

Retek® Merchandising System™
9.0.18

Operations Guide Addendum

Corporate Headquarters:

Retek Inc.
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403
USA
888.61.RETEK (toll free US)
Switchboard:
+1 612 587 5000
Fax:
+1 612 587 5100

European Headquarters:

Retek
110 Wigmore Street
London
W1U 3RW
United Kingdom
Switchboard:
+44 (0)20 7563 4600
Sales Enquiries:
+44 (0)20 7563 46 46
Fax:
+44 (0)20 7563 46 10

The software described in this documentation is furnished
under a license agreement, is the confidential information of
Retek Inc., and may be used only in accordance with the
terms of the agreement.
No part of this documentation may be reproduced or
transmitted in any form or by any means without the express
written permission of Retek Inc., Retek on the Mall, 950
Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.
Information in this documentation is subject to change
without notice.
Retek provides product documentation in a read-only-format
to ensure content integrity. Retek Customer Support cannot
support documentation that has been changed without Retek
authorization.
The functionality described herein applies to this version, as
reflected on the title page of this document, and to no other
versions of software, including without limitation subsequent
releases of the same software component. The functionality
described herein will change from time to time with the
release of new versions of software and Retek reserves the
right to make such modifications at its absolute discretion.
Retek® Merchandising SystemTM is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek
Inc.
This unpublished work is protected by confidentiality
agreement, and by trade secret, copyright, and other laws. In
the event of publication, the following notice shall apply:
©2005 Retek Inc. All rights reserved.
All other product names mentioned are trademarks or
registered trademarks of their respective owners and should
be treated as such.
Printed in the United States of America.

Retek Merchandising System

Customer Support
Customer Support hours

Customer Support is available 7x24x365 via email, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard, Plus, or Premium), the
times that certain services are delivered may be restricted. Severity 1 (Critical) issues are
addressed on a 7x24 basis and receive continuous attention until resolved, for all clients on active
maintenance. Retek customers on active maintenance agreements may contact a global Customer
Support representative in accordance with contract terms in one of the following ways.

Contact Method Contact Information

E-mail support@retek.com

Internet (ROCS) rocs.retek.com
 Retek’s secure client Web site to update and view issues

Phone +1 612 587 5800

Toll free alternatives are also available in various regions of the world:

Australia +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66
Hong Kong 800 96 4262
Korea 00 308 13 1342
United Kingdom 0800 917 2863
United States +1 800 61 RETEK or 800 617 3835

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business impact).

• Detailed step-by-step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://rocs.retek.com/

Contents

i

Contents
POS Upload [posupld] .. 1

POS Upload [posupld]

1

POS Upload [posupld]
Design Overview

The purpose of this batch module is to process sales and return details from an external point of
sale system. The sales/return transactions will be validated against Retek sku/store relations to
ensure the sale is valid, but this validation process can be eliminated if the sales being passed in
have already been screened by sales auditing. The following common functions will be performed
on each sales/return record read from the input file:

• read sales/return transaction record

• validate item sale

• check if VAT maintenance is required, if so determine the VAT amount for the sale

• write all financial transactions for the sale and any relevant markdowns to the stock ledger.

• post SKU/location/week sales to the relevant sales history tables

• if a late posting occurs in a previous week (i.e. not in the current week), if the item for which
the late posting occurred is forecastable, the last_sales_export_date on the item store tables
has to be updated to the end of week date previous to the week of the late posting. This will
result in the sales download interface programs extracting the week(s) for which the late
transactions were posted to maintain accurate sales information in the external forecasting
system.

Scheduling Constraints

Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program will likely be run at the beginning of the batch run during
the POS polling cycle. It can be scheduled to run multiple times
throughout the day, as POS data becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart Recovery

The logical unit of work for the sales/returns upload module will be a valid SKU sales transaction
at a given store location. The location type will be inferred as a store type and the item can be
passed as a SKU or UPC type. The logical unit of work will be defined as a number of these
transaction records. The commit_max_ctr field on the restart_control table will determine the
number of transactions that equal a logical unit of work.

The file records will be read in groups of numbers equal to the commit_max_ctr. After all
records in a given read are processed (or rejected), the restart commit logic and restart file writing
logic will be called, and then the next group of file records will be read and processed. The
commit logic will save the current file pointer position in the input file and any application image
information (e.g. record and reject counters) and commit all database transactions. The file
writing logic will append the temporary holding files to the final output files.

