

Retek Merchandising System
9.0.3.0

Addendum to Operations Guide

rms-9030-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2000 by Retek Inc.

All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Policy on Retek End User Documentation

As a standard policy, Retek provides read-only copies of our documentation to customers and
other third parties. Unauthorized changes to the documentation may not accurately describe how
our software functions. Retek Customer Care is unable to support any changed end user
documentation that was not authorized or approved by Retek.

Printed in the United States of America.

Customer Support
Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2001: Jan. 1, May 28, July 4, Sept. 3,
Nov. 22, Nov. 23, Dec. 24, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800

Fax (+1) 612-630-5710

E-mail support@retek.com

Internet www.retek.com/support
Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza
801 Nicollet Mall
Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

• Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

• Provide a completely updated Customer Profile.

• Have a single resource per product responsible for coordination and
screening of Retek issues.

• Respond to our requests for additional information in a timely manner.

• Use the Expert Web to submit and update your issues.

• Have a test system in place running base Retek code.

mailto:support@retek.com
http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Deals – cost calculations (dealcalc) 3

Modification.. 3

Design overview ... 3

Scheduling constraints .. 3

Restart recovery .. 3
Logical unit of work ... 3
Driving cursor... 4

Program flow .. 8

Shared modules... 8

Function level description... 8

I/O specification.. 15

Technical issues .. 15

Testing scenarios... 15

Chapter 3 – Product security rebuild (sprdrbld) 17

Modification.. 17

Design overview ... 17

Scheduling constraints .. 18

Restart recovery .. 18
Logical unit of work ... 18
Driving cursor... 19

Program flow .. 20

Shared modules... 20

Function level description... 20

I/O specification.. 23

Technical issues .. 23

Chapter 4 – Approved warehouse transfers download (tsfdnld)25

Modification.. 25

Function .. 25

Design overview ... 26

ii Retek Merchandising System

Scheduling constraints .. 26

Restart recovery .. 27

Program flow .. 28

Shared modules... 28

Function level description... 29

I/O specification.. 33
Transfer download file.. 33
Work order download file... 39
Component ticketing file layout ... 41

Technical issues .. 42

Chapter 5 – Stock position download (sohdnld)......................... 43

Modification.. 43

Design overview ... 43

Scheduling constraints .. 43

Restart recovery .. 43

Shared modules... 43

Function level description... 43

I/O specifications .. 45
‘Table-To-Table’ .. 45
Files .. 45

Design assumptions .. 46

Technical issues .. 46

Chapter 6 – RMS batch schedule ... 47

Deals (SIR 35190) .. 47
Modification ... 47

System (SIR 34728).. 50
Modification ... 50

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0.0.0 Operations
Guide contains updates to the following information:

• Deals – cost calculations (dealcalc.pc) batch module design

• Product security rebuild (sprdrbld.pc) batch module design

• Approved warehouse transfers download (tsfdnld.pc) batch module design

• Stock position download (sohdnld.pc) batch module design

• RMS batch schedule spreadsheets for Deals (SIR number 35190) and System
(SIR number 34728)

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0.0.0 Operations Guide. Each chapter
contains a subsection indicating what specific modifications have been made.

Chapter 2 – Deals – cost calculations (dealcalc) 3

Chapter 2 – Deals – cost calculations (dealcalc)
Modification

The driving cursor description was updated; a description was added of the new
logic in calculate_cost_driver, which was added to make the data in
deal_sku_cost more accurate.

Design overview
This new batch program will calculate the net cost, net net cost, and dead net net
cost for all items that are on the deal_sku_temp table (which should contain all
items or items in hierarchies on deals that are on the deal_queue table, which will
contain deals that are about to be approved, unapproved, or closed—any action
that would potentially change which deals affect an item). All active deals for
each item will be used in the calculation. Once calculated, the costs will be
inserted into the deal_sku_cost table.

Scheduling constraints
This section contains a pre/post logic description:

Processing Cycle: Phase II (daily)

Scheduling Diagram: Must be run after ditinsrt.pc, which populates the
deal_sku_temp table

Pre-Processing:

Post-Processing: Call prepost to delete all records from deal_sku_temp.

Threading Scheme: SUPPLIER

Restart recovery
This section contains information on the Logical unit of work and the driving
cursor.

Logical unit of work
The logical unit of work is: SKU/supplier/origin country/start date.

4 Retek Merchandising System

Driving cursor
The driving cursor will be dynamically created depending on ordering
requirements, which will be determined by deal_type_priority and
deal_age_priority of system_options.

SELECT dst.sku,

 dst.supplier,

 dst.origin_country_id, /* DST country not DI country—if no
country given, DO expand out */

 TO_CHAR(dst.start_date,’YYYYMMDD’),

 NVL(TO_CHAR(dh.close_date,'YYYYMMDD'),'-1'),

 NVL(TO_CHAR(dh.close_date + 1,'YYYYMMDD'),'-1'),

 sups.currency_code,

 isc.unit_cost,

 dh.deal_id,

 dd.deal_detail_id,

 dh.currency_code,

NVL(dst.location, -1) /* DST loc not DI loc—expand out
location unless loc-independent */

NVL(dst.loc_type,’N’)

DECODE(dd.cost_appl_ind,’N’,1,’NN’,2,’DNN’,3) cost_appl_num,

dd.deal_class,

dd.threshold_value_type,

NVL(dd.qty_thresh_buy_item, -9999),

NVL(dd.qty_thresh_buy_qty, 0),

NVL(dd.qty_thresh_recur_ind,’N’),

NVL(dd.qty_thresh_buy_target, 0),

NVL(dd.qty_thresh_get_item, -9999),

NVL(dd.qty_thresh_get_qty, 0),

NVL(dd.qty_thresh_free_item_unit_cost, 0),

NVL(dd.qty_thresh_get_type, ‘Z’),

NVL(dd.qty_thresh_get_value, 0),

 TO_NUMBER(di.merch_level, 0),

 TO_NUMBER(NVL(di.org_level, 99)

 FROM deal_sku_temp dst,

deal_head dh,

deal_detail dd,

deal_itemloc di,

sups,

item_sup_country isc,

v_restart_supplier vrs

Chapter 2 – Deals – cost calculations (dealcalc) 5

WHERE dd.deal_id = dh.deal_id

AND di.deal_id = dd.deal_id

AND di.deal_detail_id = dd.deal_detail_id

AND dh.status = ‘A’

AND dh.type in (‘A’,’P’) /* only use promotional/annual, not
PO specific or vendor funded */

AND di.excl_ind = ‘N’

AND sups.supplier = dst.supplier

AND isc.item = dst.sku

AND isc.supplier = dst.supplier

AND isc.origin_country_id = dst.origin_country_id

AND ((dh.close_date is NOT NULL

 AND dst.start_date BETWEEN DECODE(rebate_ind, 'Y',
NVL(dd.rebate_active_date, dh.active_date), dh.active_date)

 AND dh.close_date)

 OR (dh.close_date is NULL

 AND dst.start_date >= DECODE(rebate_ind, 'Y',
NVL(dd.rebate_active_date, dh.active_date), dh.active_date)))

AND ((dh.supplier is NOT NULL AND dst.supplier = dh.supplier)
 /* supplier hierarchy match */

 OR(dh.partner_type = ‘S1’ AND isc.supp_hier_lvl_1 =
dh.partner_id)

 OR(dh.partner_type = ‘S2’ AND isc.supp_hier_lvl_2 =
dh.partner_id)

 OR(dh.partner_type = ‘S3’ AND isc.supp_hier_lvl_3 =
dh.partner_id))

AND ((di.merch_level = 1)

 OR (di.merch_level = 2 AND di.division =
dst.division

 OR (di.merch_level = 3 AND di.group_no =
dst.group_no)

 OR (di.merch_level = 4 AND di.dept = dst.dept)

 OR (di.merch_level = 5 AND (di.dept = dst.dept AND
di.class = dst.class))

 OR (di.merch_level = 6 AND (di.dept = dst.dept AND
di.class = dst.class AND di.subclass = dst.subclass))

 OR (di.merch_level = 7 AND di.style = dst.style)
 --style/color hierarchy

 OR (di.merch_level = 8 AND (di.style = dst.style
AND di.color = dst.color)

 OR (di.merch_level = 9 AND (di.style = dst.style
AND ((di.size1 = dst.size1 OR di.size1 is NULL)
AND (di.size2 = dst.size2 OR di.size2 is NULL)))

 OR (di.merch_level = 10 AND di.sku = dst.sku))

AND (di.org_level is NULL AND dst.chain is NULL

6 Retek Merchandising System

 AND dst.area is NULL AND dst.region is NULL

 AND dst.district is NULL AND dst.location is NULL

 OR (di.org_level = 1 AND di.chain = dst.chain)

 OR (di.org_level = 2 AND di.area = dst.area)

 OR (di.org_level = 3 AND di.region = dst.region)

 OR (di.org_level = 4 AND di.district = dst.district)

 OR (di.org_level = 5 AND di.location = dst.location))

AND (di.country_id = dst.country_id OR di.country_id is NULL)

