

Retek® Merchandising System
9.0.8

Addendum to Operations Guide

Retek Merchandising System

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

European Headquarters:
Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

8AM to 5PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2002: Jan. 1, May 27, July 4,
July 5, Sept. 2, Nov. 28, Nov. 29, and Dec. 25).

Customer Support emergency hours:

24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5000

Fax (+1) 612-587-5100

E-mail support@retek.com

Internet www.retek.com/support
 Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Transfer Shipments Upload [tsfoupld] 3

Modification .. 3

Design overview.. 3

Scheduling constraints... 4

Restart recovery... 4

Program flow... 6

Shared modules ... 6

Function level description ... 7

I/O specification .. 13
Input file ... 13
Output file... 17
Detail .. 18
Reject file.. 18
Error file ... 18

Technical issues... 18

Chapter 3 – Monthly Stock Ledger Processing [salmth]... 19

Modification .. 19

Design overview.. 19

Scheduling constraints... 20

Restart recovery... 21

Program flow... 22

Shared modules ... 22

Function level description ... 23

I/O specification .. 24

Technical issues... 24

Chapter 4 – Purchase Order Information Written to Order
History Tables [ordrev] ... 25

Modification .. 25

Design overview.. 25

Scheduling constraints... 25

ii Retek Merchandising System

Restart recovery... 26

Program flow... 26

Shared modules ... 26

Function level description ... 26

I/O specification .. 30
Order Header file .. 31
Order Detail file.. 32
Stock Order file .. 33
Stock Allocation file... 36
Component Ticketing file layout:... 38

Technical issues... 39

Chapter 5 – Stock Ledger Extract [stlgdnld] 41

Modification .. 41

Design overview.. 41
Design assumptions .. 41
Performance considerations.. 42

Scheduling constraints... 42

Restart recovery... 42

Program flow... 42

Shared modules ... 42

Function level description ... 42

I/O specification .. 44
Input specifications... 44
Output specifications .. 50

Technical issues... 53

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0 Operations Guide
contains updates to the following batch designs:

• Transfer Shipments Upload [tsfoupld]

• Monthly Stock Ledger Processing [salmth]

• Purchase Order Information Written to Order History Tables [ordrev]

• Stock Ledger [stlgdnld]

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0 Operations Guide. Each chapter contains
a subsection indicating what specific modifications have been made.

Chapter 2 – Transfer Shipments Upload [tsfoupld] 3

Chapter 2 – Transfer Shipments Upload [tsfoupld]
Modification

Descriptions of THEAD --> Number of Boxes field was reduced from size 15 to
4

Design overview
The purpose of this batch module is to accept transfer shipment details from an
external system. The transfer transactions will provide feedback to existing
transfers within the Retek system or initiate manual transfers created in an
external system. The following functions will be performed for each transferred
item:

• create/update transfer and shipment header and detail records.

• create item/location relation for receiving location (if it doesn’t exist)

• update perpetual inventory and in transit qtys for source location

• update the average cost of item and in transit qtys for receiving location

• write financial transactions for both the transfer out and the transfer in

• update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

• create/update bill of lading

• create/update warehouse issues history (if transfer from a wh to a store)

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

• update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

TABLE INDEX SELECT INSERT UPDATE DELETE

TSFHEAD No Yes Yes Yes No

TSFDETAIL No Yes Yes Yes No

SHIPMENT No Yes Yes Yes No

SHIPSKU No Yes Yes Yes No

POS_MODS No No Yes No No

PRICE_HIST No No Yes No No

RAG_SKUS_ST No Yes No Yes No

WIN_STORE No Yes No Yes No

RAG_SKUS_ST No Yes No Yes No

4 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

WIN_WH No Yes No Yes No

TRAN_DATA No No Yes No No

RAG_SKUS No Yes No No No

RAG_STYLE_ST No Yes No No No

RAG_STYLE_WH No Yes No No No

INV_STATUS_QTY No Yes No Yes Yes

INV_STATUS_TYPES No Yes No No No

Scheduling constraints
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run before the transfer in batch
module and will likely be run at the beginning of the batch run during the POS
polling cycle, or possibly at the end of the batch run if pending warehouse
transactions. It can be scheduled to run multiple times throughout the day, as
WMS or POS data becomes available. In a true DC flow through type of
operation, this program should also be run after Carton Receiving Upload
(ctniupld) module to ship the cross-dock carton transfers created in ctniupld so
that the goods received into DC for a cross-dock PO are shipped out to the final
destination within the same day.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: STORE and WH

Threads driven by number of distinct files

Restart recovery
The logical unit of work for the transfer out module is the discrete transfer
transaction. Each transfer will be identified by the transfer number (if it already
exists in the Retek system) or an unique transaction set number generated by the
external system. This transfer transaction will be defined as the logical unit of
work. If any portion of the processing for the complete transfer transaction fails,
the entire transfer must be re-processed.

A savepoint will be issued prior to processing a new transfer. If any record
within the transaction fails, the whole transaction will be rolled back to the most
recent savepoint. This way, the successfully processed transactions will remain
posted to the database but not yet committed.

Chapter 2 – Transfer Shipments Upload [tsfoupld] 5

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. A transfer transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold that, once reached, will force a commit after the completion of the
current transfer transaction.

Error handling will be based on the logical unit of work also. If a given record
within a transfer transaction fails, that error will be posted to the standard error
log for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the transfer will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
transfer will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

6 Retek Merchandising System

Program flow

loop (until end of input
read record
if ('FTAIL') Exit Loop
if ('THEAD')

set savepoint
end if

validate THEAD()

process THEAD

loop
read record
if ('TTAIL') Exit Loop
else if ('TDETL')

validate TDETL()

process TDETL()

populate transfer
if (detail counter = max array count

resize tsfdetail / tsfall array
end if
increment detail counter

end if
end loop

insert/ update of transfer

if (record counter = max commit counter
save file position to
commit database

end if
end loop

if (Transfer Type = ‘MR’ (manual requisitions)
insert tsfhead with status
if (transfer exist) Error

insert tsfdetail
if (transfer detail exist) Error

else
update tsfhead status to
if (transfer not exist) Error

update tsfdetail
if (transfer detail not exist)

end if

if (tranfer no on
validate transfer

else
validate locations
check transfer zone()

end if

if (transfer on file)
validate SKU on

else
if ('UPC')

get sku based on
if (upc not exist) Error

end if
get system indicator & merch
if (sku not exist) Error

initialize restart
open files (transfer out)
open reject file (restart temp
get vdate & dept level transfer
set application image
read file header

main()

init()

process()

final()

TRANSFER_OUT_SQL.EXECUTE

close restart logic
close reject file

Shared modules
TRANSFER_OUT_SQL.EXECUTE: Package referenced to perform transfer out
logic, including:

• create item/location relation for receiving location (if it doesn’t exist)

• update perpetual inventory for source location

• update the average cost of item for receiving location

Chapter 2 – Transfer Shipments Upload [tsfoupld] 7

• write financial transactions for both the transfer out and the transfer in

• update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

• create/update bill of lading

• create/update warehouse issues history (if transfer from a wh to a store)

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

• update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

TRANSFER_IN_SQL.EXECUTE: Package referenced to perform transfer in
logic for customer order types of transfers where the delivery type for the transfer
is ‘Ship Direct’:

• update perpetual inventory for destination location

• update stock count’s snapshot on hand quantity for destination location if
stock count is in progress

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for destination location

• update perpetual inventory with adjustments for detailed receipt
discrepancies and create stock ledger stock adjustment transactions, if
system_options.auto_close_tsf = ‘Y’

The following are called from TRANSFER_OUT_SQL and/or
TRANSFER_IN_SQL packages and are thus, indirect calls.

STOCK_LEDGER_SQL.TRAN_DATA_INSERT: Package referenced by
TRANSFER_OUT_SQL.EXECUTE to perform the stock ledger transaction
inserts for the transfer out of the goods from the source location and the transfer
in of the goods at the destination location.

NEW_STAPLE_LOC, NEW_FASHION_LOC, NEW_PACK_LOC: These
stored procedures are used to create item/location relationships for locations that
are to receive goods on a transfer and have not yet stocked the given item.

