

Retek Merchandising System 9.0.5
Addendum to Operations Guide

rms-905-og-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2001 by Retek Inc.

All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Policy on Retek End User Documentation

Retek provides product documentation in a read-only-format to ensure content integrity. Retek
Customer Support cannot support documentation that has been changed without Retek
authorization.

Printed in the United States of America.

Customer Support
Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2001: Jan. 1, May 28, July 4, Sept. 3,
Nov. 22, Nov. 23, Dec. 24, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800

Fax (+1) 612-630-5710

E-mail support@retek.com

Internet www.retek.com/support
Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza
801 Nicollet Mall
Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

• Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

• Provide a completely updated Customer Profile.

• Have a single resource per product responsible for coordination and
screening of Retek issues.

• Respond to our requests for additional information in a timely manner.

• Use Retek Online Customer Support (ROCS) to submit and update your
issues.

• Have a test system in place running base Retek code.

mailto:support@retek.com
http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Purchase Order Information Written to Order History
Tables [ordrev] ... 3

Modification.. 3

Design overview ... 3

Scheduling constraints .. 3

Restart recovery .. 4

Program flow .. 4

Shared modules... 4

Function level description... 5

I/O specification.. 9
Order Header file .. 9
Order Detail file.. 10
Stock Order file... 12
Stock Allocation file ... 14
Component Ticketing file layout .. 16

Technical issues .. 17

Chapter 3 – Allocation Update Download [allocupd]................. 19

Modification.. 19

Design overview ... 19

Scheduling constraints .. 19

Restart recovery .. 20

Program flow .. 20

Shared modules... 21

Function level description... 21

I/O specification.. 22
Stock Order file... 22
Stock Allocation file ... 25
Component Ticketing file layout .. 26

Technical issues .. 27

ii Retek Merchandising System 9.0.5

Chapter 4 – Approved Warehouse Transfers Download [tsfdnld]
.. 29

Modification.. 29

Design overview ... 29
Function .. 29

Scheduling constraints .. 30

Restart recovery .. 31

Program flow .. 32

Shared modules... 33

Function level description... 33

I/O specification.. 37
File I/O.. 37
Transfer download file.. 37
Work Order Download File .. 44
Component ticketing file .. 46

Technical issues .. 47

Chapter 5 – Deals – cost calculations [dealcalc] 49

Modification.. 49

Design overview ... 49

Scheduling constraints .. 49

Restart recovery .. 50
Logical unit of work ... 54
Driving cursor... 54

Program flow .. 54

Shared modules... 54

Function level description... 55

I/O specification.. 61

Technical issues .. 61

Testing Scenarios .. 61

Contents iii

Chapter 6 – Upload RTV Transactions [rtvupld] 63

Modification.. 63

Design overview ... 63

Scheduling constraints .. 64

Restart recovery .. 64

Program flow .. 66

Shared modules... 67

Function level description... 67

I/O specification.. 71
Input File... 71
Reject File... 74
Error File... 74

Technical issues .. 74

Chapter 7 – Return to Vendor Upload [lifrtvup] 75

Modification.. 75

Design overview ... 75

Scheduling constraints .. 75

Restart recovery .. 75

Program flow .. 76

Shared modules... 76

Function level description... 76

I/O specification.. 77
Output File .. 77
RTV upload file .. 77

Technical issues .. 80

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0 Operations Guide
contains updates to the following batch designs:

• Batch Design - ordrev.doc

• Batch Design - allocupd.doc

• tsfdnld.doc

• dealcalc.doc

• rtvupld.doc

• lifrtvup.doc

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0 Operations Guide. Each chapter contains
a subsection indicating what specific modifications have been made.

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 3

Chapter 2 – Purchase Order Information Written to
Order History Tables [ordrev]
Modification

This program was modified by adding fields to bring shipping and billing
addresses to five lines in the stock order file.

Design overview
Ordrev will write versions of approved order to order revision history tables.
When orders are approved or when approved orders are modified, this program
selects order numbers from the rev_orders table and writes current order
information to the order/allocation revision tables. After the new version has
been written to the order revision tables, all records will be deleted from the
rev_orders table for that order_no.

This program processes order changes made by the client that may need to be
sent to the vendor. The order changes should always be referred to as ‘versions’
and kept clearly distinct from order ‘revisions’ which are vendor changes
uploaded via the ediupack program.

This program also allows Nautilus and Retek to interface, by sending the
warehouse PO and allocation (ie. pre distribution) information to prepare the
warehouse for incoming orders. The program will create two flat files, PO
header and PO detail, based on approved orders found on the rev_orders table.
The program will also create Pre Distribution Header and Pre Distribution Detail
flat files, which will enable the warehouse to perform cross docking activities.

The last file produced by the ordrev batch program is a component ticketing file
that holds retail and ticketing information for non sellable pack items. This file
allows the warehouse to correctly ticket the components of the pack item, before
distributing the items to the stores.

If an order is not in approved status at the time the batch program runs, then none
of the above processing will occur. The record will stay on the rev_orders table
until the PO is approved or deleted.

Scheduling constraints
Processing Cycle: After rplprg & before edidlord, and Ad Hoc. This
program must be run, if interfacing with Nautilus

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

4 Retek Merchandising System 9.0.5

Restart recovery
Restartabilty will be implied, because the records that are selected from this table
will be deleted before the commit. Restart library functions will still be included
to ensure that rollback segments are not exceeded (by committing at intervals)
and to perform basic record keeping functionality.

SELECT ro.action_type,

 ro.order_no,

 ro.alloc_no,

 ro.location,

 ro.sku,

 ro.hdr_dtl_ind,

 oh.pre_mark_ind,

 ro.rowid

 FROM rev_orders ro,

 ordhead oh

 WHERE ro.order_no = oh.order_no

 AND oh.status = 'A'

 AND MOD(ro.order_no, :oi_restart_num_threads) + 1
= :oi_restart_thread_val

 AND ro.order_no > NVL(:ora_restart_order_no, -
9999)

 ORDER BY ro.order_no;

Program flow
N/A

Shared modules
PRICING_ATTRIB_SQL.GET_RETAIL(): get the unit retail from
item_zone_pricing table for a SKU/store.

PROMOTION_ATTRIB_SQL.EVENT_DESC(): get the event’s description

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 5

Function level description
Init()

Initialization of the restart Retek recovery process will be performed here.

Get system date.

Open output files. There will be a maximum of 4 files (ie. one header and detail
for PO download and one header and detail for Pre-distribution download)

Write FHEAD to all files.

Call Init_buffers().

Process()

All orders that need to have order version records will be processed.

If the order number changes, then perform the following logic.

• The order number will be used to populate the revision history tables. The
get_rev_no() function is called to determine the version number for the insert
into the revision history tables.

• Check if order is customer order. If order is customer order set flag to 1 ,
else set to 0(for the customer order no allocation information will be
download to the RLS logistic).

• If version 1was just inserted (ie. order was just approved for the first time, no
previous versions existed), then

� Call write_new_po function to write newly created orders and associated
allocations to the po header, po detail, pre distribution header, and pre
distribution detail files.

• Else

� Call write_existing_po function to write the changed order information
to the flat files. Some or all of the flat files may be written in this
circumstance depending upon what information has changed since the
order was last sent down to Nautilus.

• End if;

• The insert_header() function will be called from here to insert header level
information, the insert_sku() function will insert order sku information, the
insert_loc() will insert order sku/location information, and the insert_alloc()
will insert order allocation information if the order’s pre-mark indicator was
set. This indicator will indicate whether cross-docked allocation information
will be sent to the supplier along with the order. When all of the version
information has been inserted into the revision history tables, all of the
records with that order number should be deleted from the revord table by the
delete_revord() function.

• If system_options.financial_ap equals ‘P’, then call ins_revord () to insert
into the fif_ordhead table.

6 Retek Merchandising System 9.0.5

Else /* the order number remains the same */

• If order is not customer order. Call write_alloc_only().

End if;

Get_rev_no()

It is necessary to get the last version number that was written to the order
revisions tables. The maximum version number is selected from the header
revision table and then incremented by 1 to get the version number that will be
inserted during processing. If no record exists in the order header revision
history table, then the order is new and a version number of 1 is used.

Insert_header()

The current information on the order header table will be inserted into the header
revision history table with the new version number

Insert_sku()

The current information on the order SKU table is inserted into the order SKU
revision history table with the new version number

Insert_loc()

The current information on the order SKU/location table is inserted into the order
SKU/location revision history table with the new version number.

Insert_alloc()

The ship-to warehouse on the allocation header table and the allocation
information and quantity information from the allocation detail table is written to
the allocation revision history table with the new version number.

Ins_revord()

Insert into the fif_ordhead table.

Write_new_po()

This function will write FDETL records to the appropriate PO and pre
distribution output files.

Order information is retrieved from the ordhead and ordloc tables to populate the
PO header and PO detail files. A record will be written to the PO download
header and detail file for only orders with a warehouse destination. The
warehouse number will be stored in the Location (DC) field on the file. If the
order is going to other locations, such as stores, then do not write a record to the
files. There will be one header for each order/wh location retrieved.

Check customer order flag. If it is not customer order, open a “for loop” to
retrieve the allocation information for an order.

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 7

Write pre-distribution header and detail with action type = ‘A’dd for the
warehouse/allocation/sku/order_no. There will be one header for every alloc_no
retrieved and a detail record for each to_location for that allocation. In other
words, the first allocation number will be written to the pre-distribution header
record. Write the pre-distribution detail records, until that allocation number
changes. When the allocation number changes, then write a pre-distribution
header record. The warehouse (from_loc) will be stored in the Location (DC)
field on the file. Call promotion_attrib_sql.get_event_desc package for the
event’s description. Also, get the correct retail (pricing_attrib_sql.get_retail
package) and ticketing information for the predistribution detail file. In the for
loop, if the allocation location is a store, call comp_tckt () function to write the
component ticketing file.

Write_existing_po()

Open a “for loop” to retrieve ordhead and ordloc fields for comparison. The
comparison will be completed for each warehouse location the order is destined.
In the for loop, compare ordhead/ordloc with previous version on
ordhead_rev/ordloc_rev. If there are any changes to the Nautilus required fields,
then write PO download header and/or detail records. This process only needs to
be done for orders going to warehouse locations.

Fetch the header information from ordhead and ordhead_rev. Compare each
field (ie. ordhead.buyer = ohr.buyer). If the fields do not equal, then set an
indicator, which will indicate that the ordhead records have been modified and an
action_type = ‘M’ will need to be sent down in the PO header file.

For the order number retrieved in the above cursor loop through the ordloc
warehouse records. First, check the header indicator. If the ordhead record has
changed, then a PO header record needs to be written for each warehouse on the
order. For example, one PO (#123456) has been created to replenish the stock in
warehouse 1, 2, and 3. The PO header download file produced by the ordrev.pc
program will have 3 separate records. The first FDETL will have a location
(DC) = 1 for PO #123456, the second record will have a location (DC) = 2 for
PO #123456, and the third record will have a location (DC) = 3 for PO#123456.
After the ordhead indicator check, compare the ordloc and the ordloc_rev fields.
If one of the fields differ, then write a PO detail record for the
warehouse/order_no. Once all warehouse locations are processed in that order, go
fetch the next order.

• If ordloc.qty_ordered != 0, then action type = ‘M’

• If ordloc.qty_ordered = 0, then action type = ‘D’

Check customer order flag. If it is not customer order. Call write_alloc_only();

8 Retek Merchandising System 9.0.5

Write_alloc_only()

This function will write FDETL records to the appropriate pre-distribution output
files.

If alloc_no is not NULL, then (alloc_no was retrieved from the main driving
cursor on the rev_orders table)

• If location is NULL and action type = ‘A’ then

� Write pre-distribution download header and detail with action type ‘A’.
If the action type = ‘A’, then loop through all of the “to locations” of the
allocation on alloc_detail table. A detail record will need to be written
for each alloc_detail location.

� In the for loop, if the allocation location is a store, then call the
comp_tckt() function.

• Elsif location is not NULL and action type = ‘D’ and hdr_dtl_ind = ‘H’

� Write pre-distribution header with action type = ‘D’. The location field
retrieved by the driving cursor will contain the from warehouse location
(ie. alloc_header.wh) and should be used to populate the Location (DC)
field on the output file.

