Retek® Merchandising System
9.0.8

Addendum to Operations Guide

&

Rete

WWW.RETEK.COM ‘ HELPING THE RETAIL INDUSTRY CREATE, MANAGE AND FULFILL CONSUMER DEMAND™

Retek Merchandising System

Corporate Headquarters:

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403

888.61.RETEK (toll free US)
+1 612 587 5000

European Headquarters:

Retek

110 Wigmore Street
London

W1U 3RW

United Kingdom

Switchboard:
+44 (0)20 7563 4600

Sales Enquiries:
+44 (0)20 7563 46 46
Fax: +44 (0)20 7563 46 10

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization.

Retek™ Merchandising System™ is a trademark of Retek Inc.
Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply:

©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

8AM to 5PM Central Standard Time (GMT-6), Monday through Friday,
excluding Retek company holidays (in 2002: Jan. 1, May 27, July 4,
July 5, Sept. 2, Nov. 28, Nov. 29, and Dec. 25).

Customer Support emergency hours:
24 hours a day, 7 days a week.

Contact Method Contact Information

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
World: +1 612-587-5000

Fax (+1) 612-587-5100

E-mail support@retek.com

Internet www.retek.com/support

Retek’s secure client Web site to update and view issues

Mail Retek Customer Support
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

When contacting Customer Support, please provide:
e Product version and program/module name.

¢ Functional and technical description of the problem (include business
impact).

e Detailed step by step instructions to recreate.
e Exact error message received.

e Screen shots of each step you take.

Contents
Chapter 1 — Introduction..........ccoorciiiiriccrr e 1
Chapter 2 — Transfer Shipments Upload [tsfoupld] 3
MOIFICALION ...ttt s 3
DIESIZIN OVETVIEWeeuiiieiiieiieeiiieite et estte et eitesteebeeetbeebeesnbeenseesnseenseessseensaennsaans 3
Scheduling CONSLIAINTS.ceiiuiiiiiieeriie e e eareeeaeees 4
REStArt TECOVETY ...eiiiiiiiiiie ettt 4
Program flOWcooouiiiiiie e e 6
Shared MOAUIEScccuieiuiiiiieiee e 6
Function level deSCriptionc.eevuieiiieiiieiiieiieeie ettt eaeens 7
I/O SPECTIICALION ...t 13
INPUL FI1E .ottt e et e e e be e e aa e e s sbeeenraeeeanes 13
OULPUL FIL...eeievre ittt ettt e b e b e et e e s taestbesebeesbeessaessaessaessnessseesseans 17
DICTATL ..ottt ettt sttt b neen 18
REJECE I1E... it ettt et ettt eeas 18
EITOT F11€ ..ottt st 18
TEChNICAL ISSUES....c..eitieiiiiieiiieteee et 18

Chapter 3 — Monthly Stock Ledger Processing [salmth]... 19

MOIFICALION ... 19
DIESIZIN OVETVIEWeeiiieiiieeiieeite ettt ettt ettt e et eseeesabe et e enbeessaesnseessaesnseenens 19
Scheduling CONSIAINTS.iecciiieiiieeciie e e e 20
REStArt TECOVETY ...eiiiiiiiiiie ittt e 21
Program flOWcoooiiieiie e e e 22
Shared MOAUIESoouiiiiiiiiiie e 22
Function level desCriptioncecuieeiiiieiiieeiieciie et evae e 23
I/O SPECITICALION ...ttt ettt b e et eaae e ee 24
TeChNICAl 1SSUCS.....eiieieiieetiee e 24

Chapter 4 — Purchase Order Information Written to Order

History Tables [ordrev]......ccccoiiiiimciiirciirrcr s 25
IMOAITICALION ...ttt ettt 25
DESIN OVETVIEW...cuevieiiiieiiiieeiie e ettt e siee et e e steeesstaeeaaeessaeeesaeesssaeessseeensseeenns 25

Scheduling CONSLIAINES.cc.eeriiiiiieriieeieesie ettt ettt e e e e seeeerens 25

Chapter 1 — Introduction 1

Chapter 1 — Introduction

This addendum to the Retek Merchandising System (RMS) 9.0 Operations Guide
contains updates to the following batch designs:

e Transfer Shipments Upload [tsfoupld]

e Monthly Stock Ledger Processing [salmth]

e Purchase Order Information Written to Order History Tables [ordrev]
e Stock Ledger [stlgdnld]

Refer to the following chapters for that information, which supercedes all
comparable information in the RMS 9.0 Operations Guide. Each chapter contains
a subsection indicating what specific modifications have been made.

Chapter 2 — Transfer Shipments Upload [tsfoupld] 3

Chapter 2 — Transfer Shipments Upload [tsfoupld]

Modification

Descriptions of THEAD --> Number of Boxes field was reduced from size 15 to
4

Design overview

The purpose of this batch module is to accept transfer shipment details from an
external system. The transfer transactions will provide feedback to existing
transfers within the Retek system or initiate manual transfers created in an
external system. The following functions will be performed for each transferred
1tem:

e create/update transfer and shipment header and detail records.

e create item/location relation for receiving location (if it doesn’t exist)

e update perpetual inventory and in transit qtys for source location

e update the average cost of item and in transit qtys for receiving location
e write financial transactions for both the transfer out and the transfer in

e update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

e create/update bill of lading
e create/update warchouse issues history (if transfer from a wh to a store)

e update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

e update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
TSFHEAD No Yes Yes Yes No
TSFDETAIL No Yes Yes Yes No
SHIPMENT No Yes Yes Yes No
SHIPSKU No Yes Yes Yes No
POS_MODS No No Yes No No
PRICE HIST No No Yes No No
RAG SKUS ST No Yes No Yes No
WIN _STORE No Yes No Yes No
RAG_SKUS ST No Yes No Yes No

4 Retek Merchandising System

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
WIN WH No Yes No Yes No
TRAN DATA No No Yes No No
RAG _SKUS No Yes No No No
RAG STYLE ST No Yes No No No
RAG STYLE WH No Yes No No No
INV_STATUS QTY No Yes No Yes Yes
INV_STATUS _TYPES | No Yes No No No

Scheduling constraints

Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run before the transfer in batch
module and will likely be run at the beginning of the batch run during the POS
polling cycle, or possibly at the end of the batch run if pending warehouse
transactions. It can be scheduled to run multiple times throughout the day, as
WMS or POS data becomes available. In a true DC flow through type of
operation, this program should also be run after Carton Receiving Upload
(ctniupld) module to ship the cross-dock carton transfers created in ctniupld so
that the goods received into DC for a cross-dock PO are shipped out to the final
destination within the same day.

Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: STORE and WH

Threads driven by number of distinct files

Restart recovery

The logical unit of work for the transfer out module is the discrete transfer
transaction. Each transfer will be identified by the transfer number (if it already
exists in the Retek system) or an unique transaction set number generated by the
external system. This transfer transaction will be defined as the logical unit of
work. If any portion of the processing for the complete transfer transaction fails,
the entire transfer must be re-processed.

A savepoint will be issued prior to processing a new transfer. If any record
within the transaction fails, the whole transaction will be rolled back to the most
recent savepoint. This way, the successfully processed transactions will remain
posted to the database but not yet committed.

Chapter 2 — Transfer Shipments Upload [tsfoupld] 5

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. A transfer transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold that, once reached, will force a commit after the completion of the
current transfer transaction.

Error handling will be based on the logical unit of work also. If a given record
within a transfer transaction fails, that error will be posted to the standard error
log for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the transfer will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
transfer will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

6 Retek Merchandising System

Program flow

initialize restart

open files (transfer out)

open reject file (restart temp
init() L get vdate & dept level transfer

set application image
read file header

loop (until end of input
read record
if ('"FTAIL") Exit Loop
if (‘'THEAD') if (tranfer no on
end i set savepoint validate transfer
else
validate locations

check transfer zone()

validate THEAD() |_ end if

process THEAD

if (transfer on file)

loop validate SKU on

main()

read record

if ("TTAIL") Exit Loop else i (URC)
elee M(TRETL) get sku based on
validate TDETL() if (upc not exist) Error
process TDETL() -
end if

populate transfer
process()— if (detail counter = max array count
resize tsfdetail / tsfall array

get system indicator & merch
if (sku not exist) Error

end if
increment detail counter
end if
end loop

insert/ update of transfer R
—>| TRANSFER_OUT_SQL.EXECUTE

if (record counter = max commit counter
save file position to
commit database
end if
L_end loop —
if (Transfer Type = ‘MR’ (manual requisitions)
insert tsfhead with status
if (transfer exist) Error

insert tsfdetail
if (transfer detail exist) Error

else
update tsfhead status to
if (transfer not exist) Error
update tsfdetail
if (transfer detail not exist)
end if

close restart logic
close reject file

final()

Shared modules

TRANSFER OUT SQL.EXECUTE: Package referenced to perform transfer out
logic, including:

e create item/location relation for receiving location (if it doesn’t exist)
e update perpetual inventory for source location

e update the average cost of item for receiving location

Chapter 2 — Transfer Shipments Upload [tsfoupld] 7

e write financial transactions for both the transfer out and the transfer in

e update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

e create/update bill of lading
e create/update warehouse issues history (if transfer from a wh to a store)

e update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

e update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

TRANSFER IN SQL.EXECUTE: Package referenced to perform transfer in
logic for customer order types of transfers where the delivery type for the transfer
is ‘Ship Direct’:

e update perpetual inventory for destination location

e update stock count’s snapshot on hand quantity for destination location if
stock count is in progress

e update unavailable inventory status quantity for NS (Non-salable) type of
transfer for destination location

e update perpetual inventory with adjustments for detailed receipt
discrepancies and create stock ledger stock adjustment transactions, if
system_options.auto_close tsf= ‘Y’

The following are called from TRANSFER OUT SQL and/or
TRANSFER IN SQL packages and are thus, indirect calls.