INVADJ_SQL.ADJ_UNAVAILABLE : called to update the unavailable
inventory status quantity

INVADJ_SQL.ADJ_TRAN_DATA : called to write tran_data record for
unavailable inventory adjustment

Function level description
init()

declare structure arrays for tsfdetail

initialize restart recovery

8 Retek Merchandising System

open input file (transfer out)

- file should be specified as input parameter to program

open reject file (as a temporary file for restart)

- file should be specified as input parameter to program

get vdate and department level transfer indicator from period table and system
options

set application image array - save the line counter

read file header record

if (record type <> ‘FHEAD’) Fatal Error

process()

loop

read record from input file

if ('FTAIL')

Exit Loop

end if

if ('THEAD')

set savepoint and save current file pointer position

validate_THEAD()

reset detail count

process_THEAD()

end if

loop

check carton flag to determine if tdetl records will be for a carton or not

read record from input file (different structure for carton or regular)

if ('TTAIL') Exit Loop

if ('TDETL')

validate_TDETL()

process_TDETL()

end if

if (detail count = max array count)

resize array structures for tsfdetail

increase max array count

end if

increment detail count

Chapter 2 – Transfer Shipments Upload [tsfoupld] 9

end loop

if (no errors)

post_transfers() (don’t call this if doing a carton)

end if

if (non Fatal Error Encountered)

reject_record - call write error and pass file pointer as of last savepoint
and current file pointer

Rollback transaction

end if

if (transaction count > max commit count)

restart file commit

- save the current input file pointer position

- save the line counter in restart image

end if

end loop

restart commit final

validate_THEAD()

- validate transfer

-if external shipment number is ‘CARTON’, set carton flag and return from
function

format_header_fields()

if (shipment number provided in transaction)

validate that the shipment number exists within Retek for a transfer. (check
on shipment)

validate that the transfer within Retek has a status of ‘A’, ‘E’, ‘S’, ‘C’
(approved, extracted, shipped, closed) and is applicable to the

to/from locations specified (check on tsfhead) – also fetch transfer type

if shipment number provided does not exist on shipment in ‘I’, ‘R’ status for
a transfer then

raise Non-Fatal Error

if transfer does not exist in Retek with the appropriate status and locations
then

raise Non-fatal error

else if (no shipment number is provided)

if (external shipment number provided)

- validate to and from locations

10 Retek Merchandising System

if (loc_type = ‘S’)

check for existence on store table

else (loc_type = ‘W’)

check for existence on wh table

end if

if any location not exist, write non-Fatal error

- validate common transfer zone for store to store transfers

if (to_loc type = ‘S’ and from_loc = ‘S’)

check transfer zone - select transfer zone of the from location
and the to location.

if (from_loc transfer zone <> to _loc transfer zone)

write non-Fatal Error (transfer zones incompatible)

end if

end if

else (no external shipment number)

All detail records must have an allocation number.

end if

end if

process_THEAD()

check for a bill of lading in 0 - open status for the destination location

retrieve the bill of lading number if one exists

if (bill of lading does not exist)

get next bill of lading number

insert bill of lading header (lad_head) record

end if

if bol number passed in ensure it is valid.

If it is not valid get next bol number.

if transfer type = ‘CO’

retrieve delivery type from the ORDCUST table

end if

validate_TDETL()

format_detail_fields()

if inventory status field is not blank, validate it against inv_status_types table

if no shipment / ext shipment in file

Chapter 2 – Transfer Shipments Upload [tsfoupld] 11

every detail line must have an allocation.

if (shipment number in file)

validate item exists on the transfer

else

if (Item Type = ‘UPC’)

select sku from upc_ean based on the upc and supplement

if (upc does not exist)

write non-Fatal Error (upc not found)

end if

else if (Item Type = ‘SKU’)

SKU = item value from the input file

case ID = ‘ ’

end if

end if

if the store rcv type is ‘C’ the carton field must be populated

- get item system indicator, department, class and subclass

if (system indicator does not exist)

write non-Fatal Error (sku not found)

end if

process_TDETL()

The upd_resv_ind and the upd_intran_ind should be set up in the following way
before calling transfer_out_sql.execute.

if :oi_new_tsf_flag = 1 then

if :os_store_rcv_type = 'A' then

L_upd_resv_ind := 'N';

L_upd_intran_ind := 'N';

else

L_upd_resv_ind := 'N';

L_upd_intran_ind := 'Y';

end if;

elsif :ora_tsf_type = 'CO' and :ora_deliver_type = 'S' or

:os_store_rcv_type = 'A' then

L_upd_resv_ind := 'Y';

L_upd_intran_ind := 'N';

else

12 Retek Merchandising System

if :os_tsf_status = 'C' then

L_upd_resv_ind := 'N';

else

L_upd_resv_ind := 'Y';

end if;

L_upd_intran_ind := 'Y';

end if;

call TRANSFER_OUT_SQL.EXECUTE package function

 (see design specification for TRANSFER_OUT_SQL)

if transfer type = ‘CO’ and delivery type = ‘S’ or store receive type is ‘A’

call TRANSFER_IN_SQL.EXECUTE package function

 (see design specification for TRANSFER_IN_SQL)

write_recs_to_struct()

post_transfers()

if (shipment number was not passed in on the input file)

insert TSFHEAD (transfer_type = ‘MR’ or PO in an allocation is passed in,
ext_ref_no = external shipment number)

insert SHIPMENT (ext_ref_no_out should be the transaction control
number, ship date should be the transaction date)

perform array insert of TSFDETAIL

perform array insert of SHIPSKU

else (for all other Retek initiated transfer transactions)

try to update shipsku record if no data is found

perform array update of TSFDETAIL, set ship_qty – if transfer type = ‘SA’,
set tsf_qty = 0

perform array insert of SHIPSKU

- The this transfer is a customer order (tsf_type = ‘CO’) with a delivery type
of direct ship to customer, then this transfer must also be closed when it is
sent.

if transfer type = ‘CO’ and delivery type = ‘S’ or store rcv type is ‘A’

call TRANSFER_IN_SQL.CLOSE

 (see design specification for TRANSFER_IN_SQL)

else if transfer type = ‘SA’ then

update TSFHEAD status to ‘A’ - approved

else

update TSFHEAD status to ‘S’ - shipped

Chapter 2 – Transfer Shipments Upload [tsfoupld] 13

end if

end if

format_header_fields()

assign input file fields to variables

if from location type = ‘ST’

set ora_from_type = ‘S’

else if from location type = ‘WH’

set ora_from_type = ‘W’

end if

if to location type = ‘ST’

set ora_to_type = ‘S’

else if to location type = ‘WH’

set ora_to_type = ‘W’

end if

format_detail_fields()

assign input file fields to variables

- transfer quantity has an implied 4 decimal places

transfer qty = transfer qty / 10000

process_carton()

Select details from transfer tables for the carton number; for each sku in the
carton, call process_TDETL.

ON Fatal Error

rollback to last physical commit point

Exit Program

ON Non-Fatal Error

rollback to last savepoint

write out complete transfer transaction to the reject file, pass file pointer at last
savepoint and current file pointer

I/O specification

Input file
The input file should be accepted as a runtime parameter at the command line.

Important:

14 Retek Merchandising System

The structure of the TDETL line will vary, depending on whether cartons are
included or not. If cartons are included, the line will end after the item value
field.

Record
Name

Field Name Field Type Default Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number of
the current file

 File Type
Definition

Char(4) TSFO Identifies file as
‘Transfer OUT’

 File Create
Date

Date create date Date file was
written by external
system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number of
the current file

 Transaction
Set Control
Number

Number(14) specified by
external
system

Used to force
unique transaction
check

 Transaction
Date

Date specified by
external
system

Date the transfer
was created in
external system

 From
Location
Type

Char(2) ST - storeWH
- warehouse

Specifies the type
of location sending
items

 From
Location
Value

Number(4) location
identifier

Specifies the
sending location id
number

 To Location
Type

Char(2) ST - storeWH
- warehouse

Specifies the type
of location
receiving items

 To Location
Value

Number(4) location
identifier

Specifies the
receiving location
id number

 Shipment
Number

Number(10) Retek
shipment
number

Specifies the
Retek shipment
cross-reference

Chapter 2 – Transfer Shipments Upload [tsfoupld] 15

Record
Name

Field Name Field Type Default Value Description

 External
shipment

Char(15) External
shipment
number

Specifies external
shipment number;
will be CARTON
when transferring
cartons

 Courier Char (20) Courier used
to ship order

 Arrival date Date Arrival date

 Number of
boxes

Number(4) Number of boxes
in this transfer

 BOL number Number(13) Bill of lading

Transaction
Detail (Item)

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number of
the current file

 Transaction
Set Control
Number

Number(14) specified by
external
system

Used to force
unique transaction
check

 Detail
Sequence
Number

Number(6) specified by
external
system

Sequential number
assigned to detail
records within a
transaction

 Item Type Char(3) UPCSKU Item type will be
represented as a
UPC or SKU

 Item Value Number(13) item identifier The ID number of
a SKU or UPC

 Supplement Number(5) supplemental
identifier

Used to further
specify the id of an
UPC item

 Allocation
Number

Char(6) or
char(10) if the
allocation_ind
is = ‘Y’.

