing. The source system’s program or output file is illustrated along with the program or
process that interfaces with the source.

Before setting up a program schedule, familiarize yourself with the functional and technical constraints associated with each program.

31

Retek Merchandising System

Legend: RMS 11.02 programs

@_

extract

32

signifies the completion of pre-
batch maintenance jobs

RMS or ReSA module on which RETL

modules are dependent

signifies the completion of pre-
DWI maintenance module to set
system variables

@_

signifies the completion of pre-
DWI maintenance module to
create currency conversion
tables

Chapter 4 — RETL extract program flow diagrams

RDW maintenance

Note:

The modules in this flow are RDW
RETL scripts. If the retailer uses
RDW, this flow must be
completed before starting the pre-
batch maintenance flow.

factopendm . ksh

)

Pre-batch
maintenance

medfactopendm.ksh

A
factclosedm.ksh

mt_prime.ksh

&)

Post-batch
maintenance

All batch extracts

pre_dwi_extract. ksh B
salmth.pc pre_dwi_temp.ksh
(RMS
TV
C
Note:

salmth.pc resets the last eom_date. Thus, it
must be run after the system indicator is
extracted by pre_dwi_extract.ksh.

A

post_dwi_temp.ksh

33

Retek Merchandising System

Dimension dataflows

cremhierdly.pc
(RMS)

reclsdly.pc
(RMS)

v

Product

dlyprg.pc
(RMS)

v

34

\ 4
prddivex.ksh | | prdgrpex.ksh prddeﬁex.ks prdclsex.ksh | | prdsbcex.ksh prddtypex.ksh prddiffex.ksh prditmex.ksh prdpimex.ksh prditmlex.ksh prditmimex.ksh
(DWIy (DWI) oW (DWIy (DWI) (DWI) (DWI) (DWI) (DWI) (OWIy
y v A N A
prddivdm.txt prdgrpdm.txt | | prddepdm.txt prdclsdm.txt | | prdsbcdm.txt prddtypdm.txt prddiffdm.txt prditmdm.txt prdpimdm.txt prditmldm.txt prditmimdm.txt
/_’\/ /\/

prdudaex.ksh
(DWI)

v

v

prditmuhdm.txt

prditmuddm.txt

prditmumdm.txt

Chapter 4 — RETL extract program flow diagrams

Dimension dataflows Organization

dlyprg
s:t;{r’\enasd)d v (RMS) Icirbld.pc

v

i i i i y
orgchnex.ksh orgaraex.ksh orgrgnex.ksh orgdisex.ksh orglocex.ksh orgltmex.ksh orgltrex.ksh orglolex.ksh orglimex.ksh orgchanex.ksh
(ow)) (bw1) (owi) (ow (oW1 (bwh (bwh (OW1) (bw1) oW1
v v N v 4 h 4 i v v v
orgchndm .txt tﬁ@i orgrgndm..txt M orglocdm.txt orgltmdm.txt tﬂi orgloldm .txt orglimdm.txt M
cntrmain.pc v v
Supplier dimension L ltem-supplier-location
matrix dimension
prdislex.ksh
v (DW1)
supsupex.ksh suptrmex.ksh suptrtex.ksh supctrex.ksh #
(DW1) (DW1) (DW1) (bwi1)
L ¢ prdisldm .txt
/_/
/\/

Retek Merchandising System

Dimension dataflows

Sub-transaction ReSA total type

Currency code type dimension dimension

dimension

Code detail
dimension

subtrantypedm.txt

Item-location trait
matrix dimension

cdedtlex.ksh
cdedtidm.txt

prditmitmex.ksh Employee
©W dimension

Competitor
dimension

prditmitmdm.txt

emplyex.ksh
(DWI)

emplydm.txt

A
cmptrex.ksh cmptrlocex.ksh cmptrimex.ksh
(Dwi) (owi (DWI)

36

Chapter 4 — RETL extract program flow diagrams

Dimension dataflows

Product season
dimension ?

N
seasnex.ksh phasex.ksh .
(DWIy (oW1 prditmsmex.ksh
seasndm.txt phasdm.txt prditmsmdm.txt
/_/ N

Tender type Reason dimension Regionality
dimension dimension
rsnex.ksh
tndrtypex.ksh (DW1) regngrpex.ksh regnmtxex.ksh
(bwi) (DWI) (DWI)

Indrtypedm .txt

v rsndm.txt v
regngrpdm..txt regnmtxdm.txt

37

Retek Merchandising System

Fact dataflows

ordrev.pc
(RMS)

38

salstage.pc
(RMS) mrt.pc
.| Inventory Inventory —%— Inventory Inventory : ¢ Unavailable — ¢
» .. ivtildex.ksh d tm I’ltS ivaildex.ksh . ivrcpildex.ksh . ivuildex.ksh
vy Position transfers w1 adjustme (oW1) receipts (oWI) inventory (oW1
invildex.ksh
(DW1)

Markdowns i

salstage.pc
(RMS)

slsmkdnildex.ksh
(DW1)

ivrepilddm .txt

Chapter 4 — RETL extract program flow diagrams

Fact dataflows

Cost Competitor RPM Pricing
pricing
v prcildex.ksh
cstisldex.ksh (Dw1)
t(DWIj ¢

cmptrprcildex.ksh
DWI
() preilddm.txt
sccext.pc cmptrpreilddm.txt
(RMS)
cstislddm.txt

Stock ledger

salweek.pc
(RMS)
stlbimth.ksh salmth.pc
J— (DWI) < (RMS)
stlblwex.ksh
(DWI) +
stiblwdm.txt

Note:

Run stock ledger
fact loads once
weekly.

Retek Merchandising System

Fact dataflows Supplier contract

Suppller avallablllty rplapprv.pc cntrprss.pc rplbld.pc rplprg.pc S —— [y
(RMS) (RMS) (RMS) (RMS) (RMS) (RMS)
cntrprss.pc ediupavl.pc rplapprv.pc
(RMS) (RMS) (RMS)

| | | —,
4—‘ v
v sctidex.ksh

savidex.ksh (DWI)
(DW1)
Return to vendor v
sctiddm.txt

ivrildex.ksh
(DWI)

A

ivrilddm.txt

/__/

Net cost

costcalc.pc
(RMS)

I

ncstuildex.ksh
(DWI)

L

ncstuilddm.txt

_

40

Chapter 4 — RETL extract program flow diagrams

Fact dataflows

Exchange rates

exchngratex.ksh
(DW1)

exchngratedm.txt

Sales forecasts

fcslupld.pc
(RMS)

—

sfcilwex.ksh
(DW1)

sfcilwdm..txt

Note:
Run sales forecast fact
loads once weekly.

41

Retek Merchandising System

Fact dataflows

Sales and return
transactions

saexprdw:pc:
(ReSA)

[

RDWT
file

rese2rdw
(ReSA-Perlscript)

RDWT
file

slsildmex.ksh
(DWI)
T

Loss prevention

transactions
(voids, no sales)

slsprmilnimdm.txt

42

v

slsildmdm. txt

/‘\/

Replacement

salstage:pc
(RMS)

Y

rplcildex.ksh
(DW!)

rplcilddm.txt

b~ J

v

Iptidmdm. txt

RDWF
file

reseZrdw.
(ReSA Perl'script)

RDWF
file

ttidmex ksh
(Dwi)

v

tildmdm.txt

Loss prevention

totals
(tender transactions)

R

Chapter 4 — RETL extract program flow diagrams

Fact dataflows

saexprdw.pc

(ReSA)
[
RDWC)
e Loss prevention Loss prevention
totals totals v
(Resrzssiﬁi:;ript) (Cashier over or Shol't) (user-defined totals) RDWS
file
RDWC
file resa2rdw

(ReSA Perl script)
A : ;
Iptotcldex.ksh RIZ?WS
(DWI) file

Iptotldex.ksh
(DWI)

Iptotlddm.txt

Iptotclddm.txt

savouch.pc savouch.pc
(ReSA) (ReSA)
M .
v
. hroutiwex.ksh : savouch.pc B
V h vchrmoz/g{;dﬁ)gex ksh vcl ro(\gvv\v’(le)x S| O UtSta n d in g e
oucher vouchers J
movement

s | e | Escheated |“i5™"
vouchers

43

Retek Merchandising System

Fact dataflows

Supplier compliance

salstage.pc
(RMS)

scrtllidex.ksh
(OWI)

’

scrqtldex.ksh
(DWI)

scrtllddm.txt scrqtiddm.txt

Delivery Delivery
timeliness quantities

44

T 1

ksh i ksh
‘ (DWI) ‘ (DWI)
| '
If txt txt
Missed Missed
shipments Isse

purchase orders

Chapter 5 — RETL API flat file specifications

Chapter 5 — RETL API flat file
specifications

This chapter contains application programming interfaces (APIs) that describe the file format
specifications for all text files.

In addition to providing individual field description and formatting information, the APIs provide
basic business rules for the incoming data.

APl format

Each API contains a business rules section and a file layout. Some general business rules and
standards are common to all APIs. The business rules are used to ensure the integrity of the
information held within RDW. In addition, each API contains a list of rules that are specific to
that particular API.

File layout
o Field Name: Provides the name of the field in the text file.
e Description: Provides a brief explanation of the information held in the field.

e Data Type/Bytes: Includes both data type and maximum column length. Data type identifies
one of three valid data types: character, number, or date. Bytes identifies the maximum bytes
available for a field. A field may not exceed the maximum number of bytes (note that ASCII
characters usually have a ratio of 1 byte = 1 character)

= Character: Can hold letters (a,b,c...), numbers (1,2,3...), and special characters ($,#,&...)
= Numbers: Can hold only numbers (1,2,3...)

= Date: Holds a specific year, month, day combination. The format is “YYYYMMDD?”,
unless otherwise specified.

e Any required formatting for a field is conveyed in the Bytes section. For example,
Number(18,4) refers to number precision and scale. The first value is the precision and
always matches the maximum number of digits for that field; the second value is the scale
and specifies, of the total digits in the field, how many digits exist to the right of the decimal
point. For example, the number —12345678901234.1234 would take up twenty ASCII
characters in the flat file; however, the overall precision of the number is still (18,4).

e Field Order: Identifies the order of the field in the schema file.

o Required Field: Identifies whether the field can hold a null value. This section holds either a
‘yes’ or a ‘no’. A ‘yes’ signifies the field may not hold a null value. A ‘no’ signifies that the
field may, but is not required, to hold a null value.

45

Retek Merchandising System

General business rules and standards common to all APIs

46

Complete *snapshot’ (of what RDW refers to as dimension data):

A majority of RDW’s dimension code requires a complete view of all current dimensional
data (regardless of whether the dimension information has changed) once at the end of every
business day. If a complete view of the dimensional data is not provided in the text file,
invalid or incorrect dimensional data can result. For instance, not including an active item in
the prditmdm.txt file causes that item to be closed (as of the extract date) in the data
warehouse. When a sale for the item is processed, the fact program will not find a matching
‘active’ dimension record. Therefore, it is essential, unless otherwise noted in each API’s
specific business rules section, that a complete snapshot of the dimensional data be provided
in each text file.

If there are no records for the day, an empty flat file must still be provided.

Updated and new records of (what RDW refers to as fact data):

Facts being loaded to RDW can either be new or updated facts. Unlike dimension snapshots,
fact flat files will only contain new/updated facts exported from the source system once per
day (or week, in some cases). Refer to each API’s specific business rules section for more
details.

If there are no new or changed records for the day, an empty flat file must still be provided.

Primary and local currency amount fields

Amounts will be stored in both primary and local currencies for most fact tables. If the source
system uses multi-currency, then the primary currency column holds the primary currency
amount, and the local currency column holds the local currency amount. If the location
happens to use the primary currency, then both primary and local amounts hold the primary
currency amount. If the source system does not use multi-currency, then only the primary
currency fields are populated and the local fields hold NULL values.

Leading/trailing values:

Values entered into the text files are the exact values processed and loaded into the datamart
tables. Therefore, the values with leading and/or trailing zeros, characters, or nulls are
processed as such. RDW does not strip any of these leading or trailing values, unless
otherwise noted in the individual API’s business rules section.

Indicator columns:
Indicator columns are assumed to hold one of two values, either “Y” for yes or “N” for no.

Chapter 5 — RETL API flat file specifications

Delimiters:

L) Note: Make sure the delimiter is never part of your data.

= Dimension Flat File Delimiter Standards (as defined by RDW): Within dimension text
files, each field must be separated by a pipe (|) character, for example a record from
prddivdm.txt may look like the following:

1000] 1 |Homewares] 2006 |Henry Stubbs]2302]Craig Swanson

= Fact Flat File Delimiter Standards (as defined by RDW): Within facts text files, each
field must be separated by a semi-colon character (;). For example a record from
exchngratedm.txt may look like the following:

WIS;20010311;1.73527820592648544918
See the latest RETL Programmer’s Guide for additional information.

End of Record Carriage Return:
Each record in the text file must be separated by an end of line carriage return. For example,
the three records below, in which each record holds four values, should be entered as:

1121314
5161718
9]10]11]12

and not as a continuous string of data, such as:
1]12131415]61718]9]10]11]12

47

Retek Merchandising System

cdedtldm.txt
Business rules:

e This data is loaded during installation.

This interface file contains code and code description.

This interface file contains the complete snapshot of active information.

This interface file follows the dimension flat file interface layout standard.

This interface file cannot contain duplicate records for a cde_type, cde combination.

Name Description Data Field order | Required
Type/Bytes field
CDE_TYPE The code type, which | VARCHAR2(6) 1 Yes
serves as a grouping
mechanism for the
different codes stored
on the
CDE_DTL_DM
table.
CDE The unique identifier | VARCHAR2(6) 2 Yes
for the code within a
code type.
CDE_DESC The description VARCHAR2(120) | 3 Yes
associated with the
code.
cmptrdm.txt
Business rules:
e This interface file contains competitor information.
e This interface file cannot contain duplicate records for a cmptr_idnt.
e This interface file follows the dimension flat file interface layout standard.
Name Description | Data Field Required
Type/Bytes order field
CMPTR_IDNT The unique VARCHAR2(10) |1 Yes
identifier of
the
competitor
CMPTR_DESC The name of | VARCHAR2(120) | 2 No
competitor.

48

Chapter 5 — RETL API flat file specifications

Name Description | Data Field Required
Type/Bytes order field

CMPTR_ADDR The VARCHAR2(255) | 3 No
competitor
address.

CMPTR_CITY_NAME The VARCHAR2(120) | 4 No
competitor
city

CMPTR_ST_OR_PRVNC_CDE | The VARCHAR2(3) 5 No
competitor
state or
province.

CMPTR_CNTRY_CDE The VARCHAR2(10) | 6 No
competitor
country

cmptrimdm.txt
e This interface file defines the association between location and competitor location.

e This interface file cannot contain duplicate records for a cmptr_loc_idnt and cmptr_idnt
combination.

e This interface file follows the dimension flat file interface layout standard.

Name Description | Data Field order | Required
Type/Bytes field
LOC_IDNT The unique CHARACTER(10) | 1 Yes
identifier of
the location.
CMPTR_LOC_IDNT The unique CHARACTER(10) | 2 Yes
identifier of
the competitor
location.

49

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

TARGET_CMPTR_IND

Identifies the
target
competitor of
a retailer's
store. This
competitor's
retail will be
used along
with the
primary store
within a zone
when
calculating a
recommended
retail in Price
Management.
Valid values
are: Y, and N.

VARCHAR2(1)

Yes

CMPTR_RANK

The rank of
each
competitor
store
compared to
the other
stores.

NUMBER(2)

No

DISTANCE

The distance
between the
retailer's store
and the
competitor's
store.

NUMBER(4)

No

DISTANCE_UOM_CDE

The unit of
measure code
the distance is
captured in.
Valid values
arel =
'Miles', 2 =
'Kilometers'.

VARCHAR2(6)

No

DISTANCE_UOM_DESC

The unit of
measure
description
the distance is
captured in.

VARCHAR2(120)

No

50

Chapter 5 — RETL API flat file specifications

cmptrlocdm.txt

Business rules:

e This interface file contains non-historical information about competitors and their individual
locations.

e This interface file cannot contain duplicate records for a cmptr_loc_idnt, cmptr_idnt
combination.

e This interface file follows the dimension flat file interface layout standard.

Name Description | Data Field Required
Type/Bytes order field

CMPTR_LOC_IDNT The unique VARCHAR2(10) |1 Yes
identifier of
the
competitor
location

CMPTR_IDNT The unique VARCHAR2(10) |2 Yes
identifier of
the
competitor

CMPTR_LOC_DESC The VARCHAR2(120) | 3 No
competitor
store

description

CMPTR_LOC_ADDR The VARCHAR2(255) | 4 No
competitor
store's
address

CMPTR_LOC_CITY_NAME The VARCHAR2(120) | 5 No
competitor
store city

CMPTR_LOC_ST_OR_PRVNC_CDE | The VARCHAR2(3) 6 No
competitor
store state

CMPTR_LOC_CNTRY_CDE The VARCHAR2(10) |7 No
competitor
store country

ESTIMATED_VOLUME The NUMBER(18,4) 8 No
estimated
yearly sales
volume of
the
competitor at
assigned
location.

51

Retek Merchandising System

Name Description | Data Field Required
Type/Bytes order field
CMPTR_CRNCY_CDE_IDNT The unique VARCHAR2(10) |9 No
identifier of
the currency
code. E.g:
USD is the
local
currency
code for US
Dollar
cmptrprcilddm.txt
Business rules:
e This interface file contains competitor's pricing facts for the client location, competitor
location and item combination on a given day.
e This interface file cannot contain duplicate transactions for item_idnt, loc_idnt,
cmptr_loc_idnt, day_dt combinations.
e This interface file follows the fact flat file interface layout standard.
e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.
Name Description Data Field order | Required
Type/Bytes field
ITEM_IDNT The unique identifier of an CHARACTER(25) | 1 Yes
item.
LOC_IDNT The unique identifier of the CHARACTER(10) | 2 Yes
location.
CMPTR_LOC_IDNT The unique identifier of the CHARACTER(10) | 3 Yes
competitor location.
DAY_DT The calendar day on which the | DATE 4 Yes
transaction occurred.
F_ CMPTR_UNIT_RTL_AMT The competitor's unit retail NUMBER(18,4) 5 No
amount for a particular item in
primary currency.
F CMPTR_UNIT_RTL_AMT_LCL | The competitor's unit retail NUMBER(18,4) 6 No
amount for a particular item in
local currency.
F CMPTR_MULTI_UNIT_RTL_A | The competitor's multi unit NUMBER(18,4) 7 No
MT retail amount for a particular
item in primary currency.

52

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Bytes field
F CMPTR_MULTI_UNIT_RTL_A | The competitor's multi unit NUMBER(18,4) 8 No
MT_LCL retail amount for a particular
item in local currency.
RTL _TYPE_CDE The price type (‘R'egular, CHARACTER(2) |9 Yes
'P'romotion, 'C'learance).
OFFER_TYPE_CDE This non-aggregatable field VARCHAR2(6) 10 No
identifies the offer type code
of the competitor's
promotional retail. Examples
of valid values are 1 =
'‘Coupon’, 2= 'Mailer', etc.
MULTI_UNITS_QTY This non-aggregatable field NUMBER(12,4) 11 No
identifies the multi units
associated with
F_CMPTR_UNIT_RTL_AMT
for a particular item.
crncycddm.txt
Business rules:
e This interface file contains currency code information.
e This interface file cannot contain duplicate records for a crncy_cde_idnt.
e This interface file follows the dimension flat file interface layout standard.
Name Description Data Field | Required
Type/Bytes order | field
CRNCY_CDE_IDNT The unique identifier of VARCHAR2(10) |1 Yes
the currency code.
CRNCY_CDE_DESC The description of local VARCHAR2(120) | 2 Yes

currency code. E.g.
description for USD = US
Dollar.

53

Retek Merchandising System

cstislddm.txt

Business rules:

e This interface file contains cost information for a tracking level item, supplier, and location
combination on a given day.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt, supp_idnt

and day_dt combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

e This interface file only contains records with tran_type of O (new cost) or tran_type of 2 (cost

change).
Name Description Data Field | Required
Type/Bytes order | field

ITEM_IDNT The unique identifier | CHARACTER(25) | 1 Yes
of an item.

LOC_IDNT The unique identifier | CHARACTER(10) | 2 Yes
of the location.

SUPP_IDNT The unique identifier | CHARACTER(10) | 3 Yes
of a supplier.

DAY DT The calendar day on | DATE 4 Yes
which the transaction
occurred.

F_BASE_COST_AMT The cost valuation in | NUMBER(18,4) 5 No
primary currency

F_BASE_COST_AMT_LCL | The cost valuation in | NUMBER(18,4) 6 No
local currency

54

Chapter 5 — RETL API flat file specifications

emplydm.txt

Business rules:

e This interface file contains the employee data.

e This interface file cannot contain duplicate records for an emply_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
EMPLY _IDNT The unique identifier of VARCHAR2(10) |1 Yes
the employee.
EMPLY_NAME The name of the VARCHAR2(120) | 2 Yes
employee.
EMPLY_ROLE Indicates the type of VARCHAR2(1) 3 Yes
position the employee
holds. 'C'ashier,
‘S'alesperson, 'O'ther.

exchngratedm.txt

Business rules:

e This interface file contains currency exchange rate information.

e This interface file cannot contain duplicate records for a crncy_cde_idnt, day_dt combination.
e This interface file follows the fact flat file interface layout standard.

e This interface file contains only the current day's new or changed information.

Name Description Data Field | Required
Type/Bytes order | field
CRNCY_CDE_IDNT The unique identifier of CHARACTER(10) | 1 Yes
the currency code.
DAY _DT The calendar day on DATE 2 Yes
which the transaction
occurred.
F EXCHNG_RATE The current exchange rate. | NUMBER(18,4) 3 No

55

Retek Merchandising System

invilddm.txt

Business rules:

e This interface file contains end of day inventory levels and status for an item and location

combination on a given day.

e This interface file cannot contain duplicate records for an item_idnt, loc_idnt, day_dt

combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains only the current day's new or changed information.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name

Description

Data
Type/Bytes

Field order

Required
field

ITEM_IDNT

The unique
identifier of
an item.

CHARACTER(25)

Yes

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

Yes

DAY DT

The calendar
day on which
the transaction
occurred.

DATE

Yes

LOC_TYPE_CDE

The code that
indicates
whether the
location is a
store or
warehouse.

CHARACTER(2)

Yes

RTL_TYPE_CDE

The price type
('R'egular,
'P'romotion,
'C'learance).

CHARACTER(2)

Yes

F_I_SOH_QTY

The total
quantity of
inventory on
hand.

NUMBER(12,4)

No

56

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order

Required
field

F_|_SOH_COST_AMT

The extended
cost amount
of inventory
in stock in
primary
currency. The
product of the
weighted
average cost
in primary
currency and
the current
stock on hand
quantity.

NUMBER(18,4)

No

F I_SOH_COST_AMT _LCL

The extended
cost amount
of inventory
in stock in
local
currency. The
product of the
weighted
average cost
in local
currency and
the current
stock on hand
guantity.

NUMBER(18,4)

No

F_I_SOH_RTL_AMT

The extended
retail amount
of inventory

in stock in
primary
currency. The
product of the
unit retail in
primary

currency and
the current
stock on hand
quantity.

NUMBER(18,4)

No

57

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_|_SOH_RTL_AMT_LCL

The extended
retail amount
of inventory
in stock in
local
currency. The
product of the
unit retail in
local currency
and the
current stock
on hand
quantity.

NUMBER(18,4)

10

No

F_I_ON_ORD _QTY

The quantity
of inventory
on order.

NUMBER(12,4)

11

No

F_|_ON_ORD_COST_AMT

The extended
cost amount
of inventory
on order in
primary
currency. The
product of the
order unit cost
in primary
currency and
the current on

order quantity.

NUMBER(18,4)

12

No

F_1|_ON_ORD_COST AMT_LCL

The extended
cost amount
of inventory
on order in
local
currency. The
product of the
order unit cost
in local
currency and
the current on

order quantity.

NUMBER(18,4)

13

No

58

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order | Required
field

F_|_ON_ORD_RTL_AMT

The extended
retail amount
of inventory
on order in
primary
currency. The
product of the
order unit
retail in
primary
currency and
the current on
order quantity.

NUMBER(18,4)

14 No

F_I_ON_ORD_RTL_AMT_LCL

The extended
retail amount
of inventory
on order in
local
currency. The
product of the
order unit
retail in local
currency and
the current on

order quantity.

NUMBER(18,4)

15 No

F_I_IN_TRNST_QTY

The total
quantity of
inventory in
transit.

NUMBER(12,4)

16 No

F_I_IN_TRNST_COST_AMT

The extended
cost amount
of inventory
in transit in
primary
currency. The
product of the
weighted
average cost
in primary
currency and
the current in
transit
quantity.

NUMBER(18,4)

17 No

59

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_I_IN_TRNST_COST_AMT_LCL

The extended
cost amount
of inventory
in transit in
local
currency. The
product of the
weighted
average cost
in local
currency and
the current in
transit
quantity.

NUMBER(18,4)

18

No

F_I_IN_TRNST _RTL_AMT

The extended
retail amount
of inventory
in transit in
primary
currency. The
product of the
unit retail in
primary
currency and
the current in
transit
quantity.

NUMBER(18,4)

19

No

F_I_IN_TRNST_RTL_AMT_LCL

The extended
retail amount
of inventory
in transit in
local
currency. The
product of the
unit retail in
local currency
and the
current in
transit
quantity.

NUMBER(18,4)

20

No

60

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order | Required
field

F_I_ALLOC_RSV_QTY

The allocated
reserved
quantity. The
warehouse-to-
store reserved
guantity,
composed of
reserved
quantity for
allocations
and the
reserved
quantity for
transfers from
warehouse to
store.

NUMBER(12,4)

21 No

F_I_ALLOC_RSV_COST_AMT

The allocated
reserved
extended cost
amount in
primary
currency. The
product of the
weighted
average cost
in primary
currency and
the current
allocated
reserved
quantity.

NUMBER(18,4)

22 No

F_I_ALLOC_RSV_COST_AMT_LCL

The allocated
reserved
extended cost
amount in
local
currency. The
product of the
weighted
average cost
in local
currency and
the current
allocated
reserved
quantity.

NUMBER(18,4)

23 No

61

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F I_ALLOC_RSV_RTL_AMT

The allocated
reserved
extended retail
amount in
primary
currency. The
product of the
unit retail in
primary
currency and
the current
allocated
reserved
quantity.

NUMBER(18,4)

24

No

F_I_ALLOC_RSV_RTL_AMT_LCL

The allocated
reserved
extended retail
amount in
local
currency. The
product of the
unit retail in
local currency
and the
current
allocated
reserved
guantity.

NUMBER(18,4)

25

No

F_I_TRNSFR_RSV_QTY

The transfer
reserved
quantity. The
store-to-store
reserved
quantity,
composed of
the quantity of
transfers from
store to store
that have not
been shipped.

NUMBER(12,4)

26

No

62

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order | Required
field

F_I_TRNSFR_RSV_COST_AMT

The transfer
reserved
extended cost
amount in
primary
currency. The
product of the
weighted
average cost
in primary
currency and
the current
transfer
reserved
quantity.

NUMBER(18,4)

27 No

F_I_TRNSFR_RSV_COST_AMT_LCL

The transfer
reserved
extended cost
amount in
local
currency. The
product of the
weighted
average cost
in local
currency and
the current
transfer
reserved
guantity.

NUMBER(18,4)

28 No

F_I_TRNSFR_RSV_RTL_AMT

The transfer
reserved
extended retail
amount in
primary
currency. The
product of the
unit retail in
primary
currency and
the current
transfer
reserved
quantity.

NUMBER(18,4)

29 No

63

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_I_TRNSFR_RSV_RTL_AMT_LCL

The transfer
reserved
extended retail
amount in
local

currency. The
product of the
unit retail in
local currency
and the
current
transfer
reserved
quantity.

NUMBER(18,4)

30

No

F_|_REPL_ACTV_FLAG

Flag to
indicate if end
date of this
record's time
period is
within the
active and
inactive dates
for
replenishment.

VARCHAR2(1)

31

No

F_|_REPL_CALC_MTHD_CDE

This column
holds the
replenishment
method code
value.

VARCHAR2(2)

32

No

F_I_MIN_SOH_QTY

The minimum
stock on hand
quantity.

NUMBER(12,4)

33

No

64

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order | Required
field

F_I_MIN_SOH_COST_AMT

The extended
cost amount
of minimum
stock on hand
in primary
currency. The
product of the
average
weighted cost
in primary
currency and
the current
minimum
stock on hand
quantity.

NUMBER(18,4)

34 No

F_I_MIN_SOH_COST_AMT_LCL

The extended
cost amount
of minimum
stock on hand
in local
currency. The
product of the
average
weighted cost
in local
currency and
the current
minimum
stock on hand
guantity.

NUMBER(18,4)

35 No

F_I_MIN_SOH_RTL_AMT

The extended
retail amount
of minimum
stock on hand
in primary
currency. The
product of the
unit retail in
primary
currency and
the current
minimum
stock on hand
quantity.

NUMBER(18,4)

36 No

65

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_I_MIN_SOH_RTL_AMT_LCL

The extended
retail amount
of minimum
stock on hand
in local
currency. The
product of the
unit retail in
local currency
and the
current
minimum
stock on hand
quantity.

NUMBER(18,4)

37

No

F_I_MAX_SOH_QTY

The maximum
stock on hand
quantity.

NUMBER(12,4)

38

No

F_I_MAX_SOH_COST_AMT

The extended
cost amount
of maximum
stock on hand
in primary
currency. The
product of the
average
weighted cost
in primary
currency and
the current
maximum
stock on hand
guantity.

NUMBER(18,4)

39

No

66

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order

Required
field

F_I_MAX_SOH_COST_AMT_LCL

The extended
cost amount
of maximum
stock on hand
in local
currency. The
product of the
average
weighted cost
in local
currency and
the current
maximum
stock on hand
quantity.

NUMBER(18,4)

40

No

F_I_MAX_SOH_RTL_AMT

The extended
retail amount
of maximum
stock on hand
in primary
currency. The
product of the
unit retail in
primary
currency and
the current
maximum
stock on hand
quantity.

NUMBER(18,4)

41

No

F_I_MAX_SOH_RTL_AMT _LCL

The extended
retail amount
of maximum
stock on hand
in local
currency. The
product of the
unit retail in
local currency
and the
current
maximum
stock on hand
quantity.

NUMBER(18,4)

42

No

67

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_I_INCR_PCT

The
replenishment
incremental
percentage or
multiple
value.

NUMBER(12,4)

43

No

F_|_COST_AMT

The weighted
average cost
for stock in
primary
currency.

NUMBER(18,4)

44

No

F_1_COST_AMT LCL

The weighted
average cost
for stock in
local
currency.

NUMBER(18,4)

45

No

F_I_STD_COST_AMT

The cost of
the latest item
supplied in
primary
currency.
Used to reflect
the difference
in unit cost if
cost method
accounting is
used.

NUMBER(18,4)

46

No

F I_STD_COST_AMT_LCL

The cost of
the latest item
supplied in
local
currency.
Used to reflect
the difference
in unit cost if
cost method
accounting is
used.

NUMBER(18,4)

47

No

F I_RTL_AMT

The corporate
unit purchase
price for stock
in primary
currency.

NUMBER(18,4)

48

No

68

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order

Required
field

F I_RTL_AMT_LCL

The corporate
unit purchase
price for stock
in local
currency.

NUMBER(18,4)

49

No

F_I_AGED_30_60_QTY

This column
is not
populated in
the base
version of
RDW. This
fact is used to
record the
quantity of
inventory that
is between 30
and 60 days
old at this
location on
this day.

NUMBER(12,4)

50

No

F_|_AGED_61_90_QTY

This column
is not
populated in
the base
version of
RDW. This
fact is used to
record the
quantity of
inventory that
is between 61
and 90 days
old at this
location on
this day.

NUMBER(12,4)

51

No

69

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F I_AGED_91 120 QTY

This column
is not
populated in
the base
version of
RDW. This
fact is used to
record the
quantity of
inventory that
is between 91
and 120 days
old at this
location on
this day.

NUMBER(12,4)

52

No

F I_AGED_121 QTY

This column
is not
populated in
the base
version of
RDW. This
fact is used to
record the
quantity of
inventory that
is 121days old
or older at this
location on
this day.

NUMBER(12,4)

53

No

F_I_SLS_ADMN_COST_AMT

This fact
could be used
to store
additional cost
information
for this item,
location, and
day
relationship.
Sales and
admin cost.

NUMBER(18,4)

54

No

70

Chapter 5 — RETL API flat file specifications

Name Description | Data Field order | Required
Type/Bytes field
F | DIST_COST_AMT This column NUMBER(18,4) 55 No
is not
populated in
the base
version of
RDW. This
fact could be
used to store
additional cost
information
for this item,
location, and
day
relationship.
Supply chain
cost.
ivailddm.txt
Business rules:
e This interface file contains the inventory adjustment data for an item, location, and reason
combination on a given day.
e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt,
reasn_type_idnt, reasn_cde_idnt, and day_dt combination.
e This interface file follows the fact flat file interface layout standard.
e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.
Name Description Data Field | Required
Type/Bytes order | field
ITEM_IDNT The unique identifier | CHARACTER(25) | 1 Yes
of an item.
LOC_IDNT The unique identifier | CHARACTER(10) | 2 Yes
of the location.
LOC_TYPE_CDE The code that CHARACTER(2) |3 Yes
indicates whether the
location is a store or
warehouse.
DAY DT The calendar day on | DATE 4 Yes
which the transaction
occurred.

71

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_I_ADJ QTY

The quantity of the
adjustment to the
total stock on hand.

NUMBER(12,4)

No

F_|_ADJ_COST_AMT

The cost amount of
total stock on hand
adjustment in
primary currency.

NUMBER(18,4)

No

F I_ADJ_COST AMT_LCL

The cost amount of
total stock on hand
adjustment in local
currency.

NUMBER(18,4)

No

F_I_ADJ_RTL_AMT

The retail amount of
total stock on hand
adjustment in
primary currency.

NUMBER(18,4)

No

F_I_ADJ RTL_AMT _LCL

The retail amount of
total stock on hand
adjustment in local
currency.

NUMBER(18,4)

No

REASN_TYPE_IDNT

The unique identifier
of the reason type.

CHARACTER(6)

10

Yes

REASN_CODE_IDNT

The unique identifier
of the reason code.

CHARACTER(6)

11

Yes

72

Chapter 5 — RETL API flat file specifications

ivrcpilddm.txt

Business rules:

e This interface file contains inventory receipts for an item and location combination on a given

day.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt, and day_dt

combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name

Description

Data
Type/Bytes

Field
order

Required
field

ITEM_IDNT

The unique
identifier of an
item.

CHARACTER(25)

1

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

F_I_RCPTS_QTY

The receipt
guantity.

NUMBER(12,4)

No

F_|_RCPTS_COST AMT

The receipt cost
amount in

primary currency.

NUMBER(18,4)

No

F_I_RCPTS_COST AMT_LCL

The receipt cost
amount in local
currency.

NUMBER(18,4)

No

F_I_RCPTS_RTL_AMT

The receipt retail
amount in

primary currency.

NUMBER(18,4)

No

F_I_RCPTS_RTL_AMT_LCL

The receipt retail
amount in local
currency.

NUMBER(18,4)

No

73

Retek Merchandising System

ivrilddm.txt
Business rules:

e This interface file contains data on inventory returned to a supplier for a supplier, item,
reason, and location combination on a given day.

e This interface file cannot contain duplicate transactions for an item_idnt, supp_idnt, loc_idnt,
and day_dt combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

Name Description Data Field | Required
Type/Bytes order | field
SUPP_IDNT The unique identifier | CHARACTER(10) | 1 Yes
of a supplier.
ITEM_IDNT The unique identifier | CHARACTER(25) | 2 Yes
of an item.
LOC_IDNT The unique identifier | CHARACTER(10) | 3 Yes
of the location.
LOC_TYPE_CDE The code that CHARACTER(2) |4 Yes

indicates whether
the location is a
store or warehouse.

DAY_DT The calendar day on | DATE 5 Yes
which the
transaction occurred.

F I RTV_QTY The quantity of the NUMBER(12,4) 6 No
stock returned to
vendor.

F I RTV_COST_AMT The cost of the stock | NUMBER(18,4) 7 No
returned to vendor in
primary currency.

F I RTV_COST_AMT_LCL | The cost of the stock | NUMBER(18,4) 8 No
returned to vendor in
local currency.

F I RTV_RTL_AMT The retail amount of | NUMBER(18,4) 9 No
the stock returned to
vendor, in primary
currency.

74

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
F I RTV_RTL_AMT_LCL | The retail amount of | NUMBER(18,4) 10 No
the stock returned to
vendor, in local
currency.
REASN_TYPE_IDNT The unique identifier | CHARACTER(6) | 11 Yes
of the reason type.
REASN_CODE_IDNT The unique identifier | CHARACTER(6) | 12 Yes
of the reason code.

ivtilddm .txt

Business rules:

e This interface file contains inventory transfers for an item, from-location, to-location, and
transfer type combination on a given day.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt,
from_loc_idnt, tsf_type_cde, and day_dt combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name

Description

Data
Type/Bytes

Field
order

Required
field

ITEM_IDNT

The unique
identifier of
an item.

CHARACTER(25)

1

Yes

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

Yes

FROM_LOC_IDNT

The unique
identifier for
a source
location for
the transfer.

CHARACTER(10)

Yes

TSF_TYPE_CDE

CHARACTER(2)

Yes

DAY_DT

The calendar
day on which
the
transaction
occurred.

DATE

Yes

75

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_I_TSF_TO_LOC_QTY

The quantity
transferred to
a destination
location.

NUMBER(12,4)

No

F I TSF_ TO LOC_COST AMT

The transfer
cost amount
fora
destination
location in
primary
currency.

NUMBER(18,4)

No

F_I_TSF_TO_LOC_COST AMT_LCL

The transfer
cost amount
fora
destination
location in
the
destination's
local
currency.

NUMBER(18,4)

No

F_I_TSF_TO_LOC_RTL_AMT

The transfer
retail amount
for a
destination
location in
primary
currency.

NUMBER(18,4)

No

F_I_TSF_TO_LOC_RTL_AMT_LCL

The transfer
retail amount
fora
destination
location in
the
destination's
local
currency.

NUMBER(18,4)

10

No

F I TSF_FROM_LOC_QTY

The quantity
transferred
from a source
location.

NUMBER(12,4)

11

No

76

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_I_TSF_FROM_LOC_COST_AMT

The transfer
cost amount
for a source
location in
primary
currency.

NUMBER(18,4)

12

No

F_I_TSF_FROM_LOC_COST_AMT_LCL

The transfer
cost amount
for a source
location in
the source's
local
currency.

NUMBER(18,4)

13

No

F_I_TSF_FROM_LOC_RTL_AMT

The transfer
retail amount
for a source
location in
primary
currency.

NUMBER(18,4)

14

No

F_I_TSF_FROM_LOC_RTL_AMT_LCL

The transfer
retail amount
for a source
location in
the source's
local
currency.

NUMBER(18,4)

15

No

ivuilddm.txt

Business rules:

e This interface file contains unavailable inventory for an item, location combination on a

given day.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt and day_dt

combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description | Data Field Required
Type/Bytes order field
ITEM_IDNT The unique CHARACTER(25) | 1 Yes
identifier of
an item.

77

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

Yes

DAY_DT

The calendar
day on which
the
transaction
occurred.

DATE

Yes

F_I_UNAVL_QTY

The quantity
of the item
marked as
non-sellable
at the
location.

NUMBER(12,4)

No

F_I_UNAVL_COST_AMT

The extended
cost amount
of
unavailable
inventory in
primary
currency.
The product
of the
weighted
average cost
in primary
currency and
the current
unavailable
quantity.

