

Retek® Merchandising System™
9.0.17

Operations Guide Addendum

Corporate Headquarters:

Retek Inc.
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403
USA
888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000
Fax:
+1 612 587 5100

European Headquarters:

Retek
110 Wigmore Street
London
W1U 3RW
United Kingdom
Switchboard:
+44 (0)20 7563 4600
Sales Enquiries:
+44 (0)20 7563 46 46
Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.
No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.
Information in this documentation is subject to change
without notice.
Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.
Retek® Merchandising SystemTM is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek
Inc.
This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2004 Retek Inc. All rights reserved.
All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.
Printed in the United States of America.

Retek Merchandising System

Customer Support
Customer Support hours

Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information

E-mail support@retek.com

Internet (ROCS) rocs.retek.com
 Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66
Hong Kong 800 96 4262
Korea 00 308 13 1342
United Kingdom 0800 917 2863
United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business impact).

• Detailed step-by-step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://rocs.retek.com/

Contents

i

Contents
Recommended Order Quantity [ociroq.c] 1

POS Download [posdnld] ... 7

Item Requisition Extraction [reqext].. 13

Daily Stock Ledger Processing [saldly] 23

Recommended Order Quantity [ociroq.c]

1

Recommended Order Quantity [ociroq.c]
Design Overview

The purpose of this batch program is to call the PL/SQL packages used to calculate the Net
Inventory position of the items on replenishment. The results are stored in the database to be used
by REQEXT (Item Requisition Extraction).

Scheduling Constraints

Processing Cycle: PHASE 3

Scheduling Diagram: Prepost (ociroq pre), rplatupd, rpladjf and rpladjs need to run before
reqext so that all replenishment calculation attributes are up to date.
Posupld needs to run before reqext so that all stock information is up to
date.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: POSIX threads
The restart_control.num_threads will control the number of POSIX
threads that are run within ociroq. The batch program ociroq.c itself will
only need to be run with one thread.

Restart Recovery

The program processes all items on repl_day for the current day. If the program fails, the
rpl_net_inventory_tmp table should be truncated prior to restarting (prepost ociroq pre)

Retek Merchandising System

2

Program Flow

DriverRoutine ServerRoutine

No Data Found

AddWorkQ

Queue Empty

ThreadRoutine

Quit

Quit

While Loop While Loop

End Loop

Y Y

Insert Array
Full

End Loop

PostInsert

N N

N

Y

Process

InitWorkQ

Start the
DriverRoutime

DestroyWorkQ

Wait Until the Driver
routine has completed

Quit

These operations execute
in parallel

Shared Modules

GET_REPL_ORDER_QTY_SQL.REPL_METHOD: Stored PL/SQL procedure for calculating
the ROQ of an item at a location.

REPLENISHMENT_SQL.GET_STORE_REVIEW_TIME: Stored PL/SQL procedure for
calculating the time between scheduled shipments to a store from a warehouse. This time is used
by GET_REPL_ORDER_QTY_SQL in its calculations.

OciInitLogon(): C library function that validates the program usage and performs initial
environment set-up; including opening the daily log file for writing. It also calls OciConnect().

OciConnect(): C library function that connects to the database and performs some initial
environment set-up. This function calls numerous OCI library routines that create the appropriate
OCI handles.

OciDisconnet(): C library function that disconnects from the database and free the OCI handles
created by the OCIConnect() call.

Recommended Order Quantity [ociroq.c]

3

ReportError(): C library function that calls the OCIErrorGet() function and returns the appropriate
error message.

WriteError(): C library function writes the appropriate message to the error file; indicating the
type of error encountered and the Oracle Error number and message.

LogMessage(): C library function writes the appropriate message to the log file; indicating start
time, end time and time of failure if the program terminated with errors.

RaiseError(): C library function responsible for passing the error code back to the parent process
to ensure correct error handling.

Data Structures

repl_info_struct: Holds information fetched from the driving cursor.

GetOltsStruct: Holds the information passed into and returned from the
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME procedure.

GetReplStruct: Holds the information passed into and returned from the
GET_REPL_ORDER_QTY_SQL.REPL_METHOD procedure.

InsertStruct: Used to buffer the inserts into the rpl_net_inventory_tmp table.

DomainStruct: Used to cache forecasting domain information.

Driver_Info: Used by the Driver thread as a container to pass in all the appropriate parameters
to the thread routine.

Thread_Info: Used by the Work Queue threads as a container to pass in all the appropriate
parameters to the thread routine.

WorkQueue_List: This linked list is used to hold the actual data fetched by the Driver thread to
be then consumed by the Work Queue threads.

