&

Rete

Retek Merchandising System 9.0.5
Addendum to Operations Guide

rms-905-0g-addendum

Retek Merchandising System™

The software described in this documentation is furnished under a license agreement and may be
used only in accordance with the terms of the agreement.

Copyright Notice

Copyright © 2001 by Retek Inc.
All rights reserved.

No part of this documentation may be reproduced or transmitted in any form or by any means
without the express written permission of Retek Inc., 801 Nicollet Mall, Suite 1100, Minneapolis,
MN 55402.

Information in this documentation is subject to change without notice.

Trademarks

Retek Merchandising System is a trademark of Retek Inc.

All other product names mentioned are trademarks or registered trademarks of their respective
owners and should be treated as such.

Policy on Retek End User Documentation
Retek provides product documentation in a read-only-format to ensure content integrity. Retek

Customer Support cannot support documentation that has been changed without Retek
authorization.

Printed in the United States of America.

Customer Support

Customer Support hours:

8 AM to 5 PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2001: Jan. 1, May 28, July 4, Sept. 3,
Nov. 22, Nov. 23, Dec. 24, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information
Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: + 1 612-630-5800
Fax (+1) 612-630-5710
E-mail support@retek.com
Internet www.retek.com/support

Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Midwest Plaza

801 Nicollet Mall

Suite 1100
Minneapolis, MN 55402

When contacting Customer Support:

* Always fill out an Issue Report Form before submitting issues to Retek
(request forms from Customer Support if necessary).

* Provide a completely updated Customer Profile.

* Have a single resource per product responsible for coordination and
screening of Retek issues.

* Respond to our requests for additional information in a timely manner.

* Use Retek Online Customer Support (ROCS) to submit and update your
issues.

* Have a test system in place running base Retek code.

mailto:support@retek.com
http://www.retek.com/support

Contents |

Contents
Chapter 1 — Introduction............ccoommrmciii e 1
Chapter 2 — Purchase Order Information Written to Order History
Tables [Ordrev] ... e e e e 3
IMOIFICALION. ...ttt et ettt et e bt e st ebeesareens 3
DIESIZN OVETVIEW ..eeuiiieiiieiiieiiieeiie et eeite et etee st et e stteebeessbeenseessseenseensaeenseenseesnseesaennsaans 3
Scheduling CONSLIAINTScccuiieiiiieeiieeeee et et e et e e eeteesee e e eraeeeaaeessaeessneeenns 3
RESEATt TECOVETY .niiieiiiieeieeee ettt ettt et e et e st e e sbeeesnneees 4
Pro@ram flOWcc.uiiiiii et e e e be e e nnaee s 4
Shared MOAUIES........coeiiiiiii et 4
Function [evel deSCriPtioN..........ccciiieiiieeiee ettt e e e e e eeeeas 5
J/O SPECTTICALION.eeeiiieiieeiie ettt et ettt et sat e e e e ssaeeabeesseeenseensaeenseens 9
Order Header {118oouiiiiiieieieee ettt st et 9
Order DEtail fI1......ccueeeeiieeiesie ettt ettt ettt s e et e te st e e eneensesaeeneeneenes 10
SEOCK OTAET fI1......eeneieieieieeteeee ettt ettt sttt et e et e b e st et e seentenseeneeneenes 12
Stock ATIOCALION FI1Eoviiiiiiiiiieeee et 14
Component Ticketing file [aYOULcccuveciierierierieeieeeee e s 16
TECNICAL ISSUES ...eeuviiieiieieeiect ettt sttt et 17
Chapter 3 — Allocation Update Download [allocupd]................. 19
IMOIFICALION. ...ttt et sttt e b e st e b e 19
DIESIZN OVETVIEW .eeviieniiieiiieiieeieeite et ette et etteeiteebeesebeeteesebeeseesnseenseessseenseesaseenseennns 19
Scheduling CONSLIAINTScccuviiiiiieeiieeciee ettt e e ae e eaa e e e beeeeseeesnneeas 19
RESEATt TECOVETY ittt et et e st e s e st e e 20
Pro@ram flOWocueii i e e 20
Shared MOAUIES........oouiiuiiiiiii et 21
Function [evel deSCriPtion..........ecciieeiiieeiiieeiee e e 21
I/O SPECTTICALION.eiieiiieiie ettt ettt ettt ettt et e eabe e beeeebeesaesaseenseeenne 22
StOCK OTAET fI1E......ceniiieiieieete ettt ettt et 22
Stock ATIOCALION fI1€eouiiiiiii et 25
Component Ticketing file 1ayoUtcc.eeociiiiiiiiiiieceeee e e 26

TECRNICAL ISSUES ..ot e e e e e e e e e ee e e e e e e e aaaaaaeens 27

i Retek Merchandising System 9.0.5

Chapter 4 — Approved Warehouse Transfers Download [tsfdnid]

.. 29
IMOAITICALION. ...ttt st sb et sttt et et see e 29
DESIZN OVETVIEWvieeiiiieeiiieeiieecieeeeteeertee et eeetee e e teeesaaeessbeeessseeesseeesseesnsaeesnseeennses 29

FUNCHION .ttt ettt et e sttt et e b e b e b e as 29
Scheduling CONSIIAINESeeiuiirieeiierie ettt ettt ettt ettt e eteesteeebeeseessbeenseesnseens 30
RESTAIT TECOVETY ..iiieeiiiiie ettt e e s e e et e e e et e e s e abaeeeenteaeeennns 31
Program flOWcoouiiiiiiiie ettt et et eees 32
Shared MOAUIES.......c...ooiiiiiii ettt 33
Function level deSCTiPtion.........c.cecuiiiiieriieiiieiieeie ettt 33
L@ B ool oz 1510) s DRSPS 37

FILE T/O ettt ettt ettt ettt et e e te st e e e aeent e te st et e eteentenseereennens 37

Transfer download fIle.........cooiiiiiiiiiii e 37

Work Order Download Filecooeiiiiiiieieiieeee e 44

Component tICKEtING 11viiiiiiiiiiieciecie et et ebeebe e teesene e 46
TECRNICAL ISSUESeieitiiiii ittt et 47

Chapter 5 — Deals — cost calculations [dealcalc] 49
IMOAITICALION. ...ttt sttt sttt et et be e s 49
DESIZN OVETVIEWviieiiiieeiiieeiieeeieeeetee et e et e e e tae e e taeesaaeessbaeessseeesseesnsseesnsseesnseeennses 49
Scheduling CONSIIAINESeeiuiirieeiierie ettt ettt ettt ettt e eteesteeebeeseessbeenseesnseens 49
RESTAIT TECOVETY ..viiieeiiieie ettt e e e e et e e et e e s e abaeeeennseaeeennns 50

Logical Unit Of WOTKccuviiiiiiiiii ettt et e v ettt eabe b e eaveeabaenes 54

DIIVINIE CUISOT ...eiitiieiiie ettt eetee ettt e et e e stteeebeeesebeesbeeetseeessseessseesssasessseeesssaesssesasseessseessseeanes 54
Pro@ram flOWccueiioiie e 54
Shared MOAUIES........couiiiiiiiii et 54
Function [evel deSCriPtion..........ccciieeiiieeiiie ettt 55
I/O SPECTTICALION.tieiiieiie ettt ettt ettt et e et e et eeebe et e e ebeesseesaseensee e 61
TECRNICAL ISSUESeiiniiiiii ittt st et 61

TESEING SCENATIOSeieuvieiieeiiieeiie ettt ettt et e e et e et e e aeebeesabeebeessseeseessseenseessneenseas 61

Contents iii

Chapter 6 — Upload RTV Transactions [rtvupld]ccccece... 63
IMOAITICALION. ...ttt st sb et sttt et be e 63
DESIZN OVETVIEWvviieiiiieeiieeeieeecieeestteerte e et e e e tae e e teeesbaeessbaeessseeesseesnsseesnsseesnseeennses 63
Scheduling CONSIIAINESeeiuiirieeiierieeieeeee ettt et e ete et eebe et eebe e seessbeenseesnseans 64
RESTAIT TECOVETY ..vtiieeiiiie ettt e e e et e e e et e e e s abaeeeennseaeeennes 64
Program flOWooouiiiiiiiieci ettt et et eees 66
Shared MOAUIES...........ooiuiiiii et 67
Function level deSCTiPtion.........c.cecuiiiiieiiieiiieiieeieeite ettt s 67
L@ I oo oz 1510) s DTSR 71

INPUL FILE ...ttt et ettt e bt e s at e et st et e e be e b e nas 71
LS 111 2 1 USSR 74
EITOT FIlC.c.. ittt ettt s be et e sbe e 74
TECNICAL ISSUES ...ttt et st sttt 74

Chapter 7 — Return to Vendor Upload [lifrtvup]ccccovemrerremnnnnnee. 75
IMOAIFICALION. ...ttt ettt ettt ettt e b e 75
DIESIZN OVETVIEW ..eeuviieniiieiiieiieeieeetie et ette st etteeiteeteeeebeeteessbeeseesnseenseassseenseesnseenseennns 75
Scheduling CONSLIAINTScccviiiiiieeiieeciie et e e e e ar e e e beeesseeesnseeas 75
RESTAIT TECOVETY 1.ttt ettt e et e e e sttt e e e e abteee e 75
Pro@ram flOWccueiiiiie e e 76
Shared MOAUIES........couiiiiiiiii et 76
Function [evel deSCriPtion..........ccciieeiiieeiiieeieeeee e 76
I/O SPECTTICALION.eiieiiieiieeiie ettt ettt ettt e et e et eeebe e beeeabeeseesnseeseeenne 77

L@ 013001 A0 i (PP SS 77
L Y01 o) (o 1o 1 1RSSR 77

TECRINICAL ISSUES ..o e e e e e e e e e e e e e e eaeaeaeaeaeaeaaaanas 80

Chapter 1 — Introduction 1

Chapter 1 — Introduction

This addendum to the Retek Merchandising System (RMS) 9.0 Operations Guide
contains updates to the following batch designs:

Batch Design - ordrev.doc
Batch Design - allocupd.doc
tsfdnld.doc

dealcalc.doc

rtvupld.doc

lifrtvup.doc

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0 Operations Guide. Each chapter contains
a subsection indicating what specific modifications have been made.

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 3

Chapter 2 — Purchase Order Information Written to
Order History Tables [ordrev]

Modification

This program was modified by adding fields to bring shipping and billing
addresses to five lines in the stock order file.

Design overview

Ordrev will write versions of approved order to order revision history tables.
When orders are approved or when approved orders are modified, this program
selects order numbers from the rev_orders table and writes current order
information to the order/allocation revision tables. After the new version has
been written to the order revision tables, all records will be deleted from the
rev_orders table for that order no.

This program processes order changes made by the client that may need to be
sent to the vendor. The order changes should always be referred to as ‘versions’
and kept clearly distinct from order ‘revisions’ which are vendor changes
uploaded via the ediupack program.

This program also allows Nautilus and Retek to interface, by sending the
warehouse PO and allocation (ie. pre distribution) information to prepare the
warehouse for incoming orders. The program will create two flat files, PO
header and PO detail, based on approved orders found on the rev_orders table.
The program will also create Pre Distribution Header and Pre Distribution Detail
flat files, which will enable the warehouse to perform cross docking activities.

The last file produced by the ordrev batch program is a component ticketing file
that holds retail and ticketing information for non sellable pack items. This file
allows the warehouse to correctly ticket the components of the pack item, before
distributing the items to the stores.

If an order is not in approved status at the time the batch program runs, then none
of the above processing will occur. The record will stay on the rev_orders table
until the PO is approved or deleted.

Scheduling constraints

Processing Cycle: After rplprg & before edidlord, and Ad Hoc. This
program must be run, if interfacing with Nautilus

Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

4 Retek Merchandising System 9.0.5

Restart recovery

Restartabilty will be implied, because the records that are selected from this table
will be deleted before the commit. Restart library functions will still be included
to ensure that rollback segments are not exceeded (by committing at intervals)
and to perform basic record keeping functionality.

SELECT ro. acti on_type,
ro.order_no,
ro.all oc_no,
ro.l ocation,
ro. sku,
ro. hdr_dtl _ind,
oh. pre_mark_i nd,
ro.row d

FROM rev_orders ro,
or dhead oh
WHERE ro. order _no = oh. order_no
AND oh. status = 'A

AND MOD(ro.order_no, :oi _restart_numthreads) + 1
= :0i _restart_thread val

AND ro.order_no > NVL(:ora_restart_order_no, -
9999)

ORDER BY ro. order_no;

Program flow
N/A

Shared modules

PRICING ATTRIB SQL.GET RETAIL(): get the unit retail from
item_zone_ pricing table for a SKU/store.

PROMOTION_ ATTRIB SQL.EVENT DESC(): get the event’s description

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 5

Function level description

Init()
Initialization of the restart Retek recovery process will be performed here.
Get system date.

Open output files. There will be a maximum of 4 files (ie. one header and detail
for PO download and one header and detail for Pre-distribution download)

Write FHEAD to all files.

Call Init_buffers().

Process()
All orders that need to have order version records will be processed.
If the order number changes, then perform the following logic.

