

Retek® Merchandising System
9.0.12

Operations Guide Addendum

 Retek Merchandising System

Retek® Confidential

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2003 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Corporate Headquarters:
Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Operations Guide Addendum 1

POS Upload [posupld]
Design Overview

The purpose of this batch module is to process sales and return details from an
external point of sale system. The sales/return transactions will be validated
against Retek SKU/store relations to ensure the sale is valid. This validation
process can be eliminated if the sales being passed in have already been screened
by sales auditing. The following common functions will be performed on each
sales/return record read from the input file:

• Read sales/return transaction record.

• Validate item sale.

• Check whether VAT maintenance is required. If so, determine the VAT
amount for the sale

• Write all financial transactions for the sale and any relevant markdowns to
the stock ledger.

• Post SKU/location/week sales to the relevant sales history tables.

• If a late posting occurs for a previous week (i.e. not in the current week) and
the item for which the late posting occurred is forecastable, the
last_sales_export_date on the item store tables has to be updated to the end of
week date previous to the week of the late posting. This will result in the
sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the
external forecasting system.

Scheduling Constraints
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of the
batch run during the POS polling cycle. It can be scheduled to run multiple times
throughout the day, as POS data becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

2 Retek Merchandising System

Restart Recovery
The logical unit of work for the sales/returns upload module will be a valid SKU
sales transaction at a given store location. The location type will be inferred as a
store type and the item can be passed as a SKU or UPC type. The logical unit of
work will be defined as a number of these transaction records. The
commit_max_ctr field on the restart_control table will determine the number of
transactions that equal a logical unit of work.

The file records will be read in groups of numbers equal to the commit_max_ctr.
After all records in a given read are processed (or rejected), the restart commit
logic and restart file writing logic will be called. The next group of file records
will then be read and processed. The commit logic will save the current file
pointer position in the input file and any application image information (e.g.
record and reject counters) and commit all database transactions. The file writing
logic will append the temporary holding files to the final output files.

The commit_max_ctr field should be set to prevent excessive rollback space
usage and to reduce the overhead of file I/O. The recommended commit counter
setting is 10000 records (subject to change based on experimentation).

Error handling will recognize three levels of record processing: process success,
non-fatal errors, and fatal errors. Item level validation will occur on all fields
before table processes are initiated. If all field-level validations return
successfully, inserts and updates will be allowed. If a non-fatal error is produced,
the remaining fields will be validated, but the record will be rejected and written
to the reject file. If a fatal error is returned, then file processing will end
immediately. A restart will be initiated from the file pointer position saved in the
restart_bookmark string at the time of the last commit point that was reached
during file processing.

Program Flow
N/A

Shared Modules
validate_all_numeric: interface library function.

validate_all_numeric_signed: interface library function.

valid_date: interface library function.

ORDER_ATTRIB_SQL.DELIVERY_MONTH: Called from
consignment_data(). Returns order delivery month into the :invoices variable.

VAT_SQL.GET_VAT_RATE: Called from pack_check(). Returns the composite
VAT rate for a pack item.

CURRENCY_SQL.CONVERT: Returns the converted monetary amount from

currency to currency.

NEW_STAPLE_LOC: Called from win_check(). Creates a new staple SKU if
one does not already exist for the SKU/location passed in.

Operations Guide Addendum 3

NEW_FASHION_LOC: Called from rag_check(). Creates a new fashion SKU if
one does not already exist for the SKU/location passed in.

NEW_PACK_LOC: Called from pack_check(). Creates a new pack item if one
does not already exist for the pack item/location passed in.

UPDATE_SNAPSHOT_SQL.EXECUTE: Called from update_snapshot().
Updates the stake_sku_loc and edi_daily_sales tables for late transactions. If the
item is a return, edi_daily_sales will not be updated.

NEXT_ORDER_NO: Called from consignment_data(). Returns a randomly
generated order number.