Retek Merchandising System

2

The commit_max_ctr field should be set to prevent excessive rollback space usage, and to reduce
the overhead of file I/O. The recommended commit counter setting is 10000 records (subject to
change based on experimentation).

Error handling will recognize three levels of record processing: process success, non-fatal errors,
and fatal errors. Item level validation will occur on all fields before table processes are initiated.
If all field-level validations return successfully, inserts and updates will be allowed. If a non-fatal
error is produced, the remaining fields will be validated, but the record will be rejected and
written to the reject file. If a fatal error is returned, then file processing will end immediately. A
restart will be initiated from the file pointer position saved in the restart_bookmark string at the
time of the last commit point that was reached during file processing.

Program Flow

N/A

Shared Modules

validate_all_numeric: intrface library function.

validate_all_numeric_signed: intrface library function.

valid_date: intrface library function.

ORDER_ATTRIB_SQL.DELIVERY_MONTH: called from consignment_data(), returns order
delivery month into the :invoices variable.

VAT_SQL.GET_VAT_RATE: called from pack_check(), returns the composite vat rate for a
packitem.

CURRENCY_SQL.CONVERT: returns the converted monetary amount from Currency to
currency.

NEW_STAPLE_LOC: called from win_check(), creates a new staple SKU if one doesn’t already
exist for the SKU/location passed in.

NEW_FASHION_LOC: called from rag_check(), creates a new fashion SKU if one doesn’t
already exist for the SKU/location passed in.

NEW_PACK_LOC: called from pack_check(), creates a new packitem if one doesn’t already
exist for the packitem/location passed in.

UPDATE_SNAPSHOT_SQL.EXECUTE: called from update_snapshot(), updates the
stake_sku_loc table for late transactions.

NEXT_ORDER_NO: called from consignment_data(), returns a randomly generated order
number.

STKLDGR_SQL.TRAN_DATA_INSERT: called from consignment_data(), performs tran_data
inserts (tran_type 20) for a consignment transaction.

POS Upload [posupld]

3

Function Level Description

Declarations:

declare input structures: file header (only date and type) & detail (all fields)

init()

initialize restart recovery

open input file (posupld)

• file should be specified as input parameter to program

fetch system variables

Retrieve all valid promotion types

declare final output filename (used in restart_write_file logic)

open reject file (as a temporary file for restart)

• file should be specified as input parameter to program

call restart_file_init logic

assign application image array variables- line counter (g_l_rec_cnt), reject counter (g_l_rej_cnt),
store, transaction_date

if fresh start (l_file_start = 0)

read file header record (get_record)

if (record type <> ‘FHEAD’) Fatal Error

validate file type = ‘POSU’

else fseek to l_file_start location

validate location and date are valid

file_process()

This function will perform the primary processing for transaction records retrieved from the input
file. It will first perform validation on the THEAD record that was fetched. If the transaction
was found to be invalid, a record will be written to the reject file, a non-fatal error will be
returned, and the next transaction will be fetched.

Next, the unit retail from price_hist will be fetched by calling the get_unit_retail() function. The
retail retrieved from this function will be compared with the actual retail sent in from the input
file to determine any discrepancies in sale amounts.

Fetch all of the TDETL records that exist for the transaction currently being processed until a
TTAIL record is encountered. Perform validation on the transaction detail records. If a detail
record is found to be invalid, the entire transaction will be written to the reject file, a non-fatal
error will be returned, and the next record will be fetched. If a valid promotion type (code for
mix & match, threshold promotions, etc.) was included in the detail record and it is not an
employee disc record, write a record to the daily_sales_discount table. If it is an employee
discount record write an employee discount record to tran_data. Finally, accumulate the discount
amounts for all transaction detail records for the current transaction, unless the record was an
employee discount.

Retek Merchandising System

4

Call the sku_process() function to perform item specific processing. Once all records have been
processed, call posting_and_restart to commit the final records processed since the last commit
and exit the function.

sku_process()

Set the item sales type for the current transaction. Valid sales types are ‘R’egular sales,
‘C’learance sales, and ‘P’romotional sales. These will be used when populating the sales types
for the item-location history tables. If an item is both on promotion and clearance, the transaction
will be written as a clearance transaction.

