

Retek® Merchandising System™
11.0

Guide d'exploitation - Volume 3

Présentation des programmes batch

Siège social :
Retek Inc.
Retek on the Mall
950 Nicollet Mall
Minneapolis, MN 55403
USA
888.61.RETEK (appel gratuit
aux États-Unis:
+1 612 587 5000
Fax:
+1 612 587 5100

Siège européen :
Retek
110 Wigmore Street
Londres
W1U 3RW
Royaume-Uni
Standard :
+44 (0)20 7563 4600
Département commericale :
+44 (0)20 7563 46 46
Fax:
+44 (0)20 7563 46 10

Le logiciel décrit dans la présente documentation fait l’objet
d’un accord de licence et son utilisation est soumise au
respect des dispositions de cet accord..
Aucune partie de cette documentation ne peut être reproduite
ou transmise sous quelque forme ou par quelque moyen que
ce soit sans l’autorisation écrite expresse de Retek Inc., Retek
on the Mall, 950 Nicollet Mall, Minneapolis, MN 55403,
USA., et la notification de copyright ne peut être enlevée sans
consentement de Retek Inc.
Les informations contenues dans ce document sont
susceptibles d’être modifiées sans préavis.
Retek propose la documentation relative à ses produits en
lecture seule afin d’assurer l’intégrité de son contenu. Le
support clientèle Retek ne peut pas prendre en charge toute
documentation modifiée sans l’autorisation de Retek.
Retek® Merchandising System™ est une marque
commerciale de Retek Inc.
Retek et le logo Retek sont des marques déposées de Retek
Inc.
Ce travail non publié est protégé par accord de
confidentialité, et par le secresse commercial, le copyright, et
d'autres lois. En cas de la publication, la notification suivante
s'appliquera:
©2004 Retek Inc. Tous droits réservés.
Tous les autres noms de produits mentionnés sont des
marques commerciales ou des marques déposées par leurs
propriétaires respectifs et doivent être traitées comme telles.
Imprimé aux États-Unis d’Amérique.

Retek Merchandising System

Support clientèle
Horaires du support clientèle

Le support clientèle est disponible 7 jours sur 7, 24 heures sur 24 et 365 jours par an par e-mail,
téléphone et Internet.

Selon l'option d'assistance choisie par un client donné (Standard, Plus ou Premium), les heures
d'accès à certains services peuvent être limitées. Les problèmes de gravité 1 (graves) sont traités 7
jours sur 7 et 24 heures sur 24 et font l'objet d'une attention continue jusqu'à leur résolution, pour
tous les clients qui disposent d'une maintenance active. Les clients de Retek avec des contrats de
maintenance actifs peuvent entrer en contact avec support clientèle global selon des conditions de
contrat dans un des manières suivantes :

Méthode de contact Coordonnées

Internet (ROCS) rocs.retek.com
Site Web client sécurisé de Retek pour la mise
à jour et la consultation des problèmes

E-mail support@retek.com

Téléphone +1 612 587 5800

Les solutions gratuites sont également disponibles dans diverses régions du monde :

Australie +1 800 555 923 (AU-Telstra) or +1 800 000 562 (AU-Optus)
France 0800 90 91 66
Hong Kong 800 96 4262
La Corée 00 308 13 1342
Royaume Uni 0800 917 2863
Etats Unis +1 800 61 RETEK or 800 617 3835

Courrier Retek Customer Support
 Retek on the Mall
 950 Nicollet Mall
 Minneapolis, MN 55403

Lorsque vous contactez l’assistance clientèle, veuillez fournir:

• La version du produit et le nom du programme/module.

• Une description fonctionnelle et technique du problème (y compris l’impact commercial).

• Les instructions de reconstitution, détaillées, étape par étape.

• Le message d’erreur exact reçu.