WorkQueue_Info: Holds all the Work Queue thread control information.

domain_struct: Used to cache forecasting domain information.

Function Level Description

General Controlling Functions

main()

The standard Retek main function, this calls init(), process() and final(), and posts messages to the
daily log files.

init()

Fetches system-level global variables and calls other functions to fetch additional global level
data; GetMaxCounter(), GetStoreCount() and LoadDomainInfo()

Process()

Controls the bulk of the processing. It initializes the Work Queue threads, creates the Driver
thread and waits until the Driver thread has completed prior to calling the DestroyWorkQ() and
ThreadCleanUp() functions.

final()

The standard Retek final function, this closes down the process and posts messages to the daily
logs.

Retek Merchandising System

4

Thread Controlling Functions

InitWorkQ()

Initializes the specific POSIX Pthread library variables used by the Work Queue threads. It then
initializes the WorkQueue_Info structure variables and creates the specified number of threads;
Each thread calls the ServerRoutine(). The function performs a loop, allocating memory for each
threads data structures and connects each thread to the database by calling the OciConnect()
library routine. Finally it calls the DefineWorkerStmts() function.

ServerRoutine()

Controls the consumption of the WorkQueue_List. Each Work Queue thread monitors and
consumes data from the list until they are instructed to quit or the queue is empty. Initially while
the queue is empty the threads poll the queue every 2 seconds checking the status. All thread
synchronization is handled by the use of a mutually exclusive lock (mutex). Each node taken
from the list is passed to the ThreadRoutine() function.

ThreadRoutine()

Executed by the Work Queue threads; it calls the PL/SQL packages and buffers the result in the
InsertStruct. When an individual thread reaches the MAX_INSERT_SIZE the buffer is inserted
into the rpl_net_inventory_tmp table.

GetOlts()

Called by the ThreadRoutine(), this function calls the
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME PL/SQL package.

GetRepl()

Called by the ThreadRoutine(), this function calls the
GET_REPL_ORDER_QTY_SQL.REPL_METHOD PL/SQL package.

DriverRoutine()

Executed by the Driver thread; it’s responsible for defining and fetching the driving cursor and
adding the batch to the queue. The execution of this function by a thread allows it to run in
parallel with the Work Queue threads. The Work Queue threads will start after the first batch has
been placed on the WorkQueue_List.

AddWorkQ()

Loads the array fetched by the DriverRoutine() onto the WorkQueue_List. It allocates memory
for each node and will continue to load the queue while the number of records on the queue has
not exceeded the MAX_QUEUE_SIZE. All thread synchronization is handled by the use of a
mutually exclusive lock (mutex). The function will wait until the queue less than half full prior to
recommencing.

DestroyWorkQ()

Waits until all the Work Queue threads have consumed all the data from the list; it then performs
some cleanup duties. All thread synchronization is handled by the use of a mutually exclusive
lock (mutex).

ThreadCleanUp()

Frees the memory allocated to each threads data structures (including statement handles) and
disconnects from the database.

Recommended Order Quantity [ociroq.c]

5

Database DML Handling

PostInsert()

When the Insert buffer reaches the MAX_INSERT_SIZE the array is posted to the database and
the work committed.

OCI Statement Functions

DefineDriver()

Performs OCI specific statement set-up; including statement handle preparation, statement handle
attribute set-up (pre-fetch size), statement column definition and the array of structure definition
(skip size etc.) for the Driving Cursor.

DefineGetRepl() **

Performs OCI specific statement set-up; including statement handle allocation, statement handle
preparation and statement column binding for the PL/SQL package call
GET_REPL_ORDER_QTY_SQL.REPL_METHOD.

DefineGetOlts() **

Performs OCI specific statement set-up; including statement handle allocation, statement handle
preparation and statement column binding for the PL/SQL package call
REPL_OLT_SQL.GET_OLTS_AND_REVIEW_TIME.

DefineInsert() **

Performs OCI specific statement set-up; including statement handle preparation, statement handle
attribute set-up (pre-fetch size), statement column definition and the array of structure definition
(skip size etc.) for the rpl_net_inventory_tmp insert Statement.

 Note: These functions are called for each Work Queue thread. Each thread will have its
own database connection and statement handles.

