

Retek Merchandising System
9.0.2.0

Addendum to Operations Guide

rms-9020-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2000 by Retek Inc.

All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Printed in the United States of America.

Customer Support
Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2000: Jan. 3, May 29, July 3, July 4, Sept.
4, Nov. 23, Nov. 24, Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800

Fax (+1) 612-630-5710

E-mail support@retek.com

Internet www.retek.com/reteknow
Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza
801 Nicollet Mall
Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

• Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

• Provide a completely updated Customer Profile.

• Have a single resource per product responsible for coordination and
screening of Retek issues.

• Respond to our requests for additional information in a timely manner.

• Use the Expert Web to submit and update your issues.

• Have a test system in place running base Retek code.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – ReSA 9.0 RTLOG layout ... 2

Chapter 3 – saexpach batch module design 25

Functional Area... 25

Module Affected ... 25

Design Overview .. 25

Background information – Quick Overview of the ACH process................................ 26

Data Security... 27

Scheduling Constraints ... 28

Restart Recovery... 28

Program Flow ... 29

Shared Modules .. 29

Function Level Description .. 30

I/O Specification ... 33

Technical Issues .. 40

Assumptions.. 40

Chapter 4 – saimptlog batch detail design.................................. 41

Introduction... 41

Functional Area... 41

Module Affected ... 41

Design Overview .. 42

Program Flow ... 44

Function Level Description .. 44

SAIMPTLOGFIN ... 52

Stored Procedures / Shared Modules (Maintainability).. 53

Input Specifications .. 55

Output Specifications.. 56

Database Integrity ... 60

Scheduling Considerations ... 60

Locking Strategy... 60

Restart / Recovery... 60

Performance .. 61

Security Considerations .. 61

Design Assumptions ... 61

Outstanding Design Issues.. 61

References... 61

Batch Detailed Design Walkthrough .. 61

Appendix ... 62

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0.0.0 Operations
Guide contains updates to the following information:

• ReSA 9.0 RTLOG Layout

• saexpach batch module design

• saimptlog batch detail design

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0.0.0 Operations Guide.

2 Retek Merchandising System

Chapter 2 – ReSA 9.0 RTLOG layout
The following illustrates the file layout format of the Retek TLOG. The content of each Retek TLOG file is per store per day. The filename convention will be
RTLOG_STORE_DATETIME.DAT (e.g. RTLOG_1234_01221989010000.DAT)

FHEAD (Only 1 per file, required)
 THEAD (Multiple expected, one per transaction, required for each transaction)

 TCUST (Only 1 per THEAD record allowed, optional for some transaction types, see table below)
 CATT (Attribute record specific to the TCUST record – Multiple allowed, only valid if TCUST exists)

 TITEM (Multiple allowed per transaction, optional for some transaction types, see table below)
 IDISC (Discount record specific to the TITEM record – Multiple allowed per item, optional see table below)

 TTAX (Multiple allowed per transaction, optional see table below)
 TTEND (Multiple allowed per transaction, optional for some transaction types, see table below)

TTAIL (1 per THEAD, required)
FTAIL (1 per file, required)

The order of the records within the transaction layout above is important. It aids processing by ensuring that information is present when it is needed.

Record
Name

Field Name Field Type Default Value Description Required? Justification/
Padding

File
Header

File Type Record
Descriptor

Char(5) FHEAD Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input file. Y Right/0

 File Type Definition Char(4) RTLG Identifies file as ‘Retek TLOG’. Y Left/Blank
 File Create Date Char(14) Create date Date and time file was written by external system

(YYYYMMDDHHMMSS).
Y Left/None

 Business Date Char(8) Business Date to
process

Business date of transactions. (YYYYMMDD). Y Left/None

 Location Number Char(4) Specified by
external system

Store or warehouse identifier. Y Left/None

 Reference Number Char(30) Specified by
external system

This may contain the Polling ID associated with
the consolidated TLOG file or used for other
purpose.

N Left/Blank

Chapter 2 – ReSA 9.0 RTLOG layout 3

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies file record type. Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Register Char(5) Till used at store. Y Left/Blank
 Transaction Date Char(14) Transaction date Date transactions were processed at the POS

(YYYYMMDDHHMMSS).
Y Left/None

 Transaction Number Number(10) Transaction identifier. Y Right/0
 Cashier Char(10) Cashier identifier. N Left/Blank
 Salesperson Char(10) Salesperson identifier. N Left/Blank
 Transaction Type Char(6) Refer to 'TRAT'

code_type for a list
of valid types.

Transaction type. Y Left/Blank

 Sub-transaction type Char(6) Refer to 'TRAS'
code_type for a list
of valid types.

Sub-transaction type. For sale, it can be
employee, drive-off etc.

N Left/Blank

 Orig_tran_no Number(10) Populated only for post-void transactions.
Transaction number for the original tran
that will be cancelled.

N Right/0

 Orig_reg_no Char(5) Populated only for post-void transactions.
Register number from the original tran.

N Left/Blank

 Reason Code Char(6) Refer to 'REAC'
code_type for a list
of valid codes. If the
transaction type is
‘PAIDOU’ and the
sub transaction type
is ‘MV’ or ‘EV’
than the valid codes
come from the
non_merch_code_he
ad table.

Reason entered by cashier for some
transaction types. Required for Paid In
and Paid out transaction types, but can
also be used for voids, returns, etc.

N Left/Blank

 Vendor Number Char(10) Supplier id for a merchandise vendor paid
out transaction, partner id for an expense
vendor paid out transaction.

N Left/Blank

 Vendor Invoice
Number

Char(30) Invoice number for a vendor paid out
transaction.

N Left/Blank

4 Retek Merchandising System

 Payment Reference
Number

Char(16) The reference number of the tender used
for a vendor payout. This could be the
money order number, check number, etc.

N Left/Blank

 Proof of Delivery
Number

Char(30) Proof of receipt number given by the
vendor at the time of delivery. This field is
populated for a vendor paid out
transaction.

N Left/Blank

 Reference Number 1 Char(30) Number associated with a particular
transaction, for example weather for a Store
Conditions transaction.
The sa_reference table defines what this field
can contain for each transaction type.

N Left/Blank

 Reference Number 2 Char(30) Second generic reference number. N Left/Blank
 Reference Number 3 Char(30) Third generic reference number. N Left/Blank
 Reference Number 4 Char(30) Fourth generic reference number. N Left/Blank
 Value Sign Char(1) Refer to ‘SIGN’

code_type for a list
of valid codes.

Sign of the value. Y if Value
is present

Left/None

 Value Number(20) Value with 4 implied decimal places.
Populated by the retailer for TOTAL trans,
populated by Retek sales audit for SALE,
RETURN trans.

Y if tran is
a TOTAL.

Right/0

Chapter 2 – ReSA 9.0 RTLOG layout 5

Transaction
Customer

File Type Record
Descriptor

Char(5) TCUST Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Customer ID Char(16) Customer identifier The ID number of a customer. Y Left/Blank
 Customer ID type Char(6) Refer to 'CIDT'

code_type for a list
of valid types

Customer ID type. Y Left/Blank

 Customer Name Char(40) Customer name. N Left/Blank
 Address 1 Char(40) Customer address. N Left/Blank
 Address 2 Char(40) Additional field for customer address. N Left/Blank
 City Char(30) City. N Left/Blank
 State Char(3) State identifier State. N Left/Blank
 Zip Code Char(10) Zip identifier Zip code. N Left/Blank
 Country Char(3) Country. N Left/Blank
 Home Phone Char(20) Telephone number at home. N Left/Blank
 Work Phone Char(20) Telephone number at work. N Left/Blank
 E-mail Char(100) E-mail address. N Left/Blank
 Birthdate Char(8) Date of birth. (YYYYMMDD) N Left/Blank

Customer
Attribute

File Type Record
Descriptor

Char(5) CATT Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Attribute type Char(6) Refer to ‘SACA'
code_type for a list
of valid types

Type of customer attribute Y Left/Blank

 Attribute value Char(6) Refer to members of
‘SACA' code_type
for a list of valid
values

Value of customer attribute. Y Left/Blank

6 Retek Merchandising System

Transactio
n Item

File Type Record
Descriptor

Char(5) TITEM Identifies file record type. Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Item Status Char(6) Refer to ‘SASI’
code_type for a list
of valid codes.

Status of the item within the transaction, V for
item void, S for sold item, R for returned item.

Y Left/Blank

 Item Type Char(6) Refer to ‘SAIT’
code_type for a list
of valid codes.

Identifies what type of item is transmitted. Y Left/Blank

 SKU Number(8) Item identifier ID number Either SKU Left/Blank
 UPC Char(13) Item identifier ID number Or

UPC
Left/Blank

 Supplement Number(5) Supplemental
identifier

Used to further specify the ID of a UPC. N Left/Blank

 Voucher Char(16) Gift certificate number N Right/0
 Item Number Char(16) Item identifier Populated by retailer for Item types other than

SKU, UPC or GCN. Allows retailers more
flexibility to store additional item types within
ReSA.

N Left/Blank

 Department Number(4) Identifies the department this item belongs to.
This is filled in by saimptlog.

N Right/Blank

 Class Number(4) Item’s class Class of item sold or returned. Not required
from a retailer, populated by Retek sales audit.
This is filled in by saimptlog.

N Right/Blank

 Subclass Number(4) Item’s subclass Subclass of item sold or returned. Not
required from a retailer, populated by Retek
sales audit.
This is filled in by saimptlog.

N Right/Blank

 System Indicator Char(1) Refer to 'IMTP’
code_type for a list
of valid codes.

The type of item sold or returned. Not
required from a retailer, populated by Retek
sales audit.
This is filled in by saimptlog.

N Left/None

 Quantity Sign Char(1) Refer to 'SIGN'
code_type for a list
of valid codes.

Sign of the quantity Y Left/None

Chapter 2 – ReSA 9.0 RTLOG layout 7

 Quantity Number(12) Number of items purchased with 4 decimal

places.
Y Right/0

 Unit Retail Number(20) Unit retail with 4 implied decimal places. Y Right/0
 Override Reason Char(6) Refer to 'ORRC'

code_type for a list
of valid codes.

This column will be populated when an item's
price has been overridden at the POS to define
why it was overridden.

Y if unit
retail was
manually
entered

Left/Blank

 Original Unit Retail Number(20) Value with 4 implied decimal places.
This column will be populated when the item's
price was overridden at the POS and the item's
original unit retail is known.

Y if unit
retail was
manually
entered

Right/0

 Taxable Indicator Char(1) Refer to 'YSNO’
code_type for a list
of valid codes.

Indicates whether or not item is taxable. Y Left/None

 Pump Char(8) Fuel pump identifier. N Left/Blank
 Reference Number 5 Char(30) Number associated with a particular item

within a transaction, for example special order
number.
The sa_reference table defines what this field
can contain for each transaction type.

N Left/Blank

 Reference Number 6 Char(30) Second generic reference number at the item
level.

N Left/Blank

 Reference Number 7 Char(30) Third generic reference number at the item
level.

N Left/Blank

 Reference Number 8 Char(30) Fourth generic reference number at the item
level.

N Left/Blank

 Item_swiped_ind Char(1) Refer to 'YSNO’
code_type for a list
of valid codes.

Indicates if the item was automatically
entered into the POS system or if it had to
be manually keyed.

Y Left/None

 Return Reason Code Char(6) Refer to ‘SARR’
code_type for a list
of valid codes.

The reason an item was returned. N Left/Blank

 Salesperson Char(10) The salesperson who sold the item. N Left/Blank
 Expiration_date Char(8) Gift certificate expiration date

(YYYYMMDD).
N

8 Retek Merchandising System

Item
Discount

File Type Record
Descriptor

Char(5) IDISC Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by external
system

ID of current line being processed by input file. Y Right/0

 RMS Promotion
Number

Char(6) Refer to ‘PRMT’
code_type for a list of
valid types

The RMS promotion type. Y Left/Blank

 Discount Reference
Number

Number(4) Discount reference number is associated with
the discount type (e.g. if discount type is a
promotion, this contains the promotion number).

N Left/Blank

 Discount Type Char(6) Refer to ‘SADT’
code_type for a list of
valid types.

The type of discount within a promotion. This
allows a retailer to further break down coupon
discounts within the “In-store” promotion, for
example.

N Left/Blank

 Coupon Number Char(16) Number of a store coupon used as a discount. Y if
coupon

Left/Blank

 Coupon Reference
Number

Char(16) Additional information about the coupon,
usually contained in a second bar code on the
coupon.

Y if
coupon

Left/Blank

 Quantity Sign Char(1) Refer to 'SIGN'
code_type for a list of
valid codes.

Sign of the quantity. Y Left/None

 Quantity Number(12) The quantity purchased that discount is applied
with 4 implied decimal places.

Y Right/0

 Unit Discount
Amount

Number(20) Unit discount amount for this item with 4
implied decimal places.

Y Right/0

 Reference Number
13

Char(30) Number associated with a particular transaction
type at the discount level.
The sa_reference table defines what this field
can contain for each transaction type.

N Left/Blank

 Reference Number
14

Char(30) Second generic reference number at the discount
level.

N Left/Blank

 Reference Number
15

Char(30) Third generic reference number at the discount
level.

N Left/Blank

 Reference Number
16

Char(30) Fourth generic reference number at the discount
level.

N Left/Blank

Chapter 2 – ReSA 9.0 RTLOG layout 9

Transaction
Tax

File Type Record
Descriptor

Char(5) TTAX Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Tax Code Char(6) Refer to 'TAXC'
code_type for a list
of valid codes

Tax code to represent whether it is a state tax
type, provincial tax, etc.

Y Left/Blank

 Tax Sign Char(1) Refer to 'SIGN'
code_type for a list
of valid codes.

Sign of Tax Amount. Y Left/None

 Tax Amount Number(20) Amount of tax charged for this tax code type
in a transaction with 4 implied decimal places.

Y Right/0

 Ref_no17 Char(30) Additional information about the tax that the
retailer chooses to the store.

N Left/Blank

 Ref_no18 Char(30) Additional information about the tax that the
retailer chooses to the store.