If the system’s VAT indicator is turned to on, VAT processing will be performed. The function
vat_calc() will retrieve the vat rate and vat code for the current item-location. The total sales
including and excluding VAT will be calculated for use in writing transaction data records. If
any VAT errors occur, the entire transaction will be written to the reject file, a non-fatal error will
be returned, and the next record will be fetched. A record will be written to vat_history for the
item, location, transaction date.

Calculate the item sales totals (i.e. total retail sold, total quantity sold, total cost sold, etc.). If
VAT is turned on in the system, calculate exclusive and inclusive VAT sales totals.

Calculate any promotional markdowns that may exist by calling the calc_prom_totals() function.
The markdown information calculated here will be used when writing tran_data (tran_type 15)
records for promotional markdowns.

Calculate the over/under amount the item was sold at compared to its price_hist record. Since we
do not create price_hist records of type 9 (promotional retail change) when the
system_options.multi_prom_ind = ‘Y’, we do not know what the promotional retail for this item
is. Therefore, we will take the total sales reported from the header record plus the total of sales
discounts reported in the TDETL records, divided by the total sales quantity for the item to
calculate its unit retail. If the system_options.multi_prom_ind = ‘N’, we can do a comparison of
the price_hist record and the unit retail (total retail / total sales) inputted from the POS file. Any
difference using either method will write to the daily_sales_discount table with a promotion type
of ‘in store’ and tran_data (tran_type 15). If the transaction is a return, no daily_sales_discount
record will be written, and tran_data records will be written as opposite of what they were sold as
(i.e. if the sale was written as a markup, which would be written as a negative retail with a
tran_data 15, the return would be written as a 15 with a positive retail).

If the item is a packitem and the transaction is a Sale, the process_pack() function will update the
last_sale field on the packstore table to the transaction date and the packstore_hist table will be
updated with the transaction information.

If the item currently being processed is a packitem, calculate the retail markdown the item takes
for being included in the pack and write a transaction data record as a promotional markdown.
This markdown is calculated by comparing the retail contribution of the packitem’s component
SKU to the packitem to the component SKU’s regular retail found on the price_hist table. The
retail contribution for a component SKU is calculated by taking the component SKU’s unit retail
from price_hist, divided by the total retail of all component SKUs in the packitem, and
multiplying the packitem’s unit retail. So if the retail contribution of a component SKU within
packitem A is $10, and the same component SKU’s price_hist record has a retail of $14, and
there is only one packitem sold, and this component SKU has a quantity of one, a tran_data

POS Upload [posupld]

5

Record (tran_type 15) will be written for $4 (assume no vat is used).

Write transaction data records for sales and returns. If the transaction is a sale, write a tran_data
record with a transaction code of 1 with the total sales. If the system VAT indicator is on and the
system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data record with a transaction code
of 2 for VAT exclusive sales. If the transaction is a return, write a tran_data record (tran_type 1)
with negative quantities and retails for the amount of the return. If the system VAT indicator is
on and the system_options.stkldgr_vat_incl_retl_ind is on, write a tran_data record (tran_type 2)
and negative quantities and retails for the VAT exclusive return. Also, write a tran_data record
with a transaction code of 4 for the total return. Any tran_data record that is written should be
either VAT exclusive or VAT inclusive, depending on the
system_options.stkldgr_vat_incl_retl_ind. If it is set to ‘Y’, all tran_data retails should be VAT
inclusive. If it is set to ‘N’, all tran_data retails should be VAT exclusive. When writing
tran_data records for packitems, always break them down to the packitem level, writing the retail
as the packitem multiplied by the component SKU’s price ratio. The packitem itself should never
be inserted into the tran_data table.

If the transaction is late (transaction date is before the current date), call update_snapshot() to
update the stake_sku_loc table and write_edi_sales() to insert or update the edi_daily_sales table.
If the transaction is current, insert or update the edi_daily_sales table (stake_sku_loc will be
updated in a batch program later down the stream). The edi_daily_sales table should only be
updated if the item’s supplier edi sales report frequency = ‘D’.

If VAT is turned on in the system, write a record to the vat_history table to record the vat amount
applied to the transaction. The VAT amount is calculated by taking the sales including VAT
minus the sales excluding VAT.

Update the sales history tables for non-consignment items that are Sale transactions. Do not
update for returns. Also, update stock count on the item-location table for Sales and Returns
unless the item is on consignment.

