Retek® Merchandising System
11.0

Guide d'exploitation - Volume 3

Présentation des programmes batch

Siege social :

Retek Inc.

Retek on the Mall

950 Nicollet Mall
Minneapolis, MN 55403
USA

888.61.RETEK (appel gratuit

aux Etats-Unis:
+1 612 587 5000
Fax:

+1 612 587 5100

Siége européen :
Retek

110 Wigmore Street
Londres

W1U 3RW
Royaume-Uni

Standard :
+44 (0)20 7563 4600

Département commericale :

+44 (0)20 7563 46 46

Fax:
+44 (0)20 7563 46 10

Le logiciel décrit dans la présente documentation fait I’objet
d’un accord de licence et son utilisation est soumise au
respect des dispositions de cet accord..

Aucune partie de cette documentation ne peut étre reproduite
ou transmise sous gquelque forme ou par quelque moyen que
ce soit sans I’autorisation écrite expresse de Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403,
USA,, et la notification de copyright ne peut étre enlevée sans
consentement de Retek Inc.

Les informations contenues dans ce document sont
susceptibles d’étre modifiées sans préavis.

Retek propose la documentation relative a ses produits en
lecture seule afin d’assurer I’intégrité de son contenu. Le
support clientéle Retek ne peut pas prendre en charge toute
documentation modifiée sans I’autorisation de Retek.

Retek® Merchandising System™ est une marque
commerciale de Retek Inc.

Retek et le logo Retek sont des marques déposées de Retek
Inc.

Ce travail non publié est protégé par accord de
confidentialité, et par le secresse commercial, le copyright, et
d'autres lois. En cas de la publication, la notification suivante
s‘appliquera:

©2004 Retek Inc. Tous droits réservés.

Tous les autres noms de produits mentionnés sont des
marques commerciales ou des marques déposées par leurs
propriétaires respectifs et doivent étre traitées comme telles.

Imprimé aux Etats-Unis d’ Amérique.

Retek Merchandising System

Support clientele

Horaires du support clientéle

Le support clientele est disponible 7 jours sur 7, 24 heures sur 24 et 365 jours par an par e-mail,
téléphone et Internet.

Selon I'option d'assistance choisie par un client donné (Standard, Plus ou Premium), les heures
d'acces a certains services peuvent étre limitées. Les problémes de gravité 1 (graves) sont traités 7
jours sur 7 et 24 heures sur 24 et font I'objet d'une attention continue jusqu'a leur résolution, pour
tous les clients qui disposent d'une maintenance active. Les clients de Retek avec des contrats de
maintenance actifs peuvent entrer en contact avec support clientéle global selon des conditions de
contrat dans un des maniéres suivantes :

Méthode de contact Coordonnées

Internet (ROCS) rocs.retek.com
Site Web client sécurisé de Retek pour la mise
a jour et la consultation des problémes

E-mail support@retek.com

Téléphone +1 612 587 5800

Les solutions gratuites sont également disponibles dans diverses régions du monde :
Australie +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66

Hong Kong 800 96 4262

La Corée 00 308 13 1342

Royaume Uni 0800 917 2863

Etats Unis +1 800 61 RETEK or 800 617 3835

Courrier Retek Customer Support

Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403

Lorsque vous contactez I’assistance clientéle, veuillez fournir:

e Laversion du produit et le nom du programme/module.

e Une description fonctionnelle et technique du probleme (y compris I’impact commercial).
e Les instructions de reconstitution, détaillées, étape par étape.

e Le message d’erreur exact regu.

e Les copies d’écran de chaque étape que vous suivez.

http://www.retek.com/support

Contenu

Contenu
Chapitre 1 — INtroducCtionuuiiiiiiice e 1
Chapitre 2 — Reprise et récupération Pro*C.........ccccoeeeeiiiiiiiineennnn, 3
Descriptions et définitions des tables..........coiveeiieiieiece e 3
= L ot] 1 (o] ISP 4
FEStArt_Program_SEALUScveeiiieieresisieteteesiete ettt se st b e st et e e s se s nnens 5
restart_Program_NISTOMYccvoii i 6
FESTArT_DOOKMAIK.......uiiieieiecie et ettt estesteeaesbeereenaesreeneas 7
RV (=117 L A GO 8
Présentation des modeles de QONNEESccuviveiierieeieiiese e 8
Pourquoi les tables restart_program_status et restart_bookmark sont t-elles séparees...... 8
ConfigUration PRYSIQUE........ecuieieeiesie e se et e et raete e e sreesreeneesreenseens 8
Reprise/récupération avec tables et fIChiers...........ccoveveieiiii i 9
Description des FONCLIONS APccieiiiieiieeec e 12
(=] e L AT ST 12
restart_ file NIt e 12
FESTANT COMMIIL L. e e e te e ste e sreesneesneesneesnteanreas 13
restart_file _COMMIL . ..o e 13
(= L Ao (0= PSS 13
PAISE _AITAY AITS &tereivrreirerersrressureassaeesteeasseeesseeesaseeessaesasesasseeeatesessseesssessnsenesnsesesseeesssnes 14
FESTAIT FIlE WITEE oot 14
FESEANT CAL & oot e e e arre e 14
En-tétes et biblioth@QUE A TEPIISEcvviveeeeieceeee e 14
En-tétes et bibliothéques de reprise Mis @ JOUrcoeieiieieieiiec e 15
Nouvelles fonctions de reprise/rECUPEIationccevvvveieveeiiese s 17
Seuil d'eXECULiON AVEC FEQUELEScveiieiiecie ettt ettt 20
Chapitre 3 — Multi-traitements Pro*C........cccccoeeeviiiiiiieiiiiiiieeeeeeens 21
Description de I'exécution de traitementSccooveiveieiie i 21
Fonction de traitement aVEC FEQUETES.cc.uiiiiiirieee e e 22
VUE d€ repriSE AVEC FEOUELES.cueeieeeeecieeieeeeste e e sreeste e e e staesee e s e ebeanee e esreenee e 22
Gestion du schéma de traiteMENTcooeiieieierere e 24
AVEC TICNIEIS. ...ttt sttt b et sneeneesreenes 24
AVEC TEOUBTES ...ttt bbbt b bt e et e bt bbb 25
GeStIoN dES DALCNS.c.viieiecice s 25
Planification et initialisation du batch de reprise..........ccooooeiiiiieniiiee 26
Pré- et POSt-tralteMENTSecviiic et nre e 26

Retek Merchandising System

Chapitre 4 — Traitement vectoriel Pro*C...........ccccccveiiviiviviiiineee, 27
Chapitre 5 — Formats d'entrée et de sortie Pro*C........ccccccoeeeeee 29
Présentation générale de I'iNterface. ..o 29
Présentations des fichiers standard ..o 29
Fichiers de détails UNIQUEMENT..........ooiiiiiiieiie e 30
Fichiers de détails PrinCIPAUX........c.covevrieieienerieieieee et 30
Echange de données informatisé (EDI)c.cooveieiieiieiiiie e 33
Chapitre 6 — Architecture RETL pour systeme RMS-RDF 35
CoNCEPL ArCITECTUNAL ... 35

Chapitre 7 — Présentation du programme RETL pour l'interface

RMS-RDDF .. 37
INSTAHTALION. ...t bbbttt 37
CONTIGUIALTION ...t bbbttt 38

Y= 1 TP ST RTUPRTOPUPRRPRURTN 38
Utilisateur et autorisationS RETLccooiiiiiiiieie e 38
Variables d'enVirONNEMENTcoiiiiiie e et 38
PArametres rMSE_CONTI.ENVcuiiiiiiieieieiise st 38
Code de retour au PrOgrAMIMIE.ccueveerrerreeteereesteeseesreesseessesseesseessesseesseeseesseesseseesses 39
Fichiers de contrdle du statut du programme...........coceevieriiieneenesie e 39
Conventions de dénomination des fIChIErS.c.ccoviiiiiiees e 39
REPIISE €t FECUPEIALIONeviiieie sttt st sreene e resne e 40
FICNIEr & SIGNETSot 40
CoNSIgNAtiON AES MESSAGESvecvveireerreirieiteesteesreseesteeeesreesteeaesaesraessesreesreeseaneesseeneas 41
Fichier journal QUOLIAIENoiiiiccce e 41
0] 0T L T P U PO PR ST PP PPPTPTPRPPROPIN 41
Fichier d'erreurs de Programme.........ccocceeiieiieiieese e e see s e sre e sre e e sreesreesreesneesnees 42
Fichiers de reJet RIMISEot 42
FICNIErS 08 SCNEIMA........cviiiiitiiieiire e et 43
Parametres de ligne de CoOmMmMANdE..........cooeieiiiriiiinciee e 43
RIMISE ..ttt b e bt e bt e s bt e e hb e e be e nbe e she e she e nabe b e 43
Situations courantes d'exécution et de débogage..........cccvvvevveieiiieii e 44

ii

Chapitre 1 — Introduction

Chapitre 1 — Introduction

Ce document comprend deux parties.

La premiére partie récapitule les caractéristiques du traitement batch Pro*C dans RMS et décrit
les éléments suivants :

Reprise et récupération
Multi-traitements
Seuils d'exécution
Traitement vectoriel

Formats d'entrée et de sortie vers des applications et entités externes

La seconde partie récapitule les caractéristiques du traitement batch RETL et décrit les éléments
suivants :

Architecture

Installation

Configuration

Code de retour au programme

Fichiers de contrdle du statut du programme
Consignation des messages

Fichiers de rejet

Fichiers de schéma

Paramétres de ligne de commande

Situations courantes d'exécution et de débogage

Chapitre 2 — Reprise et récupération Pro*C

Chapitre 2 — Reprise et récupération
Pro*C

RMS a mis en ceuvre un processus de reprise et de récupération sur une grande partie de son
architecture de batch. L'objectif principal de la reprise/récupération est de :

e Reprendre un processus interrompu a partir du point d'échec
e Empécher les interruptions de systéme dues a un grand nombre de transactions
e Permettre l'activité simultanée de plusieurs instances d'un processus donné

Par ailleurs, la fonction de reprise/récupération de RMS enregistre les statistiques d'exécution des
batch et ne requiert pas I'exécution d'une autorité DBA.

Les capacités de reprise sont centrées autour de I'unité de travail logique d'un programme (LUW).
Un programme batch traite des transactions et des points d'exécution sont activés en fonction de
la LUW. Les LUW consistent en une clé de transaction relativement unique (telle que
référence/magasin) et en un nombre maximal d'exécutions. Les événements d'exécution
interviennent lorsque le nombre de clés de transaction traitées atteint ou dépasse le nombre
maximal d'exécutions. Par exemple, toutes les 10 000 combinaisons référence/magasin, une
exécution intervient. Au moment de I'exécution, les informations de la clé nécessaires a la reprise
sont stockées dans les tables de reprise. Lors d'une exception résolue ou non, les transactions sont
renvoyées au dernier point d'exécution et au moment de la reprise, les informations de la clé sont
extraites des tables pour permettre au traitement de continuer a partir du dernier point d'exécution.