N Left/Blank

 Ref_no19 Char(30) Additional information about the tax that the
retailer chooses to the store.

N Left/Blank

 Ref_no20 Char(30) Additional information about the tax that the
retailer chooses to the store.

N Left/Blank

10 Retek Merchandising System

Transaction
Tender

File Type Record
Descriptor

Char(5) TTEND Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Tender Type Group Char(6) Refer to 'TENT'
code_type for as list
of valid types

High-level grouping of tender types. Y Left/Blank

 Tender Type ID
Number(6)

Refer to the
pos_tender_type_he
ad table for as list of
valid types

Low-level grouping of tender types.

Y Left/Blank

 Tender Sign Char(1) Refer to 'SIGN'
code_type for a list
of valid codes.

Sign of the value. Y Left/None

 Tender Amount Number(20) Amount paid with this tender in the
transaction with 4 implied decimal places.

Y Right/0

 Cc_no Number(16) Credit card number Y if credit
card

Left/Blank

 Cc_auth_no Char(16) Authorization number for a cc Y if credit
card

Left/Blank

 cc authorization
source

Char(6) Refer to 'CCAS'
code_type for as list
of valid types

 Y if credit
card

Left/Blank

 cc cardholder
verification

Char(6) Refer to 'CCVF'
code_type for as list
of valid types

 Y if credit
card

Left/Blank

 cc expiration date Char(8) (YYYYMMDD) Y if credit
card

Left/Blank

 cc entry mode Char(6) Refer to 'CCEM'
code_type for as list
of valid types

Indicates whether the credit card was swiped,
thus automatically entered, or manually
keyed.

Y if credit
card

Left/Blank

 cc terminal id Char(6) Terminal number transaction was sent from. N Left/Blank
 cc special condition Char(6) Refer to 'CCSC'

code_type for as list
of valid types

 Y if credit
card

Left/Blank

Chapter 2 – ReSA 9.0 RTLOG layout 11

Transaction
Tender

File Type Record
Descriptor

Char(5) TTEND Identifies file record type Y Left/Blank

 Voucher_no Char(16) Gift certificate or credit voucher serial
number.

Y if
voucher

Right/0

 Coupon Number Char(16) Number of a manufacturer’s coupon used as a
tender.

Y if
coupon

Left/Blank

 Coupon Reference
Number

Char(16) Additional information about the coupon,
usually contained in a second bar code on the
coupon.

Y if
coupon

Left/Blank

 Reference No 9 Char(30) Number associated with a particular
transaction type at the tender level.
The sa_reference table defines what this field
can contain for each transaction type.

N Left/Blank

 Reference No 10 Char(30) Second generic reference no at the tender
level.

N Left/Blank

 Reference No 11 Char(30) Third generic reference no at the tender level. N Left/Blank
 Reference No 12 Char(30) Fourth generic reference no at the tender level. N Left/Blank

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 Transaction Record
Counter

Number(10) No of records processed in current tran (only
records between trans head & tail)

File Trailer File Type Record

Descriptor
Char(5) FTAIL Identifies file record type Y Left/Blank

 File Line Identifier Number(10) Specified by
external system

ID of current line being processed by input
file.

Y Right/0

 File Record Counter Number(10) No of transactions processed in current file
(only records between file head & tail)

Y Right/0

12 Retek Merchandising System

The RTLOG file is imported into the Sales Audit tables after validation by the batch program saimptlog. This section describes the requirements and validations
performed on the records.

1. Common requirements/validations:

This section details the common requirements and validations performed on all transactions. The following sections describe the specific requirements of
each type of transaction. If a transaction is not mentioned, then it does not have specific requirements.

a. Record Type Requirements:

Transaction Type Includes item records? Includes tender records? Includes tax records? Includes customer records?
OPEN No No No No
NOSALE No Optional No No
VOID Optional Optional Optional Optional
PVOID No No No No
SALE Yes Yes Optional Optional
RETURN Yes Yes Optional Optional
EEXCH Yes No Optional Optional
PAIDIN No Yes No No
PAIDOU No Yes No No
PULL No Yes No No
LOAN No Yes No No
COND No No No No
CLOSE No No No No
TOTAL No No No No
REFUND This transaction is not sent through the RTLOG. It is entered at the HQ level. The TITEM and TCUST records are optional. The

TTEND record is required. A TTAX record should not be included.
METER Yes No No No
PUMPT Yes No No No
TANKDP Yes No No No
TERM TERM records are created by saimptlog and then loaded into the database. They do not come from the RTLOG file. They

require one TITEM, one TTEND, one TTAX, one TCUST record and one CATT record.
DCLOSE No No No No

Chapter 2 – ReSA 9.0 RTLOG layout 13

b. Requirements per record type:

Record Type Requirements
IDISC • IDISC records must immediately follow their associated TITEM record.
CATT • CATT records must immediately follow their associated TCUST record.

c. Code Type Validations:

Record Name Field Name Code Type
Transaction Header Transaction Type TRAT
 Sub-transaction Type TRAS
 Reason Code REAC or values from non_merch_code_head if the transaction type is ‘PAIDOU’

and the sub transaction type is ‘MV’ or ‘EV’.
 Value Sign SIGN
 Vender No If the transaction type is ‘PAIDOU’ and the sub transaction type is ‘MV’, this field is

validated against the supplier table. If the transaction type is ‘PAIDOU’ and the sub
transaction type is ‘EV’, this field is validated against the partner table.

Transaction Item Item Type SAIT
 Item Status SASI
 System Indicator IMTP
 Quantity Sign SIGN
 Taxable Indicator YSNO
 Price Override Reason Code ORRC
 Item Swiped Indicator YSNO
 Return Reason Code SARR
Item Discount RMS Promotion Type PRMT
 Discount Type SADT
 Quantity Sign SIGN
Transaction Customer Customer ID Type CIDT
Customer Attribute Attribute Type SACA
 Attribute value Code types from codes in SACA.
Transaction Tax Tax code TAXC
 Tax sign SIGN
Transaction Tender Tender Type Group TENT
 Tender Sign SIGN
 Tender Type ID Pos_tender_type_head table

14 Retek Merchandising System

 CC Authorization Source CCAS
 CC Cardholder Verification CCVF
 CC Entry Mode CCEM
 CC Special Condition CCSC

d. Dates are validated: Business Date, Transaction Date, Expiration Date Also, saimptlog accepts only business dates that are within the PERIOD.VDATE

minus the SA_SYSTEM_OPTIONS.DAYS_POST_SALE value.

e. Store number is validated against the STORE table.

f. Numeric fields are checked for non-numeric characters.

g. For transaction of type SALE, RETURN and EEXCH, saimptlog checks whether a transaction is in balance:

 Transaction Items (Unit Retail * Unit Retail Sign * Quantity)
 + Item Discounts (Unit Discount Amount * Unit Discount Sign * Quantity)
 + Transaction Tax (Tax Amount * Tax Sign)
 = Transaction Tenders (Tender Amount * Tender Sign)

saimptlog will populate the Value field (on THEAD) with the transaction’s sales value (item value – discount value + tax value) from the above
calculation if it was not provided in the RTLOG.

h. Treatment of vouchers.

I. If an item sold is a gift certificate (Transaction Item, Voucher field has a value), issued information is written to the SA_VOUCHER table.
II. If the Transaction Type is a RETURN, and the Transaction Tender Type Group is voucher (VOUCH), issued information is written to the

SA_VOUCHER table.
III. If the Transaction Type is a SALE, and the Transaction Tender Type Group is a voucher (VOUCH), redeemed information is written to the

SA_VOUCHER table.
IV. When a gift certificate is sold, customer information should always be included. A receiving customer name value should be populated in the

ref_no5 field, a receiving customer state value should be populated in the ref_no6 field and a receiving customer country should be populated
in the ref_no7 field. These reference fields can be changed by updating the sa_reference table but the code needs to be modified too. The
expiration date is put on the expiration_date field on the TITEM record.

i. Other validations/points of interest:

I. A salesperson in the TITEM record takes precedence over the salesperson in the THEAD record.
II. If an item sold is a UPC (Transaction Item, UPC field has a value and SKU does not), it will be converted to the corresponding SKU using the

Supplement.
III. If an item sold is a SKU (Transaction Item, SKU field has a value), it will be validated against RMS item tables.

Chapter 2 – ReSA 9.0 RTLOG layout 15

IV. The corresponding Department, Class, Subclass, System Indicator and Taxable Indicator will be selected from the RMS tables and populated for a
SKU.

j. The balancing level determines whether the register or the cashier fields are required.
I. If the balancing level is ‘R’egister, then the register field on the THEAD must be populated.
II. If the balancing level is ‘C’ashier, then the cashier field on the THEAD must be populated.
III. If the balancing level is ‘S’tore, then neither field is required to be populated.

k. The tax_ind and the item_swiped_ind fields can only accept ‘Y’ or ‘N’ values. If an invalid value is passed through the RTLOG, an error will be flagged

and the value will be defaulted to ‘Y’.

2. Transaction of type ‘SALE’:

A transaction of type SALE is generated whenever an item is sold. A sale may be to an employee, the sub-transaction type would be EMP in this case. Or it
may be a drive-off sale (sub-transaction type DRIVEO) when someone drives off with unpaid gas. A special type of sale is an “odd exchange” (sub-
transaction type EXCH) where items are sold and returned in the same transaction. If the net value of the exchange is positive, then it is a sale. If the net
value is negative, it is a return. If the net value is zero and the items exchanged are in the same SKU style, it would be a transaction of type EEXCH (Even
Exchange).

a. Requirements per record type (other than what is described in Layout section above):

Record Type
Requirements

THEAD

TITEM
• Item Status is a required field; it determines whether the item is ‘S’old, ‘R’eturned or ‘V’oided. If the item status is S,

the quantity sign is expected to be P. If the item status is ‘R’, the quantity sign is expected to be N.

• If the item status is V, the quantity sign is the reverse of the quantity sign of the voided item. That is, if an item with
status S is voided, the quantity sign would be N. Furthermore, the sum of the quantities being voided cannot exceed
the sum of the quantities ‘S’old or ‘R’eturned. Note: neither of the above two validations are performed by saimptlog
but an audit rule could be created to check this.

• In a typical sale, the items would all have a status of ‘S’. In the case of an odd exchange, some items will have a
status of ‘R’.

• In a typical return, the items would all have a status of ‘R’. In the case of an odd exchange, some items will have a

16 Retek Merchandising System

status of ‘S’.

• If an item has status R, then the Return Reason Code field may be populated. If it is, it will be validated against code
type ‘SARR’.

• If the price of an item is overridden, then the Override Reason and Original Unit Retail fields must be populated.

IDISC
• The RMS Promotion Type field must always be populated with values of code type ‘PRMT’.

• The Promotion field is validated, when a value is passed, against the promhead table.

• If the promotion is ‘In Store’ (code 1004), then the Discount Type field must be populated with values of code type
‘SADT’.

• The Discount Reference Number is a promotion number which is of status ‘A’, ‘E’ or ‘M’.

• If the Discount Type is ‘SCOUP’ for Store Coupon, then the Coupon Number field must be populated. The Coupon Reference
Number field is optional.

TTEND
• If the tender type group is ‘COUPON’, then the Coupon Number field must be populated. The Coupon Reference

Number field is optional.

• If the Transaction Tender Type Group is a credit card (CCARD), the number will be validated against the
SA_CC_VAL table. The other cc fields are optional.

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Transaction

Type
Sub-transaction

Type
Item
Type

Tender Type
Group

Reference
Number Field

Meaning of Reference Field Req
?

SALE 1 Speed Sale Number Y

SALE GCN 5 Recipient Name N
SALE GCN 6 Recipient State N

Chapter 2 – ReSA 9.0 RTLOG layout 17

SALE GCN 7 Recipient Country N

SALE CHECK 9 Check Number N
SALE CHECK 10 Driver’s License Number N

SALE CHECK 11 Credit Card Number N
SALE DRIVEO 1 Incident Number Y

SALE EMP 3 Employee Number of the employee
receiving the goods.

N

c. Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign
SALE P if item is sold;

N if item is returned;
reverse of original
item if item is voided.

P P P if item is sold;
N if item is returned;
reverse of original
item if item is voided.

3. Transaction of type ‘PVOID’:

This transaction is generated at the register when another transaction is being post voided. The orig_tran_no and orig_reg_no fields must be populated with
the appropriate information for the transaction being post voided. The PVOID transaction must be associated with the same store day as the original
transaction. If the PVOID needs to be generated after the store day is closed, the transaction needs to be created using the forms.

4. Transaction of type ‘RETURN’:

This transaction is generated when a customer returns an item.

a. This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b. Meaning of reference number fields:

18 Retek Merchandising System

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Transaction
Type

Sub-transaction
Type

Reference
Number Field

Meaning of Reference Field Req?

RETURN 1 Receipt Indicator (Y/N) Y
RETURN 2 Refund Reference Number N

RETURN EMP 3 Employee Number of the employee returning the
goods.

N

c. Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign
RETURN P if item is sold;

N if item is returned;
reverse of original
item if item is voided.

N N P if item is sold;
N if item is returned;
reverse of original
item if item is voided.

5. Transaction of type ‘EEXCH’:

This transaction is generated when there is an even exchange.

a. This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b. It is expected that the number of items returned equals the number of items sold. However, this validation is not performed by saimptlog. An audit rule

could be created for this. Saimptlog only expects that there would be at least two item records.

c. No tender changes hands in this transaction.

d. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Chapter 2 – ReSA 9.0 RTLOG layout 19

Transaction
Type

Sub-transaction
Type

Reference
Number Field

Meaning of Reference Field Req?

EEXCH 1 Receipt Indicator (Y/N) Y

EEXCH EMP 3 Employee Number of the employee exchanging the
goods.

N

6. Transaction of type ‘PAIDIN’:

a. This type of transaction has only one TTEND record.

b. A reason code is required.

c. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Reason
Code

Referenc
e
Number
Column

Meaning Req?

