Oracle® Retail Merchandising System
Operations Guide Addendum
Release 11.0.9

September 2006

ORACLE

Copyright © 2006, Oracle. All rights reserved.

The Programs (which include both the software and documentation) contain proprietary information; they are
provided under a license agreement containing restrictions on use and disclosure and are also protected by
copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or
decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and
technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software—Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood
City, CA 94065

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties.
Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear
all risks associated with the use of such content. If you choose to purchase any products or services from a
third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the
quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third
party, including delivery of products or services and warranty obligations related to purchased products or
services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with
any third party.

Contents

P T AC .. %
AAUTIBNCE ...ttt et b ke b b e a e s e ne e b e bt bt e b e e Rt e Rt e b et e nbeebeeb e s bt ene e e ennas \
REIAtEA DOCUMEINES ...ttt sttt ettt e bbbt bt e bbb e be bt eb e e e e b e v
(LT (0] 0 T<T SN o] oo o AP PSSP PP PRSPPI \
T aN o To [V T o] 410} o S S 1

2 RSL O RMS. .. e e 3
RMS and the Oracle Retail Service Layer (RSL)cccccieieiiieiiieseceecesese e 3

Functional Description of the Packages Used by RSLccccccoeieieievcie v 3

3 CuUStOM POSt ProCESSING ..oevvvviiiiiiiieeeieeeeeiie e e e e e e e e eaanens 5

4 RMS Internationalization and Localization.........cccccooceveviiiiiiiininnenens 7
LGV Y ST I o] [T PSS 7

5 BatCh DESIgNS...ciiiiiiiiiii i e e e e e e e aaaeaa 9
POS Upload [posupld] BatCh DeSIgN........ccoiiiiiiiiieee e e 9
RPM Moving Average [rpmmovavg] Batch DeSign..........cccovivevieiiiieienese e sese s eee e 34
Sales Daily (saldly) BatCh DESIGNcc.cceiviieiicieiiisie et st s eas 36
Stock Count Shrinkage Update (Stkdly) BatCh DeSigNccccecvieiiiieiiciieice e 38
Tampered Carton (tamperctn) BatCh DESIGNccvcvvveierierie et 40

Operations Guide Addendum iii

Preface

Oracle Retail Operations Guides are designed so that you can view and understand the
application’s ‘behind-the-scenes’ processing, including such information as the
following:

+ Key system administration configuration settings
+ Technical architecture
+ Functional integration dataflow across the enterprise

This Operations Guide Addendum should be used in conjunction with previously
released Oracle Retail Merchandising System 11.x documentation.

Audience

Anyone with an interest in developing a deeper understanding of the underlying
processes and architecture supporting Oracle Retail Merchandising System functionality
will find valuable information in this guide. There are three audiences in general for
whom this guide is written:

+ Business analysts looking for information about processes and interfaces to validate
the support for business scenarios within and other systems across the enterprise.

+ System analysts and system operations personnel:

— Who are looking for information about Oracle Retail Merchandising System’s
processes internally or in relation to the systems across the enterprise.

— Who operate Oracle Retail Merchandising System regularly.

+ Integrators and implementation staff with overall responsibility for implementing
Oracle Retail Merchandising System.

Related Documents

You can find more information about this product in these resources:
+ Oracle Retail Merchandising System Installation Guide

+ Oracle Retail Merchandising System Release Notes

+ Oracle Retail Merchandising System Data Model

+ Oracle Retail Merchandising System Batch Schedule

Customer Support

+ https://metalink.oracle.com

When contacting Customer Support, please provide:

+ Product version and program/module name.

+ Functional and technical description of the problem (include business impact).
+ Detailed step-by-step instructions to recreate.

+ Exact error message received.

+ Screen shots of each step you take.

Operations Guide Addendum v

https://metalink.oracle.com/

1

Introduction

The information in this document reflects modifications and updates to the latest Oracle
Retail Merchandising System Operations Guide. Using this document in conjunction with
that guide provides retailers with a complete overview of the application.

Note: RSL for RMS is not new functionality. However, this
addendum is the first time RSL for RMS documentation has
been published for RMS 11.x.

For more specific information regarding enhancements and modifications made to the
previous Oracle Retail Merchandising System release, see the Oracle Retail
Merchandising System 11.0.9 Release Notes.

Operations Guide Addendum 1

2

RSL for RMS

RMS and the Oracle Retail Service Layer (RSL)

RSL is a framework that allows Oracle Retail applications to expose APIs to other Oracle
Retail applications. As shown in the diagram below, in RSL terms, there is a “client
application layer’ and a ‘service provider layer’. RMS includes the ‘service provider
layer’ that owns the business logic.

The RMS implementation of RSL exposes a synchronous method to communicate with
other applications (RIB-facilitated processing is asynchronous). All RSL services are
contained within an interface offered by a Stateless Session Bean (SSB). To a client
application, each service appears to be merely a method call.

For information about RSL-related configuration within the RMS application, see RSL

documentation.

Implemented by
client application

(for example, .

Oracle Retail CI"en'f

Allocation) application
layer

\ layer

Implemented by)
RSL and RMS Service
provider

—

¥

\

Service Service
accessor integration
layer layer

by RSL

Implemented

Client application and service provider processing through RSL

Functional Description of the Packages Used by RSL
The table below offers a functional description of the packages used by RSL.

Package

Description

RMSSVC_XLOCPOTSF

Through RSL, this call to RMS allows Oracle
Retail Allocation to create/update a purchase
order in RMS from a ‘what if” allocation.

Operations Guide Addendum 3

3

Custom Post Processing

RMS has an optional method of handling unwanded cartons for customer post
processing. This only applies to stock order receiving. An unwanded carton occurs when
a carton was not scanned when the stock order was shipped, but is scanned at the time of
the receipt. These cartons do not contain any shipment records in RMS.

Since the carton contains items that did not go through the appropriate transfer out
procedure, the inventory for those items will not be accurate. As a result, the message
which contains the unwanded (unscanned) carton is rejected by RMS to the RIB error
hospital at the time of receiving. RMS will then publish to the warehouse management
system via the RIB of the unwanded cartons in the RcptAdjustDesc message. The
warehouse management system will then send RMS a shipment message containing the
appropriate BOL and the carton ID. RMS will process the message and create or update
the shipment records. The next time RMS tries to process the rejected receipt message
with the unwanded carton, RMS will be able to process it.

The client’s warehouse management system must be able to support the processing of the
RecptAdjustDesc message above in order for this functionality of unwanded carton to
work successfully.

Operations Guide Addendum 5

4

RMS Internationalization and Localization

The technical infrastructure of RMS supports German localization. Please note that this
does not have any functional impact on the RMS product, nor does it allow the user to
switch to different languages, as the user interface does not support this capability.

Key RMS Tables

Several tables hold user-interface displayed text.

If the retailer creates a new form, a new menu, or a new object on a form, then the retailer
will need to populate these tables with the corresponding information. If the retailer
customizes the information in any of the tables FORM_ELEMENTS,
FORM_ELEMENTS_LANGS, MENU_ELEMENTS, or MENU_ELEMENTS_LANGS,
the BASE_IND field in customized records must contain ‘N’. Any record with
BASE_IND=N will be preserved in a temp table during future patches. It is the
responsibility of the retailer to move the customized data bank from the temp table to the
primary table (e.g., FORM_ELEMENTS_LANGS) after applying patches.

FORM_ELEMENTS

This table is used for screen display and holds the master list of items for all forms whose
labels/prompts are translated. This information will always be in English. The
BASE_IND=Y means that the item is part of the base Oracle Retail code set. BASE_IND
=N indicates that the item was added as part of retailer customization. Anything with the
BASE_IND =N will be preserved at upgrade time on the FORM_ELEMENTS_TEMP,
but the retailer is responsible for moving the data back to FORM_ELEMENTS.