allocation
identifier

Retek allocation
number attached to
the transfer

16 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

 Inventory
Status

Number(2) inventory
status of item

Used to indicate
the type of non-
salable
merchandise
transferred in an
‘NS’ transfer

 carton Char(20) carton
identifier

UCC – 122 carton
code

 Transfer
Quantity

Number(12) Number of units to
be transferred of
the given item
(*10000—4
implied decimal
places)

Transaction
Detail
(Carton)

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number of
the current file

 Transaction
Set Control
Number

Number(14) specified by
external
system

Used to force
unique transaction
check

 Detail
Sequence
Number

Number(6) specified by
external
system

Sequential number
assigned to detail
records within a
transaction

 Item Type Char(3) CTN Item type will be
represented as a
CTN when
transferring a
carton

 Item Value Char(20) carton
identifier

UCC – 122 carton
code

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number of
the current file

Chapter 2 – Transfer Shipments Upload [tsfoupld] 17

Record
Name

Field Name Field Type Default Value Description

 Transaction
Detail Line
Count

Number(6) sum of detail
lines

Sum of the detail
lines within a
transaction

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Current line
number

 Number of
transaction
lines

Number(10) specified by
external
system

Total number of
lines in file,
excluding FHEAD
and FTAIL

Output file
Record
Name

Field Name Field Type Default Value Description

 Record Type Char (1) H Specifies file record
type

 Store Order
Number

Number (10) Order No Specifies shipment
number

 Division Type Char (2) Division Type Specifies division
type

 Warehouse Number (6) WH Loc Specifies WH
location value

 Store Number (6) Store Loc Specifies ST
location value

 Store Order Type Number (4) Store order type Specifies transfer
type

 Store order
comment

Char (255) Comment Specifies store order
comment (from
shipment or transfer
or both)

 Ship Date Number (14) Ship date Specifies date
shipped (date when
file was processed +
1)

18 Retek Merchandising System

Detail
Record
Name

Field Name Field Type Default Value Description

 Record Type Char (1) D Specifies record
type

 Store Order
number

Number
(10)

Order No Specifies
Shipment
Number

 Division type Char (2) SA, PO, MR,
CO, AD

Specifies
Division Type

 Xref Div Item Number
(8)

 RMS SKU

 UPC Number
(13)

UPC value Specifies UPC
Value

 UPC
supplement

Number
(5)

UPC
supplement

Specifies UPC
supplement
value

 Unit of
Measure

Char (2) Unit of
Measure

Specifies unit of
measure

 SKU Deck
Cost

Number
(10)

Deck cost Average unit
cost

 Quantity
Shipped

Number
(6)

Quantity
Shipped

Specifies
quantity
shipped value

Reject file
The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the transfer out module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0.

The reject filename should also be specified as a runtime parameter.

Error file
Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

Chapter 3 – Monthly Stock Ledger Processing [salmth] 19

Chapter 3 – Monthly Stock Ledger Processing
[salmth]
Modification

Modified the document to indicate that the system_variables table is not updated
by salmth.

Design overview
The purpose of this program is to sum up the monthly transaction totals from
DAILY_DATA and calculate the closing stock and gross margin for the current
month on MONTH_DATA. The procedure varies depending on the following
factors:

1 Whether the retail or cost method of accounting is used. Depending on the
setting of DEPS.profit_calc_type -- 1 = cost, 2 = retail

2 Whether a stock count of Unit & Dollar type has occurred during the month -
- Determined by the presence or absence of a STAKE_PROD_LOC row by
dept/class/subclass/store/wh.

Certain checks are made to ensure that the program is being run at an appropriate
point in time.

1 The current date (period.vdate) must not be earlier than the next due
eom_date (SYSTEM_VARIABLES.next_eom_date)

2 If a stocktake has been done during the month, all stocktake results must
have been processed.

Once the timing is verified each subclass/location record on month_data is
processed for the current month. For each record fetched, profit calculation type
and purchase type are retrieved from deps table, and budgeted shrinkage percent
are retreived from half_data_budget table.

If a stock count occurs during the current month, stkdly.pc would have already
updated the stock count’s book stock and actual stock fields on month_data (i.e.
stocktake_bookstk_cost (& retail) and stocktake_actstk_cost (& retail) on
month_data). The difference between the book stock and actual stock will be
used by this program to adjust the closing stock value for the current month.

In addition, this program calculates a shrinkage amount as follows :

If budget shrinkage indicator = ‘Y’ :

shrinkage amount = budgeted shrinkage percent * sales amount for the month

else

shrinkage amount = - (stock_adj_cost or retail)

depending on cost or retail method is used

If stock count did not occur during the month,

20 Retek Merchandising System

the above calculated shrinkage amount will be used to reduce the closing
stock for this month.

At the same time, this program adds the above calculated shrinkage amount
and sales amount for this month into inter_stocktake_shrink_amt and
inter_stocktake_sales_amt fields on month_data, which have been
accumulated since the last stock count.

Else

inter_stocktake_shrink_amt and inter_stocktake_sales_amt fields will be
reset by this program and re-start again to acumulate towards the next stock
count.

Note: inter_stocktake_shrink_amt and inter_stocktake_sales_amt fields on
month_data are used by stkdly.pc to calculate the book stock value and the actual
shrinkage amount for a stock count.

After all threads for this program have finished processing, the prepost module
must be launched by the scheduler to update the various end-of-month columns
on SYSTEM_VARIABLES.

TABLE INDEX SELECT INSERT UPDATE DELETE

DAILY_DATA Yes Yes No No No

DEPS Yes Yes No No No

HALF_DATA_BUDGET Yes Yes No No No

MONTH_DATA Yes Yes Yes Yes No

PERIOD No Yes No No No

STAKE_HEAD Yes Yes No No No

STAKE_PROD_LOC Yes Yes No No No

SYSTEM_OPTIONS No Yes No No No

SYSTEM_VARIABLES No Yes No No No

V_RESTART No Yes No No No

Scheduling constraints
Processing Cycle: PHASE 3 (monthly)

Scheduling Diagram: Can run any time after end-of-month date

Must run salweek first before running salmth

Pre-Processing: N/A

Post-Processing: salmth_post()

Updates system variables to set the stock ledger calendar ahead to the next month
for processing. All stock ledger calendar dates are moved forward to indicate
that the current month’s stock ledger processing has completed.

Threading Scheme: STORE_WH

Chapter 3 – Monthly Stock Ledger Processing [salmth] 21

V_restart_store_wh

Restart recovery
SELECT month_data.dept,

month_data.class,

month_data.subclass,

month_data.store,

month_data.wh,

month_data.currency_ind,

NVL(month_data.opn_stk_cost,0),

NVL(month_data.opn_stk_retail,0),

NVL(month_data.inter_stocktake_sales_amt,0),

NVL(month_data.inter_stocktake_shrink_amt,0),

NVL(month_data.stocktake_mtd_sales_amt,0),

NVL(month_data.stocktake_mtd_shrink_amt,0),

NVL(month_data.htd_gafs_cost,0),

NVL(month_data.htd_gafs_retail,0),

NVL(month_data.stocktake_bookstk_cost, 0),

NVL(month_data.stocktake_bookstk_retail, 0),

NVL(month_data.stocktake_actstk_cost, 0),

NVL(month_data.stocktake_actstk_retail, 0),

';' || TO_CHAR(month_data.dept) ||

';' || TO_CHAR(month_data.class) ||

';' || TO_CHAR(month_data.subclass) ||

';' || TO_CHAR(month_data.store)

FROM month_data,

v_restart_store_wh rv

WHERE month_data.half_no = :half_no

AND month_data.month_no = :month_in_half

AND rv.driver_value = month_data.store

AND rv.driver_name = :ora_restart_driver_name

AND rv.num_threads = :ora_restart_num_threads

AND rv.thread_val = :ora_restart_thread_val

AND (month_data.dept>NVL(:ora_restart_dept,month_data.dept- 1)OR

(month_data.dept = :ora_restart_dept AND

22 Retek Merchandising System

(month_data.class > :ora_restart_class OR

 (month_data.class = :ora_restart_class AND

 (month_data.subclass > :ora_restart_subclass OR

 (month_data.subclass = :ora_restart_subclass AND

 (month_data.store > :ora_restart_store)))))))

ORDER BY month_data.dept,

month_data.class,

month_data.subclass,

month_data.store,

month_data.currency_ind;

Program flow
N/A

Shared modules
STKLEDGR_ACCTING_SQL.
RETAIL_METHOD_CALC:

performs stock ledger stock and gross margin
calculations using the retail accounting
method.

