

Retek® Merchandising System
9.0.9

Addendum to Operations Guide

Retek Merchandising System

The software described in this documentation is furnished under a license
agreement, is the confidential information of Retek Inc., and may be used
only in accordance with the terms of the agreement.

No part of this documentation may be reproduced or transmitted in any form
or by any means without the express written permission of Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403, and the copyright
notice may not be removed without the consent of Retek Inc.

Information in this documentation is subject to change without notice.

Retek provides product documentation in a read-only-format to ensure
content integrity. Retek Customer Support cannot support documentation
that has been changed without Retek authorization. Corporate Headquarters:
 Retek Inc.

Retek on the Mall

950 Nicollet Mall

Minneapolis, MN 55403

888.61.RETEK (toll free US)

+1 612 587 5000

Retek

110 Wigmore Street

London

W1U 3RW

United Kingdom

Switchboard:

+44 (0)20 7563 4600

Sales Enquiries:

+44 (0)20 7563 46 46

Fax: +44 (0)20 7563 46 10

Retek® Merchandising System™ is a trademark of Retek Inc.

Retek and the Retek logo are registered trademarks of Retek Inc.

This unpublished work is protected by confidentiality agreement, and by
trade secret, copyright, and other laws. In the event of publication, the
following notice shall apply: European Headquarters:
©2002 Retek Inc. All rights reserved.

All other product names mentioned are trademarks or registered trademarks
of their respective owners and should be treated as such.

Printed in the United States of America.

Retek® Confidential

Customer Support

Customer Support hours:

Customer Support is available 7x24x365 via e-mail, phone, and Web access.

Depending on the Support option chosen by a particular client (Standard,
Plus, or Premium), the times that certain services are delivered may be
restricted. Severity 1 (Critical) issues are addressed on a 7x24 basis and
receive continuous attention until resolved, for all clients on active
maintenance.

Contact Method Contact Information

Internet (ROCS) www.retek.com/support
 Retek’s secure client Web site to update and view issues

E-mail support@retek.com

Phone US & Canada: 1-800-61-RETEK (1-800-617-3835)
 World: +1 612-587-5800
 EMEA: 011 44 1223 703 444
 Asia Pacific: 61 425 792 927

Mail Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

When contacting Customer Support, please provide:

• Product version and program/module name.

• Functional and technical description of the problem (include business
impact).

• Detailed step by step instructions to recreate.

• Exact error message received.

• Screen shots of each step you take.

http://www.retek.com/support

Contents i

Contents
Chapter 1 – Introduction... 1

Chapter 2 – Customs entry download (cednld.doc) 3

Modification .. 3

Design overview.. 3

Scheduling constraints... 3

Restart recovery... 3

Program flow... 4

Shared modules ... 4

Function level description ... 4
init... 4
process .. 5
Process_shipments.. 5
Process_order_items... 5
Process_bl_awb_id ... 5
Process_container ... 6
Process_license_visa .. 6
Process_charges.. 6
Process_missing_docs .. 6
Update_ce_head ... 6
Size_arrays ... 6
Init_buffers ... 6
Write_line ... 6
Final.. 6

I/O specification .. 7
Output file... 7

Technical issues... 12

ii Retek Merchandising System

Chapter 3 – Transportation upload (tranupld.doc) 13

Modification .. 13

Design overview.. 13
Upload files .. 13

Scheduling constraints... 14
Pre/post logic description ... 14

Restart recovery... 14

Program flow... 14
Tables used ... 14

Shared modules ... 14

Function level description ... 15
init(): ... 15
file_process(): ... 15
format_record(): ... 15
format_dtran_record(): ... 15
format_dpoit_record(): ... 15
format_ftail_record(): ... 15
validate_record(): ... 15
validate_tran_record(): ... 16
validate_poit_record(): ... 16
process_record(): .. 17

I/O specification .. 21

Technical issues... 26

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc)
.. 27

Modification .. 27

Design overview.. 27

Scheduling constraints... 29

Restart recovery... 29

Program flow... 30

Shared modules ... 31

Contents iii

Function level description ... 32
init() .. 32
process() ... 32
validate_THEAD() ... 33
validate_TDETL() .. 34
process_TDETL()... 34
create_shipment() ... 34
ON Fatal Error .. 34
ON Non-Fatal Error.. 34

I/O specification .. 35
Input file ... 35
Reject file.. 37
Error file ... 37

Technical issues... 37

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 39

Modification .. 39

Chapter 6 – Fashion merchandise hierarchy download
(fmednldf.doc) ... 71

Modification .. 71

Design overview.. 71

Scheduling constraints... 71

Restart recovery... 71
Department ... 72
Class ... 74
Subclass .. 76

Program flow... 78

Shared modules ... 80

Function level description ... 81

I/O specification .. 81

Technical issues... 81

iv Retek Merchandising System

Chapter 7 – Staple merchandise hierarchy download
(fmednlds.doc) .. 83

Modification .. 83

Design overview.. 83

Scheduling constraints... 83

Restart recovery... 83
Department ... 84
Class ... 85
Subclass .. 87

Program flow... 88

Shared modules ... 91

Function level description ... 91

I/O specification .. 92

Technical issues... 92

Chapter 8 – Product security rebuild (sprdrbld.doc) 93

Modification .. 93

Design overview.. 93

Scheduling constraints... 94

Restart recovery... 94

Program flow... 95

Shared modules ... 96
Driving Cursor for SKU ... 96
Driving Cursor for Dept ... 97

Function level description ... 97
Main() ... 97
Init().. 97
Process() ... 98
Size_rule_array() .. 98
Set_null_to_field().. 98
Process_record() ... 99
Logical_or_indicators() .. 99
Update_array().. 100
Write_array() .. 100
final() .. 100

I/O specification .. 101

Technical issues... 101

Contents v

Chapter 9 – Transfer shipments upload (tsfoupld.doc)... 103

Modification .. 103

Design overview.. 103

Scheduling constraints... 104

Restart recovery... 105

Program flow... 106

Shared modules ... 107

Function level description ... 108
init() .. 108
process() ... 108
validate_THEAD() ... 110
process_THEAD() .. 111
validate_TDETL() .. 112
process_TDETL()... 113
post_transfers() ... 114
format_header_fields() ... 115
format_detail_fields() ... 115
process_carton() ... 115

I/O specification .. 116
Input file ... 116
Output file... 120
Reject file.. 122
Error file ... 122

Technical issues... 122

Chapter 1 – Introduction 1

Chapter 1 – Introduction
This addendum to the Retek Merchandising System (RMS) 9.0 Operations Guide
contains updates to the following batch designs:

• Customs entry download (cednld.doc)

• Transportation upload (tranupld.doc)

• P.O. receipt transactions upload (rcvupld.doc)

• Sales Audit Interface file (SA RTLOG.DOC) ?

• Items (fmednldf.doc)

• Items (fmednlds.doc)

• Security (sprdrbld.doc)

• Transfers (tsfoupld.doc)

Refer to the following chapters for that information, which supercedes any
comparable information in the RMS 9.0 Operations Guide. Each chapter contains
a subsection indicating what specific modifications have been made.

Chapter 2 – Customs entry download (cednld.doc) 3

Chapter 2 – Customs entry download (cednld.doc)
Modification

Changed the shipment number to char(20) and bl_awb_id to char(30).

Design overview
This program is used to download custom entry information from the RMS
database to brokers. Each night, this program will read all Custom Entry (CE)
transactions that are in a Sent status for a broker id. These transactions will be
written to a flat file and the status will be changed to Downloaded. One process
will run and one flat file will be written per broker.

Scheduling constraints
Processing Cycle: 2

Scheduling Diagram: This program must run after cefinal.pc.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: Broker

Restart recovery
The Logical Unit of Work for the program will be a single row from the customs
entry tables. Restart/Recovery will be used for init and commit.

SELECT LPAD(ce_id,:oi_len_ce_id,'0'),

 NVL(entry_no,' '),

 NVL(to_char(entry_date,'YYYYMMDDHH24MISS'),' '),

 entry_status,

 NVL(entry_type,' '),

 NVL(entry_port,' '),

 NVL(to_char(summary_date,'YYYYMMDDHH24MISS'),'
'),

 NVL(broker_id,' '),

 NVL(broker_ref_id,' '),

 NVL(file_no,' '),

 importer_id,

 import_country_id,

 currency_code,

 LPAD(exchange_rate *
10000000000,:oi_len_exchange_rate,'0'),

 NVL(bond_no,' '),

4 Retek Merchandising System

 NVL(bond_type,' '),

 NVL(surety_code,' '),

 NVL(consignee_id,' '),

 live_ind,

 NVL(batch_no,' '),

 NVL(entry_team,' '),

 NVL(to_char(liquidation_amt * 10000),' '),

NVL(to_char(liquidation_date,'YYYYMMDDHH24MISS'),' '),

 NVL(to_char(reliquidation_amt * 10000),' '),

NVL(to_char(reliquidation_date,'YYYYMMDDHH24MISS'),' '),

 NVL(merchandise_loc,' '),

 NVL(location_code,' ')

 ROWIDTOCHAR(rowid),

 ‘;’||to_char(ce_id)

 FROM ce_head

 WHERE status = ‘S’

 AND broker_id = :os_broker_id

 AND ce_id > NVL(:os_restart_ce_id, -999)

ORDER BY ce_id;

Program flow
N/A

Shared modules
N/A

Function level description

init
This function will perform standard Retek init() function logic (restart/recovery
initialization, opening files, etc.). In addition, this function should select
system_options.vdate, call the size_arrays() function to allocate memory for SQL
fetch arrays, call the init_buffers() function to format the record strings that are
written to the output file.

Chapter 2 – Customs entry download (cednld.doc) 5

process
Within a loop, the driving cursor should fetch ce_head records into an array. For
each ce_id that is fetched from the driving cursor, functions to retrieve records
from ce_shipment. All records do not need to retrieve the comments field. The
records for the output file that will be written will have the following hierarchy:

FHEAD

ce_head (THEAD)

ce_shipment (TSHIP)

ce_ord_item (TORDI)

 transportation (TBLAW)

 transportation (TCONT)

ce_lic_visa (TLICV)

ce_charges (TCHRG)

 missing_doc (TMDOC)

FTAIL

After all records have been written to the output file for the CE being processed,
write the rowid (retrieved from the driving cursor) to an update array. If the
transaction count is equal to or greater than the restart_max_ctr, call the
updated_ce_head() function to update the ce_head table. Also, call
restart_commit() and restart_file_write().

Process_shipments
This function will perform an array fetch to retrieve information from the
ce_shipment table associated to the ce_head record being processed and call
write_file() to write the records to the output file. This function should call the
process_order_items() function to retrieve all order items associated with the
shipment.

Process_order_items
This function will perform an array fetch to retrieve information from the
ce_ord_items table associated to the ce_head, ce_shipment record being
processed and call write_file() to write the records to the output file. This
function should call the process_bl_awb_id() (only if the ce_ord_item.bl_awb_id
= ‘MULTI’), process_container(), process_license_visa(), process_charges(), and
process_missing_docs functions to retrieve all detail records associated with the
shipment/order/item.

Process_bl_awb_id
This function will perform an array fetch to retrieve information from the
transportation table associated to the ce_ord_item record being processed and call
write_file to write the records to the output file.

6 Retek Merchandising System

Process_container
This function will perform an array fetch to retrieve information from the
transportation table associated to the ce_ord_item record being processed and call
write_file to write the records to the output file.

Process_license_visa
This function will perform an array fetch to retrieve information from the
ce_lic_visa table associated to the ce_ord_item record being processed and call
write_file to write the records to the output file.

Process_charges
This function will perform an array fetch to retrieve information from the
ce_charges table associated to the ce_ord_item record being processed and call
write_file to write the records to the output file.

Process_missing_docs
This function will perform an array fetch to retrieve information from the
missing_doc table associated to the ce_ord_item record being processed and call
write_file to write the records to the output file.

Update_ce_head
This function will perform an array update of the ce_head table, changing the
status from ‘S’ent to ‘D’ownloaded for ce_head records that have been
processed. The array size counter should be initialized to zero after the post to
the database.

Size_arrays
Initally size all fetch and update arrays to the size of the
restart_control.restart_max_ctr (using the calloc function). If the memory cannot
be allocated, raise a Fatal error.

Init_buffers
This function will format all output strings to the output file. Every time a string
is initialized, it should first be set to NULL to clear it out.

Write_line
This function will write a record to the output file for the given record type
passed in as a parameter.

Final
This function should perform standard Retek batch final processing. The
restart_final() function should be called, the final output file should be closed and
the temporary output file should be closed.

Chapter 2 – Customs entry download (cednld.doc) 7

I/O specification

Output file
The output file should be accepted as a runtime parameter at the command line.

RecordName Field Name Field Type Default Value Description

File Header File Type
Descriptor

Char(5) FHEAD Identifies file record
type

 File Line
Identifier

Number(10) Nine leading
zeroes:0000000001

ID of current line
being processed by
input file.

 File Type
Definition

Char(4) CEDN Identifies file as
‘Customs Entry
download’

 File Create
Date

Date Create date date file was written
by external system

CE_HEAD File Type
Descriptor

Char(5) THEAD Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 CE ID Number(10) ce_head.ce_id

 Entry No Char (15) ce_head.entry_no

 Entry Date Char(14) ce_head.entry_date YYYYMMDDHH24
MISS format

 Entry Status Char(6) ce_head.entry_status

 Entry Type Char(6) ce_head.entry_type

 Entry Port Char(5) ce_head.entry_port

 Summary
Date

Char(14) ce_head.summary date YYYYMMDDHH24
MISS format

 Broker ID Char(10) ce_head.broker_id

 Broker Ref.
ID

Char(18) ce_head.broker_ref_id

 File Number Char(18) ce_head.file_no

 Importer ID Char(10) ce_head.importer_id

 Import
Country

Char(3) ce_head.import_country_id

 Currency
Code

Char(3) ce_head.currency_code

8 Retek Merchandising System

RecordName Field Name Field Type Default Value Description

 Exchange
Rate

Number(20,10) ce_head.exchange_rate

 Bond Number Char(18) ce_head.bond_no

 Bond Type Char(6) ce_head.bond_type

 Surety Code Char(6) ce_head.surety_code

 Consignee ID Char(10) ce_head.consignee_id

 Live Indicator Char(1) ce_head.live_ind

 Batch Number Char(20) ce_head.batch_no

 Entry Team Char(3) ce_head.entry_team

 Liquidation
Amount

Number(20,4) ce_head.liquidation_amt

 Liquidation
Date

Char(14) ce_head.liquidation_date YYYYMMDDHH24
MISS format

 Reliquidation
Amount

Number(20,4) ce_head.reliquidation_amt

 Reliquidation
Date

Char(14) ce_head.reliquidation_date YYYYMMDDHH24
MISS format

 Merchandise
Loc

Char(40) ce_head.merchandise_loc

 Location
Code

Char(4) ce_head.location_code

CE_SHIPMENT File Type
Descriptor

Char(5) TSHIP Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 Vessel ID Char(20) ce_shipment.vessel_id

 Voyage Flt ID Char(10) ce_shipment.voyage_flt_id

 Estimated
Departure
Date

Char(14) ce_shipment.estimated_dep
art_date

YYYYMMDDHH24
MISS format

 Vessel SCAC
Code

Char(6) ce_shipment.vessel_scac_co
de

 Lading Port Char(5) ce_shipment.lading_port

 Discharge
Port

Char(5) ce_shipment.discharge_port

 Tran Mode ID Char(6) ce_shipment.tran_mode_id

Chapter 2 – Customs entry download (cednld.doc) 9

RecordName Field Name Field Type Default Value Description

 Export Date Char(14) ce_shipment.export_date YYYYMMDDHH24
MISS

 Import Date Char(14) ce_shipment.import_date YYYYMMDDHH24
MISS

 Arrival Date Char(14) ce_shipment.arrival_date YYYYMMDDHH24
MISS

 Export
Country

Char(3) ce_shipment.export_country
_id

 Shipment
Number

Char(20) ce_shipment.shipment_no

CE_ORD_ITEM File Type
Descriptor

Char(5) TORDI Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 Order Number Number(8) ce_ord_item.order_no

 Item Number(8) ce_ord_item.item

 BL AWB ID Char(30) ce_ord_item.bl_awb_id ‘MULTI’ – means
multiple airway bills
(otherwise a single
airway bill will be
retrieved)