STOCK _LEDGER _SQL.TRAN DATA INSERT: Package referenced by
TRANSFER OUT_SQL.EXECUTE to perform the stock ledger transaction
inserts for the transfer out of the goods from the source location and the transfer
in of the goods at the destination location.

NEW_STAPLE LOC, NEW_FASHION LOC, NEW_PACK LOC: These
stored procedures are used to create item/location relationships for locations that
are to receive goods on a transfer and have not yet stocked the given item.

INVADJ _SQL.ADJ UNAVAILABLE : called to update the unavailable
inventory status quantity

INVADJ SQL.ADJ TRAN DATA : called to write tran_data record for
unavailable inventory adjustment

Function level description
init()
declare structure arrays for tsfdetail

initialize restart recovery

8 Retek Merchandising System

open input file (transfer out)
- file should be specified as input parameter to program
open reject file (as a temporary file for restart)

- file should be specified as input parameter to program

get vdate and department level transfer indicator from period table and system
options

set application image array - save the line counter
read file header record

if (record type <> ‘FHEAD’) Fatal Error

process()
loop
read record from input file
if ('FTAIL")
Exit Loop
end if
if ('THEAD')
set savepoint and save current file pointer position
validate THEAD()
reset detail count
process THEAD()
end if
loop
check carton flag to determine if tdetl records will be for a carton or not
read record from input file (different structure for carton or regular)
if ('TTAIL") Exit Loop
if (TDETL)
validate TDETL()
process TDETL()
end if
if (detail count = max array count)
resize array structures for tsfdetail
increase max array count
end if

increment detail count

Chapter 2 — Transfer Shipments Upload [tsfoupld] 9

end loop

if (no errors)
post_transfers() (don’t call this if doing a carton)
end if

if (non Fatal Error Encountered)

reject record - call write error and pass file pointer as of last savepoint
and current file pointer

Rollback transaction
end if
if (transaction count > max commit count)
restart file commit
- save the current input file pointer position
- save the line counter in restart image
end if
end loop

restart commit final

validate_THEAD()
- validate transfer

-if external shipment number is ‘CARTON”, set carton flag and return from
function

format_header fields()
if (shipment number provided in transaction)

validate that the shipment number exists within Retek for a transfer. (check
on shipment)

validate that the transfer within Retek has a status of ‘A’, ‘E’, ‘S’, ‘C’
(approved, extracted, shipped, closed) and is applicable to the

to/from locations specified (check on tsthead) — also fetch transfer type

if shipment number provided does not exist on shipment in ‘I’, ‘R’ status for
a transfer then

raise Non-Fatal Error

if transfer does not exist in Retek with the appropriate status and locations
then

raise Non-fatal error
else if (no shipment number is provided)
if (external shipment number provided)

- validate to and from locations

10 Retek Merchandising System

if (loc_type=°S’)
check for existence on store table
else (loc_type=‘W’)
check for existence on wh table
end if
if any location not exist, write non-Fatal error
- validate common transfer zone for store to store transfers
if (to_loc type = *S’ and from_loc = °S’)

check transfer zone - select transfer zone of the from location
and the to location.

if (from_loc transfer zone <> to _loc transfer zone)
write non-Fatal Error (transfer zones incompatible)
end if
end if
else (no external shipment number)
All detail records must have an allocation number.
end if
end if

process_THEAD()
check for a bill of lading in 0 - open status for the destination location
retrieve the bill of lading number if one exists
if (bill of lading does not exist)

get next bill of lading number

insert bill of lading header (lad_head) record
end if
if bol number passed in ensure it is valid.
If it is not valid get next bol number.
if transfer type = ‘CO’

retrieve delivery type from the ORDCUST table
end if

validate_TDETL()
format_detail fields()
if inventory status field is not blank, validate it against inv_status_types table

if no shipment / ext shipment in file

Chapter 2 — Transfer Shipments Upload [tsfoupld] 11

every detail line must have an allocation.
if (shipment number in file)
validate item exists on the transfer
else
if (Item Type = ‘UPC’)
select sku from upc_ean based on the upc and supplement
if (upc does not exist)
write non-Fatal Error (upc not found)
end if
else if (Item Type = ‘SKU”)
SKU = item value from the input file
case ID="*"
end if
end if
if the store rcv type is ‘C’ the carton field must be populated
- get item system indicator, department, class and subclass
if (system indicator does not exist)
write non-Fatal Error (sku not found)

end if

process_TDETL()

The upd_resv_ind and the upd intran_ind should be set up in the following way
before calling transfer out sql.execute.

if :0i_new_tsf flag =1 then
if :0s_store rcv_type ='A' then
L upd resv ind :="N';
L upd intran_ind :="N';
else
L upd resv ind :='N';
L upd intran ind :='Y";
end if;
elsif :ora_tsf type ='CO'and :ora deliver type ='S' or
:08_store rcv_type ='A' then
L upd resv ind :='Y";
L upd intran_ind :='N";

else

12 Retek Merchandising System

if :0s_tsf status ='C' then
L upd resv ind :="N'
else
L upd resv ind :='Y",
end if}
L upd intran_ind :='Y";
end if;
call TRANSFER OUT SQL.EXECUTE package function
(see design specification for TRANSFER OUT SQL)
if transfer type = ‘CO’ and delivery type = ‘S’ or store receive type is ‘A’
call TRANSFER IN SQL.EXECUTE package function
(see design specification for TRANSFER IN SQL)

write recs to_struct()

post_transfers()
if (shipment number was not passed in on the input file)

insert TSFHEAD (transfer type = ‘MR’ or PO in an allocation is passed in,
ext_ref no = external shipment number)

insert SHIPMENT (ext ref no out should be the transaction control
number, ship date should be the transaction date)

perform array insert of TSFDETAIL
perform array insert of SHIPSKU

else (for all other Retek initiated transfer transactions)
try to update shipsku record if no data is found

perform array update of TSFDETAIL, set ship_qty — if transfer type = ‘SA’,
settsf qty =0

perform array insert of SHIPSKU

- The this transfer is a customer order (tsf type = ‘CO’) with a delivery type
of direct ship to customer, then this transfer must also be closed when it is
sent.

if transfer type = ‘CO’ and delivery type = ‘S’ or store rcv type is ‘A’
call TRANSFER IN_SQL.CLOSE
(see design specification for TRANSFER IN SQL)

else if transfer type = ‘SA’ then
update TSFHEAD status to ‘A’ - approved

else

update TSFHEAD status to ‘S’ - shipped

Chapter 2 — Transfer Shipments Upload [tsfoupld] 13

end if
end if

format_header_fields()

assign input file fields to variables

if from location type = ‘ST’
set ora_from_type = ‘S’

else if from location type = “WH’
set ora_from type = ‘W’

end if

if to location type = ‘ST’
set ora_to_type =S’

else if to location type = “WH’
set ora_to_type = ‘W’

end if

format_detail_fields()
assign input file fields to variables
- transfer quantity has an implied 4 decimal places

transfer qty = transfer qty / 10000

process_carton()

Select details from transfer tables for the carton number; for each sku in the
carton, call process TDETL.

ON Fatal Error

rollback to last physical commit point
Exit Program

ON Non-Fatal Error

rollback to last savepoint

write out complete transfer transaction to the reject file, pass file pointer at last
savepoint and current file pointer

I/0 specification

Input file
The input file should be accepted as a runtime parameter at the command line.