• Les copies d’écran de chaque étape que vous suivez.

http://www.retek.com/support

Contenu

Contenu
Chapitre 1 – Introduction ... 1

Chapitre 2 – Reprise et récupération Pro*C................................... 3

Descriptions et définitions des tables.. 3
restart_control... 4
restart_program_status ... 5
restart_program_history ... 6
restart_bookmark.. 7
v_restart_x .. 8

Présentation des modèles de données ... 8
Pourquoi les tables restart_program_status et restart_bookmark sont t-elles séparées 8

Configuration physique... 8

Reprise/récupération avec tables et fichiers.. 9

Description des fonctions API .. 12
restart_init : .. 12
restart_file_init : ... 12
restart_commit :.. 13
restart_file_commit : .. 13
restart_close :.. 13
parse_array_args :... 14
restart_file_write : .. 14
restart_cat : ... 14
En-têtes et bibliothèque de reprise ... 14
En-têtes et bibliothèques de reprise mis à jour ... 15
Nouvelles fonctions de reprise/récupération .. 17

Seuil d'exécution avec requêtes .. 20

Chapitre 3 – Multi-traitements Pro*C .. 21

Description de l'exécution de traitements ... 21

Fonction de traitement avec requêtes.. 22

Vue de reprise avec requêtes... 22

Gestion du schéma de traitement .. 24
Avec fichiers... 24
Avec requêtes ... 25

Gestion des batchs... 25

Planification et initialisation du batch de reprise.. 26

Pré- et post-traitements ... 26

i

Retek Merchandising System

Chapitre 4 – Traitement vectoriel Pro*C....................................... 27

Chapitre 5 – Formats d'entrée et de sortie Pro*C........................ 29

Présentation générale de l'interface... 29
Présentations des fichiers standard... 29

Fichiers de détails uniquement.. 30
Fichiers de détails principaux... 30

Echange de données informatisé (EDI) .. 33

Chapitre 6 – Architecture RETL pour système RMS-RDF 35

Concept architectural .. 35

Chapitre 7 – Présentation du programme RETL pour l'interface
RMS-RDF... 37

Installation... 37

Configuration .. 38
RETL.. 38
Utilisateur et autorisations RETL... 38
Variables d'environnement ... 38
paramètres rmse_config.env... 38

Code de retour au programme... 39

Fichiers de contrôle du statut du programme.. 39
Conventions de dénomination des fichiers... 39
Reprise et récupération... 40
Fichier de signets.. 40

Consignation des messages... 41
Fichier journal quotidien .. 41
Format .. 41
Fichier d'erreurs de programme.. 42

Fichiers de rejet RMSE... 42

Fichiers de schéma.. 43

Paramètres de ligne de commande.. 43
RMSE ... 43

Situations courantes d'exécution et de débogage.. 44

ii

Chapitre 1 – Introduction

Chapitre 1 – Introduction
Ce document comprend deux parties.

La première partie récapitule les caractéristiques du traitement batch Pro*C dans RMS et décrit
les éléments suivants :

• Reprise et récupération

• Multi-traitements

• Seuils d'exécution

• Traitement vectoriel

• Formats d'entrée et de sortie vers des applications et entités externes

La seconde partie récapitule les caractéristiques du traitement batch RETL et décrit les éléments
suivants :

• Architecture

• Installation

• Configuration

• Code de retour au programme

• Fichiers de contrôle du statut du programme

• Consignation des messages

• Fichiers de rejet

• Fichiers de schéma

• Paramètres de ligne de commande

• Situations courantes d'exécution et de débogage

1

Chapitre 2 – Reprise et récupération Pro*C

Chapitre 2 – Reprise et récupération
Pro*C
RMS a mis en œuvre un processus de reprise et de récupération sur une grande partie de son
architecture de batch. L'objectif principal de la reprise/récupération est de :

• Reprendre un processus interrompu à partir du point d'échec

• Empêcher les interruptions de système dues à un grand nombre de transactions

• Permettre l'activité simultanée de plusieurs instances d'un processus donné

Par ailleurs, la fonction de reprise/récupération de RMS enregistre les statistiques d'exécution des
batch et ne requiert pas l'exécution d'une autorité DBA.

Les capacités de reprise sont centrées autour de l'unité de travail logique d'un programme (LUW).
Un programme batch traite des transactions et des points d'exécution sont activés en fonction de
la LUW. Les LUW consistent en une clé de transaction relativement unique (telle que
référence/magasin) et en un nombre maximal d'exécutions. Les événements d'exécution
interviennent lorsque le nombre de clés de transaction traitées atteint ou dépasse le nombre
maximal d'exécutions. Par exemple, toutes les 10 000 combinaisons référence/magasin, une
exécution intervient. Au moment de l'exécution, les informations de la clé nécessaires à la reprise
sont stockées dans les tables de reprise. Lors d'une exception résolue ou non, les transactions sont
renvoyées au dernier point d'exécution et au moment de la reprise, les informations de la clé sont
extraites des tables pour permettre au traitement de continuer à partir du dernier point d'exécution.