/* exclude clause here –don’t fetch excluded skus */

AND (NOT EXISTS

 SELECT ‘x’

 FROM deal_itemloc di1

 WHERE di1.deal_id = di.deal_id

 AND di1.deal_detail_id = di.deal_detail_id

 AND di1.excl_ind = ‘Y’

AND ((di1.merch_level = 1)

 OR (di1.merch_level = 2 AND
di1.division = dst.division

 OR (di1.merch_level = 3 AND
di1.group_no = dst.group_no)

 OR (di1.merch_level = 4 AND di1.dept =
dst.dept)

 OR (di1.merch_level = 5 AND (di1.dept =
dst.dept AND di1.class = dst.class))

OR (di1.merch_level = 6 AND (di1.dept = dst.dept AND di1.class
= dst.class

 AND di1.subclass =
dst.subclass))

 OR (di1.merch_level = 7 AND di1.style = dst.style)
 --style/color hierarchy

 OR (di1.merch_level = 8 AND (di1.style = dst.style
AND di1.color = dst.color)

 OR (di1.merch_level = 9 AND (di1.style = dst.style

 AND
((di1.size1 = dst.size1 OR di1.size1 is NULL)

 AND
(di1.size2 = dst.size2 OR di1.size2 is NULL)))

 OR (di1.merch_level = 10 AND di1.sku = dst.sku))

 AND (di1.org_level is NULL AND dil.chain is NULL

 AND di1.area is NULL AND di1.region is NULL

 AND di1.district is NULL AND di1.location is NULL

 OR (di1.org_level = 1 AND di1.chain = dst.chain)

 OR (di1.org_level = 2 AND di1.area = dst.area)

 OR (di1.org_level = 3 AND di1.region = dst.region)

Chapter 2 – Deals – cost calculations (dealcalc) 7

 OR (di1.org_level = 4 AND di1.district = dst.district)

 OR (di1.org_level = 5 AND di1.location = dst.location))

AND (di1.origin_country_id = dst.origin_country_id OR
di1.origin_country_id is NULL))

AND (dst.sku > NVL(:ps_restart_sku, -999) OR /* restart on
item/supplier/country/start_date */

 (dst.sku = :ps_restart_sku AND

 (dst.supplier > :ps_restart_supplier OR

 (dst.supplier = :ps_restart_supplier AND

 (dst.origin_country_id >
:ps_restart_country OR

 (dst.orign_country_id = :ps_restart_country AND

 dst.start_date > :ps_restart_date)))))

AND vrs.num_threads = :pi_num_threads

AND vrs.thread_val = :pi_thread_val

AND vrs.driver_value = dst.supplier

ORDER BY dst.sku,

dst.supplier,

dst.origin_country_id,

dst.start_date,

dh.close_date,

loc,

cost_appl_num,

dh.type,

dh.create_date,

dd.application_order

The ORDER BY dh.type’s and dh.create_date’s asc/desc following rules:

1 Create date asc, annual before promotional (dh.type asc)

2 Create date desc, annual before promotional

3 Create date asc, promotional before annual (dh.type desc)

4 Create date desc, promotional before annual

8 Retek Merchandising System

Program flow
This following structure chart indicates the tables used:

Table Select Insert Update Delete

period X

system_options X

deal_sku_temp X X

deal_head X

deal_detail X

deal_itemloc X

deal_threshold X

deal_sku_cost X

item_supp_country X

sups X

Shared modules
This section lists all externally referenced functions and stored procedures, with a
description of the usage.

CURRENCY_SQL.CONVERT –convert an amount in deal currency to the
equivalent amount in supplier currency if necessary, or vice versa

Function level description
This section contains information on all database interactions that are required,
and error handling considerations.

init:

• Retrieve the vdate from the period table (use as calculation date for inserts
into deal_cost table).

• Get priority indicators (deal_type_priority, deal_age_priority—these
determine annual first vs. promotional first, and oldest first vs. newest first
ordering for the driving cursor) from system_options.

• Allocate memory for the deal fetch and cost arrays (call size_arrays) and
initialize the linked list for deal target values.

• Restart/recovery initialization.

Chapter 2 – Deals – cost calculations (dealcalc) 9

process:

• Call prepare_driving_cursor to create driving cursor statement based on the
system options.

• Use the driving cursor to get all active deals for each item/supplier/origin
country/start date on the deal_sku_temp table (use an array fetch).

• For each deal/deal detail, call get_target_threshold_value to find the
threshold value to be used in cost calculations.

• Call calculate_cost_driver to get the net, net net, and dead net net cost
(initially for location-independent deals and then for the location-specific
deals, starting form the costs already calculated for location-independent
deals), and create an insert array that includes the net/net net/dead net net
cost information AND the location information.

• If commit point reached, call post_insert_delete_records to insert the costs
into the deal_sku_cost table FOR EACH LOCATION of the same LUW
(including a record with no location if there are location-independent deals),
and to delete processed records from the deal_sku_temp table.

• After each set of deals has been processed, call the restart commit logic.

prepare_driving_cursor:

Create driving cursor statement based on the system options deal_type_priority
and deal_age_priority, which only affect the ORDER BY clause.

calculate_cost_driver:

This function will drive the process of calculating the net, net net, and dead net
net cost, given information on all the deals that apply to a particular
SKU/supplier/origin country/start date (pass in array structs which include the
target threshold value). Each deal/deal detail record is passed on to the
calculate_costs function to do the actual calculation for each LUW + loc, that is,
SKU/supplier/origin country/start date/loc.

For each set of deals for a unique item/supplier/country id/start date, the desired
end result is to have one record on deal_sku_cost with no location that will hold
the item’s costs with all location-independent deals accounted for, and additional
records on deal_sku_cost for each location, with location-specific discounts
applied on top of the location-independent discounts.

1 For each new LUW + loc, reset the flag for ‘F’ixed Amt value type discount.
‘F’ixed Amt value type discount should only be applied once for each LUW
+ loc.

2 For each new LUW, reset the flag and merchandise level for ‘EX’clusive
deal class discount; for each LUW + loc, reset the merchandise/organization
level for ‘EX’clusive deal class discount (merchandise level needed to be
reset back to before any loc-specific applied). ‘EX’clusive deal class
discount should only be applied once for each LUW + loc.

10 Retek Merchandising System

3 Reset the net/net net/dead net net costs according to the following rules:

a If new LUW, set to supplier’s original unit cost

b If the same LUW, check if location changed:

� If new loc:

► Check if just change from loc-independent to loc-specific. If yes,
save net/net net/dead net net costs and the applied merch level (for
‘EX’clusive discount) of loc-independent discounts

► Check if the flag for ‘EX’clusive deal class discount is set (previous
‘EX’clusive discount applied)
� If NO previous ‘EX’clusive discount applied, check if this is an

‘EX’clusive discount:
• If yes, set net/net net/dead net net costs to base cost

(supplier’s unit cost)
• If no, set net/net net/dead net net costs to costs of loc-

independent discounts
� If previous ‘EX’clusive discount applied check if this is an

‘EX’clusive discount with higher merch level or equal merch
level but higher org level than the saved merch/org level (only
apply the highest merch/org level ‘EX’ discount):
• If yes, set net/net net/dead net net costs to base cost

(supplier’s unit cost)
• If no, skip this discount.

� If the same loc, check if the flag for ‘EX’clusive deal class discount is set
(previous ‘EX’clusive discount applied)

► If NO previous ‘EX’clusive discount applied, check if this is an
‘EX’clusive discount:
� If yes, set net/net net/dead net net costs to base cost (supplier’s

unit cost)
� If no, set net/net net/dead net net costs to latest calculated costs

► If previous ‘EX’clusive discount applied check if this is an
‘EX’clusive discount with higher merch level or equal merch level
but higher org level than the saved merch/org level (only apply the
highest merch/org level ‘EX’ discount):
� If yes, set net/net net/dead net net costs to base cost (supplier’s

unit cost)
� If no, skip this discount.

4 Call calculate_costs to calculate net/net net/dead net net costs. For the same
LUW + loc, the driving cursor has sorted the discounts by cost_appl_ind: ‘N’
first, ‘NN’ later, ‘DNN’ last. For each cost application level, the same
business rules are followed.

5 If the new LUW is not in the array, increment the writing index of the cost
array (we always write a record into the cost array to keep track of last
calculated costs, but change to a new record only if the LUW is changed)

Chapter 2 – Deals – cost calculations (dealcalc) 11

6 Prepare an insert record into the deal_sku_cost table by writing costs into the
current indexed record of the cost array. There are two dates to consider, start
and ending (close_date from deal_head). When inserting the start_date as the
active_date, set a flag in the array so we know that’s which date it is, and
insert the unit_cost from item_supp_country as the base_cost. The location
and location type fields should be left NULL if no location was given on
deal_sku_temp. Vdate should be used for the calc_date.