• Elsif location is not NULL and action type = ‘D’ and hdr_dtl_ind = ‘D’

� Write pre-distribution detail with action type = ‘D’. The location field
on the rev_orders table will contain the to store/warehouse location (ie.
alloc_detail.store or wh) and should be used to populate the destination
id on the output file.

• Else /* location is not NULL and action type = ‘A’ or ‘M’ */

� Write pre-distribution download detail with ‘A’, ‘M’, depending on the
action type retrieved from the main cursor (ie. rev_orders). Get the detail
file’s information (from_loc, to_loc, qty) by selecting from the
alloc_detail/alloc_header table for the alloc_no and location found in the
main driving cursor. A detail record should be written for the location
that was retrieved from the rev_orders table.

� If the action type = ‘A’ and the allocation location is a store, then call the
comp_tckt() function.

• End if;

End if;

Comp_tckt()

If the SKU on the allocation is a non sellable pack item going to a store location,
then write all of the component SKUs, retail price, and ticket information to the
component_ticketing file.

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 9

Del_revord()

Multiple order versions could exist on the revord table for the same order. This
could happen if the batch program had not been run since the last time the order
was modified. Since the processing has written the current order value to the
revision history tables, all records with that order number must be deleted from
the revord table to prevent double processing

I/O specification
The five output files should be specified at the command line when running the
ordrev.pc program.

Order Header file
Record
Name

Record Default value Field type Description

File Header Detail file identifier FHEAD Char(5) Identifies the
header line

 line number Incremented internally Number(10) sequential line
number

 Program descriptor POHD Char(5) Identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) File create date

File detail File record descriptor FDETL Char(5) Identifies the
detail line

 Line number Incremented internally Number(10) sequential line
number

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify, or
delete action
type

 Location Ordloc.location (wh only) Number(4) Location of item
that was ordered

 Transaction day
date/time

sysdate Datetime(12) system date

 Po number ‘P’ + ordhead.order_no Char(9) Unique
identifier of the
purchase order,
prefixed with
‘P’

 Vendor number Ordhead.supplier Number(7) Supplier number
of the order

 Preassigned flag ‘N’ Char(1)

10 Retek Merchandising System 9.0.5

Record
Name

Record Default value Field type Description

 Deliver_not_before_date Not_before_date Date(8) Not_before_date
of the order

 Deliver_not_after_date Not_after_date Date(8) Not_after_date
of the order

 Shipping terms Ordhead.freight_terms Char(3) Freight Terms
of the order

 Buyer code Ordhead.buyer Char(12) Buyer of the
PO.

File trailer File record identification FTAIL Char(5) File trailer
identifier

 Line number Internally incremented Number(10) Sequential line
number of file

 Number of transaction
lines

Internally determined Number(10) Total number of
transactions (not
including
FHEAD and
FTAIL)

Order Detail file
Record
Name

Record Default value Field type Description

File
header

File line
identifier

FHEAD Char(5) identifies
file record
type

 Line number Begins at 0000000001 Number(10) identifies
file line
number

 Program
descriptor

PODT Char(5) identifies
the program

 Create date YYYYMMDDHH24MISS
format

Char(14) file create
date

File
Detail

Detail file
identifier

FDETL Char(5) Identifies
the Detail
line

 line number Incremented internally Number(10) sequential
line number

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 11

Record
Name

Record Default value Field type Description

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add,
modify, or
delete
action type

 Location Ordloc.location (wh only) Number(4) This field
contains the
location to
which the
item will be
ordered to.

 Transaction
day date/time

sysdate Datetime(12) system date

 PO number ‘P’ + order number char(9) Identifies
the unique
PO number

 Item id Ordloc.sku Char(16) Sku on the
order

 Requested unit
qty

Ordloc.qty_ordered Number(12,4) Contains
the total
number of
items
ordered to a
specific
location.

 Ordered case
pack

Ordsku.case_pack_size Number(12,4) Contains
the case
pack size
that the item
was ordered
in

 Hang/Flat/Shoe
Indicator

Hanger attribute or default
door type

Char(1) F=Flat,
H=Hang,
S=Shoe,
A=All

File
Trailer

File Line
identifier

FTAIL Char(5) Identifies
the trailer
line

 line number Incremented internally Number(10) sequential
line number

12 Retek Merchandising System 9.0.5

Record
Name

Record Default value Field type Description

 number of
transaction
lines

Total number of detail
lines

Number(10) total
number of
detail lines
in file (not
including
FHEAD
and FTAIL)

Stock Order file
Record
Name

Record Default value Field type Description

File
Header

Detail file identifier FHEAD Char(5) Identifies the header
line

 line number Incremented internally Number(10) sequential line
number

 Program descriptor STOR Char(5) Identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) File create date

File detail File record descriptor FDETL Char(5) Identifies the detail
line

 Line number Incremented internally Number(10) sequential line
number

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify, or
delete action type

 Location alloc_header.wh Number(4) From Warehouse
location

 Transaction day
date/time

sysdate Datetime(12) system date

 distribution number ‘A’ + alloc_no char(9) Allocation number.
Prefix ‘A’ for alloc

 Download comment NULL Char(30) Comment to be
printed on the label
(for future use)

 Pick_not_before_date Not_before_date Date(8) Not_before_date of
theorder

 Pick_not_after_date Not_after_date Date(8) Not_after_date of the
order

 Event code Promotion or NULL Char(6) Promotion’s event
number

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 13

Record
Name

Record Default value Field type Description

 Event description Prom_desc or NULL Char(25) Event description

 priority 1 Char(4) Priority

 Order Type ALLOC_HEADER.ORDER_TYPE Char(9) Type of Order : ‘PO’
or ‘PREDIST’

 Break by Distro ‘N’ Char(1) Controls the mixing
of orders (distros) in
a container

 Carrier Code NULL Char(4) Code of the carrier
for the order

 Carrier Service Code NULL Char(6) Carrier’s service
code for the delivery,
First Class, and son
on (Future Use)

 Route NULL Char(10) Route specified for
the delivery

 Ship Address
Description

NULL Char(30) The description (such
as the store name)

 Ship Address Line 1 NULL Char(30) Shipping Address
Line 1

 Ship Address Line 2 NULL Char(30) Shipping Address
Line 2

 Ship AddressLine 3 NULL Char(30) ShippingAddressLine
3

 ShipAddressLine 4 NULL Char(30) ShippingAddressLine
4

 ShipAddressLine 5 NULL Char(30) ShippingAddressLine
5

 City NULL Char(25) Shipping City

 State NULL Char(3) Shipping State

 Zip NULL Char(10) Shipping Zip

 Billing Address
Description

NULL Char(30) The description (such
as company name).
This is the first line
of the address block.

 Billing Address 1 NULL Char(30) Billing Address Line
1

 Billing Address 2 NULL Char(30) Billing Address Line
2

14 Retek Merchandising System 9.0.5

Record
Name

Record Default value Field type Description

 Billing Address 3 NULL Char(30) Billing Address Line
3

 Billing Address 4 NULL Char(30) Billing Address Line
4

 Billing Address 5 NULL Char(30) Billing Address Line
5

 Amount 1 NULL Number(8,2) Amount Charge 1

 Amount 2 NULL Number(8,2) Amount Charge 2

 Amount 3 NULL Number(8,2) Amount Charge 3

 PO Number ‘P’ +
ALLOC_HEADER.ORDER_NO

Char(9) Unique identifier of
the purchase order,
prefixed with ‘P’.

File trailer File record
identification

TTAIL Char(5) File trailer identifier

 Line number Internally incremented Number(10) Sequential line
number of file

 Number of
transaction lines

Internally determined Number(6) Total number of
transactions (not
including FHEAD
and FTAIL)

Stock Allocation file
Record
Name

Record Default value Field type Description

File header File line
identifier

FHEAD Char(5) identifies file
record type

 Line
number

Begins at 0000000001 Number(10) identifies file
line number

 Program
descriptor

STAL Char(10) identifies the
program

 Create date YYYYMMDDHH24MISS
format

Char(14) file create
date

File Detail Detail file
identifier

FDETL Char(5) Identifies the
Detail line

 line number Incremented internally Number(10) sequential
line number

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 15

Record
Name

Record Default value Field type Description

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify,
or delete
action type

 Location alloc_header.wh Number(4) From
Warehouse
location

 Transaction
day
date/time

sysdate Datetime(12) system date

 distribution
number

‘A’ + alloc_no char(9) Allocation
number.
Prefix ‘A’ for
alloc

 Item Id ALLOC_HEADER.SKU Char(16) Unique item
identifier

 requested
unit qty

Alloc_detail.qty_allocated Number(12,4) quantity
allocated

 destination
id

Alloc_detail.store or wh Number(4) Allocation
location

 price Item_zone_price.unit_retail Number(5,2) Retail price

 print upc
flag

NULL char(1) Print upc flag

 ticket type item_ticket.ticket_type Number(4) Receiving
Ticket type of
item.

 priority 1 Char(4) Priority

 expedite
flag

‘N’ char(1) Flag
indicating
whether the
order should
be shipped
via normal or
expedite
carrier
service.

File
Trailer

File Line
identifier

FTAIL Char(5) Identifies the
trailer line

 line number Incremented internally Number(10) sequential
line number

16 Retek Merchandising System 9.0.5

Record
Name

Record Default value Field type Description

 number of
transaction
lines

Total number of detail
lines

Number(6) total number
of detail lines
in file (not
including
FHEAD and
FTAIL)

Component Ticketing file layout
Record
Name

Record Default value Field type Description

File
Header

File Line
identifier

FHEAD Char(5) Identifies the
trailer line

 Line
number

0000000001 Number(10) identifies file
line number

 Program
descriptor

CPTT Char(4) identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) file create
date

File
detail

file record
descriptor

FDETL Char(5) Detail line
descriptor

 line
number

Incremented internally Number(10) sequential
line number

 Action_typ
e

‘A’ Char(1) 'A'dd,
'M'odify,
'D'elete

 Location alloc_header.wh Number(4) location that
items will be
allocated
from

 Transaction
date/time

vdate Datetime(12) date/time
created in
RMS

 distribution
number

alloc_header.alloc_no char(9) Unique
identifier of
the
distribution.

 Master
item id

alloc_header.sku Char(16) Unique
identifier of
the pack item

Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev] 17

Record
Name

Record Default value Field type Description

 Dest Id alloc_detail.store Number(4) Identifier of
the ship
destination

 Component
Item ID

v_packsku_qty.sku Char (16) item
identifier of
the
component

 price Item_zone_price.unit_retail Number(7,2) Price of the
merchandise.

File
Trailer

file record
identificati
on

FTAIL Char(5) File trailer

 line
number

Incremented internally Number(10) sequential
line number

 number of
transaction
lines

Total number of detail lines Number(6) total number
of transaction
lines in file
(not
including
FHEAD and
FTAIL)

Technical issues
Clients will have to determine how frequently to run this program. If order
versions are only needed at the end of the business day, e.g. when orders are
mailed or transmitted to suppliers, then it might be sufficient to run this program
once a day (after the replenishment orders are built and before the EDI orders are
transmitted to the supplier).

Potential future enhancement, write a report when multiple records for the same
order are on the table. This might be used to indicate whether orders versions
should be written more frequently.

Information is selected into arrays to improve performance.

This program must be run if interfacing with Nautilus.

Chapter 3 – Allocation Update Download [allocupd] 19

Chapter 3 – Allocation Update Download
[allocupd]
Modification

This program was modified by adding fields to bring shipping and billing
addresses to five lines in the stock order file.

Design overview
This program will send updated pricing information to the warehouse for the
items that will be allocated to stores. The allocupd.pc program will get price
change information for any allocations, which have been created, and write the
information to stock order and stock allocation flat files. This program will
ensure that any SKU/store unit retail information that is changed after the
allocation has been downloaded will be updated in Nautilus system.

The new batch program will loop through the price_hist table, selecting records
whose unit retail will change tomorrow, and transaction type is in 4 or 11. Any
allocations that have been created for the SKU/store combination will then be
downloaded with the new retail.