Database Interaction

The following database tables related to the Net Inventory dialog of RMS and the types of access
that will be used by this process: *

Table Select Insert Update Delete

DOMAIN_CLASS Y N N N

DOMAIN_DEPT Y N N N

DOMAIN_SUBCLASS Y N N N

ITEM_SUPP_COUNTRY Y N N N

PERIOD Y N N N

REPL_DAY Y N N N

REPL_ITEM_LOC Y N N N

RESTART_CONTROL Y N N N

RPL_NET_INVENTORY_T
MP

N Y N N

Retek Merchandising System

6

Table Select Insert Update Delete

STORE Y N N N

SYSTEM_OPTIONS Y N N N

WH Y N N N

WIN_WH Y N N N

 Note: This list does not include the tables accessed by the PL/SQL package calls
executed by this program.

I/O Specification

N/A

Technical Issues

N/A

POS Download [posdnld]

7

POS Download [posdnld]
Design Overview

The posdnld program is used to download pos_mods records created in the RMS to the store POS
systems. This program has one output file which contains all records for all stores in a given run.

Scheduling Constraints

Processing Cycle: PHASE 4 (daily)

Scheduling Diagram: This program is run towards the end of the batch run when all pos_mods
records have been created for the transaction day.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart Recovery

Restart/recovery for this program is set up at the store/upc or sku level. Threading is done by
store using the v_restart_store view to thread properly.

The commit_max_ctr field should be set to prevent excessive rollback space usage, and to reduce
the overhead of file I/O. The recommended commit counter setting is 10000 records (subject to
change based on experimentation).

Program Flow

Pos_mods Output File

Retek Merchandising System

8

Shared Modules

N/A

Function Level Description

Init

This function initializes restart/recovery for this program. It also opens the output file, retrieves
system variables and calls a function to size the arrays used in this program.

Process

This function drives the processing of the program. The driving cursor is fetched here which
retrieves all the records from pos_mods where the pos_mods.store value is greater than zero.
Once the records are fetched, the write_rec() function is called to perform processing on them.
Restart/Recovery and commiting of records is also performed here.

Write_rec

This function will prepare records for insert into the output file. This program used the Retek
standard file format FHEAD, FDETL, FTAIL.

Final

This function will finish restart/recovery logic, close the output file and delete the temporary
output file used while the program processes.

Init_format_strs

This function formats the strings for the FHEAD, FDETL, and FTAIL records in the output file.

Init_arrays

This function initializes the size of the array used for the driving cursor fetch the size of the
restart max counter on restart_control.

Resize_arrays

This function increases the memory for the driving cursor array by the size of the restart max
counter on restart_control.

Get_upc_type

This function query the upc_ean table to get the var_type given the passed in upc and upc_supp.

POS Download [posdnld]

9

I/O Specification

Output file

Record
Name

Field Name Field Type Default
Value

Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Number(10) Sequenctial
number
Created by
program.

ID of current line
being created for
output file.

 File Type
Definition

Char(4) POSD Identifies file as
‘POS Download’

 File Create
Date

Char(14) create date current date,
formatted to
‘YYYYMMDDH
H24MISS’.

File Detail File Type
Record
Descriptor

Char(5) FDETL Identifies file
record type

 File Line
Identifier

Number(10) Sequenctial
number
Created by
program.

ID of current line
being created for
output file.

 Location
Number

Number(4) store
identifier

Store identifier
from the store
table in Retek

 Update Type Char(1) update type Code used for
client specific
POS system.

 Start_Date Char(14) start date date for the
change to take
effect at the POS,
formatted to
‘YYYYMMDDH
H24MISS’.

 Upc Number(13) upc
identifier

the id number of a
UPC if a UPC
exists on the
UPC_EAN for
that SKU.

Retek Merchandising System

10

Record
Name

Field Name Field Type Default
Value

Description

 Upc
Supplement

Number(5) supplementa
l identifier

used to further
specify the id of
an UPC item.
From the Retek
upc_ean table.

 Upc var type Char(1) Variable upc
type
indicator

Identifies what
type of variable
UPC is being sent.
Valid values are
‘W’eight, ‘P’rice,
and NULL.

 Tran Type Number(2) transaction
type

the transaction
type for the record
from the Retek
pos_mods table.

 SKU Number(8) SKU
identifier

the id number of a
SKU from the
Retek desc_look
table.

 SKU
Description

Char(40) SKU
description

the description of
the SKU from the
Retek desc_look
table.

 Dept Number(4) dept id the id of the dept
for the item from
the Retek
win_skus or
rag_style table.

 Class Number(4) class id the id of the class
for the item from
the Retek
win_skus or
rag_style table.

 Subclass Number(4) subclass id the id of the
subclass for the
item from the
Retek win_skus or
rag_style table.

 New Price Number(20) new price the new price to be
taken at the POS.
This value is from
the Retek
pos_mods table.