NSF 1 NFS Check Credit Number N

ACCT 1 Account Number N

7. Transaction of type ‘PAIDOU’:

a. This type of transaction has only one TTEND record.

b. A reason code is required (code type REAC). If the sub-transaction type is ‘EV’ or ‘MV’, the reason code comes from the non_merch_codes_head

table.

20 Retek Merchandising System

c. If the sub-transaction type is ‘EV’ or ‘MV’, then at least one field among the vendor number, vendor invoice number, payment reference number and
proof of delivery number fields should be populated.

d. If the sub-transaction type is ‘EV’, then the vendor number comes from the partner table. If the sub-transaction type is ‘MV’, then the vendor number

comes from the supplier table.

e. Meaning of reference number fields:

Notes: The meaning of these reference number fields may be changed through the sa_reference table.

Sub
Transactio
n Type

Reaso
n Code

Referenc
e
Number
Column

Meaning Req?

EV 2 Personal ID Number N

EV 3 Routing Number N

EV 4 Account Number N

 PAYR
L

1 Money Order Number N

 PAYR
L

2 Employee Number N

 INC 1 Incident Number N

8. Transaction of type ‘PULL’:

This transaction is generated when cash is withdrawn from the register.

Chapter 2 – ReSA 9.0 RTLOG layout 21

a. This type of transaction has only one TTEND record.

b. Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign
PULL N/A N N/A N/A

9. Transaction of type ‘LOAN’:

This transaction is generated when cash is added to the register.

a. This type of transaction has only one TTEND record.

b. Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign
LOAN N/A P N/A N/A

10. Transaction of type ‘COND’:

This transaction records the condition at the store when it opens. There can be at most one COND record containing weather information and at most one
COND record containing temperature information. Both these pieces of information may be in the same COND record. There may be any number of COND
records containing traffic and construction information.

a. This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

22 Retek Merchandising System

Referenc
e
Number
Column

Meaning Req?

1 Weather – code type ‘WEAT’ N

2 Temperature – a signed 3 digit
number.

N

3 Traffic – code_type ‘TRAF’ N

4 Construction – code_type ‘CONS’ N

11. Transaction of type ‘TOTAL’:

This transaction records the totals that are reported by the POS. The value field must be populated. Some POS systems generate only one transaction number
for all totals. In order to avoid duplicate errors to be reported, only one total transaction can have a transaction number and the subsequent ones can have
blank transaction numbers. In other words, a TOTAL transaction is not required to have a transaction number.

a. This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

12. Transaction of type ‘METER’:

This transaction is generated when a meter reading of a fuel pump is taken.

a. This type of transaction has only TITEM records.

Chapter 2 – ReSA 9.0 RTLOG layout 23

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Referenc
e
Number
Column

Meaning Req?

1 Reading Type: (‘A’ Adjustment, ‘S’ shift change, ‘P’ price change, ‘C’ store close) Y

5 Opening Meter Readings Y

6 Closing Meter Reading Y

7 If the reading type is ‘P’ for price change, the old unit retail should be placed here. Decimal places are
required.

Y

8 Closing Meter Value Y

13. Transaction of type ‘PUMPT’:

This transaction is generated when a pump test is performed. This type of transaction has only TITEM records.

14. Transactions of type ‘TANKDP’:

This transaction is generated when a tank dip measurement is taken.

a. This type of transaction has only TITEM records.

b. Meaning of reference number fields:

24 Retek Merchandising System

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Referenc
e
Number
Column

Meaning Req?

1 Tank identifier Y

5 Dip Type (‘FUEL’, ‘WATER’, etc.) Y

6 Dip Height Major (decimal places required) Y

7 Dip Height Minor (decimal places required) Y

15. Transaction of type ‘DCLOSE’:

 This transaction is generated when day closed. Transaction number for this type of transaction has to be blank.

16. A note about vouchers: Vouchers are minimally handled by saimptlog. Voucher information is written to the savouch file which is passed to the program

savouch.pc. For more information about this interface, see Interface File – SA Vouch and Batch Design – savouch.
A voucher will appear on the TITEM record only if it was sold. Thus when saimptlog encounters a ‘SALE’ transaction with a voucher, it writes the voucher

to the savouch file as an ‘I’ssued voucher.
A voucher will be issued when it appears on the TTEND record of transactions of type ‘RETURN’ and ‘PAIDOU’. In other words, saimptlog will write it to

the savouch file with status ‘I’.
A voucher will be redeemed when it appears on the TTEND record of transactions of type ‘SALE’ and ‘PAIDIN’. In other words, saimptlog will write it to

the savouch file with status ‘R’.
Vouchers may not be returned. However, a transaction of type ‘PAIDOU’ may be generated when the customer exchanges a voucher for another form of

tender.

Chapter 3 – saexpach batch module design 25

Chapter 3 – saexpach batch module design
Functional Area
Sales Audit Export – Automated Clearing House (ACH)

Module Affected
saexpach.pc

Design Overview
This module will post Store/day deposit totals to the SA_STORE_ACH table and bank deposit
totals for a given day to a standard ACH format file. The ACH export deviates from the typical
Sales Audit export in that store/days must be exported even though errors may have occurred for
a given day or store (depending on the unit of work defined), and also the store/day does not need
to be closed for the export to occur. The nature of the ACH process is such that as much money
as possible must be sent as soon as possible to the consolidating bank. Any adjustments to the
amount sent can be made via the sabnkach form.

Also, we are assuming that there is only one total to be exported for ACH per store/day.

Deposits for store/days that have not been ‘F’ully loaded will not be transferred to the
consolidating bank. After they are fully loaded, their deposits will be picked up by the next run of
the program.

Furthermore, the program estimates a 0 for a store/day that is closed, for example due to a
holiday. An example is shown below (Wednesday is a holiday):

 Mon Tues Wed Thu Fri
Estimated deposit for next day 5 0 10
Adjustment to estimated deposit for this day … 5 15 0
Exported at close … 5 25 0
Actual deposit … 10 15 10

In this example, we export only 5 (the adjustment) at close of Tuesday. The program is not run at
close on Wednesday because it does not have a store_day_seq_no. Thus, on Thursday, the
estimate for that day is 0 and the adjustment equals the actual. Also, on Thursday, we estimate
that the total is going to be 10 and we export 25 at close of Thursday. Thus, the bank account
should return to the minimum balance at this point.

Operations Performed

Table

Select Insert Update Delete
Period Yes No No No
Sa_store_day Yes No No No
Sa_export_log Yes No Yes No
Sa_exported No Yes No No
Sa_store_ach Yes Yes Yes No
Sa_bank_ach Yes Yes Yes No
Sa_total Yes No No No

26 Retek Merchandising System

Sa_bank_store Yes No No No
Sa_store_day_write_lock Yes No Yes No
Sa_store_day_read_lock Yes No No No
Store Yes No No No
Partner Yes No No No

Background information – Quick Overview of the ACH
process
ACH stands for Automated Clearing House and is a process by which funds can be transferred
electronically from one account to another, possibly at a different financial institution.
Instructions for each transaction are stored in a file, called an ACH file, which is then transferred
across the ACH Network to be processed. This document provides only an overview of the
process and will only describe points of interest for the saexpach program. It is beyond the scope
of this document to provide the details of this process. Readers interested in knowing more about
ACH should consult the 2000 ACH Rules published by the National ACH Association
(NACHA).

There are 5 participants in an ACH transaction:

1 The originating company (called the Originator). The Originator is the entity
requesting the transaction (i.e. this is where the transaction originates from).

2 The Originating Depository Financial Institution (ODFI).

3 The ACH Operator.

4 The Receiving Depository Financial Institution (RDFI).

5 The receiving company (called the Receiver).

*It is important to note that the above description refers to direction of file transfers and not to
direction of money flow.

Since the ReSA client has control over both the stores and the headquarters, the Originator can be
either the former or the latter. To simplify the process, the headquarters will be the Originator, as
this would require only one file to be produced, requesting money from each individual store.
Figure 1 gives a pictorial overview.

Chapter 3 – saexpach batch module design 27

Originator
ReSA Client’s
Headquarters

ODFI
Consolidating

Bank

ACH Operator
Third-party
institution

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

RDFI
Local
bank

Receiver
ReSA

Client’s
Store

…

…

ACH
File $$$$

$$

Figure 1: Overview of an ACH Network

The file that is produced at the Originator is sent to the ODFI, which then routes it to the
appropriate ACH operator(s). The latter will then contact the RDFI to request the money transfer.

In ACH jargon, the type of transaction that is being requested is a Cash Concentration and
Disbursement (CCD). As of September 2000, however, transactions between institutions in
different countries require a Corporate Cross-Border (CBR) Transaction. This program will meet
this new requirement.

ACH is a US network of banks and therefore, this program should not be used for ACH look-
alike networks outside the US, such as in Europe, as the file formats may be different. In other
words, throughout this program, it is assumed that the country in which the consolidating bank is
based is the United States.

Furthermore, all amounts in the ACH file are expected to be in US dollars (USD). Amounts for
CBR transactions will have to be converted to USD.

Custom modifications can be made to this program such that output files that meet the
requirements of other networks can be created. It is expected that the general structure of the
program can be left unchanged and that only the functions that actually write the data out would
have to change.

Data Security
The fact that this program automates the transfer of funds on behalf of the user makes it a likely
target for electronic theft. It must be made clear that the responsibility of electronic protection lies
with the users themselves. Retek does not provide any kind of encryption or authentication
beyond what is provided by the operating system and the database management system. Retek
does provide some tips and recommendation to users:

1 A specific user should probably be used to run the program. This user would
be the only one (or one of a few) who has access to this program.

2 The umask for this user should be setup so as to prevent other users to
read/write its files. This would ensure that when the output file is created, it
will not be accessible to other users.

28 Retek Merchandising System

3 The appropriate permissions should be setup on the directory which holds the
ACH files. The most restrictive decision would be to not allow any other user
to view the contents of the directory.

4 The password to this user should be kept confidential.

5 A secure means of communication should be implemented for transferring
the file from where it has been created to the ACH network. This may be
done via encryption, or by copying the file to a disk and trusting the courier
to deliver the files intact.

6 Retek assumes that the ACH network is secure.

Scheduling Constraints
Pre/Post Logic Description
Processing Cycle: Anytime – Sales Audit 9.0 is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling process: satotals and
sarules.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)

Driving Cursor
This module is in two distinct parts, with two different logical units of work. Thus
restart/recovery has to be implemented so that the first part does not get reprocessed in case the
program is being restarted. Details on the implementation follow.

The first driving cursor in this module retrieves a store/day to generate ACH totals. Once the first
cursor is complete, the second retrieves bank locations by account numbers.

The first Logical Unit of Work (LUW) is defined as a unique store/day combination. Records
will be fetched, using the first driving cursor, in batches of commit_max_ctr, but processed one
store/day at a time.

The first driving cursor will fetch all store/days that have been ‘F’ully Loaded, whose audit status
is ‘A’udited, ‘H’Q Errors Pending or ‘S’tore Errors Pending and that are ready to be exported to
ACH. Before processing starts, a write lock is obtained using get_lock (). This driving cursor
only fetches store/days with a sa_export_log.status of SAES_R. After a store/day is processed,
sa_export_log.status is set to SAES_P so that this store/day will not be selected again if the
program is restarted. We commit using retek_force_commit after each store/day has been
processed and sa_export_log updated, so as to release the lock.

In case a store/day could not be processed due to locking, then the store/day information is placed
on a list (called locked store/day list) and the next store/day is processed. This list is kept in
memory and is available only during processing. If the store for a store/day obtained from the
first driving cursor, is on the locked store/day list, then this store/day cannot be processed. This is
the case because there is a data dependency such that data from a particular store/day is
dependent on data for the same store but at an earlier date. Thus, if a store/day cannot be

Chapter 3 – saexpach batch module design 29

processed, then subsequent store/days for the same store cannot be processed either. After the
driving cursor returns no more data, the program attempts to process each store/day on the list
two more times. If the store/day is still locked, then it is skipped entirely and a message is printed
to the error log.

The second LUW is a bank account number. Again, records will be fetched in batches of
commit_max_ctr. The second driving cursor cannot retrieve information by the LUW because it
is possible for the store’s currency to be different from the local bank’s currency. In that case, a
currency conversion is needed.

For each store/day, the query should retrieve the required ACH transfer. The latter is determined
by adding the estimated deposit for the next day, the adjustment to the estimate for the current
day and any manual adjustment to the estimate.

Since a store can be associated with different accounts at different banks, only accounts that are
consolidated should be retrieved. Since it is possible for the local bank to be in a different country
than the consolidating bank, the currency of the partner should also be fetched.

Since processing is dependent on the type of account at the RDFI, the account type should be
fetched by this cursor.

Due to differences in transaction processing in cases when the bank is outside the US, the
partner’s country should also be fetched. The results of the query should be sorted by partner
country.

The results of the query should also be ordered by accounts.

Program Flow
Structure Chart
Please see the following document for the complete structure chart of the standard export for
ReSA.

Functional Design – SA export.doc

Shared Modules
Listing of all externally referenced functions and Stored procedures and
description of usage

retek library functions:
• retek_init() – This function initializes restart/recovery.
• retek_close() – This function cleans up restart/recovery.
• retek_force_commit() – This function commits any change to the database.

Sales/Audit library functions (libresa):
• fetchVdate() – This function is used to get the vdate.
• fetchSysdate() – This function is used to get system date and time
• fetchStoreDayToBeExported() – This function contains the first driving cursor.
• get_lock() – This function is used to lock the store/day being processed.
• OraNumInit() – Initialize OraNum functions.
• OraNumAdd() – Add two large numbers passed in as strings.
• OraNumSub() –Subtract two large numbers passed in as strings.

30 Retek Merchandising System

• OraNumDiv() –Divide two large numbers passed in as strings.

Function Level Description
All database interactions required and error handling considerations

Init ()
• Initialize restart/recovery by calling restart_init().
• Get the vdate from the period table and the system time.
• Get the system level information: the sender id, the company id, the consolidating bank name, the

consolidating routing number and the consolidating account number. These are on the sa_ach_info
table.