STKLEDGR_ACCTING_SQL.
COST_METHOD_CALC:

performs stock ledger stock and gross margin
calculations using the cost accounting
method.

CAL_TO_454_LDOM: determines the 454 last-day-of-month from
current calendar date.

CAL_TO_CAL_HALF: determines the half number based on current
date.

CAL_TO_CAL_LDOM: determines last-day-of-month based on
current date.

CAL_TO_454_WEEKNO: determines week number in 454 half from
current date.

CAL_TO_CAL_WEEKNO: determines calendar week number from
current date.

CAL_TO_454: determines 454 calendar date from current
date.

HALF_TO_CAL_FDOH: determines the first-day-of-half from the
current half number.

HALF_TO_CAL_LDOH: determines the last-day-of-half from the
current half number.

HALF_TO_454_FDOH: determines the 454 first-day-of-half from
current half number.

Chapter 3 – Monthly Stock Ledger Processing [salmth] 23

HALF_TO_454_LDOH: determines the 454 last-day-of-half from
current half number.

Function level description
First check if there are unprocessed “Unit & Dollar” type of stock count, if there
are any, stop processing and give user an error message

Main process :

Loop through all subclass/location on month_data for current month (month to be
processed). For each month_data record fetched :

read profit_calc_type and purchase_type from deps table

read shrinkage_pct from half_data_budget table

check if Unit & Dollar type of stock count occurs during the month

sums the DAILY_DATA records by transaction type for all records with date
in the current month

if purchase_type = 1 (consignment department)

gross_margin_amt = purch_retail - purch_cost

else

if cost method (profit_calc_type = 1)

call the package function stkledgr_accting_sql.cost_method_calc
to calculate week’s closing stock at cost and gross margin

else

call the package function stkledgr_accting_sql.cost_method_calc
to calculate week’s closing stock at retail and cost and gross
margin

call function update_month_data

Update month_data for current month

Insert a row for next month on month_data

copy current month’s closing stock to be opening stock for next month

copy inter_stocktake_shrink_amt and inter_stocktake_sales_amt from
current month to next month

if current month_no = 6 (last month of the half) reset GAFS cost and
retail :

htd_gafs_cost and retail of next month = cls_stk_cost and retail
of current month, respectively

else

copy htd_gafs_cost and retail from current month to next month

24 Retek Merchandising System

I/O specification
N/A

Technical issues
N/A

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 25

Chapter 4 – Purchase Order Information Written to
Order History Tables [ordrev]
Modification

A note was added to each of the 5 file layouts to specify that the flat files that are
created will contain a space between record fields.

Design overview
Ordrev will write versions of approved order to order revision history tables.
When orders are approved or when approved orders are modified, this program
selects order numbers from the rev_orders table and writes current order
information to the order/allocation revision tables. After the new version has
been written to the order revision tables, all records will be deleted from the
rev_orders table for that order_no.

This program processes order changes made by the client that may need to be
sent to the vendor. The order changes should always be referred to as ‘versions’
and kept clearly distinct from order ‘revisions’ which are vendor changes
uploaded via the ediupack program.

This program also allows Nautilus and Retek to interface, by sending the
warehouse PO and allocation (ie. pre distribution) information to prepare the
warehouse for incoming orders. The program will create two flat files, PO
header and PO detail, based on approved orders found on the rev_orders table.
The program will also create Pre Distribution Header and Pre Distribution Detail
flat files, which will enable the warehouse to perform cross docking activities.

The last file produced by the ordrev batch program is a component ticketing file
that holds retail and ticketing information for non sellable pack items. This file
allows the warehouse to correctly ticket the components of the pack item, before
distributing the items to the stores.

If an order is not in approved status at the time the batch program runs, then none
of the above processing will occur. The record will stay on the rev_orders table
until the PO is approved or deleted.

Scheduling constraints
Processing Cycle: After rplprg & before edidlord, and Ad Hoc. This
program must be run, if interfacing with Nautilus

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

26 Retek Merchandising System

Restart recovery
Restartabilty will be implied, because the records that are selected from this table
will be deleted before the commit. Restart library functions will still be included
to ensure that rollback segments are not exceeded (by committing at intervals)
and to perform basic record keeping functionality.

SELECT ro.action_type,

ro.order_no,

ro.alloc_no,

ro.location,

ro.sku,

ro.hdr_dtl_ind,

oh.pre_mark_ind,

ro.rowid

FROM rev_orders ro,

ordhead oh

WHERE ro.order_no = oh.order_no

AND oh.status = 'A'

AND MOD(ro.order_no, :oi_restart_num_threads) + 1 =
:oi_restart_thread_val

AND ro.order_no > NVL(:ora_restart_order_no, -9999)

ORDER BY ro.order_no;

Program flow
N/A

Shared modules
PRICING_ATTRIB_SQL.GET_RETAIL(): get the unit retail from
item_zone_pricing table for a sku/store.

PROMOTION_ATTRIB_SQL.EVENT_DESC(): get the event’s description

Function level description
Init()

Initialization of the restart Retek recovery process will be performed here.

Get system date.

Get Allocation Indicator from system_options table.

Open output files. There will be a maximum of 4 files (ie. one header and detail
for PO download and one header and detail for Pre-distribution download)

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 27

Write FHEAD to all files.

Call Init_buffers().

Process()

All orders that need to have order version records will be processed.

If the order number changes, then perform the following logic.

The order number will be used to populate the revision history tables. The
get_rev_no() function is called to determine the version number for the insert
into the revision history tables.

Check if order is customer order. If order is customer order set flag to 1 ,
else set to 0(for the customer order no allocation information will be
download to the RLS logistic).

If version 1was just inserted (ie. order was just approved for the first time, no
previous versions existed), then

Call write_new_po function to write newly created orders and associated
allocations to the po header, po detail, pre distribution header, and pre
distribution detail files.

Else

Call write_existing_po function to write the changed order information
to the flat files. Some or all of the flat files may be written in this
circumstance depending upon what information has changed since the
order was last sent down to Nautilus.

End if;

The insert_header() function will be called from here to insert header level
information, the insert_sku() function will insert order sku information, the
insert_loc() will insert order sku/location information, and the insert_alloc()
will insert order allocation information if the order’s pre-mark indicator was
set. This indicator will indicate whether cross-docked allocation information
will be sent to the supplier along with the order. When all of the version
information has been inserted into the revision history tables, all of the
records with that order number should be deleted from the revord table by the
delete_revord() function.

If system_options.financial_ap equals ‘P’, then call ins_revord () to insert
into the fif_ordhead table.

Else /* the order number remains the same */

If order is not customer order. Call write_alloc_only().

End if;

28 Retek Merchandising System

Get_rev_no()

It is necessary to get the last version number that was written to the order
revisions tables. The maximum version number is selected from the header
revision table and then incremented by 1 to get the version number that will be
inserted during processing. If no record exists in the order header revision
history table, then the order is new and a version number of 1 is used.

Insert_header()

The current information on the order header table will be inserted into the header
revision history table with the new version number

Insert_sku()

The current information on the order sku table is inserted into the order sku
revision history table with the new version number

Insert_loc()

The current information on the order sku/location table is inserted into the order
sku/location revision history table with the new version number.

Insert_alloc()

The ship-to warehouse on the allocation header table and the allocation
information and quantity information from the allocation detail table is written to
the allocation revision history table with the new version number.

Ins_revord()

Insert into the fif_ordhead table.

Write_new_po()

This function will write FDETL records to the appropriate PO and pre
distribution output files.

Order information is retrieved from the ordhead and ordloc tables to populate the
PO header and PO detail files. A record will be written to the PO download
header and detail file for only orders with a warehouse destination. The
warehouse number will be stored in the Location (DC) field on the file. If the
order is going to other locations, such as stores, then do not write a record to the
files. There will be one header for each order/wh location retrieved.

Check customer order flag. If it is not customer order, open a “for loop” to
retrieve the allocation information for an order.

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 29

Write pre-distribution header and detail with action type = ‘A’dd for the
warehouse/allocation/sku/order_no. There will be one header for every alloc_no
retrieved and a detail record for each to_location for that allocation. In other
words, the first allocation number will be written to the pre-distribution header
record. Write the pre-distribution detail records, until that allocation number
changes. When the allocation number changes, then write a pre-distribution
header record. The warehouse (from_loc) will be stored in the Location (DC)
field on the file. Call promotion_attrib_sql.get_event_desc package for the
event’s description. Also, get the correct retail (pricing_attrib_sql.get_retail
package) and ticketing information for the predistribution detail file. In the for
loop, if the allocation location is a store, call comp_tckt () function to write the
component ticketing file.

