&

Rete

Retek Merchandising System
9.0.3.0

Addendum to Operations Guide

rms-9030-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2000 by Retek Inc.
All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Policy on Retek End User Documentation

As a standard policy, Retek provides read-only copies of our documentation to customers and
other third parties. Unauthorized changes to the documentation may not accurately describe how
our software functions. Retek Customer Care is unable to support any changed end user
documentation that was not authorized or approved by Retek.

Printed in the United States of America.

Customer Support

Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2001: Jan. 1, May 28, July 4, Sept. 3,
Nov. 22, Nov. 23, Dec. 24, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information
Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800
Fax (+1) 612-630-5710
E-mail support@retek.com
Internet www.retek.com/support

Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza

801 Nicollet Mall

Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

* Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

* Provide a completely updated Customer Profile.

* Have a single resource per product responsible for coordination and
screening of Retek issues.

* Respond to our requests for additional information in a timely manner.
* Use the Expert Web to submit and update your issues.

* Have a test system in place running base Retek code.

mailto:support@retek.com
http://www.retek.com/support

Contents |

Contents
Chapter 1 — Introduction............ccoommrmciii e 1
Chapter 2 — Deals — cost calculations (dealcalc).......cccccccevveunnnnnnn 3
IMOIFICALION. ...ttt ettt et e bt e st ebeesareens 3
DIESIZIN OVETVIEW ..eouviieiiieiiieiiieeiie et et e et eteesteeteestteebeessbeenseessseenseensaeenseenseesnseensaesnseans 3
Scheduling CONSLIAINTScccuviiiiiieeiieeciee ettt et eeete e e e e eraeeeaaeesreeesseeenns 3
RESEATt TECOVETY .ntiiiiiie ettt ettt et e et e et e st e sbeeeenbeees 3
Logical Unit Of WOTKceeiiiiiieiieiece ettt ettt sttt esnsesnseenseas 3
DIIVINE CUISOT ...eiiviieiiieetee et et e et e e ettt eeetee e tbeeesbeeessbeeesbeeesssaeassseessseesssaeesssaessseeanssessssesssseenn 4
Program flOWcoouiiiiieiiee ettt et ettt earaens 8
Shared MOAUIES...........ooiuiiiii et e 8
Function [evel deSCTIPtion........c.ueeviiiiiieiieiieeie ettt et eeeens 8
L@ B oo oz 1510) s DRSPS 15
TECNICAL ISSUES ...ttt sttt ettt sae e 15
TEStING SCENATIOS ... eeevvieeeiieeiieeetieeeieeeeteeesaeeestteesteeesstaeessseeensseeessaeessseesssseensseeensseens 15
Chapter 3 — Product security rebuild (sprdrbld)ccceeemennnnnnnnn. 17
IMOAITICALION. ...ttt st sb et sttt et be e sae e 17
DESIZN OVETVIEWeviieiiiieciiieeeieeecieeeetee et eeaeeetaeeeteeestaeessbaeessseeesseeensseesnsaeesnseeennses 17
Scheduling CONSIIAINEScecuiiiieeiierie ettt et e et e st e ebe et eebeesseessbeenseesnseans 18
RESTAIT TECOVETY ..viieeeiiiie ettt ettt e e e et e e et e e e s abaeeeennraeeennns 18
Logical Unit Of WOTKcc.oiiiiiiiiiii ettt et re e st eabe e ebeebeeabaenens 18
DITIVINE CUTSOTveeivieuieerieeete et et et e teesteeae e beesseesseesseessseanseessaessaesseesssessseesseensessseesssenseennns 19
Program flOWcoouiiiiiiiiecieee ettt ees 20
Shared MOAUIES...........ooiiiii et 20
Function level deSCTiPtion.........c.eeiuiiiiieriieiiieiieeie ettt s 20
L@ B oo oz 1510) s DTSR 23
TECANICAL ISSUES ...ttt ettt sttt 23

Chapter 4 — Approved warehouse transfers download (tsfdnld)25
IMOAIEICALION.eeiiiieeeiiie ettt ettt e e e et e e e b e e e tb e e e tbeeetseeenaseesraeesnraeennnes 25
FUNCHION L.t e e e e et e e e e e ta e e e e eataeeeeans 25

DIESIZN OVETVIEW .eeuvvieniieeiiieiie et eetee et ette st etteeiteebeessbeeteesabeenseesnseenseessseenseesnseenseennns 26

ii Retek Merchandising System

Scheduling CONSIIAINESeeiuiirieeiierie ettt ettt et ettt e e e steeebeeseessbeenseesnseens 26
RESTAIT TECOVETY ..vtiieeiiiiie ettt e et e e et e e e enae e e e e s bbaeeeensaeeeennns 27
Program flOWcoouiiiiiiiiece ettt nes 28
Shared MOAUIES...........ooiiiiiii et 28
Function level deSCTiPtion.........c.cecuiiiiieriieiiieiie ettt 29
L@ I oo oz 1510) s DTSR 33
Transfer download file..........oc.oiiiiiiiiiii e e 33
Work order download fIle.........cc.eoiuiiiiiiiiiiee e 39
Component ticketing file 1ayoUtccceveiieiiierieiierieceeere e 41
TECNICAL ISSUESceuiiieiieieeiett ettt sttt ettt e 42
Chapter 5 — Stock position download (sohdnld)......................... 43
IMOIFICALION. ...ttt sttt b e st e b e 43
DIESIZN OVETVIEW .eeuviieniieeiiieiieeiieette et ette st etteebeeteesebeesteesaseenseesnteenseassseenseesssesnseennns 43
Scheduling CONSLIAINTScccuviiiiiieeiieeciee ettt e e e e e e e e beeesbeeesereeas 43
RESEATt TECOVETY ittt ettt e st e s e s e e 43
Shared MOAUIES...........ooiiiiii ettt s 43
Function level deSCriPtion.........c.eecuiiiiieriieiiieiieeieeite et st 43
I/O SPECIIICALIONSeeeiiieeiie ettt et e st e et e e e seaeeesbeeesaeeensaeeennes 45
CTADIE-TO-TADIE™ ...ttt ettt ettt ettt et te st et esteese et e eseensesseeneannas 45
FLES ettt et h ettt e b et e bt e bt e beeas 45
DeSi@N ASSUMPLIONSvveeeeeiieeiiieeiieeeiieeeeieeesieeesteeesteeesaeeessaeeesseessseessseessseeessseeennses 46
TECNICAL ISSUES ...eeuiiieiieiieieett ettt sttt 46
Chapter 6 — RMS batch schedule..........ccooeeiiimirieeee 47
Deals (STR 35190) ...ueiiieieeieieee ettt ettt et e e b eneeseeenee 47
IMOQIFICATION ..ttt ettt ettt et e bt esbe e s it e sateebeenbeesbeesaeesaeeas 47
SyStem (SIR 34728) ...ttt 50

LY oYa U Lotz 15 L) o AU OROPPPRRRRRRRRROR 50

Chapter 1 — Introduction 1

Chapter 1 — Introduction

This addendum to the Retek Merchandising System (RMS) 9.0.0.0 Operations
Guide contains updates to the following information:

* Deals — cost calculations (dealcalc.pc) batch module design
* Product security rebuild (sprdrbld.pc) batch module design
* Approved warehouse transfers download (tsfdnld.pc) batch module design
* Stock position download (sohdnld.pc) batch module design

* RMS batch schedule spreadsheets for Deals (SIR number 35190) and System
(SIR number 34728)

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0.0.0 Operations Guide. Each chapter
contains a subsection indicating what specific modifications have been made.

Chapter 2 — Deals — cost calculations (dealcalc) 3

Chapter 2 — Deals — cost calculations (dealcalc)

Modification

The driving cursor description was updated; a description was added of the new
logic in calculate cost driver, which was added to make the data in
deal sku cost more accurate.

Design overview

This new batch program will calculate the net cost, net net cost, and dead net net
cost for all items that are on the deal sku_temp table (which should contain all
items or items in hierarchies on deals that are on the deal queue table, which will
contain deals that are about to be approved, unapproved, or closed—any action
that would potentially change which deals affect an item). All active deals for
each item will be used in the calculation. Once calculated, the costs will be
inserted into the deal sku cost table.

Scheduling constraints
This section contains a pre/post logic description:
Processing Cycle: Phase II (daily)

Scheduling Diagram: Must be run after ditinsrt.pc, which populates the
deal sku_ temp table

Pre-Processing:
Post-Processing: Call prepost to delete all records from deal sku_temp.

Threading Scheme: SUPPLIER

Restart recovery

This section contains information on the Logical unit of work and the driving
Cursor.

Logical unit of work
The logical unit of work is: SKU/supplier/origin country/start date.

4 Retek Merchandising System

Driving cursor

The driving cursor will be dynamically created depending on ordering
requirements, which will be determined by deal type priority and
deal age priority of system_options.