Descriptions et définitions des tables

Le processus de reprise/récupération de RMS est géré par un ensemble de quatre tables. Le
schéma 1 présente les relations entre les entités. Les descriptions des tables suivent.

Commande de reprise Statut du programme Signet de reprise

(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ctr

Historigue du programme
de reprise
restart_name
thread_val
start_time
program_name
num_threads
commit_max_ctr
restart_time
finish time
shaaow_pl *
success_flag *

non_fatal_err_flag *
num_commits *

avg_time_btwn_commits *

de reprise

(PK) restart_name
(PK) thread_val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

current_oracle_sid *
current_shadow_pid *

restart_name

thread_val

bookmark_string

application_image
out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

[Remarque : les champs suivis d'un astérisque (*) sont utilisés uniquement par les

nouveaux programmes batch de la version 9.0 ou supérieure.

Retek Merchandising System

restart_control

La table restart_control est la table principale du groupe de tables de reprise/récupération. Elle
contient un enregistrement pour chaque programme batch exécuté avec la logique de
reprise/récupération activée. Le processus de reprise/récupération utilise cette table pour
déterminer :

o si lareprise/récupération utilise des tables ou des fichiers,
o le nombre total de traitements utilisés pour chaque programme batch,
¢ le nombre maximal d'enregistrements traités avant l'intervention d'un événement d'exécution,

o e pilote de la logique de traitement (multi-traitements).

RESTART_CONTROL

(PK) varchar2 | 25 | Nom du programme batch.

program_name

program_desc varchar2 | 50 | Bréve description de la fonction du programme
driver_name varchar2 | 25 | Pilote de requétes, par exemple, rayon (non modifiable)
num_threads num 10 | Nombre de traitements utilisés pour le processus en cours

update_allowed | varchar2 | 2 | Indique si l'utilisateur peut mettre a jour le nombre de
traitements ou si cette mise a jour est faite par programme

process_flag varchar2 | 1 | Indique si le processus utilise des tables (T) ou des fichiers
(F).
commit_max_ctr | num 6 | Valeur numérique maximale du compteur avant I'exécution

Chapitre 2 — Reprise et récupération Pro*C

restart_program_status

La table restart_program_status contient les informations enregistrées sur les traitements des
programmes en cours. Le nombre de lignes pour un programme dans la table d'état est identique a
la valeur num_threads de la table restart_control. La table d'état est modifiée lors de l'initialisation
du processus de reprise/récupération et de la logique de cl6ture. Pour le processus qui utilise les
tables, la logique d'initialisation de reprise/récupération affecte le prochain traitement disponible
a un programme basé sur I'état du programme et la balise de reprise. Pour le processus qui utilise
les fichiers, la valeur du traitement est définie a partir du nom du fichier d'entrée. Aprés
I'affectation d'un traitement, le program_status est mis a jour pour empécher I'affectation de ce
traitement a un autre processus. Les informations sont reportées sur I'état actuel d'un traitement
donné, ainsi que les informations enregistrées, telles que I'opérateur et la durée du processus.

L] Remarque relative a la configuration : autorisez le verrouillage au niveau des lignes et
les "lectures impropres" (n'attendez pas le déverrouillage des lignes pour la lecture des
tables).

RESTART_PROGRAM_STATUS

(PK) restart_ name | varchar2 | 50 | Nom du programme.

(PK) thread_val num 10 | Nombre de traitements.

start_time date jj-mm-aa hh:mi:ss

program_name varchar2 | 25 | Nom du programme.

program_status varchar2 | 25 | Démarré, interrompu, interrompu lors de l'initialisation,

interrompu lors du traitement, interrompu a la fin,
terminé, prét pour démarrage.

restart_flag varchar2 | 1 Automatiquement défini a "N" aprés fin inhabituelle, doit
étre défini manuellement a "Y" pour redémarrer le
programme.

restart_time date jj-mm-aa hh:mi:ss

finish_time date jj-mm-aa hh:mi:ss

current_pid num 15 | ID du programme de démarrage.

current_operator_id | varchar2 | 20 | Opérateur qui a démarré le programme.

err_message varchar2 | 255 | Enregistrement a I'origine de l'interruption du programme
et message d'erreur associé.

current_oracle_sid | num 15 | Oracle SID pour la session associée au processus en
cours.

current_shadow_pid | num 15 | ID du processus O/S pour le processus en double associé

au processus en cours. Utilisé pour localiser le fichier de
tracage de la session lorsqu'un processus ne s'est pas
terminé correctement.

Retek Merchandising System

restart_program_history

La table restart_program_history contient un enregistrement pour chaque traitement d'un
programme terminé avec succes avec la logique de reprise/récupération. Lorsque le traitement
d'un programme se termine avec succes, son enregistrement dans la table restart_program_status
est inséré dans la table d'historique. Les utilisateurs peuvent supprimer des tables s'ils le désirent.

RESTART_PROGRAM_HISTORY

(PK) restart_name varchar2 | 50

(PK) thread_val Num 10

(PK) start_time Date

program_name varchar2 | 25

num_threads Num 10

commit_max_ctr Num 6

restart_time date

finish_time date

shadow_pid Num 15 | ID du processus O/S pour le processus en double
associé au processus. Utilisé pour localiser le fichier
de tracage de la session.

success_flag varchar2 | 1 Indique si le processus s'est terminé avec succes
(pour utilisation future).

non_fatal_err_flag varchar2 | 1 Indique si des erreurs non fatales sont intervenues
durant le processus.

num_commits Num 12 | Nombre total d'exécutions pour le processus. La
derniére exécution possible lors de la cléture du
processus de reprise/récupération n'est pas
comptabilisée.

avg_time_btwn_commits | Num 12 | Durée moyenne cumulée entre les exécutions pour le

processus. La derniére exécution possible lors de la
cléture du processus de reprise/récupération n'est
pas comptabilisée.

Chapitre 2 — Reprise et récupération Pro*C

restart_bookmark

Lorsgu'un traitement du programme de reprise/récupération est en cours, qu'il est démarré ou
interrompu et qu'un enregistrement correspondant existe dans la table restart_bookmark, la
logique d'initialisation de reprise/récupération insere I'enregistrement dans la table pour le
traitement d'un programme. Le processus d'exécution de reprise/récupération met a jour
I'enregistrement avec les informations de reprise suivantes :

e une chaine concaténée des valeurs clés pour le traitement des tables,
o lavaleur du pointeur de fichier pour le traitement des fichiers,
e des informations sur le contexte de I'application, tels que compteurs et accumulateurs.

Le processus de cloture de la reprise/récupération supprime I'enregistrement de traitement du
programme lorsque le programme se termine avec succes. Lors d'une reprise, les informations de
cette table concernant le traitement du programme permettent au processus de démarrer a partir
du dernier point d'exécution.

RESTART_BOOKMARK

restart_name varchar2 | 50

thread_val Num 10

bookmark_string varchar2 | 255 | Chaine de caractéres de la clé du dernier
enregistrement exécuté.

application_image varchar2 | 1000 | Paramétres de l'application a partir du dernier point
de sauvegarde.

out_file_string varchar2 | 255 | Pointeurs de fichiers concaténés (Unix utilise
parfois le terme de positions continues pour ces
pointeurs) de tous les fichiers de sortie a partir du
dernier point d'exécution du processus en cours.
Utilisés pour retourner au point de reprise
approprié pour tous les fichiers de sortie lors du
processus de reprise.

non_fatal_err_flag varchar2 | 1 Indique si des erreurs non fatales sont intervenues
durant le processus en cours.

num_commits Num 12 Nombre d'exécutions pour le processus en cours.
La derniére exécution possible lors de la cl6ture du
processus de reprise/récupération n'est pas
comptabilisée.

avg_time_btwn_commits | Num 12 Durée moyenne entre les exécutions pour le
processus en cours. La derniére exécution possible
lors de la cl6ture du processus de
reprise/récupération n'est pas comptabilisée.

Retek Merchandising System

V_restart_x

Des vues de reprise sont utilisées pour les programmes avec requétes nécessitant plusieurs
traitements. Des vues distinctes sont créées pour chaque pilote de traitement, rayon ou magasin
par exemple. Une jointure sera appliquée sur une vue basée sur un pilote de traitement pour
permettre la séparation des données discrétes en traitements spécifiques. Reportez-vous a la
section consacrée aux traitements pour plus de détails.

V_RESTART_X

driver_name varchar2 Par exemple, rayon, magasin, région, etc.

num_threads number Nombre total de traitements dans I'ensemble (défini dans la table
restart_control).

driver_value number Valeur numérique de driver_name.

thread_val number Valeur du traitement défini pour la combinaison driver_value et

num_threads.

Présentation des modeles de données

Pourquoi les tables restart_program_status et restart_bookmark sont t-
elles séparées

Le processus d'initialisation doit extraire toutes les lignes associées au schéma restart_name, mais
ne met a jour q'une seule ligne. Le processus d'exécution verrouille de fagon continue une ligne
avec une valeur restart_name et une valeur thread_val spécifiques. Les données impliquées dans
ces deux processus sont divisées entre les deux tables pour réduire le nombre d'interruptions
pouvant intervenir du fait du verrouillage des lignes. Méme si vous autorisez les "lectures
impropres" sur les lignes verrouillées, un processus peut encore s'interrompre s'il tente de mettre a
jour une ligne verrouillée. Le processus d'exécution ne s'intéresse qu'a une seule ligne. Par
conséquent, si nous déplacgons les données du processus d'exécution dans une table séparée avec
verrouillage des lignes (et non des pages), aucun probléme de conflit n'interviendra au cours de
I'exécution. Avec des tables séparées, le processus d'initialisation détecte un nombre moins
important de conflits car les lignes ne sont verrouillées que deux fois, au début et a la fin du
processus.

Configuration physique

Le processus de reprise/récupération doit étre aussi robuste que possible dans I'éventualité d'une
défaillance de la base de données. Les colits sont compensés par les avantages apportés par le
placement des tables de reprise/récupération dans une base de données distincte. Cependant, ces
tables doivent étre définies dans un espace de table distinct doublé avec un segment de
repositionnement séparé.

Chapitre 2 — Reprise et récupération Pro*C

Reprise/réecupération avec tables et fichiers

Le processus de reprise/récupération stocke toutes les données nécessaires a la reprise du
processus a partir du dernier point d'exécution. Les informations nécessaires sont donc mises a
jour dans la table restart_bookmark avant que les données traitées ne soient exécutées. Les
modules avec requétes et fichiers stockent différentes informations dans les tables de reprise et
appellent donc différentes fonctions au sein de I'API de reprise/récupération pour effectuer leurs
taches.

Lorsque le processus d'un programme est basé sur des requétes, c'est-a-dire qu'un module est géré
par une requéte pilote qui traite les lignes extraites, les informations stockées dans la table
restart_bookmark sont associées aux données extraites de la requéte pilote. Si le programme
échoue lors du traitement, les informations stockées dans les tables de reprise peuvent étre
utilisées dans la clause WHERE conditionnelle de la requéte pilote pour extraire uniquement les
données qui doivent étre traitées depuis le dernier événement d'exécution.