Descriptions et définitions des tables
Le processus de reprise/récupération de RMS est géré par un ensemble de quatre tables. Le
schéma 1 présente les relations entre les entités. Les descriptions des tables suivent.

nouveaux programmes batch de la version 9.0 ou supérieure.

Commande de reprise
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ ctr

Historique du programme
de reprise
restart_name
thread_val
start_time
program_name

commit_max_ctr
restart_time
finish_time

Statut du programme
de reprise

(PK) restart_name
(PK) thread_val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

Signet de reprise
restart_name
thread_val
bookmark_string
application_image

current_oracle_sid *
current_shadow_pid *

out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

num_threads

shadow_pid *
success_flag *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

Commande de reprise
(PK) program_name
program_desc
driver_name
num_threads
update_allowed
process_flag
commit_max_ ctr

Historique du programme
de reprise
restart_name
thread_val
start_time
program_name

commit_max_ctr
restart_time
finish_time

Statut du programme
de reprise

(PK) restart_name
(PK) thread_val
start_time
program_name
program_status
restart_flag
restart_time
finish_time
current_pid
current_operator_id
err_message

Signet de reprise
restart_name
thread_val
bookmark_string
application_image

current_oracle_sid *
current_shadow_pid *

out_file_string *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

num_threads

shadow_pid *
success_flag *
non_fatal_err_flag *
num_commits *
avg_time_btwn_commits *

	 Remarque : les champs suivis d'un astérisque (*) sont utilisés uniquement par les

3

Retek Merchandising System

restart_control
 restart_control est la table principale du groupe de tables de reLa table prise/récupération. Elle

ement pour chaque programme batch exécuté avec la logique de
activée. Le processus de reprise/récupération utilise cette table pour

 total de traitements utilisés pour chaque programme batch,

ntion d'un événement d'exécution,

contient un enregistr
reprise/récupération
déterminer :

• si la reprise/récupération utilise des tables ou des fichiers,

• le nombre

• le nombre maximal d'enregistrements traités avant l'interve

• le pilote de la logique de traitement (multi-traitements).

RESTART_CONTROL

(PK)
program_name

varchar2

25 Nom du programme batch.

program_desc tion du programme varchar2

50 Brève description de la fonc

driver_name varchar2

25 Pilote de requêtes, par exemple, rayon (non modifiable)

num_threads num 10 Nombre de traitements utilisés pour le processus en cours

update_allowed varchar2 2 Indique si l'utilisateur peut mettre à jour le nombre de
 traitements ou si cette mise à jour est faite par programme

process_flag varchar2

1 Indique si le processus utilise des tables (T) ou des fich
(F).

iers

commit_max_ctr num 6 Valeur numérique maximale du compteur avant l'exécution

4

Chapitre 2 – Reprise et récupération Pro*C

restart_program_status
La table restart_program_status contient les informations enregistrées sur les traitements des
programmes en cours. Le nombre de lignes pour un programme dans la table d'état est identique à
la valeur num_threads de la table restart_control. La table d'état est modifiée lors de l'initialisation
du processus de reprise/récupération et de la logique de clôture. Pour le processus qui utilise les
tables, la logique d'initialisation de reprise/récupération affecte le prochain traitement disponible
à un programme basé sur l'état du programme et la balise de reprise. Pour le processus qui utilise
les fichiers, la valeur du traitement est définie à partir du nom du fichier d'entrée. Après
l'affectation d'un traitement, le program_status est mis à jour pour empêcher l'affectation de ce
traitement à un autre processus. Les informations sont reportées sur l'état actuel d'un traitement
donné, ainsi que les informations enregistrées, telles que l'opérateur et la durée du processus.

	 Remarque relative à la configuration : autorisez le verrouillage au niveau des lignes et
les "lectures impropres" (n'attendez pas le déverrouillage des lignes pour la lecture des
tables).