SELECT dst . sku,
dst . supplier,

dst.origin_country_id, /* DST country not DI country—f no
country given, DO expand out */

TO CHAR(dst.start_date,’ YYYYMVDD),
NVL(TO_CHAR(dh. cl ose_date,"' YYYYMVDD),"'-1"),
NVL(TO_CHAR(dh. cl ose_date + 1,' YYYYMVDD),'-1"),
sups. cur rency_code,
isc.unit_cost,
dh. deal _i d,
dd. deal _detail _id,
dh. currency_code,

NVL(dst.l ocation, ~-1) /* DST |loc not D | oc—expand out
I ocation unl ess | oc-independent */

NVL(dst.l oc_type,’N)

DECODE(dd. cost _appl _ind,’ N ,1,” NN ,2," DNN , 3) cost_appl _num

dd. deal _cl ass,

dd. t hreshol d_val ue_t ype,

NVL(dd. qty_t hresh_buy_item -9999),

NVL(dd. gty_t hresh_buy _qty, 0),

NVL(dd. qty_thresh_recur_ind,’ N),

NVL(dd. gty_t hresh_buy_target, 0),

NVL(dd. qty_thresh_get _item -9999),

NVL(dd. gty_thresh_get _qty, 0),

NVL(dd. qty_thresh_free_itemunit_cost, 0),

NVL(dd. qty_thresh_get _type, ‘Z),

NVL(dd. qty_t hresh_get val ue, 0),
TO_NUMBER(di . merch_l evel, 0),
TO_NUMBER(NVL(di.org_l evel, 99)

FROM deal _sku_tenp dst,

deal _head dh,

deal _detail dd,

deal _item oc di,

sups,

itemsup_country isc,

v_restart_supplier vrs

Chapter 2 — Deals — cost calculations (dealcalc)

5

WHERE dd.deal _id = dh.deal _id

AND di . deal _id = dd.deal _id

AND di . deal _detail _id = dd.deal _detail _id
AND dh. status = ' A

AND dh.type in (*“A,"P") [/* only use pronotional/annual, not
PO specific or vendor funded */

AND di.excl _ind ="'N

AND sups. supplier = dst.supplier

AND isc.item = dst.sku

AND i sc. supplier = dst.supplier

AND isc.origin_country id = dst.origin_country_id
AND ((dh.close_date is NOT NULL

AND dst.start_date BETWEEN DECODE(rebate_ind, 'Y',
NVL(dd. rebate_active_date, dh.active_date), dh.active_date)

AND dh. cl ose_dat e)
OR (dh.close_date is NULL

AND dst.start_date >= DECODE(rebate_ind, 'Y',
NVL(dd. rebate_active_date, dh.active_date), dh.active_date)))

AND ((dh.supplier is NOT NULL AND dst. supplier = dh.supplier)
/* supplier hierarchy match */

OR(dh. partner_type = ‘S1' AND isc.supp_hier_lvl_1 =
dh. partner _i d)

OR(dh. partner_type = ‘S2’ AND isc.supp_hier_lvl_2 =
dh. partner _i d)

OR(dh. partner_type = ‘S3' AND isc.supp_hier_lvl_3 =
dh. partner_id))

AND ((di.pmerch_level = 1)

OR (di.nmerch_level = 2 AND di.division =
dst. division

OR (di.merch_level = 3 AND di.group_no =
dst . group_no)

OR (di.nmerch_level = 4 AND di.dept = dst.dept)

OR (di.merch_level =5 AND (di.dept = dst.dept AND
di.class = dst.class))

OR (di.merch_level = 6 AND (di.dept = dst.dept AND
di.class = dst.class AND di.subcl ass = dst. subcl ass))

OR (di.merch_level =7 AND di.style = dst.style)
--style/color hierarchy

OR (di.merch_level = 8 AND (di.style = dst.style
AND di . col or = dst.col or)

OR (di.nmerch_level = 9 AND (di.style = dst.style
AND ((di.sizel = dst.sizel OR di.sizel is NULL)
AND (di.size2 = dst.size2 OR di.size2 is NULL)))

OR (di.merch_level = 10 AND di.sku = dst. sku))
AND (di.org_level is NULL AND dst.chain is NULL

6 Retek Merchandising System

AND dst.area is NULL AND dst.region is NULL

AND dst.district is NULL AND dst.location is NULL
OR (di.org_level 1 AND di.chain = dst.chain)
OR (di.org_l evel 2 AND di.area = dst. area)
OR (di.org_level

3 AND di.region = dst.region)

OR (di.org_l evel 4 AND di.district = dst.district)

OR (di.org_level 5 AND di.location = dst.location))
AND (di.country_id = dst.country_id OR di.country_id is NULL)

/* exclude clause here —don’t fetch excluded skus */
AND (NOT EXI STS

SELECT * x’

FROM deal _item oc dil
WHERE di 1.deal _id = di.deal _id
AND di 1. deal _detail __id = di.deal _detail _id
AND di 1.excl _ind ="'Y

AND ((di1.nerch_level = 1)

OR (di 1. merch_l evel = 2 AND
di 1.division = dst.division
OR (di 1. merch_l evel = 3 AND

di 1. group_no = dst.group_no)

OR (di 1. merch_l evel 4 AND di 1. dept =

dst. dept)

OR (di 1. merch_l evel
dst.dept AND di1.class = dst.class))

OR (dil.merch_level = 6 AND (di 1. dept = dst.dept AND di 1. cl ass
= dst.cl ass

5 AND (dil.dept =

AND di 1. subcl ass =
dst . subcl ass))

OR (di 1. merch_l evel
--style/color hierarchy

OR (dil.nmerch_level = 8 AND (dil.style = dst.style
AND di 1. col or = dst.color)

7 AND di 1.style = dst.style)

OR (dil.merch_level = 9 AND (dil.style = dst.style
AND
((dil.sizel = dst.sizel OR dil.sizel is NULL)
AND

(dil.size2 = dst.size2 OR dil.size2 is NULL)))
OR (di 1. merch_level = 10 AND di 1. sku = dst. sku))
AND (dil.org level is NULL AND dil.chain is NULL

AND di 1.area is NULL AND di 1.region is NULL

AND di 1.district is NULL AND di 1.1 ocation is NULL
OR (di l.org_l evel 1 AND di 1. chain = dst. chain)
OR (di l.org_level 2 AND di 1.area = dst.area)
OR (di l.org_l evel 3 AND di 1.region = dst.region)

Chapter 2 — Deals — cost calculations (dealcalc) 7

OR (dil.org_level =4 AND dil.district = dst.district)
OR (dil.org_level =5 AND di l.location = dst.location))

AND (dil.origin_country id = dst.origin_country_id OR
dil.origin_country_ id is NULL))

AND (dst.sku > NVL(:ps_restart_sku, -999) OR /* restart on
itenm supplier/country/start_date */

(dst.sku = :ps_restart_sku AND
(dst.supplier > :ps_restart_supplier OR
(dst.supplier = :ps_restart_supplier AND

(dst.origin_country_id >
ps_restart_country OR

(dst.orign_country_id = :ps_restart_country AND
dst.start_date > :ps_restart_date)))))
AND vrs.numthreads = :pi_numthreads
AND vrs.thread_val = :pi_thread_val
AND vrs. driver_value = dst.supplier
ORDER BY dst. sku,
dst. supplier,
dst.origin_country_id,
dst.start_date,
dh. cl ose_dat e,
| oc,
cost _appl _num
dh. type,
dh. cr eat e_dat e,

dd. appl i cati on_order
The ORDER BY dh.type’s and dh.create_date’s asc/desc following rules:
1 Create date asc, annual before promotional (dh.type asc)
2 Create date desc, annual before promotional
3 Create date asc, promotional before annual (dh.type desc)
4

Create date desc, promotional before annual

8 Retek Merchandising System

Program flow

This following structure chart indicates the tables used:

Table Select Insert Update Delete

period

system_options

deal sku temp

deal head

deal detail

deal itemloc

AR R R R e

deal threshold

deal sku cost X

<

item_supp_country

sups X

Shared modules

This section lists all externally referenced functions and stored procedures, with a
description of the usage.

CURRENCY_ SQL.CONVERT —convert an amount in deal currency to the
equivalent amount in supplier currency if necessary, or vice versa

Function level description

This section contains information on all database interactions that are required,
and error handling considerations.

init:
* Retrieve the vdate from the period table (use as calculation date for inserts
into deal_cost table).

* Get priority indicators (deal type priority, deal age priority—these
determine annual first vs. promotional first, and oldest first vs. newest first
ordering for the driving cursor) from system_options.

* Allocate memory for the deal fetch and cost arrays (call size arrays) and
initialize the linked list for deal target values.

* Restart/recovery initialization.

Chapter 2 — Deals — cost calculations (dealcalc) 9

process:

* Call prepare driving_cursor to create driving cursor statement based on the
system options.

» Use the driving cursor to get all active deals for each item/supplier/origin
country/start date on the deal sku_temp table (use an array fetch).

* For each deal/deal detail, call get target threshold value to find the
threshold value to be used in cost calculations.

* Call calculate cost driver to get the net, net net, and dead net net cost
(initially for location-independent deals and then for the location-specific
deals, starting form the costs already calculated for location-independent
deals), and create an insert array that includes the net/net net/dead net net
cost information AND the location information.

* If commit point reached, call post_insert delete records to insert the costs
into the deal sku cost table FOR EACH LOCATION of the same LUW
(including a record with no location if there are location-independent deals),
and to delete processed records from the deal sku temp table.

* After each set of deals has been processed, call the restart commit logic.

prepare_driving_cursor:

Create driving cursor statement based on the system options deal type priority
and deal_age priority, which only affect the ORDER BY clause.

calculate_cost_driver:

This function will drive the process of calculating the net, net net, and dead net
net cost, given information on all the deals that apply to a particular
SKU/supplier/origin country/start date (pass in array structs which include the
target threshold value). Each deal/deal detail record is passed on to the

calculate costs function to do the actual calculation for each LUW + loc, that is,
SKU/supplier/origin country/start date/loc.

For each set of deals for a unique item/supplier/country id/start date, the desired
end result is to have one record on deal sku cost with no location that will hold
the item’s costs with all location-independent deals accounted for, and additional
records on deal sku cost for each location, with location-specific discounts
applied on top of the location-independent discounts.

1 For each new LUW + loc, reset the flag for ‘F’ixed Amt value type discount.
‘F’ixed Amt value type discount should only be applied once for each LUW
+ loc.