 Invoice ID Char(30) ce_ord_item.invoice_id

 Invoice Date Char(14) ce_ord_item.invoice_date YYYYMMDDHH24
MISS format

 Invoice
Amount

Number(20,4) ce_ord_item.invoice_amt

 Currency
Code

Char(3) ce_ord_item.currency_code

 Exchange
Rate

Number(20,10) ce_ord_item.exchange_rate

 Manifest Item
Quantity

Number(12,4) ce_ord_item.manifest_item
_qty

 Manifest Item
Quantity
UOM

Char(4) ce_ord_item.manifest_item
_qty_uom

 Carton
Quantity

Number(12,4) ce_ord_item.carton_qty

10 Retek Merchandising System

RecordName Field Name Field Type Default Value Description

 Carton
Quantity
UOM

Char(4) ce_ord_item.carton_qty_uo
m

 Gross Weight Number(12,4) ce_ord_item.gross_wt

 Gross Weight
UOM

Char(4) ce_ord_item.gross_wt_uom

 Net Weight Number(12,4) ce_ord_item.net_wt

 Net Weight
UOM

Char(4) ce_ord_item.net_wt_uom

 Cubic Number(12,4) ce_ord_item.cubic

 Cubic UOM Char(4) ce_ord_item.cubic_uom

 Cleared
Quantity

Number(12,4) ce_ord_item.cleared_qty

 Cleared
Quantity
UOM

Char(4) ce_ord_item.cleared_qty_uo
m

 In Transit
Number

Char(15) ce_ord_item.in_transit_no

 In Transit
Date

Char(14) ce_ord_item.in_transit_date YYYYMMDDHH24
MISS format

 Rush
Indicator

Char(1) ce_ord_item.rush_ind

 Related
Indicator

Char(1) ce_ord_item.related_ind

 Tariff
Treatment

Char(10) ce_ord_item.tariff_treatmen
t

 Ruling
Number

Char(10) ce_ord_item.ruling_no

 Do Number Char(10) ce_ord_item.do_no

 Do Date Char(14) ce_ord_item.do_date YYYYMMDDHH24
MISS format

 Manufacture
ID

Char(18) ce_ord_item.mfg_id

BL_AWB_ID File Type
Descriptor

Char(5) TBLAW Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

Chapter 2 – Customs entry download (cednld.doc) 11

RecordName Field Name Field Type Default Value Description

 BL AWB ID Char(30) Transportation.bl_awb_id

CONTAINER File Type
Descriptor

Char(5) TCONT Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 Container ID Char(20) Transportation.container_id

 Container
SCAC Code

Char(6) Transportation.container_sc
ac_code

CE_LIC_VISA File Type
Descriptor

Char(5) TLICV Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 License/Visa
Type

Char(6) ce_lic_visa.license_visa_typ
e

 License/Visa
ID

Char(30) ce_lic_visa.license_visa_id

 License/Visa
Quantity

Number(12,4) ce_lic_visa.license_visa_qty

 License/Visa
Quantity
UOM

Char(4) ce_lic_visa.license_visa_qty
_uom

 Quota
Category

Number(3) ce_lic_visa.quota_category

 Net Weight Number(12,4) ce_lic_visa.net_weight

 Net Weight
UOM

Char(4) ce_lic_visa.net_weight_uo
m

 Holder ID Char(18) ce_lic_visa.holder_id

CE_CHARGES File Type
Descriptor

Char(5) TCHRG Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 Sequence
Number

Number(6) ce_charges.seq_no

 Pack Item Number(8) ce_charges.pack_item

 HTS Char(10) ce_charges.hts

12 Retek Merchandising System

RecordName Field Name Field Type Default Value Description

 Effect From
Date

Char(14) ce_charges.effect_from YYYYMMDDHH24
MISS format

 Effect To
Date

Char(14) ce_charges.effect_to YYYYMMDDHH24
MISS format

 Component
ID

Char(10) ce_charges.comp_id

 Component
Rate

Number(20,4) ce_charges.comp_rate

 Per Count
UOM

Char(3) ce_charges.per_count_uom

 Component
Value

Number(20,4) ce_charges.comp_value

MISSING_DOC File Type
Descriptor

Char(5) TMDOC Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 Doc_id Number(6) Missing_doc.doc_id

 Received_date Date Missing_doc.received_date

File Trailer File Type
Descriptor

Char(5) FTAIL Identifies file record
type

 File Line
Identifier

Number(10) Incremented internally ID of current line
being processed by
input file.

 File Record
Counter

Number(10) DeterminedInternally Number of
records/transactions
processed in current
file (only records
between head & tail)

Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

Chapter 3 – Transportation upload (tranupld.doc) 13

Chapter 3 – Transportation upload (tranupld.doc)
Modification

Changed the shipment number to char(20) and bl_awb_id to char(30).

Design overview
The purpose of the TRANUPLD.pc batch program is to update the
TRANSPORTATION table. This will allow the users to view and implement the
transportation data online instead of manually viewing and inserting information.

This upload process will diverge from the current RMS 8.0 upload programs in
that it will write both fatal and non fatal errors to the IF_ERRORS table rather
than a reject file. The IF_ERRORS table holds the program that caused the error
(trnupld.pc in this case), error date (vdate), unit of work (Vessel ID,Voyage ID,
Estimated Departure Date, Order No., Item, Container ID) and the error text.

This upload program has two business rules that need to be enforced. First, a
PO/Item combination will be associated with a single Invoice. Second, a
Container will be associated with a singe Bill of Lading. These business rules
will allow batch driven updates of the transportation table to function more
smoothly and in a more time efficient manner.

Upload files
Four record types will be used in this program’s upload files: FTRAN, DTRAN,
DPOIT, and FTAIL. The FTRAN record will contain general header
information. All pieces of the unique key, other than PO/Item combinations,
will be found within DTRAN records. The remaining DTRAN information
represents the details pertaining to the current vessel. Each DTRAN record must
be followed by at least one DPOIT record. DPOIT records will store the
remaining portion of the key (mainly, the PO/Item combination). Finally, the file
will end with an FTAIL record that has a field holding the total number of
records in the file.

For the purpose of this design a unit of data will be defined as the collection all
the information in a given DPOIT record as well as the data in that of the
DTRAN record to which it is associated. Depending on the acd_code found in
each DPOIT record, these units of data will be either added, deleted, or used to
update a record in the transportation table.

14 Retek Merchandising System

Scheduling constraints

Pre/post logic description
Processing Cycle: PHASE 4 (may also be schedule ad hoc to run multiple
times per day)

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: N/A

Restart recovery
Logical Unit of Work (recommended Commit checkpoints):

A valid DTRAN record.

Program flow
Read current record into appropriate data structure

• This format process should include checks that verify that all date fields and
all numeric fields contain data of the appropriate type.

Validate current record

• Certain fields must contain values that already appear in other locations in
the database. Ensure that these fields contain valid data.

Process current record

• Processing will only occur when the current record is of type DPOIT. Use
the acd_code to determine what action to perform on the transportation table.

Tables used
TABLE SELECT INSERT UPDATE DELETE

TRANSPORTATION Yes Yes Yes Yes

IF_ERRORS No Yes No Yes

PERIOD Yes No No No

Shared modules
TRANSPORTATION_SQL.GET_NEXT_ID

This function will create a new Transportation ID for the TRANSPORTATION
table.

Chapter 3 – Transportation upload (tranupld.doc) 15

Function level description

init():
• Open input file.

• Get vdate.

• Initialize restart/recovery.

• Get FTRAN and validate.

file_process():
• Format a record from the input file.

• Determine if the record is valid by calling the validate_record() function.

• If the record is a valid DPOIT, call the process_record() function to perform
an insert, update or delete statement.

• Continue processing until an FTAIL record is found

format_record():
If the record is a ‘DTRAN’ record call the format_dtran_record() function.

If the record is a ‘DPOIT’ record call the format_dpoit_record() function.

If the record is a ‘FTAIL’ record call the format_ftail_record() function.

format_dtran_record():
Read dtran from input file. Update indicator values for null fields. Ensure that
consolidator and candidate ind fields are not null. If the candidate field is null,
populate it with an ‘N’. Validate that all date fields and all numeric fields
contain data of the appropriate type.

format_dpoit_record():
Read dpoit from input file. Update indicator values for null fields. Ensure that
the rush ind, order and item are not null. If the rush ind is null, populate it with
an ‘N’. Validate that all date fields and all numeric fields contain data of the
appropriate type.

format_ftail_record():
Read ftail from input file. Ensure that the actual number of records processed
matched the stated number of records.

validate_record():
If the record is a ‘DTRAN’ record call the validate_dtran_record() function.

If the record is a ‘DPOIT’ record call the validate_dpoit_record() function.

If the record is a ‘FTAIL’ record call the validate_ftail_record() function.

16 Retek Merchandising System

validate_tran_record():
• vessel_id, voyage_flt_id and estimated_depart_date must be all have a value,

or must all be null. If this condition is not met, reject the record.

• validate the consolidator by calling a function which will return true when
the given consolidator = partner_id on the partner table with partner_type =
‘CO’.

• validate the trans mode by calling a function which will return true when the
given trans mode = code_detail on the code_detail table with code_type =
‘TRMO’.

• validate the vessel_scac_code by calling a function which will return true
when the given vessel_scac_code = scac_code on the scac table

• validate the lading port by calling a function which will return true when the
given lading port = outloc_id on the outloc table with outloc_type = ‘LP’.

• validate the discharge port by calling a function which will return true when
the given discharge port = outloc_id on the outloc table with outloc_type =
‘LP’.

• validate that the estimated departure date is <= actual arrival date <= delivery
date.

• validate the container_scac_code by calling a function which will return true
when the given container_scac_code = scac_code on the scac table

• validate the freight type by calling a function which will return true when the
given freight type = freight_type on the freight_type table

• validate the freight size by calling a function which will return true when the
given freight size = freight_ size on the freight_ size table

validate_poit_record():
• validate the order number by calling a function which will return true when

the given order_no = order_no on the ordhead table

• validate the item by calling a function which will return true when the given
item = item on the desc_look table

• validate the order/item combination by first checking if the combination
exists, as is, on the ordsku table. If it does not, then check that the given item
is a style for any item associated with the given order.

• validate the origin_country_id by calling a function which will return true
when the origin_country_id = country_id on the country table

• validate the consolidation_country_id by calling a function which will return
true when the consolidation _country_id = country_id on the country table

• validate the export_country_id by calling a function which will return true
when the export_country_id = country_id on the country table

• validate the status by calling a function which will return true when the given
status = code_type on the code_detail table with code_desc = ‘TRCO’.

Chapter 3 – Transportation upload (tranupld.doc) 17

• validate the packing type by calling a function which will return true when
the given packing type = code_type on the code_detail table with code_desc
= ‘PKMT’.

• validate the item quantity by calling a function which will return true when
the given item quantity = uom on the uom_class table with uom_class =
QTY’.

• validate the carton quantity by calling a function which will return true when
the given carton quantity = uom on the uom_class table with uom_class =
‘PACK’.

• validate the gross weight by calling a function which will return true when
the given gross weight = uom on the uom_class table with uom_class =
‘MASS’.

• validate the net weight by calling a function which will return true when the
given net weight = uom on the uom_class table with uom_class = ‘MASS’.

• validate the cubic uom by calling a function which will return true when the
given cubic uom = uom on the uom_class table with uom_class = ‘VOL’.

• validate the currency code by calling a function which will return true when
the currency code = currencies on the currencies table.

• Check that the current record type is valid given the preceding record type.
FTRAN records can only occur at the beginning of the file. DPOIT records
may only follow DPOIT or valid DTRAN records. DTRAN records can only
follow FTRAN or DPOIT records. If a DTRAN valid is rejected, all DPOIT
records associated with it must also be rejected.

• Validate that if a carton quantity exists, then a carton quantity uom also
exists. If a cubic exists, then a cubic uom exists. If an invoice amount exists,
then a currency code exists. If a gross weight exists, then a gross weight uom
exists. If a net weight exists, then a net weight uom exists. If any of these
conditions are not satisfied then reject he record.

process_record():
Since the TRANSPORTATION table is completely de-normalized we need to
synthesize the multiple records on the input files into single records to insert or
update into the table or find the proper where clause to delete from it. To
determine whether or not a combination exists on the TRANSPORTATION table
call the appropriate cursor (there are four of them, one with PO/Item, another
with VVE,PO/Item, another Container,PO/Item and the last
VVE,Container,PO/Item).

Validation must prevent the following unique key from being violated:

vessel_id / voyage_flt_id / estimated_depart_date,

order_no / item,

container_id

If any value on one of the above lines is null, then all values on that line must
also be null.

18 Retek Merchandising System

if the DPOIT record does exist then

if the acd_code = ‘A’ then

validate that if candidate indicator is “Y” then invoice id, invoice amt,
invoice date, currency code, exchange rate, item quantity, and item
quantity uom are not null.

 to determine if the unique key combination including PO/Item
already exists in the TRANSPORTATION table.

if the combination does not exist on the TRANSPORTATION
table then

build an insert statement with DTRAN and DPOIT data

if the combination does already exist on the
TRANSPORTATION table then

write error

continue on to the next DPOIT, DTRAN or FTAIL
section of the file

if the acd_code = ‘C’hange then

validate that if candidate indicator is “Y” then invoice id, invoice
amt, invoice date, currency code, exchange rate, item quantity,
and item quantity uom are not null.

if the DTRAN Vessel_id, Voyage_flt_id, Estimated_depart_date
and Container_id fields are NULL then

 that will validate if the PO/Item combination already
exists on the TRANSPORTATION table

if the PO/Item combination already exists on the
TRANSPORTATION table then

build an update statement with DTRAN and
DPOIT data

if the PO/Item combination with all others NULL does
not exist on the TRANSPORTATION table then

write error

continue on to the next DPOIT, DTRAN or
FTAIL section of the file

if the DTRAN Vessel_id, Voyage_flt_id, Estimated_depart_date
fields are NULL and the Container_id field is not NULL then

 that will validate if the PO/Item, Container combination
already exists on the TRANSPORTATION table with
VVE NULL

if the PO/Item, Container combination already exists on
the TRANSPORTATION table then

build an update statement with DTRAN and
DPOIT data

Chapter 3 – Transportation upload (tranupld.doc) 19

if the PO/Item, Container combination does not exist on
the TRANSPORTATION table then

 that will validate if the PO/Item combination
already exists on the TRANSPORTATION table
with all others NULL

if the PO/Item combination already exists on the
TRANSPORTATION table then

build an update statement with DTRAN
and DPOIT data

if the PO/Item combination does not exist on the
TRANSPORTATION table then

write error

continue on to the next DPOIT, DTRAN
or FTAIL section of the file

if the DTRAN Container_id field is NULL and Vessel_id,
Voyage_flt_id, Estimated_depart_date fields are not NULL then

 that will validate if the PO/Item, VVE combination with
Container NULL, already exists on the
TRANSPORTATION table

if the PO/Item, VVE combination already exists on the
TRANSPORTATION table then

build an update statement with DTRAN and
DPOIT data

if the PO/Item, VVE combination does not exist on the
TRANSPORTATION table then

 that will validate if the PO/Item with all others
NULL, combination already exists on the
TRANSPORTATION table

if the PO/Item combination already exists on the
TRANSPORTATION table then

build an update statement with DTRAN
and DPOIT data

if the PO/Item combination does not exist on the
TRANSPORTATION table then

write error

continue on to the next DPOIT, DTRAN
or FTAIL section of the file

if the DTRAN Vessel_id, Voyage_flt_id, Estimated_depart_date
fields are not NULL and the Container_id field is not NULL
then

20 Retek Merchandising System

 that will validate if the PO/Item, VVE, Container
combination already exists on the TRANSPORTATION
table

if the PO/Item, VVE, Container combination already
exists on the TRANSPORTATION table then

build an update statement with DTRAN and
DPOIT data

if the PO/Item, VVE, Container combination does not
exist on the TRANSPORTATION table then

 that will validate if the PO/Item, Container,
VVE NULL, combination already exists on the
TRANSPORTATION table

if the PO/Item, Container combination already
exists on the TRANSPORTATION table then

build an update statement with DTRAN
and DPOIT data

if the PO/Item, Container, VVE NULL
combination does not exist on the
TRANSPORTATION table then

 that will validate if the PO/Item, VVE,
Container NULL combination already
exists on the TRANSPORTATION
table

if the PO/Item, VVE, Container NULL
combination already exists on the
TRANSPORTATION table then

build an update statement with
DTRAN and DPOIT data

if the PO/Item, VVE, Container NULL
combination does not exist on the
TRANSPORTATION table then

 that will validate if the PO/Item, VVE
NULL, Container NULL combination
already exists on the
TRANSPORTATION table

if the PO/Item, VVE NULL, Container
NULL combination already exists on the
TRANSPORTATION table then

build an update statement with
DTRAN and DPOIT data

if the PO/Item, VVE NULL, Container
NULL combination does not exist on
the TRANSPORTATION table then

Chapter 3 – Transportation upload (tranupld.doc) 21

write error

continue on to the next DPOIT,
DTRAN or FTAIL section of
the file

if the acd_code = ‘D’elete then

 to see if the Vessel/Voyage/ETD/PO/Item/Container/BL/Invoice
combination exists on the TRANSPORTATION table

if the Vessel/Voyage/ETD/PO/Item/Container/BL/Invoice
combination exists on the TRANSPORTATION table.

build a delete statement with DTRAN and DPOIT data

if the combination does not exist on the TRANSPORTATION
table then

write error

continue on to next DTRAN or FTAIL section of the file

I/O specification
All files layouts input and output

The following file formats will be used:

Header - DTRAN - Vessel/Voyage/ETD/Container/BL/Invoice

Detail - PO/Item

File Format – Vessel/Voyage/ETD/Container/BL/Invoice

Key

Italicized field names must be included in the input file.