7 If the start_date is found in the array, calculate the change for each cost field
and subtract that change from the net fields in the array. If there is no close
date, subtract the change amounts from the net fields of each close date in the
array. If we have a close_date and the date found originally in the array was
a start_date, subtract the change amounts from the corresponding close_date
entry in the array. Find the close_date by looking for the same LUW with
the date indicator set to close_date.

8 After updating with the start_date, add one to the close date see if that
reset_date is already in the array. If not, add it to the array setting the net
costs to the base_cost.

9 If the reset date is found in the array, set the net costs to the base cost and
exit.

10 Save current processed LUW and loc.

calculate_costs:

Inputs: index of fetch array, target threshold value, current net/net net/dead net
net costs

Outputs: calculated net/net net/dead net net costs

The definitions of different net costs are:

• net cost = unit cost – components whose cost_appl_ind is ‘N’

• net net cost = net cost – components whose cost_appl_ind is ‘NN’

• dead net cost = net net cost – components whose cost_appl_ind is ‘DNN’

Use the cost_appl_ind on deal_detail to figure out whether a deal component
contributes to the net, net net, or dead net net cost (the records should already be
sorted by cost_appl_ind) and what the initial costs are (initial cost are need to
process ‘CU’mulative deal class discounts with ‘P’ercentage value type):

• If ‘N’, the initial net cost is the supplier’s original unit cost, and need to
update all 3 net costs with the calculated discount

• If ‘NN’, the initial net net cost is the current net cost, and need to update both
net net cost and dead net net cost with the calculated discount.

• If ‘DNN’, the initial dead net net cost is the current net net cost, and need to
update only the dead net net cost with the calculated discount.

12 Retek Merchandising System

Business rules that need to be followed when applying discounts:

• Deal classes:

� If an exclusive deal was previously found for this SKU/supplier/origin
country/start date: new cost should be calculated only if THIS deal is
also exclusive and is for a lower merchandise hierarchy. If this is the first
exclusive deal, process it and set a flag, saving the hierarchy levels.

� Cumulative discounts need to be applied to the original unit cost (2% off
+ 3% off = 5 %off original unit cost)

� Cascade discounts need to be applied on the result thus far (“current
cost”)---take2% off of the unit cost, then take 3% off of that price, for
example

• Deal value types (take N cost calculation for example):

� for a % discount
If ‘CS’cade:

discount cost = unit cost – (unit cost *%/100)

If ‘CU’mulative:

discount cost = unit cost – (initial unit cost *%/100)

� for an amt discount (first convert amount to be in supplier currency if
necessary)
discount cost = unit cost – amt (amount discounts are per
unit cost already)

� fixed amt: if have fixed amount discount must start with THAT amount
rather than the unit cost (convert to supplier currency if necessary)
discount cost = fixed amt (converted to supplier’s currency
if necessary)

� quantity discount (“buy some get some at discount”) (these are not
allowed on rebates)

These are the most complicated. They affect the cost of the get item
AND of the buy item, whose cost we also need to get. Both the get item
and the buy item will be on deal_itemloc. You should only calculate the
cost for whichever item you’re presently on (if buy item, just calculate
buy item cost; will get the free item separately later, or vice versa). The
initial unit cost for the get item should be taken from
deal_detail.qty_thresh_free_item_unit_cost (or, if that field is not
populated, off of item_supp_country). Before any calculations are done,
convert the unit costs into supplier currency if necessary. If a buy/get
free discount is encountered, the following things need to happen:

► Call get_unit_cost to get the original unit cost for the buy item (from
item_supp_country), if it’s different from the free item. Use the
supplier and origin country of the free item (free and buy items are
required to come from the same supplier and country).

► Calculate the discount costs(for whichever is the current item, free or
buy)

Chapter 2 – Deals – cost calculations (dealcalc) 13

� If qty_thresh_buy_target of the buy item < qty_thresh_buy_qty,
stop; you didn’t get any discount

� Otherwise, figure out how many free items you actually get.
• If the qty_thresh_recur_ind is ‘N’:

free qty = deal_detail.qty_thresh_free_qty

• If the qty_thresh_recur_ind is ‘Y’:
♦ If buy item = free item:

free qty = qty_thresh_free_qty *
FLOOR(qty_thresh_buy_target /

(qty_thresh_buy_qty + qty_thresh_free_qty))

♦ If buy item different from free item:
free qty = FLOOR(qty_thresh_buy_target /
qty_thresh_buy_qty) *

qty_thresh_free_qty

� If buy item = free item:
• If qty_thresh_get_type is ‘X’, this is a “buy/free” discount:

total discount = total get cost

• If qty_thresh_get_type is ‘P’, this is a “buy/get % off”
discount:
total discount = (get item’s unit_cost *
qty_thresh_get_value / 100) * get qty

• If qty_thresh_get_type is ‘A’, this is a “buy/get amt off”
discount:
total discount = qty_thresh_get_value * get qty

• If qty_thresh_get_type is ‘F’, this is a “buy/get at fixed amt”
discount:
total discount = (get item’s unit_cost -
qty_thresh_get_value) * get qty

• Discount rate = total discount / (buy item unit cost + buy
target)

• Discount = discount rate * get item unit cost
• If the free item and the buy item are different:
• If qty_thresh_get_type is ‘X’, this is a “buy/free” discount:

total discount = total get cost

• If qty_thresh_get_type is ‘P’, this is a “buy/get % off”
discount:
total discount = (get item’s unit_cost *
qty_thresh_get_value / 100) * get qty

• If qty_thresh_get_type is ‘A’, this is a “buy/get amt off”
discount:
total discount = qty_thresh_get_value * get qty

• If qty_thresh_get_type is ‘F’, this is a “buy/get at fixed amt”
discount:
total discount = (get item’s unit_cost -
qty_thresh_get_value) * get qty

• Get discount rate = (get item cost * get qty) / total buy cost
• Buy get discount rate = 1 – get discount rate
• If current item is buy item

14 Retek Merchandising System

Discount = total discount * buy discount rate /
buy target

• If current item is get item
Discount = total discount * get discount rate /
get qty

• If the total cost of the buy item is less than that of total
discount, stop; no discount is applied

• These discounts are the amount that needs to be subtracted
from the original price to get the discounted price.

get_target_threshold_value:

Given a deal_id and deal_detail_id, fetch the target value from the deal_threshold
table (the value where the target_id is ‘Y’). Since this function is often called
multiple times for the same input (multiple SKUs of the same deal/deal detail), a
linked list is maintained to keep track of target threshold values for different
deal/deal detail. The linked list is ordered by the deal/deal detail. This function
first tries to get the value from the list (previously fetched from database), if yes,
job is done. Otherwise, fetch the target value for this deal/deal detail from
database and call convert_currency if the value is currency amount and the deal
currency is different from the supplier’s currency. The newly fetched value is
then saved into the list by calling add_to_list. Other maintenance functions for
the linked list are init_list (called in init) and free_list (called in final).

get_unit_cost:

For a given SKU/supplier/country id, get the unit cost from item_supp_country.
Since usually the unit cost is fetched by the driving cursor, the function is only
called for buy-get type discount when the buy item’s unit cost is needed.

convert_currency:

Call CURRENCY_SQL package to convert an amount in deal currency to
equivalent amount in supplier’s currency. (This should only be called if the
currencies are different—normally they will be the same).

post_insert_delete_records:

Array insert all records of the cost array into the deal_sku_cost table and array
delete processed records, which are also all records of the cost array, from the
deal_sku_temp table. This deletes all records from deal_sku_temp for a given
SKU/supplier/origin country/start date/location, the unique key of these five
columns are part of the unique key on deal_sku_cost, which contains one more
column (calc_date) to save the cost information for a system specified history
month.

add_to_list:

Add a node made of deal/deal detail and the target value to the current position of
the linked list.

init_list:

Initialize the linked list for target threshold values.

Chapter 2 – Deals – cost calculations (dealcalc) 15

free_list:

Free the memory used by the linked list for target threshold values.

size_arrays:

Allocate memory for the fetch array used by the driving cursor and the cost array
used to save the costs.

resize_array:

Allocate additional memory for the cost array.

free_arrays:

Free the memory used by the fetch array and cost array.

final:

• Call free_arrays and free_list.

• Restart/recovery close logic.

I/O specification
N/A

Technical issues
There are two rebate_calc_type’s: linear and scalar. Currently, the scalar type
calculation is taken as the same as the linear type. These will be differentiated in
a future release.

Testing scenarios
Test with:

• item that has 1 active deal

• more than 1 active deal

• multiple deals including an exclusive deal

• different ordering parameters (promo vs. annual, earliest vs. latest)

• different types of deals

Chapter 3 – Product security rebuild (sprdrbld) 17

Chapter 3 – Product security rebuild (sprdrbld)
Modification

The I/O specification section was modified to match the functionality changes
made to the batch program.