If an off_retail amount was identified for the item/location, call the write_off_retail_markdowns()
function to write tran_data records (tran_type 15) to record the difference. If the
system_options.multi_prom_ind = ‘N’ and the item is on promotion, or if the
system_options.multi_prom_ind = ‘Y’ and the TDETL total discount amount is greater than zero,
write a promotional markdown. Note: this will also record a tran_data record (tran_type 15) for a
TDETL record that has a promotional transaction type with no promotion number in order to
record the markdown.

If an employee discount TDETL record has been encountered, a tran_data record with tran_code
60 will be written.

If the item is a wastage item, a tran_data record with tran_code 13 will be written. This record is
used to balance the stock ledger, it accounts for the amount of the sku that was wasted in
processing.

process_detail_error()

This function writes a record to the load_err table for every non-fatal error that occurs.

set_counters()

Depending on the action passed into this function, it will either set a savepoint and store the
values of counters or rollback a savepoint and reset the values of certain counters back to where
they were originally set. This function is called when a non-fatal error occurs in the
sku_process() function to rollback and changes that may have been made.

Retek Merchandising System

6

calc_item_totals()

This function will set total retail and discount values including and excluding VAT, depending
upon the store.vat_include_ind, system_options.vat_ind, system_options.multi_prom_ind, and the
system_options.stkldgr_vat_incl_retl_ind.

calc_prom_totals()

This function will set promotional markdown values including and excluding VAT, depending
upon the system_options.multi_prom_ind and the system_options.stkldgr_vat_incl_retl_ind. If
the multi_prom_ind is on, the promotional markdown is the sum of the TDETL discount
amounts. If the multi_prom_ind is off, the promotional markdown is the difference between the
price_hist record with a tran_code of 0, 4, 8, 11 and the price_hist record with a tran_code of 9
multiplied by the total sales quantity. Also, the tran_data old and new retail fields are only
written if the multi_prom_ind is off.

process_sales_and_returns()

If the item is on consignment and not a packitem, the consignment_data() function will be called
to perform consignment processing. The function write_tran will be called to write a tran_data
record with a tran_type 1 (always written), a tran_type 2 (if the
system_options.stkldgr_vat_incl_retl_ind = Y), and a tran_type 4 (if the transaction was a return).
If the transaction is a return, any tran_data records with tran_types of 1 and 2 will be written with
negative retails. Also the update_price_hist() function will be called to update the most recent
price_hist record.

posting_and_restart()

Post all array records to their respective tables and call restart_file_commit to perform a commit
the records to the database and restart_file_write to append temporary files to output files.

validate_FHEAD()

Do standard string validations on input fields. This includes NULL padding fields, left shifting
fields, checking that numeric fields are all numeric, and validating the date field. If any errors
arise out of these validation checks, return non-fatal error then set non-fatal error flag to true.
This function will also validate the store location exists.

If the sales audit indicator is on currency and vat information will be provided in the file that has
already been validated.

validate_THEAD()

Do standard string validations on input fields. This includes NULL padding fields, left shifting
fields, checking that numeric fields are all numeric, placing decimal in all quantity and value
fields, and validating the date field. If any errors arise out of these validation checks, return non-
fatal error then set non-fatal error flag to true. This function will also validate the UPC exists. If
the upc_sup field is blank, set it to 00000.

If an UPC is passed in from the input file, retrieve the SKU for the UPC and UPC supplement.
Once the item is a SKU, retrieve the system indicator, department, class, subclass, waste_type,
waste_pct. Once this information is retrieved, check that the item/location relationship exists for
the appropriate item type.

If the sales audit indicator is ‘Y’ on system_options, the item will be a SKU and the dept, class,
subclass, and system_ind will be included in the file.

POS Upload [posupld]

7

If an item is a wastage item set the wastage qty. The qty sent in the file shows the weight of the
item sold. The wastage qty is the qty that was processed to come up with the qty sold. So if .99
of an item was sold, and item wastage percent is 10, the wastage qty is .99 / (1-.10) = 1.1. The
wastage qty will be used through out the program except when writing tran_data records(see
write_wastage_markdown) and daily_sales_discount records which will uses the processed qty
from the file.

Get_upc_wt()

Assumption: Given the structure of the var_upc_ean table, it is only possible to have 100 different
records on this table. This function uses this assumption when allocating memory to hold all the
records on the var_upc_ean table. The logic will be required enhancements to accommodate a
larger number of different variable weight upc types if desired.

Assumption: Non-variable weight UPC’s can’t start with a prefix that exists on the var_upc_ean
table.