NUMBER(18,4)

No

78

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_I_UNAVL_COST AMT_LCL

The extended
cost amount
of
unavailable
inventory in
local
currency.
The product
of the
weighted
average cost
in local
currency and
the current
unavailable
quantity.

NUMBER(18,4)

No

F_I_UNAVL_RTL_AMT

The extended
retail amount
of
unavailable
inventory in
primary
currency.
The product
of the unit
retail in
primary
currency and
the current
unavailable
quantity.

NUMBER(18,4)

No

F_I_UNAVL_RTL_AMT_LCL

The extended
retail amount
of
unavailable
inventory in
local
currency.
The product
of the unit
retail in local
currency and
the current
unavailable
quantity.

NUMBER(18,4)

No

79

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

REASN_TYPE_IDNT

The unique
identifier of
the reason

type.

CHARACTER(6)

Yes

REASN_CODE_IDNT

The unique
identifier of
the reason
code.

CHARACTER(6)

10

Yes

LOC_TYPE_CDE

The code that
indicates
whether the
location is a
store or
warehouse.

CHARACTER(2)

11

Yes

Iptldmdm.txt

Business rules:

o This interface file contains all the loss prevention transactions at the transaction-location-day-

minute level.

e This interface file follows the fact flat file interface layout standard.

Name

Description

Data
Type/Bytes

Field
order

Required
field

TRAN_IDNT

The unique
identifier of the
transaction.

VARCHAR2(30)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10) | 2

Yes

DAY_DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

MIN_IDNT

The unique
identifier of the
minute.

NUMBER(4)

Yes

REASN_CODE_IDNT

The unique
identifier of the
reason code.

CHARACTER(6)

Yes

80

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

REASN_TYPE_IDNT

The unique
identifier of the
reason type.

CHARACTER(6)

Yes

CSHR_IDNT

The unique
identifier for a
cashier.

CHARACTER(10)

Yes

RGSTR_IDNT

The unique
identifier of the
register.

CHARACTER(10)

Yes

F LP_AMT

The loss
prevention
amount, in
primary currency.

NUMBER(18,4)

No

F LP_ AMT_LCL

The loss
prevention
transaction
amount, in local
currency.

NUMBER(18,4)

10

No

F_DISC_COUPON_COUNT

Total count of
discount coupons
used on one
transaction.
Discount coupons
are issued by the
store as opposed
to the
manufacturer.

NUMBER(16,4)

11

No

F_DISC_COUPON_AMT

Total amount of
discount coupons
used on one
transaction, in
primary currency.
Discount coupons
are issued by the
store as opposed
to the
manufacturer.

NUMBER(18,4)

12

No

81

Retek Merchandising System

Name Description Data Field | Required
Type/Bytes order | field
F_DISC_COUPON_AMT_LCL | Total amount of NUMBER(18,4) 13 No

discount coupons
used on one
transaction, in
local currency.
Discount coupons
are issued by the
store as opposed
to the
manufacturer.

Iptotclddm.txt

Business rules:

e This interface file contains loss prevention over/short totals.

e Amounts are summed in the target table by cshr_idnt, rgstr_idnt, loc_idnt, and day_dt.

e Ineach record, either rgstr_idnt or cshr_idnt should be filled with a value and the other field

should be -1.

e This interface file follows the fact flat file interface layout standard.

Name

Description

Data
Type/Bytes

Field
order

Required
field

CSHR_IDNT

The unique
identifier for a
cashier.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar day on
which the
transaction
occurred.

DATE

Yes

RGSTR_IDNT

The unique
identifier of the
register.

CHARACTER(10)

Yes

F_DRAWER_OS_AMT

The over/short
amount in primary
currency.

NUMBER(18,4)

No

F_ DRAWER_OS_AMT LCL

The over/short
amount in local
currency.

NUMBER(18,4)

No

82

Chapter 5 — RETL API flat file specifications

Iptotlddm.txt

Business rules:

e This interface file contains user-defined loss prevention totals.

¢ Amounts are summed in the target table by total type, location, and day.

e This interface file follows the fact flat file interface layout standard.

Name Description Data Field | Required
Type/Bytes order | field

LOC_IDNT The unique identifier of CHARACTER(10) | 1 Yes
the location.

DAY DT The calendar day on DATE 2 Yes
which the transaction
occurred.

TOTAL_TYPE_IDNT The original identifier for | CHARACTER(10) | 3 Yes
the total to be reconciled.

F_TOTAL_AMT The total amount in NUMBER(18,4) 4 No
primary currency.

F TOTAL_AMT_LCL | The total amount in local NUMBER(18,4) 5 No
currency.

ncstuilddm.txt
Business rules:
e This interface file contains net cost information.

e This interface file cannot contain duplicate transactions for an item_idnt, supp_idnt, loc_idnt,
day_dt combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

Name Description Data Field order | Required
Type/Bytes field

ITEM_IDNT The unique identifier | CHARACTER(25) | 1 Yes
of an item.

SUPP_IDNT The unique identifier | CHARACTER(10) | 2 Yes
of a supplier.

LOC_IDNT The unique identifier | CHARACTER(10) | 3 Yes
of the location.

DAY_DT The calendar day on | DATE 4 Yes
which the transaction
occurred.

83

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_SUPP_BASE_COST AMT

The supplier base
cost of the
item/supplier at a
given location on a
given day. It is the
initial cost before any
deals or discounts are
applied in primary
currency.

NUMBER(18,4)

No

F_SUPP_BASE_COST AMT_
LCL

The supplier base
cost of the
item/supplier at a
given location on a
given day. It is the
initial cost before any
deals or discounts are
applied. It is stored in
local currency.

NUMBER(18,4)

No

F_SUPP_NET_COST_AMT

The supplier net cost
for the
item/supplier/location
on a given day. It is
defined as the base
cost minus any deal
components that have
been applied by the
retailer. If no deals or
discounts are applier
at this level, the
supplier net cost =
supplier base cost. It
is stored in primary
currency.

NUMBER(18,4)

No

84

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order

Required
field

F_SUPP_NET_COST AMT L
CL

The supplier net cost
for the
item/supplier/location
on a given day. It is
the defined as the
base cost minus any
deal components that
have been applied by
the retailer. If no
deals or discounts are
applier at this level,
the supplier net cost
= supplier base cost.
It is stored in local
currency.

NUMBER(18,4)

No

F_SUPP_NET_NET_COST_A
MT

The supplier net net
cost of the
item/supplier/location
on a given day. It is
defined as the net
cost minus any deal
components
designated by a
retailer as applicable
to the net net cost. If
no deals or discounts
are applied at this
level, the supplier net
net cost = supplier
net cost. It is stored
in primary currency.

NUMBER(18,4)

No

85

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field order

Required
field

F_SUPP_NET_NET_COST_A
MT_LCL

The supplier net net
cost of the
item/supplier/location
on a given day. It is
defined as the net
cost minus any deal
components
designated by a
retailer as applicable
to the net net cost. If
no deals or discounts
are applied at this
level, the supplier net
net cost = supplier
net cost. It is stored
in local currency.

NUMBER(18,4)

10

No

F_SUPP_DEAD_NET _COST_
AMT

The supplier dead net
cost of the
item/supplier/location
on a given day. It is
the final cost after all
deals or discounts
have been applied. It
is defined as the net
net cost minus any
deal components
designated by a
retailer as applicable
to the dead net cost.
If no deals or
discounts are applied
at this level, the
supplier dead net cost
= supplier net net
cost. Itisstored in
primary currency.

NUMBER(18,4)

11

No

86

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order | Required

field

F_SUPP_DEAD_NET _COST_
AMT _LCL

The supplier dead net
cost of the
item/supplier/location
on a given day. It is
the final cost after all
deals or discounts
have been applied. It
is defined as the net
net cost minus any
deal components
designated by a
retailer as applicable
to the dead net cost.
If no deals or
discounts are applied
at this level, the
supplier dead net cost
= supplier net net
cost. It is stored in
local currency.

NUMBER(18,4)

12

No

orgaradm.txt

Business rules:

e This interface file contains areas within a chain.

e This interface file cannot contain duplicate records for an area_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description

Data
Type/Bytes

Field
order

Required
field

AREA IDNT The unique identifier of an
area in the organizational
hierarchy.

VARCHAR2(4)

Yes

AREA_DESC The name of the area in
the organizational
hierarchy.

VARCHAR2(120)

No

AREA_MGR_NAME The name of the manager
for the area.

VARCHAR2(120)

No

CHAIN_IDNT The unique identifier of
the chain in the
organizational hierarchy.

VARCHAR2(4)

Yes

87

Retek Merchandising System

orgchandm.txt

Business rules:

e This interface file contains channels within a company.

o This interface file cannot contain duplicate records for a channel_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
CHANNEL_IDNT The unique identifier of VARCHARZ2(4) 1 Yes
the channel in the
organizational hierarchy.
BANNER_IDNT The unique identifier ofa | VARCHAR2(4) 2 Yes
banner. Banner represents
the name of a retail
company's subsidiary that
is recognizable to the
consumer or the name of
the store as it appears on
the catalog, web channel
or brick and mortar store.
CHANNEL_TYPE The type of channel. VARCHAR2(6) 3 No
CHANNEL_DESC The name of the channel. | VARCHAR2(120) | 4 No
BANNER_DESC The name of the banner. VARCHAR2(120) | 5 No
orgchndm.txt
Business rules:
e This interface file contains chains within a company.
e This interface file cannot contain duplicate records for a chain_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field | Required
Type/Bytes order | field
CHAIN_IDNT The unique identifier of VARCHAR2(4) 1 Yes
the chain in the
organizational hierarchy.
CMPY_IDNT The unique identifier of VARCHAR2(4) 2 Yes

the company in product
and organization
hierarchy.

88

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field

CHAIN_DESC The name of the chainin | VARCHAR2(120) | 3 No
the organizational
hierarchy.

CHAIN_MGR_NAME | The name of the manager | VARCHAR2(120) | 4 No
for the chain.

orgdisdm.txt

Business rules:

e This interface file contains districts within a region.

e This interface file cannot contain duplicate records for a distt_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required

Type/Bytes order | field

DISTT_IDNT The unique identifierofa | VARCHAR2(4) 1 Yes
district in the organization
hierarchy.

DISTT_DESC The name of the district in | VARCHAR2(120) | 2 No
the organization hierarchy.

DISTT_MGR_NAME The name of the manager | VARCHAR2(120) | 3 No
responsible for this
district.

REGN_IDNT The unique identifier of VARCHAR2(4) 4 Yes

the region in the
organization hierarchy.

89

Retek Merchandising System

orglimdm.txt
Business rules:

e This interface file defines the associations between location and location list.

e This interface file cannot contain duplicate records for a loclst_idnt, loc_idnt combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
LOCLST _IDNT The unique identifier ofa | VARCHAR2(10) | 1 Yes
location list.
LOC_IDNT The unique identifier of the | VARCHAR2(10) | 2 Yes
location.
LOC_TYPE_CDE The code that indicates VARCHAR2(2) | 3 Yes

whether the location is a
store or warehouse.

orglocdm.txt

Business rules:

e This interface file contains locations within a district.

e This interface file cannot contain duplicate records for a loc_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description | Data Type/Bytes | Field order

Required
field

LOC_IDNT The unique VARCHARZ2(10) 1
identifier of
the location.

Yes

LOC TYPE_CDE The code that | VARCHAR2(2) 2
indicates
whether the
location is a
store or
warehouse.

Yes

LOC _DESC The VARCHAR2(120) |3
description or
name of the
store or
warehouse.

No

90

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_DESC_10

The 10
character
abbreviation
of the store
name.

VARCHAR2(10)

No

LOC_DESC_3

The 3
character
abbreviation
of the store
name.

VARCHAR2(3)

No

LOC_SECND_DESC

The
secondary
description or
name of the
store or
warehouse.

VARCHAR2(120)

No

LOC_TYPE_DESC

The
description of
the
loc_type_cde
that indicates
whether the
location is a
store or
warehouse. .

VARCHAR2(120)

No

DISTT_IDNT

The unique
identifier of a
district in the
organization
hierarchy.

VARCHAR2(4)

Yes

DISTT_DESC

The name of
the district in
the
organization
hierarchy.

VARCHAR2(120)

No

CRNCY_CDE_IDNT

The unique
identifier of
the currency
code.

VARCHAR2(10)

10

No

91

Retek Merchandising System

Name

Description

Data Type/Bytes

Field order

Required
field

CRNCY_CDE_DESC

The
description of
local currency
code. E.g.
description
for USD =
US Dollar.

VARCHAR2(120)

11

No

PHY_WH_IDNT

The unique
identifier of
the physical
warehouse
that is
assigned to
the virtual
warehouse.

VARCHAR2(10)

12

No

VIRTUAL_WH_IDNT

The identifier
of the virtual
warehouse.

VARCHAR2(10)

13

No

STOCKHOLD_IND

Indicates
whether the
location can
hold stock. In
a non-
multichannel
environment
this will
always be
my

VARCHAR2(1)

14

No

CHANNEL_IDNT

The unique
identifier of
the channel in
the
organizational
hierarchy.

VARCHAR2(4)

15

No

CHANNEL_DESC

The name of
the channel.

VARCHAR2(120)

16

No

92

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field order

Required
field

BANNER_IDNT

The unique
identifier of a
banner.
Banner
represents the
name of a
retail
company's
subsidiary
that is
recognizable
to the
consumer or
the name of
the store as it
appears on
the catalog,
web channel
or brick and
mortar store.

VARCHAR2(4)

17

No

BANNER_DESC

The name of
the banner.

VARCHAR2(120)

18

No

LOC_ADDR

The street
address of the
store or
warehouse.

VARCHAR2(255)

19

No

LOC_CITY_NAME

The city in
which the
store or
warehouse is
located.

VARCHAR2(120)

20

No

LOC_ST_OR_PRVNC_CDE

The state or
province code
in which the
store or
warehouse is
located.

VARCHAR2(7)

21

No

LOC_CNTRY_CDE

The country
code in which
the store or
warehouse is
located.

VARCHAR2(10)

22

No

93

Retek Merchandising System

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_CNTRY_DESC

The
description or
name of the
country code
in which the
store or
warehouse is
located.

VARCHAR2(120)

23

No

LOC_PSTL_CDE

The postal
code of the
store or

warehouse.

VARCHAR2(30)

24

No

LOC_MGR_NAME

The name of
the manager
responsible
for this store.
Only valid for
the store
Locations.

VARCHAR2(120)

25

No

LOC_FMT_CDE

The code that
indicates the
type of format
of the
location. Only
valid for store
locations.

VARCHAR2(5)

26

No

LOC_SELLING_AREA

The location's
total selling
area.

NUMBER(8)

27

No

LOC_TOT_LINEAR_DISTANCE

The total
linear selling
space of the
location.

NUMBER(8)

28

No

LOC_PRMTN_ZNE_CDE

The code that
indicates the
promotion
zone for
which this
location is a
member .
Only valid for
the store
Locations.

VARCHAR2(5)

29

No

94

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_TRNSFR_ZNE_CDE

The code that
indicates the
transfer zone
for which this
location is a
member.
Only valid for
the store
locations.

VARCHAR2(5)

30

No

LOC_VAT_REGN

The number
of the Value
Added Tax
region in
which this
store or
warehouse is
contained.

NUMBER(4)

31

No

LOC_VAT_INCLUDE_IND

Indicates
whether or
not Value
Added Tax
will be
included in
the retail
prices for the
store. Valid
values are 'Y"
or'N'.

VARCHAR2(1)

32

No

LOC_MALL_NAME

The name of
the mall in
which the
store is
located.

VARCHAR2(120)

33

No

95

Retek Merchandising System

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_DEFAULT_WH

The number
of the
warehouse
that may be
used as the
default for
creating
cross-dock
masks. This
determines
which stores
are
associated
with or
sourced from
a warehouse.

VARCHAR2(10)

34

No

LOC_BREAK_PAC_IND

Indicates
whether or
not the
warehouse is
capable of
distributing
less than the
supplier case
guantity.
Valid values
are 'Y'or 'N'.

VARCHAR2(1)

35

No

LOC_REMODEL_DT

The date on
which the
store was last
remodeled.

DATE

36

No

LOC_START DT

The start date
for location.

DATE

37

No

LOC_END_DT

The end date
for a location.

DATE

38

No

LOC_TOT_AREA

The total area
of the
location.

NUMBER(8)

39

No

96

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_NO_LOAD_DOCKS

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(4)

40

No

LOC_NO_UNLOAD_DOCKS

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(4)

41

No

LOC_UPS DISTT

The code that
indicates the
UPS district
for which this
location is a
member.
Only valid for
the store
locations.

NUMBER(2)

42

No

LOC_TIME_ZNE

The code that
indicates the
time zone for
which this
location is a
member.
Only valid for
the store
locations.

VARCHAR2(10)

43

No

LOC_FASH_LINE_NO

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(9)

44

No

97

Retek Merchandising System

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_COMP_CDE

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(2)

45

No

LOC_STORE_VOL_CAT

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(2)

46

No

LOC_PAY_CAT

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

VARCHAR2(1)

47

No

LOC_ACCT_CLK_ID

This field is
client
specific. The
definition and
use of this
field is
customizable
for each
client.

CHARACTER(3)

48

No

98

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field order

Required
field

LOC_FMT_DESC

The
description or
name of the
location
format code
of this
location. Only
valid for the
store
locations.

CHARACTER(120)

49

No

LOC_ST_OR_PRVNC_DESC

The
description or
name of the
state or
province in
which the
store or
warehouse is
located.

VARCHAR2(120)

50

No

LOC_TRNSFR_ZNE_DESC

The
description or
name of the
transfer zone
code of this
location. Only
valid for the
store
locations.

VARCHAR2(120)

51

No

LOC_PRMTN_ZNE_DESC

The
description or
name of the
promotion
zone code of
this location.
Only valid
for the store
locations.

CHARACTER(120)

52

No

STORE_CLASS

This value is
populated for
RPAS only.
Null if RPAS
is not used.

CHARACTER()

53

No

99

Retek Merchandising System

Name Description | Data Type/Bytes | Field order | Required
field

START_ORDER_DAYS Thisvalueis | CHARACTER(3) 54 No
populated for
RPAS only.
Null if RPAS
is not used.

FORECAST_WH_IND Thisvalueis | CHARACTER(1) 55 No
populated for
RPAS only.
Null if RPAS
is not used.

orgloldm.txt
Business rules:

e This interface file contains one record for each location list. A location list is normally used
to group locations for reporting purposes.

o This interface file cannot contain duplicate records for a loclst_idnt.
e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
LOCLST_IDNT The unique identifier ofa | VARCHAR2(10) |1 Yes
location list.
CREATE_ID The login ID of the person | VARCHAR2(30) | 2 Yes
who created the location
list.
LOCLST_DESC The description or name VARCHAR2(120) | 3 No
of the location list unique
identifier.

100

Chapter 5 — RETL API flat file specifications

orgltmdm.txt

Business rules:

e This interface file defines the associations between location and location traits.

e This interface file cannot contain duplicate records for a loc_trait_idnt, loc_idnt combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
LOC_TRAIT_IDNT The location trait unique VARCHAR2(10) | 1 Yes
identifier. Only valid
entries are for the store
locations.
LOC_IDNT The unique identifier of the | VARCHARZ2(10) | 2 Yes
location.
LOC_TYPE_CDE The code that indicates VARCHAR2(2) |3 No
whether the location is a
store or warehouse.
orgltrdm.txt
Business rules:
e This interface file cannot contain duplicate records for a loc_trait_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field order | Required
Type/Bytes field
LOC_TRAIT_IDNT | The location trait VARCHAR2(10) |1 Yes
unique identifier.
Only valid entries
are for the store
locations.
LOC_TRAIT_DESC | The description or VARCHAR2(120) | 2 No
name of the location
trait unigue
identifier.

101

Retek Merchandising System

orgrgndm.txt

Business rules:

e This interface file contains regions within an area.

e This interface file cannot contain duplicate records for a regn_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
REGN_IDNT The unique identifier of VARCHARZ2(4) 1 Yes

the region in the
organization hierarchy.

REGN_DESC The description or name VARCHAR2(120) | 2 No
of the region in the
organization hierarchy.

REGN_MGR_NAME The name of the manager | VARCHAR2(120) | 3 No
for the region.

AREA IDNT The unique identifier of an | VARCHAR2(4) 4 Yes
area in the organizational
hierarchy.

phasdm.txt

Business rules:

e This interface file contains phases. Phases are periods of time within a season. Each day
should fall within no more than one phase.

e This interface file cannot contain duplicate records for a phase_idnt, seasn_idnt combination.
e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
SEASN_IDNT The season identifier. VARCHAR2(3) 1 Yes
PHASE_IDNT The unique identifier of VARCHARZ2(3) 2 Yes
the phase.
PHASE_START_DT The beginning date of the | DATE 3 Yes
phase.
PHASE_END_DT The ending date of the DATE 4 Yes
phase.

102

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
PHASE_DESC The description or name VARCHAR2(120) | 5 No
for the phase.
prcilddm.txt

Business rules:

e This interface file contains prices by the tracking level item and location combination on a

given day.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt, day_dt

combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name

Description

Data
Type/Bytes

Field
order

Required
field

ITEM_IDNT

The unique
identifier of an
item.

CHARACTER(25)

1

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar
day on which
the transaction
occurred.

DATE

Yes

LOC_TYPE_CDE

The code that
indicates
whether the
location is a
store or
warehouse.

CHARACTER(2)

Yes

CHNG_CDE

The reason
code for price
change.

VARCHAR2(2)

No

F_MULTI_UNIT_QTY

The number of
units that
comprise a
multi-unit
transaction.

NUMBER(12,4)

No

103

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_UNIT_RTL_AMT

The unit value
of new retail
valuation/price
in primary
currency.

NUMBER(18,4)

No

F_UNIT_RTL_AMT_LCL

The unit value
of new retail
valuation/price
in local
currency.

NUMBER(18,4)

No

F_MULTI_UNIT_RTL_AMT

The unit dollar
value of new

retail multi unit
valuation/price.

NUMBER(18,4)

No

F_MULTI_UNIT_RTL_AMT_LCL

The unit dollar
value of new
retail multi unit
valuation/price
in local
currency.

NUMBER(18,4)

10

No

SELLING_UOM_CDE

The selling
unit of measure
code for an
item's single-
unit retail.

This is a non-
aggregatable
value.

VARCHAR2(4)

11

No

MULTI_SELLING_UOM_CDE

The selling
unit of measure
code for an
item's multi-
unit retail. This
is a non-
aggregatable
value.

VARCHAR2(4)

12

No

104

Chapter 5 — RETL API flat file specifications

prdclsdm.txt

Business rules:

e This interface file contains classes within a department.

e This interface file cannot contain duplicate records for a dept_idnt, class_idnt combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name

Description

Data
Type/Bytes

Field order

Required
field

CLASS_IDNT

The unique
identifier of the
class in the
product
hierarchy.

VARCHAR2(4)

Yes

DEPT_IDNT

The unique
identifier of a
department in
the product
hierarchy.

VARCHAR2(4)

Yes

CLASS_DESC

The name of the
class in the
product
hierarchy.

VARCHAR2(120)

No

CLASS_BUYR_IDNT

The unique
identifier for the
buyer of the
class.

VARCHAR2(4)

No

CLASS_BUYR_NAME

The name of the
buyer for this
class of products

VARCHAR2(120)

No

CLASS_MRCH_IDNT

The unique
identifier of the
merchandiser for
this department.

VARCHAR2(4)

No

CLASS_MRCH_NAME

The name of the
merchandiser for
this class of
products.

VARCHAR2(120)

No

105

Retek Merchandising System

prdcmpdm.txt

Business rules:

e This interface file contains company information.

e This interface file cannot contain duplicate records for a cmpy_idnt.

e This interface file follows the dimension flat file interface layout standard.

Name Description Data Field | Required
Type/Bytes order | field
CMPY_IDNT The unique identifier of VARCHARZ2(4) 1 Yes
the company in product
and organization
hierarchy.
CMPY_DESC The name of the company | VARCHAR2(120) | 2 No
in product and
organization hierarchy.
prddepdm.txt
Business rules:
e This interface file contains departments within a group.
e This interface file cannot contain duplicate records for a dept_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field | Required
Type/Bytes order | field
DEPT_IDNT The unique identifier | VARCHAR2(4) 1 Yes
of a department in
the product
hierarchy.
GRP_IDNT The unique identifier | VARCHAR2(4) 2 Yes
of the group in the
product hierarchy.
DEPT_DESC The name of the VARCHAR2(120) | 3 No
department in the
product hierarchy.
DEPT_BUYR_IDNT The unique identifier | VARCHAR2(4) 4 No

of the buyer for the
department.

106

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

DEPT_BUYR_NAME

The name of the
buyer which
corresponds to the
dept_buyr_idnt for
the department.

VARCHAR2(120)

No

DEPT_MRCH_IDNT

The unique character
representation of the
merchandiser for the
department.

VARCHAR2(4)

No

DEPT_MRCH_NAME

The name of the
merchandiser that
corresponds to the
dept_mrch_idnt for
the department.

VARCHAR2(120)

No

PRFT_CALC_TYPE_CDE

The unique code
which determines
whether profit will
be calculated based
on cost or retail for
the department.

VARCHAR2(1)

No

PRFT_CALC_TYPE_DESC

The description of
the what method the
profit was calculated
for the department.
Typically, it would
be cost or retail.

VARCHAR2(120)

No

PURCH_TYPE_CDE

The code that
determines which
type of stock the
items are within this
department (i.e.
normal stock vs.
consignment stock).

VARCHAR2(1)

10

No

PURCH_TYPE_DESC

The description of
the type of
merchandise within
the department (i.e.
normal stock,
consignment stock,
etc.).

VARCHAR2(120)

11

No

107

Retek Merchandising System

Name Description Data Field | Required
Type/Bytes order | field
BUD_INT The budgeted intake | NUMBER(12,4) 12 No

percentage. The
term is synonymous
with markup percent
of retail.

BUD_MKUP The budgeted NUMBER(12,4) 13 No
markup percentage.
This term is
synonymous with
markup percent of
cost.

TOTL_MKT_AMT The total market NUMBER(18,4) 14 No
amount expected for
this department.

MKUP_CALC_TYPE_CDE | The code which VARCHAR2(1) 15 No
determines how
markup is calculated
for the department.

MKUP_CALC_TYPE_DESC | The description of VARCHAR2(120) | 16 No
the how the markup
is calculated for the
department.

OTB_CALC_TYPE_CDE The code that VARCHAR2(1) 17 No
determines if Open
To Buy (OTB) is
based on cost or
retail for the
department.

OTB_CALC_TYPE_DESC The description of VARCHAR2(120) | 18 No
the whether the OTB
is calculated based
on cost or retail.

108

Chapter 5 — RETL API flat file specifications

prddiffdm.txt

Business rules:

e This interface file contains all item differentiator identifiers, along with their associated NRF

industry codes.

e This interface file cannot contain duplicate records for a diff_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name

Description

Data
Type/Bytes

Field
order

Required
field

DIFF_IDNT

The uniquely identifier
of a differentiator. (for
example, diff_type ='S'
might have these
differentiators: 1, 50,
1000; then diff_type =
'C' cannot use the same
numbers)

VARCHAR2(10)

Yes

DIFF_TYPE

The unique identifier of
a differentiator type.
(for example, 'S' - size,
'C' - color, 'F' - flavor,
'E' - scent, 'P' - pattern).

CHARACTER(6)

No

DIFF_DESC

The description of the
differentiator

VARCHAR2(120)

No

INDUSTRY_CDE

A unique number that
represents all possible
combinations of sizes.

VARCHAR2(10)

No

INDUSTRY_SUBGROUP

A unique number that
represents all different
color range group.

VARCHAR2(10)

No

109

Retek Merchandising System

prddivdm.txt

Business rules:

e This interface file contains divisions within a company.

e This interface file cannot contain duplicate records for a div_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field

DIV_IDNT The unique identifier ofa | VARCHAR2(4) 1 Yes
division in the product
hierarchy.

CMPY _IDNT The unique identifier of VARCHAR2(4) 2 Yes
the company in product
and organization
hierarchy.

DIV_DESC The name of the division VARCHAR2(120) | 3 No
in the product hierarchy.

DIV_BUYR_IDNT The unique character VARCHAR2(4) 4 No
representation of the buyer
for the division.

DIV_BUYR_NAME The name of the buyer for | VARCHAR2(120) | 5 No
the division.

DIV_MRCH_IDNT The unique identifier of VARCHAR2(4) 6 No
the merchandiser for the
division.

DIV_MRCH_NAME The name of the VARCHAR2(120) | 7 No

merchandiser for the
division.

110

Chapter 5 — RETL API flat file specifications

prddtypdm.txt
Business rules:
e This interface file contains differentiator (diff) types.

e This interface file cannot contain duplicate records for a diff_type.

Name Description Data Field | Required
Type/Bytes order | field
DIFF_TYPE The unique identifier ofa | VARCHAR2(6) 1 Yes

differentiator type. (for
example, 'S’ - size, 'C' -
color, 'F' - flavor, 'E' -
scent, 'P' - pattern).

DIFF_TYPE_DESC The description of the VARCHAR2(120) | 2 Yes
differentiator type.

prdgrpdm.txt

Business rules:

e This interface file contains groups within a division.

e This interface file cannot contain duplicate records for a grp_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field order | Required
Type/Bytes field

GRP_IDNT The unique VARCHAR2(4) 1 Yes
identifier of the
group in the
product hierarchy.

DIV_IDNT The unique VARCHAR2(4) 2 Yes
identifier of a
division in the
product hierarchy.

GRP_DESC The name of the VARCHAR2(120) | 3 No
group in the
product hierarchy.

GRP_BUYR_IDNT The unique VARCHAR2(4) 4 No
character

representation of
the buyer for the

group.

111

Retek Merchandising System

Name Description Data Field order | Required
Type/Bytes field
GRP_BUYR_NAME | The name of the VARCHAR2(120) | 5 No
buyer that
corresponds with
the buyr_idnt for
the group.
GRP_MRCH_IDNT | The unique VARCHAR2(4) 6 No
identifier of the
merchandiser for
the group.
GRP_MRCH_NAME | The name of the VARCHAR2(120) | 7 No

merchandiser that
corresponds to the
grp_mrch_idnt for
the group.

prdisldm.txt

Business rules:

o This interface file contains records associating tracking level items with locations and

primary suppliers.

e This interface file cannot contain duplicate records for a supp_idnt, item_idnt, loc_idnt

combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description | Data Field order | Required
Type/Bytes field
ITEM_IDNT The unique VARCHAR2(25) | 1 Yes
identifier of
an item.
SUPP_IDNT The unique VARCHAR2(10) | 2 Yes
identifier of a
supplier.
LOC IDNT The unique VARCHAR2(10) | 3 Yes
identifier of
the location.
SUPP_PRT_NBR The VARCHAR2(30) | 4 No
corresponding
suppliers part
number.

112

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field order

Required
field

PRMY_SUPP_IND

Indicator to
maintain and
track the
primary
supplier for
anitem. Y
indicates this
is a primary
supplier for
the item at the
location.

VARCHAR2(1)

No

PRESENTATION_METHOD

The
description of
the packaging
(if any) being
taken into
consideration
in the
specified
dimensions.
Valid values
are 'JHOOK',
'STACK'.

VARCHAR2(6)

No

F_SUPP_CASE_QTY

The quantity
of the item in
an orderable
case pack
from the
primary
supplier.

NUMBER(12,4)

No

prditmdm.txt

Business rules:

e This interface file contains items within a subclass, class, and department. The combination
of subclass, class and department makes an item unique. For example, item 100 cannot be
identified by subclass 10, because subclass 10 can belong to different classes, and represent 2
different subclasses. Item 100 belongs to a combination of subclass, class and department.

e This interface file cannot contain duplicate records for an item_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

113

Retek Merchandising System

e This interface file only contains approved items (STATUS = ‘A’).

Name

Description

Data Type/Bytes

Field
order

Required
field

ITEM_IDNT

The unique
identifier of an
item.

VARCHAR2(25)

Yes

LEVEL1_IDNT

The unique
identifier of the
first level item of
the family.

VARCHAR2(25)

No

LEVELZ2_IDNT

The unique
identifier of the
second level item
of the family.

VARCHAR2(25)

No

LEVEL3_IDNT

The unique
identifier of the
third level item of
the family.

VARCHAR2(25)

No

ITEM_LEVEL

The number
indicating which of
the three levels the
item resides. Valid
values are 1, 2 and
3.

NUMBER(1)

Yes

TRAN_LEVEL

The number
indicating which of
the three levels
transactions occur
for the item's
group. Valid
values are 1, 2 and
3.

NUMBER(1)

Yes

DIFF_1

One of the four
differentiator
identifier available
from the source
system.

CHARACTER(10)

No

DIFF_2

One of the four
differentiator
identifier available
from the source
system.

CHARACTER(10)

No

114

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field
order

Required
field

DIFF_3

One of the four
differentiator
identifier available
from the source
system.

CHARACTER(10)

No

DIFF_4

One of the four
differentiator
identifier available
from the source
system.

CHARACTER(10)

10

No

ITEM_AGGREGATE_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

11

No

DIFF_1_AGGREGATE_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

12

No

DIFF_2_AGGREGATE_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

13

No

DIFF_3 AGGREGATE_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

14

No

DIFF_4 AGGREGATE_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

15

No

PACK_IND

Indicates if the
item is a pack.

CHARACTER(L)

16

No

115

Retek Merchandising System

Name

Description

Data Type/Bytes

Field
order

Required
field

PACK_SELLABLE_CDE

Indicates whether
the pack is
sellable. A sellable
pack is a group of
items that is to be
sold as one item,
whether the pack
arrived as
orderable or if the
retailer took it
upon themselves to
package and sell
the items together.

VARCHAR2(6)

17

No

PACK_SELLABLE_DESC

The pack sellable
description. Valid
descriptions are:
Sellable, Non-
sellable.

VARCHAR2(120)

18

No

PACK_SIMPLE_CDE

Indicates whether
the pack is simple.
A simple pack is
the grouping of
multiples of one
particular item to
be sold as one
item. An example
would be a twelve
pack of cola.

VARCHAR2(6)

19

No

PACK_SIMPLE_DESC

The pack simple
description. Valid
descriptions are:
Simple, complex.

VARCHAR2(120)

20

No

116

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field
order

Required
field

PACK_ORDERABLE_CDE

The abbreviated
code for the pack
order type: vendor
or buyer. An
orderable pack is a
pack whose
contents are
specified by the
buyer. A vendor
pack is a pack that
is packaged by the
vendor and can
only be ordered
that way.

VARCHAR2(6)

21

No

PACK_ORDERABLE_DESC

The pack order
type description.

VARCHAR2(120)

22

No

PACK_IND

Indicates if the
item is a pack.

VARCHAR2(1)

16

No

PACKAGE_UOM

The unit of
measure associated
with the package
size.

VARCHAR2(4)

23

No

PACKAGE_SIZE

The size of the
product printed on
any packaging.

NUMBER(12,4)

24

No

SBCLASS_IDNT

The unique
identifier of the
subclass in the
product hierarchy.

VARCHAR2(4)

25

Yes

CLASS_IDNT

The unique
identifier of the
class in the product
hierarchy.

VARCHAR2(4)

26

Yes

DEPT_IDNT

The unique
identifier of a
department in the
product hierarchy.

VARCHAR2(4)

27

Yes

117

Retek Merchandising System

Name

Description

Data Type/Bytes

Field
order

Required
field

ITEM_DESC

The long
description of the
item. This
description is used
through out the
system to help
online users
identify the item.

VARCHAR?2(255)

28

No

ITEM_SECND_DESC

The secondary
description of the
item.

VARCHAR2(255)

29

No

ITEM_SHRT_DESC

The shortened
description of the
item. This
description may be
the default for
downloading to the
point of sale
system.

VARCHAR2(120)

30

No

ITEM_NBR_TYPE_CDE

The code
specifying what
type the item is.
Some valid values
for this field are
ITEM, UPC-A,
EAN13, ISBN, etc.

VARCHAR2(6)

31

No

ITEM_NBR_TYPE_DESC

The description of
the item number

type.

VARCHAR2(120)

32

No

STND_UOM_CDE

The string that
uniquely identifies
the unit of
measure.

VARCHAR2(6)

33

No

STND_UOM_DESC

The description of
the UOM_CDE for
clarity.

CHARACTER(120)

34,

No

FORECAST_IND

This value is
populated for
RPAS only. Null if
RPAS is not used.

CHARACTER(L)

35

Yes

118

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field
order

Required
field

SELLABLE_IND

Indicates whether
the item can be
sold. If 'N', then
the only analysis
available is on
customer order
lines of type partial
within Customer
Order Management

VARCHAR2(1)

36

No

INV_IND

Indicates whether
an itemisan
inventory item or a
non-inventory item
(such as gift
certificates, labor)

VARCHAR2(1)

37

No

MRCH_IND

Indicates whether

the item's sales are
financially tracked
in the stock ledger.

VARCHAR2(1)

38

No

RECIPE_CARD_IND

Indicates whether a
recipe card is
available for the
item.

VARCHAR2(1)

39

No

PRSH_IND

Indicates whether
the item is
perishable.

VARCHAR2(1)

40

No

ITEM_TYPE_IDNT

The unique
identifier for the
item type.
Example item
types include
Swatch,
Component, Raw,
etc.

VARCHAR2(6)

41

No

CONV_TYPE_IDNT

The unique
identifier for the
conveyable type.
Conveyable type
indicates whether
the product needs
to be hand carried
or can be placed on
the conveyer belt
to be moved.

VARCHAR2(6)

42

No

119

Retek Merchandising System

Name Description Data Type/Bytes | Field | Required
order | field
CLLCTN_IDNT The unique VARCHARZ2(6) 43 No
identifier for the

collection to which
this item belongs.
A collection may
be a line of leather
furniture, including
an armchair,
ottoman, sofa, etc.
which are all part
of the Leather
Collection.

prditmldm.txt
Business rules:

e This interface file contains one row for each item list. An item list is normally used to group
items for reporting purpose.

e This interface file cannot contain duplicate records for an itemlst_idnt.
e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field order | Required
Type/Bytes field
ITEMLST_IDNT The unique identifier | VARCHAR2(10) |1 Yes
of an item list.
CREATE_ID The login ID of the VARCHAR2(30) |2 Yes
person who created
the Item List.
ITEMLST_DESC | The description or VARCHAR2(120) | 3 No
name of the item list.

120

Chapter 5 — RETL API flat file specifications

prditmimdm.txt

Business rules:

e This interface file contains the associations between item list and tracking level item
identifiers.

e This interface file cannot contain duplicate records for an itemlst_idnt and item_idnt
combination.

e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

Name Description Data Field | Required
Type/Bytes order | field
ITEMLST_IDNT The unique identifier of an | VARCHAR2(10) | 1 Yes
item list.
ITEM_IDNT The unique identifier of an | VARCHAR2(25) | 2 Yes
item.

prditmltmdm.txt
Business rules:

e This interface file contains associations among locations, tracking level items, and their
location traits.

o This interface file cannot contain duplicate records for an item_idnt, loc_idnt combination.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

Name Description Data Field | Required
Type/Bytes order | field
ITEM_IDNT The unique VARCHAR2(25) |1 Yes
identifier of an
item.
LOC IDNT The unique VARCHAR2(10) | 2 Yes
identifier of the
location.
LAUNCH_DT The date that the DATE 3 No
item should first
be sold at the
location.

121

Retek Merchandising System

Name Description Data Field | Required
Type/Bytes order | field
DEPOSIT_CDE The code which VARCHAR2(6) 4 No
indicates whether
a deposit is

associated with
this item at the
location

FOOD_STAMP_IND Indicates whether | VARCHAR2(1) 5 No
the item is
approved for food
stamps at the
location.

