Retek® Merchandising System
11.0.3

Operations Guide Addendum

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000

Fax:
+1 612 587 5100

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.

No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change
without notice.

Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.

The functionality described herein applies to this version, as
reflected on the title page of this document, and to no other
versions of software, including without limitation subsequent
releases of the same software component. The functionality
described herein will change from time to time with the
release of new versions of software and Retek reserves the
right to make such modifications at its absolute discretion.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek
Inc.

This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2005 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.

Printed in the United States of America.

Retek Merchandising System

Customer Support

Customer Support hours
Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information
E-mail support@retek.com

Internet (ROCS) rocs.retek.com
Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

Hong Kong 800 96 4262

Korea 00 308 13 1342

United Kingdom 0800 917 2863

United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:

e Product version and program/module name.

e Functional and technical description of the problem (include business impact).
o Detailed step-by-step instructions to recreate.

e Exact error message received.

e Screen shots of each step you take.

http://rocs.retek.com/

Contents

Contents

Change made to the batch schedule........cc.cccooooiiiiii 1
Sales History Rollup by Department, Class, and Subclass
LTS3 o1 Lo J PR SSRRRRPI 3
Upload customs tariff files [htsupld]cooiiiiiiiii 9
Order purge [OrdPrg] e e 35
Pre/Post Functionality for Multi-Threadable Programs [prepostA]r5
Transfer purge [tSTPrgl...ccccooooiiiiiiii e 61

Change made to the batch schedule and Volume 4

Change made to the batch schedule and
Volume 4

The batch schedule and Volume 4 of the Operations Guide have been updated in conjunction with
this release. All references to the batch programs below have been removed because these batch
programs are no longer part of RMS.

e slocrbld
e sprdrbld

e szonrbld

Sales History Rollup by Department, Class, and Subclass [hstbld]

Sales History Rollup by Department,
Class, and Subclass [hstbld]

Design Overview

The sales history rollup routine will extract sales history information for each item from the
item_master, and item_loc_hist tables. The history information will be rolled up to the subclass,
class, and dept level to be written to: dept_sales_hist, class_sales_hist, and subclass_sales_hist.

For each item, data to be saved includes sales qty, value, gross profit, and sales rate. This data
must be collected from several tables including item_master, item_loc_hist and mask_rebuild.
Letting the database (server) roll up the totals verse using a loop on the client enhances speed.
Using a VIEW that contains all item information for the current week enhances simplicity. Data
can then be summed from this single view instead of having to join across all 3 tables in a single
select statement.

The rebuild program can be run in one of two ways:

First, if the program is run with a run-time parameter of ‘rebuild’, the program will read data
(dept, class, and subclass) off the manually input mask_rebuild table, which will determine what
is rebuilt. This process is used after items are reclassified from one merchandise hierarchy to
another. Rebuilding a department will rebuild each class and subclass within the department,
thus, only one row is required on mask rebuild for the department. This type of rebuilding
process will rebuild data from all dates on the item_master, item_loc_hist table, rolling them to
the department, class, and subclass level.

Second, if the program is run with a run-time parameter of ‘weekly’, the program will build sales
information for all dept/class/subclass combinations only for the current end of week date.

mask_rebuild table:

DEPT CLASS SUBCLASS

X NULL NULL Rebuild Department

X X NULL Rebuild Class

X X X Rebuild Subclass

TABLE INDEX | SELECT INSERT | UPDATE | DELETE
DEPT_SALES_HIST No Yes Yes Yes No
CLASS _SALES HIST No Yes Yes Yes No
SUBCLASS SALES No Yes Yes Yes No
HIST

ITEM_MASTER No Yes No No No
ITEM_LOC_HIST No Yes No No No
MASK_REBUILD No Yes No No No

Retek Merchandising System

TABLE INDEX | SELECT INSERT | UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_VARIABLES | No Yes No No No
Scheduling Constraints
Processing Cycle: PHASE 3 (weekly)

PHASE AD-HOC (weekly)

Scheduling Diagram: Must run after complete weekly sales have been updated by posupld.

Pre-Processing:

Post-Processing:

Also should be re-run on demand when a sales rollup request has been
given for a given dept, class or subclass

N/A

hstbld_post()
Truncates the mask rebuild table.

Threading Scheme: DEPT

Restart Recovery:

If program is run for reclassifying Items (first run time parameter = ‘rebuild’), the driving cursor
for the program will be:

EXEC SQL DECLARE c_rebuild_eow CURSOR FOR

SELECT

FROM

WHERE
AND
AND
AND

im_dept,

im.class,

im.subclass,

ilh_loc,

to_char(ilh.eow_date, "YYYYMMDD"),
ilh.week 454,

ilh_month_454,

ilh.year 454,

ilh_sales_type,
NVL(SUM(NVL(ilh_.sales_issues,0)),0),
NVL(SUM(NVL(ilh.value,0)),0),
NVL(SUM(NVL(ilh.gp,0)),0)
item_master im,

item _loc hist ilh,

V_restart_store rs

im.item = ilh_item

ilh_.sales type in ("P", "R", "C%)
ilh.eow _date = to_date(:ps_vdate, "YYYYMMDD")
ilh_.loc type = "S-

Sales History Rollup by Department, Class, and Subclass [hstbld]

AND
AND
AND
AND

GROUP BY

ORDER BY

rs.driver_value = ilh.loc
rs.num_threads = TO NUMBER(:ps_num_threads)
rs.thread val = TO_NUMBER(:ps_thread val)

(ilh_.loc >= NVL(:ps_restart_store, -999) AND
(im.dept >= NVL(:ps_restart_dept,-999) AND
NVL(im.class,0) > NVL(:ps_restart class,-999)

)
im_dept,
im.class,
im.subclass,
ilh_loc,
to_char(ilh_eow_date, "YYYYMMDD®),
ilh.week 454,
ilh_month_454,
ilh.year 454,
ilh.sales_type
ilh_loc,
im_dept,
im.class,
im.subclass,

ilh_sales_ type;

If program is run for current end of week (second run time parameter = “weekly’), the driving
cursor for the program will be:

EXEC SQL DECLARE c_rebuild_dept CURSOR FOR

SELECT

im.dept,

im.class,

im.subclass,

ilh_loc,

to_char(ilh.eow_date, "YYYYMMDD®),
ilh.week 454,

ilh_month_454,

ilh_year 454,

ilh_sales_ type,
NVL(SUM(NVL(ilh_sales_issues,0)),0),
NVL(SUM(NVL(ilh.value,0)),0),
NVL(SUM(NVL(ilh.gp,0)),0)

Retek Merchandising System

FROM

item_master im,
item _loc hist 1ilh,
hist_rebuild _mask hrm,

Vv_restart_store rs

WHERE im.item = ilh._.item
AND im.dept = hrm.dept
AND ilh.sales type in ("P", "R", "C")
AND ilh.loc_type = "S-
AND rs.driver_value = ilh.loc
AND rs.num_threads = TO_NUMBER(:ps_num_threads)
AND rs.thread_val = TO_NUMBER(:ps_thread val)
AND (hrm.class IS NULL
OR (im.class = hrm.class
AND (hrm._subclass IS NULL
OR im.subclass = hrm.subclass)))
AND (ilh.loc >= NVL(:ps_restart store, -999) AND
(im.dept >= NVL(:ps_restart_dept,-999) AND
NVL(im.class,0) > NVL(:ps_restart class, -
999)
)
)
GROUP BY im.dept,
im_class,

im.subclass,

ilh_loc,
to_char(ilh.eow_date, "YYYYMMDD"),
ilh.week 454,
ilh.month_454,
ilh_.year 454,
ilh_sales_type
ORDER BY ilh.loc,

im.dept,

im.class,

im.subclass,

to_char(ilh.eow_date, "YYYYMMDD®),
ilh_sales_ type;

Sales History Rollup by Department, Class, and Subclass [hstbld]

Program Flow
N/A

Shared Modules
N/A

Function Level Description
init()

Initialize restart recovery
If processing current end of week, call check_eow_date()

Initialize structure arrays for subclass_sales_hist insert, subclass_sales_hist update,
class_sales_hist insert, class_sales_hist update, and sales_history fetch.

Check_eow_date()

Check that vdate is a valid end of week date

process()

Open driving cursor
Array fetch cursor
Loop through array to process records.

Increment dept and class sales variables for running totals of sales, value, gp, and
forecast_sales.

Call process_subclass().
If dept/class/store/eow_date/sales_type changes, call process_class().
If dept/store/eow_date/sales_type changes, call process_dept().

Call process_subclass(), process_class(), and process_subclass() to process last record fetched
(last record is not processed within above loop.

Call insert_class()
Call update_class()
Call insert_subclass()

Call update_subclass

Process_subclass()

Fetch previous sales, value, gp, and forecast_sales value from subclass_sales_hist
If fetch is not found (no record exists), add values to subclass_insert array

If fetch is found,

= Add values to subclass_update array

= Increment delta variables to hold running totals for difference in subclass’ sales and
updated sales, value and updated value, gp and updated gp, forecast_sales and updated
forecast_sales.

Retek Merchandising System

Process_class()

e Fetch rowid from class_sales_hist

o If fetch is not found, add values to class_insert array
o If fetch is found,

e Add values to class_update array

¢ Increment delta variables to hold running totals for difference in class’ sales, value, gp, and
forecast_sales by adding deltas from subclass’ sales, value, gp, and forecast_sales.

e Reset subclass delta variables and class running total variables.
Process_dept()

e Perform update of dept_sales_hist

o If update is not found (record does not exist), perform insert into dept_sales_hist
o Reset class delta variables and dept running total variables.
Insert_class()

o Perform array insert of class_sales_hist.

Update_class()

o Perform array update of class_sales_hist.

Insert_subclass()

o Perform array insert of subclass_sales_hist.

Update_subclass()

o Perform array update of subclass_sales_hist.

I/O Specification
N/A

Technical Issues
N/A

Upload customs tariff files [htsupld]

Upload customs tariff files [htsupld]

Design Overview

This batch program will be run whenever an updated US customs tariff file is available (probably
twice a year) to upload HTS tariff information from the file into RMS HTS tables. The program
will handle both the initial HTS information load as well as mid-year HTS updates that are
supplied by the US government. The initial upload is handled by inserting information from the
file into the tables; updating information already in the tables is handled by adjusting the effective
dates of the existing HTS records and inserting a new set of HTS records into the tables.

Updating HTS records should follow the following guidelines:

e No HTS records with the same HTS and import country should have overlapping effect_from
and effect_to dates. Import country is passed as an input parameter to the program, so that the
program can support different import countries.

o The new HTS effective dates will never chop up the effective dates of an existing HTS, and
there will never be any rollback in dates. Therefore, a new HTS can only start in the middle
of an existing HTS or cover a completely different time frame after the existing HTS.

o When loading a new HTS that starts in the middle of an existing HTS, the effect_to date of
the existing HTS should be adjusted to one day before the new effect_from date.

o No existing HTS information should be purged by the program. It’s the client’s responsibility
to handle that.

Tables Affected:

TABLE SELECT | INSERT | UPDATE | DELETE
HTS Yes Yes Yes Yes
HTS _TAX No Yes Yes Yes
HTS_FEE No Yes Yes Yes
HTS _OGA No Yes Yes Yes
HTS_TARIFF_TREATMENT Yes Yes Yes Yes
HTS_TT_EXCLUSIONS No Yes Yes Yes
TARIFF_TREATMENT Yes No No No
COUNTRY_TARIFF_TREATMENT | Yes No No No
HTS_CHAPTER Yes No No No
OGA Yes No No No
UOM_CLASS Yes No No No
CODE_DETAIL Yes No No No
QUOTA_CATEGORY Yes No No No
COUNTRY Yes No No No

Retek Merchandising System

TABLE SELECT | INSERT | UPDATE | DELETE
HTS _CVD No No Yes No
HTS_AD No No Yes No
HTS REFERENCE No No Yes No
ITEM_HTS Yes Yes Yes No
ITEM_HTS_ASSESS No No Yes No
ORDSKU _HTS Yes Yes Yes Yes
MOD_ORDER_ITEM_HTS No Yes No No
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
DUAL Yes No No No
ORDSKU_HTS_ASSESS No No No Yes
ORDHEAD Yes No No No
ORDLOC Yes No No No
ORDSKU Yes No No No
CE_CHARGES Yes No No Yes
CE_ORD_ITEM Yes No No No
ITEM_SUPP_COUNTRY Yes No No No
ORDSKU_TEMP Yes No No No

Stored Procedures / Shared Modules (Maintainability)

ITEM_HTS_SQL.DELETE_ASSESS - given the item, hts, import_country_id,
origin_country _id, effect_to and effect_from, this function deletes the corresponding record from
item_hts_assess.