Assumption: All values passed in through variable weight UPC’s will be considered to be in the
standard unit of measure.

This function will extract an amount from a variable weight UPC. The first time this function is
called it will build an array containing the var_upc_ean table. It will then proceed to search that
array for a record that has a prefix matching the first two values in the UPC from the file. If it
finds a matching record, it will use the information in the var_upc_ean array to strip out the
weight from the UPC. It will then replace the characters of the UPC that held the weight with
zeros so the sku can be retrieved from the UPC.

Example:

The UPC 2712345000000 is stored in RMS as a variable weight UPC. The prefix of the UPC is
27. The item identifier is 12345. The next five digits are the variable weight portion of the UPC.
And finally the last character is a check digit for data transmission use.

The UPC is sent down to the stores and thus the scales with a variable weight indicator. This
indicator lets the scales know to insert the weight sold, of the item, into the variable weight
portion of the UPC upon a sale (with 3 implied decimal places). Let’s say 7.7 pounds of our UPC
were sold. The UPC would be uploaded from the POS file as 2712345077001. This function
would strip out the 7.7 and assign it to the total qty sold variable. It would then replace the
variable weight portion and the check digit of the UPC with zeros: 2712345000000. The UPC
with the weight and check digit stripped out then will be used with the upc_ean table to get the
sku.

validate_TDETL

Assumption: Currently posupld.pc cannot interface with sales audit. This is due to the variable
weight UPC logic. Sales audit currently doesn’t recognize variable weight UPC’s, and thus
cannot process them. The code designed to interface with Sales Audit is commented out. It
should be uncommented when sales audit is updated to deal with variable weight UPC’s.

Assumption: Variable weight UPC’s need to be sent in at the transaction level, not the rolled up
level that posupld usually receives. This is due to the fact that TDETL lines need to source their
qty’s from the UPC and not from the specified qty input fields.

Retek Merchandising System

8

This function will perform validation on the TDETL records passed into the program. The
standard string validation on these fields includes NULL padding fields, left shifting fields,
checking that numeric fields are all numeric, placing decimal in all quantity and value fields, and
validating the date field. If any errors arise out of these validation checks, return non-fatal error
then set non-fatal error flag to true.

If a promotional transaction type is passed in, verify it is valid. If a promotional transaction type
is passed in, but it is not valid, return non-fatal error then set non-fatal error flag to true. If a
promotion number is passed in, validate it by checking the promhead table and set the
promotional indicator to True.

If the item is a wastage item set the tdetl wastage qty. This is done the same way as setting the
THEAD wastage qty.

New_staple_loc

This function creates a new store sku relationship for staple items.

Win_store_cursors

This function checks the win_store for the sku / store combination. It is called by the win_check
function.

win_check

This function verifies the staple item/location relationship exists. It is only called when the item
being processed is a staple item. If the item/location relationship does not exist, it is created and a
record is written to the Invalid item/location output file.

New_fashion_loc

This function creates a new store sku relationship for fashion items. It is called by rag_check.

rag_store_cursors

This function checks the win_store for the sku / store combination. It is called by the win_check
function.

rag_check

This function verifies the fashion item/location relationship exists. It is only called when the item
being processed is a fashion item. If the item/location relationship does not exist, it is created and
a record is written to the Invalid item/location output file.

New_pack_loc

This function creates a new store sku relationship for fashion items. It is called by pack_check.

pack_check

This function verifies the pack item/location relationship exists and retrieves the component
SKUs for the packitem. It is only called when the item being processed is a packitem. The
component SKU, system indicator, department, class, subclass, cost, retail, price_hist retail, and
component SKU quantity are fetched. If the packitem/location relationship does not exist, it is
created for the Packitem and all of its components and a record is written to the Invalid
item/location output file for the packitem.

The component SKUs price ratios are also calculated. This indicates the retail contribution the
component SKU gives towards the unit retail of the packitem. This ratio is calculated by taking
the price_hist unit retail of the component divided by the total price_hist retail of all the
component SKUs for the packitem. Below is an example of how this ratio is calculated:

POS Upload [posupld]

9

 Unit Retail Qty Retail Calculation Ratio

packitem A $60

SKU 1 $15 2 $30 ($30/$90) * $60 .3333

SKU 2 $10 6 $60 ($60/$90) * $60 .6667
get_unit_retail

This function retrieves the unit retail from price_hist for the item/location being processed. If the
item being processed is not a component SKU to a packitem that is currently being processed and
the transaction is a sale, call get_all_price. If that is not found, call get_base_price. If the
price_hist record fetched is a 9 (promotional retail change), the item being processed is a
component SKU to a packitem currently being processed, or the transaction is a return, call
get_reg_price. (these are base retail changes). If a tran_code of 8 is returned, the item is on
clearance.