REWARD_ELIGIBLE_IND Indicates whether | VARCHAR2(1) 6 No
the item is legally
valid for various
types of bonus
point/award
programs at the
location.

NATL_BRAND_COMP_ITEM | The nationally VARCHAR2(25) |7 No
branded item to
which you would
like to compare
the current item.

STOP_SALE_IND Indicates that sale | VARCHAR2(1) 8 No
of the item should
be stopped
immediately at the
location.

ELECT_MKT_CLUBS The code that VARCHAR2(6) 9 No
represents the
electronic
marketing clubs to
which the item
belongs at the
location.

STORE_REORDERABLE_IND | Indicates whether | VARCHAR2(1) 10 No
the store may re-
order the item.

FULL_PALLET ITEM_IND Indicates whether | VARCHAR2(1) 11 No
a store must
reorder an item in
full pallets only.

122

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
DEPOSIT_CDE_DESC The deposit code | VARCHAR2(120) | 12 No

description which
indicates whether
a deposit is
associated with
this item at the
location.

prditmsmdm.txt

Business rules:

o This interface file contains associations between a tracking level or above item, and a product

season/phase.

e This interface file cannot contain duplicate records for an item.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description Data Field | Required
Type/Bytes order | field

ITEM_IDNT The unique identifier of an | VARCHAR2(25) | 1 Yes
item.

PROD_SEASN_IDNT The unique identifierofa | VARCHAR2(3) |2 Yes
product season.

PROD_PHASE_IDNT The unique identifier of the | VARCHAR2(3) | 3 Yes
product phase.

123

Retek Merchandising System

prditmuddm.txt

Business rules:

e This interface file contains the associations between user defined attributes (UDA) at the

detail level.

e This interface file cannot contain duplicate records for an item_uda_dtl_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field

ITEM_UDA HEAD_IDNT | The unique identifier CHARACTER(5) |1 Yes
of the UDA.

ITEM_UDA _DTL_IDNT The unique identifier VARCHAR2(256) | 2 Yes
of the text or date or
lov values for a uda.

ITEM_UDA DTL_DESC | The description of VARCHAR2(255) | 3 No
UDA value, text, or
date.

prditmuhdm.txt

Business rules:

o This interface file contains distinct user defined attribute (UDA) values.

o This interface file cannot contain duplicate records for an item_uda_head_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required

Type/Bytes order | field

ITEM_UDA_HEAD_IDNT | The unique identifier | VARCHAR2(5) 1 Yes
of the UDA.

ITEM_UDA_TYPE_CDE The code designating | VARCHAR2(3) 2 Yes
the uda type:
DT=date, LV=list of
values, FF=Free form
text.

ITEM_UDA_HEAD_DESC | The description of the | VARCHAR2(120) | 3 Yes

UDA.

124

Chapter 5 — RETL API flat file specifications

prditmumdm.txt

Business rules:

This interface file contains the associations between UDA (User Defined Attributes) at the
detail level and item identifiers at the tracking level.

This interface file cannot contain duplicate records for an item_uda_dtl_idnt and item_idnt
combination.

This interface file follows the dimension flat file interface layout standard.
This interface file contains the complete snapshot of active information.

This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

Name Description | Data Type/Bytes | Field Required

order field

ITEM_UDA_HEAD_IDNT | The unique CHARACTER(5) 1 Yes

identifier of
the UDA.

ITEM_UDA_DTL_IDNT The unique CHARACTER(256) | 2 Yes

identifier of
the text or
date or lov
values for a
uda.

ITEM_IDNT The unique | VARCHAR2(25) | 3 Yes

identifier of
an item.

prdpimdm.txt

Business rules:

This interface file contains the associations between packs and their component tracking-level
item identifiers.

This interface file cannot contain duplicate records for a pack_idnt and item_idnt
combination.

This interface file follows the dimension flat file interface layout standard.
This interface file contains the complete snapshot of active information.

This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

125

Retek Merchandising System

Name Description Data Field | Required
Type/Bytes order | field
PACK_IDNT The unique identifier of VARCHAR2(25) | 1 Yes
pack.
PACK_ITEM_QTY Total quantity of a unique | NUMBER(12,4) | 2 No
item within a pack.
ITEM_IDNT The unique identifier of an | VARCHAR2(25) | 3 Yes

item.

prdsbcdm.txt
Business rules:

e This interface file contains a subclass within a class and a department.

e This interface file cannot contain duplicate records for a dept_idnt, class_idnt, subclass_idnt

combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field

SBCLASS_IDNT The unique identifier VARCHARZ2(4) 1 Yes
of the subclass in the
product hierarchy.

CLASS_IDNT The unique identifier VARCHAR2(4) 2 Yes
of the class in the
product hierarchy.

DEPT_IDNT The unique identifier VARCHAR2(4) 3 Yes
of a department in the
product hierarchy.

SBCLASS_DESC The name of the VARCHAR2(120) | 4 No
subclass in the product
hierarchy.

SBCLASS_BUYR_IDNT | The unique identifier VARCHAR2(4) 5 No
of the buyer for this
subclass of products.

SBCLASS_BUYR_NAME | The name of the buyer | VARCHAR2(120) | 6 No
for this subclass of
products.

SBCLASS_MRCH_IDNT | The unique identifier VARCHAR2(4) 7 No

for the merchandiser of
this subclass of
products.

126

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
SBCLASS_MRCH_NAME | The name of the VARCHAR2(120) | 8 No
merchandiser for this
subclass of products.
regngrpdm.txt
Business rules:
e This interface file contains regionality group information.
e This interface file cannot contain duplicate records for a regionality_grp_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description | Data Field | Required
Type/Bytes order | field
REGIONALITY_GRP_IDNT The unique VARCHAR2(4) 1 Yes
identifier of
the
regionality
group.
REGIONALITY_GRP_DESC The name of | VARCHAR2(120) | 2 No
the
regionality
group.
REGIONALITY_GRP_ROLE_CDE | Therole that | VARCHAR2(6) 3 No
a client wants
to assign to
this group.
This field is
referenced in
the code type
'ROLE".
REGIONALITY_GRP_ROLE_DESC | The VARCHAR2(120) | 4 No
description
for arole.

127

Retek Merchandising System

regnmtxdm.txt

Business rules:

e This interface file contains the associations among regionality groups, departments, locations

and suppliers.

e This interface file cannot contain duplicate records for a regionality _grp_idnt, loc_idnt,
supp_idnt, dept_idnt combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name

Description

Data
Type/Bytes

Field
order

Required
field

REGIONALITY_GRP_IDNT

The unique
identifier of the
regionality group.

VARCHAR2(4)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

LOC_TYPE_CDE

The code that
indicates whether
the location is a

store or warehouse.

CHARACTER(2)

Yes

SUPP_IDNT

The unique
identifier of a
supplier.

CHARACTER(10)

Yes

DEPT_IDNT

The unique
identifier of a
department in the
product hierarchy.

CHARACTER(4)

Yes

rplcilddm.txt

Business rules:

o If adimension identifier is required but is not available, a value of -1 is needed.

e The banner_idnt corresponding to the hdr_media_idnt and line_media_idnt must be the same.

128

Cannot contain duplicate transactions for an item_idnt, loc_idnt, hdr_media_idnt,
line_media_idnt, banner_idnt, and day_dt combination.

Contains the replacement data for an item, location, order header media, and order line media
combination on a given day.

Follows the fact flat file interface layout standard.

Chapter 5 — RETL API flat file specifications

Name Description Data Field Required
Type/Bytes Order Field
ITEM_IDNT The unique identifier | CHARACTER(2 |1 Yes
of an item. 5)
LOC_IDNT The unique identifier | CHARACTER(1 | 2 Yes
of the location. 0)
DAY _DT The transaction date | DATE 3 Yes
when the customer
order line was created
or modified.
HDR_MEDIA IDNT The unique identifier | CHARACTER(1 | 4 Yes
of the customer order | 0)
header level media.
LINE_MEDIA_IDNT The unique identifier | CHARACTER(1 |5 Yes
of the customer order | 0)
line level media.
BANNER_IDNT The unique identifier | CHARACTER(4 | 6 Yes
of a banner.)
F RPLC_IN_QTY The number of units | NUMBER(12,4) |7 No
that have been
received from the
customer for a
replacement in
transaction.
F RPLC OUT QTY The number of units NUMBER(12,4) |8 No
that have been sent to
the customer for a
replacement out
transaction.
F RPLC COST _IN_A | Thetotal cost, in NUMBER(18,4) |9 No
MT primary currency, of
the units received
from the customer for
a replacement in
transaction.
F RPLC _COST_IN_ The total cost, in NUMBER(18,4) | 10 No

AMT_LCL

local currency, of the
units received from
the customer for a
replacement in
transaction.

129

Retek Merchandising System

Name Description Data Field Required
Type/Bytes Order Field

F_RPLC_COST_OUT_ | The total cost, in NUMBER(18,4) | 11 No
AMT primary currency, of

the units sent to the

customer for a

replacement out

transaction.
F RPLC COST_OUT_ | The total cost, in NUMBER(18,4) | 12 No
AMT _LCL local currency, of the

units sent to the

customer for a

replacement out

transaction.
rsndm.txt

Business rules:

e This interface file contains the reason class, types, and codes for the reason dimension. The
file can hold various kinds of transaction reasons/codes such as inventory adjustment, return-
to-vendor, voids, sales, and so on. The reason class allows definition of the reason, and the
corresponding types and codes can also be defined under the class.

e This interface file cannot contain duplicate records for a reasn_code_idnt, reasn_type_idnt,

combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name

Description

Data
Type/Bytes

Field order

Required
field

REASN_CODE_IDNT

The unique
identifier of the
reason code.

VARCHAR2(6)

Yes

REASN_TYPE_IDNT

The unique
identifier of the
reason type.

VARCHAR2(6)

Yes

REASN_CLASS_IDNT

The unique
identifier of the
reason class.

VARCHAR2(6)

Yes

REASN_CODE_DESC

The description
of the reason
code

VARCHAR2(120)

No

REASN_TYPE_DESC

The description
of the reason

type.

VARCHAR2(120)

No

130

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Bytes field
REASN_CLASS_DESC | The description | VARCHAR2(120) | 6 No

of the reason
class

saviddm.txt

Business rules:

e This interface file contains summarized item availability quantities for a supplier, item on a

given day.

e This interface file cannot contain duplicate transactions for an item_idnt, supp_idnt, and

day_dt combination.

e This interface file contains only the current day's new or changed information.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description Data Field | Required
Type/Bytes order | field

ITEM_IDNT The unique identifier of CHARACTER(25) | 1 Yes
an item.

SUPP_IDNT The unique identifier ofa | CHARACTER(10) | 2 Yes
supplier.

DAY_DT The calendar day on DATE 3 Yes
which the transaction
occurred.

F_AVAIL_QTY The quantity of stock NUMBER(12,4) 4 No
available to be ordered
from the supplier.

131

Retek Merchandising System

scmialddm.txt

Business rules:

o Contains data pertaining to a supplier's missed shipments by location and day.

e Cannot contain duplicate transactions for a supp_idnt, loc_idnt, day_dt.

o Follows the fact flat file interface layout standard.

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

SUPP_IDNT

The unique
identifier of a
supplier.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

F_MISSED_ASN_COUNT

The total number of
ASN (advanced
ship notice)
shipments that
were expected and
not received.

NUMBER(16,4)

No

scmidlddm.txt

e Cannot contain duplicate transactions for a supp_idnt, loc_idnt, day_dt.

e Contains data pertaining to a supplier's missed deliveries by location and day.

o Follows the fact flat file interface layout standard.

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

SUPP_IDNT

The unique
identifier of a
supplier.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

132

Chapter 5 — RETL API flat file specifications

Name Description Data Type/Bytes Field Require

Order | d Field
F_MISSED_SCHED _ The total number NUMBER(16,4) 4 No
COUNT of scheduled

shipments that have
not been received.

scmiolddm.txt

Business rules:

e Cannot contain duplicate transactions for a supp_idnt, loc_idnt, day_dt.

e Contains data pertaining to a supplier's missed purchase orders by location and day.

o Follows the fact flat file interface layout standard.

Name Description Data Field Require
Type/Bytes Order | d Field
SUPP_IDNT The unique identifier | CHARACTER(10) | 1 Yes
of a supplier.
LOC_IDNT The unique identifier | CHARACTER(10) | 2 Yes
of the location.
DAY_DT The calendar day on DATE 3 Yes
which the transaction
occurred.
F_MISSED_ORDER_ The total number of NUMBER(16,4) 4 No
COUNT purchase order
shipments that were
expected and not
received.

scgcdm.txt
Business rules:

e Cannot contain duplicate transactions for an item_idnt, supp_idnt, ship_idnt, loc_idnt, day_dt,
po_idnt.

e Contains shipment information about which items requiring QC (quality control) failed or
passed the QC test.

o Follows the fact flat file interface layout standard.

Name Description Data Type/Bytes Field Require
Order | d Field
ITEM_IDNT The unique CHARACTER(25) 1 Yes
identifier of an
item.

133

Retek Merchandising System

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

SHIP_IDNT

The unique
identifier of the
shipment.

CHARACTER(10)

Yes

SUPP_IDNT

The unique
identifier of a
supplier.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

PO_IDNT

The unique
identifier of a
purchase order.

CHARACTER(8)

Yes

F QC_FLAG

Indicates whether
or not quality
control checking
was required on the
receipt.

CHARACTER(Y)

No

F_QC_FAILED QTY

The total quantity
of items that failed
quality control
checks.

NUMBER(12,4)

No

F_QC_PASSED QTY

The total quantity
of items that passed
quality control
checks.

NUMBER(12,4)

No

scrtllddm.txt
Business rules:

e This interface file contains shipment information about quantity of items received. This data
is only associated with scrgtlddm.txt.

e This interface file contains shipment information about timeliness of receipt. This data is only
associated with scrtllddm.txt.

e This interface file contains shipment information about which items requiring QC (quality

control) failed or passed the QC test. This data is only associated with scqcdm.txt.

o This interface file cannot contain duplicate transactions for item_idnt, ship_idnt, supp_idnt,
loc_idnt, day_dt, po_idnt. This interface file is also applied to the scrgtlddm.txt and
scrtllddm.txt interface files.

134

Chapter 5 — RETL API flat file specifications

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

ITEM_IDNT

The unique
identifier of an
item.

CHARACTER(25)

1

Yes

SUPP_IDNT

The unique
identifier of a
supplier.

CHARACTER(10)

Yes

SHIP_IDNT

The unique
identifier of the
shipment.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

PO_IDNT

The unique
identifier of a
purchase order.

CHARACTER(8)

Yes

F_ON_TIME_COUNT

The number of
deliveries where
the quantity
received equaled
the number
expected. In this
day-level table, the
count value can
only be O or 1.

NUMBER(16,4)

No

F_EARLY_COUNT

The number of
deliveries that
arrived before the
scheduled time. In
this day-level table,
the count value can
only be O or 1.

NUMBER(16,4)

No

135

Retek Merchandising System

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

F_LATE_COUNT

The number of
deliveries that
arrived after the
scheduled time. In
this day-level table,
the count value can
only be O or 1.

NUMBER(16,4)

No

F_UNSCHED_COUNT

The number of
deliveries that
arrived on days
other than the
scheduled date. In
this day-level table,
the count value can
only be O or 1.

NUMBER(16,4)

10

No

F_DAYS_EARLY_
COUNT

The total number of
days a shipment
arrived before the
scheduled date.

NUMBER(16,4)

11

No

F_DAYS_LATE_COUNT

The total number of
days a shipment
arrived after the
scheduled date.

NUMBER(16,4)

12

No

scrqtlddm.txt
Business rules:

e Contains shipment information about quantity of items received.

e Cannot contain duplicate transactions for an item_idnt, supp_idnt, ship_idnt, loc_idnt, day_dt,

po_idnt.

o Follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description Data Type/Bytes Field Require
Order | d Field
ITEM_IDNT The unique CHARACTER(25) 1 Yes
identifier of an
item.
SUPP_IDNT The unique CHARACTER(10) 2 Yes
identifier of a
supplier.

136

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

SHIP_IDNT

The unique
identifier of the
shipment.

CHARACTER(10)

Yes

LOC_IDNT

The unique
identifier of the
location.

CHARACTER(10)

Yes

DAY_DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

PO_IDNT

The unique
identifier of a
purchase order.

CHARACTER(8)

Yes

F_ASN_EXPECTED_QTY

The total advanced
shipment notice
(ASN) quantity
expected.

NUMBER(12,4)

No

F_RECEIVED_QTY

The total quantity
received.

NUMBER(12,4)

No

F_ORDERED_QTY

The total quantity
ordered.

NUMBER(12,4)

No

F_ASN_EXPECTED_
COUNT

The number of
advance shipping
notice (ASN)
deliveries where
the quantity
received equaled
the quantity
expected. The
count value can
only be 0 or 1.

NUMBER(16,4)

10

No

F_ASN_UNDER_COUNT

The number of
advanced shipping
notice (ASN)
deliveries where
the quantity
received were less
than the number
expected. In this
day-level table, the
count value can
only be O or 1.

NUMBER(16,4)

11

No

137

Retek Merchandising System

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

F_ASN_OVER_COUNT

The number of
advanced shipping
notice (ASN)
deliveries where
the quantity
received exceeded
the number
expected. In this
day-level table, the
count value can
only be O or 1.

NUMBER(16,4)

12

No

F_MISMATCHED_
COUNT

The number of
deliveries where
guantity was
received for an
item that was not
expected. In this
day-level table, the
count value can
only be 0 or 1.

NUMBER(16,4)

13

No

F_ FULL_PO_COUNT

The number of
purchase orders
where all expected
guantity was
received. In this
day-level table, the
count value can
only be O or 1.

NUMBER(16,4)

14

No

F_PART_PO_COUNT

The number of
purchase orders
where only part of
the expected
guantity was
received. In this
day-level table, the
count value can
only be 0 or 1.

NUMBER(16,4)

15

No

138

Chapter 5 — RETL API flat file specifications

Name

Description

Data Type/Bytes

Field
Order

Require
d Field

F_OVER_PO_COUNT

The number of
purchase orders
where more than
the expected
guantity was
received. In this
day-level table, the
count value can
only be O or 1.

NUMBER(16,4)

16

No

PICKUP_LOC

The user-entered
location of
shipment for client
to pick up.

CHARACTER(45)

17

No

PICKUP_NBR

The user-entered
identifier of a
shipment.

CHARACTER(25)

18

No

PICKUP_DT

The user entered
date of the pickup.

DATE

19

No

sctiddm.txt

Business rules:

e This interface file contains supplier contract information.

o This interface file cannot contain duplicate transactions for an item_idnt, cntrct_idnt, day_dt

combination.

e This interface file contains only the current day's new or changed information.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description | Data Field | Required
Type/Bytes order | field
ITEM_IDNT The unique CHARACTER(25) | 1 Yes
identifier of
an item.
CNTRCT_IDNT The unique CHARACTER(6) | 2 Yes
identifier of a
contract.

139

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

DAY_DT

The calendar
day on which
the
transaction
occurred.

DATE

Yes

F_CNTRCT_QTY

The total
contracted
guantity to be
ordered from
the supplier.

NUMBER(12,4)

No

F_CNTRCT_COST_AMT

The unit
purchase cost
negotiated
for this
contract.

NUMBER(18,4)

No

F_CNTRCT_ORD_QTY

The total
ordered
quantity from
the contract
to date for all
locations.

NUMBER(12,4)

No

F_CNTRCT_ORD_COST_AMT

The total cost
value for the
ordered
quantity from
the contract
to date for all
locations.

NUMBER(18,4)

No

F_CNTRCT_ORD_CNCLLD_QTY

The total
cancelled
quantities
from the
contract to
date, for all
locations and
orders.

NUMBER(12,4)

No

140

Chapter 5 — RETL API flat file specifications

Name Description | Data Field | Required
Type/Bytes order | field

F CNTRCT_ORD_CNCLLD_COST_AMT | The total cost | NUMBER(18,4) 9 No
value for the
cancelled
guantities
from the
contract to
date, forall
locations and
orders.

seasndm.txt
Business rules:

e This interface file contains seasons. Seasons are arbitrary periods of time around which some
retailers organize their buying and selling patterns. Each day should fall within no more than
one season.

o This interface file cannot contain duplicate records for a seasn_idnt.
e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field

SEASN_IDNT The unique identifierofa | VARCHAR2(3) 1 Yes
season.

SEASN_START_DT The beginning date for the | DATE 2 Yes
season.

SEASN_END_DT The ending date for the DATE 3 Yes
season.

SEASN_DESC The description or name VARCHAR2(120) | 4 No
for the season.

sfcilwdm.txt
Business rules:

e This interface file contains sales forecast information for an item and location combination on
a given week.

e This interface file cannot contain duplicate transactions for an item_idnt, loc_idnt, and
day_dt.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

141

Retek Merchandising System

Name Description Data Field order | Required
Type/Bytes field

ITEM_IDNT The unique CHARACTER(25) | 1 Yes
identifier of an item.

LOC IDNT The unique CHARACTER(10) | 2 Yes
identifier of the
location.

DAY_DT The calendar day on | DATE 3 Yes
which the
transaction occurred.

F FCST _SLS QTY | The forecast sales NUMBER(12,4) 4 No
guantity.

slsildmdm.txt

Business rules:

e This interface file contains sales and returns for an item, location, day, minute,voucher, and

transaction.

Assumes that tran_idnts received from the source system are unique across media-location-

register-employee-minute-day. In an example from brick and mortar, two items, sold at the
same location, by the same employee in the same minute, but at two different cash registers
to two different customers in two different transactions, will result in two separate and
distinct tran_idnts; similarly, the same item/loc/day/minute/register but different employees,
ringing up two separate transactions will result in two distinct tran_idnts.

e tran_idnt is unique across all locations.

e The format of the min_idnt field is the hour (in format HH24) followed by a number 01-60,

which indicates the minute of that hour.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell

component items.

Name Description Data Field | Required
Type/Bytes order | field
ITEM_IDNT The unique CHARACTER(25) | 1 Yes
identifier of an
item.
TRAN_IDNT The unique VARCHAR2(30) |2 Yes
identifier of the
transaction.

142

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

VCHR_IDNT

Voucher number.
If the Item is a
gift certificate,
then the
corresponding
Item Number
will represent a
VCHR_IDNT.
This attribute is
not a
dimensional
attribute but is
used to uniquely
identify a record.

CHARACTER(16)

Yes

DAY DT

The calendar day
on which the
transaction
occurred.

DATE

Yes

MIN_IDNT

The unique
identifier of the
minute.

NUMBER(4)

Yes

OVERRIDE_REASN_CODE_IDNT

The unique
identifier for a
reason code.

CHARACTER(6)

Yes

OVERRIDE_REASN_TYPE_IDNT

The unique
identifier for a
reason type.

CHARACTER(6)

Yes

LOC_KEY

Surrogate key
used to identify a
location as it was
aligned within
the organization
at a given point
in time.

NUMBER(6)

Yes

143

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

RTRN_REASN_IDNT

The unique
identifier used to
identify a return
reason code.
These codes
should exist in
the RMS
CODE_DETAIL
table under
‘SARR’ code

type.

CHARACTER(6)

Yes

CUST_REF

The customer
identifier
associated with
the transaction.

CHARACTER(20)

10

Yes

CUST_REF_TYPE

The type of the
identifier number
used by a
customer.

CHARACTER(6)

11

Yes

EMPLY_IDNT

The unique
identifier of the
employee.

CHARACTER(10)

12

Yes

SLSPRSN_IDNT

The unique
identifier for a
salesperson.

CHARACTER(10)

13

Yes

CSHR_IDNT

The unique
identifier for a
cashier.

CHARACTER(10)

14

Yes

RGSTR_IDNT

The unique
identifier of the
register.

CHARACTER(10)

15

Yes

REASN_CODE_IDNT

The unique
identifier of the
reason code.

CHARACTER(6)

16

Yes

REASN_TYPE_IDNT

The unique
identifier of the
reason type.

CHARACTER(6)

17

Yes

SUB_TRAN_TYPE_IDNT

The unique
identifier of the
sub-transaction

type.

CHARACTER(6)

18

Yes

144

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

LINE_MEDIA_IDNT

The identifier of
a customer order
line media.

CHARACTER(10)

19

Yes

BANNER_IDNT

The unique
identifier of a
banner.

CHARACTER(4)

20

Yes

SELLING_ITEM_IDNT

The unique
identifier of a
selling item.

CHARACTER(25)

21

Yes

CO_HDR_IDNT

The unique
identifier of a
customer order.

CHARACTER(30)

22

Yes

CO_LINE_IDNT

The unique
identifier of a
customer order
line.

CHARACTER(30)

23

Yes

DROP_SHIP_IND

An indicator to
identify if an
item is shipped
directly to the
customer.

CHARACTER(L)

24

No

RTL_TYPE_CDE

The price type
(‘R'egular,
'P'romotion,
‘C'learance).

CHARACTER(2)

25

Yes

F SLS_AMT

The value of the
sale in primary
currency

NUMBER(18,4)

26

No

F SLS_AMT_LCL

The value of the
sale in local
currency

NUMBER(18,4)

27

No

F SLS_QTY

The number of
items involved in
the sale

NUMBER(12,4)

28

No

F_SLS PRFT_AMT

The profit
amount realized
on the sale in
primary
currency.

NUMBER(18,4)

29

No

145

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F SLS_PRFT_AMT_LCL

The profit
amount realized
on the sale in
local currency.

NUMBER(18,4)

30

No

F_ RTRN_AMT

The value of the
return in primary
currency

NUMBER(18,4)

31

No

F_ RTRN_AMT_LCL

The value of the
return in local
currency

NUMBER(18,4)

32

No

F_RTRN_QTY

The number of
items involved in
the return

NUMBER(12,4)

33

No

F_RTRN_PRFT_AMT

The profit
amount realized
on the return in
primary currency

NUMBER(18,4)

34

No

F_RTRN_PRFT_AMT_LCL

The profit
amount realized
on the return in
local currency

NUMBER(18,4)

35

No

F_SLS_ENTER_ITEM_COUNT

The number of
times the item is
manually entered
by cashier for
sale

NUMBER(16,4)

36

No

F_SLS_SCAN_ITEM_COUNT

The number of
times the item is
scanned by
cashier for sale

NUMBER(16,4)

37

No

F_RTRN_ENTER_ITEM_COUNT

The number of
times the item is
manually entered
by cashier for
return

NUMBER(16,4)

38

No

F_RTRN_SCAN_ITEM_COUNT

Number of times
the item is
scanned by
cashier for return

NUMBER(16,4)

39

No

146

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_SLS_IS_MKUP_COUNT

The count of the
number of in
store markup
sales transactions

NUMBER(16,4)

40

No

F_SLS IS MKDN_COUNT

The count of the
number of in
store markdown
sales transactions

NUMBER(16,4)

41

No

F_RTRN_IS_MKUP_COUNT

The count of the
number of in
store markup
return
transactions

NUMBER(16,4)

42

No

F_RTRN_IS_ MKDN_COUNT

The count of the
number of in
store markdown
return
transactions

NUMBER(16,4)

43

No

F_SLS_IS_MKUP_AMT

The total in store
markup amount
in primary
currency for
sales transactions

NUMBER(18,4)

44

No

F SLS_IS_MKUP_AMT _LCL

The total in store
markup amount
in local currency
for sales
transactions

NUMBER(18,4)

45

No

F_RTRN_IS_ MKUP_AMT

The total in store
markup amount
in primary
currency for
return
transactions

NUMBER(18,4)

46

No

F_RTRN_IS_ MKUP_AMT _LCL

The total in store
markup amount
in local currency
for return
transactions

NUMBER(18,4)

47

No

147

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F SLS_IS_MKDN_AMT

The total in store
markdown
amount in
primary currency
for sales
transactions

NUMBER(18,4)

48

No

F SLS_IS_MKDN_AMT_LCL

The total in store
markdown
amount in local
currency for
sales transactions

NUMBER(18,4)

49

No

F_RTRN_IS_MKDN_AMT

The total in store
markdown
amount in
primary currency
for return
transactions

NUMBER(18,4)

50

No

F_RTRN_IS_ MKDN_AMT_LCL

The total in store
markdown
amount in local
currency for
return
transactions

NUMBER(18,4)

51

No

F_SLS_EMPLY_DISC_AMT

The total
employee retail
discount amount
in primary
currency for
sales transactions

NUMBER(18,4)

52

No

F_SLS_EMPLY_DISC_AMT LCL

The total
employee retail
discount amount
in local currency
for sales
transactions

NUMBER(18,4)

53

No

F_RTRN_EMPLY_DISC_AMT

The total
employee retail
discount amount
in primary
currency for
return
transactions

NUMBER(18,4)

54

No

148

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_RTRN_EMPLY_DISC_AMT_LCL

The total
employee retail
discount amount
in local currency
for return
transactions

NUMBER(18,4)

55

No

F_SLS_ACCOM_AMT

The total
customer order
accommodations,
associated with
items, in
primary currency
for sales
transactions.

NUMBER(18,4)

56

No

F_SLS_ACCOM_AMT _LCL

The total
customer order
accommodations,
associated with
items, in local
currency for
sales
transactions.

NUMBER(18,4)

57

No

F_SLS VAT AMT

The value of the
sales value added
tax in primary
currency.

NUMBER(18,4)

58

No

F SLS VAT AMT_LCL

The value of the
sales value added
tax in local
currency

NUMBER(18,4)

59

No

F_RTRN_VAT_AMT

The value of the
return value
added tax in
primary currency

NUMBER(18,4)

60

No

F_RTRN_VAT _AMT_LCL

The value of the
return value
added tax in
local currency

NUMBER(18,4)

61

No

slsmkdnilddm.txt
Business rules:

e This interface file contains point of sale, permanent, and clearance markdown and markup
information for an item, location, and retail type on a given day.

149

Retek Merchandising System

e This interface file cannot contain duplicate transactions for a item_idnt, loc_idnt,
rtl_type_cde, day_dt combination.

e This interface file follows the fact flat file interface layout standard.

e This interface file contains neither break-to-sell items nor packs that contain break-to-sell
component items.

e Typical markdowns, markups, markdown cancels, and markup cancels should be positive
values in their respective fields. Any reversals of the transactions that use the same tran data
codes contain negative values in those applicable fields.

SIS Description Data Field | Required
Type/Bytes order | field

ITEM_IDNT The unique CHARACTER(25) | 1 Yes
identifier of an
item.

LOC IDNT The unique CHARACTER(10) | 2 Yes
identifier of the
location.

RTL _TYPE_CDE The price type CHARACTER(2) |3 Yes
('R'egular,

'P'romotion,
'C'learance).

DAY _DT The calendar day on | DATE 4 Yes
which the
transaction
occurred.

F MKDN_AMT The value of the NUMBER(18,4) 5 No
markdown, in
primary currency.

F MKDN_AMT _LCL The value of the NUMBER(18,4) 6 No
markdown, in local
currency.

F MKDN_QTY The quantity of the | NUMBER(12,4) 7 No
markdown

F_MKUP_AMT The value of the NUMBER(18,4) 8 No
markup, in primary
currency.

F_ MKUP_AMT LCL The value of the NUMBER(18,4) 9 No
markup, in local
currency.

F_MKUP_QTY The quantity of the | NUMBER(12,4) 10 No
markup.

150

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
F_MKDN_CNCL_AMT The value of the NUMBER(18,4) 11 No
markdown cancel,
in primary
currency.
F_MKDN_CNCL_AMT _LCL | The value of the NUMBER(18,4) | 12 No
markdown cancel,
in local currency.
F_MKDN_CNCL_QTY The quantity of the | NUMBER(12,4) 13 No
markdown cancel.
F_MKUP_CNCL_AMT The value of the NUMBER(18,4) 14 No
markup cancel, in
primary currency.
F_MKUP_CNCL_AMT_LCL | The value of the NUMBER(18,4) | 15 No
markup cancel, in
local currency.
F_MKUP_CNCL_QTY The quantity of the | NUMBER(12,4) 16 No
markup cancel.
slsprmilmdm.txt
Business rules:
e If adimension identifier is required but is not available, a value of -1 is needed.
o TRAN_IDNT is unique across all locations.
o Follows the fact flat file interface layout standard.
Name Description | Data Field Required
Type/Bytes order field
TRAN_IDNT The uniqgue | VARCHAR2(30) |1 Yes
identifier of a
sales
transaction.
ITEM_IDNT The unique CHARACTER(25) | 2 Yes
identifier of
an item.
DAY_DT The calendar | DATE 3 Yes
day on which
the
transaction
occurred.

151

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

MIN_IDNT

The unique
identifier of
the minute.
This is the
minute the
sales
transaction
was created.

NUMBER(4)

Yes

PRMTN_DTL_IDNT

The identifier
of the
promotion
detail.

CHARACTER(10)

Yes

HEAD_IDNT

The unique
identifier of
the
promotion.

CHARACTER(10)

Yes

PRMTN_SRC_CDE

The unique
identifier of
the
promotion
source. The
valid value
can be 'DTC/,
'RMS' or
others.

CHARACTER(6)

Yes

SELLING_ITEM_IDNT

The unique
identifier of a
selling item.

CHARACTER(25)

Yes

LINE_MEDIA_IDNT

The unique
identifier of
the customer
order line
level media.

CHARACTER(10)

Yes

BANNER_IDNT

The unique
identifier of a
banner.

CHARACTER(4)

10

Yes

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

11

Yes

152

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

CUST_REF

The customer
identifier
associated
with the
transaction.

CHARACTER(20)

12

Yes

CUST_REF_TYPE

The type of
the identifier
number used
by a
customer.

CHARACTER(6)

13

Yes

CO_LINE_IDNT

The unique
identifier of a
customer
order line.

VARCHAR2(30)

14

Yes

CO_HDR_IDNT

The unique
identifier of a
customer
order header.

VARCHAR2(30)

15

Yes

F_PRMTN_MKDN_AMT

The
promotional
markdown
amount in
primary
currency.

NUMBER(18,4)

16

No

F_PRMTN_MKDN_AMT_LCL

The
promotional
markdown
amount in
local
currency.

NUMBER(18,4)

17

No

stlbimthdm.txt

Business rules:

e This interface file contains stock ledger values for a department, class, subclass, and location

on a given month.

e This interface file cannot contain duplicate transactions for a dept_idnt, class_idnt,

sbclass_idnt, loc_idnt, and day_dt combination.

e This interface file can only be populated for one time, either Gregorian time or 454 time.

e This interface file follows the fact flat file interface layout standard.

153

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S
SBCLASS_IDNT The unique CHARACT |1 Yes
identifier of the ER(4)
subclass in the
product hierarchy.
CLASS_IDNT The unique CHARACT | 2 Yes
identifier of the ER(4)
class in the
product hierarchy.
DEPT _IDNT The unique CHARACT | 3 Yes
identifier of a ER(4)
department in the
product hierarchy.
LOC IDNT The unique CHARACT | 4 Yes
identifier of the ER(10)
location.
LOC TYPE_CDE The code that CHARACT | 5 Yes
indicates whether | ER(2)
the location is a
store or
warehouse.
DAY _DT The calendar day DATE 6 Yes
on which the
transaction
occurred.
F _IVL BEG_SOH_COST | The beginning of NUMBER(|7 N
_AMT period stock on 18,4)
hand total cost, in
primary currency
F_IVL_BEG_SOH_COST | The beginning of NUMBER(| 8 N
_AMT_LCL period stock on 18,4)
hand total cost, in
local currency
F_IVL_BEG_SOH_RTL_ | The beginning of NUMBER(|9 N
AMT period stock on 18,4)
hand total retail, in
primary currency
F_IVL_BEG_SOH_RTL_ | The beginning of NUMBER(| 10 N
AMT_LCL period stock on 18,4)

hand total retail, in
local currency

154

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_SOH_ADJ_COST | Thevalueatcost | NUMBER(| 11 N
_AMT of stock on hand 18,4)

adjustments, in

primary currency.
F_IVL_SOH_ADJ_COST | Thevalueatcost | NUMBER(| 12 N
_AMT_LCL of stock on hand 18,4)

adjustments, in

local currency.
F_IVL_SOH_ADJ_RTL_ | The value at retail | NUMBER(| 13 N
AMT of stock on hand 18,4)

adjustments, in

primary currency
F_IVL_SOH_ADJ_RTL_ | The value at retail | NUMBER(| 14 N
AMT_LCL of stock on hand 18,4)

adjustments, in

local currency
F_IVL_RCPTS_COST_A | Thevalueatcost | NUMBER(| 15 N
MT of inventory 18,4)

received, in

primary currency
F_IVL_RCPTS_COST_A | Thevalueatcost | NUMBER(| 16 N
MT_LCL of inventory 18,4)

received, in local

currency
F_IVL_RCPTS_RTL_AM | The value at retail | NUMBER(| 17 N
T of inventory 18,4)

received, in

primary currency
F_IVL_RCPTS_RTL_AM | The value at retail | NUMBER(| 18 N
T LCL of inventory 18,4)

received, in local

currency
F_IVL_RTV_COST_AM | The value at cost NUMBER(| 19 N
T of inventory 18,4)

returned to a
vendor, in primary
currency

155

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_RTV_COST_AM | Thevalue atcost | NUMBER(| 20 N
T LCL of inventory 18,4)

returned to a

vendor, in local

currency.
F_IVL_RTV_RTL_AMT | The value at retail | NUMBER(| 21 N

of inventory 18,4)

returned to a

vendor, in primary

currency.
F_IVL_RTV_RTL_AMT_ | The value at retail | NUMBER(| 22 N
LCL of inventory 18,4)

returned to a

vendor, in local

currency.
F_IVL_TSF_IN_COST_A | Thevalue atcost | NUMBER(| 23 N
MT of inventory 18,4)

transferred in, in

primary currency
F_IVL_TSF_IN_COST_A | Thevalue atcost | NUMBER(| 24 N
MT_LCL of inventory 18,4)

transferred in, in

local currency
F_IVL_TSF_IN_RTL_A The value at retail | NUMBER(| 25 N
MT of inventory 18,4)

transferred in, in

primary currency
F_IVL_TSF_IN_RTL_A The value at retail | NUMBER(| 26 N
MT_LCL of inventory 18,4)

transferred in, in

local currency.
F_IVL_TSF_OUT_COST | Thevalueatcost | NUMBER(| 27 N
_AMT of inventory 18,4)

transferred out, in

primary currency
F_IVL_TSF_OUT_COST | Thevalue atcost | NUMBER(| 28 N
_AMT _LCL of inventory 18,4)

transferred out, in
local currency

156

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_TSF_OUT_RTL_ | The value at retail | NUMBER(| 29 N
AMT of inventory 18,4)

transferred out, in

primary currency
F_IVL_TSF_OUT_RTL_ | The value at retail | NUMBER(| 30 N
AMT_LCL of inventory 18,4)

transferred out, in

local currency
F IVL SHRK COST A The value at cost NUMBER(| 31 N
MT of the difference 18,4)

between actual

and ending

inventory, in

primary currency.
F_IVL_SHRK_COST_A The value at cost NUMBER(| 32 N
MT _LCL of the difference 18,4)

between actual

and ending

inventory, in local

currency.
F IVL_SHRK RTL_AM | The value at retail | NUMBER(| 33 N
T of the difference 18,4)

between actual

and ending

inventory, in

primary currency.
F IVL_ SHRK RTL_AM | The value at retail | NUMBER(| 34 N
T LCL of the difference 18,4)

between actual

and ending

inventory, in local

currency.
F IVL_RTRNS _COST_A | The value at cost NUMBER(| 35 N
MT of inventory 18,4)

returned from

sales, in primary

currency
F IVL_RTRNS COST_A | The value at cost NUMBER(| 36 N
MT_LCL of inventory 18,4)

returned from
sales, in local
currency

157

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_RTRNS_RTL_AM | The value at retail | NUMBER(| 37 N
T of inventory 18,4)

returned from

sales, in primary

currency
F IVL_RTRNS_RTL_AM | The value at retail | NUMBER(| 38 N
T LCL of inventory 18,4)

returned from

sales, in local

currency
F_IVL_RECLASS IN_C | Thevalueatcost | NUMBER(| 39 N
OST_AMT of inventory 18,4)

reclassified to this

location, in

primary currency
F IVL RECLASS IN_C | The value at cost NUMBER(| 40 N
OST_AMT_LCL of inventory 18,4)

reclassified to this

location, in local

currency
F _IVL_RECLASS IN_RT | The value at retail | NUMBER(| 41 N
L AMT of inventory 18,4)

reclassified to this

location, in

primary currency
F_IVL_RECLASS_IN_RT | The value at retail | NUMBER(| 42 N
L AMT LCL of inventory 18,4)

reclassified to this

location, in local

currency
F _IVL RECLASS OUT_ | The value at cost NUMBER(| 43 N
COST_AMT of inventory 18,4)

reclassified from

this location, in

primary currency
F_IVL_RECLASS_OUT_ | The value at cost NUMBER(| 44 N
COST_AMT_LCL of inventory 18,4)

reclassified from
this location, in
local currency

158

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_RECLASS OUT_ | The value at retail | NUMBER(| 45 N
RTL_AMT of inventory 18,4)

reclassified from

this location, in

primary currency
F IVL _RECLASS OUT_ | The value at retail | NUMBER(| 46 N
RTL_AMT_LCL of inventory 18,4)

reclassified from

this location, in

local currency
F IVL_SLS COST_AMT | The value at cost NUMBER(| 47 N

of inventory sold, | 18,4)

in primary

currency
F IVL_SLS COST_AMT | The value at cost NUMBER(| 48 N
_LCL of inventory sold, | 18,4)

in local currency.
F IVL_SLS RTL_AMT The value at retail | NUMBER(| 49 N

of inventory sold, | 18,4)

in primary

currency
F_IVL_SLS RTL_AMT_ | The value at retail | NUMBER(| 50 N
LCL of inventory sold, | 18,4)

in local currency.
F _IVL_END_SOH_COST | The end of period | NUMBER(| 51 N
_AMT stock on hand 18,4)

total cost, in

primary currency.
F_IVL_END_SOH_COST | The end of period | NUMBER(| 52 N
_AMT_LCL stock on hand 18,4)

total cost, in local

currency
F_IVL_END_SOH_RTL_ | The end of period | NUMBER(| 53 N
AMT stock on hand 18,4)

total retail, in

primary currency.
F_IVL_END_SOH_RTL_ | The end of period | NUMBER(| 54 N
AMT _LCL stock on hand 18,4)

total retail, in local
currency

159

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_GRS_PRFT_AMT | The total gross NUMBER(| 55 N

profit amount, in 18,4)

primary currency
F_IVL_GRS_PRFT_AMT | The total gross NUMBER(| 56 N
_LCL profit amount, in 18,4)

local currency.
F_IVL_CUM_MKON_PC | The cumulative NUMBER(| 57 N
T markon percent. 12,4)
F_IVL_MKUP_AMT The value of NUMBER(| 58 N

upward revisions | 18,4)

in price, in

primary currency.
F_IVL_MKUP_AMT_LC | The value of NUMBER(| 59 N
L upward revisions | 18,4)

in price, in local

currency.
F_IVL_MKUP_CNCLLD | The value of NUMBER(| 60 N
_AMT corrections to a 18,4)

upward revisions

in price, in

primary currency.
F_IVL_MKUP_CNCLLD | The value of NUMBER(| 61 N
_AMT _LCL corrections to a 18,4)

upward revisions

in price, in local

currency.
F_IVL_MKDN_CNCLLD | The value of NUMBER(| 62 N
_AMT markdown 18,4)

cancellation to

correct an

unintentional error

in a previous

markup, in local

currency.
F_IVL_MKDN_CNCLLD | The value of NUMBER(| 63 N
_AMT _LCL markdown 18,4)

cancellation to

correct an

unintentional error

in a previous

markup, in

primary currency.