STKLDGR_SQL.TRAN_DATA_INSERT: Called from consignment_data().
Performs tran_data inserts (tran_type 20) for a consignment transaction.

Function Level Description
Declarations:

declare input structures: file header (only date and type) & detail (all fields)

init()

initialize restart recovery

open input file (posupld)

 - file should be specified as input parameter to program

fetch system variables

Retrieve all valid promotion types

declare final output filename (used in restart_write_file logic)

open reject file (as a temporary file for restart)

- file should be specified as input parameter to program

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject
counter (g_l_rej_cnt), store, transaction_date

if fresh start (l_file_start = 0)

read file header record (get_record)

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘POSU’

else fseek to l_file_start location

validate location and date are valid

4 Retek Merchandising System

file_process()

This function will perform the primary processing for transaction records
retrieved from the input file. It will first perform validation on the THEAD
record that was fetched. If the transaction was found to be invalid, a record will
be written to the reject file, a non-fatal error will be returned, and the next
transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the
get_unit_retail() function. The retail retrieved from this function will be
compared with the actual retail sent in from the input file to determine any
discrepancies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being
processed until a TTAIL record is encountered. Perform validation on the
transaction detail records. If a detail record is found to be invalid, the entire
transaction will be written to the reject file, a non-fatal error will be returned, and
the next record will be fetched. If a valid promotion type (code for mix & match,
threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily_sales_discount table. If it is an
employee discount record write an employee discount record to tran_data.
Finally, accumulate the discount amounts for all transaction detail records for the
current transaction, unless the record was an employee discount.

Call the sku_process() function to perform item specific processing. Once all
records have been processed, call posting_and_restart to commit the final records
processed since the last commit and exit the function.

sku_process()

Set the item sales type for the current transaction. Valid sales types are ‘R’egular
sales, ‘C’learance sales, and ‘P’romotional sales. These will be used when
populating the sales types for the item-location history tables. If an item is both
on promotion and clearance, the transaction will be written as a clearance
transaction.

If the system’s VAT indicator is turned to on, VAT processing will be
performed. The function vat_calc() will retrieve the VAT rate and VAT code for
the current item/location. The total sales including and excluding VAT will be
calculated for use in writing transaction data records. If any VAT errors occur,
the entire transaction will be written to the reject file, a non-fatal error will be
returned, and the next record will be fetched. A record will be written to
vat_history for the item, location, transaction date.

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost
sold, etc.). If VAT is turned on in the system, calculate exclusive and inclusive
VAT sales totals.

Calculate any promotional markdowns that may exist by calling the
calc_prom_totals() function. The markdown information calculated here will be
used when writing tran_data (tran_type 15) records for promotional markdowns.

Operations Guide Addendum 5

Calculate the over/under amount the item was sold at compared to its price_hist
record. Since we do not create price_hist records of type 9 (promotional retail
change) when the system_options.multi_prom_ind = Y, we do not know what the
promotional retail for this item is. Therefore, we will take the total sales reported
from the header record plus the total of sales discounts reported in the TDETL
records, divided by the total sales quantity for the item to calculate its unit retail.
If the system_options.multi_prom_ind = N, we can do a comparison of the
price_hist record and the unit retail (total retail / total sales) inputted from the
POS file. Any difference using either method will write to the
daily_sales_discount table with a promotion type of in store and tran_data
(tran_type 15) If the transaction is a return, no daily_sales_discount record will
be written, and tran_data records will be written as opposite of what they were
sold as (i.e. if the sale was written as a markup, which would be written as a
negative retail with a tran_data 15, the return would be written as a 15 with a
positive retail).

If the item is a pack item and the transaction is a sale, the process_pack()
function will update the last_sale field on the packstore table to the transaction
date and the packstore_hist table will be updated with the transaction
information.