POS Download [posdnld]

11

Record
Name

Field Name Field Type Default
Value

Description

 Multi Units Number(12) multi units Number of multi
units

 Multi Units
Retail

Number(20) multi units
retail

unit retail for the
multi units

 Status Char(1) status Populates if
tran_type for the
item is 1(new item
added) or 25
(change item
status) or 26
(change taxable
indicator).

 Taxable
Indicator

Char(1) taxable ind Populates if
tran_type for the
item is 1(new item
added) or 25
(change item
status) or 26
(change taxable
indicator).

 Promotion
Number

Number(4) promotion
number

Promotion number
for SKU. This
value is from the
Retek system.

 Mix Match
Number

Number(4) mix match
number

mix match number
for SKU. This
value is from the
Retek ssytem.

 Mix Match
Type

Char(1) mix match
type

mix match type
(Buy or Get) for
SKU. This value
is from the Retek
system.

 Threshold
Number

Number(4) threshold
number

Threshold number
for SKU. This
value is from the
Retek system.

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

Retek Merchandising System

12

Record
Name

Field Name Field Type Default
Value

Description

 File Line
Identifier

Number(10) Sequential
number
Created by
program.

ID of current line
being created for
output file.

 File Record
Counter

Number(10) Number of
records/transaction
s processed in
current file (only
records between
head & tail)

Technical Issues

N/A

Item Requisition Extraction [reqext]

13

Item Requisition Extraction [reqext]
Design Overview

Reqext (Item Requisition Extraction) handles automatic replenishment of items from warehouses
to stores. It cycles through every item-store combination that is set to be reviewed on the current
day, and calculates the quantity of the item that needs to be transferred to the store (if any). In
addition, it distributes this Recommended Order Quantity (ROQ) over any applicable alternate
items associated with the item. The program then takes this information and either creates new
transfer line items or adds to existing ones.

Alternate items are either simple packs or substitute items. Simple packs are sellable and
orderable packs that contain only a single item, such as a six-pack of cola or twelve-pack of
socks. Substitute items are items predefined to be interchangeable with the item being
replenished (referred to as the master item).

When an item is set up to use simple packs (designated by an indicator on the REPL_ITEM_LOC
table), the ROQ must be distributed among these packs according to desirability. If a master item
has no simple packs associated with it, it will be requested as itself. If there is only one pack
associated with the item (referred to as the primary simple pack), then there is no distribution
needed – the item will be transferred in this simple pack, since the cost per item for a pack is
always less than that of an individual item. If multiple simple packs can be substituted for an
item, then the distribution of the ROQ over these packs is determined by comparing the packs’
relative sales history. Replenishing an item through multiple simple packs can have a severely
negative effect on the performance of this program! Because the pack distribution depends on
access to the huge sales history tables (PACKSTORE_HIST, RAG_SKUS_ST_HIST,
WIN_STORE_HIST), it is not recommended that many items be placed on replenishment
through multiple simple packs. Whenever possible, it is better to assign a primary simple pack to
the item, since this does not require distribution calculation.

If an item is not set up to use simple packs, the program will see if any substitute items are
associated with it. If there are no substitute items associated with the master item, it will be
transferred alone. If there are substitute items, they will be fetched into a list and the master item
placed at either the head or tail end of the list, depending on the fill priority (set on the
SUB_ITEMS_HEAD table). The priority determines which items are transferred first.

No matter what type of alternate items (if any) are used, the program will account for availability
when building transfer line items. For simple packs, the share of ROQ allocated to each pack
may be decreased or increased if the source warehouse has a shortage of some packs but a surplus
of others. For substitute items, transfer quantities are prorated by calculating the ratio of total
availability to total need, and items are transferred in order of priority until all need is filled or
until no stock is available.

Once the transfer quantity of an item has been calculated, the transfer line item is posted to the
database if 1) the actual quantity to transfer is greater than zero, and 2) the replenishment order
control indicator for the item-store combination is either Automatic or Semi-Automatic. If it is
Manual, a record will be written to another table (REPL_RESULTS) for reporting purposes. If
the system-level All Replenishment Results indicator is set to “Yes”, all line items will be written
to REPL_RESULTS, even if the quantity to order is zero. Whenever a transfer line item is
placed, the appropriate item-location table (RAG_SKUS_ST, RAG_SKUS_WH, WIN_STORE,
WIN_WH and/or PACKWH) is updated to reflect the fact that stock is now reserved for transfer
at the warehouse and expected at the store.