2 For each new LUW, reset the flag and merchandise level for ‘EX’clusive
deal class discount; for each LUW + loc, reset the merchandise/organization
level for ‘EX’clusive deal class discount (merchandise level needed to be
reset back to before any loc-specific applied). ‘EX’clusive deal class
discount should only be applied once for each LUW + loc.

10 Retek Merchandising System

3 Reset the net/net net/dead net net costs according to the following rules:

a

b

If new LUW, set to supplier’s original unit cost

If the same LUW, check if location changed:

If new loc:

>

Check if just change from loc-independent to loc-specific. If yes,
save net/net net/dead net net costs and the applied merch level (for
‘EX’clusive discount) of loc-independent discounts
Check if the flag for ‘EX’clusive deal class discount is set (previous
‘EX’clusive discount applied)
O IfNO previous ‘EX’clusive discount applied, check if this is an
‘EX’clusive discount:
« Ifyes, set net/net net/dead net net costs to base cost
(supplier’s unit cost)
« If no, set net/net net/dead net net costs to costs of loc-
independent discounts
O If previous ‘EX’clusive discount applied check if this is an
‘EX’clusive discount with higher merch level or equal merch
level but higher org level than the saved merch/org level (only
apply the highest merch/org level ‘EX’ discount):
« Ifyes, set net/net net/dead net net costs to base cost
(supplier’s unit cost)
« Ifno, skip this discount.

If the same loc, check if the flag for ‘EX’clusive deal class discount is set
(previous ‘EX’clusive discount applied)

>

If NO previous ‘EX’clusive discount applied, check if this is an

‘EX’clusive discount:

O Ifyes, set net/net net/dead net net costs to base cost (supplier’s
unit cost)

O Ifno, set net/net net/dead net net costs to latest calculated costs

If previous ‘EX’clusive discount applied check if this is an

‘EX’clusive discount with higher merch level or equal merch level

but higher org level than the saved merch/org level (only apply the

highest merch/org level ‘EX’ discount):

O Ifyes, set net/net net/dead net net costs to base cost (supplier’s
unit cost)

O Ifno, skip this discount.

4 Call calculate costs to calculate net/net net/dead net net costs. For the same
LUW + loc, the driving cursor has sorted the discounts by cost_appl ind: ‘N’
first, ‘NN’ later, ‘DNN” last. For each cost application level, the same
business rules are followed.

5 Ifthe new LUW is not in the array, increment the writing index of the cost
array (we always write a record into the cost array to keep track of last
calculated costs, but change to a new record only if the LUW is changed)

Chapter 2 — Deals — cost calculations (dealcalc) 11

6 Prepare an insert record into the deal sku cost table by writing costs into the
current indexed record of the cost array. There are two dates to consider, start
and ending (close_date from deal_head). When inserting the start date as the
active date, set a flag in the array so we know that’s which date it is, and
insert the unit_cost from item_supp country as the base cost. The location
and location type fields should be left NULL if no location was given on
deal sku temp. Vdate should be used for the calc_date.

7 Ifthe start date is found in the array, calculate the change for each cost field
and subtract that change from the net fields in the array. If there is no close
date, subtract the change amounts from the net fields of each close date in the
array. If we have a close date and the date found originally in the array was
a start_date, subtract the change amounts from the corresponding close date
entry in the array. Find the close date by looking for the same LUW with
the date indicator set to close date.

8 After updating with the start date, add one to the close date see if that
reset_date is already in the array. If not, add it to the array setting the net
costs to the base cost.

9 Ifthe reset date is found in the array, set the net costs to the base cost and
exit.

10 Save current processed LUW and loc.

calculate_costs:

Inputs: index of fetch array, target threshold value, current net/net net/dead net
net costs

Outputs: calculated net/net net/dead net net costs

The definitions of different net costs are:

* net cost =unit cost — components whose cost appl ind is ‘N’

* net net cost = net cost — components whose cost_appl ind is ‘NN’

* dead net cost = net net cost — components whose cost_appl ind is ‘DNN’

Use the cost_appl ind on deal detail to figure out whether a deal component
contributes to the net, net net, or dead net net cost (the records should already be
sorted by cost_appl ind) and what the initial costs are (initial cost are need to
process ‘CU’mulative deal class discounts with ‘P’ercentage value type):

» If ‘N, the initial net cost is the supplier’s original unit cost, and need to
update all 3 net costs with the calculated discount

o If ‘NN, the initial net net cost is the current net cost, and need to update both
net net cost and dead net net cost with the calculated discount.

e If ‘DNN’, the initial dead net net cost is the current net net cost, and need to
update only the dead net net cost with the calculated discount.

12 Retek Merchandising System

Business rules that need to be followed when applying discounts:

e Deal classes:

If an exclusive deal was previously found for this SKU/supplier/origin
country/start date: new cost should be calculated only if THIS deal is
also exclusive and is for a lower merchandise hierarchy. If this is the first
exclusive deal, process it and set a flag, saving the hierarchy levels.

Cumulative discounts need to be applied to the original unit cost (2% off
+ 3% off = 5 %off original unit cost)

Cascade discounts need to be applied on the result thus far (“current
cost”)---take2% off of the unit cost, then take 3% off of that price, for
example

* Deal value types (take N cost calculation for example):

for a % discount

If *CS cade:

di scount cost = unit cost — (unit cost *% 100)
If “CU nulative:

di scount cost = unit cost — (initial unit cost *% 100)

for an amt discount (first convert amount to be in supplier currency if
necessary)

di scount cost = unit cost — amt (anount di scounts are per
unit cost al ready)

fixed amt: if have fixed amount discount must start with THAT amount
rather than the unit cost (convert to supplier currency if necessary)

di scount cost = fixed ant (converted to supplier’s currency
if necessary)

quantity discount (“buy some get some at discount”) (these are not
allowed on rebates)

These are the most complicated. They affect the cost of the get item
AND of the buy item, whose cost we also need to get. Both the get item
and the buy item will be on deal itemloc. You should only calculate the
cost for whichever item you’re presently on (if buy item, just calculate
buy item cost; will get the free item separately later, or vice versa). The
initial unit cost for the get item should be taken from

deal detail.qty thresh free item unit cost (or, if that field is not
populated, off of item supp country). Before any calculations are done,
convert the unit costs into supplier currency if necessary. If a buy/get
free discount is encountered, the following things need to happen:

» Call get unit cost to get the original unit cost for the buy item (from
item_supp_country), if it’s different from the free item. Use the
supplier and origin country of the free item (free and buy items are
required to come from the same supplier and country).

» Calculate the discount costs(for whichever is the current item, free or
buy)

Chapter 2 — Deals — cost calculations (dealcalc) 13

If qty thresh buy target of the buy item < qty thresh buy qty,
stop; you didn’t get any discount
Otherwise, figure out how many free items you actually get.
« Ifthe qty thresh recur indis ‘N’:
free qty = deal _detail.qty_thresh_free_qty

+ Ifthe qty thresh recur indis ‘Y’:
¢ If buy item = free item:
free gty = qty_thresh_free_qty *
FLOOR(qty_thresh_buy_target /

(qty_thresh_buy qty + qty_thresh free_qty))

¢ Ifbuy item different from free item:
free gty = FLOOR(qty_thresh_buy_target /
gty_thresh_buy qty) *

qty_thresh free_qty

If buy item = free item:
« Ifqty thresh get typeis ‘X’, this is a “buy/free” discount:
total discount = total get cost

+ Ifqty thresh get typeis ‘P’, this is a “buy/get % off”
discount:
total discount = (get item s unit_cost *
gty _thresh_get _value / 100) * get qty

« Ifqty thresh get typeis ‘A’, this is a “buy/get amt oft”
discount:
total discount = qty_thresh_get _value * get qty

« Ifqty thresh get typeis ‘F’, this is a “buy/get at fixed amt”
discount:

total discount = (get items unit_cost -
gty_thresh_get _value) * get qty

« Discount rate = total discount / (buy item unit cost + buy
target)

» Discount = discount rate * get item unit cost

« If'the free item and the buy item are different:

« Ifqty thresh get typeis ‘X’, this is a “buy/free” discount:
total discount = total get cost

+ Ifqty thresh get typeis ‘P’, this is a “buy/get % off”
discount:

total discount = (get items unit_cost *
gty_thresh_get _value / 100) * get qty

« Ifqty thresh get typeis ‘A’, this is a “buy/get amt off”
discount:
total discount = gqty_thresh_get_value * get qty

« Ifqty thresh get typeis ‘F’, this is a “buy/get at fixed amt”
discount:
total discount = (get item s unit_cost -
gty _thresh_get _value) * get qty

+ Get discount rate = (get item cost * get qty) / total buy cost
+ Buy get discount rate = 1 — get discount rate
« If current item is buy item

14 Retek Merchandising System

Di scount = total discount * buy discount rate /
buy target

« If current item is get item
Di scount = total discount * get discount rate /

get qty

+ If the total cost of the buy item is less than that of total
discount, stop; no discount is applied

+ These discounts are the amount that needs to be subtracted
from the original price to get the discounted price.

get_target_threshold_value:

Given a deal_id and deal_detail id, fetch the target value from the deal threshold
table (the value where the target id is “Y”). Since this function is often called
multiple times for the same input (multiple SKUs of the same deal/deal detail), a
linked list is maintained to keep track of target threshold values for different
deal/deal detail. The linked list is ordered by the deal/deal detail. This function
first tries to get the value from the list (previously fetched from database), if yes,
job is done. Otherwise, fetch the target value for this deal/deal detail from
database and call convert_currency if the value is currency amount and the deal
currency is different from the supplier’s currency. The newly fetched value is
then saved into the list by calling add_to_list. Other maintenance functions for
the linked list are init_list (called in init) and free list (called in final).

get_unit_cost:

For a given SKU/supplier/country id, get the unit cost from item_supp country.
Since usually the unit cost is fetched by the driving cursor, the function is only
called for buy-get type discount when the buy item’s unit cost is needed.

convert_currency:

Call CURRENCY _SQL package to convert an amount in deal currency to
equivalent amount in supplier’s currency. (This should only be called if the
currencies are different—normally they will be the same).

post_insert_delete_records:

Array insert all records of the cost array into the deal sku_cost table and array
delete processed records, which are also all records of the cost array, from the
deal_sku temp table. This deletes all records from deal sku temp for a given
SKU/supplier/origin country/start date/location, the unique key of these five
columns are part of the unique key on deal sku cost, which contains one more
column (calc_date) to save the cost information for a system specified history
month,

add_to_list:

Add a node made of deal/deal detail and the target value to the current position of
the linked list.

init_list:

Initialize the linked list for target threshold values.