160

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_PERM_MKDN_A | The value of NUMBER(| 64 N
MT permanent 18,4)

reduction in price,

in primary

currency.
F_IVL_PERM_MKDN_A | The value of NUMBER(| 65 N
MT_LCL permanent 18,4)

reduction in price,

in local currency.
F_IVL_PRMTN_MKDN_ | The value of NUMBER(| 66 N
AMT promotion 18,4)

reductions of the

price, in primary

currency.
F IVL_PRMTN_MKDN | The value of NUMBER(| 67 N
AMT_LCL promotion 18,4)

reductions of the

price, in local

currency.
F_IVL_CLRC_MKDN_A | The value of NUMBER(| 68 N
MT clearance 18,4)

reductions of the

price, in primary

currency.
F_IVL_CLRC_MKDN_A | The value of NUMBER(| 69 N
MT _LCL clearance 18,4)

reductions of the

price, in local

currency
F_IVL_EMPLY_DISC_A | The value of NUMBER(| 70 N
MT employee 18,4)

discounts, in

primary currency.
F_IVL_EMPLY_DISC_A | The value of NUMBER(| 71 N
MT _LCL employee 18,4)

discounts, in local

currency.
F_IVL_CASH_DISC_AM | The value of cash | NUMBER(| 72 N
T discounts, in 18,4)

primary currency.

161

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_CASH_DISC_AM | The value of cash | NUMBER(| 73 N
T LCL discounts, in local | 18,4)

currency.
F_IVL_FRGHT_COST_A | The value of NUMBER(| 74 N
MT freight expenses, 18,4)

in primary

currency.
F_IVL_FRGHT_COST_A | The value of NUMBER(| 75 N
MT_LCL freight expenses, 18,4)

in local currency.
F_IVL_WRKRM_COST_ | The value of NUMBER(| 76 N
AMT workroom 18,4)

expenses, in

primary currency.
F_IVL_WRKRM_COST_ | The value of NUMBER(| 77 N
AMT _LCL workroom 18,4)

expenses, in local

currency
F_IVL_GAFS _COST_A The goods NUMBER(| 78 N
MT available for sale 18,4)

valued at cost, in

primary currency.
F_IVL_GAFS_COST_A The goods NUMBER(| 79 N
MT _LCL available for sale 18,4)

valued at cost, in

local currency.
F_IVL_GAFS_RTL_AMT | The goods NUMBER(| 80 N

available for sale 18,4)

valued at retail, in

primary currency.
F_IVL_GAFS_RTL_AMT | The goods NUMBER(| 81 N
_LCL available for sale | 18,4)

valued at retail, in

local currency.
F IVL_SLS QTY The number of net | NUMBER(| 82 N

units of 12,4)

merchandise sold.

162

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_SLS RTL_EX_V | The value at retail, | NUMBER(| 83 N
AT_AMT excluding VAT, 18,4)

of net

merchandise sold,

in primary

currency.
F_IVL_SLS RTL_EX_V | The value at retail, | NUMBER(| 84 N
AT_AMT_LCL excluding VAT, 18,4)

of net

merchandise sold,

in local currency.
F_IVL_FRGHT_CLAIM_ | The value at retail | NUMBER(| 85 N
RTL_AMT of freight claim, in | 18,4)

primary currency.
F_IVL_FRGHT_CLAIM_ | The value at retail | NUMBER(| 86 N
RTL_AMT _LCL of freight claim, in | 18,4)

local currency.
F_IVL_FRGHT_CLAIM_ | Thevalue at cost | NUMBER(| 87 N
COST_AMT of freight claim, in | 18,4)

primary currency.
F_IVL_FRGHT_CLAIM_ | The value at cost | NUMBER(| 88 N
COST_AMT_LCL of freight claim, in | 18,4)

local currency.
F_IVL_IC_TSF_IN_COS | Thevalueatcost | NUMBER(| 89 N
T AMT of inventory 18,4)

transferred in for

intercompany

transfers, in

primary currency.
F_IVL_IC_TSF_IN_COS | Thevalue atcost | NUMBER(| 90 N
T _AMT_LCL of inventory 18,4)

transferred in for

intercompany

transfers, in local

currency.
F_IVL_IC_TSF_IN_RTL_ | The value at retail | NUMBER(| 91 N
AMT of inventory 18,4)

transferred in for

intercompany

transfers, in
primary currency.

163

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_IC_TSF_IN_RTL_ | The value at retail | NUMBER(| 92 N
AMT_LCL of inventory 18,4)

transferred in for

intercompany

transfers, in local

currency.
F IVL_IC_TSF _OUT_CO | The value at cost NUMBER(| 93 N
ST_AMT of inventory 18,4)

transferred out for

intercompany

transfers, in

primary currency.
F IVL_IC_TSF _OUT_CO | The value at cost NUMBER(| 94 N
ST_AMT_LCL of inventory 18,4)

transferred out for

intercompany

transfers, in local

currency.
F_IVL_IC_TSF_OUT_RT | The value at retail | NUMBER(| 95 N
L AMT of inventory 18,4)

transferred out for

intercompany

transfers, in

primary currency.
F_IVL_IC_TSF_OUT_RT | The value at retail | NUMBER(| 96 N
L AMT LCL of inventory 18,4)

transferred out for

intercompany

transfers, in local

currency.
F IVL_IC_MARGIN_AM | The margin value | NUMBER(| 97 N
T of intercompany 18,4)

transfers, in

primary currency.
F_IVL_IC_MARGIN_AM | The margin value | NUMBER(| 98 N
T_LCL of intercompany 18,4)

transfers, in local
currency.

164

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Byte
s

Field order

Required
field

F_IVL_IC_MKDN_RTL_
AMT

The markdown at
retail of
merchandise
transferred out for
intercompany
transfers, in
primary currency.

NUMBER(
18,4)

99

F_IVL_IC_MKDN_RTL_
AMT_LCL

The markdown at
retail of
merchandise
transferred out for
intercompany
transfers, in local
currency.

NUMBER(
18,4)

100

F_IVL_IC_MKUP RTL_
AMT

The markup at
retail of
merchandise
transferred out for
intercompany
transfers, in
primary currency.

NUMBER(
18,4)

101

F_IVL_IC_MKUP RTL_
AMT _LCL

The markup at
retail of
merchandise
transferred out for
intercompany
transfers, in local
currency.

NUMBER(
18,4)

102

F_IVL_WO_UPD_INV_C
OST_AMT

The value at cost
of merchandise
required work
order activity,
update inventory,
for intercompany
transfers, in
primary currency.

NUMBER(
18,4)

103

165

Retek Merchandising System

Name

Description

Data
Type/Byte
s

Field order

Required
field

F_IVL_WO_UPD_INV_C
OST_AMT_LCL

The value at cost
of merchandise
required work
order activity,
update inventory,
for intercompany
transfers, in local
currency.

NUMBER(
18,4)

104

F_IVL_WO_POST FIN_
COST_AMT

The value at cost
of merchandise
required work
order activity, post
to financial, for
intercompany
transfers, in
primary currency.

NUMBER(
18,4)

105

F_IVL_WO_POST FIN_
COST_AMT _LCL

The value at cost
of merchandise
required work
order activity, post
to financial, for
intercompany
transfers, in local
currency.

NUMBER(
18,4)

106

F_IVL_ADJ COGS_COS
T_AMT

The value at cost
of stock
adjustments that
affect COGS, in
primary currency.

NUMBER(
18,4)

107

F_IVL_ADJ_COGS_COS
T_AMT_LCL

The value at cost
of stock
adjustments that
affect COGS, in
local currency.

NUMBER(
18,4)

108

F_IVL_ADJ_COGS_RTL
_AMT

The value at retail
of stock
adjustments that
affect COGS, in
primary currency.

NUMBER(
18,4)

109

166

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_ADJ COGS_RTL | The value at retail | NUMBER(| 110 N
_AMT_LCL of stock 18,4)

adjustments that

affect COGS, in

local currency.
F_IVL_RESTOCK_FEE_ | Thevalue atcost | NUMBER(| 111 N
AMT of restocking fees | 18,4)

received, in

primary currency.
F_IVL_RESTOCK_FEE_ | Thevalue atcost | NUMBER(| 112 N
AMT_LCL of restocking fees | 18,4)

received, in local

currency.
F_IVL_DEAL_INCM_SL | Thevalue of deal | NUMBER(| 113 N
S_AMT incomes sales 18,4)

received, in

primary currency.
F_IVL_DEAL_INCM_SL | The value of deal | NUMBER(| 114 N
S AMT LCL incomes sales 18,4)

received, in local

currency.
F_IVL_DEAL_INCM_PU | The value of deal | NUMBER(| 115 N
RCH_AMT incomes purchases | 18,4)

received, in

primary currency.
F_IVL_DEAL_INCM_PU | The value of deal | NUMBER(| 116 N
RCH_AMT_LCL incomes purchases | 18,4)

received, in local

currency.
F_IVL_COST_VAR_AM | The standard cost | NUMBER(| 117 N
T change as well as | 18,4)

the cost difference
between standard
cost and
transaction cost
for transactions
such as receiving,
RTV and transfers
using the standard
cost method of
accounting, in
primary currency.

167

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_COST_VAR_AM | The standard cost | NUMBER(| 118 N
T LCL change as well as | 18,4)

the cost difference

between standard

cost and

transaction cost

for transactions

such as receiving,

RTV and transfers

using the standard

cost method of

accounting, in

local currency.
F_IVL_RTL_COST_VAR | The cost variance | NUMBER(| 119 N
_AMT using retail based | 18,4)

accounting, in

primary currency.
F_IVL_RTL_COST_VAR | The cost variance | NUMBER(| 120 N
_AMT_LCL using retail based | 18,4)

accounting, in

local currency.
F_IVL_MARGIN_COST_ | The cost variance | NUMBER(| 121 N
VAR_AMT using cost based 18,4)

accounting, in

primary currency.
F_IVL_MARGIN_COST_ | The cost variance | NUMBER(| 122 N
VAR_AMT _LCL using cost based 18,4)

accounting, in

local currency.
F_IVL_UP_CHRG_PRFT | The value of profit | NUMBER(| 123 N
_AMT up charge costs 18,4)

incurred, in

primary currency.
F_IVL_UP_CHRG_PRFT | The value of NUMBER(| 124 N
_AMT_LCL expense up charge | 18,4)

costs incurred, in

primary currency.
F_IVL_UP_CHRG_EXP_ | The value of NUMBER(| 125 N
AMT expense up charge | 18,4)

costs incurred, in
primary currency.

168

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Byte
s

Field order

Required
field

F_IVL_UP_CHRG_EXP_

AMT_LCL

The value of
expense up charge
costs incurred, in
local currency.

NUMBER(
18,4)

126

F_IVL_TSF_IN_BK_COS

T_AMT

The value at cost
of inventory
transferred in
through a book
transfer, in
primary currency.

NUMBER(
18,4)

127

F_IVL_TSF_IN_BK_COS

T_AMT_LCL

The value at cost
of inventory
transferred in
through a book
transfer, in local
currency.

NUMBER(
18,4)

128

F_IVL_TSF_IN_BK_RTL

_AMT

The value at retail
of inventory
transferred in
through a book
transfer, in
primary currency.

NUMBER(
18,4)

129

F_IVL_TSF_IN_BK_RTL

_AMT_LCL

The value at retail
of inventory
transferred in
through a book
transfer, in local
currency.

NUMBER(
18,4)

130

F_IVL_TSF_OUT BK_C

OST_AMT

The value at cost
of inventory
transferred out
through a book
transfer, in
primary currency.

NUMBER(
18,4)

131

F_IVL_TSF_OUT BK_C

OST_AMT_LCL

The value at cost
of inventory
transferred out
through a book
transfer, in local
currency.

NUMBER(
18,4)

132

169

Retek Merchandising System

Name

Description

Data
Type/Byte
s

Field order

Required
field

F_IVL_TSF_OUT BK_R
TL_AMT

The value at retail
of inventory
transferred out
through a book
transfer, in
primary currency.

NUMBER(
18,4)

133

F_IVL_TSF_OUT BK_R
TL_AMT_LCL

The value at retail
of inventory
transferred out
through a book
transfer, in local
currency.

NUMBER(
18,4)

134

F_IVL_INTER_STK_SLS
_AMT

The value of
cumulative net
sales since the last
time a physical
inventory was
taken, in primary
currency. Itis
valued at cost for
the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

135

F_IVL_INTER_STK_SLS
_AMT_LCL

The cumulative
net sales value
since the last time
a physical
inventory was
taken, in local
currency. Itis
valued at cost for
the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

136

170

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Byte
s

Field order

Required
field

F_IVL_INTER_STK_SH
RK_AMT

The cumulative
estimated (or
budgeted)
shrinkage value
since the last time
a physical
inventory was
taken, in primary
currency. Itis
valued at cost for
the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

137

F_IVL_INTER_STK_SH
RK_AMT_LCL

The cumulative
estimated (or
budgeted)
shrinkage value
since the last time
a physical
inventory was
taken, in local
currency. Itis
valued at cost for
the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

138

F_IVL_STK_MTD_SLS_
AMT

The month-to-date
net sales value, in
primary currency.
It is valued at cost
for the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

139

F_IVL_STK_MTD_SLS_
AMT_LCL

The month-to-date
net sales value, in
local currency. It
is valued at cost
for the cost
department and at
retail for the retail
department.

NUMBER(
18,4)

140

Retek Merchandising System

Name Description Data Field order | Required
Type/Byte field
S

F_IVL_STK_MTD_SHR | The month-to-date | NUMBER(| 141 N
K_AMT estimated (or 18,4)

budgeted)

shrinkage value,

in primary

currency. Itis

valued at cost for

the cost

department and at

retail for the retail

department.
F_IVL_STK_MTD_SHR | The month-to-date | NUMBER(| 142 N
K_AMT_LCL estimated (or 18,4)

budgeted)

shrinkage value,

in local currency.

It is valued at cost

for the cost

department and at

retail for the retail

department.
F_IVL_BK_STOCK_RTL | The value at retail | NUMBER(| 143 N
_AMT of book stock, in 18,4)

primary currency.
F_IVL_BK_STOCK_RTL | The value at retail | NUMBER(| 144 N
_AMT_LCL of book stock, in 18,4)

local currency.
F_IVL_BK_STOCK_COS | The value at cost | NUMBER(| 145 N
T_AMT of book stock, in 18,4)

primary currency.
F_IVL_BK_STOCK_COS | The value at cost | NUMBER(| 146 N
T AMT_LCL of book stock, in 18,4)

local currency.
F_IVL_ACTL_STOCK_C | Thevalue at cost | NUMBER(| 147 N
OST_AMT of actual stock, 18,4)

when the physical
inventory is taken,
in primary
currency.

172

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Byte field
S
F_IVL_ACTL_STOCK_C | Thevalue atcost | NUMBER(| 148 N
OST_AMT _LCL of actual stock, 18,4)
when the physical
inventory is taken,
in local currency.
F_IVL_ACTL_STOCK_R | The value at retail | NUMBER(| 149 N
TL_AMT of actual stock, 18,4)
when the physical
inventory is taken,
in primary
currency.
F_IVL_ACTL_STOCK_R | The value at retail | NUMBER(| 150 N
TL_AMT_LCL of actual stock, 18,4)
when the physical
inventory is taken,
in local currency.

stiblwdm.txt

Business rules:

e This interface file contains stock ledger values for a department, class, subclass and location

on a given week.

e This interface file cannot contain duplicate transactions for a dept_idnt, class_idnt,
sbclass_idnt, loc_idnt and day_dt combination.

e This interface file follows the fact flat file interface layout standard.

o For this interface file, the day_dt represents the end day of a week.

e This interface file does not need to be provided when the stock ledger uses Gregorian time
(because this table is not populated).

Name Description | Data Field | Required
Type/Bytes order | field
SBCLASS_IDNT The unique CHARACTER(4) |1 Yes
identifier of

the subclass
in the
product
hierarchy.

173

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

CLASS_IDNT

The unique

identifier of
the class in

the product
hierarchy.

CHARACTER(4)

Yes

DEPT_IDNT

The unique
identifier of a
department

in the
product
hierarchy.

CHARACTER(4)

Yes

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

Yes

LOC_TYPE_CDE

The code that
indicates
whether the
location is a
store or
warehouse.

CHARACTER(2)

Yes

DAY_DT

The calendar
day on which
the
transaction
occurred.

DATE

Yes

F_IVL_BEG_SOH_COST_AMT

The
beginning of
period stock
on hand total
cost, in
primary
currency.

NUMBER(18,4)

No

F_IVL_BEG_SOH_COST_AMT_LCL

The
beginning of
period stock
on hand total
cost, in local
currency.

NUMBER(18,4)

No

174

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_BEG_SOH_RTL_AMT

The
beginning of
period stock
on hand total
retail, in
primary
currency.

NUMBER(18,4)

No

F_IVL_BEG_SOH_RTL_AMT_LCL

The
beginning of
period stock
on hand total
retail, in
local
currency.

NUMBER(18,4)

10

No

F_IVL_SOH_ADJ_COST_AMT

The value at
cost of stock
on hand
adjustments,
in primary
currency.

NUMBER(18,4)

11

No

F_IVL_SOH_ADJ_COST_AMT_LCL

The value at
cost of stock
on hand
adjustments,
in local
currency.

NUMBER(18,4)

12

No

F_IVL_SOH_ADJ RTL_AMT

The value at
retail of stock
on hand
adjustments,
in primary
currency.

NUMBER(18,4)

13

No

F_IVL_SOH_ADJ RTL_AMT_LCL

The value at
retail of stock
on hand
adjustments,
in local
currency.

NUMBER(18,4)

14

No

F_IVL_RCPTS_COST_AMT

The value at
cost of
inventory
received, in
primary
currency.

NUMBER(18,4)

15

No

175

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RCPTS_COST_AMT _LCL

The value at
cost of
inventory
received, in
local
currency.

NUMBER(18,4)

16

No

F_IVL_RCPTS_RTL_AMT

The value at
retail of
inventory
received, in
primary
currency.

NUMBER(18,4)

17

No

F_IVL_RCPTS_RTL_AMT_LCL

The value at
retail of
inventory
received, in
local
currency.

NUMBER(18,4)

18

No

F_IVL_RTV_COST_AMT

The value at
cost of
inventory
returned to a
vendor, in
primary
currency.

NUMBER(18,4)

19

No

F_IVL_RTV_COST_AMT_LCL

The value at
cost of
inventory
returned to a
vendor, in
local
currency.

NUMBER(18,4)

20

No

F_IVL_RTV_RTL_AMT

The value at
retail of
inventory
returned to a
vendor, in
primary
currency.

NUMBER(18,4)

21

No

176

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RTV_RTL_AMT_LCL

The value at
retail of
inventory
returned to a
vendor, in
local
currency.

NUMBER(18,4)

22

No

F_IVL_TSF_IN_COST_AMT

The value at
cost of
inventory
transferred
in, in primary
currency.

NUMBER(18,4)

23

No

F_IVL_TSF_IN_COST_AMT_LCL

The value at
cost of
inventory
transferred
in, in local
currency.

NUMBER(18,4)

24

No

F_IVL_TSF_IN_RTL_AMT

The value at
retail of
inventory
transferred
in, in primary
currency.

NUMBER(18,4)

25

No

F_IVL_TSF_IN_RTL_AMT_LCL

The value at
retail of
inventory
transferred
in, in local
currency.

NUMBER(18,4)

26

No

F_IVL_TSF_OUT_COST_AMT

The value at
cost of
inventory
transferred
out, in
primary
currency.

NUMBER(18,4)

27

No

F_IVL_TSF_OUT_COST_AMT_LCL

The value at
cost of
inventory
transferred
out, in local
currency.

NUMBER(18,4)

28

No

177

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_TSF_OUT_RTL_AMT

The value at
retail of
inventory
transferred
out, in
primary
currency.

NUMBER(18,4)

29

No

F_IVL_TSF_OUT RTL_AMT_LCL

The value at
retail of
inventory
transferred
out, in local
currency.

NUMBER(18,4)

30

No

F_IVL_SHRK_COST_AMT

The value at
cost of the
difference
between
actual and
ending
inventory, in
primary
currency.

NUMBER(18,4)

31

No

F_IVL_SHRK_COST_AMT_LCL

The value at
cost of the
difference
between
actual and
ending
inventory, in
local
currency.

NUMBER(18,4)

32

No

F_IVL_SHRK_RTL_AMT

The value at
retail of the
difference
between
actual and
ending
inventory, in
primary
currency.

NUMBER(18,4)

33

No

178

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_SHRK_RTL_AMT_LCL

The value at
retail of the
difference
between
actual and
ending
inventory, in
local
currency.

NUMBER(18,4)

34

No

F_IVL_RTRNS_COST_AMT

The value at
cost of
inventory
returned
from sales, in
primary
currency.

NUMBER(18,4)

35

No

F_IVL_RTRNS_COST_AMT_LCL

The value at
cost of
inventory
returned
from sales, in
local
currency.

NUMBER(18,4)

36

No

F_IVL_RTRNS_RTL_AMT

The value at
retail of
inventory
returned
from sales, in
primary
currency.

NUMBER(18,4)

37

No

F_IVL_RTRNS_RTL_AMT_LCL

The value at
retail of
inventory
returned
from sales, in
local
currency.

NUMBER(18,4)

38

No

179

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RECLASS_IN_COST_AMT

The value at
cost of
inventory
reclassified
to this
location, in
primary
currency.

NUMBER(18,4)

39

No

F_IVL_RECLASS_IN_COST_AMT _LCL

The value at
cost of
inventory
reclassified
to this
location, in
local
currency.

NUMBER(18,4)

40

No

F_IVL_RECLASS_IN_RTL_AMT

The value at
retail of
inventory
reclassified
to this
location, in
primary
currency.

NUMBER(18,4)

41

No

F_IVL_RECLASS_IN_RTL_AMT_LCL

The value at
retail of
inventory
reclassified
to this
location, in
local
currency.

NUMBER(18,4)

42

No

F_IVL_RECLASS OUT COST AMT

The value at
cost of
inventory
reclassified
from this
location, in
primary
currency.

NUMBER(18,4)

43

No

180

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RECLASS OUT_COST_AMT_LCL

The value at
cost of
inventory
reclassified
from this
location, in
local
currency.

NUMBER(18,4)

44

No

F_IVL_RECLASS OUT RTL_AMT

The value at
retail of
inventory
reclassified
from this
location, in
primary
currency.

NUMBER(18,4)

45

No

F_IVL_RECLASS OUT RTL_AMT_LCL

The value at
retail of
inventory
reclassified
from this
location, in
local
currency.

NUMBER(18,4)

46

No

F_IVL_SLS_COST AMT

The value at
cost of
inventory
sold, in
primary
currency.

NUMBER(18,4)

47

No

F_IVL_SLS_COST_AMT_LCL

The value at
cost of
inventory
sold, in local
currency.

NUMBER(18,4)

48

No

F_IVL_SLS_RTL_AMT

The value at
retail of
inventory
sold, in
primary
currency.

NUMBER(18,4)

49

No

181

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_SLS_RTL_AMT_LCL

The value at
retail of
inventory
sold, in local
currency.

NUMBER(18,4)

50

No

F_IVL_END_SOH_COST_AMT

The end of
period stock
on hand total
cost, in
primary
currency.

NUMBER(18,4)

51

No

F_IVL_END_SOH_COST_AMT LCL

The end of
period stock
on hand total
cost, in local
currency.

NUMBER(18,4)

52

No

F_IVL_END_SOH_RTL_AMT

The end of
period stock
on hand total
retail, in
primary
currency.

NUMBER(18,4)

53

No

F_IVL_END_SOH_RTL_AMT _LCL

The end of
period stock
on hand total
retail, in
local
currency.

NUMBER(18,4)

54

No

F_IVL_GRS_PRFT_AMT

The total
gross profit
amount, in
primary
currency.

NUMBER(18,4)

55

No

F_IVL_GRS_PRFT_AMT_LCL

The total
gross profit
amount, in
local
currency.

NUMBER(18,4)

56

No

F_IVL_CUM_MKON_PCT

The
cumulative
markon
percent.

NUMBER(12,4)

57

No

182

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_ADJ_STOCK_COST_AMT

The value at
cost of
adjusted
stock when
the physical
inventory is
taken, in
primary
currency.

NUMBER(18,4)

58

No

F_IVL_ADJ_STOCK_COST_AMT_LCL

The value at
cost of
adjusted
stock when
the physical
inventory is
taken, in
local
currency.

NUMBER(18,4)

59

No

F_IVL_ADJ STOCK_RTL_AMT

The value at
retail of
adjusted
stock when
the physical
inventory is
taken, in
primary
currency.

NUMBER(18,4)

60

No

F_IVL_ADJ_STOCK_RTL_AMT_LCL

The value at
retail of
adjusted
stock when
the physical
inventory is
taken, in
local
currency.

NUMBER(18,4)

61

No

F_IVL_MKUP_AMT

The value of
upward
revisions in
price, in
primary
currency.

NUMBER(18,4)

62

No

183

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_MKUP_AMT_LCL

The value of
upward
revisions in
price, in local
currency.

NUMBER(18,4)

63

No

F_IVL_MKUP_CNCLLD_AMT

The value of
corrections to
upward
revisions in
price, in
primary
currency.

NUMBER(18,4)

64

No

F_IVL_MKUP_CNCLLD _AMT_LCL

The value of
corrections to
upward
revisions in
price, in local
currency.

NUMBER(18,4)

65

No

F_IVL_MKDN_CNCLLD_AMT

The value of
markdown
cancellation
to correct an
unintentional
errorin a
previous
markup, in
primary
currency.

NUMBER(18,4)

66

No

F_IVL_MKDN_CNCLLD_AMT_LCL

The value of
markdown
cancellation
to correct an
unintentional
errorin a
previous
markup, in
local
currency.

NUMBER(18,4)

67

No

F_IVL_PERM_MKDN_AMT

The value of
permanent
reductions of
the price, in
primary
currency.

NUMBER(18,4)

68

No

184

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_PERM_MKDN_AMT_LCL

The value of
permanent
reductions of
the price, in
local
currency.

NUMBER(18,4)

69

No

F_IVL_PRMTN_MKDN_AMT

The value of
promotion
reductions of
the price, in
primary
currency.

NUMBER(18,4)

70

No

F_IVL_PRMTN_MKDN_AMT_LCL

The value of
promotion
reductions of
the price, in
local
currency.

NUMBER(18,4)

71

No

F_IVL_CLRC_MKDN_AMT

The value of
clearance
reductions of
the price, in
primary
currency.

NUMBER(18,4)

72

No

F_IVL_CLRC_MKDN_AMT_LCL

The value of
clearance
reductions of
the price, in
local
currency

NUMBER(18,4)

73

No

F_IVL_EMPLY_DISC_AMT

The value of
employee
discounts, in
primary
currency.

NUMBER(18,4)

74

No

F_IVL_EMPLY_DISC_AMT_LCL

The value of
employee
discounts, in
local
currency.

NUMBER(18,4)

75

No

185

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_CASH_DISC_AMT

The value of
cash
discounts, in
primary
currency.

NUMBER(18,4)

76

No

F_IVL_CASH_DISC_AMT_LCL

The value of
cash
discounts, in
local
currency.

NUMBER(18,4)

77

No

F_IVL_FRGHT_COST_AMT

The value of
freight
expenses, in
primary
currency.

NUMBER(18,4)

78

No

F_IVL_FRGHT_COST_AMT LCL

The value of
freight
expenses, in
local
currency.

NUMBER(18,4)

79

No

F_IVL_WRKRM_COST_AMT

The value of
workroom
expenses, in
primary
currency.

NUMBER(18,4)

80

No

F_IVL_WRKRM_COST_AMT_LCL

The value of
workroom
expenses, in
local
currency.

NUMBER(18,4)

81

No

F_IVL_GAFS_COST AMT

The goods
available for
sale valued at
cost, in
primary
currency.

NUMBER(18,4)

82

No

F_IVL_GAFS_COST_AMT_LCL

The goods
available for
sale valued at
cost, in local
currency.

NUMBER(18,4)

83

No

186

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_GAFS_RTL_AMT

The goods
available for
sale valued at
retail, in
primary
currency.

NUMBER(18,4)

84

No

F_IVL_GAFS_RTL_AMT_LCL

The goods
available for
sale valued at
retail, in
local
currency.

NUMBER(18,4)

85

No

F_IVL_SLS_QTY

The number
of net units
of
merchandise
sold.

NUMBER(12,4)

86

No

F_IVL_SLS_RTL_EX_VAT AMT

The value at
retail,
excluding
VAT, of net
merchandise
sold, in
primary
currency.

NUMBER(18,4)

87

No

F_IVL_SLS_RTL_EX VAT _AMT_LCL

The value at
retail,
excluding
VAT, of net
merchandise
sold, in local
currency.

NUMBER(18,4)

88

No

F_IVL_FRGHT_CLAIM_RTL_AMT

The value at
retail of
freight claim,
in primary
currency.

NUMBER(18,4)

89

No

F_IVL_FRGHT CLAIM_RTL_AMT_LCL

The value at
retail of
freight claim,
in local
currency.

NUMBER(18,4)

90

No

187

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_FRGHT_CLAIM_COST_AMT

The value at
cost of
freight claim,
in primary
currency.

NUMBER(18,4)

91

No

F_IVL_FRGHT_CLAIM_COST AMT_LCL

The value at
cost of
freight claim,
in local
currency.

NUMBER(18,4)

92

No

F_IVL_IC_TSF_IN_COST_AMT

The value at
cost of
inventory
transferred in
for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

93

No

F_IVL_IC_TSF_IN_COST_AMT_LCL

The value at
cost of
inventory
transferred in
for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

94

No

F_IVL_IC_TSF_IN_RTL_AMT

The value at
retail of
inventory
transferred in
for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

95

No

188

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_IC_TSF_IN_RTL_AMT_LCL

The value at
retail of
inventory
transferred in
for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

96

No

F_IVL_IC_TSF_OUT_COST_AMT

The value at
cost of
inventory
transferred
out for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

97

No

F_IVL_IC_TSF_OUT_COST AMT_LCL

The value at
cost of
inventory
transferred
out for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

98

No

F_IVL_IC_TSF_OUT_RTL_AMT

The value at
retail of
inventory
transferred
out for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

99

No

F_IVL_IC_TSF_OUT_RTL_AMT _LCL

The value at
retail of
inventory
transferred
out for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

100

No

189

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_IC_MARGIN_AMT

The margin
value of
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

101

No

F_IVL_IC_MARGIN_AMT_LCL

The margin
value of
intercompany
transfers, in
local
currency.

NUMBER(18,4)

102

No

F_IVL_IC_MKDN_RTL_AMT

The
markdown at
retail of
merchandise
transferred
out for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

103

No

F_IVL_IC_MKDN_RTL_AMT_LCL

The
markdown at
retail of
merchandise
transferred
out for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

104

No

F_IVL_IC_MKUP_RTL_AMT

The markup
at retail of
merchandise
transferred
out for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

105

No

190

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field | Required
order | field

F_IVL_IC_MKUP_RTL_AMT_LCL

The markup
at retail of
merchandise
transferred
out for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

106 No

F_IVL_WO_UPD_INV_COST_AMT

The value at
cost of
merchandise
required
work order
activity,
update
inventory, for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

107 No

F_IVL_WO_UPD_INV_COST_AMT _LCL

The value at
cost of
merchandise
required
work order
activity,
update
inventory, for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

108 No

F_IVL_WO_POST_FIN_COST_AMT

The value at
cost of
merchandise
required
work order
activity, post
to financial,
for
intercompany
transfers, in
primary
currency.

NUMBER(18,4)

109 No

191

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_WO_POST_FIN_COST_AMT_LCL

The value at
cost of
merchandise
required
work order
activity, post
to financial,
for
intercompany
transfers, in
local
currency.

NUMBER(18,4)

110

No

F_IVL_ADJ_COGS_COST_AMT

The value at
cost of stock
adjustments
that affect
COGS, in
primary
currency.

NUMBER(18,4)

111

No

F_IVL_ADJ_COGS_COST_AMT _LCL

The value at
cost of stock
adjustments
that affect
COGS, in
local
currency.

NUMBER(18,4)

112

No

F_IVL_ADJ_COGS_RTL_AMT

The value at
retail of stock
adjustments
that affect
COGS, in
primary
currency

NUMBER(18,4)

113

No

F_IVL_ADJ_COGS_RTL_AMT_LCL

The value at
retail of stock
adjustments
that affect
COGS, in
local
currency

NUMBER(18,4)

114

No

192

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RESTOCK_FEE_AMT

The value at
cost of
restocking
fees received,
in primary
currency.

NUMBER(18,4)

115

No

F_IVL_RESTOCK_FEE_AMT LCL

The value at
cost of
restocking
fees received,
in local
currency.

NUMBER(18,4)

116

No

F_IVL_DEAL_INCM_SLS_AMT

The value of
deal incomes
sales
received, in
primary
currency.

NUMBER(18,4)

117

No

F_IVL_DEAL_INCM_SLS_AMT _LCL

The value of
deal incomes
sales
received, in
local
currency.

NUMBER(18,4)

118

No

F_IVL_DEAL_INCM_PURCH_AMT

The value of
deal incomes
purchases
received, in
primary
currency.

NUMBER(18,4)

119

No

F_IVL_DEAL_INCM_PURCH_AMT_LCL

The value of
deal incomes
purchases
received, in
local
currency.

NUMBER(18,4)

120

No

193

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_COST_VAR_AMT

The standard
cost change
as well as the
cost
difference
between
standard cost
and
transaction
cost for
transactions
such as
receiving,
RTV and
transfers
using the
standard cost
method of
accounting,
in primary
currency.

NUMBER(18,4)

121

No

F_IVL_COST VAR _AMT _LCL

The standard
cost change
as well as the
cost
difference
between
standard cost
and
transaction
cost for
transactions
such as
receiving,
RTV and
transfers
using the
standard cost
method of
accounting,
in local
currency.

NUMBER(18,4)

122

No

194

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_RTL_COST_VAR_AMT

The cost
variance
using retail
based
accounting,
in primary
currency.

NUMBER(18,4)

123

No

F_IVL_RTL_COST_VAR_AMT _LCL

The cost
variance
using retail
based
accounting,
in local
currency.

NUMBER(18,4)

124

No

F_IVL_MARGIN_COST_VAR_AMT

The cost
variance
using cost
based
accounting,
in primary
currency.

NUMBER(18,4)

125

No

F_IVL_MARGIN_COST_VAR_AMT _LCL

The cost
variance
using cost
based
accounting,
in local
currency.

NUMBER(18,4)

126

No

F_IVL_UP_CHRG_PRFT_AMT

The value of
profit up
charge costs
incurred, in
primary
currency.

NUMBER(18,4)

127

No

F_IVL_UP_CHRG_PRFT_AMT_LCL

The value of
profit up
charge costs
incurred, in
local
currency.

NUMBER(18,4)

128

No

195

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_UP_CHRG_EXP_AMT

The value of
expense up
charge costs
incurred, in
primary
currency.

NUMBER(18,4)

129

No

F_IVL_UP_CHRG_EXP_AMT_LCL

The value of
expense up
charge costs
incurred, in
local
currency.

NUMBER(18,4)

130

No

F_IVL_TSF_IN_BK_COST_AMT

The value at
cost of
inventory
transferred in
through a
book
transfer, in
primary
currency.

NUMBER(18,4)

131

No

F_IVL_TSF_IN_BK_COST_AMT_LCL

The value at
cost of
inventory
transferred in
through a
book
transfer, in
local
currency.

NUMBER(18,4)

132

No

F_IVL_TSF_IN_BK_RTL_AMT

The value at
retail of
inventory
transferred in
through a
book
transfer, in
primary
currency.

NUMBER(18,4)

133

No

196

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_IVL_TSF_IN_BK_RTL_AMT_LCL

The value at
retail of
inventory
transferred in
through a
book
transfer, in
local
currency.