If the item currently being processed is a pack item, calculate the retail
markdown the item takes for being included in the pack and write a transaction
data record as a promotional markdown. This markdown is calculated by
comparing the retail contribution of the pack item’s component SKU to the pack
item and to the component SKU’s regular retail found on the price_hist table.
The retail contribution for a component SKU is calculated by taking the
component SKU’s unit retail from price_hist, dividing by the total retail of all
component SKUs in the pack item, and multiplying by the pack item’s unit retail.
So if the retail contribution of a component SKU within pack item A is $10, and
the same component SKU’s price_hist record has a retail of $14, and there is
only one pack item sold, and this component SKU has a quantity of one, a
tran_data record (tran_type 15) will be written for $4 (assume no VAT is used).

Write transaction data records for sales and returns. If the transaction is a sale,
write a tran_data record with a transaction code of 1 with the total sales. If the
system VAT indicator is on and the system_options.stkldgr_vat_incl_retl_ind is
on, write a tran_data record with a transaction code of 2 for VAT exclusive sales.
If the transaction is a return, write a tran_data record (tran_type 1) with negative
quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data
record (tran_type 2) and negative quantities and retails for the VAT exclusive
return. Also, write a tran_data record with a transaction code of 4 for the total
return. Any tran_data record that is written should be either VAT exclusive or
VAT inclusive, depending on the system_options.stkldgr_vat_incl_retl_ind. If it
is set to Y, all tran_data retails should be VAT inclusive. If it is set to N, all
tran_data retails should be VAT exclusive. When writing tran_data records for
pack items, always break them down to the pack item level, writing the retail as
the pack item multiplied by the component SKU’s price ratio. The pack item
itself should never be inserted into the tran_data table.

6 Retek Merchandising System

If the transaction is late (transaction date is before the current date), call
update_snapshot() to update the stake_sku_loc and edi_daily_sales tables. If the
transaction is current, update the edi_daily_sales table only (stake_sku_loc will
be updated in a batch program later down the stream). The edi_daily_sales table
should only be updated if the item's supplier EDI sales report frequency = D.

If VAT is turned on in the system, write a record to the vat_history table to
record the VAT amount applied to the transaction. The VAT amount is
calculated by taking the sales including VAT minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are sale
transactions. Do not update for returns. Also, update stock count on the
item/location table for sales and returns, unless the item is on consignment.

If an off_retail amount was identified for the item/location, call the
write_off_retail_markdowns() function to write tran_data records (tran_type 15)
in order to record the difference. If the system_options.multi_prom_ind = N and
the item is on promotion, or if the system_options.multi_prom_ind = Y and the
TDETL total discount amount is greater than zero, write a promotional
markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion
number in order to record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record
with tran_code 60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be
written. This record is used to balance the stock ledger, it accounts for the
amount of the SKU that was wasted in processing.

process_detail_error()

This function writes a record to the load_err table for every non-fatal error that
occurs.

set_counters()

Depending on the action passed into this function, it will either set a savepoint
and store the values of counters or rollback a savepoint and reset the values of
certain counters back to where they were originally set. This function is called
when a non-fatal error occurs in the sku_process() function to rollback any
changes that may have been made.

calc_item_totals()

This function will set total retail and discount values including and excluding
VAT, depending upon the system options store.vat_include_ind,
system_options.vat_ind, system_options.multi_prom_ind, and
system_options.stkldgr_vat_incl_retl_ind.

Operations Guide Addendum 7

calc_prom_totals()

This function will set promotional markdown values including and excluding
VAT, depending upon the system_options.multi_prom_ind and the
system_options.stkldgr_vat_incl_retl_ind. If the multi_prom_ind is on, the
promotional markdown is the sum of the TDETL discount amounts. If the
multi_prom_ind is off, the promotional markdown is the difference between the
price_hist record with a tran_code of 0, 4, 8, 11 and the price_hist record with a
tran_code of 9 multiplied by the total sales quantity. Also, the tran_data old and
new retail fields are only written if the multi_prom_ind is off.

process_sales_and_returns()