Write_existing_po()

Open a “for loop” to retrieve ordhead and ordloc fields for comparison. The
comparison will be completed for each warehouse location the order is destined.
In the for loop, compare ordhead/ordloc with previous version on
ordhead_rev/ordloc_rev. If there are any changes to the Nautilus required fields,
then write PO download header and/or detail records. This process only needs to
be done for orders going to warehouse locations.

Fetch the header information from ordhead and ordhead_rev. Compare each
field (ie. ordhead.buyer = ohr.buyer). If the fields do not equal, then set an
indicator, which will indicate that the ordhead records have been modified and an
action_type = ‘M’ will need to be sent down in the PO header file.

For the order number retrieved in the above cursor loop through the ordloc
warehouse records. First, check the header indicator. If the ordhead record has
changed, then a PO header record needs to be written for each warehouse on the
order. For example, one PO (#123456) has been created to replenish the stock in
warehouse 1, 2, and 3. The PO header download file produced by the ordrev.pc
program will have 3 separate records. The first FDETL will have a location
(DC) = 1 for PO #123456, the second record will have a location (DC) = 2 for
PO #123456, and the third record will have a location (DC) = 3 for PO#123456.
After the ordhead indicator check, compare the ordloc and the ordloc_rev fields.
If one of the fields differ, then write a PO detail record for the
warehouse/order_no. Once all warehouse locations are processed in that order, go
fetch the next order.

• If ordloc.qty_ordered != 0, then action type = ‘M’

• If ordloc.qty_ordered = 0, then action type = ‘D’

Check customer order flag. If it is not customer order. Call write_alloc_only();

Write_alloc_only()

This function will write FDETL records to the appropriate pre-distribution output
files.

If alloc_no is not NULL, then (alloc_no was retrieved from the main driving
cursor on the rev_orders table)

If location is NULL and action type = ‘A’ then

30 Retek Merchandising System

Write pre-distribution download header and detail with action type ‘A’.
If the action type = ‘A’, then loop through all of the “to locations” of the
allocation on alloc_detail table. A detail record will need to be written
for each alloc_detail location.

In the for loop, if the allocation location is a store, then call the
comp_tckt() function.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl_ind = ‘H’

Write pre-distribution header with action type = ‘D’. The location field
retrieved by the driving cursor will contain the from warehouse location
(ie. alloc_header.wh) and should be used to populate the Location (DC)
field on the output file.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl_ind = ‘D’

Write pre-distribution detail with action type = ‘D’. The location field
on the rev_orders table will contain the to store/warehouse location (ie.
alloc_detail.store or wh) and should be used to populate the destination
id on the output file.

Else /* location is not NULL and action type = ‘A’ or ‘M’ */

Write pre-distribution download detail with ‘A’, ‘M’, depending on the
action type retrieved from the main cursor (ie. rev_orders). Get the detail
file’s information (from_loc, to_loc, qty) by selecting from the
alloc_detail/alloc_header table for the alloc_no and location found in the
main driving cursor. A detail record should be written for the location
that was retrieved from the rev_orders table.

If the action type = ‘A’ and the allocation location is a store, then call the
comp_tckt() function.

End if;

End if;

Comp_tckt()

If the sku on the allocation is a non sellable pack item going to a store location,
then write all of the component skus, retail price, and ticket information to the
component_ticketing file.

Del_revord()

Multiple order versions could exist on the revord table for the same order. This
could happen if the batch program had not been run since the last time the order
was modified. Since the processing has written the current order value to the
revision history tables, all records with that order number must be deleted from
the revord table to prevent double processing

I/O specification
The five output files should be specified at the command line when running the
ordrev.pc program.

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 31

Order Header file
Note: The flat files will contain a space between record fields.

Record
Name

Record Default value Field type Description

File
Header

Detail file
identifier

FHEAD Char(5) Identifies the
header line

 line number Incremented internally Number(10) sequential line
number

 Program
descriptor

POHD Char(5) Identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) File create date

File
detail

File record
descriptor

FDETL Char(5) Identifies the
detail line

 Line number Incremented internally Number(10) sequential line
number

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify, or
delete action type

 Location Ordloc.location (wh only) Number(4) Location of item
that was ordered

 Transaction
day date/time

sysdate Datetime(12
)

system date

 Po number ‘P’ + ordhead.order_no Char(9) Unique identifier
of the purchase
order, prefixed
with ‘P’

 Vendor
number

Ordhead.supplier Number(7) Supplier number
of the order

 Preassigned
flag

‘N’ Char(1)

 Deliver_not_b
efore_date

Not_before_date Date(8) Not_before_date
of the order

 Deliver_not_a
fter_date

Not_after_date Date(8) Not_after_date of
the order

 Shipping
terms

Ordhead.freight_terms Char(3) Freight Terms of
the order

 Buyer code Ordhead.buyer Char(12) Buyer of the PO.

32 Retek Merchandising System

Record
Name

Record Default value Field type Description

File
trailer

File record
identification

FTAIL Char(5) File trailer
identifier

 Line number Internally incremented Number(10) Sequential line
number of file

 Number of
transaction
lines

Internally determined Number(10) Total number of
transactions (not
including FHEAD
and FTAIL)

Order Detail file
Note: The flat files will contain a space between record fields.

Record
Name

Record Default value Field type Description

File header File line
identifier

FHEAD Char(5) identifies file
record type

 Line number Begins at 0000000001 Number(10) identifies file
line number

 Program
descriptor

PODT Char(5) identifies the
program

 Create date YYYYMMDDHH24MISS
format

Char(14) file create date

File Detail Detail file
identifier

FDETL Char(5) Identifies the
Detail line

 line number Incremented internally Number(10) sequential line
number

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify,
or delete action
type

 Location Ordloc.location (wh only) Number(4) This field
contains the
location to
which the item
will be ordered
to.

 Transaction day
date/time

sysdate Datetime(12) system date

 PO number ‘P’ + order number char(9) Identifies the
unique PO
number

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 33

Record
Name

Record Default value Field type Description

 Item id Ordloc.sku Char(16) Sku on the
order

 Requested unit
qty

Ordloc.qty_ordered Number(12,4) Contains the
total number
of items
ordered to a
specific
location.

 Ordered case
pack

Ordsku.case_pack_size Number(12,4) Contains the
case pack size
that the item
was ordered in

 Hang/Flat/Shoe
Indicator

Hanger attribute or default
door type

Char(1) F=Flat,
H=Hang,
S=Shoe,
A=All

File Trailer File Line
identifier

FTAIL Char(5) Identifies the
trailer line

 line number Incremented internally Number(10) sequential line
number

 number of
transaction lines

Total number of detail
lines

Number(10) total number
of detail lines
in file (not
including
FHEAD and
FTAIL)

Stock Order file
Note: The flat files will contain a space between record fields.

Record
Name

Record Default value Field type Description

File Header Detail file
identifier

FHEAD Char(5) Identifies the
header line

 line number Incremented internally Number(10) sequential line
number

 Program
descriptor

STOR Char(5) Identifies the
program

 Create date YYYYMMDDHH24MIS
S

Char(14) File create date

34 Retek Merchandising System

Record
Name

Record Default value Field type Description

File detail File record
descriptor

FDETL Char(5) Identifies the
detail line

 Line number Incremented internally Number(10) sequential line
number

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify,
or delete action
type

 Location alloc_header.wh Number(4) From
Warehouse
location

 Transaction day
date/time

sysdate Datetime(12) system date

 distribution
number

‘A’ + alloc_no char(9) or
char(11) if the
allocation_ind
is = ‘Y’

Allocation
number. Prefix
‘A’ for alloc

 Download
comment

NULL Char(30) Comment to be
printed on the
label (for future
use)

 Pick_not_before
_date

Not_before_date Date(8) Not_before_dat
e of theorder

 Pick_not_after_
date

Not_after_date Date(8) Not_after_date
of the order

 Event code Promotion or NULL Char(6) Promotion’s
event number

 Event
description

Prom_desc or NULL Char(25) Event
description

 priority 1 Char(4) Priority

 Order Type ALLOC_HEADER.ORDE
R_TYPE

Char(9) Type of Order :
‘PO’ or
‘PREDIST’

 Break by Distro ‘N’ Char(1) Controls the
mixing of
orders (distros)
in a container

 Carrier Code NULL Char(4) Code of the
carrier for the
order

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 35

Record
Name

Record Default value Field type Description

 Carrier Service
Code

NULL Char(6) Carrier’s
service code for
the delivery,
First Class, and
son on (Future
Use)

 Route NULL Char(10) Route specified
for the delivery

 Ship Address
Description

NULL Char(30) The description
(such as the
store name)

 Ship Address
Line 1

NULL Char(30) Shipping
Address Line 1

 Ship Address
Line 2

NULL Char(30) Shipping
Address Line 2

 Ship
AddressLine 3

NULL Char(30) Shipping
Address Line 3

 ShipAddressLin
e 4

NULL Char(30) Shipping
Address Line 4

 ShipAddressLin
e 5

NULL Char(30) Shipping
Address Line 5

 City NULL Char(25) Shipping City

 State NULL Char(3) Shipping State

 Zip NULL Char(10) Shipping Zip

 Billing Address
Description

NULL Char(30) The description
(such as
company
name). This is
the first line of
the address
block.