The allocation update download program will also produce a file that contains the
ticketing and retail information for non-sellable pack items that will be cross-
docked to store locations. This will allow the warehouse to correctly ticket the
component items before the merchandise leaves to its final store destination.

Scheduling constraints
Processing Cycle: N/A

Scheduling Diagram: This program should always be run after pcext.pc and
after ordrev.pc

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: multi threading available

20 Retek Merchandising System 9.0.5

Restart recovery
The logical unit of work is a row from the price_hist table, selecting information
for all SKU/store combinations that have a price change in effect for tomorrow.
This program will contain restart recovery and multi threading based on store.
The driving cursor is as follows:

select distinct ‘S’, ---“normal” SKU, which includes staple, fashion SKU, and
pack item

r.unit_retail,

0 pack_no,

r.sku,

r.store

from price_hist r

where r.tran_type in (4, 11)

 and r.action_date = TO_DATE(:os_tomorrow, 'YYYYMMDD')

UNION ALL /* this union selects to find if there were price changes for the
SKUs in a pack item */

 Select distinct ‘P’, ---- component pack item indicator
r.unit_retail,

vpq.pack_no,

vpq.sku,

r.store

 from price_hist r,
v_packsku_qty vpq,

packhead ph

 where r.sku = vpq.sku
and ph.pack_no = vpq.pack_no

and ph.sellable_ind = ‘N’

and r.tran_type in (4, 11)

and r.action_date = TO_DATE(:os_tomorrow, 'YYYYMMDD');

Retrieve all SKUs that have price changes in effect tomorrow. This information
will be written to the Stock Order and Stock Allocation detail files. Also, get all
component SKUs of the non-sellable packs that have price changes. The
component retail changes will be written to the component ticketing file.

Program flow
N/A

Chapter 3 – Allocation Update Download [allocupd] 21

Shared modules
N/A

Function level description
init()

• Declare restart variables

• Get system date.

• Open output files.

• Write FHEAD record to files.

• Call Init_buffers().

init_buffers()

• Set up format strings for outputting FHEAD, FDETL and FTAIL records.

process()

Declare a cursor to retrieve any allocations that contain that SKU/store
combination.

select ad.alloc_no,

 ah.order_no

 ad.qty_allocated

 from alloc_header ah,

 alloc_detail ad

 where ah.alloc_no = ad.alloc_no

 and ad.store = rec.store --- from price hist

 and ah.sku = rec.sku --- from price hist

 and ad.qty_allocated > NVL(ad.qty_transferred, 0)

order by order_no;

Declare a cursor to check for order revision.

 Select ‘X’

From ordhead_rev

Where order_no = :os_order_no

 And origin_type = ‘V’;

For each row meeting our criteria from the price_hist table.

• Default action_type to ‘M’

• Default priority to ‘1’

• Default expedite_flag to ‘N’

22 Retek Merchandising System 9.0.5

Loop through price_hist records (fetch rows into array, equal to commit max
counter).

For each SKU/store combination found on price_hist, get allocation details for
the SKU/store.

If the order number on the allocation has changed (the order number will be
initialized to 0) from the previous order number, then check if a revision exists
for that order. If a revision does not exist for an order, then we will not send
allocation information to Logistics, because the order has not been downloaded
yet.

If order revision exists,

• If the SKU is not a component SKU (i.e. indicator = ‘S’)

� Fetch the ticket type from the item_ticket table where the po_print_type
= ‘R’ (ie. ticket at receiving location). If no ticket is found, then the
ticket type will default to ‘0000’.

� Write detail record (FDETL) to the Stock Order and Stock Allocation
detail files for the new unit retail created in RMS.

• If indicator = ‘P’ (i.e. processing a pack item component)

� Write detail record (FDETL) to the Component Ticketing file for the
new unit retail created in RMS.

final()

• Write file trailer (FTAIL), copy temporary file to final file, close files.

I/O specification
All character variables are right-padded with blanks and left justified; all
numerical variables are left-padded with zeroes and right-justified. Missing
variables are blank.

Stock Order file
Record
Name

Record Default value Field type Description

File
Header

Detail file identifier FHEAD Char(5) Identifies the header line

 Line number Incremented internally Number(10) sequential line number

 Program descriptor STOR Char(5) Identifies the program

 Create date YYYYMMDDHH24MI Char(12) File create date

File detail File record descriptor FDETL Char(5) Identifies the detail line

 Line number Incremented internally Number(10) sequential line number

 Action_type ‘M’ Char(1) Add, modify, or delete
action type

Chapter 3 – Allocation Update Download [allocupd] 23

Record
Name

Record Default value Field type Description

 Location alloc_header.wh Number(4) From Warehouse
location

 Transaction day
date/time

sysdate Datetime(12) system date

 distribution number ‘A’ + alloc_no char(9) Allocation number.
Prefix ‘A’ for alloc

 Downloadcomment NULL Char(30) Comment to be printed
on the label (for future
use)

 Pick_not_before_date Not_before_date Date(8) Not_before_date of the
order

 Pick_not_after_date Not_after_date Date(8) Not_after_date of the
order

 Event code Promotion or NULL Char(6) Promotion’s event
number

 Event description Prom_desc or NULL Char(25) Event description

 priority 1 Char(4) Priority

 Order Type code_detail.code Char(9) Type of Order: PO or
PREDIST.(Taken from
alloc_header.order_type)

 Break byDistro ‘N’ Char(1) Contols the mixing of
orders (distros) in a
container

 Carrier Code NULL Char(4) Code of the carrier for
the order

 Carrier Service Code NULL Char(6) Carrier’s service code
for the delivery, First
Class, and son on
(Future Use)

 Route NULL Char(10) Route specified for the
delievery

 Ship Address
Description

NULL Char(30) The description (such as
the store name). This is
the first line of the
address block

 Ship Address Line 1 NULL Char(30) Shipping Address Line 1

 Ship Address Line 2 NULL Char(30) Shipping Address Line 2

 Ship Address Line 3 NULL Char(30) Shipping Address Line 3

24 Retek Merchandising System 9.0.5

Record
Name

Record Default value Field type Description

 Ship Address Line 4 NULL Char(30) Shipping Address Line 4

 Ship Address Line 5 NULL Char(30) Shipping Address Line 5

 City NULL Char(25) Shipping City

 State NULL Char(2) Shipping State

 Zip NULL Char(9) Shipping Zip

 Billing Address
Description

NULL Char(30) The Description(such as
company name). This is
the first line of the
address block.

 Billing Address Line
1

NULL Char(30) Billing Address Line 1

 Billing Address Line
2

NULL Char(30) Billing Address Line 2

 Billing Address Line
3

NULL Char(30) Billing Address Line 3

 Billing Address Line
4

NULL Char(30) Billing Address Line 4

 Billing Address Line
5

NULL Char(30) Billing Address Line 5

 Amount 1 NULL Number(8,2) Amount Charge 1

 Amount 2 NULL Number(8,2) Amount Charge 2

 Amount 3 NULL Number(8,2) Amount Charge 3

 Po number ‘P’ +
Alloc_header.order_no

Char(9) Unique identifier of the
purchase order, prefixed
with ‘P’

File trailer File record
identification

TTAIL Char(5) File trailer identifier

 Line number Internally incremented Number(10) Sequential line number
of file

 Number of
transaction lines

Internally determined Number(10) Total number of
transactions (not
including FHEAD and
FTAIL)

Chapter 3 – Allocation Update Download [allocupd] 25

Stock Allocation file

File Header

Record Default value Field type Description

File line
identifier

FHEAD Char(5) identifies file
record type

Line number Begins at 0000000001 Number(10) identifies file
line number

Program
descriptor

STAL Char(5) identifies the
program

Create date YYYYMMDDHH24MI
format

Char(12) file create date

File Detail

Record Default value Field type Description

Detail file
identifier

FDETL Char(5) Identifies the
Detail line

line number Incremented
internally

Number(10) sequential line
number

Action_type ‘M’ Char(1) type of record is
Modify

Location alloc_header.wh Number(4) From Warehouse
location

Transaction day
date/time

sysdate Datetime(12) system date

distribution
number

A’ + alloc_no char(9) Allocation
number. Prefix
‘A’ for alloc

Item id alloc_header.sku Char(16) Unique item
identifier

requested unit
qty

qty_allocated Number(12,4) quantity allocated

destination id price_hist.store Number(4) Allocation
location

price price_hist.unit_retail Number(7,2) Retail price

print upc flag ‘N’ char(1) Print upc flag

ticket type item_ticket Number(4) Ticket type

priority 1 Char(4) Priority

26 Retek Merchandising System 9.0.5

Record Default value Field type Description

expedite flag ‘N’ char(1) Expedite flag

File Trailer

Record Default value Field type Description

File Line identifier FTAIL Char(5) Identifies the
trailer line

line number Incremented
internally

Number(10) sequential line
number

number of
transaction lines

Total number of
detail lines

Number(6) total number of
detail lines in file
(not including
FHEAD and
FTAIL)

Component Ticketing file layout

File Header

Record Default value Field type Description

File Line
identifier

FHEAD Char(5) Identifies the
trailer line

Line number 0000000001 Number(10) Identifies file
line number

Program
descriptor

CPTT Char(4) Identifies the
program

Create date YYYYMMDDHH24MISS Char(14) File create date

File Detail

Record Default value Field type Description

file record
descriptor

FDETL Char(5) Detail line
descriptor

line number Incremented
internally

Number(10) sequential line
number

Action_type ‘A’ Char(1) 'A'dd, 'M'odify,
'D'elete

Location alloc_header.wh Number(4) Location that
items will be
allocated from

Chapter 3 – Allocation Update Download [allocupd] 27

Record Default value Field type Description

Transaction
date/time

vdate Datetime(12) date/time created
in RMS

distribution
number

alloc_header.alloc_
no

char(9) Unique identifier
of the
distribution.

Master item id alloc_header.sku Char(16) Unique identifier
of the pack item

Dest Id alloc_detail.store Number(4) Identifier of the
ship destination

Component Item
ID

v_packsku_qty.sku Char (16) item identifier of
the component

price price_hist.unit_retai
l

Number(7,2) Price of the
merchandise.

File Trailer

Record Default value Field type Description

file record
identification

FTAIL Char(5) File trailer

line number Incremented
internally

Number(10) sequential line
number

number of
transaction lines

Total number of
detail lines

Number(6) total number of
transaction lines in
file (not including
FHEAD and
FTAIL)

Technical issues
N/A

Chapter 4 – tsfdnld 29

Chapter 4 – Approved Warehouse Transfers
Download [tsfdnld]
Modification

In this program, the download file layout for THEAD and TDETL transaction
type was modified to add a space between each column according to RLS flat file
format. The program was also modified by changing the length of carrier code to
4 and order number to 8.

Design overview

Function
This program processes all warehouse transfers that are approved, with a freight
code of Normal or Expedite and have a release date equal to or less than
tomorrow. If the destination location is a store, the store must be on the ship
schedule to be shipped tomorrow. Shipments are created for these transfers and
the shipment information is downloaded into a file to be used by an external
WMS. Transfer status will be updated to ‘E’ (Extracted).

This program will produce two additional files. The first file contains component
ticket and retail information, for non sellable pack items. This will provide the
correct ticketing information for the warehouse to ticket the components of non
sellable pack items. The second file contains outbound work order processing
information for stock allocations. The work order information is found on the
work order tables, wo_wip, wo_head, and wo_sku_loc.

When interfacing with Nautilus all three files will need to be converted into the
proper flat file format, so that Nautilus can process.

Note: Transfers that are supposed to be combined into Combined Transfer (CT
transfer type) will not be downloaded by this program. Transfers with a freight
type = ‘E’ (Expedite) and a release date <= today will ignore the shipping
schedule and be downloaded tonight. Transfers with a freight type = ‘H’ (Hold)
will be ignored by this program.