* The order number will be used to populate the revision history tables. The
get rev_no() function is called to determine the version number for the insert
into the revision history tables.

* Check if order is customer order. If order is customer order set flag to 1,
else setto O(for the customer order no allocation information will be
download to the RLS logistic).

» Ifversion 1was just inserted (ie. order was just approved for the first time, no
previous versions existed), then

= Call write_new_po function to write newly created orders and associated
allocations to the po header, po detail, pre distribution header, and pre
distribution detail files.

e Else

= Call write_existing_ po function to write the changed order information
to the flat files. Some or all of the flat files may be written in this
circumstance depending upon what information has changed since the
order was last sent down to Nautilus.

e Endif;

* The insert_header() function will be called from here to insert header level
information, the insert_sku() function will insert order sku information, the
insert_loc() will insert order sku/location information, and the insert_alloc()
will insert order allocation information if the order’s pre-mark indicator was
set. This indicator will indicate whether cross-docked allocation information
will be sent to the supplier along with the order. When all of the version
information has been inserted into the revision history tables, all of the
records with that order number should be deleted from the revord table by the
delete_revord() function.

* Ifsystem_ options.financial ap equals ‘P’, then call ins_revord () to insert
into the fif ordhead table.

6 Retek Merchandising System 9.0.5

Else /* the order number remains the same */

* If order is not customer order. Call write alloc_only().
End if;

Get_rev_no()

It is necessary to get the last version number that was written to the order
revisions tables. The maximum version number is selected from the header
revision table and then incremented by 1 to get the version number that will be
inserted during processing. If no record exists in the order header revision
history table, then the order is new and a version number of 1 is used.

Insert_header()

The current information on the order header table will be inserted into the header
revision history table with the new version number

Insert_sku()

The current information on the order SKU table is inserted into the order SKU
revision history table with the new version number

Insert_loc()

The current information on the order SKU/location table is inserted into the order
SKU/location revision history table with the new version number.

Insert_alloc()

The ship-to warehouse on the allocation header table and the allocation
information and quantity information from the allocation detail table is written to
the allocation revision history table with the new version number.

Ins_revord()
Insert into the fif ordhead table.

Write_new_po()

This function will write FDETL records to the appropriate PO and pre
distribution output files.

Order information is retrieved from the ordhead and ordloc tables to populate the
PO header and PO detail files. A record will be written to the PO download
header and detail file for only orders with a warechouse destination. The
warehouse number will be stored in the Location (DC) field on the file. If the
order is going to other locations, such as stores, then do not write a record to the
files. There will be one header for each order/wh location retrieved.

Check customer order flag. If it is not customer order, open a “for loop” to
retrieve the allocation information for an order.

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 7

Write pre-distribution header and detail with action type = ‘A’dd for the
warehouse/allocation/sku/order no. There will be one header for every alloc_no
retrieved and a detail record for each to_location for that allocation. In other
words, the first allocation number will be written to the pre-distribution header
record. Write the pre-distribution detail records, until that allocation number
changes. When the allocation number changes, then write a pre-distribution
header record. The warehouse (from loc) will be stored in the Location (DC)
field on the file. Call promotion_attrib_sql.get event desc package for the
event’s description. Also, get the correct retail (pricing_attrib_sql.get retail
package) and ticketing information for the predistribution detail file. In the for
loop, if the allocation location is a store, call comp_tckt () function to write the
component ticketing file.

Write_existing_po()

Open a “for loop” to retrieve ordhead and ordloc fields for comparison. The
comparison will be completed for each warehouse location the order is destined.
In the for loop, compare ordhead/ordloc with previous version on

ordhead rev/ordloc_rev. If there are any changes to the Nautilus required fields,
then write PO download header and/or detail records. This process only needs to
be done for orders going to warehouse locations.

Fetch the header information from ordhead and ordhead rev. Compare each
field (ie. ordhead.buyer = ohr.buyer). If the fields do not equal, then set an
indicator, which will indicate that the ordhead records have been modified and an
action_type = ‘M’ will need to be sent down in the PO header file.

For the order number retrieved in the above cursor loop through the ordloc
warehouse records. First, check the header indicator. If the ordhead record has
changed, then a PO header record needs to be written for each warehouse on the
order. For example, one PO (#123456) has been created to replenish the stock in
warehouse 1, 2, and 3. The PO header download file produced by the ordrev.pc
program will have 3 separate records. The first FDETL will have a location
(DC) =1 for PO #123456, the second record will have a location (DC) =2 for
PO #123456, and the third record will have a location (DC) = 3 for PO#123456.
After the ordhead indicator check, compare the ordloc and the ordloc rev fields.
If one of the fields differ, then write a PO detail record for the
warehouse/order no. Once all warehouse locations are processed in that order, go
fetch the next order.

* Ifordloc.qty_ordered != 0, then action type = ‘M’
e Ifordloc.qty_ordered = 0, then action type = ‘D’

Check customer order flag. If it is not customer order. Call write_alloc_only();

8 Retek Merchandising System 9.0.5

Write_alloc_only()

This function will write FDETL records to the appropriate pre-distribution output
files.

If alloc_no is not NULL, then (alloc_no was retrieved from the main driving
cursor on the rev_orders table)

End if;

If location is NULL and action type = ‘A’ then

Write pre-distribution download header and detail with action type ‘A’.
If the action type = ‘A’, then loop through all of the “to locations” of the
allocation on alloc_detail table. A detail record will need to be written
for each alloc_detail location.

In the for loop, if the allocation location is a store, then call the
comp_tckt() function.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl ind = ‘H’

Write pre-distribution header with action type = ‘D’. The location field
retrieved by the driving cursor will contain the from warehouse location
(ie. alloc_header.wh) and should be used to populate the Location (DC)
field on the output file.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl_ind = ‘D’

Write pre-distribution detail with action type = ‘D’. The location field
on the rev_orders table will contain the to store/warehouse location (ie.
alloc_detail.store or wh) and should be used to populate the destination
id on the output file.

Else /* location is not NULL and action type = ‘A’ or ‘M’ */

Write pre-distribution download detail with ‘A’, ‘M’, depending on the
action type retrieved from the main cursor (ie. rev_orders). Get the detail
file’s information (from_loc, to_loc, qty) by selecting from the
alloc_detail/alloc_header table for the alloc_no and location found in the
main driving cursor. A detail record should be written for the location
that was retrieved from the rev_orders table.

If the action type = ‘A’ and the allocation location is a store, then call the
comp_tckt() function.

End if;

Comp_tckt()

If the SKU on the allocation is a non sellable pack item going to a store location,
then write all of the component SKUs, retail price, and ticket information to the
component_ticketing file.

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 9

Del_revord()

Multiple order versions could exist on the revord table for the same order. This
could happen if the batch program had not been run since the last time the order
was modified. Since the processing has written the current order value to the

revision history tables, all records with that order number must be deleted from
the revord table to prevent double processing

I/0 specification

The five output files should be specified at the command line when running the

ordrev.pc program.

Order Header file

Record Record Default value Field type Description
Name
File Header | Detail file identifier FHEAD Char(5) Identifies the
header line
line number Incremented internally Number(10) | sequential line
number
Program descriptor POHD Char(5) Identifies the
program
Create date YYYYMMDDHH24MISS | Char(14) File create date
File detail File record descriptor FDETL Char(5) Identifies the
detail line
Line number Incremented internally Number(10) | sequential line
number
Action_type ‘A, M, D’ Char(1) Add, modity, or
delete action
type
Location Ordloc.location (wh only) | Number(4) Location of item
that was ordered
Transaction day sysdate Datetime(12) | system date
date/time
Po number ‘P’ + ordhead.order no Char(9) Unique
identifier of the
purchase order,
prefixed with
CP’
Vendor number Ordhead.supplier Number(7) Supplier number
of the order
Preassigned flag ‘N’ Char(1)

10 Retek Merchandising System 9.0.5

Record Record Default value Field type Description
Name
Deliver_not before date | Not_before date Date(8) Not_before date
of the order
Deliver not after date | Not after date Date(8) Not after date
of the order
Shipping terms Ordhead.freight terms Char(3) Freight Terms
of the order
Buyer code Ordhead.buyer Char(12) Buyer of the
PO.
File trailer | File record identification | FTAIL Char(5) File trailer
identifier
Line number Internally incremented Number(10) | Sequential line
number of file
Number of transaction Internally determined Number(10) | Total number of
lines transactions (not
including
FHEAD and
FTAIL)
Order Detall file
Record Record Default value Field type Description
Name
File File line FHEAD Char(5) identifies
header identifier file record
type
Line number Begins at 0000000001 Number(10) identifies
file line
number
Program PODT Char(5) identifies
descriptor the program
Create date YYYYMMDDHH24MISS | Char(14) file create
format date
File Detail file FDETL Char(5) Identifies
Detail identifier the Detail
line
line number Incremented internally Number(10) | sequential
line number

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 11

Record
Name

Record

Default value

Field type

Description

Action_type

‘A’, ‘M’, ‘D’

Char(1)

Add,
modify, or
delete
action type

Location

Ordloc.location (wh only)

Number(4)

This field
contains the
location to
which the
item will be
ordered to.

Transaction
day date/time

sysdate

Datetime(12)

system date

PO number

‘P’ + order number

char(9)

Identifies
the unique
PO number

Item id

Ordloc.sku

Char(16)

Sku on the
order

Requested unit
qty

Ordloc.qty ordered

Number(12,4)

Contains
the total
number of
items
ordered to a
specific
location.

Ordered case
pack

Ordsku.case pack size

Number(12,4)

Contains
the case
pack size
that the item
was ordered
in

Hang/Flat/Shoe
Indicator

Hanger attribute or default
door type

Char(1)

F=Flat,
H=Hang,
S=Shoe,
A=All

File
Trailer

File Line
1dentifier

FTAIL

Char(5)

Identifies
the trailer
line

line number

Incremented internally

Number(10)

sequential
line number

12 Retek Merchandising System 9.0.5

Record Record Default value Field type Description
Name
number of Total number of detail Number(10) | total
transaction lines number of
lines detail lines
in file (not
including
FHEAD
and FTAIL)
Stock Order file
Record Record Default value Field type Description
Name
File Detail file identifier | FHEAD Char(5) Identifies the header
Header line
line number Incremented internally Number(10) | sequential line
number
Program descriptor STOR Char(5) Identifies the
program
Create date YYYYMMDDHH24MISS Char(14) File create date
File detail | File record descriptor | FDETL Char(5) Identifies the detail
line
Line number Incremented internally Number(10) | sequential line
number
Action_type ‘A’ M, D’ Char(1) Add, modity, or
delete action type
Location alloc_header.wh Number(4) From Warehouse
location
Transaction day sysdate Datetime(12) | system date
date/time
distribution number ‘A’ +alloc no char(9) Allocation number.
Prefix ‘A’ for alloc
Download comment | NULL Char(30) Comment to be
printed on the label
(for future use)
Pick not before date | Not before date Date(8) Not before date of
theorder
Pick not_after date | Not after date Date(8) Not_after date of the
order
Event code Promotion or NULL Char(6) Promotion’s event

number

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 13

Record Record Default value Field type Description
Name

Event description Prom_desc or NULL Char(25) Event description

priority 1 Char(4) Priority

Order Type ALLOC HEADER.ORDER TYPE [Char(9) Type of Order : ‘PO’
or ‘PREDIST’

Break by Distro ‘N’ Char(1) Controls the mixing
of orders (distros) in
a container

Carrier Code NULL Char(4) Code of the carrier
for the order

Carrier Service Code | NULL Char(6) Carrier’s service
code for the delivery,
First Class, and son
on (Future Use)

Route NULL Char(10) Route specified for
the delivery

Ship Address NULL Char(30) The description (such

Description as the store name)

Ship Address Line 1 | NULL Char(30) Shipping Address
Line 1

Ship Address Line 2 | NULL Char(30) Shipping Address
Line 2

Ship AddressLine 3 NULL Char(30) ShippingAddressLine
3

ShipAddressLine 4 NULL Char(30) ShippingAddressLine
4

ShipAddressLine 5 NULL Char(30) ShippingAddressLine
5

City NULL Char(25) Shipping City

State NULL Char(3) Shipping State

Zip NULL Char(10) Shipping Zip

Billing Address NULL Char(30) The description (such

Description as company name).
This is the first line
of the address block.