Process ()
1. Get the next store/day to be processed (exported) by fetching from the first driving cursor.
2. Attempt to lock the store/day with a call to get_lock(). If this fails, write the store to a linked list

(which contains all unprocessed store/days).
3. Skip to step 7 if the store of the store/day to be processed is for a store which is on the linked list.
4. Call the function postStoreACH() for the current store/day.
5. Set sa_export_log.status to SAES_P by calling setProcessed() for the current store/day, so that it will

not be processed again in case of a restart.
6. Call retek_force_commit() to commit changes to the database and to release write lock.
7. Loop from beginning until the driving cursor returns no more data.
8. Call the function postBankSummaryTotals().

Final ()
• Clean up restart/recovery by calling retek_close().
• If the program has successfully processed the data, call retek_refresh_thread().

PostStoreACH ()
This function will generate and post an estimate and adjustment to the SA_STORE_ACH table for
a given store/day. The function postStoreACH will accomplish the following processes in the
following order:
• Get the following pieces of data for the system code SYSE_ACH:

1. The total for the current business date,
2. Get the total for the following business date if it exists (by calling GetTomorrowTotal),
3. Call the function GetPastData() to get the totals for the past 4 weeks and for yesterday

(that is, if the current store/day is for a Tuesday, then we want to get the totals for the
past 4 Wednesdays and for yesterday). The latter pieces of data are obtained from the
sa_store_ach table, by summing the estimate for a day with the adjustment for the same
day.

4. Call the function GetPartnerInfo() to get partner type and partner id information.
• If there are more than one total for SYSE_ACH for a particular day, then this should be noted

in the error log. We expect only one total per store/day. Only the first total returned by the
function will be used, the rest will be ignored.

• Call the function CalculateData() to compute the estimate for the next business day and
adjustment for the current store/day.

• Call the function PostStoreACHTable().

GetTomorrowTotal ()
This function attempts to get the total for the next business day to be used as the estimate. It
returns a -1 if a fatal error occurred, a 0 if it was able to get the total. If a total was not found, the

Chapter 3 – saexpach batch module design 31

estimate is assigned to -1. If a store/day is never opened (i.e. a holiday), then a 0 is estimated for
that store/day. Also, if a total is found, it should not be marked as exported.

GetPastData ()
This function retrieves totals for the same day of the week over the past 4 weeks and for the
previous business day.

GetPartnerInfo ()
This function retrieves the bank partner (partner type and partner id) for the given store whose
account is consolidated.

CalculateData ()
This function calculates the estimate for the next business day and adjustment for the current
store/day.
• Find the estimate for the following business date using the following rules:

• If the total for the following business date exists, then this is the estimate.
• Otherwise, the estimate is the average for the data for the past 4 weeks. If we obtain data

for fewer than 4 weeks, then we use the available data, but if we do not obtain any data,
then we use the current day’s total as the estimate.

• If the estimate is a 0, then we use the current day’s total as the estimate.
• Calculate the adjustment, which is the current date’s total minus the estimate for the current

date (which lies on the row for the previous day on the sa_store_ach table) and minus the
manual adjustment for the current date (which lies on the row for the previous day on the
sa_store_ach table).

ProcessLockedSD ()
This function processes any store/days that were not in the process() function due to locking. The list of
such store/days is stored on the linked list.
1. Try to process the store/days that were not processed, that is, those that are on the linked list. Thus, for

each store/day on the linked list, we try to obtain a lock. If one is not obtained, then we skip this
store/day. If a lock is obtained, then we remove the store/day from the list.

2. Skip to step 5 if the store of the store/day to be processed is for a store, which is on the linked list.
3. Call the function postStoreACH for the current store/day.
4. Set sa_export_log.status to SAES_P by calling setProcessed() for the current store/day, so that it will

not be processed again in case of a restart.
5. Loop through steps 1 to 3, until each store/day in the list has been looked at.
6. Loop through steps 1 to 5 NUM_LOCK_RETRIES times. NUM_LOCK_RETRIES is by default 2.

Thus, we try to attempt to process store/days that are locked two more times before giving up and
skipping all locked store/days entirely.

7. For each store/day that was not processed, we write an error to the log.

PostStoreACHTable ()
This function inserts data into the sa_store_ach table. It updates if there is already an entry for
the store, business date and partner.
• If there is no entry in the sa_store_ach table for the current store/day.
• Create an entry in the SA_STORE_ACH table with the current store_day_seq_no and the

new estimate and adjustment deposits for the current store_day_seq_no.
• If there is an entry in the sa_store_ach table for the current store/day.
• Update the entry in sa_store_ach with the estimated deposit, and estimated deposit

adjustment.

postBankSummaryTotals ()
This procedure will summarize the bank transaction totals to the ACH output file. Please see the section on
I/O specifications for more information about the format of this file.
1. Open and fetch from the second driving cursor.

32 Retek Merchandising System

2. If any entries are to be made (i.e. there are results from the cursor), create ACH file and write file
header by calling WriteACHFileHeader().

3. If the country of the bank just retrieved is different from the country of the previous bank, write a
Batch Control Record by calling WriteACHBatchControl(), unless no Batch Header records have
been written yet.

4. If the country of the bank just retrieved is different from the country of the previous bank, a new Batch
Header record needs to be written. If the bank’s country is the US, the
WriteACHCCDBatchHeader() function should be called to write a Batch Header for CCD
transactions. For all other countries, the WriteACHCBRBatchHeader() function should be called to
write a Batch Header for CBR transactions.

5. If the store’s currency is different from the bank’s currency, do a conversion. Sum all the deposits for
each bank account.

6. For each account at a bank in the US, create a CCD record in the file by calling
WriteACHCCDEntry().

7. For each account at a bank outside the US, create a CBR record by calling WriteACHCBREntry().
• If the amount to be transferred is negative, the record should be skipped.
• If the account is a checking account, the transaction code to use is ‘27’.
• If the account is a savings account, the transaction code to use is ‘37’.

8. If the amount to be transferred is positive, call the function PostBankACHTable() to record the
amount of the ACH entry, else do nothing.

9. Keep running totals for the current batch’s total amount and the total ACH amounts.
10. Commit after pl_commit_max_ctr LUW have been processed. Redefine the SAVEPOINT after the

commit because savepoints are lost after a commit.
11. Loop to step 3 until the cursor returns no data.
12. Write the ACH Batch Control record and the ACH File Control record
13. The ACH file format requires that the file size meet certain “block” requirements. See the section on

the ACH file format for more details. Write the required number of “completion records” to meet the
blocking requirements.

14. Mark all store/days that were not locked (i.e. those with a sa_export_log.status of SAES_P) as
completed (SAES_E) in the sa_export_log.

postBankACHTable ()
This function inserts into the table sa_bank_ach. It updates if there already exist a record for the same
partner and business date.
1. If an entry does not exist for the current bank and date in the sa_bank_ach table:

• Make an entry in the sa_bank_ach table for the current bank and account placing the sums of the
store ACH amounts and adjustments in the ACH amount field (sa_bank_ach.ach_amt).

2. If an entry exists for the current bank and date in the sa_bank_ach table:
• Add the manual adjustment to the bank ACH deposit amount.
• Update the sa_bank_ach table with the bank ACH deposit amount (sa_bank_ach.ach_amt).

File Output functions
The functions WriteACHFileHeader(), WriteACHFileControl(), WriteACHCCDBatchHeader(),
WriteACHCBRBatchHeader(), WriteACHBatchControl(), WriteACHCCDEntry(),
WriteACHCBREntry(), WriteACHCBRAddendum() and WriteACHCompleteBlock() write the
File Header Record, the File Control Record, the Batch Header Record for CCD transactions, the
Batch Header Record for CBR transactions, the Batch Control Record, the CCD Entry Record,
the CBR Entry Record, the CBR Addendum Record and the Completion Blocks, respectively. The
WriteACHCBREntry() function should call the WriteACHCBRAddendum() function after writing
to the file.

Linked list functions
The functions AddToList(), DeleteList(), GetNext() and RemoveFromList() provide means to
manipulate and to retrieve data from the linked list which contains the store/days which were not
processed due to locking issues.

Chapter 3 – saexpach batch module design 33

MarkAllStoreDaysCompleted ()
This function sets the sa_export_log.status to SAES_E for store/days whose status is SAES_P. These are
the store/days that have been exported. If a store/day was not exported, it will be picked up in the next run
after it has met the conditions for export.

SetCurrencyDecimals ()
Given a currency code and an amount with 4 implicit decimals, this function will give out an amount with
the appropriate number of decimals for the currency. For more details, see the BAI file format
documentation. For example, there are two implicit decimals for the US Dollar, but none for the Japanese
Yen. This function may need to be expanded because only a select few currencies are being processed. The
last two decimal places are dropped for currencies that are not explicitly defined.

TruncateDec ()
This function truncates a number at the decimal point, i.e. “1234.56” becomes “1234”.

I/O Specification
All files layouts input and output
ACH File Structure

This section describes the structure of the output file of the saexpach.pc program. The output file
conforms to the requirements imposed by the National Automated Clearing House Association
(NACHA) and only the subset of records used by this program is outlined here. For more
information on the other types of records and more information about the rules and regulations
governing the ACH network, please refer to the “2000 ACH Rules” book published by NACHA.

The ACH file format is similar in many ways to Retek’s flat file formats. The most distinctive
differences are:

• The record type is a one-digit number rather than a five-digit character field.
• All records are 94 characters in length.
• Records are organized in blocks, where 1 block = 940 characters = 10 records.
• The File Control Record (similar to an FTAIL) contains a “Block Count” field which gives

the total number of blocks in the file, including the File Header Record and the File Trailer
Record. Records containing 9’s must be used to complete the last block. For example, a
file with 15 records will need 5 such records to give it a Block Count of 2. These
“completion records” go at the end of the file.

• Transactions are organized in batches. Similar transactions make up one batch. In
ReSA’s case, the transactions are organized by the country of origin of the funds.

File Header Record

This record contains information about the characteristics of the file, such as sender and receiver,
creation datetime, and so on.

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘1’ 1 None
Priority Code Reserved for future scheme for priority handling of files.

‘01’ should be used.
‘01’ 2 None

Immediate
Destination

Routing number of the consolidating bank. The field
begins with a blank, followed by the 4-digit Federal
Reserve Routing Symbol, the 4-digit ABA Institution

SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO

10 None

34 Retek Merchandising System

Field Name Field Description Value Length Jstf/
Pad*

Identifier, and the Check Digit.
Immediate Origin A unique identification to determine the Originator. The

ID and the format are supplied by the consolidating bank.
Note that the user is responsible for the padding. That is,
it is assumed that the data in the field will be exactly 10
characters wide.

SA_SYSTEM_OPTIONS.
ACH_SENDER_ID

10 None

File Creation Date Date when the file was created. YYMMDD 6 None
File Creation Time Time when the file was created. HH24MM 4 None
File ID Modifier This is used to differentiate files created on the same

date and between the same Origin/Destination. Valid
values are A through Z and 0 through 9. It is expected
that only one file will be created per day, so a ‘0’ should
be used.

‘0’ 1 None

Record Size Number of characters per record. ‘094’ 3 None
Blocking Factor Number of physical records within a block. ‘10’ 2 None
Format Code Reserved for future format variations. A ‘1’ should be

used.
‘1’ 1 None

Immediate
Destination Name

The name of the consolidating bank. SA_SYSTEM_OPTIONS.
CONSOL_BANK_NAME

23 L/B

Immediate Origin
Name

The name of the company. COMPHEAD.
CO_NAME

23 L/B

Reference Code Any reference code. This is an optional field. ReSA will
not populate this field as the create datetime should be
enough to reference the data that was exported by
comparing with SA_EXPORTED.
EXP_DATETIME.

blanks 8 None

* Note: This column described the justification and padding involved in the field being described.
‘L’ stands for left; ‘R’ stands for Right; ‘B’ stands for blank padding and ‘0’ stands for 0 padding.
None means that the field should be completely filled.

Batch Header Record for CCD transactions

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘5’ 1 None
Service Class Code This field identifies the general classification of dollar

entries to be exchanged. Funds will always flow from the
local banks to the consolidating bank. Hence the code
‘225’ for “ACH Debits only” should be used.

‘225’ 3 None

Company Name The name of the company. First 16 characters
of COMPHEAD.
CO_NAME

16 L/B

Company
Discretionary Data

Any kind of data specific to the company. ReSA will not
use this field

blanks 20 None

Company
Identification

An alphanumeric code identifying the company. The first
character may be the ANSI one-digit Identification Code
Designators (ICD). For example,
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id field on the
sa_system_options table will contain the correct id.

SA_SYSTEM_OPTIONS.
COMPANY_ID

10 L/B

Standard Entry
Class Code

This provides a way to distinguish between the various
kinds of entries. Since ReSA will be sending CCD

‘CCD’

3 None

Chapter 3 – saexpach batch module design 35

Field Name Field Description Value Length Jstf/
Pad*

entries, this field should hold the value ‘CCD’.
Company Entry
Description

A short description from the Originator about the purpose
of the entry.

‘CONSOL.’ 10 L/B

Company
Descriptive Date

Optional field providing a date to the Receiver for
descriptive purposes. ReSA will populate it with the next
day’s date in the YYMMDD format.

YYMMDD format of
PERIOD.VDATE + 1

6 None

Effective Entry
Date

The date by which the Originator intends the batch of
entries to be settled. Since the Originator will want this to
be done as soon as possible, ReSA will use the earliest
possible date, which is one banking day after the
processing date (the current date).

YYMMDD format of
PERIOD.VDATE + 1

6 None

Settlement Date This is inserted by receiving ACH Operator. ReSA will
leave this blank.

blanks 3 None

Originator Status
Code

This field stores a code to describe the type of Originator.
This should be a 1 to describe the Originator as a
depository financial institution.

‘1’ 1 None

ODFI Identification 8-digit routing number of the ODFI. First 8 digits of
SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO

8 None

Batch Number The batch number. 7 R/0

Batch Header Record for CBR transactions

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘5’ 1 None
Service Class Code This field identifies the general classification of dollar

entries to be exchanged. Funds will always flow from the
local banks to the consolidating bank. Hence the code
‘225’ for “ACH Debits only” should be used.