If the item is on consignment and not a pack item, the consignment_data()
function will be called to perform consignment processing. The function
write_tran will be called to write a tran_data record with a tran_type 1 (always
written), a tran_type 2 (if the system_options.stkldgr_vat_incl_retl_ind = Y), and
a tran_type 4 (if the transaction was a return). If the transaction is a return, any
tran_data records with tran_types of 1 and 2 will be written with negative retails.
Also the update_price_hist() function will be called to update the most recent
price_hist record.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to
perform a commit the records to the database and restart_file_write to append
temporary files to output files.

validate_FHEAD()

Do standard string validations on input fields. This includes null padding fields,
left shifting fields, checking that numeric fields are all numeric, and validating
the date field. If any errors arise out of these validation checks, return a non-fatal
error and then set the non-fatal error flag to true. This function will also validate
the store location exists.

If the sales audit indicator is on, currency and VAT information will be provided
in the file that has already been validated.

validate_THEAD()

Do standard string validations on input fields. This includes null padding fields,
left shifting fields, checking that numeric fields are all numeric, placing a
decimal in all quantity and value fields, and validating the date field. If any errors
arise out of these validation checks, return a non-fatal error and then set the non-
fatal error flag to true. This function will also validate the UPC exists. If the
upc_sup field is blank, set it to 00000.

If a UPC is passed in from the input file, retrieve the SKU for the UPC and UPC
supplement. Once the item is a SKU, retrieve the system indicator, department,
class, subclass, waste_type, waste_pct. Once this information is retrieved, check
that the item/location relationship exists for the appropriate item type.

If the sale audit indicator is Y on system_options, the item will be a SKU and the
dept, class, subclass, and system_ind will be included in the file.

8 Retek Merchandising System

If an item is a wastage item, set the wastage quantity. The quantity sent in the file
shows the weight of the item sold. The wastage quantity is the quantity that was
processed to come up with the quantity sold. So if .99 of an item was sold, and
item wastage percent is 10. The wastage quantity is .99 / (1-.10) = 1.1 The
wastage quantity will be used throughout the program, except when writing
tran_data records (see write_wastage_markdown) and daily_sales_discount
records which will use the processed quantity from the file.

Get_upc_wt()

Assumption: Given the structure of the var_upc_ean table, it is only possible to
have 100 different records on this table. This function uses this assumption when
allocating memory to hold all the records on the var_upc_ean table. The logic
will require enhancements to accommodate a larger number of different variable
weight UPC types if desired.

Assumption: Non-variable weight UPCs can not begin with a prefix that exists on
the var_upc_ean table.

Assumption: All values passed in through variable weight UPCs will be
considered to be in the standard unit of measure.

This function will extract an amount from a variable weight UPC. The first time
this function is called, it will build an array containing the var_upc_ean table. It
will then proceed to search that array for a record that has a prefix matching the
first two values in the UPC from the file. If it finds a matching record, it will use
the information in the var_upc_ean array to strip out the weight from the UPC. It
will then replace the characters of the UPC that held the weight with zeros so the
SKU can be retrieved from the UPC.

Example:

The UPC 2712345000000 is stored in RMS as a variable weight UPC. The prefix
of the UPC is 27. The item identifier is 12345. The next five digits are the
variable weight portion of the UPC. And finally the last character is a check digit
for data transmission use.

The UPC is sent down to the stores and thus the scales with a variable weight
indicator. This indicator lets the scales know to insert the weight sold of the item
into the variable weight portion of the UPC upon a sale (with 3 implied decimal
places). Let’s say 7.7 pounds of our UPC were sold. The UPC would be uploaded
from the POS file as 2712345077001. This function would strip out the 7.7 and
assign it to the total quantity sold variable. It would then replace the variable
weight portion and the check digit of the UPC with zeros: 2712345000000. The
UPC with the weight and check digit stripped out then will be used with the
upc_ean table to get the SKU.

validate_TDETL

Assumption: Currently posupld.pc can not interface with Sales Audit. This is due
to the variable weight UPC logic. Sales Audit currently does not recognize
variable weight UPCs, and thus can not process them. The code designed to
interface with Sales Audit is commented out. It should be uncommented when
Sales Audit is updated to deal with variable weight UPCs.

