&

Rete

Retek Merchandising System
9.0.2.0

Addendum to Operations Guide

rms-9020-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2000 by Retek Inc.
All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Printed in the United States of America.

Customer Support

Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2000: Jan. 3, May 29, July 3, July 4, Sept.
4, Nov. 23, Nov. 24, Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information
Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800
Fax (+1) 612-630-5710
E-mail support@retek.com
Internet www.retek.com/reteknow

Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza

801 Nicollet Mall

Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

* Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

* Provide a completely updated Customer Profile.

* Have a single resource per product responsible for coordination and
screening of Retek issues.

* Respond to our requests for additional information in a timely manner.
* Use the Expert Web to submit and update your issues.

* Have a test system in place running base Retek code.

Contents |

Contents

Chapter 1 — Introduction...........oocci 1

Chapter 2 — ReSA 9.0 RTLOG layoutccoeeeuiiimmmnciimrcansernasnens 2

Chapter 3 — saexpach batch module design......c..cccoveeeciirreennn. 25
FUNCHONAl AT@A. ...ttt ettt e 25
MoOdUle ATTECIEAceeieieieiieeee e e 25
DESIZN OVEIVIEW ...vieeiiiieeiiie et eeieeesteeeiteeeeteeeteeeeaaeesbeeessseeessseeesseeensseesnseeessseeennses 25
Background information — Quick Overview of the ACH process.........ccccceeeveerriennnnne. 26
LD 1 BT L0 TSRS 27
Scheduling CONSLIAINLScccuieriieeiieriieeieesie et erieeete et e ete et eseaeebeesaaeeseessneeseesnneens 28
RESTAIT RECOVETY ..eiiiiiiiiiii ettt e et e e e e e e enaaeeeennes 28
Program FIOWcc.ooiiiiiiieiieee ettt ettt nes 29
Shared MOAUIESc...ooiuiiiiiiee ettt e 29
Function Level DeSCIIPLioNcceeeiieriieiiieiieeiieiie ettt 30
I/O SPECIHICALIONeieiieeiie et et e et e et e e etaeeesaeeensaeeennes 33
TEChNICAL ISSUCS ...ttt sttt 40
F N 01001 0110) S F TSRS 40

Chapter 4 — saimptlog batch detail design..........ccccccerrrrnnnnnee. 41
INErOAUCTION ...ttt sttt ettt sae e 41
FUNCHONAl AT@A. ...ttt e 41
MoOdULe ATTECTEA ... 41
DESIZN OVEIVIEW ...vviiiiiieeiieeeieeeetee et e eteeeeteeeteeeeaeeeesbeeessseeesseessseesnsseesnseeessseeensses 42
Program FIOWcc.oooiiiiiiiecieee ettt et es 44
Function Level DeSCIIPLIONccecuiiieiiieeiiieeiiieeiie ettt e e e e 44
SAIMPTLOGEIN ...ttt sttt sttt s sbe s 52
Stored Procedures / Shared Modules (Maintainability)..........ccccceeveieinciieniee e, 53
INPUL SPECTIICATIONS ...vvieeiieiiiieiie ettt ettt ettt et et eeseesaeeenseenes 55
OULPUL SPECITICATIONS...ceuviieeiiieeiieeeiieeetee e e e ste e e te e et eesteeesbeeessbeeesaseeessseeesseesnneeas 56
Database INtEEIILYeevieiiieiieeiie ettt ettt ettt ettt e teesbe e saesnbeeseesnseenees 60
Scheduling ConSidETationscccieeiiieeiiieecieeerree et ereeeeeeerr e e e b e e ssaeesnseees 60

LOCKING Strat@@Y ...c.evievieeiieeiieiie ettt ettt ettt ettt et sate e eebeeseesnseeseeenne 60

RESTAIt / RECOVETY ...uviiniiiiiiieiie ettt ettt et s ae et e abe e ense e 60

PerfOrmanCec..ooiuiiiiee e et 61
Security CONSIACTATIONSeevuieriieiieeieeiie sttt e ste et e sae et e sateeseesseeebeesseesnseenseesnseens 61
DeSi@n ASSUMPLIONSeeeivrieeiiieeiieeeieeeeieeesteeesteeesaeeessaeeessaeeesseessseessseeessseesssseesnsses 61
Outstanding DeSign ISSUES........cecuieiiiiiiieiieiie ettt ettt 61
RETEIEIICES ...ttt ettt et st 61
Batch Detailed Design Walkthroughcccoooiiiiiiiiiiiiiice e 61

F N 00157 116 TSRS 62

Chapter 1 — Introduction

Chapter 1 — Introduction

This addendum to the Retek Merchandising System (RMS) 9.0.0.0 Operations
Guide contains updates to the following information:

* ReSA 9.0 RTLOG Layout
* saexpach batch module design
* saimptlog batch detail design

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0.0.0 Operations Guide.

2 Retek Merchandising System

Chapter 2 — ReSA 9.0 RTLOG layout

The following illustrates the file layout format of the Retek TLOG. The content of each Retek TLOG file is per store per day. The filename convention will be
RTLOG_STORE DATETIME.DAT (e.g. RTLOG 1234 01221989010000.DAT)

FHEAD (Only 1 per file, required)
THEAD (Multiple expected, one per transaction, required for each transaction)
TCUST (Only 1 per THEAD record allowed, optional for some transaction types, see table below)
CATT (Attribute record specific to the TCUST record — Multiple allowed, only valid if TCUST exists)
TITEM (Multiple allowed per transaction, optional for some transaction types, see table below)
IDISC (Discount record specific to the TITEM record — Multiple allowed per item, optional see table below)
TTAX (Multiple allowed per transaction, optional see table below)
TTEND (Multiple allowed per transaction, optional for some transaction types, see table below)
TTAIL (1 per THEAD, required)
FTAIL (1 per file, required)

The order of the records within the transaction layout above is important. It aids processing by ensuring that information is present when it is needed.

Record Field Name Field Type Default Value Description Required? Justification/
Name Padding
File File Type Record Char(5) FHEAD Identifies file record type Y Left/Blank
Header Descriptor
File Line Identifier Number(10) Specified by ID of current line being processed by input file. Y Right/0
external system
File Type Definition =~ Char(4) RTLG Identifies file as ‘Retek TLOG”. Y Left/Blank
File Create Date Char(14) Create date Date and time file was written by external system Y Left/None
(YYYYMMDDHHMMSS).
Business Date Char(8) Business Date to Business date of transactions. (YYYYMMDD). Y Left/None
process
Location Number Char(4) Specified by Store or warehouse identifier. Y Left/None
external system
Reference Number Char(30) Specified by This may contain the Polling ID associated with N Left/Blank
external system the consolidated TLOG file or used for other

purpose.

Chapter 2 — ReSA 9.0 RTLOG layout

Transaction
Header

File Type Record
Descriptor
File Line Identifier

Register
Transaction Date

Transaction Number
Cashier

Salesperson
Transaction Type

Sub-transaction type

Orig_tran_no

Orig_reg no

Reason Code

Vendor Number

Vendor Invoice
Number

Char(5)
Number(10)

Char(5)
Char(14)

Number(10)
Char(10)
Char(10)
Char(6)

Char(6)

Number(10)

Char(5)

Char(6)

Char(10)

Char(30)

THEAD

Specified by
external system

Transaction date

Refer to "TRAT'
code_type for a list
of valid types.
Refer to "TRAS'
code_type for a list
of valid types.

Refer to 'REAC'
code_type for a list
of valid codes. If the
transaction type is
‘PAIDOU’ and the
sub transaction type
is ‘MV’ or ‘EV’
than the valid codes
come from the
non_merch code he
ad table.

Identifies file record type.

ID of current line being processed by input
file.

Till used at store.

Date transactions were processed at the POS
YYYYMMDDHHMMSS).

Transaction identifier.

Cashier identifier.

Salesperson identifier.

Transaction type.

Sub-transaction type. For sale, it can be
employee, drive-off etc.

Populated only for post-void transactions.
Transaction number for the original tran
that will be cancelled.

Populated only for post-void transactions.
Register number from the original tran.
Reason entered by cashier for some
transaction types. Required for Paid In
and Paid out transaction types, but can
also be used for voids, returns, efc.

Supplier id for a merchandise vendor paid
out transaction, partner id for an expense
vendor paid out transaction.

Invoice number for a vendor paid out
transaction.

<“ZzZ~< << < X

N

N

Left/Blank
Right/0

Left/Blank
Left/None

Right/0

Left/Blank
Left/Blank
Left/Blank

Left/Blank

Right/0

Left/Blank

Left/Blank

Left/Blank

Left/Blank

4 Retek Merchandising System

Payment Reference
Number

Proof of Delivery

Number

Reference Number 1

Reference Number 2
Reference Number 3
Reference Number 4
Value Sign

Value

Char(16)

Char(30)

Char(30)

Char(30)
Char(30)
Char(30)
Char(1)

Number(20)

Refer to ‘SIGN’
code_type for a list
of valid codes.

The reference number of the tender used
for a vendor payout. This could be the
money order number, check number, etc.
Proof of receipt number given by the
vendor at the time of delivery. This field is
populated for a vendor paid out
transaction.

Number associated with a particular
transaction, for example weather for a Store
Conditions transaction.

The sa_reference table defines what this field
can contain for each transaction type.

Second generic reference number.

Third generic reference number.

Fourth generic reference number.

Sign of the value.

Value with 4 implied decimal places.
Populated by the retailer for TOTAL trans,
populated by Retek sales audit for SALE,
RETURN trans.

N

N

N
Y if Value
is present

Y if tran is
a TOTAL.

Left/Blank

Left/Blank

Left/Blank

Left/Blank
Left/Blank
Left/Blank
Left/None

Right/0

Chapter 2 — ReSA 9.0 RTLOG layout 5

Transaction
Customer

Customer
Attribute

File Type Record
Descriptor
File Line Identifier

Customer ID
Customer ID type

Customer Name
Address 1
Address 2
City

State

Zip Code
Country
Home Phone
Work Phone
E-mail
Birthdate

File Type Record
Descriptor

File Line Identifier

Attribute type

Attribute value

Char(5)
Number(10)

Char(16)
Char(6)

Char(40)
Char(40)
Char(40)
Char(30)
Char(3)
Char(10)
Char(3)
Char(20)
Char(20)
Char(100)
Char(8)

Char(5)
Number(10)

Char(6)

Char(6)

TCUST

Specified by
external system
Customer identifier
Refer to 'CIDT'
code_type for a list
of valid types

State identifier
Zip identifier

CATT

Specified by
external system
Refer to ‘SACA'
code_type for a list
of valid types

Refer to members of
‘SACA' code_type
for a list of valid
values

Identifies file record type

ID of current line being processed by input
file.

The ID number of a customer.

Customer ID type.

Customer name.

Customer address.

Additional field for customer address.
City.

State.

Zip code.

Country.

Telephone number at home.
Telephone number at work.
E-mail address.

Date of birth. (YYYYMMDD)

Identifies file record type
ID of current line being processed by input

file.
Type of customer attribute

Value of customer attribute.

<< <

<~ <K K Z2ZZZZ72Z2ZZZZZ

Left/Blank
Right/0

Left/Blank
Left/Blank

Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank
Left/Blank

Left/Blank
Right/0

Left/Blank

Left/Blank

6 Retek Merchandising System

Transactio File Type Record Char(5) TITEM Identifies file record type. Y Left/Blank
n ltem Descriptor
File Line Identifier Number(10) Specified by ID of current line being processed by input Y Right/0
external system file.
Item Status Char(6) Refer to ‘SASI’ Status of the item within the transaction, V for Y Left/Blank
code type foralist item void, S for sold item, R for returned item.
of valid codes.
Item Type Char(6) Refer to ‘SAIT’ Identifies what type of item is transmitted. Y Left/Blank
code_type for a list
of valid codes.
SKU Number(8) Item identifier ID number Either SKU Left/Blank
UPC Char(13) Item identifier ID number Or Left/Blank
UPC
Supplement Number(5) Supplemental Used to further specify the ID of a UPC. N Left/Blank
identifier
Voucher Char(16) Gift certificate number N Right/0
Item Number Char(16) Item identifier Populated by retailer for Item types other than N Left/Blank
SKU, UPC or GCN. Allows retailers more
flexibility to store additional item types within
ReSA.
Department Number(4) Identifies the department this item belongs to. N Right/Blank
This is filled in by saimptlog.
Class Number(4) Item’s class Class of item sold or returned. Not required N Right/Blank
from a retailer, populated by Retek sales audit.
This is filled in by saimptlog.
Subclass Number(4) Item’s subclass Subclass of item sold or returned. Not N Right/Blank
required from a retailer, populated by Retek
sales audit.
This is filled in by saimptlog.
System Indicator Char(1) Refer to 'IMTP’ The type of item sold or returned. Not N Left/None
code type foralist required from a retailer, populated by Retek
of valid codes. sales audit.
This is filled in by saimptlog.
Quantity Sign Char(1) Refer to 'SIGN' Sign of the quantity Y Left/None

code_type for a list
of valid codes.

Chapter 2— ReSA 9.0 RTLOG layout 7

Quantity Number(12) Number of items purchased with 4 decimal Y Right/0
places.
Unit Retail Number(20) Unit retail with 4 implied decimal places. Y Right/0
Override Reason Char(6) Refer to 'ORRC' This column will be populated when an item's Y ifunit Left/Blank
code type foralist price has been overridden at the POS to define retail was
of valid codes. why it was overridden. manually
entered
Original Unit Retail Number(20) Value with 4 implied decimal places. Y ifunit Right/0
This column will be populated when the item's retail was
price was overridden at the POS and the item's manually
original unit retail is known. entered
Taxable Indicator Char(1) Refer to "'YSNO’ Indicates whether or not item is taxable. Y Left/None
code_type for a list
of valid codes.
Pump Char(8) Fuel pump identifier. N Left/Blank
Reference Number 5 Char(30) Number associated with a particular item N Left/Blank
within a transaction, for example special order
number.
The sa_reference table defines what this field
can contain for each transaction type.
Reference Number 6 Char(30) Second generic reference number at the item N Left/Blank
level.
Reference Number 7 Char(30) Third generic reference number at the item N Left/Blank
level.
Reference Number & Char(30) Fourth generic reference number at the item N Left/Blank
level.
Item_swiped_ind Char(1) Refer to 'YSNO’ Indicates if the item was automatically Y Left/None
code type foralist entered into the POS system or if it had to
of valid codes. be manually keyed.
Return Reason Code Char(6) Refer to ‘SARR’ The reason an item was returned. N Left/Blank
code_type for a list
of valid codes.
Salesperson Char(10) The salesperson who sold the item. N Left/Blank
Expiration_date Char(8) Gift certificate expiration date N
YYYYMMDD).