Bold field names are part of the primary key

Record Name Field Name Field Type Default Value Description

FTRAN Record descriptor Char(5) FTRAN File head marker

 Line id Char(10) 0000000001 Unique line id

 File type
definition

Char(8) TRANUPLD Identifies
program to use

 File create date Char(8) Current date YYYYMMDD
format

DTRAN Record descriptor Char(5) DTRAN Vessel, Voyage,
ETD, Container,
BL, Invoice File
head

 Line id Char(10) Unique line id

22 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

 Consolidator Char(10) Identifies the
Consolidator.
Validated against
PARTNER table
with type = ‘CO’

 Vessel ID Char(20) Identifies the
Vessel

 Voyage ID Char(10) Identifies the
Voyage or Flight
ID

 Estimated
Depart Date

Char(8) YYYYMMDD
format

 Shipment
Number

Char(20) Identifies an
outside Shipment
number

 Actual Arrival
Date

Char(8) YYYYMMDD
format

 Trans Mode Char(6) Identifies the type
of transportation
being used. Valid
values are found
in the TRMO
Code Type on the
CODE_DETAIL
table

 Vessel SCAC
Code

Char(6) Customs defined
ID for the Vessel.
Validated against
SCAC table.

 Estimated Arrival
Date

Char(8) YYYYMMDD
format

 Lading Port Char(5) Identifies the
Lading Port.
Validated against
OUTLOC with
type = ‘LP’

 Discharge Port Char(5) Identifies the
Discharge Port.
Validated against
OUTLOC with
type = ‘DP’

Chapter 3 – Transportation upload (tranupld.doc) 23

Record Name Field Name Field Type Default Value Description

 Service Contract
Number

Char(15) Identifies the
outside Service
Contract Number

 Container id Char(20) Identifies the
Container

 Container
SCAC code

Char(6) Customs defined
id for the
container.
Validated against
SCAC table

 Delivery Date Char(8) YYYYMMDD
format

 Seal id Char(15) Customs defined
id for the
container’s seal

 Freight Type Char(6) Code that
identifies the
container type.
Validated against
the
FREIGHT_TYPE
table.

 Freight Size Char(6) Code that
identifies the
container size.
Validated against
the
FREIGHT_SIZE
table.

 In Transit No. Char(15) External transit
number

 In Transit Date Char(8) YYYYMMDD
format

 BL/AWB id Char(30) Identifies the Bill
of Lading or Air
Way Bill

 Candidate Ind Char(1) Defaulted to ‘N’ Identifies a
complete
Transportation
record. Valid
values are ‘Y’
and ‘N’

24 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

DPOIT Record descriptor Char(5) DPOIT Order/Item detail
info

 Line id Char(10) Unique file line id

 ACD_Code Char(1) Determines which
process to
perform ‘A’dd,
‘C’hange,
‘D’elete.

 Rush Ind Char(1) Defaulted to ‘N’ Identifies whether
or not the item
should be on a
‘Rush’ delivery.
Valid values are
‘Y’ and ‘N’

 Order number Number(8) Internal Retek
order no

 Item Number(8) Internal Retek
Item (style, SKU
or Pack)

 Invoice id Char(30) Identifies the
Commercial
Invoice

 Invoice date Char(8) YYYYMMDD
format

 Currency Code Char(3) Currency that the
Currency Amount
is reported in.
Validated against
CURRENCIES
table.

 Exchange Rate Number(20) The exchange
rate back to the
primary currency
(10 implied
decimals)

 Invoice amt Number(20) Amount charged
by supplier for
the PO/Item. (4
implied decimal
places)

 Origin Country id Char(3) Identifies where
the PO/Item was
made

Chapter 3 – Transportation upload (tranupld.doc) 25

Record Name Field Name Field Type Default Value Description

 Consolidation
Country id

Char(3) Identifies where
the PO/Items
were consolidated

 Export Country id Char(3) Identifies where
the PO/Items
where shipped
from

 Status Char(6) Identifies the
PO/Item status.
Valid values are
found in the
TRCO Code
Type on
CODE_DETAIL

 Receipt ID Char(30) Identifies the
external receipt
number

 FCR id Char(15) Identifies the
Freight Cargo
Receipt id

 FCR date Char(8) YYYYMMDD
format

 Packing Method Char(6) Identifies the
Packing Type
(Hanging or Flat).
Valid values are
‘HANG’ or
‘FLAT’

 Lot Number Char(15) Identifies the Lot
Number of the
PO/Item

 Item Qty Number(12) Qty of Items (4
implied decimals)

 Item QTY UOM Char(4) Identifies the
UOM associated
with the item
quantity

 Carton QTY Number(12) Qty of Cartons (4
implied decimals)

 Carton QTY
UOM

Char(4) Identifies the
UOM associated
with the carton
quantity

26 Retek Merchandising System

Record Name Field Name Field Type Default Value Description

 Gross WT Number(12) Gross weight (4
implied decimals)

 Gross WT UOM Char(4) Identifies the
UOM associated
with the gross
weight

 Net WT Number(12) Net Weight (4
implied decimals)

 Net WT UOM Char(4) Identifies the
UOM associated
with the net
weight

 Cubic Number(12) Cubic size (4
implied decimals)

 Cubic UOM Char(4) Identifies the
UOM associated
with the cubic
size

 Comments Char(256) User Comments

FTAIL Record type Char(5) FTAIL

 Line id Char(10) Unique file line id

 #lines Number(10) Total number of
transaction lines
in file (not
including
FHEAD and
FTAIL)

Technical issues
** The ACD_Code places the responsibility of the upload process on the
Consolidator. They must know how each record should be processed. The
ACD_Code allows them to identify an ‘A’dd, ‘C’hange or ‘D’elete.

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 27

Chapter 4 – P.O. receipt transactions upload
(rcvupld.doc)
Modification

Modified the description of Inventory status column.

Design overview
The purpose of this batch module is to accept receipt details from an external
system. The receipt transactions will provide feedback on orders existing in the
Retek system, and will cross-reference shipments if they exist. The receipt detail
information can be processed using any of the supported item types (i.e. SKU,
UPC, or VPN) within the RMS system. It also processes receiver unit
adjustment, as well as accepts item that does not exist on the purchase order.

The following functions will be performed for each item received:

• Create/update shipment and shipment/SKU records

• Create/update order/SKU and order/SKU/location records

• Update order header status to complete if all units received against the order

• Create item/location relation for receiving location (if it doesn’t exist)

• Update perpetual inventory

• Update average cost of item at receiving location (if stock on hand not = 0 or
negative)

• Update unit cost through package call to RECEIVE_SQL.ITEM if the cost
change is a base cost change (supplier is the primary supplier for the item)

• Write stock ledger financial transactions

• Update the snapshot stock on hand quantity for received item/location if a
stock count is in progress

• Create transfers based on allocations tied to the order

• Update OTB table’s receipt amount

• Write supplier data record for vendor analytics

• Update contract_detail and contract_header if PO is for a contract

• Write ticket_request if item is received or allocated into store and if the ticket
is generated at PO receipt time

• Write to variable asn_exists if the supplier is using “Evaluated receipt
settlement” as payment process method and a matched shipment is found for
the receipt

28 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

ALLOC_HEADER Yes Yes No Yes No

ALLOC_DETAIL Yes Yes No Yes No

PACKWH Yes No Yes Yes No

ORDLOC No Yes Yes Yes No

ORDSKU No No Yes Yes No

ORDHEAD No No No Yes No

OTB No No No Yes No

CONTRACT_HEADER No Yes No Yes No

CONTRACT_DETAIL No Yes No Yes No

RAG_SKUS_ST Yes Yes Yes Yes No

RAG_SKUS_WH Yes Yes Yes Yes No

WIN_STORE Yes Yes Yes Yes No

WIN_WH Yes Yes Yes Yes No

SHIPMENT No Yes Yes Yes No

SHIPSKU No Yes Yes Yes No

STAKE_SKU_LOC No No No Yes No

SUP_DATA No No Yes Yes No

TRAN_DATA No No Yes No No

TSFHEAD Yes Yes Yes Yes No

TSFDETAIL Yes Yes Yes Yes No

V_SKU_INFO Yes Yes No No No

WIN_SKUS Yes Yes No Yes No

RAG_SKUS Yes Yes No Yes No

PACKHEAD Yes Yes No Yes No

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 29

Scheduling constraints
Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run after tsfparse.pc. This program
will likely be run at the beginning of the batch run during the POS polling cycle,
or possibly at the end of he batch run if pending warehouse transactions. It can
be scheduled to run multiple times throughout the day, as WMS or POS data
becomes available.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: STORE and WH – Driven by distinct files by location,
or consolidated receipt files.

Restart recovery
The logical unit of work for the receiving module is the discrete receipt
transaction. Each receipt will be identified by the vendor ASN number (or
shipment number if non-EDI), the Retek order number and a unique transaction
set number generated by the external system. This receipt transaction will be
defined as the logical unit of work. If any portion of the processing for the
complete receipt transaction fails, the entire receipt must be re-processed.

A savepoint will be issued prior to processing a new receipt. If any record within
the transaction fails, the whole transaction will be rolled back to the most recent
savepoint. This way, the successfully processed transactions will remain posted
to the database but not yet committed.

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. A receipt transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold, that once reached, will force a commit after the completion of the
current receipt transaction.

Error handling will be based on the logical unit of work also. If a given record
within a receipt transaction fails, that error will be posted to the standard error
log for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the receipt will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
receipt will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

30 Retek Merchandising System

Program flow

loop (until end of input file)

read record

if ('FTAIL') Exit Loop

if ('THEAD') set savepoint

validate THEAD()

process THEAD

loop
read record
if ('TTAIL') Exit Loop

else if ('TDETL')

validate TDETL()

process TDETL()

end loop

populate update array
resize array if necessary
update of shipment details

end loop

array update of shipskus based on received quantity and shipsku status
if (autoship_flag = 'Y and vendor non-edi ASN)

create new shipment for order_location
array insert of shipskus for outstanding qty on orders

validate order against supplier,order_no, location
get supplier edi_ASN indicator
if (no order) Error
if (Retek shipment)

validate shipment exists
if (shipment not exist) Error

else
validate Vendor Ship / Order No
if (shipment not exist)

create shipment / shipskus for all
outstanding qty at order_location

end if
end if
perform insert of shipskus as array insert

if ('UPC')
get sku based on upc
if (upc not exist) Error

else ('PPK')
validate pre-pack

validate SKU/Supplier& get forex rate / duty code
get system indicator and merchandise hierarchy
if (sku not exist) Error
if (dept changes and dept level orders = 'Y') Error

initialize restart
open input file (receive)
open reject file (restart temp)
get vdate, dept level order indicator, autoship flag
set application image array
read file header

main()

init()

process()

final() close restart logic
close reject file

RECEIVE_SQL.ITEM

RECEIVE_SQL.NO_ORDER

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 31

Shared modules
RECEIVE_SQL.ITEM: Package referenced to perform all receipt logic,
including

• Create/update shipment and shipment/SKU records

• Create/update order/SKU and order/SKU/location records

• Update order header status to complete if all units received against the order

• Create item/location relation for receiving location (if it doesn’t exist)

• Update perpetual inventory

• Update average cost of item at receiving location (if stock on hand not = 0 or
negative)

• Update unit cost through package call to RECEIVE_SQL.ITEM if the cost
change is a base cost change (supplier is the primary supplier for the item)

• Write stock ledger financial transactions

• Update the snapshot stock on hand quantity for received item/location if a
stock count is in progress

• Create transfers based on allocations tied to the order

• Update OTB table’s receipt amount

• Write supplier data record for vendor analytics

• Update contract_detail and contract_header if PO is for a contract

• Write ticket_request if item is received or allocated into store and if the ticket
is generated at PO receipt time

• Write AP_tran if the supplier is using “Evaluated receipt settlement” as
payment process method and a matched shipment is found for the receipt

The following are called from the RECEIVE_SQL package and are thus indirect
calls.

STOCK_LEDGER_SQL.TRAN_DATA_INSERTS: Package referenced by
RECEIVE_SQL package to perform the stock ledger transaction inserts for
receipt of goods.

NEW_STAPLE_LOC, NEW_FASHION_LOC, NEW_PACK_LOC: These
stored procedures are used to create item/location relationships for locations that
are to receive goods.

AUTO_TRANSFER_WH: Function in the RECEIVE_SQL package, called
when performing a warehouse receipt to create transfers automatically based on
allocations tied to the order.

32 Retek Merchandising System

Function level description

init()
declare structure array for shipsku

initialize restart recovery

open input file (receipts)

- file should be specified as input parameter to program

open reject file (as a temporary file for restart)

- file should be specified as input parameter to program

get vdate from period table

set application image array - save the line counter

process()
loop

read record from input file

if ('FTAIL') Exit Loop

if ('THEAD')

set savepoint and save current file pointer position

get transaction header record details

validate_THEAD()

reset detail count

process_THEAD()

end if

loop

read record from input file

if ('TTAIL') Exit Loop

if ('TDETL')

validate_TDETL()

process_TDETL()

write detail transaction to shipsku array

end if

if (detail count = max array count)

resize array structures for shipsku array

increase max array count

end if

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 33

increment detail count

end loop

if (no errors)

post_receipts()

if (non-Fatal Error encountered)

reject_record - call write error and pass file pointer as of last
savepoint and current file pointer

rollback transaction

end if

if (transaction count > max commit count)

restart file commit

- save the current input file pointer position

- save the line counter in restart image

end if

end loop

restart commit final

validate_THEAD()
validate supplier number and get supplier edi_ASN indicator

validate order against supplier, order number, location

if (order number does not exist) Error

if (Retek shipment)

validate shipment exists

if (shipment does not exist) Error

else

validate Vendor Ship / Order No

if (shipment does not exist)

create shipment / shipskus for all outstanding qty at
order_location

end if

end if

perform insert of shipskus as array insert

34 Retek Merchandising System

validate_TDETL()
if (Item Type = ‘UPC’)

select sku from upc_ean based on the upc and supplement

if (upc does not exist)

write non-Fatal Error (upc not found)

end if

end if

process_TDETL()
- get sku system indicator and merchandise hierarchy

if (system indicator does not exist)

write non-Fatal Error (sku not found)

end if

call RECEIVE_SQL.NO_ORDER package function

call RECEIVE_SQL.ITEM package function

(see design specification for RECEIVE_SQL)

update_shipsku()

updates the shipsku table with the quantity received from the input file; insert a
record if none exists

create_shipment()
get next shipment# and insert into shipment and shipsku tables

ON Fatal Error
rollback to last physical commit point

Exit Program

ON Non-Fatal Error
rollback to last savepoint

write out complete receipt transaction to the reject file, pass file pointer at last
savepoint and current file pointer

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 35

I/O specification

Input file
The input file should be accepted as a runtime parameter at the command line.

Record Name Field Name Field Type Default Value Description

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

Line number of
the current file

 File Type
Definition

Char(4) RCPT Identifies file as
‘Receipt’

 File Create Date Date create date date file was
written by
external system

Transaction
Header

File Type Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

Line number of
the current file

 Transaction Set
Control Number

Char(14) specified by
external system

used to force
unique transaction
check

 Transaction Date Date specified by
external system

date the transfer
was created in
external system

 Location Type Char(2) ST - storeWH -
warehouse

specifies the type
of receiving
location

 Location Value Char(4) location identifier specifies the
receiving location
id number

 Adjustment Flag Char(1) ‘Y’ –
Adjustment‘N’ –
Not Adjust.

Not used for
Transfers – will
always be ‘N’
(Used for receiver
error adjustment
for common
receiving layout).

 Order Number Char(8) Retek order
number

specifies the
Retek order cross
reference

36 Retek Merchandising System

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type

 Shipment Number Char(10) Retek shipment
number

specifies the
Retek shipment
cross reference

 Supplier Identifier Char(10) Retek supplier
number

specifies the
Retek shipment
cross reference

 Vendor ASN Char(15) vendor shipment
number reference

reference to
vendor shipping
document

Transaction Detail File Type Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

Line number of
the current file

 Transaction Set
Control Number

Char(14) specified by
external system

used to force
unique transaction
check

 Detail Sequence
Number

Char(6) specified by
external system

sequential number
assigned to detail
records within a
transaction

 Item Type Char(3) UPCSKUVPN item type will be
represented as a
UPC or SKU or
VPN

 Item Value Char(30) item identifier the id number of a
SKU or UPC(or
VPN)

 Supplement Char(5) supplemental
identifier

used to further
specify the id of
an UPC item

 Carton Char(20) carton number unique identifier
of each carton
associated with a
shipment.