‘225’ 3 None

Company Name The name of the company. First 16 characters
of COMPHEAD.
CO_NAME

16 L/B

Foreign Exchange
Indicator

Code used to indicate the foreign exchange conversion
methodology applied to a CBR entry. Retek uses the
“Fixed-to-Variable” method to convert from the foreign
currency into US dollars. Therefore, this field should be
‘FV’.

‘FV’ 2 None

Foreign Exchange
Reference Indicator

Code used to indicate the contents of the Foreign
Exchange Reference field. The latter will contain the
conversion rate used by Retek which means that the
value should be ‘1’.

‘1’ 1 None

Foreign Exchange
Reference

This should contain the foreign exchange rate used to
compute the amounts in the CBR Entry Record. No
decimal places are implied, that is, this field should
contain the exact rate used.

 15 L/B

ISO Destination
Country Code

The country where the money is to be transferred to.
Since ReSA assumes that the consolidating bank will be
in the US, this should be ‘US’ – NOTE: verify that “US” is
the correct ISO code for United States of America.

‘US’ 2 None

Company
Identification

An alphanumeric code identifying the company. The first
character may be the ANSI one-digit Identification Code

SA_SYSTEM_OPTIONS.
COMPANY_ID

10 L/B

36 Retek Merchandising System

Field Name Field Description Value Length Jstf/
Pad*

Designators (ICD). For example,
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company_id field on the
sa_system_options table will contain the correct id.

Standard Entry
Class Code

This provides a way to distinguish between the various
kinds of entries. Since ReSA will be sending CBR entries,
this field should hold the value ‘CBR’.

‘CBR’

3 None

Company Entry
Description

A short description from the Originator about the purpose
of the entry.

‘CONSOL.’ 10 L/B

ISO Originating
Currency Code

Currency code in which the funds are originating from.
This must be the ISO code of the currency.

PARTNER.
CURRENCY_CODE

3 None

ISO Destination
Currency Code

Currency code in which the funds are to be received.
This must be “USD”.

‘USD’ 3 None

Effective Entry
Date

The date by which the Originator intends the batch of
entries to be settled. Since the Originator will want this to
be done as soon as possible, ReSA will use the earliest
possible date, which is one banking day after the
processing date (the current date).

YYMMDD format of
PERIOD.VDATE + 1

6 None

Settlement Date This is inserted by receiving ACH Operator. ReSA will
leave this blank.

blanks 3 None

Originator Status
Code

This field stores a code to describe the type of Originator.
This should be a 1 to describe the Originator as a
depository financial institution.

‘1’ 1 None

ODFI Identification 8-digit routing number of the ODFI. First 8 digits of
SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO

8 None

Batch Number The batch number. It is not expected that the file will
have more than two batches.

‘1’ or ‘2’ 7 R/0

CCD Entry Detail Record

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘6’ 1 None
Transaction Code Code used to identify the type of debit and credit. This is

dependent on the type of account and on the direction of
funds transfer.
 ‘27’ – if the account is a checking account,
 ‘37’ – if the account is a savings account.

 ‘27’ or ‘37’ 2 None

RDFI Identification 8-digit routing number of the RDFI. First 8 digits of
SA_BANK_STORE.
ROUTING_NO

8 None

Check Digit This is the 9th digit from the routing number. 9th digit of
SA_BANK_STORE.
ROUTING_NO

1 None

DFI Account
Number

The account number at the local bank. SA_BANK_STORE.
BANK_ACCT_NO

17 L/B

Amount The amount involved in the transaction. This field is
numeric only and the last two digits are automatically
assumed to be decimals. ReSA amounts are stored as
20 digit numbers, with 4 for decimals. ReSA will truncate
the last two digits of the amount and should the resulting

 10 R/0

Chapter 3 – saexpach batch module design 37

Field Name Field Description Value Length Jstf/
Pad*

amount be greater than 10 digits, this program will abort
with an error. It is not expected that a client will send an
ACH amount greater than US$100 million.

Identification
Number

Optional field containing a number used by Originator to
insert its own number for tracing purposes. ReSA will not
populate this field.

blanks 15 None

Receiving
Company Name

Name of the local store. STORE.
STORE_NAME

22 L/B

Discretionary Data Any kind of data specific to the transaction. ReSA will not
use this field

blanks 2 None

Addenda Record
Indicator

This field identifies whether this entry record contains
addenda records. ReSA has no use for such records in
CCD and will use the value of ‘0’

‘0’ 1 None

Trace Number Used to uniquely identify each entry within a batch. The
first 8 digits contain the routing number of the ODFI and
the other 7 contains a sequence number. This sequence
number should be ascending. Although the ACH
specification does not require the numbers to be
consecutive, ReSA will use consecutive numbers. Trace
numbers should not be duplicated between batches.

 15 None

CBR Entry Detail Record

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘6’ 1 None
Transaction Code Code used to identify the type of debit and credit. This is

dependent on the type of account and on the direction of
funds transfer.
 ‘27’ – if the account is a checking account,
 ‘37’ – if the account is a savings account.

 ‘27’ or ‘37’ 2 None

RDFI Identification 8-digit routing number of the RDFI. First 8 digits of
SA_BANK_STORE.
ROUTING_NO

8 None

Check Digit This is the 9th digit from the routing number. 9th digit of
SA_BANK_STORE.
ROUTING_NO

1 None

DFI Account
Number

The account number at the local bank. SA_BANK_STORE.
BANK_ACCT_NO

17 L/B

Amount The amount involved in the transaction. This field is
numeric only and the last two digits are automatically
assumed to be decimals. This amount is in US dollars.

 10 R/0

Identification
Number

Optional field containing a number used by Originator to
insert its own number for tracing purposes. ReSA will not
populate this field.

blanks 15 None

Receiving
Company Name

Name of the local store. STORE.
STORE_NAME

22 L/B

Discretionary Data Any kind of data specific to the transaction. ReSA will not
use this field

blanks 2 None

Addenda Record
Indicator

This field identifies whether this entry record contains
addenda records. Since CBR records must be followed
by an addendum record, this value should be ‘1’.

‘1’ 1 None

Trace Number Used to uniquely identify each entry within a batch. The 15 None

38 Retek Merchandising System

Field Name Field Description Value Length Jstf/
Pad*

first 8 digits contain the routing number of the ODFI and
the other 7 contains a sequence number. This sequence
number should be ascending. Although the ACH
specification does not require the numbers to be
consecutive, ReSA will use consecutive numbers. Trace
numbers should not be duplicated between batches.

CBR Addendum Record

Field Name

Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘7’ 1 None
Addenda Type
Code

This code identifies the type of addendum record. CBR
has only one type of Addenda Type Code: ‘01’.

‘01’ 2 None

Payment Related
Information

 80 L/B

Addenda Sequence
Number

This is a sequence number denoting the position of each
addendum record. The first record should always have a
sequence number of 1 and subsequent records must be
increasing and consecutive. ReSA will create only one
addendum record for the CBR transaction.

‘1’ 4 R/0

Entry Detail
Sequence Number

This is the sequence number part of the Trace Number of
the entry record to which this addendum is referring.

 7 R/0

Batch Control Record

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record ‘8’ 1 None
Service Class Code This field identifies the general classification of dollar

entries to be exchanged. Since money is being
requested, this code should be 225 for “ACH Debits
only”.

‘225’ 3 None

Entry/Addenda
Count

The number of entries and addenda in the batch.
Basically, this is the number of records between the
Batch Header Record and the Batch Control Record.

 6 R/0

Entry Hash This is the sum of the RDFI IDs in the detail records. It is
the arithmetic sum of the 8-digit routing number. Overflow
on the high order bits is ignored.

 10 R/0

Total Debit Entry
Dollar Amount in
batch

 12 R/0

Total Credit Entry
Dollar Amount in
batch

These fields contain the accumulated debit and credit for
the batch. This field is numeric only and the last two
digits are automatically assumed to be decimals.

 12 R/0

Company
Identification

An alphanumeric code identifying the company. The first
character may be the ANSI one-digit Identification Code
Designators (ICD). For example,
“1” IRS Employer ID Number

SA_SYSTEM_OPTIONS.
COMPANY_ID

10 L/B

Chapter 3 – saexpach batch module design 39

Field Name Field Description Value Length Jstf/
Pad*

“9” User Assigned Number.
ReSA assumes that the company_id field on the
sa_system_options table will contain the correct id.

Message
Authentication
Code (MAC)

The first 8 characters represent a code from the DES
(Data Encryption Standard) algorithm. The remaining
eleven characters are blanks. ReSA will not populate this
field.

blanks 19 None

Reserved Reserved blanks 6 None
ODFI Identification 8-digit routing number of the ODFI. First 8 digits of

SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO

8 None

Batch Number The batch number. 7 R/0

File Control Record

This record contains summary information about the file to verify its integrity.

Field Name Field Description Value Length Jstf/
Pad*

Record Type Code The type of record. ‘9’ 1 None
Batch Count The number of batches sent in the file. 6 R/0
Block Count The number of physical blocks in the file, including both

File Header and File Control Records. This is the ceiling
of the number of records divided by the blocking factor,
which is 10.

 (Number of
records)/10

6 R/0

Entry/Addenda
Count

The number of entries and addenda in the file. Basically,
this is the number of records between the Batch Header
Record and the Batch Control Record.

 8 R/0

Entry Hash This is the sum of the Entry Hash fields on the Batch
Control Records.

 10 R/0

Total Debit Entry
Dollar Amount in
File

12 R/0

Total Credit Entry
Dollar Amount in
File

These fields contain the accumulated debit and credit for
the file. This field is numeric only and the last two digits
are automatically assumed to be decimals.

12 R/0

Reserved This field should be filled with blanks. It is used to ensure
that each record is of length 94.

blank 39 None

40 Retek Merchandising System

Technical Issues

Status Issue Resolution
Open Tables and forms changes are required to

ReSA to accommodate data that are
currently not possible to store on the
database. These are required before this
program can be fully tested.

Open It is possible for an adjustment to be
negative while the following day is a holiday,
resulting in a negative ACH amount. ReSA
expects these cases to be rare and will
simply skip records with a negative ACH
amount.
It would be an enhancement to the product if
the customer wants the system to estimate
the next open day’s deposit. Such entries
will have to be bunched into a new batch
with a different settlement date.

Assumptions

1. This document assumes that the tables and forms changes are going to be applied accordingly.
2. It is assumed that the consolidating bank is US-based.
3. ReSA will assume that all country codes and all currency codes are ISO compliant.

Chapter 4 – saimptlog batch detail design 41

Chapter 4 – saimptlog batch detail design

Document Revision History
Revision # Date Author Brief Revision Description
Revision 1 1/13/00 Chuck Rudolph Phase 1
Revision 1.1 1/18/00 Chuck Rudolph Modify saimptlog to input new fields into the Sales Audit tables.

Please note that the revision number should match the document file name.

The Project Manager must determine the need to revise this document and frequency. It may be decided that once the final
walkthrough and approvals are made, only subsequent documentation will maintain current project information (such as design
documents, etc.) rather than any changes being made to this document. This document, would, in essence, be a 'snapshot in time' of
the project without revision following approval. The Project Manager may; however, call for this document's update originating from
significant scope (objective or requirement) changes. The determined method should be documented here.
I. Introduction

Purpose

The Batch Detailed Design is a thorough definition of a single batch program / module within one functional area. The documented
information is derived from this functional area’s Technical Design.

Objectives

This Batch Detailed Design must:

• Document specific functions for a single batch program,
• Enable project team review, validation and consensus regarding the individual batch program’s scope,
• Document the batch program in preparation for and in response to prototyping, and
• Prepare for and provide a defined and documented framework in which to perform Development Phase activities.

A Batch Detailed Design should not include code (SQL).

II. Functional Area

Sales Audit import.

III. Module Affected

SAIMPTLOG (formerly saval.pc and saout.pc in 8.X)

saimptlog.c
saimptlog.h
saimptlog_final.c
saimptlog_init.c
saimptlog_manval.c
saimptlog_nexttsn.pc
saimptlog_nextvhn.pc
saimptlog_output.c

42 Retek Merchandising System

saimptlog_proto.h
saimptlog_rtlog.c
saimptlog_tdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog_ccval.c
saimptlog_ccval.h
saimptlog_proto.h

SAIMPTLOGFIN
saimptlogfin.pc
saimptlog_nexttbgsn.pc
saimptlog.h

IV. Design Overview

Design Overview

Importing POS data is a five-step process.

First, SAGETREF must be run to generate the current reference files:
• SKU
• Wastage
• UPC
• variable weight UPC
• store business day
• promotions
• code types
• error codes
• credit card validation
• store POS

SAGETREF

Reference data files

POS data

SAIMPTLOG

SQL*Loader
files for
transaction
data

Retek format
voucher data

SQL*Loader

SAVOUCH

Sales Audit
Database SAIMPTLOGFIN

SQL*Loader
control files

Chapter 4 – saimptlog batch detail design 43

• tender type
• merchant code types
• partner vendors
• supplier vendors
• employee ids
These files are all used as input to SAIMPTLOG. Since SAIMPTLOG can be threaded, this boosts performance by limiting
interaction with the database.

Second, SAIMPTLOG is run against each POS file. SAIMPTLOG creates a write lock for store/day that is held until
SAIMPTLOGFIN is executed. This generates distinct SQL*Loader files for that store/day for the sa_tran_head, sa_tran_item,
sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and (optionally) sa_missing_tran tables. A Retek
formatted voucher file is produced for the processing by SAVOUCH. SAIMPTLOG may be threaded as long as the parallel
executions do not include the same store/day.

Third, SQL*Loader is executed to load the transaction tables from the files created by SAIMPTLOG. The store/day SQL*Loader files
can be concatenated into a single file per table to optimize load times. Alternatively, multiple SQL*Loader files can be used as input
to SQL*Loader. SQL*Loader may not be run in parallel with itself when loading a table. Header data (primary keys) must be loaded
before ancillary data (foreign keys). This means that the sa_tran_head table must be loaded first; sa_tran_item before sa_tran_disc;
and sa_customer before sa_cust_attrib. The remaining tables may be loaded in parallel.