8 Retek Merchandising System

Item
Discount

File Type Record
Descriptor
File Line Identifier

RMS Promotion
Number

Discount Reference
Number

Discount Type

Coupon Number

Coupon Reference
Number

Quantity Sign

Quantity

Unit Discount
Amount

Reference Number
13

Reference Number
14
Reference Number
15
Reference Number
16

Char(5)
Number(10)

Char(6)

Number(4)

Char(6)

Char(16)

Char(16)

Char(1)

Number(12)
Number(20)

Char(30)

Char(30)
Char(30)

Char(30)

IDISC

Specified by external

system

Refer to ‘PRMT”
code_type for a list of

valid types

Refer to ‘SADT’
code_type for a list of

valid types.

Refer to 'SIGN'
code_type for a list of

valid codes.

Identifies file record type
ID of current line being processed by input file.

The RMS promotion type.

Discount reference number is associated with
the discount type (e.g. if discount type is a
promotion, this contains the promotion number).
The type of discount within a promotion. This
allows a retailer to further break down coupon
discounts within the “In-store” promotion, for
example.

Number of a store coupon used as a discount.

Additional information about the coupon,
usually contained in a second bar code on the
coupon.

Sign of the quantity.

The quantity purchased that discount is applied
with 4 implied decimal places.

Unit discount amount for this item with 4
implied decimal places.

Number associated with a particular transaction
type at the discount level.

The sa_reference table defines what this field
can contain for each transaction type.

Second generic reference number at the discount
level.

Third generic reference number at the discount
level.

Fourth generic reference number at the discount
level.

Y if
coupon
Y if
coupon

Y

Left/Blank
Right/0

Left/Blank

Left/Blank

Left/Blank

Left/Blank

Left/Blank

Left/None

Right/0
Right/0

Left/Blank

Left/Blank
Left/Blank

Left/Blank

Chapter 2 — ReSA 9.0 RTLOG layout 9

Transaction
Tax

File Type Record
Descriptor
File Line Identifier

Tax Code

Tax Sign

Tax Amount
Ref nol7
Ref nol8
Ref nol9

Ref 1n020

Char(5)
Number(10)

Char(6)

Char(1)

Number(20)
Char(30)
Char(30)
Char(30)

Char(30)

TTAX

Specified by
external system
Refer to '"TAXC'
code_type for a list
of valid codes
Refer to 'SIGN'
code_type for a list
of valid codes.

Identifies file record type

ID of current line being processed by input
file.

Tax code to represent whether it is a state tax
type, provincial tax, etc.

Sign of Tax Amount.

Amount of tax charged for this tax code type

in a transaction with 4 implied decimal places.

Additional information about the tax that the
retailer chooses to the store.
Additional information about the tax that the
retailer chooses to the store.
Additional information about the tax that the
retailer chooses to the store.
Additional information about the tax that the
retailer chooses to the store.

z z Z zZ X

Left/Blank
Right/0

Left/Blank

Left/None

Right/0

Left/Blank
Left/Blank
Left/Blank

Left/Blank

10 Retek Merchandising System

Transaction
Tender

File Type Record
Descriptor
File Line Identifier

Tender Type Group

Tender Type ID

Tender Sign

Tender Amount
Cc_no
Cc_auth no

cc authorization
source

cc cardholder
verification

cc expiration date
cc entry mode

cc terminal id
cc special condition

Char(5)
Number(10)

Char(6)

Number(6)

Char(1)

Number(20)
Number(16)
Char(16)

Char(6)

Char(6)

Char(8)

Char(6)

Char(6)
Char(6)

TTEND

Specified by
external system
Refer to 'TENT'
code_type for as list
of valid types

Refer to the
pos_tender type he
ad table for as list of
valid types

Refer to 'SIGN'
code_type for a list
of valid codes.

Refer to 'CCAS'
code_type for as list
of valid types

Refer to 'CCVF'
code_type for as list
of valid types

Refer to 'CCEM'
code_type for as list
of valid types

Refer to 'CCSC'
code_type for as list
of valid types

Identifies file record type
ID of current line being processed by input

file.
High-level grouping of tender types.

Low-level grouping of tender types.

Sign of the value.

Amount paid with this tender in the
transaction with 4 implied decimal places.
Credit card number

Authorization number for a cc

(YYYYMMDD)

Indicates whether the credit card was swiped,

thus automatically entered, or manually
keyed.
Terminal number transaction was sent from.

Y

Y if credit
card

Y if credit
card

Y if credit
card

Y if credit
card

Y if credit
card

Y if credit
card

N
Y if credit
card

Left/Blank
Right/0

Left/Blank

Left/Blank

Left/None

Right/0
Left/Blank
Left/Blank

Left/Blank

Left/Blank

Left/Blank

Left/Blank

Left/Blank
Left/Blank

Chapter 2 — ReSA 9.0 RTLOG layout 11

Transaction
Tender

Transaction
Trailer

File Trailer

File Type Record
Descriptor
Voucher no

Coupon Number

Coupon Reference
Number

Reference No 9

Reference No 10

Reference No 11
Reference No 12

File Type Record
Descriptor
File Line Identifier

Transaction Record
Counter

File Type Record
Descriptor
File Line Identifier

File Record Counter

Char(5)
Char(16)
Char(16)

Char(16)

Char(30)

Char(30)

Char(30)
Char(30)

Char(5)
Number(10)

Number(10)

Char(5)
Number(10)

Number(10)

TTEND

TTAIL

Specified by

external system

FTAIL

Specified by

external system

Identifies file record type

Gift certificate or credit voucher serial
number.

Number of a manufacturer’s coupon used as a
tender.

Additional information about the coupon,
usually contained in a second bar code on the
coupon.

Number associated with a particular
transaction type at the tender level.

The sa_reference table defines what this field
can contain for each transaction type.

Second generic reference no at the tender
level.

Third generic reference no at the tender level.

Fourth generic reference no at the tender level.

Identifies file record type

ID of current line being processed by input
file.

No of records processed in current tran (only
records between trans head & tail)

Identifies file record type

ID of current line being processed by input
file.

No of transactions processed in current file
(only records between file head & tail)

Y

Y if
voucher
Y if
coupon
Y if
coupon

N

< =< Zz Z

Left/Blank
Right/0
Left/Blank

Left/Blank

Left/Blank

Left/Blank

Left/Blank
Left/Blank

Left/Blank

Right/0

Left/Blank
Right/0

Right/0

12 Retek Merchandising System

The RTLOG file is imported into the Sales Audit tables after validation by the batch program saimptlog. This section describes the requirements and validations
performed on the records.

1. Common requirements/validations:

This section details the common requirements and validations performed on all transactions. The following sections describe the specific requirements of
each type of transaction. If a transaction is not mentioned, then it does not have specific requirements.

a. Record Type Requirements:

Transaction Type | Includes item records? | Includes tender records? Includes tax records? Includes customer records?

OPEN No No No No

NOSALE No Optional No No

VOID Optional Optional Optional Optional

PVOID No No No No

SALE Yes Yes Optional Optional

RETURN Yes Yes Optional Optional

EEXCH Yes No Optional Optional

PAIDIN No Yes No No

PAIDOU No Yes No No

PULL No Yes No No

LOAN No Yes No No

COND No No No No

CLOSE No No No No

TOTAL No No No No

REFUND This transaction is not sent through the RTLOG. It is entered at the HQ level. The TITEM and TCUST records are optional. The
TTEND record is required. A TTAX record should not be included.

METER Yes No No No

PUMPT Yes No No No

TANKDP Yes No No No

TERM TERM records are created by saimptlog and then loaded into the database. They do not come from the RTLOG file. They
require one TITEM, one TTEND, one TTAX, one TCUST record and one CATT record.

DCLOSE No | No | No | No

Chapter 2 — ReSA 9.0 RTLOG layout 13

b. Requirements per record type:

Record Type Requirements
IDISC e IDISC records must immediately follow their associated TITEM record.
CATT e CATT records must immediately follow their associated TCUST record.
c. Code Type Validations:
Record Name Field Name Code Type
Transaction Header Transaction Type TRAT
Sub-transaction Type TRAS

Reason Code

REAC or values from non_merch code head if the transaction type is ‘PAIDOU’
and the sub transaction type is ‘MV’ or ‘EV’.

Value Sign SIGN
Vender No If the transaction type is ‘PAIDOU” and the sub transaction type is ‘MV”, this field is
validated against the supplier table. If the transaction type is ‘PAIDOU’ and the sub
transaction type is ‘EV’, this field is validated against the partner table.
Transaction Item Item Type SAIT
Item Status SASI
System Indicator IMTP
Quantity Sign SIGN
Taxable Indicator YSNO
Price Override Reason Code ORRC
Item Swiped Indicator YSNO
Return Reason Code SARR
Item Discount RMS Promotion Type PRMT
Discount Type SADT
Quantity Sign SIGN
Transaction Customer | Customer ID Type CIDT
Customer Attribute Attribute Type SACA
Attribute value Code types from codes in SACA.
Transaction Tax Tax code TAXC
Tax sign SIGN
Transaction Tender Tender Type Group TENT
Tender Sign SIGN

Tender Type ID

Pos tender type head table

14 Retek Merchandising System

CC Authorization Source CCAS
CC Cardholder Verification CCVF
CC Entry Mode CCEM
CC Special Condition CCSC

d. Dates are validated: Business Date, Transaction Date, Expiration Date Also, saimptlog accepts only business dates that are within the PERIOD.VDATE
minus the SA_ SYSTEM_OPTIONS.DAYS POST SALE value.

e. Store number is validated against the STORE table.
f. Numeric fields are checked for non-numeric characters.

g. For transaction of type SALE, RETURN and EEXCH, saimptlog checks whether a transaction is in balance:
Transaction Items (Unit Retail * Unit Retail Sign * Quantity)
+ Item Discounts (Unit Discount Amount * Unit Discount Sign * Quantity)
+ Transaction Tax (Tax Amount * Tax Sign)
= Transaction Tenders (Tender Amount * Tender Sign)
saimptlog will populate the Value field (on THEAD) with the transaction’s sales value (item value — discount value + tax value) from the above
calculation if it was not provided in the RTLOG.

h. Treatment of vouchers.

I. Ifanitem sold is a gift certificate (Transaction Item, Voucher field has a value), issued information is written to the SA_ VOUCHER table.

II. If the Transaction Type is a RETURN, and the Transaction Tender Type Group is voucher (VOUCH), issued information is written to the
SA VOUCHER table.

III. If the Transaction Type is a SALE, and the Transaction Tender Type Group is a voucher (VOUCH), redeemed information is written to the
SA VOUCHER table.

IV. When a gift certificate is sold, customer information should always be included. A receiving customer name value should be populated in the
ref noS5 field, a receiving customer state value should be populated in the ref no6 field and a receiving customer country should be populated
in the ref no7 field. These reference fields can be changed by updating the sa_reference table but the code needs to be modified too. The
expiration date is put on the expiration date field on the TITEM record.

i. Other validations/points of interest:
I. A salesperson in the TITEM record takes precedence over the salesperson in the THEAD record.
II. Ifanitem sold is a UPC (Transaction Item, UPC field has a value and SKU does not), it will be converted to the corresponding SKU using the
Supplement.
III. Ifanitem sold is a SKU (Transaction Item, SKU field has a value), it will be validated against RMS item tables.

Chapter 2 — ReSA 9.0 RTLOG layout 15

IV. The corresponding Department, Class, Subclass, System Indicator and Taxable Indicator will be selected from the RMS tables and populated for a
SKU.
j- The balancing level determines whether the register or the cashier fields are required.
I. If'the balancing level is ‘R’egister, then the register field on the THEAD must be populated.
II. Ifthe balancing level is ‘C’ashier, then the cashier field on the THEAD must be populated.
III. If the balancing level is ‘S’tore, then neither field is required to be populated.

k. The tax_ind and the item swiped ind fields can only accept ‘Y’ or ‘N’ values. If an invalid value is passed through the RTLOG, an error will be flagged
and the value will be defaulted to ‘Y.

Transaction of type ‘SALE’:

A transaction of type SALE is generated whenever an item is sold. A sale may be to an employee, the sub-transaction type would be EMP in this case. Or it
may be a drive-off sale (sub-transaction type DRIVEQO) when someone drives off with unpaid gas. A special type of sale is an “odd exchange” (sub-
transaction type EXCH) where items are sold and returned in the same transaction. If the net value of the exchange is positive, then it is a sale. If the net
value is negative, it is a return. If the net value is zero and the items exchanged are in the same SKU style, it would be a transaction of type EEXCH (Even
Exchange).

a. Requirements per record type (other than what is described in Layout section above):

Record Type
Requirements

THEAD

TITEM
e Item Status is a required field; it determines whether the item is ‘S’old, ‘R’eturned or ‘V’oided. If the item status is S,

the quantity sign is expected to be P. If the item status is ‘R’, the quantity sign is expected to be N.

¢ If'the item status is V, the quantity sign is the reverse of the quantity sign of the voided item. That is, if an item with
status S is voided, the quantity sign would be N. Furthermore, the sum of the quantities being voided cannot exceed
the sum of the quantities ‘S’old or ‘R’eturned. Note: neither of the above two validations are performed by saimptlog
but an audit rule could be created to check this.

* In atypical sale, the items would all have a status of ‘S’. In the case of an odd exchange, some items will have a
status of ‘R’.

¢ In a typical return, the items would all have a status of ‘R’. In the case of an odd exchange, some items will have a

16 Retek Merchandising System

status of ‘S’.

If an item has status R, then the Return Reason Code field may be populated. If it is, it will be validated against code
type ‘SARR’.

If the price of an item is overridden, then the Override Reason and Original Unit Retail fields must be populated.

IDISC

The RMS Promotion Type field must always be populated with values of code type ‘PRMT’.
The Promotion field is validated, when a value is passed, against the promhead table.

If the promotion is ‘In Store’ (code 1004), then the Discount Type field must be populated with values of code type
‘SADT".

The Discount Reference Number is a promotion number which is of status ‘A’, ‘E’ or ‘M’.

If the Discount Type is ‘SCOUP’ for Store Coupon, then the Coupon Number field must be populated. The Coupon Reference
Number field is optional.

TTEND

If the tender type group is ‘COUPON”’, then the Coupon Number field must be populated. The Coupon Reference
Number field is optional.

If the Transaction Tender Type Group is a credit card (CCARD), the number will be validated against the
SA CC VAL table. The other cc fields are optional.