ITEM_HTS_SQL.DEFAULT_CALC_ASSESS - given the item, hts, import_country _id,
origin_country _id, effect_to and effect_from, this function inserts into item_hts_assess, it also
will potentially call other package functions and update other tables.

LC _SQL.DELETE_LCORDAPP - given the order_no, this function deletes from Ic_ordapply
table.

OTB_SQL.ORD_UNAPPROVE - given the order_no, this function updates the otb table.

ITEM_ATTRIB_SQL.GET_STANDARD_UOM - given the item_no, item_type and indicator,
this function returns the standard_uom, standard_class, and conv_factor.

UOM_SQL.CONVERT - given the to_uom, from_value, from_uom, item, supplier and
origin_country, this function returns the to_value.

SQL_LIB.BATCH_MSG - returns error message information.

ORDER_HTS_SQL.DELETE_ASSESS -- given the order_no and seq_no, this function deletes
from the ordsku_hts_assess table.

10

Upload customs tariff files [htsupld]

ORDER_HTS_SQL.DEFAULT_CALC_ASSESS -- given the order_no, seq_no, pack or item,
hts, import_country_id, origin_country_id, effect_to and effect_from, this function inserts into
ordsku_hts_assess, it also will potentially call other package functions and update other tables.

CE_CHARGES_SQL.INSERT_COMPS - given the ce_id, vessel_id, voyage_flt_ind, order_no,
item, pack_item, hts, import_country_id, effect_from, effect_to, cvb_code this function inserts
into the ce_charges table.

Function Level Description

main()

e Standard Retek main function. This program takes in four parameters: userid/passwd, input
file, reject file, import country id.

init()
e A global variable is used to hold the import country id that is passed in as a program input

parameter. Call check _country to make sure that import country exists on the COUNTRY
table; return with fatal error if not. It is used as the import country throughout the program.

e Open input file for read and open reject file for write.

o Call retek_init() for restart/recovery initialization.

o Ifitis a fresh start, call retek_get_record to read the FHEAD line into the fhead structure.
o Fetch vdate from period table.

o Fetch max_item from hts table and max ct from ordsku_hts and max ct from ce_charges.
e Fetch update_item_hts_ind and update_order_hts_ind from the system_options table

o Call check_spi to make sure that ‘C1’ and ‘C2’ exist in the TARIFF_TREATMENT table as
SPI’s. “C1’ and ‘C2’ are default tariff treatments for every HTS. Return with fatal error if not.

file_process()

e Call function retek_get record in a while loop to read the THEAD line into the thead
structure:

= if the record type returned is ‘FTAIL’, exit the loop;
= setasave point.
= If the record type returned is “THEAD?’, read the THEAD line into the thead

= structure that contains V1, V2, V3, V4 fields. The V4 record is not currently used in
RMS/RTM.

= |f the record type returned is other than ‘FTAIL’ or “THEAD?, give a fatal error (wrong
record type).

= Call function process_THEAD to further process data contained in the THEAD. Set
process error flag to indicate non-fatal process error.

= Call function retek_get_record in a while loop to read the TDETL
= line into the tdetl structure:

+ if the record type returned is “TTAIL’, exit to the outer loop to continue reading
THEAD records if any exists;

11

Retek Merchandising System

+ if the record type returned is other than “TDETL’ or “TTAIL’, give a fatal error
(wrong record type).

+ Call function process_ TDETL to further process data contained in the TDETL.
= Set process error flag to indicate non-fatal process error.
= [If update_item_hts_ind = “Y”,

+ Iftran_code is “A” or “R”, call item_hts_update function. “A” stands for Update only
and “R” stands for Replace. In both of these cases (as opposed to the other possibility
of “D” for Delete) item tables will need to be updated.

= [f update_order_hts_ind = “Y”, call ordsku_hts_search function.

= |If process error flag is set. Rollback database process to the save point. Write rejected
records to the reject file.

= Call restart_force_commit to perform intermittent commit for restart/recovery.

process THEAD()

Fill the hts_keys structure with data from THEAD.

After filling in the hts_keys, verify that effect_from < effect_to date. If not, reject the record
right away. Call valid_all_numeric function to check effect_from, and effect_to field. If
invalid reject the record. This function processes the information in V1, V2 and V3 records
based on the transaction code ("A","R", "D") in the V1 record. It compares the new effective
dates against those of any existing HTS records with the same HTS code and import country.

If the transaction code type is “‘A’, insert a record into the HTS table; if the transaction code
type is ‘R’, update the HTS record that has the same HTS code, import country id,
effect_from and effect_to dates

For transaction code "A":

= |fnew HTS covers a time period different than and after any existing HTS, or no HTS
exists for the given HTS/import country, is a valid record for inserting.

= |If new the HTS record is overlapping with existing record and its effect_from date >
existing record and effect_to >= existing effect_to date, it is a valid record. Process is as
follows:

1 Insertan HTS record with the same data as the existing overlapping HTS, except that
the effect_to date should be 1 day before the effect_from date of the new HTS record.

2 Update the effect_to date of all corresponding child records to 1 day before the
effect_from date of the new HTS record.

3 Insert new hts to the related tables.

Detailed technical description:

12

Call function validate_hts_update to verify that the record is valid for insert/update to the
database or reject to the reject file. For the valid record call hts_child_update function to
prepare child table processing.

Call hts_table_insert function to insert record to the hts table. if any invalid information
exists, write to error file.

Upload customs tariff files [htsupld]

e Call hts_oga_insert function to insert record/s to the hts_oga table. if any invalid information
exists, write to error file.

e Call hts_spi_insert function to insert record/s to the hts_tariff_treatment table. if any invalid
information exists, write to error file.

e Call hts_gsp_insert function to insert record/s to the hts_tt_exclusions table. if any invalid
information exists, write to error message log file.

e Set process error flag if non fatal error occurs. Return error flag.
e For transaction code "R™:

1 Search for the HTS with the same HTS, import country id, effect_from and effect_to
dates. If no record found, reject the record.

2 Ifarecord is found, delete the following child table records with the same HTS, import
country id, effect_from and effect_to dates.

e Insert to update the HTS table and re-insert child table information from the input file.
Detailed Techincal Description:

e Call function search_hts_update to find record that can be updated in the database tables.
o If one exists, prepare child tables for processing.

o Call hts_table_insert function to insert record to the hts table. if any invalid information
exists, write to error file.

e Call hts_oga_insert function to insert record/s to the hts_oga table. if any invalid information
exists, write to error file.

e Call hts_spi_insert function to insert record/s to the hts_tariff_treatment table. if any invalid
information exists, write to error file.

e Call hts_gsp_insert function to insert record/s to the hts_tt_exclusions table. if any invalid
information exist, write to error message log file.

e Set process error flag if non fatal error occurs. Return error flag.
e For transaction code "D™:
= Seach for the HTS with same HTS, import country id , effect_from and effect_to dates.

= Ifarecord is found update HTS and all its child records to yesterday.

L) Note: Since the dates are still presented in 2-digit year in the 99 tape, we assume that
the year coming in as 00-49 means 2000-2049, and 50-99 means 1950-1999. The
customs uses ‘999999’ to mean Dec 31 st, 2039.)

Detailed Technical Description:

e Call function search_hts_reset to find updateable record in the hts table. If one exists, insert
new hts record.

e Call function hts_child_update to update all the child records, then delete the existing hts
record.

13

Retek Merchandising System

validate_hts_update()

Call out c_hts_date_invalid cursor to select HTS records which starts before or on the same
day as any existing HTS, or starts after and ends before any existing HTS:

effect_from >= new effect_from OR
effect_from < new effect_from and effect_to > new effect_to
If record exists:

= Call out c_hts_date_invalid2 cursor to select HTS records which starts before any
existing HTS and ends on Dec 31 st , 2039.

If record is not found, Write the record to the reject file, write an error message to the
message log file, and return to the calling function with a non-fatal error.

Else, set indictor =true (so that the existing record will be truncated to end 1 day before new
HTS starts).

New HTS starts after and overlaps with an existing HTS: effect_from < new effect_from and
effect_to >= new effect_from or new HTS starts after old end date and therefore does not
overlap at all. The ranges are completely separate.

This is a valid record, and a most likely scenario. Fetch the effect_from and effect_to of the
existing HTS. Insert a new record with effect_from date same as existing overlapping hts
record and effect_to date is 1 day before the new effect_from date to hts table.

Call function hts_child_update function to update effect_to date of all child records to 1 day
before the new effect_from date.

Delete the old record from hts table.

search_hts_update()

14

Search for the HTS with the same HTS, import country id, effect_from and effect_to dates. If
no record found, reject the record.

If a record is found, delete the following child table records with the same HTS, import
country id, effect_from and effect_to dates:

HTS_TT_EXCLUSIONS
HTS_TARIFF_TREATMENT
HTS_OGA

HTS_TAX

HTS_FEE

[N Note: HTS table record cannot be deleted due to the other child tables on HTS:
ITEM_HTS, ITEM_HTS_ASSESS, ORDSKU_HTS, HTS _CVD, HTS_AD,
HTS_REFERENCE, HTS_CHAPTER. The information on these tables won’t be
loaded in the HTS upload process.

Upload customs tariff files [htsupld]

search_hts_reset()

e Search for the HTS with the same HTS, import country id, effect_from and effect_to dates.
no record found, reject the record.

e Insertinto HTS, all the same information, but inserting yesterday as the new to_date.

o Ifarecord is found, call hts_child_update function to update the records in the child tables
with effect_to date to yesterday:

hts_child_update()
This function updates the effect_to date of the existing overlapping HTS record on child tables.

Since the child tables have referential constraints on the effective dates of the parent table HTS.

e Update the effect_to date of all corresponding child records to 1 day before the effect_from
date of the new HTS record.

The following child tables should be updated:
e HTS TARIFF_TREATMENT
o HTS_TT_EXCLUSIONS

e HTS_AD

e HTS CVD

e HTS OGA

e HTS_REFERENCE

e HTS_TAX

e HTS FEE

o [ITEM_HTS

e ITEM_HTS_ASSESS

e ORDSKU_HTS

o CE_CHARGES

L Note: Since table HTS_TT_EXCLUSIONS has a foreign key on the effect_to date of
table HTS_TARIFF_TREATMENT, we cannot update the effect_to date of
HTS_TARIFF_TREATMENT directly. Likewise, insert an
HTS_TARIFF_TREATMENT record with the new effect_to date first; then update the
effect_to date of the HTS_TT_EXCLUSIONS table; at the end delete the
HTS_TARIFF_TREATMENT record with the original effect_to date.

If

o Call delete_ord_temp_tables and pass in the value “-1” because thereis no known order_no at

this point.

15

Retek Merchandising System

item_hts_update()

e Call size_item_array function to allocate space for the items

e Fetch item, origin_country_id and status from item_hts into struct

o If no data found, call free_itemlist and go to the next record. If data is found, Loop

If tran_code = “A” the item will need to be inserted with the same data as the fetched
record but with new effect_to and effect_from dates.

1 Insert dates into item_hts.

2 Delete old record from item_hts

3 Call the package SQL Delete assess to delete the old records from item_hts_assess.
If tran_code = “R”

1 Call SQL Delete _assess to delete the old records from item_hts_assess

Call SQL Default_calc_assess to update the item_hts_assess table (ie insert record with
new dates and recalculate)

Call ECL_CALC_SQL.CALC_COMRP to recalculate expenses based on new assesses.
Insert into mod_order_item_hts a new record with same data but new dates.