Cependant, les traitements avec fichiers doivent simplement stocker I'emplacement du fichier au
moment du dernier point d'exécution. L'emplacement par octets du fichier est stocké dans la table
restart_bookmark et est extrait lors d'une reprise. Ces informations sur I'emplacement sont
utilisées pour rechercher dans le fichier rouvert le dernier point d'exécution des données.

Dans la mesure ou différentes informations sont enregistrées et extraites de la table
restart_bookmark pour chaque type différent de traitement, différentes fonctions doivent étre
appelées pour exécuter la logique de reprise/récupération. Le traitement avec requétes appelle les
fonctions restart_init ou retek_init et restart_commit ou retek_commit, tandis que le traitement
avec fichiers appelle les fonctions restart_file_init et restart_file_commit.

Outre les différences en ce qui concerne les appels de fonctions API, le flux de traitement batch
de la reprise/récupération différe selon les fichiers. Le processus de reprise/récupération avec
tables utilise un flux logique d'extraction principal alors que le traitement avec fichiers lit
généralement les lignes dans un batch. Le traitement avec tables requiert que sa structure assure la
modification de la clé LUW avant qu'un événement d'exécution soit autorisé, alors que le
traitement avec fichiers n'a pas besoin d'évaluer la LUW qui peut étre généralement considérée
comme le type de transaction traité par le fichier d'entrée.

Retek Merchandising System

Le schéma ci-dessous décrit le flux du programme de reprise/récupération avec tables :

Logique d’initialisation
(appel de restart_init)
I

Fonction de traitement

I
Extraction
principale

I

Traitement
I
Extraction
I
Exécution
I

Logique de cl6ture

Le schéma ci-dessous décrit le flux du programme de reprise/récupération avec fichiers

Logique d’initialisation
(appel de restart_init)
I

Ouvrir et rechercher
dans fichier

Boucle externe
Place plusieurs enregistrements
en mémoire tampon.

Boucle interne
Traite les enregistrements
individuels.

Traitement
I
Fin de boucle interne
I
Exécution
|
Fin de boucle externe
|
Logique de cléture

10

Chapitre 2 — Reprise et récupération Pro*C

Logique d'initialisation :

o Déclarations de variables

o Initialisation de fichiers

o Appel de la fonction restart_init() - détermine la logique de démarrage ou de reprise

e Premiére extraction sur la requéte pilote

Logique de démarrage : initialise les compteurs/accumulateurs sur les valeurs de démarrage
Logique de reprise :

e Analyse du champ application_image de la table de signets dans les compteurs/accumulateurs
¢ Initialisation des compteurs/accumulateurs pour les valeurs des champs analysés
Processus/boucle d'exécution :

o Mises a jour et manipulations du processus

e Extraction du nouvel enregistrement

o Création de varchar depuis les compteurs/accumulateurs a transmettre au champ
application_image de la table restart_bookmark

e Appel de restart_commit()
Logique de cléture :

e Remise a zéro des pointeurs
e Clbture des curseurs/fichiers

e Appel de restart_close()

11

Retek Merchandising System

Description des fonctions API

restart_init :

Fonction d'initialisation pour le traitement batch avec tables.

Le processus rassemble des informations a partir des tables de contréle de reprise

Nombre total de traitements pour un programme et valeur de traitement affectée au processus
en cours.

Nombre d'enregistrements a itérer dans le curseur pilote avant exécution (LUW).

Chaine de démarrage - signet de la derniére execution a utiliser pour la reprise ou chaine
nulle si le processus en cours est démarré pour la premiére fois et initialise I'enregistrement
de la reprise (restart_program_status).

Le statut du programme est modifié en "démarré" pour le premier traitement disponible.

Les informations d'activité sont mises a jour : opérateur, processus, heure de début, etc. et
tables de signets (restart_bookmark).

Lors d'un premier démarrage, un enregistrement est inséré.

Lors d'une reprise, les informations relatives a la chaine de démarrage et au contexte
d'application de la derniére exécution sont extraites.

restart_file_init :

Fonction d'initialisation pour le traitement batch avec fichiers. Elle est appelée depuis les modules
de programme.

1 Le processus rassemble des informations a partir des tables de contréle de reprise :

= nombre d'enregistrements a lire depuis le fichier pour le traitement
vectoriel et pour le cycle d'exécution

= point de démarrage du fichier - signet de la derniére exécution a utiliser
pour la reprise ou 0 pour un premier démarrage

2 Le processus initialise I'enregistrement de reprise (restart_program_status) :

= |e statut du programme est modifié en "démarré" pour le traitement en
cours

= |es informations d'activité sont mises a jour : opérateur, processus, heure
de début, etc.

3 Le processus initialise les tables de signets de reprise (restart_bookmark) :

12

= |ors d'un premier démarrage, un enregistrement est inséré.

= lors d'une reprise, les informations relatives au point de démarrage du
fichier et au contexte d'application de la derniére exécution sont extraites

Chapitre 2 — Reprise et récupération Pro*C

restart_commit :

Fonction d'exécution des transactions traitées pour un nombre donné d'extractions de requétes
pilotes. Elle est appelée depuis les modules de programme.

Le processus met a jour les informations de la chaine de démarrage restart_bookmark et de
I'image d'application si un événement d'exécution est intervenu :

¢ le nombre actuel d'extractions de requétes pilotes est supérieur ou égal au nombre maximal
défini dans la table restart_program_status (et extrait dans la fonction restart_init)

o la chaine de signet du dernier enregistrement traité est supérieure ou égale au maximum
défini dans la table restart_program_status (et extraite dans la fonction restart_init)

o la chaine de signet augmente le compteur

e lachaine de signet définit la chaine actuelle comme la derniére chaine clé extraite

restart_file_commit :

Fonction d'exécution des transactions traitées apres lecture d'un nombre de lignes depuis un
fichier simple. Elle est appelée depuis les modules de programme.

Le processus met a jour la table restart_bookmark :

e start_string est défini a I'emplacement du pointeur de fichier pour la lecture actuelle du fichier
simple

o l'image d'application est mise a jour avec les informations de contexte

restart_close:
Fonction de mise a jour des tables de reprise aprés la fin d'un programme.

Le processus détermine si le programme s'est terminé avec succés. Si le programme se termine
avec succes :

o latable restart_program_status est mise a jour avec les informations de fin et le statut est
remis a zéro

o l'enregistrement correspondant de la table restart_bookmark est supprimé

o |atable restart_program_history contient une copie de I'enregistrement de la table
restart_program_status inséré dans celle-ci

o le restart_program_status est réinitialisé
Si le programme se termine avec des erreurs
e les transactions sont exécutées une nouvelle fois

o lacolonne program_status de la table restart_program_status est définie a "interrompu dans
*" ou * correspond & I'une des trois fonctions principales du batch : initialisation, traitement
ou finalisation

¢ les modifications sont envoyées

13

Retek Merchandising System

parse_array_args :

Cette fonction décompose une chaine en composants et place les résultats dans un tableau
multidimensionnel. Elle est appelée uniquement dans le cadre de fonctions API et jamais dans les
modules de programme.

Le processus utilise une chaine pour I'analyse et un pointeur vers un tableau de caractéres.

Le premier caractéere de la chaine utilisée est le séparateur.

restart_file_write :

Cette fonction insere les résultats des fichiers temporaires dans des fichiers de sortie définitifs
lorsqu'un point d'exécution est atteint. Elle est appelée depuis les modules de programme.
restart_cat :

Cette fonction contient la logique d'insertion d'un fichier dans un autre. Elle est appelée
uniquement dans le cadre des fonctions API de reprise/récupération et jamais directement dans
les modules de programme.

En-tétes et bibliothéque de reprise

Les fichiers d'en-téte restart.h et std_err.h sont inclus dans retek.h pour pouvoir utiliser la
fonctionnalité de reprise/récupération.

restart.h

Ce fichier d'en-téte de bibliothéque contient des constantes, des substitutions de macros et des
définitions de variables globales externes ainsi que des prototypes de fonctions de
reprise/récupération.

Les variables globales définies incluent :
o le nombre de traitements affectés au processus en cours
o lavaleur du nombre maximal de traitements du processus en cours

= pour les traitements avec tables, ce nombre est identique au nombre d'itérations de la
requéte pilote avant exécution

= pour les traitements avec fichiers, ce nombre est identique au nombre de lignes lues
depuis un fichier simple et traitées a lI'aide d'un tableau structuré avant que I'exécution ne
puisse intervenir

¢ le nombre actuel d'itérations de requétes pilotes utilisées pour le traitement avec tables ou
I'index du tableau actuel utilisé dans le traitement avec fichiers

e le nom affecté a I'unité de travail logique ou au programme par le programmeur. Ce nom est
identique a la colonne restart_name des tables restart_program_status,
restart_program_history et restart_bookmark

14

Chapitre 2 — Reprise et récupération Pro*C

std_rest.h

Ce fichier d'en-téte de bibliotheque contient les déclarations de variables de reprise standard qui
sont visibles dans les modules de programme.

Les définitions des variables incluses sont les suivantes :

valeur de la chaine concaténée de la clé de requéte pilote extraite en cours de traitement
valeur de la chaine concaténée de la clé de requéte pilote suivante dans le traitement
message d'erreur transmis a la fonction restart_close et mis a jour dans restart_program_status

chaine concaténée des informations de contexte d'application, par exemple, les compteurs et
accumulateurs

nom du pilote de traitement, par exemple, rayon, magasin, entrepot, etc.
nombre total de traitements utilisés par ce programme

pointeur a transmettre a la fonction d'initialisation pour détailler le nombre de valeurs de
traitement

En-tétes et bibliothéques de reprise mis ajour

La bibliothéque de reprise/récupération RMS actuelle a été mise a jour avec la version 9, 10 et 11
afin d'optimiser la gestion, de simplifier le codage et d'améliorer les performances. Tout en
préservant la fonctionnalité et le mécanisme actuels de la reprise/récupération batch, les
améliorations et perfectionnements suivants ont été apportés :

Organisation des variables globales associées a la reprise/récupération

Possibilité pour le développeur des batch de controler entierement les parametres des
variables de reprise/récupération transmis au cours de l'initialisation

Retrait des fichiers d'écriture temporaires pour accélérer le processus d'exécution

Déplacement d'un nombre plus important d'informations et de processus du code batch vers le
code de bibliotheque

Ajout d'un nombre plus important d'informations dans les tables de reprise/récupération a des
fins d'optimisation

15

Retek Merchandising System

retek_2.h

Ce fichier d'en-téte de bibliotheque est inclus par tous les codes C de Retek et permet de
centraliser toutes les insertions du systéme, les définitions de macros, les variables globales, les
prototypes de fonctions et notamment, les structures a utiliser dans la nouvelle bibliotheque de
reprise/récupération.