FORM_ELEMENTS_LANGS

This table is used for screen display. This table holds translated values for labels/prompts
on forms. This information will be in a language that is defined on the lang column of the
user_attrib table. All users see data from this table, as the retailer may customize the text
of a given field. The access key for a button is defined by filling in the
DEFAULT_ACCESS_KEY field. At runtime, that character will be marked in the string,
and function as the access key. Any time the retailer changes the
DEFAULT_LABEL_PROMPT or DEFAULT_ACCESS_KEY, the BASE_IND should
be updated to N because it is not part of the base language translations provided by
Oracle Retail. Anything with the BASE_IND=N will be preserved at upgrade time on the
FORM_ELEMENTS _LANGS_TEMP, but the retailer is responsible for moving the data
back to FORM_ELEMENTS_LANGS.

MENU_ELEMENTS

This table is used for screen display. This table holds the master list for all menus whose
items are translated. This information will always be in English. The access key for a
menu option is defined by using the ampersand (&) before the character that is the access
key in the default description. The BASE_IND=Y means that the item is part of the base
Oracle Retail code set. BASE_IND=N indicates that the item was added as part of retailer
customization. Anything with the BASE_IND=N will be preserved at upgrade time on
the MENU_ELEMENTS_TEMP, but the retailer is responsible for moving the data back
to MENU_ELEMENTS.

Operations Guide Addendum 7

RMS Internationalization and Localization

MENU_ELEMENTS_LANGS

This table is used for screen display. This table holds the values for all menus whose
items are translated. This information will be in a language that is defined on the lang
table. Even English language users see data from this table, as the retailer may customize
the text of a given menu option. Any time the retailer changes the LANG_LABEL, the
BASE_IND should be updated to N because it is not part of the base language
translations provided by Oracle Retail. Anything with the BASE_IND=N will be
preserved at upgrade time on the MENU_ELEMENTS_LANGS_TEMP, but the retailer
is responsible form moving the data back to MENU_ELEMENTS_LANGS.

FORM_MENU_LINK

This table is used for screen display. This table holds the intersection of form and menu
files, mapping each form to the menu that it displays.

S

Batch Designs
POS Upload [posupld] Batch Design

Design Overview

The purpose of this batch module is to process sales and return details from an external
point of sale system. The sales/return transactions will be validated against Retek
item/store relations to ensure the sale is valid, but this validation process can be
eliminated if the sales being passed in have already been screened by sales auditing. The
following common functions will be performed on each sales/return record read from the
input file:

read sales/return transaction record

lock associated record in RMS

validate item sale

check if VAT maintenance is required, if so determine the VAT amount for the sale

write all financial transactions for the sale and any relevant markdowns to the stock
ledger.

post item/location/week sales to the relevant sales history tables

if a late posting occurs in a previous week (i.e. not in the current week), if the item for
which the late posting occurred is forecastable, the last_hist_export_date on the
item_loc_soh table has to be updated to the end of week date previous to the week of
the late posting. This will result in the sales download interface programs extracting
the week(s) for which the late transactions were posted to maintain accurate sales
information in the external forecasting system.

Stored Procedures / Shared Modules (Maintainability)
validate_all_numeric: intrface library function.
validate_all_numeric_signed: intrface library function.
valid_date: intrface library function.

PM_API_SQL. GET_RPM_SYSTEM_OPTIONS: called from init(), returns
complex_promo_allowed_ind to set pi_multi_prom_ind

CAL_TO_CAL_LDOM database procedure called from get eow_eom_date() function
CAL_TO_454 L DOM database procedure called from get_eow_eom_date() function

VAT_SQL.GET_VAT_RATE: called from pack_check(), fill_packitem_array() returns
the composite vat rate for a packitem.

CURRENCY_SQL.CONVERT: returns the converted monetary amount from
Currency to currency.

NEW_ITEM_LOC: called from item_check(), item_check_orderable(),
pack_check_orderable() and pack_check(), creates a new item if one doesn’t already exist
for the item/location passed in.

Operations Guide Addendum 9

Batch Designs

UPDATE_SNAPSHOT_SQL.EXECUTE: called from update_snapshot(), updates the
stake_sku_loc and edi_daily_sales tables for late transactions. If the item is a return,
edi_daily_sales will not be updated.

NEXT_ORDER_NO: called from consignment_data(), returns the next available
generated order number.

STKLDGR_SQL.TRAN_DATA _INSERT: called from consignment_data(), performs
tran_data inserts (tran_type 20) for a consignment transaction.

DATES SQL.GET_EOW_DATE: called from get_eow_eom_date(), returns eow and
eom dates.

UOM_SQL.CONVERT: called from validate_ THEAD(), converts selling uom to
standard uom.

SUPP_ATTRIB_SQL.GET_SUP_PRIMARY_ADDR: called from invc_data(), returns
primary supplier address.

INVC_SQL.NEXT_INVC_ID: called from invc_data(), returns invoice_id

PRICING_ATTRIB_SQL.GET_BASE_ZONE_RETAIL(), called from
get_loc_item_retail(), returns base zone retail from RPM.

Posupld and VAT:
There are three different data sources in POSUPLD.
the input file

RMS stock ledger tables (tran_data in this context)
RMS base tables (other that stock ledger)

Each of these data sources can be vat inclusive or vat exclusive.

There are five different system variables that are used to determine whether of not the
different inputs are vat inclusive or vat exclusive.

system_options.vat_ind (assume Y for this document)
system_options.class_level vat_ind
system_options.stkldgr_vat_incl_retl_ind
class.class_vat_ind

store.vat_include_ind (this is retrieved from the table when RESA is on and read from the
input file when RESA is off)

10

Batch Designs

Given the three different data source and all combinations of vat inclusive or vat
exclusive, we are left with the 8 potential combinations of inputs to POSUPLD.

Possible POSUPLD inputs

Scenario File RMS Stock Ledger
1 Y Y Y
2 Y Y N
3* Y N Y
4* Y N N
5 N Y Y
6 N Y N
7 N N Y
8 N N N

* Scenarios 3 and 4 are not possible — the file will never have vat when RMS does not.

The combinations of system variables and the resulting scenarios

System_options System_options | Class Store Resulting
Class_level vat_ind | Stkldgr vatind |Class_vat_ind |Vat_include_ind | Scenario
Y Y Y Y - Ignored 1
Y Y Y N - Ignored 1
Y Y N Y - Ignored 7
Y Y N N - Ignored 7
Y N Y Y - Ignored 2
Y N Y N - Ignored 2
Y N N Y - Ignored 8
Y N N N - Ignored 8
N Y Y - Ignored Y 1
N Y Y - Ignored N 5
N Y N — Ignored Y 1
N Y N — Ignored N 5
N N Y - Ignored Y 2
Y - Ignored N 6

Operations Guide Addendum 11

Batch Designs

12

The combinations of system variables and the resulting scenarios

N N N — Ignored Y 2

N N N - Ignored N 6

POSUPLD table writes
Scenario 1;
tran code 1 from file retail.

tran code 2 from file retail with vat removed.
retail from file is compared directly with price_hist for off retail check.

Scenario 2;
tran code 1 from file retail with vat removed.

tran code 2 not written.
retail from file is compared directly with price_hist for off retail check.

Scenario 5:
tran code 1 from file retail with vat added.

tran code 2 from file retail.
retail from file has vat added for compare with price_hist for off retail check.

Scenario 6:
tran code 1 from file retail.

tran code 2 not written.
retail from file has vat added for compare with price_hist for off retail check.

Scenario 7:
tran code 1 from file retail with vat added.

tran code 2 from file retail.
retail from file is compared directly with price_hist for off retail check.

Scenario 8:
tran code 1 from file retail.

tran code 2 not written.

retail from file is compared directly with price_hist for off retail check.