Billing Address 1 NULL Char(30) Billing Address Line
1

Billing Address 2 NULL Char(30) Billing Address Line

2

14 Retek Merchandising System 9.0.5

Record Record Default value Field type Description
Name
Billing Address 3 NULL Char(30) Billing Address Line
3
Billing Address 4 NULL Char(30) Billing Address Line
4
Billing Address 5 NULL Char(30) Billing Address Line
5
Amount 1 NULL Number(8,2) | Amount Charge 1
Amount 2 NULL Number(8,2) | Amount Charge 2
Amount 3 NULL Number(8,2) | Amount Charge 3
PO Number ‘P + Char(9) Unique identifier of
ALLOC_HEADER.ORDER NO the purchase order,
prefixed with ‘P’.
File trailer | File record TTAIL Char(5) File trailer identifier
identification
Line number Internally incremented Number(10) | Sequential line
number of file
Number of Internally determined Number(6) Total number of
transaction lines transactions (not
including FHEAD
and FTAIL)
Stock Allocation file
Record Record Default value Field type Description
Name
File header | File line FHEAD Char(5) identifies file
identifier record type
Line Begins at 0000000001 Number(10) identifies file
number line number
Program STAL Char(10) identifies the
descriptor program
Create date | YYYYMMDDHH24MISS | Char(14) file create
format date
File Detail | Detail file FDETL Char(5) Identifies the
identifier Detail line
line number | Incremented internally Number(10) sequential
line number

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 15

Record Record Default value Field type Description
Name
Action_type | ‘A’, ‘M’, ‘D’ Char(1) Add, modify,
or delete
action type
Location alloc_header.wh Number(4) From
Warehouse
location
Transaction | sysdate Datetime(12) system date
day
date/time
distribution | ‘A’ +alloc_no char(9) Allocation
number number.
Prefix ‘A’ for
alloc
Item Id ALLOC HEADER.SKU Char(16) Unique item
identifier
requested Alloc_detail.qty allocated | Number(12,4) quantity
unit qty allocated
destination | Alloc detail.store or wh Number(4) Allocation
id location
price Item_zone_price.unit_retail | Number(5,2) Retail price
print upc NULL char(1) Print upc flag
flag
ticket type | item_ticket.ticket type Number(4) Receiving
Ticket type of
item.
priority 1 Char(4) Priority
expedite ‘N’ char(1) Flag
flag indicating
whether the
order should
be shipped
via normal or
expedite
carrier
service.
File File Line FTAIL Char(5) Identifies the
Trailer identifier trailer line
line number | Incremented internally Number(10) sequential

line number

16 Retek Merchandising System 9.0.5

Record Record Default value Field type Description
Name
number of | Total number of detail Number(6) total number
transaction | lines of detail lines
lines in file (not
including
FHEAD and
FTAIL)
Component Ticketing file layout
Record Record Default value Field type Description
Name
File File Line FHEAD Char(5) Identifies the
Header identifier trailer line
Line 0000000001 Number(10) identifies file
number line number
Program CPTT Char(4) identifies the
descriptor program
Create date | YYYYMMDDHH24MISS | Char(14) file create
date
File file record | FDETL Char(5) Detail line
detail descriptor descriptor
line Incremented internally Number(10) sequential
number line number
Action_typ | ‘A’ Char(1) 'A'dd,
e 'M'odify,
'D'elete
Location alloc_header.wh Number(4) location that
items will be
allocated
from
Transaction | vdate Datetime(12) date/time
date/time created in
RMS
distribution | alloc_header.alloc no char(9) Unique
number identifier of
the
distribution.
Master alloc_header.sku Char(16) Unique
item id identifier of

the pack item

Chapter 2 — Purchase Order Information Written to Order History Tables [ordrev] 17

Record Record Default value Field type Description
Name
Dest Id alloc_detail.store Number(4) Identifier of
the ship
destination
Component | v_packsku qty.sku Char (16) item
Item ID identifier of
the
component
price Item_zone price.unit retail | Number(7,2) Price of the
merchandise.
File file record | FTAIL Char(5) File trailer
Trailer identificati
on
line Incremented internally Number(10) sequential
number line number
number of | Total number of detail lines | Number(6) total number
transaction of transaction
lines lines in file
(not
including
FHEAD and
FTAIL)

Technical issues

Clients will have to determine how frequently to run this program. If order
versions are only needed at the end of the business day, e.g. when orders are
mailed or transmitted to suppliers, then it might be sufficient to run this program
once a day (after the replenishment orders are built and before the EDI orders are
transmitted to the supplier).

Potential future enhancement, write a report when multiple records for the same
order are on the table. This might be used to indicate whether orders versions
should be written more frequently.

Information is selected into arrays to improve performance.

This program must be run if interfacing with Nautilus.

Chapter 3 — Allocation Update Download [allocupd] 19

Chapter 3 — Allocation Update Download
[allocupd]

Modification

This program was modified by adding fields to bring shipping and billing
addresses to five lines in the stock order file.

Design overview

This program will send updated pricing information to the warehouse for the
items that will be allocated to stores. The allocupd.pc program will get price
change information for any allocations, which have been created, and write the
information to stock order and stock allocation flat files. This program will
ensure that any SKU/store unit retail information that is changed after the
allocation has been downloaded will be updated in Nautilus system.

The new batch program will loop through the price_hist table, selecting records
whose unit retail will change tomorrow, and transaction type is in 4 or 11. Any
allocations that have been created for the SKU/store combination will then be
downloaded with the new retail.

The allocation update download program will also produce a file that contains the
ticketing and retail information for non-sellable pack items that will be cross-
docked to store locations. This will allow the warehouse to correctly ticket the
component items before the merchandise leaves to its final store destination.

Scheduling constraints
Processing Cycle: N/A

Scheduling Diagram: This program should always be run after pcext.pc and
after ordrev.pc

Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: multi threading available

20 Retek Merchandising System 9.0.5

Restart recovery

The logical unit of work is a row from the price_hist table, selecting information
for all SKU/store combinations that have a price change in effect for tomorrow.
This program will contain restart recovery and multi threading based on store.
The driving cursor is as follows:

select distinct ‘S’, ---“normal” SKU, which includes staple, fashion SKU, and
pack item

r.unit _retail,
0 pack_no,
r.sku,
r.store
from price_hist r
where r.tran_type in (4, 11)
and r.action_date = TO DATE(:0s_tomorrow, 'YYYYMMDD")

UNION ALL /* this union selects to find if there were price changes for the
SKUs in a pack item */

Select distinct ‘P’, ---- component pack item indicator
r.unit_retail,
vpg. pack_no,
vpg. sku,
r.store
from price_hist,
v_packsku_qty vpq,
packhead ph
where r.sku = vpq.sku
and ph. pack_no = vpqg.pack_no
and ph.sellable_ind = ‘N
and r.tran_type in (4, 11)
and r.action_date = TO DATE(:os_tonorrow, 'YYYYMVDD);

Retrieve all SKUs that have price changes in effect tomorrow. This information
will be written to the Stock Order and Stock Allocation detail files. Also, get all
component SKUs of the non-sellable packs that have price changes. The
component retail changes will be written to the component ticketing file.

Program flow
N/A

Chapter 3 — Allocation Update Download [allocupd] 21

Shared modules
N/A

Function level description
init()
* Declare restart variables
* Get system date.
* Open output files.
* Write FHEAD record to files.
e Call Init_buffers().

init_buffers()
* Set up format strings for outputting FHEAD, FDETL and FTAIL records.

process()

Declare a cursor to retrieve any allocations that contain that SKU/store
combination.

sel ect ad.all oc_no,
ah. order_no
ad.gqty_all ocated
from al |l oc_header ah,
alloc_detail ad
where ah.alloc_no = ad.alloc_no
and ad.store =rec.store --- fromprice hist
and ah. sku = rec. sku --- fromprice hist
and ad.qty_all ocated > NVL(ad.qty_transferred, 0)
order by order_no;
Declare a cursor to check for order revision.
Select ‘X’
From ordhead rev
Where order no =:0s_order no
And origin_type = ‘V’;
For each row meeting our criteria from the price hist table.
* Default action_type to ‘M’
* Default priority to ‘1’
e Default expedite flag to ‘N’

22 Retek Merchandising System 9.0.5

Loop through price hist records (fetch rows into array, equal to commit max

counter).

For each SKU/store combination found on price_hist, get allocation details for

the SKU/store.

If the order number on the allocation has changed (the order number will be
initialized to 0) from the previous order number, then check if a revision exists
for that order. If a revision does not exist for an order, then we will not send
allocation information to Logistics, because the order has not been downloaded

yet.

If order revision exists,

* Ifthe SKU is not a component SKU (i.e. indicator = ‘S’)

= Fetch the ticket type from the item_ticket table where the po_print_type
= ‘R’ (ie. ticket at receiving location). If no ticket is found, then the
ticket type will default to ‘0000°.

= Write detail record (FDETL) to the Stock Order and Stock Allocation
detail files for the new unit retail created in RMS.

» Ifindicator = ‘P’ (i.e. processing a pack item component)

» Write detail record (FDETL) to the Component Ticketing file for the
new unit retail created in RMS.

final()

* Write file trailer (FTAIL), copy temporary file to final file, close files.

I/0 specification

All character variables are right-padded with blanks and left justified; all
numerical variables are left-padded with zeroes and right-justified. Missing

variables are blank.

Stock Order file

Record Record Default value Field type Description
Name

File Detail file identifier | FHEAD Char(5) Identifies the header line

Header
Line number Incremented internally | Number(10) | sequential line number
Program descriptor STOR Char(5) Identifies the program
Create date YYYYMMDDHH24MI | Char(12) File create date

File detail | File record descriptor | FDETL Char(5) Identifies the detail line
Line number Incremented internally | Number(10) | sequential line number
Action_type ‘M’ Char(1) Add, modify, or delete

action type

Chapter 3 — Allocation Update Download [allocupd] 23

Record Record Default value Field type Description
Name

Location alloc_header.wh Number(4) From Warchouse
location

Transaction day sysdate Datetime(12) | system date

date/time

distribution number ‘A’ + alloc_no char(9) Allocation number.
Prefix ‘A’ for alloc

Downloadcomment NULL Char(30) Comment to be printed
on the label (for future
use)

Pick not before date | Not before date Date(8) Not_before date of the
order

Pick not after date | Not after date Date(8) Not after date of the
order

Event code Promotion or NULL Char(6) Promotion’s event
number

Event description Prom_desc or NULL Char(25) Event description

priority 1 Char(4) Priority

Order Type code detail.code Char(9) Type of Order: PO or
PREDIST.(Taken from
alloc_header.order type)

Break byDistro ‘N’ Char(1) Contols the mixing of
orders (distros) in a
container

Carrier Code NULL Char(4) Code of the carrier for
the order

Carrier Service Code | NULL Char(6) Carrier’s service code
for the delivery, First
Class, and son on
(Future Use)

Route NULL Char(10) Route specified for the
delievery

Ship Address NULL Char(30) The description (such as

Description the store name). This is
the first line of the
address block

Ship Address Line 1 | NULL Char(30) Shipping Address Line 1

Ship Address Line 2 | NULL Char(30) Shipping Address Line 2

Ship Address Line 3 | NULL Char(30) Shipping Address Line 3

24 Retek Merchandising System 9.0.5

Record Record Default value Field type Description
Name

Ship Address Line4 | NULL Char(30) Shipping Address Line 4

Ship Address Line 5 | NULL Char(30) Shipping Address Line 5

City NULL Char(25) Shipping City

State NULL Char(2) Shipping State

Zip NULL Char(9) Shipping Zip

Billing Address NULL Char(30) The Description(such as

Description company name). This is
the first line of the
address block.

Billing Address Line | NULL Char(30) Billing Address Line 1

1

Billing Address Line | NULL Char(30) Billing Address Line 2

2

Billing Address Line | NULL Char(30) Billing Address Line 3

3

Billing Address Line | NULL Char(30) Billing Address Line 4

4

Billing Address Line | NULL Char(30) Billing Address Line 5

5

Amount 1 NULL Number(8,2) | Amount Charge 1

Amount 2 NULL Number(8,2) | Amount Charge 2

Amount 3 NULL Number(8,2) | Amount Charge 3

Po number ‘P’ + Char(9) Unique identifier of the

Alloc_header.order_no purchase order, prefixed
with ‘P’
File trailer | File record TTAIL Char(5) File trailer identifier

identification

Line number Internally incremented | Number(10) | Sequential line number
of file

Number of Internally determined Number(10) | Total number of

transaction lines

transactions (not
including FHEAD and
FTAIL)

Chapter 3 — Allocation Update Download [allocupd] 25

Stock Allocation file

File Header
Record Default value Field type Description
File line FHEAD Char(5) identifies file
identifier record type
Line number Begins at 0000000001 | Number(10) identifies file
line number
Program STAL Char(5) identifies the
descriptor program
Create date YYYYMMDDHH24MI | Char(12) file create date
format
File Detail
Record Default value Field type Description
Detail file FDETL Char(5) Identifies the
identifier Detail line
line number Incremented Number(10) sequential line
internally number
Action_type ‘M’ Char(1) type of record is
Modity
Location alloc_header.wh Number(4) From Warehouse
location
Transaction day | sysdate Datetime(12) system date
date/time
distribution A’ +alloc_no char(9) Allocation
number number. Prefix
‘A’ for alloc
Item id alloc_header.sku Char(16) Unique item
identifier
requested unit qty_allocated Number(12,4) quantity allocated
qty
destination id price hist.store Number(4) Allocation
location
price price hist.unit retail | Number(7,2) Retail price
print upc flag ‘N’ char(1) Print upc flag
ticket type item_ticket Number(4) Ticket type
priority 1 Char(4) Priority

26 Retek Merchandising System 9.0.5

Record Default value Field type Description
expedite flag ‘N’ char(1) Expedite flag
File Trailer
Record Default value Field type Description
File Line identifier | FTAIL Char(5) Identifies the
trailer line
line number Incremented Number(10) sequential line
internally number
number of Total number of | Number(6) total number of
transaction lines detail lines detail lines in file
(not including
FHEAD and
FTAIL)
Component Ticketing file layout
File Header
Record Default value Field type Description
File Line FHEAD Char(5) Identifies the
identifier trailer line
Line number 0000000001 Number(10) Identifies file
line number
Program CPTT Char(4) Identifies the
descriptor program
Create date YYYYMMDDHH24MISS | Char(14) File create date
File Detail
Record Default value Field type Description
file record FDETL Char(5) Detail line
descriptor descriptor
line number Incremented Number(10) sequential line
internally number
Action_type ‘A’ Char(1) 'A'dd, 'M'odify,
D'elete
Location alloc_header.wh Number(4) Location that
items will be
allocated from

Chapter 3 — Allocation Update Download [allocupd] 27

File Trailer

Record Default value Field type Description
Transaction vdate Datetime(12) date/time created
date/time in RMS
distribution alloc_header.alloc_ | char(9) Unique identifier
number no of the

distribution.
Master item id alloc_header.sku Char(16) Unique identifier
of the pack item
Dest Id alloc_detail.store Number(4) Identifier of the
ship destination
Component Item | v_packsku qty.sku | Char (16) item identifier of
ID the component
price price_hist.unit retai | Number(7,2) Price of the
1 merchandise.