Call free_itemlist

ordsku_hts_search()

e Call size_ord_array function to allocate space for the order information

o Fetch values from ordhead, ordsku_hts, ordsku and ordloc into struct (all necessary values to
be able to do a complete insert into the mod_order_item, ordsku_hts, and ordsku_hts_assess
tables.

e |f no data found, call free_ordlist and go to next record. If data is found, Loop

16

If order status = “A”, (the order needs to be updated) set status from approved back to
worksheet by calling SQL functions (LC_SQL.DELETE_LCORDAPP and
OTB_SQL.ORD_UNAPPROVE).

Insert into mod_order_item_hts table (just the order_no and indicator set to “Y’)
Call ordsku_hts_update
Call free_ordlist

Upload customs tariff files [htsupld]

ordsku_hts_update()

Call size_ce_array to allocate space for the custom entry information
= Fetch custom entry values from ce_ord_item, ce_head, item_supp_country into struct
= If no data found, call ordhts_update. If data is found:
= |If CE status = “W”, (worksheet status)
1 Call ordhts_update

2 Loop for each custom entry record
Call ce_update

= |If status = “W” then the quantity cleared will need to be compared to the total quantity.
In order to do that they will need to be converted to the standard uom format

1 Loop
Call uom_convert to get the total quantity.
If total_qty < qty_ordered
Call ordhts_update

= Call free_ceordlist

ordhts_update()

If tran_code = “A” or “D”

= Delete old record (record with old dates) from ordsku_hts_assess
= Delete old record (record with old dates) from ordsku_hts

= Insert record with new dates into ordsku_hts

Else if tran_code = “A”

= Insert record with new dates into ordsku_hts

Else if tran_code = “D”

= Call SQL Delete_assess by calling order_del_assess function

= Call SQL calc_comp

= |If the item is a pack item check to see if a record already exists on mod_order_item_hts —
if it does not, insert one with the pack_item

= [fitis nota pack item, insert with item_no into mod_order_item_hts.
= Return0

Else if tran_code = “R”

= Call delete_ord_temp_tables and pass in the order_no.

Call SQL Delete_assess by calling order_del_assess function

Call ORDER_HTS_SQL.DEFAULT_CALC_ASSESS with either the pack_no or item_no
depending on if it is a pack or not.

Call ELC_CALC.CALC_COMP
If it is a pack item insert into mod_order_hts with the pack_no

If it is not a pack item, insert into mod_order_item_hts with the item_no

17

Retek Merchandising System

ce_update()

Delete from ce_charges.
Ifitisa“D”, call CE_CHARGES SQL.INSERT_COMPS

hts_table_insert()
Before inserting into or updating the HTS table,

Call function check_chapter to make sure that the chapter already exists on the
HTS_CHAPTER table. If not, reject the record;
Call check valid_all_numeric function to check unit for all numeric value.

Call function check_uom to make sure that the UOMs (UOM1, UOM2, UOM3) already exist
on the UOM_CLASS table. Reject the record if UOM does not exist.

Call function check_duty to make sure that the duty code already exists on the
CODE_DETAIL table. If not, reject the record.

Call valid_all_numeric function to verify that the quota is all numeric. Then calling function
check_quota to make sure that the quota category already exists on the
QUOTA_CATEGORY table. If not, reject the record.

Update the existing hts record with the updated hts_desc, chapter, units, units_1, units_2,
units_3, duty_comp_code, more_hts_ind, quota_cat, quota_ind, ad_ind, cvd_ind.

Insert the following into the HTS table:

18

hts: tariff number (V1c)

import_country_id: import country from the program input parameter
effect_from: begin effective date (V1e)

effect_to: end effective date (\V1f)

hts_desc: commodity description (V1I)

chapter: 1 st 4 (leftmost) digits of tariff number

units: number of reporting units (V1g)

units_1: first unit of measure (V1h) (If the number of reporting units is zero, this should be
defaulted to “X”)

units_2: second unit of measure (V1) -NULL if not given

units_3: third unit of measure (V1j)—NULL if not given

duty _comp_code: duty code (V1k)

more_hts:Y if additional tariff indicator (V2j is ‘R’, N otherwise
quota_cat: category number (VV3h) but only if quota indicator (V3g) is 1
quota_ind Y’ if there is a quota,”’N’ otherwise

ad_ind “Y” if the anti-dumping flag (V3f) is 1, N otherwise

cvd_ind “Y’if the countervailing duty flag (V2K) is 1, N otherwise

Upload customs tariff files [htsupld]

hts_oga_insert()

For each OGA code, call function check_oga to verify that the OGA code exists on the OGA
table. If not, reject the record; otherwise, call hts_oga_insert to insert into HTS_OGA.

o Insert the following into the HTS_OGA table:

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

e code: OGA code from OGA codes field (V3f)

o reference_id: NULL

e comments: NULL

hts_spi_insert()

For each SPI, call function check_spi to check if the SPI exists on the tariff_treatment table; if
not, reject the record. Call function hts_tariff_treatment_insert to insert into

HTS _TARIFF_TREATMENT. In addition to the SPI records in V3, ‘C1’ and ‘C2’ are default
tariff_treatments for every HTS. So, two extra records should be inserted into

HTS TARIFF_TREATMENT with SPI codes ‘C1’ and ‘C2’. ‘C1’ takes the special_duty_rate
from V1 and Column 1 rates from V2; ‘C2’ takes Column 2 rates from V2. Before inserting, call
function check_spi to make sure that the SPI code (tariff treatment) exists on the
TARIFF_TREATMENT table; reject the record if it does not.

Call valid_all_numeric function to check specific_rate, ad_rate, other_rate for all numeric value.
If not, reject the record.

Reject HTS lines that have rate greater than 9999999999. A brief explanation of why this is done
is located at the end of the function level description section.

Insert the following into the HTS_TARIFF_TREATMENT table:

o hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tariff_treatment: SPI code from V3i

o specific_rate: 0,coll or col2 specific rate, as appropriate (0 for SPI’s,col 1 for coll, col 2 for
col2)

e av_rate: 0,coll, or col2 ad valorem rate, as appropriate (O for SPI’s)
e other_rate: 0,coll, or col2 other rate, as appropriate (O for SPI’s)
hts_gsp_insert()

For each GSP excluded country, call function check _country_tariff _treatment to check that the
country and tariff treatment combination exists on the COUNTRY_TARIFF_TREATMENT
table; if not, reject the record.

19

Retek Merchandising System

Insert the following into the HTS_TT_EXCLUSIONS table

o hts: tariff number (V1c)

e import_country_id: import country from the program input parameter

o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tariff_treatment: first SPI code from V3i

e origin_country_id: excluded country code from V3d (GSP excluded countries)
check_spi()

Check to see if SPI exists on TARIFF_TREATMENT table; reject the record if it doesn’t.
check_country()

Check to see if country exists on COUNTRY table; reject the record if it doesn’t.
check_chapter()

Check to see if chapter exists on the HTS_CHAPTER table and reject the record if it doesn’t.
check_uom()

Check to see if uom exists on UOM_CLASS table; reject the record if it doesn’t.
check_duty()

Check to see if duty code exists on CODE_DETAIL table (check for the code where
code_type="DCMP’); reject the record if it doesn’t.

check_quota()

Check to see if the quota_category exists on the QUOTA_CATEGORY table; reject the record if
it doesn’t.

check_oga()
Check to see if the oga code exists on the OGA table; reject the record if it doesn’t.
check_comb_country_tt()

Check to see if the country and tariff_treatment combination exists on the
COUNTRY_TARIFF_TREATMENT table; reject the record if it doesn’t.

process TDETL()

e Format the tax line information from tdetl structure.

e Call function process_taxfees, if no non-fatal error in the process_ THEAD function.
process_taxfees()

If tax specific rate or tax ad rate is not null, call hts_taxfee_insert to insert the tax rates into
HTS_TAX or HTS_FEE tables. If special rates exist on the tax line, call function
hts_tariff_treatment_insert to insert into the HTS_TARIFF_TREATMENT table using the 1SO
country code as the tariff treatment (SPI). If the SPI given on the tax line already exists for the
HTS, the record should be updated, as the tax line special rate takes precedence over the V3 line
SPI’s rate

20

Upload customs tariff files [htsupld]

Call valid_all_numeric function to check tax_specific_rate, tax_av_rate, fee_specific_rate,
fee_av_rate for all numeric value, if not reject the record.

Reject HTS lines that have rate greater than 9999999999. A brief explanation of why this is done
is located at the end of the function level description section.

hts_taxfee_insert()

If the tax class code is 016,017,018,0r 022 it is a tax; insert into HTS_TAX
If the tax class code is 038,053,054,055,056,057,079,090,103 it is a fee; insert into HTS_FEE
Insert the following into the HTS_TAX or HTS_FEE table:

o hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

e tax_type/fee_type: tax class code (V5h)

e tax_comp_code/fee_comp_code: tax comp code (V5i)

o tax_specific_rate/fee_specific_rate: tax specific rate (\V/5Kk)

e tax_av_rate/fee_av_rate: tax ad valorem rate (\V/5I)
hts_tariff_treatment_insert()

Before calling this function, call function check_spi to make sure that the SPI code (tariff
treatment) exists on the TARIFF_TREATMENT table; reject the record if it does not.

Insert the following into the HTS_TARIFF_TREATMENT table:

e hts: tariff number (V1c)

e import_country_id: import country from the program input parameter
o effect_from: begin effective date (V1e)

o effect_to: end effective date (V1f)

o tariff_treatment: SPI code from V3i and VVDd

e specific_rate: 0,coll or col2 specific rate, as appropriate (0 for SPI’s,col 1 for coll, col 2 for
col2)

e av_rate: 0,coll or col2 ad valorem rate, as appropriate (0 for SPI’s)
e other_rate: 0,coll or col2 other rate, as appropriate (0 for SPI’s)
size_item_array()

Allocates space for the item array struct

size_ord_array()

Allocates space for the order array struct

size_ce_array()

Allocates space for the custom entry array struct

21

Retek Merchandising System

free_orditemlist()

Frees the space in the array

free_itemlist()

Frees the space in the array

free_ceordlist()

Frees the space in the array

uom_convert()

e CallsITEM_ATTRIB_SQL.GET_STANDARD_UOM
e Calls UOM_SQL.CONVERT
order_del_assess()

e Calls ORDER_HTS_SQL.DELETE_ASSESS
delete_ord temp_tables()

If an order no is not passed in, look at the hts table and see if there is an order that exists for that
hts. If so, loop and for each record see if there is a record to delete on the temp tables by calling
ORDER_SETUP_SQL.DELTE_TEMP_TABLES.

If the order number was passed in, call ORDER_SETU_SQL.DELETE_TEMP_TABLES right
away.

final ()
Restart/recovery close and close input and reject file.
Why HTS lines that have a rate greater than 9999999999 need to be rejected:

For fields specific_rate, av_rate, other_rate, RMS has the data type Number(12,8) and numbers
coming in from the customs tape also have 8 implied digits. However, when storing the number
into the Retek database, we need to divide the number coming in from the customs tape by
1000000 (left shift 6 digits) instead of 100000000 (left shift 8 digits). This is because Retek stores
the percent part of the rate only. In other words, rate 11.5% (0.115) is stored as 11.5 in Retek
database, whereas it will come in from the customs tape as 11500000 (=0.115). Therefore, the
highest rate that can be represented in Retek is 9999.99999999% (= 99.9999999999, or < 100
times). So we need to reject HTS lines that have rate greater than 9999999999.