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.
Transaction | Sub-transaction | Item | Tender Type Reference Meaning of Reference Field Req
Type Type Type Group Number Field ?
ALE
5 1 Speed Sale Number Y
SALE GCN 5 Recipient Name N
SALE GCN 6 Recipient State N

Chapter 2 — ReSA 9.0 RTLOG layout 17

SALE GCN 7 Recipient Country N
SALE CHECK 9 Check Number N
SALE CHECK 10 Driver’s License Number N
SALE CHECK 11 Credit Card Number N
SALE DRIVEO 1 Incident Number Y
SALE EMP 3 Employee Number of the employee N
receiving the goods.
c. Expected values for sign fields

TRANSACTION TYPE | TITEM.Quantity Sign | TTEND.Tender Sign | TTAX.Tax Sign | IDISC.Quantity Sign
SALE P if item is sold; P P P if item is sold;

N if item is returned;
reverse of original
item if item is voided.

N if item is returned;
reverse of original
item if item is voided.

Transaction of type ‘PVOID’:

This transaction is generated at the register when another transaction is being post voided. The orig_tran no and orig reg no fields must be populated with
the appropriate information for the transaction being post voided. The PVOID transaction must be associated with the same store day as the original
transaction. If the PVOID needs to be generated after the store day is closed, the transaction needs to be created using the forms.

Transaction of type ‘RETURN’:
This transaction is generated when a customer returns an item.

a. This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b. Meaning of reference number fields:

18 Retek Merchandising System

Note: The meaning of these reference number fields may be changed through the sa_reference table.
Transaction | Sub-transaction Reference Meaning of Reference Field Req?
Type Type Number Field
RETURN . .
1 Receipt Indicator (Y/N) y
RETURN N
2 Refund Reference Number
RETURN . N
EMP 3 Employee Number of the employee returning the
goods.
c. Expected values for sign fields
TRANSACTION TYPE | TITEM.Quantity Sign | TTEND.Tender Sign | TTAX.Tax Sign | IDISC.Quantity Sign
RETURN P if item is sold; N N P if item is sold;

N if item is returned;
reverse of original
item if item is voided.

N if item is returned;
reverse of original
item if item is voided.

5. Transaction of type ‘EEXCH’:

This transaction is generated when there is an even exchange.

a. This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b. Itis expected that the number of items returned equals the number of items sold. However, this validation is not performed by saimptlog. An audit rule

could be created for this. Saimptlog only expects that there would be at least two item records.

¢. No tender changes hands in this transaction.

d. Meaning of reference number fields:

Note:

The meaning of these reference number fields may be changed through the sa_reference table.

Chapter 2 — ReSA 9.0 RTLOG layout 19

Transaction | Sub-transaction Reference Meaning of Reference Field Req?
Type Type Number Field
EEXCH 1 Receipt Indicator (Y/N) Y
EEXCH . N
¢ EMP 3 Employee Number of the employee exchanging the
goods.

6. Transaction of type ‘PAIDIN’:
a. This type of transaction has only one TTEND record.
b. A reason code is required.

c. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.
2
Reason Referenc | Meaning Req?
Code e
Number
Column
. N
NSF 1 NEFES Check Credit Number
N
ACCT 1 Account Number

7. Transaction of type ‘PAIDOU’:
a. This type of transaction has only one TTEND record.

b. A reason code is required (code type REAC). If the sub-transaction type is ‘EV’ or ‘MV’, the reason code comes from the non_merch _codes_head
table.

20 Retek Merchandising System

c. Ifthe sub-transaction type is ‘EV’ or ‘MV’, then at least one field among the vendor number, vendor invoice number, payment reference number and
proof of delivery number fields should be populated.

d. If the sub-transaction type is ‘EV’, then the vendor number comes from the partner table. If the sub-transaction type is ‘MV”, then the vendor number
comes from the supplier table.

e. Meaning of reference number fields:

Notes: The meaning of these reference number fields may be changed through the sa_reference table.
2
Sub Reaso | Referenc | Meaning Req?
Transactio | n Code | e
n Type Number
Column
N
EV 2 Personal ID Number
EV 3 Routing Number N
EV 4 Account Number N
PAYR |1 Money Order Number N
L
N
PAYR |2 Employee Number
L
. N
INC 1 Incident Number

8. Transaction of type ‘PULL’:

This transaction is generated when cash is withdrawn from the register.

Chapter 2 — ReSA 9.0 RTLOG layout 21

10.

a. This type of transaction has only one TTEND record.

b. Expected values for sign fields

TRANSACTION TYPE | TITEM.Quantity Sign | TTEND.Tender Sign | TTAX.Tax Sign | IDISC.Quantity Sign
PULL N/A N N/A N/A

Transaction of type ‘LOAN’:

This transaction is generated when cash is added to the register.

a. This type of transaction has only one TTEND record.

b. Expected values for sign fields
TRANSACTION TYPE | TITEM.Quantity Sign | TTEND.Tender Sign | TTAX.Tax Sign | IDISC.Quantity Sign
LOAN N/A P N/A N/A

Transaction of type ‘COND’:

This transaction records the condition at the store when it opens. There can be at most one COND record containing weather information and at most one
COND record containing temperature information. Both these pieces of information may be in the same COND record. There may be any number of COND

records containing traffic and construction information.

a. This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

22 Retek Merchandising System

f‘)
Referenc | Meaning Req?
e
Number
Column
3 b N
1 Weather — code type “WEAT
2 Temperature — a signed 3 digit N
number.
, N
3 Traffic — code type ‘TRAF
4 Construction — code _type ‘CONS’ N

11. Transaction of type ‘TOTAL’:
This transaction records the totals that are reported by the POS. The value field must be populated. Some POS systems generate only one transaction number
for all totals. In order to avoid duplicate errors to be reported, only one total transaction can have a transaction number and the subsequent ones can have
blank transaction numbers. In other words, a TOTAL transaction is not required to have a transaction number.
a. This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

12. Transaction of type ‘METER’:

This transaction is generated when a meter reading of a fuel pump is taken.

a. This type of transaction has only TITEM records.

Chapter 2 — ReSA 9.0 RTLOG layout 23

b. Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Referenc | Meaning Req?
;Iumber

Column

1 Reading Type: (‘A’ Adjustment, ‘S’ shift change, ‘P’ price change, ‘C’ store close) Y

5 Opening Meter Readings Y

6 Closing Meter Reading Y

7 If the reading type is ‘P’ for price change, the old unit retail should be placed here. Decimal places are | Y

required.
8 Closing Meter Value Y

13. Transaction of type ‘PUMPT’:

This transaction is generated when a pump test is performed. This type of transaction has only TITEM records.
14. Transactions of type ‘TANKDP’:

This transaction is generated when a tank dip measurement is taken.
a. This type of transaction has only TITEM records.

b. Meaning of reference number fields:

24 Retek Merchandising System

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Referenc | Meaning Req?
;Iumber

Column

1 Tank identifier Y

5 Dip Type (‘FUEL’, “WATER’, etc.) Y

6 Dip Height Major (decimal places required) Y

7 Dip Height Minor (decimal places required) Y

15. Transaction of type ‘DCLOSE’:
This transaction is generated when day closed. Transaction number for this type of transaction has to be blank.

16. A note about vouchers: Vouchers are minimally handled by saimptlog. Voucher information is written to the savouch file which is passed to the program

savouch.pc. For more information about this interface, see Interface File — SA Vouch and Batch Design — savouch.

A voucher will appear on the TITEM record only if it was sold. Thus when saimptlog encounters a ‘SALE’ transaction with a voucher, it writes the voucher
to the savouch file as an ‘I’ssued voucher.

A voucher will be issued when it appears on the TTEND record of transactions of type ‘RETURN’ and ‘PAIDOU’. In other words, saimptlog will write it to
the savouch file with status ‘I’.

A voucher will be redeemed when it appears on the TTEND record of transactions of type ‘SALE’ and ‘PAIDIN’. In other words, saimptlog will write it to
the savouch file with status ‘R’.

Vouchers may not be returned. However, a transaction of type ‘PAIDOU’ may be generated when the customer exchanges a voucher for another form of
tender.

Chapter 3 — saexpach batch module design 25

Chapter 3 — saexpach batch module design

Functional Area
Sales Audit Export — Automated Clearing House (ACH)

Module Affected

saexpach.pc

Design Overview

This module will post Store/day deposit totals to the SA_ STORE ACH table and bank deposit
totals for a given day to a standard ACH format file. The ACH export deviates from the typical
Sales Audit export in that store/days must be exported even though errors may have occurred for
a given day or store (depending on the unit of work defined), and also the store/day does not need
to be closed for the export to occur. The nature of the ACH process is such that as much money
as possible must be sent as soon as possible to the consolidating bank. Any adjustments to the
amount sent can be made via the sabnkach form.

Also, we are assuming that there is only one total to be exported for ACH per store/day.

Deposits for store/days that have not been ‘F’ully loaded will not be transferred to the
consolidating bank. After they are fully loaded, their deposits will be picked up by the next run of
the program.

Furthermore, the program estimates a 0 for a store/day that is closed, for example due to a
holiday. An example is shown below (Wednesday is a holiday):

Mon | Tues | Wed | Thu | Fri
Estimated deposit for next day 5 0 / 10
Adjustment to estimated deposit for this day | ... 5 1510
Exported at close 5 |/ 25 | 0
Actual deposit ... 10 15 | 10

In this example, we export only 5 (the adjustment) at close of Tuesday. The program is not run at
close on Wednesday because it does not have a store_day seq no. Thus, on Thursday, the
estimate for that day is 0 and the adjustment equals the actual. Also, on Thursday, we estimate
that the total is going to be 10 and we export 25 at close of Thursday. Thus, the bank account
should return to the minimum balance at this point.

Table Operations Performed
Select Insert Update Delete

Peri od Yes No No No
Sa_st ore_day Yes No No No
Sa_export_| og Yes No Yes No
Sa_exported No Yes No No
Sa_store_ach Yes Yes Yes No
Sa_bank_ach Yes Yes Yes No
Sa_t ot al Yes No No No

26 Retek Merchandising System

Sa_bank_store Yes No No No
Sa_store_day wite_| ock | Yes No Yes No
Sa_store_day_read_l ock Yes No No No
Store Yes No No No
Par t ner Yes No No No

Background information — Quick Overview of the ACH
process

ACH stands for Automated Clearing House and is a process by which funds can be transferred
electronically from one account to another, possibly at a different financial institution.
Instructions for each transaction are stored in a file, called an ACH file, which is then transferred
across the ACH Network to be processed. This document provides only an overview of the
process and will only describe points of interest for the saexpach program. It is beyond the scope
of this document to provide the details of this process. Readers interested in knowing more about
ACH should consult the 2000 ACH Rules published by the National ACH Association
(NACHA).

There are 5 participants in an ACH transaction:

1 The originating company (called the Originator). The Originator is the entity
requesting the transaction (i.e. this is where the transaction originates from).

2 The Originating Depository Financial Institution (ODFI).
3 The ACH Operator.

4 The Receiving Depository Financial Institution (RDFI).
5 The receiving company (called the Receiver).

*It is important to note that the above description refers to direction of file transfers and not to
direction of money flow.

Since the ReSA client has control over both the stores and the headquarters, the Originator can be
either the former or the latter. To simplify the process, the headquarters will be the Originator, as
this would require only one file to be produced, requesting money from each individual store.
Figure 1 gives a pictorial overview.

Chapter 3 — saexpach batch module design 27

ODFI ACH Operator
Consolidating » Third-party ¢ ¢ ¢
Bank institution
RDFI RDFI RDFI
4 Local Local Local
< ® bank bank bank
$$
o Receiver | Receiver Receiver
ACH Originator ReSA ReSA ReSA
File ReSA Client’s | $$ $$ | Client’s Client’s Client’s
Headquarters Store Store - Store

Figure 1: Overview of an ACH Network

The file that is produced at the Originator is sent to the ODFI, which then routes it to the
appropriate ACH operator(s). The latter will then contact the RDFI to request the money transfer.

In ACH jargon, the type of transaction that is being requested is a Cash Concentration and
Disbursement (CCD). As of September 2000, however, transactions between institutions in
different countries require a Corporate Cross-Border (CBR) Transaction. This program will meet
this new requirement.

ACH is a US network of banks and therefore, this program should not be used for ACH look-
alike networks outside the US, such as in Europe, as the file formats may be different. In other
words, throughout this program, it is assumed that the country in which the consolidating bank is
based is the United States.

Furthermore, all amounts in the ACH file are expected to be in US dollars (USD). Amounts for
CBR transactions will have to be converted to USD.

Custom modifications can be made to this program such that output files that meet the
requirements of other networks can be created. It is expected that the general structure of the
program can be left unchanged and that only the functions that actually write the data out would
have to change.

Data Security

The fact that this program automates the transfer of funds on behalf of the user makes it a likely
target for electronic theft. It must be made clear that the responsibility of electronic protection lies
with the users themselves. Retek does not provide any kind of encryption or authentication
beyond what is provided by the operating system and the database management system. Retek
does provide some tips and recommendation to users:

1 A specific user should probably be used to run the program. This user would
be the only one (or one of a few) who has access to this program.

2 The umask for this user should be setup so as to prevent other users to
read/write its files. This would ensure that when the output file is created, it
will not be accessible to other users.

28 Retek Merchandising System

3 The appropriate permissions should be setup on the directory which holds the
ACH files. The most restrictive decision would be to not allow any other user
to view the contents of the directory.

4 The password to this user should be kept confidential.

5 A secure means of communication should be implemented for transferring
the file from where it has been created to the ACH network. This may be
done via encryption, or by copying the file to a disk and trusting the courier
to deliver the files intact.

6 Retek assumes that the ACH network is secure.

Scheduling Constraints

Pre/Post Logic Description
Processing Cycle: Anytime — Sales Audit 9.0 is a 24/7 system.

Scheduling Diagram: This module should be run after the ReSA Totaling process: satotals and
sarules.

Threading Scheme: N/A

Restart Recovery
Logical Unit of Work (recommended Commit checkpoints)

Driving Cursor

This module is in two distinct parts, with two different logical units of work. Thus
restart/recovery has to be implemented so that the first part does not get reprocessed in case the
program is being restarted. Details on the implementation follow.

The first driving cursor in this module retrieves a store/day to generate ACH totals. Once the first
cursor is complete, the second retrieves bank locations by account numbers.

The first Logical Unit of Work (LUW) is defined as a unique store/day combination. Records
will be fetched, using the first driving cursor, in batches of commit max_ctr, but processed one
store/day at a time.