 Billing Address
1

NULL Char(30) Billing Address
Line 1

 Billing Address
2

NULL Char(30) Billing Address
Line 2

 Billing Address
3

NULL Char(30) Billing Address
Line 3

 Billing Address
4

NULL Char(30) Billing Address
Line 4

36 Retek Merchandising System

Record
Name

Record Default value Field type Description

 Billing Address
5

NULL Char(30) Billing Address
Line 5

 Amount 1 NULL Number(8,2) Amount Charge
1

 Amount 2 NULL Number(8,2) Amount Charge
2

 Amount 3 NULL Number(8,2) Amount Charge
3

 PO Number ‘P’ +
ALLOC_HEADER.ORDE
R_NO

Char(9) Unique
identifier of the
purchase order,
prefixed with
‘P’.

File trailer File record
identification

TTAIL Char(5) File trailer
identifier

 Line number Internally incremented Number(10) Sequential line
number of file

 Number of
transaction lines

Internally determined Number(6) Total number
of transactions
(not including
FHEAD and
FTAIL)

Stock Allocation file
Note: The flat files will contain a space between record fields.

Record
Name

Record Default value Field type Description

File header File line
identifier

FHEAD Char(5) identifies file
record type

 Line number Begins at 0000000001 Number(10) identifies file
line number

 Program
descriptor

STAL Char(10) identifies the
program

 Create date YYYYMMDDHH24MIS
S format

Char(14) file create date

File Detail Detail file
identifier

FDETL Char(5) Identifies the
Detail line

 line number Incremented internally Number(10) sequential line
number

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 37

Record
Name

Record Default value Field type Description

 Action_type ‘A’, ‘M’, ‘D’ Char(1) Add, modify,
or delete
action type

 Location alloc_header.wh Number(4) From
Warehouse
location

 Transaction day
date/time

sysdate Datetime(12) system date

 distribution
number

‘A’ + alloc_no char(9) or
char(11) if the
allocation_ind
is = ‘Y’.

Allocation
number.
Prefix ‘A’ for
alloc

 Item Id ALLOC_HEADER.SKU Char(16) Unique item
identifier

 requested unit
qty

Alloc_detail.qty_allocated Number(12,4) quantity
allocated

 destination id Alloc_detail.store or wh Number(4) Allocation
location

 price Item_zone_price.unit_retai
l

Number(5,2) Retail price

 print upc flag NULL char(1) Print upc flag

 ticket type item_ticket.ticket_type Number(4) Receiving
Ticket type of
item.

 priority 1 Char(4) Priority

 expedite flag ‘N’ char(1) Flag
indicating
whether the
order should
be shipped via
normal or
expedite
carrier service.

File Trailer File Line
identifier

FTAIL Char(5) Identifies the
trailer line

 line number Incremented internally Number(10) sequential line
number

38 Retek Merchandising System

Record
Name

Record Default value Field type Description

 number of
transaction lines

Total number of detail
lines

Number(6) total number
of detail lines
in file (not
including
FHEAD and
FTAIL)

Component Ticketing file layout:
Note: The flat files will contain a space between record fields.

Record
Name

Record Default value Field type Description

File Header File Line
identifier

FHEAD Char(5) Identifies the
trailer line

 Line number 0000000001 Number(10) identifies file
line number

 Program
descriptor

CPTT Char(4) identifies the
program

 Create date YYYYMMDDHH24MISS Char(14) file create
date

File detail file record
descriptor

FDETL Char(5) Detail line
descriptor

 line number Incremented internally Number(10) sequential
line number

 Action_type ‘A’ Char(1) 'A'dd,
'M'odify,
'D'elete

 Location alloc_header.wh Number(4) location that
items will be
allocated
from

 Transaction
date/time

vdate Datetime(12) date/time
created in
RMS

 distribution
number

alloc_header.alloc_no char(9) Unique
identifier of
the
distribution.

Chapter 4 – Purchase Order Information Written to Order History Tables [ordrev] 39

Record
Name

Record Default value Field type Description

 Master item
id

alloc_header.sku Char(16) Unique
identifier of
the pack
item

 Dest Id alloc_detail.store Number(4) Identifier of
the ship
destination

 Component
Item ID

v_packsku_qty.sku Char (16) item
identifier of
the
component

 price Item_zone_price.unit_retail Number(7,2) Price of the
merchandise.

File Trailer file record
identification

FTAIL Char(5) File trailer

 line number Incremented internally Number(10) sequential
line number

 number of
transaction
lines

Total number of detail
lines

Number(6) total number
of
transaction
lines in file
(not
including
FHEAD and
FTAIL)

Technical issues
Clients will have to determine how frequently to run this program. If order
versions are only needed at the end of the business day, e.g. when orders are
mailed or transmitted to suppliers, then it might be sufficient to run this program
once a day (after the replenishment orders are built and before the EDI orders are
transmitted to the supplier).

Potential future enhancement, write a report when multiple records for the same
order are on the table. This might be used to indicate whether orders versions
should be written more frequently.

Information is selected into arrays to improve performance.

This program must be run if interfacing with Nautilus.

Chapter 5 – Stock Ledger Extract [stlgdnld] 41

Chapter 5 – Stock Ledger Extract [stlgdnld]
Modification

Changed output file due to changes from SIR 29894.

Design overview
This program extracts stock ledger data at a SKU/location/week level from the
TRAN_DATA_HISTORY table. The program can extract data for a specified
historic period or for the most current complete week. Therefore, if the most
current complete week ends on March 10th, running the program on any day
between March 11th and 16th will download the week ending March 10th. An
historic download will download all the complete weeks between the from and to
dates supplied in the input file.

This program will extract the following information at a SKU/location/week
level:

Sales Value (retail & cost for regular, promotional and clearance), Sales Units
(regular, promotional, and clearance), RTV Value (retail & cost), RTV units,
Customer Returns Value (retail & cost), Customer Returns Units, Reclass In
(retail & cost), Reclass In Units, Reclass Out (retail & cost), Reclass Out units,
Permanent Markdown Value (retail), Promotional Markdown Value (retail),
Clearance Markdown Value (retail), Markdown Cancel (retail), Markup Value
(retail), Markup Cancel Value (retail), Received Value (retail & cost), Received
Units, Transfer In Value (retail & cost), Transfer In Units, Transfer Out Value
(retail & cost), Transfer Out Units, Stock Adjustment Value (retail & cost), Stock
Adjustment Units, Employee Discount Value, Freight Cost, Cost Variance,
Workroom/Other Cost of Sales Value (retail), and Cash Discount value (retail).

Back posted transactions will be downloaded in the week in which the actual
transaction occurred. Since the weeks with back posted transactions will only
contain additions to the week and not the full week's value – downloaded in a
previous extract for the week in which the transaction occurred – the record will
be extracted with a 'U' to signify an update for the week. Records for the most
current week will be extracted with a 'I' to indicate an insert or overlay for the
week (i.e. full weekly data).

Design assumptions
Unit shrinkage will be calculated in RPP. RMS will pass the necessary inventory
adjustment records.

Unit BOP will be calculated as the previous period's unit BOP + unit receipts +
unit rtvs + unit transfer ins - unit transfer outs + unit reclass in - unit reclass out -
net sales - shrinkage. Since the interface will be providing all of these metrics,
RPP will calculate the actual unit BOP.

Unit numbers interfaced from RMS to RPP will be in “eaches”.

42 Retek Merchandising System

Performance considerations
Since the data is being extracted from the Transaction Data History table, which
is a very large table, performance may be a concern. RMS can not determine at
this time the actual performance of this process. See Technical Design for
possible performance enhancements.