Design overview
The security features being added to RMS will be maintained in the batch cycle.
With each run, the changes made to the data in RMS will be brought under the
security features of RMS through the running of 3 batch programs. Sprdrbld.pc
will handle the maintenance for the product security data. SKUs will have
different update/select attributes for a given user for any of a number of different
functional areas like ‘Pricing’ or ‘Clearances’. For each run, the program will
use the security data defined for the user/group/functional area/merchandise level
to define whether a user can select or update every single SKU covered by the
defined rules. The functional document describes the architecture of the security
features and how it works. Rules that have a smaller scope overwrite those with
a broader scope. For example, a user is assigned to two groups -- one of the
groups has no update capability for a given department, while the other group
allows updating for a specific class within that department. Which applies? The
rule with the lowest item hierarchy in its definition is the rule granting the update
capability for the class. Therefore, for every SKU in the department and in the
class will be allowed to update. For the rest of the SKUs in the department, no
updating will be allowed. In addition, if there are conflicting security definitions
at the same hierarchy level because a user is associated with more than one
group, the user is, as expected, granted the capability.

Performance is a crucial consideration for this program as it involves writing
records for different functional areas at the SKU level for every user in the
system. To accomplish this task as efficiently as possible, the program should be
built as follows. It will be multi-threaded by department, and use
restart_recovery. In the Init routine, an array that will closely resemble the final
destination security table will be sized to handle all the SKUs in the particular
thread running. This array will be loaded with all the SKUs and used repeatedly
for every user/functional area combination. There will be an additional indicator
(in addition to the select/update indicators) that will keep track of which SKUs
have a rule affecting them and have therefore been “touched”. Each rule will
affect certain SKUs in the array and their attributes may be changed multiple
times. When they are changed, this indicator will be raised. After all the rules
are processed for a given user/functional area, the data in the array that has the
“touched” indicator raised will be written out to a SQL Loader file and its
indicator reset. This cycle will be repeated until all users and functional areas are
exhausted.

18 Retek Merchandising System

Table Index Select Insert Update Delete

SEC_USER_GROUP No Yes No No No

SEC_GROUP_PROD_MATRIX No Yes No No No

V_RESTART_DEPT No Yes No No No

DESC_LOOK No Yes No No No

RAG_SKUS No Yes No No No

SYSTEM_VARIABLES No Yes No No No

Scheduling constraints
Processing Cycle: Daily

Scheduling Diagram: Must run batch program prepost.pc with parameters
sprdrbld pre , sprdrbld.pc and prepost.pc with parameters sprdrbld post in series.
Then use SQL load control file sprdrbld.ctl to load the output file from
sprdrbld.pc to database.

Pre-Processing: Prepost with parameters: sprdrbld pre

Post-Processing: Prepost with parameters: sprdrbld post

Threading Scheme: Department

Restart recovery
This section contains information on the Logical unit of work and the driving
cursor.

Logical unit of work
The logical unit of work for location security rebuild will be the user-functional
area (column_code). Restart/recovery will be based on the user-functional area.
The restart commit counter will need to be carefully determined by each client
according to the number of departments that will be affected by the product
security rebuild. Large product security rebuilds with thousands of styles/SKUs
need smaller commit counters to avoid reprocessing large amounts of data in the
event of program failure. Small location security rebuilds with small amount of
styles/SKUs can have much larger commit counters since fewer rows will be
inserted into the database each time for one user-functional area.

Chapter 3 – Product security rebuild (sprdrbld) 19

Driving cursor
SELECT u.user_id,

 p.column_code,

 p.dept,

 p.class,

 p.subclass,

 p.style,

 p.sku,

 p.select_ind,

 p.update_ind

 FROM sec_user_group u,

 sec_group_prod_matrix p,

 v_restart_dept v

 WHERE u.group_id = p.group_id

 AND v.driver_value = p.dept

 AND v.num_threads = :pi_restart_num_threads

 AND v.thread_val = :pi_restart_thread_val

 AND (u.user_id > NVL(:ps_restart_user, '-999')

 OR (u.user_id = :ps_restart_user

 AND p.column_code > :ps_restart_column_code))

 ORDER BY u.user_id, p.column_code, p.dept, p.class desc,
p.subclass desc,

 p.sku desc, p.style desc;

20 Retek Merchandising System

Program flow

Shared modules
N/A

Function level description
Main()

Init()

• Check SYSTEM_VARIABLES.update_prd_sec_ind. If the indicator is not
set then the program exit normally without further processing.

• Call retek_init() to get restart-recover variables.

• Get_total_skus()

Get total skus in the current thread.

• Size_sku_array()

Size SKU array based on the number of SKUs in the current thread. The
SKU array includes dept, class, subclass, style, style_ind, SKU, select_ind,
update_ind and touched columns.

• Load_sku_array()

Load all SKUs in the current thread to the SKU array.

Chapter 3 – Product security rebuild (sprdrbld) 21

Process()

The driving cursor is ordered to return records defining rules for entire
department first, and then those for class, and on down. The records are
processed in that order. That is to say, first work with the department level rules,
then move to the more specific rules so that the rules with the smaller scope take
priority over the higher level rules.

• Call size_rule_array() to allocate memory for arrays that store security rules.

• Open the driving cursor in a while loop. Fetch the data into rule array.

• Call set_null_to_field() to set fields to null when those fields’ indicators are
–1 in the rule array.

• Check if this is a second array fetch or greater, if yes, call process_record() to
process the last record in last array fetch and the first record in current array
fetch.

• Open a for loop

� Call process_record() to process the current and last record.

• End of for loop

• Copy the last record in the current array fetch to last rule array. Since the last
record of an array fetch hasn’t been processed until compared to the first
record of the next array fetch. However, with each new array fetch, the last
record of the previous array fetch is overwritten. Thus here it needs to be
copied.

• End of while loop.

Size_rule_array()

This function allocates memory for arrays that store security rules based on the
maximum commit count set in table restart_control table. The rule array includes
user_id, column_code, dept, class, class_ind, subclass, subclass_ind, style,
style_ind, SKU, sku_ind, select_ind and update_ind.

Set_null_to_field()

This function loops through all the records in rule array and set a field to null
when the field’s indicator is –1.

Process_record()

This function does the majority of the processing. The data from the driving
cursor is ordered by dept, class, subclass, style, and SKU such that the
department level rules are selected first, then the class level, etc. Also, all rules
for a particular merchandise hierarchy will be grouped together and processed so
that a single security rule will be decided for that particular hierarchy. When
multiple records do occur at the same level, the logical OR will be used to
determine whether to grant update/select privileges.

• Compare the user/functional area of the current record and the last record :

22 Retek Merchandising System

� If it isn’t new:

► Compare the hierarchy/style/SKU of the current record and the last
record:
� If it isn’t new, call logical_or_indicators() to update the current

record’s select and update indicators according to the logical
‘OR’ between the current and last records’ indicators.

� If it is new, call update_array() to blow security rule down to the
SKU level according to the last record rule.

� If it is new:

► Call update_array() to blow security rule down to the SKU level
according to the last record rule.

► Call write_array() to output the security rules of last record’s
user/functional area (down to SKU level) to SQL load file.

► Call retek_force_commit() to set book mark in the restart_bookmark
table.

Logical_or_indicators()

This function updates the input current record’s select and update indicators
according to the logical ‘OR’ between the input current and last records’
indicators. For example, if the current record’s select indicator is ‘N’, the last
record’s select indicator is ‘Y’, then the current record’s select indicator is
updated to ‘Y’; If the current record’s select indicator is ‘N’, the last record’s
select indicator is ‘N’, then the current record’s select indicator is kept
untouched(‘N’). If the current record’s select indicator is ‘Y’, no matter what
last record’s select indicator is, the current record’s select indicator is kept
untouched(‘Y’). So does update indicator.

Update_array()

This function updates the SKU array according to the input security rule. There
are five kinds of security rules. They are department, class, subclass, style and
SKU level security rules.

• If the input rule is a department level security rule, then loop through the
SKU array, for all the SKUs within the department, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a class level security rule, then loop through the SKU
array, for all the SKUs within the class, set the select_inds and update_inds
equal to the input rule’s select_ind and update_ind, respectively. Set touched
and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a subclass level security rule, then loop through the SKU
array, for all the SKUs within the subclass, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

Chapter 3 – Product security rebuild (sprdrbld) 23

• If the input rule is a style level security rule, then loop through the SKU
array, for all the SKUs corresponding to the style, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a SKU level security rule, then loop through the SKU
array, set the select_ind and update_ind of the SKU equal to the input rule’s
select_ind and update_ind, respectively. Set touched indicator of each
processed row to ‘Y’.

Write_array()

This function writes out rows with touched indicator equals ‘Y’ in the SKU array
to SQL load file.

final():

restart/recovery close

I/O specification
Each row of the output SQL load file outputfilename.extension_x (x is current
thread number) corresponds to one record row in the sec_user_prod_matrix table.

Note: In previous versions of RMS, outputfilename.extension_x was
outputfilename_x.dat.

The format of the output file is as follows:
Column_code;user_id;SKU;select_ind;update_ind

Example:
PPRM;JOHN;10007986;N;N

PPRC;CLINTON;10001000;Y;N

PPRM;CLINTON;10007986;Y;Y

…

Technical issues
N/A

Chapter 4 – Approved warehouse transfers download (tsfdnld) 25

Chapter 4 – Approved warehouse transfers
download (tsfdnld)
Modification

The I/O specification section was modified to match the functionality changes
made to the batch program.