L) Note: This is true for hts spi and hts tax/fee specific_rate and av_rate, except that when
999999999999

22

Upload customs tariff files [htsupld]

Input Specifications

Record Field Name Field Type | Default Description
Name Value
FHEAD Record Char(5) FHEAD Describes file line type
Descriptor
Line number Number(10) | 0000000001 Sequential file line number
Retek file ID Char(5) HTSUP Describes file type
THEAD Record Char(5) THEAD Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction id | Number(14) Unique transaction id
HTS Line Char(358) V1 through V4 records
from the customs HTS file
concatenated together
TDETL Record Char(5) TDETL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction id | Number(10) Unique transaction id
Tax/fee line Char(80) V5 through VC records
from the customs HTS file,
each on a separate TDETL
line
TTAIL Record Char(5) TTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Detail lines Number(6) Number of lines between
THEAD and TTAIL
FTAIL Record Char(5) FTAIL Describes file line type
Descriptor
Line number Number(10) Sequential file line number
Transaction Number(10) Number of lines between

Lines

FHEAD and FTAIL

23

Retek Merchandising System

Here is the layout of the original input file:

L) Note: The input file contains lines of 2400 characters, i.e. the newline character occurs
only after every 2400 characters. Each 2400-character line consists of thirty 80-character
records. Each 80-character record starts with “V1” or ‘V2’ ... or *“VD’ or blank if the
record is completely empty. For each tariff, records V1 and V2 are mandatory; records
V3 through VD are optional, which means they can be all blank. Record V4 is not
currently used in RMS/RTM. Records V5 through VC contain the tax/fee information
for the tariff, and all have the same structure. The lower-case letters in the record hame
block are as a convenience to cross-reference with the US Customs file description.

Record
Name

Field Name

Field Type

Default
Value

Description

V1
a

Control
identifier

Char(1)

\Y

Identifies start of record

b

Record type

Char(1)

Identifies record type

c

Tariff number

Number(10)

A code located in the
Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number is
less than 10 positions, it is
left justified

transaction code

Char(1)

A/ DR

A code representing the
type of transaction. Valid
Transaction Codes are:

A =Add
D = Delete
R = Replace

begin effective
date

char(6)

A numeric date in
MMDDYY (month, day,
year) format representing
the record begin effective
date. This date indicates
when the record becomes
effective.

end effective
date

char(6)

A numeric date in
MMDDYY (month, day,
year) format representing
the record end effective
date. This date indicates
the last date the record is
effective.

24

Upload customs tariff files [htsupld]

Record
Name

Field Name

Field Type

Default
Value

Description

number of
reporting units

number(1)

0,1,or20r3

The number of reporting
units required by the
Bureau of the Census. Ina
few instances, units not
required by Census may be
required to compute duty.
In these cases, the Census
reporting units are always
first, followed by any
additional units required to
compute the duty.

1st reporting
unit of measure

char(4)

A code representing the
first unit of measure. If the
reporting unit is X, no unit
of measure is required
except for certain tariff
numbers in Chapter 99.
Valid unit of measure
codes are listed in
Appendix C.

2nd reporting
unit of measure

char(4)

A code representing the
second unit of measure.
Valid unit of measure
codes are listed in
Appendix C.

3rd reporting
unit of measure

char(4)

A code representing the
third unit of measure. Valid
unit of measure codes are
listed in Appendix C.

duty
computation
code

char(1)

A code indicating the
formula to be used to
compute the duty. Valid
Duty Computation Codes
are listed in Appendix F.

commodity
description

char(30)

A condensed version of the
commodity description that
appears in the HTS.

column 1
specific rate of
duty

Number(12)

The rate of duty that
appears in the General
column of the HTS. Eight
decimal places are implied.

25

Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

base rate
indicator

char(1)

‘B’ or blank

A code indicating if the rate
contains a base rate. If the
base rate indicator is B, the
duty rate is a base rate;
otherwise, space fill. Not
Used in RMS.

space fill

char(1)

blank

Space fill. Not used in
RMS.

Control
identifier

char(1)

Identifies start of record

Record type

char(1)

Identifies record type

tariff number

Number(10)

A code located in the
Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number is
less than 10 positions, it is
left justified. This number
is the same as that in
Record Identifier V1.

general column
1 ad valorem
percentage

Number(12)

The ad valorem rate of duty
that appears in the General
column of the HTS. Eight
decimal places are implied.

column 1 other

Number(12)

The rate of duty that
appears in the General
column of the HTS that is
not an ad valorem rate.
Eight decimal places are
implied.

Column 2
specific rate

Number(12)

The specific rate of duty
that appears in Column 2 of
the HTS. Eight decimal
places are implied.

Column 2 ad
valorem
percentage

Number(12)

The ad valorem rate of duty
that appears in Column 2 of
the HTS. Eight decimal
places are implied.

26

Upload customs tariff files [htsupld]

Record Field Name Field Type | Default Description
Name Value
h Column 2 other | Number(12) The rate of duty that
rate appears in Column 2 of the
HTS that is not an ad
valorem rate or a specific
rate. Eight decimal places
are implied.
i countervailing char(1) blank or 1 A code of 1 indicating the
duty flag tariff number is subject to
countervailing duty;
otherwise, space fill.
j additional tariff | char(1) blank or ‘R’ A code indicating if an
indicator additional tariff number
may be required with this
tariff number. Refer to the
Harmonized Tariff
Schedule of the United
States Annotated (HTS) for
more specific information
on which HTS numbers
require additional HTS
numbers to be reported.
This indicator is R when an
additional tariff number
may be required; otherwise,
space fill.
k Miscellaneous char(2) A code indicating if a tariff
Permit/License number may be subject to a
Indicator miscellaneous
permit/license number.
I space fill char(4) blanks Not used in RMS.
V3 Control char(1) \V identifies start of record
a identifier
b Record type char(1) 3 identifies record type
c tariff number Number(10) A code located in the

Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number is
less than 10 positions, it is
left justified. This number
is the same as the number
in Record Identifier V1.

27

Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

GSP excluded
countries

char(20)

The International
Organization for
Standardization (ISO)
country code that indicates
countries not eligible for
preferential treatment under
GSP. Up to ten 2-position
country codes can be
reported. If countries are
excluded from GSP, the
Special Programs Indicator
(SPI) Code contained in
this record (positions
53-64) is A*. Valid 1ISO
country codes are listed in
Appendix B.

OGA codes

char(15)

Codes that indicate special
requirements by other
Federal Government
agencies must or may
apply. Up to five 3-position
OGA codes can be
provided.

anti-dumping
flag

char(1)

1 or blank

A code of 1 indicating the
tariff number is subject to
an antidumping duty;
otherwise, space fill.

guota indicator

char(1)

1 or blank

A code of 1 indicating the
tariff number may be
subject to quota. If the
tariff number is not subject
to quota, space fill.

category number

char(6)

A code located in the HTS
indicating the textile
category assigned to the
tariff number. If there is no
textile category number,
space fill.

28

Upload customs tariff files [htsupld]

Record
Name

Field Name

Field Type

Default
Value

Description

special program
indicators

char(28)

A code indicating if a tariff
number is subject to a
special program. Up to
fourteen 2-position codes
can be reported. Left
justify. The SPI codes are
not reported in any
particular sequence. If
more than fourteen 2-
position codes are required,
they are reported on the VD
record.

NEWLINE

\n

V4
a

Control
identifier

char(1)

identifies start of record

Entire V4 record not used
in RMS.

Record type

char(1)

identifies record type

tariff number

number(10)

A code located in the
Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number is
less than 10 positions, it is
left justified. This number
is the same as the number
reported in Record
Identifier V1.

value edit code

char(3)

A code representing the
value edit.

value low
bounds

number(10)

A value representing the
minimum value edit. Five
decimal places are implied.
If this record contains date
edits (positions 36-53),
space fill.

value high
bounds

number(10)

A value representing the
maximum value edit. Five
decimal places are implied.
If this record contains date
edits (positions 36-53),
space fill.

29

Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

entry date
restriction

number(1)

0,1,o0r2

A code representing the
first entry date restriction
code.

beginning
restriction date

char(4)

A numeric date in MMDD
(month and day) format
representing the first begin
restriction date used in the
edit. If this record contains
a value edit (positions
13-35), space fill.

end restriction
date

char(4)

A numeric date in MMDD
(month and day) format
representing the first end
restriction date used in the
edit. If this record contains
a value edit (positions
13-35), space fill.

entry date
restriction 2

number(1)

0,1,or2

A code representing the
second entry date
restriction code.

beginning
restriction date 2

char(4)

A numeric date in MMDD
(month and day) format
representing the second
begin restriction date used
in the edit. If this record
contains a value edit
(positions 13-35), space
fill.

end restriction
date 2

char(4)

A code located in the
Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number is
less than 10 positions, it is
left justified. This number
is the same as the number
reported in Record
Identifier V1.

country of origin

char(2)

A code representing the
value edit.

30

Upload customs tariff files [htsupld]

Record
Name

Field Name

Field Type

Default
Value

Description

space filler

char(2)

blanks

A value representing the
minimum value edit. Five
decimal places are implied.
If this record contains date
edits (positions 36-53),
space fill.

guantity edit
code

char(3)

A value representing the
maximum value edit. Five
decimal places are implied.
If this record contains date
edits (positions 36-53),
space fill.

low quantity

number(10)

A code representing the
first entry date restriction
code.

high quantity

number(10)

A numeric date in MMDD
(month and day) format
representing the first begin
restriction date used in the
edit. If this record contains
a value edit (positions
13-35), space fill.

V5

Control
identifier

char(1)

\%

identifies start of record

Record type

char(1)

5,6,7,8,9,A,B,
Cc

identifies record type

tariff number

number(10)

A code located in the
Harmonized Tariff
Schedule of the United
States Annotated (HTS)
representing the tariff
number. If this number
contains less than 10
positions, it is left justified.
This number is the same as
the number reported in
Record Identifier V1.

31

Retek Merchandising System

Record
Name

Field Name

Field Type

Default
Value

Description

Country code

char(2)

A code representing the
country. Valid ISO country
codes are listed in
Appendix B. E followed by
a space (Caribbean Basin
Initiative), and J followed
by a space (Andian Trade
Preference Act), and R
followed by a space
(Caribbean Trade
Partnership Act), are also
valid codes for special
rates. Countries eligible for
E and J are indicated in the
ACS country code file and
the Harmonized Tariff
Schedule of the United
States - Annotated (HTS).

specific rate

number(12)

The specific rate of duty
listed in the Special column
of the HTS. Eight decimal
places are implied.

ad valorem rate

number(12)

The ad valorem rate of duty
listed in the Special column
of the HTS. Eight decimal
places are implied.

Other rate

number(12)

The rate of duty listed in
the Special column of the
HTS that is not a specific
or ad valorem rate. Eight
decimal places are implied.

tax/fee class
code

char(3)

A code representing the
tax/fee class. Valid tax/fee
class codes are listed in
Appendix B.

tax/fee comp
code

char(1)

A code indicating the first
tax/fee computation
formula. Computation
formulas are presented in
Appendix F.

32

Upload customs tariff files [htsupld]

Record Field Name Field Type | Default
Name Value

Description

j tax/fee flag number(1)

A code indicating a tax/fee
is required. Valid Tax/Fee
Flag Codes are:

1 = Tax/fee required

2 = Tax/fee may be
required Not used in RMS.

k tax/fee specific | number(12) blank if no
rate value

The specific rate of duty
required to compute taxes
and/or fees. Eight decimal
places are implied.

I tax/fee ad number(12) blank if no
valorem value

The ad valorem rate of duty
required to compute taxes
and/or fees. Eight decimal
places are implied.

m space fill char(1) blank

Space fill.

V6 through VC records have the same fields as the V5 record.

VD Control char(1) V identifies start of record

a identifier

b Record type char(1) D identifies record type

c tariff number number(10) unique tariff number

d Special Program | char(32) A code indicating if a tariff

Indicator (SPI) number is subject to a
Code special program. Up to

sixteen additional 2-
position codes can be
reported. Left justify. The
SPI codes are not reported
in any particular sequence

e Filler char(36) Space fill.

Output Specifications

N/A

Scheduling Considerations

Processing Cycle: Ad hoc

Scheduling Diagram: Run anytime as needed.

Pre-Processing: after hts upload conversion (ushts2rms — PERL script).

Post-Processing: None

Threading Scheme: None

33

Retek Merchandising System

Restart Recovery

This program supports Retek standard intermittent commit and file upload restart/recovery.
Recommended commit counter is 2000 (commit after every 2000 tariff records are read). Input
file names must end in a “.1” for the restart mechanism to properly parse the file name. Since
there is only 1 input file to be uploaded, only 1 thread is used. A reject file is used to hold records
that have failed processing. The user can fix the rejected records and process the reject file again.