Scheduling constraints
This program can be run weekly as well as ad hoc (for historic data). This
program runs in phase 4.

Restart recovery
This program will use restart recovery. The logical unit of work is each unique
SKU.

Program flow
N/A

Shared modules
DATES_SQL.GET_EOW_DATE – Retrieves the end of week date for a specific
input date.

Function level description
main()

The standard Retek main() function. Calls init(), process(), and final().

init()

Initialize restart recovery by calling retek_init() and set up the output file.

Fetch the multi_currency_ind, stkldgr_vat_incl_retl_inc, vat_ind,
last_eow_date_unit and vdate from system_options, system_variables, and period
tables.

format_buffer()

Formats the string that will be used to write to the output file.

process()

Will read the input file and call either fetch_w_process or fetch_h_process
according to the input value from command line.

Chapter 5 – Stock Ledger Extract [stlgdnld] 43

fetch_w_process()

This function will call the driving cursor that fetches the stock ledger data for the
most current end of week information from TRAN_DATA_HISTORY. This
function will loop through records returned by the driving cursor and write to the
output file by calling write_file(). Within the FOR loop, calls the conversion
function if the multi_currency_ind = ‘Y’. Conversion function will convert the
values to primary currency. Eow_date is checked to determined whether the
update indicator needs to be set to ‘U’ or ‘I’. Records are written to the output
file by using write_file()

fetch_h_process()

This function will call the driving cursor that fetches the stock ledger data for a
specific range of historic data from TRAN_DATA_HISTORY. It will also call
get_eow_date to determine the end of week date’s for the dates that were passed
in the input file. This function will loop through records returned by the driving
cursor and write to the output file by calling write_file(). A separate record
should be written for each SKU/location/eow_date combination. Within the
FOR loop, call the conversion function if the multi_currency_ind = ‘Y’. This
function will convert the values to primary currency. Update indicator will
always be set to ‘I’ for historic runs.

get_eow_date()

Call DATES_SQL.GET_EOW_DATE to determine the end of week dates
associated with the from_date and to_date passed in the input file. End of week
dates will be used in the fetch_h_process driving cursor to bring back all records
on tran_data_history that fall within the historic date range.

write_file()

This function will call rtk_print to write the information fetched from the driving
cursor to the output file.

conversion()

Since tran_data_history stores information in the local currency, the values need
to be converted to the primary currency. This function will call a C function,
CONVERT_TO_PRIMARY, from utils.h and convert the amount values to
primary currency if the multi-currency-indicator from system_options is ‘Y’.
This function will be called within the for loop of both fetch_process functions.

size_array()

Dynamically allocates memory to arrays.

free_array()

Frees memory allocated to arrays.

final()

Take care of file clean up and complete the restart recovery process by calling
retek_close() and free_array().

44 Retek Merchandising System

I/O specification

Input specifications

Input file format
H[date in the ‘YYYYMMDD’ format][date in the ‘YYYYMMDD’ format] or

W

Ex: H1996010120000222 or W

Complete week driving cursor
If a ‘W’ is passed in the input file, this driving cursor should be called to bring
back all tran_data_history records that fall within the last complete week.
Records should be brought back at a SKU/location/week level. The cursor needs
to sum the totals for each tran_code based on these variables. Since
tran_data_history is kept at a daily level, all days within the given completed
week need to be summed up. There are three types of sales that could exist on
tran_data_history: regular, promotional, and clearance. Sales need to be broken
out by type for each SKU and written to separate fields in the output file for that
SKU.

 EXEC SQL DECLARE c_week_data_w CURSOR FOR

 SELECT tdh.sku,

 DECODE(tdh.store,-1,'W','S'), /* This is required for currency
conversion */

 DECODE(tdh.store,-1,tdh.wh,tdh.store),

 to_date(:ps_eow_date,'YYYYMMDD')-
(7*trunc((to_date(:ps_eow_date,'YYYYMMDD')-

 (DECODE(SIGN(TO_DATE(:ps_eow_date,'YYYYMMDD')-
tran_date),

 -1,to_date(:ps_eow_date,'YYYYMMDD'),

 0,to_date(:ps_eow_date,'YYYYMMDD'),

 TO_DATE(tran_date,'YYYYMMDD'))))/7)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total_retail,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(units,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total_retail,0),0),0)),

Chapter 5 – Stock Ledger Extract [stlgdnld] 45

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(units,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total_retail,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(units,0),0),0)),

 SUM(DECODE(:pi_stkldgr_vat_incl_retl_ind,2,0,

 DECODE(tran_code,1,NVL(total_retail,0),0))+

 DECODE(tran_code,2,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,4,NVL(units,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,24,NVL(units,0),0)),

 SUM(DECODE(tran_code,34,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,34,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,34,NVL(units,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,36,NVL(units,0),0)),

 SUM(DECODE(tran_code,13,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,15,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,16,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,14,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,11,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,12,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,22,NVL(units,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_cost,0),0)),

46 Retek Merchandising System

 SUM(DECODE(tran_code,20,NVL(units,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,30,NVL(units,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,32,NVL(units,0),0)),

 SUM(DECODE(tran_code,26,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,60,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,70,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,80,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,81,NVL(total_retail,0),0)),

 ':'||TO_CHAR(tdh.sku)

 FROM tran_data_history tdh,

 v_restart_dept rv

 WHERE tdh.post_date between (TO_DATE(:ps_eow_date,
'YYYYMMDD') - 6) and TO_DATE(:ps_eow_date, 'YYYYMMDD')

 AND tdh.sku > NVL(:ps_restart_sku, -999)

 AND rv.driver_value = tdh.dept

 AND rv.num_threads = :pi_num_threads

 AND rv.thread_val = :pi_thread_val

 GROUP BY sku,

 DECODE(tdh.store,-1,'W','S'),

 DECODE(tdh.store,-1,tdh.wh,tdh.store),

 to_date(:ps_eow_date,'YYYYMMDD')-
(7*trunc((to_date(:ps_eow_date,'YYYYMMDD')-

 (DECODE(SIGN(TO_DATE(:ps_eow_date,'YYYYMMDD')-
tran_date),

 -1,to_date(:ps_eow_date,'YYYYMMDD'),

 0,to_date(:ps_eow_date,'YYYYMMDD'),

 TO_DATE(tran_date,'YYYYMMDD'))))/7))

 ORDER BY sku,

 to_date(:ps_eow_date,'YYYYMMDD')-
(7*trunc((to_date(:ps_eow_date,'YYYYMMDD')-

 (DECODE(SIGN(TO_DATE(:ps_eow_date,'YYYYMMDD')-
tran_date),

Chapter 5 – Stock Ledger Extract [stlgdnld] 47

 -1,to_date(:ps_eow_date,'YYYYMMDD'),

 0,to_date(:ps_eow_date,'YYYYMMDD'),

 TO_DATE(tran_date,'YYYYMMDD'))))/7));

Driving cursor for historic data
 EXEC SQL DECLARE c_week_data_h CURSOR FOR

 SELECT tdh.sku,

 DECODE(tdh.store,-1,'W','S'), /* This is required for currency
conversion */

 DECODE(tdh.store,-1,tdh.wh,tdh.store),

 to_date(:is_to_date,'YYYYMMDD')-
(7*trunc((to_date(:is_to_date,'YYYYMMDD')-

 (DECODE(SIGN(TO_DATE(:is_to_date,'YYYYMMDD')- tran_date),

 -1,to_date(:is_to_date,'YYYYMMDD'),

 0,to_date(:is_tp_date,'YYYYMMDD'),

 TO_DATE(tran_date,'YYYYMMDD'))))/7)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total_retail,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(units,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total_retail,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(units,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total_retail,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total_cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(units,0),0),0)),

 SUM(DECODE(:pi_stkldgr_vat_incl_retl_ind,2,0,

 DECODE(tran_code,1,NVL(total_retail,0),0))+

 DECODE(tran_code,2,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,4,NVL(total_cost,0),0)),

48 Retek Merchandising System

 SUM(DECODE(tran_code,4,NVL(units,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,24,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,24,NVL(units,0),0)),

 SUM(DECODE(tran_code,34,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,34,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,34,NVL(units,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,36,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,36,NVL(units,0),0)),

 SUM(DECODE(tran_code,13,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,15,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,16,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,14,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,11,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,12,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,22,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,22,NVL(units,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,20,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,20,NVL(units,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,30,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,30,NVL(units,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,32,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,32,NVL(units,0),0)),

 SUM(DECODE(tran_code,26,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,60,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,70,NVL(total_cost,0),0)),