Chapter 2 — Deals — cost calculations (dealcalc) 15

free_list:
Free the memory used by the linked list for target threshold values.
size_arrays:

Allocate memory for the fetch array used by the driving cursor and the cost array
used to save the costs.

resize_array:

Allocate additional memory for the cost array.

free_arrays:

Free the memory used by the fetch array and cost array.

final:
e (Call free_arrays and free list.

» Restart/recovery close logic.

I/0 specification
N/A

Technical issues

There are two rebate calc type’s: linear and scalar. Currently, the scalar type
calculation is taken as the same as the linear type. These will be differentiated in
a future release.

Testing scenarios
Test with:
* item that has 1 active deal
* more than 1 active deal
* multiple deals including an exclusive deal
» different ordering parameters (promo vs. annual, earliest vs. latest)

» different types of deals

Chapter 3 — Product security rebuild (sprdrbld) 17

Chapter 3 — Product security rebuild (sprdrbid)

Modification

The I/O specification section was modified to match the functionality changes
made to the batch program.

Design overview

The security features being added to RMS will be maintained in the batch cycle.
With each run, the changes made to the data in RMS will be brought under the
security features of RMS through the running of 3 batch programs. Sprdrbld.pc
will handle the maintenance for the product security data. SKUs will have
different update/select attributes for a given user for any of a number of different
functional areas like ‘Pricing’ or ‘Clearances’. For each run, the program will
use the security data defined for the user/group/functional area/merchandise level
to define whether a user can select or update every single SKU covered by the
defined rules. The functional document describes the architecture of the security
features and how it works. Rules that have a smaller scope overwrite those with
a broader scope. For example, a user is assigned to two groups -- one of the
groups has no update capability for a given department, while the other group
allows updating for a specific class within that department. Which applies? The
rule with the lowest item hierarchy in its definition is the rule granting the update
capability for the class. Therefore, for every SKU in the department and in the
class will be allowed to update. For the rest of the SKUs in the department, no
updating will be allowed. In addition, if there are conflicting security definitions
at the same hierarchy level because a user is associated with more than one
group, the user is, as expected, granted the capability.

Performance is a crucial consideration for this program as it involves writing
records for different functional areas at the SKU level for every user in the
system. To accomplish this task as efficiently as possible, the program should be
built as follows. It will be multi-threaded by department, and use
restart_recovery. In the Init routine, an array that will closely resemble the final
destination security table will be sized to handle all the SKUs in the particular
thread running. This array will be loaded with all the SKUs and used repeatedly
for every user/functional area combination. There will be an additional indicator
(in addition to the select/update indicators) that will keep track of which SKUs
have a rule affecting them and have therefore been “touched”. Each rule will
affect certain SKUs in the array and their attributes may be changed multiple
times. When they are changed, this indicator will be raised. After all the rules
are processed for a given user/functional area, the data in the array that has the
“touched” indicator raised will be written out to a SQL Loader file and its
indicator reset. This cycle will be repeated until all users and functional areas are
exhausted.

18 Retek Merchandising System

Table Index | Select | Insert | Update | Delete
SEC _USER_GROUP No Yes No No No
SEC_GROUP_PROD MATRIX | No Yes No No No
V_RESTART DEPT No Yes No No No
DESC _LOOK No Yes No No No
RAG _SKUS No Yes No No No
SYSTEM_ VARIABLES No Yes No No No

Scheduling constraints
Processing Cycle: Daily

Scheduling Diagram: Must run batch program prepost.pc with parameters
sprdrbld pre , sprdrbld.pc and prepost.pc with parameters sprdrbld post in series.
Then use SQL load control file sprdrbld.ctl to load the output file from
sprdrbld.pc to database.

Pre-Processing: Prepost with parameters: sprdrbld pre
Post-Processing: Prepost with parameters: sprdrbld post

Threading Scheme: Department

Restart recovery

This section contains information on the Logical unit of work and the driving
CUrsor.

Logical unit of work

The logical unit of work for location security rebuild will be the user-functional
area (column_code). Restart/recovery will be based on the user-functional area.
The restart commit counter will need to be carefully determined by each client
according to the number of departments that will be affected by the product
security rebuild. Large product security rebuilds with thousands of styles/SKUs
need smaller commit counters to avoid reprocessing large amounts of data in the
event of program failure. Small location security rebuilds with small amount of
styles/SKUs can have much larger commit counters since fewer rows will be
inserted into the database each time for one user-functional area.

Chapter 3 — Product security rebuild (sprdrbld) 19

Driving cursor
SELECT u. user _

FROM sec_use

VWHERE u. gr oup
AND v. d
AND v. n
AND v. t
AND (u.

ORDER BY u. us
p. subcl ass des

.col um_code
. dept,

. cl ass,

id
p
p
p
p. subcl ass,
p.style,
p. sku,
p. sel ect _ind,
p. updat e_i nd
r_group u,
sec_group_prod_matrix p,
v_restart_dept v

_id = p.group_id

river_value = p.dept

umthreads = :pi_restart_numthreads
hread_val = :pi_restart_thread_va

user _id > NVL(:ps_restart_user, '-999")

OR (u.user_id = :ps_restart_user
AND p. col um_code > :ps_restart_col unm_code))

er_id, p.colum_code, p.dept, p.class desc,
c,

p. sku desc, p.style desc

20 Retek Merchandising System

Program flow

Process next
record from ot

Cursor

¥

Mew user
arudfor

functional
area?

Update array with
new JelectUpdate
Privileges.

i

Wite array to outpnd
file, call 1
restart file commit.

Mo

Ho

Mew
hieratchy?

Logical "OR” between
SelectUpdate indicators, and
SelectUpdate array variables

Update array with
new JelectUpdate
Privileges.

Shared modules
N/A

Function

level description

Main()

Init()

Check SYSTEM_VARIABLES.update prd_sec_ind. If the indicator is not
set then the program exit normally without further processing.

Call retek_init() to get restart-recover variables.
Get_total _skus()

Get total skus in the current thread.

Size sku array()

Size SKU array based on the number of SKUs in the current thread. The
SKU array includes dept, class, subclass, style, style ind, SKU, select_ind,
update ind and touched columns.

Load_sku_array()
Load all SKUs in the current thread to the SKU array.

Chapter 3 — Product security rebuild (sprdrbld) 21

Process()

The driving cursor is ordered to return records defining rules for entire
department first, and then those for class, and on down. The records are
processed in that order. That is to say, first work with the department level rules,
then move to the more specific rules so that the rules with the smaller scope take
priority over the higher level rules.

* Call size rule_array() to allocate memory for arrays that store security rules.
* Open the driving cursor in a while loop. Fetch the data into rule array.

e Call set null to field() to set fields to null when those fields’ indicators are
—1 in the rule array.

* Check if this is a second array fetch or greater, if yes, call process_record() to
process the last record in last array fetch and the first record in current array
fetch.

* Open a for loop
= Call process_record() to process the current and last record.
* End of for loop

* Copy the last record in the current array fetch to last rule array. Since the last
record of an array fetch hasn’t been processed until compared to the first
record of the next array fetch. However, with each new array fetch, the last
record of the previous array fetch is overwritten. Thus here it needs to be
copied.

* End of while loop.

Size_rule_array()

This function allocates memory for arrays that store security rules based on the
maximum commit count set in table restart _control table. The rule array includes
user_id, column_code, dept, class, class_ind, subclass, subclass_ind, style,

style ind, SKU, sku ind, select ind and update ind.

Set_null_to_field()

This function loops through all the records in rule array and set a field to null
when the field’s indicator is —1.

Process_record()

This function does the majority of the processing. The data from the driving
cursor is ordered by dept, class, subclass, style, and SKU such that the
department level rules are selected first, then the class level, etc. Also, all rules
for a particular merchandise hierarchy will be grouped together and processed so
that a single security rule will be decided for that particular hierarchy. When
multiple records do occur at the same level, the logical OR will be used to
determine whether to grant update/select privileges.

* Compare the user/functional area of the current record and the last record :

22 Retek Merchandising System

= Jfitisn’t new:

» Compare the hierarchy/style/SKU of the current record and the last
record:
O Ifitisn’t new, call logical or indicators() to update the current
record’s select and update indicators according to the logical
‘OR’ between the current and last records’ indicators.
o Ifitis new, call update array() to blow security rule down to the
SKU level according to the last record rule.

= Ifitis new:

» Call update array() to blow security rule down to the SKU level
according to the last record rule.

» Call write_array() to output the security rules of last record’s
user/functional area (down to SKU level) to SQL load file.

» Callretek force commit() to set book mark in the restart bookmark
table.