34

Order purge [ordprg]

Order purge [ordprg]

Design Overview
The purpose of this module is to remove old orders from the system.

If the import indicator on the SYSTEM OPTIONS table (import_ind) is 'N' and if invoice
matching is not installed, then all details associated with an order are deleted when the order has
been closed for more months than specified in UNIT_OPTIONS (order_history _months). Orders
will only be deleted if all allocations associated, if any, have been closed. If invoice matching is
installed, then all details associated with an order are deleted when the order has been closed for
more months than specified in UNIT_OPTIONS (order_history_months). Orders are deleted
only if allocations associated have been closed, shipments from the order have been completely
matched to invoices or closed, and all those invoices have been posted.

If the import indicator on the SYSTEM OPTIONS table (import_ind) is "Y' and if invoice
matching is not installed, then all details associated with the order are deleted when the order has
been closed for more months than specified in UNIT_OPTIONS (order_history_months) , as long
as all ALC records associated with an order are in 'Processed’ status, specified in ALC_HEAD
(status) and allocations associated to the order, if any, have been closed. If invoice matching is
installed, then all details associated with an order are deleted when the order has been closed for
more months than specified in UNIT_OPTIONS (order_history_months), as long as all ALC
records associated with an order are in 'Processed' status, specified in ALC_HEAD (status), all
allocations associated to the order, if any, have been closed, all shipments from the order have
been completely matched to invoices or closed, and all those invoices have been posted.

This program will also create a PO header flat file to interface with the Nautilus system. When
orders are deleted, a record with the action type = ‘D’eleted will be written to an output file.
Nautilus will then process this file and delete the PO from the warehouse’s database to maintain
consistency between the host and warehouse environment.

Tables Affected:

TABLE INDEX SELECT | INSERT | UPDATE | DELETE
ALC _COMP_LOC Yes No No No Yes
ALC_HEAD Yes Yes No No Yes
ALLOC_CHRG Yes No No No Yes
ALLOC_DETAIL No No No No Yes
ALLOC _HEADER Yes Yes No No Yes
ALLOC _REV Yes No No No Yes
APPT_DETAIL Yes Yes No No Yes
APPT_HEAD No Yes No No Yes
CARTON No No No No Yes
CE_CHARGES Yes No No No Yes
CE_FORMS Yes No No No Yes

35

Retek Merchandising System

TABLE INDEX SELECT | INSERT | UPDATE | DELETE
CE_HEAD Yes No No No Yes
CE_LIC_VISA No No No No Yes
CE_ORD_ITEM Yes Yes No No No
CE_ORD_ITEM Yes No No No Yes
CE_PROTEST No No No No Yes
CE_SHIPMENT Yes No No No Yes
DAILY_PURGE No No Yes No No
DEAL_CALC_QUEUE No No No No Yes
DEAL_DETAIL Yes No No No Yes
DEAL_HEAD Yes No No No Yes
DEAL_ITEMLOC Yes No No No Yes
DEAL_QUEUE No No No No Yes
DEAL_THRESHOLD No No No No Yes
DOC_CLOSE_QUEUE Yes No No No Yes
INVC_HEAD Yes Yes No No No
INVC_MATCH_WKSHT Yes No No No Yes
INVC_XREF Yes No No No Yes
ITEM_MASTER Yes Yes No No No
LC_ORDAPPLY No No No No Yes
MISSING_DOC Yes No No No Yes
OBLIGATION Yes No No No Yes
OBLIGATION_COMP Yes No No No Yes
OBLIGATION_COMP_LOC | No No No No Yes
ORD_HEAD Yes Yes No No Yes
ORD_INV_MGMT Yes No No No Yes
ORD_LC No Yes No No No
ORD_XDOCK_TEMP No No No No Yes
ORDCUST Yes No No No Yes
ORDHEAD_DISCOUNT No No No No Yes
ORDHEAD_REV No No No No Yes
ORDLOC Yes No No No Yes
ORDLOC_DISCOUNT Yes No No No Yes

36

Order purge [ordprg]

TABLE INDEX SELECT | INSERT | UPDATE | DELETE
ORDLOC_EXP Yes No No No Yes
ORDLOC_INVC_COST No No No No Yes
ORDLOC_REV No No No No Yes
ORDLOC_WKSHT Yes No No No Yes
ORDSKU Yes Yes No No Yes
ORDSKU_HTS Yes No No No Yes
ORDSKU_HTS_ACCESS Yes No No No Yes
ORDSKU_REV Yes No No No Yes
PACK_ITEM Yes Yes No No No
PACK_TMPL_HEAD Yes Yes No No No
PERIOD No Yes No No No
REPL_RESULTS Yes No No No Yes
REQ_DOC Yes No No No Yes
REV_ORDERS No No No No Yes
RTV_DETAIL Yes No No No Yes
RUA_RIB_INTERFACE No No No No Yes
SHIPMENT Yes Yes No No Yes
SHIPSKU Yes Yes No Yes Yes
SUP_VIOLATION No No No No Yes
SYSTEM_OPTIONS No Yes No No No
TIMELINE Yes No No No Yes
TRANS_CLAIMS Yes No No No Yes
TRANS_DELIVERY Yes No No No Yes
TRANS _LIC_VISA Yes No No No Yes
TRANS_PACKING Yes No No No Yes
TRANS_SKU Yes No No No No
TRANSPORTATION Yes Yes No No No
UNIT_OPTIONS No Yes No No No
WO _DETAIL Yes No No No Yes
WO_HEAD Yes Yes No No Yes

37

Retek Merchandising System

Stored Procedures / Shared Modules (Maintainability)
INV_SQL.DELETE_INVC
ORDER_SETUP_SQL.DELETE_TEMP_TABLES

Program Flow
N/A

Function Level Description

Delete from the appropriate ordering tables and any tables that may have referential integrity
constraints for the fetched order number. Fetch order numbers appropriately based on whether or
not invoice matching is installed.

init()
Select the following fields values:

e invc_match_ind, import_ind, repl_order_history_days, edi_rev_days, rws_ind from the
system_options table

e order_history_months from the unit_options table

e vdate from period table

process()

Call del_rev to delete order revision

Open the particular driving cursor based on the indicator inv_match_ind

For each order:

o Fetch the particular driving cursor based on inv_match_ind

o If letter of credit is present, then the order cannot be purge

o If import order, landed cost implications must be considered before purging the order
e Call delete_landed_costs to delete landed cost records associated with the order;

o Call del_appts to delete associated records from all appt_* tables

e Call purge_transport to delete transport records for order with many transports

e Call purge_custom_entry to delete customs entry records for order with many customs entries

e Insert records into daily_purge so pack records related to the current order_no will be deleted
by the dlyprg batch run. Insert only occurs if packs on current order are not found on any
other order

e Delete RTV detail records

e Delete Shipment detail records

e Delete Carton records

e Delete Work Order detail records

e Delete Work Order primary records

e Delete Allocation Charges records

38

Order purge [ordprg]

Delete Allocation detail records

Delete Allocation primary records

Delete Timeline records

Delete Order Location records

Delete Order Location Discount records
Delete Order Location Exp records

Delete Order detail HTS Access records
Delete Order detail HTS primary records
Delete Requested/Required Document records
Delete Order Location Rev records

Delete Order detail Rev records

Delete Order primary Rev records

Delete Allocation Rev records

Delete Order Location Invoice Cost records
Delete Order detail records

Delete Order Customer records

Delete Order Cross-dock Temp records

If order has invoice matching record

= Delete Invoice Cross-Reference records
= Delete Invoice Matching Worksheet records
Delete Order Location Worksheet records
Delete Supplier Violation records

Delete Shipment records

Delete Rev Order records

Call delete_deals to delete associated deal records with the order

Call del_repl_orders to Invoice Order Management and Replenishment Result records

Delete LC Order Apply records

Delete Order primary Discount records
Delete Order primary records

Delete RUA RIB Interface records

Call ORDER_SETUP_SQL.DELETE_TEMP_TABLE function to delete the order delete

temp tables

39

Retek Merchandising System

delete_invc_data()

Updates SHIPSKU.MATCH_INVC_ID column to NULL for invoices associated with the orders
being purged. Call INVC_SQL.DELETE_INVC function to delete the invoice data for the
specific orders being purged.

del_rev()

Delete records from the tables ordloc_rev, ordsku_rev, ordhead rev and alloc_rev associated with
the orders which have been closed for more days than specified in edi_rev_days(in table
UNIT_OPTIONS). But deleting occurs only:

o when a letter of credit is not present(ordlc.lc_ind="N’).
e Import indicator equals ‘N’. Or

e import indicator equals “Y’, and the landed costs are completed (alc_head.status = ‘PR’). In
this case, purge these landed costs before deleteing the above tables.

Also, before deleting from these tables, purge all related transportation and custom entries.
final()

Close the output file.

purge_transport()

Delete from the table transportation for specific orders being purged as well as child records from
tables missing_doc, trans_packing, trans_delivery, trans_claims , trans_sku, transportation,and
trans_lic_visa(based on transportation_id).

purge_customs_entry()

Delete from customs entry for specific orders being purged. The following tables are being
deleted from this function:

e CE_CHARGES
o CE_FORMS

e CE_HEAD

e CE_LIC_VISA

e CE_ORD ITEM
e CE_ORD ITEM
e CE_PROTEST

e CE_SHIPMENT
delete_landed_costs()

Delete landed costs and obligations as well as their child records for specific orders being purged.
Involved tables include: alc_head, alc_comp_loc, obligation, obligation_comp,
obligation_comp_loc.

40

Order purge [ordprg]

delete_deals()

Delete all PO-specific deals assigned to the order being purged. PO-specific deals are identified
by the existence of a value in deal _head.order_no. The following tables are being deleted from
this function:

e DEAL_CALC_QUEUE
e DEAL_DETAIL

e DEAL_HEAD

e DEAL_ITEMLOC

e DEAL_QUEUE

e DEAL_THRESHOLD
del_repl_orders ()

Delete records from the table ord_inv_mgmt and repl_results associated with the order being
purged.

del_appts()

Deletes records from appt_detail, first saving distinct appt/loc combination into a local array that
is dynamically sized based on the number of records to be deleted from appt_head. Then array
deletes records based on the array from appt_head. Also deletes from doc_close_queue. Calls
size_appt_array() to size the appt_head delete array.

size_appt_array()
Sizes the array used to hold appt_head appt/loc info between deletes from appt_detail and
appt_head.
Input Specifications
Driving cursor (when Retek’s Invoice Matching product is not in use):
SELECT oh.order_no,
Ic.Ic_ind
FROM ordhead oh,
ordlc Ic
WHERE Ic.order_no(+) = oh.order_no

AND ((O <
(NVL(MONTHS_BETWEEN(TO_DATE(:ps_vdate, "YYYYMMDD")

oh.close_date),0) - :pi_hist_months))
OR (oh.status = "W*
AND oh.orig_ind = 0
AND oh.contract no is NULL

AND (TO_DATE(:ps_vdate, "YYYYMMDD") - oh.written_date)
>= :pi_repl_order_history_days));

AND NOT EXISTS (SELECT "x*
FROM alloc_header alloc2

41

Retek Merchandising System

WHERE ((alloc2.order_no = oh.order_no
AND alloc2.status !1="C")
OR EXISTS (SELECT ="x*

FROM alloc_header
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
= oh.order_no

AND alloc3.status != "C-
AND ROWNUM = 1))
AND ROWNUM = 1);
Driving Cursor (when Retek’s Invoice Matching product in use):
SELECT distinct oh.order_no,
Ic.Ic_ind
FROM ordhead oh,
shipment sh,
shipsku ss,
invc_head ih,
ordlc Ic
WHERE oh.order_no = sh.order_no
AND Ic.order_no(+) = oh.order_no
AND sh.shipment = ss.shipment
AND ss.match_invc_id = ith.invc_id(+)

AND (O <
(NVL(MONTHS_BETWEEN(TO_DATE(:ps_vdate, "YYYYMMDD"),

oh.close _date),0) - :pi_hist_months))