RESTART_PROGRAM_STATUS

(PK) restart_name varchar2

50 Nom du programme.

(PK) thread_val num 10 Nombre de traitements.

start_time date jj-mm-aa hh:mi:ss

program_name varchar2

25 Nom du programme.

program_status varchar2

25 Démarré, interrompu, interrompu lors de l'initialisation,
interrompu lors du traitement, interrompu à la fin,
terminé, prêt pour démarrage.

restart_flag varchar2

1 Automatiquement défini à "N" après fin inhabituelle, doit
être défini manuellement à "Y" pour redémarrer le
programme.

restart_time date jj-mm-aa hh:mi:ss

finish_time date jj-mm-aa hh:mi:ss

current_pid num 15 ID du programme de démarrage.

current_operator_id varchar2

20 Opérateur qui a démarré le programme.

err_message varchar2

255 Enregistrement à l'origine de l'interruption du programme
et message d'erreur associé.

current_oracle_sid num 15 Oracle SID pour la session associée au processus en
cours.

current_shadow_pid num 15 ID du processus O/S pour le processus en double associé
au processus en cours. Utilisé pour localiser le fichier de
traçage de la session lorsqu'un processus ne s'est pas
terminé correctement.

5

Retek Merchandising System

restart_program_history
La table restart_program_history contient un enregistrement pour chaque traitement d'un
programme terminé avec succès avec la logique de reprise/récupération. Lorsque le traitement
d'un programme se termine avec succès, son enregistrement dans la table restart_program_status
est inséré dans la table d'historique. Les utilisateurs peuvent supprimer des tables s'ils le désirent.

RESTART_PROGRAM_HISTORY

(PK) restart_name varchar2

50

(PK) thread_val Num 10

(PK) start_time Date

program_name varchar2

25

num_threads Num 10

commit_max_ctr Num 6

restart_time date

finish_time date

shadow_pid Num 15 ID du processus O/S pour le processus en double
associé au processus. Utilisé pour localiser le fichier
de traçage de la session.

success_flag varchar2

1 Indique si le processus s'est terminé avec succès
(pour utilisation future).

non_fatal_err_flag varchar2

1 Indique si des erreurs non fatales sont intervenues
durant le processus.

num_commits Num 12 Nombre total d'exécutions pour le processus. La
dernière exécution possible lors de la clôture du
processus de reprise/récupération n'est pas
comptabilisée.

avg_time_btwn_commits Num 12 Durée moyenne cumulée entre les exécutions pour le
processus. La dernière exécution possible lors de la
clôture du processus de reprise/récupération n'est
pas comptabilisée.

6

Chapitre 2 – Reprise et récupération Pro*C

restart_bookmark
Lorsqu'un traitement du programme de reprise/récupération est en cours, qu'il est démarré ou
interrompu et qu'un enregistrement correspondant existe dans la table restart_bookmark, la
logique d'initialisation de reprise/récupération insère l'enregistrement dans la table pour le
traitement d'un programme. Le processus d'exécution de reprise/récupération met à jour
l'enregistrement avec les informations de reprise suivantes :

• une chaîne concaténée des valeurs clés pour le traitement des tables,

• la valeur du pointeur de fichier pour le traitement des fichiers,

• des informations sur le contexte de l'application, tels que compteurs et accumulateurs.

Le processus de clôture de la reprise/récupération supprime l'enregistrement de traitement du
programme lorsque le programme se termine avec succès. Lors d'une reprise, les informations de
cette table concernant le traitement du programme permettent au processus de démarrer à partir
du dernier point d'exécution.

RESTART_BOOKMARK

restart_name varchar2

50

thread_val Num 10

bookmark_string varchar2

255 Chaîne de caractères de la clé du dernier
enregistrement exécuté.

application_image varchar2

1000 Paramètres de l'application à partir du dernier point
de sauvegarde.

out_file_string varchar2

255 Pointeurs de fichiers concaténés (Unix utilise
parfois le terme de positions continues pour ces
pointeurs) de tous les fichiers de sortie à partir du
dernier point d'exécution du processus en cours.
Utilisés pour retourner au point de reprise
approprié pour tous les fichiers de sortie lors du
processus de reprise.

non_fatal_err_flag varchar2

1 Indique si des erreurs non fatales sont intervenues
durant le processus en cours.

num_commits Num 12 Nombre d'exécutions pour le processus en cours.
La dernière exécution possible lors de la clôture du
processus de reprise/récupération n'est pas
comptabilisée.

avg_time_btwn_commits Num 12 Durée moyenne entre les exécutions pour le
processus en cours. La dernière exécution possible
lors de la clôture du processus de
reprise/récupération n'est pas comptabilisée.