NUMBER(18,4)

134

No

F_IVL_TSF_OUT_BK_COST_AMT

The value at
cost of
inventory
transferred
out through a
book
transfer, in
primary
currency.

NUMBER(18,4)

135

No

F_IVL_TSF_OUT _BK_COST _AMT LCL

The value at
cost of
inventory
transferred
out through a
book
transfer, in
local
currency.

NUMBER(18,4)

136

No

F_IVL_TSF_OUT BK_RTL_AMT

The value at
retail of
inventory
transferred
out through a
book
transfer, in
primary
currency.

NUMBER(18,4)

137

No

F_IVL_TSF_OUT _BK_RTL_AMT_LCL

The value at
retail of
inventory
transferred
out through a
book
transfer, in
local
currency.

NUMBER(18,4)

138

No

197

Retek Merchandising System

subtrantypedm.txt

Business rules:

e This interface file contains sub-transaction type records.

e This interface file cannot contain duplicate records for a sub_tran_type_idnt.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
SUB_TRAN_TYPE_IDNT | The unique identifier VARCHAR2(6) 1 Yes
of the sub-transaction
type.
SUB_TRAN_TYPE_DESC | The description of the | VARCHAR2(120) | 2 No
sub-transaction type.
supctrdm.txt
Business rules:
e This interface file contains supplier contract information for status in *A’, ‘C, *X’.
e This interface file cannot contain duplicate records for a cntrct_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field | Required
Type/Bytes order | field
CNTRCT_IDNT The unique CHARACTER(6) |1 Yes
identifier of a
contract.
SUPP_IDNT The unique CHARACTER(10) | 2 Yes
identifier of a
supplier.
STATUS_CDE The code VARCHAR2(1) 3 Yes
representing the
status for this
contract.
CNTRCT_BEG_DT The starting date | DATE 4 No
for the contract.
CNTRCT_END DT The ending date DATE 5 No

for the contract.

198

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field
CNTRCT_DIST The distributor VARCHAR2(40) |6 No
name who
collects the

merchandise from
the supplier and
delivers to the
retailer.

CNTRCT_SHIP_MTHD_CDE | The code VARCHAR2(2) 7 No
representing the
method of
shipment
associated with
the contract.

CNTRCT_SHIP_MTHD_DESC | The description of | VARCHAR2(120) | 8 No
the method of
shipment
associated with
the contract.

STATUS_DESC The description of | VARCHAR2(120) | 9 No
the contract
status.

supsupdm.txt
Business rules:

e This interface file contains a record for each supplier, and it holds details of supplier related
attributes.

e This interface file cannot contain duplicate records for a supp_idnt.
e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

Name Description Data Field | Required
Type/Bytes order | field
SUPP_IDNT The unique identifier of | VARCHAR2(10) | 1 Yes
a supplier.
SUPP_DESC The supplier's name. VARCHAR2(120) | 2 Yes
SUPP_QC_RQRD_IND Indicates if this VARCHAR2(1) 3 No
supplier's receipts
should be checked for
quality control.

199

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

SUPP_PRE_MARK_IND

Indicates whether the
items supplied by this
supplier will be pre-
marked.

VARCHAR2(1)

No

SUPP_PRE_TICKET_IND

Indicates if the supplier
pre-marks or pre-prices
his goods.

VARCHAR2(1)

No

SUPP_STTS_CDE

The code that indicates
if the supplier is
currently active.

VARCHAR2(2)

No

SUPP_STTS_DESC

The description of the
status code.

VARCHAR2(120)

No

SUPP_EDI_IND

This column indicates
if the supplier has EDI
capabilities.

VARCHAR2(1)

No

SUPP_DOMESTIC_CDE

Supplier's domestic
code.

VARCHAR2(1)

No

SUPP_DOMESTIC_DESC

The description of the
supplier's domestic
code.

VARCHAR2(120)

10

No

SUPP_CRNCY_CDE

The code representing
the currency that the

supplier operates under.

VARCHAR2(3)

11

No

SUPP_CRNCY_DESC

The description of the
supplier's currency
code.

VARCHAR2(120)

12

No

SUPP_VMI_IND

Indicates whether a
supplier is vendor
managed inventory
supplier.

VARCHAR2(1)

13

No

suptrmdm.txt

Business rules:

o This interface file defines the associations between supplier and supplier trait.

e This interface file cannot contain duplicate records for a supp_trait_idnt, supp_idnt

combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

200

Chapter 5 — RETL API flat file specifications

Name Description Data Field order | Required
Type/Bytes field
SUPP_TRAIT_IDNT | The unique identifier | VARCHAR2(10) | 1 Yes
of the supplier trait.
SUPP_IDNT The unique identifier | VARCHAR2(10) | 2 Yes
of a supplier.
suptrtdm.txt
Business rules:
e This interface file contains supplier trait information.
o This interface file cannot contain duplicate records for a supp_trait_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field | Required
Type/Bytes order | field
SUPP_TRAIT_IDNT The unique identifier of VARCHAR2(10) |1 Yes
the supplier trait.
MAST_SUPP_FLAG Flag which indicates if VARCHAR2(1) 2 Yes
this trait is a master
supplier trait. Valid
values are "Y' or 'N'".
SUPP_TRAIT_DESC The supplier trait VARCHAR2(120) | 3 No
description.
MAST_SUPP_CDE The number of the master | VARCHAR2(10) | 4 No
supplier.

tndrtypdm.txt
Business rules:

e This interface file contains tender types and their parent tender type groups.

e This interface file cannot contain duplicate records for a tndr_type_id_idnt,
tndr_type_grp_idnt combination.

e This interface file follows the dimension flat file interface layout standard.

e This interface file contains the complete snapshot of active information.

201

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

TNDR_TYPE_GRP_IDNT

The unique identifier
for the tender type
group. . An example of
a tender type group is
cash, check, or credit
card.

VARCHAR2(6)

Yes

TNDR_TYPE_ID_IDNT

The unique identifier
for the tender type ID
within a tender type
gropu. An example of a
tender type ID is
Discover Card, Master
Card, or Visa

VARCHAR2(6)

Yes

TNDR_TYPE_GRP_DESC

The description of the
tender type group. An
example of the
description may be
"Credit Cards", "Cash",
or "Check".

VARCHAR2(120)

No

TNDR_TYPE_ID_DESC

The description of the
tender type ID. An
example of the ID
description may be
"Master Card", "Visa
Gold", or American
Express Corporate”.

VARCHAR2(120)

No

CASH_EQUIV_FLAG

The indicator of the
cash equivalence.

VARCHAR2(1)

No

ttldmdm.txt

Business rules:

e This interface file contains tender type transaction information.

e This interface file cannot contain duplicate records for tndr_type_group_idnt,

tndr_type_id_idnt, tran_idnt, loc_idnt, day_dt, min_idnt, rgstr_idnt, and cshr_idnt

combination.

e This interface file follows the fact flat file interface layout standard.

202

Chapter 5 — RETL API flat file specifications

Name

Description

Data
Type/Bytes

Field
order

Required
field

TNDR_TYPE_ID_IDNT

The unique
identifier for
the tender
type ID. An
example of a
tender type
IDis
Discover
Card, Master
Card, or Visa.

CHARACTER(6)

Yes

TRAN_IDNT

The unique
identifier of
the

transaction.

VARCHAR2(30)

Yes

LOC_IDNT

The unique
identifier of
the location.

CHARACTER(10)

Yes

DAY_DT

The calendar
day on which
the
transaction
occurred.

DATE

Yes

MIN_IDNT

The unique
identifier of
the minute.

NUMBER(4)

Yes

RGSTR_IDNT

The unique
identifier of
the register.

CHARACTER(10)

Yes

CSHR_IDNT

The unique
identifier for
a cashier.

CHARACTER(10)

Yes

F_CC_SCAN_FLAG

Indicates
whether the
credit card
was scanned
or manually
entered.
Valid values
are "Y' for
scanned, or
‘N' or Null for
manually
entered.

VARCHAR2(1)

No

203

Retek Merchandising System

Name

Description

Data
Type/Bytes

Field
order

Required
field

F_TNDR_COUPON_COUNT

The total
count of
tender
coupons used
per
transaction.
Tender
coupons are
issues by the
manufacturer
as opposed to
the store.

NUMBER(16,4)

No

F_TNDR_COUPON_AMT

The total
amount of
tender
coupons used
per
transaction.
Tender
coupons are
issues by the
manufacturer
as opposed to
the store.

NUMBER(18,4)

10

No

F_TNDR_COUPON_AMT _LCL

The total
amount of
tender
coupons used
per
transaction, in
local
currency.
Tender
coupons are
issued by the
manufacturer
as opposed to
the store.

NUMBER(18,4)

11

No

F_TNDR_SLS_AMT

The sales
amount paid
for with a
particular
tender type in
primary
currency.

NUMBER(18,4)

12

No

204

Chapter 5 — RETL API flat file specifications

Name Description | Data Field | Required
Type/Bytes order | field
F_TNDR_SLS AMT_LCL The sales NUMBER(18,4) 13 No
amount paid
for with a
particular
tender type in
local currency
F_TNDR_RTRNS_SLS_AMT The return NUMBER(18,4) 14 No
amount
credited to a
particular
tender type in
primary
currency.
F_TNDR_RTRNS_SLS_AMT_LCL | The return NUMBER(18,4) 15 No
amount
credited to a
particular
tender type in
local
currency.
ttitypdm.txt
Business rules:
e This interface file contains user-defined totals.
e This interface file cannot contain duplicate records for a total_type_idnt.
e This interface file follows the dimension flat file interface layout standard.
e This interface file contains the complete snapshot of active information.
Name Description Data Field | Required
Type/Bytes order | field
TOTAL_TYPE_IDNT | The original identifier for | VARCHAR2(10) |1 Yes
the total to be reconciled.
TOTAL_TYPE_DESC | The description of the VARCHAR2(255) | 2 Yes

total type.

vchreschddm.txt
Business rules:

e This interface file contains the date and count of escheated vouchers. When a voucher
escheats, the retailer releases all liability of the voucher to the state government. The quantity
of escheated vouchers and the dates on which they are escheated are captured from this text

file.

205

Retek Merchandising System

e This interface file cannot contain duplicate transactions for a day_dt.

e This interface file follows the fact flat file interface layout standard.

Name Description Data Field | Required
Type/Bytes order | field
DAY _DT The calendar day on which | DATE 1 Yes
the transaction occurred.
F_ESCH_COUNT The total count of the NUMBER(16,4) | 2 No
escheated vouchers on a
particular day.
F_ESCH_AMT The monetary amount of NUMBER(18,4) | 3 No

the escheated vouchers. If
the voucher was never
issued, the escheat amount
is 0. If it was issued, the
escheat amount is the issue
amount.

vchrmoveldsgdm.txt

Business rules:

e This interface file contains issued and redeemed voucher information at the individual

voucher level.

e This interface file cannot contain duplicate transactions for a vchr_line_no, vchr_status_cde

combination.

e This interface file follows the fact flat file interface layout standard.

Name

Description

Data
Type/Bytes

Field
order

Required
field

VCHR_LINE_NO

The unique identifier for
an entry on this table.
Corresponds to the
unique identifier for a
voucher in the source
system.

VARCHAR2(20)

Yes

VCHR_STATUS_CDE

Indicates whether this is
an issue (1) or redemption
(R) record for this
voucher.

VARCHAR2(1)

Yes

LOC_IDNT

The unique identifier of
the location.

CHARACTER(10)

Yes

DAY_DT

The calendar day on
which the transaction
occurred.

DATE

Yes

206

Chapter 5 — RETL API flat file specifications

Name Description Data Field | Required
Type/Bytes order | field

VCHR_AGE The age of the voucher in | NUMBER(6) 5 Yes
days.

TNDR_TYPE_ID_IDNT | The unique identifier for | CHARACTER(6) | 6 Yes
the tender type ID. An
example of a tender type
ID is Discover Card,
Master Card, or Visa.

RGSTR_IDNT The unique identifier of CHARACTER(10) | 7 Yes
the register.

CSHR_IDNT The unique identifier for | CHARACTER(10) | 8 Yes
a cashier.

F_AMT Amount for which this NUMBER(18,4) 9 No
voucher was
issued/redeemed in
primary currency.

F AMT _LCL Amount for which this NUMBER(18,4) 10 No

voucher was
issued/redeemed in the
issue/redemption
location's local currency.

vchroutlwdm.txt

Business rules:

e This interface file contains outstanding voucher information ‘as of' the day_dt. A voucher is
outstanding if it has been issued but not yet redeemed or escheated (that is, fully outstanding).

e This interface file cannot contain duplicate transactions for loc_idnt, week, vchr_age,
tndr_type_id_idnt, rgstr_idnt, cshr_idnt combination.

e This interface file follows the fact flat file interface layout standard.

Name Description Data Field | Required
Type/Bytes order | field
LOC_IDNT The unique identifier of CHARACTER(10) | 1 Yes
the location.
DAY_DT The calendar day on DATE 2 Yes
which the transaction
occurred.
VCHR_AGE The age of the voucher in | NUMBER(6) 3 Yes

days.

207

Retek Merchandising System

Name Description Data Field | Required
Type/Bytes order | field

TNDR_TYPE_ID_IDNT | The unique identifier for | CHARACTER(6) | 4 Yes
the tender type ID. An
example of a tender type
ID is Discover Card,
Master Card, or Visa.

RGSTR_IDNT The unique identifier of CHARACTER(10) | 5 Yes
the register.

CSHR_IDNT The unique identifier for | CHARACTER(10) | 6 Yes
a cashier.

F_ OUT _COUNT The number of NUMBER(16,4) 7 No
outstanding vouchers in
this age band.

F_OUT_AMT The monetary amount of | NUMBER(18,4) 8 No
the outstanding vouchers,
in primary currency.

F OUT_AMT_LCL The monetary amount of | NUMBER(18,4) 9 No

the outstanding vouchers,
in local currency.

208

Chapter 6 — Pro*C batch designs

Chapter 6 — Pro*C batch designs

L Note: To preserve the formatting of some designs, blank pages may follow some designs.

Deals Forecast [dealfct]

Design Overview

The purpose of this batch module is to maintain forecast periods, deal component totals and deal
totals. After determining which active deals need to have forecast periods updated with actuals,
the program will then sum up all the actuals for the deal reporting period and update the
deal_actuals_forecast table with the summed values and change the period from a forecast period
to a fixed period. The program will also adjust either the deal component totals (deal_detail) or
the remaining forecast periods (deal_actuals_forecast) to ensure that the deal totals remain
correct. For each deal, the program will also maintain values held at deal_head level (e.g. growth
rates, etc.)

The program will be run on the same day as salmonth after the dealinc program has completed.

The program will call the following functions from the dealinclib library to maintain deal forecast
periods and deal components:

e Update actual fixed_totals — Called when the total_actual fixed_ind from DEAL_DETAIL
is set to “Y”. This function recalculates and updates the forecast periods in response to a
change made to the actual/forecast value in a reporting period to ensure they still match the
deal component total. NOTE: If the current actuals exceed the forecast total then all forecasts
are set to zero and the total is updated with the sum of the actuals regardless of the fixed
indicator being set.

e Update budget_fixed_totals — Called when the total_budget_fixed_ind from DEAL_DETAIL
is set to “Y’. This function recalculates and updates the forecast periods in response to a
change made to the budget value in a reporting period to ensure they still match the deal
component total. NOTE: If the current budgets exceed the forecast total then all forecasts are
set to zero and the total is updated with the sum of the actuals regardless of the fixed indicator
being set.

e Update_turnover_trend — This recalculates the actual_forecast_trend_turnover column for
forecast periods using the passed growth rate percentage and the forecast turnover.

e Forecast_income_calc —This function will calculate income based upon the budget turnover
and actual/forecast/trend turnover values from the DEAL_ACTUALS_FORECAST table.
The calculation performed will be determined by the deal income calculation type. The
results of the calculations will be written to the DEAL_ACTUALS_FORECAST table. If the
deal is in Worksheet status, budget_income is updated. If the deal is in Approved status,
actual_forecast_income and actual_forecast_trend_income are updated.

e Update_deal_detail_actual_totals — Called when the total_actual_fixed_ind from
DEAL_DETAIL is setto “N’. This recalculates the deal totals by summing up all the
reporting periods, it then updates the DEAL_DETAIL .total_actual_forecast_turnover row
totals with the summed values.

209

Retek Merchandising System

o Update deal detail _budget totals — Called when the total_budget_fixed_ind from
DEAL_DETAIL is set to “N’. This recalculates the deal totals by summing up all the
reporting periods, it then updates the DEAL_DETAIL. total_budget_turnover row totals with
the summed values.

e Update_total_baseline - This recalculates the baseline growth % in response to a change
made to the deal totals and updates the DEAL_DETAIL table. If the deal is in Worksheet
status, total_baseline_growth_budget is updated. If the deal is in Approved status,
total_baseline_growth_act_for is updated.

e Update forecast_unit_amt - This function will update the total forecast revenue or
total_forecast_units on the DEAL_DETAIL table, determined by the deal's
threshold_limit_type: Quantity or Amount, respectively. The calculation will use the total
forecast revenue from the table and the passed amt_per_unit parameter.

e Deal to_date_calcs — This recalculates the deal-to-date budget growth rate, using the SUMs
of the actual turnover and budgeted turnover values for actuals only.

Tables Affected:

TABLE INDEX SELECT INSERT UPDATE | DELETE
DEALFCT_TEMP No Yes No No No
DEAL_DETAIL No No No No No
DEAL_ACTUALS_FORECAST No No No Yes No
DEAL_ACTUALS_ITEM_LOC No No No No No
STORE No No No No No
WH No No No No No

Stored Procedures / Shared Modules (Maintainability)

Header file included: DEALINCLIB.h using functions: update_actual_fixed_totals,
update_budget_fixed_totals, update_turnover_trend, forecast_income_calc,
update_deal_detail_actual_totals, update_deal_detail_budget_totals, update_total_baseline,
update_forecast_unit_amt, deal_to_date_calcs

Function Level Description

main()

This function will Validate the program arguments (program name login [eom process indicator])
and logon to Oracle, call the init() function to initialize restart / recovery and variables, call the
process() function to execute main program logic and then call the final() function to clean up all
internal processing

init()

This function calls the standard retek initialization function retek_init() to initialize
restart/recovery.

It will then retrieve system level variables:

e SYSTEM_OPTIONS.CURRENCY_CODE ,

e PERIOD.VDATE

210

Chapter 6 — Pro*C batch designs

e SYSTEM_VARIABLES.NEXT_EOM_DATE

Validate end-of-month process indicator. If ps_eom_ind is ‘N’ and vdate is greater than or equal
to the next end-of-month date, return a FATAL error.

Call the function size_arrays()

Process()

This function contains the driving cursor which will retrieve details of forecast periods for active
deal components that require processing. The cursor will also return a flag indicating if this is the
last reporting period for the component, this is required for Pro-Rate processing as the last period
for pro-rated deals requires special processing.

Looping through the fetched data, if the deal period has changed, call add_daf_upd_row() to add
totals for previous forecast period to pa_upd_daf array and add a new element to the array.

If last_period_ind is “‘N’, call calc_amount_per_unit() to add the reporting period details to the
appropriate forecast period update array, and call add_forecast_period_row() to add a new
element to the pa_upd_forecast_periods array. The period totals are then reset..

While processing, if the deal changes call add_deal _upd_row() to add a new element to the
pa_upd_deal array.

During processing in the loop, when a commit point has been reached, perform update processing
and commit the data to the database: call update_daf data(), update_forecast_periods(),
update_deal_components(), and update_deals().

If deal component has changed, update component data by calling calc_amount_per_unit() to
add the reporting period details to the appropriate forecast period update array then call
add_component_upd_row() to add a new element to the deal component array.

If the location currency is not the same as the deal currency then call the library function
convert() to convert the revenue and income.

Once finished loop processing, all valid data is then inserted/updated in the database.

add_daf _upd_row ()
Adds a new element to the update array whilst ensuring that the array size is not exceeded and if
necessary resizing the array when required.

update_daf data()

Array updates the DEAL_ACTUALS_FORECAST table from the pa_upd_daf data array. Sets
actual_forecast_ind = ‘A’, actual_forecast_turnover, actual_forecast_income, actual_income,
actual_forecast_trend_turnover, and actual_forecast_trend_income.

add_deal_upd_row()
Adds a new element to the pa_upd_deal array whilst ensuring that the array size is not exceeded
and if necessary resizing the array when required.

add_component_upd_row()
Adds a new element to the pa_upd_deal_detail array whilst ensuring that the array size is not
exceeded and if necessary resizing the array when required.

add_forecast_period_row()
Adds a new element to the pa_upd_forecast_periods array whilst ensuring that the array size is
not exceeded and if necessary resizing the array when required.

update_forecast_periods ()
This function loops through the pa_upd_forecast_periods array and calls dealinclib library
function update_actual_fixed totals() if total_actual_fixed_ind = “Y".

211

Retek Merchandising System

If rebate_ind = “Y’, li]brary function forecast_income_calc() is called.

update_deal_components ()
This function loops through the pa_upd_deal detail array and calls dealinclib library functions
update_deal detail_actual_totals(), update_total_baseline(), and update_forecast_unit_amt().

update_deals ()
This function loops through the pa_upd_deal array and calls dealinclib library functions
update_turnover_trend() and forecast_income_calc().

calc_amount_per_unit ()
This function calculates forecast amounts per unit. The unit can two threshold lime types, Q or
A.

‘Q’ means that if total actual forecast turnover is zero, then the amount per unit is zero. If the
total actual forecast turnover is NOT zero the amount per unit is equal to the
total_forecast_revenue divided by total actual forecast turnover.

‘A’ means that if total actual forecast units is zero, then the amount per unit is zero. If the total
actual forecast unit is NOT zero the amount per unit is equal to the total_forecast_units divided
by total actual forecast turnover

size_arrays ()
Allocate memory for elements of the structures used in the program.

resize_arrays ()
Use the memory allocation macro to allocate memory for the elements of the structures used in
the program.

free_arrays ()
Uses the memory deallocation macro to free the memory used by the elements of the structures
used in the program.

handle_shared_lib_error ()
Passing in the two parameters, the calling functions name and the function name being called.

Call the function get_lib_error_message()
Call standard retek close function retek_close().

final()
Free all arrays by calling function free_arrays().

Call standard retek close function retek_close().

Input Specifications
Driving cursor:
SELECT daf_rowid,

deal _id,
deal detail _id,
dh_currency_code,
threshold_limit_type,
rebate_ind,
total _actual_fixed_ind,

total forecast_units,

212

Chapter 6 — Pro*C batch designs

total forecast_revenue,
total _actual_ forecast turnover,
reporting_date,
last _period_ind,
actual_ forecast_turnover,
vloc_currency_code,
actual_turnover_units,
actual_turnover_revenue,
actual _income

FROM dealfct_temp

WHERE restart_thread_return(deal _id, TO_NUMBER(:ps_num_threads))

TO_NUMBER(:ps_thread_val)
AND deal_id > NVL(:ps_restart_deal_id, -999)
ORDER BY deal _id, deal _detail_id, reporting_date;

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Ad hoc on the same day as salmonth.pc.
Pre-Processing: dealinc.pc

Post-Processing: N/A

Threading Scheme: v_restart_deal

Restart Recovery
The Logical Unit of Work (LUW) for the program is deal_id.

213

Chapter 6 — Pro*C batch designs

Deal Income Calculation Daily — [dealinc]

Design Overview

For complex deals, this program will retrieve deal attributes and actuals data from the deals
tables, it will then calculate the income and will update DEAL_ACTUALS_ITEM_LOC rows
with the calculated income value. Additionally the program will insert the income value into the
TEMP_TRAN_DATA table using the new tran data codes 6 (Deal Sales) and 7 (Deal Purchases).

Deal calculations are done in deal currency but data held on DEAL_ACTUALS_ITEM_LOC
table is in location currency, hence if the currencies differ then the values need to be converted to
deal currency before calculation and back to location currency after calculation for subsequent
updating of the rows. Currency convert routines in the currconv.pc library will be utilized.

Subsequent programs will run to perform forecast processing for active deals and to roll up
TEMP_TRAN_DATA rows inserted by the multiple instances of this module and insert/update
DAILY_DATA with the summed values and then insert details from TEMP_TRAN_DATA into
TRAN_DATA.

Income is calculated via a call to actual_income_calc() in the dealinclib.pc library, this module
will retrieve threshold details for each deal component and determine how to perform the
calculation i.e. Linear/Scalar, Actuals Earned/Pro-Rate, etc.

This batch program has an input parameter’Y” or ‘N’ that will indicate if the batch would be
allowed to be run if vdate is greater than or equal to the next_eom_date.

If the parameter is "Y', this would mean that end of month processing would be run right after deal
processing. The batch program will then allow calculation of the actual income for the end of
month transactions.

If the parameter is 'N' or null, this would mean that the end of month processing will not be run
after deal processing. The batch program will then check if the vdate is greater than or equal to
the next_eom_date. If it is, a FATAL error will be returned, otherwise, continue with the normal
processing.

Weekly processing:

If the vdate is less than or equal to the next_eom_date, the records that will be processed will be
for reporting dates less than or equal to vdate and greater than last_eow_date. If the vdate is
greater than the next_eom_date, then the records that will be processed will be for reporting dates
less than or equal to vdate and greater than the eow_date before the next_eom_date.

Tables Affected:

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
GTT_DEALINC_DEALS No Yes Yes No Yes
DEAL_HEAD Yes Yes No No No
DEAL_DETAIL Yes Yes No No No
DEAL_ACTUALS_ITEM_LOC Yes Yes No Yes No
ITEM_MASTER Yes Yes No No No
DEAL_ACTUALS_FORECAST Yes Yes No No No

215

Retek Merchandising System

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
TEMP_TRAN_DATA No No Yes No No
STORE Yes Yes No No No
WH Yes Yes No No No
SYSTEM_OPTIONS No Yes No No No
SYSTEM_VARIABLES No Yes No No No
PERIOD No Yes No No No

Stored Procedures / Shared Modules (Maintainability)

e convert (library function)

e actual_income_calc (library function)

216

Chapter 6 — Pro*C batch designs

Program Flow

Init()
-- litialize program &
retrieve program level
variables.

Process()

Fetch & Process
pre-select
driving cursor.
detail cursor

-- Perform R/R

Final()
-- Cleanup program.

Size_arrays()
-- Initialize & size arrays

Trancate_table()
Truncate
GTT_DEALINC_DEALS

Calculate_period_income()
-- Calculate the income by
calling the external library

function actual_income_calc()

|

A 4

Add_to_temp_tran_data()
-- Add record to
temp_tran_data insert array

A 4

Convert()

-- Convert the income from
deal currency to local
currency if the currencies are
different

-- Array update rows on table
deal_actuals_item_loc using
the calculated income

-- Array insert rows on table
temp_tran_data using the
records stored in the
temp_tran_data insert array —
populated by function
add to temn tran datai

Free_arrays()
-- Free memory for arrays

Resize_arrays()
-- Re-allocate memory for the
temp_tran_data insert array

217

Retek Merchandising System

Function Level Description

Init()

e EXEC SQL ALTER SESSION SET HASH_AREA_SIZE=104857600;

e EXEC SQL ALTER SESSION SET SORT_AREA_SIZE=104857600;

e Call standard retek initialization function retek_init() to initialize restart / recovery.

o Gets the following system level variables (program variables):
SYSTEM_OPTIONS.CURRENCY_CODE (ps_primary_currency_code)
SYSTEM_VARIABLES LAST_EOW_DATE(ps_last_eow_date)
SYSTEM_VARIABLES NEXT_EOM DATE - 1 (ps_last last _eow_date)
SYSTEM_VARIABLES_NEXT_EOM_DATE (ps_next_eom_date)
PERIOD.VDATE (ps_vdate)

e The value for ps_last_stkldgr_close_date is computed. If the EOM processing indicator is set
to N or NULL and vdate is greater than or equal to the next eom_date, the batch program will
return a FATAL error. Otherwise if it is set to Y vdate is greater than or equal to the next
eom_date, the batch will continue processing and set the variable, ps_last_stkldgr_close_date
to the next_eom_date — 7. For normal weekly processing the variable,
ps_last_stkldgr_close_date, is set to the last end-of-week date.

e Call function size_arrays().

e Call function truncate_table(), passing “GTT_DEALINC_DEALS".

Process()
o Pre-select the deals to be processed into a global temporary table (see “Input Specification”
below).

e Commit the inserted records.

o Define the driving cursor.

o Define the detail cursor.

e Inawhile loop array fetch required information from cursor C_DRIVER.

o Foreach row retrieved from C_DRIVER, retrieve each row from C_DETAIL in another
while loop.

o Foreach row retrieved call calculate_period_income() to calculate the income using the
information retrieved from the driving cursor. The calculated income is written to the
corresponding row of the fetch array.

o If the deal currency and the location currency are not the same then the income value will
need to be converted back from the deal currency to the location currency as the
DEAL_ACTUAL_ITEM_LOC table stores the value in location currency. To do the
conversion the library function convert() is used.

e Add the current details to the temp_tran_data insert array using function
add_to_temp_tran_data().

218

Chapter 6 — Pro*C batch designs

o Forall rows in the fetch array, an array update is used to update rows on table
DEAL_ACTUALS_ITEM_LOC using the information from the driving cursor and the
income calculated by the function calculate_period_income(). Care is taken to limit each
bulk update to the maximum size defined in MAX_UPDATE_ARRAY_SIZE

e Anarray insert is used to insert all rows from the temp_tran_data array into table
TEMP_TRAN_DATA.. Care is taken to limit each bulk insert to the maximum size defined
in MAX_INSERT_ARRAY_SIZE

e For each change of Deal Id/Deal Detail Id, call standard retek function retek_force_commit()
to commit the changes to the database.

Calculate_period_income()

e This function will call the library function actual_income_calc() to perform the income
calculation for the current period row using the deal details passed into it. If necessary the
input values will be converted into the deal currency prior to income being calculated.

o If the deal currency and the location currency are not the same then the actuals value
retrieved from DEAL_ACTUALS _ITEM_LOC in the driving cursor need to be converted
from the location currency into the deal currency before the income is calculated. To do the
conversion the library function convert() is used. This is only required if the limit type is
Amount, also the act_for_turnover_total does not need to be converted as it comes from the
DEAL_ACTUALS_FORECAST table which is already in the deal currency.

e The amount_per_unit is calculated as follows: When threshold_limit_type is Quantity and
threshold_value_type is Percent-Off then the amount_per_unit = actual_turnover_revenue /
actual_turnover_units. When threshold_limit_type is Amount and threshold_value_type is
Amount-Off then the amount_per_unit = actual_turnover_units / actual_turnover_revenue. In
all other cases, the amount_per_unit is defaulted to zero.

o If the deal is prorated and the totals are not fixed, then we need to subtract the current
DEAL_ACTUALS_FORECAST.ACTUAL_FORECAST_TURNOVER from
actual_forecast_turnover_total as this will become an Actual, when program dealfct.pc runs.
The sum of the actual_forecast_turnover is retrieved from table
DEAL_ACTUALS_FORECAST for rows where the actual_forecast_ind = ‘F’ (forecast) and
the reporting_date <= period.date. This amount is then subtracted from the
actual_forecast_turnover_total amount.

e The library function actual_income_calc() is then called using the
actual_forecast_turnover_total (if prorated this total will have actual_forecast_turnover
already subtracted — see above) and calculated amount_per_unit. All other information is
supplied by the driving cursor.

Add_to_temp_tran_data()
o If the temp_tran_data insert array has reached its initial size then need to add another entry to
the array using a call to function resize_arrays()

e Copy current record from the driving cursor into the temp_tran_data insert array.

Size_arrays()
o Allocate memory for the driving cursor fetch array and the temp_tran_data insert array.

Resize_arrays()
o Re-allocate memory for the temp_tran_data insert array.

219

Retek Merchandising System

Free_arrays()
o Free memory allocated for the driving cursor fetch array and the temp_tran_data insert array.

Truncate_table()
e Truncate the table name specified by the is_table_name input parameter.

Final()
o Free all arrays by calling function free_arrays().

e Call standard retek close function retek_close().

Input Specifications
Driving cursors:

This pre-select, driving and detail cursors will retrieve active bill back deals rows which require
income to be calculated today and the relevant columns from the deal tables to perform this
calculation. Active bill back deal periods requiring income calculation are identified as forecast
periods where the reporting date <= today.

Pre-Select of Deals to be processed (into GTT_DEALINC_DEALYS)
EXEC SQL INSERT INTO gtt _dealinc_deals
SELECT dh.deal_id,
dd.deal _detail id,
dh.stock ledger_ind,
dh.deal _income_calculation,
dh.threshold_limit_type,
dd.threshold_value_ type,
dh.rebate_calc_type,

NVL(dh.currency_code, :ps_primary_currency_code)
currency_code,

dh_growth_rate to_date,
dd.calc_to _zero_ind,
dd.total _actual fixed ind,

DECODE(dh.rebate_purch_sales ind, "P",
-TRAN_CODE_DEAL_PURCHASE,

:TRAN_CODE_DEAL_SALE) rebate purch_sales_ind,

daf.reporting date,
dh.rebate_ind,
vdaf.last_reporting_date,
vdaf.act_for_turnover_total

FROM deal head dh,
deal _detail dd,
deal actuals_ forecast daf,
(SELECT /*+ parallel(deal_actuals_ forecast, 8) */

220

Chapter 6 — Pro*C batch designs

daf2.deal _id,
daf2.deal _detail _id,
MAX(daf2.reporting_date) last reporting_date,

SUM(daf2.actual_forecast_turnover)
act_for_turnover_total

FROM deal actuals_ forecast daf2

WHERE
RESTART_THREAD RETURN(daf2.deal_id,:ps_num_threads) =
TO_NUMBER(:ps_thread_val)

GROUP BY daf2.deal_id, daf2.deal_detail_id) vdaf

WHERE dh.billing_type = "BB"
AND dh.status = "A"
AND dh.deal_id = dd.deal_id
AND dd.deal id = daf.deal _id
AND dd.deal_detail_id = daf.deal_detail_id
AND dd.deal _id = vdaf.deal id
AND dd.deal _detail _id = vdaf.deal detail _id
AND daf.reporting_date <= TO_DATE(:ps_vdate,
"YYYYMMDD™)
AND daf.reporting_date >

TO_DATE(:ps_last _stkldgr_close date, "YYYYMMDD®)

AND RESTART_THREAD RETURN(dh.deal id, :ps_num _threads) =
TO_NUMBER(:ps_thread_val)

AND (dd.deal _id > NVL(TO_NUMBER(:ps_restart_deal id), -
999)

OR (dd.deal _id = TO_NUMBER(:ps_restart_deal _id) AND

dd.deal _detail _id >
NVL(TO_NUMBER(:ps_restart _deal detail_id), -999)));

C_DRIVER
EXEC SQL DECLARE c_driver CURSOR FOR
SELECT DISTINCT gdd.deal_id,
gdd.deal _detail _id
FROM gtt dealinc_deals gdd
ORDER BY gdd.deal_id,
gdd.deal _detail_id;
C_DETAIL
EXEC SQL DECLARE c_detail CURSOR FOR
SELECT /*+ ordered */

221

Retek Merchandising System

gdd.deal _id,

gdd.deal detail _id,

gdd.stock_ledger_ind,

gdd.deal _income_calculation,
gdd.threshold_limit_type,
gdd.threshold_value_type,

gdd.rebate_calc_type,

NVL(gdd.currency_code, :-ps_primary_currency_code),
NVL(vloc.currency code, :ps_primary_currency_code),
gdd.growth_rate_to_date,

gdd.calc_to_zero_ind,

gdd.total _actual fixed ind,

DECODE(gdd.rebate purch_sales_ind, "P-",
:TRAN_CODE_DEAL_PURCHASE,

:TRAN_CODE_DEAL_SALE),
dail.dai_id,
dail.item,
dail_loc_type,
dail.location,
TO_CHAR(dail.reporting date, "YYYYMMDD®),
NvVL(dail.order_no, -1),
dail.actual turnover_units,
dail.actual_turnover_revenue,
gdd.act_for_turnover_total,
im.dept,
im.class,
im.subclass,

DECODE(gdd.last_reporting_date,
dail .reporting date,"Y","N") last_period,

gdd.rebate_ind
FROM gtt _dealinc_deals gdd,

deal _actuals_item_loc dail,

item_master im,

(SELECT st.store loc,
st.currency_code,
*S" loc_type

FROM store st

222

Chapter 6 — Pro*C batch designs

"y

WHERE stockholding_ind
UNION ALL
SELECT wh.wh loc,
wh.currency_code,
"W® loc_type
FROM wh
WHERE stockholding_ind "y-
AND finisher_ind = *N*) vloc
WHERE gdd.deal_id TO_NUMBER(: Is_deal_id)

AND gdd.deal detail _id =
TO_NUMBER(:Is_deal detail_id)

AND dail.deal _id = gdd.deal _id

AND dail.deal _detail _id = gdd.deal_detail_id

AND dail.item = im.item

AND dail.location = vloc.loc

AND dail.loc_type = vloc.loc_type

AND dail.reporting_date <= TO_DATE(:ps_vdate,
"YYYYMMDD™)

AND dail._reporting_date >

TO_DATE(:ps_last_stkldgr_close date, "YYYYMMDD®);

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Ad-Hoc. Must be run before salmth.pc, after dealact.pc and before the new
programs which perform forecast processing and DAILY_DATA roll up. The order of the
specific modules are: salstage.pc (daily), salapnd.pc (daily), dealex.pc (daily), dealact.pc (daily),
prepost.pc dealinc pre (weekly), dealinc.pc (weekly), prepost.pc dealfct pre , Run dealfct.pc
(weekly), prepost.pc dealday pre (weekly), dealday.pc (weekly), prepost.pc dealday post
(weekly), prepost.pc vendinvc pre(weekly), vendinvc.pc (weekly), salweek.pc/prepost.pc salweek
post (weekly), salmth.pc (monthly)and prepost.pc salmth post (monthly), (optional prepost
vendinv pre if pulling process does not purge tables)

Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

223

Retek Merchandising System

Restart Recovery

The logical unit of work is a transaction comprising deal_id, deal_detail_id. A commit will take
place after the number of deals records processed is equal to the max counter from the
restart_control table.

224

Chapter 6 — Pro*C batch designs

Like Store [likestore]

Design Overview

When a new store is created in RMS there is an option to specify a like store. When storeadd
batch is run it sets the store open date and close date of all the like stores far in the future, so that
those records will be picked up in the likestore batch. Likestore batch creates item location
relationships for all the items in the existing store with new store. The likestore batch will process
like stores and sets the store open and close dates back to original date in the post process. User
can specify whether to copy the Replenishment information, delivery schedules and activity
schedules from the existing store, which will be copied in the likestore post process. So it is
necessary to run the storeadd, likestore and likestore post in the same order to successfully add all
the stores in to RMS.

Likestore batch uses multi-threading by department along with array processing to copy item
expense information. It also utilizes array processing to fetch all items associated to the likestore
and their attributes. The array of these items and their attributes is then looped through, with the
NEW _ITEM_LOC procedure being called for each item to create the new relationship.

Scheduling Constraints

Processing Cycle: Ad Hoc Phase

Scheduling Diagram: N/A

Pre-Processing: storeadd.pc

Post-Processing: prepost(likestore post)

Threading Scheme: Table based processing, multithreading on Department.
Restart/Recovery

The logical unit of work is store, item, pack indicator. The following two cursors will keep track
of store, item, and pack indicator in the restart book mark. The ¢_add_store cursor restart the
program based on store and ¢_get_items will restart the program based on item, pack indicator.