In the stock_order_header output file five new lines were added: Ship Address
line 3, Ship Address line 4, Ship Address line 5, Billing Address line 4, Billing
Address line 5. Fields were expected by RDM. RMS does not store data for these
fields, so spaces will be sent down.

Function
This program processes all warehouse transfers that are approved, with a freight
code of Normal or Expedite and have a release date equal to or less than
tomorrow. If the destination location is a store, the store must be on the ship
schedule to be shipped tomorrow. Shipments are created for these transfers and
the shipment information is downloaded into a file to be used by an external
WMS. Transfer status will be updated to ‘E’ (Extracted).

This program will produce two additional files. The first file contains component
ticket and retail information, for non-sellable pack items. This will provide the
correct ticketing information for the warehouse to ticket the components of non-
sellable pack items. The second file contains outbound work order processing
information for stock allocations. The work order information is found on the
work order tables, wo_wip, wo_head, and wo_sku_loc.

When interfacing with Nautilus all three files will need to be converted into the
proper flat file format, so that Nautilus can process.

Note: Transfers that are supposed to be combined into Combined Transfer (CT
transfer type) will not be downloaded by this program. Transfers with a freight
type = ‘E’ (Expedite) and a release date <= today will ignore the shipping
schedule and be downloaded tonight. Transfers with a freight type = ‘H’ (Hold)
will be ignored by this program.

26 Retek Merchandising System

Design overview
Table Index Select Insert Update Delete

TSFALLOC Yes Yes No No No

TSFHEAD Yes Yes Yes Yes No

TSFDETAIL Yes Yes No No No

SHIPMENT Yes Yes Yes No No

STORE_SHIP_DATE Yes Yes No No No

WO_HEAD Yes Yes No No No

WO_SKU_LOC Yes Yes No No No

WO_WIP Yes Yes No No No

ORDCUST Yes Yes No No No

CUSTOMER Yes Yes No No No

ITEM_TICKET No Yes No No No

V_PACKSKU_QTY No Yes No No No

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Scheduling constraints
Processing Cycle: N/A

Scheduling Diagram: Phase 3. Constraints: after TSFCOMB.PC

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Chapter 4 – Approved warehouse transfers download (tsfdnld) 27

Restart recovery
SELECT tsfhead.tsf_no,

 tsfhead.from_loc_type,

 tsfhead.from_loc,

 tsfhead.to_loc_type,

 tsfhead.to_loc,

 tsfhead.tsf_type,

 tsfhead.freight_code,

 ROWIDTOCHAR(tsfhead.rowid),

 ';'||to_char(tsfhead.tsf_no),

 tsfdetail.sku,

 (tsfdetail.tsf_qty)*1000,

 nvl(tsfdetail.inv_status, 0)

 FROM tsfhead,

 tsfalloc,

 tsfdetail

 WHERE tsfhead.status = 'A'

 AND tsfhead.freight_code in ('N','E')

 AND tsfhead.from_loc_type = 'W'

 AND tsfhead.tsf_type not in ('PO','SR')

 AND nvl(tsfalloc.merge_ind,'N') = 'N'

 AND tsfhead.tsfalloc_no = tsfalloc.tsfalloc_no (+)

 AND nvl(tsfalloc.release_date,
to_date(:ps_tomorrow,'YYYYMMDD'))

 <= to_date(:ov_tomorrow,'YYYYMMDD')

 AND tsfdetail.tsf_no = tsfhead.tsf_no

 AND nvl(tsfdetail.tsf_qty,0) > 0

 AND tsfhead.tsf_no > nvl(:ora_restart_tsf_no, -999)

 ORDER BY tsfhead.tsf_no;

28 Retek Merchandising System

Program flow

Shared modules
NEXT_SHIPMENT_SQL used to get the next shipment number.

PRICING_ATTRIB_SQL.GET_RETAIL(): get the unit retail from
item_zone_pricing table for a SKU/store.

Chapter 4 – Approved warehouse transfers download (tsfdnld) 29

Function level description
Init()

• Initialize restart recovery.

• Open output file.

• Format header, detail, and shipment buffers (for writing output).

• Determine tomorrow’s date

• Determine order type

• Call function get_order_type to determine order type

• Call function to write output file header information, write_std_header()

Process()

This function should select all transfer details and quantities for transfers that are
ready to ship from a warehouse tomorrow. Each transfer (header, detail
information, and shipment information) should be written to an output file for the
WMS to upload with transfer requirements. When a transfer has been completed,
that is all information has been written to a file and the shipment information has
been created, its status will be updated to Extracted (‘E’).

The flow of logic is as follows:

1 Fetch the first transfer record from the driving cursor.

2 Get_ship_flag (determines if current transfer is due to ship tomorrow)

• If the transfer should be shipped then

� call get_thead_info() to get the customer address information if it is a
customer order type of transfer.

� Call write_recs_to_struct() to create shipment number and write records
to structure

� Call write_head_to_str() to write to the THEAD structure.

• End if;

• Main processing loop through the transfer tables

� If transfer should be shipped then

► Call Get_detail_info() to get the ticketing and retail information.
Also, decode the expedite flag.

► Call write_detail_to_list() write TDETL to link list
► Call Process_wo() to process the work order information

� End if;

� Fetch next transfer record

� If the transfer number just changed, then

► If the transfer should be shipped write into from the previous transfer
to the file

30 Retek Merchandising System

� Call Write_list_to_file() write link list of details to flat file.
� Call Write_wo_to_file()
� Call write_pack_to_file()
� Call write_tail_to_file()

► End if;
► Call update_records() to update the appropriate tables
► Now start working on the newly fetched transfer
► Call get_ship_flag() to see if new transfer should be shipped
► If transfer should be shipped, then

� Call Get_thead_info()
� Call write_recs_to_struct()
� Call write_head_to_str()

► End if;

� End if;

� Commit records and updates.

• End of transfer loop

• If the last transfer fetched should be shipped, then write final to file

� Call write_list_to_file()

� Call write_wo_to_file()

� Call write_pack_to_file()

� Call write_tail_to_file()

• End if;

• Call update_records()

Get_ship_flag()

This function calls validate_ship_schedule() to determine if transfer will be
shipped tomorrow. If the transfer is set to expedite status, then the shipping
schedule is ignored and the transfer is processed.

validate_ship_schedule()

This function validates that a ship date exists between today and tomorrow for
the from warehouse and the to store combination (held on STORE_SHIP_DATE
table).

get_thead_info()

This function retrieves the customer address from the customer table for the
customer order transfer. If the customer is going to pick up the merchandise,
then a message, “customer order for: < customer name > “ will be displayed in
the event description. This will indicate to the warehouse that it is a customer
order, pick up.

If customer order and ship direct

• set break by distro value = ‘Y’.

• populate billing and shipping addresses with customer address info.

Chapter 4 – Approved warehouse transfers download (tsfdnld) 31

• Set dest. Id = courier value from tsfhead

• Set Courier/route/service codes = NULL

If not customer order

• set break by distro value = ‘N’

• do not populate billing and shipping address

• set dest. Id = store or warehouse

• set courier/route/service codes = NULL

get_detail_info()

This function decodes the freight code.
if freight_code = ‘E’ then

expedite_flag = ‘Y’;

else

 expedite_flag = ‘N’;

end if;

Get the ticket type for the item from item_ticket table where the po_print_type =
‘R’ (i.e. print at the time of receipt). There may be several ticket types for the
item with ‘R’ print type. Therefore, get the first ticket type in the fetch.

Get Unit retail for the item/location from the item_zone_price tables by calling
the package PRICING_ATTRIB_SQL.GET_RETAIL.

If item is going to a store location call function comp_tckt() to write component
ticketing file.

process_wo ()

This function retrieves all the work order information for the selected stock
allocation and Calls write_wo_to_list()

Write_wo_to_list()

This function writes the work order information to the structures

Write_wo_to_file()

This function prints out the work order structure to flat file

Comp_tckt()

This function selects from pack_head for the item and sellable_ind = ‘N’.

• If non Sellable ‘P’ack item is found

32 Retek Merchandising System

� loop through component items that make up the pack item on the
v_packsku_qty table.

� Call pricing_attrib_sql.get_retail package to get the retail for the
component SKU.

� Call write_pack_to_list() Write FDETL record for component SKU,
retail, and ticket type to file

� End loop;

• end if;

write_pack_to_list()

This function writes the component ticketing and retail information to the
structure.

write_pack_to_file()

This function prints component ticketing and retail information structure to flat
file.

Write_std_header()

This function Increment counters and writes FHEAD record to file.

Write_std_trailer()

This function increments counters and writes FTAIL record to file

write_tail_to_file()

This function writes the TTAIL structure to the output file

write_detail_to_list()

This function makes detail record string (TDETL) and add to linked list and calls
add_dtl_to_list() function.

add_dtl_to_list()

This function will add ps_temp_dtl string to linked list.

get_order_type()

This function gets order type from code_detail.

write_head_to_str()

This function gets order header string (THEAD) and write structure.