AND ((O <
(NVL(MONTHS_BETWEEN(TO_DATE(:ps_vdate, "YYYYMMDD")

sh.invc_match_date),0) - :pi_hist_months))
OR (sh.invc_match_date 1S NULL))
AND (ss.match_invc_id is null OR ih.status = "P")
AND sh.invc_match status = "C*®

AND "C" = (SELECT decode(max(ship.invc_match_status),
min(ship.invc_match_status),"C","X")

FROM shipment ship
where ship.order_no = oh.order_no
group by ship.order_no)
AND NOT EXISTS (SELECT "x*

42

Order purge [ordprg]

FROM alloc_header alloc2
WHERE ((alloc2.order_no = oh.order_no
AND alloc2.status 1="C")
OR EXISTS (SELECT =x~

FROM alloc_header
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
= oh.order_no

AND alloc3.status != "C*
AND ROWNUM = 1))
AND ROWNUM = 1)
UNION
SELECT oh.order_no,
Ic.Ic_ind
FROM ordhead oh,
ordlc Ic
WHERE Ic.order_no(+) = oh.order_no
AND oh.status = "W*
AND oh.orig_ind = 0
AND oh.contract no is NULL

AND (TO_DATE(:ps_vdate, "YYYYMMDD") - oh.written_date) >=
pi_repl_order_history_days

AND NOT EXISTS (SELECT *"x*
FROM alloc_header alloc2
WHERE ((alloc2.order_no = oh.order_no
AND alloc2.status 1="C*")
OR EXISTS (SELECT =x~

FROM alloc_header
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
= oh.order_no

AND alloc3.status != "C*
AND ROWNUM = 1))
AND ROWNUM = 1)
UNION
SELECT oh.order_no,

43

Retek Merchandising System

Ic.Ic_ind
FROM ordhead oh,
ordlc Ic
WHERE Ic.order_no(+) = oh.order_no

AND (O <
(NVL(MONTHS_BETWEEN(TO_DATE(:ps_vdate, "YYYYMMDD")

oh.close _date),0) - :pi_hist_months))
AND oh.status = "C*
AND NOT EXISTS (SELECT ="x~
FROM shipment sh
WHERE sh.order_no = oh.order_no);
AND NOT EXISTS (SELECT "x*
FROM alloc_header alloc2
WHERE ((alloc2.order_no = oh.order_no
AND alloc2.status 1="C")
OR EXISTS (SELECT "x*

FROM alloc_header
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
= oh.order_no

AND alloc3.status 1= "C*
AND ROWNUM = 1))
AND ROWNUM = 1);

Output Specifications
N/A

Scheduling Considerations

Processing Cycle: PHASE AD-HOC (monthly)
Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A (single threaded)

44

Pre/Post Functionality for Multi-Threadable Programs [prepost]

Pre/Post Functionality for Multi-
Threadable Programs [prepost]

Design Overview

The Pre/Post module facilitates multi-threading by allowing general system administration
functions (such as table deletions or mass updates) to be completed after all threads of a particular
program have been processed. A brief description of all pre- or post-processing functions

included in this program can be found in the Function-Level Description section.

This program will take three parameters: username/password to log on to Oracle, a program
before or after which this script must run and an indicator telling whether the script is a pre or
post function. It will act as a shell script for running all pre-program and post-program updates
and purges (the logic was removed from the programs themselves to enable multi-threading &

restart/recovery).

For example, to run the pre-program script for the ccext program, the following should be entered
on the command line:

prepost user/password

Tables affected:

pre

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

all_constraints

N

Z

all_ind_partitions

all_policies

alloc_detail

alloc_header

class

class_sales_forecast

class_sales_hist

class_sales_hist_mth

cost_change_trigger_temp

cost_susp_head

daily_data

daily_data_temp

dba_indexes

dba_triggers

dealfct_temp

deal_actuals_forecast

<lz|<|<|<|<|z|<|<|z|z|<|<|<|<]|<]|<

Z| K| Z2|Z2|Z2|Z2|1Z2|2|Z2|Z2|Z2|2|2|Z2|Z

Z|lZz|IZ2|Z2|Z2|1Z2||Z2|Z2|lz|Zz|Z2z|1Z2|Z2|2|2

Z|Zz|IZ2|Z2|Z2|1Z2|Z2|<|Z2|Z2||Z2|12|Z2|Z2|2

Z|Zz|Z2|IZ2|IZ2|Z2|Z2|Z2|X|K|Z2|Z2|Z2|Z2|2|2|Z

Z|lZz|Z2|Z2|IK|Z2|Z2|K|Z2|1Z2|IX|Z2|Z2|(2|2|2|Z2

Z|lZz|IZ2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|<X|<X|Z2|2|2

45

Retek Merchandising System

TABLE SELECT | INSERT | UPDATE | INDEX | DELETE | TRUNCATE | TRIGGER
deal_actuals_item_loc Y Y N N N N N
deal_bb_no_rebate_temp N Y N N N Y N
deal_bb_rebate_po_temp N Y N N N Y N
deal_bb_receipt_sales_temp N v N N N v N

p

deal_head

deal_item_loc_explode

deal_sku_temp

deps

dept_sales_forecast

dept_sales_hist

dept_sales_hist_mth

domain_class

domain_dept

domain_subclass

edi_daily_sales

edi_ord_temp

fif_receiving

fixed_deal

forecast_rebuild

groups

hist_rebuild_mask

ib_results

if_tran_data

invc_detail

invc_detail_temp

invc_detail_temp?2

invc_head

invc_head_temp

item_forecast

item_loc

item_loc_temp

Z| K| Z|IK¥K|Z2|IZ|K|Z||Z2|IX|K|Z2|XK|Z2|Z2|Z2|Z2|Z2|Z2|XK|Z2|Z2|<X|Z2|X|<

<|Z2|IZ2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2|Z2||Z2|Z2|Z2|2|Z2|Z2|2|Z2|2|2|2|Z2

Z|Zz|Z2|Z2|IK|Z2|Z2|K|Z2|IK|Z2|Z2|Z2|XK|Z2|Z2|Z2|X|KX|K|Z2|2|12|2|2|2|Z2

Z|IZ2|K|Z2|Z2|I1Z2|Z2|Z2|Z2|Z2|X|Z2|IX|Z2|X|XK|Z2|Z2|Z2|Z2|2|Z2|<|Z2|<X|Z2|=2

Z|1Z2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|<|Z2|Z2|Z2|<X|KX|Z2|2|2|Z2|Z2

<|Z2|Z2| K| Z2|<K|K|Z2|Z2|Z2|X|Z2|X|Z2|X|K|Z2|Z2|Z2|12|2|Z2|X|Z2|KX|Z2|2

Z|lZz|Z2|2|Z2|Z2|Z2|2Z2

46

Pre/Post Functionality for Multi-Threadable Programs [prepost]

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

item_master

N

pd

item_supp_country

item_supp_country_loc

mc_rejections

mod_order_item_hts

on_order_temp

ord_missed

ord_temp

ordhead

ordsku

packitem

period

pos_button_head

pos_coupon_head

pos_merch_criteria

pos_mods

pos_money_ord_head

pos_payinout_head

pos_prod_rest_head

pos_store

pos_sup_pay_criteria

pos_tender_type head

reclass_cost_chg_queue

reclass_head

reclass_item

reclass_trigger_temp

repl_attr_update_exclude

repl_attr_update_head

repl_attr_update_item

repl_attr_update_loc

repl_day

repl_item_loc

<|<|<|<|<|<|<|<|<|<|zZ|Z|Z|Z|Z|Z|Z|Z2|Z2|Z2|<|<|<|<|2|2|2|2|2|<]|<

<|<|Z2|Z2|Z2|1Z2|Z2|Z2|Z2||Z2|Z2|Z2|Z2|Z2|Z2|<|Z2|Z2|Z2|1Z2|Z2|Z2|2|l2|Z2|Z2|2|=2|2Z2

z|z|Z2z|lZ2|I1Z2|Z2|Z2|Z2|Z2|X|X|X|X|[XIX|X|Z|X|¥X|K¥|Z2|z2|1z2z|2z|lz2|12|2|Z2|2|2|2

Z|IZ2|Z2|Z2|Z2|1Z2|<K|Z2|Z2|IZ2|Z2|Z2|Z2|Z2|Z2|Z2|<|Z2|Z2|Z2|1Z2|Z2|Z2|2|XK|X|X|X|[KXx|Z2|Z2

Z|IZ2|I XX | X|IK¥K|K[|Z2|IZ2IZ2|Z2|Z2|2|2|Z2|Z2|1Z2|Z2|Z2|2|1Z2|Z2|Z2|2|2|Z2|Z2|2|2|Z2|Z2

Z|Zz|Z2|Z2|Z2|Z2|<K|Z2|Z2z|1Z2|1Z2|Z2|Z2|Z2|Z2|Z2|K|Z2|Z2|Z2|1Z2|Z2|Z2|Z2|X|X|X|X|X|Z2|Z2|2

Z|\Zz|1Z2|Z2|Z2|Z2|1Z2||Z2|Z2|Z2|2|Z2|Z2|Z2|2|Z2|Z2|Z2|2|Z2|Z2|Z2|1Z2|2|Z2|Z2|Z2|2|2|2|Z

47

Retek Merchandising System

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

repl_item_loc_updates

<

<

rpl_alloc_in_tmp

rpl_distro_tmp

salweek_c_daily

salweek_c_week

salweek_restart_dept

SEec_user_zone_matrix

stage_complex_deal_detail

stage_complex_deal_head

stage_fixed_deal_detail

stage_fixed_deal_head

stake head

stake_prod_loc

stake_sku_loc

store

store_add

subclass_sales_forecast

subclass_sales_hist

subclass_sales_hist_mth

sup_data

sups_min_fail

system_options

system_variables

temp_tran_data

temp_tran_data_sum

tif_explode

tran_data

tsf_head

vat_code_rates

vat_item

week_data_temp

wh

<|Z2|K|KX|Z2|Z2|Z2|Z2|X|¥X|X|Z2|Z2|XK|Z2|Z2|IX|X|X|X¥X|K¥K|Z2|Z2|Z2|l2|Z2|Z2|<|Z2|Z2|2

ZlZz|IZ2|Z2|Z2||Z2|IK|Z2|Z2|Z2|Z2|Z2|Z2|Zz2|Z2|Z2|Z2|Z2|1Z2|Z2|2|Z2|Z2|2|Z2|<|<X|X|<X|<

2| Z2|1Z2|Z2|<K|Z2|I1Z2|Z2|Z2|<<|Z2|IZ2|Z2|Z2|Z2|1Z2|Z2|X|Z2|1Z2|Z2|Z2|Z2|Z2|2|2|2|Z2|2|2|Z2

Z|IZ2|Z2|Z2|Z2|1Z2|K|Z2|Z2|IZ2|Z2|K|Z2|IZ2|Z2||Z2|Z2|Z2|Z2|1Z2|Z2|Z2|2|2||Z2|Z2|2|2|2

2|22 Z2|Z2|1Z2|Z2|Z2|2|Z2|Z2|Z2|X|XK|K|Z2|IXK|Z2|Z2|Z2|12|Z2|Z2|2|2|Z2|2|2|2|2|Z2

Z| K| Z2|Z2|Z2|Z2|XK|<KX|K|Z2|IZ2|X|Z2|Z2|Z2|1Z2|2|Z2|Z2|2|Z2|X|X|X|[X|X|X|X|X[|KX[|X|

Z|lZz|Z2|2|2|Z2|Z2|2|Z2

48

Pre/Post Functionality for Multi-Threadable Programs [prepost]

TABLE

SELECT

INSERT

UPDATE

INDEX

DELETE

TRUNCATE

TRIGGER

wh_store_assign N

N

N

Y

N

N

Scheduling Constraints
Processing Cycle:

PHASE ALL (daily)

Scheduling Diagram: See scheduling flow for description of all pre-post requirements in the

daily run.
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A (single threaded)