Get_all_price

This function will get the retail from price_hist for tran_types in (0, 4, 8, 9, 11). It is called by
get_unit_retail.

Get_reg_price

This function will get the retail from price_hist for tran_types in (0, 4, 8, 11). It is called by
get_unit_retail.

Get_base_price

This function will get the retail from price_hist for tran_types of 0. It is called by get_unit_retail.

process_packitems

This function performs processing for the component SKUs of the packitems. This would
include updates/inserts into stake_sku_loc, edi_daily_sales, win_store, rag_skus_st,
win_store_hist, rag_skus_st_hist, vat_history_data, and tran_data. All of these tables do not write
records at the packitem level, but at the component SKU level. When figuring retails to write to
these tables, the component SKUs price ratio should always be applied against the packitems
retail to come up with the correct retail for each component SKU. If an employee discount
TDETL record has been encountered, an tran_data record with tran_code 60 will be written for
each component sku.

process_daily_sales_discount()

This function will insert/update a record to daily_sales_discount for each TDETL record that has
a promotional transaction type except employee discounts. Employee discount records are not
written to daily_sales_discount, they are put on tran_data with a tran_code of 60. When
employee discount records are encountered, values are set for the tran_data insert and the
discount amount is added to the total sales value. This is done so employee discounts do figure
into the promotional and in store calculations. When the multi_prom_ind is on all promotion
types except employee discount will be ignored.

write_in_store()

This function will handle record sent in as ‘is store’ discounts amounts. It will call
check_daily_exist and daily_sales_insert_update.

Retek Merchandising System

10

Remove_stklgdr_vat()

This function will remove vat from 3 fields after the daily_sales_discount processing is complete.
The variables od_off_retail_amt, od_new_retail, and od_old_retail are stripped of vat by calling
vat_convert if the stock ledger does not contain vat.

Write_off_retail()

This function will calculate discrepancies between the amount sold for an item, and the amount it
should have sold for (price_hist record). If these amounts are not in balance, a record is written to
the daily_sales_discount table with a prom_type of ‘in store’ for reporting.

Daily_sales_exist()

This function will check the daily_sales_discount for the existence of a record matching the input
parameters

Daily_sales_insert_update()

This function is called by write_off_retail, write_in_store, and process_daily_sales_discount. It
performs the actual insert or fills an update array for the daily_sales_discount table.

write_off_retail_markdown()

The write_tran_data() function will be called to write the off_retail markdown unless the item is
on consignment or the off_retail amount is zero.

write_promotional_markdown()

The write_tran_data() function will be called to write the promotional markdown unless the item
multi_prom_ind is off and the transaction is a return, the item is on consignment, or the
promotional markdown amount is zero. The tran_data new and old retails are only written if the
multi_prom_ind is off.

Write_wastage_markdown()

This function will call to the write_tran_data() function if the item is a wastage item. A wastage
item is an item that loses some of its weight (value) in processing. For example, a 1 pound
chicken is broiled and loses 10% of its weight. The item is sold at .9 pounds, but in reality selling
that .9 pounds of chicken removes 1 pound of chicken from the inventory. This function writes a
tran_code 13 tran_data record to account for the amount of the chicken that was lost due to
wastage in processing.

vat_convert()

This function will either add or remove vat from a retail value.

process_win()

Update the stock on hand on the win_store table for Sales and Returns unless the item is on
consignment. Also, update the win_store_hist table for Sale transactions. Do not update for
returns.

process_rag()

Update the stock on hand on the rag_skus_st table for Sales and Returns unless the item is on
consignment. Also, update the rag_skus_st_hist table for Sale transactions. Do not update for
returns.

POS Upload [posupld]

11

process_pack()

Update the stock on hand on the packstore table for Sales and Returns. Also, update the
rag_skus_st_hist table for Sale transactions. Do not update for returns.

write_tran_data()

Writes a record to the tran_data insert array.