The first driving cursor will fetch all store/days that have been ‘F’ully Loaded, whose audit status
is ‘A’udited, ‘H’Q Errors Pending or ‘S’tore Errors Pending and that are ready to be exported to
ACH. Before processing starts, a write lock is obtained using get lock (). This driving cursor
only fetches store/days with a sa_export_log.status of SAES R. After a store/day is processed,
sa_export _log.status is set to SAES P so that this store/day will not be selected again if the
program is restarted. We commit using retek_force commit after each store/day has been
processed and sa_export log updated, so as to release the lock.

In case a store/day could not be processed due to locking, then the store/day information is placed
on a list (called locked store/day list) and the next store/day is processed. This list is kept in
memory and is available only during processing. If the store for a store/day obtained from the
first driving cursor, is on the locked store/day list, then this store/day cannot be processed. This is
the case because there is a data dependency such that data from a particular store/day is
dependent on data for the same store but at an earlier date. Thus, if a store/day cannot be

Chapter 3 — saexpach batch module design 29

processed, then subsequent store/days for the same store cannot be processed either. After the
driving cursor returns no more data, the program attempts to process each store/day on the list
two more times. If the store/day is still locked, then it is skipped entirely and a message is printed
to the error log.

The second LUW is a bank account number. Again, records will be fetched in batches of
commit_max_ctr. The second driving cursor cannot retrieve information by the LUW because it
is possible for the store’s currency to be different from the local bank’s currency. In that case, a
currency conversion is needed.

For each store/day, the query should retrieve the required ACH transfer. The latter is determined
by adding the estimated deposit for the next day, the adjustment to the estimate for the current
day and any manual adjustment to the estimate.

Since a store can be associated with different accounts at different banks, only accounts that are
consolidated should be retrieved. Since it is possible for the local bank to be in a different country
than the consolidating bank, the currency of the partner should also be fetched.

Since processing is dependent on the type of account at the RDFI, the account type should be
fetched by this cursor.

Due to differences in transaction processing in cases when the bank is outside the US, the
partner’s country should also be fetched. The results of the query should be sorted by partner
country.

The results of the query should also be ordered by accounts.

Program Flow

Structure Chart

Please see the following document for the complete structure chart of the standard export for
ReSA.

Functional Design — SA export.doc

Shared Modules

Listing of all externally referenced functions and Stored procedures and
description of usage

retek library functions:

* retek_init() — This function initializes restart/recovery.

* retek_close() — This function cleans up restart/recovery.

* retek force_commit() — This function commits any change to the database.

Sales/Audit library functions (libresa):

o fetchVdate() — This function is used to get the vdate.

» fetchSysdate() — This function is used to get system date and time

» fetchStoreDayToBeExported() — This function contains the first driving cursor.
e get_lock() — This function is used to lock the store/day being processed.

e OraNumlnit() — Initialize OraNum functions.

* OraNumAdd() — Add two large numbers passed in as strings.

* OraNumSub() —Subtract two large numbers passed in as strings.

30 Retek Merchandising System

* OraNumbDiv() —Divide two large numbers passed in as strings.

Function Level Description

All database interactions required and error handling considerations

Init ()

* Initialize restart/recovery by calling restart_init().

* Get the vdate from the period table and the system time.

* Get the system level information: the sender id, the company id, the consolidating bank name, the
consolidating routing number and the consolidating account number. These are on the sa_ach_info
table.

Process ()

1. Get the next store/day to be processed (exported) by fetching from the first driving cursor.

2. Attempt to lock the store/day with a call to get_lock(). If this fails, write the store to a linked list
(which contains all unprocessed store/days).

3. Skip to step 7 if the store of the store/day to be processed is for a store which is on the linked list.

4. Call the function postStoreACH() for the current store/day.

5. Setsa export log.status to SAES P by calling setProcessed() for the current store/day, so that it will
not be processed again in case of a restart.

6. Call retek force_commit() to commit changes to the database and to release write lock.

7. Loop from beginning until the driving cursor returns no more data.

8. Call the function postBankSummaryTotals().

Final ()
» Clean up restart/recovery by calling retek_close().
» Ifthe program has successfully processed the data, call retek_refresh_thread().

PostStoreACH ()

This function will generate and post an estimate and adjustment to the SA_STORE_ACH table for

a given store/day. The function postStoreACH will accomplish the following processes in the

following order:

» Get the following pieces of data for the system code SYSE_ACH:

1. The total for the current business date,

2. Get the total for the following business date if it exists (by calling GetTomorrowTotal),

3. Call the function GetPastData() to get the totals for the past 4 weeks and for yesterday
(that is, if the current store/day is for a Tuesday, then we want to get the totals for the
past 4 Wednesdays and for yesterday). The latter pieces of data are obtained from the
sa_store_ach table, by summing the estimate for a day with the adjustment for the same
day.

4. Call the function GetPartnerinfo() to get partner type and partner id information.

» Ifthere are more than one total for SYSE_ACH for a particular day, then this should be noted
in the error log. We expect only one total per store/day. Only the first total returned by the
function will be used, the rest will be ignored.

e Call the function CalculateData() to compute the estimate for the next business day and
adjustment for the current store/day.

* Call the function PostStoreACHTable().

GetTomorrowTotal ()
This function attempts to get the total for the next business day to be used as the estimate. It
returns a -1 if a fatal error occurred, a 0 if it was able to get the total. If a total was not found, the

Chapter 3 — saexpach batch module design 31

estimate is assigned to -1. If a store/day is never opened (i.e. a holiday), then a 0 is estimated for
that store/day. Also, if a total is found, it should not be marked as exported.

GetPastData ()
This function retrieves totals for the same day of the week over the past 4 weeks and for the
previous business day.

GetPartnerinfo ()
This function retrieves the bank partner (partner type and partner id) for the given store whose
account is consolidated.

CalculateData ()

This function calculates the estimate for the next business day and adjustment for the current

store/day.

» Find the estimate for the following business date using the following rules:

» If the total for the following business date exists, then this is the estimate.

» Otherwise, the estimate is the average for the data for the past 4 weeks. If we obtain data
for fewer than 4 weeks, then we use the available data, but if we do not obtain any data,
then we use the current day’s total as the estimate.

» Ifthe estimate is a 0, then we use the current day’s total as the estimate.

e Calculate the adjustment, which is the current date’s total minus the estimate for the current
date (which lies on the row for the previous day on the sa_store_ach table) and minus the
manual adjustment for the current date (which lies on the row for the previous day on the
sa_store_ach table).

ProcessLockedSD ()

This function processes any store/days that were not in the process() function due to locking. The list of

such store/days is stored on the linked list.

1. Try to process the store/days that were not processed, that is, those that are on the linked list. Thus, for
each store/day on the linked list, we try to obtain a lock. If one is not obtained, then we skip this
store/day. If a lock is obtained, then we remove the store/day from the list.

2. Skip to step 5 if the store of the store/day to be processed is for a store, which is on the linked list.

Call the function postStoreACH for the current store/day.

4. Setsa_export_log.status to SAES P by calling setProcessed() for the current store/day, so that it will

not be processed again in case of a restart.

Loop through steps 1 to 3, until each store/day in the list has been looked at.

6. Loop through steps 1 to 5 NUM_LOCK_ RETRIES times. NUM_LOCK RETRIES is by default 2.
Thus, we try to attempt to process store/days that are locked two more times before giving up and
skipping all locked store/days entirely.

7. For each store/day that was not processed, we write an error to the log.

(%)

hd

PostStoreACHTable ()

This function inserts data into the sa_store _ach table. It updates if there is already an entry for

the store, business date and partner.

» Ifthere is no entry in the sa_store_ach table for the current store/day.

» Create an entry in the SA_STORE_ACH table with the current store_day seq_no and the
new estimate and adjustment deposits for the current store_day seq_no.

» Ifthere is an entry in the sa_store_ach table for the current store/day.

» Update the entry in sa_store_ach with the estimated deposit, and estimated deposit
adjustment.

postBankSummaryTotals ()

This procedure will summarize the bank transaction totals to the ACH output file. Please see the section on
I/O specifications for more information about the format of this file.

1. Open and fetch from the second driving cursor.

32 Retek Merchandising System

2. If any entries are to be made (i.e. there are results from the cursor), create ACH file and write file
header by calling WriteACHFileHeader().

3. If'the country of the bank just retrieved is different from the country of the previous bank, write a
Batch Control Record by calling WriteACHBatchControl(), unless no Batch Header records have
been written yet.

4. If the country of the bank just retrieved is different from the country of the previous bank, a new Batch
Header record needs to be written. If the bank’s country is the US, the
WriteACHCCDBatchHeader() function should be called to write a Batch Header for CCD
transactions. For all other countries, the WriteACHCBRBatchHeader() function should be called to
write a Batch Header for CBR transactions.

5. [If'the store’s currency is different from the bank’s currency, do a conversion. Sum all the deposits for
each bank account.

6. For each account at a bank in the US, create a CCD record in the file by calling
WriteACHCCDEntry().

7. For each account at a bank outside the US, create a CBR record by calling WriteACHCBREntry().
* Ifthe amount to be transferred is negative, the record should be skipped.

» If'the account is a checking account, the transaction code to use is 27’.
» If'the account is a savings account, the transaction code to use is ‘37".

8. If the amount to be transferred is positive, call the function PostBankACHTable() to record the
amount of the ACH entry, else do nothing.

9. Keep running totals for the current batch’s total amount and the total ACH amounts.

10. Commit after pl_commit max_ctr LUW have been processed. Redefine the SAVEPOINT after the
commit because savepoints are lost after a commit.

11. Loop to step 3 until the cursor returns no data.

12. Write the ACH Batch Control record and the ACH File Control record

13. The ACH file format requires that the file size meet certain “block” requirements. See the section on
the ACH file format for more details. Write the required number of “completion records” to meet the
blocking requirements.

14. Mark all store/days that were not locked (i.c. those with a sa_export_log.status of SAES P) as
completed (SAES _E) in the sa_export_log.

postBankACHTabile ()
This function inserts into the table sa_bank ach. It updates if there already exist a record for the same
partner and business date.
1. If an entry does not exist for the current bank and date in the sa_bank ach table:
e Make an entry in the sa_bank_ach table for the current bank and account placing the sums of the
store ACH amounts and adjustments in the ACH amount field (sa_bank ach.ach amt).
2. If an entry exists for the current bank and date in the sa_bank ach table:
* Add the manual adjustment to the bank ACH deposit amount.
* Update the sa_bank ach table with the bank ACH deposit amount (sa_bank ach.ach _amt).

File Output functions

The functions WriteACHFileHeader(), WriteACHFileControl(), WriteACHCCDBatchHeader(),
WriteACHCBRBatchHeader(), WriteACHBatchControl(), WriteACHCCDEntry(),
WriteACHCBRENtry(), WriteACHCBRAddendum() and WriteACHCompleteBlock() write the
File Header Record, the File Control Record, the Batch Header Record for CCD transactions, the
Batch Header Record for CBR transactions, the Batch Control Record, the CCD Entry Record,
the CBR Entry Record, the CBR Addendum Record and the Completion Blocks, respectively. The
WriteACHCBRENtry() function should call the WriteACHCBRAddendum() function after writing
to the file.

Linked list functions

The functions AddToList(), DeleteList(), GetNext() and RemoveFromList() provide means to
manipulate and to retrieve data from the linked list which contains the store/days which were not
processed due to locking issues.

Chapter 3 — saexpach batch module design 33

MarkAllStoreDaysCompleted ()

This function sets the sa_export log.status to SAES E for store/days whose status is SAES P. These are
the store/days that have been exported. If a store/day was not exported, it will be picked up in the next run
after it has met the conditions for export.

SetCurrencyDecimals ()

Given a currency code and an amount with 4 implicit decimals, this function will give out an amount with
the appropriate number of decimals for the currency. For more details, see the BAI file format
documentation. For example, there are two implicit decimals for the US Dollar, but none for the Japanese
Yen. This function may need to be expanded because only a select few currencies are being processed. The
last two decimal places are dropped for currencies that are not explicitly defined.

TruncateDec ()
This function truncates a number at the decimal point, i.e. “1234.56” becomes “1234”.

I/0 Specification

All files layouts input and output
ACH File Structure

This section describes the structure of the output file of the saexpach.pc program. The output file
conforms to the requirements imposed by the National Automated Clearing House Association
(NACHA) and only the subset of records used by this program is outlined here. For more
information on the other types of records and more information about the rules and regulations
governing the ACH network, please refer to the “2000 ACH Rules” book published by NACHA.

The ACH file format is similar in many ways to Retek’s flat file formats. The most distinctive
differences are:

* The record type is a one-digit number rather than a five-digit character field.

» Allrecords are 94 characters in length.

* Records are organized in blocks, where 1 block = 940 characters = 10 records.

e The File Control Record (similar to an FTAIL) contains a “Block Count” field which gives
the total number of blocks in the file, including the File Header Record and the File Trailer
Record. Records containing 9's must be used to complete the last block. For example, a
file with 15 records will need 5 such records to give it a Block Count of 2. These
“‘completion records” go at the end of the file.

« Transactions are organized in batches. Similar transactions make up one batch. In
ReSA’s case, the transactions are organized by the country of origin of the funds.

File Header Record

This record contains information about the characteristics of the file, such as sender and receiver,
creation datetime, and so on.

Destination

CONSOLIDATING_ROU

begins with a blank, followed by the 4-digit Federal TING. NO

Reserve Routing Symbol, the 4-digit ABA Institution

Record Type Code | The type of record. 1’ 1 None
Priority Code Reserved for future scheme for priority handling of files. (N 2 None
‘01’ should be used.
Routing number of the consolidating bank. The field SA_BANK_STORE. 10 None

34 Retek Merchandising System

Identifier, and the Check Digit.