TABLE INDEX SELECT INSERT UPDATE DELETE

TSFALLOC Yes Yes No No No

TSFHEAD Yes Yes Yes Yes No

TSFDETAIL Yes Yes No No No

SHIPMENT Yes Yes Yes No No

STORE_SHIP_DATE Yes Yes No No No

WO_HEAD Yes Yes No No No

WO_SKU_LOC Yes Yes No No No

WO_WIP Yes Yes No No No

30 Retek Merchandising System 9.0.5

TABLE INDEX SELECT INSERT UPDATE DELETE

ORDCUST Yes Yes No No No

CUSTOMER Yes Yes No No No

ITEM_TICKET No Yes No No No

V_PACKSKU_QTY No Yes No No No

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Scheduling constraints
Processing Cycle: N/A

Scheduling Diagram: Phase 3. Constraints: after TSFCOMB.PC

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Chapter 4 – tsfdnld 31

Restart recovery
SELECT tsfhead.tsf_no,

 tsfhead.from_loc_type,

 tsfhead.from_loc,

 tsfhead.to_loc_type,

 tsfhead.to_loc,

 tsfhead.tsf_type,

 tsfhead.freight_code,

 ROWIDTOCHAR(tsfhead.rowid),

 ';'||to_char(tsfhead.tsf_no),

 tsfdetail.sku,

 (tsfdetail.tsf_qty)*1000,

 nvl(tsfdetail.inv_status, 0)

 FROM tsfhead,

 tsfalloc,

 tsfdetail

 WHERE tsfhead.status = 'A'

 AND tsfhead.freight_code in ('N','E')

 AND tsfhead.from_loc_type = 'W'

 AND tsfhead.tsf_type not in ('PO','SR')

 AND nvl(tsfalloc.merge_ind,'N') = 'N'

 AND tsfhead.tsfalloc_no = tsfalloc.tsfalloc_no
(+)

 AND nvl(tsfalloc.release_date,
to_date(:ps_tomorrow,'YYYYMMDD'))

 <= to_date(:ov_tomorrow,'YYYYMMDD')

 AND tsfdetail.tsf_no = tsfhead.tsf_no

 AND nvl(tsfdetail.tsf_qty,0) > 0

 AND tsfhead.tsf_no > nvl(:ora_restart_tsf_no, -
999)

 ORDER BY tsfhead.tsf_no;

32 Retek Merchandising System 9.0.5

Program flow
Priming Fetch of
Driving Cursor

Write shipments to arrays
write transfer header to output file

On Ship
Schedule? Yes

No

Loop

On Ship
Schedule?

write details to output list

Yes

Fetch

Transfer
Complete?

For completed transfer
write detail list to output file

write shipment info to output file
update current transfer to 'E' status

Yes

If commit will occur (count exceeded)
then insert shipment arrays

Write shipments to arrays
write transfer header to output file

On Ship
Schedule? Yes

Call Commit Logic

Loop

write detail list to output file
write shipment info to output file

update current transfer to 'E' status

End

Chapter 4 – tsfdnld 33

Shared modules
NEXT_SHIPMENT_SQL used to get the next shipment number.

PRICING_ATTRIB_SQL.GET_RETAIL(): get the unit retail from
item_zone_pricing table for a sku/store.

Function level description
Init()

Initialize restart recovery.

Open output file.

Format header, detail, and shipment buffers (for writing output).

Determine tomorrow’s date

Determine order type

Call function get_order_type to determine order type

Call function to write output file header information, write_std_header()

Process()

This function should select all transfer details and quantities for transfers that are
ready to ship from a warehouse tomorrow. Each transfer (header, detail
information, and shipment information) should be written to an output file for the
WMS to upload with transfer requirements. When a transfer has been completed,
that is all information has been written to a file and the shipment information has
been created, its status will be updated to Extracted (‘E’).

The flow of logic is as follows:

• Fetch the first transfer record from the driving cursor.

• Get_ship_flag (determines if current transfer is due to ship tomorrow)

• if the transfer should be shipped then

� call get_thead_info() to get the customer address information if it is a
customer order type of transfer.

� Call write_recs_to_struct() to create shipment number and write records
to structure

� Call write_head_to_str() to write to the THEAD structure.

• End if;

• Main processing loop through the transfer tables

� If transfer should be shipped then

♦ Call Get_detail_info() to get the ticketing and retail information.
Also, decode the expedite flag.

♦ Call write_detail_to_list() write TDETL to link list
♦ Call Process_wo() to process the work order information

34 Retek Merchandising System 9.0.5

� End if;

� Fetch next transfer record

� If the transfer number just changed, then

♦ If the transfer should be shipped write into from the previous transfer
to the file
► Call Write_list_to_file() write link list of details to flat file.
► Call Write_wo_to_file()
► Call write_pack_to_file()
► Call write_tail_to_file()

♦ End if;
♦ Call update_records() to update the appropriate tables
♦ Now start working on the newly fetched transfer
♦ Call get_ship_flag() to see if new transfer should be shipped
♦ If transfer should be shipped, then

► Call Get_thead_info()
► Call write_recs_to_struct()
► Call write_head_to_str()

♦ End if;

� End if;

� Commit records and updates.

• End of transfer loop

• If the last transfer fetched should be shipped, then write final to file

� Call write_list_to_file()

� Call write_wo_to_file()

� Call write_pack_to_file()

� Call write_tail_to_file()

• End if;

• Call update_records()

Get_ship_flag()

This function calls validate_ship_schedule() to determine if transfer will be
shipped tomorrow. If the transfer is set to expedite status, then the shipping
schedule is ignored and the transfer is processed.

validate_ship_schedule()

This function validates that a ship date exists between today and tomorrow for
the from warehouse and the to store combination (held on STORE_SHIP_DATE
table).

Chapter 4 – tsfdnld 35

get_thead_info()

This function retrieves the customer address from the customer table for the
customer order transfer. If the customer is going to pick up the merchandise,
then a message, “customer order for: < customer name > “ will be displayed in
the event description. This will indicate to the warehouse that it is a customer
order, pick up.

• If customer order and ship direct

� set break by distro value = ‘Y’.

� populate billing and shipping addresses with customer address info.

� Set dest. Id = courier value from tsfhead

� Set Courier/route/service codes = NULL

• If not customer order

� set break by distro value = ‘N’

� do not populate billing and shipping address

� set dest. Id = store or warehouse

� set courier/route/service codes = NULL

get_detail_info()

This function decodes the freight code

• if freight_code = ‘E’ then

� expedite_flag = ‘Y’;

• else

� expedite_flag = ‘N’;

• end if;

Get the ticket type for the item from item_ticket table where the po_print_type =
‘R’ (i.e. print at the time of receipt). There may be several ticket types for the
item with ‘R’ print type.Ttherefore, get the first ticket type in the fetch.

Get Unit retail for the item/location from the item_zone_price tables by calling
the package PRICING_ATTRIB_SQL.GET_RETAIL.

If item is going to a store location call function comp_tckt() to write component
ticketing file

process_wo ()

This function retrieves all the work order information for the selected stock
allocation and Calls write_wo_to_list()

Write_wo_to_list()

This function writes the work order information to the structures

36 Retek Merchandising System 9.0.5

Write_wo_to_file()

This function prints out the work order structure to flat file

Comp_tckt()

This function selects from pack_head for the item and sellable_ind = ‘N’.

• If non Sellable ‘P’ack item is found

� loop through component items that make up the pack item on the
v_packsku_qty table.

� Call pricing_attrib_sql.get_retail package to get the retail for the
component SKU.

� Call write_pack_to_list() Write FDETL record for component SKU,
retail, and ticket type to file

� End loop;

• end if;

write_pack_to_list()

This function writes the component ticketing and retail information to the
structure

write_pack_to_file()

This function prints component ticketing and retail information structure to flat
file

Write_std_header()

This function Increment counters and writes FHEAD record to file

Write_std_trailer()

This function increments counters and writes FTAIL record to file

write_tail_to_file()

This function writes the TTAIL structure to the output file

write_detail_to_list()

This function makes detail record string (TDETL) and add to linked list and calls
add_dtl_to_list() function.

add_dtl_to_list()

This function will add ps_temp_dtl string to linked list

get_order_type()

This function gets order type from code_detail

write_head_to_str()

This function gets order header string (THEAD) and write structure

Chapter 4 – tsfdnld 37

Write_recs_to_struct()

This function will be called when a new transfer number is encountered.
Transfer header information is written to arrays that will update the status. A
new shipment number is created and shipment information is written to arrays
that will insert new shipment records into the shipment table.

write_list_to_file()

This function writes linked list detail records to file

update_records()

• perform array update of tsfhead using rowid, set status = ‘E’

• perform array insert of newly created shipments

Final()

Call function to write output file trailer information, write_std_trailer().

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

I/O specification

File I/O
Output files should be specified on the command line.

Transfer download file
Record
Name

Field
Name

Field Type FieldValue Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by external
system

Line number of the
current file

 File Type
Definition

Char(4) TSFD Identified file as
'Inventory
Adjustments'

 File Create
Date

Date Sysdate Date file was
written by external
system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Sequence

Number(10) Specified by external
system

Line number of the
current file

38 Retek Merchandising System 9.0.5

Record
Name

Field
Name

Field Type FieldValue Description

 Transaction
Set Control
Number

Number(14) Specified by external
system

Used to force
unique transaction
check

 Action
Type

Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
‘M’odify

 Delimeter * Char(1) <Space>

 Location
(DC)

Number (4) Tsfhead.from_loc Code for the DC.

 Delimeter * Char(1) <Space>

 Transaction
Date/Time

YYYYMMDDHHMI Period.vdate Date/Time created
in RMS

 Delimeter * Char(1) <Space>

 Distribution
Number

Char(9) Shipment.shipment Unique identifier
of the distribution.

 Delimeter * Char(1) <Space>

 Download
Comment

Char (30) NULL Comment to be
printed on the label
(for future use)

 Delimeter * Char(1) <Space>

 Pick-Not-
Before-date

YYYYMMDD Period.vdate Date before which
merchandise will
not be distributed

 Delimeter * Char(1) <Space>

 Pick-Not-
After-Date

YYYYMMDD Period.vdate + (specified
time from codes table)

Date by which
merchandise must
be distributed.
Extra days will be
determined by a
code type =
‘DATE’

 Delimeter * Char(1) <Space>

 Event Code Char(6) NULL or
tsfalloc.tsfalloc_no

Identifier of event.
Only used for
stock allocations

 Delimeter * Char(1) <Space>

 Event
Description

Char(25) NULL or
tsfalloc.alloc_desc

Description of
event. Only used
for stock
allocations

Chapter 4 – tsfdnld 39

Record
Name

Field
Name

Field Type FieldValue Description

 Delimeter * Char(1) <Space>

 Priority Char(4) Default to 1 Priority 1=highest

 Delimeter * Char(1) <Space>

 Order Type Char(9) Default from system
optionTables

Order type
(Automatic,Manual
orWave)

 Delimeter * Char(1) <Space>

 Break by
Distro

Char(1) Default from codes tables Controls the
mixing of orders
(distros) in a
container

 Delimeter * Char(1) <Space>

 Carrier
Code

Char(4) NULL Code of the carrier
for the order

 Delimeter * Char(1) <Space>

 Carrier
Service
Code

Char(6) NULL Carrier’s service
code for the
delivery, First
Class, etc.

 Delimeter * Char(1) <Space>

 Route Char(10) NULL Route specified for
the delivery

 Delimeter * Char(1) <Space>

 Ship
Address
Description

Char(30) NULL or customer address Used to store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Ship
Address
line 1

Char(30) NULL or customer address Shipping address
line 1. Used to
store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

40 Retek Merchandising System 9.0.5

Record
Name

Field
Name

Field Type FieldValue Description

 Ship
Address
line 2

Char(30) NULL or customer address Shipping address
line 2. Used to
store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Ship
Address
line 3

Char(30) NULL or customer address Shipping address
line 3. Used to
store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Ship
Address
line 4

Char(30) NULL or customer address Shipping address
line 4. Used to
store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Ship
Address
line 5

Char(30) NULL or customer address Shipping address
line 5. Used to
store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 City Char(25) NULL or customer address Shipping city.
Used to store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 State Char(3) NULL or customer address Shipping state.
Used to store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

Chapter 4 – tsfdnld 41

Record
Name

Field
Name

Field Type FieldValue Description

 Zip Char(10) NULL or customer address Shipping zip. Used
to store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Billing
Address
Description

Char(30) NULL or customer address The description
(such as company
name, etc.). This is
the first line of the
address block.
Used to store only
customer order
(ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Billing
Address
line 1

Char(30) NULL or customer address Billing address line
1. Used to store
only customer
order (ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Billing
Address
line 2

Char(30) NULL or customer address Billing address line
2, Used to store
only customer
order (ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Billing
Address
line 3

Char(30) NULL or customer address Billing address line
3, Used to store
only customer
order (ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Billing
Address
line 4

Char(30) NULL or customer address Billing address line
4, Used to store
only customer
order (ship direct)
addresses.