Record Default value Field type Description
file record FTAIL Char(5) File trailer
identification
line number Incremented Number(10) sequential line

internally number
number of Total number of Number(6) total number of

transaction lines

detail lines

transaction lines in
file (not including
FHEAD and
FTAIL)

Technical issues

N/A

Chapter 4 — tsfdnld 29

Chapter 4 — Approved Warehouse Transfers
Download [tsfdnld]

Modification

In this program, the download file layout for THEAD and TDETL transaction
type was modified to add a space between each column according to RLS flat file
format. The program was also modified by changing the length of carrier code to
4 and order number to 8.

Design overview

Function

This program processes all warehouse transfers that are approved, with a freight
code of Normal or Expedite and have a release date equal to or less than
tomorrow. If the destination location is a store, the store must be on the ship
schedule to be shipped tomorrow. Shipments are created for these transfers and
the shipment information is downloaded into a file to be used by an external
WMS. Transfer status will be updated to ‘E’ (Extracted).

This program will produce two additional files. The first file contains component
ticket and retail information, for non sellable pack items. This will provide the
correct ticketing information for the warehouse to ticket the components of non
sellable pack items. The second file contains outbound work order processing
information for stock allocations. The work order information is found on the
work order tables, wo wip, wo head, and wo_sku loc.

When interfacing with Nautilus all three files will need to be converted into the
proper flat file format, so that Nautilus can process.

Note: Transfers that are supposed to be combined into Combined Transfer (CT
transfer type) will not be downloaded by this program. Transfers with a freight
type = ‘E’ (Expedite) and a release date <= today will ignore the shipping
schedule and be downloaded tonight. Transfers with a freight type = ‘H’ (Hold)
will be ignored by this program.

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
TSFALLOC Yes Yes No No No
TSFHEAD Yes Yes Yes Yes No
TSFDETAIL Yes Yes No No No
SHIPMENT Yes Yes Yes No No
STORE SHIP DATE | Yes Yes No No No
WO HEAD Yes Yes No No No
WO _SKU LOC Yes Yes No No No
WO WIP Yes Yes No No No

30 Retek Merchandising System 9.0.5

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
ORDCUST Yes Yes No No No
CUSTOMER Yes Yes No No No
ITEM TICKET No Yes No No No
V_PACKSKU QTY | No Yes No No No

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Scheduling constraints
Processing Cycle: N/A
Scheduling Diagram: Phase 3. Constraints: after TSFCOMB.PC
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Chapter 4 — tsfdnld 31

Restart recovery

SELECT t sfhead. tsf_no,

FROM

WHERE
AND
AND
AND
AND

AND
(+)
AND

tsfhead. fromloc_type,
tsfhead. froml oc,
tsfhead.to_l oc_type,
tsfhead.to_ Il oc,

t sf head. t sf _t ype,

t sfhead. frei ght _code,

ROW DTOCHAR(t sf head. r owi d) ,
";'"||to_char(tsfhead.tsf_no),
tsfdetail.sku,
(tsfdetail.tsf_qty)*1000,

nvl (tsfdetail.inv_status, 0)
t sf head,

tsfall oc,

tsfdetail

tsfhead. status = ' A

tsfhead. frei ght _code i

5

("N,"E)
tsfhead.froml oc_type "W
tsfhead.tsf_type not in ("PO,"'SR)

nvl (tsfalloc.nerge_ind,"N) ="'N

tsfhead.tsfalloc_no = tsfalloc.tsfalloc_no

nvl (tsfalloc.rel ease_date,

to_date(:ps_tonorrow, ' YYYYMVDD))

AND
AND
AND

999)
ORDER BY

<= to_date(:ov_tonorrow, ' YYYYMVDD)
tsfdetail.tsf _no = tsfhead.tsf _no
nvl (tsfdetail.tsf_qty,0) > 0

tsfhead.tsf_no > nvl (:ora_restart _tsf _no, -

t sf head. t sf _no;

32 Retek Merchandising System 9.0.5

Program flow

Priming Fetch of
Driving Cursor

On Ship
Schedule?

A

No

Write shipments to arrays

write transfer header to output file

Loop

A

Loop

On Ship
Schedule?

Yesj

write details to output list

Fetch <

Transfer
Complete?

Yesj

write detail list to output file
write shipment info to output file
update current transfer to 'E' status

For completed transfer

!

If commit will occur (count exceeded)
then insert shipment arrays

A

On Ship
Schedule?

Yesﬁ

Write shipments to arrays
write transfer header to output file

Call Commit Logic

.

write detail list to output file
write shipment info to output file
update current transfer to 'E' status

!

End

Chapter 4 — tsfdnld 33

Shared modules

Function

NEXT_SHIPMENT_ SQL used to get the next shipment number.

PRICING _ATTRIB _SQL.GET_ RETAIL(): get the unit retail from
item_zone pricing table for a sku/store.

level description

Init()

Initialize restart recovery.

Open output file.

Format header, detail, and shipment buffers (for writing output).
Determine tomorrow’s date

Determine order type

Call function get order type to determine order type

Call function to write output file header information, write_std_header()

Process()

This function should select all transfer details and quantities for transfers that are
ready to ship from a warehouse tomorrow. Each transfer (header, detail
information, and shipment information) should be written to an output file for the
WMS to upload with transfer requirements. When a transfer has been completed,
that is all information has been written to a file and the shipment information has
been created, its status will be updated to Extracted (‘E’).

The flow of logic is as follows:

* Fetch the first transfer record from the driving cursor.

* Get_ship flag (determines if current transfer is due to ship tomorrow)
» if the transfer should be shipped then

= call get thead info() to get the customer address information if it is a
customer order type of transfer.

= Call write_recs_to_struct() to create shipment number and write records
to structure

= Call write_head to_str() to write to the THEAD structure.
e Endif;
* Main processing loop through the transfer tables

» [f transfer should be shipped then

¢ Call Get_detail_info() to get the ticketing and retail information.
Also, decode the expedite flag.

¢ Call write_detail to_list() write TDETL to link list

¢ Call Process_wo() to process the work order information

34 Retek Merchandising System 9.0.5

= Endif;
= Fetch next transfer record
= If the transfer number just changed, then

¢ If the transfer should be shipped write into from the previous transfer
to the file

» Call Write_list_to_file() write link list of details to flat file.
» Call Write wo _to_file()

» Call write_pack to_file()

» Call write tail to_file()

End if;

Call update records() to update the appropriate tables

Now start working on the newly fetched transfer

Call get_ship_flag() to see if new transfer should be shipped
If transfer should be shipped, then

» Call Get_thead info()

» Call write recs_to_struct()

» Call write_head to_str()

¢ Endif;

= Endif;

= Commit records and updates.

* & & o o

* End of transfer loop
» Ifthe last transfer fetched should be shipped, then write final to file
= (Call write list to file()
= (Call write wo _to_file()
= Call write_pack to_file()
= Call write_tail to_file()
e Endif;
* Call update records()

Get_ship_flag()

This function calls validate ship schedule() to determine if transfer will be
shipped tomorrow. If the transfer is set to expedite status, then the shipping
schedule is ignored and the transfer is processed.

validate_ship_schedule()

This function validates that a ship date exists between today and tomorrow for
the from warehouse and the to store combination (held on STORE _SHIP_DATE
table).

Chapter 4 — tsfdnld 35

get_thead_info()

This function retrieves the customer address from the customer table for the
customer order transfer. If the customer is going to pick up the merchandise,
then a message, “customer order for: < customer name > “ will be displayed in
the event description. This will indicate to the warehouse that it is a customer
order, pick up.

* If customer order and ship direct
= set break by distro value = ‘Y’.
= populate billing and shipping addresses with customer address info.
= Set dest. Id = courier value from tsthead
= Set Courier/route/service codes = NULL
* Ifnot customer order
= set break by distro value = ‘N’
= do not populate billing and shipping address
= set dest. Id = store or warchouse

= get courier/route/service codes = NULL

get_detail_info()
This function decodes the freight code
» if freight code = ‘E’ then
= expedite flag =Y’
* else
= expedite flag= ‘N’;
e endif;

Get the ticket type for the item from item_ticket table where the po_print_type =
‘R’ (i.e. print at the time of receipt). There may be several ticket types for the
item with ‘R’ print type.Ttherefore, get the first ticket type in the fetch.

Get Unit retail for the item/location from the item_zone price tables by calling
the package PRICING_ATTRIB_SQL.GET RETAIL.

If item is going to a store location call function comp_tckt() to write component
ticketing file

process_wo ()

This function retrieves all the work order information for the selected stock
allocation and Calls write_ wo_to_list()

Write_wo_to_list()

This function writes the work order information to the structures

36 Retek Merchandising System 9.0.5

Write_wo_to_file()

This function prints out the work order structure to flat file

Comp_tckt()
This function selects from pack head for the item and sellable ind = ‘N’.
e Ifnon Sellable ‘P’ack item is found

= loop through component items that make up the pack item on the
v_packsku_qty table.

= Call pricing_attrib_sql.get retail package to get the retail for the
component SKU.

= Call write_pack to list() Write FDETL record for component SKU,
retail, and ticket type to file

= End loop;
e endif;
write_pack_to_list()

This function writes the component ticketing and retail information to the
structure

write_pack_to_file()

This function prints component ticketing and retail information structure to flat
file

Write_std_header()

This function Increment counters and writes FHEAD record to file

Write_std_trailer()

This function increments counters and writes FTAIL record to file

write_tail_to_file()

This function writes the TTAIL structure to the output file

write_detail_to_list()

This function makes detail record string (TDETL) and add to linked list and calls
add_dtl_to_list() function.

add_dtl_to_list()
This function will add ps_temp_dtl string to linked list

get_order_type()
This function gets order type from code_detail

write_head_to_str()

This function gets order header string (THEAD) and write structure

Chapter 4 — tsfdnld 37

I/0 specification

File 1/0

Write_recs_to_struct()

This function will be called when a new transfer number is encountered.
Transfer header information is written to arrays that will update the status. A
new shipment number is created and shipment information is written to arrays

that will insert new shipment records into the shipment table.

write_list_to_file()

This function writes linked list detail records to file

update_records()

* perform array update of tsthead using rowid, set status = ‘E’

» perform array insert of newly created shipments

Final()

Call function to write output file trailer information, write std_trailer().

The tsfdnld.pc needs to be modified to change the format of Unit Quantity, when
downloading information to RDM. The new Unit Quantity field for the interface
is now Number(12,4) opposed to the original Number(6).

Output files should be specified on the command line.

Transfer download file

Record Field Field Type FieldValue Description
Name Name
File Header | File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Number(10) specified by external Line number of the
Sequence system current file
File Type Char(4) TSFD Identified file as
Definition 'Inventory
Adjustments'
File Create | Date Sysdate Date file was
Date written by external
system
Transaction | File Type Char(5) THEAD Identifies file
Header Record record type
Descriptor
File Line Number(10) Specified by external Line number of the
Sequence system current file

38 Retek Merchandising System 9.0.5

Record Field Field Type FieldValue Description
Name Name

Transaction | Number(14) Specified by external Used to force

Set Control system unique transaction

Number check

Action Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,

Type ‘M’Odify

Delimeter * | Char(1) <Space>

Location Number (4) Tsfhead.from loc Code for the DC.

(DC)

Delimeter * | Char(1) <Space>

Transaction | YYYYMMDDHHMI | Period.vdate Date/Time created

Date/Time in RMS

Delimeter * | Char(1) <Space>

Distribution | Char(9) Shipment.shipment Unique identifier

Number of the distribution.