Immediate Origin A unique identification to determine the Originator. The SA_SYSTEM_OPTIONS. | 10 None
ID and the format are supplied by the consolidating bank. ACH_SENDER_ID
Note that the user is responsible for the padding. That is,
it is assumed that the data in the field will be exactly 10
characters wide.
File Creation Date Date when the file was created. YYMMDD 6 None
File Creation Time | Time when the file was created. HH24MM 4 None
File ID Modifier This is used to differentiate files created on the same ‘0 1 None
date and between the same Origin/Destination. Valid
values are A through Z and 0 through 9. It is expected
that only one file will be created per day, so a ‘0’ should
be used.
Record Size Number of characters per record. ‘094’ 3 None
Blocking Factor Number of physical records within a block. 10’ 2 None
Format Code Reserved for future format variations. A ‘1’ should be 1’ 1 None
used.
Immediate The name of the consolidating bank. SA_SYSTEM_OPTIONS. | 23 L/B
Destination Name CONSOL_BANK_NAME
Immediate Origin The name of the company. COMPHEAD. 23 L/B
Name CO_NAME
Reference Code Any reference code. This is an optional field. ReSA will blanks 8 None
not populate this field as the create datetime should be
enough to reference the data that was exported by
comparing with SA_EXPORTED.
EXP_DATETIME.
* Note: This column described the justification and padding involved in the field being described.
‘L’ stands for left; ‘R’ stands for Right; ‘B’ stands for blank padding and ‘0’ stands for 0 padding.
None means that the field should be completely filled.
Batch Header Record for CCD transactions
Record Type Code | The type of record. ‘5’ 1 None
Service Class Code | This field identifies the general classification of dollar 225’ 3 None
entries to be exchanged. Funds will always flow from the
local banks to the consolidating bank. Hence the code
‘225’ for “ACH Debits only” should be used.
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Company Any kind of data specific to the company. ReSA will not blanks 20 None
Discretionary Data | use this field
Company An alphanumeric code identifying the company. The first | SA_SYSTEM_OPTIONS. | 10 L/B
Identification character may be the ANSI one-digit Identification Code COMPANY_ID
Designators (ICD). For example,
“1” IRS Employer ID Number
“9” User Assigned Number.
ReSA assumes that the company _id field on the
sa_system_options table will contain the correct id.
Standard Entry This provides a way to distinguish between the various ‘CCD’ 3 None

Class Code

kinds of entries. Since ReSA will be sending CCD

Chapter 3 — saexpach batch module design 35

entries, this field should hold the value ‘CCD’.

Company Entry A short description from the Originator about the purpose | ‘CONSOL.’ 10 L/B
Description of the entry.
Company Optional field providing a date to the Receiver for YYMMDD formatof | 6 None
Descriptive Date descriptive purposes. ReSA will populate it with the next PERIOD.VDATE + 1
day’s date in the YYMMDD format.
Effective Entry The date by which the Originator intends the batch of YYMMDD formatof | 6 None
Date entries to be settled. Since the Originator will want this to | PERIOD.VDATE + 1
be done as soon as possible, ReSA will use the earliest
possible date, which is one banking day after the
processing date (the current date).
Settlement Date This is inserted by receiving ACH Operator. ReSA will blanks 3 None
leave this blank.
Originator Status This field stores a code to describe the type of Originator. | ‘1’ 1 None
Code This should be a 1 to describe the Originator as a
depository financial institution.
ODFI Identification | 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO
Batch Number The batch number. 7 R/0
Batch Header Record for CBR transactions
Record Type Code | The type of record. ‘5’ 1 None
Service Class Code | This field identifies the general classification of dollar 225’ 3 None
entries to be exchanged. Funds will always flow from the
local banks to the consolidating bank. Hence the code
‘225’ for “ACH Debits only” should be used.
Company Name The name of the company. First 16 characters 16 L/B
of COMPHEAD.
CO_NAME
Foreign Exchange Code used to indicate the foreign exchange conversion FVv’ 2 None
Indicator methodology applied to a CBR entry. Retek uses the
“Fixed-to-Variable” method to convert from the foreign
currency into US dollars. Therefore, this field should be
‘FV'.
Foreign Exchange Code used to indicate the contents of the Foreign 1’ 1 None
Reference Indicator | Exchange Reference field. The latter will contain the
conversion rate used by Retek which means that the
value should be ‘1°.
Foreign Exchange This should contain the foreign exchange rate used to 15 L/B
Reference compute the amounts in the CBR Entry Record. No
decimal places are implied, that is, this field should
contain the exact rate used.
ISO Destination The country where the money is to be transferred to. ‘us’ 2 None
Country Code Since ReSA assumes that the consolidating bank will be
in the US, this should be ‘US’ — NOTE: verify that “US” is
the correct ISO code for United States of America.
Company An alphanumeric code identifying the company. The first | SA_SYSTEM_OPTIONS. | 10 L/B
Identification character may be the ANSI one-digit Identification Code COMPANY_ID

36 Retek Merchandising System

Designators (ICD). For example,

“1” IRS Employer ID Number

“9” User Assigned Number.

ReSA assumes that the company _id field on the
sa_system_options table will contain the correct id.

Standard Entry This provides a way to distinguish between the various ‘CBR’ 3 None
Class Code kinds of entries. Since ReSA will be sending CBR entries,
this field should hold the value ‘CBR’.
Company Entry A short description from the Originator about the purpose | ‘CONSOL.’ 10 L/B
Description of the entry.
ISO Originating Currency code in which the funds are originating from. PARTNER. 3 None
Currency Code This must be the ISO code of the currency. CURRENCY_CODE
ISO Destination Currency code in which the funds are to be received. ‘USD’ 3 None
Currency Code This must be “USD”.
Effective Entry The date by which the Originator intends the batch of YYMMDD formatof | 6 None
Date entries to be settled. Since the Originator will want this to | PERIOD.VDATE + 1
be done as soon as possible, ReSA will use the earliest
possible date, which is one banking day after the
processing date (the current date).
Settlement Date This is inserted by receiving ACH Operator. ReSA will blanks 3 None
leave this blank.
Originator Status This field stores a code to describe the type of Originator. | ‘1’ 1 None
Code This should be a 1 to describe the Originator as a
depository financial institution.
ODFI Identification | 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO
Batch Number The batch number. It is not expected that the file will “1"or 2’ 7 R/0
have more than two batches.
CCD Entry Detail Record
Record Type Code | The type of record. ‘6’ 1 None
Transaction Code Code used to identify the type of debit and credit. This is 27 or 37’ 2 None
dependent on the type of account and on the direction of
funds transfer.
‘27’ — if the account is a checking account,
‘37’ — if the account is a savings account.
RDFI Identification | 8-digit routing number of the RDFI. First 8 digits of 8 None
SA_BANK_STORE.
ROUTING_NO
Check Digit This is the 9" digit from the routing number. 9™ digit of 1 None
SA_BANK_STORE.
ROUTING_NO
DFI Account The account number at the local bank. SA_BANK_STORE. 17 L/B
Number BANK_ACCT_NO
Amount The amount involved in the transaction. This field is 10 R/0

numeric only and the last two digits are automatically
assumed to be decimals. ReSA amounts are stored as
20 digit numbers, with 4 for decimals. ReSA will truncate
the last two digits of the amount and should the resulting

Chapter 3 — saexpach batch module design 37

amount be greater than 10 digits, this program will abort
with an error. It is not expected that a client will send an
ACH amount greater than US$100 million.

Identification Optional field containing a number used by Originator to blanks 15 None
Number insert its own number for tracing purposes. ReSA will not
populate this field.
Receiving Name of the local store. STORE. 22 L/B
Company Name STORE_NAME
Discretionary Data | Any kind of data specific to the transaction. ReSA will not | blanks 2 None
use this field
Addenda Record This field identifies whether this entry record contains ‘0 1 None
Indicator addenda records. ReSA has no use for such records in
CCD and will use the value of ‘0’
Trace Number Used to uniquely identify each entry within a batch. The 15 None
first 8 digits contain the routing number of the ODF| and
the other 7 contains a sequence number. This sequence
number should be ascending. Although the ACH
specification does not require the numbers to be
consecutive, ReSA will use consecutive numbers. Trace
numbers should not be duplicated between batches.
CBR Entry Detail Record
Record Type Code | The type of record. ‘6’ 1 None
Transaction Code Code used to identify the type of debit and credit. This is 27 or 37’ 2 None
dependent on the type of account and on the direction of
funds transfer.
‘27’ — if the account is a checking account,
‘37’ — if the account is a savings account.
RDFI Identification | 8-digit routing number of the RDFI. First 8 digits of 8 None
SA_BANK_STORE.
ROUTING_NO
Check Digit This is the 9" digit from the routing number. 9" digit of 1 None
SA_BANK_STORE.
ROUTING_NO
DFI Account The account number at the local bank. SA_BANK_STORE. 17 L/B
Number BANK_ACCT_NO
Amount The amount involved in the transaction. This field is 10 R/0
numeric only and the last two digits are automatically
assumed to be decimals. This amount is in US dollars.
Identification Optional field containing a number used by Originator to blanks 15 None
Number insert its own number for tracing purposes. ReSA will not
populate this field.
Receiving Name of the local store. STORE. 22 L/B
Company Name STORE_NAME
Discretionary Data | Any kind of data specific to the transaction. ReSA will not | blanks 2 None
use this field
Addenda Record This field identifies whether this entry record contains 1’ 1 None
Indicator addenda records. Since CBR records must be followed
by an addendum record, this value should be ‘1’.
Trace Number Used to uniquely identify each entry within a batch. The 15 None

38 Retek Merchandising System

first 8 digits contain the routing number of the ODFI and
the other 7 contains a sequence number. This sequence
number should be ascending. Although the ACH
specification does not require the numbers to be
consecutive, ReSA will use consecutive numbers. Trace
numbers should not be duplicated between batches.

CBR Addendum Record

Record Type Code | The type of record. ‘7 1 None
Addenda Type This code identifies the type of addendum record. CBR ‘01’ 2 None
Code has only one type of Addenda Type Code: ‘01’
Payment Related 80 L/B
Information
Addenda Sequence | This is a sequence number denoting the position of each | ‘1’ 4 R/0
Number addendum record. The first record should always have a

sequence number of 1 and subsequent records must be

increasing and consecutive. ReSA will create only one

addendum record for the CBR transaction.
Entry Detall This is the sequence number part of the Trace Number of 7 R/0
Sequence Number | the entry record to which this addendum is referring.

Batch Control Record

Record Type Code | The type of record ‘8’ 1 None
Service Class Code | This field identifies the general classification of dollar 225’ 3 None

entries to be exchanged. Since money is being

requested, this code should be 225 for “ACH Debits

only”.
Entry/Addenda The number of entries and addenda in the batch. 6 R/0
Count Basically, this is the number of records between the

Batch Header Record and the Batch Control Record.
Entry Hash This is the sum of the RDFI IDs in the detail records. It is 10 R/0

the arithmetic sum of the 8-digit routing number. Overflow

on the high order bits is ignored.
Total Debit Entry These fields contain the accumulated debit and credit for 12 R/0
Dollar Amount in the batch. This field is numeric only and the last two
batch digits are automatically assumed to be decimals.
Total Credit Entry 12 R/0
Dollar Amount in
batch
Company An alphanumeric code identifying the company. The first | SA_SYSTEM_OPTIONS. | 10 L/B
Identification character may be the ANSI one-digit Identification Code COMPANY_ID

Designators (ICD). For example,
“1” IRS Employer ID Number

Chapter 3 — saexpach batch module design 39

“9” User Assigned Number.
ReSA assumes that the company _id field on the
sa_system_options table will contain the correct id.

Message The first 8 characters represent a code from the DES blanks 19 None
Authentication (Data Encryption Standard) algorithm. The remaining
Code (MAC) eleven characters are blanks. ReSA will not populate this
field.
Reserved Reserved blanks 6 None
ODFI Identification | 8-digit routing number of the ODFI. First 8 digits of 8 None
SA_BANK_STORE.
CONSOLIDATING_ROU
TING_NO
Batch Number The batch number. 7 R/0
File Control Record
This record contains summary information about the file to verify its integrity.
Record Type Code | The type of record. ‘9’ 1 None
Batch Count The number of batches sent in the file. 6 R/0
Block Count The number of physical blocks in the file, including both 6 R/0
File Header and File Control Records. This is the ceiling EQNumber of
of the number of records divided by the blocking factor,
which is 10. records)/1 0]l
Entry/Addenda The number of entries and addenda in the file. Basically, 8 R/0
Count this is the number of records between the Batch Header
Record and the Batch Control Record.
Entry Hash This is the sum of the Entry Hash fields on the Batch 10 R/0
Control Records.
Total Debit Entry These fields contain the accumulated debit and credit for 12 R/0
Dollar Amount in the file. This field is numeric only and the last two digits
File are automatically assumed to be decimals.
Total Credit Entry 12 R/0
Dollar Amount in
File
Reserved This field should be filled with blanks. It is used to ensure | blank 39 None

that each record is of length 94.

40 Retek Merchandising System

Technical Issues

Status Issue Resolution

Open Tables and forms changes are required to
ReSA to accommodate data that are
currently not possible to store on the
database. These are required before this
program can be fully tested.

Open It is possible for an adjustment to be
negative while the following day is a holiday,
resulting in a negative ACH amount. ReSA
expects these cases to be rare and will
simply skip records with a negative ACH
amount.

It would be an enhancement to the product if
the customer wants the system to estimate
the next open day’s deposit. Such entries
will have to be bunched into a new batch
with a different settlement date.

Assumptions

1. This document assumes that the tables and forms changes are going to be applied accordingly.
2. It is assumed that the consolidating bank is US-based.
3. ReSA will assume that all country codes and all currency codes are ISO compliant.

Chapter 4 — saimptlog batch detail design 41

Chapter 4 — saimptlog batch detail design

Document Revision History

Revision # Date Author Brief Revision Description
Revision 1 1/13/00 Chuck Rudolph Phase 1
Revision 1.1 1/18/00 Chuck Rudolph Modify saimptlog to input new fields into the Sales Audit tables.

Please note that the revision number should match the document file name.

The Project Manager must determine the need to revise this document and frequency. It may be decided that once the final
walkthrough and approvals are made, only subsequent documentation will maintain current project information (such as design
documents, etc.) rather than any changes being made to this document. This document, would, in essence, be a 'snapshot in time' of
the project without revision following approval. The Project Manager may; however, call for this document's update originating from
significant scope (objective or requirement) changes. The determined method should be documented here.

1. Introduction

Purpose

The Batch Detailed Design is a thorough definition of a single batch program / module within one functional area. The documented
information is derived from this functional area’s Technical Design.

Objectives
This Batch Detailed Design must:

* Document specific functions for a single batch program,

* Enable project team review, validation and consensus regarding the individual batch program’s scope,

* Document the batch program in preparation for and in response to prototyping, and

* Prepare for and provide a defined and documented framework in which to perform Development Phase activities.

A Batch Detailed Design should not include code (SQOL).

Il. Functional Area

Sales Audit import.

1ll. Module Affected

SAIMPTLOG (formerly saval.pc and saout.pc in 8.X)
saimptlog.c
saimptlog.h
saimptlog_final.c
saimptlog_init.c
saimptlog_manval.c
saimptlog_nexttsn.pc
saimptlog_nextvhn.pc
saimptlog_output.c

42 Retek Merchandising System

saimptlog_proto.h
saimptlog_rtlog.c
saimptlog_tdup.c
saimptlog_tdup.h
saimptlog_nextmtsn.pc
saimptlog_nextesn.pc
saimptlog ccval.c
saimptlog ccval.h
saimptlog_proto.h

SAIMPTLOGFIN
saimptlogfin.pc
saimptlog_nexttbgsn.pc
saimptlog.h
IV. Design Overview
v I
SAGETREF [
SQL*Loader SQL*Loader SQL*Loader
L files for control files
! transaction
data

Reference data files

!