Logical_or_indicators()

This function updates the input current record’s select and update indicators
according to the logical ‘OR’ between the input current and last records’
indicators. For example, if the current record’s select indicator is ‘N’, the last
record’s select indicator is ‘Y’, then the current record’s select indicator is
updated to “Y’; If the current record’s select indicator is ‘N’, the last record’s
select indicator is “N’, then the current record’s select indicator is kept
untouched(‘N”). If the current record’s select indicator is “Y’, no matter what
last record’s select indicator is, the current record’s select indicator is kept
untouched(‘Y’). So does update indicator.

Update_array()

This function updates the SKU array according to the input security rule. There
are five kinds of security rules. They are department, class, subclass, style and
SKU level security rules.

e Ifthe input rule is a department level security rule, then loop through the
SKU array, for all the SKUs within the department, set the select inds and
update_inds equal to the input rule’s select_ind and update ind, respectively.
Set touched and style touched indicators of each processed row to ‘Y’.

* Ifthe input rule is a class level security rule, then loop through the SKU
array, for all the SKUs within the class, set the select inds and update inds
equal to the input rule’s select ind and update ind, respectively. Set touched
and style_touched indicators of each processed row to “Y’.

» Ifthe input rule is a subclass level security rule, then loop through the SKU
array, for all the SKUs within the subclass, set the select inds and
update_inds equal to the input rule’s select_ind and update ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y.

Chapter 3 — Product security rebuild (sprdrbld) 23

» Ifthe input rule is a style level security rule, then loop through the SKU
array, for all the SKUs corresponding to the style, set the select inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y.

e Ifthe input rule is a SKU level security rule, then loop through the SKU
array, set the select_ind and update ind of the SKU equal to the input rule’s
select_ind and update ind, respectively. Set touched indicator of each
processed row to Y.

Write_array()

This function writes out rows with touched indicator equals ‘Y’ in the SKU array

to SQL load file.

final():

restart/recovery close

I/0 specification

Each row of the output SQL load file outputfilename.extension x (x is current
thread number) corresponds to one record row in the sec_user prod_matrix table.

Note: In previous versions of RMS, outputfilename.extension x was
outputfilename x.dat.

The format of the output file is as follows:

Col utm_code; user _i d; SKU; sel ect _i nd; updat e_i nd
Example:

PPRM JOHN; 10007986; N; N

PPRC; CLI NTON; 10001000; Y; N

PPRM CLI NTON, 10007986; Y; Y

Technical issues
N/A

Chapter 4 — Approved warehouse transfers download (tsfdnld) 25

Chapter 4 — Approved warehouse transfers
download (tsfdnld)

Modification

The I/O specification section was modified to match the functionality changes
made to the batch program.

In the stock order_header output file five new lines were added: Ship Address
line 3, Ship Address line 4, Ship Address line 5, Billing Address line 4, Billing
Address line 5. Fields were expected by RDM. RMS does not store data for these
fields, so spaces will be sent down.

Function

This program processes all warehouse transfers that are approved, with a freight
code of Normal or Expedite and have a release date equal to or less than
tomorrow. If the destination location is a store, the store must be on the ship
schedule to be shipped tomorrow. Shipments are created for these transfers and
the shipment information is downloaded into a file to be used by an external
WMS. Transfer status will be updated to ‘E’ (Extracted).

This program will produce two additional files. The first file contains component
ticket and retail information, for non-sellable pack items. This will provide the
correct ticketing information for the warehouse to ticket the components of non-
sellable pack items. The second file contains outbound work order processing
information for stock allocations. The work order information is found on the
work order tables, wo wip, wo_head, and wo_sku_loc.

When interfacing with Nautilus all three files will need to be converted into the
proper flat file format, so that Nautilus can process.

Note: Transfers that are supposed to be combined into Combined Transfer (CT
transfer type) will not be downloaded by this program. Transfers with a freight
type = ‘E’ (Expedite) and a release date <= today will ignore the shipping
schedule and be downloaded tonight. Transfers with a freight type = ‘H’ (Hold)
will be ignored by this program.

26 Retek Merchandising System

Design overview

Table Index Select Insert Update Delete
TSFALLOC Yes Yes No No No
TSFHEAD Yes Yes Yes Yes No
TSFDETAIL Yes Yes No No No
SHIPMENT Yes Yes Yes No No
STORE SHIP DATE | Yes Yes No No No
WO HEAD Yes Yes No No No
WO _SKU LOC Yes Yes No No No
WO WIP Yes Yes No No No
ORDCUST Yes Yes No No No
CUSTOMER Yes Yes No No No
ITEM TICKET No Yes No No No
V_PACKSKU QTY | No Yes No No No

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Scheduling constraints
Processing Cycle: N/A
Scheduling Diagram: Phase 3. Constraints: after TSFCOMB.PC
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Chapter 4 — Approved warehouse transfers download (tsfdnld) 27

Restart recovery
SELECT t sf head. t sf _no,

tsfhead. froml oc_type,
tsfhead. from| oc,
tsfhead.to_| oc_type,
tsfhead.to_| oc,
t sfhead. t sf _type,
t sf head. f r ei ght _code,
ROW DTOCHAR(t sf head. rowi d),
";"||to_char(tsfhead.tsf_no),
tsfdetail.sku,
(tsfdetail.tsf_qgty)*1000,
nvl (tsfdetail.inv_status, 0)

FROM tsfhead,
tsfalloc,
t sf det ai |

WHERE tsfhead.status ="'A
AND tsfhead. frei ght_code i

=)

('N,E)
"W
AND tsfhead.tsf_type not in (‘PO ,'SR)

AND tsfhead.fromloc_type

AND nvl (tsfalloc.nerge_ind,'N) ='N
AND tsfhead.tsfalloc_no = tsfalloc.tsfalloc_no (+)

AND nvl (tsfalloc.rel ease_date,
to_date(:ps_tonorrow, ' YYYYMVDD))

<= to_date(:ov_tonorrow, ' YYYYMVDD)
AND tsfdetail.tsf_no = tsfhead.tsf_no
AND nvl (tsfdetail.tsf_qty,0) > 0
AND tsfhead.tsf_no > nvl(:ora_restart_tsf_no, -999)
CORDER BY tsfhead.tsf_no;

28 Retek Merchandising System

Program flow

Shared modules

Priming Fetch of
Oriving Cursor

On Ship
Schedula™

]

Mifte shipments to amays

write transfer header to output file

On Ship
Schedule?

—

write details to output list

Transfer
Complete’?

e

For completed transfer
write detail list to output file
write shipment info to output file
update cumrent transfer to 'E status

]

If commit will occur (count excesded
then insert shipment amays

X

On Ship
Schedula?

T

Wirite shipmerts to amays
write transfer header to output file

Call Commit Logic

:

write detail list to output

write shipment info to output file
update cumert transfer to 'E status

file

]

End

NEXT SHIPMENT SQL used to get the next shipment number.

PRICING ATTRIB_SQL.GET RETAIL(): get the unit retail from
item_zone_ pricing table for a SKU/store.

Chapter 4 — Approved warehouse transfers download (tsfdnld) 29

Function level description

Init()

Initialize restart recovery.

Open output file.

Format header, detail, and shipment buffers (for writing output).
Determine tomorrow’s date

Determine order type

Call function get order_ type to determine order type

Call function to write output file header information, write_std_header()

Process()

This function should select all transfer details and quantities for transfers that are
ready to ship from a warehouse tomorrow. Each transfer (header, detail
information, and shipment information) should be written to an output file for the
WMS to upload with transfer requirements. When a transfer has been completed,
that is all information has been written to a file and the shipment information has
been created, its status will be updated to Extracted (‘E’).

The flow of logic is as follows:

1
2

Fetch the first transfer record from the driving cursor.
Get _ship flag (determines if current transfer is due to ship tomorrow)
If the transfer should be shipped then

= call get thead info() to get the customer address information if it is a
customer order type of transfer.

= (Call write recs_to_struct() to create shipment number and write records
to structure

= Call write_head to_str() to write to the THEAD structure.
End if;

Main processing loop through the transfer tables

» [f transfer should be shipped then

» Call Get_detail info() to get the ticketing and retail information.
Also, decode the expedite flag.

» Call write_detail to list() write TDETL to link list

» Call Process wo() to process the work order information

= Endif;
= Fetch next transfer record
= [fthe transfer number just changed, then

» If the transfer should be shipped write into from the previous transfer
to the file

30 Retek Merchandising System

O Call Write list to file() write link list of details to flat file.
O Call Write_wo_to_file()

O Call write_pack to_file()

O Call write tail to file()

End if;

Call update_records() to update the appropriate tables

Now start working on the newly fetched transfer

Call get_ship flag() to see if new transfer should be shipped
If transfer should be shipped, then

O Call Get_thead info()

O Call write recs to_struct()

O Call write_head_to_str()

» Endif;

= Endif;

vVvyyvyyvyy

= Commit records and updates.
* End of transfer loop
» If the last transfer fetched should be shipped, then write final to file
= Call write list to_file()
= (Call write wo _to_file()
= Call write_pack to_file()
= Call write_tail to_file()
e Endif;
* Call update records()

Get_ship_flag()

This function calls validate ship_schedule() to determine if transfer will be
shipped tomorrow. If the transfer is set to expedite status, then the shipping
schedule is ignored and the transfer is processed.

validate_ship_schedule()

This function validates that a ship date exists between today and tomorrow for
the from warehouse and the to store combination (held on STORE SHIP DATE
table).

get_thead_info()

This function retrieves the customer address from the customer table for the
customer order transfer. If the customer is going to pick up the merchandise,
then a message, “customer order for: < customer name > “ will be displayed in
the event description. This will indicate to the warehouse that it is a customer
order, pick up.

If customer order and ship direct
* set break by distro value = Y.

* populate billing and shipping addresses with customer address info.