EXEC SQL DECLARE c_add_store CURSOR for
SELECT sa.store,
sa.like_store,
ROWIDTOCHAR(st. rowid)
FROM store_add sa,
store st
WHERE sa.store = st.store
AND st.store open_date = sa.store_open_date + 500000
AND st.store close date = sa.store _open_date + 500000
AND (sa.store > NVL(:ps_restart _store,-999) OR
sa.store = :ps_restart_store)
ORDER BY sa.store;

EXEC SQL DECLARE c_get_items CURSOR FOR

225

Retek Merchandising System

SELECT il.item,
im.item _desc,
im.diff_1,
im.diff_2,
im.diff_3,
im.diff_4,
il_loc type,
il_daily waste pct,
iscl.unit _cost,
il_unit_retail,
il_selling unit retail,
il_selling _uom,
il _status,
il.taxable_ind,
il ti,
il_hi,
il_store_ord mult,
il _meas of each,
il _meas_of price,
il_uom_of price,
il _primary_variant,
il _primary_supp,
il _primary_cntry,
il._local _item desc,
il_local_short _desc,
il _primary_cost_pack,
il _receive_as_type,
im_item _parent,
im.item_grandparent,
im._dept,
im.class,
im.subclass,
im_status,
cl._class vat ind,
im_short_desc,
im.item level,

im_.tran_level,

226

Chapter 6 — Pro*C batch designs

FROM

WHERE
AND
AND
AND
AND
AND

im.retail_zone group_id,

pzgs.zone_id,

im.sellable_ind,

im.orderable_ind,

im.pack_ind,

im.pack_type,

im.waste_type,

st.lang,

il.source _method,

il.source_wh

Vv_restart_dept vrd,

store st,

price_zone_group_store pzgs,

item_master im,

class cl,

item loc il,

item _supp_country loc iscl

vrd._.num_threads = TO_NUMBER(:ps_num_threads)
vrd.thread_val = TO_NUMBER(:ps_thread_val)
vrd.driver_value = im.dept

st.store = TO NUMBER(:is_like_store)
st.store = il.loc

((im_.pack_ind = NVL(:ps_restart_pack ind, "N") AND

im_item > NVL(:ps_restart_item, " %))

m.item > * *

AND
AND
AND
AND

OR (im.pack_ind > NVL(:ps_restart_pack_ind, "N") AND
)

il.item = Iim.item

im_dept = cl.dept
im.class = cl.class

pzgs.store(+) = TO_NUMBER(:is_store)

AND im.retail_zone group_id = pzgs.zone_group_id(+)

AND il.CLEAR_IND = "N*©

AND il.ITEM = iscl.ITEM(+)

AND il.LOC = iscl.LOC(+)

AND il._primary_supp = iscl._supplier(+)

AND il.primary_cntry = iscl.origin_country_id(+)
ORDER BY im.pack ind asc,

il.item;

227

Retek Merchandising System

Program Flow
N/A

Function Level Description

init()

o Initialize the restart variables

e Get system variables (ELC indicator, VAT indicator, std_av_ind and rpm_ind)
process()

o Select values from the STORE_ADD table for stores that the storeadd.pc program has
already processed, as evidenced by the store open date far in the future.

o Loop through all the likestore records and call Copy_Store_Items function for each like store
record.

copy_Store_ltems()

o If the ELC indicator is “Y”, the item expenses tables are updated with the details of expenses
involved in moving the items from one location to other locations. This is done using array
possessing.

o C_get_items cursor will fetch all the records for the item location combination of the old
store and create all the item location relationships with new store by calling the function
NEW_ITEM_LOC().

e Inside the NEW_ITEM_LOC function

= Item location records are inserted for all the parent and child items, all component items
in case of pack item.

= New store zone is added.
= Price history records are inserted.
= Pos mod records are inserted.

= Replenishment information, Delivery schedules and Activity schedules are copied if
specified in the likestore batch post process.

size_exp_head()

o Allocates memory to the exp_head structure
size_exp_head_seq()

o Allocates memory to the exp_head_seq structure
size_exp_insert()

o Allocates memory to the exp_insert structure
size_new_itemloc()

o Allocates memory to the new_itemloc structure
free_exp_head()

o Releases the memory allocated in size_exp_head function.

228

Chapter 6 — Pro*C batch designs

free_exp_head_seq()

o Releases the memory allocated in size_exp_head_seq function.
free_exp_insert()

o Releases the memory allocated in size_exp_insert function.
free_new_itemloc()

o Releases the memory allocated in size_new_itemloc function.
final ()

e This function stops restart recovery.

I/O Specification
N/A

Technical Issues
N/A

Processing Cursors

/* Any changes made to c_count_item_exp_head must be replicated in
c_item exp_head */

/* The count returned in c_count_item _exp head determines the number
of records */

/* to be processed by c_item exp _head. The "FROM®* and "WHERE®
clauses must match. */

EXEC SQL DECLARE c_count_item_exp_head CURSOR FOR
SELECT count(ieh.item)
FROM v_restart_dept vrd,
cost_zone_group czg,
item_master im,
item _exp_head ieh
WHERE vrd.num_threads = TO_NUMBER(:ps_num_threads)
AND vrd.thread_val = TO_NUMBER(:ps_thread_val)
AND vrd.driver_value = im.dept
AND czg.cost _level = "L*
AND czg.zone group_id = im.cost _zone group_id
AND im.item = ieh.item
AND (:ps_restart_item = "-999" OR :ps_restart_item is NULL)
AND ieh.zone group_id = czg.zone_group_id
AND ieh.zone_id = TO_NUMBER(:is_like store)
AND ieh.item _exp_type = "Z%;

229

Retek Merchandising System

/* Any changes made to c_item_exp_head must be replicated in
c_count_item_exp_head */

/* The count returned in c_count_item_exp head determines the number
of records */

/* to be processed by c_item exp head. The "FROM®" and "WHERE*®
clauses must match. */

EXEC SQL DECLARE c_item_exp_head CURSOR FOR
SELECT ieh.item,
ieh_supplier,
NVL(ieh.item _exp_seq,0),
ROWIDTOCHAR(ieh . rowid)
FROM v_restart_dept vrd,

cost_zone_group czg,

item_master im,

230

Chapter 6 — Pro*C batch designs

Order Update [ordupd]

Design Overview

This program will be used to automatically change all retail costs on purchase orders when a
retail price change is implemented for an item on the order with the status of '"Worksheet’,
‘Submit’ and ‘Approve’.

Open To Buy is updated to give a more accurate picture of the retail value of open orders if the
order is ‘Approved’ and if the department calculate the OTB as Retail.

Affected Tables:

TABLE INDEX | SELECT INSERT | UPDATE | DELETE
DEPS No Yes No No No
ORDHEAD No Yes No No No
ORDLOC No Yes No Yes No
OoTB No Yes No Yes No
PERIOD No Yes No No No
PRICE_HIST No Yes No No No
V_PACKSKU QTY | No Yes No No No

Stored Procedures/Shared Modules (Maintainability)
CURRENCY_SQL.CONVERT_BY_LOCATION - use this package for all conversions.

Program Flow
Function Level Description

Input Specifications
Driving Cursor:
EXEC SQL DECLARE c_affected orders CURSOR FOR
EXEC SQL DECLARE c_affected_orders CURSOR FOR
SELECT /*+ index(ph price_hist_il) */
distinct "S-,
oh.order_no,
oh.currency_code,
0" pack_no,
TO_CHAR(oh.otb_eow _date, "YYYYMMDD") eow_date,
oh.order_type,

oh.status,

231

Retek Merchandising System

NVL(ph.unit_retail,0) - NVL(ol.unit_retail, 0)
ordloc_retail,

NVL(ol.qty_ordered, 0) - NVL(ol.qgqty _received, 0)
qty _outstanding,

ph.item,
ol.loc_type,
ol .location,
0 pack _gty,
NVL(ph.unit_retail, 0) price_hist unit_retail
FROM ordhead oh,
ordloc ol,
price_hist ph
WHERE oh.order_no
AND ph.item
AND ph.loc ol _.location
AND ph.tran_type in (4, 8, 11)
AND ph.action_date = TO DATE(:ps_tomorrow, "YYYYMMDD®)
AND oh.status in ("W", "S", "A")
UNION ALL
SELECT /*+ index(ph price_hist_il) use_nl(ph) ordered */
distinct "P",

ol .order_no

ol.item

oh.order_no,

oh.currency_code,

vpqg-pack_no,

TO_CHAR(oh.otb_eow_date, "YYYYMMDD®") eow_date,
oh.order_type,

oh.status,
NVL(ol.unit_retail, 0) ordloc_retail,

vpg-qty * (NVL(ol.qty_ordered, 0) -
NVL(ol.qty_received, 0))

qty outstanding,
ph.item,
ol._loc_type,
ol _location,
vpg.qty pack_gty,
NVL(ph.unit_retail, 0) price_hist unit_retail
FROM ordhead oh,

ordloc ol,

232

Chapter 6 — Pro*C batch designs

WHERE
AND
AND
AND
AND
AND
AND

v_packsku_qty vpq,

price_hist

ol.

ph.

oh
oh

ph.
.tran_type

ph
ph

Output Specifications

item

item

.order_no

-status

loc

.action_date

Scheduling Considerations
PHASE 4 (daily)
N/A
N/A
N/A

This module does not contain restart/recovery

Processing Cycle:
Scheduling Diagram:
Pre-Processing:
Post-Processing:
Threading Scheme:

vpq-pack_no

vpqg.- item

ol .order_no

in ("W*, "ST, "A")

= ol.location

in (4, 8, 11)

= TO_DATE(:ps_tomorrow,

"YYYYMMDD ") ;

233

Chapter 6 — Pro*C batch designs

Pre/Post Functionality for Multi-Threadable
Programs [prepost]

Design Overview

The Pre/Post module facilitates multi-threading by allowing general system administration
functions (such as table deletions or mass updates) to be completed after all threads of a particular
program have been processed. A brief description of all pre- or post-processing functions

included in this program can be found in the Function-Level Description section.

This program will take three parameters: username/password to log on to Oracle, a program
before or after which this script must run and an indicator telling whether the script is a pre or
post function. It will act as a shell script for running all pre-program and post-program updates
and purges (the logic was removed from the programs themselves to enable multi-threading &

restart/recovery).

For example, to run the pre-program script for the ccext program, the following should be entered
on the command line:

prepost

Tables affected:

user/password

rpl pre

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

all_constraints

zZ

all_ind_partitions

all_policies

alloc_detail

alloc_header

class

class_sales_forecast

class_sales_hist

class_sales_hist_mth

cost_change_trigger_temp

cost_susp_head

daily_data_temp

dba_indexes

dba_triggers

dealfct_temp

deal_actuals_forecast

deal_actuals_item loc

<|<|lz|<|<|z|z|<|<|z|z|<|<|<|<|<]|<

<|Z|IK|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|2|2|2

Z|1Z2|Z2|Z2|Z2|1Z2|K|Z2|Z2|Z2|Z2|Z2|12|2|2|2|Z2

Z| zZz|Z2|Z2|1Z2|Z2|Z2|<|Z2|Z2|K|Z2|Z2|2|Z2

Z|Zz|Z2|Z2|I1Z2|Z2|Z2z|Z2|X|XK|Z2|Z2|(2|2|2|Z

Z|Zz|Z2|IZ2|I 2| |Z2|K|Z2|1Z2|IK|Z2|Z2|2|2|2|Z2

2| Z2|1Z2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|<|X|Z2|2|Z2

235

Retek Merchandising System

TABLE SELECT | INSERT | UPDATE | INDEX DELETE | TRUNCATE | TRIGGER
deal_bb_no_rebate_temp N Y N N N Y N
deal_bb_rebate po_temp N Y N N N Y N
deal_bb_receipt_sales_temp N v N N N v N

p

deal_head

deal_item_loc_explode

deal_sku_temp

deps

dept_sales_forecast

dept_sales_hist

dept_sales_hist_mth

domain_class

domain_dept

domain_subclass

edi_daily_sales

edi_ord_temp

fif_receiving

fixed_deal

forecast_rebuild

groups

hist_rebuild_mask

ib_results

if_tran_data

invc_detail

invc_detail_temp

invc_detail_temp2

invc_head

invc_head_temp

item_forecast

item_loc

item_loc_temp

item_master

<|Z| <K |Z|I¥K|Z2|Z2|K|Z2|IXK|Z2|¥X|KX|Z|IK|Z2|Z2|Zz|Z2|Z2|1Z2|X|Z2|2|X|2|X|<

Z|I<|Z2|Zz2|Z2|I1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2||Z2|Z2|Z2|Z2|Z2|Z2|2|2|2|2|2|2Z2

Z|IZ2|IZ2|Z2|Z2|<K|Z2|Z2|K|Z2|X|Z2|IZ2|Z2|K|Z2|IZ2|Z2|X|X|K|Z2|Z2|12|2|Z2|2|2

2|22 K| Z2|I1Z2|Z2|Z2|Z2|Z2|Z2|X|Z2|XK|Z2|X|K|Z2|Z2|Z2|2|Z2|Z2|<|Z2|X|Z2|2

Z|\Zz|1Z2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|<|Z2|Z2|Z2|<X|K|Z2|2|2|Z2|Z2

Z | K| Z2|Z2|IXK|Z|XK|K|Z2|I1Z2|Z2|X|Z2|K|Z2|IX|X|Z2|Z2|Z2|1Z2|2|Z2|X|Z2|X|Z2|Z2

Z|lZz|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|2Z2

236

Chapter 6 — Pro*C batch designs

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

item_supp_country

pd

z

item_supp_country_loc

mc_rejections

mod_order_item_hts

on_order_temp

ord_missed

ord_temp

ordhead

ordsku

packitem

period

pos_button_head

pos_coupon_head

pos_merch_criteria

pos_mods

pos_money_ord_head

pos_payinout_head

pos_prod_rest_head

pos_store

pos_sup_pay_criteria

pos_tender_type head

reclass_cost_chg_queue

reclass_head

reclass_item

reclass_trigger_temp

repl_attr_update_exclude

repl_attr_update_head

repl_attr_update_item

repl_attr_update_loc

repl_day

repl_item_loc

repl_item_loc_updates

ZIX|IX I XXX |IKIK|Z2|IZ2|IZ2|Z2|Z2|12|2|Z2|Z2|Z2|X|X|<X|K|Z2|Z2|2|2|2|<

<|KX|IK|Z2|Z2|Z2|1Z2|2|Z2|Z2||Z2|Z2|Z2|Z2|Z2|Z2|X|Z2|1Z2|2|Z2|lZ2|Z2|2|2|Z2|2|2|2|Z2

Z|ZzZ2|Z2|I1Z2|Z2|Z2| 2|2 Z2|X|X|X|X|IX|IX|X|Z2|XK|K¥XK|K¥K|Z2|1Z2|Z2|l2|12|2|Z2|Z2|=2|Z2

<|Z2|Z2|Z2|Z2|Z2|Z2|K|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|K|Z2|Z2|12|Z2|Z2|2|Z2|X|X|X|[X|X]|Z2

Z|IZ2|Z2 | <X |X| KK K|Z2|I1Z2|Z2|Z2|1Z2|2|Z2|2|1Z2|Z2|Z2|2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|Z2|2|2|Z2

<|Z2|Z2|Z2|Z2|Z2|Z2|X|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|XK|Z2|Z2|1Z2|Z2|Z2|2|2|X|X|X|X|X|Z2|2

2|\ Z2|1Z2|Z2|Z2|Z2|1Z2|Z2||Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|2

237

Retek Merchandising System

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

rpl_alloc_in_tmp

Y

rpl_distro_tmp

Sec_user_zone_matrix

stage_complex_deal_detail

stage_complex_deal _head

stage_fixed_deal_detail

stage_fixed_deal head

stake _head

stake_prod_loc

stake_sku_loc

store

store_add

subclass_sales_forecast

subclass_sales_hist

subclass_sales_hist_mth

sup_data

sups_min_fail

system_options

system_variables

temp_tran_data

temp_tran_data_sum

tif_explode

tran_data

tsf_head

vat_code_rates

vat_item

week_data_temp

wh

wh_store_assign

Z| K| Z2|IXK|IK|Z|Z2|Z2|Z2|X|XK|X|Z2|Z2|XK|Z2|Z2|X|X|X|X|IK¥K|Z2|12|l2|(2|2|2|Z

Zl|Zz|Z2|IZ2|Z2| 2| | Z2|K|Z2|Zz2|1Z2|Z2|Z2|lZ2|1Z2|2|2|Z2|Z2|2|2|Z2|Z2|2|2|Z2

Z|Zz|IZ2|IZ2|Z2|K|Z2|IZ2|Z2|Z2||Z2|Z2|Z2|Z2|Z2|2|Z2||Z2|Z2|Z2|Z2|1Z2|2|2|Z2|Z2

Z|IZ2|Z2|Z2|Z2|Z2|Z2|K|Z2|Z2|Z2|Z2|<X|Z2|Z2|Z2|K|Z2|Z2|12|2|Z2|2|2|Z2|2|<

<|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|<|X|XK|Z2|K|Z2|lZ2|1Z2|1Z2|Z2|2|Z2|2|2|Z

z|lz|<|z|z|z|z|<|<|<|zZz|Zz|<|Zz|Zz|Z|Z|Z|Z|Z|Z|Z|<|<|<|<|=<]|=<]|<

Z|lZz|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|2|CZ2

238

Chapter 6 — Pro*C batch designs

Scheduling Constraints

Processing Cycle: PHASE ALL (daily)

Scheduling Diagram: See scheduling flow for description of all pre-post requirements in the
daily run.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A (single threaded)

Restart Recovery
N/A

Program Flow
N/A

Shared Modules

e FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
e UDA_SQL.CHECK_REQD_NO_VALUE

e FORECASTS_SQL.GET_DOMAIN

e |ITEM_ATTRIB_SQL.GET_PACK_INDS

e FORECASTS_SQL.GET_ITEM_FORECAST_IND

e POS_UPDATE_SQL.POS_INVC_DETAIL_INSERT
e CAL_TO_454_LDOM

e CAL_TO_454 HALF

e CAL_TO_CAL_HALF

e CAL_TO_CAL_LDOM

e CAL_TO_454_WEEKNO

e CAL_TO_CAL_WEEKNO

e CAL_TO_454

e HALF_TO_CAL_FDOH

e HALF_TO_CAL_LDOH

e HALF_TO_454 FDOH

e HALF_TO_ 454 LDOH

e DBMS_RLS.ENABLE_POLICY

Function Level Description

Functions to be used by the individual program functions:

239

Retek Merchandising System

modify_indexes()

This function allows indexes to be disabled or rebuilt before and/or after the action that affects
them. The individual program passes in the table name and mode (what action to take “disable”
or “rebuild”) and performs that action. The owner of the index is determined using the
synonym_trace function in the library oracle.pc.

get_lock()

This function locks the table that is passed to it. If this function fails to acquire a lock to the
specified table, it retries MAX_LOCK_TRIES times before returning a fatal error.

modify_partition_indexes()

This is called by the modify_indexes function to determine if the indexes that need modified are
partitioned indexes. If so, then the statement is modified to take that into account to accomplish
the action. Index_owner, index_name and mode is passed to this function. Nothing is passed
back out.

truncate_table()

The table_name is passed to this function so that it can be truncated. The owner of the table is
determined by using the synonym_trace function in the library oracle.pc.

modify_trigger()

Allows triggers to be disabled or enabled before or after certain processes. The table_name,
trigger name and mode(“DISABLE” or “ENABLE?”) are passed to this function and the
appropriate action is taken. No values are passed back to the calling function.

alter_constraints()

This function diables, enables, or rebuilds a table constraint based on the table name and the
mode passed into it. It is called by vendinv_pre().

truncate_user_sec_table()

This is a function used to run the szonrbld pre functions that will truncate the
sec_user_zone_matrix table. Disables any indexes prior to the truncation on the associated table
and rebuilds/enables them following the truncation.The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

get_454 ldom()

This function calls the procedure CAL_TO_454 LDOM to get the 454 last day of month.
get_454 half()

This function calls the procedure CAL_TO_454 HALF to get the 454 calendar half number.
get_next_454 half()

This function calls the procedure CAL_TO_454 HALF to get the next end-of-month 454
calendar half number.

get_next_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the next end-of-month half
number on the regular calendar.

get_cal_half()

240

Chapter 6 — Pro*C batch designs

This function calls the procedure CAL_TO_CAL_HALF to get the half number on the regular
calendar

get_cal_ldom()

This function calls the procedure CAL_TO_CAL_LDOM to get the end of the month on the
regular calendar.

get_454 weekno()
This function calls the procedure CAL_TO_454 WEEKNO to get the 454 week number in half.
get_cal_weekno()

This function calls the procedure CAL_TO_CAL_WEEKNO to get the week number in half on
the regular calendar.

get_454 date()

This function calls the procedure CAL_TO_454 to get the 454 calendar week number.
get_cal_fdoh()

This function calls the procedure HALF_TO_CAL_FDOH to get the first day of half.
get_cal_ldoh()

This function calls the procedure HALF_TO_CAL_LDOH to get the last day of half.
get_454 fdoh(void);

This function calls the procedure TO_454 FDOH to get the first day of half in 454 calendar.
get_454 l|doh(void)

This function calls the procedure HALF_TO_454 LDOH to get the last day of half in 454
calendar.

get_tomorrow()
This function gets the next day after the vdate.
get_forecast_ind()

This function cals FORECASTS_SQL.GET_SYSTEM_FORECAST _IND to get the
system_forecast_ind.

validate_reclassify()

Validates the reclassification. If the reclassification is rejected, then the data from the
RECLASS_TRIGGER_TEMP table is deleted, else the data is inserted into
RECLASS_COST_CHG_QUEUE table.

check_stock_count()

This function checks for the existence of a stock count of an item in the STAKE_SKU_LOC or
STAKE_PROD_LOC.

check_order()

This function checks for the existence of an order for an item in the ORDHEAD and ORDSKU
tables.

check _uda()

241

Retek Merchandising System

This function calls UDA_SQL.CHECK_REQD_NO_VALUE which determines if an item's new
hierarchy has any required UDA defaults that the item is not currently associated with.

check_domain_exists()

This function calls FORECASTS _SQL.GET_DOMAIN to check for the existence of the domain
for a merchandise hierarchy.

check_forecast()

This function validates the reclassification of an item based on forecast indicator. First, it checks
if the item passed is a pack through the package call to
ITEM_ATTRIB_SQL.GET_PACK_INDS. Then for non-pack items, it calls

FORECASTS SQL.GET_ITEM_FORECAST_IND to get the item forecast indicator.

delete_reclass_trigger_temp()
This function deletes the records for a given item from the RECLASS_TRIGGER_TEMP.

Individual Program Functions

rpl_pre()

This function truncates the following tables before replenishment extracts are performed:
e ORD_TEMP

e ORD_MISSED

It also disables any indexes prior to the truncation on the associated tables and rebuilds/enables
them following the truncation. The user running this program for this function must have been
granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the owning schema user.

salweek_post()

Updates the last end-of-week date on the SYSTEM_VARIABLES table to the run date after all
weekly stock ledger data has been processed.

salmth_post()

Updates the following SYSTEM_VARIABLES columns to reflect the current date’s values after
all monthly stock ledger data has been processed:

e last_eom_half no

e last_eom_month_no

o last_eom_date

e next_eom_date

o last_eom_start_half

o last_ eom_end_half

e last_eom_start_month
e last_eom_mid_month

o last_eom_next_half no

o last_eom_day

242

Chapter 6 — Pro*C batch designs

o last_eom_week

e last_eom_month

o last_eom_year

o last_eom_week_in_half

rplapprv_pre()

This function truncates the SUPS_MIN_FAIL table. It disables any indexes prior to the
truncation on the associated table and rebuilds/enables it after being truncated. The user running
this program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

rplatupd_pre()

This function truncates the MC_REJECTIONS table so that it is free to hold new mass change
rejections. It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

rplatupd_post()

This function truncates the holding tables REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC after their records have been processed. It disables any indexes
prior to the truncation on the associated tables and rebuilds/enables them following the truncation.
The user running this program for this function must have been granted the *drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.

rilmaint_post()

This function locks then truncates the REPL_ITEM_LOC_UPDATES table after these records
are processed so the table is free to hold new updates. It disables any indexes prior to the
truncation on the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table’ and “alter any
index’ system privilege, or be the owning schema user.

supmth_post()

Deletes records from table SUP_DATA after all daily supplier data records have been rolled up to
month level.

sccext_post()
Updates all processed supplier cost change record status to ‘Extracted’.
hstbld_pre()

Deletes sales history data for the dept exists in the table hist_rebuild_mask from the three tables
subclass_sales_hist, class_sales_hist and dept_sales_hist prior to running hstbld in rebuild mode.

hstbld_post()

This function truncates the holding table MASK_REBUILD after building history records. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the ‘drop any table’ and “alter any index’ system privilege, or be the owning schema user.

posdnld_post()

243

Retek Merchandising System

This clears the POS_MODS table after all records have been downloaded to the POS. It disables
any indexes prior to the truncation on the associated tables and rebuilds/enables them following

the truncation. The user running this program for this function must have been granted the “drop
any table’ and ‘alter any index’ system privilege, or be the owning schema user.

poscdnld_post()

This clears the config_status and loc_grp_status in POS_LOC_GRP and sets all values of
extract_req_ind to ‘N’. It clears the status column in POS_MERCH_CRITERIA. It also sets the
status_ind column in POS_STORE to ‘N’.

regext_post()

This function updates the TSFHEAD table and sets the status to ‘A’, approval_id to ‘BATCH’,
approval_date to the vdate, and the repl_tsf_approve_ind to ‘N’ where the repl_tsf_approve_ind
is equal to “Y”.

likestore_post()

This function should only be run after both storeadd.pc and all threads of likestore.pc have
successfully completed.

Inthe REPL_ITEM_LOC, table, likestore_post selects and inserts all information from the a like
store for the new store.

stkupd_pre()

Calls the stored function DBMS_MVIEW.REFRESH.

stkupd_post()

This function disables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC.
dtesys_post()

Enables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC table.
ocirog_pre()

This function truncates the rpl_net_inventory_tmp table, which is populated by the ocirog.c and
queried from regext.pc. This function also inserts records into RPL_DISTRO_TMP values from
ALLOC DETAIL, and ALLOC_HEAD table, and into RPL_ALLOC_IN_TMP values from
ALLOC_DETAIL, ALLOC_HEAD, and ORDHEAD table. This function also creates a unique
index in these two destination tables.

rplext_post()
Truncates the tables RPL_DISTRO_TMP, and RPL_ALLOC_IN_TMP.
posupld_post()

This updates the columns total_merch_cost , total_qty, invc_qgty, INVC_HEAD tables based on
the corresponding columns in the INVC_HEAD_TEMP table.

vatdIxpl_post()

This inserts into pos_mods all transaction level items on the vat_item table where the item has a
new tran_code. Also, if a sub-transaction level item is on vat_item, it is inserted into the
pos_mods table, along with its parent item. These items are not picked up by the vatdixpl
program because the vat_code rate has not changed.

saleoh_pre()

244

Chapter 6 — Pro*C batch designs

Calculates the next_eom_date, and updates the SYSTEM_VARIABLES.
dealday_pre()

This gets the total sales and purchases from the TEMP_TRAN_DATA table and inserts a new
record in TEMP_TRAN_DATA_SUM based on dept, class, subclass, loc_type, location,
tran_date, and tran_code.

dealday_post()

Copies the contents of the table TEMP_TRAN_DATA _SUM into TRAN_DATA table.
Afterwards, then TEMP_TRAN_DATA_SUM is truncated.

hstbldmth_post()

This is responsible for deleting records in the following tables:

e CLASS SALES HIST_MTH

e SUBCLASS_SALES HIST_MTH

e CLASS SALES HIST_MTH

e DEPT_SALES HIST_MTH

THE FOLLOWING FUNCTIONS SHOULD BE RUN AFTER THE edidlprd PROGRAM!
edidlprd_post()

Deletes old records from the EDI_DAILY_SALES table after they have been processed.
festrbld_post()

This truncates the holding table FORECAST_REBUILD after all records have been processed. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the “drop any table’ and ‘alter any index’ system privilege, or be the owning schema user.

vrplbld_post()

This truncates the EDI_ORD_TEMP table after all replenishment orders have been build from the
data held there. Disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’” and “alter any index’ system privilege, or be the
owning schema user.

cntrordb_post()
Sets the last_cont_order_date on system_variables to vdate.
fifgldnl_post()

If Oracle Financials is being used, delete everything from the fif_receiving table and repopulate it
from the if_tran_data table. Disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

fsadnld_post()

Updates the load_sales_ind to ‘N’ for all records on the appropriate domain table — domain_dept,
domain_class, or domain_subclass, where system_options.domain_level = ‘D’, ‘C’, or ‘S’,
respectively.

245

Retek Merchandising System

policy_enable()
Enables or disables policies.
whstrasg_post ()

Deletes all warehouse store assignment records from the warehouse store assignment table if the
assignment date (wh_store_assign.assign_date) is less than or equal to the current date
(period.vdate) minus the warehouse store assignment history days
(system_options.wh_store_assign_hist_days).

costcalc_post()

This truncates the deal_sku_temp table. This disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

tifposdn_post()

This truncates tif_explode table. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user. It disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation.

htsupld_pre()

This truncates the mod_order_item_hts table so that reports will be correct and not include data
from previous runs of htsupld. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

onordext_pre()

This truncates the on_order_temp table. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

precostcalc_pre()

This processeses records from the COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP tables. Reclass_trigger_temp is populated only by database trigger
and cost_change_trigger_temp is populated by database trigger and
edi_cost_change_sql.create_cost_chg.

This function will either insert new records or update existing ones on reclass_cost_chg_queue.
Both tables, COST_CHANGE_TRIGGER_TEMP and RECLASS_TRIGGER_TEMP are
truncated and their indexes rebuilt at the end of this function. The user running this program for
this function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege,
or be the owning schema user.

reclsdly_pre()

This disables the trigger RMS_TABLE_RCS_BIDR on the reclass_item table. The user running
this program for this function must have been granted the “alter any trigger’ system privilege, or
be the owning schema user.

246

Chapter 6 — Pro*C batch designs

ibcalc_pre()

This updates the status on ib_results to ‘U’nprocessed where the status = “W’orksheet so after
ibcalc is run, multiple records in *“W’orksheet status will not exist for each item/location.

festprg_pre()

This disables any indexes prior to the truncation on following tables. This is run BEFORE the
festprg.pe program on PARTITIONED TABLES only:

e |ITEM_FORECAST

e DEPT_SALES_FORECAST

e CLASS SALES_FORECAST

e SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

festprg_post()

This rebuilds the indexes following truncation of following tables:
e [TEM_FORECAST

e DEPT_SALES_FORECAST

e CLASS SALES FORECAST

e SUBCLASS_SALES FORECAST

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

dealinc_pre()
Call get_sys_date()
Call size_arrays()

Loops through the deal actuals item loc table and create any item/loc/order combinations in the
table that have previous turnovers but do not exist in future periods.

dealfct_pre()

This inserts details of forecast periods for active deal components that require processing into
dealfct_temp table.

dealact_pre_no_rebate()

Truncates the deal_bb_no_rebate_temp table.

Then inserts billback NO Rebate type of deal into deal _bb_no_rebate_temp.
dealact_pre_rebate_po()

Truncates the deal_bb_rebate_po_temp table.

Then inserts billback rebate PO type of deal into deal_bb_rebate_po_temp.
dealact_pre_receipt_sales ()

Truncates the deal_bb_receipt_sales_temp.

247

Retek Merchandising System

Then inserts billback rebate Sales and Receipt type of deal into deal_bb_receipt_sales_temp.
vendinvc_pre()

Truncate the STAGE_COMPLEX_DEAL_HEAD table.
Truncate the STAGE_COMPLEX_DEAL_DETAIL table.
Then inserts complex deals for invoicing into vendinvc_temp.
vendinvf_pre()

Truncate the STAGE_FIXED_DEAL_HEAD table.

Truncate the STAGE_FIXED_DEAL_DETAIL table.
vendinvc_post()

Get vdate.

Call process_deal_head().

vendinvf_post()

Get vdate.

Call process_fixed_deal().

process_fixed_deal()

For each active Fixed Deal record where the Collect End Date is earlier than the vdate, set it’s
status to Inactive.

process_deal_head()

For each active Deal Head record where Est Next Invoice Date, Close Date, Last Invoice Date
and Last EOM Date are earlier than vdate, AND Billing Type is Off Invoice and Invoice
processing Logic '="NO”’, set the Est Next Invoice Date to null.

I/O Specification
N/A

Technical Issues
N/A

248

Chapter 6 — Pro*C batch designs

Replenishment item-location maintenance
[rilmaint]

Design Overview

This program is performance enhancement to replenishment. It works in conjunction with the
REPL_ITEM_LOC_UPDATES staging table. REPL_ITEM_LOC_UPDATES is populated
when certain attributes effecting replenishment are modified. These attributes are located across
the entire system and are monitored for changes by a series of and triggers and modules. Once a
change is logged in REPL_ITEM_LOC_UPDATES rilmaint.pc will note the type of change and
update REPL_ITEM_LOC appropriately.

Before this program existed, the replenishment programs (regext.pc and rplext.pc) would have to
perform table lookups (extra-joins) to get the information that rilmaint.pc provides for them.
With rilmaint.pc, the driving cursors of the replenishment programs are simpler and much faster
(hopefully).

Function Level Description

There are five basic replenishment scenarios that are important for this program. They are:
IM -

Input = item

Handles Al, A2, B, C, D — Update all REPL_ITEM_LOC records for dept, class, subclass, and
status where the item being changed on ITEM_MASTER matches REPL_ITEM_LOC. Ifa
primary_repl_pack exists for the REPL_ITEM_LOC record, the ITEM_MASTER information
reflects the primary_repl_pack.

ILSOM -
Input = item, loc

Handles A, A;, B, C, D — Update all REPL_ITEM_LOC records for store_ord_mult where the
item/loc being changed on ITEM_LOC matches REPL_ITEM_LOC. If a primary_repl_pack
exists for the REPL_ITEM_LOC record, the ITEM_LOC information reflects the
primary_repl_pack.

ILSC -
Input = item, loc

Handles A, _Update all REPL_ITEM_LOC records for inner_pack_size, supp_pack_size, ti, hi,
supp_lead_time, round_Ivl, round_to_inner_pct, round_to_case_pct, round_to_layer_pct,
and round_to_pallet_pct where the item/loc being changed on ITEM_LOC matches
REPL_ITEM_LOC item/source_wh for stores being replenished from warehouses that
themselves are not on replenishment. If a primary_repl_pack exists for the REPL_ITEM_LOC
record, the ITEM_LOC information reflects the primary_repl_pack. The pack sizes and rounding
information are retrieved from ITEM_SUPP_COUNTRY and ITEM_SUPP_COUNTRY_LOC
given the item, loc, primary_supp, and primary_cntry on the ITEM_LOC record being updated.

Unit_cost is not populated on REPL_ITEM_LOC for warehouse stocked store records. Thus it is
not updated in the case.

249

Retek Merchandising System

ISC -
Input = item, supplier, origin_country_id

Handles B, C, D — Update all REPL_ITEM_LOC records for inner_pack_size, supp_pack_size,
ti, hi, and supp_lead_time where the item/supplier/origin_country_id being updated on
ITEM_SUPP_COUNTRY matches the REPL_ITEM_LOC
item/primary_repl_supplier/origin_country_id and the REPL_ITEM_LOC is using supplier
replenishment.

Handles A; — Update all REPL_ITEM_LOC records for inner_pack_size, supp_pack_size, ti, hi,
and supp_lead_time where the item being updated on ITEM_SUPP_COUNTRY matches the
REPL_ITEM_LOC item for a warehouse stocked store (stock_cat = “W” and loc type = ‘S’)
where the source_wh is on replenishment and the item/primary_repl_supplier/origin_country_id
of the source_wh ‘s REPL_ITEM_LOC records matches the item/supplier/origin_country_id of
the ITEM_SUPP_COUNTRY record being updated.

Handles A, — Update all REPL_ITEM_LOC records for inner_pack_size, supp_pack_size, ti, hi,
and supp_lead_time where the item being updated on ITEM_SUPP_COUNTRY matches the
REPL_ITEM_LOC item for a warehouse stocked store (stock cat = “W’ and loc type = “S’)
where the source_wh is not replenishment and the item/primary_supp/primary_cntry of the
source_wh ‘s ITEM_LOC records matches the item/supplier/origin_country_id of the
ITEM_SUPP_COUNTRY record being updated.

If a primary_repl_pack exists for the REPL_ITEM_LOC record, the ITEM_SUPP_COUNTRY
information reflects the primary_repl_pack.

ISCLR -
Input = item, location, supplier, origin_country _id

Handles B, C, D — Update the REPL_ITEM_LOC records round_Ivl, round_to_inner_pct,
round_to_case_pct, round_to_layer_pct, and round_to_pallet_pct where the
item/loc/supplier/origin_country being updated on ITEM_SUPP_COUNTRY_LOC matches the
REPL_ITEM_LOC item/location/primary_repl_supplier/origin_country_id and the
REPL_ITEM_LOC record is using supplier replenishment.

Handles A; — Update all REPL_ITEM_LOC records round_Ivl, round_to_inner_pct,
round_to_case pct, round_to_layer_pct, and round_to_pallet_pct where the item/location
being updated on ITEM_SUPP_COUNTRY _LOC matches the item/source_wh on
REPL_ITEM_LOC and the source_wh for the item is on supplier replenishment.

Handles A, — Update all REPL_ITEM_LOC records round_Ivl, round_to_inner_pct,
round_to_case_pct, round_to_layer_pct, and round_to_pallet_pct where the item/location
being updated on ITEM_SUPP_COUNTRY _LOC matches the item/source_wh on
REPL_ITEM_LOC and the source_wh for the item is not on supplier replenishment.

If a primary_repl_pack exists for the REPL_ITEM_LOC record, the
ITEM_SUPP_COUNTRY_LOC information reflects the primary_repl_pack.

ISCLC -
Input = item, location, supplier, origin_country _id

Handles B, C — Update the REPL_ITEM_LOC records unit_cost where the
item/loc/supplier/origin_country being updated on ITEM_SUPP_COUNTRY_LOC matches the
REPL_ITEM_LOC item/location/primary_repl_supplier/origin_country_id and the
REPL_ITEM_LOC record is using direct to location supplier replenishment.

250

Chapter 6 — Pro*C batch designs

Handles D — Update the REPL_ITEM_LOC records unit_cost where the
item/loc/supplier/origin_country being updated on ITEM_SUPP_COUNTRY_LOC matches the
REPL_ITEM_LOC item/source_wh/primary_repl_supplier/origin_country_id and the
REPL_ITEM_LOC record is using direct to xdock or xlink supplier replenishment.

If a primary_repl_pack exists for the REPL_ITEM_LOC record, the
ITEM_SUPP_COUNTRY_LOC information reflects the primary_repl_pack.

RILP -

Input = item, location

Perform the IM logic on the item.

Perform the ILSOM logic on the item/location.

Handles B, C, D — Update the REPL_ITEM_LOC record’s inner_pack_size, supp_pack_size,
ti, hi, and supp_lead_time where the record being updated on REPL_ITEM_LOC matches the
ITEM_SUPP_COUNTRY item/supplier/origin_country_id and the REPL_ITEM_LOC record is
using direct to location or xdock/xlink supplier replenishment.

Handles A; — Update the REPL_ITEM_LOC record’s inner_pack_size, supp_pack_size, ti, hi,
and supp_lead_time where the record is a store being sourced by a warehouse that is on
replenishment. Use the primary_repl_supp/origin_country_id on REPL_ITEM_LOC for the
sourcing warehouse to link to ITEM_SUPP_COUNTRY to get the pack size/lead time info.
However, if the item is being replenished in the form of a primary simple pack and that primary
simple pack does not exist at the primary_repl_supp/origin_country_id/source_wh combination
on REPL_ITEM_LOC, then use the primary_supp and primary_cntry for the sourcing warehouse
from ITEM_LOC in order to retrieve the necessary values from ITEM_SUPP_COUNTRY and
update the records inner_pack_size, supp_pack_size, ti, hi, and supp_lead_time.