Fourth, SAVOUCH is executed to load each of the Retek formatted voucher files. SAVOUCH may not be multiply threaded.

Fifth, SAIMPTLOGFIN is executed to populate the sa_balance_group table, to mark the import as either partially or fully complete,
and to release the store/day write lock that was established by SAIMPTLOG. SAIMPTLOGFIN may not be multiply threaded.

This design document encompasses SAIMPTLOG and SAIMPTLOGFIN.

SAIMPTLOG

Operations Performed

Table
Select Insert Update Delete

period yes no no no
store yes no no no
sa_system_options yes no no no
sa_store_data yes no no no
sa_store_day yes yes no no
sa_store_day_write_lock yes yes no no
sa_import_log yes yes no no
sa_export_log no yes no no

SAIMPTLOGFIN

Operations Performed

Table

Select Insert Update Delete
period yes no no no
store yes no no no
sa_system_options yes no no no
sa_store_day yes no yes no
sa_store_day_write_lock yes no no yes
sa_import_log yes no yes no

44 Retek Merchandising System

saimptlog.c is a combination of 2 programs from Sales Audit 2.0: saval.pc and saout.pc. For details on these 2 programs, refer to:
Batch Design – saval.doc
Batch Design – saout.doc
The source for these 2 programs can be found in PVCS. See Project RMS 8.1 and Folders Batch – Sales Audit 2.0 and Batch Library –
SA.

V. Program Flow

SAIMPTLOG

SAIMTLOGFIN

VI. Function Level Description

 SAIMPTLOG

main() [saimptlog.c]
This should be the standard Retek main. Call LOGON to connect to the Sales Audit database. Call Init to initialize data structures and
output file handles. Call Process to translate the RTLOG POS data into the SQL*Loader and Retek formatted files. Call final to close
file handles and to generally clean up.

Get store/day that has
been locked for import.

Create balance
group entries for
the store/day.

Cancel post
voided
transactions.

release_lock Mark store/day
as imported.

Get POS
transaction
from data file.

Validate POS
transaction
data.

Reformat POS
transaction data
to SQL*Loader
format.

Write SQL*Loader
files for transaction
data.

Write Voucher
data found in
transaction.

Any more
POS
transactions?

get_lock for
import of
store/day.

Save missing
transaction
data.

Y

N

Chapter 4 – saimptlog batch detail design 45

Process() [saimptlog.c]
For each transaction in the POS RTLOG file, call getNextTran to read in the data.
For each transaction, call MandatoryValidations to validate the data and than call WrOutputData to write the transaction to the
temporary files.

Init() [saimptlog_init.c]
Call retek_init to initialize threading.
Get the system options by calling fetchSaSystemOptions.
Get the current system data (SYSDATE) by calling fetchSysDate. This is used later to validate the dates in the POS RTLOGs.
Initialize the RTLOG file parser by calling InitInputData.
Load the SKU data generated by SAGETREF by calling sku_loadfile.
Load the UPC data generated by SAGETREF by calling upc_loadfile.
Load the variable weight UPC data generated by SAGETREF by calling vupc_loadfile.
Load the store/day data generated by SAGETREF by calling store_day_loadfile.
Load the wastage data generated by SAGETREF by calling waste_loadfile.
Load the promotion data generated by SAGETREF by calling prom_loadfile.
Load the code type data generated by SAGETREF by calling code_loadfile.
Load the error data generated by SAGETREF by calling error_loadfile.
Load the store POS data generated by SAGETREF by calling storepos_loadfile.
Load the tender type group and ID data generated by SAGETREF by calling tendertype_loadfile.
Load the merchant code data generated by SAGETREF by calling merchcode_loadfile.
Load the partner vendor data generated by SAGETREF by calling partner_loadfile.
Load the supplier vendor data generated by SAGETREF by calling supplier_loadfile.
Load the employee data generated by SAGETREF by calling employee_loadfile.
Generate temporary filenames for the SQL*Loader files for the sa_tran_head, sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender,
sa_error, sa_customer, sa_cust_attrib and (optionally, depending on the value of the system option check_dup_miss_tran)
sa_missing_tran tables. Also generate a temporary filename for the voucher data.
Open all of the temporary files for writing.

Final() [saimptlog_final.c]
Call CreateTermRecords to mark the end of the data and than call WrOutputData to write them to the temporary files.
If the system option check_dup_miss_tran is enabled, than call tdup_savedata to keep track of missing transaction numbers between
invocations of SAIMPTLOG and call tdup_misstran to create the SQL*Loader file for the sa_missing_tran table.
Terminate the RTLOG file parser by calling FinalInputData.
Close the temporary SQL*Loader files for the sa_tran_head, sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error,
sa_customer, sa_cust_attrib and (optionally, depending on the value of the system option check_dup_miss_tran) sa_missing_tran
tables.
Rename the temporary files to record-type_store_business-date_sys-date.out (i.e. sathead_1000_20000115_20000116053302.out).
Call retek_close to perform program status record keeping.
Call retek_refresh_thread to refresh the thread that was used during this execution so that it can be reused.

InitInputData() [saimptlog_rtlog.c]
Open the POS RTLOG file for reading.
Open a bad transaction file for writing.
Initialize the POS RTLOG transaction parser.

46 Retek Merchandising System

getNextTran() [saimptlog_rtlog.c]
This function reads in each transaction (by calling getRTLRec for each transaction) and validates each record contained within it (by
calling procRTLFHead, procRTLFTail, procRTLTHead, procRTLTTail, procRTLTCust, procRTLCAtt, procRTLTItem,
procRTLIDisc, procRTLTTax and procRTLTTend as appropriate). To simplify processing, the FHEAD and FTAIL records are
treated as individual transactions. The function rtFind is used to determine the type of the record read.
Some record types will require some extra processing:
FHEAD – Need to retain the location (store) and business date for later validations. Also, the transaction structures must be reset by
calling resetTran. Write out a FHEAD record to the voucher file.
FTAIL - Write out a FTAIL record to the voucher file.
TTAIL – Call chkTranFormat to check for format and data problems. Call chkTranTailCount to validate the number of records
found in the transaction. Call tdup_addtran to check for duplicate transactions and to keep track of possible missing transactions,
except when the transaction is a ‘TOTAL’ and its tran_no is blank. Call reformatTran to format the RTLOG transaction data into
SQL*Loader flat file format. If any errors occur, call WrBadTran to write the failing transaction to the bad transaction file and call
resetTran to reinitialize the RTLOG parser for the next transaction.

MandatoryValidations() [saimptlog_manval.c]
For each THEAD, TCUST, CATT, TITEM, IDISC, TTAX and TTEND record in the transaction, call mvSATHead, mvSATCust,
mvSACAtt, mvSATItem, mvSAIDisc, mvSATTax and mvSATTend to make sure that the current transaction does not have non-
numeric data in number fields, an invalid date in a date field, etc.

mvSATHead() [saimptlog_manval.c]
Ensure that the transaction date and time has a valid value.
Ensure that, if they exist, the cashier and salesperson ids are valid by calling employee_lookup.
Ensure that, if the balancing level is ‘R’, then the register field is populated, and that if the balancing level is ‘C’, then the cashier field
is populated.
Ensure that the transaction type has a valid value (code_type of TRAT) by calling code_lookup.
Ensure that the sub transaction type has a valid value if present (code_type of TRAS) by calling code_lookup.
Ensure that the reason code has a valid value if present (code_type of REAC) by calling code_lookup.
If the transaction type is ‘PAIDOU’:
• If the sub transaction type is TRAS_MV or TRAS_EV, then validate the reason code by calling merchcode_lookup, else validate
the reason code by calling code_lookup.
• Ensure that the vendor number field is not empty.
•
• If the sub transaction type is TRAS_MV then validate the vendor number against the suppliers by calling supplier_lookup.
• Else if the sub transaction type is TRAS_EV then validate the vendor number against the partners by calling partner_lookup.
• Else we do not validate.
•
• If the sub transaction type is TRAS_MV or TRAS_EV then ensure that at least one of the vendor invoice number, payment
reference number and proof of delivery number fields are present.
• Else we do not validate.
Ensure that the value has a valid numeric value if present.

mvSATCust() [saimptlog_manval.c]
Ensure that the customer ID has a value.
Ensure that the customer ID type has a valid value (code_type of CIDT) by calling code_lookup.

mvSACAtt() [saimptlog_manval.c]
Ensure that the customer attribute type has a valid value (code_type of SACA) by calling code_lookup.
Ensure that the customer attribute value has a valid value (code_type of attribute type) by calling code_lookup.

mvSATItem() [saimptlog_manval.c]
Ensure that the item status has a valid value (code_type of SASI) by calling code_lookup. Also, if the tran_type is ‘SALE’,
‘RETURN‘ or ‘EEXCH’, then the only valid values are ‘S’, ‘R’, and ‘V’.
Ensure that the item type has a valid value (code_type of SAIT) by calling code_lookup.

Chapter 4 – saimptlog batch detail design 47

Ensure that the SKU, UPC, UPC supplement, voucher number or item number has a valid value depending on what the item type says
should be present.
Ensure that the department, class, sub class and system indicator are valid is present.
Ensure that the quantity has a valid numeric value.
Ensure that the unit retail amount has a valid numeric value.
Ensure that the override reason code has a valid value (code_type of ORRC) by calling code_lookup if present.
Ensure that the original unit retail value has a valid numeric value if there is an override reason code.
Ensure that the tax indicator has a valid value (code_type of YSNO) by calling code_lookup. If the value is invalid, then an error is
flagged and the value is defaulted to YSNO_Y.
Ensure that the item swiped indicator has a valid value (code_type of YSNO) by calling code_lookup. If the value is invalid, then an
error is flagged and the value is defaulted to YSNO_Y.
Ensure that the return reason code has a valid value (code_type SARR) by calling code_lookup if present and the item status is
SASI_R.
Ensure that, if it exists, the salesperson id is valid by calling employee_lookup.
Ensure that if an expiration date exists, that it is valid.

mvSAIDisc() [saimptlog_manval.c]
Ensure that the RMS promotion number has a valid value (code_type of PRMT) by calling code_lookup.
Ensure that the promotion has a valid value if present by calling prom_lookup.
Ensure that the discount type has a valid value (code_type of SADT) by calling code_lookup.
Ensure that the quantity has a valid numeric value.
Ensure that the unit discount amount has a valid numeric value.
If the discount type is Coupon than ensure that the coupon number is present.

mvSATTax() [saimptlog_manval.c]
Ensure that the tax code has a valid value (code_type of TAXC) by calling code_lookup.
Ensure that the tax amount has a valid numeric value.

mvSATTend() [saimptlog_manval.c]
Ensure that the tender type group has a valid value (code_type of TENT) by calling code_lookup.
Ensure that the tender type ID has a valid value by calling tendertype_lookup.
Ensure that the tender amount has a valid numeric value.
If the tender type group is Credit Card then:
• Ensure that the credit card number and expiration date are valid by calling ccval. The expiration date may be an empty field. If it
is, no validation will be performed. Also, there is no check as to whether the credit card has expired.
• Ensure that the credit card authorization source if present has a valid value (code_type of CCAS) by calling code_lookup.
• Ensure that the credit card cardholder verification if present has a valid value (code_type of CCVF) by calling code_lookup.
• Ensure that the credit card entry mode if present has a valid value (code_type of CCEM) by calling code_lookup.
• Ensure that the credit card special condition if present has a valid value (code_type of CCSC) by calling code_lookup.
If the tender type group is Coupon than ensure that the coupon number is present.

CreateTermRecords() [saimptlog_rtlog.c]
Create terminating records for each record type. These records are used by SAIMPTLOGFIN to determine if SQL*Loader has
finished loading all of the transaction data for a store/day. NOT NULL column values are given in the following table. All other
columns should be blank.

Table Column Value

tran_seq_no Determined by saimptlog.
rev_no 001
store_day_seq_no Same as last transaction processed.
tran_datetime Business Date at midnight
tran_no 0000000000
tran_type TERM
status W

sa_tran_head

pos_tran_ind N

48 Retek Merchandising System

Table Column Value
ref_no1 Corresponding sa_missing_tran.miss_tran_seq_no if

sa_system_options.check_dup_miss_tran = Y.
update_id 000000000000000000000000000000
update_datetime SYSDATE

error_ind N

tran_seq_no Same as sa_tran_head.tran_seq_no.
cust_id 0000000000000000

sa_customer

cust_id_type TERM

tran_seq_no Same as sa_tran_head.tran_seq_no.
attrib_type TERM

sa_cust_attrib

attrib_value TERM

tran_seq_no Same as sa_tran_head.tran_seq_no.
item_seq_no 0001
Item_status S
item_type TERM
qty 000000000000
unit_retail_sign P
unit_retail 00000000000000000000
tax_ind N
item_swiped_ind N
error_ind N

sa_tran_item

var_upc_ind N

tran_seq_no Same as sa_tran_head.tran_seq_no.
item_seq_no 0001
rms_promo_type TERM
discount_seq_no 0001
discount_type TERM
qty 000000000000
unit_discount_amt_sign P
unit_discount_amt 00000000000000000000

sa_tran_disc

error_ind N

tran_seq_no Same as sa_tran_head.tran_seq_no.
tax_code TERM
tax_seq_no 0001
tax_amt_sign P
tax_amt 00000000000000000000

sa_tran_tax

error_ind N
 Ref_no17
 Ref_no18
 Ref_no19
 Ref_no20

tran_seq_no Same as sa_tran_head.tran_seq_no.
tender_seq_no 0001
tran_type_group TERM
tran_type_id 000000
tender_amt_sign P

sa_tran_tender

tender_amt 00000000000000000000

Chapter 4 – saimptlog batch detail design 49

Table Column Value
 error_ind N

error_seq_no Determined by saimptlog.
store_day_seq_no Same as last transaction processed.
tran_seq_no Same as sa_tran_head.tran_seq_no.
error_code TERM_MARKER_NO_ERROR
record_type THEAD
store_override_ind N
hq_override_ind N
update_id TLOG

sa_error

update_datetime SYSDATE

This is present only if sa_system_options.check_dup_miss_tran = Y.

miss_tran_seq_no Determined by saimptlog.
store_day_seq_no Same as last transaction processed.
tran_no -000000001

sa_missing_tran

status M

WrOutputData() [saimptlog_output.c]
Writes the current transaction to the SQL*Loader files.
If the current transaction type is a sale (SALE), or a return (RETURN) and the TITEM records contains a voucher number, then
reformat the TITEM records into a sold voucher data by calling WrSoldSAVoucher. However, if the item was voided (i.e. for the
same transaction, there is an item with status ‘V’ for the voucher), then do not call the function.
If the current transaction type is a sale (SALE), a paid in (PAIDIN), a return (RETURN) or paid out (PAIDOU), and the tender type
group is a voucher (VOUCH) then:
• if the sign of the tender amount is positive, then reformat the TTEND records into an issued voucher data by calling

WrIssuedSAVoucher
• else, if the sign of the tender amount is negative, then reformat the TTEND records into am issued voucher data by calling

WrIssuedSAVoucher.
(Note: it is not possible to return a voucher).