Retek Merchandising System

14

Scheduling Constraints

Processing Cycle: PHASE 3

Scheduling Diagram: Rplatupd, rpladjf, rpladjs, prepost ociroq and ociroq need to run before
reqext so that all replenishment calculation attributes are up to date.
Posupld, tsfoupld, tsfiupld, ctniupld, and rcvupld need to run before
reqext so that all stock information is up to date. Rplext should run after
reqext, since the ROQ for a warehouse is influenced by any transfers
created.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: ITEM (partition)

Restart Recovery

The logical unit of work is item, source warehouse. The driving cursor is ordered by item, source
warehouse, order control indicator and simple pack indicator. When any of these values change
during the course of processing (i.e., the current value is different than that of the previous
record), then a transfer will be created, taking total quantities and availability into consideration
(see replenish_item(), below).

Program Flow

N/A

Shared Modules

ITEMLOC_QUANTITY_SQL.GET_WH_CURRENT_AVAIL: Stored PL/SQL procedure for
calculating the amount of a given item available at a given warehouse.

NEXT_TRANSFER_NUMBER: Stored PL/SQL procedure used for getting the next valid
transfer number for use in creating new transfers.

RMS_ROUND_TO_PACKSIZE: Shared C function (see rpl.h) used in rounding an item’s
quantity up to the size of a simple pack, or for rounding an order quantity up to a receivable pack
size.

Data Structures

repl_info_struct: Holds information fetched from the driving cursor.

store_struct: Holds information about item-location combinations, used for ROQ and distribution
calculations.

alt_item_struct: Holds information about alternate items associated with a given master item.
Used in distribution calculations.

tsfhead_struct: Used to buffer inserts to the TSFHEAD table.

tsfdetail_struct: Used to buffer inserts and updates to the TSFDETAIL table.

item_loc_struct: Used to buffer updates to the item-location tables (RAG_SKUS_ST,
RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH).

repl_results_struct: Used to buffer inserts to the REPL_RESULTS table.

domain_struct: Used to cache forecasting domain information.

Item Requisition Extraction [reqext]

15

Function Level Description

General Controlling Functions

main()

The standard Retek main function, this calls init(), process() and final(), and posts messages to the
daily log files.

init()

Initializes the Restart-Recovery API and fetches system-level global variables.

driving_cursor()

Opens, fetches data from, or closes the driving cursor. This is a support function for process().

process()

This function fetches records from the driving cursor (driving_cursor()), passes them to
replenish_item() to perform all appropriate actions, and commits work when appropriate
(post_all(), restart_commit()).

replenish_item()

The controlling function for replenishment calculations. This function copies records out of the
driving cursor buffer (copy_repl_to_store()), and calculates the ROQ for each record
(get_repl_order_qty()). If a change in item, source warehouse, order control indicator, or simple
pack indicator has occurred, the appropriate functions are called to calculate distribution of need
over all appropriate alternate items and stores, and to place the transfers. If item's ROQ is zero
or negative, no mater simple pack indicator is on the master item will be used for replenishment
(build_pack_ratio(), calc_pack_dist(), calc_sub_dist()).

place_tsf_line_item()

This function takes a item-location combination and a transfer quantity, and actually builds the
transfer line item (handle_tsf()). It then updates the item-location tables to reflect the change in
stock (handle_item_loc()), and writes a record to the reporting table (handle_repl_results()) when
appropriate.

final()

The standard Retek final function, this closes down the Restart-Recovery API.

Simple Pack Distribution and Transfer

build_pack_ratio()

Calculates distribution of the master item’s recommended order quantity (ROQ) over simple
packs. Simple packs are sellable and orderable packs containing only a single item (e.g., six-pack
of cola). Since the cost per item will always be less in a pack than singularly, the item will only
be ordered in terms of simple packs (if any are applicable). This function tries to divide the total
ROQ for the item among all applicable simple packs by using the packs' relative sales history to
build a distribution 'mask' containing ratios used to calculate each pack's share of the ROQ. This
mask is then adjusted to account for availability (shortages of some packs, surpluses of others).

Retek Merchandising System

16

This function performs the following steps to optimally distribute the ROQ among any and all
simple packs:

• If a primary simple pack was defined for this item, that pack will be the only one used to
supply the item (add_primary_pack()).

• If no primary pack was defined, the program will build a list of all simple packs associated
with the item (get_multi_simple_pack()).

• If no appropriate simple packs are found, the item will be ordered as itself
(add_single_item()).

• The historical sales for all simple packs and the master item are added up.

• The ROQ is distributed among the simple packs by taking the ratio of each pack’s historical
sales to the total historical sales (first_ratio_pass()).