Batch Designs

Function Level Description
main()
standard Retek main function that calls init(), process(), and final()

init()
initialize restart recovery
open input file (posupld)
- file should be specified as input parameter to program

fetch system variables, including the
SYSTEM_OPTIONS.CLASS LEVEL VAT _IND.

fetch pi_multi_prom_ind from RPM interface

retrieve all valid promotion types and uom class types

fetch uom class types for look up during THEAD processing
declare memory required for all arrays setup for array processing
declare final output filename (used in restart_write_file logic)
open reject file (as a temporary file for restart)

file should be specified as input parameter to program

open lock reject file (as a temporary file for restart)

- file should be specified as input parameter to program

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject counter
(g_I_rej_cnt), lock reject file counters (pl_lock_cnt, pl_lock_dtl_cnt), store,
transaction_date

if fresh start (1_file_start = 0)

read file header record (get_record)
write FHEAD to lock reject file

if (record type <> ‘FHEAD’) Fatal Error
validate file type = ‘POSU’

else fseek to |_file_start location

validate location and date are valid

set restart variables to ones from restart image

Operations Guide Addendum 13

Batch Designs

14

file_process()

This function will perform the primary processing for transaction records retrieved from
the input file. It will first perform validation on the THEAD record that was fetched. If
the transaction was found to be invalid, a record will be written to the reject file, a non-
fatal error will be returned, and the next transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the get_unit_retail()
function. The retail retrieved from this function will be compared with the actual retail
sent in from the input file to determine any discrepancies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being processed
until a TTAIL record is encountered. Perform validation on the transaction detail
records. If a detail record is found to be invalid, the entire transaction will be written to
the reject file, a non-fatal error will be returned, and the next record will be fetched. If a
valid promotion type (code for mix & match, threshold promotions, etc.) was included in
the detail record and it is not an employee disc record, write a record to the
daily_sales_discount table. If it is an employee discount record write an employee
discount record to tran_data. Finally, accumulate the discount amounts for all transaction
detail records for the current transaction, unless the record was an employee discount.
Next, establish any vendor funding of promotions. This information is expressed as a
percentage of the allowed discount and is retrieved by querying the rpm_promo_xxx
tables for the promotion_id and component_id. If the promotion type is 9999 (i.e., all
promotion types), call get_deal _contribs to append to pr_deals_contribs arrays zero or
more lines of deal and vendor contribution information for the current item

Call the item_process() function to perform item specific processing. Once all records
have been processed, write FTAIL record to lock reject file and call posting_and_restart
to commit the final records processed since the last commit and exit the function.

item_process()

Check to see if any validation failed for the item before this function was called. If a lock
error was found, call write lock rej() then return. If an other error was found, call
write rej() and process detail error() then return.

Set the item sales type for the current transaction. Valid sales types are ‘R’egular sales,
‘C’learance sales, and ‘P’romotional sales. These will be used when populating the sales
types for the item-location history tables. If an item is both on promotion and clearance,
and the promotion price is less than the clearance price, than the transaction will be
written as a promotion transaction, otherwise as a clearance transaction.

If the system’s VAT indicator is turned to on, VAT processing will be performed. The
function vat_calc() will retrieve the vat rate and vat code for the current item-location.
The total sales including and excluding VAT will be calculated for use in writing
transaction data records. If any VAT errors occur, the entire transaction will be written
to the reject file, a non-fatal error will be returned, and the next record will be fetched. A
record will be written to vat_history for the item, location, transaction date.

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost sold,
etc.). If VAT is turned on in the system, calculate exclusive and inclusive VAT sales
totals.

Calculate any promotional markdowns that may exist by calling the calc_prom_totals()
function. The markdown information calculated here will be used when writing
tran_data (tran_type 15) records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to its price_hist record.
(The complex_promo_allowed_ind indicator is retrieved from RPM by calling

Batch Designs

PM_API_SQL.GET_SYSTEM_OPTIONS.) Since we do not create price_hist records of
type 9 (promotional retail change) when the complex_promo_allowed_ind = “Y’, we do
not know what the promotional retail for this item is. Therefore, we will take the total
sales reported from the header record plus the total of sales discounts reported in the
TDETL records, divided by the total sales quantity for the item to calculate its unit retail.
If the complex_promo_allowed_ind = “N’, we can do a comparison of the price_hist
record and the unit retail (total retail / total sales) inputted from the POS file. Any
difference using either method will write to the daily_sales_discount table with a
promotion type of “in store’ and tran_data (tran_type 15) If the transaction is a return, no
daily_sales_discount record will be written, and tran_data records will be written as
opposite of what they were sold as (i.e. if the sale was written as a markup, which would
be written as a negative retail with a tran_data 15, the return would be written as a 15
with a positive retail).

If the item is a packitem and the transaction is a Sale, the process_pack() function will
update the last_hist_export_date field on the item_loc_soh table to the transaction date
and the item_loc_hist table will be updated with the transaction information.

If the item currently being processed is a packitem, calculate the retail markdown the
item takes for being included in the pack and write a transaction data record as a
promotional markdown. This markdown is calculated by comparing the retail
contribution of the packitem’s component item to the packitem to the component item’s
regular retail found on the price_hist table. The retail contribution for a component item
is calculated by taking the component item’s unit retail from price_hist, divided by the
total retail of all component items in the packitem, and multiplying the packitem’s unit
retail. So if the retail contribution of a component item within packitem A is $10, and the
same component item’s price_hist record has a retail of $14, and there is only one
packitem sold, and this component item has a quantity of one, a tran_data

Record (tran_type 15) will be written for $4 (assume no vat is used).

Write transaction data records for sales and returns. If the transaction is a sale, write a
tran_data record with a transaction code of 1 with the total sales. If the system VAT
indicator is on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data
record with a transaction code of 2 for VAT exclusive sales. If the transaction is a return,
write a tran_data record (tran_type 1) with negative quantities and retails for the amount
of the return. If the system VAT indicator is on and the
system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data record (tran_type 2) and
negative quantities and retails for the VAT exclusive return. Also, write a tran_data
record with a transaction code of 4 for the total return. Any tran_data record that is
written should be either VAT exclusive or VAT inclusive, depending on the
system_options.stkldgr_vat_incl_retl_ind. Ifitis setto “Y”, all tran_data retails should
be VAT inclusive. Ifitissetto ‘N’, all tran_data retails should be VAT exclusive.

When writing tran_data records for packitems, always break them down to the packitem
level, writing the retail as the packitem multiplied by the component item’s price ratio.
The packitem itself should never be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date) and it is not a drop
shipment, call update_snapshot() to update the stake_sku_loc and edi_daily_sales tables.
If the transaction is current, update the edi_daily_sales table only (stake _sku_loc will be
updated in a batch program later down the stream). The edi_daily_sales table should
only be updated if the items supplier edi sales report frequency = ‘D’.

Operations Guide Addendum 15

Batch Designs

16

If VAT is turned on in the system, write a record to the vat_history table to record the vat
amount applied to the transaction. The VAT amount is calculated by taking the sales
including VAT minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are Sale transactions. Do
not update for returns. Also, update stock count on the item-location table for Sales and
Returns unless the item is on consignment or is drop shipped.

If the dropship indicator is set to “Y’, then the sale is drop shipped and there is no update
for stock on hand. Drop shipments are used for sales at a virtual or physical location
where an order is taken from a customer, but the goods are shipped directly from the
vendor to the customer (not via any store or warehouse owned by the retailer). If an item
is used only for drop shipments and there is no stock on hand before or after the cost
price is changed, the weighted average cost is never updated when average cost
accounting method is used. The average cost will be the initial cost price at the time the
item is set up. Over a period of time, under average cost accounting method, the cost
price used to charge these items will drift away from the actual supplier cost. See
SYSTEM_OPTIONS.STD_AV_IND for further details on cost accounting method.