 Inventory Status Char(2) inventory status The value of this
field is not used
by rcvupld.pc.

Chapter 4 – P.O. receipt transactions upload (rcvupld.doc) 37

File Header File Type Record
Descriptor

Char(5) FHEAD Identifies file
record type

 Receipt Quantity
Sign Flag

Char(1) ‘P’ – positive‘N’
– Negative

Always positive
for transfer (file
layout common to
receiving which
can have pos. or
neg. adjustments)

 Receipt Quantity Char(12) number of units
received of the
given item

Transaction
Trailer

File Type Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

Line number of
the current file

 Transaction Detail
Line Count

Number(6) sum of detail lines sum of the detail
lines within a
transaction

File Trailer File Type Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Identifier

Number(10) specified by
external system

Line number of
the current file

 Total Transaction
Line Count

Number(10) sum of all
transaction lines

all lines in file
less the file header
and trailer records

Reject file
The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the receiving module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0.

The reject filename should also be specified as a runtime parameter.

Error file
Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 39

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc)
Modification

Modified the description of Reference Number 1.

The following illustrates the file layout format of the Retek TLOG. The content of each Retek TLOG file is per store per day.
The filename convention will be RTLOG_STORE_DATETIME.DAT (e.g. RTLOG_1234_01221989010000.DAT)

FHEAD (Only 1 per file, required)

 THEAD (Multiple expected, one per transaction, required for each transaction)

 TCUST (Only 1 per THEAD record allowed, optional for some transaction types, see
table below)

 CATT (Attribute record specific to the TCUST record – Multiple allowed, only valid
if TCUST exists)

 TITEM (Multiple allowed per transaction, optional for some transaction types,
see table below)

 IDISC (Discount record specific to the TITEM record – Multiple allowed per
item, optional see table below)

 TTAX (Multiple allowed per transaction, optional see table below)

 TTEND (Multiple allowed per transaction, optional for some transaction types,
see table below)

TTAIL (1 per THEAD, required)

FTAIL (1 per file, required)

The order of the records within the transaction layout above is important. It aids processing by ensuring that information is present
when it is needed.

40 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

File Type
Definition

Char(4) RTLG Identifies file as ‘Retek
TLOG’.

Y Left/Blank

 File Create Date Char(14) Create date Date and time file was
written by external system
(YYYYMMDDHHMMSS).

Y Left/None

 Business Date Char(8) Business Date to
process

Business date of
transactions.
(YYYYMMDD).

Y Left/None

Location
Number

Char(4) Specified by external
system

Store or warehouse
identifier.

Y Left/None

Reference
Number

Char(30) Specified by external
system

This may contain the
Polling ID associated with
the consolidated TLOG file
or used for other purpose.

N Left/Blank

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file record type. Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

 Register Char(5) Till used at store. Y Left/Blank

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 41

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Transaction Date Char(14) Transaction date Date transactions were
processed at the POS
(YYYYMMDDHHMMSS).

Y Left/None

Transaction
Number

Number(10) Transaction identifier. Y Right/0

Cashier Char(10) Cashier identifier. N Left/Blank

Salesperson Char(10) Salesperson identifier. N Left/Blank

Transaction
Type

Char(6) Refer to 'TRAT'
code_type for a list of
valid types.

Transaction type. Y Left/Blank

Sub-transaction
type

 Char(6) Refer to 'TRAS'
code_type for a list of
valid types.

Sub-transaction type. For
sale, it can be employee,
drive-off etc.

N Left/Blank

 Orig_tran_no Number(10) Populated only for post-
void transactions.
Transaction number for the
original tran that will be
cancelled.

N Right/0

 Orig_reg_no Char(5) Populated only for post-
void transactions. Register
number from the original
tran.

N Left/Blank

42 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Reason Code Char(6) Refer to 'REAC'
code_type for a list of
valid codes. If the
transaction type is
‘PAIDOU’ and the sub
transaction type is
‘MV’ or ‘EV’ than the
valid codes come from
the
non_merch_code_head
table.

Reason entered by cashier
for some transaction types.
Required for Paid In and
Paid out transaction types,
but can also be used for
voids, returns, etc.

N Left/Blank

 Vendor Number Char(10) Supplier id for a
merchandise vendor paid
out transaction, partner id
for an expense vendor paid
out transaction.

N Left/Blank

Vendor Invoice
Number

 Char(30) Invoice number for a
vendor paid out transaction.

N Left/Blank

Payment
Reference
Number

Char(16) The reference number of
the tender used for a vendor
payout. This could be the
money order number, check
number, etc.

N Left/Blank

Proof of
Delivery
Number

Char(30) Proof of receipt number
given by the vendor at the
time of delivery. This field
is populated for a vendor
paid out transaction.

N Left/Blank

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 43

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Reference
Number 1

Char(30) Number associated with a
particular transaction, for
example weather for a Store
Conditions transaction. The
sa_reference table defines
what this field can contain
for each transaction type. In
case of a DCLOSE
transaction, this value will
be used as the number of
files expected in
saimptlogfin.pc. Hence, this
field becomes mandatory
when the transaction type is
DCLOSE. If this field is left
NULL, the system will set
the store status to Partially
Loaded, even though there
is a DCLOSE transaction.

N Left/Blank

Reference
Number 2

Char(30) Second generic reference
number.

N Left/Blank

Reference
Number 3

Char(30) Third generic reference
number.

N Left/Blank

Reference
Number 4

Char(30) Fourth generic reference
number.

N Left/Blank

 Value Sign Char(1) Refer to ‘SIGN’
code_type for a list of
valid codes.

Sign of the value. Y if Value
is present

Left/None

44 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Value Number(20) Value with 4 implied
decimal places. Populated
by the retailer for TOTAL
trans, populated by Retek
sales audit for SALE,
RETURN trans.

Y if tran is
a TOTAL.

Right/0

Transaction
Customer

File Type
Record
Descriptor

Char(5) TCUST Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

 Customer ID Char(16) Customer identifier The ID number of a
customer.

Y

Customer ID
type

 Char(6) Refer to 'CIDT'
code_type for a list of
valid types

Customer ID type. Y Left/Blank

 Customer Name Char(40) Customer name. N Left/Blank

 Address 1 Char(40) Customer address. N Left/Blank

 Address 2 Char(40) Additional field for
customer address.

N Left/Blank

City Char(30) City. N Left/Blank

State Char(3) State identifier State. N Left/Blank

 Zip Code Char(10) Zip identifier Zip code. N Left/Blank

Country Char(3) Country. N Left/Blank

 Left/Blank

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 45

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Home Phone Char(20) Telephone number at home. N Left/Blank

Work Phone Char(20) Telephone number at work. N Left/Blank

E-mail Char(100) E-mail address. N Left/Blank

 Birthdate Char(8) Date of birth.
(YYYYMMDD)

N Left/Blank

Customer
Attribute

File Type
Record
Descriptor

Char(5) CATT Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

 Attribute type Char(6) Refer to ‘SACA'
code_type for a list of
valid types

Type of customer attribute Y Left/Blank

 Attribute value Char(6) Refer to members of
‘SACA' code_type for
a list of valid values

Value of customer attribute. Y Left/Blank

Transaction
Item

File Type
Record
Descriptor

Char(5) TITEM Identifies file record type. Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

 Item Status Char(6) Refer to ‘SASI’
code_type for a list of
valid codes.

Status of the item within the
transaction, V for item void,
S for sold item, R for
returned item.

Y Left/Blank

46 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Item Type Char(6) Refer to ‘SAIT’
code_type for a list of
valid codes.

Identifies what type of item
is transmitted.

Y Left/Blank

 SKU Number(8) Item identifier ID number Either
SKU

Left/Blank

 UPC Char(13) Item identifier ID number OrUPC Left/Blank

Supplement Number(5) Supplemental
identifier

Used to further specify the
ID of a UPC.

N Left/Blank

 Voucher Char(16) Gift certificate number N Right/0

 Item Number Char(16) Item identifier Populated by retailer for
Item types other than SKU,
UPC or GCN. Allows
retailers more flexibility to
store additional item types
within ReSA.

N Left/Blank

 Department Number(4) Identifies the department
this item belongs to.This is
filled in by saimptlog.

N Right/Blank

 Class Number(4) Item’s class Class of item sold or
returned. Not required from
a retailer, populated by
Retek sales audit. This is
filled in by saimptlog.

N Right/Blank

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 47

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Subclass Number(4) Item’s subclass Subclass of item sold or
returned. Not required from
a retailer, populated by
Retek sales audit. This is
filled in by saimptlog.

N Right/Blank

 System Indicator Char(1) Refer to 'IMTP’
code_type for a list of
valid codes.

The type of item sold or
returned. Not required from
a retailer, populated by
Retek sales audit. This is
filled in by saimptlog.

N Left/None

 Quantity Sign Char(1) Refer to 'SIGN'
code_type for a list of
valid codes.

Sign of the quantity Y Left/None

 Quantity Number(12) Number of items purchased
with 4 decimal places.

Y Right/0

 Unit Retail Number(20) Unit retail with 4 implied
decimal places.

Y Right/0

 Override Reason Char(6) Refer to 'ORRC'
code_type for a list of
valid codes.

This column will be
populated when an item's
price has been overridden at
the POS to define why it
was overridden.

Y if unit
retail was
manually
entered

Left/Blank

48 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Original Unit
Retail

 Number(20) Value with 4 implied
decimal places.This column
will be populated when the
item's price was overridden
at the POS and the item's
original unit retail is known.

Y if unit
retail was
manually
entered

Right/0

Taxable
Indicator

Char(1) Refer to 'YSNO’
code_type for a list of
valid codes.

Indicates whether or not
item is taxable.

Y Left/None

 Pump Char(8) Fuel pump identifier. N Left/Blank

Reference
Number 5

Char(30) Number associated with a
particular item within a
transaction, for example
special order number.The
sa_reference table defines
what this field can contain
for each transaction type.

N Left/Blank

Reference
Number 6

Char(30) Second generic reference
number at the item level.

N Left/Blank

Reference
Number 7

Char(30) Third generic reference
number at the item level.

N Left/Blank

Reference
Number 8

Char(30) Fourth generic reference
number at the item level.

N Left/Blank

 Item_swiped_ind Char(1) Refer to 'YSNO’
code_type for a list of
valid codes.

Indicates if the item was
automatically entered into
the POS system or if it had
to be manually keyed.

Y Left/None

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 49

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Return Reason
Code

 Char(6) Refer to ‘SARR’
code_type for a list of
valid codes.

The reason an item was
returned.

N Left/Blank

 Salesperson Char(10) The salesperson who sold
the item.

N Left/Blank

 Expiration_date Char(8) Gift certificate expiration
date (YYYYMMDD).

N

Item
Discount

File Type
Record
Descriptor

Char(5) IDISC Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

RMS Promotion
Number

 Char(6) Refer to ‘PRMT’
code_type for a list of
valid types

The RMS promotion type. Y Left/Blank

Discount
Reference
Number

Number(4) Discount reference number
is associated with the
discount type (e.g. if
discount type is a
promotion, this contains the
promotion number).

N Left/Blank

 Discount Type Char(6) Refer to ‘SADT’
code_type for a list of
valid types.

The type of discount within
a promotion. This allows a
retailer to further break
down coupon discounts
within the “In-store”
promotion, for example.

N Left/Blank

50 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Coupon Number Char(16) Number of a store coupon
used as a discount.

Y if
coupon

Left/Blank

Coupon
Reference
Number

Char(16) Additional information
about the coupon, usually
contained in a second bar
code on the coupon.

Y if
coupon

Left/Blank

 Quantity Sign Char(1) Refer to 'SIGN'
code_type for a list of
valid codes.

Sign of the quantity. Y Left/None

 Quantity Number(12) The quantity purchased that
discount is applied with 4
implied decimal places.

Y Right/0

Unit Discount
Amount

 Number(20) Unit discount amount for
this item with 4 implied
decimal places.

Y Right/0

Reference
Number 13

Char(30) Number associated with a
particular transaction type
at the discount level. The
sa_reference table defines
what this field can contain
for each transaction type.

N Left/Blank

Reference
Number 14

Char(30) Second generic reference
number at the discount
level.

N Left/Blank

Reference
Number 15

Char(30) Third generic reference
number at the discount
level.

N Left/Blank

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 51

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Reference
Number 16

Char(30) Fourth generic reference
number at the discount
level.

N Left/Blank

Transaction
Tax

File Type
Record
Descriptor

Char(5) TTAX Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

 Tax Code Char(6) Refer to 'TAXC'
code_type for a list of
valid codes

Tax code to represent
whether it is a state tax
type, provincial tax, etc.

Y Left/Blank

 Tax Sign Char(1) Refer to 'SIGN'
code_type for a list of
valid codes.

Sign of Tax Amount. Y Left/None

 Tax Amount Number(20) Amount of tax charged for
this tax code type in a
transaction with 4 implied
decimal places.

Y Right/0

Ref_no17 Char(30) Additional information
about the tax that the
retailer chooses to the store.

N Left/Blank

Ref_no18 Char(30) Additional information
about the tax that the
retailer chooses to the store.

N Left/Blank

52 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Ref_no19 Char(30) Additional information
about the tax that the
retailer chooses to the store.

N Left/Blank

Ref_no20 Char(30) Additional information
about the tax that the
retailer chooses to the store.

N Left/Blank

Transaction
Tender

File Type
Record
Descriptor

Char(5) TTEND Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

Tender Type
Group

 Char(6) Refer to 'TENT'
code_type for as list of
valid types

High-level grouping of
tender types.

Y Left/Blank

 Tender Type ID Number(6) Refer to the
pos_tender_type_head
table for as list of valid
types

Low-level grouping of
tender types.

Y Left/Blank

 Tender Sign Char(1) Refer to 'SIGN'
code_type for a list of
valid codes.

Sign of the value. Y Left/None

 Tender Amount Number(20) Amount paid with this
tender in the transaction
with 4 implied decimal
places.

Y Right/0

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 53

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Cc_no Number(16) Credit card number Y if credit
card

Left/Blank

 Cc_auth_no Char(16) Authorization number for a
cc

Y if credit
card

Left/Blank

cc authorization
source

 Char(6) Refer to 'CCAS'
code_type for as list of
valid types

 Y if credit
card

Left/Blank

cc cardholder
verification

 Char(6) Refer to 'CCVF'
code_type for as list of
valid types

 Y if credit
card

Left/Blank

cc expiration
date

 Char(8) (YYYYMMDD) Y if credit
card

Left/Blank

 cc entry mode Char(6) Refer to 'CCEM'
code_type for as list of
valid types

Indicates whether the credit
card was swiped, thus
automatically entered, or
manually keyed.

Y if credit
card

Left/Blank

 cc terminal id Char(5) Terminal number
transaction was sent from.

N Left/Blank

cc special
condition

Char(6) Refer to 'CCSC'
code_type for as list of
valid types

 Y if credit
card

Left/Blank

 Voucher_no Char(16) Gift certificate or credit
voucher serial number.

Y if
voucher

Right/0

 Coupon Number Char(16) Number of a manufacturer’s
coupon used as a tender.

Y if
coupon

Left/Blank

54 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

 Coupon
Reference
Number

Char(16) Additional information
about the coupon, usually
contained in a second bar
code on the coupon.

Y if
coupon

Left/Blank

 Reference No 9 Char(30) Number associated with a
particular transaction type
at the tender level. The
sa_reference table defines
what this field can contain
for each transaction type.

N Left/Blank

 Reference No 10 Char(30) Second generic reference no
at the tender level.

N Left/Blank

 Reference No 11 Char(30) Third generic reference no
at the tender level.

N Left/Blank

 Reference No 12 Char(30) Fourth generic reference no
at the tender level.

N Left/Blank

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

Transaction
Record Counter

Number(10) No of records processed in
current tran (only records
between trans head & tail)

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 55

Record
Name

Field Name Field Type Default Value Description Required? Justification/Padding

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file record type Y Left/Blank

File Line
Identifier

Number(10) Specified by external
system

ID of current line being
processed by input file.

Y Right/0

File Record
Counter

Number(10) No of transactions
processed in current file
(only records between file
head & tail)

Y Right/0

The RTLOG file is imported into the Sales Audit tables after validation by the batch program saimptlog. This section describes the
requirements and validations performed on the records.