Handles A, — Update the REPL_ITEM_LOC record’s inner_pack_size, supp_pack_size, ti, hi,
and supp_lead_time where the record is a store being sourced by a warehouse that is not on
replenishment. Use the primary_supp/primary_cntry for the sourcing warehouse on ITEM_LOC
to link to ITEM_SUPP_COUNTRY to get the pack size/lead time info.

Handles B, C, D — Update the REPL_ITEM_LOC record’s round_Ivl, round_to_inner_pct,
round_to_case_pct, round_to_layer_pct, and round_to_pallet_pct where the record being
updated on REPL_ITEM_LOC matches the ITEM_SUPP_COUNTRY_LOC
item/location/supplier/origin_country_id and the REPL_ITEM_LOC record is using direct to
location or xdock/xlink supplier replenishment.

Handles B, C, D — Update the REPL_ITEM_LOC record’s unit_cost where the record being
updated on REPL_ITEM_LOC matches the ITEM_SUPP_COUNTRY_LOC
item/location/supplier/origin_country_id and the REPL_ITEM_LOC record is using direct to
location or xdock/xlink supplier replenishment. If direct to location replenishment is being used,
use the location to get the cost. If xdock/xlink replenishment is being used, used the source_wh
to get the cost.

251

Retek Merchandising System

Handles A; — Update the REPL_ITEM_LOC record’s round_Ivl, round_to_inner_pct,
round_to_case_pct, round_to_layer_pct, and round_to_pallet_pct where the record is a store
being sourced by a warehouse that is on replenishment. Use the
primary_repl_supp/origin_country_id on REPL_ITEM_LOC for the sourcing warehouse to link
to ITEM_SUPP_COUNTRY_LOC to get the rounding info. However, if the item is being
replenished in the form of a primary simple pack and that primary simple pack does not exist at
the primary_repl_supp/origin_country_id/source_wh combination on REPL_ITEM_LOC, then
use the primary_supp and primary_cntry for the sourcing warehouse from ITEM_LOC in order to
retrieve the necessary values from ITEM_SUPP_COUNTRY_LOC and update the records
round_Ivl, round_to_inner_pct, round_to_case pct, round_to_layer pct, and
round_to_pallet_pct.

Handles A, — Update the REPL_ITEM_LOC record’s round_Ivl, round_to_inner_pct,
round_to_case pct, round_to_layer_pct, and round_to_pallet_pct where the record is a store
being sourced by a warehouse that is not on replenishment. Use the
primary_repl_supp/origin_country_id on ITEM_LOC for the sourcing warehouse to link to
ITEM_SUPP_COUNTRY_LOC to get the rounding info.

If a primary_repl_pack exists for the REPL_ITEM_LOC record, all updated information reflects
the primary_repl_pack.

RILSW -

Input = item, location

B, C — no change — no source wh...
Handles D.

Handles A;.

Handles A,.

When an RILSW change type occurs, the program will flow through the RILP change type. See
the section titled RILP for a description of the possible changes that can occur when the user
changes their source_wh.

RILSC -
Input = item, location

Handles B, C, D — Update the REPL_ITEM_LOC record’s inner_pack_size, supp_pack_size,
ti, hi, and supp_lead_time, round_lIvl, round_to_inner_pct, round_to_case_pct,
round_to_layer_pct, and round_to_pallet_pct where the record being updated on
REPL_ITEM_LOC matches the ITEM_SUPP_COUNTRY item/supplier/origin_country_id and
it matches the ITEM_SUPP_COUNTRY_LOC item/supplier/origin_country_id/loc.

Handles B, C, D — Update the REPL_ITEM_LOC record’s unit_cost where the record being
updated on REPL_ITEM_LOC matches the the ITEM_SUPP_COUNTRY_LOC
item/supplier/origin_country_id/loc.

Handles A; _Update the REPL_ITEM_LOC record’s inner_pack_size, supp_pack_size, ti, hi,
and supp_lead_time, round_Ivl, round_to_inner_pct, round_to_case_pct,
round_to_layer_pct, and round_to_pallet_pct where the record is a store being sourced by a
warehouse that is on replenishment. Use the primary_repl_supp/origin_country_id on
REPL_ITEM_LOC for the sourcing warehouse to link to ITEM_SUPP_COUNTRY and
ITEM_SUPP_COUNTRY_LOC to get the rounding info.

252

Chapter 6 — Pro*C batch designs

If a primary_repl_pack exists for the REPL_ITEM_LOC record, all updated information reflects
the primary_repl_pack.

RIL -

Input = item, location

Perform IM, PQTY, ILSOM RILRC, and RILP logic.

LKITEM -

Input = item, location

Perform RIL logic on every location on replenishment for the item.
RILRC -

Input = item, location

Handles A, A,, B, C, D — Update the REPL_ITEM_LOC record’s next_review_date where the
record being updated on REPL_ITEM_LOC. Use the review_cycle and REPL_DAY records to
calculate the next_review_date. Assumes that the last_review_date is not a factor in setting
next_review_date.

RILD —

Input = item, location
Perform ILSC logic.
PQTY -

Input = item

Handles A, A,, B, C, D — Update all REPL_ITEM_LOC records where the primary_pack_no is
the item on REPL_ITEM_LOC_UPDATES. Use the primary_pack_no/item on
REPL_ITEM_LOC to link to the pack_no/item of PACKITEM to get the new pack qty.

ILST -
Input = item, location

Handles A, A, B, C, D — Delete the REPL_ITEM_LOC record where the item/location on
REPL_ITEM_LOC matches the item/location on REPL_ITEM_LOC_UPDATES OR where the
item/source_wh on REPL_ITEM_LOC matches the item/location on
REPL_ITEM_LOC_UPDATES and the primary_repl_supplier field on REPL_ITEM_LOC is not
null (item must be active at both wh and store for xlink and xdock).

Handles A, A, B, C, D — Update the REPL_ITEM_LOC record where thee
primary_pack_no/location on REPL_ITEM_LOC matches the item/location on
REPL_ITEM_LOC_UPDATES - set primary_pack_no, primary_pack_qty equal to NULL.

For each record (the record) on REPL_ITEM_LOC where the primary_pack _no is updated to
NULL, perform RIL logic.

For each record on REPL_ITEM_LOC where the item is equal to the item that was deleted and
the source_wh is equal to the location that was deleted, perform RILP logic.

RECLAS -
Input = item

Perform IM logic.

253

Retek Merchandising System

Scheduling Considerations

Processing Cycle Phase 3

Scheduling Diagram:

Pre-Processing: storeadd.pc, rplatupd.pc
Post-Processing: prepost (rilmaint post), repladj.pc
Threading Scheme: NONE

Restart/Recovery

This program has a unique logical unit of work — item/change type/location.

Driving Cursor

SELECT rilu.item,

NVL(rilu.supplier, -1),
NVL(rilu.origin_country_id, "-17%),
NVL(rilu.location, -1),
NVL(rilu.loc_type, "-17),

DECODE(rilu.change_type, "ILST", "Zz7z77°%,
rilu.change_type) /* Change type ILST should be processed last */

FROM repl_item_loc_updates rilu,
Vv_restart_store wh vsw
WHERE rilu.change_type = "LKITEM~
AND (rilu.item > NVL(:ps_restart_item, * ")
OR (rilu.item = NVL(:ps_restart_item, " %)
AND (rilu.change_type > NVL(:ps_restart _chg type, -
")
‘ OR (rilu.change_type = NVL(:ps_restart _chg_type,

AND NVL(rilu.location,-1) >
NVL(:ps_restart _loc,-1)))))

AND vsw.driver_value = nvl(rilu.location,-1)

AND vsw.num_threads = :ps_restart_num_threads
AND vsw.thread val = :ps_restart_thread val
UNION ALL
SELECT rilu.item,
-1,
-1,

ril_location,
ril_loc_type,
"RIL"

254

Chapter 6 — Pro*C batch designs

FROM repl_item_loc_updates rilu,
repl_item _loc ril,
Vv_restart _store wh vsw

"LKITEM*®

ril.item

WHERE rilu.change_type
AND rilu.item
AND (rilu.item > NVL(:ps_restart_ item, " %)
OR (rilu.item = NVL(:ps_restart_item, " *)

AND (
DECODE(rilu.change_type, "LKITEM®, "RIL",rilu.change_type) >
NVL(:ps_restart _chg type, *)

OR (
DECODE(rilu.change_type, "LKITEM®, "RIL",rilu.change_type) =
NVL(:ps_restart _chg type, *)

AND NVL(ril.location,-1) >
NVL(:ps_restart _loc,-1)))))

AND vsw.driver_value = NVL(rilu.location,-1)

AND vsw.num_threads = :ps_restart _num_threads

AND vsw.thread_val = :=ps_restart_thread val
/* item, change_type, location, supplier, cntry */
ORDER BY 1, 6, 4, 2, 3;

Design Assumptions

When setting next_review_date, program assumes that the last_review_date is not a factor in
setting next_review_date.

255

Chapter 6 — Pro*C batch designs

Automatic replenishment order approval
[rplapprv]

Design Overview

This program looks at all replenishment, vendor, and contract orders created during the nightly
batch run. These orders are compared with any vendor minimums that may exist. Orders that do
not meet the vendor minimums are either deleted or placed in worksheet status. A flag held at the
supplier inventory management level (SUP_INV_MGMT.ORD_PURGE_IND), determines what
action is taken on orders that fail minimums. Vendor generated orders are not subject to these
minimum checks.

Vendor minimums can be held at the order, item, or location level. Order and location level
minimums are held on the SUP_INV_MGMT table. There is a flag that determines if they are
applied at the order level or at the location level. Vendor minimums at the sku level are held on
the ITEM_SUPP_COUNTRY table.

When the SUP_INV_MGMT.ORD_PURGE _IND is ‘N’, a failure at any level causes the order to
be placed in worksheet status. When the SUP_INV_MGMT.ORD_PURGE_IND is “Y’, a failure
at the location level causes the offending location to be deleted, a failure at the sku level caused
the offending sku to be deleted, and a failure at the order level caused the entire order to be
deleted.

For any orders that fail vendor minimums when the SUP_INV_MGMT.ORD_PURGE_IND is
‘Y’, arecord is written to the

SUPS_MIN_FAIL table for reporting purposes. This table is purged during the pre-processing of
this batch program.

After order records are purged by the pre process of the prepost.pc module, any applicable deals,
brackets and allowances are applied to the orders. Open to buy is then updated for any orders
built in approved status. If any orders are contract orders, the contract amounts are updated as
well to reflect any order record deletions.

This program runs both (multi-channel and non multi-channel) environments.

If the order does not pass vendor minimum checks, Since the vendor minimum checks are
performed for a physical wh, if the vendor minimum is not met for a physical location, all the
virtual whs on the order within the physical wh will need to be removed along with associated
allocations.

This program should run directly after the replenishment supcnstr program. It is important that
this program runs before any other process affects the generated orders.

TABLE INDEX SELECT INSERT | UPDATE | DELETE
ORDHEAD Yes No Yes Yes
ORDLOC Yes No No Yes
ORDSKU Yes No No Yes
DESC_LOOK Yes No No No
ORD_INV_MGMT Yes No No Yes

257

Retek Merchandising System

TABLE INDEX SELECT | INSERT | UPDATE | DELETE
DEAL_CALC_QUEUE No Yes No Yes
ITEM_SUPP_COUNTR Yes No No No
Y

SUPS_MIN_FAIL No Yes No Yes
ALLOC_HEADER Yes No No Yes
ALLOC_DETAIL No No No Yes
CONTRACT_HEADER Yes No Yes No
CONTRACT _DETAIL Yes No Yes No
OoTB No No Yes No
REV_ORDERS No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No

Re-run:

If this program terminates abnormally, restart without recovery.

Scheduling Constraints

Processing Cycle: PHASE 3

Scheduling Diagram: Run after supcnstr.pc

Pre-Processing: prepost.pc (prepost user/password rplapprv pre)

Post-Processing: prepost.pc (prepost user/password rplprg post)

Threading Scheme:

Restart Recovery

EXEC SQL DECLARE c_order CURSOR FOR

SELECT

258

oh.order_no,
oh.purchase_type,
oh.contract_no,
oh.payment_method,
oh.supplier,
NVL(oim.min_cnstr_Ivl,"N"),
oh.import_order_ind,
oh.dept,

oim.ord_purge_ind,
NVL(oim.1tl_approval _ind,"N"),
NVL(oim_1tl_ind,"Y"),

Chapter 6 — Pro*C batch designs

s.sup_status,

s.bracket _costing_ind,

DECODE(oh.orig_ind,5,1,0),

ROWIDTOCHAR(oh . rowid),

ROWIDTOCHAR(oim.rowid)
FROM ordhead oh,

ord_inv_mgmt oim,

sups s
WHERE oh.order_no = oim.order_no
AND oh.supplier = s._supplier

AND oh.status “we
AND oim.ord_approve_ind = "Y*
AND (oh.orig_ind =0

OR oh.orig_ind = 5)

AND oh.written_date
/* if orig_ind =5, */

DECODE(oh.orig_ind,

5, /* then want any */
oh._written_date, /* written date */

TO_DATE(:0s_vdate, “YYYYMMDD?))
AND oh.order_no > NVL(:os_order_no, -9999);

Program Flow
N/A

Shared Modules
N/A

Function Level Description
N/A

I/O Specification
N/A

Technical Issues
N/A

259

Chapter 6 — Pro*C batch designs

Replenishment attribute update [rplatupd]

Design Overview

Rplatupd.pc (REPL_ATTRIB_UPDATE_DAILY) will execute the logic necessary to maintain
replenishment attributes for an item list. (A user can update replenishment attributes for an
individual item online, but processing an item list would take far too long to be acceptable.)
When the Replenishment Attribute Maintenance form (replattr.fmb) is used to maintain the
replenishment attributes for an item list, the form calls a package (rplattrb/s.pls) to write the
changes to a set of temp tables (REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOOC) listing the items, locations, and attributes to be changed. The
batch program will read these tables and process the item location relationships using the
information written to the table to determine what replenishment attributes for what locations
have to be updated. Items are processed in order of sequence number. Each item list maintenance
submittal is given a sequence number.

Replenishment attributes for each item/location are recorded in REPL_ITEM_LOC. Review
cycle information is kept on the REPL_DAY table.

Validation in the program will check the suitability of an item for replenishment i.e. for items that
have a inventory_ind of “Y” and a orderable_ind of ‘N’ then replenishment will only be permitted
if the stock_cat is “WH/Cross Link’ or ‘Warehouse Stocked’. Only rows where the scheduled
active date is tomorrow will be processed and item/locations that are present on the exclusion
table will be excluded from processing. There will be Inserts/Updates of the service_level_type
column on REPL_ITEM_LOC and MASTER_REPL_ATTR tables. It also allows the restoration
of REPL_ITEM_LOC from the MASTER_REPL_ATTR table.

This program is generally only run sporadically, but when it runs, it often has to process very
large volumes (e.g., updating the attributes for all items in an entire group or division at all
locations — millions of records). The previous version of rplatupd simply fetched records out of
the staging tables and called the same PL/SQL package as the online form for each one. While
this did keep online performance from being impaired, the program instead took an inordinate
amount of time during the nightly batch run, essentially bringing processing to a complete halt for
many hours. The problem is not only that updating many records takes longer than updating one,
but that the different situations really require not just more time, but significantly different
approaches. Therefore, in order to optimize performance, the validation and update logic has
been moved out of PL/SQL and into the Pro*C code itself.

TABLE INDEX | SELECT |INSERT | UPADATE | DELETE
REPL_ATTR_UPDATE_ITE yes yes no no no

M

REPL_ATTR_UPDATE_LOC | yes yes no no no
ITEM_LOC no yes no no no
REPL_ITEM_LOC yes yes yes yes
REPL_DAY no yes no yes
ITEM_SEASONS yes yes no no
SYSTEM_OPTIONS yes no no no

261

Retek Merchandising System

TABLE INDEX SELECT INSERT | UPADATE DELETE
ITEM_SUPP_COUNTRY yes no no no
ITEM_MASTER yes no no no
PACKITEM yes no no no
DEPS yes no no no
REPL_ITEM_LOC UPDATES no yes no no
SUB_ITEMS DETAIL yes no no no
MASTER_REPL_ATTR Yes Yes Yes No

Scheduling Constraints

Processing Cycle: Daily, Phase 3

Scheduling Diagram: This program should run in Phase 3 and be run before the replenishment

batch programs, rpladj, rplext, regext.
Pre-Processing: Truncate the MC_REJECTIONS table (rplatupd_pre)

Post-Processing: Truncate the REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC tables (rplatupd_post) Delete sub_items from
SUB_ITEMS_HEAD and SUB_ITEMS_DETAIL for item/locations that were deactivated.
(sub_items post)

Threading Scheme: Thread by store and warehouse (use v_restart_store_wh view)

Restart Recovery
Driving cursor:
EXEC SQL DECLARE c_repl_items CURSOR FOR
SELECT rau_head.repl_attr_id,

im.item,
rau_head.action,
NVL(im.item_parent, "),
NVL(im.item_grandparent, "),
rau_head.repl_method_ind,
rau_head.stock_cat,
rau_head.repl_order_ctrl,
rau_head.sourcing_wh,
TO_CHAR(rau_head.activate_date, "YYYYMMDD®),
TO_CHAR(rau_head.deactivate_date, "YYYYMMDD®),
rau_head.pres_stock,
rau_head.demo_stock,

rau_head.repl_method,

262

Chapter 6 — Pro*C batch designs

rau_head.min_stock,
rau_head.max_stock,
rau_head.incr_pct,
rau_head.min_supply_days,
rau_head.max_supply_days,
rau_head.time_supply_horizon,
rau_head.inv_selling _days,
rau_head.service_level,
rau_head.service_level_type,
rau_head.lost_sales factor,
rau_head.reject_store ord_ind,
rau_head.non_scaling_ind,
rau_head.max_scale_value,
rau_head.pickup_lead_time,
rau_head.wh_lead_time,
rau_head.terminal_stock qty,
rau_head.season_id,
rau_head.phase_id,
rau_head.supplier,
rau_head.origin_country_id,
rau_head.review_cycle,
rau_head.monday_ind,
rau_head.tuesday_ind,
rau_head.wednesday_ind,
rau_head.thursday_ind,
rau_head.friday_ind,
rau_head.saturday_ind,
rau_head.sunday_ind,
rau_head.unit_tolerance,
rau_head.pct_tolerance,
rau_head.default _pack ind,
NVL(rau_head.remove pack ind, "N7),
rau_head.use_tolerance_ind,
rau_loc.loc,
rau_loc.loc_type,
rau_head.mra_update,

rau_head.mra_restore,

263

Retek Merchandising System

im.inventory ind,

im.orderable_ind

FROM v_restart _store wh vrsw,
repl_attr_update_loc rau_loc,
repl_attr_update_item rau_item,
repl_attr_update head rau_head,
period per,
item_master im

WHERE rau_loc.repl_attr_id

AND rau_item.repl_attr_id

AND rau_head.scheduled_active _date =

AND im.item_level

AND C rau_item.item = Im.item

OR rau_item_item = im.item_parent

rau_head.repl_attr_id
rau_head.repl_attr_id
per.vdate

im.tran_level

OR rau_item.item = im.item_grandparent)

AND vrsw.driver_nhame =
:ps_restart_driver_name

AND vrsw.num_threads =
TO_NUMBER(:ps_restart _num_threads)

AND vrsw.thread_val =
TO_NUMBER(:ps_restart_thread_val)

AND vrsw.driver_value
AND (rau_item.repl_attr_id > NVL(:ps

rau_loc.loc

restart_repl_attr_id,

-999)
OR
(rau_item.repl_attr_id = :ps_restart _repl_attr_id
AND
(rau_item.item > :ps_restart_item
OR
(rau_item.item = :ps_restart_item AND
(rau_loc.loc > :ps_restart_loc))
)
)
)

AND NOT EXISTS (SELECT "X*

FROM repl_attr_update_exclude rau_excl

WHERE rau_excl.repl_attr_id =

rau_head.repl_attr_id

AND rau_excl.item
rau_item.item

264

Chapter 6 — Pro*C batch designs

AND rau_excl.location =
rau_loc.loc

AND rau_excl.loc_type =
rau_loc.loc_type

AND rownum = 1)
ORDER BY rau_item.repl_attr_id,
im.item,

rau_loc.loc;

Shared Modules

ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS —write rejected records to mc_rejections
table for later reporting.

SEASON_SQL.NEXT_SEQ_NO
REPL_ATTRIBUTE_MAINTENANCE_SQL.GET ITEM_TYPE

This package will no longer be called from the program, but the validation logic of these two
modules must be kept in sync.

FETCH_STRUCT —s_dc_fetch

Will hold item, location, and all replenishment attributes fetched from
REPL_ATTR_UPDATE_ITEM and REPL_ATTR_UPDATE LOC

ATTRIBUTE_STRUCT - s_update, s_activate

Will hold an item, location, and all of its replenishment attributes. In addition, it should hold
a rowid

(to speed up updates). The structure will be used to define the arrays used for both inserts
and updates to

REPL_ITEM_LOC.

DEACTIVATE_STRUCT -s_deactivate, s_deactivate_master

Structure for deletion from REPL_ITEM_LOC and REPL_ITEM_LOC_UPDATES
REPL_DAY_STRUCT —-s_insert_days, s_delete_days

This structure will be used for inserts to the REPL_DAY table. It should contain the item,
location,

location type, and weekday. This array should be sized to seven times the commit max
counter, since each

item-location combination being fetched could potentially be replenished every day of the
week.

Because of the need for this larger array, the commit_max_ctr setting on restart_control for this
program should be set with caution, since Oracle has a 32k limit on bind arrays.

The same structure type can be used to define the arrays for deletes from REPL_DAY, but that
array should not hold the weekday, as any delete from this table will clear out all records for an
item-location combination.

REPL_ITEM_LOC_UPDATES_ARRAY - s_ril_updates

265

Retek Merchandising System

This structure will be used for inserts into REPL_ITEM_LOC_UPDATES.

Function Level Description

init()

e initialize restart/recovery

e check if contracting is in use

o find what day of the week Oracle thinks Sunday is
process()

The controller for most of the processing in the program, this function opens and fetches from the
driving cursor according to Retek standards, using array processing. For each item-location
coming through (i.e., each record fetched), this function will call the appropriate validation
function based on the requested action. If validation passes, information should be passed into
the function(s) to fill insert, update, and/or delete arrays. A note on updating attributes: since
records on REPL_DAY cannot be updated (weekday is part of the primary key), the old days
need to be cleared off and new ones inserted when doing an update. This should only happen, of
course, when the user actually wants to change the days of replenishment (update_repl_days_ind
=Y").

When the fetch array has been fully processed, post functions are called and the restart commit
logic is called.

activate_item()

Calls validate_activate. If the item was rejected, call insert_rejection; otherwise call
fill_activate_array and fill_insert_days_array to populate arrays. Calls fill_ril_updates_array to
insert into REPL_ITEM_LOC_UPDATES.

It also gets the item_season_seq_no for the record’s item/season/phase combination.

post_activations

Insert records into repl_item_loc.
update_item

Call validate_update. If the record fails validation, call insert_rejection ; otherwise put it into the
update arrays with fill_update_array and fill_insert_days_array.

It also gets the item_season_seq_no for the record’s item/season/phase combination. Calls
fill_ril_updates_array if the supplier or origin_country is being updated.

deactivate_item

Fill the deactivation array. Also fill the s_deactivate_master array after checking that the record
exists on master_repl_attr.

post_deactivations

Delete given rows from REPL_ITEM_LOC and MASTER_REPL_ATTR tables.
post_day_ changes

Insert changes into the repl_day table

get_item_info

266

Chapter 6 — Pro*C batch designs

Queries the item tables to get the forecast indicator for the item (which will be used during
validation for activation and update). This function also queries DEPS to get the purchase type of
the item's department to determine whether or not the item is on consignment or not. If an item is
on consignment, it cannot be replenished, since the supplier determines what goes on the shelves.
The function also checks to make sure that the sourcing warehouse is valid.

Get_item_info() also queries ITEM_SUPPLIER and ITEM_SUPP_COUNTRY to verify that the
given supplier and origin country (if any) are valid. Get_item_info checks the default_pack_ind.
If the default_pack_ind = “Y”, then it gets the primary_cost_pack from ITEM_LOC and checks
that it is active at the location.

get_itemloc_info

Queries the REPL_ITEM_LOC table to find the current replenishment attributes for the current
item-location combination. If no record is found, the item is not on replenishment at that location
(this is not necessarily an error). The rowid should also be fetched to facilitate updates and
deletes. Queries the ITEM_LOC table to get the clearance indicator. Also checks the
SUB_ITEMS_DETAIL table to check if the item is a substitute item.

A check is made on the mra_restore value to determine where current item/loc attributes should
be retrieved from. If the flag is set to ‘N’ then they will be retrieved from REPL_ITEM_LOC
tables, if the value is set to “Y’ then they will be retrieved from the MASTER_REPL_ATTR
table.

The cursor c_master_repl_attr retrieves the values from the MASTER_REPL_ATTR
table including the service_level_type field which is used later for Inserts/Updates of the
service_level_type column on REPL_ITEM_LOC and MASTER_REPL_ATTR tables.

validate_activate

If an item-location is already on replenishment, the function should return a non-fatal error so that
the record is skipped. If the item-location meets any of the following criteria, insert_rejection()
should be called with the appropriate rejection reason code (see table
MC_REJECTION_REASONS), and a non-fatal error should be returned so the record is not
written to the activate array:

e The item is not supplied by the specified replenishment supplier/origin country.
e The item is on consignment.
e The item is a substitute item.

e The replenishment method requires forecast information (Time Supply or Dynamic), but the
item is not forecastable.

e |tis on clearance and contracting is disabled (this check only applies to stores, since an item
cannot be on clearance at a warehouse).

e The item is not stocked at the specified sourcing warehouse (this check only applies to stores,
a warehouse is never sourced by another warehouse).

If a seasonal method of replenishment is being used, this function also calls
validate_item_seasons() to ensure that the item-season-phase relationship exists, or creates it if it
doesn’t.

It also checks if the item is suitable for replenishment i.e. Where Inventory Indicator is *Y’ and
orderable indicator is “N’ then replenishment is only permitted if the stock category is *‘WH/Cross
Link’ or “Warehouse Stocked’

267

Retek Merchandising System

L Note: Rejection reasons can be found on the MC_REJECTION_REASONS table with
the appropriate error text

If the item-location combination passes all the validation criteria, the function will return
successfully.

validate_update

When the user updates replenishment attributes, she may not want to change all of them, and so
will leave certain fields blank. These will get written to REPL_ATTR_UPDATE_ITEM as
NULL values. Therefore, any column coming out of the driving cursor as NULL is seen as
representing a “no-change”. This requires careful monitoring of indicator variables during
validation and assignment.

If an item-location is not already on replenishment, the function should return a non-fatal error so
that the record is skipped. If the item-location meets any of the following criteria,
insert_rejection() should be called with the appropriate rejection reason code (see table
MC_REJECTION_REASONS), and a non-fatal error should be returned so the record is not
written to the update array:

e The item is not supplied by the specified replenishment supplier/origin country.

e The replenishment method requires forecast information (Time Supply or Dynamic), but the
item is not forecastable.

e The item is not stocked at the specified sourcing warehouse (this check only applies to stores,
a warehouse is never sourced by another warehouse).

o If the activation date is being changed but the deactivation date is not, and the new activation
date is later than the old deactivation date.

o If the deactivation date is being changed but the activation date is not, and the new
deactivation date is earlier than the old activation date.

e If the minimum stock quantity is being changed but the maximum is not, and the new
minimum is greater than the old maximum.

o |f the maximum stock quantity is being changed but the minimum is not, and the new
maximum is less than the old minimum.

o If the minimum number of supply days is being changed but the maximum is not, and the
new minimum is greater than the old maximum.

o If the maximum number of supply days is being changed but the minimum is not, and the
new maximum is less than the old minimum.

o The order control Buyer worksheet is allowed with the stock category and location type.

If a seasonal method of replenishment is being used, this function also calls
validate_item_seasons() to ensure that the item-season-phase relationship exists, or creates it if it
doesn’t.

It also checks if the item is suitable for replenishment at all.

L Note: Rejection reasons can be found on the MC_REJECTION_REASONS table with
the appropriate error text

If the item-location combination passes all the validation criteria, the function will return
successfully.

268

Chapter 6 — Pro*C batch designs

fill_activate_array

Assigns all replenishment attributes for the current record to the array to be used in inserts to
REPL_ITEM_LOC.

fill_update_array

Assigns the replenishment attributes for the current record to the array to be used in updating
REPL_ITEM_LOC. If the replenishment method is changing
(REPL_ATTR_UPDATE_ITEM.repl_method_ind = “Y?’), then all replenishment-method-
specific attributes must be written as-is to the arrays, whether they are NULL or not. These
attributes are: repl_method, min_stock, max_stock, incr_pct, min_supply_days,
max_supply_days, time_supply_horizon, inv_selling_days, service_level, lost_sales_factor,
reject_store_ord, terminal_stock _quantity, season_id, phase_id, and primary_pack_no. If the
replenishment method is not changing, these attributes should be left unchanged if they are
NULL on REPL_ATTR_UPDATE_ITEM; that is, the old value from REPL_ITEM_LOC should
be written to the array rather than the new NULL value to keep the actual record on the table
from being inadvertently overwritten. All other attributes should be left unchanged if they are
NULL on REPL_ATTR_UPDATE_ITEM.

fill_insert_days_array

Assigns the item, location, location type, and weekday to the array to be used in inserting to
REPL_DAY. A record needs to be added for each weekday that has been marked as a review day
for the current item-location combination.

fill_delete_days_array

Assigns the item and location to the array to be used in deleting from REPL_DAY. The weekday
does not need to be added to this array, since the program will simply delete all weekdays for a
given item-location combination.

fill_ril_updates_array

Assigns the item, supplier, origin_country, location, and loc_type to the array to be used in
inserting into REPL_ITEM_LOC_UPDATES. A record will be added for each item/location that
is activated or item/location where the supplier or origin_country is being updated.

open_dc

Open the driving cursor.

fetch_dc

Fetch the driving cursor.

post_updates

This function performs arrayed update of REPL_ITEM_LOC.
post_repl_item_loc_updates

Performs arrayed insert of REPL_ITEM_LOC_UPDATES
validate_item_seasons

269

Retek Merchandising System

If a Seasonal method of replenishment (either Dynamic or Time-Supply) is being used, a record
on the ITEM_SEASONS table must exist to maintain the foreign key dependency from
REPL_ITEM_LOC. This function queries ITEM_SEASONS to ensure that a relationship exists.
If it doesn't, a record should be inserted. No error should be raised on a DUP_VAL_FOUND
occurrence, since it is possible that another thread of the program could be trying to write the
same record, as threading is done by location rather than item. It is not possible to perform this
insert as an arrayed SQL statement, since a DUP_VAL_FOUND error would stop the rest of the
array from being posted.

insert_rejection

This function calls the stored PL/SQL procedure
ITEMLIST_MC_REJECTS_SQL.INSERT_REJECTS, passing in the error information passed
into this function by the caller. It should take in a rejection reason and up to three other strings
(for additional error message text) as parameters.

size_arrays

Allocates memory for all processing arrays including: s_dc_fetch, s_activate, s_update and
s_deactivate_master.

final()
call restart_close to finish restart/recovery

Technical Issues
N/A

270

Chapter 6 — Pro*C batch designs

Vendor replenishment extraction [rplext]

Design Overview

Rplext (Vendor Replenishment Extraction) is the driving program for the replenishment process.
It cycles through every item-location combination that is ready to be reviewed on the current day,
and calculates the quantity of the item that needs to be ordered to the location. The program then
writes these order line items to ORD_TEMP and REPL_RESULTS for processing by cntrprss
and rplbld.

The logic of this program is determined mainly by the stock category of the item-location
combination. If the stock category is Direct to Store, the process is fairly straightforward. The
ROQ is calculated, and this quantity is then written to the aforementioned tables for ordering.

If it is Crossdocked, the ROQ calculations are handled similarly to the Direct to Store category.
However, when crossdocking occurs, the item must be ordered to a warehouse before being
allocated to the store. This means that the total number of items being ordered must be tracked
across all stores sharing the same source warehouse, so that a summary record can be written to
ORD_TEMP to connect all the stores and create one order to the warehouse to be allocated from
there.

Similarly, if the stock category is WH/Cross Link, the ROQ and distribution calculations are
handled much like the Direct to Store category. However, when processing WH/Cross Link item-
store records that have been generated in regext, the item must also be ordered to a warehouse
before being allocated to the store in order to fulfill the WH/Cross Link transfer quantity
generated in regext. Much like crossdocking, this means that the total number of items being
ordered must be tracked across all stores sharing the same source warehouse, PO-Linked Transfer
Number and replenishment order control, so that a summary record can be written to
ORD_TEMP to connect all the item-stores and create one order to the warehouse to be allocated
from there.

No item-store combinations with a stock category of Warehouse Stocked are processed by this
program. Since these stores are supplied via transfers from the source warehouse rather than
purchase orders, they are processed in a separate program (regext). However, orders must still be
built so that the source warehouse has stock to supply the stores with. If the replenishment
method for the item-warehouse combination is non-forecasted (Constant, Floating-Point, or Min-
Max), the process is the same as Direct to Store. However, if the method does involve
forecasting (Dynamic or Time-Supply), then the ROQ for the warehouse is based on the predicted
ROQ (or need) of the item (or its associated simple pack) at all stores that are supplied by the
warehouse.

Once the order quantity for an item (or simple pack) has been calculated, an order line item is
written to the ORD_TEMP table if 1) the actual quantity to order is greater than zero, and 2) the
replenishment order control indicator for the item-location combination is either Automatic or
Semi-Automatic. If it is Manual or Buyer Worksheet, a record will be written to another table
(REPL_RESULTSYS) for reporting purposes. If the system-level Replenishment Results indicator
is set to “Yes”, then all order line items being written to ORD_TEMP will also be written to
REPL_RESULTS. If the system-level All Replenishment Results indicator is set to “Yes”, all
line items will be written to REPL_RESULTS, even if the quantity to order is zero. Crossdock
summary records are never written to REPL_RESULTS, since they are only used internally
within the replenishment batch process.

271

Retek Merchandising System

Scheduling Constraints
Processing Cycle Phase 11l

Scheduling Diagram: Rplatupd, rilmaint, rpladj, regext and cntrordb need to run before rplext
to make sure that replenishment attributes and stock information are all
up to date. If contracting is being used, cntrprss should run after rplext;
otherwise, run ibcxpl, ibcalc rplbld.

Pre-Processing: The ORD_TEMP table is truncated in the pre-processing.
Post-Processing: N/A
Threading Scheme: DEPT

Restart Recovery

The logical unit of work is item, supplier. The driving cursor is ordered by item, supplier, origin
country, sourcing warehouse, and order control indicator. The first two elements are for restart
recovery. The second two have to do with crossdocked orders. Because a summary record has to
be written for a crossdock, totals must be kept across all locations an item is being ordered to.
When the sourcing warehouse changes, we know we have reached the end of this particular
crossdock and can post the summary record. The order control indicator is needed since if some
crossdocks are written to be Semi-automatically approved (written in Worksheet status) and
others to be Automatically approved, two separate orders (and thus two separate summaries) need
to be written.

Program Flow
N/A

Shared Modules

GET_REPL_ORDER_QTY_SQL.REPL_METHOD: Stored PL/SQL procedure for calculating
the ROQ of an item at a location.

REPL_OLT_SQL.GET_ITEM_LOC_REVIEW_TIME: Stored PL/SQL procedure for
determining the time between reviews for an item-location combination. This information is used
in GET_REPL_ORDER_QTY and is posted to ORD_TEMP and REPL_RESULTS.

RMS_ROUND_TO_PACKSIZE: Shared C function (see rpl.h) used in rounding an item’s
quantity up to the size of a simple pack, or for rounding an order quantity up to a receivable pack
size. This function is called when ordering a primary simple pack in the build_pack_dist_struct()
function, or when generating crossdock order quantities for individual stores.

Data Structures

repl_info_struct: Holds information fetched in from the driving cursor, as well as storing
variables to be used in other calculations.

ord_temp_struct: Used to buffer inserts to the ORD_TEMP table.
repl_results_struct: Used to buffer inserts to the REPL_RESULTS table.

pack_dist_struct: Used for holding information about the simple pack that an item belongs to, or
if an item has no simple packs associated with it, this structure will simply hold information for
the singular item itself.

272

Chapter 6 — Pro*C batch designs

xdock_info_struct: Holds information to be used in placing the summary record of a crossdocked
order.

repl_update_struct: Holds information to be used in updating the REPL_ITEM_LOC table for
implicit restart-recovery purposes and for storing the last ROQ generated for investment buy
functionality.

domain_struct: Used to cache forecasting domain information.

Function Level Descriptions

main()

The standard Retek main function, this calls init(), process(), final() and posts to the daily log
files.

init()

This function initializes the restart/recovery API and fetches global options and variables.

driving_cursor()
Opens, fetches or closes the driving cursor. This is a support function for process().

process()

Controlling function for processing. Sizes most of the data structures, fetches data from the
driving cursor (by calling driving_cursor()), copies each record returned by the driving cursor into
a structure for processing (by calling copy_repl_info()), calls replenish_item() to do most of the
work for each record returned, posts orders when necessary and handles restart/recovery.

replenish_item()
The main controlling function for replenishment calculations.

This function first calls get_vendor_line_info in order to return all relevant supplier inventory
management records for the item-location being processed.

If the location being processed is a warehouse and the warehouse is using a forecasted method of
replenishment (either Dynamic or Time Supply), the calculations for determining ROQ are based
on the stores that this warehouse is a source for, and replenish_to_wh() is called to find this
information and place the orders.

Otherwise, this function calls get_olts_and_review_time to get the applicable review and lead
times for the item-locaiton in order to pass them into get_repl_order_qty(), which calculates the
raw ROQ for the item-location combination based upon the replenishment method and lead and
review times being used. The function then calls build_pack_dist_struct() in order to associate
the raw ROQ with either a single item or a simple pack, depending upon what the location is set
up to order . If the current record is part of a crossdock order, the totals are updated, and when all
the locations for the order have been processed, a summary record is posted. Finally, the order
line item is placed by calling place_item_orders().

build_pack_dist_struct()

If the item is not associated with a simple pack (determined by the simple pack number on the
REPL_ITEM_LOC table), the item and its ROQ will simply be written to the distribution
structure by itself. If a primary simple pack is defined on the REPL_ITEM_LOC table, that pack
will be written to the distribution structure after rounding the quantity up to an orderable pack
size.

replenish_to_wh()
Replenishes an item to a warehouse using a forecasted method of replenishment that will in turn
be used as a replenishment source for stores (See regext).