 Delimeter * Char(1) <Space>

42 Retek Merchandising System 9.0.5

Record
Name

Field
Name

Field Type FieldValue Description

 Billing
Address
line 5

Char(30) NULL or customer address Billing address line
5, Used to store
only customer
order (ship direct)
addresses.

 Delimeter * Char(1) <Space>

 Amount 1 Number(8, 2) NULL Amount charge 1

 Delimeter * Char(1) <Space>

 Amount 2 Number(8, 2) NULL Amount charge 2

 Delimeter * Char(1) <Space>

 Amount 3 Number(8, 2) NULL Amount charge 3

 Delimeter * Char(1) <Space>

 Order No. Char(8) NULL Purchase
OrderIdentifier

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) Specified by external
system

Line number of the
current file

 Transaction
Set Control
Number

Number(14) Specified by external
system

used to force
unique transaction
check

 Action
Type

Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
‘M’odify

 Delimeter * Char(1) <Space>

 Location
(DC)

Number (4) NULL Code for the DC
(future use)

 Delimeter * Char(1) <Space>

 Transaction
Date/Time

YYYYMMDDHHMI Period.vdate Date/Time created
in RMS

 Delimeter * Char(1) <Space>

 Distribution
Number

Char(9) Shipment.shipment Unique identifier
of the distribution.

 Delimeter * Char(1) <Space>

 Item ID Char(16) Tsfdetail.sku Item identifier

 Delimeter * Char(1) <Space>

Chapter 4 – tsfdnld 43

Record
Name

Field
Name

Field Type FieldValue Description

 Requested
Unit Qty

Num(12,4) Tsfdetail.tsf_qty Number of units to
distribute to the
destination

 Delimeter * Char(1) <Space>

 Destination
ID

Number (4) Tsfhead.routing_code (if
ship direct to Customer
order)Tsfhead.to_loc (if
store or wh)

Identifier of
shipping
destination. If
customer order and
ship direct, then
field contains a
carrier value. If it
is direct to store or
warehouse, then
populate with the
store or warehouse
location.

 Delimeter * Char(1) <Space>

 Price Number (7,2) Item_zone_price.unit_retail Price of
merchandise

 Delimeter * Char(1) <Space>

 Print UPC
Flag
(‘Y’,’N’)

Char(1) ‘N’ (hardcode) Whether to print
UPC on tickets
(Future use)

 Delimeter * Char(1) <Space>

 Ticket
Type

Number (4) Item_ticket.ticket_type Type of ticket
refers to ticket type
table. This field
will be populate
with the “ticket at
receipt”.

 Delimeter * Char(1) <Space>

 Priority NUMBER (4) 1 (hardcode) Priority 1 = highest

 Delimeter * Char(1) <Space>

 Expedite
Flag

VARCHAR(1)‘Y’ or
‘N’

Tsfhead.freight_code
(translate value to ‘Y’ or
‘N’)

Flag indicating
whether the order
should be shipped
via normal or
expedited carrier
service

44 Retek Merchandising System 9.0.5

Record
Name

Field
Name

Field Type FieldValue Description

Transaction
Trailer

File type
record
descriptor

Char(5) TTAIL Identifies file
record type

 File Line
sequence

Number(10) Specified by external
system

Line number of the
current file

 Transaction
detail line
count

Number(6) Sum of detail lines Sum of the detail
lines within a
transaction

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by external
system

Line number of the
current file

 File Line
Count

Number(10) total detail + transaction
head lines

sum of all
transaction lines,
not including file
header and trailer

Work Order Download File
RecordName Field

Name
Field Type Default Value Description

File Header File Type
Descriptor

Char(5) FHEAD Identifies file record
type

 File Line
Identifier

Number(10) Ten
zeroes:0000000000

ID of current line being
processed by input file.

 File Type
Definition

Char(4) OWOD Identifies file as
‘Outbound Work Order
Download’

 File Create
Date

Date Create date date file was written by
external system

Trans-action
Detail

File Type
Descriptor

Char(5) FDETL Identifies file record
type

 File Line
Identifier

Number(10) Incremented
internally

ID of current line being
processed by input file.

Chapter 4 – tsfdnld 45

RecordName Field
Name

Field Type Default Value Description

 Action
Type

Char(1) ‘A’ The action being
performed on the work
order. This will always
be ‘A’ since transfer
work orders can’t be
modified once they’ve
been extracted.

 Location
(DC)

Char(4) Wo_sku_loc.wh When an item is
crossdocked, this field
holds the value of the
flow-through
warehouse. Otherwise
it holds the value of the
final destination.

 Transaction
Date/Time

Char (12) format:
YYYYMMDDHHMI

Vdate sysdate without the
seconds

 Distribution
Number

Char(9) Shipment This field will hold the
shipment number of
the transfer the work
order is associated
with.

 Item ID Char (16) Wo_sku_loc.sku Valid item identifier
for a staple SKU,
fashion SKU, or Pack
Item

 Dest ID Number(4) Wo_sku_loc.location Unique identifier of the
final shipping
destination.

 WIP
Sequence
No.

Number(7) Wo_wip.seq_no Work in Progress
Sequence Number

 WO WIP
Code

Char (6) Wo_wip.code WWIP code from
codes table

File Trailer File Type
Descriptor

Char(5) FTAIL Identifies file record
type

 File Line
Identifier

Number(10) Incremented
internally

ID of current line being
processed by input file.

 File Record
Counter

Number(10) DeterminedInternally Number of
records/transactions
processed in current
file (only records
between head & tail)

46 Retek Merchandising System 9.0.5

Component ticketing file
Record
Name

Record Default value Field type Description

File Header File Line
identifier

FHEAD Char(5) Identifies the
trailer line

 Line number 0000000001 Number(10) identifies file
line number

 Program
descriptor

CPTT Char(4) identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) file create
date

File detail file record
descriptor

FDETL Char(5) Detail line
descriptor

 line number Incremented internally Number(10) sequential
line number

 Action_type ‘A’ Char(1) 'A'dd,
'M'odify,
'D'elete

 Location Tsfhead.from_loc Number(4) location that
items will be
transferred
from

 Transaction
date/time

vdate Datetime(12) date/time
created in
RMS

 distribution
number

Shipment.shipment char(9) Unique
identifier of
the
distribution.

 Master item
id

Tsfdetail.sku Char(16) Unique
identifier of
the pack
item

 Dest Id Tsfdetail.to_loc Number(4) Identifier of
the ship
destination

 Component
Item ID

v_packsku_qty.sku Char (16) item
identifier of
the
component

 price Item_zone_price.unit_retail Number(7,2) Price of the
merchandise.

Chapter 4 – tsfdnld 47

Record
Name

Record Default value Field type Description

File Trailer file record
identification

FTAIL Char(5) File trailer

 line number Incremented internally Number(10) sequential
line number

 number of
transaction
lines

Total number of detail
lines

Number(6) total number
of
transaction
lines in file
(not
including
FHEAD and
FTAIL)

Note: There is a space between fields in the RLS flat file format, except for the
standard Retek flat file information, such as file type descriptor, file line
identifier, file record counts.

Technical issues
N/A

Chapter 5 – Deals – cost calculations [dealcalc] 49

Chapter 5 – Deals – cost calculations [dealcalc]
Modification

This program was modified by changing the order-by clause in the driving
cursor.

Design overview
This new batch program will calculate the net cost, net net cost, and dead net net
cost for all items that are on the deal_sku_temp table (which should contain all
items or items in hierarchies on deals that are on the deal_queue table, which will
contain deals that are about to be approved, unapproved, or closed—any action
that would potentially change which deals affect an item). All active deals for
each item will be used in the calculation. Once calculated, the costs will be
inserted into the deal_sku_cost table.

Scheduling constraints
Processing Cycle: Phase II (daily)

Scheduling Diagram: Must be run after ditinsrt.pc, which populates the
deal_sku_temp table

Pre-Processing:

Post-Processing: Call prepost to delete all records from deal_sku_temp.

Threading Scheme: SUPPLIER

50 Retek Merchandising System 9.0.5

Restart recovery
SELECT dst.sku,

 dst.supplier,

 dst.origin_country_id, /* DST country not DI
country—if no country given, DO expand out */

 TO_CHAR(dst.start_date,’YYYYMMDD’),

 NVL(TO_CHAR(dh.close_date,'YYYYMMDD'),'-1'),

 NVL(TO_CHAR(dh.close_date +
1,'YYYYMMDD'),'-1'),

 sups.currency_code,

 isc.unit_cost,

 dh.deal_id,

 dd.deal_detail_id,

 dh.currency_code,

NVL(dst.location, -1) /* DST loc not DI loc—expand out
location unless loc-independent */

NVL(dst.loc_type,’N’)

DECODE(dd.cost_appl_ind,’N’,1,’NN’,2,’DNN’,3)
cost_appl_num,

dd.deal_class,

dd.threshold_value_type,

NVL(dd.qty_thresh_buy_item, -9999),

NVL(dd.qty_thresh_buy_qty, 0),

NVL(dd.qty_thresh_recur_ind,’N’),

NVL(dd.qty_thresh_buy_target, 0),

NVL(dd.qty_thresh_get_item, -9999),

NVL(dd.qty_thresh_get_qty, 0),

NVL(dd.qty_thresh_free_item_unit_cost, 0),

NVL(dd.qty_thresh_get_type, ‘Z’),

NVL(dd.qty_thresh_get_value, 0),

 TO_NUMBER(di.merch_level, 0),

 TO_NUMBER(NVL(di.org_level, 99)

 FROM deal_sku_temp dst,

deal_head dh,

deal_detail dd,

deal_itemloc di,

sups,

item_sup_country isc,

Chapter 5 – Deals – cost calculations [dealcalc] 51

v_restart_supplier vrs

WHERE dd.deal_id = dh.deal_id

AND di.deal_id = dd.deal_id

AND di.deal_detail_id = dd.deal_detail_id

AND dh.status = ‘A’

AND dh.type in (‘A’,’P’) /* only use
promotional/annual, not PO specific or vendor funded */

AND di.excl_ind = ‘N’

AND sups.supplier = dst.supplier

AND isc.item = dst.sku

AND isc.supplier = dst.supplier

AND isc.origin_country_id = dst.origin_country_id

AND ((dh.close_date is NOT NULL

 AND dst.start_date BETWEEN DECODE(rebate_ind, 'Y',
NVL(dd.rebate_active_date, dh.active_date),
dh.active_date)

 AND dh.close_date)

 OR (dh.close_date is NULL

 AND dst.start_date >= DECODE(rebate_ind, 'Y',
NVL(dd.rebate_active_date, dh.active_date),
dh.active_date)))

AND ((dh.supplier is NOT NULL AND dst.supplier =
dh.supplier) /* supplier hierarchy match */

 OR(dh.partner_type = ‘S1’ AND
isc.supp_hier_lvl_1 = dh.partner_id)

 OR(dh.partner_type = ‘S2’ AND
isc.supp_hier_lvl_2 = dh.partner_id)

 OR(dh.partner_type = ‘S3’ AND
isc.supp_hier_lvl_3 = dh.partner_id))

AND ((di.merch_level = 1)

 OR (di.merch_level = 2 AND di.division =
dst.division

 OR (di.merch_level = 3 AND di.group_no =
dst.group_no)

 OR (di.merch_level = 4 AND di.dept =
dst.dept)

 OR (di.merch_level = 5 AND (di.dept =
dst.dept AND di.class = dst.class))

 OR (di.merch_level = 6 AND (di.dept =
dst.dept AND di.class = dst.class AND di.subclass =
dst.subclass))