Delimeter * | Char(1) <Space>

Download | Char (30) NULL Comment to be

Comment printed on the label
(for future use)

Delimeter * | Char(1) <Space>

Pick-Not- YYYYMMDD Period.vdate Date before which

Before-date merchandise will
not be distributed

Delimeter * | Char(1) <Space>

Pick-Not- YYYYMMDD Period.vdate + (specified | Date by which

After-Date time from codes table) merchandise must
be distributed.
Extra days will be
determined by a
code type =
‘DATE’

Delimeter * | Char(1) <Space>

Event Code | Char(6) NULL or Identifier of event.

tsfalloc.tsfalloc_no Only used for

stock allocations

Delimeter * | Char(1) <Space>

Event Char(25) NULL or Description of

Description tsfalloc.alloc_desc event. Only used

for stock
allocations

Chapter 4 — tsfdnld 39

Record Field Field Type FieldValue Description
Name Name

Delimeter * | Char(1) <Space>

Priority Char(4) Default to 1 Priority 1=highest

Delimeter * | Char(1) <Space>

Order Type | Char(9) Default from system Order type

optionTables (Automatic,Manual

orWave)

Delimeter * | Char(1) <Space>

Break by Char(1) Default from codes tables | Controls the

Distro mixing of orders
(distros) in a
container

Delimeter * | Char(1) <Space>

Carrier Char(4) NULL Code of the carrier

Code for the order

Delimeter * | Char(1) <Space>

Carrier Char(6) NULL Carrier’s service

Service code for the

Code delivery, First
Class, etc.

Delimeter * | Char(1) <Space>

Route Char(10) NULL Route specified for
the delivery

Delimeter * | Char(1) <Space>

Ship Char(30) NULL or customer address | Used to store only

Address customer order

Description (ship direct)
addresses.

Delimeter * | Char(1) <Space>

Ship Char(30) NULL or customer address | Shipping address

Address line 1. Used to

line 1 store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

40 Retek Merchandising System 9.0.5

Record Field Field Type FieldValue Description
Name Name

Ship Char(30) NULL or customer address | Shipping address

Address line 2. Used to

line 2 store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

Ship Char(30) NULL or customer address | Shipping address

Address line 3. Used to

line 3 store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

Ship Char(30) NULL or customer address | Shipping address

Address line 4. Used to

line 4 store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

Ship Char(30) NULL or customer address | Shipping address

Address line 5. Used to

line 5 store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

City Char(25) NULL or customer address | Shipping city.
Used to store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

State Char(3) NULL or customer address | Shipping state.

Used to store only
customer order
(ship direct)
addresses.

Delimeter *

Char(1)

<Space>

Chapter 4 — tsfdnld 41

Record Field Field Type FieldValue Description
Name Name

Zip Char(10) NULL or customer address | Shipping zip. Used
to store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

Billing Char(30) NULL or customer address | The description

Address (such as company

Description name, etc.). This is
the first line of the
address block.
Used to store only
customer order
(ship direct)
addresses.

Delimeter * | Char(1) <Space>

Billing Char(30) NULL or customer address | Billing address line

Address 1. Used to store

line 1 only customer
order (ship direct)
addresses.

Delimeter * | Char(1) <Space>

Billing Char(30) NULL or customer address | Billing address line

Address 2, Used to store

line 2 only customer
order (ship direct)
addresses.

Delimeter * | Char(1) <Space>

Billing Char(30) NULL or customer address | Billing address line

Address 3, Used to store

line 3 only customer
order (ship direct)
addresses.

Delimeter * | Char(1) <Space>

Billing Char(30) NULL or customer address | Billing address line

Address 4, Used to store

line 4 only customer

order (ship direct)
addresses.

Delimeter *

Char(1)

<Space>

42 Retek Merchandising System 9.0.5

Record Field Field Type FieldValue Description
Name Name
Billing Char(30) NULL or customer address | Billing address line
Address 5, Used to store
line 5 only customer
order (ship direct)
addresses.
Delimeter * | Char(1) <Space>
Amount 1 Number(8, 2) NULL Amount charge 1
Delimeter * | Char(1) <Space>
Amount 2 | Number(8, 2) NULL Amount charge 2
Delimeter * | Char(1) <Space>
Amount 3 Number(8, 2) NULL Amount charge 3
Delimeter * | Char(1) <Space>
Order No. Char(8) NULL Purchase
Orderldentifier
Transaction | File Type Char(5) TDETL Identifies file
Detail Record record type
Descriptor
File Line Number(10) Specified by external Line number of the
Sequence system current file
Transaction | Number(14) Specified by external used to force
Set Control system unique transaction
Number check
Action Char(1) ‘A’ (hardcode) ‘A’dd, ‘D’elete,
Type ‘M’Odify
Delimeter * | Char(1) <Space>
Location Number (4) NULL Code for the DC
(DC) (future use)
Delimeter * | Char(1) <Space>
Transaction | YYYYMMDDHHMI | Period.vdate Date/Time created
Date/Time in RMS
Delimeter * | Char(1) <Space>
Distribution | Char(9) Shipment.shipment Unique identifier
Number of the distribution.
Delimeter * | Char(1) <Space>
Item ID Char(16) Tsfdetail.sku Item identifier
Delimeter * | Char(1) <Space>

Chapter 4 — tsfdnld 43

Record Field Field Type FieldValue Description
Name Name
Requested | Num(12,4) Tsfdetail.tsf qty Number of units to
Unit Qty distribute to the
destination
Delimeter * | Char(1) <Space>
Destination | Number (4) Tsfhead.routing_code (if Identifier of
ID ship direct to Customer shipping
order)Tsfhead.to loc (if destination. If
store or wh) customer order and
ship direct, then
field contains a
carrier value. Ifit
is direct to store or
warehouse, then
populate with the
store or warchouse
location.
Delimeter * | Char(1) <Space>
Price Number (7,2) Item_zone price.unit retail | Price of
merchandise
Delimeter * | Char(1) <Space>
Print UPC | Char(1) ‘N’ (hardcode) Whether to print
Flag UPC on tickets
‘Y’ ’N’) (Future use)
Delimeter * | Char(1) <Space>
Ticket Number (4) Item_ticket.ticket type Type of ticket
Type refers to ticket type
table. This field
will be populate
with the “ticket at
receipt”.
Delimeter * | Char(1) <Space>
Priority NUMBER (4) 1 (hardcode) Priority 1 = highest
Delimeter * | Char(1) <Space>

Expedite
Flag

VARCHAR(1)‘Y’ or
‘N’

Tsfhead.freight code
(translate value to ‘Y’ or
EN’)

Flag indicating
whether the order
should be shipped
via normal or
expedited carrier
service

44 Retek Merchandising System 9.0.5

Record Field Field Type FieldValue Description
Name Name

Transaction | File type Char(5) TTAIL Identifies file

Trailer record record type
descriptor
File Line Number(10) Specified by external Line number of the
sequence system current file
Transaction | Number(6) Sum of detail lines Sum of the detail
detail line lines within a
count transaction

File Trailer | File Type Char(5) FTAIL Identifies file
Record record type
Descriptor
File Line Number(10) specified by external Line number of the
Sequence system current file
File Line Number(10) total detail + transaction sum of all
Count head lines transaction lines,

not including file
header and trailer

Work Order Download File

RecordName Field Field Type Default Value Description
Name
File Header File Type Char(5) FHEAD Identifies file record
Descriptor type
File Line Number(10) Ten ID of current line being
Identifier zeroes:0000000000 | processed by input file.
File Type Char(4) OWOD Identifies file as
Definition ‘Outbound Work Order
Download’
File Create | Date Create date date file was written by
Date external system
Trans-action | File Type Char(5) FDETL Identifies file record
Detail Descriptor type
File Line Number(10) Incremented ID of current line being
Identifier internally processed by input file.

Chapter 4 — tsfdnld 45

RecordName Field Field Type Default Value Description
Name

Action Char(1) ‘A’ The action being

Type performed on the work
order. This will always
be ‘A’ since transfer
work orders can’t be
modified once they’ve
been extracted.

Location Char(4) Wo_sku loc.wh When an item is

(DC) crossdocked, this field
holds the value of the
flow-through
warehouse. Otherwise
it holds the value of the
final destination.

Transaction | Char (12) format: Vdate sysdate without the

Date/Time | YYYYMMDDHHMI seconds

Distribution | Char(9) Shipment This field will hold the

Number shipment number of
the transfer the work
order is associated
with.

Item ID Char (16) Wo_sku loc.sku Valid item identifier
for a staple SKU,
fashion SKU, or Pack
Item

Dest ID Number(4) Wo_sku loc.location | Unique identifier of the
final shipping
destination.

WIP Number(7) Wo wip.seq no Work in Progress

Sequence Sequence Number

No.

WO WIP Char (6) Wo_wip.code WWIP code from

Code codes table

File Trailer File Type Char(5) FTAIL Identifies file record

Descriptor type

File Line Number(10) Incremented ID of current line being

Identifier internally processed by input file.

File Record | Number(10) DeterminedInternally | Number of

Counter records/transactions

processed in current
file (only records
between head & tail)

46 Retek Merchandising System 9.0.5

Component ticketing file

Record Record Default value Field type Description
Name
File Header | File Line FHEAD Char(5) Identifies the
identifier trailer line
Line number | 0000000001 Number(10) identifies file
line number
Program CPTT Char(4) identifies the
descriptor program
Create date | YYYYMMDDHH24MISS | Char(14) file create
date
File detail file record FDETL Char(5) Detail line
descriptor descriptor
line number | Incremented internally Number(10) sequential
line number
Action_type | ‘A’ Char(1) 'A'dd,
'M'odify,
'D'elete
Location Tsfhead.from loc Number(4) location that
items will be
transferred
from
Transaction | vdate Datetime(12) date/time
date/time created in
RMS
distribution | Shipment.shipment char(9) Unique
number identifier of
the
distribution.
Master item | Tsfdetail.sku Char(16) Unique
id identifier of
the pack
item
Dest Id Tsfdetail.to loc Number(4) Identifier of
the ship
destination
Component | v_packsku qty.sku Char (16) item
Item ID identifier of
the
component
price Item_zone price.unit_retail | Number(7,2) Price of the

merchandise.

Chapter 4 — tsfdnld 47

Record Record Default value Field type Description
Name
File Trailer | file record FTAIL Char(5) File trailer
identification
line number | Incremented internally Number(10) sequential
line number
number of Total number of detail Number(6) total number
transaction lines of
lines transaction
lines in file
(not
including
FHEAD and
FTAIL)

Note: There is a space between fields in the RLS flat file format, except for the

standard Retek flat file information, such as file type descriptor, file line

identifier, file record counts.

Technical issues
N/A

Chapter 5 — Deals — cost calculations [dealcalc] 49

Chapter 5 — Deals — cost calculations [dealcalc]

Modification

This program was modified by changing the order-by clause in the driving
CUrsOr.

Design overview

This new batch program will calculate the net cost, net net cost, and dead net net
cost for all items that are on the deal sku_temp table (which should contain all
items or items in hierarchies on deals that are on the deal _queue table, which will
contain deals that are about to be approved, unapproved, or closed—any action
that would potentially change which deals affect an item). All active deals for
each item will be used in the calculation. Once calculated, the costs will be
inserted into the deal sku cost table.

Scheduling constraints

Processing Cycle: Phase I (daily)

Scheduling Diagram: Must be run after ditinsrt.pc, which populates the
deal sku temp table

Pre-Processing:
Post-Processing: Call prepost to delete all records from deal sku temp.
Threading Scheme: SUPPLIER

50 Retek Merchandising System 9.0.5

Restart recovery
SELECT dst . sku,
dst. supplier,

dst.origin_country id, /* DST country not Dl
country—+f no country given, DO expand out */

TO CHAR(dst.start _date,’ YYYYMVDD),
NVL(TO_CHAR(dh. cl ose_date,' YYYYMVDD),"'-1'),

NVL(TO CHAR(dh. cl ose_date +
1, YYYymwoo),'-1"),

sups. currency_code,
isc.unit_cost,
dh. deal _i d,
dd. deal detail _id,
dh. currency_code,

NVL(dst.location, =-1) /* DST loc not DI | oc—expand out
| ocation unl ess | oc-i ndependent */

NVL(dst.loc_type,” N)

DECODE(dd. cost _appl _ind," N, 1, NN, 2," DNN, 3)
cost _appl _num

dd. deal _cl ass,
dd. t hreshol d_val ue_t ype,
NVL(dd. qty_thresh_buy item -9999),
NVL(dd. qty_thresh_buy qty, 0),
NVL(dd. qty_thresh recur_ind, N),
NVL(dd. qty_t hresh_buy target, 0),
NVL(dd. qty_thresh_get _item -9999),
NVL(dd. qty_thresh_get _qty, 0),
NVL(dd. qty thresh free_ itemunit _cost, 0),
NVL(dd. qty_thresh _get type, ‘Z'),
NVL(dd. qty_t hresh_get val ue, 0),
TO_NUMBER(di . merch_Il evel , 0),
TO _NUMBER(NVL(di.org_level, 99)
FROM deal _sku_tenp dst,
deal head dh,
deal detail dd,
deal item oc di
sups,

item sup_country isc,

Chapter 5 — Deals — cost calculations [dealcalc] 51

v_restart_supplier vrs

VWHERE dd.deal _id = dh.deal _id

AND di . deal _id = dd. deal _id

AND di . deal detail _id = dd.deal detail _id
AND dh. status = ‘A

AND dh.type in ("A,"P) [/* only use
pronoti onal / annual , not PO specific or vendor funded */