1 Common requirements/validations:

This section details the common requirements and validations performed on all transactions. The following sections describe
the specific requirements of each type of transaction. If a transaction is not mentioned, then it does not have specific
requirements.

a Record Type Requirements:

Transaction Type Includes item
records?

Includes tender
records?

Includes tax
records?

Includes customer
records?

OPEN No No No No

NOSALE No Optional No No

VOID Optional Optional Optional Optional

PVOID No No No No

SALE Yes Yes Optional Optional

56 Retek Merchandising System

Transaction Type Includes item
records?

Includes tender
records?

Includes tax
records?

Includes customer
records?

RETURN Yes Yes Optional Optional

EEXCH Yes No Optional Optional

PAIDIN No Yes No No

PAIDOU No Yes No No

PULL No Yes No No

LOAN No Yes No No

COND No No No No

CLOSE No No No No

TOTAL No No No No

REFUND This transaction is not
sent through the
RTLOG. It is entered
at the HQ level. The
TITEM and TCUST
records are optional.
The TTEND record is
required. A TTAX
record should not be
included.

METER Yes No No No

PUMPT Yes No No No

TANKDP Yes No No No

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 57

Transaction Type Includes item
records?

Includes tender
records?

Includes tax
records?

Includes customer
records?

TERM TERM records are
created by saimptlog
and then loaded into
the database. They do
not come from the
RTLOG file. They
require one TITEM,
one TTEND, one
TTAX, one TCUST
record and one CATT
record.

DCLOSE No No No No

b Requirements per record type:

Record Type Requirements

IDISC IDISC records must immediately follow their associated TITEM record.

CATT CATT records must immediately follow their associated TCUST record.

c Code Type Validations:

Record Name Field Name Code Type

Transaction Header Transaction Type TRAT

Sub-transaction Type TRAS

 Reason Code REAC or values from non_merch_code_head if the transaction type is
‘PAIDOU’ and the sub transaction type is ‘MV’ or ‘EV’.

Value Sign SIGN

58 Retek Merchandising System

Record Name Field Name Code Type

 Vender No If the transaction type is ‘PAIDOU’ and the sub transaction type is
‘MV’, this field is validated against the supplier table. If the
transaction type is ‘PAIDOU’ and the sub transaction type is ‘EV’,
this field is validated against the partner table.

Transaction Item Item Type SAIT

 Item Status SASI

System Indicator IMTP

Quantity Sign SIGN

Taxable Indicator YSNO

 Price Override Reason
Code

ORRC

 Item Swiped Indicator YSNO

 Return Reason Code SARR

Item Discount RMS Promotion Type PRMT

Discount Type SADT

 Quantity Sign SIGN

Transaction
Customer

Customer ID Type CIDT

Customer Attribute Attribute Type SACA

 Attribute value Code types from codes in SACA.

Transaction Tax Tax code TAXC

Tax sign SIGN

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 59

Record Name Field Name Code Type

Transaction Tender Tender Type Group TENT

Tender Sign SIGN

 Tender Type ID Pos_tender_type_head table

CC Authorization
Source

 CCAS

CC Cardholder
Verification

 CCVF

 CC Entry Mode CCEM

 CC Special Condition CCSC

d Dates are validated: Business Date, Transaction Date, Expiration Date Also, saimptlog accepts only business dates that are
within the PERIOD.VDATE minus the SA_SYSTEM_OPTIONS.DAYS_POST_SALE value.

e Store number is validated against the STORE table.

f Numeric fields are checked for non-numeric characters.

g For transaction of type SALE, RETURN and EEXCH, saimptlog checks whether a transaction is in balance:
 Transaction Items (Unit Retail * Unit Retail Sign * Quantity)

 + Item Discounts (Unit Discount Amount * Unit Discount Sign * Quantity)

 + Transaction Tax (Tax Amount * Tax Sign)

 = Transaction Tenders (Tender Amount * Tender Sign)

saimptlog will populate the Value field (on THEAD) with the transaction’s sales value (item value – discount value + tax
value) from the above calculation if it was not provided in the RTLOG.

h Treatment of vouchers.

i If an item sold is a gift certificate (Transaction Item, Voucher field has a value), issued information is written to the
SA_VOUCHER table.

60 Retek Merchandising System

ii If the Transaction Type is a RETURN, and the Transaction Tender Type Group is voucher (VOUCH), issued
information is written to the SA_VOUCHER table.

iii If the Transaction Type is a SALE, and the Transaction Tender Type Group is a voucher (VOUCH), redeemed
information is written to the SA_VOUCHER table.

iv When a gift certificate is sold, customer information should always be included. A receiving customer name value
should be populated in the ref_no5 field, a receiving customer state value should be populated in the ref_no6 field and
a receiving customer country should be populated in the ref_no7 field. These reference fields can be changed by
updating the sa_reference table but the code needs to be modified too. The expiration date is put on the
expiration_date field on the TITEM record.

i Other validations/points of interest:

i A salesperson in the TITEM record takes precedence over the salesperson in the THEAD record.

ii If an item sold is a UPC (Transaction Item, UPC field has a value and SKU does not), it will be converted to the
corresponding SKU using the Supplement.

iii If an item sold is a SKU (Transaction Item, SKU field has a value), it will be validated against RMS item tables.

iv The corresponding Department, Class, Subclass, System Indicator and Taxable Indicator will be selected from the
RMS tables and populated for a SKU.

j The balancing level determines whether the register or the cashier fields are required.

i If the balancing level is ‘R’egister, then the register field on the THEAD must be populated.

ii If the balancing level is ‘C’ashier, then the cashier field on the THEAD must be populated.

iii If the balancing level is ‘S’tore, then neither field is required to be populated.

k The tax_ind and the item_swiped_ind fields can only accept ‘Y’ or ‘N’ values. If an invalid value is passed through the
RTLOG, an error will be flagged and the value will be defaulted to ‘Y’.

2 Transaction of type ‘SALE’:

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 61

A transaction of type SALE is generated whenever an item is sold. A sale may be to an employee, the sub-transaction type
would be EMP in this case. Or it may be a drive-off sale (sub-transaction type DRIVEO) when someone drives off with
unpaid gas. A special type of sale is an “odd exchange” (sub-transaction type EXCH) where items are sold and returned in the
same transaction. If the net value of the exchange is positive, then it is a sale. If the net value is negative, it is a return. If the
net value is zero and the items exchanged are in the same SKU style, it would be a transaction of type EEXCH (Even
Exchange).

a Requirements per record type (other than what is described in Layout section above):

Record Type Requirements

THEAD

62 Retek Merchandising System

Record Type Requirements

TITEM • Item Status is a required field; it determines whether the
item is ‘S’old, ‘R’eturned or ‘V’oided. If the item status is
S, the quantity sign is expected to be P. If the item status is
‘R’, the quantity sign is expected to be N. ·

• If the item status is V, the quantity sign is the reverse of
the quantity sign of the voided item. That is, if an item
with status S is voided, the quantity sign would be N.
Furthermore, the sum of the quantities being voided cannot
exceed the sum of the quantities ‘S’old or ‘R’eturned.
Note: neither of the above two validations are performed
by saimptlog but an audit rule could be created to check
this.·

• In a typical sale, the items would all have a status of ‘S’. In
the case of an odd exchange, some items will have a status
of ‘R’.·

• In a typical return, the items would all have a status of ‘R’.
In the case of an odd exchange, some items will have a
status of ‘S’.·

• If an item has status R, then the Return Reason Code field
may be populated. If it is, it will be validated against code
type ‘SARR’.·

• If the price of an item is overridden, then the Override
Reason and Original Unit Retail fields must be populated.

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 63

Record Type Requirements

IDISC • The RMS Promotion Type field must always be populated
with values of code type ‘PRMT’. ·

• The Promotion field is validated, when a value is passed,
against the promhead table.

• If the promotion is ‘In Store’ (code 1004), then the
Discount Type field must be populated with values of code
type ‘SADT’.

• The Discount Reference Number is a promotion number
which is of status ‘A’, ‘E’ or ‘M’.·

• If the Discount Type is ‘SCOUP’ for Store Coupon, then
the Coupon Number field must be populated. The Coupon
Reference Number field is optional.

TTEND • If the tender type group is ‘COUPON’, then the Coupon
Number field must be populated. The Coupon Reference
Number field is optional.·

• If the Transaction Tender Type Group is a credit card
(CCARD), the number will be validated against the
SA_CC_VAL table. The other cc fields are optional.

b Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

64 Retek Merchandising System

Transaction Type Sub-transaction
Type

Item Type Tender Type Group Reference Number
Field

Meaning of
Reference Field

Req?

SALE 1 Speed Sale Number Y

SALE GCN 5 Recipient Name N

SALE GCN 6 Recipient State N

SALE GCN 7 Recipient Country N

SALE CHECK 9 Check Number N

SALE CHECK 10 Driver’s License
Number

 N

SALE CHECK 11 Credit Card Number N

SALE DRIVEO 1 Incident Number Y

SALE EMP 3 Employee Number of
the employee
receiving the goods.

N

c Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign

SALE P if item is sold; N if item is
returned; reverse of original
item if item is voided.

P P P if item is sold; N if item is
returned; reverse of original
item if item is voided.

3 Transaction of type ‘PVOID’:

This transaction is generated at the register when another transaction is being post voided. The orig_tran_no and orig_reg_no
fields must be populated with the appropriate information for the transaction being post voided. The PVOID transaction must
be associated with the same store day as the original transaction. If the PVOID needs to be generated after the store day is
closed, the transaction needs to be created using the forms.

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 65

4 Transaction of type ‘RETURN’:

This transaction is generated when a customer returns an item.

a This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Transaction Type Sub-transaction Type Reference Number Field Meaning of Reference Field Req?

RETURN 1 Receipt Indicator (Y/N) Y

RETURN 2 Refund Reference Number N

RETURN EMP 3 Employee Number of the employee
returning the goods.

N

c Expected values for sign fields

TRANSACTION TYPE TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign

RETURN P if item is sold; N if item is
returned; reverse of original
item if item is voided.

N N P if item is sold; N if item is
returned; reverse of original
item if item is voided.

5 Transaction of type ‘EEXCH’:

This transaction is generated when there is an even exchange.

a This type of transaction has similar record type requirements as a ‘SALE’ transaction.

b It is expected that the number of items returned equals the number of items sold. However, this validation is not
performed by saimptlog. An audit rule could be created for this. Saimptlog only expects that there would be at least two
item records.

c No tender changes hands in this transaction.

d Meaning of reference number fields:

66 Retek Merchandising System

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Transaction Type Sub-transaction Type Reference Number Field Meaning of Reference Field Req?

EEXCH 1 Receipt Indicator (Y/N) Y

EEXCH EMP 3 Employee Number of the employee
exchanging the goods.

N

6 Transaction of type ‘PAIDIN’:

a This type of transaction has only one TTEND record.

b A reason code is required.

c Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Reason Code Reference Number Column Meaning Req?

NSF 1 NFS Check Credit Number N

ACCT 1 Account Number N

7 Transaction of type ‘PAIDOU’:

a This type of transaction has only one TTEND record.

b A reason code is required (code type REAC). If the sub-transaction type is ‘EV’ or ‘MV’, the reason code comes from the
non_merch_codes_head table.

c If the sub-transaction type is ‘EV’ or ‘MV’, then at least one field among the vendor number, vendor invoice number,
payment reference number and proof of delivery number fields should be populated.

d If the sub-transaction type is ‘EV’, then the vendor number comes from the partner table. If the sub-transaction type is
‘MV’, then the vendor number comes from the supplier table.

e Meaning of reference number fields:

Notes: The meaning of these reference number fields may be changed through the sa_reference table.

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 67

Sub Transaction
Type

Reason Code Reference Number Column Meaning Req?

EV 2 Personal ID Number N

EV 3 Routing Number N

EV 4 Account Number N

 PAYRL 1 Money Order Number N

PAYRL 2 Employee Number N

INC 1 Incident Number N

8 Transaction of type ‘PULL’:

This transaction is generated when cash is withdrawn from the register.

a This type of transaction has only one TTEND record.

b Expected values for sign fields

TRANSACTION
TYPE

TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign

PULL N/A N N/A N/A

9 Transaction of type ‘LOAN’:

This transaction is generated when cash is added to the register.

a This type of transaction has only one TTEND record.

b Expected values for sign fields

TRANSACTION
TYPE

TITEM.Quantity Sign TTEND.Tender Sign TTAX.Tax Sign IDISC.Quantity Sign

LOAN N/A P N/A N/A

68 Retek Merchandising System

10 Transaction of type ‘COND’:

This transaction records the condition at the store when it opens. There can be at most one COND record containing weather
information and at most one COND record containing temperature information. Both these pieces of information may be in
the same COND record. There may be any number of COND records containing traffic and construction information.

a This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

b Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Reference Number Column Meaning Req?

1 Weather – code type ‘WEAT’ N

2 Temperature – a signed 3 digit number. N

3 Traffic – code_type ‘TRAF’ N

4 Construction – code_type ‘CONS’ N

11 Transaction of type ‘TOTAL’:

This transaction records the totals that are reported by the POS. The value field must be populated. Some POS systems
generate only one transaction number for all totals. In order to avoid duplicate errors to be reported, only one total transaction
can have a transaction number and the subsequent ones can have blank transaction numbers. In other words, a TOTAL
transaction is not required to have a transaction number.

a This type of transaction does not have TITEM or IDISC or TTAX or TTEND records.

12 Transaction of type ‘METER’:

This transaction is generated when a meter reading of a fuel pump is taken.

a This type of transaction has only TITEM records.

b Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Chapter 5 – ReSA 9.0 RTLOG Layout (SA RTLOG.doc) 69

Reference Number
Column

Meaning Req?

1 Reading Type: (‘A’ Adjustment, ‘S’ shift change, ‘P’ price change, ‘C’ store close) Y

5 Opening Meter Readings Y

6 Closing Meter Reading Y

7 If the reading type is ‘P’ for price change, the old unit retail should be placed here.
Decimal places are required.

Y

8 Closing Meter Value Y

13 Transaction of type ‘PUMPT’:

This transaction is generated when a pump test is performed. This type of transaction has only TITEM records.

14 Transactions of type ‘TANKDP’:

This transaction is generated when a tank dip measurement is taken.

a This type of transaction has only TITEM records.

b Meaning of reference number fields:

Note: The meaning of these reference number fields may be changed through the sa_reference table.

Reference Number Column Meaning Req?

1 Tank identifier Y

5 Dip Type (‘FUEL’, ‘WATER’, etc.) Y

6 Dip Height Major (decimal places required) Y

7 Dip Height Minor (decimal places required) Y

15 Transaction of type ‘DCLOSE’:

This transaction is generated when day closed. Transaction number for this type of transaction has to be blank.

70 Retek Merchandising System

16 A note about vouchers: Vouchers are minimally handled by saimptlog. Voucher information is written to the savouch file
which is passed to the program savouch.pc. For more information about this interface, see Interface File – SA Vouch and
Batch Design – savouch.

A voucher will appear on the TITEM record only if it was sold. Thus when saimptlog encounters a ‘SALE’ transaction with a
voucher, it writes the voucher to the savouch file as an ‘I’ssued voucher.

A voucher will be issued when it appears on the TTEND record of transactions of type ‘RETURN’ and ‘PAIDOU’. In other
words, saimptlog will write it to the savouch file with status ‘I’.

A voucher will be redeemed when it appears on the TTEND record of transactions of type ‘SALE’ and ‘PAIDIN’. In other
words, saimptlog will write it to the savouch file with status ‘R’.

Vouchers may not be returned. However, a transaction of type ‘PAIDOU’ may be generated when the customer exchanges a
voucher for another form of tender.

Chapter 6 – Fashion merchandise hierarchy download 71

Chapter 6 – Fashion merchandise hierarchy
download (fmednldf.doc)
Modification

Modified the first paragraph of the design overview.

Design overview
fmednldf.pc is designed to extract the product hierarchy for all the SKUs into the
output file. Sending all SKUs to the output file allows for flexibility and
reusability so that many programs and applications can use this module to
retrieve the hierarchy information for fashion items. This module will send the
full merchandise hierarchy to each domain each night since changes could occur
on a daily basis (clients may schedule this batch program, at their discretion, to
run daily, weekly, etc.).

Before processing styles, the program must retrieve the domain aggregation level
(department, class or subclass). Retek Forecasting has a size limitation for the
multidimensional database, so they may declare multiple instances (or domains)
of the database to optimize performance. The client DBA will need to determine
at what level (department, class or subclass) this limit is not exceeded for
SKU/store combinations. This level is maintained on system_options so that the
correct cursor (dept, class, subclass) can be used during processing. Once this
level is determined, the domain_dept, domain_class, and domain_subclass tables
maintain relationships between the chosen level (department, class or subclass)
and the domain.