If an off_retail amount was identified for the item/location, call the
write_off_retail_markdowns() function to write tran_data records (tran_type 15) to record
the difference. If the complex_promo_allowed_ind = ‘N’ and the item is on promotion,
or if the complex_promo_allowed_ind = *Y’ and the TDETL total discount amount is
greater than zero, write a promotional markdown. Note: this will also record a tran_data
record (tran_type 15) for a TDETL record that has a promotional transaction type with no
promotion number in order to record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record with
tran_code 60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be written. This
record is used to balance the stock ledger, it accounts for the amount of the item that was
wasted in processing.

process_detail_error()

This function writes a record to the load_err table for every non-fatal error that occurs.
set_counters()

Depending on the action passed into this function, it will either set a savepoint and store
the values of counters or rollback a savepoint and reset the values of certain counters
back to where they were originally set. This function is called when a non-fatal error
occurs in the item_process() function to rollback and changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding VAT,
depending upon the store.vat_include_ind, system_options.vat_ind,
complex_promo_allowed_ind, and the system_options.stkldgr_vat_incl_retl_ind.

Batch Designs

calc_prom_totals()

This function will set promotional markdown values including and excluding VAT,
depending upon the complex_promo_allowed_ind and the
system_options.stkldgr_vat_incl_retl _ind. If the multi_prom_ind is on, the promotional
markdown is the sum of the TDETL discount amounts. If the multi_prom_ind is off, the
promotional markdown is the difference between the price_hist record with a tran_code
of 0,4,8,11 and the price_hist record with a tran_code of 9 multiplied by the total sales
guantity. Also, the tran_data old and new retail fields are only written if the
multi_prom_ind is off.

Where vendor funding is present, compute the vendor contributions of the promotional
discount in local and deal currencies, write local currency vendor funding invoices with
tran_code = 6 to tran_data, and write deal currency vendor funding details to the
deal_actuals_item_loc in deal currency. Call calc_vendor_funding (passing in the ex-vat
total promotional mark down), to compute each vendor contribution (if any) in local
currency for writing to the stock ledger and in deal currency for writing to
deal_actuals_item_loc.

calc_vendor_funding()

This function accepts an ex-vat promotional discount amount and splits it by percentage
for each of the vendors and deals in the list in both local and deal currency. A call is
made to de-encapsulated currency conversion module convert(...), for efficiency in place
of calling the PL/SQL equivalent function

process_sales_and_returns()

If a non-pack concession item is being processed, concession_data() is called to write
accounts receivable data to the concession_data table. If the item is on consignment and
not a packitem, the consignment_data() function will be called to perform consignment
processing. The function write_tran_data() will be called to write a tran_data record with
a tran_type 1 (always written), a tran_type 2 (if the system_options. vat_ind = Y and
system_options.stkldgr_vat_incl_retl_ind = Y), a tran_type 3 (for non-inventory/non-
deposit container item sales and returns), and a tran_type 4 (if the transaction was a
return). If the transaction is a return, any tran_data records with tran_types of 1 and 2
will be written with negative retails. Also the update_price_hist() function will be called
to update the most recent price_hist record.

If the retail price has changed since the sale occurred, process_reversal_records()
function is called to write a tran_data record to reverse the price change for the items
sold. Either a cancel markup or cancel markdown code is written. The retail amount to be
cancelled is the difference between the retail sale price and current retail price multiplied
by the total number of items sold or returned.

process_reversal_records()

If the retail price has changed since the sale occured, an unjustified loss on the stock
ledger vs. the store tables is created. To correct this, a record needs to be written to
tran_data reversing the price change for the items sold. This will use either a cancel
markdown or markdown code. The quantity and retail will be the negative of the actual
gty and retail, since a reversal is being processed.

Operations Guide Addendum 17

Batch Designs

18

validate FHEAD()

Do standard string validations on input fields. This includes null padding fields,
checking that numeric fields are all numeric, and validating the date field. If any errors
arise out of these validation checks, return non-fatal error then set non-fatal error flag to
true. This function will also validate the store location exists.

If the sales audit indicator is on currency and vat information will be provided in the file
that has already been validated.

get_eow_eom_date()

This function returns the eow_date and eom_date for the current tran_date. For the
eom_date, the appropriate base function is called to return the correct date for Gregorian
or 454 calendar.

validate_ THEAD()

Do standard string validations on input fields. This includes null padding fields, left
shifting fields, checking that numeric fields are all numeric, placing decimal in all
quantity and value fields, and validating the date field. If any errors arise out of these
validation checks, return non-fatal error then set non-fatal error flag to true. This
function will also validate the reference item exists.

If a reference item is passed in from the input file, retrieve the item for the reference item.
Once the item is an item, retrieve the transaction and item level values, pack indicator,
department, class, subclass, waste_type, waste_pct. Once this information is retrieved,
check that the item/location relationship exists for the appropriate item type and call
check_item_lock() and/or check pack_lock depending on item type to lock this item’s
ITEM_LOC record.

If the sale audit indicator is “Y” on system_options, the item will be a item and the dept,
class, subclass, item level, transaction level and pack_ind will be included in the file. The
UOM is assumed to already by have been converted to the standard UOM by Sales Audit.

If the Sales Audit indicator is 'N' on system_options, the UOM at which the item was sold
will be compared with the items standard UOM value. If they are different, the quantity
will be converted to the standard UOM amount. The ratio of the difference will also be
computed and saved for use by validate_ TDETL().

If an item is a wastage item set the wastage qty. The gty sent in the file shows the weight
of the item sold. The wastage qty is the gty that was processed to come up with the gty
sold. So if .99 of an item was sold, and item wastage percent is 10. The wastage qty is
.99/ (1-.10) = 1.1 The wastage gty will be used through out the program except when
writing tran_data records(see write_wastage_markdown) and daily_sales_discount
records which will uses the processed gty from the file.

Class-level vat functionality is addressed here. The ¢_ get_class_vat cursor is fetched
into the pi_vat_store_include_ind variable if vat is tracked at the class level in RMS
(SYSTEM_OPTIONS.VAT_IND =Y’ and
SYSTEM_OPTIONS.CLASS_LEVEL_VAT_IND = *Y’). The vat inclusion indicator
passed in the input file is overwritten with the vat indicator for the class passed in the
THEAD record of the input file.

If catchweight_ind is Y, call valid_all_numeric() to check that the actualweight_qgty is all
numeric, else call all_blank() to validate that it is blank. If the catchweight_ind is Y,
convert actualweight_gty to 4 places of decimals reflecting the correct sign. Validate that
the subtrans_type is either A, D or null.

Batch Designs

If the item is part of an item transformation (pi_item_xform is TRUE), call
get_item_xform_detail() to populate the pr_xform_items structure with the associated
orderables, and return the total yield for all rows retrieved and also the calculated unit
cost of the sellable item based on its component orderable items. This value overwrites
pd_unit_cost_loc, which for standard items is populated by function item_check(...). If
the returned sum of all retrieved pr_xform_items.as_yield does not equal 1, reject the
record

get_ref_item()
This function is being called by the validate_ THEAD function if the item_type is ‘REF’.
This function will return the item_parent of a specific item.

get_item_info()
This function gets item data from item_master and deps for an item_id passed in.
validate TDETLY()

This function will perform validation on the TDETL records passed into the program.
The standard string validation on these fields includes null padding fields, left shifting
fields, checking that numeric fields are all numeric, placing decimal in all quantity and
value fields, and validating the date field. If any errors arise out of these validation
checks, return non-fatal error then set non-fatal error flag to true.

The quantity is multiplied by the UOM ratio determined in validate. THEAD().

If a promotional transaction type is passed in, verify it is valid. If a promotional
transaction type is passed in, but it is not valid, return non-fatal error then set non-fatal
error flag to true.

If the item is a wastage item set the tdetl wastage gty. This is done the same way as
setting the THEAD wastage qty.

If the promotion type is 9999 (i.e., all promotion types), verify that the promotion and
promotion component are all numeric. If the promotion type is not 9999 (i.e., non-
promotional), then verify that the promotion and promotion component are blank. If the
promotion type is 9999, call validate_prom_info.

uom_convert()

This function is called by validate. THEAD to convert the selling UOM to the standard
UOM.

validate_prom_info()

This function looks up the promotion in the rpm_promo table and the
promotion_component in the rpm_promo_comp table. If either row does not exist, an
error is reported and the function returns non-fatal. At the same time, any promotional
consignment rate is retrieved and returned to the calling function

get_deal_contribs()

This function re-sizes the arrays to receive the list of vendor funding details if necessary
and then appends the arrays with data, leaving a contribution count of zero or more in
pl_deal _contribs_ctr. The function also fetches records from the deal head,
deal_comp_prom and deal_actuals_forecast tables to variables that will be used by the
batch program in later processing. This function can process multiple promotions per deal
component.