AND di.excl _ind = ‘N

AND sups. supplier = dst.supplier

AND isc.item = dst.sku

AND i sc. supplier = dst.supplier

AND isc.origin _country id = dst.origin_country_id
AND ((dh.close_date is NOT NULL

AND dst.start_date BETWEEN DECODE(rebate_ind, 'Y,
NVL(dd.rebate_active date, dh.active date),
dh. acti ve_date)

AND dh. cl ose_dat e)
OR (dh.cl ose_date is NULL

AND dst.start_date >= DECODE(rebate_ind, 'Y,
NVL(dd.rebate_active date, dh.active date),
dh. active _date)))

AND ((dh. supplier is NOT NULL AND dst.supplier =
dh. supplier) /* supplier hierarchy match */

OR(dh. partner_type = *S1' AND
i sc.supp_hier_Ivl_1 = dh.partner_id)

OR(dh. partner_type = *S2° AND
i sc.supp_hier_Ivl_2 = dh.partner_id)

OR(dh. partner_type = *S3" AND
i sc.supp_hier_lvl_3 = dh.partner_id))

AND ((di.nmerch_level = 1)

OR (di.nerch_| eve
dst . di vi si on

OR (di.nerch_l eve
dst. group_no)

OR (di.nerch_level = 4 AND di.dept =

2 AND di . division =

3 AND di.group_no =

dst. dept)

OR (di.nerch_level =5 AND (di.dept =
dst.dept AND di.class = dst.class))

OR (di.nerch_level = 6 AND (di.dept =
dst.dept AND di.class = dst.class AND di.subcl ass =
dst. subcl ass))

OR (di.nerch_level =7 AND di.style =
dst.style) --styl e/col or hierarchy

52 Retek Merchandising System 9.0.5

OR (di.nerch_level = 8 AND (di.style
dst.style AND di.color = dst.color)

OR (di.nerch_level = 9 AND (di.style =
dst.style AND ((di.sizel = dst.sizel OR di.sizel is
NULL) AND (di.size2 =
dst.size2 OR di.size2 is NULL)))

OR (di.nerch_level = 10 AND di.sku =
dst . sku))

AND (di.org level is NULL AND dst.chain is NULL
AND dst.area is NULL AND dst.region is NULL

AND dst.district is NULL AND dst.location is
NULL

OR (di.org_leve
OR (di.org_leve
OR (di.org_leve

1 AND di.chain = dst.chain)

2 AND di.area = dst.area)

3 AND di.region = dst.region)
4 AND di.district

OR (di.org_leve
dst.district)

5 AND di .l ocation

OR (di.org_leve
dst. | ocation))

AND (di.country id = dst.country id OR di.country_ id is
NULL)

/* exclude clause here —don’t fetch excluded skus */
AND (NOT EXI STS

SELECT ‘ x’

FROM deal _item oc dil
WHERE di 1.deal _id = di.deal _id
AND di 1. deal detail _id = di.deal _detail id
AND di 1.excl _ind ="'Y

AND ((dil.nerch_level = 1)

OR (di 1. nmerch_l eve
di 1.division = dst.division

OR (dil.nmerch_level = 3 AND
di 1. group_no = dst.group_no)

OR (dil.merch_level = 4 AND
di 1. dept = dst.dept)

OR (dil.nmerch_level =5 AND
(di 1. dept = dst.dept AND di1l.class = dst.class))

OR (dil.merch_level = 6 AND (dil.dept = dst.dept AND
di 1. cl ass = dst.cl ass

2 AND

AND
di 1. subcl ass = dst. subcl ass))

OR (dil.nmerch _level =7 AND dil.style =
dst.style) --style/col or hierarchy

Chapter 5 — Deals — cost calculations [dealcalc] 53

OR (dil.nmerch_level = 8 AND (dil.style
dst.style AND di 1.color = dst.color)

OR (dil.merch_level = 9 AND (dil.style

dst.style

AND
((dil.sizel = dst.sizel OR dil.sizel is NULL)

AND
(dil.size2 = dst.size2 OR dil.size2 is NULL)))

OR (dil.merch_level = 10 AND di 1. sku =
dst . sku))

AND (dil.org level is NULL AND dil.chain is NULL

AND di 1.area is NULL AND di 1.region is
NULL

AND di 1.district is NULL AND di 1.1 ocati on
is NULL

OR (dil.org level = 1 AND di 1. chain = dst.chain)
OR (dil.org level = 2 AND di 1. area = dst. area)
OR (dil.org level = 3 AND di 1.region = dst.region)

OR (dil.org level = 4 AND di 1.district
dst.district)

OR (dil.org level = 5 AND di 1.1 ocation
dst. | ocation))

AND (dil.origin_country id = dst.origin_country_id OR
dil.origin_country id is NULL))

AND (dst.sku > NVL(:ps_ restart_sku, -999) OR /* restart
on item supplier/country/start_date */

(dst.sku = :ps_restart_sku AND
(dst.supplier > :ps_restart_supplier OR
(dst.supplier = :ps_restart_supplier AND

(dst.origin_country id >
:ps_restart_country OR

(dst.orign_country id = :ps_restart_country
AND
dst.start_date > :ps_restart_date)))))
AND vrs.numthreads = :pi_numthreads
AND vrs.thread val = :pi_thread va

AND vrs.driver_value = dst.supplier
ORDER BY dst. sku,

dst. supplier,
dst.origin_country_id,
dst.start_date,

| oc,

54 Retek Merchandising System 9.0.5

dh. cl ose_dat e,
cost _appl _num
dh. type,
dh. creat e_date,
dd. application_order
The ORDER BY dh.type’s and dh.create date’s asc/desc following rules:
1 create date asc, annual before promotional (dh.type asc)
2 create date desc, annual before promotional
3 create date asc, promotional before annual (dh.type desc)

4 create date desc, promotional before annual

Logical unit of work
SKU/supplier/origin country/start date

Driving cursor
The driving cursor will be dynamically created depending on ordering
requirements, which will be determined by deal type priority and
deal age priority of system_options.

Program flow
Tables used:

Table Select Insert Update Delete

Period

system_options

deal sku temp

deal head

deal detail

deal itemloc

AR R R e

deal threshold

deal sku cost X

<

item_supp_country

Sups X

Shared modules

CURRENCY_ SQL.CONVERT —convert an amount in deal currency to the
equivalent amount in supplier currency if necessary, or vice versa

Chapter 5 — Deals — cost calculations [dealcalc] 55

Function level description
init:

* Retrieve the vdate from the period table (use as calculation date for inserts
into deal_cost table).

* Get priority indicators (deal type priority, deal age priority—these
determine annual first vs. promotional first, and oldest first vs. newest first
ordering for the driving cursor) from system_options.

* Allocate memory for the deal fetch and cost arrays (call size arrays) and
initialize the linked list for deal target values.

* Restart/recovery initialization.

process:

* Call prepare_driving_cursor to create driving cursor statement based on the
system options.

* Use the driving cursor to get all active deals for each item/supplier/origin
country/start date on the deal sku temp table (use an array fetch).

* For each deal/deal detail, call get target threshold value to find the
threshold value to be used in cost calculations.

* Call calculate cost driver to get the net, net net, and dead net net cost
(initially for location-independent deals and then for the location-specific
deals, starting form the costs already calculated for location-independent
deals), and create an insert array that includes the net/net net/dead net net
cost information AND the location information.

* If commit point reached, call post_insert delete records to insert the costs
into the deal sku cost table FOR EACH LOCATION of the same LUW
(including a record with no location if there are location-independent deals),
and to delete processed records from the deal sku_temp table.

* After each set of deals has been processed, call the restart commit logic.

prepare_driving_cursor:

Create driving cursor statement based on the system options deal type priority
and deal_age priority, which only affect the ORDER BY clause.

calculate_cost_driver:

This function will drive the process of calculating the net, net net, and dead net
net cost, given information on all the deals that apply to a particular
SKU/supplier/origin country/start date (pass in array structs which include the
target threshold value). Each deal/deal detail record is passed on to the
calculate_costs function to do the actual calculation for each LUW + loc, that is,
SKU/supplier/origin country/start date/loc.

56 Retek Merchandising System 9.0.5

For each set of deals for a unique item/supplier/country id/start date, the desired
end result is to have one record on deal sku_cost with no location that will hold
the item’s costs with all location-independent deals accounted for, and additional
records on deal sku cost for each location, with location-specific discounts
applied on top of the location-independent discounts.

* For each new LUW + loc, reset the flag for ‘F’ixed Amt value type discount.
‘F’ixed Amt value type discount should only be applied once for each LUW
+ loc.

* For each new LUW, reset the flag and merchandise level for ‘EX’clusive
deal class discount; for each LUW + loc, reset the merchandise/organization
level for ‘EX’clusive deal class discount (merchandise level needed to be
reset back to before any loc-specific applied). ‘EX’clusive deal class
discount should only be applied once for each LUW + loc.

* Reset the net/net net/dead net net costs according to the following rules:
= Ifnew LUW, set to supplier’s original unit cost
= Ifthe same LUW, check if location changed:

¢ Ifnew loc:

» Check if just change from loc-independent to loc-specific. If yes,
applied merch level (for ‘EX’clusive discount) of loc-independent
discounts

» Check if the flag for ‘EX’clusive deal class discount is set
(previous ‘EX’clusive discount applied)

O IfNO previous ‘EX’clusive discount applied, check if this is
an ‘EX’clusive discount:
¢ Ifyes, set net/net net/dead net net costs to base cost
(supplier’s unit cost)
¢ Ifno, set net/net net/dead net net costs to costs of loc-
independent discounts
O If previous ‘EX’clusive discount applied check if this is an
‘EX’clusive discount with higher merch level or equal merch
level but higher org level than the saved merch/org level (only
apply the highest merch/org level ‘EX’ discount):
¢ Ifyes, set net/net net/dead net net costs to base cost
(supplier’s unit cost)
¢ If no, skip this discount.
¢ If the same loc, check if the flag for ‘EX’clusive deal class discount is
set (previous ‘EX’clusive discount applied)

» IfNO previous ‘EX’clusive discount applied, check if this is an
‘EX’clusive discount:

O If yes, set net/net net/dead net net costs to base cost (supplier’s
unit cost)

O Ifno, set net/net net/dead net net costs to latest calculated
costs

» If previous ‘EX’clusive discount applied check if this is an
‘EX’clusive discount with higher merch level or equal merch level
but higher org level than the saved merch/org level (only apply the
highest merch/org level ‘EX’ discount):

Chapter 5 — Deals — cost calculations [dealcalc] 57

O Ifyes, set net/net net/dead net net costs to base cost (supplier’s
unit cost)
O Ifno, skip this discount.

e (Call calculate costs to calculate net/net net/dead net net costs. For the same
LUW + loc, the driving cursor has sorted the discounts by cost_appl ind: ‘N’
first, ‘NN’ later, ‘DNN’ last. For each cost application level, the same
business rules are followed.

e Ifthe new LUW is not in the array, increment the writing index of the cost
array (we always write a record into the cost array to keep track of last
calculated costs, but change to a new record only if the LUW is changed)

* Prepare an insert record into the deal _sku cost table by writing costs into the
current indexed record of the cost array. There are two dates to consider, start
and ending (close_date from deal_head). When inserting the start date as the
active date, set a flag in the array so we know that’s which date it is, and
insert the unit_cost from item_supp_country as the base cost. The location
and location type fields should be left NULL if no location was given on
deal sku temp. Vdate should be used for the calc_date.

* Ifthe start date is found in the array, calculate the change for each cost field
and subtract that change from the net fields in the array. If there is no close
date, subtract the change amounts from the net fields of each close date in the
array. If we have a close date and the date found originally in the array was
a start_date, subtract the change amounts from the corresponding close date
entry in the array. Find the close date by looking for the same LUW with
the date indicator set to close_date.

* After updating with the start date, add one to the close date see if that
reset_date is already in the array. If not, add it to the array setting the net
costs to the base cost.

» Ifthe reset date is found in the array, set the net costs to the base cost and
exit.

* Save current processed LUW and loc.

calculate_costs:

* Inputs: index of fetch array, target threshold value, current net/net net/dead
net net costs

e Outputs: calculated net/net net/dead net net costs

The definition of different net costs are:

* net cost = unit cost — components whose cost_appl_ind is ‘N’

* net net cost = net cost — components whose cost_appl_ind is ‘NN’

* dead net cost = net net cost — components whose cost_appl_ind is ‘DNN’

Use the cost_appl ind on deal detail to figure out whether a deal component
contributes to the net, net net, or dead net net cost (the records should already be
sorted by cost_appl_ind) and what the initial costs are (initial cost are need to
process ‘CU’mulative deal class discounts with ‘P’ercentage value type):

58 Retek Merchandising System 9.0.5

e If ‘N’, the initial net cost is the supplier’s original unit cost, and need to
update all 3 net costs with the calculated discount

e If ‘NN, the initial net net cost is the current net cost, and need to update both
net net cost and dead net net cost with the calculated discount.

o If ‘DNN, the initial dead net net cost is the current net net cost, and need to
update only the dead net net cost with the calculated discount.