Write_recs_to_struct()

This function will be called when a new transfer number is encountered.
Transfer header information is written to arrays that will update the status. A
new shipment number is created and shipment information is written to arrays
that will insert new shipment records into the shipment table.

Chapter 4 – Approved warehouse transfers download (tsfdnld) 33

write_list_to_file()

This function writes linked list detail records to file

update_records()

• perform array update of tsfhead using rowid, set status = ‘E’

• perform array insert of newly created shipments

Final()

Call function to write output file trailer information, write_std_trailer().

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

I/O specification
Output files should be specified on the command line

Transfer download file
Record
Name

Field
Name

Field Type Field Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file record
type

 File Line
Sequence

Number(10) Specified by external
system

Line number of the
current file

 File Type
Definition

Char(4) TSFD Identified file as
'Inventory Adjustments'

 File Create
Date

Date Sysdate Date file was written by
external system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record
type

 File Line
Sequence

Number(10) Specified by external
system

Line number of the
current file

 Transaction
Set Control
Number

Number(14) Specified by external
system

Used to force unique
transaction check

 Action
Type

Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
‘M’odify

 Location
(DC)

Number (4) Tsfhead.from_loc Code for the DC.

34 Retek Merchandising System

Record
Name

Field
Name

Field Type Field Value Description

 Transaction
Date/Time

YYYYMMDDHHMI Period.vdate Date/Time created in
RMS

 Distributio
n Number

Char(9) Shipment.shipment Unique identifier of the
distribution.

 Download
Comment

Char (30) NULL Comment to be printed
on the label (for future
use)

 Pick-Not-
Before-date

YYYYMMDD Period.vdate Date before which
merchandise will not be
distributed

 Pick-Not-
After-Date

YYYYMMDD Period.vdate +
(specified time from
codes table)

Date by which
merchandise must be
distributed. Extra days
will be determined by a
code type = ‘DATE’

 Event Code Char(6) NULL or
tsfalloc.tsfalloc_no

Identifier of event.
Only used for stock
allocations

 Event
Description

Char(25) NULL or
tsfalloc.alloc_desc

Description of event.
Only used for stock
allocations

 Priority Char(4) Default to 1 Priority 1=highest

 Order Type Char(9) Default from system
optionTables

Order type (Automatic,
Manual or Wave)

 Break by
Distro

Char(1) Default from codes
tables

Controls the mixing of
orders (distros) in a
container

 Carrier
Code

Char(1) NULL Code of the carrier for
the order

 Carrier
Service
Code

Char(6) NULL Carrier’s service code
for the delivery, First
Class, etc.

 Route Char(10) NULL Route specified for the
delivery

 Ship
Address
Description

Char(30) NULL or customer
address

Used to store only
customer order (ship
direct) addresses.

Chapter 4 – Approved warehouse transfers download (tsfdnld) 35

Record
Name

Field
Name

Field Type Field Value Description

 Ship
Address
line 1

Char(30) NULL or customer
address

Shipping address line 1.
Used to store only
customer order (ship
direct) addresses.

 Ship
Address
line 2

Char(30) NULL or customer
address

Shipping address line 2.
Used to store only
customer order (ship
direct) addresses.

 Ship
Address
line 3

Char(30) NULL or customer
address

Shipping address line 3.
Used to store only
customer order (ship
direct) addresses.

 Ship
Address
line 4

Char(30) NULL or customer
address

Shipping address line 4.
Used to store only
customer order (ship
direct) addresses.

 Ship
Address
line 5

Char(30) NULL or customer
address

Shipping address line 5.
Used to store only
customer order (ship
direct) addresses.

 City Char(25) NULL or customer
address

Shipping city. Used to
store only customer
order (ship direct)
addresses.

 State Char(3) NULL or customer
address

Shipping state. Used to
store only customer
order (ship direct)
addresses.

 Zip Char(10) NULL or customer
address

Shipping zip. Used to
store only customer
order (ship direct)
addresses.

 Billing
Address
Description

Char(30) NULL or customer
address

The description (such
as company name,
etc.). This is the first
line of the address
block. Used to store
only customer order
(ship direct) addresses.

 Billing
Address
line 1

Char(30) NULL or customer
address

Billing address line 1.
Used to store only
customer order (ship
direct) addresses.

36 Retek Merchandising System

Record
Name

Field
Name

Field Type Field Value Description

 Billing
Address
line 2

Char(30) NULL or customer
address

Billing address line 2,
Used to store only
customer order (ship
direct) addresses.

 Billing
Address
line 3

Char(30) NULL or customer
address

Billing address line 3,
Used to store only
customer order (ship
direct) addresses.

 Billing
Address
line 4

Char(30) NULL or customer
address

Billing address line 4,
Used to store only
customer order (ship
direct) addresses.

 Billing
Address
line 5

Char(30) NULL or customer
address

Billing address line 5,
Used to store only
customer order (ship
direct) addresses.

 Amount 1 Number(8, 2) NULL Amount charge 1

 Amount 2 Number(8, 2) NULL Amount charge 2

 Amount 3 Number(8, 2) NULL Amount charge 3

 Order No. Char(9) NULL Purchase Order
Identifier

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file record
type

 File Line
Sequence

Number(10) Specified by external
system

Line number of the
current file

 Transaction
Set Control
Number

Number(14) Specified by external
system

used to force unique
transaction check

 Action
Type

Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
‘M’odify

 Location
(DC)

Number (4) NULL Code for the DC (future
use)

 Transaction
Date/Time

YYYYMMDDHHMI Period.vdate Date/Time created in
RMS

 Distributio
n Number

Char(9) Shipment.shipment Unique identifier of the
distribution.

 Item ID Char(16) Tsfdetail.sku Item identifier

Chapter 4 – Approved warehouse transfers download (tsfdnld) 37

Record
Name

Field
Name

Field Type Field Value Description

 Requested
Unit Qty

Num(12,4) Tsfdetail.tsf_qty Number of units to
distribute to the
destination

 Destination
ID

Number (4) Tsfhead.routing_code
(if ship direct to
Customer
order)Tsfhead.to_loc (if
store or wh)

Identifier of shipping
destination. If
customer order and ship
direct, then field
contains a carrier value.
If it is direct to store or
warehouse, then
populate with the store
or warehouse location.

 Price Number (7,2) Item_zone_price.unit_r
etail

Price of merchandise

 Print UPC
Flag
(‘Y’,’N’)

Char(1) ‘N’ (hardcode) Whether to print UPC
on tickets (Future use)

 Ticket
Type

Number (4) Item_ticket.ticket_type Type of ticket refers to
ticket type table. This
field will be populated
with the “ticket at
receipt”.

 Priority NUMBER (4) 1 (hardcode) Priority 1 = highest

 Expedite
Flag

VARCHAR(1)‘Y’ or ‘N’ Tsfhead.freight_code
(translate value to ‘Y’
or ‘N’)

Flag indicating whether
the order should be
shipped via normal or
expedited carrier
service

Transaction
Trailer

File type
record
descriptor

Char(5) TTAIL Identifies file record
type

 File Line
sequence

Number(10) Specified by external
system

Line number of the
current file

 Transaction
detail line
count

Number(6) Sum of detail lines Sum of the detail lines
within a transaction

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file record
type

 File Line
Sequence

Number(10) specified by external
system

Line number of the
current file

38 Retek Merchandising System

Record
Name

Field
Name

Field Type Field Value Description

 File Line
Count

Number(10) total detail +
transaction head lines

sum of all transaction
lines, not including file
header and trailer

Chapter 4 – Approved warehouse transfers download (tsfdnld) 39

Work order download file
Record
Name

Field
Name

Field Type Default Value Description

File Header File Type
Descriptor

Char(5) FHEAD Identifies file record
type

 File Line
Identifier

Number(10) Ten zeroes:0000000000 ID of current line being
processed by input file.

 File Type
Definition

Char(4) OWOD Identifies file as
‘Outbound Work Order
Download’

 File Create
Date

Date Create date date file was written by
external system

Trans-action
Detail

File Type
Descriptor

Char(5) FDETL Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line being
processed by input file.

 Action
Type

Char(1) ‘A’ The action being
performed on the work
order. This will always
be ‘A’ since transfer
work orders can’t be
modified once they’ve
been extracted.

 Location
(DC)

Char(4) Wo_sku_loc.wh When an item is
crossdocked, this field
holds the value of the
flow-through
warehouse. Otherwise
it holds the value of the
final destination.

 Transaction
Date/Time

Char (12) format:
YYYYMMDDHHMI

Vdate sysdate without the
seconds

 Distributio
n Number

Char(9) Shipment This field will hold the
shipment number of the
transfer the work order
is associated with.

 Item ID Char (16) Wo_sku_loc.sku Valid item identifier for
a staple SKU, fashion
SKU, or Pack Item

 Dest ID Number(4) Wo_sku_loc.location Unique identifier of the
final shipping
destination.