Operations Guide Addendum 19

Batch Designs

20

item_store_cursors()

This function checks the item_loc for the item / store combination. It is called by the
item_check() and item_check_orderable().

new_item_loc()
This function creates a new store item relationship for items. It is called by item_check.
item_check()

This function verifies the fashion item/location relationship exists. It is only called when
the item being processed is a fashion item. If the item/location relationship does not
exist, it is created and a record is written to the Invalid item/location output file.

item_check_orderable()

This function gets the item information of a transform orderable item. If orderable pack
indicator of the item is “Y’, call pack_check_orderable(). Else, it calls on the
item_store_cursors function to check if location exists for the item. If none, it calls on
procedure NEW_ITEM_LOC to create new store item relationship for the items.

pack_check_orderable()

This function calls on procedure NEW_ITEM_LOC to create new store item relationship
for the items.

get_vat_rate()

This function calls on package VAT _SQL.GET_VAT_RATE and returns the vat rate of a
specific item. This is being called by pack_check() and fill_packitem_array().

pack_check()

This function verifies the pack item/location relationship exists and retrieves the
component items for the packitem. It is only called when the item being processed is a
packitem. The component item, system indicator, department, class, subclass, cost, retail,
price_hist retail, and component item quantity are fetched. If the packitem/location
relationship does not exist, it is created for the Packitem and all of its components and a
record is written to the Invalid item/location output file for the packitem.

The component items price ratios are also calculated. This indicates the retail
contribution the component item gives towards the unit retail of the packitem. This ratio
is calculated by taking the price_hist unit retail of the component divided by the total
price_hist retail of all the component items for the packitem. Below is an example of
how this ratio is calculated:

Unit Retail |Qty Retail Calculation |Ratio
packitem A | $60
item 1 $15 2 $30 ($30/$90) * .3333
$60
item 2 $10 6 $60 é$60/$90) * .6667
60

Batch Designs

item_supplier()

This function populates item information for the given item's supplier. This is called
from the item_process() function, if the item_type is not = ‘PACK” item.
get_unit_retail()

This function retrieves the current unit retail and the retail price of the item at the time of
the sale from price_hist for the item/location being processed. If a tran_code of 8 is
returned, the item is on clearance. The function will always return retail that are vat
inclusive. If retail is stored in RMS with out vat (system_options.class_level_vat_ind =
Y and class.class_vat_ind = Y) it will add vat to the retails.

get_base_price()

This function gets the unit_retail from price_hist (tran_type 0).
daily_sales_insert_update()

This function is called by write_off_retail, write_in_store, and

process_daily sales_discount. It performs the actual insert or fills a update array for the
daily_sales_discount table.

check_daily_exists()

This function will check the daily_sales_discount for the existence of a record matching
the input parameters.

process_daily sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL record
that has a promotional transaction type except employee discounts. Employee discount
records are not written to daily_sales_discount, they are put on tran_data with a tran_code
of 60. When employee discount records are encountered, values are set for the tran_data
insert and the discount amount is added to the total sales value. This is done so employee
discounts do figure into the promotional and in store calculations. When the
multi_prom_ind is on all promotion types except employee discount will be ignored.

write_in_store()

This function will handle record sent in as ‘is store’ discounts amounts. It will call
check_daily_exists and daily_sales_insert_update.

write_off_retail()

This function will calculate discrepancies between the amount sold for an item, and the
amount it should have sold for (price_hist record). If these amounts are not in balance, a
record is written to the daily_sales_discount table with a prom_type of “in store’ for
reporting.

remove_stklgdr_vat()

This function will remove vat from 3 fields after the daily_sales_discount processing is
complete. The variables od_off _retail amt, od_new retail, and od_old_retail are stripped
of vat by calling vat_convert if the stock ledger does not contain vat.

write_off_retail_markdowns()

The write_tran_data() function will be called to write the off_retail markdown unless the
item is on consignment or the off_retail amount is zero.

Operations Guide Addendum 21

Batch Designs

22

write_promotional_markdowns()

The write_tran_data() function will be called to write the promotional markdown unless
the item multi_prom_ind is off and the transaction is a return, the item is on consignment,
or the promotional markdown amount is zero. The tran_data new and old retails are only
written if the multi_prom_ind is off. If any vendor funding rows are in the
pr_deal_contribs arrays, call function write_vendor_tran_data to write the vat-inclusive
vendor funding information to tran_data, and call function write_vendor_deal_actuals to
write the vat-exclusive vendor funding information to deal_actuals_item_loc

write_vendor_tran_data()

This function writes a deal contribution record to the stock ledger for each of the vendor
contributions stored in the deal contributions arrays by calling write_tran_data for the
TRAN_CODE_VENDOR_FUNDING tran_type (type 6).

write_wastage_markdown()

This function will call to the write_tran_data() function if the item is a wastage item. A
wastage item is an item that loses some of its weight (value) in processing. For example,
a 1 pound chicken is broiled and loses 10% of its weight. The item is sold at .9 pounds,
but in reality selling that .9 pounds of chicken removes 1 pound of chicken from the
inventory. This function writes a tran_code 13 tran_data record to account for the
amount of the chicken that was lost due to wastage in processing.

process_items()

Update the stock on hand on the item_loc_soh table for Sales and Returns unless the item
is on consignment, drop shipped, non-inventory or concession. The SOH is updated for
all the orderable components of a transformed item, but not the sellable component. Also,
update the item_loc_hist table for Sale transactions. Do not update for returns.

Sales history is updated at week level and also, if the Gregorian calendar is in use
(ps_cal_454_ind=“N"), at month level. Additionally, sales history is updated for both
sellable and orderable components of transformed items.

process_pack()

Update the stock on hand on the item_loc_soh table for Sales and Returns. Also, update
the item_loc_hist table for Sale transactions (week-level sales history for pack items, and
also month-level sales history if the Gregorian calendar is in use). Do not update for
returns.

process_packitems()

This function performs processing for the component items of the packitems. This would
include updates/inserts into stake_item_loc, edi_daily_sales, item_loc, item_loc_hist,
vat_history_data, and tran_data. All of these tables do not write records at the packitem
level, but at the component item level. When figuring retails to write to these tables, the
component items price ratio should always be applied against the packitems retail to
come up with the correct retail for each component item. If an employee discount
TDETL record has been encountered, an tran_data record with tran_code 60 will be
written for each component item.

write_tran_data()

Writes a record to the tran_data insert array.
write_edi_sales()

Writes a record to edi_daily_sales.

Batch Designs

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the stake _sku_loc
and edi_daily_sales tables for late transactions.

get_454 info()
Calls on the CAL_TO_454 procedure to get the equivalent 454 info of a given date.
write_vat_err_message()

This function will create and write to the VAT output file when an item does not have
VAT information setup when it is expected.

vat_history_data()

Writes a record to the vat_history table. History will only be written for the sellable item,
not the orderable, and the orderable will never appear in the POS file.

consignment_data()

This function will perform processing for consignment items. Consignment items are
such when the item_supplier table has a consignment rate applied to it. Consignment is
when a retailer will allow a third party to operate under its umbrella and be paid for what
it sells. An example of consignment may be a mass-merchant who consigns the
magazine section of their store to a magazine vendor. The magazine vendor would have
control over keeping the product stocked within the store. When a magazine is sold, the
retailer would get paid for the magazine, then the retailer would essentially buy the
magazine from the vendor. The consignment cost paid by the retailer to the vendor is the
VAT-inclusive retail multiplied by the consignment rate divided by 100. So if the VAT-
inclusive retail price of a magazine was $10 and the consignment rate was 50, the
consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier with an
orig_ind = 4 (consignment). Consignment type invoices will be created for all PO’s
created for consignments if the system_options.self _bill ind is *Y”.