Business rules that need to be followed when applying discounts:

¢ Deal classes:

If an exclusive deal was previously found for this SKU/supplier/origin
country/start date: new cost should be calculated only if THIS deal is
also exclusive and is for a lower merchandise hierarchy. If this is the first
exclusive deal, process it and set a flag, saving the hierarchy levels.

Cumulative discounts need to be applied to the original unit cost (2% off
+ 3% off = 5 %off original unit cost)

Cascade discounts need to be applied on the result thus far (“current
cost”)---take2% off of the unit cost, then take 3% off of that price, for
example

* Deal value types (take N cost calculation for example):

for a % discount

¢ If‘CS’cade:
» discount cost = unit cost — (unit cost *%/100)
¢ If ‘CU’mulative:
» discount cost = unit cost — (initial unit cost *%/100)

for an amt discount (first convert amount to be in supplier currency if
necessary)

¢ discount cost = unit cost —amt (amount discounts are per unit cost
already)

fixed amt: if have fixed amount discount must start with THAT amount
rather than the unit cost (convert to supplier currency if necessary)

¢ discount cost = fixed amt (converted to supplier’s currency if
necessary)

quantity discount (“buy some get some at discount”) (these are not
allowed on rebates)

These are the most complicated. They affect the cost of the get item
AND of the buy item, whose cost we also need to get. Both the get item
and the buy item will be on deal itemloc. You should only calculate the
cost for whichever item you’re presently on (if buy item, just calculate
buy item cost; will get the free item separately later, or vice versa). The
initial unit cost for the get item should be taken from

deal detail.qty thresh free item unit cost (or, if that field is not
populated, off of item_supp country). Before any calculations are done,
convert the unit costs into supplier currency if necessary. If a buy/get
free discount is encountered, the following things need to happen:

Chapter 5 — Deals — cost calculations [dealcalc] 59

Call get unit_cost to get the original unit cost for the buy item (from
item_supp_country), if it’s different from the free item. Use the
supplier and origin country of the free item (free and buy items are
required to come from the same supplier and country).

Calculate the discount costs(for whichever is the current item, free or
buy)
If gty thresh buy target of the buy item < qty thresh buy qty,
stop; you didn’t get any discount

Otherwise, figure out how many free items you actually get.

>

>

O

O

If the qty_thresh recur indis ‘N’:

¢ free qty = deal detail.qty thresh free qty

If the gty thresh recur indis ‘Y’:

¢ If buy item = free item:

free qty = qty_thresh_free qty *
FLOOR(qty thresh buy target/ (qty thresh buy qty +
qty thresh free qty))

¢ Ifbuy item different from free item:

free gty = FLOOR(qty thresh buy target/
qty_thresh buy qty) *qty thresh_free qty

If buy item = free item:

O

O

O

O

If qty thresh get type is ‘X’, this is a “buy/free” discount:
total discount = total get cost

If qty_thresh_get type is ‘P’, this is a “buy/get % off”
discount:

total discount = (get item’s unit_cost * qty thresh get value /
100) * get qty

If gty thresh get typeis ‘A’, this is a “buy/get amt off”
discount:

total discount = qty_thresh _get value * get qty

If qty_thresh_get type is ‘F’, this is a “buy/get at fixed amt”
discount:

total discount = (get item’s unit_cost - qty thresh get value)
* get qty

Discount rate = total discount / (buy item unit cost + buy
target)

Discount = discount rate * get item unit cost

If the free item and the buy item are different:

O

O

O

If qty thresh get type is ‘X’, this is a “buy/free” discount:
total discount = total get cost

If qty_thresh_get type is ‘P’, this is a “buy/get % off”
discount:

total discount = (get item’s unit_cost * qty thresh get value/
100) * get qty

If gty thresh get typeis ‘A’, this is a “buy/get amt off”
discount:

total discount = qty_thresh _get value * get qty

If gty thresh get type is ‘F’, this is a “buy/get at fixed amt”
discount:

total discount = (get item’s unit_cost - qty thresh get value)
* get qty

Get discount rate = (get item cost * get qty) / total buy cost

60 Retek Merchandising System 9.0.5

O Buy get discount rate = 1 — get discount rate
O If current item is buy item
Discount = total discount * buy discount rate / buy target
O If current item is get item
Discount = total discount * get discount rate / get qty
O If the total cost of the buy item is less than that of total
discount, stop; no discount is applied
O These discounts are the amount that needs to be subtracted
from the original price to get the discounted price.

get_target_threshold_value:

Given a deal _id and deal detail id, fetch the target value from the deal threshold
table (the value where the target id is “Y”). Since this function is often called
multiple times for the same input (multiple SKUs of the same deal/deal detail), a
linked list is maintained to keep track of target threshold values for different
deal/deal detail. The linked list is ordered by the deal/deal detail. This function
first tries to get the value from the list (previously fetched from database). If yes,
job is done. Otherwise, fetch the target value for this deal/deal detail from
database and call convert currency if the value is currency amount and the deal
currency is different from the supplier’s currency. The newly fetched value is
then saved into the list by calling add_to_list. Other maintenance functions for
the linked list are init_list (called in init) and free list (called in final).

get_unit_cost:

For a given SKU/supplier/country id, get the unit cost from item_supp country.
Since usually the unit cost is fetched by the driving cursor, the function is only
called for buy-get type discount when the buy item’s unit cost is needed.

convert_currency:

Call CURRENCY SQL package to convert an amount in deal currency to
equivalent amount in supplier’s currency. (This should only be called if the
currencies are different—normally they will be the same).

post_insert_delete_records:

Array insert all records of the cost array into the deal sku_cost table and array
delete processed records, which are also all records of the cost array, from the
deal_sku temp table. This deletes all records from deal sku temp for a given
sku/supplier/origin country/start date/location, the unique key of these five
columns are part of the unique key on deal sku cost, which contains one more
column (calc_date) to save the cost information for a system specified history
month.

add_to_list:

Add a node made of deal/deal detail and the target value to the current position of
the linked list.

init_list:

Initialize the linked list for target threshold values.

Chapter 5 — Deals — cost calculations [dealcalc] 61

free_list:
Free the memory used by the linked list for target threshold values.
size_arrays:

Allocate memory for the fetch array used by the driving cursor and the cost array
used to save the costs.

resize_array:

Allocate additional memory for the cost array.

free_arrays:

Free the memory used by the fetch array and cost array.

final:
e (Call free_arrays and free list.

» Restart/recovery close logic.

I/0 specification
N/A

Technical issues

There are two rebate calc type’s: linear and scalar. Currently the scalar type
calculation is taken as the same as the linear type. The differentiation is left for
future release.

Testing Scenarios
test with:
* item that has 1 active deal
* more than 1 active deal
* multiple deals including an exclusive deal
» different ordering parameters (promo vs annual, earliest vs latest)

» different types of deals

Chapter 6 — Upload RTV Transactions [rtvupld] 63

Chapter 6 — Upload RTV Transactions [rtvuplid]

Modification
This program was modified by changing the length of the following fields in the
upload file layout:
* freight char(20,4)
* Reason char (6)
* Return Quantity char (12,4)
* Unit Cost char (20,4)

Design overview

The RTV Transaction Upload (rtvupld) module processes RTV transactions
captured by an external source according to the same logic as the online RTV
functionality within the RMS. For each RTV transaction processed by this
module, an RTV is created in Shipped status on the RMS database. The RTV
transaction can involve any of the supported item types within the Retek system,
from any location entity that stocks the transferred item back to the vendor that
supplies the item.

The detail processing for an RTV transaction includes the following:
* create RTV header and detail records in shipped status

* update perpetual inventory

» update average cost of shipping location

» write financial transactions for return of merchandise

» update on hand snapshots for current cycle counts (in the case of late

postings)
* update unavailable inventory status quantity
TABLE INDEX | SELECT | INSERT | UPDATE | DELETE

RAG SKUS No Yes No No No
RAG SKUS ST No Yes No Yes No
RAG STYLE ST No Yes No No No
RAG STYLE ST No Yes No No No
RTV_HEAD No Yes Yes Yes No
RTV_DETAIL No Yes Yes Yes No
SUPS No Yes No No No
ADDR No Yes No No No
TRAN DATA No No Yes No No

64 Retek Merchandising System 9.0.5

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
V_SKU INFO No Yes No No No
WIN STORE No Yes No Yes No
WIN WH No Yes No Yes No
INV_STATUS QTY No Yes No Yes No
INV_STATUS TYPES | No Yes No No No
CODE DETAIL No Yes No No No

Scheduling constraints
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run after the Transfer Out batch
module and will likely be run at the beginning of the batch run during the POS
polling cycle, or possibly at the end of the batch run if pending warehouse
transactions exist. It can also be scheduled to run multiple times throughout the
day, as WMS or POS data becomes available.

Pre-Processing: N/A
Post-Processing: N/A

Threading Scheme: STORE and WH — additional threads can be added
based on number of distinct input files

Restart recovery

The logical unit of work for the RTV module is the creation of a shipped RTV
order in the Retek system. An external reference number created by the external
system will identify each RTV. The RTV transaction will be defined as the
logical unit of work. If any portion of the processing for the complete RTV
transaction fails, the entire RTV must be re-processed.

A save-point will be issued prior to processing a new RTV. If any record within
the transaction fails, the whole transaction will be rolled back to the most recent

save-point. This way, the successfully processed transactions will remain posted
to the database but not yet committed.

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. An RTV transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold, that once reached, will force a commit after the completion of the
current RTV transaction.

Chapter 6 — Upload RTV Transactions [rtvupld] 65

Error handling will be based on the logical unit of work also. If a given record
within an RTV transaction fails, that error will be posted to the standard error log
for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the RTV will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
RTV will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

66 Retek Merchandising System 9.0.5

Program flow

ini

main()

process() —

final()

t()

initialize restart
open files (RTV in)
open reject file (restart temp)

set application image array
read file header

L get vdate & dept level transfer indicator

loop (until end of input file)

L end loop

read record
if ('FTAIL") Exit Loop
if ('THEAD')
set savepoint
end if

validate supplier exists
get supplier RTV details
validate locations exist

validate THEAD()
process THEAD
loop
read record
if ('TTAIL") Exit Loop
else if (TDETL")
validate TDETL()
process TDETL()

populate RTV array

if (detail counter = max array count)
resize rtvdetail array

end if
increment detail counter
end if
end loop

insert RTV details -

if (record counter = max commit counter)
save file position to bookmark
commit database transactions
end if

close restart logic
close reject file

L

if (rtv order type ='Q")
validate shipment on QC
validate SKU on shipment
validate QC failure code

else
if (UPC')

get sku based on upc

if (upc not exist) Error

get system indicator
get merch hierarchy
if (sku not exist) Error

fnd if

if (rtv_order_type ="I')

RTV_SQL.INVENTORY

call to NEXT_RTV_ORDER_NO
insert rtvhead record
array insert of rtvdetail records

Chapter 6 — Upload RTV Transactions [rtvupld] 67

Shared modules
RTV_SQL.INVENTORY - package performing all RTV logic, including

Function

update perpetual inventory

update average cost of returning location

write financial transactions for the return of merchandise

update the on hand snapshot for current cycle counts (for late postings)

update unavailable inventory status quantity

level description

init()

Declare structure array for RTV detail

Initialize restart recovery

Open input file (RTV in) — file should be specified as input parameter to the
program

Open reject file (as a temporary file for restart) — file should be Specified as
input parameter to the program

Get vdate from period table

Set application image array - save the line counter

Read file header record

process()

Loop

Read record from input file

If ('FTAIL')

Exit Loop

Else if ('THEAD))

reset detail count

set savepoint and save current file pointer position
validate. THEAD()

process THEAD()

increment line count

End if

Loop

read record from input file

if ('TTAIL)

68 Retek Merchandising System 9.0.5

¢ Exit Loop
else if ('TDETL)

¢ validate TDETL()
¢ process TDETL()

= endif

» if (detail count = max array count)

¢ resize array structures for rtvdetail
¢ increase max array count

* endif

* increment detail count

End loop

If (no errors encountered)

= post RTV()

End if

If (non-Fatal Error encountered)

* reject_record - call write error and pass file pointer as of last savepoint
and current file pointer

End if
If (transaction count > max commit count)
= restart file commit

¢ save the current input file pointer position
¢ save the line counter in restart image

End if

End loop

Restart commit final

validate_ THEAD()

Validate supplier

Check for supplier existence on the sups table and ensure returns are allowed

Select return authorization indicator, minimum dollar amount, and courier
from SUPS table.