Restart Recovery
N/A

Program Flow
N/A

Shared Modules

e FORECASTS_SQL.GET_SYSTEM_FORECAST_IND
e UDA SQL.CHECK_REQD NO_VALUE
e FORECASTS_SQL.GET_DOMAIN
e ITEM_ATTRIB_SQL.GET_PACK_INDS

e FORECASTS_SQL.GET_ITEM_FORECAST_IND
e POS_UPDATE_SQL.POS_INVC_DETAIL_INSERT

e CAL_TO 454 LDOM
e CAL_TO 454 HALF

e CAL_TO CAL HALF

e CAL_TO_CAL _LDOM

e CAL_TO 454 WEEKNO
e CAL_TO _CAL_WEEKNO
e CAL_TO 454

e HALF_TO_CAL_FDOH

e HALF TO CAL_LDOH

e HALF_TO_454 FDOH

e HALF _TO 454 LDOH

e DBMS_RLS.ENABLE_POLICY

49

Retek Merchandising System

Function Level Description
Functions to be used by the individual program functions:
modify_indexes()

This function allows indexes to be disabled or rebuilt before and/or after the action that affects
them. The individual program passes in the table name and mode (what action to take “disable”
or “rebuild”) and performs that action. The owner of the index is determined using the
synonym_trace function in the library oracle.pc.

get_lock()

This function locks the table that is passed to it. If this function fails to acquire a lock to the
specified table, it retries MAX_LOCK_TRIES times before returning a fatal error.

modify_partition_indexes()

This is called by the modify_indexes function to determine if the indexes that need modified are
partitioned indexes. If so, then the statement is modified to take that into account to accomplish
the action. Index_owner, index_name and mode is passed to this function. Nothing is passed
back out.

truncate_table()

The table_name is passed to this function so that it can be truncated. The owner of the table is
determined by using the synonym_trace function in the library oracle.pc.

modify_trigger()

Allows triggers to be disabled or enabled before or after certain processes. The table_name,
trigger name and mode(“DISABLE” or “ENABLE”) are passed to this function and the
appropriate action is taken. No values are passed back to the calling function.

alter_constraints()

This function diables, enables, or rebuilds a table constraint based on the table name and the
mode passed into it. It is called by vendinv_pre().

truncate_user_sec_table()

This is a function used to run the szonrbld pre functions that will truncate the
sec_user_zone_matrix table. Disables any indexes prior to the truncation on the associated table
and rebuilds/enables them following the truncation.The user running this program for this
function must have been granted the “drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

get_454 ldom()

This function calls the procedure CAL_TO_454_LDOM to get the 454 last day of month.
get_454 half()

This function calls the procedure CAL_TO_454 HALF to get the 454 calendar half number.
get_next_454_half()

This function calls the procedure CAL_TO_454 HALF to get the next end-of-month 454
calendar half number.

50

Pre/Post Functionality for Multi-Threadable Programs [prepost]

get_next_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the next end-of-month half
number on the regular calendar.

get_cal_half()

This function calls the procedure CAL_TO_CAL_HALF to get the half number on the regular
calendar

get_cal_Idom()

This function calls the procedure CAL_TO_CAL_LDOM to get the end of the month on the
regular calendar.

get_454 weekno()
This function calls the procedure CAL_TO_454 WEEKNO to get the 454 week number in half.
get_cal_weekno()

This function calls the procedure CAL_TO_CAL_WEEKNO to get the week number in half on
the regular calendar.

get_454 date()

This function calls the procedure CAL_TO_454 to get the 454 calendar week number.
get_cal_fdoh()

This function calls the procedure HALF_TO_CAL_FDOH to get the first day of half.
get_cal_Idoh()

This function calls the procedure HALF_TO_CAL_LDOH to get the last day of half.
get_454 fdoh(void);

This function calls the procedure TO_454 FDOH to get the first day of half in 454 calendar.
get_454 ldoh(void)

This function calls the procedure HALF_TO_454 LDOH to get the last day of half in 454
calendar.

get_tomorrow()
This function gets the next day after the vdate.
get_forecast_ind()

This function cals FORECASTS_SQL.GET_SYSTEM_FORECAST _IND to get the
system_forecast_ind.

validate_reclassify()

Validates the reclassification. If the reclassification is rejected, then the data from the
RECLASS_TRIGGER_TEMP table is deleted, else the data is inserted into
RECLASS_COST_CHG_QUEUE table.

check_stock_count()

This function checks for the existence of a stock count of an item in the STAKE_SKU_LOC or
STAKE_PROD_LOC.

51

Retek Merchandising System

check_order()

This function checks for the existence of an order for an item in the ORDHEAD and ORDSKU
tables.

check_uda()

This function calls UDA_SQL.CHECK_REQD_NO_VALUE which determines if an item's new
hierarchy has any required UDA defaults that the item is not currently associated with.

check_domain_exists()

This function calls FORECASTS _SQL.GET_DOMAIN to check for the existence of the domain
for a merchandise hierarchy.

check_forecast()

This function validates the reclassification of an item based on forecast indicator. First, it checks
if the item passed is a pack through the package call to
ITEM_ATTRIB_SQL.GET_PACK_INDS. Then for non-pack items, it calls

FORECASTS _SQL.GET_ITEM_FORECAST_IND to get the item forecast indicator.

delete_reclass_trigger_temp()
This function deletes the records for a given item from the RECLASS _TRIGGER_TEMP.

Individual Program Functions

rpl_pre()

This function truncates the following tables before replenishment extracts are performed:
e ORD_TEMP

e ORD_MISSED

It also disables any indexes prior to the truncation on the associated tables and rebuilds/enables
them following the truncation. The user running this program for this function must have been
granted the ‘drop any table’ and “alter any index’ system privilege, or be the owning schema user.

salweek_pre()

This function truncates, then populates the tables SALWEEK_C_WEEK,
SALWEEK_C _DAILY, and SALWEEK_RESTART_DEPT.

SALWEEK_C_WEEK is populated with records from the tables DAILY_DATA_TEMP, and
WEEK_DATA whose eow_date are between the last eow date and the current eow date.

SALWEEK _C DAILY is populated with records from the tables DAILY_DATA and
DAILY_DATA_TEMP whose eow_date are between the last eow date and the current eow date.

SALWEEK_ RESTART_DEPT is populated with the departments, threads, and the count of
department records in the SALWEEK_C_WEEK.

salweek_post()

Updates the last end-of-week date on the SYSTEM_VARIABLES table to the run date after all
weekly stock ledger data has been processed.

salmth_post()

Updates the following SYSTEM_VARIABLES columns to reflect the current date’s values after
all monthly stock ledger data has been processed:

52

Pre/Post Functionality for Multi-Threadable Programs [prepost]

e last_eom_half no

e last_ eom_month_no

o last_eom_date

e next_eom_date

o last_eom_start_half

o last_ eom_end_half

o last_eom_start_month
e last_ eom_mid_month

o last_eom_next_half no
o last_eom_day

o last_eom_week

e last_eom_month

o last_eom_year

o last_eom_ week_in_half
rplapprv_pre()

This function truncates the SUPS_MIN_FAIL table. It disables any indexes prior to the
truncation on the associated table and rebuilds/enables it after being truncated. The user running
this program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

rplatupd_pre()

This function truncates the MC_REJECTIONS table so that it is free to hold new mass change
rejections. It disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

rplatupd_post()

This function truncates the holding tables REPL_ATTR_UPDATE_ITEM and
REPL_ATTR_UPDATE_LOC after their records have been processed. It disables any indexes
prior to the truncation on the associated tables and rebuilds/enables them following the truncation.
The user running this program for this function must have been granted the ‘drop any table’ and
‘alter any index’ system privilege, or be the owning schema user.

rilmaint_post()

This function locks then truncates the REPL_ITEM_LOC_UPDATES table after these records
are processed so the table is free to hold new updates. It disables any indexes prior to the
truncation on the associated tables and rebuilds/enables them following the truncation. The user
running this program for this function must have been granted the ‘drop any table” and “alter any
index’ system privilege, or be the owning schema user.

supmth_post()

53

Retek Merchandising System

Deletes records from table SUP_DATA after all daily supplier data records have been rolled up to
month level.

sccext_post()
Updates all processed supplier cost change record status to ‘Extracted’.
hstbld_pre()

Deletes sales history data for the dept exists in the table hist_rebuild_mask from the three tables
subclass_sales_hist, class_sales_hist and dept_sales_hist prior to running hstbld in rebuild mode.

hstbld_post()

This function truncates the holding table MASK_REBUILD after building history records. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the “drop any table’ and “alter any index’ system privilege, or be the owning schema user.

posdnld_post()

This clears the POS_MODS table after all records have been downloaded to the POS. It disables
any indexes prior to the truncation on the associated tables and rebuilds/enables them following

the truncation. The user running this program for this function must have been granted the “drop
any table’ and “alter any index’ system privilege, or be the owning schema user.

poscdnld_post()

This clears the config_status and loc_grp_status in POS_LOC_GRP and sets all values of
extract_req_ind to ‘N’. It clears the status column in POS_MERCH_CRITERIA. It also sets the
status_ind column in POS_STORE to ‘N’.

regext_post()

This function updates the TSFHEAD table and sets the status to “‘A’, approval_id to ‘BATCH’,
approval_date to the vdate, and the repl_tsf _approve_ind to ‘N’ where the repl_tsf_approve_ind
is equal to “Y”.

likestore_post()

This function should only be run after both storeadd.pc and all threads of likestore.pc have
successfully completed.

In the REPL_ITEM_LOC, table, likestore_post selects and inserts all information from the a like
store for the new store.

stkupd_pre()

Calls the stored function DBMS_MVIEW.REFRESH.

stkupd_post()

This function disables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC.
dtesys_post()

Enables the RMS_COL_ITL_UR_AUR trigger of ITEM_LOC table.
ocirog_pre()

54

Pre/Post Functionality for Multi-Threadable Programs [prepost]

This function truncates the rpl_net_inventory_tmp table, which is populated by the ocirog.c and
queried from regext.pc. This function also inserts records into RPL_DISTRO_TMP values from
ALLOC DETAIL, and ALLOC_HEAD table, and into RPL_ALLOC_IN_TMP values from
ALLOC_DETAIL, ALLOC_HEAD, and ORDHEAD table. This function also creates a unique
index in these two destination tables.

rplext_post()
Truncates the tables RPL_DISTRO_TMP, and RPL_ALLOC_IN_TMP.
posupld_post()

This updates the columns total_merch_cost , total_qty, invc_gty, INVC_HEAD tables based on
the corresponding columns in the INVC_HEAD_TEMP table.

vatdIxpl_post()

This inserts into pos_mods all transaction level items on the vat_item table where the item has a
new tran_code. Also, if a sub-transaction level item is on vat_item, it is inserted into the
pos_maods table, along with its parent item. These items are not picked up by the vatdixpl
program because the vat_code rate has not changed.

saleoh_pre()
Calculates the next_eom_date, and updates the SYSTEM_VARIABLES.
dealday_pre()

This gets the total sales and purchases from the TEMP_TRAN_DATA table and inserts a new
record in TEMP_TRAN_DATA_SUM based on dept, class, subclass, loc_type, location,
tran_date, and tran_code.

dealday_post()

Copies the contents of the table TEMP_TRAN_DATA_SUM into TRAN_DATA table.
Afterwards, then TEMP_TRAN_DATA_SUM is truncated.

hstbldmth_post()

This is responsible for deleting records in the following tables:

e CLASS SALES HIST_MTH

e SUBCLASS_SALES HIST_MTH

e CLASS SALES HIST_MTH

e DEPT_SALES HIST_MTH

THE FOLLOWING FUNCTIONS SHOULD BE RUN AFTER THE edidlprd PROGRAM!
edidlprd_post()

Deletes old records from the EDI_DAILY_SALES table after they have been processed.
festrbld_post()

This truncates the holding table FORECAST_REBUILD after all records have been processed. It
disables any indexes prior to the truncation on the associated tables and rebuilds/enables them
following the truncation. The user running this program for this function must have been granted
the ‘drop any table’ and “alter any index’ system privilege, or be the owning schema user.