 OR (di.merch_level = 7 AND di.style =
dst.style) --style/color hierarchy

52 Retek Merchandising System 9.0.5

 OR (di.merch_level = 8 AND (di.style =
dst.style AND di.color = dst.color)

 OR (di.merch_level = 9 AND (di.style =
dst.style AND ((di.size1 = dst.size1 OR di.size1 is
NULL) AND (di.size2 =
dst.size2 OR di.size2 is NULL)))

 OR (di.merch_level = 10 AND di.sku =
dst.sku))

AND (di.org_level is NULL AND dst.chain is NULL

 AND dst.area is NULL AND dst.region is NULL

 AND dst.district is NULL AND dst.location is
NULL

 OR (di.org_level = 1 AND di.chain = dst.chain)

 OR (di.org_level = 2 AND di.area = dst.area)

 OR (di.org_level = 3 AND di.region = dst.region)

 OR (di.org_level = 4 AND di.district =
dst.district)

 OR (di.org_level = 5 AND di.location =
dst.location))

AND (di.country_id = dst.country_id OR di.country_id is
NULL)

/* exclude clause here –don’t fetch excluded skus */

AND (NOT EXISTS

 SELECT ‘x’

 FROM deal_itemloc di1

 WHERE di1.deal_id = di.deal_id

 AND di1.deal_detail_id = di.deal_detail_id

 AND di1.excl_ind = ‘Y’

AND ((di1.merch_level = 1)

 OR (di1.merch_level = 2 AND
di1.division = dst.division

 OR (di1.merch_level = 3 AND
di1.group_no = dst.group_no)

 OR (di1.merch_level = 4 AND
di1.dept = dst.dept)

 OR (di1.merch_level = 5 AND
(di1.dept = dst.dept AND di1.class = dst.class))

OR (di1.merch_level = 6 AND (di1.dept = dst.dept AND
di1.class = dst.class

 AND
di1.subclass = dst.subclass))

 OR (di1.merch_level = 7 AND di1.style =
dst.style) --style/color hierarchy

Chapter 5 – Deals – cost calculations [dealcalc] 53

 OR (di1.merch_level = 8 AND (di1.style =
dst.style AND di1.color = dst.color)

 OR (di1.merch_level = 9 AND (di1.style =
dst.style

 AND
((di1.size1 = dst.size1 OR di1.size1 is NULL)

 AND
(di1.size2 = dst.size2 OR di1.size2 is NULL)))

 OR (di1.merch_level = 10 AND di1.sku =
dst.sku))

 AND (di1.org_level is NULL AND dil.chain is NULL

 AND di1.area is NULL AND di1.region is
NULL

 AND di1.district is NULL AND di1.location
is NULL

 OR (di1.org_level = 1 AND di1.chain = dst.chain)

 OR (di1.org_level = 2 AND di1.area = dst.area)

 OR (di1.org_level = 3 AND di1.region = dst.region)

 OR (di1.org_level = 4 AND di1.district =
dst.district)

 OR (di1.org_level = 5 AND di1.location =
dst.location))

AND (di1.origin_country_id = dst.origin_country_id OR
di1.origin_country_id is NULL))

AND (dst.sku > NVL(:ps_restart_sku, -999) OR /* restart
on item/supplier/country/start_date */

 (dst.sku = :ps_restart_sku AND

 (dst.supplier > :ps_restart_supplier OR

 (dst.supplier = :ps_restart_supplier AND

 (dst.origin_country_id >
:ps_restart_country OR

 (dst.orign_country_id = :ps_restart_country
AND

 dst.start_date > :ps_restart_date)))))

AND vrs.num_threads = :pi_num_threads

AND vrs.thread_val = :pi_thread_val

AND vrs.driver_value = dst.supplier

ORDER BY dst.sku,

dst.supplier,

dst.origin_country_id,

dst.start_date,

loc,

54 Retek Merchandising System 9.0.5

dh.close_date,

cost_appl_num,

dh.type,

dh.create_date,

dd.application_order

The ORDER BY dh.type’s and dh.create_date’s asc/desc following rules:

1 create date asc, annual before promotional (dh.type asc)

2 create date desc, annual before promotional

3 create date asc, promotional before annual (dh.type desc)

4 create date desc, promotional before annual

Logical unit of work
SKU/supplier/origin country/start date

Driving cursor
The driving cursor will be dynamically created depending on ordering
requirements, which will be determined by deal_type_priority and
deal_age_priority of system_options.

Program flow
Tables used:

Table Select Insert Update Delete

Period X

system_options X

deal_sku_temp X X

deal_head X

deal_detail X

deal_itemloc X

deal_threshold X

deal_sku_cost X

item_supp_country X

Sups X

Shared modules
CURRENCY_SQL.CONVERT –convert an amount in deal currency to the
equivalent amount in supplier currency if necessary, or vice versa

Chapter 5 – Deals – cost calculations [dealcalc] 55

Function level description
init:

• Retrieve the vdate from the period table (use as calculation date for inserts
into deal_cost table).

• Get priority indicators (deal_type_priority, deal_age_priority—these
determine annual first vs. promotional first, and oldest first vs. newest first
ordering for the driving cursor) from system_options.

• Allocate memory for the deal fetch and cost arrays (call size_arrays) and
initialize the linked list for deal target values.

• Restart/recovery initialization.

process:

• Call prepare_driving_cursor to create driving cursor statement based on the
system options.

• Use the driving cursor to get all active deals for each item/supplier/origin
country/start date on the deal_sku_temp table (use an array fetch).

• For each deal/deal detail, call get_target_threshold_value to find the
threshold value to be used in cost calculations.

• Call calculate_cost_driver to get the net, net net, and dead net net cost
(initially for location-independent deals and then for the location-specific
deals, starting form the costs already calculated for location-independent
deals), and create an insert array that includes the net/net net/dead net net
cost information AND the location information.

• If commit point reached, call post_insert_delete_records to insert the costs
into the deal_sku_cost table FOR EACH LOCATION of the same LUW
(including a record with no location if there are location-independent deals),
and to delete processed records from the deal_sku_temp table.

• After each set of deals has been processed, call the restart commit logic.

prepare_driving_cursor:

Create driving cursor statement based on the system options deal_type_priority
and deal_age_priority, which only affect the ORDER BY clause.

calculate_cost_driver:

This function will drive the process of calculating the net, net net, and dead net
net cost, given information on all the deals that apply to a particular
SKU/supplier/origin country/start date (pass in array structs which include the
target threshold value). Each deal/deal detail record is passed on to the
calculate_costs function to do the actual calculation for each LUW + loc, that is,
SKU/supplier/origin country/start date/loc.

56 Retek Merchandising System 9.0.5

For each set of deals for a unique item/supplier/country id/start date, the desired
end result is to have one record on deal_sku_cost with no location that will hold
the item’s costs with all location-independent deals accounted for, and additional
records on deal_sku_cost for each location, with location-specific discounts
applied on top of the location-independent discounts.

• For each new LUW + loc, reset the flag for ‘F’ixed Amt value type discount.
‘F’ixed Amt value type discount should only be applied once for each LUW
+ loc.

• For each new LUW, reset the flag and merchandise level for ‘EX’clusive
deal class discount; for each LUW + loc, reset the merchandise/organization
level for ‘EX’clusive deal class discount (merchandise level needed to be
reset back to before any loc-specific applied). ‘EX’clusive deal class
discount should only be applied once for each LUW + loc.

• Reset the net/net net/dead net net costs according to the following rules:

� If new LUW, set to supplier’s original unit cost

� If the same LUW, check if location changed:

♦ If new loc:
► Check if just change from loc-independent to loc-specific. If yes,

applied merch level (for ‘EX’clusive discount) of loc-independent
discounts

► Check if the flag for ‘EX’clusive deal class discount is set
(previous ‘EX’clusive discount applied)
� If NO previous ‘EX’clusive discount applied, check if this is

an ‘EX’clusive discount:
♦ If yes, set net/net net/dead net net costs to base cost

(supplier’s unit cost)
♦ If no, set net/net net/dead net net costs to costs of loc-

independent discounts
� If previous ‘EX’clusive discount applied check if this is an

‘EX’clusive discount with higher merch level or equal merch
level but higher org level than the saved merch/org level (only
apply the highest merch/org level ‘EX’ discount):

♦ If yes, set net/net net/dead net net costs to base cost
(supplier’s unit cost)

♦ If no, skip this discount.
♦ If the same loc, check if the flag for ‘EX’clusive deal class discount is

set (previous ‘EX’clusive discount applied)
► If NO previous ‘EX’clusive discount applied, check if this is an

‘EX’clusive discount:
� If yes, set net/net net/dead net net costs to base cost (supplier’s

unit cost)
� If no, set net/net net/dead net net costs to latest calculated

costs
► If previous ‘EX’clusive discount applied check if this is an

‘EX’clusive discount with higher merch level or equal merch level
but higher org level than the saved merch/org level (only apply the
highest merch/org level ‘EX’ discount):

Chapter 5 – Deals – cost calculations [dealcalc] 57

� If yes, set net/net net/dead net net costs to base cost (supplier’s
unit cost)

� If no, skip this discount.

• Call calculate_costs to calculate net/net net/dead net net costs. For the same
LUW + loc, the driving cursor has sorted the discounts by cost_appl_ind: ‘N’
first, ‘NN’ later, ‘DNN’ last. For each cost application level, the same
business rules are followed.

• If the new LUW is not in the array, increment the writing index of the cost
array (we always write a record into the cost array to keep track of last
calculated costs, but change to a new record only if the LUW is changed)

• Prepare an insert record into the deal_sku_cost table by writing costs into the
current indexed record of the cost array. There are two dates to consider, start
and ending (close_date from deal_head). When inserting the start_date as the
active_date, set a flag in the array so we know that’s which date it is, and
insert the unit_cost from item_supp_country as the base_cost. The location
and location type fields should be left NULL if no location was given on
deal_sku_temp. Vdate should be used for the calc_date.

• If the start_date is found in the array, calculate the change for each cost field
and subtract that change from the net fields in the array. If there is no close
date, subtract the change amounts from the net fields of each close date in the
array. If we have a close_date and the date found originally in the array was
a start_date, subtract the change amounts from the corresponding close_date
entry in the array. Find the close_date by looking for the same LUW with
the date indicator set to close_date.

• After updating with the start_date, add one to the close date see if that
reset_date is already in the array. If not, add it to the array setting the net
costs to the base_cost.

• If the reset date is found in the array, set the net costs to the base cost and
exit.

• Save current processed LUW and loc.

calculate_costs:

• Inputs: index of fetch array, target threshold value, current net/net net/dead
net net costs

• Outputs: calculated net/net net/dead net net costs

The definition of different net costs are:

• net cost = unit cost – components whose cost_appl_ind is ‘N’

• net net cost = net cost – components whose cost_appl_ind is ‘NN’

• dead net cost = net net cost – components whose cost_appl_ind is ‘DNN’

Use the cost_appl_ind on deal_detail to figure out whether a deal component
contributes to the net, net net, or dead net net cost (the records should already be
sorted by cost_appl_ind) and what the initial costs are (initial cost are need to
process ‘CU’mulative deal class discounts with ‘P’ercentage value type):

58 Retek Merchandising System 9.0.5

• If ‘N’, the initial net cost is the supplier’s original unit cost, and need to
update all 3 net costs with the calculated discount

• If ‘NN’, the initial net net cost is the current net cost, and need to update both
net net cost and dead net net cost with the calculated discount.

• If ‘DNN’, the initial dead net net cost is the current net net cost, and need to
update only the dead net net cost with the calculated discount.

Business rules that need to be followed when applying discounts:

• Deal classes:

� If an exclusive deal was previously found for this SKU/supplier/origin
country/start date: new cost should be calculated only if THIS deal is
also exclusive and is for a lower merchandise hierarchy. If this is the first
exclusive deal, process it and set a flag, saving the hierarchy levels.