Important:

14 Retek Merchandising System

The structure of the TDETL line will vary, depending on whether cartons are
included or not. If cartons are included, the line will end after the item value

field.
Record Field Name Field Type Default Value Description
Name
File Header | File Type Char(5) FHEAD Identifies file
Record record type
Descriptor
File Line Number(10) specified by Line number of
Sequence external the current file
system
File Type Char(4) TSFO Identifies file as
Definition ‘Transfer OUT’
File Create Date create date Date file was
Date written by external
system
Transaction | File Type Char(5) THEAD Identifies file
Header Record record type
Descriptor
File Line Number(10) specified by Line number of
Sequence external the current file
system
Transaction | Number(14) specified by Used to force
Set Control external unique transaction
Number system check
Transaction | Date specified by Date the transfer
Date external was created in
system external system
From Char(2) ST - storeWH | Specifies the type
Location - warehouse of location sending
Type items
From Number(4) location Specifies the
Location identifier sending location id
Value number
To Location | Char(2) ST - storeWH | Specifies the type
Type - warehouse of location
receiving items
To Location | Number(4) location Specifies the
Value identifier receiving location
id number
Shipment Number(10) Retek Specifies the
Number shipment Retek shipment

number

cross-reference

Chapter 2 — Transfer Shipments Upload [tsfoupld] 15

Record Field Name Field Type Default Value Description
Name
External Char(15) External Specifies external
shipment shipment shipment number;
number will be CARTON
when transferring
cartons
Courier Char (20) Courier used
to ship order
Arrival date Date Arrival date
Number of Number(4) Number of boxes
boxes in this transfer
BOL number | Number(13) Bill of lading
Transaction | File Type Char(5) TDETL Identifies file
Detail (Item) | Record record type
Descriptor
File Line Number(10) specified by Line number of
Sequence external the current file
system
Transaction Number(14) specified by Used to force
Set Control external unique transaction
Number system check
Detail Number(6) specified by Sequential number
Sequence external assigned to detail
Number system records within a
transaction
Item Type Char(3) UPCSKU Item type will be
represented as a
UPC or SKU
Item Value Number(13) item identifier | The ID number of
a SKU or UPC
Supplement | Number(5) supplemental | Used to further
identifier specify the id of an
UPC item
Allocation Char(6) or allocation Retek allocation
Number char(10) if the | identifier number attached to

allocation_ind
is="°Y".

the transfer

16 Retek Merchandising System

Record Field Name Field Type Default Value Description
Name
Inventory Number(2) inventory Used to indicate
Status status of item | the type of non-
salable
merchandise
transferred in an
‘NS’ transfer
carton Char(20) carton UCC — 122 carton
identifier code
Transfer Number(12) Number of units to
Quantity be transferred of
the given item
(*10000—4
implied decimal
places)
Transaction | File Type Char(5) TDETL Identifies file
Detail Record record type
(Carton) Descriptor
File Line Number(10) specified by Line number of
Sequence external the current file
system
Transaction | Number(14) specified by Used to force
Set Control external unique transaction
Number system check
Detail Number(6) specified by Sequential number
Sequence external assigned to detail
Number system records within a
transaction
Item Type Char(3) CTN Item type will be
represented as a
CTN when
transferring a
carton
Item Value Char(20) carton UCC — 122 carton
identifier code
Transaction File Type Char(5) TTAIL Identifies file
Trailer Record record type
Descriptor
File Line Number(10) specified by Line number of
Sequence external the current file

system

Chapter 2 — Transfer Shipments Upload [tsfoupld] 17

Record Field Name Field Type Default Value Description
Name
Transaction | Number(6) sum of detail | Sum of the detail
Detail Line lines lines within a
Count transaction
File Trailer File Type Char(5) FTAIL Identifies file
Record record type
Descriptor
File Line Number(10) specified by Current line
Sequence external number
system
Number of Number(10) specified by Total number of
transaction external lines in file,
lines system excluding FHEAD
and FTAIL
Output file
Record Field Name Field Type Default Value Description
Name
Record Type Char (1) H Specifies file record
type
Store Order Number (10) | Order No Specifies shipment
Number number
Division Type Char (2) Division Type Specifies division
type
Warehouse Number (6) WH Loc Specifies WH
location value
Store Number (6) Store Loc Specifies ST
location value
Store Order Type | Number (4) Store order type | Specifies transfer
type
Store order Char (255) Comment Specifies store order
comment comment (from
shipment or transfer
or both)
Ship Date Number (14) | Ship date Specifies date

shipped (date when
file was processed +

1)

18 Retek Merchandising System

Detall

Record Field Name Field Type | Default Value Description
Name
Record Type Char (1) D Specifies record
type
Store Order Number Order No Specifies
number (10) Shipment
Number
Division type Char (2) SA, PO, MR, Specifies
CO, AD Division Type
Xref Div Item | Number RMS SKU
(®)
UPC Number UPC value Specifies UPC
(13) Value
UPC Number UPC Specifies UPC
supplement &) supplement supplement
value
Unit of Char (2) Unit of Specifies unit of
Measure Measure measure
SKU Deck Number Deck cost Average unit
Cost (10) cost
Quantity Number Quantity Specifies
Shipped (6) Shipped quantity
shipped value

Reject file

Error file

The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the transfer out module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0.

The reject filename should also be specified as a runtime parameter.

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues

N/A

Chapter 3 — Monthly Stock Ledger Processing [salmth] 19

Chapter 3 — Monthly Stock Ledger Processing
[salmth]

Modification

Modified the document to indicate that the system variables table is not updated
by salmth.

Design overview

The purpose of this program is to sum up the monthly transaction totals from
DAILY DATA and calculate the closing stock and gross margin for the current
month on MONTH_DATA. The procedure varies depending on the following
factors:

1 Whether the retail or cost method of accounting is used. Depending on the
setting of DEPS.profit_calc_type -- 1 = cost, 2 = retail

2 Whether a stock count of Unit & Dollar type has occurred during the month -
- Determined by the presence or absence of a STAKE PROD LOC row by
dept/class/subclass/store/wh.

Certain checks are made to ensure that the program is being run at an appropriate
point in time.

1 The current date (period.vdate) must not be earlier than the next due
eom_date (SYSTEM_VARIABLES.next eom_date)

2 If a stocktake has been done during the month, all stocktake results must
have been processed.

Once the timing is verified each subclass/location record on month_data is
processed for the current month. For each record fetched, profit calculation type
and purchase type are retrieved from deps table, and budgeted shrinkage percent
are retreived from half data budget table.

If a stock count occurs during the current month, stkdly.pc would have already
updated the stock count’s book stock and actual stock fields on month_data (i.e.
stocktake bookstk cost (& retail) and stocktake actstk cost (& retail) on
month_data). The difference between the book stock and actual stock will be
used by this program to adjust the closing stock value for the current month.

In addition, this program calculates a shrinkage amount as follows :
If budget shrinkage indicator = ‘Y’ :
shrinkage amount = budgeted shrinkage percent * sales amount for the month
else
shrinkage amount = - (stock adj_cost or retail)
depending on cost or retail method is used

If stock count did not occur during the month,

20 Retek Merchandising System

the above calculated shrinkage amount will be used to reduce the closing
stock for this month.

At the same time, this program adds the above calculated shrinkage amount
and sales amount for this month into inter_stocktake shrink amt and
inter_stocktake sales amt fields on month_data, which have been
accumulated since the last stock count.

Else

inter_stocktake shrink amt and inter stocktake sales amt fields will be
reset by this program and re-start again to acumulate towards the next stock
count.

Note: inter stocktake shrink amt and inter stocktake sales amt fields on
month_data are used by stkdly.pc to calculate the book stock value and the actual
shrinkage amount for a stock count.

After all threads for this program have finished processing, the prepost module
must be launched by the scheduler to update the various end-of-month columns
on SYSTEM_VARIABLES.

TABLE INDEX | SELECT | INSERT | UPDATE | DELETE
DAILY DATA Yes Yes No No No
DEPS Yes Yes No No No
HALF DATA BUDGET | Yes Yes No No No
MONTH_DATA Yes Yes Yes Yes No
PERIOD No Yes No No No
STAKE HEAD Yes Yes No No No
STAKE PROD LOC Yes Yes No No No
SYSTEM_OPTIONS No Yes No No No
SYSTEM_VARIABLES No Yes No No No
V_RESTART No Yes No No No

Scheduling constraints

Processing Cycle:

Scheduling Diagram: ~ Can run any time after end-of-month date
Must run salweek first before running salmth

Pre-Processing: N/A

Post-Processing: salmth_post()

PHASE 3 (monthly)

Updates system variables to set the stock ledger calendar ahead to the next month
for processing. All stock ledger calendar dates are moved forward to indicate
that the current month’s stock ledger processing has completed.

Threading Scheme: STORE WH

Chapter 3 — Monthly Stock Ledger Processing [salmth] 21

V_restart_store_wh

Restart recovery

SELECT month_data.dept,
month_data.class,
month_data.subclass,
month_data.store,
month_data.wh,
month_data.currency _ind,
NVL(month_data.opn_stk cost,0),
NVL(month data.opn_stk retail,0),
NVL(month data.inter stocktake sales amt,0),
NVL(month data.inter stocktake shrink amt,0),
NVL(month_data.stocktake mtd sales amt,0),
NVL(month data.stocktake mtd_shrink amt,0),
NVL(month_data.htd_gafs cost,0),
NVL(month data.htd gafs retail,0),
NVL(month data.stocktake bookstk cost, 0),
NVL(month data.stocktake bookstk retail, 0),
NVL(month_data.stocktake actstk cost, 0),
NVL(month data.stocktake actstk retail, 0),
"' TO_CHAR(month data.dept) ||
5"l TO_CHAR(month_data.class) ||
"l TO_CHAR(month_data.subclass) ||
'] TO_CHAR(month data.store)

FROM month_data,
v_restart_store wh rv

WHERE month_data.half no = :half no

AND month_data.month_no = :month_in_half

AND rv.driver value =month_data.store

AND rv.driver name = :ora restart driver name
AND rv.num_threads =:ora restart num_threads
AND rv.thread val = =:ora restart thread val

AND (month_data.dept>NVL(:ora_restart dept,month_data.dept- 1)OR
(month_data.dept = :ora_restart dept AND

22 Retek Merchandising System

(month_data.class > :ora_restart_class OR

(month_data.class = :ora_restart_class AND

(month_data.subclass > :ora_restart subclass OR

(month_data.subclass = :ora_restart_subclass AND

(month_data.store > :ora_restart_store)))))))

ORDER BY month_data.dept,
month_data.class,
month_data.subclass,
month_data.store,

month_data.currency ind;

Program flow
N/A

Shared modules

RETAIL METHOD CALC:

STKLEDGR ACCTING_SQL.

performs stock ledger stock and gross margin
calculations using the retail accounting
method.