Write_edi_sales()

Writes or updates a record to the edi_daily_sales table for both current and late transactions.

update_snapshot()

Calls the UPDATE_SNAPSHOT_SQL.EXECUTE function to update the stake_sku_loc table for
late transactions.

write_vat_err_message()

This function will create and write to the VAT output file when an item does not have VAT
information setup when it is expected.

vat_history_data()

Writes a record to the vat_history table.

consignment_data()

This function will perform processing for consignment items. Consignment items are such when
the item_supplier table has a consignment rate applied to it. Consignment is when a retailer will
allow a third party to operate under its umbrella and be paid for what it sells. An example of
consignment may be a mass-merchant who consigns the magazine section of their store to a
magazine vendor. The magazine vendor would have control over keeping the product stocked
within the store. When a magazine is sold, the retailer would get paid for the magazine, then the
retailer would essentially buy the magazine from the vendor. The consignment cost paid by the
retailer to the vendor is the VAT-inclusive retail multiplied by the consignment rate divided by
100. So if the VAT-inclusive retail price of a magazine was $10 and the consignment rate was
50, the consignment cost would be $5.

Also a completed order to the vendor should be found/created for the supplier with an orig_ind =
4 (consignment). Consignment type invoices will be created for all PO’s created for
consignments

Also a tran_data record (tran_type 20) will be written to record the consignment transaction to the
stock ledger. The retails should be VAT inclusive or exclusive, depending on the
system_options.stkldgr_vat_incl_retl_ind.

This function uses support functions: check_order(), order_head(), invc_data(), to handle the
order creation-update and the invoice creation-update.

get_prom_type_info()

This function will retrieve all valid promotional transaction types from the code_detail table.
Valid promotional transaction types are those where the code_type = ‘PRMT’.

fill_packitem_array()

This function will retrieve the component SKUs for a packitem with the appropriate item level
information into an array.

Retek Merchandising System

12

write_sku_store_report()

This function will create and write to the Invalid item/location output file when an item does not
exist at a location it was sold/returned at.

ON Fatal Error

• Exit Function with -1 return code

ON Non-Fatal Error

• write out rejected record to the reject file using write_to_rej_file function, pass pointer to
detail record structure, number of bytes in structure, and reject file pointer

Input File

The input file should be accepted as a runtime parameter at the command line. All number fields
with the number(x,4) format assume 4 implied decimal included in the total length of ‘x’.

When the system_options field sales_audit_ind is ‘Y’ the following FHEAD fields will be
populated and already validated: Vat include indicator, Vat region, Currency code, and Currency
retail decimals. When the sales_audit_ind is ‘N’ these values will not be used and retrieved from
the system.

When the system_options field sales_audit_ind is ‘Y’ the following THEAD fields will be
populated and already validated: System_ind, Dept, Class, and Subclass. When the
sales_audit_ind is ‘N’ these values will not be used and retrieved from the system. When the
sales_audit_ind is on, all items are assumed to be SKUs.

Record
Name

Field Name Field Type Default Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Char(10) specified by external
system

ID of current line
being processed
by input file.

 File Type
Definition

Char(4) POSU Identifies file as
‘POS Upload’

 File Create
Date

Char(14) create date date file was
written by
external system

 Location
Number

Number(4) specified by external
system

Store or
warehouse
identifier

POS Upload [posupld]

13

Record
Name

Field Name Field Type Default Value Description

 Vat include
indicator

Char(1) Determines
whether or not
the store stores
values including
vat. Required if
the sales audit
indicator is ‘Y’
on
system_options.

 Vat region Number(4) Vat region the
given location is
in. Required if
the sales audit
indicator is ‘Y’
on
system_options.

 Currency code Char(3) Currency of the
given location.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Currency retail
decimals

Number(1) Number of
decimals
supported by
given currency
for retails.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by external
system

ID of current line
being processed
by input file.

 Business Date Char(14) business date to
process

business date of
transactions

Retek Merchandising System

14

Record
Name

Field Name Field Type Default Value Description

 Item Type Char(3) UPC
SKU

item type will be
represented as an
UPC, an SKU

 Item Value Char(13) item identifier the id number of
a SKU or UPC

 Supplement Char(5) supplemental
identifier

used to further
specify the id of
an UPC item, or
the pre-pack id
reference

 System_ind Char(1) ‘S’- staple sku
‘f’- fashion sku
‘P’- pack item

The type of item
sold or returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Dept Number(4) Item’s dept Dept of item sold
or returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Class Number(4) Item’s class Class of item sold
or returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Subclass Number(4) Item’s subclass Subclass of item
sold or returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

POS Upload [posupld]

15

Record
Name

Field Name Field Type Default Value Description

 Wastage Type Char(6) Item’s wastage type Wastage type of
item sold or
returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Wastage
Percent

Number(12) Item’s wastage
percent

Wastage percent
of item sold or
returned.
Required if the
sales audit
indicator is ‘Y’
on
system_options.