Purchase order headers are created at supplier, supplier/dept, supplier/dept/location or
supplier/dept/location/item levels depending on the system_options flag
gen_con_invc_itm_sup_loc being S, L or I. Purchase orders are matched 1 to 1 with sales
invoices, but for returns there is no purchase order and an invoice is created for every
transaction regardless of the consolidation level. The flag
system_options.gen_con_inv_freq can have values P (multiPle), W (Weekly), M
(Monthly), or D (Daily). This controls the date used for the 1 to 1 matching which is
vdate, eow_date, eom_date or vdate respectively.

Also a tran_data record (tran_type 20) will be written to record the consignment
transaction to the stock ledger. The retails should be VAT inclusive or exclusive,
depending on the system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions: check_order(), order_head(), invc_data(), to handle
the order creation-update and the invoice creation-update.

If a promotional consignment rate is present for the current promotion, over-write that
returned from item_supplier

Operations Guide Addendum 23

Batch Designs

24

order_head()

This function inserts records into ordhead to create new orders (except for return
consignment items). It sets the location to the current store number if the
gen_con_invc_itm_sup_loc_ind flag is | or L, otherwise (for S) should set null. The order
date is set depending on system_options.gen_con_inv_freq. The values are P (multiPle),
W (Weekly), M (Monthly), or D (Daily). This controls the date used for the 1 to 1
matching which is vdate, eow_date, eom_date, or vdate respectively.

invc_data()

This function inserts/updates invc_head, invc_detail records if invc_match ind is 'Y".
Before writing the invoice records, the retail and consignment cost are converted to the
associated order's currency.

The system_options parameter system_options.gen_con_invc_itm_sup_loc_ind carries
values S, L or I and states the level at which separate invoices are to be generated for
each supplier/dept(S), supplier/dept/location(L) or item/supplier/location(l). When a new
invoice at the appropriate level is created, then for gen_con_invc_itm_sup_loc_ind values
L and I, an invc_xref row is also created to link the invoice to the target location

find_and_fill_invc_detail ()

This function fills the invc_detail, updates the array and posts if the array is full
get_prom_type_info()

This function will retrieve all valid promotional transaction types from the code_detail
table. Valid promotional transaction types are those where the code_type = ‘PRMT’.
get_uom_classes()

This function loads all the uom codes and their classes into a global table for look up
during THEAD processing.

get_item_xform_details()

This function populates the pr_xform_items structure with the associated orderables, and
returns the total yield for all rows retrieved, and also the calculated unit cost of the
sellable item based on its component orderable items. This value overwrites
pd_unit_cost_loc, which for standard items is populated by function item_check(...). If
the returned sum of all retrieved pr_xform_items.as_yield does not equal 1, reject the
record.

The processing to do this is de-encapsulated from packaged function ITEM_ XFORM _
SQL.CALCULATE_COST, as this is expected to be more efficient than calling the
packaged function directly. The de-encapsulated logic is performed by the following
three functions: get_loc_item_retail(), get_orderable_cost(), get_orderable_retail().
get_loc_item_retail()

This function returns the unit_retail from item_loc. If a unit retail for the input
item/location combination does not exist on the item_loc table, a call is made to retrieve
the unit retail from RPM (via the
PRICING_ATTRIB_SQL.GET_BASE_ZONE_RETAIL package function).
get_orderable_cost()

This function returns unit_cost from item_supp_country_loc or item_supp_country.
get_orderable_retail()

This function returns the unit_retail for each sellable item, computes the apportioned
sellable retail and adds it into the returned total orderable retail.

Batch Designs

fill_packitem_array()

This function will retrieve the component items for a packitem with the appropriate item
level information into an array.

write_item_store_report()

This function will create and write to the Invalid item/location output file when an item
does not exist at a location it was sold/returned at.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to perform a
commit the records to the database and restart_file_write to append temporary files to
output files.

post_tran_data()

This function inserts records in the tran_data table. This is called by posting_and_restart
function.

post_item_loc()

This function updates the stock_on_hand of the item_loc_soh table. This is called by
posting_and_restart function.

post_item_loc_hist()

This function updates the various fields (sales_issues, value, gp, last_update datetime

and last_update_id) of the item_loc_hist table. This is called by posting_and_restart
function.

post_item_loc_hist_mth()
This function updates the various fields (sales_issues, value, gp, last_update_datetime

and last_update_id) of the item_loc_hist_mth table. This is called by posting_and_restart
function.

post_pack()

This function updates the various fields (last_hist_export_date, first_sold, last_sold,
gty_soldm, last_update_datetime and last_update_id) of the item_loc_soh table. This is
called by posting_and_restart function.

post_packstore_hist()

This function updates the various fields (sales_issues, value, retail, last_update_datetime
and last_update_id) of the item_loc_hist table. This is called by posting_and_restart
function

post_packstore_hist()

This function updates the various fields (sales_issues, value and retail) of the
item_loc_hist_mth table. This is called by posting_and_restart function.

post_vat_hist_upd()
This function updates the various fields (vat_amt, last_update_datetime and
last_update_id) of the vat_history table. This is called by posting_and_restart function.

post_edi_daily_sales_upd ()

This function updates sales_qty of the edi_daily_sales table. This is called by
posting_and_restart function.

post_daily_sales_discount ()

This function updates the various fields (sales_qty, sales_retail, discount_amt,
expected_retail and actual_retail) of the daily_sales_discount table. This is called by
posting_and_restart function.

Operations Guide Addendum 25

Batch Designs

26

post_invc_detail_upd ()

This function inserts into the invc_detail _temp table. This is called by
posting_and_restart function.

post_invc_detail_upd ()

This function inserts into invc_head_temp table. This is called by posting_and_restart
function.

size_arrays()

This function allocates memory for the arrays used in this program.

resize_arrays()

This function reallocates memory for the insert arrays.

write_lock_rej()

This function will write the current record set from the input file (THEAD-{TDETL}-
TTAIL) that was rejected due to lock error to the lock file.

concession_data()

This function inserts records into concession_data for non-pack concession items.
deal_actuals_insert_update ()

This function accepts a list of primary key values and update values for the
deal_actuals_item_loc table, and a row_id which is null if the row does not exist yet. If it
does not exist, a new row is inserted, otherwise the row_id and update values are written
to the holding array, for bulk update later.

check_deal_actuals_exists()

This function accepts a list of primary keys for table deal_actuals_item_loc, does a look
up and returns the row_id or null if it exists, or not.

write_vendor_deal_actuals ()

This function causes actual vendor contribution amounts to be written to the
deal_actuals_item_loc table for each of the computed vendor funding contributions held
in the pr_deal_contribs array. Calls check_deal_actuals_exists to check if each target
primary key set exists, and calls deal_actuals_insert_update to insert a new row, or write
update information to the holding array if a row already exists.

post_deal_actuals ()

This function updates the various fields (actual_turnover_units, actual_turnover_revenue
and actual_income) of the deal_actuals_item_loc. This is called by posting_and_restart
function.

ON Fatal Error

Exit Function with -1 return code

ON Non-Fatal Error

write out rejected record to the reject file using write_to_rej_file function by passing
pointer to detail record structure, number of bytes in structure, and reject file pointer,
or use the write_lock_rej() function to write to the lock reject file in case the non-
fatal error was a lock error,

Batch Designs

Input File:

The input file should be accepted as a runtime parameter at the command line. All
number fields with the number(x,4) format assume 4 implied decimal included in the
total length of “x’.

When the system_options field sa_ind is “Y’ the following FHEAD fields will be
populated and already validated: Vat include indicator, Vat region, Currency code, and
Currency retail decimals. When the sa_ind is ‘N’ these values will not be used and
retrieved from the system.