� Cumulative discounts need to be applied to the original unit cost (2% off
+ 3% off = 5 %off original unit cost)

� Cascade discounts need to be applied on the result thus far (“current
cost”)---take2% off of the unit cost, then take 3% off of that price, for
example

• Deal value types (take N cost calculation for example):

� for a % discount

♦ If ‘CS’cade:
► discount cost = unit cost – (unit cost *%/100)

♦ If ‘CU’mulative:
► discount cost = unit cost – (initial unit cost *%/100)

� for an amt discount (first convert amount to be in supplier currency if
necessary)

♦ discount cost = unit cost – amt (amount discounts are per unit cost
already)

� fixed amt: if have fixed amount discount must start with THAT amount
rather than the unit cost (convert to supplier currency if necessary)

♦ discount cost = fixed amt (converted to supplier’s currency if
necessary)

� quantity discount (“buy some get some at discount”) (these are not
allowed on rebates)
These are the most complicated. They affect the cost of the get item
AND of the buy item, whose cost we also need to get. Both the get item
and the buy item will be on deal_itemloc. You should only calculate the
cost for whichever item you’re presently on (if buy item, just calculate
buy item cost; will get the free item separately later, or vice versa). The
initial unit cost for the get item should be taken from
deal_detail.qty_thresh_free_item_unit_cost (or, if that field is not
populated, off of item_supp_country). Before any calculations are done,
convert the unit costs into supplier currency if necessary. If a buy/get
free discount is encountered, the following things need to happen:

Chapter 5 – Deals – cost calculations [dealcalc] 59

♦ Call get_unit_cost to get the original unit cost for the buy item (from
item_supp_country), if it’s different from the free item. Use the
supplier and origin country of the free item (free and buy items are
required to come from the same supplier and country).

♦ Calculate the discount costs(for whichever is the current item, free or
buy)
► If qty_thresh_buy_target of the buy item < qty_thresh_buy_qty,

stop; you didn’t get any discount
► Otherwise, figure out how many free items you actually get.

� If the qty_thresh_recur_ind is ‘N’:
♦ free qty = deal_detail.qty_thresh_free_qty

� If the qty_thresh_recur_ind is ‘Y’:
♦ If buy item = free item:

free qty = qty_thresh_free_qty *
FLOOR(qty_thresh_buy_target / (qty_thresh_buy_qty +
qty_thresh_free_qty))

♦ If buy item different from free item:
free qty = FLOOR(qty_thresh_buy_target /
qty_thresh_buy_qty) *qty_thresh_free_qty

► If buy item = free item:
� If qty_thresh_get_type is ‘X’, this is a “buy/free” discount:

total discount = total get cost
� If qty_thresh_get_type is ‘P’, this is a “buy/get % off”

discount:
total discount = (get item’s unit_cost * qty_thresh_get_value /
100) * get qty

� If qty_thresh_get_type is ‘A’, this is a “buy/get amt off”
discount:
total discount = qty_thresh_get_value * get qty

� If qty_thresh_get_type is ‘F’, this is a “buy/get at fixed amt”
discount:
total discount = (get item’s unit_cost - qty_thresh_get_value)
* get qty

� Discount rate = total discount / (buy item unit cost + buy
target)

� Discount = discount rate * get item unit cost
► If the free item and the buy item are different:

� If qty_thresh_get_type is ‘X’, this is a “buy/free” discount:
total discount = total get cost

� If qty_thresh_get_type is ‘P’, this is a “buy/get % off”
discount:
total discount = (get item’s unit_cost * qty_thresh_get_value /
100) * get qty

� If qty_thresh_get_type is ‘A’, this is a “buy/get amt off”
discount:
total discount = qty_thresh_get_value * get qty

� If qty_thresh_get_type is ‘F’, this is a “buy/get at fixed amt”
discount:
total discount = (get item’s unit_cost - qty_thresh_get_value)
* get qty

� Get discount rate = (get item cost * get qty) / total buy cost

60 Retek Merchandising System 9.0.5

� Buy get discount rate = 1 – get discount rate
� If current item is buy item

Discount = total discount * buy discount rate / buy target
� If current item is get item

Discount = total discount * get discount rate / get qty
� If the total cost of the buy item is less than that of total

discount, stop; no discount is applied
� These discounts are the amount that needs to be subtracted

from the original price to get the discounted price.

get_target_threshold_value:

Given a deal_id and deal_detail_id, fetch the target value from the deal_threshold
table (the value where the target_id is ‘Y’). Since this function is often called
multiple times for the same input (multiple SKUs of the same deal/deal detail), a
linked list is maintained to keep track of target threshold values for different
deal/deal detail. The linked list is ordered by the deal/deal detail. This function
first tries to get the value from the list (previously fetched from database). If yes,
job is done. Otherwise, fetch the target value for this deal/deal detail from
database and call convert_currency if the value is currency amount and the deal
currency is different from the supplier’s currency. The newly fetched value is
then saved into the list by calling add_to_list. Other maintenance functions for
the linked list are init_list (called in init) and free_list (called in final).

get_unit_cost:

For a given SKU/supplier/country id, get the unit cost from item_supp_country.
Since usually the unit cost is fetched by the driving cursor, the function is only
called for buy-get type discount when the buy item’s unit cost is needed.

convert_currency:

Call CURRENCY_SQL package to convert an amount in deal currency to
equivalent amount in supplier’s currency. (This should only be called if the
currencies are different—normally they will be the same).

post_insert_delete_records:

Array insert all records of the cost array into the deal_sku_cost table and array
delete processed records, which are also all records of the cost array, from the
deal_sku_temp table. This deletes all records from deal_sku_temp for a given
sku/supplier/origin country/start date/location, the unique key of these five
columns are part of the unique key on deal_sku_cost, which contains one more
column (calc_date) to save the cost information for a system specified history
month.

add_to_list:

Add a node made of deal/deal detail and the target value to the current position of
the linked list.

init_list:

Initialize the linked list for target threshold values.

Chapter 5 – Deals – cost calculations [dealcalc] 61

free_list:

Free the memory used by the linked list for target threshold values.

size_arrays:

Allocate memory for the fetch array used by the driving cursor and the cost array
used to save the costs.

resize_array:

Allocate additional memory for the cost array.

free_arrays:

Free the memory used by the fetch array and cost array.

final:

• Call free_arrays and free_list.

• Restart/recovery close logic.

I/O specification
N/A

Technical issues
There are two rebate_calc_type’s: linear and scalar. Currently the scalar type
calculation is taken as the same as the linear type. The differentiation is left for
future release.

Testing Scenarios
test with:

• item that has 1 active deal

• more than 1 active deal

• multiple deals including an exclusive deal

• different ordering parameters (promo vs annual, earliest vs latest)

• different types of deals

Chapter 6 – Upload RTV Transactions [rtvupld] 63

Chapter 6 – Upload RTV Transactions [rtvupld]
Modification

This program was modified by changing the length of the following fields in the
upload file layout:

• freight char(20,4)

• Reason char (6)

• Return Quantity char (12,4)

• Unit Cost char (20,4)

Design overview
The RTV Transaction Upload (rtvupld) module processes RTV transactions
captured by an external source according to the same logic as the online RTV
functionality within the RMS. For each RTV transaction processed by this
module, an RTV is created in Shipped status on the RMS database. The RTV
transaction can involve any of the supported item types within the Retek system,
from any location entity that stocks the transferred item back to the vendor that
supplies the item.

The detail processing for an RTV transaction includes the following:

• create RTV header and detail records in shipped status

• update perpetual inventory

• update average cost of shipping location

• write financial transactions for return of merchandise

• update on hand snapshots for current cycle counts (in the case of late
postings)

• update unavailable inventory status quantity

TABLE INDEX SELECT INSERT UPDATE DELETE

RAG_SKUS No Yes No No No

RAG_SKUS_ST No Yes No Yes No

RAG_STYLE_ST No Yes No No No

RAG_STYLE_ST No Yes No No No

RTV_HEAD No Yes Yes Yes No

RTV_DETAIL No Yes Yes Yes No

SUPS No Yes No No No

ADDR No Yes No No No

TRAN_DATA No No Yes No No

64 Retek Merchandising System 9.0.5

TABLE INDEX SELECT INSERT UPDATE DELETE

V_SKU_INFO No Yes No No No

WIN_STORE No Yes No Yes No

WIN_WH No Yes No Yes No

INV_STATUS_QTY No Yes No Yes No

INV_STATUS_TYPES No Yes No No No

CODE_DETAIL No Yes No No No

Scheduling constraints
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run after the Transfer Out batch
module and will likely be run at the beginning of the batch run during the POS
polling cycle, or possibly at the end of the batch run if pending warehouse
transactions exist. It can also be scheduled to run multiple times throughout the
day, as WMS or POS data becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: STORE and WH – additional threads can be added
based on number of distinct input files

Restart recovery
The logical unit of work for the RTV module is the creation of a shipped RTV
order in the Retek system. An external reference number created by the external
system will identify each RTV. The RTV transaction will be defined as the
logical unit of work. If any portion of the processing for the complete RTV
transaction fails, the entire RTV must be re-processed.

A save-point will be issued prior to processing a new RTV. If any record within
the transaction fails, the whole transaction will be rolled back to the most recent
save-point. This way, the successfully processed transactions will remain posted
to the database but not yet committed.

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. An RTV transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold, that once reached, will force a commit after the completion of the
current RTV transaction.

Chapter 6 – Upload RTV Transactions [rtvupld] 65

Error handling will be based on the logical unit of work also. If a given record
within an RTV transaction fails, that error will be posted to the standard error log
for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the RTV will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
RTV will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

66 Retek Merchandising System 9.0.5

Program flow

loop (until end of input file)
read record
if ('FTAIL') Exit Loop
if ('THEAD')

set savepoint
end if

validate THEAD()

process THEAD

loop
read record
if ('TTAIL') Exit Loop
else if ('TDETL')

validate TDETL()

process TDETL()

populate RTV array
if (detail counter = max array count)

resize rtvdetail array
end if
increment detail counter

end if
end loop

insert RTV details

if (record counter = max commit counter)
save file position to bookmark
commit database transactions

end if
end loop

call to NEXT_RTV_ORDER_NO
insert rtvhead record
array insert of rtvdetail records

validate supplier exists
get supplier RTV details
validate locations exist

if (rtv order type = 'Q')
validate shipment on QC
validate SKU on shipment
validate QC failure code

else
if ('UPC')

get sku based on upc
if (upc not exist) Error

get system indicator
get merch hierarchy
if (sku not exist) Error

end if

initialize restart
open files (RTV in)
open reject file (restart temp)
get vdate & dept level transfer indicator
set application image array
read file header

main()

init()

process()

final()

if (rtv_order_type = ''I')

RTV_SQL.INVENTORY

close restart logic
close reject file

Chapter 6 – Upload RTV Transactions [rtvupld] 67

Shared modules
RTV_SQL.INVENTORY – package performing all RTV logic, including

• update perpetual inventory

• update average cost of returning location

• write financial transactions for the return of merchandise

• update the on hand snapshot for current cycle counts (for late postings)

• update unavailable inventory status quantity

Function level description
init()

• Declare structure array for RTV detail

• Initialize restart recovery

• Open input file (RTV in) – file should be specified as input parameter to the
program

• Open reject file (as a temporary file for restart) – file should be Specified as
input parameter to the program

• Get vdate from period table

• Set application image array - save the line counter

• Read file header record

process()

Loop

• Read record from input file

• If ('FTAIL')

� Exit Loop

• Else if ('THEAD')

� reset detail count

� set savepoint and save current file pointer position

� validate_THEAD()

� process_THEAD()

� increment line count

• End if

• Loop

� read record from input file

� if ('TTAIL')

68 Retek Merchandising System 9.0.5

♦ Exit Loop

� else if ('TDETL')

♦ validate_TDETL()
♦ process_TDETL()

� end if

� if (detail count = max array count)

♦ resize array structures for rtvdetail
♦ increase max array count

� end if

� increment detail count

• End loop

• If (no errors encountered)

� post_RTV()

• End if

• If (non-Fatal Error encountered)

� reject_record - call write error and pass file pointer as of last savepoint
and current file pointer

• End if

• If (transaction count > max commit count)

� restart file commit

♦ save the current input file pointer position
♦ save the line counter in restart image

• End if

End loop

Restart commit final

validate_THEAD()

Validate supplier

• Check for supplier existence on the sups table and ensure returns are allowed

• Select return authorization indicator, minimum dollar amount, and courier
from SUPS table.