 Transaction
Type

Char(1) ‘S’ – sales
‘R’ - return

Transaction type
code to specify
whether
transaction is a
sale or a return

 Total Sales
Quantity

Number(12) Number of units
sold at a
particular
location with 4
implied decimal
places.

 Sales Sign Char(1) ‘P’ - positive
‘N’ - negative

Determines if the
Total Sales
Quantity and
Total Sales Value
are positive or
negative.

 Total Sales
Value

Number(20) Sales value, net
sales value of
goods
sold/returned
with 4 implied
decimal places.

 Last Modified
Date

Char(14) For VBO future
use

Retek Merchandising System

16

Record
Name

Field Name Field Type Default Value Description

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies
transaction record
type

 File Line
Identifier

Char(10) specified by external
system

ID of current line
being processed
by input file.

 Promotional
Tran Type

Char(6) promotion type –
valid values see
code_detail table.

code for
promotional type
from code_detail,
code_type =
‘PRMT’

 Promotion
Number

Number(4) promotion number promotion
number from the
RMS

 Sales Quantity Number(12) number of units
sold in this prom
type with 4
implied decimal
places.

 Sales Value Number(20) value of units
sold in this prom
type with 4
implied decimal
places.

 Discount Value Number(20) Value of discount
given in this
prom type with 4
implied decimal
places.

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Char(10) specified by external
system

ID of current line
being processed
by input file.

 Transaction
Count

Number(6) specified by external
system

Number of
TDETL records
in this transaction
set

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

POS Upload [posupld]

17

Record
Name

Field Name Field Type Default Value Description

 File Line
Identifier

Number(10) specified by external
system

ID of current line
being processed
by input file.

 File Record
Counter

Number(10) Number of
records/transactio
ns processed in
current file (only
records between
head & tail)

Invalid Item/Store File:

The Invalid Item/Store File will only be written when a transaction holds an item that does not
exist at the processed location. In the event this happens, the relationship will be created during
the program execution and processing will continue with the item and store number being written
to this file for reporting.

VAT File:

The VAT file will only be written if a particular item cannot retrieve a VAT rate when one is
expected (e.g. the system_options.vat_ind is on). In this event, a non-fatal error will occur
against the transaction and a record will be written to this file and the Reject file.

Reject File:

The reject file should be able to be re-processed directly. The file format will therefore be
identical to the input file layout. The file header and trailer records will be created by the
interface library routines and the detail records will be created using the write_to_rej_file
function. A reject line counter will be kept in the program and is required to ensure that the file
line count in the trailer record matches the number of rejected records. A reject file will be
created in all cases. If no errors occur, the reject file will consist only of a file header and trailer
record and the file line count will be equal to 0.

A final reject file name, a temporary reject file name, and a reject file pointer should be declared.
The reject file pointer will identify the temporary reject file. This is for the purposes of restart
recovery. When a commit event takes place, the restart_write_function should be called (passing
the file pointer, the temporary name and the final name). This will append all of the information
that has been written to the temp file since the last commit to the final file. Therefore, in the
event of a restart, the reject file will be in synch with the input file.

Error File:

Standard Retek batch error handling modules will be used and all errors (fatal & non-fatal) will
be written to an error log for the program execution instance. These errors can be viewed on-line
with the batch error handling report.

Retek Merchandising System

18

Technical Issues

Assumption: Variable weight UPC’s need to be sent in at the transaction level, not the rolled up
level that posupld usually receives. This is due to the fact that TDETL lines need to source their
qty’s from the UPC and not from the specified qty input fields.

Assumption: Given the structure of the var_upc_ean table, it is only possible to have 100 different
records on this table. This function uses this assumption when allocating memory to hold all the
records on the var_upc_ean table. The logic will be required enhancements to accommodate a
larger number of different variable weight upc types if desired.

Assumption: Non-variable weight UPC’s can’t start with a prefix that exists on the var_upc_ean
table.

Assumption: All values passed in through variable weight UPC’s will be considered to be in the
standard unit of measure.

	Contents
	POS Upload [posupld]