Sales Audit
Database

SAIMPTLOGFIN

T
ﬂ SAIMPTLOG
POS data I l

Retek format —+ SAVOUCH
voucher data

L

Design Overview

Importing POS data is a five-step process.

First, SAGETREF must be run to generate the current reference files:

+ SKU
* Wastage
« UPC

e variable weight UPC
e store business day

e promotions

e code types

* error codes

* credit card validation
e store POS

Chapter 4 — saimptlog batch detail design 43

e tender type

* merchant code types

e partner vendors

e supplier vendors

* employee ids

These files are all used as input to SAIMPTLOG. Since SAIMPTLOG can be threaded, this boosts performance by limiting
interaction with the database.

Second, SAIMPTLOG is run against each POS file. SAIMPTLOG creates a write lock for store/day that is held until
SAIMPTLOGFIN is executed. This generates distinct SQL*Loader files for that store/day for the sa_tran head, sa_tran_item,
sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error, sa_customer, sa_cust_attrib and (optionally) sa_missing_tran tables. A Retek
formatted voucher file is produced for the processing by SAVOUCH. SAIMPTLOG may be threaded as long as the parallel
executions do not include the same store/day.

Third, SQL*Loader is executed to load the transaction tables from the files created by SAIMPTLOG. The store/day SQL*Loader files
can be concatenated into a single file per table to optimize load times. Alternatively, multiple SQL*Loader files can be used as input
to SQL*Loader. SQL*Loader may not be run in parallel with itself when loading a table. Header data (primary keys) must be loaded
before ancillary data (foreign keys). This means that the sa_tran_head table must be loaded first; sa_tran item before sa tran disc;
and sa_customer before sa_cust_attrib. The remaining tables may be loaded in parallel.

Fourth, SAVOUCH is executed to load each of the Retek formatted voucher files. SAVOUCH may not be multiply threaded.

Fifth, SAIMPTLOGFIN is executed to populate the sa_balance group table, to mark the import as either partially or fully complete,
and to release the store/day write lock that was established by SAIMPTLOG. SAIMPTLOGFIN may not be multiply threaded.

This design document encompasses SAIMPTLOG and SAIMPTLOGFIN.

SAIMPTLOG
Table Operations Performed

Select Insert Update Delete
peri od yes no no no
store yes no no no
sa_system options yes no no no
sa_store_data yes no no no
sa_store_day yes yes no no
sa_store_day_wite_|l ock yes yes no no
sa_i nmport_| og yes yes no no
sa_export _I| og no yes no no
SAIMPTLOGFIN
Table Operations Performed

Select Insert Update Delete
peri od yes no no no
store yes no no no
sa_system options yes no no no
sa_st ore_day yes no yes no
sa_store_day_wite_|l ock yes no no yes
sa_i nmport_| og yes no yes no

44 Retek Merchandising System

saimptlog.c is a combination of 2 programs from Sales Audit 2.0: saval.pc and saout.pc. For details on these 2 programs, refer to:
Batch Design — saval.doc

Batch Design — saout.doc

The source for these 2 programs can be found in PVCS. See Project RMS 8.1 and Folders Batch — Sales Audit 2.0 and Batch Library —
SA.

V. Program Flow
SAIMPTLOG
get_lock for Get POS Validate POS Reformat POS
import of —» transaction —{ transaction —» transaction data
store/day. from data file. data. to SQL*Loader
i format.

v

Write SQL*Loader
files for transaction

Y data.
Save missing l
transaction Any more Write Voucher
data. *— POS < data found in
N transactions? transaction.
SAIMTLOGFIN
Get store/day that has Create balance Cancel post
been locked for import. > group entries for P voided
the store/day. transactions.
release_lock 4——| Mark store/day
as imported.
|VI. Function Level Description
SAIMPTLOG

main() [saimptlog.c]

This should be the standard Retek main. Call LOGON to connect to the Sales Audit database. Call Init to initialize data structures and
output file handles. Call Process to translate the RTLOG POS data into the SQL*Loader and Retek formatted files. Call final to close
file handles and to generally clean up.

Chapter 4 — saimptlog batch detail design 45

Process() [saimptlog.c]

For each transaction in the POS RTLOG file, call getNextTran to read in the data.

For each transaction, call MandatoryValidations to validate the data and than call WrOutputData to write the transaction to the
temporary files.

Init() [saimptlog_init.c]

Call retek_init to initialize threading.

Get the system options by calling fetchSaSystemOptions.

Get the current system data (SYSDATE) by calling fetchSysDate. This is used later to validate the dates in the POS RTLOGs.
Initialize the RTLOG file parser by calling InitInputData.

Load the SKU data generated by SAGETREF by calling sku_loadfile.

Load the UPC data generated by SAGETREEF by calling upc_loadfile.

Load the variable weight UPC data generated by SAGETREF by calling vupc_loadfile.

Load the store/day data generated by SAGETREF by calling store_day_loadfile.

Load the wastage data generated by SAGETREF by calling waste_loadfile.

Load the promotion data generated by SAGETREF by calling prom_loadfile.

Load the code type data generated by SAGETREF by calling code_loadfile.

Load the error data generated by SAGETREF by calling error_loadfile.

Load the store POS data generated by SAGETREEF by calling storepos_loadfile.

Load the tender type group and ID data generated by SAGETREEF by calling tendertype_loadfile.

Load the merchant code data generated by SAGETREF by calling merchcode loadfile.

Load the partner vendor data generated by SAGETREF by calling partner_loadfile.

Load the supplier vendor data generated by SAGETREEF by calling supplier loadfile.

Load the employee data generated by SAGETREEF by calling employee loadfile.

Generate temporary filenames for the SQL*Loader files for the sa_tran_head, sa_tran_item, sa_tran_disc, sa_tran tax, sa_tran_tender,
sa_error, sa_customer, sa_cust_attrib and (optionally, depending on the value of the system option check dup miss_tran)
sa_missing_tran tables. Also generate a temporary filename for the voucher data.

Open all of the temporary files for writing.

Final() [saimptlog_final.c]

Call CreateTermRecords to mark the end of the data and than call WrQutputData to write them to the temporary files.

If the system option check dup miss_tran is enabled, than call tdup_savedata to keep track of missing transaction numbers between
invocations of SAIMPTLOG and call tdup_misstran to create the SQL*Loader file for the sa_missing_tran table.

Terminate the RTLOG file parser by calling FinallnputData.

Close the temporary SQL*Loader files for the sa_tran_head, sa_tran item, sa_tran_disc, sa_tran_tax, sa_tran_tender, sa_error,
sa_customer, sa_cust_attrib and (optionally, depending on the value of the system option check dup miss tran) sa_missing_tran
tables.

Rename the temporary files to record-type_store business-date sys-date.out (i.e. sathead 1000 20000115 20000116053302.0ut).
Call retek_close to perform program status record keeping.

Call retek_refresh_thread to refresh the thread that was used during this execution so that it can be reused.

InitinputData() [saimptlog_rtlog.c]
Open the POS RTLOG file for reading.
Open a bad transaction file for writing.
Initialize the POS RTLOG transaction parser.

46 Retek Merchandising System

getNextTran() [saimptlog_rtlog.c]

This function reads in each transaction (by calling getRTLRec for each transaction) and validates each record contained within it (by
calling procRTLFHead, procRTLFTail, procRTLTHead, procRTLTTail, procRTLTCust, procRTLCALtt, procRTLTItem,
procRTLIDisc, procRTLTTax and procRTLTTend as appropriate). To simplify processing, the FHEAD and FTAIL records are
treated as individual transactions. The function rtFind is used to determine the type of the record read.

Some record types will require some extra processing:

FHEAD — Need to retain the location (store) and business date for later validations. Also, the transaction structures must be reset by
calling resetTran. Write out a FHEAD record to the voucher file.

FTAIL - Write out a FTAIL record to the voucher file.

TTAIL — Call chkTranFormat to check for format and data problems. Call chkTranTailCount to validate the number of records
found in the transaction. Call tdup_addtran to check for duplicate transactions and to keep track of possible missing transactions,
except when the transaction is a ‘TOTAL’ and its tran_no is blank. Call reformatTran to format the RTLOG transaction data into
SQL*Loader flat file format. If any errors occur, call WrBadTran to write the failing transaction to the bad transaction file and call
resetTran to reinitialize the RTLOG parser for the next transaction.

MandatoryValidations() [saimptlog_manval.c]

For each THEAD, TCUST, CATT, TITEM, IDISC, TTAX and TTEND record in the transaction, call mvSATHead, mvSATCust,
mvSACAtt, mvSATItem, mvSAIDisc, mvSATTax and mvSATTend to make sure that the current transaction does not have non-
numeric data in number fields, an invalid date in a date field, etc.

mvSATHead() [saimptlog_manval.c]

Ensure that the transaction date and time has a valid value.

Ensure that, if they exist, the cashier and salesperson ids are valid by calling employee lookup.

Ensure that, if the balancing level is ‘R’, then the register field is populated, and that if the balancing level is ‘C’, then the cashier field
is populated.

Ensure that the transaction type has a valid value (code type of TRAT) by calling code lookup.

Ensure that the sub transaction type has a valid value if present (code_type of TRAS) by calling code lookup.

Ensure that the reason code has a valid value if present (code_type of REAC) by calling code_lookup.

If the transaction type is ‘PAIDOU’:

e Ifthe sub transaction type is TRAS MV or TRAS_EV, then validate the reason code by calling merchcode lookup, else validate
the reason code by calling code lookup.

* Ensure that the vendor number field is not empty.

e If'the sub transaction type is TRAS MV then validate the vendor number against the suppliers by calling supplier lookup.
* Else if the sub transaction type is TRAS EV then validate the vendor number against the partners by calling partner lookup.
* Else we do not validate.

» If the sub transaction type is TRAS MYV or TRAS EV then ensure that at least one of the vendor invoice number, payment
reference number and proof of delivery number fields are present.

» Else we do not validate.

Ensure that the value has a valid numeric value if present.

mvSATCust() [saimptlog_manval.c]
Ensure that the customer ID has a value.
Ensure that the customer ID type has a valid value (code_type of CIDT) by calling code lookup.

mvSACALtt() [saimptlog_manval.c]
Ensure that the customer attribute type has a valid value (code type of SACA) by calling code lookup.
Ensure that the customer attribute value has a valid value (code_type of attribute type) by calling code lookup.

mvSATItem() [saimptlog_manval.c]

Ensure that the item status has a valid value (code type of SASI) by calling code lookup. Also, if the tran_type is ‘SALE’,
‘RETURN® or ‘EEXCH?, then the only valid values are ‘S’, ‘R’, and “V’.

Ensure that the item type has a valid value (code_type of SAIT) by calling code_lookup.

Chapter 4 — saimptlog batch detail design 47

Ensure that the SKU, UPC, UPC supplement, voucher number or item number has a valid value depending on what the item type says
should be present.

Ensure that the department, class, sub class and system indicator are valid is present.

Ensure that the quantity has a valid numeric value.

Ensure that the unit retail amount has a valid numeric value.

Ensure that the override reason code has a valid value (code_type of ORRC) by calling code lookup if present.

Ensure that the original unit retail value has a valid numeric value if there is an override reason code.

Ensure that the tax indicator has a valid value (code type of YSNO) by calling code lookup. If the value is invalid, then an error is
flagged and the value is defaulted to YSNO_Y.

Ensure that the item swiped indicator has a valid value (code_type of YSNO) by calling code lookup. If the value is invalid, then an
error is flagged and the value is defaulted to YSNO_Y.

Ensure that the return reason code has a valid value (code type SARR) by calling code lookup if present and the item status is
SASI R.

Ensure that, if it exists, the salesperson id is valid by calling employee lookup.

Ensure that if an expiration date exists, that it is valid.

mvSAIDisc() [saimptlog_manval.c]

Ensure that the RMS promotion number has a valid value (code_type of PRMT) by calling code lookup.
Ensure that the promotion has a valid value if present by calling prom_lookup.

Ensure that the discount type has a valid value (code_type of SADT) by calling code_lookup.

Ensure that the quantity has a valid numeric value.

Ensure that the unit discount amount has a valid numeric value.

If the discount type is Coupon than ensure that the coupon number is present.

mvSATTax() [saimptlog_manval.c]
Ensure that the tax code has a valid value (code type of TAXC) by calling code lookup.
Ensure that the tax amount has a valid numeric value.

mvSATTend() [saimptlog_manval.c]

Ensure that the tender type group has a valid value (code_type of TENT) by calling code lookup.

Ensure that the tender type ID has a valid value by calling tendertype lookup.

Ensure that the tender amount has a valid numeric value.

If the tender type group is Credit Card then:

* Ensure that the credit card number and expiration date are valid by calling ccval. The expiration date may be an empty field. If it
is, no validation will be performed. Also, there is no check as to whether the credit card has expired.

* Ensure that the credit card authorization source if present has a valid value (code type of CCAS) by calling code lookup.

* Ensure that the credit card cardholder verification if present has a valid value (code type of CCVF) by calling code lookup.
* Ensure that the credit card entry mode if present has a valid value (code_type of CCEM) by calling code lookup.

* Ensure that the credit card special condition if present has a valid value (code_type of CCSC) by calling code lookup.

If the tender type group is Coupon than ensure that the coupon number is present.

CreateTermRecords() [saimptlog_rtlog.c]

Create terminating records for each record type. These records are used by SAIMPTLOGFIN to determine if SQL*Loader has
finished loading all of the transaction data for a store/day. NOT NULL column values are given in the following table. All other
columns should be blank.