COST METHOD CALC:

STKLEDGR _ACCTING SQL.

performs stock ledger stock and gross margin
calculations using the cost accounting
method.

CAL_TO 454 LDOM:

determines the 454 last-day-of-month from
current calendar date.

CAL TO CAL HALF:

determines the half number based on current
date.

CAL_TO CAL_LDOM:

determines last-day-of-month based on
current date.

CAL TO 454 WEEKNO:

determines week number in 454 half from
current date.

CAL_TO _CAL WEEKNO:

determines calendar week number from
current date.

CAL_TO 454:

determines 454 calendar date from current
date.

HALF_TO_CAL_FDOH:

determines the first-day-of-half from the
current half number.

HALF TO CAL LDOH:

determines the last-day-of-half from the
current half number.

HALF_TO 454 FDOH:

determines the 454 first-day-of-half from
current half number.

Chapter 3 — Monthly Stock Ledger Processing [salmth] 23

HALF _TO 454 LDOH: determines the 454 last-day-of-half from
current half number.

Function level description

First check if there are unprocessed “Unit & Dollar” type of stock count, if there
are any, stop processing and give user an error message

Main process :

Loop through all subclass/location on month_data for current month (month to be
processed). For each month_data record fetched :

read profit _calc type and purchase type from deps table
read shrinkage pct from half data budget table
check if Unit & Dollar type of stock count occurs during the month

sums the DAILY DATA records by transaction type for all records with date
in the current month

if purchase _type =1 (consignment department)
gross_margin_amt = purch_retail - purch_cost
else
if cost method (profit_calc type =1)

call the package function stkledgr accting sql.cost method calc
to calculate week’s closing stock at cost and gross margin

else

call the package function stkledgr accting sql.cost method calc
to calculate week’s closing stock at retail and cost and gross
margin

call function update month_data
Update month_data for current month
Insert a row for next month on month_data
copy current month’s closing stock to be opening stock for next month

copy inter_stocktake shrink amt and inter_stocktake sales amt from
current month to next month

if current month_no = 6 (last month of the half) reset GAFS cost and
retail :

htd gafs cost and retail of next month = cls_stk cost and retail
of current month, respectively

else

copy htd gafs cost and retail from current month to next month

24 Retek Merchandising System

I/0 specification
N/A

Technical issues
N/A

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 25

Chapter 4 — Purchase Order Information Written to
Order History Tables [ordreV]

Modification

A note was added to each of the 5 file layouts to specify that the flat files that are
created will contain a space between record fields.

Design overview

Ordrev will write versions of approved order to order revision history tables.
When orders are approved or when approved orders are modified, this program
selects order numbers from the rev_orders table and writes current order
information to the order/allocation revision tables. After the new version has
been written to the order revision tables, all records will be deleted from the
rev_orders table for that order no.

This program processes order changes made by the client that may need to be
sent to the vendor. The order changes should always be referred to as ‘versions’
and kept clearly distinct from order ‘revisions’ which are vendor changes
uploaded via the ediupack program.

This program also allows Nautilus and Retek to interface, by sending the
warehouse PO and allocation (ie. pre distribution) information to prepare the
warehouse for incoming orders. The program will create two flat files, PO
header and PO detail, based on approved orders found on the rev_orders table.
The program will also create Pre Distribution Header and Pre Distribution Detail
flat files, which will enable the warehouse to perform cross docking activities.

The last file produced by the ordrev batch program is a component ticketing file
that holds retail and ticketing information for non sellable pack items. This file
allows the warehouse to correctly ticket the components of the pack item, before
distributing the items to the stores.

If an order is not in approved status at the time the batch program runs, then none
of the above processing will occur. The record will stay on the rev_orders table
until the PO is approved or deleted.

Scheduling constraints

Processing Cycle: After rplprg & before edidlord, and Ad Hoc. This
program must be run, if interfacing with Nautilus

Scheduling Diagram: N/A
Pre-Processing: N/A
Post-Processing: N/A
Threading Scheme: N/A

26 Retek Merchandising System

Restart recovery

Restartabilty will be implied, because the records that are selected from this table
will be deleted before the commit. Restart library functions will still be included
to ensure that rollback segments are not exceeded (by committing at intervals)
and to perform basic record keeping functionality.

SELECT ro.action_type,
ro.order no,
ro.alloc_no,
ro.location,
ro.sku,
ro.hdr_dtl ind,
oh.pre_mark ind,
ro.rowid
FROM rev_orders ro,

ordhead oh
WHERE ro.order no = oh.order no
AND oh.status ="'A'

AND MOD(ro.order no, :0i_restart num_threads) + 1 =
:0i_restart_thread val

AND ro.order no > NVL(:ora restart order no, -9999)
ORDER BY ro.order no;

Program flow
N/A

Shared modules

PRICING_ATTRIB_SQL.GET RETAIL(): get the unit retail from
item_zone pricing table for a sku/store.

PROMOTION ATTRIB SQL.EVENT DESC(): get the event’s description

Function level description

Init()

Initialization of the restart Retek recovery process will be performed here.
Get system date.

Get Allocation Indicator from system options table.

Open output files. There will be a maximum of 4 files (ie. one header and detail
for PO download and one header and detail for Pre-distribution download)

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 27

Write FHEAD to all files.
Call Init_buffers().

Process()
All orders that need to have order version records will be processed.
If the order number changes, then perform the following logic.

The order number will be used to populate the revision history tables. The
get_rev_no() function is called to determine the version number for the insert
into the revision history tables.

Check if order is customer order. If order is customer order set flag to 1,
else setto O(for the customer order no allocation information will be
download to the RLS logistic).

If version 1was just inserted (ie. order was just approved for the first time, no
previous versions existed), then

Call write_new_po function to write newly created orders and associated
allocations to the po header, po detail, pre distribution header, and pre
distribution detail files.

Else

Call write_existing_po function to write the changed order information
to the flat files. Some or all of the flat files may be written in this
circumstance depending upon what information has changed since the
order was last sent down to Nautilus.

End if;

The insert_header() function will be called from here to insert header level
information, the insert_sku() function will insert order sku information, the
insert_loc() will insert order sku/location information, and the insert_alloc()
will insert order allocation information if the order’s pre-mark indicator was
set. This indicator will indicate whether cross-docked allocation information
will be sent to the supplier along with the order. When all of the version
information has been inserted into the revision history tables, all of the
records with that order number should be deleted from the revord table by the
delete revord() function.

If system_options.financial _ap equals ‘P’, then call ins_revord () to insert
into the fif ordhead table.

Else /* the order number remains the same */
If order is not customer order. Call write alloc_only().

End if;

28 Retek Merchandising System

Get_rev_no()

It is necessary to get the last version number that was written to the order
revisions tables. The maximum version number is selected from the header
revision table and then incremented by 1 to get the version number that will be
inserted during processing. If no record exists in the order header revision
history table, then the order is new and a version number of 1 is used.

Insert_header()

The current information on the order header table will be inserted into the header
revision history table with the new version number

Insert_sku()

The current information on the order sku table is inserted into the order sku
revision history table with the new version number

Insert_loc()

The current information on the order sku/location table is inserted into the order
sku/location revision history table with the new version number.

Insert_alloc()

The ship-to warehouse on the allocation header table and the allocation
information and quantity information from the allocation detail table is written to
the allocation revision history table with the new version number.

Ins_revord()
Insert into the fif ordhead table.

Write_new_po()

This function will write FDETL records to the appropriate PO and pre
distribution output files.

Order information is retrieved from the ordhead and ordloc tables to populate the
PO header and PO detail files. A record will be written to the PO download
header and detail file for only orders with a warehouse destination. The
warehouse number will be stored in the Location (DC) field on the file. If the
order is going to other locations, such as stores, then do not write a record to the
files. There will be one header for each order/wh location retrieved.

Check customer order flag. If it is not customer order, open a “for loop” to
retrieve the allocation information for an order.

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 29

Write pre-distribution header and detail with action type = ‘A’dd for the
warehouse/allocation/sku/order_no. There will be one header for every alloc_no
retrieved and a detail record for each to_location for that allocation. In other
words, the first allocation number will be written to the pre-distribution header
record. Write the pre-distribution detail records, until that allocation number
changes. When the allocation number changes, then write a pre-distribution
header record. The warehouse (from_loc) will be stored in the Location (DC)
field on the file. Call promotion_attrib_sql.get event desc package for the
event’s description. Also, get the correct retail (pricing_attrib_sql.get retail
package) and ticketing information for the predistribution detail file. In the for
loop, if the allocation location is a store, call comp_tckt () function to write the
component ticketing file.

Write_existing_po()

Open a “for loop” to retrieve ordhead and ordloc fields for comparison. The
comparison will be completed for each warehouse location the order is destined.
In the for loop, compare ordhead/ordloc with previous version on

ordhead rev/ordloc_rev. If there are any changes to the Nautilus required fields,
then write PO download header and/or detail records. This process only needs to
be done for orders going to warehouse locations.