273

Retek Merchandising System

This function fetches replenishment information for the current item at all stores that are supplied
by the current warehouse. It then finds the forecasted ROQ for each item-store, calls
build_pack_dist_struct() in order to write associate that ROQ with either a single item or primary
simple pack depending upon what the store has been set up to order. In this manner, it behaves
similar to the main processing loop, but rather than calculating quantity to order, it is calculating
the future ‘need’ for the item at the store. As each store is processed, a running total of the need
for each item or simple pack is kept (by the update_wh_need() function). When all the stores
have been processed, then the total need for each item or simple pack is used in calculating the
warehouse’s actual ROQ of that pack (in get_repl_order_qty()).

update_wh_need()
Updates the total need of an item or simple pack at a warehouse over all stores supplied by that
warehouse. This is a support function for replenish_to_wh().

update_xdock_totals()

Writes the initial warehouse record for the first store being processed and updates the total
guantity to order for all stores on a crossdock order if more than one store is being crossdocked.
This information is used in placing the summary record of a crossdock order. It should be noted
that the order quantities to the stores will be rounded to the nearest pack size, whereas the
summary quantity for the warehouse will not be rounded.

place_xdock wh_order()

If a crossdock order is being created, a record must be written to ORD_TEMP to order the item or
simple pack to the warehouse for allocation to stores. This function adds this summary record to
the ORD_TEMP buffer (but not to the REPL_RESULTS buffer).

place_item_orders()

Adds a record to the appropriate structure(s) for insert to ORD_TEMP and/or REPL_RESULTS.
The conditions for writing records on the ORD_TEMP is when the following were meet: the
order control must be 'A'utomatic or 'S'emi-Automatic, the
SUP_INV_MGMT.due_order_process_ind is "Y', or the
SUP_INV_MGMT.due_order_process_ind is 'N' and ROQ package due_ind is 'Y".

Records will be written to the REPL_RESULTS buffer if the system-level Replenishment Results
option is set to "Yes", or SUP_INV_MGMT.due_order_process_ind is "Y' or ROQ package
due_indis 'Y".

If the order control is 'M'anual or 'B’uyer Worksheet, records will not be written to the
ORD_TEMP buffer, however records will be written to the REPL_RESULTS buffer if the
system-level Replenishment Results option is set to "Yes", or
SUP_INV_MGMT.due_order_process_ind is "Y' or ROQ package due_ind is "Y".

If one or both structures fill up, they will be posted to the database and reset to be refilled.

post_orders()
Actually writes order information to the database, inserting to ORD_TEMP and
REPL_RESULTS.

handle_review_and_delivery_dates()

Copies over the last review date, last delivery date, the last recommended order quantity (ROQ),
next review date and next delivery date from them current record for us in update to
REPL_ITEM_LOC. This copying will occur for all records that not WH/Cross Link stock
category records.

update_review_and_delivery_dates()

274

Chapter 6 — Pro*C batch designs

Updates the last review date and the develiery date columns on REPL_ITEM_LOC to reflect the
fact that item-location combinations have just been evaluated.

get_olts_and_review_time()

Gets the recommended order quantity (ROQ) and other variables for an item-location-supplier
and populates several fields of the repl_info_struct with them. Essentially just a wrapper for the
REPL_OLTS_SQL.GET_OLTS_AND_REVIEW_TIME and
GET_REPL_ORDER_QTY_SQL.REPL_METHOD stored PL/SQL procedures.

get_repl_order_qty()

Gets the recommended order quantity (ROQ) and other information for an item-location
combination. Essentially just a wrapper for the
REPLENISHMENT_SQL.GET_ITEM_LOC_REVIEW_TIME and
GET_REPL_ORDER_QTY_SQL.REPL_METHOD stored PL/SQL procedures.

get_domain_info()

The GET_REPL_ORDER_QTY_SQL stored procedure requires a forecasting domain when
performing calculations for item-location combinations using a forecasted method of
replenishment (Dynamic or Time Supply). For a given department, class or subclass (depending
on the system-level Domain Level option), this function finds the associated forecasting domain.
The first time this is called, it will call build_domain_cache() to pull all domain information for
this thread into an array, and return the desired domain. Subsequent calls will only query the
array.

build_domain_cache()

Populates a structure with information on department/class/subclass/domain relationships.
Because the program is threaded by department, the function will only pull domains associated
with departments, classes, or subclass associated with the current thread.

copy_repl_info()
Copies replenishment information from the fetch array into a more convenient structure for
evaluation and processing.

Get_vendor_line_info()

Get vendor line constraint information from SUPS_INV_MGMT table. Copy them to
repl_info_struct. They are needed by GET_REPL_ORDER_QTY_SQL for getting an item-
locations ROQ.

copy_pack_to_repl()
Copies replenishment and simple pack information into a repl_info_struct and a pack distribution
structure for calculating ROQ and building orders for a warehouse. This is a support function for
replenish_to_wh().

size_repl_info_struct()
Allocates memory for the elements of a replenishment information structure.

size_repl_update_struct()
Allocates memory for the elements of an repl_update structure.

size_ord_temp_struct()
Allocates memory for the elements of an ORD_TEMP insert structure.

size_repl_results_struct()
Allocates memory for the elements of a REPL_RESULTS insert structure.

final()
The normal Retek final function, this closes down the restart/recovery API.

275

Retek Merchandising System

Database Interaction
Tables Selected From:

o DOMAIN_CLASS

o DOMAIN_DEPT

o DOMAIN_SUBCLASS
e |ITEM_SUPP_COUNTRY
e PERIOD

o REPL_DAY

e REPL_ITEM_LOC

e STORE

e SYSTEM_OPTIONS

e WH

. SUPS

e SUP_INV_MGMT
Tables Inserted To:

e ORD_TEMP

e REPL_RESULTS
Tables Updated:

e REPL_ITEM_LOC

I/O Specification
N/A

Technical Issues
N/A

276

Chapter 6 — Pro*C batch designs

Store/Day [sastdycr]

Design Overview

This batch program will create store/day, import log and export log records. The program should
be run prior to uploading the data for a given store/day.

Scheduling Constraints

Pre/Post Logic Description

Processing Cycle: Four (?) - just before datsys.
Scheduling Diagram:

Pre-Processing:

Post-Processing:

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit check points)
Driving Cursor
SELECT s.store
FROM store s
WHERE s.store_open_date <= TO_DATE(:ps_action_date, "YYYYMMDD")
AND NVL(s.store_close date, TO DATE(:ps_action_date,

"YYYYMMDD®)) >= TO_DATE(:ps_action_date, "YYYYMMDD®)
AND NOT EXISTS
(SELECT ssd.store /* Ensure that stores are
not entered that */

FROM sa store_day ssd /* have are already in
sa_store_day */

WHERE ssd.business_date

TO_DATE(:ps_action_date,

"YYYYMMDD™)
AND ssd.store = s.store)
AND ((NOT EXISTS /* exclude the store when
tomorrow is a holiday */
(SELECT close_date /* include exceptions
*/
FROM company_closed
WHERE close date = TO _DATE(:ps_action_date,
"YYYYMMDD "))

OR s.store IN

Retek Merchandising System

(SELECT location
FROM company_closed_excep

WHERE close_date =
TO_DATE(:ps_action_date, "YYYYMMDD®)

AND loc_type = :LOTP_S
AND sales_ind = :YSNO _Y))
AND NOT EXISTS

(SELECT
close_date
FROM
location_closed
WHERE

close_date = TO_DATE(:ps_action_date, "YYYYMMDD*®)

AND
loc_type = :LOTP_S

AND
location = s._store

AND

sales_ind = :YSNO_Y))
AND s.store > NVL(:ps_restart_store, -999);

This program must be restartable. The logical unit of work is store. The program will be
threaded by store.

Program Flow

Structure Chart

Init()

l /" Size_array()
Process(|, Call create_store_day_info() library

Y

Force_commit

Final()

Denotes

fiinntinn

Shared Modules
Listing of all externally referenced functions and Stored procedures and description of usage

create_store_day_info () — This function will insert into the sa_store_day, sa_import_log,
sa_flash_sales and sa_export_log tables.

278

Chapter 6 — Pro*C batch designs

Function Level Description
All database interactions required and error handling considerations

Init() — This function will call restart_init and get the vdate (using a cursor). The vdate +1 will
be the ‘action date’ for which store/day records are created. The user may also pass in a date as
an input parameter to the module. If this is done, the passed date will be used in place of vdate +
1

Process() - This function will contain the driving cursor. The driving cursor should select all of
the stores that are open today that do not already have store/days created for them. Three table
hold store openings and closings. The company_closed table holds company wide closings. If
there is a company wide closing, the company_closed_excep table holds any stores that are
exceptions to the company closing (i.e. these stores are open). The location_closed table holds
indiviual location closings. The function will call the size_array function to appropriately size the
array of open stores. The array of open stores, the action date and the size of the array will be
passed into the library function create_store_day_info().

Size_array() — This function will size the array that holds the open stores.
Force_commit() — This function will commit records to the database by calling restart_commit().

Final() - This function will call restart_close.
1/0 Specification
All files layouts input and output

Chapter 6 — Pro*C batch designs

Upload stock count results [stkupld]

Design Overview

The purpose of this batch module is to accept cycle count details from an external system. The
cycle count transactions will be compared with Retek system snapshots of stock on hand at the
time of the cycle count to determine the stock and/or dollar adjustments to be made. The
following common functions will be performed on each stock record read from the input file:

o if record exists on STAKE_SKU_LOC then update it

o if record doesn’t exist on STAKE_SKU_LOC validate that item/location exists in system
e insertarecord into STAKE _SKU LOC

e insert stock take record into STAKE_SKU_LOC.

o if record is orderable-only transformed item then treat as if it is a regular item and mark ‘O’
on xform_item_type column in STAKE_SKU_LOC

o if record is sellable-only transformed item and has no associated orderable-only item already
in the stock count then record will be rejected

o ifrecord is sellable-only transformed item then program will roll the physical count quantity
of the sellable-only transformed item up to its associated orderable-only transformed item
since sellable-only transformed item has no snapshot and mark ‘S’ on xform_item_type
column in STAKE_SKU_LOC

o if record is non-inventoriable item then reject except if it is part of the transformed item

e ifrecord is a pack - update/insert information on STAKE_SKU_LOC for all component items

TABLE SELECT INSERT UPDATE | DELETE
item_loc Yes No No No
item_loc_soh Yes No No No
item_master Yes No No No
item_xform_head Yes No No No
item_xform_detail Yes No No No
item_zone_price Yes No No No
partner Yes No No No
price_zone_group_store Yes No No No
stake head Yes No No No
stake_location Yes Yes No No
stake_prod_loc Yes No No No
stake_product Yes No No No
stake_qty No Yes No No

Retek Merchandising System

TABLE SELECT INSERT UPDATE | DELETE
stake_sku_loc No Yes Yes No
system_options Yes No No No
v_packsku_qty Yes No No No
Wh Yes No No No

This program reads a user-created interface file of cycle counts. Files will be unigue to location
and cycle count ID. All records will be validated for layout. Invalid layouts will produce fatal
errors. Fields will be validated for content. Invalid contents will produce non-fatal errors. Valid
records will update the physical_count_qty field on STAKE_SKU_LOC for a given
item/location/cycle count combination. If the item is a pack, component items will have their
component quantity added to the pack_comp_qty field on STAKE_SKU_LOC. If an item does
not exist on STAKE_SKU_LOC, the item/location combination will be validated on the
item/location tables and a new record will be inserted to STAKE_SKU_LOC.

Fatal errors will terminate file processing. Non-fatal errors will discontinue record processing
and will write invalid record to a reject file.

File layout will be verified by interface library routines:

e get record: validates common fields in file head record and fills structure of remaining fields
that are passed from this program

e process_dtl_ftail: called after end-of-file is reached. Will process file trailer record by
validating its layout and verifying that the file record counter is set properly.

Re-run:
If this program terminates normally, restart without recovery.

If this program terminates abnormally, restart without recovery.

Scheduling Constraints
PHASE 3 (Daily)

This program will probably be run at the start of the batch cycle during
POS polling, or possibly at the end of the batch run if pending warehouse
transactions exist. It can be scheduled to run multiple times throughout
the day, as WMS or POS data becomes available.

Processing Cycle:

Scheduling Diagram:

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Chapter 6 — Pro*C batch designs

Restart Recovery

The logical unit of work for the stock take upload module will be a count of discrete inventory
transactions. Each record will be uniquely identified by a location and item. The logical unit of
work will be defined as a number of these transaction records, determined by the
commit_max_ctr field on the restart_control table.

The file records will be grouped in numbers equal to the commit_max_ctr. After all records in a
given read are processed (or rejected), the restart commit logic and restart file writing logic will
be called, after which the following group of file records will be read and processed. The commit
logic will save the current file pointer position in the input file and any application image
information (e.g. record and reject counters) and commit all database transactions. The file
writing logic will append the temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space usage and to reduce
the overhead of file /0. The recommended commit counter setting is 10,000 records (subject to
change based on experimentation).

Error handling will recognize three levels of record processing: process success, non-fatal errors,
and fatal errors. Item level validation will occur on all fields before table processes are initiated.
If all field-level validations return successfully, inserts and updates will be allowed. If a non-fatal
error is produced, the remaining fields will be validated but the record will be rejected and written
to the reject file. If a fatal error is returned, file processing will end immediately. A restart will
be initiated from the file pointer position saved in the restart_bookmark string at the time of the
last commit point that was reached during file processing.

Program Flow
N/A

Shared Modules

o valid_date: interface library function.

e DISTRIBUTE_SQL.DISTRIBUTE

o STKCOUNT_SQL.ROLLUP_SELLABLE_ONLY_ITEM
e NEW_ITEM_LOC

Function Level Description

init()

initialize restart recovery, call out restart_file_init().

open input file

o file should be specified as input parameter to program
declare final output filename (used in restart_write_file logic)
open reject file (as a temporary file for restart)

o file should be specified as input parameter to program

call restart_file_init logic

Retek Merchandising System

e assign application image array variables- line counter (g_I_rec_cnt), reject counter
(9_l_rej_cnt), cycle_count, stocktake date

if fresh start (1_file_start = 0)

read file header record (get_record)
validate head (validate_head())
else fseek to |_file_start location

initialize locations

process()
loop - fread rows (equal to commit counter) of input file

if end of file encountered, decrement for loop counter and set end of file flag to true
for loop to process all records read

copy input detail structure elements to stake_sku_loc structure elements

validate elements (validate_detail())

if non-fatal error occurs write detail structure to reject file (write_to_rej_file) and
continue at the top of the for-loop

if multi-channel check

if record is sellable-only transformed item, distribute count_gty among the virtual warehouses
within the physical warehouse based on its associated orderable-only item’s snapshot

if record is not sellable-only transformed item, continue with normal processing
update stake_sku_loc

if record doesn’t exist, validate that item/location is valid

if invalid then non-fatal error -write record & continue

insert to stake_sku_loc (if display pack also insert component items)

end loop for loop to process individual records

insert structure of arrays (for valid record counter) into stake_sku_loc

restart file commit - save current input file position, and application image (cnt, cycle count &
date)

restart write file function
if end of file reached then break from while loop
end outer loop to read from file
restart commit final
validate_head()
if file type != ‘STKU” then fatal file type error
copy stocktake date into variable
nullpad stocktake_date
copy loc_type into variable (value will always be warehouse ‘W) nullpad stocktake_dat

Chapter 6 — Pro*C batch designs

nullpad loc_type
copy loc_value into variable
nullpad loc_value
copy store_value, wh_value, and loc_value into variables (store will always be -1)
get cycle count for location and stocktake_date.
validate cycle count.
validate_detail()
if record type != FDETL then fatal file layout error
do standard string validations - if any return non-fatal error then set non-fatal error flag to true
nullpad all fields
left shift item and qty
check that store and gty are all numeric
place decimal in qty field

check if record is non-inventoriable and/or not a sellable-only transformed item then write to
reject file and return non-fatal error

check record’s item type
if ‘ITM’, use record’s item value for processing
if ‘REF’, use record’s parent item for processing
if not ‘ITM’ nor ‘REF’ return fatal error

validate if record is sellable-only transformed item and use ‘S’ for marking on xform_item_type
column in STAKE_SKU_LOC

for unit and value stock count if record is not sellable-only transformed item and does not match
dept/class/subclass found on STAKE_PROD_LOC then write to reject file and return non-fatal
error

ON Fatal Error
e Exit Function with -1 return code
ON Non-Fatal Error

e write out rejected record to the reject file using write_to_rej_file function, pass pointer to
detail record structure, number of bytes in structure, and reject file pointer

Retek Merchandising System

I/O Specification
Input File

The input file should be accepted as a runtime parameter at the command line.

descriptor

Record Field Name Field Type Description
Name
File Header file type record | Char(5) hardcode ‘FHEAD’
descriptor
file line Number(10) Id of current line
identifier being processed.,
hardcode
‘000000001°
file type Char(4) hardcode ‘STKU’
file create date | Date(14) date written by
YYYYMMD | convert program
DHHMISS
stocktake date | Date(14) stake head.stocktak
YYYYMMD | &-date
DHHMISS
cycle count Number(8) stake_head.cycle _co
unt
loc_type Char(1) hardcode “W’,S’ or
‘E’
location Number(10) stake_location.wh or
stake_location.store
Transaction file type record | Char(5) hardcode ‘FDETL’
record descriptor
file line Number(10) Id of current line
identifier being processed,
internally
incremented
item type Char(3) hardcode ‘ITM’
item value Number(25) item id
inventory Number(12,4) | total units or total
guantity weight
location Char(30) NULL
description
File trailer file type record | Char(5) hardcode ‘FTAIL’

Chapter 6 — Pro*C batch designs

Record Field Name Field Type Description
Name
file line Number(10) Id of current line
identifier being processed,
internally
incremented
file record Number(10) Number of detail
count records.
Reject File

The reject file should be able to be re-processed directly. The file format will therefore be
identical to the input file layout. The file header and trailer records will be created by the
interface library routines and the detail records will be created using the write_to_rej_file
function. A reject line counter will be kept in the program and is required to ensure that the file
line count in the trailer record matches the number of rejected records. A reject file will be
created in all cases. If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer should be declared.
The reject file pointer will identify the temporary reject file. This is for the purposes of restart
recovery. When a commit event takes place, the restart_write_function should be called (passing
the file pointer, the temporary name and the final name). This will append all of the information
that has been written to the temp file since the last commit to the final file. Therefore, in the
event of a restart, the reject file will be in synch with the input file.

Error File

Standard Retek batch error handling modules will be used and all errors (fatal & non-fatal) will
be written to an error log for the program execution instance. These errors can be viewed on-line
with the batch error handling report.

Technical Issues
N/A

Chapter 6 — Pro*C batch designs

Store Add [storeadd]

Design Overview

This program will add all information necessary for a new store to function properly. When a
store is added to the system, the store will be accessible in the system only after storeadd.pc is
run.

The batch program loops through each record on the store_add table.

Also, it supports the replenishment system in RMS 9.0.

Scheduling Constraints

Processing Cycle: Daily, Ad Hoc Phase

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: Table based processing, don't use multithreading.

Restart/Recovery
Select ALL FIELDS from store_add.

After a record on store_add has been processed successfully, it is immediately deleted. Thus,
restart recovery is implicit in storeadd.pc.

Program Flow
N/A

Function Level Description_

main()

Check command line for required arguments.

Call LOGON to connect to the database.

Call Init to initialize the program.

Call process to fetch records from the store_add table.
Call final to cleanup.

init()

Declare restart variables

Get system variables (ELC indicator and pricing rule)
process()

Loop through store_add table

Set “new” variable indicators

Retek Merchandising System

Insert into store table

Call Insert_Pricing_Zone

Ifelc_ind =Y’

Call Insert_Cost_Zones
end if;
If repl_ind ="*Y’

Call Copy_Repl_info
end if;

If copy_close_ind = “Y’
Call Copy_Close_Sched
End if;
If copy_dlvry_ind = *Y”’
Call Copy_Dlvry_Sched
End if;
Call Insert_Stock _Loc_Traits
Delete from store_add
Insert_Pricing_Zone()
This function inserts records into pricing zone tables as is appropriate to the store being created:
insert corporate pricing zone information
insert store pricing zone information
call Item_Zone_Price
if new_price_zone_ind = ‘N’
insert zone info for existing currency
else
insert new zone info
call Item_Zone_Price (to add appropriate record for the new zone)
Insert_Cost_Zones()
This function inserts records into cost zone table as is appropriate to the store being created:

If there is a corporate cost zone group, insert corporate cost zone information to
cost_zone_group_loc.

If there is a location cost zone group, insert appropriate information into the cost_zone and
cost_zone_group_loc tables.

if new_cost_zone_ind = ‘N’
insert cost zone detail records
else

Chapter 6 — Pro*C batch designs

insert new zone
Item_Zone_Price()

This function inserts records into the item_zone_price table for a new pricing zone after it’s been
created.

Copy_Store_ltems()

This function calls the like_store_execute_sqgl.copy_store_items package function, which copies
all item/store records from the like_store and inserts them for the new store.

Copy_Repl_Info()

This function copies all replenishment information for items from the selected like_store and
copies them into replenishment tables for the new store.

Copy_Close_Sched()

This function copies all the location closed information from the selected like_store which the
close_date are greater or equal to current and copies them into location_closed and
company_closed_excep tables for the new store.

Copy_DlIvry_Sched()

This function copies all the location delivery schedules from the selected like_store and copies
them into the loc_dlvry sched, loc_dlvery sched_days, and loc_dlvry_sched_exc tables for the
new store.

Insert_Stock_Loc_Traits()

This function calls the stkledgr_sql.stock ledger_insert and loc_traits_sql.new_org_hier package
functions, which insert records into the stock ledger and hierarchy tables.

Update_regionality_matrix()

This function will insert records to the store_hierarchy and regionality _temp tables.
Insert_pos_store()

This function will insert records into the pos_store table.

Size_izp_arrays()

This function allocates memory to item zone price records.

final()

This function stops restart recovery.

I/O Specification
N/A

Technical Issues
N/A

Chapter 6 — Pro*C batch designs

Vendor Invoicing for Complex Deals [vendinvc]

Design Overview
The batch module creates records in staging tables dealing for complex type deals.

The invoicing logic will be driven from the billing period estimated next invoice date for complex
deals. The amount to be invoiced will be the sum of the income accruals of the deal since the
previous invoice date (or the deal start date for the first collection).

The processing will be as follows:
o Write a header record to the holding table for the deal
e Determine which reporting periods are to be invoiced
o For Complex Deals Aggregate the income for the reporting periods
= Write a deal detail record to the holding table for each item, location
= Update the next invoice date to vdate, and update estimated next date
Tables Affected:

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No No No
SYSTEM_VARIABLES No Yes No No No
VENDINVC_TEMP No Yes No No No
DEAL_HEAD No Yes No Yes No
DEAL_ACTUALS_ITEM_LOC No Yes No No No
STORE No Yes No No No
WH No Yes No No No
VAT_ITEM No Yes No No No
DEAL_ACTUALS_FORECAST No Yes No No No
STAGE_COMPLEX_DEAL_HEAD No No Yes No No
STAGE_COMPLEX_DEAL_DETAIL | No No Yes No No

Stored Procedures / Shared Modules (Maintainability)

DEAL_FINANCE_SQL.CALC_NEXT_REPORT_DATE - Function to get the next reporting
date

Retek Merchandising System

Program Flow

Init()
Populate the system level
variables variables.

A 4

Size_arrays()
-- Initialize & size arrays

Process()
-- Fetch & Process driving
cursor.

-- Perform R/R

|

Process complex deals

Final()

-- Cleanup program.

Insert Records from
Complex_insert arrays

Call Retek Restart to
deal_id, deal_detail_id

Free_arrays()

-- Free memory for arrays

Chapter 6 — Pro*C batch designs

Function Level Description

main()

Validate the program arguments and logon to Oracle.
Call the init() function to initialize restart / recovery and variables.
Call the process() function to execute main program logic.

Call the final() function to clean up all internal processing.

init()

Call standard retek initialization function retek_init() to initialize restart / recovery.
Gets the following system level variables (program variables):

» SYSTEM_OPTIONS.CURRENCY_CODE

= SYSTEM VARIABLES.LAST EOM DATE

» SYSTEM_VARIABLES.NEXT_EOM_DATE -7

*» PERIOD.VDATE (ps_vdate)

= SYSTEM_OPTIONS.VAT IND

final()

Free all arrays by calling function free_arrays().

Call standard retek close function retek_close().

process()

Initialize the array structures by calling size_arrays() .
Call out get_location_info().

In a while loop fetch required information from the driving cursor ¢_get_deals and fetch into
the array structure pa_complex_fetch.

If this is the first found invoicable reporting period for this location, item, order no, call out
check_date().

Process complex deals by calling out the following functions:
calculate_start_invoice_date(),post_complex_head(),insert_complex_head(),insert_complex_
detail(),update_deal_head() and post_complex_detai().

Call retek_force_commit() to commit the entries.

Driving Cursor
EXEC SQL DECLARE c_get_deals CURSOR FOR

SELECT /*+ no_expand */ vt.deal _id,
vt.deal _detail _id,
vt.item,
vt.location,

vt.loc_type,

Retek Merchandising System

vt.order_no,

NVL(vt.actual _income, 0),
NVL(vt.actual_turnover_units, 0),
NVL(vt.actual_turnover_revenue, 0),
TO_CHAR(vt.reporting_date, "YYYYMMDDHH24MISS*®),
vt.bill_back period,

vt.deal reporting_level,

vt.active date,

vt.close_date,

DECODE(vt.partner_type, "S", vt.supplier,
vt.partner_id),

vt.partner_type,
vt.currency_code,
vt.bill _back method,
vt.invoice processing_logic,
vt.include_ vat_ind

FROM vendinvc_temp vt

WHERE MOD(vt.deal _id, TO_NUMBER(:ps_restart_num_threads)) + 1
= TO_NUMBER(:ps_restart_thread_val)

AND (vt.deal _id > nvl(:ps_restart _deal _id, -999)
OR
(vt.deal id

NVL(:ps_restart _deal id, -
999)

AND vt.deal detail _id >
NVL(:ps_restart_deal _detail _id, -999))

)

ORDER BY vt.deal_id ASC,
vt.deal detail _id ASC,
vt.location ASC,
vt._item ASC,
vt.order_no,
vt.reporting_date DESC;

check_date()

o All reporting dates that are to be summed for a given invoicing period must fit with the
following rules, however as the calling cursor is ordered by reporting date DESC this routine
need only be called for the first reporting date for each location.

o For a Weekly Reporting Period against a Weekly Invoicing Period you can not invoice the
last week in the month until the EOM has closed, so check if the reporting date is within 8
days of the Next EOM date.

Chapter 6 — Pro*C batch designs

o For a Monthly Reporting Period against a Monthly, Quarterly, Half Yearly or Annual
Invoicing Period you can not invoice until after EOM, so check if the reporting is on or
before EOM.

calculate_start_invoice_date()

e Calculate the START_INVOICE_DATE as being the Day after the Reporting Date prior to
the earliest Reporting Date selected for invoicing OR if the earliest Reporting Date selected is
the first for the deal, then the deal start date.

get_location_info()

e Cursor c_get location_info retrieves all location data from STORE and WH tables.
e Loop on location_info cursor, copy the values to the holding array pa_fetch_loc_info.
e Copy fetched data from pa_fetch_loc_info into array structure pa_loc_info.

e if pa_fetch loc info.i_vat region_ind =0, then pa_loc_info.i_vat_region_ind = -1.
e Validate the array size and complete a resize as required.

get_loc_details()

e Check if the current location is the same as the previous location, if so set the vat region to be
the same. If the location has changed, find the new vat region, new location and loc type.

post_complex_head()

e Populate the current record in the insert array pa_complex_head_insert, data comes from the
values passed to the function.

e Call the stored procedure DEAL_FINANCE_SQL.CALC _NEXT_REPORT_DATE() and
populate the complex insert (and update) array with the return value

o Validate the array size and complete a resize as required
post_complex_detail()

o Populate the current record in the insert array pa_complex_detail_insert, data comes from the
values passed to the function.

o Get the location details by calling function get_loc_details()

o If the local currency and the deal currency are different convert the amount by calling library
function convert().

o Validate the array size and complete a resize as required.
insert_complex_head ()

o Insert the contents of the holding array pa_complex_head_insert into the complex deal
staging table, STAGE_COMPLEX_DEAL_HEAD.

insert_complex_detail ()

o Insert the contents of the holding array pa_complex_detail_insert into the complex deal
staging table, STAGE_COMPLEX_DEAL_DETAIL.

update_deal_head()

Retek Merchandising System

e Update the last_invoice_date, last_update_datetime, last_update_id and est_next_invoice date
on deal head for the invoiced deals from the complex head update structure,
pa_complex_head_insert.

size_arrays ()

o Allocate memory for elements of following structures : - driving cursor fetch array -
pa_complex_fetch, pa_complex_head_insert, pa_complex_detail_insert, pa_fetch_loc_info
and pa_loc_info.

resize_arrays ()

e Use the memory allocation macro to allocate memory for the elements of following
structures:- driving cursor fetch array - pa_complex_head_insert, pa_complex_detail_insert
and pa_loc_info.

free_arrays ()

e Uses the memory deallocation macro to free the memory used by the elements of the
following structures:- driving cursor fetch array - pa_complex_fetch,
pa_complex_head_insert, pa_complex_detail_insert and pa_loc_info..

Input Specifications
N/A

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: Ad-Hoc. Must be run before salmnth, after dealact and before the new
programs which perform forecast processing and DAILY_DATA roll up.

Scheduling Diagram: N/A - The program should be run daily

Pre-Processing: Truncate STAGE_COMPLEX DEAL_HEAD and
STAGE_COMPLEX_DEAL_DETAIL tables. (vendinvc_pre)

Post-Processing: Call out process_deal _head() function to update est_next_invoice_date of the
deal to NULL. (vendinvc_post)

Threading Scheme: N/A

Restart Recovery

The Logical Unit of Work (LUW) for the program is a transaction consisting of deal_id,
deal_detail_id.

Chapter 8 — Subscription design

Chapter 8 — Subscription design

RTV Subscription API

Functional Area

RTV subscription

Business Overview

When a RTV is shipped out from the warehouse, the RTV information will be published by the
external system and placed on the Retek Integration Bus (RIB). RMS will subscribe to the RTV
information as published from the RIB and place the information onto RMS tables depending on
the validity of the records enclosed within the message.

The RTV message can be processed as a flat message when the header description contains
information for one RTV item. The message can also be processed as a hierarchical message
when the detail node is populated with one or more RTV items.

Subscription Package
Filename: rmssub_rtvs/b.pls
RMSSUB_RTV.CONSUME

(O_status_code IN OUT VARCHAR2,
O_error_message IN OUT VARCHAR?,
I_message IN RIB_OBJECT,
I_message_type IN VARCHAR?2)

This procedure will need to initially ensure that the passed in message type is a valid type for
RTV messages. The valid message types for RTV messages are listed in the Message DTD
section below.

If the message type is invalid, a status of “E” would be returned to the external system along with
an appropriate error message informing the external system that the message type is invalid.

If the message type is valid, the generic RIB_OBJECT will be downcast to the actual object using
the Oracle’s treat function. If the downcast fails, a status of “E” is returned to the external system
along with an appropriate error message informing the external system that the object passed in is
invalid.

If the downcast is successful, then consume will call PARSE_RTYV to parse the RTV message and
PROCESS_RTV to perform business validation and desired functionality. Any time the message
fails business validation, a status of “E” is returned to the external system along with an
appropriate error message.

Once the message has been successfully processed, a success status, “S”, is returned to the
external system indicating that the message has been successfully received and persisted to the
RMS database.

299

Retek Merchandising System

RMSSUB_RTV.PARSE_RTV

(O_error_message ouT VARCHAR?2,
O_rtv_record ouT rtv_record,
O_message IN RIB_OBJECT)

300

Chapter 8 — Subscription design

This function parses the RIB_OBJECT and builds an API rtv_record for processing.

RMSSUB_RTV.PROCESS_RTV
(O_error_message IN OUT VARCHAR?2,
|_rtv_record IN rtv_record)

This function calls RTV_SQL.APPLY_PROCESS to perform all business validation and desired
functionality associated with a RTV message.

For break to sell items, if the sellable item is on the message, call CHECK _ITEMS and
GET_ORDERABLE_ITEMS to convert the sellable item(s) to the corresponding orderable
item(s). The orderable items will be inserted or updated on the tables affected by an RTV.

The RTV_SQL.APPLY_PROCESS is called for each of the orderable items and each of the
regular items.

RMSSUB_ RTV.CHECK_ITEMS

(O_error_message INOUT VARCHARZ,

O_sellable_TBL ouT RIB_RTVDtl_TBL,
O_detail_TBL ouT RIB_RTVDtl_TBL,
|_rib_detail_TBL IN RIB_RTVDtl_TBL)

This function separates the item details on the message into two groups: one contains sellable
only items and one contains regular items.

RMSSUB_RTV. GET_ORDERABLE_ITEMS

(O_error_message IN OUT VARCHAR?,

O_orderable_TBL IN OUT nocopy item_table,

|_sellable_TBL IN RIB_RTVDtl_TBL,

|_rtv_order_no IN RTV_HEAD.RTV_ORDER_NO%TYPE,
I_ext_ref_no IN RTV_HEAD.EXT_REF_NO%TYPE,
|_to_loc IN ITEM_LOC.LOC%TYPE)

This function builds a collection of orderable items based on the sellable items. It calls
ITEM_XFORM_SQL.RTV_ORDERABLE_ITEM_INFO to distribute the sellable quantities
among the orderable items.

Filename: rtvs/b.pls
RTV_SQL.APPLY_PROCESS

This function performs business validation and desired functionality for a RTV message. It
includes the following:

o Verify that an orderable but non-sellable and non-inventory item CANNOT be an RTV item.
o Verify that an RTV item must be a tran-level or above tran-level item.

o Ifthe RTV item is a simple pack catch weight item, verify that weight and weight uom are
either both defined or both NULL, and weight uom is in the MASS uom class.

o Verify that the item supplier relation exists.

o Verify that the location is a valid store or warehouse.

o Verify that the item/loc relation exists.

e If returning a pack to a warehouse, the pack must be received as pack at the warehouse.

o Verify that from disposition is a valid inventory status code (on INV_STATUS_CODES).

301

Retek Merchandising System

o Verify that the reason code is a valid RTV reason code (code type ‘RTVR’ on
CODE_DETAIL).

o For an externally generated RTV, if multi-channel is on and the location is a warehouse, then
physical location is on the message. RTV quantity will be distributed among the virtual
locations of the physical location.

o Check the existence of RTV in RTV_HEAD based on: a) rtv_order_no; b) ext_ref no and
location. An RTV will be updated if it already exists and inserted if not. The RTV will be
marked as shipped.

e Check the existence of RTV item in RTV_DETAIL based on: rtv_order_no, item, reason and
inventory status. An RTV_DETAIL will be updated if it already exists and inserted if not.

e [fthe RTV item is a content item of a deposit item, RTV_DETAIL will be inserted or
updated for the associated container item.

o Determine RTV unit cost as the following:
= Use the unit cost on the RTV message if defined. It is in location currency. Otherwise,
= Use RTV_DETAIL.unit_cost if exists. It is in supplier currency. Otherwise,
= Use the last receipt cost if exists. It is in location currency. Otherwise,
= Use item’s WAC at the location. It is in location currency.

The unit cost is used to evaluate the cost of the RTV goods. The cost values on RTV tables are
written in supplier currency, but all tran_data records are written in location currency.

o Ifthe RTV item is a simple pack catch weight item, the total RTV cost is based on weight.

o Update the following stock buckets on ITEM_LOC_SOH: rtv_qty, stock_on_hand,
pack_comp_soh. For a simple pack catch weight item at the warehouse, also update average
weight.

o \Write the following tran_data records:
= 24 —for RTV. It writes units, total_cost and total_retail.

= 71/72 —for cost variance between item’s WAC at the location and RTV unit cost. It
writes units and total _cost.

= 65 - for restocking fees. For a non-MRT type of RTV, the restocking fee is written for
the RTV location. For an MRT type of RTV, the restocking fee is distributed among the
MRT locations. It writes units and total _cost.

= 22 —for stock adjustment, if stock counting has already happened at the store for the
item.

If the RTV item is a pack, tran_data is written for component items. If the RTV location is a
physical warehouse, tran_data is written for virtual locations. Tran_data total cost and total retail
are always written in location currency.

e |f system options ext_invc_match_ind is on, create or update INVC_HEAD and
INVC_DETAIL for the RTV.

302

Chapter 8 — Subscription design

Message DTD

Here are the filenames that correspond with each message type. Please consult the mapping
documents for each message type in order to get a detailed picture of the composition of each
message.

Message Message Type Description Document Type
Types Definition (DTD)
rtvcre RTV Create Message RTVDesc.dtd

Design Assumptions

e Catch weight functionality is not completely rounded out in this release. For instance, it is
NOT applied to the following areas:

= Any of the retail calculations (including total_retail on TRAN_DATA and retail
markup/markdown);

= The total amount on SUP_DATA,;
= Open to buy buckets;

» When a catch weight component item’s standard UOM is a MASS UOM,
TRAN_DATA. units is based on V_PACKSKU_QTY.qty instead of the actual weight.

e MRT RTV can only be created in RMS. Therefore it will only contain virtual locations.
Physical location distribution logic does NOT apply to MRT RTVs.

Tables

TABLE SELECT INSERT UPDATE DELETE
RTV_HEAD Yes Yes Yes No
RTV_DETAIL Yes Yes Yes No
ITEM_LOC_SOH Yes No Yes No
TRAN_DATA No Yes No No
INV_STATUS_CODES Yes No No No
CODE_DETAIL Yes No No No
ITEM_MASTER Yes No No No
ITEM_SUPPLIER Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ITEM_LOC Yes No No No
STORE Yes No No No
WH Yes No No No
SHIPMENT Yes No No No
SHIPSKU Yes No No No

303

Retek Merchandising System

TABLE SELECT INSERT UPDATE DELETE
DEPS Yes No No No
SUPS Yes No No No
ADDR Yes No No No
UOM_CLASS Yes No No No
V_PACKSKU_QTY Yes No No No
MRT_ITEM_LOC Yes No No No
ITEM_XFORM_HEAD Yes No No No
ITEM_XFORM_DETAIL Yes No No No
INVC_HEAD Yes Yes Yes Yes
INVC_DETAIL Yes Yes No Yes
INVC_NON_MERCH No Yes No Yes
INVC_MERCH_VAT Yes Yes Yes Yes
INVC_DETAIL_VAT Yes No No Yes
INVC_MATCH_QUEUE Yes No No Yes
INVC_DISCOUNT Yes No No Yes
INVC_TOLERANCE Yes No No Yes
ORDLOC_INVC_COST Yes No Yes No
NON_MERCH_CODE_HEAD Yes No No No
SYSTEM_OPTIONS Yes No No No

304

	Contents
	Chapter 1 – Introduction
	Chapter 2 – RETL program overview for RMS/ReSA extractions
	Overview
	Architectural design
	RMS extraction architecture
	ReSA extraction architecture

	Configuration
	RETL
	RETL user and permissions
	Environment variables
	dwi_config.env settings

	Program features
	Program status control files
	Restart and recovery
	Bookmark file
	Message logging
	Daily log file
	Format
	Program error file
	RMSE reject files
	Schema files
	Resource files
	Command line parameters
	Multi-threading for RMSE ReSA modules

	Typical run and debugging situations
	Running the time 454 extract module

	Chapter 3 – RETL extractions program list
	Overview
	RMS extract data (based on RDW dimension data)
	RMS extract data (based on RDW fact data)
	Maintenance programs

	Chapter 4 – RETL extract program flow diagrams
	Legend: RMS 11.02 programs

	Chapter 5 – RETL API flat file specifications
	API format
	File layout
	General business rules and standards common to all APIs

	Chapter 6 – Pro*C batch designs
	Deals Forecast [dealfct]
	Deal Income Calculation Daily – [dealinc]
	Like Store [likestore]
	Order Update [ordupd]
	Pre/Post Functionality for Multi-Threadable Programs [prepost]
	Replenishment item-location maintenance [rilmaint]
	Automatic replenishment order approval [rplapprv]
	Replenishment attribute update [rplatupd]
	Vendor replenishment extraction [rplext]
	Store/Day [sastdycr]
	Upload stock count results [stkupld]
	Store Add [storeadd]
	Vendor Invoicing for Complex Deals [vendinvc]

	Chapter 8 – Subscription design
	RTV Subscription API