• If the first pass through the list did not account for the entire ROQ because of lack of
availability for some packs, the program must keep cycling through the items until it has
either distributed the ROQ among all available packs or there is simply no available stock left
to supply the need (next_ratio_pass()).

first_ratio_pass()

Performs initial distribution of an item's ROQ among its associated simple packs. Calculates
each pack's share as a ratio of its historical sales to the total historical sales (adjust_pack_ratio()).
The historical sales of the master item are added to those of the simple pack with the lowest cost
to give it a greater share of the ROQ. This is a support function for build_pack_ratio().

next_ratio_pass()

This function readjusts the ratios of still-available packs to try and cover the share of ROQ not yet
allocated, still distributing the leftover ROQ proportionally by historical sales. This is a support
function for build_pack_ratio().

adjust_pack_ratio()

Sets a simple pack’s share of the ROQ to reflect its desirability (in terms of historical sales
patterns), adjusting for availability. This is a support function for first_ratio_pass() and
next_ratio_pass().

add_primary_pack()

If an item is flagged to have a primary simple pack, that pack is the only one that will be
transferred. This function adds the primary pack to the simple pack distribution array and assigns
it the full share of the ROQ. This is a support function for build_pack_ratio().

get_multi_simple_pack()

Finds all simple packs associated with a given master item and information about them (historical
sales, availability, etc). This is a support function for build_pack_ratio().

get_single_sales_hist()

Gets the historical sales of the master item at all stores supplied by the given warehouse for use in
calculating distribution among simple packs. Since the master item will only be transferred as a
pack, this sales amount will be added to that of the pack with the lowest cost, increasing its share
of the ROQ. This is a support function for build_pack_ratio().

add_single_item()

Item Requisition Extraction [reqext]

17

If an item is flagged to use simple packs, but none are found, it will be ordered as itself. This
function adds the master item to the simple pack distribution structure and assigns it the full share
of the ROQ. This is a support function for build_pack_ratio().

calc_pack_dist()

Once each simple pack’s share of the item’s ROQ has been calculated in build_pack_ratio(), this
function calculates actual transfer quantities and places the transfer line items
(place_tsf_line_item()). The function loops through each pack in the list, calculating the amount
of the pack to transfer to each store (calc_pack_tsf_qty()). If the total transfer quantity of the
pack exceeds its availability at the warehouse, each store will have its quantity reduced by one
receivable pack until a reasonable number has been reached. Finally, a transfer line item is
placed for the pack to the store.

calc_pack_tsf_qty()

Calculate the actual quantity to transfer for a store based on an alternate item's share of the ROQ
at a store, adjusted for any applicable simple pack and/or shipping pack sizes. This is a support
function for calc_pack_dist().

Substitute Item Distribution and Transfer

calc_sub_dist()

Calculate distribution of the ROQ over substitute items. Substitute items are items (selected by
the user beforehand) that can be requested in place of a given item to cover situations where
availability is too low or demand is too high.

After calling get_sub_items() to generate a list of appropriate items for transfer, the function
loops through every item-location combination and performs the following steps to make sure
that both need and availability are accounted for when placing transfers from the warehouse to
the stores:

• If the total availability of all items in the substitute list cannot cover the full need over all
stores, then the ratio of the total availability to the total ROQ is calculated. If total
availability can cover total ROQ, the ratio is set to 1.

• The initial transfer quantity for the item at the location is calculated as the store’s need
adjusted by the availability ratio, and rounded up to a receivable pack size.

• If there is not enough of the item available at the warehouse to fill the calculated transfer
quantity, the quantity will be decremented to an orderable amount.

• The transfer line item is placed by calling place_tsf_line_item().

• The store’s ROQ, total ROQ, availability of the item, and total availability are all
decremented by the amount just transferred to prepare for the next item-location’s
calculation.

get_sub_items()

Retrieves substitute items for the current master item and information about them from the
database (receiving pack size, availability, etc.). If the fill priority for this set of items
(SUB_ITEMS_HEAD.fill_priority) is set to ‘M’aster, the master item will be the first one in the
list, and will be used first to fill need. If it is set to ‘S’ubstitute, the master item will be placed at
the tail end of the list. This is a support function calc_sub_dist().

add_master()

Retek Merchandising System

18

Adds the master item to the appropriate position in the substitutes list. This is a support function
for get_sub_items().

shift_subs()

If the fill priority for the substitutes list is set to ‘M’aster, the master item must be placed at the
head of the list. This function clears out the first position by moving each substitute item ‘back’ a
slot. This is a support function for get_sub_items().