Fetch the header information from ordhead and ordhead rev. Compare each
field (ie. ordhead.buyer = ohr.buyer). If the fields do not equal, then set an
indicator, which will indicate that the ordhead records have been modified and an
action_type = ‘M’ will need to be sent down in the PO header file.

For the order number retrieved in the above cursor loop through the ordloc
warehouse records. First, check the header indicator. If the ordhead record has
changed, then a PO header record needs to be written for each warehouse on the
order. For example, one PO (#123456) has been created to replenish the stock in
warehouse 1, 2, and 3. The PO header download file produced by the ordrev.pc
program will have 3 separate records. The first FDETL will have a location
(DC) =1 for PO #123456, the second record will have a location (DC) =2 for
PO #123456, and the third record will have a location (DC) = 3 for PO#123456.
After the ordhead indicator check, compare the ordloc and the ordloc rev fields.
If one of the fields differ, then write a PO detail record for the
warehouse/order_no. Once all warehouse locations are processed in that order, go
fetch the next order.

o Ifordloc.qty ordered != 0, then action type = ‘M’
e Ifordloc.qty ordered = 0, then action type = ‘D’

Check customer order flag. If it is not customer order. Call write alloc_only();

Write_alloc_only()

This function will write FDETL records to the appropriate pre-distribution output
files.

If alloc_no is not NULL, then (alloc_no was retrieved from the main driving
cursor on the rev_orders table)

If location is NULL and action type = ‘A’ then

30 Retek Merchandising System

Write pre-distribution download header and detail with action type ‘A’.
If the action type = ‘A’, then loop through all of the “to locations” of the
allocation on alloc_detail table. A detail record will need to be written
for each alloc_detail location.

In the for loop, if the allocation location is a store, then call the
comp_tckt() function.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl ind = ‘H’

Write pre-distribution header with action type = ‘D’. The location field
retrieved by the driving cursor will contain the from warehouse location
(ie. alloc_header.wh) and should be used to populate the Location (DC)
field on the output file.

Elsif location is not NULL and action type = ‘D’ and hdr_dtl ind = ‘D’

Write pre-distribution detail with action type = ‘D’. The location field
on the rev_orders table will contain the to store/warehouse location (ie.
alloc_detail.store or wh) and should be used to populate the destination
id on the output file.

Else /* location is not NULL and action type = ‘A’ or ‘M’ */

Write pre-distribution download detail with ‘A’, ‘M’, depending on the
action type retrieved from the main cursor (ie. rev_orders). Get the detail
file’s information (from_loc, to_loc, qty) by selecting from the
alloc_detail/alloc_header table for the alloc_no and location found in the
main driving cursor. A detail record should be written for the location
that was retrieved from the rev_orders table.

If the action type = ‘A’ and the allocation location is a store, then call the
comp_tckt() function.

End if;
End if;

Comp_tckt()

If the sku on the allocation is a non sellable pack item going to a store location,
then write all of the component skus, retail price, and ticket information to the
component_ticketing file.

Del_revord()

Multiple order versions could exist on the revord table for the same order. This
could happen if the batch program had not been run since the last time the order
was modified. Since the processing has written the current order value to the
revision history tables, all records with that order number must be deleted from
the revord table to prevent double processing

I/0 specification

The five output files should be specified at the command line when running the
ordrev.pc program.

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 31

Order Header file

Note: The flat files will contain a space between record fields.

Record Record Default value Field type Description
Name

File Detail file FHEAD Char(5) Identifies the

Header | identifier header line

line number Incremented internally Number(10) | sequential line
number

Program POHD Char(5) Identifies the

descriptor program

Create date YYYYMMDDHH24MISS Char(14) File create date

File File record FDETL Char(5) Identifies the
detail descriptor detail line

Line number Incremented internally Number(10) | sequential line
number

Action_type ‘A, M, D’ Char(1) Add, modify, or
delete action type

Location Ordloc.location (wh only) Number(4) | Location of item
that was ordered

Transaction sysdate Datetime(12 | system date

day date/time)

Po number ‘P’ + ordhead.order no Char(9) Unique identifier
of the purchase
order, prefixed
with ‘P’

Vendor Ordhead.supplier Number(7) | Supplier number

number of the order

Preassigned ‘N’ Char(1)

flag

Deliver not b | Not before date Date(8) Not before date

efore date of the order

Deliver not a | Not after date Date(8) Not_after date of

fter date the order

Shipping Ordhead.freight_terms Char(3) Freight Terms of

terms the order

Buyer code Ordhead.buyer Char(12) Buyer of the PO.

32 Retek Merchandising System

Record Record Default value Field type Description
Name
File File record FTAIL Char(5) File trailer
trailer | identification identifier
Line number Internally incremented Number(10) | Sequential line

number of file

Number of Internally determined Number(10) | Total number of

transaction transactions (not

lines including FHEAD
and FTAIL)

Order Detail file

Note: The flat files will contain a space between record fields.

Record Record Default value Field type Description
Name
File header File line FHEAD Char(5) identifies file

identifier record type

Line number Begins at 0000000001 Number(10) identifies file
line number

Program PODT Char(5) identifies the

descriptor program

Create date YYYYMMDDHH24MISS | Char(14) file create date

format
File Detail Detail file FDETL Char(5) Identifies the

identifier Detail line

line number Incremented internally Number(10) sequential line
number

Action_type ‘A’, M, D’ Char(1) Add, modify,
or delete action
type

Location Ordloc.location (wh only) | Number(4) This field
contains the
location to
which the item
will be ordered
to.

Transaction day | sysdate Datetime(12) | system date

date/time

PO number ‘P’ + order number char(9) Identifies the
unique PO
number

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 33

Record Record Default value Field type Description
Name
Item id Ordloc.sku Char(16) Sku on the
order
Requested unit | Ordloc.qty_ordered Number(12,4) | Contains the
qty total number
of items
ordered to a
specific
location.
Ordered case Ordsku.case pack size Number(12,4) | Contains the
pack case pack size
that the item
was ordered in
Hang/Flat/Shoe | Hanger attribute or default | Char(1) F=Flat,
Indicator door type H=Hang,
S=Shoe,
A=All
File Trailer File Line FTAIL Char(5) Identifies the
identifier trailer line
line number Incremented internally Number(10) sequential line
number
number of Total number of detail Number(10) total number
transaction lines | lines of detail lines
in file (not
including
FHEAD and
FTAIL)
Stock Order file
Note: The flat files will contain a space between record fields.
Record Record Default value Field type Description
Name
File Header Detail file FHEAD Char(5) Identifies the
identifier header line
line number Incremented internally Number(10) sequential line
number
Program STOR Char(5) Identifies the
descriptor program
Create date YYYYMMDDHH24MIS | Char(14) File create date

S

34 Retek Merchandising System

Record Record Default value Field type Description
Name
File detail File record FDETL Char(5) Identifies the
descriptor detail line
Line number Incremented internally Number(10) sequential line
number
Action_type ‘A’, M, D’ Char(1) Add, modify,
or delete action
type
Location alloc_header.wh Number(4) From
Warehouse
location
Transaction day | sysdate Datetime(12) | system date
date/time
distribution ‘A’ + alloc_no char(9) or Allocation
number char(11) if the | number. Prefix
allocation_ind | ‘A’ for alloc
is=°Y’
Download NULL Char(30) Comment to be
comment printed on the
label (for future
use)
Pick not before | Not before date Date(8) Not_before dat
_date e of theorder
Pick not after | Not after date Date(8) Not after date
date of the order
Event code Promotion or NULL Char(6) Promotion’s
event number
Event Prom_desc or NULL Char(25) Event
description description
priority 1 Char(4) Priority
Order Type ALLOC HEADER.ORDE | Char(9) Type of Order :
R _TYPE ‘PO’ or
‘PREDIST’
Break by Distro | ‘N’ Char(1) Controls the
mixing of
orders (distros)
in a container
Carrier Code NULL Char(4) Code of the

carrier for the
order

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 35

Record Record Default value Field type Description
Name

Carrier Service | NULL Char(6) Carrier’s

Code service code for
the delivery,
First Class, and
son on (Future
Use)

Route NULL Char(10) Route specified
for the delivery

Ship Address NULL Char(30) The description

Description (such as the
store name)

Ship Address NULL Char(30) Shipping

Line 1 Address Line 1

Ship Address NULL Char(30) Shipping

Line 2 Address Line 2

Ship NULL Char(30) Shipping

AddressLine 3 Address Line 3

ShipAddressLin | NULL Char(30) Shipping

e4 Address Line 4

ShipAddressLin | NULL Char(30) Shipping

es Address Line 5

City NULL Char(25) Shipping City

State NULL Char(3) Shipping State

Zip NULL Char(10) Shipping Zip

Billing Address | NULL Char(30) The description

Description (such as
company
name). This is
the first line of
the address
block.