55

Retek Merchandising System

vrplbld_post()

This truncates the EDI_ORD_TEMP table after all replenishment orders have been build from the
data held there. Disables any indexes prior to the truncation on the associated tables and
rebuilds/enables them following the truncation. The user running this program for this function
must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be the
owning schema user.

cntrordb_post()
Sets the last_cont_order_date on system_variables to vdate.
fifgldnl_post()

If Oracle Financials is being used, delete everything from the fif_receiving table and repopulate it
from the if_tran_data table. Disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the “‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

fsadnld_post()

Updates the load_sales_ind to “N’ for all records on the appropriate domain table — domain_dept,
domain_class, or domain_subclass, where system_options.domain_level = ‘D’, ‘C’, or ‘S’,
respectively.

policy_enable()
Enables or disables policies.
whstrasg_post ()

Deletes all warehouse store assignment records from the warehouse store assignment table if the
assignment date (wh_store_assign.assign_date) is less than or equal to the current date
(period.vdate) minus the warehouse store assignment history days
(system_options.wh_store_assign_hist_days).

costcalc_post()

This truncates the deal_sku_temp table. This disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and *alter any index’
system privilege, or be the owning schema user.

tifposdn_post()

This truncates tif_explode table. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user. It disables any indexes prior to the truncation on the associated tables
and rebuilds/enables them following the truncation.

htsupld_pre()

This truncates the mod_order_item_hts table so that reports will be correct and not include data
from previous runs of htsupld. It disables any indexes prior to the truncation on the associated
tables and rebuilds/enables them following the truncation. The user running this program for this
function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege, or be
the owning schema user.

56

Pre/Post Functionality for Multi-Threadable Programs [prepost]

onordext_pre()

This truncates the on_order_temp table. It disables any indexes prior to the truncation on the
associated tables and rebuilds/enables them following the truncation. The user running this
program for this function must have been granted the ‘drop any table’ and ‘alter any index’
system privilege, or be the owning schema user.

precostcalc_pre()

This processeses records from the COST_CHANGE_TRIGGER_TEMP and
RECLASS_TRIGGER_TEMP tables. Reclass_trigger_temp is populated only by database trigger
and cost_change_trigger_temp is populated by database trigger and
edi_cost_change_sql.create_cost_chg.

This function will either insert new records or update existing ones on reclass_cost_chg_queue.
Both tables, COST_CHANGE_TRIGGER_TEMP and RECLASS_TRIGGER_TEMP are
truncated and their indexes rebuilt at the end of this function. The user running this program for
this function must have been granted the ‘drop any table’ and ‘alter any index’ system privilege,
or be the owning schema user.

reclsdly_pre()

This disables the trigger RMS_TABLE_RCS_BIDR on the reclass_item table. The user running
this program for this function must have been granted the *alter any trigger’ system privilege, or
be the owning schema user.

ibcalc_pre()

This updates the status on ib_results to ‘U’nprocessed where the status = “W’orksheet so after
ibcalc is run, multiple records in ‘W’orksheet status will not exist for each item/location.

festprg_pre()

This disables any indexes prior to the truncation on following tables. This is run BEFORE the
fcstprg.pc program on PARTITIONED TABLES only:

e |ITEM_FORECAST

e DEPT_SALES FORECAST

e CLASS_SALES_FORECAST

e SUBCLASS_SALES_FORECAST

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

festprg_post()

This rebuilds the indexes following truncation of following tables:
o |ITEM_FORECAST

o DEPT_SALES_FORECAST

e CLASS SALES FORECAST

e SUBCLASS_SALES FORECAST

57

Retek Merchandising System

The user running this program for this function must have been granted the “alter any index’
system privilege, or be the owning schema user.

dealinc_pre()
Call get_sys_date()
Call size_arrays()

Loops through the deal actuals item loc table and create any item/loc/order combinations in the
table that have previous turnovers but do not exist in future periods.

dealfct_pre()

This inserts details of forecast periods for active deal components that require processing into
dealfct_temp table.

dealact_pre_no_rebate()

Truncates the deal_bb_no_rebate_temp table.

Then inserts billback NO Rebate type of deal into deal _bb_no_rebate_temp.
dealact_pre_rebate_po()

Truncates the deal_bb_rebate_po_temp table.

Then inserts billback rebate PO type of deal into deal_bb_rebate_po_temp.
dealact_pre_receipt_sales ()

Truncates the deal_bb_receipt_sales_temp.

Then inserts billback rebate Sales and Receipt type of deal into deal_bb_receipt_sales_temp.
vendinvc_pre()

Truncate the STAGE_COMPLEX_DEAL_HEAD table.

Truncate the STAGE_COMPLEX_DEAL_DETAIL table.

Then inserts complex deals for invoicing into vendinvc_temp.
vendinvf_pre()

Truncate the STAGE_FIXED_DEAL_HEAD table.

Truncate the STAGE_FIXED_DEAL_DETAIL table.

vendinvc_post()

Get vdate.

Call process_deal_head().

vendinvf_post()

Get vdate.

Call process_fixed_deal().

process_fixed_deal()

For each active Fixed Deal record where the Collect End Date is earlier than the vdate, set it’s
status to Inactive.

58

Pre/Post Functionality for Multi-Threadable Programs [prepost]

process_deal_head()

For each active Deal Head record where Est Next Invoice Date, Close Date, Last Invoice Date
and Last EOM Date are earlier than vdate, AND Billing Type is Off Invoice and Invoice
processing Logic '="NQO’, set the Est Next Invoice Date to null.

I/O Specification
N/A

Technical Issues
N/A

59

Transfer purge [tsfprg]

Transfer purge [tsfprg]

Design Overview

The purpose of this module is to purge transfer records, deleting all rows from the transfer header
and detail table based on the number of months of transfer history to be retained. The number of
transfer history months to be retained is specified on system options. If the difference in the
number of months between today and the date on which the transfer was closed is greater than or
equal to the number of transfer history months, the header and detail record are purged. If a
transfer has allocations associated to it, all these allocations and associated tier records must be
closed first before the transfer records can be purged. Note however, that Mass Return Transfers
(MRT) are not processed by this batch program. Purging of MRT records are done by mrtprg.pc.

Tables Affected:

TABLE INDEX | SELECT |INSERT | UPDATE | DELETE
PERIOD No Yes No No No
SYSTEM_OPTIONS No Yes No No No
TSFHEAD No Yes No No Yes
TSFDETAIL No No No No Yes
TSFDETAIL_CHRG No No No No Yes
TSF_WO_DETAIL No No No No Yes
TSF_WO_HEAD No No No No Yes
TSF_XFORM_DETAIL No No No No Yes
TSF_XFORM No No No No Yes
TSF_PACKING_DETAIL | No No No No Yes
TSF_PACKING No No No No Yes
TSF_ITEM_WO_COST No No No No Yes
TSF_ITEM_COST No No No No Yes
SHIPMENT No No No No Yes
SHIPSKU No Yes No No Yes
ORDCUST No No No No Yes
SHIPITEM_INV_FLOW No No No No Yes
CARTON No No No No Yes
APPT_HEAD No Yes No No Yes
APPT_DETAIL No Yes No No Yes
ALLOC _HEADER No Yes No No Yes
ALLOC _DETAIL No No No No Yes

61

Retek Merchandising System

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
ALLOC_CHRG No No No No Yes
DOC_CLOSE_QUEUE No No No No Yes
V_RESTART_TRANSFER | No Yes No No No

Function Level Description
init()

Call restart_init().
Initialize arrays

Fetch tsf_history_months from system_options and vdate from period.

process()

open driving cursor

while

Loop through the records in the driving cursor feeding them into an array as they are fetched

When no more records are found, set a flag to false so that the loop will be exited at the end
of the processing.

Determine the number of records processed this time through the loop
Delete the records in shipitem_inv_flow for all tsf_no fetched into the array
Loop thru all transfers fetched in the main cursor

= call del_appts() to delete associated appointments

call del_allocs() to delete associated allocations and its tiers
= open cursor fetching all shipment numbers for the transfer number
= while(l)
+ fetch the shipment number to the shipment array
+ Delete from shipsku and shipment for all of the shipment numbers in the array
= end while loop
End loop

Delete from ordcust, tsfdetail_chrg, tsf_wo_detail, tsf_wo_head, tsf_xform_detail, tsf_xform,
tsf_packing_detail, tsf_packing, tsf_item_wo_cost, tsf_item_cost, tsfdetail, and tsfthead for all
of the transfer number in the array.

End while loop

Delete from carton table

62

Transfer purge [tsfprg]

Size_arrays()
o Allocate system memory for common update array components.

e The number of rows of each array should be determined by the counter (commit_max_ctr) on
the restart_control table. The value will be obtained in the init via the function call to
restart_init

final()
o Call retek_close() function
Del_appts()

Deletes records from appt_detail, first saving distinct appt/loc combination into a local array that
is dynamically sized based on the number of records to be deleted from appt_head. Then array
deletes records based on the array from appt_head. Also deletes from doc_close_queue. Calls
size_appt_array() to size the appt_head delete array.

Del_allocs()

Delete records from alloc_chrg, alloc_detail and alloc_header tables. The records deleted are
allocations associated to the transfers and its tiers.

Size_appt_array()
Sizes the array used to hold appt_head appt/loc info between deletes from appt_detail and
appt_head.
Input Specifications
Driving Cursor:
SELECT th.tsf no,
-1 child_tsf no,
th.to _loc,
th_to_loc_type,
th.from_loc,
th.from_loc_type
FROM tsfhead th,
v_restart_transfer rv
WHERE th._.mrt_no 1S NULL
AND NOT EXISTS (SELECT "X*®
FROM tsfhead thl
WHERE thl.tsf parent _no = th.tsf _no)
AND (th.status = D"
OR (th.status = "C"

AND MONTHS_BETWEEN(TO_DATE(:o0s_vdate, "YYYYMMDD"),
th.close_date)

>= :ol_tsf_history_mths)

63

Retek Merchandising System

AND NOT EXISTS (SELECT "x*
FROM alloc_header alloc2
WHERE ((alloc2.order_no = th.tsf no
AND alloc2.status 1="C")
OR EXISTS (SELECT ="x*

FROM alloc_header
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
= th.tsf _no

AND alloc3.status != *C*
AND ROWNUM = 1))
AND ROWNUM = 1)
AND rv.driver_value = th.tsf_no
TO_NUMBER(:ps_num_threads)
TO_NUMBER(:ps_thread_val)

AND rv.num_threads

AND rv.thread val
UNION ALL
SELECT th.tsf no,

thi_tsf no child_tsf no,
th.to_loc,
th.to _loc_type,
th.from_loc,
th_from_loc_type

FROM tsfhead th,
tsfthead thil,

v_restart_transfer rv

WHERE (th.status = °D*
OR (th.status = "C*
AND

MONTHS_BETWEEN(TO_DATE(:o0s_vdate, "YYYYMMDD") ,th.close_date)
>= :ol_tsf _history _mths))

AND (thl.tsf _parent_no = th.tsf _no
AND (thl.status = "D*
OR (thl.status = "C"
AND

MONTHS_BETWEEN(TO_DATE(:0s_vdate, "YYYYMMDD") ,thl.close_date) >=
ol_tsfT _history mths)))

AND NOT EXISTS (SELECT "x*

64

Transfer purge [tsfprg]

FROM ALLOC_HEADER alloc2
WHERE ((alloc2.order _no IN (th.tsf no,

thl_tsf _no)
AND alloc2.status 1="C")
OR EXISTS (SELECT ="x~
FROM ALLOC_HEADER
alloc3

WHERE
alloc3.alloc_parent = alloc2.alloc_no

AND alloc2.order_no
IN (th.tsf _no, thl.tsf no)

AND alloc3.status != *C*
AND ROWNUM = 1))
AND ROWNUM = 1)
th_tsf no
TO_NUMBER(:ps_num_threads)
TO_NUMBER(:ps_thread_val)

AND rv.driver_value

AND rv.num_threads
AND rv.thread val
ORDER BY 1;

Scheduling Considerations

Processing Cycle: PHASE AD-HOC
Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A (single threaded)

65

	Contents
	Change made to the batch schedule
	Sales History Rollup by Department, Class, and Subclass [hstbld]
	Upload customs tariff files [htsupld]
	Order purge [ordprg]
	Pre/Post Functionality for Multi-Threadable Programs [prepost]
	Transfer purge [tsfprg]