FinalInputData() [saimptlog_rtlog.c]
Close the POS RTLOG file.
Close the bad transaction file.

getRTLRec() [saimptlog_rtlog.c]
Read and return one record from the POS RTLOG file.

rtFind() [saimptlog_rtlog.c]
Return the type of the record that is passed in (i.e. THEAD, TCUST, TITEM, etc).

procRTLFHead() [saimptlog_rtlog.c]
Check that this is the first record in the POS RTLOG file. Validate the business date of the data. Call storeday_lookup to verify that
there is a sa_import_log entry. If an entry is not found, generate an error and do not load any data. Call get_lock to lock the store/day
for importing. Call tdup_loaddata to load into memory past transaction number ranges for the current store/day.

procRTLFTail() [saimptlog_rtlog.c]
Process a FTAIL record, ensuring that it is the last record in the POS RTLOG file. The record count in the FTAIL record is checked
against the number of records processed, if these do not match then records are missing and we should abort.

procRTLTHead() [saimptlog_rtlog.c]
Validate that the THEAD record is located within a valid position in the POS RTLOG file, after an FHEAD or TTAIL record.
Initialize the sale and tender transaction totals to 0.

50 Retek Merchandising System

procRTLTTail() [saimptlog_rtlog.c]
Validate that the TTAIL record is located within a valid position in the POS RTLOG file, after a TITEM, IDISC, TTAX, TTEND,
TCUST or CATT record.

procRTLTCust() [saimptlog_rtlog.c]
Validate that the TCUST record is located within a transaction in the POS RTLOG file.

procRTLCAtt() [saimptlog_rtlog.c]
Validate that the CATT record is located within a transaction following either a TCUST or CATT record in the POS RTLOG file.

procRTLTItem() [saimptlog_rtlog.c]
Validate that the TITEM record is located within a transaction in the POS RTLOG file.
Add the quantity * the unit retail amount to the sale transaction total.

procRTLIDisc() [saimptlog_rtlog.c]
Validate that the IDISC record is located within a valid position in the POS RTLOG file, after either a TITEM or IDISC record.
Subtract the quantity * the unit discount amount from the sale transaction total.

procRTLTTax() [saimptlog_rtlog.c]
Validate that the TTAX record is located within a transaction in the POS RTLOG file.
Add the tax amount to the sale transaction total.

procRTLTTend() [saimptlog_rtlog.c]
Validate that the TTEND record is located within a transaction in the POS RTLOG file.
Add the tender amount to the tender transaction total.

resetTran() [saimptlog_rtlog.c]
Reinitialize the transaction structures.

chkTranTailCount() [saimptlog_rtlog.c]
Checks the counters in a transaction’s TTAIL record and produces an error if this figure does not match the actual number of records
processed for this transaction.

chkTranFormat() [saimptlog_rtlog.c]
Checks the current transaction format and content. Produces an error if more than one TCUST record is found, an IDISC record does
not correspond to a TITEM record, an unknown record type is encountered or the THEAD or TTAIL records are missing from the
transaction.
For each record in the transaction call rrchk to look for invalid characters in the record.
Call trat_lookup to get the transaction type and then validate that type with the number of records within the transaction.

rrchk() [saimptlog_rtlog.c]
Make sure that there are no embedded null, tab, carriage return or new line characters in the record passed in.

WrBadTran() [saimptlog_rtlog.c]
Writes an erroneously formatted transaction out to an error log file. These transactions do not contain enough information to be loaded
to the Sales Audit tables for correction by an auditor.

reformatTran() [saimptlog_rtlog.c]
Reformat the data within the transaction into the SQL*Loader flat file format. This is accomplished by calling routines that know the
format for each tables SQL*Loader control file. These routines are fmtSATranHead, fmtSACustomer, fmtSACustAttrib,
fmtSATranItem, fmtSATranDisc, fmtSATranTax and fmtSATranTend.
If the transaction type is ‘SALE’, ‘RETURN’ or ‘EEXCH’, than check that the transaction balances by comparing the sale and tender
transaction totals. Generate an error if they do not match.

Chapter 4 – saimptlog batch detail design 51

fmtSATranHead() [saimptlog_rtlog.c]
Formats a sa_tran_head record. The status of the current transaction is updated, and the next sequential tran_seq_no is generated by
nextTranSeqNo for the following transaction.
If the transaction type is not a ‘TOTAL’, than copy the sale transaction total to the transaction value column.

fmtSACustomer() [saimptlog_rtlog.c]
Formats a sa_customer record.

fmtSACustAttrib() [saimptlog_rtlog.c]
Formats a sa_cust_attrib record.

fmtSATranItem() [saimptlog_rtlog.c]
Formats a sa_tran_item record. If the item contains a variable weight UPC, than call waste_lookup to get the wastage type and
percent. If the type is an UPC, it will be converted to a SKU. The merchandise hierarchy information (department, class, sub-class,
and system indicator) associated with the SKU will be retrieved for this item by calling sku_lookup.
Produce an error if the SKU cannot be found, the UPC was not converted to an SKU, the item type is not SKU, UPC or GCN, or non-
numeric data is found in the quantity or amount field.

fmtSATranDisc() [saimptlog_rtlog.c]
Formats a sa_tran_disc record.

fmtSATranTax() [saimptlog_rtlog.c]
Formats a sa_tran_tax record.

fmtSATranTend() [saimptlog_rtlog.c]
Formats a sa_tran_tender record.

WrSoldSAVoucher() [saimptlog_output.c]
Format and write a sold voucher record to the voucher file.
In addition to the fields that are currently output in this function, information about the customer who purchased the gift certificate is
required in the new iss_cust fields. This information can be copied directly from the RTLTCust record associated with the transaction
being processed. The new recipient fields (name, state and country) will be stored in the RTLTItem record reference number fields for
the Sale of a gift certificate. These values provide details on the intended receiver for a gift certificate at the time of sale. This might
not be provided by every POS system, in which case they would be null. Expiration date will also be stored on the RTLTItem record
and should be populated; it may also be null.

Source Target
RTLTCust.name SA_VOUCHER.iss_cust_name
RTLTCust.addr1 SA_VOUCHER.iss_cust_addr1
RTLTCust.addr2 SA_VOUCHER.iss_cust_addr2
RTLTCust.city SA_VOUCHER.city
RTLTCust.state SA_VOUCHER.state
RTLTCust.postal_code SA_VOUCHER.postal_code
RTLTCust.country SA_VOUCHER.country
RTLTItem.ref_no5 SA_VOUCHER.recipient_name
RTLTItem.ref_no6 SA_VOUCHER.recipient_state
RTLTItem.ref_no7 SA_VOUCHER.recipient_country
RTLTItem.expiration_date SA_VOUCHER.exp_date

This function validates the datatype of numeric and date fields. The exp_date should be added to the fields that are validated. If it is
populated, it must be in a valid date format.
WrRedeemedSAVoucher() [saimptlog_output.c]
Format and write a redeemed voucher record to the voucher file.

52 Retek Merchandising System

WrIssuedSAVoucher() [saimptlog_output.c]
Format and write an issued voucher record to the voucher file.
In the case of a credit voucher issued during a return transaction, the iss_cust fields will also come from the RTLTCust fields as
described above. The recipient and exp_date fields are not relevant for this type of voucher, so do not need to be copied in this
function.

nextTranSeqNo() [saimptlog_nexttsn.c]
Gets the next free header sequence number for use. This routine goes and gets a block of numbers when starting, and parcels them out
as needed. Once they are all used up, another block is gotten.

tdup_savedata() [saimptlog_tdup.c]
Writes out what is currently known about transaction numbers for the current store/day.

tdup_misstran() [saimptlog_tdup.c]
Writes the entries for the sa_missing_tran table in SQL*Loader format.
The sa_missing_tran.status column will be filled in with SAMS_M.

tdup_loaddata() [saimptlog_tdup.c]
Loads the data file of transaction number past ranges.

tdup_addtran() [saimptlog_tdup.c]
Adds a transaction number to the list of numbers encountered. If store.tran_no_generated is SRTG_S, than the transaction number
must be unique to the store. If store.tran_no_generated is SRTG_R, than the transaction number must be unique to the store and
register.

VII. SAIMPTLOGFIN

main() [saimptlogfin.pc]
This should be the standard Retek main. Call LOGON to connect to the Sales Audit database. Call Init to initialize data structures and
output file handles. Call Process to populate the sa_balance_group table, to mark the import as either partially or fully complete, and
to release the store/day write lock that was established by SAIMPTLOG. Call final to close files and generally clean up.

init() [saimptlogfin.pc]
retek_init should be called to initialize g_l_restart_max_counter.
Get the system options by calling fetchSaSystemOptions.
Load the store/day data generated by SAGETREF by calling storeday_loadfile.

process() [saimptlogfin.pc]
Fetch all store/day’s that have a data status of loading (L) and that have the terminating records (sa_tran_head.tran_type = TERM) on
all of the tables (sa_tran_head, sa_customer, sa_cust_attrib, sa_tran_item, sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error and
sa_missing_tran). Save the ROWID of these terminating records so that they can be removed. Because of trickle polling, there may be
multiple records per table; they must all be present.
For each store/day fetched, get a write lock by calling get_lock. If this fails, go onto the next store/day.
For each completed store/day create the balance groups by calling balanceGroupCreate, remove sa_missing_tran records that are
now present by calling fixMissTran, and process post voids by calling fixPostVoid.
Delete the terminating records.
For each store/day mark the import as either partially or complete by calling markImportDone.
For each store/day release the import lock by calling release_lock.
Do a commit after each store/day by calling retek_force_commit.

final() [saimptlogfin.pc]
Call retek_close.

Chapter 4 – saimptlog batch detail design 53

balanceGroupCreate() [saimptlogfin.pc]
Depending on the value of the system option balance_level_ind (store, register or cashier), insert the necessary records into
sa_balance_group. The start_datetime and end_datetime columns should remain NULL. The bal_group_seq_no is gotten from a call to
nextBalGroupSeqNo.

nextBalGroupSeqNo() [nextbgsn.pc]
Gets the next free balance group sequence number for use. This routine goes and gets a block of numbers when starting, and parcels
them out as needed. Once they are all used up, another block is gotten.

fixPostVoid() [saimptlogfin.pc]
For each transaction that has a corresponding post void transaction (tran_type = PVOID) where sale.tran_no = cancel.orig_tran_no
and sale.register = cancel.orig_reg_no and store_day_seq_no’s match, set the status to SAST_V. Also, if that transaction contained a
voucher (either as an item or as a tender), then call the package function SA_VOUCHER_SQL.POST_VOID_VOUCHER to undo
any processing on this voucher.

fixMissTran() [saimptlogfin.pc]
Remove sa_missing_tran records that may now be present because data was processed out of order.

markImportDone() [saimptlogfin.pc]
Mark the import as either fully (F) or partially (P) loaded by updating the sa_store_day table’s data_status column. This is determined
by the presence of a transaction with a type of store/day closed (CLOSE).
If there was a CLOSE transaction, than update the sa_import_log table’s status and datetime columns. If the import was expected, than
set status to loaded (L), else set it to unexpected (U). This is determined by calling storeday_lookup.

VIII. Stored Procedures / Shared Modules (Maintainability)

Refer to the following documents for more details:
Package detail design - salock.doc
Functional Design - SA_misc.doc
Technical Design - SA_misc.doc

Shared Module Module Description
Retek_init
Retek_close
Retek_refresh_thread
fetchSaSystemOptions Fetch the values from the sa_system_options table.
fetchSysDate Fetch the current SYSDATE value.
trat_lookup Look up TRAT code types and convert them to their sequence number.
tent_lookup Look up TENT code types and convert them to their sequence number.
get_lock used to establish a read lock on a store/day.
release_lock used to release a store/day lock.
storeday_loadfile Loads the store/day data file generated by SAGETREF into memory.
storeday_lookup Checks that a store business day has an import record.
sku_loadfile Loads the SKU data file generated by SAGETREF into memory.
sku_lookup Looks up a SKU and returns the data (department, class, sub-class and system indicator) associated

with it.
upc_loadfile Loads the UPC data file generated by SAGETREF into memory.
upc_lookup Looks up a UPC.
vupc_loadfile Loads the variable weight UPC data file generated by SAGETREF into memory.
`vupc_lookup Looks up a variable UPC. Call vupc_lookup to see if it is a variable UPC. If it is a variable UPC, than

set the variable parts to zero.
prom_loadfile Loads the promotion data file generated by SAGETREF into memory.
prom_lookup Checks that a promotion exists.
waste_loadfile Loads the wastage data file generated by SAGETREF into memory.