Billing Address | NULL Char(30) Billing Address

1 Line 1

Billing Address | NULL Char(30) Billing Address

2 Line 2

Billing Address | NULL Char(30) Billing Address

3 Line 3

Billing Address | NULL Char(30) Billing Address

4 Line 4

36 Retek Merchandising System

Record Record Default value Field type Description
Name
Billing Address | NULL Char(30) Billing Address
5 Line 5
Amount 1 NULL Number(8,2) Amount Charge
1
Amount 2 NULL Number(8,2) | Amount Charge
2
Amount 3 NULL Number(8,2) Amount Charge
3
PO Number P+ Char(9) Unique
ALLOC HEADER.ORDE identifier of the
R NO purchase order,
prefixed with
‘P’.
File trailer File record TTAIL Char(5) File trailer
identification identifier
Line number Internally incremented Number(10) Sequential line
number of file
Number of Internally determined Number(6) Total number
transaction lines of transactions
(not including
FHEAD and
FTAIL)
Stock Allocation file
Note: The flat files will contain a space between record fields.
Record Record Default value Field type Description
Name
File header File line FHEAD Char(5) identifies file
identifier record type
Line number Begins at 0000000001 Number(10) identifies file
line number
Program STAL Char(10) identifies the
descriptor program
Create date YYYYMMDDHH24MIS | Char(14) file create date
S format
File Detail Detail file FDETL Char(5) Identifies the
identifier Detail line
line number Incremented internally Number(10) sequential line
number

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 37

Record Record Default value Field type Description
Name
Action_type ‘A’, M, D’ Char(1) Add, modify,
or delete
action type
Location alloc_header.wh Number(4) From
Warehouse
location
Transaction day | sysdate Datetime(12) | system date
date/time
distribution ‘A’ + alloc_no char(9) or Allocation
number char(11) if the | number.
allocation_ind | Prefix ‘A’ for
is=‘Y’. alloc
Item Id ALLOC HEADER.SKU | Char(16) Unique item
identifier
requested unit Alloc_detail.qty allocated | Number(12,4) | quantity
qty allocated
destination id Alloc_detail.store or wh Number(4) Allocation
location
price Item_ zone price.unit retai | Number(5,2) | Retail price
1
print upc flag NULL char(1) Print upc flag
ticket type item_ticket.ticket type Number(4) Receiving
Ticket type of
item.
priority 1 Char(4) Priority
expedite flag ‘N’ char(1) Flag
indicating
whether the
order should
be shipped via
normal or
expedite
carrier service.
File Trailer File Line FTAIL Char(5) Identifies the
identifier trailer line
line number Incremented internally Number(10) sequential line

number

38 Retek Merchandising System

Record Record Default value Field type Description
Name
number of Total number of detail Number(6) total number
transaction lines | lines of detail lines
in file (not
including
FHEAD and
FTAIL)
Component Ticketing file layout:
Note: The flat files will contain a space between record fields.
Record Record Default value Field type Description
Name
File Header | File Line FHEAD Char(5) Identifies the
1dentifier trailer line
Line number | 0000000001 Number(10) identifies file
line number
Program CPTT Char(4) identifies the
descriptor program
Create date | YYYYMMDDHH24MISS | Char(14) file create
date
File detail file record FDETL Char(5) Detail line
descriptor descriptor
line number | Incremented internally Number(10) sequential
line number
Action_type | ‘A’ Char(1) 'A'dd,
'M'odity,
'D'elete
Location alloc_header.wh Number(4) location that
items will be
allocated
from
Transaction | vdate Datetime(12) date/time
date/time created in
RMS
distribution alloc_header.alloc_no char(9) Unique
number identifier of

the
distribution.

Chapter 4 — Purchase Order Information Written to Order History Tables [ordrev] 39

Record Record Default value Field type Description
Name

Master item | alloc_header.sku Char(16) Unique

id identifier of
the pack
item

Dest Id alloc_detail.store Number(4) Identifier of
the ship
destination

Component | v_packsku qty.sku Char (16) item

Item ID identifier of
the
component

price Item_zone price.unit_retail | Number(7,2) Price of the
merchandise.

File Trailer | file record FTAIL Char(5) File trailer

identification

line number | Incremented internally Number(10) sequential
line number

number of Total number of detail Number(6) total number

transaction lines of

lines transaction
lines in file
(not
including
FHEAD and
FTAIL)

Technical issues

Clients will have to determine how frequently to run this program. If order
versions are only needed at the end of the business day, e.g. when orders are
mailed or transmitted to suppliers, then it might be sufficient to run this program
once a day (after the replenishment orders are built and before the EDI orders are
transmitted to the supplier).

Potential future enhancement, write a report when multiple records for the same
order are on the table. This might be used to indicate whether orders versions
should be written more frequently.

Information is selected into arrays to improve performance.

This program must be run if interfacing with Nautilus.

Chapter 5 — Stock Ledger Extract [stigdnid] 41

Chapter 5 — Stock Ledger Extract [stigdnid]

Modification
Changed output file due to changes from SIR 29894,

Design overview

This program extracts stock ledger data at a SKU/location/week level from the
TRAN DATA HISTORY table. The program can extract data for a specified
historic period or for the most current complete week. Therefore, if the most
current complete week ends on March 10th, running the program on any day
between March 11th and 16th will download the week ending March 10th. An
historic download will download all the complete weeks between the from and to
dates supplied in the input file.

This program will extract the following information at a SKU/location/week
level:

Sales Value (retail & cost for regular, promotional and clearance), Sales Units
(regular, promotional, and clearance), RTV Value (retail & cost), RTV units,
Customer Returns Value (retail & cost), Customer Returns Units, Reclass In
(retail & cost), Reclass In Units, Reclass Out (retail & cost), Reclass Out units,
Permanent Markdown Value (retail), Promotional Markdown Value (retail),
Clearance Markdown Value (retail), Markdown Cancel (retail), Markup Value
(retail), Markup Cancel Value (retail), Received Value (retail & cost), Received
Units, Transfer In Value (retail & cost), Transfer In Units, Transfer Out Value
(retail & cost), Transfer Out Units, Stock Adjustment Value (retail & cost), Stock
Adjustment Units, Employee Discount Value, Freight Cost, Cost Variance,
Workroom/Other Cost of Sales Value (retail), and Cash Discount value (retail).

Back posted transactions will be downloaded in the week in which the actual
transaction occurred. Since the weeks with back posted transactions will only
contain additions to the week and not the full week's value — downloaded in a
previous extract for the week in which the transaction occurred — the record will
be extracted with a 'U' to signify an update for the week. Records for the most
current week will be extracted with a 'I' to indicate an insert or overlay for the
week (i.e. full weekly data).

Design assumptions

Unit shrinkage will be calculated in RPP. RMS will pass the necessary inventory
adjustment records.

Unit BOP will be calculated as the previous period's unit BOP + unit receipts +
unit rtvs + unit transfer ins - unit transfer outs + unit reclass in - unit reclass out -
net sales - shrinkage. Since the interface will be providing all of these metrics,
RPP will calculate the actual unit BOP.

Unit numbers interfaced from RMS to RPP will be in “eaches”.

42 Retek Merchandising System

Performance considerations

Since the data is being extracted from the Transaction Data History table, which
is a very large table, performance may be a concern. RMS can not determine at
this time the actual performance of this process. See Technical Design for
possible performance enhancements.

Scheduling constraints

This program can be run weekly as well as ad hoc (for historic data). This
program runs in phase 4.

Restart recovery

This program will use restart recovery. The logical unit of work is each unique
SKU.

Program flow

N/A

Shared modules

DATES _SQL.GET EOW_DATE — Retrieves the end of week date for a specific
input date.

Function level description

main()

The standard Retek main() function. Calls init(), process(), and final().
init()

Initialize restart recovery by calling retek init() and set up the output file.

Fetch the multi currency ind, stkldgr vat incl retl inc, vat ind,

last eow date unit and vdate from system_options, system_variables, and period
tables.

format_buffer()

Formats the string that will be used to write to the output file.

process|()

Will read the input file and call either fetch w_process or fetch h process
according to the input value from command line.

Chapter 5 — Stock Ledger Extract [stigdnid] 43

fetch_w_process()

This function will call the driving cursor that fetches the stock ledger data for the
most current end of week information from TRAN DATA HISTORY. This
function will loop through records returned by the driving cursor and write to the
output file by calling write file(). Within the FOR loop, calls the conversion
function if the multi_currency ind = “Y’. Conversion function will convert the
values to primary currency. Eow_date is checked to determined whether the
update indicator needs to be set to ‘U’ or ‘I’. Records are written to the output
file by using write_file()

fetch_h_process()

This function will call the driving cursor that fetches the stock ledger data for a
specific range of historic data from TRAN DATA HISTORY. It will also call
get_eow_date to determine the end of week date’s for the dates that were passed
in the input file. This function will loop through records returned by the driving
cursor and write to the output file by calling write file(). A separate record
should be written for each SKU/location/eow_date combination. Within the
FOR loop, call the conversion function if the multi_currency ind = ‘Y’. This
function will convert the values to primary currency. Update indicator will
always be set to ‘I’ for historic runs.

get_eow_date()
Call DATES SQL.GET_EOW_DATE to determine the end of week dates

associated with the from_date and to_date passed in the input file. End of week
dates will be used in the fetch h process driving cursor to bring back all records
on tran_data_history that fall within the historic date range.

write_file()

This function will call rtk_print to write the information fetched from the driving
cursor to the output file.

conversion()

Since tran_data_history stores information in the local currency, the values need
to be converted to the primary currency. This function will call a C function,
CONVERT TO_PRIMARY, from utils.h and convert the amount values to
primary currency if the multi-currency-indicator from system_options is ‘Y.
This function will be called within the for loop of both fetch process functions.
size_array()

Dynamically allocates memory to arrays.

free_array()

Frees memory allocated to arrays.

final()

Take care of file clean up and complete the restart recovery process by calling
retek close() and free array().