When the system_options field sa_ind is “Y’ the following FHEAD fields will be
populated and already validated: Item Level, Transaction Level, Pack_ind, Dept, Class,
and Subclass. When the sa_ind is ‘N’ these values will not be used and retrieved from the
system. Also, the UOM at which the item was sold will been converted to the standard
UOM for the item. When the sa_ind is on, all items are assumed to be items.

Record Field Name Field Type |Default Description
Name Value
File Header File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Char(10) specified by ID of current line
Identifier external system | being processed
by input file.
File Type Char(4) POSU Identifies file as
Definition ‘POS Upload’
File Create Date | Char(14) create date date file was
written by
external system
Location Number(10) | specified by Store identifier
Number external system
Vat include Char(21) Determines
indicator whether or not the

store stores values
including vat. Not
required but
populated by
Retek sales audit

Vat region Number(4) Vat region the

given location is
in. Not required
but populated by
Retek sales audit

Currency code | Char(3) Currency of the
given location.
Not required but
populated by
Retek sales audit

Operations Guide Addendum 27

Batch Designs

28

Record
Name

Field Name

Field Type

Default
Value

Description

Currency retail
decimals

Number(1)

Number of
decimals
supported by
given currency for
retails. Not
required but
populated by
Retek sales audit

Transaction
Header

File Type
Record
Descriptor

Char(5)

THEAD

Identifies
transaction record

type

File Line
Identifier

Char(10)

specified by
external system

ID of current line
being processed
by input file.

Transaction
Date

Char(14)

transaction
date

date sale/return
transaction was
processed at the
POS

Item Type

Char(3)

REF
™

item type will be
represented as a
REF or ITM

Item Value

Char(25)

item identifier

the id number of
an ITM or REF

Dept

Number(4)

Item’s dept

Dept of item sold
or returned. Not
required but
populated by
Retek sales audit

Class

Number(4)

Item’s class

Class of item sold
or returned. Not
required but
populated by
Retek sales audit

Subclass

Number(4)

Item’s subclass

Subclass of item
sold or returned.
Not required but
populated by

Retek sales audit

Batch Designs

Record Field Name Field Type |Default Description
Name Value
Pack Indicator | Char(1) Item's pack Pack indicator of
indicator item sold or

returned. Not
required but
populated by
Retek sales audit

Item level Number(1) |Item'sitem Item level of item
level sold or returned.
Not required but
populated by
Retek sales audit

Tran level Number(1) | Item's tran Tran level of item
level sold or returned.
Not required but
populated by
Retek sales audit

Wastage Type | Char(6) Item’s wastage | Wastage type of
type item sold or
returned. Not
required but
populated by
Retek sales audit

Wastage Percent | Number(12) | Item’s wastage | Wastage percent
percent of item sold or
returned. Not
required but
populated by
Retek sales audit

Transaction Char(1) ‘S’ —sales Transaction type
Type ‘R’ - return code to specify
whether

transaction is a
sale or a return

Drop Shipment | Char(1) Y Indicates whether
Indicator 'N' the transaction is a
drop shipment or
not. If it is a drop

shipment,
indicator will be
"Y'. This field is

not required, but
will be defaulted
to 'N'"if blank.

Operations Guide Addendum 29

Batch Designs

30

Record Field Name Field Type |Default Description
Name Value
Total Sales Number(12) Number of units
Quantity sold at a particular
location with 4
implied decimal
places.
Selling UOM Char(4) UOM at which
this item was sold.
Sales Sign Char(1) ‘P” - positive | Determines if the
Quantity and
Total Sales Value
are positive or
negative.
Total Sales Number(20) Sales value, net
Value sales value of
goods
sold/returned with
4 implied decimal
places.
Last Modified Char(14) For VBO future
Date use
Catchweight Char(1) ‘N’ Indicates if item is
Indicator a catchweight
item. Valid values
are ‘Y’ or ‘N’
Actual Weight | Number(12) | NULL The actual weight
Quantity of the item, only
populated if
catchweight_ind =
LY’
Sub Trantype Char(1) NULL Tran type for
Indicator ReSA
Valid values are
‘A’, ‘D’, NULL
Transaction File Type Char(5) TDETL Identifies
Detail Record transaction record
Descriptor type
File Line Char(10) specified by ID of current line
Identifier external system | being processed

by input file.

Batch Designs

Record Field Name Field Type |Default Description
Name Value
Promotional Char(6) promotion type | code for
Tran Type —valid values | promotional type
see code_detail | from code_detail,
table. code_type =
‘PRMT’

Promotion Number(10) | promotion promotion number

Number number from the RMS

Sales Quantity | Number(12) number of units
sold in this prom
type with 4
implied decimal
places.

Sales Value Number(20) value of units sold
in this prom type
with 4 implied
decimal places.

Discount Value | Number(20) Value of discount
given in this
prom type with 4
implied decimal
places.

Promotion Number(10) | NULL Links the

Component promotion to
additional pricing
attributes

Transaction File Type Char(5) TTAIL Identifies file
Trailer Record record type

Descriptor

File Line Char(10) specified by ID of current line

Identifier external system | being processed
by input file.

Transaction Number(6) | specified by Number of

Count external system | TDETL records in
this transaction set

File Trailer File Type Char(5) FTAIL Identifies file

Record record type

Descriptor

File Line Number(10) | specified by ID of current line

Identifier external system | being processed

by input file.

Operations Guide Addendum 31

Batch Designs

32

Record Field Name Field Type |Default Description
Name Value
File Record Number(10) Number of
Counter records/transactio

ns processed in
current file (only
records between
head & tail)

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item that
does not exist at the processed location. In the event this happens, the relationship will be
created during the program execution and processing will continue with the item and
store number being written to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate when
one is expected (e.g. the system_options.vat_ind is on). In this event, a non-fatal error
will occur against the transaction and a record will be written to this file and the Reject
file.

Reject File:

The reject file should be able to be re-processed directly. The file format will therefore
be identical to the input file layout. The file header and trailer records will be created by
the interface library routines and the detail records will be created using the
write_to_rej_file function. A reject line counter will be kept in the program and is
required to ensure that the file line count in the trailer record matches the number of
rejected records. A reject file will be created in all cases. If no errors occur, the reject
file will consist only of a file header and trailer record and the file line count will be equal
to 0.

A final reject file name, a temporary reject file name, and a reject file pointer should be
declared. The reject file pointer will identify the temporary reject file. This is for the
purposes of restart recovery. When a commit event takes place, the
restart_write_function should be called (passing the file pointer, the temporary name and
the final name). This will append all of the information that has been written to the temp
file since the last commit to the final file. Therefore, in the event of a restart, the reject
file will be in synch with the input file.

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal & non-
fatal) will be written to an error log for the program execution instance. These errors can
be viewed on-line with the batch error handling report.

Batch Designs

Technical Issues

Assumption: Variable weight UPCs are expected to already be converted to a VPLU with
the appropriate quantity.

Output Specifications
N/A

Scheduling Considerations
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of the batch run
during the POS polling cycle. It can be scheduled to run
multiple times throughout the day, as POS data becomes

available.
Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: N/A
Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid item sales
transaction at a given store location. The location type will be inferred as a store type and
the item can be passed as an item or reference item type. The logical unit of work will be
defined as a number of these transaction records. The commit_max_ctr field on the
restart_control table will determine the number of transactions that equal a logical unit of
work.

The file records will be read in groups of numbers equal to the commit_max_ctr. After
all records in a given read are processed (or rejected either as a reject record or a lock
error record), the restart commit logic and restart file writing logic will be called, and
then the next group of file records will be read and processed. The commit logic will
save the current file pointer position in the input file and any application image
information (e.g. record and reject counters) and commit all database transactions. The
file writing logic will append the temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space usage, and
to reduce the overhead of file 1/O. The recommended commit counter setting is 10000
records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success, non-fatal
errors, and fatal errors. Item level validation will occur on all fields before table
processes are initiated. If all field-level validations return successfully, inserts and
updates will be allowed. If a non-fatal error is produced, the remaining fields will be
validated, but the record will be rejected and written to the reject file or written to the
lock file depending on the reject reason. If a fatal error is returned, then file processing
will end immediately. A restart will be initiated from the file pointer position saved in
the restart_bookmark string at the time of the last commit point that was reached during
file processing.