Chapter 4 — Approved warehouse transfers download (tsfdnld) 31

* Set dest. Id = courier value from tsthead
* Set Courier/route/service codes = NULL
If not customer order

* set break by distro value = ‘N’

* do not populate billing and shipping address
» set dest. Id = store or warehouse

e set courier/route/service codes = NULL

get_detail_info()

This function decodes the freight code.
if freight_code = ‘E then
expedite flag = "'Y";
el se

expedite flag = ‘N ;
end if;

Get the ticket type for the item from item_ticket table where the po print type =
‘R’ (i.e. print at the time of receipt). There may be several ticket types for the
item with ‘R’ print type. Therefore, get the first ticket type in the fetch.

Get Unit retail for the item/location from the item_zone price tables by calling
the package PRICING _ATTRIB SQL.GET RETAIL.

If item is going to a store location call function comp_tckt() to write component
ticketing file.

process_wo ()

This function retrieves all the work order information for the selected stock
allocation and Calls write wo_to_list()

Write_wo_to_list()
This function writes the work order information to the structures
Write_wo_to_file()

This function prints out the work order structure to flat file

Comp_tckt()

This function selects from pack head for the item and sellable ind = ‘N,

e Ifnon Sellable ‘P’ack item is found

32 Retek Merchandising System

= loop through component items that make up the pack item on the
v_packsku_qty table.

= Call pricing_attrib_sql.get retail package to get the retail for the
component SKU.

= Call write_pack to list() Write FDETL record for component SKU,
retail, and ticket type to file

= End loop;

e endif;

write_pack_to_list()

This function writes the component ticketing and retail information to the
structure.

write_pack_to_file()

This function prints component ticketing and retail information structure to flat
file.

Write_std_header()

This function Increment counters and writes FHEAD record to file.

Write_std_trailer()

This function increments counters and writes FTAIL record to file

write_tail_to_file()

This function writes the TTAIL structure to the output file

write_detail_to_list()

This function makes detail record string (TDETL) and add to linked list and calls
add dtl to list() function.

add_dtl_to_list()

This function will add ps_temp_dtl string to linked list.

get_order_type()

This function gets order type from code detail.

write_head_to_str()

This function gets order header string (THEAD) and write structure.

Write_recs_to_struct()

This function will be called when a new transfer number is encountered.
Transfer header information is written to arrays that will update the status. A
new shipment number is created and shipment information is written to arrays
that will insert new shipment records into the shipment table.

Chapter 4 — Approved warehouse transfers download (tsfdnld) 33

I/0 specification

write_list_to_file()

This function writes linked list detail records to file

update_records()

* perform array update of tsthead using rowid, set status = ‘E’

» perform array insert of newly created shipments

Final()

Call function to write output file trailer information, write_std _trailer().

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Output files should be specified on the command line

Transfer download file

Record Field Field Type Field Value Description
Name Name
File Header | File Type Char(5) FHEAD Identifies file record
Record type
Descriptor
File Line Number(10) Specified by external Line number of the
Sequence system current file
File Type Char(4) TSFD Identified file as
Definition 'Inventory Adjustments'
File Create | Date Sysdate Date file was written by
Date external system
Transaction | File Type Char(5) THEAD Identifies file record
Header Record type
Descriptor
File Line Number(10) Specified by external Line number of the
Sequence system current file
Transaction | Number(14) Specified by external Used to force unique
Set Control system transaction check
Number
Action Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
Type ‘M’odify
Location Number (4) Tsfhead.from loc Code for the DC.

(DC)

34 Retek Merchandising System

Record Field Field Type Field Value Description
Name Name
Transaction | YYYYMMDDHHMI Period.vdate Date/Time created in
Date/Time RMS
Distributio | Char(9) Shipment.shipment Unique identifier of the
n Number distribution.
Download | Char (30) NULL Comment to be printed
Comment on the label (for future
use)
Pick-Not- YYYYMMDD Period.vdate Date before which
Before-date merchandise will not be
distributed
Pick-Not- | YYYYMMDD Period.vdate + Date by which
After-Date (specified time from merchandise must be
codes table) distributed. Extra days
will be determined by a
code type = ‘DATE’
Event Code | Char(6) NULL or Identifier of event.
tsfalloc.tsfalloc_no Only used for stock
allocations
Event Char(25) NULL or Description of event.
Description tsfalloc.alloc_desc Only used for stock
allocations
Priority Char(4) Default to 1 Priority 1=highest
Order Type | Char(9) Default from system Order type (Automatic,
optionTables Manual or Wave)
Break by Char(1) Default from codes Controls the mixing of
Distro tables orders (distros) in a
container
Carrier Char(1) NULL Code of the carrier for
Code the order
Carrier Char(6) NULL Carrier’s service code
Service for the delivery, First
Code Class, etc.
Route Char(10) NULL Route specified for the
delivery
Ship Char(30) NULL or customer Used to store only
Address address customer order (ship

Description

direct) addresses.

Chapter 4 — Approved warehouse transfers download (tsfdnld) 35

Record Field Field Type Field Value Description
Name Name
Ship Char(30) NULL or customer Shipping address line 1.
Address address Used to store only
line 1 customer order (ship
direct) addresses.
Ship Char(30) NULL or customer Shipping address line 2.
Address address Used to store only
line 2 customer order (ship
direct) addresses.
Ship Char(30) NULL or customer Shipping address line 3.
Address address Used to store only
line 3 customer order (ship
direct) addresses.
Ship Char(30) NULL or customer Shipping address line 4.
Address address Used to store only
line 4 customer order (ship
direct) addresses.
Ship Char(30) NULL or customer Shipping address line 5.
Address address Used to store only
line 5 customer order (ship
direct) addresses.
City Char(25) NULL or customer Shipping city. Used to
address store only customer
order (ship direct)
addresses.
State Char(3) NULL or customer Shipping state. Used to
address store only customer
order (ship direct)
addresses.
Zip Char(10) NULL or customer Shipping zip. Used to
address store only customer
order (ship direct)
addresses.
Billing Char(30) NULL or customer The description (such
Address address as company name,
Description etc.). This is the first
line of the address
block. Used to store
only customer order
(ship direct) addresses.
Billing Char(30) NULL or customer Billing address line 1.
Address address Used to store only
line 1 customer order (ship

direct) addresses.

36 Retek Merchandising System

Record Field Field Type Field Value Description
Name Name
Billing Char(30) NULL or customer Billing address line 2,
Address address Used to store only
line 2 customer order (ship
direct) addresses.
Billing Char(30) NULL or customer Billing address line 3,
Address address Used to store only
line 3 customer order (ship
direct) addresses.
Billing Char(30) NULL or customer Billing address line 4,
Address address Used to store only
line 4 customer order (ship
direct) addresses.
Billing Char(30) NULL or customer Billing address line 5,
Address address Used to store only
line 5 customer order (ship
direct) addresses.
Amount 1 Number(8, 2) NULL Amount charge 1
Amount 2 | Number(8, 2) NULL Amount charge 2
Amount 3 | Number(8, 2) NULL Amount charge 3
Order No. | Char(9) NULL Purchase Order
Identifier
Transaction | File Type Char(5) TDETL Identifies file record
Detail Record type
Descriptor
File Line Number(10) Specified by external Line number of the
Sequence system current file
Transaction | Number(14) Specified by external used to force unique
Set Control system transaction check
Number
Action Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
Type ‘M’odify
Location Number (4) NULL Code for the DC (future
(DC) use)
Transaction | YYYYMMDDHHMI Period.vdate Date/Time created in
Date/Time RMS
Distributio | Char(9) Shipment.shipment Unique identifier of the
n Number distribution.
Item ID Char(16) Tsfdetail.sku Item identifier

Chapter 4 — Approved warehouse transfers download (tsfdnld) 37

Record Field Field Type Field Value Description
Name Name
Requested | Num(12,4) Tsfdetail.tsf qty Number of units to
Unit Qty distribute to the
destination
Destination | Number (4) Tsfhead.routing_code Identifier of shipping
ID (if ship direct to destination. If
Customer customer order and ship
order)Tsfhead.to loc (if | direct, then field
store or wh) contains a carrier value.
If it is direct to store or
warehouse, then
populate with the store
or warechouse location.
Price Number (7,2) Item_zone_price.unit r | Price of merchandise
etail
Print UPC | Char(1) ‘N’ (hardcode) Whether to print UPC
Flag on tickets (Future use)
(‘Y b , ’N 9)
Ticket Number (4) Item_ticket.ticket type | Type of ticket refers to
Type ticket type table. This
field will be populated
with the “ticket at
receipt”.
Priority NUMBER (4) 1 (hardcode) Priority 1 = highest
Expedite VARCHAR(1)°Y’ or ‘N’ | Tsfhead.freight code Flag indicating whether
Flag (translate value to ‘Y’ the order should be
or ‘N’) shipped via normal or
expedited carrier
service
Transaction | File type Char(5) TTAIL Identifies file record
Trailer record type
descriptor
File Line Number(10) Specified by external Line number of the
sequence system current file
Transaction | Number(6) Sum of detail lines Sum of the detail lines
detail line within a transaction
count
File Trailer | File Type Char(5) FTAIL Identifies file record
Record type
Descriptor
File Line Number(10) specified by external Line number of the

Sequence

system

current file

38 Retek Merchandising System

Record Field Field Type Field Value Description
Name Name
File Line Number(10) total detail + sum of all transaction
Count transaction head lines lines, not including file

header and trailer

Chapter 4 — Approved warehouse transfers download (tsfdnld) 39

Work order download file

Record Field Field Type Default Value Description
Name Name
File Header | File Type Char(5) FHEAD Identifies file record
Descriptor type
File Line Number(10) Ten zeroes:0000000000 | ID of current line being
Identifier processed by input file.
File Type Char(4) OWOD Identifies file as
Definition ‘Outbound Work Order
Download’
File Create | Date Create date date file was written by
Date external system
Trans-action | File Type Char(5) FDETL Identifies file record
Detail Descriptor type
File Line Number(10) Incremented internally | ID of current line being
Identifier processed by input file.
Action Char(1) ‘A’ The action being
Type performed on the work
order. This will always
be ‘A’ since transfer
work orders can’t be
modified once they’ve
been extracted.
Location Char(4) Wo_sku loc.wh When an item is
(DC) crossdocked, this field
holds the value of the
flow-through
warehouse. Otherwise
it holds the value of the
final destination.
Transaction | Char (12) format: Vdate sysdate without the
Date/Time | YYYYMMDDHHMI seconds
Distributio | Char(9) Shipment This field will hold the
n Number shipment number of the
transfer the work order
is associated with.
Item ID Char (16) Wo_sku_loc.sku Valid item identifier for
a staple SKU, fashion
SKU, or Pack Item
Dest ID Number(4) Wo_sku_loc.location Unique identifier of the

final shipping
destination.