Database DML Handling

post_all()

The DML handling functions (handle_tsf(), handle_item_loc(), handle_repl_results()) normally
only post information to the database tables when their respective buffers are full. When a
commit point is reached, however, all buffers must be flushed to ensure restartability. This
function forces all the buffers to be posted to the database.

handle_tsf()

Controls handling of inserts and updates to the Transfer tables.

add_tsfhead()

Deals with transfer header information. Either finds an appropriate transfer to add line items to
(matching to/from locations, department and freight code), or creates a new one. passes back the
transfer number for use in add_tsfdetail(). This is a supporting function for handle_tsf().

add_tsfdetail()

Deals with transfer detail information. Either finds an appropriate record on the TSFDETAIL
table to add quantity to (matching transfer number and item), or creates a new one if none is
found. This is a supporting function for handle_tsf().

get_next_seq_no()

Every line item on a transfer has a unique identifier within that transfer. This function gets the
next sequence number for a new line item. This is a supporting function for add_tsfdetail().

post_tsf()

Posts transfer information to the database. Inserts to TSFHEAD, inserts and updates to
TSFDETAIL. This is a supporting function for handle_tsf().

handle_item_loc()

Whenever a transfer is created or modified, the source location's reserved quantity and the
receiving location's expected quantity must be adjusted to reflect the new stock status. This
function controls the handling of updates to the RAG_SKUS_ST, RAG_SKUS_WH,
WIN_STORE, WIN_WH and PACKWH tables.

add_item_loc()

Adds records to arrays for update of expected and reserved quantities on the item-location tables
(RAG_SKUS_ST, RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH) based on the
appropriate item types. This is a support function for handle_item_loc().

post_item_loc()

Posts item-location stock status changes to the database (RAG_SKUS_ST, RAG_SKUS_WH,
WIN_STORE, WIN_WH, PACKWH). This is a support function for handle_item_loc().

Item Requisition Extraction [reqext]

19

handle_repl_results()

Controls posting of report information to the REPL_RESULTS table.

add_repl_results()

Adds records to the replenishment results structure for reporting. This is a supporting function
for handle_repl_results().

post_repl_results()

Posts replenishment information to the REPL_RESULTS table. This is a supporting function for
handle_repl_results().

update_review_date()

Updates the last_review_date column on the REPL_ITEM_LOC table to reflect the fact that item-
location combinations have just been evaluated.

PL/SQL Stored Procedure Calls

get_wh_current_avail()

Gets the available quantity of a given item at a given warehouse. This function is a wrapper for
the ITEMLOC_QUANTITY_SQL.GET_WH_CURRENT_AVAIL stored PL/SQL procedure.

next_transfer_number()

Gets the next transfer number in the Oracle stored sequence for creating new transfer headers.
This function is a wrapper for the NEXT_TRANSFER_NUMBER stored procedure.

Domain Validation

Domain validation is done in the ociroq.c batch program.

Support Functions

copy_repl_to_store()

Copies a record from the structure holding rows from the driving cursor into a structure holding
item-location information for ROQ calculation, distribution, and transfer placement.

reset_store_struct()

Resets summary variables in a store information structure to prepare it for the next set of line
items.

reset_alt_item_struct()

Resets summary variables in an alternate item structure to prepare it for the next set of alternates.

Retek Merchandising System

20

Array Sizing

size_repl_info_struct()

Allocates memory to the structure used to buffer fetches from the driving cursor.

size_store_struct()

Allocates memory to the structure used to hold item-location level information.

size_alt_item_struct()

Allocates memory to the structure used to hold information about alternate items (either simple
packs or substitute items).

size_tsfhead_struct()

Allocates memory to the structure used to buffer inserts to the Transfer Header table.

size_tsfdetail_struct()

Allocates memory to structures used to buffer inserts and updates to the Transfer Detail table.

size_item_loc_struct()

Allocates memory to structures used to buffer updates of the item-location tables
(RAG_SKUS_ST, RAG_SKUS_WH, WIN_STORE, WIN_WH, PACKWH).

size_repl_results_struct()

Allocates memory to the structure used to buffer inserts to the Replenishment Results table.