Validate locations

If (loc_type = ‘ST”)
check for existence on store table
Else (loc_type = “WH”)

check for existence on wh table

Chapter 6 — Upload RTV Transactions [rtvupld] 69

If the location does not exist, write non-Fatal error.

validate_THEAD()
Call NEXT RTV_ORDER NO to get next RTV order number

validate_TDETL()

format_ddetail_fields()
If (Item Type = ‘UPC’)
* select sku from upc_ean based on the upc and supplement
* if (UPC does not exist)
* Write non-Fatal Error (UPC not found)
If (rtv reason code = ‘Q’)
* if shipment number found
= validate shipment exists in Retek and is a QC shipment
= validate item exists on shipment and has ‘Failed’ QC
* else
= write non-Fatal Error (no shipment)
Else if (rtv reason code = ‘U’)
* ifinventory status is not NULL,
» validate inventory status against INV_STATUS TYPES table
= if (inventory status is not found)
¢ write non-Fatal Error (invalid inventory status)
= else

¢ validate return quantity <= inventory status quantity for the
sku/location/inventory status
¢ if (not true)
» write non-Fatal Error (return qty greater than inventory status
quantity)

* clse (inventory status is NULL)
= write non-Fatal Error (no inventory status)
Else (any other reason code or NULL reason code)
* validate reason code against code detail.code where code type = ‘RTVR’
* if (reason code is not found)
= write non-Fatal Error (invalid reason code)
Get sku system indicator
If (system indicator does not exist)

* write non-Fatal Error (sku not found)

70 Retek Merchandising System 9.0.5

valid_sku loc() (validate sku/loc and check if return more than stock on hand)
Validate item/supplier and get item unit cost from item_supp_country table

If (item does not supplied by the supplier)

» write non-Fatal Error

If (unit cost not specified in input file)

* convert unit cost fetched from item_supp country table into local currency

process_TDETL()
If (shipment number does not exist)

* Call RTV_SQL.INVENTORY package function (see design specification for
RTV_SQL) to insert tran_data records and update inventory

Else (shipment number exists)

* Get merchandise hierarchy information

* Call ITEMLOC ATTRIB SQL.GET COST RETAIL to get unit retail
* Call STKLEDGER _SQL.TRAN DATA_ INSERT

Convert unit cost back into supplier’s currency

Write detail transaction into structure rtvdetail

Calculate total order amount in supplier’s currency

post_RTV()
* Perform insert of RTVHEAD
* Perform array insert of RTVDETAIL

ON Fatal Error
* rollback to last physical commit point

* Exit Program

ON Non-Fatal Error
* rollback to last save-point

* write out complete transfer transaction to the reject file, pass file pointer at
last save-point and current file pointer

Chapter 6 — Upload RTV Transactions [rtvupld] 71

I/0 specification

Input File

The input file should be accepted as a runtime parameter at the command line.
Record Field Name Field Type | Default Value | Description
Name
File Header File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Number(10) specified by Line number
Sequence external of the current
system file
File Type Char(4) RTV Identifies file
Definition as ‘Return to
Vendor’
File Create Date create date date file was
Date written by
external
system
Transaction File Type Char(5) THEAD Identifies file
Header Record record type
Descriptor
File Line Number(10) specified by Line number
Sequence external of the current
system file
Transaction Char(14) specified by used to force
Set Control external unique
Number system transaction
check
Transaction Char(14) specified by date the
Date external transfer was
system created in
external
system
Supplier Char(10) Retek Supplier
Identifier Identifier reference
identifier as
identified
within Retek
Return Char(12) Supplier Supplier
Authorization Specified return
authorization

number

72 Retek Merchandising System 9.0.5

Record Field Name Field Type | Default Value | Description
Name
RTV Location | Char(2) ST - storeWH | specifies the
Type - warchouse type of
location
returning
items
RTYV Location | Char(4) location specifies the
Value 1dentifier returning
location 1d
number
Freight Char(20,4) Freight cost
associated
with the RTV
in supplier’s
currency
Transaction | File Type Char(5) TDETL Identifies file
Detail Record record type
Descriptor
File Line Number(10) | specified by Line number
Sequence external of the current
system file
Transaction Char(14) specified by used to force
Set Control external unique
Number system transaction
check
Detail Char(6) specified by sequential
Sequence external number
Number system assigned to
detail records
within a
transaction
Item Type Char(3) UPCSKU item type will
be represented
as an UPC, an
SKU
Item Value Char(13) item identifier | the id number
of a SKU or
UPC
Supplement Char(5) supplemental | used to further
identifier specify the id
of an UPC

item

Chapter 6 — Upload RTV Transactions [rtvupld] 73

Record Field Name Field Type | Default Value | Description
Name
Shipment Char(10) Retek Cross
Shipment no | reference to
retek
shipment
number for
RTVs
associated
with QC.
Reason Char(6) Retek reason | Reason for the
code return:Q - QC
failedU -
Unavailable
inventory
Return Char(12,4) return number of
Quantity quantity units returned
of the given
item
Unit Cost Char(20,4) unit cost of assigned cost
return item value of
inventory to
be returned(in
local
currency)
Inventory Char(2) Retek Cross
Status unavailable reference to
inventory Retek
status number | Unavailable
inventory
status number.
Transaction | File Type Char(5) TTAIL Identifies file
Trailer Record record type
Descriptor
File Line Number(10) | specified by Line number
Sequence external of the current
system file
Transaction Number(6) sum of detail | sum of the
Detail Line lines detail lines
Count within a
transaction

74 Retek Merchandising System 9.0.5

Reject File

Error File

Technical issues

Record Field Name Field Type | Default Value | Description
Name

File Trailer File Type Char(5) FTAIL Identifies file
Record record type
Descriptor
File Line Number(10) | specified by Line number
Sequence external of the current

system file

File Number(10) | sum of all total of all
Transaction transaction records less
Line Count lines file head and

tail records

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the transfer out module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0. The reject filename should be specified as a runtime

parameter.

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

N/A

Chapter 7 — Return to Vendor Upload [lifrtvup] 75

Chapter 7 — Return to Vendor Upload [lifrtvup]

Modification
This program was modified by changing the length of the following fields in the
upload file layout:
* freight char(20,4)
* Return Quantity char (12,4)
* Unit Cost char (20,4)

Design overview

This program will format information originating from the return to vendor file.
The Nautilus file, rtv_upload.dat, is SQL Loaded into a staging table: lif rtv.
This program will read from the staging tables and create a standard formatted
file for Retek’s rtvupld.pc program to process.

Scheduling constraints

Processing Cycle: N/A

Scheduling Diagram: This program should be run after uploading the rtv
information from Nautilus and after SQL Loading the files into the staging
tables. It should run before rtvupld.pc

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

Restart recovery

No restart/recovery, except for error handling.
Main cursor:
SELECT I ocati on,
rtv_order_no,
SUBSTR(itemid, 1, 13),
rtv_auth_id,
unit_qty,
supplier
FROM Iif rtv
ORDER BY | ocati on,

rtv_order_no;

76 Retek Merchandising System 9.0.5

Program flow
N/A

Shared modules
N/A

Function level description

Init()
The output file should be opened, then file header information should be written.

The vdate is selected from the period table for the file create date used in the
output file header.

Call restart init.
Write output file header (FHEAD) information

Process()
Initialize the RTV number variable to NULL.

Loop through the records found on the lif rtv table. Array processing should be
used to fetch the records from lif rtv table.

* IfRTV order number changes or if the location changes. (ie. one THEAD for
each rtv number)

= Write TTAIL for previous RTV

= Set default values for THEAD record.

= Write THEAD record.

= Set default values for TDETL record.

» Write TDETL record to the output file for each sku in the RTV.
e EndlIf;
End loop;

final()

Close output file.

Delete from lif rtv table if all no failures occurred.
Write output file trailer (FTAIL) information.

Call restart close.

Chapter 7 — Return to Vendor Upload [lifrtvup] 77

I/0 specification

Output File

The output file should be accepted as a runtime parameter at the command line.

RTV upload file

Record Name Field Name Field Type Default Description
Value
File Header File Type Record | Char(5) FHEAD Identifies
Descriptor file record
type
File Line Number(10) | specified by | Line number
Sequence external of the
system current file
File Type Char(4) RTV Identifies
Definition file as
‘Return to
Vendor’
File Create Date Date create date date file was
written by
external
system
Transaction File Type Record | Char(5) THEAD Identifies
Header Descriptor file record
type
File Line Number(10) | specified by | Line number
Sequence external of the
system current file
Transaction Set Char(14) specified by | used to force
Control Number external unique
system transaction
check
Transaction Date | Char(14) specified by date the
external transfer was
system created in
external
system
Supplier Identifier | Char(10) Vendor nbr Supplier
reference
1dentifier as
identified

within Retek

78 Retek Merchandising System 9.0.5

Record Name

Field Name

Field Type

Default
Value

Description

Return
Authorization

Char(12)

Rtv_auth nbr

Supplier
return
authorization
number

RTV Location
Type

Char(2)

WH -
warehouse

specifies the
type of
location
returning
items

RTYV Location
Value

Char(4)

Location id

specifies the
returning
location id
number

Freight

Char(20,4)

NULL

Freight cost
associated
with the
RTV in
supplier’s
currency

Transaction
Detail

File Type Record
Descriptor

Char(5)

TDETL

Identifies
file record

type

File Line
Sequence

Number(10)

specified by
external
system

Line number
of the
current file

Transaction Set
Control Number

Char(14)

specified by
external
system

used to force
unique
transaction
check

Detail Sequence
Number

Char(6)

specified by
external
system

sequential
number
assigned to
detail
records
within a
transaction

Item Type

Char(3)

SKU

item type
will be
represented
as an UPC,
an SKU

Chapter 7 — Return to Vendor Upload [lifrtvup] 79

Record Name

Field Name

Field Type

Default
Value

Description

Item Value

Char(13)

item id

the 1d
number of a
SKU or
UPC

Supplement

Char(5)

NULL

used to
further
specify the
1d of an UPC
item

Shipment

Char(10)

NULL

Cross
reference to
retek
shipment
number for
RTVs
associated
with QC.

Reason

Char(6)

GW’

Reason for
the return:Q
- QC failedU
Unavailable
inventoryW
— warehouse
initiated
RTV from
the RTVR
code on
codes table.

Return Quantity

Char(12,4)

Unit qty

number of
units
returned of
the given
item

Unit Cost

Char(20,4)

NULL

assigned
cost value of
inventory to
be returned

Inventory Status

Char(2)

NULL

Cross
reference to
Retek
Unavailable
inventory
status
number.

80 Retek Merchandising System 9.0.5

Record Name Field Name Field Type Default Description
Value
Transaction File Type Record | Char(5) TTAIL Identifies
Trailer Descriptor file record
type
File Line Number(10) | specified by | Line number
Sequence external of the
system current file
Transaction Detail | Number(6) | sum of detail | sum of the
Line Count lines detail lines
within a
transaction
File Trailer File Type Record | Char(5) FTAIL Identifies
Descriptor file record
type
File Line Number(10) | specified by | Line number
Sequence external of the
system current file
File Transaction Number(10) | sum of all total of all
Line Count transaction records less
lines file head and

tail records

Technical issues

N/A

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Purchase Order Information Written to Order History Tables [ordrev]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	Get_rev_no()
	Insert_header()
	Insert_sku()
	Insert_loc()
	Insert_alloc()
	Ins_revord()
	Write_new_po()
	Write_existing_po()
	Write_alloc_only()
	Comp_tckt()
	Del_revord()

	I/O specification
	Order Header file

	Technical issues

	Chapter 3 – Allocation Update Download [allocupd]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	init_buffers()
	process()
	final()

	I/O specification
	File Header

	Technical issues

	Chapter 4 – Approved Warehouse Transfers Download [tsfdnld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	Get_ship_flag()
	validate_ship_schedule()
	get_thead_info()
	get_detail_info()
	process_wo ()
	Write_wo_to_list()
	Write_wo_to_file()
	Comp_tckt()
	write_pack_to_list()
	write_pack_to_file()
	Write_std_header()
	Write_std_trailer()
	write_tail_to_file()
	write_detail_to_list()
	add_dtl_to_list()
	get_order_type()
	write_head_to_str()
	Write_recs_to_struct()
	write_list_to_file()
	update_records()
	Final()

	I/O specification
	File I/O
	Transfer download file

	Technical issues

	Chapter 5 – Deals – cost calculations [dealcalc]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Logical unit of work
	Driving cursor

	Program flow
	Shared modules
	Function level description
	init:
	process:
	prepare_driving_cursor:
	calculate_cost_driver:
	calculate_costs:
	get_target_threshold_value:
	get_unit_cost:
	convert_currency:
	post_insert_delete_records:
	add_to_list:
	init_list:
	free_list:
	size_arrays:
	resize_array:
	free_arrays:
	final:

	I/O specification
	Technical issues
	Testing Scenarios

	Chapter 6 – Upload RTV Transactions [rtvupld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	process()
	validate_THEAD()
	validate_THEAD()
	validate_TDETL()
	format_ddetail_fields()
	process_TDETL()
	post_RTV()
	ON Fatal Error
	ON Non-Fatal Error

	I/O specification
	Input File
	Reject File
	Error File

	Technical issues

	Chapter 7 – Return to Vendor Upload [lifrtvup]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	Init()
	Process()
	final()

	I/O specification
	Output File
	RTV upload file

	Technical issues