40 Retek Merchandising System

Record Field Field Type Default Value Description
Name Name

WIP Number(7) Wo_ wip.seq no Work in Progress
Sequence Sequence Number
No.
WO WIP Char (6) Wo_wip.code WWIP code from codes
Code table

File Trailer | File Type Char(5) FTAIL Identifies file record
Descriptor type
File Line Number(10) Incremented internally | ID of current line being
Identifier processed by input file.
File Record | Number(10) Determined Internally | Number of
Counter records/transactions

processed in current file
(only records between
head & tail)

Chapter 4 — Approved warehouse transfers download (tsfdnld) 41

Component ticketing file layout

Record Record Default value Field type Description
Name
File Header | File Line | FHEAD Char(5) Identifies the trailer line
identifier
Line 0000000001 Number(10) Identifies file line
number number
Program CPTT Char(4) Identifies the program
descriptor
Create YYYYMMDDHH24MISS | Char(14) File create date
date
File detail File FDETL Char(5) Detail line descriptor
record
descriptor
Line Incremented internally Number(10) Sequential line number
number
Action_ty | ‘A’ Char(1) “A”dd, “M”odify,
pe “D”elete
Location | Tsfhead.from loc Number(4) Location that items will
be transferred from
Transactio | vdate Datetime(12) Date/time created in
n RMS
date/time
Distributi | Shipment.shipment Char(9) Unique identifier of the
on distribution
number
Master Tsfdetail.sku Char(16) Unique identifier of the
item id pack item
Dest ID Tsfdetail.to_loc Number(4) Identifier of the ship
destination
Compone | v_packsku qty.sku Char (16) Item identifier of the
nt Item ID component
Price Item zone price.unit retail | Number(7,2) Price of the
merchandise.
File Trailer | File FTAIL Char(5) File trailer
record
identificat
ion
Line Incremented internally Number(10) Sequential line number

number

42 Retek Merchandising System

Record Record Default value Field type Description
Name
Number Total number of detail Number(6) Total number of
of lines transaction lines in file
transactio (not including FHEAD
n lines and FTAIL)

Note that there is a space between fields in the RLS flat file format, except for
the standard Retek flat file information, such as file type descriptor, file line
identifier, file record counts.

Technical issues
N/A

Chapter 5 — Stock position download (sohdnld) 43

Chapter 5 — Stock position download (sohdnld)

Modification

Modified the output specifications to match the functionality changes made to the
match program. Added the system date to the format of the output file. Updated
the function level description section to include that the system date is printed out
to the output file.

Design overview

This affects the functional area of the RMS to RPP interface.

This ad-hoc batch program will be run to communicate current stock on hand,
retail, and cost information to RPP. The information will be sent to RPP at the
SKU/location level.

Scheduling constraints

This is an ad-hoc program. It can be run anytime (most likely in phase 4).

Restart recovery

This program has a unique logical unit of work (LUW) of item/location.

Shared modules

Function

Curconv.pc/h — convert to primary. The library call is used to convert the retail
and cost from the store’s or wh’s local currency to the system’s primary
currency.

level description

Init()
» Initialize restart recovery and file processing.
* Get the vdate from period and std_av_ind from system_options.

* Setup the output file.

Process()

Define driving cursor here:

44 Retek Merchandising System

* It should be a union all with four parts. Each part will be pretty much the
same, except they will be driven by the different item/location tables
(WIN_STORE, WIN_WH, RAG_SKUS ST, RAG_SKUS WH). The
cursors should bring back every SKU, location with their associated
stock on_hand (+pack comp soh for warehouses), total unit retail, and total
cost. The cost should be fetched with a DECODE. If
SYSTEM_OPTIONS.STD AV _IND = ‘A’, total cost should use
av_cost*stock on_hand, else total cost should use unit_cost*stock on hand.
The cursor should be threaded by location, use V.RESTART STORE WH.
(be sure to order by location then SKU — this will allow for the best
performance by the convert_to_primary() library call)

Call size_array() and define_buffer() .

Use array processing to fetch the driving cursor

For each record brought back by the driving cursor, call write to_file().

Call retek forece commit() once commit max counter records have been
processed.

Call free array() after the processing is finished.

Define_buffer()

Set up a string with the fprintf format that will be used when writing records to
the output file.

Size_array()

Size the driving cursor fetch array to the commit max counter.

Free_array()
Give back the memory allocated by size array().
Write_to_file()

Convert the retail and cost to the primary currency by calling:

int convert_to_primry(char *|s_idnt,
char *|s_idnt_type,
char *| s_zone_group,
char *| s_date,

double *ld_anount);
Is_idnt should be sent as the location (store or wh)

Is_idnd type should be sent as ‘W’ if the location is a wh, ‘S’ if the location is a
store.

Ls_zone group should be sent as “”’ (empty string or NULL)
Ls_date should be sent as the vdate in ‘YYYYMMDD’

Ld_amount should be sent as the cost or retail.

Chapter 5 — Stock position download (sohdnld) 45

Convert_to_primary() will be called twice per driving cursor record once for the
cost, once for the retail.

Print out the SKU, location, loc_type, system_date, stock_on_hand, retail, and
cost to the output file.

Final()

Clean up restart recovery and file processing.

I/0 specifications

‘Table-To-Table’

Input

Output

Files

Input

Output

This program sources WIN_STORE, WIN. WH, RAG _SKUS ST, and
RAG SKUS WH. See the driving cursor discussion in the functional level
description.

N/A

N/A

The output file should be names sohdnld.dat.N. Where N is the thread number.

Note: The thread number has nothing to do with the domain in this program.

Field Name Field Type Description
SKU Number(20) left RMS item identifier. Left
justified justified
Location Number(20) left Store or warehouse
justified identifier. Left justified
Loc Type Char(1) Indicates whether the

Location is a store or wh.
S — if the location is a store

W — if the location is a
warehouse

System Date (vdate) Date(8) Date the output file was
created.

46 Retek Merchandising System

Field Name

Field Type

Description

Stock-on-hand

Number(17)

Total stock-on-hand for the
item at the given location.
Right justified, decimal
point is included in output
file

Retail

Number(25)

Total extended retail for the
item at the given location.
Right justified, decimal
point is included in output
file

Cost

Number(25)

Total extended average cost
(av_cost) or last cost
(unit_cost) for the item at
the given location —
depending on the
SYSTEM_OPTIONS.
STD_AV_IND. Right
justified, decimal point is
included in output file

Design assumptions

This program doesn’t need to split its output by domain.

This program will be run infrequently, thus performance considerations were not

thoroughly investigated in the design process.

Technical issues
N/A

Chapter 6 — RMS batch schedule 47

Chapter 6 — RMS batch schedule
Deals (SIR 35190)

Modification

The batch schedule references were changed to show sccext at the end of Phase 3 and dealcalc and orddscnt at the beginning of
Phase 4.

Note: The same change has been made to the RMS Operations Guide.

48 Retek Merchandising System

Enterprise 9.0 Batch Schedule

Phase 0

Phase 1

aristart (ARI) **
r-r script
dlyprg

aricntrl (ARI) ** aristop (ARI) **

salins
cntrmain
vatdixpl

***Note: prepost pre batch cycle should be run

before the batch cycle starts to turn off security,

and prepost post batch cycle should be run

after the entire batch cycle is finished to turn security back on

ediupavl
ediupasn
pcednld
prmxpld
revext
stkvar
ediupinv
pcdnld

pcerdnld
prmext

supdnld
locdnld
itemdnld

stkupld
pre [fifoldp (FIF)

ditinsrt

**xSales Audit--see belowr *xrx*

fifcuru2 (FIF)
fiftrmu2 (FIF)
fifvndu2(FIF)

Ad Hoc Interfaces

posdnld [post
plncupld
pindupld
plnsupld
edidlcon
tcktdnld
ediupcat
ediupadd
fmednlds
fmednldf
forgdnld
otbupfwd
otbupld
edidladd
tranupld (RTM)
fifcoadn (FIF)
fwhdnld

pre htsupld
gecupld

txrtupld
ftmednld
stlgdnld *

* Ad-hoc running of stigdnld is meant for

historic downloads. See phase 4 for weekly

stlgdnld runs.