Les variables globales utilisées par I'ancienne bibliothéque de reprise/récupération sont toutes
supprimées. A la place, chaque programme batch déclare les variables requises et appelle la
fonction retek_init() pour les renseigner a partir des tables de reprise/récupération. Par
conséquent, seules les variables suivantes sont déclarées :

e gi_no_commit : balise de I'option de ligne de commande NO_COMMIT (utilisée a des fins
d'optimisation)

o gi_error_flag : balise d'erreur fatale
e gi_non_fatal _err_flag : balise d'erreur non fatale

En outre, la structure de rtk_file est définie pour la gestion de toutes les interfaces de fichiers
associées a la fonction de reprise/récupération. Les fonctions d'activité sur la structure de fichiers
sont également définies.

#define NOT_PAD 1000 /* Flag not to pad thread val */
#define PAD 1001 /* Flag to pad thread val at the
end */

#define TEMPLATE 1002 /* Flag to pad thread_val using

filename template */
#define MAX_FILENAME_LEN 50
typedef struct

{

FILE* fp; /* File pointer */

char Ffilename[MAX _FILENAME LEN + 1]; /* Filename */

int pad_flag; /* Flag whether to pad thread val to filename
*/
} rtk_file;

int set filename(rtk file* file_struct, char* file_name, int

pad_flag);
FILE* get FILE(rtk_file* file_struct);
int rtk_print(rtk_file* file_struct, char* format, ...);

int rtk_seek(rtk_file* file_struct, long offset, int whence);

Les parametres que retek_init() doit renseigner doivent étre transmis dans un format connu de
retek_init(). Une structure est définie ici a cet effet. Un tableau contenant les paramétres de ce
type de structure est obligatoire dans chague programme batch. Les autres conditions sont les
suivantes :

16

Chapitre 2 — Reprise et récupération Pro*C

Initialisation obligatoire a chaque programme batch.

o Lalongueur des noms, types et sous-types ne doit pas dépasser les définitions ici.

o Le type ne peut étre que : "int", "uint", "long", "string" ou "rtk_file".

e Pour les types "int",

uint" ou "long", utilisez "' comme sous-type.

e Pour le type "string", le sous-type peut étre uniquement "S" (chaine de démarrage) sauf si la
chaine représente la valeur du traitement ou le nombre de traitements, dans ce cas utilisez *“”
comme sous-type ou "I" (chaine d'image).

e Pour le type "rtk_file", le sous-type peut uniquement étre "I" (saisie) ou "O" (sortie).
#define NULL_PARA NAME 51
#define NULL_ PARA TYPE 21
#define NULL_PARA SUB TYPE 2
typedef struct
{
char name[NULL_PARA NAME];
char type[NULL PARA TYPE];
char sub_type[NULL_PARA SUB_TYPE];

} init_parameter;

Nouvelles fonctions de reprise/récupération

Depuis la version 9.0, tous les nouveaux programmes batch sont codés a l'aide de nouvelles
fonctions de reprise/récupération. Les programmes batch utilisant les anciennes fonctions API de
reprise/récupération sont encore utilisés. Par conséquent, Retek met actuellement a jour deux
ensembles de bibliothéques de reprise/récupération.

int retek_init(int num_args, init_parameter *parameter, ...)

retek_init initialise la reprise/récupération (pour traitements avec tables et fichiers) :

1 Transmet num_args comme nombre d'éléments dans le tableau init_parameter, puis dans le
tableau init_parameter, puis les variables qu'un programme batch doit initialiser dans I'ordre
et les types définis dans le tableau init_parameter. Toutes les variables int, uint et long
doivent étre transmises pour référence.

2 Extrait toutes les valeurs au niveau des variables globales et des modules des bases de
données.

3 Initialise les enregistrements pour RESTART_PROGRAM_STATUS et
RESTART_BOOKMARK.

4 Analyse les variables d'initialisation définies par I'utilisateur (variable arg list).

Renvoie NO_THREAD_AVAILABLE s'il n'existe aucun enregistrement qualifié dans
RESTART_CONTROL ou RESTART_PROGRAM_STATUS.

6 Exécution.

17

Retek Merchandising System

int retek_commit(int num_args, ...)

retek_commit effectue une vérification et une exécution, le cas échéant (pour les traitements avec
tables et fichiers) :

1 Transmet num_args, puis les variables pour start_string en premier et celles de la chaine
d'image (le cas échant) ensuite. num_args représente le nombre total de variables pour ces
deux groupes. Ce sont toutes des variables de type chaine transmises dans le méme ordre que
dans retek_init() ;

2 Concaténe start_string, soit par transmission de variables (traitement avec tables), soit depuis
la fonction ftell des pointeurs de fichiers d'entrée (traitement avec fichiers) ;

3 Vérifie si le point d'exécution est atteint (vérification du compteur et si traitement avec tables,
comparaison des chaines de démarrage) ;

4 Si le point d'exécution est atteint, image_string est concaténé a partir des variables transmises
(le cas échéant) et la fonction internal_commit() est appelée pour extraire out_file_string et
mettre a jour la table RESTART_BOOKMARK ;

5 Lors du traitement avec tables, pl_current_count est incrémenté et ps_cur_string est mis a
jour.

int commit_point_reached(int num_args, ...)

commit_point_reached vérifie si le point d'exécution a été atteint (pour les traitements avec tables
et fichiers). La différence entre cette fonction et la vérification dans retek_commit() réside dans le
fait que pl_current_count et ps_cur_string ne sont pas mis a jour ici. Cette fonction de vérification
est congue pour étre utilisée avec retek_force_commit(), et la logique permettant d'assurer
I'intégrité de la LUW existe dans le programme batch de l'utilisateur. Elle peut également étre
utilisée avec retek_commit() pour d'autres traitements au moment de I'exécution.

1 Transmet num_args, puis toutes les variables de type chaine pour start_string dans le méme
ordre que dans retek_init(). num_args représente le nombre de variables pour start_string. S'il
n'existe aucun start_string (comme dans traitement avec fichiers) la transmission est NULLE.

2 Pour les traitements avec tables, si pl_curren_count atteint pl_max_counter et si la chaine de
signet nouvellement concaténée est différente de ps_cur_string, 1 est renvoyé ; dans le cas
contraire, 0 est renvoyé.

3 Pour les traitements avec fichiers, si pl_curren_count atteint pl_max_counter, 1 est renvoyé ;
dans le cas contraire, O est renvoyé.

int retek_force_commit(int num_args, ...)

retek_force_commit s'exécute toujours (pour traitements avec tables et fichiers) ;

1 Transmet num_args, puis les variables pour start_string en premier et celles de la chaine
d'image (le cas échant) ensuite. num_args représente le nombre total de variables pour ces
deux groupes. Ce sont toutes des variables de type chaine transmises dans le méme ordre que
dans retek_init() ;

2 Concaténe start_string, soit par transmission de variables (traitements avec tables), soit depuis
la fonction ftell des pointeurs de fichiers d'entrée (traitements avec fichiers) ;

3 image_string est concaténé a partir des variables transmises (le cas échéant) et la fonction
internal_commit() est appelée pour extraire out_file_string et mettre a jour la table
RESTART_BOOKMARK ;

18

Chapitre 2 — Reprise et récupération Pro*C

4 Lors du traitement avec tables, pl_current_count est incrémenté et ps_cur_string est mis a
jour.

int retek_close(void)

retek_close cl6t la reprise/récupération (pour les traitements avec tables et fichiers) :

1 Sil'option de ligne de commande gi_error_flag ou NO_COMMIT est VRAIE, tous les
changements des bases de données sont exécutés a nouveau.

2 Mise a jour de la table RESTART_PROGRAM_STATUS en fonction de gi_error_flag.

3 S'il n'existe aucun gi_error_flag, un enregistrement est inséré dans la table
RESTART_PROGRAM_HISTORY avec des informations extraites des tables
RESTART_CONTROL, RESTART_PROGRAM_BOOKMARK et
RESTART_PROGRAM_STATUS.

4 S'il n'existe aucun gi_error_flag, I'enregistrement RESTART_BOOKMARK est supprimé.
5 Exécution.

6 CIlot toutes les suites de données des fichiers ouverts.

Int retek_refresh_thread(void)
Actualise le traitement d'un programme pour pouvoir I'exécuter une nouvelle fois.

1 Metajour I'enregistrement RESTART_PROGRAM_STATUS pour que le statut
PROGRAM_STATUS du programme en cours soit "prét pour démarrage".

2 Supprime tous les enregistrements RESTART_BOOKMARK pour le programme en cours.
3 Exécution.

void increment_current_count(void)

increment_current_count augmente pl_current_count de 1.

| Remarque : appelé depuis get_record() de intrface.pc pour E/S avec fichiers.

int parse_name_for_thread_val(char* name)

parse_name_for_thread_val analyse la valeur du traitement a partir de I'extension du nom de
fichier défini.

intis_new_start(void)

is_new_start vérifie si I'exécution en cours est un nouveau démarrage ; si tel est le cas, 1 est
renvoyé, dans le cas contraire, 0 est renvoyeé.

19

Retek Merchandising System

Seuil d'exécution avec requétes

Les capacités de reprise sont centrées autour de I'unité de travail logique d'un programme (LUW).
Un programme batch exécute des transactions et active des points d'exécution en fonction de la
LUW. Une LUW est composée d'une clé de transaction (telle que article-magasin) et d'un nombre
maximal d'exécutions. Les événements d'exécution interviennent aprés le traitement d'un nombre
donné de clés de transaction. Au moment de I'exécution, les informations de la clé nécessaires a
la reprise sont stockées dans la table de reprise. Lors d'une exception résolue ou non, les
transactions sont renvoyées vers le dernier point d'exécution. Au moment de la reprise, les
informations de la clé de reprise sont extraites des tables pour permettre au processus de
continuer le traitement des données non traitées.

20

Chapitre 3 — Multi-traitements Pro*C

Chapitre 3 — Multi-traitements Pro*C

L'exécution de plusieurs instances d'un programme donné peut se faire a l'aide de "traitements".
Des curseurs pilotes doivent étre divisés en segments discrets de données exécutés par différents
traitements. Ce traitement est réalisé a I'aide de procédures stockées qui séparent les mécanismes
de traitements (par exemple, rayons ou magasins) en traitements particuliers pour une valeur
donnée (par exemple, rayon 1001) et du nombre total de traitements pour un processus donné.

L'exécution avec fichiers n'utilise pas réellement de “traitement”. Le méme fichier de données ne
sera jamais traité par plusieurs processus. Le multi-traitements est réalisé en divisant les données
en fichiers distincts qui seront traités par un processus distinct. La valeur du traitement est
reportée dans le fichier d'entrée. Cela est nécessaire pour s'assurer que les informations
appropriées peuvent étre associées au fichier correspondant dans I'éventualité d'une reprise.

