

Retek Merchandising System 9.0.4
Addendum to Operations Guide

rms-904-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2001 by Retek Inc.

All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Policy on Retek End User Documentation

Retek provides product documentation in a read-only-format to ensure content integrity. Retek
Customer Support cannot support documentation that has been changed without Retek
authorization.

Printed in the United States of America.

Customer Support
Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2001: Jan. 1, May 28, July 4, Sept. 3,
Nov. 22, Nov. 23, Dec. 24, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800

Fax (+1) 612-630-5710

E-mail support@retek.com

Internet www.retek.com/support
Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza
801 Nicollet Mall
Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

• Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

• Provide a completely updated Customer Profile.

• Have a single resource per product responsible for coordination and
screening of Retek issues.

• Respond to our requests for additional information in a timely manner.

• Use Retek Online Customer Support (ROCS) to submit and update your
issues.

• Have a test system in place running base Retek code.

mailto:support@retek.com
http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Invoice Post [invcpost]... 3

Modification.. 3

Design overview ... 3

Scheduling constraints .. 3

Restart recovery .. 4
Logical unit of work ... 4
Driving cursor... 4

Program flow .. 5

Shared modules... 5

Function level description... 5

I/O specification.. 9

Technical issues .. 9

Chapter 3 – Promotion Price Extract and Download [prmext] ... 11

Modification.. 11

Design overview ... 11

Scheduling constraints .. 12

Restart recovery .. 12

Program flow .. 14

Shared modules... 14

Function level description... 14

I/O specification.. 14

Technical issues .. 14

Other ... 14

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0.0.0 Operations
Guide contains updates to the following batch designs:

• Invoice Post [invcpost]

• Promotion Price Extract and Download [prmext]

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0.0.0 Operations Guide. Each chapter
contains a subsection indicating what specific modifications have been made.

Chapter 2 – Invoice Post [invcpost] 3

Chapter 2 – Invoice Post [invcpost]
Modification

This program was modified to also post INVC_DISCOUNT records to the
IIF_DISCOUNT table when posting an invoice.

Changed the mapping IIF_MATCH_DETAIL.SKU =
INVC_MATCH_WKSHT.SHIPMENT to read IIF_MATCH_DETAIL.SKU =
INVC_MATCH_WKSHT.SKU.

Design overview
This batch program will insert records into the IIF (invoice interface to
financials) staging tables. It will insert new invoices with a payment status of
‘H’ (hold payment) so that the AP system can take all current/future liabilities
into consideration. It will also insert approved matched invoices or force-paid
invoices with a payment status of ‘P’ (ready to pay). Invoices from suppliers that
are marked as pre-paid suppliers will be inserted with a payment status of ‘U’
(pre-paid unmatched) if unapproved or ‘M’ (pre-paid matched) if approved.

Approved invoices associated with approved debit/credit memos or credit notes
will be inserted with a payment status of ‘P’ (ready to pay) since issuing a
debit/credit memo should release the invoice for payment. However, the
invoices and the debit/credit memos or credit notes associated should all be in
approved status to be posted in tandem. Invoices with attached credit note
requests will only be posted when an approved merchandise credit note has been
attached. Credit note requests are never sent to financials. All types of invoices
(except credit note requests), including debit/credit memos or credit notes, will
be sent to the IIF staging tables even if they are not qualified for being posted.

Scheduling constraints
Processing Cycle: daily

Scheduling Diagram: after ediupinv and invmtch, before interface to financial
system

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: None

4 Retek Merchandising System 9.0.4

Restart recovery

Logical unit of work
The logical unit of work for the invoice post module will be the invoice
transaction. Restart/recovery will be based on the invoice transaction. In order
to bundle an invoice and its associates, the invoice transaction here means the
invc_id itself for an invoice not referencing another invoice and the ref_invc_id
for an invoice that references another invoice. Therefore, one logical unit of
work can contain multiple invoices.

Driving cursor
The driving cursor for this restart/recovery strategy looks like the following.
Note that the second decode() of the ORDER BY clause is used to put an invoice
ahead of its associates if it is referenced.

 SELECT ih.invc_id,

 ih.invc_type,

 ih.supplier,

 ih.partner_type,

 ih.partner_id,

 ih.ext_ref_no,

 ih.ref_invc_id,

 ih.ref_rtv_order_no,

 ih.ref_price_change,

 ih.ref_rsn_code,

 ih.terms,

 TO_CHAR(ih.due_date, 'YYYYMMDD'),

 ih.payment_method,

 ih.terms_dscnt_pct,

 ih.terms_dscnt_appl_ind,

 ih.freight_terms,

 TO_CHAR(ih.invc_date, 'YYYYMMDD'),

 ih.force_pay_ind,

 ih.post_date,

 ih.currency_code,

 ih.exchange_rate,

 ih.total_merch_cost,

 ih.total_qty,

 ih.comments,

 ih.status,

Chapter 2 – Invoice Post [invcpost] 5

 ih.direct_ind,

 ih.paid_ind,

 ih.addr_key,

 ih.payment_ref_no,

 ih.payment_date,

 ih.proof_of_delivery_no

 FROM invc_head ih

 WHERE ih.invc_type != 'R'