54 Retek Merchandising System

Shared Module Module Description
waste_lookup Looks up the wastage for a SKU.
code_loadfile Loads the code type data file generated by SAGETREF into memory.
code_lookup Checks that a code type/code exists.
error_loadfile Loads the error data file generated by SAGETREF into memory.
error_lookup Looks up the error and the system codes that we are interested in it.
storepos_loadfile Loads the store POS data file generated by SAGETREF into memory.
storepos_lookup Looks up the store POS data that we are interested in it.
tendertype_loadfile Loads the tender type data file generated by SAGETREF into memory.
tendertype_lookup Checks that a tender type group and ID exists.
merchcode_loadfileMerc
hcode_loadfile

Loads the merchant code data file generated by SAGETREF into memory.

merchcode_lookupMerch
code_lookup

Looks up the merchant code data that we are interested in it.

partner_loadfileMerchco
de_loadfile

Loads the partner data file generated by SAGETREF into memory.

partner_lookupMerchcod
e_lookup

Looks up the partner data that we are interested in it.

supplier_loadfileMerchco
de_loadfile

Loads the supplier data file generated by SAGETREF into memory.

supplier_lookupMerchco
de_lookup

Looks up the supplier data that we are interested in it.

Chapter 4 – saimptlog batch detail design 55

IX. Input Specifications

The input files for SKU, Wastage, UPC, Variable UPC, Store Day, Promotions, Code Types, and Errors are all documented in Batch
Design – SAGETREF.doc.

The RTLOG file format is documented in Interface file – SA RTLOG.doc.

Date columns should always be converted to characters with a format of ‘YYYYMMDDHH24MISS’. Single digit MM, DD, HH24,
MI and SS values need to be 0 padded.

Char and Numeric ID Field Types should be left justified and padded with spaces.

Number Field types should be right justified and padded with zeros. If a Number Field is NULL, than it should be blank not 0’s.

56 Retek Merchandising System

X. Output Specifications

The filename convention for the SQL*Loader output files will be table_store_businessdate_curdatetime.out where table is sathead,
satitem, satdisc, sattax, sattend, sacust, sacustatt, or samisstr (i.e. sathead_1000_20000115_20000116053302.out for the sa_tran_head
table). Similarly, the filename convention for the Voucher output file is savouch_store_businessdate_curdatetime.out. The files should
start out with a temporary name generated by the Unix tempnam(3S) call and then be renamed with Unix rename(2) call when the files
are complete (see the Unix man pages in the indicated sections for usage details).

The filename convention for storing missing transactions between invocations of SAIMPTLOG is tdup_store_businessdate.dat.

Date columns should always be converted to characters with a format of ‘YYYYMMDDHH24MISS’. Single digit MM, DD, HH24,
MI and SS values need to be 0 padded.

When selecting columns that contain quantities or amounts from the database, the value should be multiplied by 10000 to remove the
decimal point. Decimal points are not supposed to be in Retek files. The only exception to this is SQL*Loader files.

Char and Numeric ID Field Types should be left justified and padded with spaces.

Number Field types should be right justified and padded with zeros. If a Number Field is NULL, than it should be blank not 0’s.

The voucher file format is documented in Interface file – SA VOUCH.doc.

SQL*Loader Control Files will be provided that match the format of the data files. These files will be named table.ctl. The format of
the SQL*Loader files is as follows:

Table Name Column Name Field Type Field

Width
Position Description

Sa_tran_head Tran_seq_no Integer external 20 1:20
 Rev_no Integer external 3 21:23
 Store_day_seq_no Integer external 20 24:43
 Tran_datetime date 14 44:57 Format is YYYYMMDDHH24MISS
 Register char 5 58:62
 Tran_no Integer external 10 63:72
 Cashier char 10 73:82
 Salesperson char 10 83:92
 Tran_type char 6 93:98
 Sub_tran_type char 6 99:104
 Orig_tran_no Integer external 10 105:114
 Orig_reg_no char 5 115:119
 Ref_no1 char 30 120:149
 Ref_no2 char 30 150:179
 Ref_no3 char 30 180:209
 Ref_no4 char 30 210:239
 Reason_code char 6 240:245
 Vendor_no char 10 246:255
 Vendor_invc_no char 30 256:285
 Payment_ref_no char 16 286:301
 Proof_of_delivery_no char 30 302:331
 Status char 6 332:337
 Value char 22 338:359 Includes an optional negative sign and a

decimal point.
 Pos_tran_ind char 1 360:360
 Update_id char 30 361:390

Chapter 4 – saimptlog batch detail design 57

Table Name Column Name Field Type Field
Width

Position Description

 Update_datetime date 14
391:404

Format is YYYYMMDDHH24MISS

 Error_ind char 1 405:405

Sa_tran_item Tran_seq_no Integer external 20 1:20
 Item_seq_no Integer external 4 21:24
 Item_status char 6 25:30
 Item_type char 6 31:36
 Sku Integer external 8 37:44
 Upc char 13 45:57
 Upc_supplement Integer external 5 58:62
 Voucher_no char 16 63:78
 Item_no char 16 79:94
 Dept Integer external 4 95:98
 Class Integer external 4 99:102
 Subclass Integer external 4 103:106
 System_ind char 1 107:107
 Qty decimal external 14 108:121 Includes an optional negative sign and a

decimal point.
 Unit_retail decimal external 21 122:142 Includes a decimal point.
 Override_reason char 6 143:148
 Orig_unit_retail decimal external 21 149:169 Includes a decimal point.
 Tax_ind char 1 170:170
 Ref_no5 char 30 171:200
 Ref_no6 char 30 201:230
 Ref_no7 char 30 231:260
 Ref_no8 char 30 261:290
 Item_swiped_ind char 1 291:291
 Error_ind char 1 292:292
 Var_upc_ind char 1 293:293
 Var_type char 1 294:294
 Waste_type char 6 295:300
 Pump char 8 301:308
 Waste_pct decimal external 12 309:320 Includes a decimal point.
 Return_reason_code char 6 321:326
 Salesperson char 10 327:336
 Expiration_date Date 8 337:344 Format is YYYYMMDD

Sa_tran_disc Tran_seq_no Integer external 20 1:20
 Item_seq_no Integer external 4 21:24
 Discount_seq_no Integer external 4 25:28
 rms_promo_type char 6 29:34
 Promotion Integer external 4 35:38
 Discount_type char 6 39:44
 Coupon_no char 16 45:60
 Coupon_ref_no char 16 61:76
 Qty decimal external 14 77:90 Includes an optional negative sign and a

decimal point.
 Unit_discount_amt decimal external 21 91:111 Includes a decimal point.
 Ref_no13 char 30 112:141
 Ref_no14 char 30 142:171
 Ref_no15 char 30 172:201
 Ref_no16 char 30 202:231

58 Retek Merchandising System

Table Name Column Name Field Type Field
Width

Position Description

 Error_ind char 1 232:232

Sa_tran_tax Tran_seq_no Integer external 20 1:20
 Tax_code char 6 21:26
 Tax_seq_no Integer external 4 27:30
 Tax_amt decimal external 22 31:52 Includes an optional negative sign and a

decimal point.
 Error_ind char 1 53:53
 Ref_no17 Char 30 54:83
 Ref_no18 Char 30 84:113
 Ref_no19 Char 30 114:143
 Ref_no20 Char 30 144:173

Sa_tran_tender Tran_seq_no Integer external 20 1:20
 Tender_seq_no Integer external 4 21:24
 Tender_type_group char 6 25:30
 Tender_type_id Integer external 6 31:36
 Tender_amt decimal external 22 37:58 Includes an optional negative sign and a

decimal point.
 Cc_no Integer external 16 59:74
 Cc_cc_exp_date date 8 75:82 Format is YYYYMMDD
 Cc_auth_no char 16 83:98
 Cc_auth_src char 6 99:104
 Cc_entry_mode char 6 105:110
 Cc_cardholder_verf char 6 111:116
 Cc_term_id char 5 117:121
 Cc_spec_cond char 6 122:127
 Voucher_no char 16 128:143
 Coupon_no char 16 144:159
 Coupon_ref_no char 16 160:175
 Ref_no9 char 30 176:205
 Ref_no10 char 30 206:235
 Ref_no11 char 30 236:265
 Ref_no12 char 30 266:295
 Error_ind char 1 296:296

Sa_customer Tran_seq_no Integer external 20 1:20
 Cust_id char 16 21:36
 Cust_id_type char 6 37:42
 Name char 40 43:82
 Addr1 char 40 83:122
 Addr2 char 40 123:162
 City char 30 163:192
 Sate char 3 193:195
 Postal_code char 10 196:205
 Country char 3 206:208
 Home_phone char 20 209:228
 Work_phone char 20 229:248
 E_mail char 100 249:348
 birthdate date 8 349:356 Format is YYYYMMDD

Sa_cust_attrib Tran_seq_no Integer external 20 1:20
 Attrib_seq_no char 4 21:24
 Attrib_type char 6 25:30

Chapter 4 – saimptlog batch detail design 59

Table Name Column Name Field Type Field
Width

Position Description

 Attrib_value char 6 31:36

Sa_error Error_seq_no Integer external 20 1:20
 Store_day_seq_no Integer external 20 21:40
 Bal_group_seq_no Integer external 20 41:60
 Total_seq_no Integer external 20 61:80
 Tran_seq_no Integer external 20 81:100
 Error_code char 25 101:125
 Key_value_1 Integer external 4 126:129
 Key_value_2 Integer external 4 130:133
 Rec_type char 6 134:139
 Store_override_ind char 1 140:140
 Hq_override_ind char 1 141:141
 Update_id char 30 142:171
 Update_datatime date 14 172:185 Format is YYYYMMDDHH24MISS
 Orig_value char 50 186:235

Sa_missing_tran Miss_tran_seq_no Integer external 20 1:20
 Store_day_seq_no Integer external 20 21:40
 Register char 5 41:45
 Tran_no Integer external 10 46:55
 status char 6 56:61

60 Retek Merchandising System

XI. Database Integrity

This information derives from the Database Considerations within the Process / Functional Overview (PFO), the Conversation Flow
and Database Objects of the Technical Design.

Parameter Validation Method

focuses

Integrity Constraints

Operations that affect other entities in the system must be validated to ensure that integrity constraints have not been violated. If a
record cannot exist in the system without a related parent record existing first, it is essential that the application enforce this constraint.
Similarly, if a record cannot be deleted due to the existence of child records in the system the application should prevent the user from
performing a delete operation.
XII. Scheduling Considerations

Processing Cycle: Anytime – Sales Audit 9.0 is a 24/7 system.

Scheduling Diagram: These programs (SAIMPTLOG, SQL*Loader and SAIMPTLOGFIN) are the second step in the batch process
for loading customer POS data into the Sales Audit database.

Pre-Processing: SAGETREF must be run before importing POS logs. POS logs must be converted into the Retek TLOG format by the
customer (Unless the saimptlog_rtlog.c module is rewritten by the customer to handle their POS log files).

Threading Scheme: N/A

XIII. Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section, this section should describe the locking (and release)
strategy required beyond the preset Retek standards. It should describe how the module accesses data and the ‘hold’ or ‘lock’ it has on
a database and / or its records, during processing. It should also describe the ‘lock’ release.

XIV. Restart / Recovery

The logical unit of work for SAIMPTLOG is defined as a single POS file. This POS file may or may not represent a complete store
day.

The logical unit of work for SAIMPTLOGFIN is defined as a store/day. This does not follow the usual restart/recovery. A commit is
done after each store/day is processed. This program will than naturally pick up where it left off if it is restarted.

Chapter 4 – saimptlog batch detail design 61

XV. Performance

In conjunction with the Scheduling Considerations and Locking Strategy sections, the optimization considerations of a batch module
must adhere to Retek standards. This section should call out special performance considerations that may exceed current documented
Retek practices. Such considerations should be the basis for update to Retek standards. Each database operation should be optimized
based on quantity and quality of the database transactions. Batch modules are executed on the database or dedicated batch server and
thus there are no additional performance gains to forcing database interaction logic onto the server.

XVI. Security Considerations

POS data contains credit card data. The RTLOG input file and satend SQL*Loader output file both contain credit card numbers.
Access to these files is controlled solely by Unix file permissions.

XVII. Design Assumptions
Design assumptions are presumed design factors, inferred from current information, expected to hold true over the life of the project.
Design assumptons must be documented in order to justify and validate derived design considerations with the Business Requirements
(documented within the BRD and PFO).

XVIII. Outstanding Design Issues
All requirements, functional or technical issues that arise during the design of this functional area must be documented in this section.
Each issue should remain on this document even if the issues has been resolved or deferred. The issue, description, status and
resolution should all be maintained in this section. This section is included with the intent of acting as a worksheet that will track
design and provide rationale for the decisions made during the design phase. List any outstanding issues that have been identified in
this phase that need to be carried forward to the next phase(s).

Description Priority (High, Moderate, Low; if available) Issue Log Updated?

XIX. References

Interface File – RTLOG.doc
Interface File – SA VOUCH.doc

XX. Batch Detailed Design Walkthrough
The Batch Detailed Design document must be reviewed by Retek project representatives or alternates (if appropriate, client
representatives also). Whether walkthroughs occur at one time with a single group or via parallel or sequential approvals,
walkthroughs are required. Not all projects require the same level of scrutiny, but that level of scrutiny must be determined and
managed from the beginning.

62 Retek Merchandising System

Retek representatives

• Project Sponsor

• Business Unit Manager

• Project Lead

• Product Manager / Strategy

• Business Analysts

• Database Analysts

• Research & Development

• Quality Control

• Documentation

• Training

• Customer Support

Only when appropriate Client representatives

• Business

• Technical

• End-user; those who provide / enter input, those who use outputs

• Operations

• Support

XXI. Appendix

 Appendixes are included as necessary. They might include an updated glossary, derived from the Batch Detailed Design glossary,
project schedules or other items interrupting the flow of this document.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – ReSA 9.0 RTLOG layout
	Chapter 3 – saexpach batch module design
	Functional Area
	Module Affected
	Design Overview
	Background information – Quick Overview of the ACH process
	Data Security
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues
	Assumptions

	Chapter 4 – saimptlog batch detail design
	Introduction
	Functional Area
	Module Affected
	Design Overview
	Program Flow
	Function Level Description
	SAIMPTLOG
	SAIMPTLOGFIN

	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations
	Design Assumptions
	Outstanding Design Issues
	References
	Batch Detailed Design Walkthrough
	Appendix