Table Column Value
sa_tran_head tran_seq no Determined by saimptlog.
rev_no 001
store_day seq no Same as last transaction processed.
tran_datetime Business Date at midnight
tran_no 0000000000
tran_type TERM
status \
pos_tran ind N

48 Retek Merchandising System

Table Column Value
ref nol Corresponding sa_missing_tran.miss_tran_seq_no if
sa_system options.check dup miss tran =Y.
update id 000000000000000000000000000000
update datetime SYSDATE
error_ind N
sa_customer tran_seq_no Same as sa_tran_head.tran_seq_no.
cust_id 0000000000000000
cust id type TERM
sa_cust_attrib tran_seq no Same as sa_tran_head.tran_seq no.
attrib_type TERM
attrib_value TERM

sa_tran_item tran_seq no Same as sa_tran_head.tran_seq no.
item_seq no 0001
Item_status S
item_type TERM
qty 000000000000
unit_retail sign P
unit_retail 00000000000000000000
tax_ind N
item_swiped ind N
error_ind N
var_upc_ind N
sa_tran_disc tran_seq no Same as sa_tran_head.tran_seq no.
item_seq no 0001
rms_promo_type TERM
discount seq no 0001
discount type TERM
qty 000000000000
unit_discount amt sign P
unit_discount amt 00000000000000000000
error_ind N

sa_tran_tax tran_seq no Same as sa_tran_head.tran_seq no.
tax_code TERM
tax_seq no 0001
tax amt sign P
tax_amt 00000000000000000000
error_ind N
Ref nol7
Ref nol8
Ref nol9
Ref no20
sa_tran tender tran_seq no Same as sa_tran_head.tran _seq no.
tender seq no 0001
tran type_ group TERM
tran_type id 000000
tender amt sign P
tender amt 00000000000000000000

Chapter 4 — saimptlog batch detail design 49

Table Column Value
error_ind N
sa_error error _seq no Determined by saimptlog.

store_day seq no

Same as last transaction processed.

tran_seq no Same as sa_tran_head.tran_seq no.
error_code TERM MARKER NO ERROR
record type THEAD

store override ind N

hq override ind N

update id TLOG

update datetime SYSDATE

This is present only if sa_system options.check dup miss tran=7Y.

sa_missing_tran

miss_tran_seq no

Determined by saimptlog.

store_day seq no

Same as last transaction processed.

tran_no -000000001
status M

WrOutputData() [saimptlog_output.c]

Writes the current transaction to the SQL*Loader files.

If the current transaction type is a sale (SALE), or a return (RETURN) and the TITEM records contains a voucher number, then

reformat the TITEM records into a sold voucher data by calling WrSoldSAVoucher. However, if the item was voided (i.e. for the

same transaction, there is an item with status “V’ for the voucher), then do not call the function.

If the current transaction type is a sale (SALE), a paid in (PAIDIN), a return (RETURN) or paid out (PAIDOU), and the tender type

group is a voucher (VOUCH) then:

« if the sign of the tender amount is positive, then reformat the TTEND records into an issued voucher data by calling
WrlssuedSAVoucher

* else, if the sign of the tender amount is negative, then reformat the TTEND records into am issued voucher data by calling
WrlssuedSAVoucher.

(Note: it is not possible to return a voucher).

FinallnputData() [saimptlog_rtlog.c]
Close the POS RTLOG file.
Close the bad transaction file.

getRTLRec() [saimptlog_rtlog.c]
Read and return one record from the POS RTLOG file.

rtFind() [saimptlog_rtlog.c]
Return the type of the record that is passed in (i.e. THEAD, TCUST, TITEM, etc).

procRTLFHead() [saimptlog_rtlog.c]

Check that this is the first record in the POS RTLOG file. Validate the business date of the data. Call storeday_lookup to verify that
there is a sa_import log entry. If an entry is not found, generate an error and do not load any data. Call get_lock to lock the store/day
for importing. Call tdup_loaddata to load into memory past transaction number ranges for the current store/day.

procRTLFTail() [saimptlog_rtlog.c]
Process a FTAIL record, ensuring that it is the last record in the POS RTLOG file. The record count in the FTAIL record is checked
against the number of records processed, if these do not match then records are missing and we should abort.

procRTLTHead() [saimptlog_rtlog.c]
Validate that the THEAD record is located within a valid position in the POS RTLOG file, after an FHEAD or TTAIL record.
Initialize the sale and tender transaction totals to 0.

50 Retek Merchandising System

procRTLTTail() [saimptlog_rtlog.c]
Validate that the TTAIL record is located within a valid position in the POS RTLOG file, after a TITEM, IDISC, TTAX, TTEND,
TCUST or CATT record.

procRTLTCust() [saimptlog_rtlog.c]
Validate that the TCUST record is located within a transaction in the POS RTLOG file.

procRTLCALtt() [saimptlog_rtlog.c]
Validate that the CATT record is located within a transaction following either a TCUST or CATT record in the POS RTLOG file.

procRTLTItem() [saimptlog_rtlog.c]
Validate that the TITEM record is located within a transaction in the POS RTLOG file.
Add the quantity * the unit retail amount to the sale transaction total.

procRTLIDisc() [saimptlog_rtlog.c]
Validate that the IDISC record is located within a valid position in the POS RTLOG file, after either a TITEM or IDISC record.
Subtract the quantity * the unit discount amount from the sale transaction total.

procRTLTTax() [saimptlog_rtlog.c]
Validate that the TTAX record is located within a transaction in the POS RTLOG file.
Add the tax amount to the sale transaction total.

procRTLTTend() [saimptlog_rtlog.c]
Validate that the TTEND record is located within a transaction in the POS RTLOG file.
Add the tender amount to the tender transaction total.

resetTran() [saimptlog_rtlog.c]
Reinitialize the transaction structures.

chkTranTailCount() [saimptlog_rtlog.c]
Checks the counters in a transaction’s TTAIL record and produces an error if this figure does not match the actual number of records
processed for this transaction.

chkTranFormat() [saimptlog_rtlog.c]

Checks the current transaction format and content. Produces an error if more than one TCUST record is found, an IDISC record does
not correspond to a TITEM record, an unknown record type is encountered or the THEAD or TTAIL records are missing from the
transaction.

For each record in the transaction call rrchk to look for invalid characters in the record.

Call trat_lookup to get the transaction type and then validate that type with the number of records within the transaction.

rrchk() [saimptlog_rtlog.c]
Make sure that there are no embedded null, tab, carriage return or new line characters in the record passed in.

WrBadTran() [saimptlog_rtlog.c]
Writes an erroneously formatted transaction out to an error log file. These transactions do not contain enough information to be loaded
to the Sales Audit tables for correction by an auditor.

reformatTran() [saimptlog_rtlog.c]

Reformat the data within the transaction into the SQL*Loader flat file format. This is accomplished by calling routines that know the
format for each tables SQL*Loader control file. These routines are fmtSATranHead, fmtSACustomer, fmtSA CustAttrib,
fmtSATranltem, fmtSATranDisc, fmtSATranTax and fmtSATranTend.

If the transaction type is ‘SALE’, ‘RETURN’ or ‘EEXCH?’, than check that the transaction balances by comparing the sale and tender
transaction totals. Generate an error if they do not match.

Chapter 4 — saimptlog batch detail design 51

fmtSATranHead() [saimptlog_rtlog.c]

Formats a sa_tran_head record. The status of the current transaction is updated, and the next sequential tran_seq_no is generated by
nextTranSeqNo for the following transaction.

If the transaction type is not a “TOTAL’, than copy the sale transaction total to the transaction value column.

fmtSACustomer() [saimptlog_rtlog.c]
Formats a sa_customer record.

fmtSACustAttrib() [saimptlog_rtlog.c]
Formats a sa_cust_attrib record.

fmtSATranltem() [saimptlog_rtlog.c]

Formats a sa_tran_item record. If the item contains a variable weight UPC, than call waste_lookup to get the wastage type and
percent. If the type is an UPC, it will be converted to a SKU. The merchandise hierarchy information (department, class, sub-class,
and system indicator) associated with the SKU will be retrieved for this item by calling sku_lookup.

Produce an error if the SKU cannot be found, the UPC was not converted to an SKU, the item type is not SKU, UPC or GCN, or non-
numeric data is found in the quantity or amount field.

fmtSATranDisc() [saimptlog_rtlog.c]
Formats a sa_tran_disc record.

fmtSATranTax() [saimptlog_rtlog.c]
Formats a sa_tran_tax record.

fmtSATranTend() [saimptlog_rtlog.c]
Formats a sa_tran_tender record.

WrSoldSAVoucher() [saimptlog_output.c]

Format and write a sold voucher record to the voucher file.

In addition to the fields that are currently output in this function, information about the customer who purchased the gift certificate is
required in the new iss_cust fields. This information can be copied directly from the RTLTCust record associated with the transaction
being processed. The new recipient fields (name, state and country) will be stored in the RTLTItem record reference number fields for
the Sale of a gift certificate. These values provide details on the intended receiver for a gift certificate at the time of sale. This might
not be provided by every POS system, in which case they would be null. Expiration date will also be stored on the RTLTItem record
and should be populated; it may also be null.

Source Target

RTLTCust.name SA VOUCHER.iss cust name
RTLTCust.addr1 SA VOUCHER.iss cust addrl
RTLTCust.addr2 SA VOUCHER.iss cust addr2
RTLTCust.city SA VOUCHER:.city
RTLTCust.state SA VOUCHER .state
RTLTCust.postal code SA VOUCHER.postal code
RTLTCust.country SA VOUCHER.country
RTLTItem.ref no5 SA VOUCHER .recipient name
RTLTItem.ref no6 SA VOUCHER .recipient state
RTLTItem.ref no7 SA VOUCHER .recipient country
RTLTItem.expiration_date SA VOUCHER.exp date

This function validates the datatype of numeric and date fields. The exp_date should be added to the fields that are validated. If it is
populated, it must be in a valid date format.

WrRedeemedSAVoucher() [saimptlog_output.c]

Format and write a redeemed voucher record to the voucher file.

52 Retek Merchandising System

WrissuedSAVoucher() [saimptlog_output.c]

Format and write an issued voucher record to the voucher file.

In the case of a credit voucher issued during a return transaction, the iss_cust fields will also come from the RTLTCust fields as
described above. The recipient and exp_date fields are not relevant for this type of voucher, so do not need to be copied in this
function.

nextTranSeqNo() [saimptlog_nexttsn.c]
Gets the next free header sequence number for use. This routine goes and gets a block of numbers when starting, and parcels them out
as needed. Once they are all used up, another block is gotten.

tdup_savedata() [saimptlog_tdup.c]
Writes out what is currently known about transaction numbers for the current store/day.

tdup_misstran() [saimptlog_tdup.c]
Writes the entries for the sa_missing_tran table in SQL*Loader format.
The sa_missing_tran.status column will be filled in with SAMS M.

tdup_loaddata() [saimptlog_tdup.c]
Loads the data file of transaction number past ranges.

tdup_addtran() [saimptlog_tdup.c]

Adds a transaction number to the list of numbers encountered. If store.tran_no_generated is SRTG_S, than the transaction number
must be unique to the store. If store.tran_no_generated is SRTG_R, than the transaction number must be unique to the store and
register.

[Vil. SAIMPTLOGFIN

main() [saimptlogfin.pc]

This should be the standard Retek main. Call LOGON to connect to the Sales Audit database. Call Init to initialize data structures and
output file handles. Call Process to populate the sa_balance group table, to mark the import as either partially or fully complete, and
to release the store/day write lock that was established by SAIMPTLOG. Call final to close files and generally clean up.

init() [saimptlogfin.pc]

retek_init should be called to initialize g_1 restart max_counter.

Get the system options by calling fetchSaSystemOptions.

Load the store/day data generated by SAGETREF by calling storeday_loadfile.

process() [saimptlogfin.pc]

Fetch all store/day’s that have a data status of loading (L) and that have the terminating records (sa_tran head.tran_type = TERM) on
all of the tables (sa_tran _head, sa_customer, sa_cust_attrib, sa_tran_item, sa_tran disc, sa_tran_tax, sa_tran_tender, sa_error and
sa_missing_tran). Save the ROWID of these terminating records so that they can be removed. Because of trickle polling, there may be
multiple records per table; they must all be present.

For each store/day fetched, get a write lock by calling get_lock. If this fails, go onto the next store/day.

For each completed store/day create the balance groups by calling balanceGroupCreate, remove sa_missing_tran records that are
now present by calling fixMissTran, and process post voids by calling fixPostVoid.

Delete the terminating records.

For each store/day mark the import as either partially or complete by calling markImportDone.

For each store/day release the import lock by calling release_lock.

Do a commit after each store/day by calling retek_force_commit.

final() [saimptlogfin.pc]
Call retek_close.

Chapter 4 — saimptlog batch detail design 53

balanceGroupCreate() [saimptlogfin.pc]

Depending on the value of the system option balance level ind (store, register or cashier), insert the necessary records into

sa_balance group. The start datetime and end datetime columns should remain NULL. The bal group seq no is gotten from a call to
nextBalGroupSeqNo.

nextBalGroupSeqNo() [nextbgsn.pc]
Gets the next free balance group sequence number for use. This routine goes and gets a block of numbers when starting, and parcels
them out as needed. Once they are all used up, another block is gotten.

fixPostVoid() [saimptlogfin.pc]

For each transaction that has a corresponding post void transaction (tran_type = PVOID) where sale.tran_no = cancel.orig_tran no
and sale.register = cancel.orig_reg no and store _day seq no’s match, set the status to SAST V. Also, if that transaction contained a
voucher (either as an item or as a tender), then call the package function SA VOUCHER_SQL.POST VOID VOUCHER to undo
any processing on this voucher.

fixMissTran() [saimptlogfin.pc]
Remove sa_missing_tran records that may now be present because data was processed out of order.

markimportDone() [saimptlogfin.pc]

Mark the import as either fully (F) or partially (P) loaded by updating the sa_store day table’s data_status column. This is determined
by the presence of a transaction with a type of store/day closed (CLOSE).

If there was a CLOSE transaction, than update the sa_import log table’s status and datetime columns. If the import was expected, than
set status to loaded (L), else set it to unexpected (U). This is determined by calling storeday_lookup.

VIIl. Stored Procedures / Shared Modules (Maintainability)

Refer to the following documents for more details:
Package detail design - salock.doc

Functional Design - SA_misc.doc

Technical Design - SA_misc.doc

Shared Module Module Description
Retek_init

Retek_close

Retek refresh_thread

fetchSaSystemOptions Fetch the values from the sa_system_options table.

fetchSysDate Fetch the current SYSDATE value.

trat_lookup Look up TRAT code types and convert them to their sequence number.

tent_lookup Look up TENT code types and convert them to their sequence number.

get_lock used to establish a read lock on a store/day.

release_lock used to release a store/day lock.

storeday_loadfile Loads the store/day data file generated by SAGETREF into memory.

storeday_lookup Checks that a store business day has an import record.

sku_loadfile Loads the SKU data file generated by SAGETREF into memory.

sku_lookup Looks up a SKU and returns the data (department, class, sub-class and system indicator) associated
with it.

upc_loadfile Loads the UPC data file generated by SAGETREF into memory.

upc_lookup Looks up a UPC.

vupc_loadfile Loads the variable weight UPC data file generated by SAGETREF into memory.