44 Retek Merchandising System

I/0 specification

Input specifications

Input file format

H[date in the ‘YYYYMMDD’ format][date in the “'YYYYMMDD’ format] or
A\

Ex: H1996010120000222 or W

Complete week driving cursor

If a “W’ is passed in the input file, this driving cursor should be called to bring
back all tran_data_history records that fall within the last complete week.
Records should be brought back at a SKU/location/week level. The cursor needs
to sum the totals for each tran_code based on these variables. Since
tran_data_history is kept at a daily level, all days within the given completed
week need to be summed up. There are three types of sales that could exist on
tran_data_history: regular, promotional, and clearance. Sales need to be broken
out by type for each SKU and written to separate fields in the output file for that
SKU.

EXEC SQL DECLARE ¢ week data w CURSOR FOR
SELECT tdh.sku,

DECODE(tdh.store,-1,’'W",'S"), /* This is required for currency
conversion */

DECODE(tdh.store,-1,tdh.wh,tdh.store),

to_date(:ps_eow_date, YYYYMMDD')-
(7*trunc((to_date(:ps_eow_date,'YYYYMMDD')-

(DECODE(SIGN(TO_DATE(:ps_eow_date,'YYYYMMDD')-
tran_date),

-1,to_date(:ps_eow_date,' YYYYMMDD'),

0,to_date(:ps_eow_date,'YYYYMMDD"),

TO_DATE(tran_date,'YYYYMMDD")))/7)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total retail,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(units,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total retail,0),0),0)),

Chapter 5 — Stock Ledger Extract [stigdnid] 45

SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total cost,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(units,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total retail,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(units,0),0),0)),
SUM(DECODE(:pi_stkldgr vat incl retl ind,2,0,
DECODE(tran_code,1,NVL(total retail,0),0))+
DECODE(tran_code,2,NVL(total retail,0),0)),
SUM(DECODE(tran_code,4,NVL(total retail,0),0)),
SUM(DECODE(tran_code,4,NVL(total cost,0),0)),
SUM(DECODE(tran_code,4,NVL(units,0),0)),
SUM(DECODE(tran_code,24,NVL(total retail,0),0)),
SUM(DECODE(tran_code,24,NVL(total cost,0),0)),
SUM(DECODE(tran_code,24,NVL(units,0),0)),
SUM(DECODE(tran_code,34,NVL(total retail,0),0)),
SUM(DECODE(tran_code,34,NVL(total cost,0),0)),
SUM(DECODE(tran_code,34,NVL(units,0),0)),
SUM(DECODE(tran_code,36,NVL(total retail,0),0)),
SUM(DECODE(tran_code,36,NVL(total cost,0),0)),
SUM(DECODE(tran_code,36,NVL(units,0),0)),
SUM(DECODE(tran_code,13,NVL(total retail,0),0)),
SUM(DECODE(tran_code,15,NVL(total retail,0),0)),
SUM(DECODE(tran_code,16,NVL(total retail,0),0)),
SUM(DECODE(tran_code,14,NVL(total retail,0),0)),
SUM(DECODE(tran_code,11,NVL(total retail,0),0)),
SUM(DECODE(tran_code,12,NVL(total retail,0),0)),
SUM(DECODE(tran_code,22,NVL(total retail,0),0)),
SUM(DECODE(tran_code,22,NVL(total cost,0),0)),
SUM(DECODE(tran_code,22,NVL(units,0),0)),
SUM(DECODE(tran_code,20,NVL(total retail,0),0)),
SUM(DECODE(tran_code,20,NVL(total cost,0),0)),

46 Retek Merchandising System

SUM(DECODE(tran_code,20,NVL(units,0),0)),
SUM(DECODE(tran_code,30,NVL(total retail,0),0)),
SUM(DECODE(tran_code,30,NVL(total cost,0),0)),
SUM(DECODE(tran_code,30,NVL(units,0),0)),
SUM(DECODE(tran_code,32,NVL(total retail,0),0)),
SUM(DECODE(tran_code,32,NVL(total cost,0),0)),
SUM(DECODE(tran_code,32,NVL(units,0),0)),
SUM(DECODE(tran_code,26,NVL(total cost,0),0)),
SUM(DECODE(tran_code,60,NVL(total retail,0),0)),
SUM(DECODE(tran_code,70,NVL(total cost,0),0)),
SUM(DECODE(tran_code,80,NVL(total retail,0),0)),
SUM(DECODE(tran_code,81,NVL(total retail,0),0)),
"'|ITO_CHAR(tdh.sku)

FROM tran_data history tdh,
v_restart_dept rv

WHERE tdh.post_date between (TO_DATE(:ps_ecow_date,
YYYYMMDD') - 6) and TO_DATE(:ps_eow_date,'YYYYMMDD")

AND tdh.sku > NVL(:ps_restart sku, -999)
AND rv.driver value = tdh.dept
AND rv.num_threads = :pi num_threads
AND rv.thread val =:pi thread val
GROUP BY sku,
DECODE(tdh.store,-1,"'W",'S"),
DECODE(tdh.store,-1,tdh.wh,tdh.store),

to_date(:ps_eow_date, YYYYMMDD')-
(7*trunc((to_date(:ps_eow_date,'YYYYMMDD')-

(DECODE(SIGN(TO_DATE(:ps_eow_date,'YYYYMMDD')-
tran_date),

-1,to_date(:ps_eow_date,'YYYYMMDD"),

0,to_date(:ps_eow_date,'YYYYMMDD"),

TO DATE(tran_date,'YYYYMMDD"))))/7))
ORDER BY sku,

to_date(:ps_eow_date,'YYYYMMDD")-
(7*trunc((to_date(:ps_eow date,'YYYYMMDD')-

(DECODE(SIGN(TO_DATE(:ps_eow_date,' YYYYMMDD')-
tran_date),

Chapter 5 — Stock Ledger Extract [stigdnid] 47

-1,to_date(:ps_eow_date,' YYYYMMDD'),
0,to_date(:ps_eow_date,'YYYYMMDD"),
TO_DATE(tran_date,'YYYYMMDD")))/7));

Driving cursor for historic data
EXEC SQL DECLARE ¢ week data h CURSOR FOR
SELECT tdh.sku,

DECODE(tdh.store,-1,’'W",'S"), /* This is required for currency
conversion */

DECODE(tdh.store,-1,tdh.wh,tdh.store),

to_date(:is_to_date,' YYYYMMDD')-
(7*trunc((to_date(:is_to_date,'YYYYMMDD")-

(DECODE(SIGN(TO _DATEC(:is_to date, YYYYMMDD')- tran_date),
-1,to_date(:is_to date,'YYYYMMDD"),
0,to_date(:is_tp date,'YYYYMMDD"),
TO_DATE(tran_date,'YYYYMMDD")))/7)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total retail,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(total cost,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'R',NVL(units,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total retail,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(total cost,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'P',NVL(units,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total retail,0),0),0)),
SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(total cost,0),0),0)),

SUM(DECODE(tran_code,1,DECODE(sales_type,'C',NVL(units,0),0),0)),
SUM(DECODE(:pi_stkldgr vat incl retl ind,2,0,
DECODE(tran_code,1,NVL(total retail,0),0))+
DECODE(tran_code,2,NVL(total retail,0),0)),
SUM(DECODE(tran_code,4,NVL(total retail,0),0)),
SUM(DECODE(tran_code,4,NVL(total cost,0),0)),

48 Retek Merchandising System

SUM(DECODE(tran_code,4,NVL(units,0),0)),
SUM(DECODE(tran_code,24,NVL(total retail,0),0)),
SUM(DECODE(tran_code,24,NVL(total cost,0),0)),
SUM(DECODE(tran_code,24,NVL(units,0),0)),
SUM(DECODE(tran_code,34,NVL(total retail,0),0)),
SUM(DECODE(tran_code,34,NVL(total cost,0),0)),
SUM(DECODE(tran_code,34,NVL(units,0),0)),
SUM(DECODE(tran_code,36,NVL(total retail,0),0)),
SUM(DECODE(tran_code,36,NVL(total cost,0),0)),
SUM(DECODE(tran_code,36,NVL(units,0),0)),
SUM(DECODE(tran_code,13,NVL(total retail,0),0)),
SUM(DECODE(tran_code,15,NVL(total retail,0),0)),
SUM(DECODE(tran_code,16,NVL(total retail,0),0)),
SUM(DECODE(tran_code,14,NVL(total retail,0),0)),
SUM(DECODE(tran_code,11,NVL(total retail,0),0)),
SUM(DECODE(tran_code,12,NVL(total retail,0),0)),
SUM(DECODE(tran_code,22,NVL(total retail,0),0)),
SUM(DECODE(tran_code,22,NVL(total cost,0),0)),
SUM(DECODE(tran_code,22,NVL(units,0),0)),
SUM(DECODE(tran_code,20,NVL(total retail,0),0)),
SUM(DECODE(tran_code,20,NVL(total cost,0),0)),
SUM(DECODE(tran_code,20,NVL(units,0),0)),
SUM(DECODE(tran_code,30,NVL(total retail,0),0)),
SUM(DECODE(tran_code,30,NVL(total cost,0),0)),
SUM(DECODE(tran_code,30,NVL(units,0),0)),
SUM(DECODE(tran_code,32,NVL(total retail,0),0)),
SUM(DECODE(tran_code,32,NVL(total cost,0),0)),
SUM(DECODE(tran_code,32,NVL(units,0),0)),
SUM(DECODE(tran_code,26,NVL(total cost,0),0)),
SUM(DECODE(tran_code,60,NVL(total retail,0),0)),
SUM(DECODE(tran_code,70,NVL(total cost,0),0)),
SUM(DECODE(tran_code,80,NVL(total retail,0),0)),
SUM(DECODE(tran_code,81,NVL(total retail,0),0)),
"'|ITO_CHAR(tdh.sku)