RMS a une longueur de stockage de 10 chiffres. Par conséquent, les valeurs de traitement
pouvant étre fonction du numéro de stockage, doivent pouvoir comprendre 10 chiffres également.
Dans la mesure ou les valeurs de traitement sont déclarées comme des variables "C" de type int
(long), elles sont limitées a 9 chiffres par le systéme.

Cela ne signifie pas que vous ne pouvez pas utiliser de numéros de stockage a 10 chiffres. Cela
signifie que si vous utilisez des numéros de stockage a 10 chiffres, vous ne pouvez pas les utiliser
comme valeurs de traitement.

Description de |I'exécution de traitements

L'utilisation de plusieurs traitements ou processus dans le traitement batch de Retek améliore
I'efficacité et réduit la durée de traitement. Le processus de traitement a fourni un maximum de
flexibilité a I'utilisateur final en ce qui concerne la définition du nombre de traitements selon
lequel un programme doit étre divise.

A l'origine, la fonction de traitement devait étre utilisée directement dans les requétes pilotes.
Cependant, cette méthode s'est avérée tres lente et donc inutilisable. Au lieu d'utiliser I'appel de
fonctions directement dans les requétes pilotes, I'application effectue la jointure des tables de
requétes pilotes en une seule vue (par exemple, v_restart_store) qui inclut la fonction.

21

Retek Merchandising System

Fonction de traitement avec requétes

Une procédure stockée a été créée pour déterminer les valeurs de traitement. restart_thread_return
renvoie une valeur de traitement dérivée de la valeur numérique d'un pilote, telle que le nombre
de rayons, et le nombre total de traitements dans un processus donné. Les clients doivent étre en
mesure de déterminer le meilleur algorithme pour leur application et si une méthode différente de
segmentation de données est nécessaire, la fonction restart_thread_return peut étre modifiée ou
une autre fonction peut étre utilisée dans les vues contenant la fonction.

Actuellement la fonction restart_thread_return est une routine de module trés simple :

CREATE OR REPLACE FUNCTION RESTART_THREAD_RETURN (in_unit_value
NUMBER,

in_total_ threads NUMBER)
RETURN NUMBER IS
ret_val NUMBER;

BEGIN
ret val := MOD(ABS(in_unit _value),in_total threads) + 1;
RETURN ret val;

END;

Vue de reprise avec requétes

Chagque vue de reprise contient quatre éléments :

o le nom du mécanisme de traitement, driver_name

o le nombre total de traitements dans un groupement, num_threads
o lavaleur du mécanisme pilote, driver_value

o lavaleur du traitement pour cette combinaison donnée de driver_name, num_threads et de
valeur de pilote, thread_val

La vue est basée sur la table restart_control et une table d'informations, telle que DEPS ou
STORES. Une ligne existe dans la vue pour chaque valeur de pilote et chaque total de valeur de
traitements. Par conséquent, si un détaillant utilise toujours le méme nombre de traitements pour
un pilote donné (rayon, magasin, etc.), la vue est relativement petite. Par exemple, si tous les
programmes d'un détaillant, traités par rayon, contiennent un nombre total de 5 traitements, la vue
ne contient qu'une seule valeur pour chaque rayon. Par exemple, si le nombre total de rayons est
10, v_restart_dept contiendra 10 lignes. Cependant, si le détaillant souhaite que I'un des
programmes contienne 10 traitements, il y aura 2 lignes pour chague rayon : une pour 5
traitements et une autre pour 10 traitements (par exemple, si le nombre total de rayons est de 10,
v_restart_dept contiendra 20 lignes). Bien évidemment, il est recommandé aux détaillants de
réduire au maximum le nombre total de traitements pour un pilote de traitement afin de réduire la
portée de la jointure des tables du curseur pilote de la vue.

Voici un exemple dans lequel la méme valeur de pilote peut résulter en différentes valeurs de
traitements. Cet exemple utilise la fonction restart_thread_return actuellement écrite pour dériver
les valeurs de traitement.

22

Chapitre 3 — Multi-traitements Pro*C

DRIVER_NAME NUM_THREADS DRIVER_VAL THREAD_VAL
DEPT 1 101 1
DEPT 2 101 2
DEPT 3 101 3
DEPT 4 101 2
DEPT 5 101 2
DEPT 6 101 6
DEPT 7 101 4

Voici un exemple de I'aspect d'une répartition de magasins avec 10 magasins et 5 traitements :

DRIVER_NAME

NUM_THREADS

DRIVER_VAL

THREAD_VAL

STORE

STORE

STORE

STORE

STORE

STORE

STORE

STORE

STORE

Ol | N[OOI WIN]|PF

STORE

oojloojlojfonjlorjor|jorjor|or | o

(BN
o

Rrlo|lrlw|NM|lR|lal~]lw]| N

Syntaxe :

Voici un exemple de la syntaxe nécessaire a la création de la vue pour la jointure multi-
traitements, créée avec script (reportez-vous a la section sur les traitements pour plus

d'informations sur la fonction restart_thread_return) :

create or replace view v_restart_store as

select rc.driver_name driver_name,

rc.num_threads num_threads,

s.store driver_value,

restart_thread return(s.store, rc.num_threads) thread val

from restart_control rc, store s

where rc.driver_name = "STORE*®

23

Retek Merchandising System

Retek Sales Audit ou ReSA (audit des ventes Retek) utilise un schéma de traitement différent.
Dans la mesure ou ReSA doit étre exécuté 24 heures sur 24 et 7 jours sur 7, il n'existe aucun
écran batch. Cela signifie que des programmes batch peuvent étre exécutés lorsque des
utilisateurs sont en ligne. ReSA a résolu ce probléme de conflit en créant un mécanisme de
verrouillage pour les données organisées par jour magasin. Ces verrouillages fournissent un
schéma de traitement naturel. Les programmes qui utilisent toutes les données des jours magasin
essaient de verrouiller d'abord le jour magasin. Si le verrouillage échoue, le programme passe tout
simplement au jour magasin suivant. Cela a pour effet d'équilibrer automatiquement la charge de
travail entre tous les programmes en cours d'exécution.

Gestion du schéma de traitement

Tous les noms de programmes sont stockés dans la table restart_control avec leur description
fonctionnelle, le pilote de requéte (rayon, magasin, famille, etc) et le nombre associé de
traitements défini par l'utilisateur. L'utilisateur doit pouvoir naviguer dans tous les programmes
pour consulter le nom, la description et le pilote de requéte et si la balise update_allowed est
définie sur vrai, modifier le nombre de traitements (la mise a jour est définie sur vrai).

Avec fichiers

Les exécutions avec fichiers n'utilisent pas vraiment plusieurs traitements. Par conséquent, le
nombre de traitements défini dans la table restart_control doit toujours étre égal a un. Cependant,
un enregistrement restart_program_status doit étre créé pour chaque fichier d'entrée traité pour le
module du programme. Par ailleurs, la valeur de traitement affectée doit étre contenue dans le
nom du fichier d'entrée. La fonction restart_parse_name incluse dans le module de programme
analyse la valeur de traitement a partir du nom du programme et I'utilise pour déterminer la
disponibilité et les conditions de reprise de la table restart_program_status.

Reportez-vous au début de la section consacrée au multi-traitements pour une présentation des
limites de I'utilisation de valeurs de traitement importantes (supérieures a 9 chiffres).

24

Chapitre 3 — Multi-traitements Pro*C

Avec requétes

Lorsque le nombre de traitements est modifié dans la table restart_control, le formulaire doit
d'abord vérifier qu'aucun enregistrement pour ce programme n'est en cours de traitement dans la
table restart_program_status (c'est-a-dire que tous les enregistrements = "Terminé"). Le
programme doit insérer ou supprimer des lignes selon que le nouveau nombre de traitements est
supérieur ou inférieur a I'ancien nombre. Si le nouveau nombre est inférieur a I'ancien, tous les
enregistrements pour le program_name dont le nombre de traitements est supérieur au nouveau
seront supprimés. Si le nouveau nombre est supérieur a I'ancien, de nouvelles lignes seront
insérées. Un nouvel enregistrement est inséré pour chaque combinaison restart_name/thread_val.

Par exemple, si le programme batch SALDLY voit son nombre de traitements passer de 2 a 3,
une ligne supplémentaire (3) est ajoutée a la table restart_program_status. De méme, si le nombre
de traitements est réduit a 1 dans cet exemple, les lignes 2 et 3 sont supprimées.

Table restart_program_status originale :

ligne n°restart name thread val program_name etc...
1 WinSal -main 1 WinSal

2 WinSal -main 2 WinSal

Table restart_program_status apres insertion :

ligne n°restart name thread val program name etc...

1 WinSal -main 1 WinSal
2 WinSal -main 2 WinSal
3 WinSal -main 3 WinSal

Table restart_program_status aprés suppression :
ligne n°restart name thread val program name etc...
1 WinSal -main 1 WinSal

Les utilisateurs doivent également étre en mesure de modifier la colonne commit_max_ctr de la
table restart_program_status. Ils peuvent ainsi contréler le nombre d'itérations dans la requéte
pilote ou le nombre de lignes lu a partir d'un fichier simple qui détermine I'unité de travail logique
(LUW).

Gestion des batchs

Les utilisateurs doivent étre en mesure de consulter le statut de tous les enregistrements de la
table restart_program_status. Il s'agit de I'emplacement ou I'utilisateur peut consulter les messages
d'erreur des programmes interrompus ainsi que les statistiques et I'historique des exécutions de
batch. Les seuls champs modifiables sont program_status et restart_flag. L'utilisateur doit pouvoir
redéfinir le champ restart_flag de "N" a "Y" dans les enregistrements dont le statut est
interrompu, redéfinir les enregistrements démarrées a interrompu en cas d'interruption (fin
inhabituelle) et tous les enregistrements en cas de restauration a partir d'une inscription/nouvelle
exécution de tous les batch.

25

Retek Merchandising System

Planification et initialisation du batch de reprise

Avant d'exécuter tout batch avec la logique de reprise/récupération, un programme d'initialisation
doit étre exécuté pour mettre a jour le statut dans la table restart_program_status. Ce programme
doit mettre a jour le program_status sur "prét pour démarrage" lorsque le program_status d'un
enregistrement est défini a "terminé". Tous les programmes qui ont échoué lors de la derniére
execution des batch restent donc inchangés.

Pré- et post-traitements

En raison de la nature de I'algorithme de traitement, les programmes individuels doivent exécuter
un pré- ou post-programme pour initialiser les variables ou les fichiers avant I'exécution de tout
traitement ou la mise a jour des données finales aprés I'exécution de tous les traitements. La
décision a été prise de créer des pré- et post-programmes dans ce cas, plutt que de laisser la
logique de reprise/récupération décider si le traitement en cours d'exécution est le premier ou le
dernier d'un programme donné.

26

Chapitre 4 — Traitement vectoriel Pro*C

Chapitre 4 — Traitement vectoriel Pro*C

L'architecture des batch de Retek utilise le traitement vectoriel pour améliorer les performances
lorsque cela est possible. Au lieu de traiter des instructions SQL a I'aide de données scalaires, les
données sont regroupées en tableaux et utilisées comme variables de liaison dans les instructions
SQL. Cette méthode permet d'améliorer les performances en réduisant le trafic sur le
serveur/client et le réseau.