 SUM(DECODE(tran_code,80,NVL(total_retail,0),0)),

 SUM(DECODE(tran_code,81,NVL(total_retail,0),0)),

 ':'||TO_CHAR(tdh.sku)

 FROM tran_data_history tdh,

Chapter 5 – Stock Ledger Extract [stlgdnld] 49

 v_restart_dept rv

 WHERE tdh.post_date between (to_date(:is_from_date,'YYYYMMDD')-6)
and (to_date(:is_to_date,'YYYYMMDD'))

 AND tdh.sku > NVL(:ps_restart_sku, -999)

 AND rv.driver_value = tdh.dept

 AND rv.num_threads = :pi_num_threads

 AND rv.thread_val = :pi_thread_val

 GROUP BY sku,

 to_date(:is_to_date,'YYYYMMDD')-
(7*trunc((to_date(:is_to_date,'YYYYMMDD')-

 (DECODE(SIGN(TO_DATE(:is_to_date,'YYYYMMDD')- tran_date),

 -1,to_date(:is_to_date,'YYYYMMDD'),

 0,to_date(:is_tp_date,'YYYYMMDD'),

 TO_DATE(tran_date,'YYYYMMDD'))))/7)),

 DECODE(tdh.store,-1,'W','S'),

 DECODE(tdh.store,-1,tdh.wh,tdh.store)

 ORDER BY sku;

Following is a list of the transaction codes that will be rolled up to a week level:

 01 - Net Sales (retail & cost)

02 - net sales (retail & cost) - retail is always VAT exclusive, written only if

 system_options.stkldgr_vat_incl_retl_ind = Y

 04 - Customer Returns (retail & cost)

 11 - Markup (retail only)

 12 - Markup cancel (retail only)

 13 - Permanent Markdown (retail only)

 14 - Markdown cancel (retail only)

 15 - Promotional Markdown (retail only)

 16 - Clearance Markdown (retail only)

 20 - Purchases (retail & cost)

 22 - Stock adjustment (retail & cost)

 24 - RTV from inventory (retail & cost)

 26 - Freight (cost only)

 30 - Transfers IN (retail & cost)

 32 - Transfers OUT (retail & cost)

50 Retek Merchandising System

 34 - Reclassifications In

 36 - Reclassifications Out

 60 - Employee discount (retail only)

 70 - Cost Variance

 80 - Workroom/Other Cost of Sales (retail only)

 81 - Cash discount (retail only).

Output specifications

Output files
The output will be named stckldgr.dat. A separate record should be written for
each SKU/location/eow_date combination.

Output file format

Record
Name

Field Name Field Type Default
Value

Description

 SKU Char(20) SKU associated with stock ledger
date

 Location Type Char(1) Type of Location – S or W

 Location Char(20) Store or warehouse of stock ledger
data

 EOW Date Char(8) End of week date of week for which
data was derived

 Update Indicator Char(1) It is set to ‘U’ if the tran_date in
weekly run is between end of month
date and last end of week date and in
all other cases (including historic run)
is set to ‘I’

 Regular Sales
Retail

Number(25) Total regular sales value (retail) for
SKU/location/week – tran_code = 1
and sales_type = ‘R’

 Regular Sales
Cost

Number(25) Total regular sales value (cost) for
SKU/location/week - tran_code = 1
and sales_type = ‘R’

 Regular Sales
Units

Number(17) Total regular sales units for
SKU/location/week- tran_code = 1
and sales_type = ‘R’

 Promotional Sales
Retail

Number(25) Total promotional sales value (retail)
for SKU/location/week - tran_code =
1 and sales_type = ‘P’

Chapter 5 – Stock Ledger Extract [stlgdnld] 51

Record
Name

Field Name Field Type Default
Value

Description

 Promotional Sales
Cost

Number(25) Total promotional sales value (cost)
for SKU/location/week- tran_code =
1 and sales_type = ‘P’

 Promotional Sales
Units

Number(17) Total promotional sales units for
SKU/location/week - tran_code = 1
and sales_type = ‘P’

 Clearance Sales
Retail

Number(25) Total clearance sales value (retail) for
SKU/location/week - tran_code = 1
and sales_type = ‘C’

 Clearance Sales
Cost

Number(25) Total clearance sales value (cost) for
SKU/location/week - tran_code = 1
and sales_type = ‘C’

 Clearance Sales
Units

Number(17) Total clearance sales units for
SKU/location/week - tran_code = 1
and sales_type = ‘C’

 Sales Retail
Excluding VAT

Number(25) Total sales value (retail) excluding
VAT for SKU/location/week. If the
VAT_IND and
STKLDGR_VAT_INCL_RETL_IND
on SYSTEM_OPTIONS = ‘Y’, then
this value will come from the
tran_code 2 records. It will hold the
total retail excluding VAT. The
tran_code 1 record will contain retail
including VAT. If VAT_IND = ‘Y’
and
STKLDGR_VAT_INCL_RETL_IND
= ‘N’, then the tran_code 1 record
will contain retail without VAT and
no tran_code 2 record will be written,
so this field should be 0. If VAT isn’t
being used, then this field should
contain a 0.

 Customer Returns
Retail

Number(25) Total customer returns value (retail)
for SKU/location/week

 Customer Returns
Cost

Number(25) Total customer returns value (cost)
for SKU/location/week

 Customer Returns
Units

Number(17) Total customer returns units for
SKU/location/week

 RTV Retail Number(25) Total Return to Vendor value (retail)
for SKU/location/week

52 Retek Merchandising System

Record
Name

Field Name Field Type Default
Value

Description

 RTV Cost Number(25) Total Return to Vendor value (cost)
for SKU/location/week

 RTV Units Number(17) Total Return to Vendor units for
SKU/location/week

 Reclass In Retail Number(25) Reclass In value (retail) for
SKU/location/week

 Reclass In Cost Number(25) Reclass In value (cost) for
SKU/location/week

 Reclass In Units Number(17) Reclass In units for
SKU/location/week

 Reclass Out
Retail

Number(25) Reclass Out value (retail) for
SKU/location/week

 Reclass Out Cost Number(25) Reclass Out value (cost) for
SKU/location/week

 Reclass Out Units Number(17) Reclass Out units for
SKU/location/week

 Permanent
Markdown Value

Number(25) Permanent markdown value (retail)

 Promotional
Markdown Value

Number(25) Promotion markdown value (retail)

 Clearance
Markdown Value

Number(25) Clearance markdown value (retail)

 Markdown
Cancel Value

Number(25) Markdown cancel value (retail)

 Markup Value Number(25) Markup value (retail)

 Markup Cancel
Value

Number(25) Markup cancel value (retail)

 Stock Adjustment
Retail

Number(25) Stock Adjustment value (retail) for
SKU/location/week

 Stock Adjustment
Cost

Number(25) Stock Adjustment value (cost) for
SKU/location/week

 Stock Adjustment
Units

Number(17) Stock Adjustment units for
SKU/location/week

 Received Retail Number(25) Received value (retail) for
SKU/location/week

 Received Cost Number(25) Received value (cost) for
SKU/location/week

Chapter 5 – Stock Ledger Extract [stlgdnld] 53

Record
Name

Field Name Field Type Default
Value

Description

 Received Units Number(17) Received units for
SKU/location/week

 Transfer In Retail Number(25) Transfer In value (retail)

 Transfer In Cost Number(25) Transfer In value (cost)

 Transfer In Units Number(17) Transfer In units

 Transfer Out
Retail

Number(25) Transfer Out value (retail)

 Transfer Out Cost Number(25) Transfer Out value (cost)

 Transfer Out
Units

Number(17) Transfer Out units

 Freight Cost Number(25) Freight value (cost) for
SKU/location/week

 Employee
Discount Retail

Number(25) Employee discount value (retail) for
SKU/location/week

 Cost Variance Number(25) Cost variance value for
SKU/location/week

 Workroom/Other
Cost of Sales
Retail

Number(25) Workroom/other costs value for
SKU/location/week

 Cash Discount
Retail

Number(25) Cash discount value (retail) for
SKU/location/week

Technical issues
N/A

	Chapter 1 – Introduction
	Chapter 2 – Transfer Shipments Upload [tsfoupld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Input file
	Output file
	Detail
	Reject file
	Error file

	Technical issues

	Chapter 3 – Monthly Stock Ledger Processing [salm
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 4 – Purchase Order Information Written to
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Order Header file
	Order Detail file
	Stock Order file
	Stock Allocation file
	Component Ticketing file layout:

	Technical issues

	Chapter 5 – Stock Ledger Extract [stlgdnld]
	Modification
	Design overview
	Design assumptions
	Performance considerations

	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Input specifications
	Output specifications

	Technical issues