Operations Guide Addendum 9

Assumption: Variable weight UPCs need to be sent in at the transaction level, not
the rolled up level that posupld usually receives. This is because TDETL lines
need to source their quantities from the UPC and not from the specified quantity
input fields.

This function will perform validation on the TDETL records passed into the
program. The standard string validation on these fields includes null padding
fields, left shifting fields, checking that numeric fields are all numeric, placing a
decimal in all quantity and value fields, and validating the date field. If any errors
arise out of these validation checks, return a non-fatal error and then set the non-
fatal error flag to true.

If a promotional transaction type is passed in, verify it is valid. If a promotional
transaction type is passed in, but it is not valid, return a non-fatal error and then
set the non-fatal error flag to true. If a promotion number is passed in, validate it
by checking the promhead table and set the promotional indicator to true.

If the item is a wastage item set the TDETL wastage quantity. This is done the
same way as setting the THEAD wastage quantity.

New_staple_loc

This function creates a new store/SKU relationship for staple items.

Win_store_cursors

This function checks the win_store for the SKU/store combination. It is called by
the win_check function.

win_check

This function verifies the staple item/location relationship exists. It is only called
when the item being processed is a staple item. If the item/location relationship
does not exist, it is created and a record is written to the invalid item/location
output file.

New_fashion_loc

This function creates a new store/SKU relationship for fashion items. It is called
by rag_check.

rag_store_cursors

This function checks the win_store for the SKU/store combination. It is called by
the win_check function.

rag_check

This function verifies the fashion item/location relationship exists. It is only
called when the item being processed is a fashion item. If the item/location
relationship does not exist, it is created and a record is written to the invalid
item/location output file.

New_pack_loc

This function creates a new store/SKU relationship for fashion items. It is called
by pack_check.

10 Retek Merchandising System

pack_check

This function verifies the pack item/location relationship exists and retrieves the
component SKUs for the pack item. It is only called when the item being
processed is a pack item. The component SKU, system indicator, department,
class, subclass, cost, retail, price_hist retail, and component SKU quantity are
fetched. If the pack item/location relationship does not exist, it is created for the
pack item and all of its components and a record is written to the invalid
item/location output file for the pack item.

The component SKUs' price ratios are also calculated. This indicates the retail
contribution the component SKUs give towards the unit retail of the pack item.
This ratio is calculated by taking the price_hist unit retail of the component
divided by the total price_hist retail of all the component SKUs for the pack item.
Below is an example of how this ratio is calculated:

 Unit Retail Qty Retail Calculation Ratio

pack item A $60

SKU 1 $15 2 $30 ($30/$90) * $60 .3333

SKU 2 $10 6 $60 ($60/$90) * $60 .6667

get_unit_retail

This function retrieves the unit retail from price_hist for the item/location being
processed. If the item being processed is not a component SKU to a pack item
that is currently being processed and the transaction is a sale, call get_all_price.
If that is not found, call get_base_price. If the price_hist record fetched is a 9
(promotional retail change), the item being processed is a component SKU to a
pack item currently being processed, or the transaction is a return, call
get_reg_price. (these are base retail changes). If a tran_code of 8 is returned, the
item is on clearance.

Get_all_price

This function will get the retail from price_hist for tran_types in (0,4,8,9,11). It is
called by get_unit_retail.

Get_reg_price

This function will get the retail from price_hist for tran_types in (0,4,8,11). It is
called by get_unit_retail.

Get_base_price

This function will get the retail from price_hist for tran_types of 0. It is called by
get_unit_retail.