Le traitement vectoriel est utilisé pour sélectionner, insérer et mettre a jour les instructions. En
regle générale, Retek ne définit pas les tailles des tableaux de facon statistique, mais utilise la
variable d'exécution de reprise maximale comme multiple de dimensionnement. Les utilisateurs
doivent se souvenir de cela lorsqu'ils définissent le nombre maximal d'exécutions dans le
systeme.

Un facteur important a prendre en compte lors de l'utilisation du traitement vectoriel réside dans
le fait qu'Oracle ne permet pas d'activité vectorielle sur plus de 32 000 enregistrements a la fois.
Les bibliothéques de reprise/récupération de Retek ont été mises a jour pour définir des macros

pour la valeur suivante : MAX_ORACLE_ARRAY_SIZE.

Tous les programmes batch qui utilisent le traitement vectoriel doivent limiter la taille de leurs
tableaux a la valeur MAX_ORACLE_ARRAY _SIZE.

Si le nombre maximal d'exécutions est utilisé pour la taille du traitement vectoriel, vérifiez-le
apres I'appel a la fonction restart_init() et, le cas échéant, redéfinissez-le a la valeur maximale si
elle est supérieure. Si la fonction retek_init() est utilisée pour Il'initialisation, vérifiez le nombre
maximal d'exécutions renvoyé et redéfinissez-le a la taille maximale si elle est supérieure. Dans le
cas de rsetek_init(), redéfinissez le nombre maximal d'exécutions internes de la bibliothéque en
appelant la variable externe de type "int" limit_commit_max_ctr (int sans signe new_max_ctr).

Si d'autres variables sont utilisées pour le dimensionnement du traitement vectoriel, I'étape en
cours du traitement vectoriel doit étre encapsulée dans une boucle d'appel qui effectue les
activités vectorielles dans des sous-segments des tableaux ou chaque sous-segment correspond au
maximum a la valeur MAX_ORACLE_ARRAY _SIZE. Actuellement, tous les programmes batch
de Retek sont mis en ceuvre de cette fagon.

27

Chapitre 5 — Formats d'entrée et de sortie Pro*C

Chapitre 5 — Formats d'entrée et de
sortie Pro*C

Les programmes batch de Retek utilisent les saisies a la fois des tables et des fichiers simples. Par
ailleurs, les traitements peuvent entrainer la modification des structures des données et I'écriture
des données de sortie. Le traitement E/S avec fichiers joue le role d'interface entre Retek et les
systemes externes.

Présentation générale de l'interface

Pour simplifier les conditions d'interface, Retek exige que toutes les transactions entrantes et
sortantes sur fichiers utilisent des présentations de fichiers standard. Il existe deux types de
présentations de fichiers, présentation de détails uniquement et présentation de détails principaux,
qui sont décrits ci-apres.

Une interface API existe au sein de Retek pour simplifier le codage et la gestion des fichiers
d'entrée. L'interface API fournit des fonctionnalités de lecture des fichiers d'entrée, assure
I'intégrité de la présentation des fichiers et écrit et gere les fichiers des transactions rejetées.
Présentations des fichiers standard

La bibliothéque d'interface RMS prend en charge deux présentations de fichiers standard ; une
pour le traitement des détails principaux et une pour le traitement des détails uniquement. Les
sous-détails ne sont pas pris en charge par les fonctions de la bibliotheque d'interface de base
RMS.

Un code d'identification & 5 caracteres ou un type d'enregistrement identifie tous les
enregistrements d'un fichier E/S, quel que soit le type de fichier. Les types d'enregistrements
valides incluent les valeurs suivantes :

e FHEAD—En-téte de fichier

o FDETL—Détail de fichier

e FTAIL—En-queue de fichier

e THEAD—EN-téte de transaction
e TDETL—Détail de transaction

e TTAIL—En-queue de transaction

Chagque ligne du fichier doit commencer par le code du type d'enregistrement suivi d'un ID de
I'enregistrement a 10 caracteres.

29

Retek Merchandising System

Fichiers de détails uniqguement

Les présentations de fichiers possedent un enregistrement d'en-téte de fichier standard, un
enregistrement détaillé pour chaque transaction a traiter ainsi qu'un enregistrement d'en-queue de
fichier. Les types d'enregistrement valides sont FHEAD, FDETL et FTAIL.

Exemple :

FHEADOOOOOOOO00STKU1996010100000019960929

FDETLOOO0O000001SKU100000040000011011
FDETLOOO0O000001SKU100000050003002001
FDETLOO00000001SKU100000050003002001
FTAILOO000000020000000003

Fichiers de détails principaux

Les présentations de fichiers possedent un enregistrement d'en-téte de fichier standard, un
ensemble d'enregistrements pour chaque transaction a traiter et un enregistrement d'en-queue de
fichier. Cet ensemble de transactions contient un enregistrement d'en-téte d'ensemble de
transactions, les détails de I'ensemble de transactions pour les détails au sein de la transaction et
un enregistrement d'en-queue de transaction. Les types d'enregistrements valides sont FHEAD,
THEAD, TDETL, TTAIL et FTAIL.

Exemple :

FHEADOOOOOOOOO1RTV 19960908172000

THEADOOO000000200000000001234199609091202000000000003R
TDETLO00000000300000000001234000001SKU10000012
TTAILOO0O0000004000001
THEADOOO0O00000500000000001234199609091202001215720131R
TDETLO0O0000000600000000001234000001UPC400100002667
TDETLOO0O000000700000000001234000001UPC400100002643 0O
TTAILOO0O0000008000002

FTA1LOO000000090000000007

Nom de Nom du Type de Valeur par | Description
I'enregistrement | champ champ défaut
En-téte de fichier Descripteur | Char.(5) FHEAD Identifie le type
d'enregistrem d'enregistrement de fichier
ent de type
de fichier
Identifiant de | Number Défini par le | Numéro de la ligne du
ligne de (20) systéme fichier actuel
fichier externe

30

Chapitre 5 — Formats d'entrée et de sortie Pro*C

Nom de Nom du Type de Valeur par | Description
I'enregistrement | champ champ défaut
Définition du | Char.(4) s/o Identifie le type de
type de transaction
fichier
Date de Date Date de Date d'écriture du fichier
création du création par le systéme externe.
fichier
En-téte de Descripteur | Char.(5) THEAD Identifie le type
transaction d'enregistrem d'enregistrement de fichier
ent de type
de fichier
Identifiant de | Number Défini par le | Numéro de la ligne du
ligne de (10) systeme fichier actuel
fichier externe
Numéro Char.(14) Défini par le | Utilisé pour assurer une
controle systéme vérification unique des
ensemble externe transactions.
transactions
Date de la Char.(14) Défini par le | Date de transaction créée
transaction systeme dans le systeme externe.
externe
Détail de transaction | Descripteur | Char.(5) TDETL Identifie le type
d'enregistrem d'enregistrement de fichier
ent de type
de fichier
Identifiant de | Number Défini par le | Numéro de la ligne du
ligne de (10) systeme fichier actuel
fichier externe
Numéro Char.(14) Défini par le | Utilisé pour assurer une
controle systéme vérification unique des
ensemble externe transactions.
transactions
Numéro de Char.(6) Défini par le | Numéro séquentiel affecté
la séquence systéme pour détailler les
du détail externe enregistrements d'une
transaction.
En-queue de Descripteur | Char.(5) TTAIL Identifie le type

transaction

d'enregistrem
ent de type
de fichier

d'enregistrement de fichier

31

Retek Merchandising System

Nom de Nom du Type de Valeur par | Description
I'enregistrement | champ champ défaut
Identifiant de | Number Défini par le | Numéro de la ligne du
ligne de (10) systéme fichier actuel
fichier externe
Comptage Number (6) | Total des Nombre de lignes de détails
des lignes de lignes de dans une transaction.
détail de la détails
transaction
Fin de fichier Descripteur | Char.(5) FTAIL Identifie le type
d'enregistrem d'enregistrement de fichier
ent de type
de fichier
Identifiant de | Number Défini par le | Numéro de la ligne du
ligne de (10) systéme fichier actuel
fichier externe
Nombre total | Number Total de Toutes les lignes du fichier
de lignes (20) toutes les moins les enregistrements
transaction lignes de d'en-téte et d'en-queue de

transaction

fichier

32

Chapitre 5 — Formats d'entrée et de sortie Pro*C

Echange de données informatisé (EDI)

Apparus dans la version 7.0, les fichiers EDI utilisés ou créés par RMS ont un format générique :
RMS ne prend plus en charge les normes EDI particuliéres. En traitant les entrées et sorties EDI
au format générique, RMS ne se limite plus & une seule norme, ce qui permet aux clients de Retek
d'utiliser au mieux toutes les normes qu'ils ont choisies. La conversion du format des fichiers
d'entrée et de sortie EDI de n'importe quel format et vers n'importe quel format a I'aide d'un
logiciel tiers est une "méthode courante".

Dans le passé, les transactions EDI dans RMS étaient conformes aux normes ASC X12/VICS
(version 3040) et ANA/TRADACOMS. Elles adoptent maintenant un format qui applique les
normes d'interface de fichier RMS. Les fichiers entrants et sortants sont écrits dans une
présentation a champs fixes avec des enregistrements standard d'en-téte et d'en-queue de fichier.
Les informations de transaction sont incluses dans des enregistrements de présentation
principaux/de détails ou de détails uniquement. Les présentations correspondent aux fichiers
d'interface utilisés ailleurs dans RMS.

Les processus batch EDI de RMS écrivent les fichiers de transactions sortantes dans un format de
présentation générique, ces fichiers sont ensuite convertis par le logiciel tiers pour appliquer la
norme requise par chaque partenaire commercial. Les versions apres conversion sont transmises
au partenaire commercial. Les transactions entrantes doivent étre mises en forme par le partenaire
commercial dans une norme prédéfinie, transmises puis converties par le logiciel de conversion
du client Retek en présentation de fichier générique. Le fichier générique est utilisé comme
fichier d'entrée pour le traitement batch EDI de RMS.

Retek ne peut plus continuer a gérer des codes qui prennent en charge des normes EDI
particuliéres. Il existe plusieurs normes valides utilisées par les fournisseurs et les détaillants. Par
ailleurs, ces normes existent en plusieurs versions. La majorité des détaillants utilisent déja des
logiciels pour associer et convertir les transactions EDI dans la norme ou la version requise. Il
existe d'excellents logiciels tiers, tels que le convertisseur Gentran™ de Sterling Software, qui
convertit de fagon efficace les transactions entrantes et sortantes aux formats requis. L'utilisation
de logiciels tiers n'est pas seulement une pratique commune, mais également la meilleure
méthode utilisée a ce jour par les détaillants.