FROM tran_data history tdh,

Chapter 5 — Stock Ledger Extract [stigdnid] 49

v_restart_dept rv

WHERE tdh.post_date between (to_date(:is_from_date,'YYYYMMDD')-6)
and (to_date(:is_to_date,'YYYYMMDD"))

AND tdh.sku > NVL(:ps_restart sku, -999)

AND rv.driver value = tdh.dept

AND rv.num_threads = :pi_num_threads

AND rv.thread val =:pi thread val
GROUP BY sku,

to_date(:is_to_date,'YYYYMMDD')-
(7*trunc((to_date(:is_to date,'YYYYMMDD")-

(DECODE(SIGN(TO_DATE(:is_to_date,'YYYYMMDD')- tran_date),
-1,to_date(:is_to_date,' YYYYMMDD'),
0,to_date(:is_tp date,'YYYYMMDD"),
TO_DATE(tran_date,'YYYYMMDD"))))/7)),
DECODE(tdh.store,-1,’'W','S"),
DECODE(tdh.store,-1,tdh.wh,tdh.store)
ORDER BY sku;

Following is a list of the transaction codes that will be rolled up to a week level:
01 - Net Sales (retail & cost)
02 - net sales (retail & cost) - retail is always VAT exclusive, written only if
system_options.stkldgr vat incl retl ind=Y
04 - Customer Returns (retail & cost)
11 - Markup (retail only)
12 - Markup cancel (retail only)
13 - Permanent Markdown (retail only)
14 - Markdown cancel (retail only)
15 - Promotional Markdown (retail only)
16 - Clearance Markdown (retail only)
20 - Purchases (retail & cost)
22 - Stock adjustment (retail & cost)
24 - RTV from inventory (retail & cost)
26 - Freight (cost only)
30 - Transfers IN (retail & cost)
32 - Transfers OUT (retail & cost)

50 Retek Merchandising System

34 - Reclassifications In

36 - Reclassifications Out

60 - Employee discount (retail only)

70 - Cost Variance
80 - Workroom/Other Cost of Sales (retail only)

81 - Cash discount (retail only).

Output specifications

Output files

The output will be named stckldgr.dat. A separate record should be written for
each SKU/location/eow_date combination.

Output file format

Retail

Record Field Name Field Type Default Description
Name Value

SKU Char(20) SKU associated with stock ledger
date

Location Type Char(1) Type of Location — S or W

Location Char(20) Store or warehouse of stock ledger
data

EOW Date Char(8) End of week date of week for which
data was derived

Update Indicator | Char(1) It is set to ‘U’ if the tran_date in
weekly run is between end of month
date and last end of week date and in
all other cases (including historic run)
is set to ‘I’

Regular Sales Number(25) Total regular sales value (retail) for

Retail SKU/location/week — tran_code = 1
and sales_type = ‘R’

Regular Sales Number(25) Total regular sales value (cost) for

Cost SKU/location/week - tran_code = 1
and sales_type = ‘R’

Regular Sales Number(17) Total regular sales units for

Units SKU/location/week- tran_code = 1
and sales_type = ‘R’

Promotional Sales | Number(25) Total promotional sales value (retail)

for SKU/location/week - tran_code =
1 and sales_type = ‘P’

Chapter 5 — Stock Ledger Extract [stigdnid] 51

Record Field Name Field Type Default Description
Name Value

Promotional Sales | Number(25) Total promotional sales value (cost)

Cost for SKU/location/week- tran_code =
1 and sales_type = ‘P’

Promotional Sales | Number(17) Total promotional sales units for

Units SKU/location/week - tran_code = 1
and sales_type = ‘P’

Clearance Sales Number(25) Total clearance sales value (retail) for

Retail SKU/location/week - tran _code = 1
and sales_type = ‘C’

Clearance Sales Number(25) Total clearance sales value (cost) for

Cost SKU/location/week - tran _code = 1
and sales_type = ‘C’

Clearance Sales Number(17) Total clearance sales units for

Units SKU/location/week - tran_code = 1
and sales_type = ‘C’

Sales Retail Number(25) Total sales value (retail) excluding

Excluding VAT VAT for SKU/location/week. If the
VAT _IND and
STKLDGR_VAT INCL RETL IND
on SYSTEM OPTIONS = ‘Y’, then
this value will come from the
tran_code 2 records. It will hold the
total retail excluding VAT. The
tran_code 1 record will contain retail
including VAT. If VAT IND =Y
and
STKLDGR_VAT INCL RETL_IND
= ‘N’, then the tran_code 1 record
will contain retail without VAT and
no tran_code 2 record will be written,
so this field should be 0. If VAT isn’t
being used, then this field should
contain a 0.

Customer Returns | Number(25) Total customer returns value (retail)

Retail for SKU/location/week

Customer Returns | Number(25) Total customer returns value (cost)

Cost for SKU/location/week

Customer Returns | Number(17) Total customer returns units for

Units SKU/location/week

RTV Retail Number(25) Total Return to Vendor value (retail)

for SKU/location/week

52 Retek Merchandising System

Record Field Name Field Type Default Description
Name Value

RTV Cost Number(25) Total Return to Vendor value (cost)
for SKU/location/week

RTYV Units Number(17) Total Return to Vendor units for
SKU/location/week

Reclass In Retail | Number(25) Reclass In value (retail) for
SKU/location/week

Reclass In Cost Number(25) Reclass In value (cost) for
SKU/location/week

Reclass In Units | Number(17) Reclass In units for
SKU/location/week

Reclass Out Number(25) Reclass Out value (retail) for

Retail SKU/location/week

Reclass Out Cost | Number(25) Reclass Out value (cost) for
SKU/location/week

Reclass Out Units | Number(17) Reclass Out units for
SKU/location/week

Permanent Number(25) Permanent markdown value (retail)

Markdown Value

Promotional Number(25) Promotion markdown value (retail)

Markdown Value

Clearance Number(25) Clearance markdown value (retail)

Markdown Value

Markdown Number(25) Markdown cancel value (retail)

Cancel Value

Markup Value Number(25) Markup value (retail)

Markup Cancel Number(25) Markup cancel value (retail)

Value

Stock Adjustment | Number(25) Stock Adjustment value (retail) for

Retail SKU/location/week

Stock Adjustment | Number(25) Stock Adjustment value (cost) for

Cost SKU/location/week

Stock Adjustment | Number(17) Stock Adjustment units for

Units SKU/location/week

Received Retail Number(25) Received value (retail) for
SKU/location/week

Received Cost Number(25) Received value (cost) for

SKU/location/week

Chapter 5 — Stock Ledger Extract [stigdnid] 53

Retail

Record Field Name Field Type Default Description
Name Value

Received Units Number(17) Received units for
SKU/location/week

Transfer In Retail | Number(25) Transfer In value (retail)

Transfer In Cost | Number(25) Transfer In value (cost)

Transfer In Units | Number(17) Transfer In units

Transfer Out Number(25) Transfer Out value (retail)

Retail

Transfer Out Cost | Number(25) Transfer Out value (cost)

Transfer Out Number(17) Transfer Out units

Units

Freight Cost Number(25) Freight value (cost) for
SKU/location/week

Employee Number(25) Employee discount value (retail) for

Discount Retail SKU/location/week

Cost Variance Number(25) Cost variance value for
SKU/location/week

Workroom/Other | Number(25) Workroom/other costs value for

Cost of Sales SKU/location/week

Retail

Cash Discount Number(25) Cash discount value (retail) for

SKU/location/week

Technical issues

N/A

	Chapter 1 – Introduction
	Chapter 2 – Transfer Shipments Upload [tsfoupld]
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Input file
	Output file
	Detail
	Reject file
	Error file

	Technical issues

	Chapter 3 – Monthly Stock Ledger Processing [salm
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 4 – Purchase Order Information Written to
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Order Header file
	Order Detail file
	Stock Order file
	Stock Allocation file
	Component Ticketing file layout:

	Technical issues

	Chapter 5 – Stock Ledger Extract [stlgdnld]
	Modification
	Design overview
	Design assumptions
	Performance considerations

	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	I/O specification
	Input specifications
	Output specifications

	Technical issues