“vupc_lookup Looks up a variable UPC. Call vupc_lookup to see if it is a variable UPC. If it is a variable UPC, than
set the variable parts to zero.

prom_loadfile Loads the promotion data file generated by SAGETREF into memory.

prom_lookup Checks that a promotion exists.

waste loadfile Loads the wastage data file generated by SAGETREF into memory.

54 Retek Merchandising System

Shared Module

waste_lookup
code_loadfile
code_lookup
error_loadfile
error_lookup
storepos_loadfile
storepos_lookup
tendertype_loadfile
tendertype_lookup
merchcode_loadfileMerc
hcode_loadfile
merchcode_lookupMerch
code_lookup
partner_loadfileMerchco
de_loadfile
partner_lookupMerchcod
e_lookup
supplier_loadfileMerchco
de_loadfile
supplier_lookupMerchco
de_lookup

Module Description

Looks up the wastage for a SKU.

Loads the code type data file generated by SAGETREF into memory.
Checks that a code type/code exists.

Loads the error data file generated by SAGETREF into memory.
Looks up the error and the system codes that we are interested in it.
Loads the store POS data file generated by SAGETREF into memory.
Looks up the store POS data that we are interested in it.

Loads the tender type data file generated by SAGETREF into memory.
Checks that a tender type group and ID exists.

Loads the merchant code data file generated by SAGETREF into memory.

Looks up the merchant code data that we are interested in it.

Loads the partner data file generated by SAGETREF into memory.
Looks up the partner data that we are interested in it.

Loads the supplier data file generated by SAGETREF into memory.

Looks up the supplier data that we are interested in it.

Chapter 4 — saimptlog batch detail design 55

IX. Input Specifications

The input files for SKU, Wastage, UPC, Variable UPC, Store Day, Promotions, Code Types, and Errors are all documented in Batch
Design — SAGETREF.doc.

The RTLOG file format is documented in Interface file — SA RTLOG.doc.

Date columns should always be converted to characters with a format of “'YYYYMMDDHH24MISS’. Single digit MM, DD, HH24,
MI and SS values need to be 0 padded.

Char and Numeric ID Field Types should be left justified and padded with spaces.

Number Field types should be right justified and padded with zeros. If a Number Field is NULL, than it should be blank not 0’s.

56 Retek Merchandising System

X. Output Specifications

The filename convention for the SQL*Loader output files will be table store businessdate curdatetime.out where fable is sathead,
satitem, satdisc, sattax, sattend, sacust, sacustatt, or samisstr (i.e. sathead 1000 20000115 20000116053302.out for the sa_tran_head
table). Similarly, the filename convention for the Voucher output file is savouch_store businessdate curdatetime.out. The files should
start out with a temporary name generated by the Unix tempnam(3S) call and then be renamed with Unix rename(2) call when the files
are complete (see the Unix man pages in the indicated sections for usage details).

The filename convention for storing missing transactions between invocations of SAIMPTLOG is tdup_store_businessdate.dat.

Date columns should always be converted to characters with a format of “'YYYYMMDDHH24MISS’. Single digit MM, DD, HH24,
MI and SS values need to be 0 padded.

When selecting columns that contain quantities or amounts from the database, the value should be multiplied by 10000 to remove the
decimal point. Decimal points are not supposed to be in Retek files. The only exception to this is SQL*Loader files.

Char and Numeric ID Field Types should be left justified and padded with spaces.
Number Field types should be right justified and padded with zeros. If a Number Field is NULL, than it should be blank not 0’s.

The voucher file format is documented in Interface file — SA VOUCH.doc.

SQL*Loader Control Files will be provided that match the format of the data files. These files will be named fable.ctl. The format of
the SQL*Loader files is as follows:

Table Name Column Name Field Type Position Description
Sa tran head Tran seq no Integer external 20 1:20

Rev_no Integer external 3 21:23

Store day seq no Integer external 20 24:43

Tran_ datetime date 14 44:57 Format is YYYYMMDDHH24MISS

Register char 5 58:62

Tran no Integer external 10 63:72

Cashier char 10 73:82

Salesperson char 10 83:92

Tran_type char 6 93:98

Sub_tran_type char 6 99:104

Orig_tran no Integer external 10 105:114

Orig_reg_no char 5 115:119

Ref nol char 30 120:149

Ref no2 char 30 150:179

Ref no3 char 30 180:209

Ref no4 char 30 210:239

Reason_code char 6 240:245

Vendor no char 10 246:255

Vendor_invc_no char 30 256:285

Payment ref no char 16 286:301

Proof of delivery no char 30 302:331

Status char 6 332:337

Value char 22 338:359 Includes an optional negative sign and a

decimal point.
Pos tran_ind char 1 360:360

Update id char 30 361:390

Chapter 4 — saimptlog batch detail design 57

Table Name

Column Name

Field Type

Position

Description

Sa tran_item

Sa tran_disc

Update datetime

Error_ind

Tran seq no
Item seq no
Item_status
Item type
Sku

Upc
Upc_supplement
Voucher no
Item no
Dept

Class
Subclass
System_ind
Qty

Unit_retail
Override _reason
Orig_unit_retail
Tax_ind

Ref no5

Ref no6

Ref no7

Ref no8
Item_swiped ind
Error_ind

Var upc ind
Var_type

Waste type
Pump

Waste pct
Return_reason_code
Salesperson
Expiration_date

Tran seq no
Item seq no
Discount_seq no
rms_promo_type
Promotion
Discount_type
Coupon_no
Coupon_ref no

Qty

Unit_discount_amt
Ref nol3
Ref nol4
Ref nol5
Ref nol6

date

char

Integer external
Integer external
char

char

Integer external
char

Integer external
char

char

Integer external
Integer external
Integer external
char

decimal external

decimal external
char
decimal external
char
char
char
char
char
char
char
char
char
char
char
decimal external
char
char
Date

Integer external
Integer external
Integer external
char

Integer external
char

char

char

decimal external

decimal external
char
char
char
char

—_ U W W W
oSO OO

OO0 == O\ == 00 O\ F= =t

391:404
405:405

1:20
21:24
25:30
31:36
37:44
45:57
58:62
63:78
79:94
95:98
99:102
103:106
107:107
108:121

122:142
143:148
149:169
170:170
171:200
201:230
231:260
261:290
291:291
292:292
293:293
294:294
295:300
301:308
309:320
321:326
327:336
337:344

1:20

21:24
25:28
29:34
35:38
39:44
45:60
61:76
77:90

91:111
112:141
142:171
172:201
202:231

Format is YYYYMMDDHH24MISS

Includes an optional negative sign and a
decimal point.
Includes a decimal point.

Includes a decimal point.

Includes a decimal point.

Format is YYYYMMDD

Includes an optional negative sign and a
decimal point.
Includes a decimal point.

58 Retek Merchandising System

Table Name Column Name Field Type Position Description
Error ind char 1 232:232
Sa tran tax Tran seq no Integer external 20 1:20
Tax_code char 6 21:26
Tax_seq no Integer external 4 27:30
Tax_amt decimal external 22 31:52 Includes an optional negative sign and a
decimal point.
Error ind char 1 53:53
Ref nol7 Char 30 54:83
Ref nol8 Char 30 84:113
Ref nol9 Char 30 114:143
Ref no20 Char 30 144:173
Sa_tran tender Tran _seq no Integer external 20 1:20
Tender seq no Integer external 4 21:24
Tender type group char 6 25:30
Tender type id Integer external 6 31:36
Tender amt decimal external 22 37:58 Includes an optional negative sign and a
decimal point.
Cc no Integer external 16 59:74
Cc_cc_exp_date date 8 75:82 Format is YYYYMMDD
Cc_auth no char 16 83:98
Cc_auth_src char 6 99:104
Cc_entry_mode char 6 105:110
Cc_cardholder verf char 6 111:116
Cc_term id char 5 117:121
Cc_spec_cond char 6 122:127
Voucher no char 16 128:143
Coupon_no char 16 144:159
Coupon_ref no char 16 160:175
Ref no9 char 30 176:205
Ref nol0 char 30 206:235
Ref noll char 30 236:265
Ref nol2 char 30 266:295
Error_ind char 1 296:296
Sa_customer Tran _seq no Integer external 20 1:20
Cust_id char 16 21:36
Cust id type char 6 37:42
Name char 40 43:82
Addrl char 40 83:122
Addr2 char 40 123:162
City char 30 163:192
Sate char 3 193:195
Postal code char 10 196:205
Country char 3 206:208
Home phone char 20 209:228
Work phone char 20 229:248
E mail char 100 249:348
birthdate date 8 349:356 Formatis YYYYMMDD
Sa cust_attrib Tran seq no Integer external 20 1:20
Attrib_seq no char 4 21:24

Attrib type char 6 25:30

Chapter 4 — saimptlog batch detail design 59

Table Name

Column Name

Field Type

Position

Description

Sa_error

Sa missing_tran

Attrib_value

Error_seq no
Store day seq no
Bal group seq no
Total seq no
Tran seq no
Error code

Key value 1

Key value 2
Rec_type

Store _override ind
Hq override ind
Update id

Update datatime
Orig_value

Miss_tran_seq no
Store_day_seq no
Register

Tran no

status

char

Integer external
Integer external
Integer external
Integer external
Integer external
char
Integer external
Integer external
char
char
char
char
date
char

Integer external
Integer external
char
Integer external
char

31:36

1:20
21:40
41:60
61:80
81:100
101:125
126:129
130:133
134:139
140:140
141:141
142:171
172:185
186:235

1:20

21:40
41:45
46:55
56:61

Format is YYYYMMDDHH24MISS

60 Retek Merchandising System

XI. Database Integrity

This information derives from the Database Considerations within the Process / Functional Overview (PFO), the Conversation Flow
and Database Objects of the Technical Design.

Parameter Validation Method

focuses

Integrity Constraints

Operations that affect other entities in the system must be validated to ensure that integrity constraints have not been violated. If a
record cannot exist in the system without a related parent record existing first, it is essential that the application enforce this constraint.
Similarly, if a record cannot be deleted due to the existence of child records in the system the application should prevent the user from
performing a delete operation.

XIl. Scheduling Considerations

Processing Cycle: Anytime — Sales Audit 9.0 is a 24/7 system.

Scheduling Diagram: These programs (SAIMPTLOG, SQL*Loader and SAIMPTLOGFIN) are the second step in the batch process
for loading customer POS data into the Sales Audit database.

Pre-Processing: SAGETREF must be run before importing POS logs. POS logs must be converted into the Retek TLOG format by the
customer (Unless the saimptlog_rtlog.c module is rewritten by the customer to handle their POS log files).

Threading Scheme: N/A

XIil. Locking Strategy

In conjunction with the Performance and the Scheduling Considerations section, this section should describe the locking (and release)
strategy required beyond the preset Retek standards. It should describe how the module accesses data and the ‘hold’ or ‘lock’ it has on
a database and / or its records, during processing. It should also describe the ‘lock’ release.

XIV. Restart/ Recovery

The logical unit of work for SAIMPTLOG is defined as a single POS file. This POS file may or may not represent a complete store
day.

The logical unit of work for SAIMPTLOGFIN is defined as a store/day. This does not follow the usual restart/recovery. A commit is
done after each store/day is processed. This program will than naturally pick up where it left off if it is restarted.

Chapter 4 — saimptlog batch detail design 61

XV. Performance

In conjunction with the Scheduling Considerations and Locking Strategy sections, the optimization considerations of a batch module
must adhere to Retek standards. This section should call out special performance considerations that may exceed current documented
Retek practices. Such considerations should be the basis for update to Retek standards. Each database operation should be optimized
based on quantity and quality of the database transactions. Batch modules are executed on the database or dedicated batch server and
thus there are no additional performance gains to forcing database interaction logic onto the server.

XVI. Security Considerations

POS data contains credit card data. The RTLOG input file and satend SQL*Loader output file both contain credit card numbers.
Access to these files is controlled solely by Unix file permissions.

|XVII. Design Assumptions

Design assumptions are presumed design factors, inferred from current information, expected to hold true over the life of the project.
Design assumptons must be documented in order to justify and validate derived design considerations with the Business Requirements
(documented within the BRD and PFO).

|XVIII. Outstanding Design Issues

All requirements, functional or technical issues that arise during the design of this functional area must be documented in this section.
Each issue should remain on this document even if the issues has been resolved or deferred. The issue, description, status and
resolution should all be maintained in this section. This section is included with the intent of acting as a worksheet that will track
design and provide rationale for the decisions made during the design phase. List any outstanding issues that have been identified in
this phase that need to be carried forward to the next phase(s).

Description Priority (High, Moderate, Low; if available) Issue Log Updated?

XIX. References

Interface File - RTLOG.doc
Interface File — SA VOUCH.doc

XX. Batch Detailed Design Walkthrough

The Batch Detailed Design document must be reviewed by Retek project representatives or alternates (if appropriate, client
representatives also). Whether walkthroughs occur at one time with a single group or via parallel or sequential approvals,
walkthroughs are required. Not all projects require the same level of scrutiny, but that level of scrutiny must be determined and
managed from the beginning.

62 Retek Merchandising System

Retek representatives

* Project Sponsor

* Business Unit Manager

* Project Lead

* Product Manager / Strategy
* Business Analysts

* Database Analysts

* Research & Development
e Quality Control

* Documentation

e Training

* Customer Support

Only when appropriate Client representatives

* Business

e Technical

* End-user; those who provide / enter input, those who use outputs
* Operations

* Support

XXI. Appendix

Appendixes are included as necessary. They might include an updated glossary, derived from the Batch Detailed Design glossary,
project schedules or other items interrupting the flow of this document.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – ReSA 9.0 RTLOG layout
	Chapter 3 – saexpach batch module design
	Functional Area
	Module Affected
	Design Overview
	Background information – Quick Overview of the ACH process
	Data Security
	Scheduling Constraints
	Restart Recovery
	Program Flow
	Shared Modules
	Function Level Description
	I/O Specification
	Technical Issues
	Assumptions

	Chapter 4 – saimptlog batch detail design
	Introduction
	Functional Area
	Module Affected
	Design Overview
	Program Flow
	Function Level Description
	SAIMPTLOG
	SAIMPTLOGFIN

	Stored Procedures / Shared Modules (Maintainability)
	Input Specifications
	Output Specifications
	Database Integrity
	Scheduling Considerations
	Locking Strategy
	Restart / Recovery
	Performance
	Security Considerations
	Design Assumptions
	Outstanding Design Issues
	References
	Batch Detailed Design Walkthrough
	Appendix