33

Chapitre 6 — Architecture RETL pour systeme RMS-RDF

Chapitre 6 — Architecture RETL pour
systeme RMS-RDF

Le systeme RMS travaille avec la structure RETL (Retek Extract Transform and Load). Cette
architecture optimise un outil haute performance de traitement des données qui permet aux
processus batch de bases de données de tirer parti des capacités de traitement paralléles.

La structure RETL exécute et analyse les opérateurs valides qui composent les scripts XML.

Ce chapitre offre une présentation du traitement RMS RETL. Vous trouverez des informations
supplémentaires sur l'outil RETL dans le tout dernier Guide du programmateur RETL.

Concept architectural

Le schéma ci-dessous illustre I'architecture de traitement de I'extraction. Plut6t que de gérer les
captures de modification a mesure qu'elles se produisent dans le systeme source au cours de la
journée, le processus extrait les données actuelles du systéme source. Les données extraites sont
sorties sur des fichiers plats. Ces fichiers plats sont alors disponibles pour des produits tels que
RDW (Retek Data Warehouse) et RDF (Retek Demand Forecasting, Prévision de la demande
Retek).

Le systéeme cible (RDW ou RDF par exemple) posséde sa propre méthode de finalisation des
transformations et de chargement des données nécessaires, qui peuvent passer par un traitement
supplémentaire dans le nouvel environnement.

L'architecture est basée sur deux étapes distinctes, illustrées par le schéma ci-dessous. Etape 1 :
extraction de la base de données RMS a l'aide de flux spécifiqguement définis. On obtient en sortie
des fichiers de données au format schéma spécifiquement défini. Cette étape ne comprend aucun
code spécifique a la destination.

Etape 2 : introduit un flux spécifique a la destination. Dans ce cas, les flux destinés au produit
RDF/RPAS transforment les données de maniére a ce que le systeme RDF puisse importer
correctement les données.

35

Retek Merchandising System

. Schémas de sortie et
Processus d'extraction |4 e flux d’extraction

de RMS

4

Fichiers d'extraction de RMS
(Format de schéma en sortie)

Etape 2

Flux de
transformation

Processus de
transformation

Charger fichiers

BD de destination

Les deux étapes du traitement RETL

36

Chapitre 7 — Présentation du programme RETL pour l'interface RMS-RDF

Chapitre 7 — Présentation du programme
RETL pour l'interface RMS-RDF

Ce chapitre récapitule les caractéristiques du programme RETL utilisées pour les extractions
RMS (RMSE). Vous trouverez des informations supplémentaires sur I'outil RETL dans le tout
dernier Guide du programmateur RETL.

[Remarque : Dans cette section, certains exemples font référence a des programmes
RETL n'ayant aucun lien avec le systeme RMS. Les références a ces programmes ne sont
données qu'a titre d'indication.

Installation

Sélectionnez le répertoire ol vous souhaitez installer RMS ETL. Ce répertoire (aussi intitulé
MMHOME) est I'emplacement d'ou les fichiers RMS ETL sont extraits.

L'arborescence de codes ci-dessous est utilisée pour la structure RETL au cours des extractions,
transformations et chargements. Il y est fait référence dans cette documentation.

<base directory (MMHOME)>

/data

/error

/log

/rfx
/bookmark
/etc
/lib
/schema

/src

37

Retek Merchandising System

Configuration

RETL

Avant de configurer et d'exécuter RMS ETL, installez la version 11.2 de RETL ou une version
supérieure (requise pour exécuter RMS ETL). Exécutez le script “verify_retl” (inclus dans
I'installation de RETL) pour vous assurer du bon fonctionnement de RETL avant de poursuivre.

Utilisateur et autorisations RETL

RMS ETL est installé et exécuté en tant qu'utilisateur RETL. Par ailleurs, les autorisations sont
configurées suivant le Guide du programmateur RETL. RMS ETL lit les données, crée, supprime
et met a jour les tables. Si ces autorisations ne sont pas configurées correctement, les extractions
échoueront.

Variables d'environnement

Consultez le Guide du programmateur RETL pour connaitre les variables d'environnement RETL
a configurer pour votre version de RETL. Vous devrez définir MMHOME comme répertoire de
base pour RMS RETL. Il s'agit du répertoire de plus haut niveau que vous ayez sélectionné au
cours de l'installation (reportez-vous a la section "Installation" ci-dessus). Dans votre fichier
.kshrc, vous devez ajouter une ligne analogue a celle ci-dessous :

export MMHOME=<base directory for RMS ETL>

parameétres rmse_config.env
Certaines variables doivent étre modifiées en fonction de vos paramétres locaux :
Par exemple :

export DBNAME=iInt9i

export RMS_OWNER=steffej rms1011

export BA OWNER=rmsintl1011

Vous devez configurer la variable d'environnement PASSWORD soit dans le fichier
rmse_config.env, soit dans .kshrc, soit a un autre emplacement pouvant étre consulté. Dans
I'exemple ci-dessous, si la ligne est ajoutée a rmse_config.env, le mot de passe ‘mypasswd’
servira a ouvrir une session sur la base de données :

export PASSWORD=mypasswd
Pour le systtme RMSE, veillez a revoir les paramétres d'environnement du fichier
rmse_config.env avant d'exécuter des modules batch.
Etapes a suivre pour configurer RETL

1 Ouvrez une session sur le serveur Unix avec un compte Unix pouvant exécuter les scripts
RETL.

2 Changez les répertoires en : <base_directory>/rfx/etc.

38

Chapitre 7 — Présentation du programme RETL pour l'interface RMS-RDF

3 Modifiez le script rmse_config.env :
a Donnez a la variable DBNAME le nom de la base de données RMS.
b Donnez a la variable RMS_OWNER le nom d'utilisateur du propriétaire du schéma RMS.
¢ Donnez a la variable BA_ OWNER le nom d'utilisateur de I'utilisateur du batch RMSE.

Code de retour au programme

Les programmes RETL utilisent un code de retour pour indiquer une exécution réussie. Si
I'exécution du programme a réussi, le code renvoyeé est zéro (0). Si I'exécution du programme a
échoué, il s'agira d'une valeur non nulle.

Fichiers de contrble du statut du programme

Pour éviter qu'un programme ne s'exécute alors que le méme programme est déja en cours
d'exécution avec le méme groupe de données, le code RMSE utilise un fichier de controle du
statut du programme. Au début de chaque module, rmse_config.env est exécuté. Il vérifie
I'existence du fichier de contréle du statut du programme. Si le fichier existe, le message
"${PROGRAM_NAME} has already started" est reporté et le module se ferme. Si le fichier
n'existe pas, un fichier de contrdle du statut du programme est créé et le module s'exécute.

Si le module échoue a un moment donné, le fichier de contréle du statut du programme n'est pas
supprimé. C'est a I'utilisateur de le supprimer avant d'exécuter de nouveau le module.
Conventions de dénomination des fichiers

La convention de dénomination du fichier de contréle de statut du programme permet d'exécuter
un programme, dont I'entrée est un fichier texte, plusieurs fois et en méme temps avec différents
fichiers.

Le nom et le répertoire du fichier de contréle du statut du programme est défini dans le fichier de
configuration (rmse_config.env). Le répertoire par défaut est SMMHOME/error. La convention
de dénomination du fichier de contr6le du statut du programme attribue par défaut le nom de
fichier suivant, séparé par des points :

e Nom du programme
e statut"
e Date virtuelle d'activité a laquelle le module a été exécuté

Par exemple, le fichier de contrble de statut du programme invildex est intitulé comme suit pour
I'exécution de batch du 5 janvier 2001 :

$MMHOME/error/rmse_daily_sales.status.20010105

39

Retek Merchandising System

Reprise et récupération

RETL traitant tous les enregistrements comme un tout (et non pas individuellement), la méthode
de reprise et de récupération doit étre différente de celle utilisée pour Pro*C. Le processus de
reprise et de récupération a deux objectifs :

1 Eviter la perte de données due a la défaillance du programme ou de la base de données.

2 Améliorer les performances, lors d'une reprise suite a une défaillance du programme ou de la
base de données, en limitant le volume de données devant étre retraitées.

Les modules RMS Extract (RMSE) extraient les données d'une base de données de transaction ou
d'un fichier texte sources et inscrivent les données dans un fichier texte. Les modules RMS Load
(RMSL) importent les données de fichiers plats, effectuent des transformations si nécessaire, puis
chargent les données dans les tables RMS appropriées.

La plupart des modules utilisent un seul flux RETL et ne requiérent ni reprise ni récupération. Si
pour quelque raison que ce soit, le processus d'extraction échoue, il est possible de régler le
probleme et d'exécuter de nouveau le processus depuis le début sans perte de données. Pour un
module utilisant un fichier texte comme entrée, il existe deux solutions permettant d'exécuter de
nouveau le module depuis le début :

1 Exécuter de nouveau le module avec l'intégralité du fichier d'entrée.

2 Exécuter de nouveau le module uniquement avec les enregistrements n'ayant pas été traités
correctement la premiére fois et enchainer le fichier obtenu avec le fichier de sortie de la
premiére exécution.

Pour limiter le volume de données devant étre retraitées, il existe des modules plus complexes qui
requiérent l'usage de plusieurs flux RETL et qui utilisent une méthode de signets pour la reprise
et la récupération. Cette méthode permet de relancer le module a partir du dernier point
d'exécution réussi et de terminer I'exécution. La méthode de reprise/récupération par signets
introduit un signet qui indique I'étape suivante du processus devant étre exécutée. Pour chaque
étape, le signet est inscrit dans un fichier de signets et lu a partir de celui-ci.

AR Remarque : Si pour régler le probléme a l'origine de la défaillance, il faut modifier des
données de la table ou du fichier source, le fichier de signets doit étre supprimé et le
processus doit étre exécuté de nouveau depuis le début afin d'extraire les données
modifiées.

Fichier de signets

Le nom et le répertoire du fichier de signets pour la reprise et la récupération sont définis dans le
fichier de configuration (rmse_config.env). Le répertoire par défaut est
$MMHOME/rfx/bookmark. La convention de dénomination du fichier de signets attribue par
défaut le nom de fichier suivant, séparé par des points :

e Nom du programme
e Le premier nom de fichier, s'il en est spécifié un dans la ligne de commande
. Ilbkmll

o Date virtuelle d'activité a laquelle le module a été exécuté

40

Chapitre 7 — Présentation du programme RETL pour l'interface RMS-RDF

Par exemple, le signet du programme invi ldex est inscrit dans le fichier suivant pour
I'exécution de batch du 5 janvier 2001 :

$MMHOME/ r Fx/bookmark/Zinvildex. invilddm. txt.bkm.20010105

Consignation des messages

Les journaux des messages sont écrits quotidiennement au format décrit dans cette section.

Fichier journal quotidien

Chaque programme RETL écrit un message dans le fichier journal quotidien lorsqu'il démarre et
se ferme. Le nom et le répertoire du fichier journal quotidien est défini dans le fichier de
configuration (rmse_config.env). Le répertoire par défaut est SMMHOME/log. Tous les fichiers
journaux sont codés au format UTF-8.