Operations Guide Addendum 11

process_packitems

This function performs processing for the component SKUs of the pack items.
This would include updates/inserts into stake_sku_loc, edi_daily_sales,
win_store, rag_skus_st, win_store_hist, rag_skus_st_hist, vat_history_data, and
tran_data. All of these tables do not write records at the pack item level, but at
the component SKU level. When figuring retails to write to these tables, the
component SKUs' price ratios should always be applied against the pack item's
retail to come up with the correct retail for each component SKU. If an employee
discount TDETL record has been encountered, a tran_data record with tran_code
60 will be written for each component SKU.

process_daily_sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL
record that has a promotional transaction type, except employee discounts.
Employee discount records are not written to daily_sales_discount. They are put
on tran_data with a tran_code of 60. When employee discount records are
encountered, values are set for the tran_data insert and the discount amount is
added to the total sales value. This is done so employee discounts do figure into
the promotional and in store calculations. When the multi_prom_ind is on, all
promotion types except employee discount will be ignored.

write_in_store()

This function will handle records sent in as in store discounts amounts. It will
call check_daily_exist and daily_sales_insert_update.

Remove_stklgdr_vat()

This function will remove VAT from three fields after the daily_sales_discount
processing is complete. The variables od_off_retail_amt, od_new_retail, and
od_old_retail are stripped of VAT by calling vat_convert if the stock ledger does
not contain VAT.

Write_off_retail()

This function will calculate discrepancies between the amount sold for an item,
and the amount it should have sold for (price_hist record). If these amounts are
not in balance, a record is written to the daily_sales_discount table with a
prom_type of in store for reporting.

Daily_sales_exist()

This function will check the daily_sales_discount for the existence of a record
matching the input parameters

Daily_sales_insert_update()

This function is called by write_off_retail, write_in_store and
process_daily_sales_discount. It performs the actual insert or fills an update array
for the daily_sales_discount table.

write_off_retail_markdown()

The write_tran_data() function will be called to write the off_retail markdown,
unless the item is on consignment or the off_retail amount is zero.

12 Retek Merchandising System

write_promotional_markdown()

The write_tran_data() function will be called to write the promotional markdown
unless the item multi_prom_ind is off and the transaction is a return, the item is
on consignment, or the promotional markdown amount is zero. The tran_data
new and old retails are only written if the multi_prom_ind is off.

Write_wastage_markdown()

This function will call the write_tran_data() function if the item is a wastage
item. A wastage item is an item that loses some of its weight (value) in
processing. For example, a one pound chicken is broiled and loses 10 percent of
its weight. The item is sold at .9 pounds. In reality, selling that .9 pounds of
chicken removes one pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was
lost due to wastage in processing.

vat_convert()

This function will either add or remove VAT from a retail value.

process_win()

Update the stock on hand on the win_store table for sales and returns, unless the
item is on consignment. Also, update the win_store_hist table for sales
transactions. Do not update for returns.

process_rag()

Update the stock on hand on the rag_skus_st table for sales and returns, unless
the item is on consignment. Also, update the rag_skus_st_hist table for sales
transactions. Do not update for returns.

process_pack()

Update the stock on hand on the packstore table for sales and returns. Also,
update the rag_skus_st_hist table for sales transactions. Do not update for
returns.

write_tran_data()

Writes a record to the tran_data insert array.

Write_edi_daily_sales()

Writes a record to edi_daily_sales.

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the
stake_sku_loc and edi_daily_sales tables for late transactions.

write_vat_err_message()

This function will create and write to the VAT output file if an item does not
have VAT information set up when it is expected.

vat_history_data()

Writes a record to the vat_history table.