Database Interaction

Tables Selected From:

• RPL_NET_INVENTORY_TMP

• ITEM_SUPP_COUNTRY

• PACKHEAD

• PACKITEM

• PACKSTORE_HIST

• PERIOD

• RAG_SKUS_ST_HIST

• REPL_DAY

• REPL_ITEM_LOC

• STORE

• SUB_ITEMS_HEAD

• SUB_ITEMS_DETAIL

• SYSTEM_OPTIONS

• TSFDETAIL

• TSFHEAD

Item Requisition Extraction [reqext]

21

• WH

• WIN_STORE_HIST

Tables Inserted To:

• REPL_RESULTS

• TSFDETAIL

• TSFHEAD

Tables Updated:

PACKWH

RAG_SKUS_ST

RAG_SKUS_WH

REPL_ITEM_LOC

TSFDETAIL

WIN_STORE

WIN_WH

I/O Specification

N/A

Technical Issues

N/A

Daily Stock Ledger Processing [saldly]

23

Daily Stock Ledger Processing [saldly]
Design Overview

This program is responsible for performing the daily summarization processing in the stock
ledger in which transaction-level records are fetched from the transaction-level staging table and
summed to the subclass/location/day level. Once the records are summarized, they are written to
the DAILY_DATA table.

First, the program reads in the calendar type option (regular or 454), then gets last day of the
month for the previous and current month. To call this program the end of day process for the
stock ledger would not be completely correct, however, because a day does not really “close” in
the stock ledger until the month closes. Each time that the Daily Stock Ledger Processing
program runs, all transaction-level data is processed, whether it is for the current date, a date
since the last month closing or even a date prior to the last month closing. For transactions
occurring on the current date or since the last month close, they are processed by simply
summarizing the date and updating the current information on DAILY_DATA for the date of the
transaction. However, if a transaction occurred prior to the last month that was closed (i.e. the
transaction was dated 3/15 and the last end of month date was 3/20), then that transaction will be
dated with the current date and summarized with the current date’s records. Also, in this last
case, a warning message will be written to the batch log that alerts the user to the problem. The
message the users will receive is “*ALERT* Transactions have been found for previous months.”

TABLE INDEX SELECT INSERT UPDATE DELETE

PERIOD No Yes No No No

SYSTEM_OPTIONS No Yes No No No

SYSTEM_VARIABL
ES

No Yes No No No

IF_TRAN_DATA No Yes No No No

DAILY_DATA Yes No Yes Yes No

Scheduling Constraints

Processing Cycle: PHASE 3 (daily)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: Threaded by Dept
V_restart_dept

Retek Merchandising System

24

Restart Recovery
SELECT /*+ index(if_tran_data if_tran_data_i2)*/ dept,

 class,

 subclass,

 store,

 wh,

 DECODE(SIGN(tran_date -
TO_DATE(:os_last_eom_date_for_eow,

 'YYYYMMDD')),

 -1, :os_fdom_date,

 0, :os_fdom_date,

 TO_CHAR(tran_date, 'YYYYMMDD')),

 SUM(DECODE(tran_code,1,NVL(units,0),0)),

 SUM(DECODE(tran_code,1,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,1,NVL(total_retail,0),0)),

SUM(DECODE(:oi_stkldgr_vat_incl_retl_ind+:oi_vat_ind,2,0,

 DECODE(tran_code,1,NVL(total_retail,0),0))+

 DECODE(tran_code,2,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,11,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,12,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,13,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,14,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,15,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,16,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,26,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_retail,0),0)),

Daily Stock Ledger Processing [saldly]

25

 SUM(DECODE(tran_code,34,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,34,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,60,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,70,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,80,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,81,NVL(total_retail,0),0))

 FROM if_tran_data,

 v_restart_dept rv

WHERE rv.driver_value = if_tran_data.dept

 AND rv.driver_name = :os_restart_driver_name

 AND rv.num_threads = :oi_restart_num_threads

 AND rv.thread_val = :oi_restart_thread_val

 AND (if_tran_data.dept >
NVL(:os_restart_dept,if_tran_data.dept - 1) OR

 (if_tran_data.dept = :os_restart_dept AND

 (if_tran_data.class > :os_restart_class OR

 (if_tran_data.class = :os_restart_class
AND

 (if_tran_data.subclass >
:os_restart_subclass)))))

 GROUP BY dept,

 class,

 subclass,

 store,

 wh,

 DECODE(SIGN(tran_date –

 TO_DATE(:os_last_eom_date_for_eow,
'YYYYMMDD')),

 -1, :os_fdom_date,

 0, :os_fdom_date,

 TO_CHAR(tran_date, 'YYYYMMDD'))

 ORDER BY dept,

 class,

 subclass;

Program Flow

N/A

Retek Merchandising System

26

Shared Modules

N/A

Function Level Description

N/A

I/O Specification

N/A

Technical Issues

N/A

	Contents
	Recommended Order Quantity [ociroq.c]
	POS Download [posdnld]
	Item Requisition Extraction [reqext]
	Daily Stock Ledger Processing [saldly]