La convention de dénomination du fichier journal quotidien attribue par défaut le nom de fichier
suivant, séparé par des points :

o Date virtuelle d'activité a laquelle les modules sont exécutés

e "log

Par exemple, I'emplacement et le nom du fichier journal pour la date virtuelle d'activité du 5
janvier 2001 est :

$MMHOME/10g/20010105.- log

Format

Comme l'illustrent les exemples ci-dessous, chaque message écrit dans un fichier journal
comporte le nom du programme, une indication temporelle et un message d'information ou
d'erreur :

cusdemogdm 13:20:01: Program Starting...

cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table rdwlOdev.cust demog_dm_upd
cusdemogdm 13:20:14: Insert/Update target table.

cusdemogdm 13:20:23: Analyze table rdwlOdm.cust_demog_dm
cusdemogdm 13:20:27: Program Completed. ..

Si un programme s'interrompt avant exécution compléte, un fichier d'erreur est normalement
généré, indiquant ou le probléme s'est produit dans le processus. Certains messages d'erreur
inscrits sur le fichier journal, tels que ‘No output file specified’ (aucun fichier de sortie spécifi¢),
ne requiérent I'écriture d'aucune explication supplémentaire dans le fichier d'erreurs.

41

Retek Merchandising System

Fichier d'erreurs de programme

En plus du fichier journal quotidien, chaque programme écrit son propre flux détaillé et ses
propres messages d'erreur. Afin d'éviter la saturation du fichier journal quotidien, chaque
programme écrit ses erreurs dans un fichier d'erreurs distinct propre a chaque exécution.

Le nom et le répertoire du fichier d'erreurs du programme est défini dans le fichier de
configuration (RMSE_config.env). Le répertoire par défaut est SMMHOME/error. Toutes les
erreurs et tous les messages de traitement courants d'un programme donné, un jour donné, sont
répertoriées dans ce fichier d'erreurs (par exemple, ce fichier contiendra les erreurs stderr et
stdout de l'appel a RETL). Tous les fichiers d'erreurs sont codés au format UTF-8.

La convention de dénomination du fichier d'erreurs du programme attribue par défaut le nom de
fichier suivant, séparé par des points :

e Nom du programme
e Date virtuelle d'activité a laquelle le module a été exécuté

Par exemple, toutes les erreurs et informations de consignation du programme
rms_item_master sont écrites dans le fichier suivant pour I'exécution de batch du 5 janvier
2001 :

$MMHOME/error/rms_item_master.20010105

Fichiers de rejet RMSE

Les modules d'extraction RMSE produisent parfois un fichier de rejet en cas de probléme lié aux
données (données introuvables dans des tables de conversion requises par exemple). Le module
tente de traiter toutes les données puis indique que certains enregistrements ont été rejetés. Ainsi,
tous les problémes relatifs aux données peuvent étre identifiés en une seule fois et résolus. Le
module peut alors étre exécuté de nouveau. Si un module rejette des enregistrements, le fichier de
rejet n'est pas supprimé. C'est a I'utilisateur de le supprimer avant de lancer une nouvelle
execution du module.

Les enregistrements du fichier de rejet contiennent un message d'erreur et des informations de
clés provenant de I'enregistrement rejeté. L'exemple suivant illustre un enregistrement rejeté pour
cause de problémes rencontrés dans la bibliothéque de conversion des devises :

Currency Conversion Failed]|101721472]20010309

L'exemple suivant illustre un enregistrement rejeté pour cause de problémes rencontrés lors de la
recherche d'informations dans une table source :

Unable to find item_master record for Item|101721472

Le nom et le répertoire du fichier de rejet est défini dans le fichier de configuration
(rmse_config.env). Le répertoire par défaut est SMMHOME/data.

AR Remarque : Un répertoire destiné uniquement aux fichiers de rejet peut étre crée. Le
fichier rmse_config.env doit étre modifié pour renvoyer a ce répertoire.

42

Chapitre 7 — Présentation du programme RETL pour l'interface RMS-RDF

La convention de dénomination du fichier de rejet attribue par défaut le nom de fichier suivant,
séparé par des points :

e Nom du programme

e Le premier nom de fichier, s'il en est spécifié un dans la ligne de commande

o "rej
e Date virtuelle d'activité a laquelle le module a été exécuté

Par exemple, tous les enregistrements rejetés du programme slsi ldmex sont placés dans le
fichier suivant pour I'exécution de batch du 5 janvier 2001 :

$MMHOME/datas/sIsildmex.slsildmdm.txt.rej.20010105

Fichiers de schéma

RETL utilise des fichiers de schéma pour spécifier le format des groupes de données entrants ou
sortants. Le fichier de schéma définit le type de données et le format de chaque colonne, qui est
ensuite utilisée dans RETL pour formater/manipuler les données. Vous trouverez des
informations supplémentaires sur les fichiers de schéma dans le tout dernier Guide du
programmateur RETL. Etant donné que les noms des fichiers de schéma ne changent pas
réguliérement, ils sont figés dans le code de chaque module. Tous les noms de fichiers de ce type
finissent par ".schema" et sont placés dans le répertoire "rfx/schema".

Parametres de ligne de commande

Pour que chaque module RETL fonctionne, il est parfois nécessaire de faire passer les chemins et
noms de fichiers de données entrants et sortants par la ligne de commande Unix.

RMSE

Les modules d'extraction RMSE ne requiérent la saisie d'aucun parametre. Le chemin/nom du
fichier sortant par défaut est SDATA_DIR/(nom du programme RMSE).dat. De méme, le format
de schéma des enregistrements de ces fichiers sont spécifiés dans le fichier -
$SCHEMA_DIR/(nom du programme RMSE).schema.

43

Retek Merchandising System

Situations courantes d'exécution et de débogage

Les exemples suivants illustrent les situations courantes d'exécution et de débogage pour divers
types de programmes. Tous les noms de fichiers mentionnés ci-dessous (fichier journal, d'erreur,
etc...) font référence a I'exécution d'un module réalisée a la date virtuelle d'activité du 9 mars
2001. Pour connaitre I'emplacement de chaque fichier, reportez-vous aux conventions de
dénomination décrites antérieurement.

Par exemple :
Pour exécuter rmse_stores.ksh :
1 Modifiez les répertoires : SMMHOME/rfx/src.
2 Al'invite Unix, saisissez :
%rmse_stores.ksh
Si le module s'exécute correctement, les résultats suivants sont obtenus :

1 Fichier journal : Le fichier journal d'aujourd’hui, 20010309.log, contient les messages
“Program started ...” et “Program completed successfully” pour rmse_stores.

2 Données : Le fichier rmse_stores.dat se trouve dans le répertoire de données et contient les
enregistrements extraits.

3 Schéma : Le fichier rmse_stores.schema se trouve dans le répertoire des schémas et contient
la définition du fichier de données fournie ci-dessus, au numero 2.

4 Fichier d'erreurs : Le fichier d'erreurs du programme, rmse_stores.20010309, contient le
flux RETL standard (qui finit par "All threads complete” et "Flow ran successfully") et ne
contient aucun message d'erreur supplémentaire.

5 Controle du statu du programme : Le fichier de contréle du statut du programme
rmse_stores.status.20010309 n'existe pas.

6 Fichier de rejet : Le fichier de rejet rmse_stores.rej.20010309 n'existe pas.
Si le module ne s'exécute pas, les résultats suivants sont obtenus :

1 Fichier journal : Le fichier journal d'aujourd'hui, 20010309.log, ne contient pas le message
“Program completed successfully” pour rmse_stores.

2 Données : Le fichier rmse_stores.dat se trouve peut-étre dans le répertoire de données mais
ne contient pas obligatoirement tous les enregistrements extraits.

3 Schéma : Le fichier rmse_stores.schema se trouve dans le répertoire des schémas et contient
la définition du fichier de données fournie ci-dessus, au huméro 2.

4 Fichier d'erreurs : Le fichier d'erreurs du programme, rmse_stores.20010309, contient peut-
étre un message d'erreur.

5 Controle de I'état du programme : Le fichier de contréle du statut du programme,
rmse_stores.status.20010309, existe.

6 Fichier de rejet : Le fichier de rejet rmse_stores.rej.20010309 n'existe pas car ce module ne
rejette pas les enregistrements.

7 Fichier de signets : Le fichier de signets rmse_stores.bkm.20010309 n'existe pas car ce
module n'utilise ni la reprise ni la récupération.

44

Chapitre 7 — Présentation du programme RETL pour l'interface RMS-RDF

Pour exécuter de nouveau le module, procédez comme suit :
1 Trouvez et réglez le probléme a I'origine de I'erreur.
2 Supprimez le fichier de contréle du statut du programme.

3 Modifiez les répertoires : SMMHOME/rfx/src. A l'invite Unix, saisissez :
%rmse_stores.ksh

45

	Contenu
	Chapitre 1 – Introduction
	Chapitre 2 – Reprise et récupération Pro*C
	Descriptions et définitions des tables
	restart_control
	restart_program_status
	restart_program_history
	restart_bookmark
	v_restart_x

	Présentation des modèles de données
	Pourquoi les tables restart_program_status et restart_bookma

	Configuration physique
	Reprise/récupération avec tables et fichiers
	Description des fonctions API
	restart_init :
	restart_file_init :
	restart_commit :
	restart_file_commit :
	restart_close :
	parse_array_args :
	restart_file_write :
	restart_cat :
	En-têtes et bibliothèque de reprise
	En-têtes et bibliothèques de reprise mis à jour
	Nouvelles fonctions de reprise/récupération

	Seuil d'exécution avec requêtes

	Chapitre 3 – Multi-traitements Pro*C
	Description de l'exécution de traitements
	Fonction de traitement avec requêtes
	Vue de reprise avec requêtes
	Gestion du schéma de traitement
	Avec fichiers
	Avec requêtes

	Gestion des batchs
	Planification et initialisation du batch de reprise
	Pré- et post-traitements

	Chapitre 4 – Traitement vectoriel Pro*C
	Chapitre 5 – Formats d'entrée et de sortie Pro*C
	Présentation générale de l'interface
	Présentations des fichiers standard

	Fichiers de détails uniquement
	Fichiers de détails principaux

	Echange de données informatisé (EDI)

	Chapitre 6 – Architecture RETL pour système RMS-RDF
	Concept architectural

	Chapitre 7 – Présentation du programme RETL pour l'interface
	Installation
	Configuration
	RETL
	Utilisateur et autorisations RETL
	Variables d'environnement
	paramètres rmse_config.env

	Code de retour au programme
	Fichiers de contrôle du statut du programme
	Conventions de dénomination des fichiers
	Reprise et récupération
	Fichier de signets

	Consignation des messages
	Fichier journal quotidien
	Format
	Fichier d'erreurs de programme

	Fichiers de rejet RMSE
	Fichiers de schéma
	Paramètres de ligne de commande
	RMSE

	Situations courantes d'exécution et de débogage