Scheduling constraints
Processing Cycle: Daily

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: DEPT

Restart recovery
The logical unit of work is SKU. The commit (move records from temporary
output file to actual output file, truncate temporary file) should occur every
10,000 records.

Fashion SKU Driving Cursors:

declare cursors - all ticks (') and quotes (") are replaced with spaces, fashion sku
description is cut back to 50 characters

72 Retek Merchandising System

Department
EXEC SQL DECLARE C_fashion_dept CURSOR FOR

 SELECT lpad(to_char(rag_skus.sku),8,'0'),

 lpad(to_char(rag_skus.style),8,'0'),

 REPLACE(REPLACE(rag_style.style_desc,'''','
'),'"',' '),

 lpad(to_char(colour.colour),4,'0'),

 REPLACE(REPLACE(colour.colour_desc,'''','
'),'"',' '),

 rag_skus.size1,

 REPLACE(REPLACE(s1.size_desc,'''',' '),'"','
'),

 NVL(rag_skus.size2,' '),

 REPLACE(REPLACE(NVL(s2.size_desc,' '),'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0')||

 lpad(to_char(rag_style.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(its.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 rag_style.forecast_ind,

 lpad(to_char(NVL(domain_dept.domain_id,
0)),2,'0')

 FROM rag_skus,

 rag_style,

Chapter 6 – Fashion merchandise hierarchy download 73

 subclass,

 class,

 deps,

 colour,

 groups,

 division,

 domain_dept,

 item_supplier its,

 sups,

 sizes s1,

 sizes s2,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = rag_style.dept

 AND rag_style.style = rag_skus.style

 AND rag_skus.size1 = s1.size_id

 AND rag_skus.size2 = s2.size_id(+)

 AND rag_skus.colour = colour.colour

 AND rag_style.dept = deps.dept

 AND rag_style.dept = domain_dept.dept(+)

 AND rag_style.dept = class.dept

 AND rag_style.class = class.class

 AND rag_style.dept = subclass.dept

 AND rag_style.class = subclass.class

 AND rag_style.subclass = subclass.subclass

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND rag_skus.sku > NVL(:os_restart_sku, -999)

 AND its.item = rag_skus.sku

 AND its.primary_supp_ind = 'Y'

 AND its.supplier = sups.supplier

 ORDER BY rag_skus.sku;

74 Retek Merchandising System

Class
EXEC SQL DECLARE C_fashion_class CURSOR FOR

 SELECT lpad(to_char(rag_skus.sku),8,'0'),

 lpad(to_char(rag_skus.style),8,'0'),

 REPLACE(REPLACE(rag_style.style_desc,'''','
'),'"',' '),

 lpad(to_char(colour.colour),4,'0'),

 REPLACE(REPLACE(colour.colour_desc,'''','
'),'"',' '),

 rag_skus.size1,

 REPLACE(REPLACE(s1.size_desc,'''',' '),'"','
'),

 NVL(rag_skus.size2,' '),

 REPLACE(REPLACE(NVL(s2.size_desc,' '),'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0')||

 lpad(to_char(rag_style.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(its.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 rag_style.forecast_ind,

 lpad(to_char(NVL(domain_class.domain_id,
0)),2,'0')

 FROM rag_skus,

Chapter 6 – Fashion merchandise hierarchy download 75

 rag_style,

 subclass,

 class,

 deps,

 colour,

 groups,

 division,

 domain_class,

 item_supplier its,

 sups,

 sizes s1,

 sizes s2,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = rag_style.dept

 AND rag_style.style = rag_skus.style

 AND rag_skus.size1 = s1.size_id

 AND rag_skus.size2 = s2.size_id(+)

 AND rag_skus.colour = colour.colour

 AND rag_style.dept = deps.dept

 AND rag_style.dept = domain_class.dept(+)

 AND rag_style.class = domain_class.class(+)

 AND rag_style.dept = class.dept

 AND rag_style.class = class.class

 AND rag_style.dept = subclass.dept

 AND rag_style.class = subclass.class

 AND rag_style.subclass = subclass.subclass

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND rag_skus.sku > NVL(:os_restart_sku, -999)

 AND its.item = rag_skus.sku

 AND its.primary_supp_ind = 'Y'

 AND its.supplier = sups.supplier

 ORDER BY rag_skus.sku;

76 Retek Merchandising System

Subclass
EXEC SQL DECLARE C_fashion_subclass CURSOR FOR

 SELECT lpad(to_char(rag_skus.sku),8,'0'),

 lpad(to_char(rag_skus.style),8,'0'),

 REPLACE(REPLACE(rag_style.style_desc,'''','
'),'"',' '),

 lpad(to_char(colour.colour),4,'0'),

 REPLACE(REPLACE(colour.colour_desc,'''','
'),'"',' '),

 rag_skus.size1,

 REPLACE(REPLACE(s1.size_desc,'''',' '),'"','
'),

 NVL(rag_skus.size2,' '),

 REPLACE(REPLACE(NVL(s2.size_desc,' '),'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0')||

 lpad(to_char(rag_style.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0')||

 lpad(to_char(rag_style.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(rag_style.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(its.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 rag_style.forecast_ind,

 lpad(to_char(NVL(domain_subclass.domain_id,
0)),2,'0')

 FROM rag_skus,

 rag_style,

Chapter 6 – Fashion merchandise hierarchy download 77

 subclass,

 class,

 deps,

 colour,

 groups,

 division,

 domain_subclass,

 item_supplier its,

 sups,

 sizes s1,

 sizes s2,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = rag_style.dept

 AND rag_style.style = rag_skus.style

 AND rag_skus.size1 = s1.size_id

 AND rag_skus.size2 = s2.size_id(+)

 AND rag_skus.colour = colour.colour

 AND rag_style.dept = deps.dept

 AND rag_style.dept = domain_subclass.dept(+)

 AND rag_style.class = domain_subclass.class(+)

 AND rag_style.subclass =
domain_subclass.subclass(+)

 AND rag_style.dept = class.dept

 AND rag_style.class = class.class

 AND rag_style.dept = subclass.dept

 AND rag_style.class = subclass.class

 AND rag_style.subclass = subclass.subclass

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND rag_skus.sku > NVL(:os_restart_sku, -999)

 AND its.item = rag_skus.sku

 AND its.primary_supp_ind = 'Y'

 AND its.supplier = sups.supplier

 ORDER BY rag_skus.sku;

78 Retek Merchandising System

Program flow
Pseudo-code (note functions shown in-line, should be defined outside main)

main(int argc, char* argv[])

{

 extract login ID, password, thread value from input arguments

 declare_fashion_cursor(pass_thread_value);

 open_fashion_cursor(pass_thread_value);

 fetch_fashion_cursor(pass_thread_value);

 while(1)

 {

 if record counter < global maximum counter

 write to product master (merch hier.) temp file

 increment counter of records written

 else

 call restart logic to cat temp Prod. Master file to

final file

 reset counter of records written

 end-if

 fetch_fashion_cursor(pass_thread_value);

 }

Function declarations

declare_fashion_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

 case ‘D’

 declare f_domain_dept cursor

 case ‘C’

 declare f_domain_class cursor

Chapter 6 – Fashion merchandise hierarchy download 79

 case ‘S’

 declare f_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for declare

fashion cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “declare %c_level fashion cursor”,

pass_thread_value)

}

open_fashion_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

 case ‘D’:

 open f_domain_dept cursor

 case ‘C’:

 open f_domain_class cursor

 case ‘S’:

 open f_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for open

fashion cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “open %c_level fashion cursor”,

pass_thread_value)

}

fetch_fashion_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

 case ‘D’:

80 Retek Merchandising System

 open f_domain_dept cursor

 case ‘C’:

 open f_domain_class cursor

 case ‘S’:

 open f_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for open

fashion cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “fetcg %c_level fashion cursor”,

pass_thread_value)

}

close_fashion_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

 case ‘D’:

 close f_domain_dept cursor

 case ‘C’:

 close f_domain_class cursor

 case ‘S’:

 close f_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for close

fashion cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “close %c_level fashion cursor”,

pass_thread_value)

}

Shared modules
N/A

Chapter 6 – Fashion merchandise hierarchy download 81

Function level description
N/A

I/O specification
Output files fmhiernn.date (where nn equals the thread value – this is not equal to
the domain_id)

SKU Varchar2 20

SKU desc Varchar2 30

Color code Varchar2 4

Color desc Varchar2 24

Size 1 code Varchar2 6

Size 1 desc Varchar2 30

Size 2 code Varchar2 6

Size 2 desc Varchar2 30

Style Varchar2 20

Style desc Varchar2 40

Subclass Varchar2 20 – dept+class+subclass

Subclass desc Varchar2 40

Class Varchar2 20 – dept+class

Class desc Varchar2 40

Dept Varchar2 20 – dept

Dept desc Varchar2 40

Group Varchar2 20

Group name Varchar2 40

Division Varchar2 20

Division name Varchar2 40

Supplier Varchar2 20

Supplier name Varchar2 40

Forecast Indicator Varchar2 1

Domain ID Varchar2 2

Technical issues
N/A

Chapter 7 – Staple merchandise hierarchy download 83

Chapter 7 – Staple merchandise hierarchy
download (fmednlds.doc)
Modification

Modified the first paragraph of the design overview.

Design overview
fmednlds.pc is designed to extract the product hierarchy for all staple SKUs into
the output file. Sending all SKUs to the output file allows for flexibility and
reusability so that many programs and applications can use this module to
retrieve the hierarchy information for staple items. This module will send the full
merchandise hierarchy to each domain each night since changes could occur on a
daily basis (clients may schedule this batch program, at their discretion, to run
daily, weekly, etc.).

Before processing any SKUs, the program must retrieve the domain aggregation
level (department, class or subclass). Retek Forecasting has a size limitation for
the multidimensional database, so they may declare multiple instances (or
domains) of the database to optimize performance. The client DBA will need to
determine at what level (department, class or subclass) this limit is not exceeded
for SKU/store combinations. This level is maintained on system_options so that
the correct cursor (dept, class, subclass) can be used during processing. Once
this level is determined, the domain_dept, domain_class, and domain_subclass
tables maintain relationships between the chosen level (department, class or
subclass) and the domain.

Scheduling constraints
Processing Cycle: Daily

Scheduling Diagram: N/A

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: DEPT

Restart recovery
The logical unit of work is SKU. The commit (move records from temporary
output file to actual output file, truncate temporary file) should occur every
10,000 records.

Staple SKU driving cursors:

Declare cursors - all ticks (') and quotes (") are replaced with spaces

84 Retek Merchandising System

Department
EXEC SQL DECLARE C_staple_dept CURSOR FOR

 SELECT lpad(to_char(win_skus.sku),8,'0'),

 REPLACE(REPLACE(win_skus.sku_desc,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0')||

 lpad(to_char(win_skus.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(item_supplier.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 win_skus.forecast_ind,

 lpad(to_char(domain_dept.domain_id),2,'0')

 FROM win_skus,

 subclass,

 class,

 deps,

 groups,

 division,

 item_supplier,

 sups,

 domain_dept,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

Chapter 7 – Staple merchandise hierarchy download 85

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = win_skus.dept

 AND win_skus.dept = deps.dept

 AND win_skus.dept = domain_dept.dept(+)

 AND win_skus.dept = class.dept

 AND win_skus.class = class.class

 AND win_skus.dept = subclass.dept

 AND win_skus.class = subclass.class

 AND win_skus.subclass = subclass.subclass

 AND win_skus.sku = item_supplier.item

 AND item_supplier.supplier = sups.supplier

 AND item_supplier.primary_supp_ind = 'Y'

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND win_skus.sku > NVL(:os_restart_sku, -999)

 ORDER BY win_skus.sku;

Class
EXEC SQL DECLARE C_staple_class CURSOR FOR

 SELECT lpad(to_char(win_skus.sku),8,'0'),

 REPLACE(REPLACE(win_skus.sku_desc,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0')||

 lpad(to_char(win_skus.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

86 Retek Merchandising System

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(item_supplier.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 win_skus.forecast_ind,

 lpad(to_char(domain_class.domain_id),2,'0')

 FROM win_skus,

 subclass,

 class,

 deps,

 groups,

 division,

 item_supplier,

 sups,

 domain_class,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = win_skus.dept

 AND win_skus.dept = deps.dept

 AND win_skus.dept = domain_class.dept(+)

 AND win_skus.class = domain_class.class(+)

 AND win_skus.dept = class.dept

 AND win_skus.class = class.class

 AND win_skus.dept = subclass.dept

 AND win_skus.class = subclass.class

 AND win_skus.subclass = subclass.subclass

 AND win_skus.sku = item_supplier.item

 AND item_supplier.supplier = sups.supplier

 AND item_supplier.primary_supp_ind = 'Y'

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND win_skus.sku > NVL(:os_restart_sku, -999)

 ORDER BY win_skus.sku;

Chapter 7 – Staple merchandise hierarchy download 87

Subclass
EXEC SQL DECLARE C_staple_subclass CURSOR FOR

 SELECT lpad(to_char(win_skus.sku),8,'0'),

 REPLACE(REPLACE(win_skus.sku_desc,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0')||

 lpad(to_char(win_skus.subclass),4,'0'),

 REPLACE(REPLACE(subclass.sub_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0')||

 lpad(to_char(win_skus.class),4,'0'),

 REPLACE(REPLACE(class.class_name,'''','
'),'"',' '),

 lpad(to_char(win_skus.dept),4,'0'),

 REPLACE(REPLACE(deps.dept_name,'''',' '),'"','
'),

 lpad(to_char(deps.group_no),4,'0'),

 REPLACE(REPLACE(groups.group_name,'''','
'),'"',' '),

 lpad(to_char(groups.division),4,'0'),

 REPLACE(REPLACE(division.div_name,'''','
'),'"',' '),

 lpad(to_char(item_supplier.supplier),10,'0'),

 REPLACE(REPLACE(sups.sup_name,'''',' '),'"','
'),

 win_skus.forecast_ind,

 lpad(to_char(domain_subclass.domain_id),2,'0')

 FROM win_skus,

 subclass,

 class,

 deps,

 groups,

 division,

 item_supplier,

 sups,

 domain_subclass,

 v_restart_dept

 WHERE v_restart_dept.driver_name = 'DEPT'

88 Retek Merchandising System

 AND v_restart_dept.num_threads = :pi_num_threads

 AND v_restart_dept.thread_val = :pi_thread_val

 AND v_restart_dept.driver_value = win_skus.dept

 AND win_skus.dept = deps.dept

 AND win_skus.dept = domain_subclass.dept(+)

 AND win_skus.class = domain_subclass.class(+)

 AND win_skus.subclass =
domain_subclass.subclass(+)

 AND win_skus.dept = class.dept

 AND win_skus.class = class.class

 AND win_skus.dept = subclass.dept

 AND win_skus.class = subclass.class

 AND win_skus.subclass = subclass.subclass

 AND win_skus.sku = item_supplier.item

 AND item_supplier.supplier = sups.supplier

 AND item_supplier.primary_supp_ind = 'Y'

 AND deps.group_no = groups.group_no

 AND groups.division = division.division

 AND win_skus.sku > NVL(:os_restart_sku,-999)

 ORDER BY win_skus.sku;

Program flow
Pseudo-code (note functions shown in-line, should be defined outside main)

main(int argc, char* argv[])

{

 extract login ID, password, thread value from input arguments

 declare_staple_cursor(pass_thread_value);

 open_staple_cursor(pass_thread_value);

 fetch_staple_cursor(pass_thread_value);

 while(1)

 {

 if record counter < global maximum counter

 write to product master (merch hier.) temp file

 increment counter of records written

Chapter 7 – Staple merchandise hierarchy download 89

 else

 call restart logic to cat temp Prod. Master file to

final file

 reset counter of records written

 end-if

 fetch_staple_cursor(pass_thread_value);

 }

Function declarations

declare_staple_cursor(pass_thread_value) – job department/thread value

{

 switch pass_thread_value

 {

 case ‘D’:

 declare s_domain_dept cursor

 case ‘C’:

 declare s_domain_class cursor

 case ‘S’:

 declare s_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for declare

staple cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “declare %c_level staple cursor”,

pass_thread_value)

}

open_staple_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

90 Retek Merchandising System

 case ‘D’:

 open s_domain_dept cursor

 case ‘C’:

 open s_domain_class cursor

 case ‘S’:

 open s_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for open

staple cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “open %c_level staple cursor”,

pass_thread_value)

}

fetch_staple_cursor(pass_thread_value)

{

 switch pass_thread_value

 {

 case ‘D’:

 open s_domain_dept cursor

 case ‘C’:

 open s_domain_class cursor

 case ‘S’:

 open s_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for open

staple cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “fetch %c_level staple cursor”,

pass_thread_value)

}

open_staple_cursor(pass_thread_value)

Chapter 7 – Staple merchandise hierarchy download 91

{

 switch pass_thread_value

 {

 case ‘D’:

 open s_domain_dept cursor

 case ‘C’:

 open s_domain_class cursor

 case ‘S’:

 open s_domain_subclass cursor

 default:

 sprintf(err_date, “undefined level %c for open

staple cursor”, pass_thread_value)

 }

 if SQL error found

 sprintf(err_date, “open %c_level staple cursor”,

pass_thread_value)

}

Shared modules
N/A

Function level description
N/A

92 Retek Merchandising System

I/O specification
Output file smhiernn.dat (where nn equals the thread value – this is not the
domain_id)

SKU Varchar2 20 – Populate with SKU

SKU desc Varchar2 70 – Populate with SKU description

Style Varchar2 20 – NULL

SKU desc Varchar2 40

Subclass Varchar2 20 – dept+class+subclass

Subclass desc Varchar2 40

Class Varchar2 20 – dept+class

Class desc Varchar2 40

Dept Varchar2 20 – dept

Dept desc Varchar2 40

Group Varchar2 20

Group name Varchar2 40

Division Varchar2 20

Division name Varchar2 40

Supplier Varchar2 20

Supplier name Varchar2 40

Forecast Indicator Varchar2 1

Domain ID Varchar2 2

Technical issues
N/A

Chapter 8 – Product security rebuild (sprdrbld.doc) 93

Chapter 8 – Product security rebuild
(sprdrbld.doc)
Modification

Modified program to include security at dept.level.