 AND (ih.status = 'A'

 OR (ih.force_pay_ind = 'Y'

 AND ih.status != 'P')

 OR ih.post_date is NULL)

 AND decode(ih.ref_invc_id,

 NULL, ih.invc_id,

 ih.ref_invc_id) >
NVL(:ps_restart_invc_id, -999

ORDER BY decode(ih.ref_invc_id, NULL, ih.invc_id,
ih.ref_invc_id),

 decode(ih.ref_invc_id, NULL, 0, 1);

The commit_max_ctr field on the restart_control table will determine the number
of transactions that equal a logical unit of work. It should be set to prevent
excessive rollback space usage. The recommended commit counter setting is
10000 records (subject to change based on experimentation).

Program flow
N/A

Shared modules
N/A

Function level description
init():

Retrieve system date and VAT indicator from PERIOD and
SYSTEM_OPTIONS:

• vdate

• vat_ind

process():

In a LOOP, fetch the driving cursor. For each invoice fetched, insert into arrays
(for insert into the IIF tables) as follows:

6 Retek Merchandising System 9.0.4

For the insert into IIF_HEAD, gather the following values for each invoice:

• invc_id = invc_head.invc_id

• invc_type = invc_head.invc_type

• supplier = invc_head.supplier

• partner_type = invc_head.partner_type

• partner_id = invc_head.partner_id

• ext_ref_no = invc_head.ext_ref_no

• payment_status will be decided by the action taken on this invoice,
invc_head.direct_ind, and the prepay indicator:

� Action is POST if

♦ The invoice is being force-paid (force_pay_ind = ‘Y’)
♦ The invoice is in ‘A’ status and not associated with any other

invoices
♦ The invoice is in ‘A’ status, associated with other invoices and all its

associates are ready (debit memos/credit memos/credit notes are all
in ‘A’ status, and, if any credit note request exists, debit memo or
credit note in ‘A’ status exist).

� The invoice is in ‘A’ status and referencing an invoice in ‘P’ status
(either just posted or previously posted).

� Action is SEND if the invoice is not qualified for being POSTed but has
not been sent yet

� Action is NONE if the invoice is not qualified for being POSTed and has
been sent already

� The prepay indicator indicates if a supplier is marked for pre-payment. It
is fetched from sups.prepay_invc_ind for a supplier invoice; it is always
‘N’ for a non-supplier invoice

� Payment_status is ‘C’ if invc_head.paid_ind is ‘Y’ for the invoice

� Payment_status is ‘M’ if the action is POST and prepay indicator is ‘Y’

� Payment_status is ‘P’ if the action is POST and prepay indicator is ‘N’

� Payment_status is ‘U’ if the action is SEND and prepay indicator is ‘Y’

� Payment_status is ‘H’ if the action is SEND and prepay indicator is ‘N’

• ref_invc_id = invc_head.ref_invc_id

• ref_rtv_order_no = invc_head.ref_rtv_order_no

• ref_price_change = invc_head.ref_price_change

• ref_rsn_code = invc_head.ref_rsn_code

• terms = invc_head.terms

• due_date = invc_head.due_date

• payment_method = invc_head.payment_method

Chapter 2 – Invoice Post [invcpost] 7

• terms_dscnt_pct = invc_head.terms_dscnt_pct

• terms_dscnt_appl_ind = invc_head.terms_dscnt_appl_ind

• freight_terms = invc_head.freight_terms

• invc_date = invc_head.invc_date

• force_pay_ind = invc_head.force_pay_ind

• post_date = today’s date

• currency_code = invc_head.currency_code

• exchange_rate = invc_head.exchange_rate

• total_payment_merch_cost = invc_head.total_merch_cost

• total_payment_qty = invc_head.total_qty

• comments = invc_head.comments

• addr_key = invc_head.addr_key

• payment_ref_no = invc_head.payment_ref_no

• payment_date = invc_head.payment_date

• proof_of_delivery_no = invc_head.proof_of_delivery_no

• direct_ind = invc_head.direct_ind

For the insert into IIF_NON_MERCH, gather the following values for each
invoice:

• invc_id = invc_non_merch.invc_id

• non_merch_code = invc_non_merch.non_merch_code

• non_merch_amt = invc_non_merch.non_merch_amt

• vat_code = invc_non_merch.vat_code

• service_perf_ind = invc_non_merch.service_perf_ind

• store = invc_non_merch.store

For the insert into IIF_MERCH_VAT, gather the following values for each
invoice:

• invc_id = invc_merch_vat.invc_id

• vat_code = invc_merch_vat.vat_code

• total_cost_excl_vat = invc_merch_vat.total_cost_excl_vat

For the insert into IIF_DETAIL, gather the following values for each invoice:

• invc_id = invc_detail.invc_id

• sku = invc_detail.sku

• payment_unit_cost = invc_detail.invc_unit_cost

• payment_qty = invc_detail.invc_qty

8 Retek Merchandising System 9.0.4

• payment_vat_rate = invc_detail.invc_vat_rate

• cost_dscrpncy_ind = invc_detail.cost_dscrpncy_ind

• qty_dscrpncy_ind = invc_detail.qty_dscrpncy_ind

• vat_dscrpncy_ind = invc_detail.vat_dscrpncy_ind

For the insert into IIF_MATCH_DETAIL, gather the following values for each
invoice (invoice types ‘C’, ‘D’ and ‘M’ will not have records on this table):

• invc_id = invc_match_wksht.invc_id

• sku = invc_match_wksht.sku

• order_no = the order_no from SHIPMENT for invc_match_wksht.shipment

• asn_no = the ext_shipment from SHIPMENT for
invc_match_wksht.shipment

• shipment = invc_match_wksht.shipment

• rcpt_date = the receive_date from SHIPMENT for
invc_match_wksht.shipment

For invoices matched at the totals level, where there are no invc_match_wksht
records, the values should be gathered from shipsku instead.

Once all IIF records are inserted into the array for the invoice, update the invoice
and receipt header statuses appropriately.

• Set the post_date on INVC_HEAD to today’s date.

• If the action taken for the invoice is POST, set the status on INVC_HEAD to
‘P’ (posted).

• If the invoice was in ‘A’ status, check each shipment matched to the invoice
(retrieve using match_invc_id on SHIPSKU) to see if it is matched to any
other invoices not in ‘P’ status. If it is, or if there are still SKUs on the
shipment that are unmatched (match_invc_id is NULL), leave the shipment’s
invc_match_status as it is. If it is not, and all SKUs on the shipment are
matched, set the shipment’s invc_match_status to ‘C’.

• End LOOP.

Only new columns shown
Table to Table

Source Table Source Column Field Type

INVC_DISCOUNT invc_id number(10)

 seq_no number(6)

 discount_type varchar2(6)

 discount_value number(20,4)

 applies_to_amt number(20,4)

Chapter 2 – Invoice Post [invcpost] 9

Target Table Target Column Calculations

IIF_DISCOUNT invc_id None

 seq_no None

 discount_type None

 discount_value None

 applies_to_amt None

process_invc()

After the calls to insert_iif_non_merch() and insert_iif_merch_vat(), and before
the call to insert_iif_detail(), make a call to the new function insert_iif_discount()

insert_iif_discount()

Perform a select insert to move all data from INVC_DISCOUNT to
IIF_DISCOUNT for the invoice in the pa_invc_array current record

I/O specification
N/A

Technical issues
N/A

Chapter 3 – Promotion Price Extract and Download [prmext] 11

Chapter 3 – Promotion Price Extract and
Download [prmext]
Modification

Added a list of valid tran_types for the price_hist table.

Design overview
The prmext program extracts promotions from the promotion master tables
within the Retek system and sends promotion price details to the point of sale
system. Additionally, promotional price history is stored for each valid
SKU/store combination. When a store is within the POS threshold extraction
date, all SKUs on the promotion will be extracted to the store (provided the item
is stocked at the store). Additionally, the prmext program has the ability to
extract promotion SKU changes throughout the life of a promotion based on the
promsku status. The promsku status will provide an indication of SKU details
that have not been extracted. (Possible changes are new SKU / deleted SKU /
changed promotion price.) The SKU will be re-extracted to stores that are
currently active with the given promotion. Stores that are to be extracted will not
differentiate between promotion SKU changes since all SKUs will be extracted
to the POS, provided the SKU has not been deleted from the promotion.

The promotional retail is stored in the history tables in the local currency of the
store and this is also the price that is transmitted to POS. Since the extraction
process is performed at a promotion store level, this allows different stores to be
effectively on promotion for varying time frames. If the promotion start is
within pos_extract_days from tomorrow, the promotion store will be extracted to
the point of sale, and a price history record is written with a future action date.
The status of the promotion store is updated to extracted. Once all stores on a
promotion have been extracted the overall status of the promotion on the header
is set to extracted. If the promotion store end date is within pos_extract_days
from tomorrow, the regular price will be extracted to the POS and the promotion
store status will be updated to completed. Once all store have completed, the
overall promotion header status is updated to completed.