Operations Guide Addendum 33

Batch Designs

RPM Moving Average [rpmmovavg] Batch Design

34

Design Overview

This batch module takes the number of units sold from TRAN_DATA table for all items
designated for a particular store within a specified store/day, and maintains a smoothed
average in the IF_RPM_SMOOTHED_AVG table.

Only the sales, which have a sales type of regular, are included. If the item is on
promotion or clearance, then no updating is required. The units under normal sales will
be considered as unadjusted units and will be taken for smoothed average. The threshold
percent will be maintained at the department level. This percent will be compared to the
existing smoothed average value and used to limit the upper and lower boundaries for
regular sales received. If the unadjusted units amount is outside of the boundaries, then
the appropriate boundary amount will be substituted and become the adjusted units
amount. If no threshold percent is defined for the department, it will be defaulted to 50%.

Scheduling Constraints

Schedule Information Description
Processing Cycle Phase 3 (Daily)
Scheduling Considerations This program has to be run after all of the data for the

store/day has been uploaded into RMS and before the
days data is removed from the TRAN_DATA table.
Run before SALSTAGE.PC.

Pre-Processing N/A
Post-Processing N/A
Threading Scheme N/A
Restart/Recovery

The logical unit of work for this program is set at store/item level.

Restart ability is implied based on item and store combination. Records will be
committed to the database when commit_max_ctr defined in the RESTART_CONTROL
table is reached.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

Batch Designs

Key Tables Affected

Table Select Insert |Update |Delete
ITEM_LOC Yes No No No
ITEM_MASTER Yes No No No
LOCATION_CLOSED Yes No No No
TRAN_DATA Yes No No No
DEPS Yes No No No
IF_RPM_SMOOTHED_AVG Yes Yes Yes No

Program Flow
N/A

I/O Specification
N/A

Outstanding Issues
N/A

Operations Guide Addendum 35

Batch Designs

Sales Daily (saldly) Batch Design

Functional Area
Stock Ledger

Module Affected
SALDLY.PC

Design Overview

This module rolls up transaction data on IF_ TRAN_DATA to the
dept/class/subclass/location/transaction date/currency level.

The rolled-up transactions are used to update applicable records on DAILY_DATA based
on the transaction type. A new record is inserted if no record exists for the transaction.

If open stock count exists for the closed month and there are back-posted sales
transactions then the program will rolls up transaction data on IF_TRAN_DATA to the
dept/class/subclass/location/transaction date into a new table

DAILY_DATA _BACKPOST.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 (daily)

Scheduling Considerations N/A

Pre-Processing Run SALSTAGE to move records from
TRAN_DATA to IF_TRAN_DATA.

Post-Processing N/A

Threading Scheme Threaded by department

Restart/Recovery

The logical unit of work is department/class/subclass. This batch program is
multithreaded using the v_restart_dept view.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

36

Batch Designs

Key Tables Affected

Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_VARIABLES Yes No No No
IF_TRAN_DATA Yes No No No
DAILY_DATA Yes Yes Yes No
DAILY_DATA_TEMP No Yes No No
STORE Yes No No No
WH Yes No No No
PARTNER Yes No No No
SYSTEM_OPTIONS Yes No No No
DAILY_DATA_BACKPOST | No Yes No No

I/O Specification
N/A

Operations Guide Addendum 37

Batch Designs

Stock Count Shrinkage Update (stkdly) Batch Design

Functional Area
Stock Ledger

Module Affected
STKDLY.PC

Design Overview

This program processes the “Unit & Dollar’ type of stock count that the user has
submitted for processing for the stock ledger. The main functions are to calculate actual
shrinkage amount that will be used to correct the book stock value on the stock ledger
and to calculate a shrinkage rate. A system option indicator
(CLOSE_MTH_WITH_OPN_CNT _IND) is used to determine whether or not the current
fiscal month is allowed to be closed while containing an open Unit and Dollar stock
count.

If the indicator is No (i.e., fiscal month may not be closed with existing open Unit and
Dollar stock counts), the program raises a fatal error if open stock counts are found
within the current fiscal month. If no open stock counts are found within the current fiscal
month, the program calculates the book stock value for the current months scheduled
stock counts. It then compares the book stock value to the actual stock value as reported
on the stock count. These values and their difference are used to update month data
records. Values such as shrinkage, book stock, and actual stock are modified as a
consequence. Week data are similarly updated; since it is always the current month being
processed, current half-year data records for inter-stock-take and sales can be updated
with these values as well.

If the indicator is Yes and open stock count exists for the closed month then the program
gets the data from daily_data table and also from daily_data_backpost table for the back-
posted sales transactions. It then calculates and compares the book stock value to the
actual stock value as reported on the stock count. These values and their difference are
used to update month data records. Values such as shrinkage, book stock, and actual
stock are modified as a consequence. Week data are similarly updated.

Scheduling Constraints

Schedule Information Description

Processing Cycle PHASE 3 (daily)

Scheduling Considerations Run before SALWEEK.PC and SALMTH.PC
Pre-Processing N/A

Post-Processing N/A

Threading Scheme Threaded by department

38

Batch Designs

Restart/Recovery

This batch program is multithreaded using the v_restart_dept view. The logical unit of
work for this program is dept/class/location/loc_type.

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations

N/A

Key Tables Affected

Table Select Insert Update Delete
PERIOD Yes No No No
SYSTEM_OPTIONS Yes No No No
SYSTEM_VARIABLES Yes No No No
STAKE_PROD_LOC Yes No Yes No
STAKE_HEAD Yes No No No
DEPS Yes No No No
HALF_DATA_BUDGET Yes No No No
DAILY_DATA Yes No No No
WEEK_DATA No No Yes No
MONTH_DATA Yes No Yes No
HALF DATA No No Yes No
DAILY_DATA_TEMP No Yes No No
DAILY_DATA_BACKPOST | Yes No No No

I/O Specification
N/A

Operations Guide Addendum 39

Batch Designs

Tampered Carton (tamperctn) Batch Design

Functional Area
Store Receiving

Module Affected
TAMPERCTN.PC

Design Overview

The Tampered Carton module (tamperctn.pc) is a batch program that matches the
tampered carton information in the staging table to existing shipment records. If the
shipment records contain a prepack, then the batch program uses the prepack components
to compare with the items on the staging table.

Scheduling Constraints

Schedule Information Description

Processing Cycle AD-HOC

Scheduling Considerations This batch program should only run when the
store_pack_comp_rcv_ind system option is set
to ‘Y”.

Pre-Processing N/A

Post-Processing N/A

Threading Scheme N/A

Restart/Recovery

N/A

Locking Strategy
N/A

Security Considerations
N/A

Performance Considerations
N/A

40

Batch Designs

Key Tables Affected

Table Select Insert Update Delete
SYSTEM_OPTIONS Yes No No No
DUMMY_CARTON_STAGE | Yes No No Yes
PERIOD Yes No No No
ALLOC_HEADER Yes No No No
SHIPMENT Yes No No No
SHIPSKU Yes No No No
SHIPSKU_TEMP Yes Yes No Yes
PACKITEM Yes No No No

I/O Specification
N/A

Operations Guide Addendum 41

	Contents
	Preface
	Audience
	Related Documents
	Customer Support

	Introduction
	RSL for RMS
	RMS and the Oracle Retail Service Layer (RSL)
	Functional Description of the Packages Used by RSL

	Custom Post Processing
	RMS Internationalization and Localization
	Key RMS Tables

	Batch Designs
	POS Upload [posupld] Batch Design
	RPM Moving Average [rpmmovavg] Batch Design
	Sales Daily (saldly) Batch Design
	Stock Count Shrinkage Update (stkdly) Batch Design
	Tampered Carton (tamperctn) Batch Design