Design overview
The security features being added to RMS will be maintained in the batch cycle.
With each run, the changes made to the data in RMS will be brought under the
security features of RMS through the running of 3 batch programs. Sprdrbld.pc
will handle the maintenance for the product security data. Security will be set to
either ‘S’KU or ‘D’epartment level on system_options.security_lvl_ind.
SKUs/Dept will have different update/select attributes for a given user for any of
a number of different functional areas like ‘Pricing’ or ‘Clearances’. For each
run, the program will use the security data defined for the user/group/functional
area/merchandise level to define whether a user can select or update every single
SKU/Dept covered by the defined rules. The functional document describes the
architecture of the security features and how it works. Rules that have a smaller
scope overwrite those with a broader scope. For example, a user is assigned to
two groups -- one of the groups has no update capability for a given department,
while the other group allows updating for a specific class within that department.
Which applies? The rule with the lowest item hierarchy in its definition is the
rule granting the update capability for the class. Therefore, for every SKU in the
department and in the class will be allowed to update. For the rest of the SKUs
in the department, no updating will be allowed. In addition, if there are
conflicting security definitions at the same hierarchy level because a user is
associated with more than one group, the user is, as expected, granted the
capability.

Performance is a crucial consideration for this program as it involves writing
records for different functional areas at the SKU or Dept. level for every user in
the system. To accomplish this task as efficiently as possible, the program
should be built as follows. It will be multi-threaded by department, and use
restart_recovery. In the Init routine, an array which will closely resemble the
final destination security table, will be sized to handle all the SKUs/depts in the
particular thread running. This array will be loaded with all the SKUs/depts and
used repeatedly for every user/functional area combination. There will be an
additional indicator (in addition to the select/update indicators) that will keep
track of which SKUs/depts have a rule affecting them and have therefore been
“touched”. Each rule will affect certain SKUs/depts in the array and their
attributes may be changed multiple times. When they are changed, this indicator
will be raised. After all the rules are processed for a given user/functional area,
the data in the array that has the “touched” indicator raised will be written out to
a SQL Loader file and its indicator reset. This cycle will be repeated until all
users and functional areas are exhausted.

94 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

SEC_USER_GROUP No Yes No No No

SEC_GROUP_PROD/DEPS_MATRIX No Yes No No No

V_RESTART_DEPT No Yes No No No

DESC_LOOK No Yes No No No

RAG_SKUS No Yes No No No

SYSTEM_VARIABLES No Yes No No No

Scheduling constraints
Processing Cycle: Daily

Scheduling Diagram: Must run batch program prepost.pc with parameters
sprdrbld pre , sprdrbld.pc and prepost.pc with parameters sprdrbld post in
series. Then use SQL load control file sprdrbld.ctl (for SKUs level) or
sdepsrbld.ctl (for Dept. level) to load the output file from sprdrbld.pc to
database.

Pre-Processing: Prepost with parameters: sprdrbld pre

Post-Processing: Prepost with parameters: sprdrbld post

Threading Scheme: Department

Restart recovery
The logical unit of work for location security rebuild will be the user-functional
area (column_code). Restart/recovery will be based on the user-functional area.
The restart commit counter will need to be carefully determined by each client
according to the number of departments that will be affected by the product
security rebuild. Large product security rebuilds with thousands of styles/skus
need smaller commit counters to avoid reprocessing large amounts of data in the
event of program failure. Small location security rebuilds with small amount of
styles/skus can have much larger commit counters since fewer rows will be
inserted into the database each time for one user-functional area.

Chapter 8 – Product security rebuild (sprdrbld.doc) 95

Program flow

96 Retek Merchandising System

Shared modules

Driving Cursor for SKU
SELECT u.user_id,

 p.column_code,

 p.dept,

 p.class,

 p.subclass,

 p.style,

 p.sku,

 p.select_ind,

 p.update_ind

 FROM sec_user_group u,

 sec_group_prod_matrix p,

 v_restart_dept v

 WHERE u.group_id = p.group_id

 AND v.driver_value = p.dept

 AND v.num_threads = :pi_restart_num_threads

 AND v.thread_val = :pi_restart_thread_val

 AND (u.user_id > NVL(:ps_restart_user, '-999')

 OR (u.user_id = :ps_restart_user

 AND p.column_code > :ps_restart_column_code))

 ORDER BY u.user_id, p.column_code, p.dept, p.class desc, p.subclass desc,

 p.sku desc, p.style desc;

Chapter 8 – Product security rebuild (sprdrbld.doc) 97

Driving Cursor for Dept
EXEC SQL DECLARE c_sec_dep_prd_policy CURSOR FOR

 SELECT u.user_id,

 p.column_code,

 p.dept,

 p.select_ind,

 p.update_ind

 FROM sec_user_group u,

 sec_group_prod_matrix p,

 v_restart_dept v

 WHERE u.group_id = p.group_id

 AND v.driver_value = p.dept

 AND v.num_threads = :pi_restart_num_threads

 AND v.thread_val = :pi_restart_thread_val

 AND (u.user_id > NVL(:ps_restart_user, '-999')

 OR (u.user_id = :ps_restart_user

 AND p.column_code > :ps_restart_column_code))

 ORDER BY u.user_id, p.column_code, p.dept;

Function level description

Main()
N/A

Init()
• Check SYSTEM_VARIABLES.update_prd_sec_ind. If the indicator is not

set then the program exit normally without further processing.

• Check SYSTEM_OPTIONS.security_lvl_ind to determine if security is set at
dept. or sku level.

• Call retek_init() to get restart-recover variables.

• Get_total_skus()/depts.()

• Get total skus in the current thread.

• Size_sku/dept_array()

• Size sku array based on the number of skus in the current thread. The sku
array includes dept, class, subclass, style, style_ind, sku, select_ind,
update_ind and touched columns.

98 Retek Merchandising System

• Load_sku/dept_array()

• Load all skus in the current thread to the sku array.

Process()
The driving cursor is ordered to return records defining rules for entire
department first, and then those for class, and on down. The records are
processed in that order. That is to say, first work with the department level rules,
then move to the more specific rules so that the rules with the smaller scope take
priority over the higher level rules.

• Call size_rule_array() to allocate memory for arrays that store security rules.

• Open the driving cursor in a while loop. Fetch the data into rule array.

• Call set_null_to_field() to set fields to null when those fields’ indicators are
–1 in the rule array.

• Check if this is a second array fetch or greater, if yes, call process_record() to
process the last record in last array fetch and the first record in current array
fetch.

• Open a for loop

• Call process_record() to process the current and last record.

• End of for loop

• Copy the last record in the current array fetch to last rule array. Since the last
record of an array fetch hasn’t been processed until compared to the first
record of the next array fetch. However, with each new array fetch, the last
record of the previous array fetch is overwritten. Thus here it needs to be
copied.

• End of while loop.

Size_rule_array()
This function allocates memory for arrays that store security rules based on the
maximum commit count set in table restart_control table. The rule array includes
user_id, column_code, dept, class, class_ind, subclass, subclass_ind, style,
style_ind, sku, sku_ind, select_ind and update_ind.

Set_null_to_field()
This function loops through all the records in rule array and set a field to null
when the field’s indicator is –1.

Chapter 8 – Product security rebuild (sprdrbld.doc) 99

Process_record()
This function does the majority of the processing. The data from the driving
cursor is ordered by dept, class, subclass, style, and SKU such that the
department level rules are selected first, then the class level, etc. Also, all rules
for a particular merchandise hierarchy will be grouped together and processed so
that a single security rule will be decided for that particular hierarchy. When
multiple records do occur at the same level, the logical OR will be used to
determine whether to grant update/select privileges.

• Compare the user/functional area of the current record and the last record:

• If it isn’t new:

• Compare the hierarchy/style/sku of the current record and the last record:

• If it isn’t new, call logical_or_indicators() to update the current record’s
select and update indicators according to the logical ‘OR’ between the
current and last records’ indicators.

• If it is new, call update_array() to blow security rule down to the SKU/dept
level according to the last record rule.

• If it is new:

• Call update_array() to blow security rule down to the SKU/dept level
according to the last record rule.

• Call write_array() to output the security rules of last record’s user/functional
area (down to SKU/dept level) to SQL load file.

• Call retek_force_commit() to set book mark in the restart_bookmark table.

Logical_or_indicators()
This function updates the input current record’s select and update indicators
according to the logical ‘OR’ between the input current and last records’
indicators. For example, if the current record’s select indicator is ‘N’, the last
record’s select indicator is ‘Y’, then the current record’s select indicator is
updated to ‘Y’; If the current record’s select indicator is ‘N’, the last record’s
select indicator is ‘N’, then the current record’s select indicator is kept
untouched(‘N’). If the current record’s select indicator is ‘Y’, no matter what
last record’s select indicator is, the current record’s select indicator is kept
untouched(‘Y’). So does update indicator.

100 Retek Merchandising System

Update_array()
This function updates the SKU array according to the input security rule. There
are five kinds of security rules. They are department, class, subclass, style and
SKU level security rules.

• If the input rule is a department level security rule, then loop through the
SKU array, for all the SKUs within the department, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a class level security rule, then loop through the SKU
array, for all the SKUs within the class, set the select_inds and update_inds
equal to the input rule’s select_ind and update_ind, respectively. Set touched
and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a subclass level security rule, then loop through the SKU
array, for all the SKUs within the subclass, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a style level security rule, then loop through the SKU
array, for all the SKUs corresponding to the style, set the select_inds and
update_inds equal to the input rule’s select_ind and update_ind, respectively.
Set touched and style_touched indicators of each processed row to ‘Y’.

• If the input rule is a SKU level security rule, then loop through the SKU
array, set the select_ind and update_ind of the SKU equal to the input rule’s
select_ind and update_ind, respectively. Set touched indicator of each
processed row to ‘Y’.

Write_array()
This function writes out rows with touched indicator equals ‘Y’ in the SKU array
to SQL load file.

final()
restart/recovery close

Chapter 8 – Product security rebuild (sprdrbld.doc) 101

I/O specification
Each row of the output SQL load file outputfilename.extension_x (x is current
thread number) corresponds to one record row in the sec_user_prod_matrix or
sec_user_deps_matrix table. The format of the output file is as follows:

Column_code;user_id;SKU/dept;select_ind;update_ind

Example:

PPRM;JOHN;10007986;N;N

PPRC;CLINTON;10001000;Y;N

PPRM;CLINTON;10007986;Y;Y

…

Technical issues
N/A

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 103

Chapter 9 – Transfer shipments upload
(tsfoupld.doc)
Modification

Changed quanity_shipped number(6) to number(12).

Design overview
The purpose of this batch module is to accept transfer shipment details from an
external system. The transfer transactions will provide feedback to existing
transfers within the Retek system or initiate manual transfers created in an
external system. The following functions will be performed for each transferred
item:

• create/update transfer and shipment header and detail records.

• create item/location relation for receiving location (if it doesn’t exist)

• update perpetual inventory and in transit qtys for source location

• update the average cost of item and in transit qtys for receiving location

• write financial transactions for both the transfer out and the transfer in

• update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

• create/update bill of lading

• create/update warehouse issues history (if transfer from a wh to a store)

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

• update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

104 Retek Merchandising System

TABLE INDEX SELECT INSERT UPDATE DELETE

TSFHEAD No Yes Yes Yes No

TSFDETAIL No Yes Yes Yes No

SHIPMENT No Yes Yes Yes No

SHIPSKU No Yes Yes Yes No

POS_MODS No No Yes No No

PRICE_HIST No No Yes No No

RAG_SKUS_ST No Yes No Yes No

WIN_STORE No Yes No Yes No

RAG_SKUS_ST No Yes No Yes No

WIN_WH No Yes No Yes No

TRAN_DATA No No Yes No No

RAG_SKUS No Yes No No No

RAG_STYLE_ST No Yes No No No

RAG_STYLE_WH No Yes No No

INV_STATUS_QTY No Yes No Yes Yes

INV_STATUS_TYPES No Yes No No No

Processing Cycle: PHASE 2 (daily)

Scheduling Diagram: This program must run before the transfer in batch
module and will likely be run at the beginning of the batch run during the POS
polling cycle, or possibly at the end of the batch run if pending warehouse
transactions. It can be scheduled to run multiple times throughout the day, as
WMS or POS data becomes available. In a true DC flow through type of
operation, this program should also be run after Carton Receiving Upload
(ctniupld) module to ship the cross-dock carton transfers created in ctniupld so
that the goods received into DC for a cross-dock PO are shipped out to the final
destination within the same day.

Pre-Processing: N/A

Post-Processing: N/A

Threading Scheme: STORE and WH

Threads driven by number of distinct files

No

Scheduling constraints

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 105

Restart recovery
The logical unit of work for the transfer out module is the discrete transfer
transaction. Each transfer will be identified by the transfer number (if it already
exists in the Retek system) or an unique transaction set number generated by the
external system. This transfer transaction will be defined as the logical unit of
work. If any portion of the processing for the complete transfer transaction fails,
the entire transfer must be re-processed.

A savepoint will be issued prior to processing a new transfer. If any record
within the transaction fails, the whole transaction will be rolled back to the most
recent savepoint. This way, the successfully processed transactions will remain
posted to the database but not yet committed.

To prevent excessive rollback space usage, intermittent commits will be issued
based on a commit counter. The recommended commit counter setting is 10000
records (subject to change based on experimentation). The commit counter is
based on actual records processed, not overall transactions, nor the number of
writes to the database, since the database interactions will be a constant
multiplier of the commit counter. A transfer transaction cannot be committed to
the database until it is complete so the commit counter is viewed as a minimum
threshold that, once reached, will force a commit after the completion of the
current transfer transaction.

Error handling will be based on the logical unit of work also. If a given record
within a transfer transaction fails, that error will be posted to the standard error
log for the batch module. If the error is of a non-fatal type, all subsequent detail
records within the transfer will continue to be processed and any errors noted will
continue to be posted. After processing all errors for the transaction, the entire
transfer will be rejected to a runtime specified rejection file. If a fatal error is
encountered, the file pointer at the time of the last commit will have been posted
to the bookmark and all transactions from the last commit will be rolled back.
Processing will commence with from the saved file position.