Validate locations

• If (loc_type = ‘ST’)

• check for existence on store table

• Else (loc_type = ‘WH’)

• check for existence on wh table

Chapter 6 – Upload RTV Transactions [rtvupld] 69

If the location does not exist, write non-Fatal error.

validate_THEAD()

Call NEXT_RTV_ORDER_NO to get next RTV order number

validate_TDETL()

format_ddetail_fields()

If (Item Type = ‘UPC’)

• select sku from upc_ean based on the upc and supplement

• if (UPC does not exist)

• Write non-Fatal Error (UPC not found)

If (rtv reason code = ‘Q’)

• if shipment number found

� validate shipment exists in Retek and is a QC shipment

� validate item exists on shipment and has ‘Failed’ QC

• else

� write non-Fatal Error (no shipment)

Else if (rtv reason code = ‘U’)

• if inventory status is not NULL,

� validate inventory status against INV_STATUS_TYPES table

� if (inventory status is not found)

♦ write non-Fatal Error (invalid inventory status)

� else

♦ validate return quantity <= inventory status quantity for the
sku/location/inventory status

♦ if (not true)
► write non-Fatal Error (return qty greater than inventory status

quantity)

• else (inventory status is NULL)

� write non-Fatal Error (no inventory status)

Else (any other reason code or NULL reason code)

• validate reason code against code_detail.code where code_type = ‘RTVR’

• if (reason code is not found)

� write non-Fatal Error (invalid reason code)

Get sku system indicator

If (system indicator does not exist)

• write non-Fatal Error (sku not found)

70 Retek Merchandising System 9.0.5

valid_sku_loc() (validate sku/loc and check if return more than stock on hand)

Validate item/supplier and get item unit cost from item_supp_country table

If (item does not supplied by the supplier)

• write non-Fatal Error

If (unit cost not specified in input file)

• convert unit cost fetched from item_supp_country table into local currency

process_TDETL()

If (shipment number does not exist)

• Call RTV_SQL.INVENTORY package function (see design specification for
RTV_SQL) to insert tran_data records and update inventory

Else (shipment number exists)

• Get merchandise hierarchy information

• Call ITEMLOC_ATTRIB_SQL.GET_COST_RETAIL to get unit_retail

• Call STKLEDGER_SQL.TRAN_DATA_INSERT

Convert unit cost back into supplier’s currency

Write detail transaction into structure rtvdetail

Calculate total order amount in supplier’s currency

post_RTV()

• Perform insert of RTVHEAD

• Perform array insert of RTVDETAIL

ON Fatal Error

• rollback to last physical commit point

• Exit Program

ON Non-Fatal Error

• rollback to last save-point

• write out complete transfer transaction to the reject file, pass file pointer at
last save-point and current file pointer

Chapter 6 – Upload RTV Transactions [rtvupld] 71

I/O specification

Input File
The input file should be accepted as a runtime parameter at the command line.

Record
Name

Field Name Field Type Default Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 File Type
Definition

Char(4) RTV Identifies file
as ‘Return to
Vendor’

 File Create
Date

Date create date date file was
written by
external
system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Set Control
Number

Char(14) specified by
external
system

used to force
unique
transaction
check

 Transaction
Date

Char(14) specified by
external
system

date the
transfer was
created in
external
system

 Supplier
Identifier

Char(10) Retek
Identifier

Supplier
reference
identifier as
identified
within Retek

 Return
Authorization

Char(12) Supplier
Specified

Supplier
return
authorization
number

72 Retek Merchandising System 9.0.5

Record
Name

Field Name Field Type Default Value Description

 RTV Location
Type

Char(2) ST - storeWH
- warehouse

specifies the
type of
location
returning
items

 RTV Location
Value

Char(4) location
identifier

specifies the
returning
location id
number

 Freight Char(20,4) Freight cost
associated
with the RTV
in supplier’s
currency

Transaction
Detail

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Set Control
Number

Char(14) specified by
external
system

used to force
unique
transaction
check

 Detail
Sequence
Number

Char(6) specified by
external
system

sequential
number
assigned to
detail records
within a
transaction

 Item Type Char(3) UPCSKU item type will
be represented
as an UPC, an
SKU

 Item Value Char(13) item identifier the id number
of a SKU or
UPC

 Supplement Char(5) supplemental
identifier

used to further
specify the id
of an UPC
item

Chapter 6 – Upload RTV Transactions [rtvupld] 73

Record
Name

Field Name Field Type Default Value Description

 Shipment Char(10) Retek
Shipment no

Cross
reference to
retek
shipment
number for
RTVs
associated
with QC.

 Reason Char(6) Retek reason
code

Reason for the
return:Q - QC
failedU -
Unavailable
inventory

 Return
Quantity

Char(12,4) return
quantity

number of
units returned
of the given
item

 Unit Cost Char(20,4) unit cost of
return item

assigned cost
value of
inventory to
be returned(in
local
currency)

 Inventory
Status

Char(2) Retek
unavailable
inventory
status number

Cross
reference to
Retek
Unavailable
inventory
status number.

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Detail Line
Count

Number(6) sum of detail
lines

sum of the
detail lines
within a
transaction

74 Retek Merchandising System 9.0.5

Record
Name

Field Name Field Type Default Value Description

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 File
Transaction
Line Count

Number(10) sum of all
transaction
lines

total of all
records less
file head and
tail records

Reject File
The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the transfer out module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0. The reject filename should be specified as a runtime
parameter.

Error File
Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

Chapter 7 – Return to Vendor Upload [lifrtvup] 75

Chapter 7 – Return to Vendor Upload [lifrtvup]
Modification

This program was modified by changing the length of the following fields in the
upload file layout:

• freight char(20,4)

• Return Quantity char (12,4)

• Unit Cost char (20,4)

Design overview
This program will format information originating from the return to vendor file.
The Nautilus file, rtv_upload.dat, is SQL Loaded into a staging table: lif_rtv.
This program will read from the staging tables and create a standard formatted
file for Retek’s rtvupld.pc program to process.

Scheduling constraints
Processing Cycle: N/A

Scheduling Diagram: This program should be run after uploading the rtv
information from Nautilus and after SQL Loading the files into the staging
tables. It should run before rtvupld.pc

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart recovery
No restart/recovery, except for error handling.

Main cursor:
SELECT location,

 rtv_order_no,

 SUBSTR(item_id, 1, 13),

 rtv_auth_id,

 unit_qty,

 supplier

 FROM lif_rtv

 ORDER BY location,

 rtv_order_no;

76 Retek Merchandising System 9.0.5

Program flow
N/A

Shared modules
N/A

Function level description
Init()

The output file should be opened, then file header information should be written.

The vdate is selected from the period table for the file create date used in the
output file header.

Call restart init.

Write output file header (FHEAD) information

Process()

Initialize the RTV number variable to NULL.

Loop through the records found on the lif_rtv table. Array processing should be
used to fetch the records from lif_rtv table.

• If RTV order number changes or if the location changes. (ie. one THEAD for
each rtv number)

� Write TTAIL for previous RTV

� Set default values for THEAD record.

� Write THEAD record.

� Set default values for TDETL record.

� Write TDETL record to the output file for each sku in the RTV.

• End If;

End loop;

final()

Close output file.

Delete from lif_rtv table if all no failures occurred.

Write output file trailer (FTAIL) information.

Call restart close.

Chapter 7 – Return to Vendor Upload [lifrtvup] 77

I/O specification

Output File
The output file should be accepted as a runtime parameter at the command line.

RTV upload file
Record Name Field Name Field Type Default

Value
Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies
file record
type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the
current file

 File Type
Definition

Char(4) RTV Identifies
file as
‘Return to
Vendor’

 File Create Date Date create date date file was
written by
external
system

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies
file record
type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the
current file

 Transaction Set
Control Number

Char(14) specified by
external
system

used to force
unique
transaction
check

 Transaction Date Char(14) specified by
external
system

date the
transfer was
created in
external
system

 Supplier Identifier Char(10) Vendor_nbr Supplier
reference
identifier as
identified
within Retek

78 Retek Merchandising System 9.0.5

Record Name Field Name Field Type Default
Value

Description

 Return
Authorization

Char(12) Rtv_auth_nbr Supplier
return
authorization
number

 RTV Location
Type

Char(2) WH –
warehouse

specifies the
type of
location
returning
items

 RTV Location
Value

Char(4) Location id specifies the
returning
location id
number

 Freight Char(20,4) NULL Freight cost
associated
with the
RTV in
supplier’s
currency

Transaction
Detail

File Type Record
Descriptor

Char(5) TDETL Identifies
file record
type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the
current file

 Transaction Set
Control Number

Char(14) specified by
external
system

used to force
unique
transaction
check

 Detail Sequence
Number

Char(6) specified by
external
system

sequential
number
assigned to
detail
records
within a
transaction

 Item Type Char(3) SKU item type
will be
represented
as an UPC,
an SKU

Chapter 7 – Return to Vendor Upload [lifrtvup] 79

Record Name Field Name Field Type Default
Value

Description

 Item Value Char(13) item id the id
number of a
SKU or
UPC

 Supplement Char(5) NULL used to
further
specify the
id of an UPC
item

 Shipment Char(10) NULL Cross
reference to
retek
shipment
number for
RTVs
associated
with QC.

 Reason Char(6) ‘W’ Reason for
the return:Q
- QC failedU
-
Unavailable
inventoryW
– warehouse
initiated
RTV from
the RTVR
code on
codes table.

 Return Quantity Char(12,4) Unit qty number of
units
returned of
the given
item

 Unit Cost Char(20,4) NULL assigned
cost value of
inventory to
be returned

 Inventory Status Char(2) NULL Cross
reference to
Retek
Unavailable
inventory
status
number.

80 Retek Merchandising System 9.0.5

Record Name Field Name Field Type Default
Value

Description

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies
file record
type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the
current file

 Transaction Detail
Line Count

Number(6) sum of detail
lines

sum of the
detail lines
within a
transaction

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies
file record
type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the
current file

 File Transaction
Line Count

Number(10) sum of all
transaction
lines

total of all
records less
file head and
tail records

Technical issues
N/A

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	Get_rev_no()
	Insert_header()
	Insert_sku()
	Insert_loc()
	Insert_alloc()
	Ins_revord()
	Write_new_po()
	Write_existing_po()
	Write_alloc_only()
	Comp_tckt()
	Del_revord()

	I/O specification
	Order Header file

	Technical issues

	Chapter 3 – Allocation Update Download [allocupd]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	init_buffers()
	process()
	final()

	I/O specification
	File Header

	Technical issues

	Chapter 4 – Approved Warehouse Transfers Download [tsfdnld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	Get_ship_flag()
	validate_ship_schedule()
	get_thead_info()
	get_detail_info()
	process_wo ()
	Write_wo_to_list()
	Write_wo_to_file()
	Comp_tckt()
	write_pack_to_list()
	write_pack_to_file()
	Write_std_header()
	Write_std_trailer()
	write_tail_to_file()
	write_detail_to_list()
	add_dtl_to_list()
	get_order_type()
	write_head_to_str()
	Write_recs_to_struct()
	write_list_to_file()
	update_records()
	Final()

	I/O specification
	File I/O
	Transfer download file

	Technical issues

	Chapter 5 – Deals – cost calculations [dealcalc]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	init:
	process:
	prepare_driving_cursor:
	calculate_cost_driver:
	calculate_costs:
	get_target_threshold_value:
	get_unit_cost:
	convert_currency:
	post_insert_delete_records:
	add_to_list:
	init_list:
	free_list:
	size_arrays:
	resize_array:
	free_arrays:
	final:

	I/O specification
	Technical issues
	Testing Scenarios

	Chapter 6 – Upload RTV Transactions [rtvupld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	process()
	validate_THEAD()
	validate_THEAD()
	validate_TDETL()
	format_ddetail_fields()
	process_TDETL()
	post_RTV()
	ON Fatal Error
	ON Non-Fatal Error

	I/O specification
	Input File
	Reject File
	Error File

	Technical issues

	Chapter 7 – Return to Vendor Upload [lifrtvup]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	final()

	I/O specification
	Output File
	RTV upload file

	Technical issues