For each promotion which is due to start or end within the number of days in
pos_extract_days from UNIT_OPTIONS, a POS_MODS row is built containing
the details necessary for the POS PLU update for each item (SKU) included in
the promotion. Note that if a fashion style has been included in a promotion, it
must be expanded to its component SKUs (sizes and colors).

This program checks overlap with price changes if an overlap is found, it does
not insert price_hist, but still inserts pos_mods, with the price fetched from the
price change tables.

TABLE INDEX SELECT INSERT UPDATE DELETE

UNIT_OPTIONS No Yes No No No

PERIOD No Yes No No No

12 Retek Merchandising System 9.0.4

TABLE INDEX SELECT INSERT UPDATE DELETE

PROMHEAD Yes Yes No Yes No

PROMSTORE Yes Yes No Yes No

PROMSKU Yes No No No No

WIN_SKUS Yes Yes No No No

RAG_STYLE Yes Yes No No No

RAG_SKUS Yes Yes No No No

PACKHEAD Yes Yes No No No

POS_MODS No No Yes No No

PRICE_HIST No No Yes No No

V_RESTART_STORE No Yes No No No

PRICE_SUSP_HEAD No Yes No No No

PRICE_SUSP_DETAIL No Yes No No No

Scheduling constraints
Processing Cycle: PHASE 1 – (daily)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: Post processing for prmext resets all promotion SKU
status after the SKU has been extracted (or re-extracted) to a store. Since stores
have various start and stop dates and promotion maintenance can occur at any
point during a promotion, the prepost program resets the change status on
promsku to ensure that the same change is not forwarded down to POS more than
once.

Threading Scheme: STORE

V_restart_store

Restart recovery
SELECT ph.promotion,

 ph.event,

 TO_CHAR(ps.start_date, 'DDMMYYYY'),

 TO_CHAR(ps.end_date, 'DDMMYYYY'),

 ps.store,

 0, /* promotion action type */

 decode(ps.extract_status,’E’,1,0),

 ph.rowid,

 ps.rowid

Chapter 3 – Promotion Price Extract and Download [prmext] 13

 FROM v_restart_store rv,

 promstore ps,

 promhead ph

 WHERE ph.promotion = ps.promotion

 AND ps.start_date<=
to_date(:vdate,'DDMMYYYY')+:pos_extract_days

 AND ph.status in ('A','E')

 AND nvl(ps.extract_status, ‘E’) = ‘E’

 AND rv.driver_value = ps.store

 AND rv.driver_name = :ora_restart_driver_name

 AND rv.num_threads = :ora_restart_num_threads

 AND rv.thread_val = :ora_restart_thread_val

 AND (ps.promotion > NVL(:ora_restart_promotion, -
999) OR

 (ps.promotion = :ora_restart_promotion
AND

 (ps.store >= :ora_restart_store)))

 UNION ALL

 SELECT ps.promotion,

 ph.event,

 TO_CHAR(ps.start_date, 'DDMMYYYY'),

 TO_CHAR(ps.end_date, 'DDMMYYYY'),

 ps.store,

 1, /* promotion action type */

 0, /* set to not extracted */

 ph.rowid,

 ps.rowid

 FROM v_restart_store rv,

 promstore ps,

 promhead ph

 WHERE ph.promotion = ps.promotion

 AND ps.end_date <= to_date(:vdate,'DDMMYYYY')+
:pos_extract_days

 AND (ps.extract_status = 'E'

 OR (ps.extract_status is NULL AND ps.end_date =
ps.start_date))

 AND rv.driver_value = ps.store

 AND rv.driver_name = :ora_restart_driver_name

 AND rv.num_threads = :ora_restart_num_threads

14 Retek Merchandising System 9.0.4

 AND rv.thread_val = :ora_restart_thread_val

 AND (ps.promotion > NVL(:ora_restart_promotion, -
999) OR

 (ps.promotion = :ora_restart_promotion
AND

 (ps.store >= :ora_restart_store)))

 ORDER BY 1,5,6;

Program flow
N/A

Shared modules
GET_SYSTEM_IND: fetches the merchandise type for the SKU to be processed
from the desc_look table.

Function level description
N/A

I/O specification
N/A

Technical issues
N/A

Other
The price_hist.tran_type contains a code number that indicates the type of
transaction that caused the price change. Valid values are:

0 = New item added

2 = Unit cost was changed

4 = Single unit retail was changed

8 = Single unit retail was changed in Clearance

9 = Single unit retail was changed in Promotion

10 = Multi-unit retail was changed

11 = Single-unit retail and Multi-unit retail were changed

99 = Item was deleted from file

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Invoice Post [invcpost]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	init():
	process():
	Only new columns shown

	process_invc()
	insert_iif_discount()

	I/O specification
	Technical issues

	Chapter 3 – Promotion Price Extract and Download [prmext]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues
	Other