106 Retek Merchandising System

Program flow

loop (until end of input
read record
if ('FTAIL') Exit Loop
if ('THEAD')

set savepoint
end if

validate THEAD()

process THEAD

loop
read record
if ('TTAIL') Exit Loop
else if ('TDETL')

validate TDETL()

process TDETL()

populate transfer
if (detail counter = max array count

resize tsfdetail / tsfall array
end if
increment detail counter

end if
end loop

insert/ update of transfer

if (record counter = max commit counter
save file position to
commit database

end if
end loop

if (Transfer Type = ‘MR’ (manual requisitions)
insert tsfhead with status
if (transfer exist) Error

insert tsfdetail
if (transfer detail exist) Error

else
update tsfhead status to
if (transfer not exist) Error

update tsfdetail
if (transfer detail not exist)

end if

if (tranfer no on
validate transfer

else
validate locations
check transfer zone()

end if

if (transfer on file)
validate SKU on

else
if ('UPC')

get sku based on
if (upc not exist) Error

end if
get system indicator & merch
if (sku not exist) Error

initialize restart
open files (transfer out)
open reject file (restart temp
get vdate & dept level transfer
set application image
read file header

main()

init()

process()

final()

TRANSFER_OUT_SQL.EXECUTE

close restart logic
close reject file

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 107

Shared modules
TRANSFER_OUT_SQL.EXECUTE: Package referenced to perform transfer out
logic, including

• create item/location relation for receiving location (if it doesn’t exist)

• update perpetual inventory for source location

• update the average cost of item for receiving location

• write financial transactions for both the transfer out and the transfer in

• update stock count’s snapshot on hand quantity for source location and
snapshot in transit quantity for destination location if stock count is in
progress

• create/update bill of lading

• create/update warehouse issues history (if transfer from a wh to a store)

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for source location

• update quantity transferred on allocation detail table if this transfer was
created from standalone allocation

TRANSFER_IN_SQL.EXECUTE: Package referenced to perform transfer in
logic for customer order types of transfers where the delivery type for the transfer
is ‘Ship Direct’ :

• update perpetual inventory for destination location

• update stock count’s snapshot on hand quantity for destination location if
stock count is in progress

• update unavailable inventory status quantity for NS (Non-salable) type of
transfer for destination location

• update perpetual inventory with adjustments for detailed receipt
discrepancies and create stock ledger stock adjustment transactions, if
system_options.auto_close_tsf = ‘Y’

The following are called from TRANSFER_OUT_SQL and/or
TRANSFER_IN_SQL packages and are thus, indirect calls.

STOCK_LEDGER_SQL.TRAN_DATA_INSERT: Package referenced by
TRANSFER_OUT_SQL.EXECUTE to perform the stock ledger transaction
inserts for the transfer out of the goods from the source location and the transfer
in of the goods at the destination location.

NEW_STAPLE_LOC, NEW_FASHION_LOC, NEW_PACK_LOC: These
stored procedures are used to create item/location relationships for locations that
are to receive goods on a transfer and have not yet stocked the given item.

INVADJ_SQL.ADJ_UNAVAILABLE : called to update the unavailable
inventory status quantity

INVADJ_SQL.ADJ_TRAN_DATA : called to write tran_data record for
unavailable inventory adjustment

108 Retek Merchandising System

Function level description

init()
declare structure arrays for tsfdetail

initialize restart recovery

open input file (transfer out)

- file should be specified as input parameter to program

open reject file (as a temporary file for restart)

- file should be specified as input parameter to program

get vdate and department level transfer indicator from period table and system
options

set application image array - save the line counter

read file header record

if (record type <> ‘FHEAD’) Fatal Error

process()
loop

read record from input file

if ('FTAIL')

Exit Loop

end if

if ('THEAD')

set savepoint and save current file pointer position

validate_THEAD()

reset detail count

process_THEAD()

end if

loop

check carton flag to determine if tdetl records will be for a carton
or not

read record from input file (different structure for carton or
regular)

if ('TTAIL') Exit Loop

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 109

if ('TDETL')

validate_TDETL()

process_TDETL()

end if

if (detail count = max array count)

resize array structures for tsfdetail

increase max array count

end if

increment detail count

end loop

if (no errors)

post_transfers() (don’t call this if doing a carton)

end if

if (non Fatal Error Encountered)

reject_record - call write error and pass file pointer as of last
savepoint and current file pointer

Rollback transaction

end if

if (transaction count > max commit count)

restart file commit

- save the current input file pointer position

- save the line counter in restart image

end if

end loop

restart commit final

110 Retek Merchandising System

validate_THEAD()
- validate transfer

-if external shipment number is ‘CARTON’, set carton flag and return from
function

format_header_fields()

if (shipment number provided in transaction)

validate that the shipment number exists within Retek for a transfer.
(check on shipment)

validate that the transfer within Retek has a status of ‘A’, ‘E’, ‘S’, ‘C’
(approved, extracted, shipped, closed) and is applicable to the

to/from locations specified (check on tsfhead) – also fetch
transfer type

if shipment number provided does not exist on shipment in ‘I’, ‘R’ status
for a transfer then

raise Non-Fatal Error

if transfer does not exist in Retek with the appropriate status and
locations then

raise Non-fatal error

else if (no shipment number is provided)

if (external shipment number provided)

- validate to and from locations

if (loc_type = ‘S’)

check for existence on store table

else (loc_type = ‘W’)

check for existence on wh table

end if

if any location not exist, write non-Fatal error

- validate common transfer zone for store to store transfers

if (to_loc type = ‘S’ and from_loc = ‘S’)

check transfer zone - select transfer zone of the from
location and the to location.

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 111

if (from_loc transfer zone <> to _loc transfer zone)

write non-Fatal Error (transfer zones
incompatible)

end if

end if

else (no external shipment number)

All detail records must have a allocation number.

end if

end if

process_THEAD()
check for a bill of lading in 0 - open status for the destination location

retrieve the bill of lading number if one exists

if (bill of lading does not exist)

get next bill of lading number

insert bill of lading header (lad_head) record

end if

if bol number passed in ensure it is valid.

If it is not valid get next bol number.

if transfer type = ‘CO’

retrieve delivery type from the ORDCUST table

end if

112 Retek Merchandising System

validate_TDETL()
format_detail_fields()

if inventory status field is not blank, validate it against inv_status_types table

if no shipment / ext shipment in file

every detail line must have an allocation.

if (shipment number in file)

validate item exists on the transfer

else

if (Item Type = ‘UPC’)

select sku from upc_ean based on the upc and supplement

if (upc does not exist)

write non-Fatal Error (upc not found)

end if

else if (Item Type = ‘SKU’)

SKU = item value from the input file

case ID = ‘ ’

end if

end if

if the store rcv type is ‘C’ the carton field must be populated

- get item system indicator, department, class and subclass

if (system indicator does not exist)

write non-Fatal Error (sku not found)

end if

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 113

process_TDETL()
The upd_resv_ind and the upd_intran_ind should be setup in the following way
before calling transfer_out_sql.execute.

 if :oi_new_tsf_flag = 1 then

 if :os_store_rcv_type = 'A' then

 L_upd_resv_ind := 'N';

 L_upd_intran_ind := 'N';

 else

 L_upd_resv_ind := 'N';

 L_upd_intran_ind := 'Y';

 end if;

 elsif :ora_tsf_type = 'CO' and :ora_deliver_type = 'S' or

 :os_store_rcv_type = 'A' then

 L_upd_resv_ind := 'Y';

 L_upd_intran_ind := 'N';

 else

 if :os_tsf_status = 'C' then

 L_upd_resv_ind := 'N';

 else

 L_upd_resv_ind := 'Y';

 end if;

 L_upd_intran_ind := 'Y';

 end if;

call TRANSFER_OUT_SQL.EXECUTE package function

(see design specification for TRANSFER_OUT_SQL)

if transfer type = ‘CO’ and delivery type = ‘S’ or store receive type is ‘A’

 call TRANSFER_IN_SQL.EXECUTE package function

 (see design specification for TRANSFER_IN_SQL)

write_recs_to_struct()

114 Retek Merchandising System

post_transfers()
if (shipment number was not passed in on the input file)

insert TSFHEAD (transfer_type = ‘MR’ or PO in an allocation is passed
in, ext_ref_no = external shipment number)

insert SHIPMENT (ext_ref_no_out should be the transaction control
number, ship date should be the transaction date)

perform array insert of TSFDETAIL

perform array insert of SHIPSKU

else (for all other Retek initiated transfer transactions)

try to update shipsku record if no data is found

perform array update of TSFDETAIL, set ship_qty – if transfer type =
‘SA’, set tsf_qty = 0

perform array insert of SHIPSKU

- The this transfer is a customer order (tsf_type = ‘CO’) with a delivery
type of direct ship to customer, then this transfer must also be closed
when it is sent.

if transfer type = ‘CO’ and delivery type = ‘S’ or store rcv type is ‘A’

call TRANSFER_IN_SQL.CLOSE

(see design specification for TRANSFER_IN_SQL)

else if transfer type = ‘SA’ then

update TSFHEAD status to ‘A’ - approved

else

update TSFHEAD status to ‘S’ - shipped

end if

end if

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 115

format_header_fields()
assign input file fields to variables

if from location type = ‘ST’

set ora_from_type = ‘S’

else if from location type = ‘WH’

set ora_from_type = ‘W’

end if

if to location type = ‘ST’

set ora_to_type = ‘S’

else if to location type = ‘WH’

set ora_to_type = ‘W’

end if

format_detail_fields()
assign input file fields to variables

- transfer quantity has an implied 4 decimal places

transfer qty = transfer qty / 10000

process_carton()
Select details from transfer tables for the carton number; for each sku in the
carton, call process_TDETL.

ON Fatal Error
• rollback to last physical commit point

• Exit Program

ON Non-Fatal Error
• rollback to last savepoint

• write out complete transfer transaction to the reject file, pass file pointer at
last savepoint and current file pointer

116 Retek Merchandising System

I/O specification

Input file
The input file should be accepted as a runtime parameter at the command line.

IMPORTANT:

The structure of the TDETL line will vary, depending on whether cartons are
included or not. If cartons are included, the line will end after the item value
field.

Record
Name

Field Name Field Type Default Value Description

File Header File Type
Record
Descriptor

Char(5) FHEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 File Type
Definition

Char(4) TSFO Identifies file
as ‘Transfer
OUT’

 File Create
Date

Date create date date file was
written by
external
system

Transaction
Header

File Type
Record
Descriptor

Char(5) THEAD Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Set Control
Number

Number(14) specified by
external
system

used to force
unique
transaction
check

 Transaction
Date

Date specified by
external
system

date the
transfer was
created in
external
system

 From
Location
Type

Char(2) ST - storeWH
- warehouse

specifies the
type of
location
sending items

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 117

Record
Name

Field Name Field Type Default Value Description

 From
Location
Value

Number(4) location
identifier

Specifies the
sending
location id
number

 To Location
Type

Char(2) ST - storeWH
- warehouse

specifies the
type of
location
receiving
items

 To Location
Value

Number(4) location
identifier

Specifies the
receiving
location id
number

 Shipment
Number

Number(10) Retek
shipment
number

specifies the
Retek
shipment
cross-
reference

 External
shipment

Char(15) External
shipment
number

specifies
external
shipment
number; will
be CARTON
when
transferring
cartons

 Courier Char (20) Courier used
to ship order

 Arrival date Date Arrival date

 Number of
boxes

Number(4) Number of
boxes in this
transfer

 BOL number Number(13) Bill of lading

Transaction
Detail (Item)

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

118 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

 Transaction
Set Control
Number

Number(14) specified by
external
system

used to force
unique
transaction
check

 Detail
Sequence
Number

Number(6) specified by
external
system

sequential
number
assigned to
detail records
within a
transaction

 Item Type Char(3) UPCSKU item type will
be
represented as
a UPC or
SKU

 Item Value Number(13) item identifier the id number
of a SKU or
UPC

 Supplement Number(5) supplemental
identifier

used to
further
specify the id
of an UPC
item

 Allocation
Number

Char(6) or
char(10) if the
allocation_ind
is = ‘Y’.

allocation
identifier

Retek
allocation
number
attached to
the transfer

 Inventory
Status

Number(2) inventory
status of item

used to
indicate the
type of non-
salable
merchandise
transferred in
an ‘NS’
transfer

 carton Char(20) carton
identifier

UCC – 122
carton code

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 119

Record
Name

Field Name Field Type Default Value Description

 Transfer
Quantity

Number(12) number of
units to be
transferred of
the given
item
(*10000—4
implied
decimal
places)

Transaction
Detail
(Carton)

File Type
Record
Descriptor

Char(5) TDETL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Set Control
Number

Number(14) specified by
external
system

used to force
unique
transaction
check

 Detail
Sequence
Number

Number(6) specified by
external
system

sequential
number
assigned to
detail records
within a
transaction

 Item Type Char(3) CTN item type will
be
represented as
a CTN when
transferring a
carton

 Item Value Char(20) carton
identifier

UCC – 122
carton code

Transaction
Trailer

File Type
Record
Descriptor

Char(5) TTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Line number
of the current
file

 Transaction
Detail Line
Count

Number(6) sum of detail
lines

sum of the
detail lines
within a
transaction

120 Retek Merchandising System

Record
Name

Field Name Field Type Default Value Description

File Trailer File Type
Record
Descriptor

Char(5) FTAIL Identifies file
record type

 File Line
Sequence

Number(10) specified by
external
system

Current line
number

 Number of
transaction
lines

Number(10) specified by
external
system

total number
of lines in
file,
excluding
FHEAD and
FTAIL

Output file
Record Name Field Name Field Type Default Value Description

 Record Type Char (1) H Specifies
file record
type

 Store Order
Number

Number
(10)

Order No Specifies
shipment
number

 Division Type Char (2) Division Type Specifies
division
type

 Warehouse Number (6) WH Loc Specifies
WH location
value

 Store Number (6) Store Loc Specifies ST
location
value

 Store Order Type Number (4) Store order
type

Specifies
transfer type

 Store order
comment

Char (255) Comment Specifies
store order
comment
(from
shipment or
transfer or
both)

Chapter 9 – Transfer shipments upload (tsfoupld.doc) 121

Record Name Field Name Field Type Default Value Description

 Ship Date Number
(14)

Ship date Specifies
date shipped
(date when
file was
processed +
1)

Detail

Record Name Field Name Field Type Default
Value

Description

 Record Type Char (1) D Specifies
record type

Store Order
number

Number (10) Order No Specifies
Shipment
Number

 Division type Char (2) SA, PO, MR,
CO, AD

Specifies
Division
Type

 Xref Div Item Number (8) RMS SKU

 UPC Number (13) UPC value Specifies
UPC Value

UPC supplement Number (5) UPC
supplement

Specifies
UPC
supplement
value

 Unit of Measure Char (2) Unit of
Measure

Specifies
unit of
measure

SKU Deck Cost Number (10) Deck cost Average
unit cost

 Quantity Shipped Number (12) Quantity
Shipped

Specifies
quantity
shipped
value

122 Retek Merchandising System

Reject file
The reject file should be able to be re-processed directly. The file format will
therefore be identical to the input file layout. The file header and trailer records
will need to be created by the transfer out module and a reject line counter will be
required to ensure that the file line count in the trailer record matches the number
of rejected records. A reject file will be created in all cases. If no errors occur,
the reject file will consist only of a file header and trailer record and the file line
count will be equal to 0.

The reject filename should also be specified as a runtime parameter.

Error file
Standard Retek batch error handling modules will be used and all errors (fatal &
non-fatal) will be written to an error log for the program execution instance.
These errors can be viewed on-line with the batch error handling report.

Technical issues
N/A

	Contents
	Chapter 1 – Introduction
	Chapter 2 – Customs entry download \(cednld.doc�
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init
	process
	Process_shipments
	Process_order_items
	Process_bl_awb_id
	Process_container
	Process_license_visa
	Process_charges
	Process_missing_docs
	Update_ce_head
	Size_arrays
	Init_buffers
	Write_line
	Final

	I/O specification
	Output file

	Technical issues

	Chapter 3 – Transportation upload \(tranupld.doc
	Modification
	Design overview
	Upload files

	Scheduling constraints
	Pre/post logic description

	Restart recovery
	Program flow
	Tables used

	Shared modules
	Function level description
	init():
	file_process():
	format_record():
	format_dtran_record():
	format_dpoit_record():
	format_ftail_record():
	validate_record():
	validate_tran_record():
	validate_poit_record():
	process_record():

	I/O specification
	Technical issues

	Chapter 4 – P.O. receipt transactions upload \(r
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	process()
	validate_THEAD()
	validate_TDETL()
	process_TDETL()
	create_shipment()
	ON Fatal Error
	ON Non-Fatal Error

	I/O specification
	Input file
	Reject file
	Error file

	Technical issues

	Chapter 5 – ReSA 9.0 RTLOG Layout \(SA RTLOG.doc
	Modification

	Chapter 6 – Fashion merchandise hierarchy downloa
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Department
	Class
	Subclass

	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 7 – Staple merchandise hierarchy download
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Department
	Class
	Subclass

	Program flow
	Shared modules
	Function level description
	I/O specification
	Technical issues

	Chapter 8 – Product security rebuild \(sprdrbld.
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Driving Cursor for SKU
	Driving Cursor for Dept

	Function level description
	Main()
	Init()
	Process()
	Size_rule_array()
	Set_null_to_field()
	Process_record()
	Logical_or_indicators()
	Update_array()
	Write_array()
	final()

	I/O specification
	Technical issues

	Chapter 9 – Transfer shipments upload \(tsfoupld
	Modification
	Design overview
	Scheduling constraints
	Restart recovery
	Program flow
	Shared modules
	Function level description
	init()
	process()
	validate_THEAD()
	process_THEAD()
	validate_TDETL()
	process_TDETL()
	post_transfers()
	format_header_fields()
	format_detail_fields()
	process_carton()

	I/O specification
	Input file
	Output file
	Reject file
	Error file

	Technical issues