40 Retek Merchandising System

Record
Name

Field
Name

Field Type Default Value Description

 WIP
Sequence
No.

Number(7) Wo_wip.seq_no Work in Progress
Sequence Number

 WO WIP
Code

Char (6) Wo_wip.code WWIP code from codes
table

File Trailer File Type
Descriptor

Char(5) FTAIL Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line being
processed by input file.

 File Record
Counter

Number(10) Determined Internally Number of
records/transactions
processed in current file
(only records between
head & tail)

Chapter 4 – Approved warehouse transfers download (tsfdnld) 41

Component ticketing file layout
Record
Name

Record Default value Field type Description

File Header File Line
identifier

FHEAD Char(5) Identifies the trailer line

 Line
number

0000000001 Number(10) Identifies file line
number

 Program
descriptor

CPTT Char(4) Identifies the program

 Create
date

YYYYMMDDHH24MISS Char(14) File create date

File detail File
record
descriptor

FDETL Char(5) Detail line descriptor

 Line
number

Incremented internally Number(10) Sequential line number

 Action_ty
pe

‘A’ Char(1) “A”dd, “M”odify,
“D”elete

 Location Tsfhead.from_loc Number(4) Location that items will
be transferred from

 Transactio
n
date/time

vdate Datetime(12) Date/time created in
RMS

 Distributi
on
number

Shipment.shipment Char(9) Unique identifier of the
distribution

 Master
item id

Tsfdetail.sku Char(16) Unique identifier of the
pack item

 Dest ID Tsfdetail.to_loc Number(4) Identifier of the ship
destination

 Compone
nt Item ID

v_packsku_qty.sku Char (16) Item identifier of the
component

 Price Item_zone_price.unit_retail Number(7,2) Price of the
merchandise.

File Trailer File
record
identificat
ion

FTAIL Char(5) File trailer

 Line
number

Incremented internally Number(10) Sequential line number

42 Retek Merchandising System

Record
Name

Record Default value Field type Description

 Number
of
transactio
n lines

Total number of detail
lines

Number(6) Total number of
transaction lines in file
(not including FHEAD
and FTAIL)

Note that there is a space between fields in the RLS flat file format, except for
the standard Retek flat file information, such as file type descriptor, file line
identifier, file record counts.

Technical issues
N/A

Chapter 5 – Stock position download (sohdnld) 43

Chapter 5 – Stock position download (sohdnld)
Modification

Modified the output specifications to match the functionality changes made to the
match program. Added the system date to the format of the output file. Updated
the function level description section to include that the system date is printed out
to the output file.

Design overview
This affects the functional area of the RMS to RPP interface.

This ad-hoc batch program will be run to communicate current stock on hand,
retail, and cost information to RPP. The information will be sent to RPP at the
SKU/location level.

Scheduling constraints
This is an ad-hoc program. It can be run anytime (most likely in phase 4).

Restart recovery
This program has a unique logical unit of work (LUW) of item/location.

Shared modules
Curconv.pc/h – convert_to_primary. The library call is used to convert the retail
and cost from the store’s or wh’s local currency to the system’s primary
currency.

Function level description
Init()

• Initialize restart recovery and file processing.

• Get the vdate from period and std_av_ind from system_options.

• Setup the output file.

Process()

Define driving cursor here:

44 Retek Merchandising System

• It should be a union all with four parts. Each part will be pretty much the
same, except they will be driven by the different item/location tables
(WIN_STORE, WIN_WH, RAG_SKUS_ST, RAG_SKUS_WH). The
cursors should bring back every SKU, location with their associated
stock_on_hand (+pack_comp_soh for warehouses), total unit retail, and total
cost. The cost should be fetched with a DECODE. If
SYSTEM_OPTIONS.STD_AV_IND = ‘A’, total cost should use
av_cost*stock_on_hand, else total cost should use unit_cost*stock_on_hand.
The cursor should be threaded by location, use V_RESTART_STORE_WH.
(be sure to order by location then SKU – this will allow for the best
performance by the convert_to_primary() library call)

Call size_array() and define_buffer() .

Use array processing to fetch the driving cursor

For each record brought back by the driving cursor, call write_to_file().

Call retek_forece_commit() once commit_max_counter records have been
processed.

Call free_array() after the processing is finished.

Define_buffer()

Set up a string with the fprintf format that will be used when writing records to
the output file.

Size_array()

Size the driving cursor fetch array to the commit max counter.

Free_array()

Give back the memory allocated by size_array().

Write_to_file()

Convert the retail and cost to the primary currency by calling:
int convert_to_primary(char *ls_idnt,

 char *ls_idnt_type,

 char *ls_zone_group,

 char *ls_date,

 double *ld_amount);

ls_idnt should be sent as the location (store or wh)

ls_idnd_type should be sent as ‘W’ if the location is a wh, ‘S’ if the location is a
store.

Ls_zone_group should be sent as “” (empty string or NULL)

Ls_date should be sent as the vdate in ‘YYYYMMDD’

Ld_amount should be sent as the cost or retail.

Chapter 5 – Stock position download (sohdnld) 45

Convert_to_primary() will be called twice per driving cursor record once for the
cost, once for the retail.

Print out the SKU, location, loc_type, system_date, stock_on_hand, retail, and
cost to the output file.

Final()

Clean up restart recovery and file processing.

I/O specifications

‘Table-To-Table’

Input
This program sources WIN_STORE, WIN_WH, RAG_SKUS_ST, and
RAG_SKUS_WH. See the driving cursor discussion in the functional level
description.

Output
N/A

Files

Input
N/A

Output
The output file should be names sohdnld.dat.N. Where N is the thread number.

Note: The thread number has nothing to do with the domain in this program.

Field Name Field Type Description

SKU Number(20) left
justified

RMS item identifier. Left
justified

Location Number(20) left
justified

Store or warehouse
identifier. Left justified

Loc Type Char(1) Indicates whether the
Location is a store or wh.
S – if the location is a store
W – if the location is a
warehouse

System Date (vdate) Date(8) Date the output file was
created.

46 Retek Merchandising System

Field Name Field Type Description

Stock-on-hand Number(17) Total stock-on-hand for the
item at the given location.
Right justified, decimal
point is included in output
file

Retail Number(25) Total extended retail for the
item at the given location.
Right justified, decimal
point is included in output
file

Cost Number(25) Total extended average cost
(av_cost) or last cost
(unit_cost) for the item at
the given location –
depending on the
SYSTEM_OPTIONS.
STD_AV_IND. Right
justified, decimal point is
included in output file

Design assumptions
This program doesn’t need to split its output by domain.

This program will be run infrequently, thus performance considerations were not
thoroughly investigated in the design process.

Technical issues
N/A

Chapter 6 – RMS batch schedule 47

Chapter 6 – RMS batch schedule
Deals (SIR 35190)

Modification
The batch schedule references were changed to show sccext at the end of Phase 3 and dealcalc and orddscnt at the beginning of
Phase 4.

Note: The same change has been made to the RMS Operations Guide.

Enterprise 9.0 Batch Schedule

Phase 0 Phase 1 Phase 2

ediupavl

aristart (ARI) ** aricntrl (ARI) ** aristop (ARI) ** ediupasn posupld

r-r script pccdnld pccrdnld lifrtvup (LIF) rtvupld

dlyprg prmxpld prmext lifinvup (LIF) invaupld pctrandn
rcvext

salins stkvar ediupack
cntrmain ediupinv promdnld pre
vatdlxpl pcdnld

lifrcvup (LIF) tsfparse rcvupld ctniupld

supdnld lifbolup (LIF) tsfoupld tsfiupld invmatch (IM) tsfresv
locdnld invcpost (IM) fifinvcu(FIF)
itemdnld invclshp (IM) hstwksst (weekly)

cednld hstwkswh (weekly)
*****Sales Audit--see below******* (lcmt730) lcupld hstwkfst (weekly)

(lcmt798) lcup798 hstwkfwh (weekly)
hstbld (rebuild wkly)

***Note: prepost pre batch cycle should be run stkupld wasteadj
before the batch cycle starts to turn off security, pre fifpldp (FIF) fifcuru2 (FIF) fdayupld

and prepost post batch cycle should be run fiftrmu2 (FIF)
after the entire batch cycle is finished to turn security back on fifvndu2(FIF) szrtbld

ditinsrt

fcstrbld

 Ad Hoc Interfaces

posdnld post ** Note that the ARI programs (aristart, aricntrl, aristop) must be run salstage
plncupld with no other resources accessing the system. They can be run before
plndupld or after the rest of the batch schedule. supmth
plnsupld dealcls

edidlcon

tcktdnld Sales Audit

ediupcat
ediupadd sagetref saimptlog (sqlldr) savouch**** saimptlogfin saimpadj* satotals sarules (Forms Auditing)
fmednlds
fmednldf
forgdnld
otbupfwd

otbupld

edidladd
tranupld (RTM) samastersfm**saexpsfm**
fifcoadn (FIF)
fwhdnld saescheat (monthly)****
pre htsupld

gcupld * Only if there are total adjustments from external systems Forms Auditing is used to correct any errors found
txrtupld ** Only if Oracle Site Fuel Management is used during the loading of the data, totaling and rules checking.
ftmednld *** Only if the external system is used
stlgdnld * **** Only if vouchers are being tracked

* Ad-hoc running of stlgdnld is meant for
historic downloads. See phase 4 for weekly
stlgdnld runs.