Operations Guide Addendum 13

consignment_data()

This function will perform processing for consignment items. Consignment items
are such when the item_supplier table has a consignment rate applied to it.
Consignment is when a retailer will allow a third party to operate under its
umbrella and be paid for what it sells. An example of consignment may be a
mass merchant who consigns the magazine section of their store to a magazine
vendor. The magazine vendor would have control over keeping the product
stocked within the store. When a magazine is sold, the retailer would get paid for
the magazine. Then the retailer would essentially buy the magazine from the
vendor. The consignment cost paid by the retailer to the vendor is the VAT-
inclusive retail multiplied by the consignment rate divided by 100. So if the
VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier
with an orig_ind = 4 (consignment). Consignment type invoices will be created
for all purchase orders created for consignments

Also a tran_data record (tran_type 20) will be written to record the consignment
transaction to the stock ledger. The retails should be VAT inclusive or exclusive,
depending on the system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions check_order(), order_head(), and
invc_data() to handle order create-update and invoice create-update.

get_prom_type_info()

This function will retrieve all valid promotional transaction types from the
code_detail table. Valid promotional transaction types are those where the
code_type = PRMT.

fill_packitem_array()

This function will retrieve the component SKUs for a pack item with the
appropriate item level information into an array.

write_sku_store_report()

This function will create and write to the invalid item/location output file when
an item does not exist at a location where it was sold/returned.

ON Fatal Error

• Exit function with -1 return code.

ON Non-Fatal Error

• Write rejected record to the reject file using the write_to_rej_file function,
pass pointer to detail record structure, number of bytes in structure, and reject
file pointer.

Input File

The input file should be accepted as a runtime parameter at the command line.
All number fields with the number(x,4) format assume four implied decimals
included in the total length of x.

14 Retek Merchandising System

When the system_options field sa_ind is Y, the following FHEAD fields will be
populated and already validated: VAT include indicator, VAT region, currency
code, and currency retail decimals. When the sa_ind is N, these values will not be
used and retrieved from the system.

When the system_options field sa_ind is Y, the following FHEAD fields will be
populated and already validated: system_ind, dept, class, and subclass. When the
sa_ind is N, these values will not be used and retrieved from the system. When
the sa_ind is on, all items are assumed to be SKUs.

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file record type.

 File Line Identifier Char(10) specified by
external system

ID of current line being
processed by input file.

 File Type
Definition

Char(4) POSU Identifies file as POS Upload.

 File Create Date Char(14) create date Date file was written by an
external system.

 Location Number Number(4) specified by
external system

Store or warehouse identifier.

 Vat include
indicator

Char(1) Determines whether or not the
store stores values including
VAT. Not required, but
populated by Retek Sales
Audit.

 Vat region Number(4) VAT region that the given
location is in. Not required,
but populated by Retek Sales
Audit.

 Currency code Char(3) Currency of the given location.
Not required, but populated by
Retek Sales Audit.

 Currency retail
decimals

Number(1) Number of decimals supported
by given currency for retails.
Not required but populated by
Retek Sales Audit.

Transaction Header File Type Record
Descriptor

Char(5) THEAD Identifies transaction record
type.

 File Line Identifier Char(10) specified by
external system

ID of current line being
processed by input file.

 Business Date Char(14) business date to
process

Business date of transactions.

Operations Guide Addendum 15

Record Name Field Name Field Type Default Value Description

 Item Type Char(3) UPC
SKU

Item type will be represented
as a UPC or a SKU.

 Item Value Char(13) item identifier The item number of a SKU or
a UPC.

 Supplement Char(5) supplemental
identifier

Used to further identify a UPC
item or a prepack ID reference.

 System_ind Char(1) S- staple SKU
f - fashion SKU
P- pack item

The type of item sold or
returned. Not required, but
populated by Retek Sales
Audit.

 Dept Number(4) Item’s
department

Department of item sold or
returned. Not required, but
populated by Retek Sales
Audit.

 Class Number(4) Item’s class Class of item sold or returned.
Not required, but populated by
Retek Sales Audit.

 Subclass Number(4) Item’s subclass Subclass of item sold or
returned. Not required, but
populated by Retek Sales
Audit.

 Wastage Type Char(6) Item’s wastage
type

Wastage type of item sold or
returned. Not required, but
populated by Retek Sales
Audit.