Phase 2
posupld
lifrtvup (LIF) rtvupld
Jlifinvup (LIF) |invaup|d pctrandn
ediupack
promdnld pre
lifrcvup (LIF) [tsfparse revupld ctniupld
litbolup (LIF) [tsfoupld tsfiupld invmatch (IM) tsfresv
invcpost (IM) |fifinvcu(FIF)
invclshp (IM) hstwksst (weekly)
cednld hstwkswh (weekly)
(Ilcmt730) lcupld hstwkfst (weekly)
(Ilcmt798) lcup798 hstwkfwh (weekly)
hstbld (rebuild wkly)
wastead]j
fdayupld |
szrtbld
fcstrbld
** Note that the ARI programs (aristart, aricntrl, aristop) must be run salstage
with no other resources accessing the system. They can be run before
or after the rest of the batch schedule. supmth
dealcls
Sales Audit
sagetref |saimptlog |(sq||dr) |savouch**** saimptlogfin saimpadj* satotals sarules |(Forms Auditing)

samastersf'saexpsfm**

saescheat (monthly)****

* Only if there are total adjustments from external systems
** Only if Oracle Site Fuel Management is used

*** Only if the external system is used

=% Only if vouchers are being tracked

Forms Auditing is use
during the loading of t

Chapter 6 — RMS batch schedule 49

Enterprise 9.0 Batch Schedule

Phase 3 Phase 4 Date Set
(sastdycr) |dtesys
sccext post dealcalc |post ordrev edidlord |tsfdcdld
orddscnt powodld Ad Hoc
|pctrane>< | post pcext pcerext asndnld pcimpc
pceext saaldnld [allocupd hstbld (rebuild all) |post
fifrecdl (FIF) pre pcovrl
rplatupd |rp|adjf cntrordb |post rplext cntrprss |vrplbld
rpladjs edidlprd |post auditprg
regext pre [rolold |supenstr [rplprg |post edidldeb auditsys
|tsfcomb asndnld ccprg
whstrasg tsfdnld ediprg
reclsdly fcstprg feslupld
hstprg
ordupd otbdnld invaprg
otbdlsal ladprg
post otbdlord layprg
stkxplst stkupd ordprg invprg
stkxplwh fdaydnld [fsadnlds (weekly) otbprg
fsadnldf (weekly) pceprg
fisdnlds (weekly) pcovrlpg
fisdnldf (weekly) pcprg
|post prmprg
soutdnld rplrsprg
salapnd Icadnld lemt700 (perl) rtvprg
|saldly stkdly salweek [post salmth [post saleoh pre fifgldnl(F(FIfiprdp(FIF) Icmdnld |lcmt707(perl) salprg
fifgldn2(FIF) schedprg
|post fifgldn3(FIF) pre slocrbld post stkprg
pre sprdrbld post storeadd |Ic|rb|d
pre szonrbld post szrtbld
tsfprg tsfalprg
poscdnid |lifstkup (LIF)
sapreexp saexprms*** sapurge *** after sprdrbld, must run SQLLoad using posgpdid
saexpim*** sprdrbld.ctl to load data into database txrposdn |tifposdn |post cmpprg
saexprdw*** dealprg
saexpach*** pre |onordext |0norddn|d
saexpuar*+* stigdnid
saexpgl*** sohdnld

ed to correct any errors found
the data, totaling and rules checking.

50 Retek Merchandising System

System (SIR 34728)

Modification

The location of Aristart and Aristop was switched. fifgldn1&2 were moved from phase 1 to phase 3. prepost fifgldn was moved
from running before the program to after it for fifgldnl.

Chapter 6 — RMS batch schedule 51

Enterprise 9.0 Batch Schedule

Phase 0

Phase 1

aristop (ARI) **
r-r script
dlyprg

aricntrl (ARI) ** aristart (ARI) **

salins
cntrmain
vatdixpl

***Note: prepost pre batch cycle should be run

before the batch cycle starts to turn off security,

and prepost post batch cycle should be run

after the entire batch cycle is finished to turn security back on

ediupavl
ediupasn
pcednld
prmxpld
revext
stkvar
ediupinv
pcdnld

pcerdnld
prmext

supdnld
locdnld
itemdnld

stkupld
pre [fifoldp (FIF)

ditinsrt

**xSales Audit--see belowr *xrx*

fifcuru2 (FIF)
fiftrmu2 (FIF)
fifvndu2(FIF)

Ad Hoc Interfaces

posdnld [post
plncupld
pindupld
plnsupld
edidlcon
tcktdnld
ediupcat
ediupadd
fmednlds
fmednldf
forgdnld
otbupfwd
otbupld
edidladd
tranupld (RTM)
fifcoadn (FIF)
fwhdnld

pre htsupld
gecupld

txrtupld
ftmednld
stlgdnld *

* Ad-hoc running of stigdnld is meant for

historic downloads. See phase 4 for weekly

stlgdnld runs.

Phase 2
posupld
lifrtvup (LIF) rtvupld
Jlifinvup (LIF) |invaup|d pctrandn
ediupack
promdnld pre
lifrcvup (LIF) [tsfparse revupld ctniupld
litbolup (LIF) [tsfoupld tsfiupld invmatch (IM) tsfresv
invcpost (IM) |fifinvcu(FIF)
invclshp (IM) hstwksst (weekly)
cednld hstwkswh (weekly)
(Ilcmt730) lcupld hstwkfst (weekly)
(Ilcmt798) lcup798 hstwkfwh (weekly)
hstbld (rebuild wkly)
wastead]j
fdayupld |
szrtbld
fcstrbld
** Note that the ARI programs (aristart, aricntrl, aristop) must be run salstage
with no other resources accessing the system. They can be run before
or after the rest of the batch schedule. supmth
dealcls
Sales Audit
sagetref |saimptlog |(sq||dr) |savouch**** saimptlogfin saimpadj* satotals sarules |(Forms Auditing)

samastersf'saexpsfm**

saescheat (monthly)****

* Only if there are total adjustments from external systems
** Only if Oracle Site Fuel Management is used

*** Only if the external system is used

=% Only if vouchers are being tracked

Forms Auditing is use
during the loading of t

52 Retek Merchandising System

Enterprise 9.0 Batch Schedule

Phase 3 Phase 4 Date Set
(sastdycr) |dtesys
sccext post dealcalc |post ordrev edidlord |tsfdcdld
orddscnt powodld Ad Hoc
|pctrane>< | post pcext pcerext asndnld pcimpc
pceext saaldnld [allocupd hstbld (rebuild all) |post
fifrecdl (FIF) pre pcovrl
rplatupd |rp|adjf cntrordb |post rplext cntrprss |vrplbld
rpladjs edidlprd |post auditprg
regext pre |rplb|d |supcnstr rplprg post edidldeb auditsys
|tsfcomb asndnld ccprg
whstrasg tsfdnld ediprg
reclsdly fcstprg feslupld
hstprg
ordupd otbdnld invaprg
otbdlsal ladprg
post otbdlord layprg
stkxplst stkupd ordprg invprg
stkxplwh fdaydnld [fsadnlds (weekly) otbprg
fsadnldf (weekly) pceprg
fisdnlds (weekly) pcovrlpg
fisdnldf (weekly) pcprg
|post prmprg
soutdnld rplrsprg
fifgldn1(F(F) [post fifpldp(FIF) salapnd lcadnld ~|lcmt700 (per) |rtverg
fifgldn2(FIF) saldly |stkdly salweek [post salmth |post |fifg|dn3(FIF) |saleoh pre Ilcmdnld |Icmt707(perl) salprg
schedprg
|post pre slocrbld post stkprg
pre sprdrbld post storeadd |Ic|rb|d
pre szonrbld post szrtbld
tsfprg tsfalprg
poscdnid |lifstkup (LIF)
sapreexp saexprms*** sapurge *** after sprdrbld, must run SQLLoad using posgpdid
saexpim*** sprdrbld.ctl to load data into database txrposdn |tifposdn |post cmpprg
saexprdw*** dealprg
saexpach*** pre |onordext |0norddn|d
saexpuar*+* stigdnid
saexpgl*** sohdnld

ed to correct any errors found
the data, totaling and rules checking.

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Deals – cost calculations (dealcalc)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	init:
	process:
	prepare_driving_cursor:
	calculate_cost_driver:
	calculate_costs:
	get_target_threshold_value:
	get_unit_cost:
	convert_currency:
	post_insert_delete_records:
	add_to_list:
	init_list:
	free_list:
	size_arrays:
	resize_array:
	free_arrays:
	final:

	I/O specification
	Technical issues
	Testing scenarios

	Chapter 3 – Product security rebuild (sprdrbld)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	Main()
	Init()
	Process()
	Size_rule_array()
	Set_null_to_field()
	Process_record()
	Logical_or_indicators()
	Update_array()
	Write_array()
	final():

	I/O specification
	Technical issues

	Chapter 4 – Approved warehouse transfers download (tsfdnld)
	Modification
	Function
	Design overview
	Init()
	Process()
	Get_ship_flag()
	validate_ship_schedule()
	get_thead_info()
	get_detail_info()
	process_wo ()
	Write_wo_to_list()
	Write_wo_to_file()
	Comp_tckt()
	write_pack_to_list()
	write_pack_to_file()
	Write_std_header()
	Write_std_trailer()
	write_tail_to_file()
	write_detail_to_list()
	add_dtl_to_list()
	get_order_type()
	write_head_to_str()
	Write_recs_to_struct()
	write_list_to_file()
	update_records()
	Final()

	I/O specification
	Transfer download file
	Work order download file
	Component ticketing file layout

	Technical issues

	Chapter 5 – Stock position download (sohdnld)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Shared modules
	Function level description
	Init()
	Process()
	Call size_array() and define_buffer() .
	Define_buffer()
	Size_array()
	Free_array()
	Write_to_file()
	Final()

	I/O specifications
	‘Table-To-Table’
	Input
	Output

	Files
	Input
	Output

	Design assumptions
	Technical issues

	Chapter 6 – RMS batch schedule
	Deals (SIR 35190)
	Modification

	System (SIR 34728)
	Modification