48 Retek Merchandising System

Enterprise 9.0 Batch Schedule

Phase 3 Phase 4 Date Set

(sastdycr) dtesys

sccext post dealcalc post ordrev edidlord tsfdcdld

orddscnt powodld Ad Hoc

pctranex | post pcext pccrext asndnld pcimpc
pccext saaldnld allocupd hstbld (rebuild all) post

fifrecd1 (FIF) pre pcovrl
rplatupd rpladjf cntrordb post rplext cntrprss vrplbld

rpladjs edidlprd post auditprg
reqext pre rplbld supcnstr rplprg post edidldeb auditsys

tsfcomb asndnld ccprg
whstrasg tsfdnld ediprg

reclsdly fcstprg fcslupld
hstprg

ordupd otbdnld invaprg
otbdlsal ladprg

post otbdlord layprg
stkxplst stkupd ordprg invprg
stkxplwh fdaydnld fsadnlds (weekly) otbprg

fsadnldf (weekly) pccprg
fisdnlds (weekly) pcovrlpq
fisdnldf (weekly) pcprg

post prmprg
soutdnld rplrsprg

salapnd lcadnld lcmt700 (perl) rtvprg

saldly stkdly salweek post salmth post saleoh pre fifgldn1(F(F)fifpldp(FIF) lcmdnld lcmt707(perl) salprg
fifgldn2(FIF) schedprg

post fifgldn3(FIF) pre slocrbld post stkprg
pre sprdrbld post storeadd lclrbld

pre szonrbld post szrtbld

tsfprg tsfalprg

poscdnld lifstkup (LIF)
sapreexp saexprms*** sapurge *** after sprdrbld, must run SQLLoad using posgpdld

saexpim*** sprdrbld.ctl to load data into database txrposdn tifposdn post cmpprg
saexprdw*** dealprg
saexpach*** pre onordext onorddnld
saexpuar*** stlgdnld

saexpgl*** sohdnld

Forms Auditing is used to correct any errors found
during the loading of the data, totaling and rules checking.

Chapter 6 – RMS batch schedule 49

50 Retek Merchandising System

System (SIR 34728)

Modification
The location of Aristart and Aristop was switched. fifgldn1&2 were moved from phase 1 to phase 3. prepost fifgldn was moved
from running before the program to after it for fifgldn1.

Enterprise 9.0 Batch Schedule

Phase 0 Phase 1 Phase 2

ediupavl

aristop (ARI) ** aricntrl (ARI) ** aristart (ARI) ** ediupasn posupld

r-r script pccdnld pccrdnld lifrtvup (LIF) rtvupld

dlyprg prmxpld prmext lifinvup (LIF) invaupld pctrandn
rcvext

salins stkvar ediupack
cntrmain ediupinv promdnld pre
vatdlxpl pcdnld

lifrcvup (LIF) tsfparse rcvupld ctniupld

supdnld lifbolup (LIF) tsfoupld tsfiupld invmatch (IM) tsfresv
locdnld invcpost (IM) fifinvcu(FIF)
itemdnld invclshp (IM) hstwksst (weekly)

cednld hstwkswh (weekly)
*****Sales Audit--see below******* (lcmt730) lcupld hstwkfst (weekly)

(lcmt798) lcup798 hstwkfwh (weekly)
hstbld (rebuild wkly)

***Note: prepost pre batch cycle should be run stkupld wasteadj
before the batch cycle starts to turn off security, pre fifpldp (FIF) fifcuru2 (FIF) fdayupld

and prepost post batch cycle should be run fiftrmu2 (FIF)
after the entire batch cycle is finished to turn security back on fifvndu2(FIF) szrtbld

ditinsrt

fcstrbld

 Ad Hoc Interfaces

posdnld post ** Note that the ARI programs (aristart, aricntrl, aristop) must be run salstage
plncupld with no other resources accessing the system. They can be run before
plndupld or after the rest of the batch schedule. supmth
plnsupld dealcls

edidlcon

tcktdnld Sales Audit

ediupcat
ediupadd sagetref saimptlog (sqlldr) savouch**** saimptlogfin saimpadj* satotals sarules (Forms Auditing)
fmednlds
fmednldf
forgdnld
otbupfwd

otbupld

edidladd
tranupld (RTM) samastersfm**saexpsfm**
fifcoadn (FIF)
fwhdnld saescheat (monthly)****
pre htsupld

gcupld * Only if there are total adjustments from external systems Forms Auditing is used to correct any errors found
txrtupld ** Only if Oracle Site Fuel Management is used during the loading of the data, totaling and rules checking.
ftmednld *** Only if the external system is used
stlgdnld * **** Only if vouchers are being tracked

* Ad-hoc running of stlgdnld is meant for
historic downloads. See phase 4 for weekly
stlgdnld runs.

Chapter 6 – RMS batch schedule 51

Enterprise 9.0 Batch Schedule

Phase 3 Phase 4 Date Set

(sastdycr) dtesys

sccext post dealcalc post ordrev edidlord tsfdcdld

orddscnt powodld Ad Hoc

pctranex | post pcext pccrext asndnld pcimpc
pccext saaldnld allocupd hstbld (rebuild all) post

fifrecd1 (FIF) pre pcovrl
rplatupd rpladjf cntrordb post rplext cntrprss vrplbld

rpladjs edidlprd post auditprg
reqext pre rplbld supcnstr rplprg post edidldeb auditsys

tsfcomb asndnld ccprg
whstrasg tsfdnld ediprg

reclsdly fcstprg fcslupld
hstprg

ordupd otbdnld invaprg
otbdlsal ladprg

post otbdlord layprg
stkxplst stkupd ordprg invprg
stkxplwh fdaydnld fsadnlds (weekly) otbprg

fsadnldf (weekly) pccprg
fisdnlds (weekly) pcovrlpq
fisdnldf (weekly) pcprg

post prmprg
soutdnld rplrsprg

fifgldn1(F(F) post fifpldp(FIF) salapnd lcadnld lcmt700 (perl) rtvprg

fifgldn2(FIF) saldly stkdly salweek post salmth post fifgldn3(FIF) saleoh pre lcmdnld lcmt707(perl) salprg
schedprg

post pre slocrbld post stkprg
pre sprdrbld post storeadd lclrbld

pre szonrbld post szrtbld

tsfprg tsfalprg

poscdnld lifstkup (LIF)
sapreexp saexprms*** sapurge *** after sprdrbld, must run SQLLoad using posgpdld

saexpim*** sprdrbld.ctl to load data into database txrposdn tifposdn post cmpprg
saexprdw*** dealprg
saexpach*** pre onordext onorddnld
saexpuar*** stlgdnld

saexpgl*** sohdnld

Forms Auditing is used to correct any errors found
during the loading of the data, totaling and rules checking.

52 Retek Merchandising System

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Deals – cost calculations (dealcalc)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	init:
	process:
	prepare_driving_cursor:
	calculate_cost_driver:
	calculate_costs:
	get_target_threshold_value:
	get_unit_cost:
	convert_currency:
	post_insert_delete_records:
	add_to_list:
	init_list:
	free_list:
	size_arrays:
	resize_array:
	free_arrays:
	final:

	I/O specification
	Technical issues
	Testing scenarios

	Chapter 3 – Product security rebuild (sprdrbld)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	Main()
	Init()
	Process()
	Size_rule_array()
	Set_null_to_field()
	Process_record()
	Logical_or_indicators()
	Update_array()
	Write_array()
	final():

	I/O specification
	Technical issues

	Chapter 4 – Approved warehouse transfers download (tsfdnld)
	Modification
	Function
	Design overview
	Init()
	Process()
	Get_ship_flag()
	validate_ship_schedule()
	get_thead_info()
	get_detail_info()
	process_wo ()
	Write_wo_to_list()
	Write_wo_to_file()
	Comp_tckt()
	write_pack_to_list()
	write_pack_to_file()
	Write_std_header()
	Write_std_trailer()
	write_tail_to_file()
	write_detail_to_list()
	add_dtl_to_list()
	get_order_type()
	write_head_to_str()
	Write_recs_to_struct()
	write_list_to_file()
	update_records()
	Final()

	I/O specification
	Transfer download file
	Work order download file
	Component ticketing file layout

	Technical issues

	Chapter 5 – Stock position download (sohdnld)
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Shared modules
	Function level description
	Init()
	Process()
	Call size_array() and define_buffer() .
	Define_buffer()
	Size_array()
	Free_array()
	Write_to_file()
	Final()

	I/O specifications
	‘Table-To-Table’
	Input
	Output

	Files
	Input
	Output

	Design assumptions
	Technical issues

	Chapter 6 – RMS batch schedule
	Deals (SIR 35190)
	Modification

	System (SIR 34728)
	Modification