 Wastage Percent Number(12) Item’s wastage
percent

Wastage percent of item sold
or returned. Not required, but
populated by Retek Sales
Audit.

 Transaction Type Char(1) S - sales
R - return

Transaction type code to
specify whether transaction is
a sale or a return.

 Total Sales
Quantity

Number(12) Number of units sold at a
particular location with four
implied decimal places.

 Sales Sign Char(1) P - positive
N - negative

Determines whether the Total
Sales Quantity and Total Sales
Value are positive or negative.

 Total Sales Value Number(20) Sales value, net sales value of
goods sold/returned with four
implied decimal places.

16 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

 Last Modified
Date

Char(14) For VBO future use.

Transaction Detail File Type Record
Descriptor

Char(5) TDETL Identifies transaction record
type.

 File Line Identifier Char(10) specified by
external system

ID of current line being
processed by input file.

 Promotional Tran
Type

Char(6) promotion type
– valid values
see code_detail
table.

Code for promotional type
from code_detail. Code_type =
PRMT.

 Promotion
Number

Number(4) promotion
number

Promotion number from the
RMS.

 Sales Quantity Number(12) Number of units sold in this
promotion type with four
implied decimal places.

 Sales Value Number(20) Value of units sold in this
promotion type with four
implied decimal places.

 Discount Value Number(20) Value of discount given in this
promotion type with four
implied decimal places.

Transaction Trailer File Type Record
Descriptor

Char(5) TTAIL Identifies file record type.

 File Line Identifier Char(10) specified by
external system

ID of current line being
processed by input file.

 Transaction Count Number(6) specified by
external system

Number of TDETL records in
this transaction set.

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file record type.

 File Line Identifier Number(10) specified by
external system

ID of current line being
processed by input file.

 File Record
Counter

Number(10) Number of records/
transactions processed in
current file (only records
between head & tail).

Operations Guide Addendum 17

Invalid Item/Store file:

The Invalid Item/Store file will only be written when a transaction holds an item
that does not exist at the processed location. In the event this happens, the
relationship will be created during the program execution and processing will
continue with the item and store number being written to this file for reporting.

VAT file:

The VAT file will only be written if a particular item cannot retrieve a VAT rate
when one is expected (e.g. the system_options.vat_ind is on). In this event, a
non-fatal error will occur against the transaction, and a record will be written to
this file and the Reject file.

Reject file:

The reject file should be able to be re-processed directly. The file format will,
therefore, be identical to the input file layout. The file header and trailer records
will be created by the interface library routines and the detail records will be
created using the write_to_rej_file function. A reject line counter will be kept in
the program and is required to ensure that the file line count in the trailer record
matches the number of rejected records. A reject file will be created in all cases.
If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer
should be declared. The reject file pointer will identify the temporary reject file.
This is for the purposes of restart recovery. When a commit event takes place, the
restart_write_function should be called (passing the file pointer, the temporary
name and the final name). This will append all of the information that has been
written to the temp file since the last commit to the final file. Therefore, in the
event of a restart, the reject file will be in synch with the input file.

Error file:

Standard Retek batch error handling modules will be used and all errors (fatal
and non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical Issues
Assumption: Variable weight UPCs need to be sent in at the transaction level, not
the rolled up level that posupld usually receives. This is because TDETL lines
need to source their quantities from the UPC and not from the specified quantity
input fields.

Assumption: Given the structure of the var_upc_ean table, it is only possible to
have 100 different records on this table. This function uses this assumption when
allocating memory to hold all the records on the var_upc_ean table. The logic
will require enhancements to accommodate a larger number of different variable
weight UPC types if desired.

Assumption: Non-variable weight UPCs can not start with a prefix that exists on
the var_upc_ean table.

Assumption: All values passed in through variable weight UPCs will be
considered to be in the standard unit of measure.

	POS Upload [posupld]
	Design Overview
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	Technical Issues