7

Retek Merchandising System

v_restart_x
Des vues de reprise sont utilisées pour les programmes avec requêtes nécessitant plusieurs
traitements. Des vues distinctes sont créées pour chaque pilote de traitement, rayon ou magasin
par exemple. Une jointure sera appliquée sur une vue basée sur un pilote de traitement pour
permettre la séparation des données discrètes en traitements spécifiques. Reportez-vous à la
section consacrée aux traitements pour plus de détails.

V_RESTART_X

driver_name varchar2

Par exemple, rayon, magasin, région, etc.

num_threads number Nombre total de traitements dans l'ensemble (défini dans la table
restart_control).

driver_value number Valeur numérique de driver_name.

thread_val number Valeur du traitement défini pour la combinaison driver_value et
num_threads.

Présentation des modèles de données
Pourquoi les tables restart_program_status et restart_bookmark sont t-
elles séparées
Le processus d'initialisation doit extraire toutes les lignes associées au schéma restart_name, mais
ne met à jour q'une seule ligne. Le processus d'exécution verrouille de façon continue une ligne
avec une valeur restart_name et une valeur thread_val spécifiques. Les données impliquées dans
ces deux processus sont divisées entre les deux tables pour réduire le nombre d'interruptions
pouvant intervenir du fait du verrouillage des lignes. Même si vous autorisez les "lectures
impropres" sur les lignes verrouillées, un processus peut encore s'interrompre s'il tente de mettre à
jour une ligne verrouillée. Le processus d'exécution ne s'intéresse qu'à une seule ligne. Par
conséquent, si nous déplaçons les données du processus d'exécution dans une table séparée avec
verrouillage des lignes (et non des pages), aucun problème de conflit n'interviendra au cours de
l'exécution. Avec des tables séparées, le processus d'initialisation détecte un nombre moins
important de conflits car les lignes ne sont verrouillées que deux fois, au début et à la fin du
processus.

Configuration physique
Le processus de reprise/récupération doit être aussi robuste que possible dans l'éventualité d'une
défaillance de la base de données. Les coûts sont compensés par les avantages apportés par le
placement des tables de reprise/récupération dans une base de données distincte. Cependant, ces
tables doivent être définies dans un espace de table distinct doublé avec un segment de
repositionnement séparé.

8

Chapitre 2 – Reprise et récupération Pro*C

Reprise/récupération avec tables et fichiers
Le processus de reprise/récupération stocke toutes les données nécessaires à la reprise du
processus à partir du dernier point d'exécution. Les informations nécessaires sont donc mises à
jour dans la table restart_bookmark avant que les données traitées ne soient exécutées. Les
modules avec requêtes et fichiers stockent différentes informations dans les tables de reprise et
appellent donc différentes fonctions au sein de l'API de reprise/récupération pour effectuer leurs
tâches.

Lorsque le processus d'un programme est basé sur des requêtes, c'est-à-dire qu'un module est géré
par une requête pilote qui traite les lignes extraites, les informations stockées dans la table
restart_bookmark sont associées aux données extraites de la requête pilote. Si le programme
échoue lors du traitement, les informations stockées dans les tables de reprise peuvent être
utilisées dans la clause WHERE conditionnelle de la requête pilote pour extraire uniquement les
données qui doivent être traitées depuis le dernier événement d'exécution.

Cependant, les traitements avec fichiers doivent simplement stocker l'emplacement du fichier au
moment du dernier point d'exécution. L'emplacement par octets du fichier est stocké dans la table
restart_bookmark et est extrait lors d'une reprise. Ces informations sur l'emplacement sont
utilisées pour rechercher dans le fichier rouvert le dernier point d'exécution des données.

Dans la mesure où différentes informations sont enregistrées et extraites de la table
restart_bookmark pour chaque type différent de traitement, différentes fonctions doivent être
appelées pour exécuter la logique de reprise/récupération. Le traitement avec requêtes appelle les
fonctions restart_init ou retek_init et restart_commit ou retek_commit, tandis que le traitement
avec fichiers appelle les fonctions restart_file_init et restart_file_commit.

Outre les différences en ce qui concerne les appels de fonctions API, le flux de traitement batch
de la reprise/récupération diffère selon les fichiers. Le processus de reprise/récupération avec
tables utilise un flux logique d'extraction principal alors que le traitement avec fichiers lit
généralement les lignes dans un batch. Le traitement avec tables requiert que sa structure assure la
modification de la clé LUW avant qu'un événement d'exécution soit autorisé, alors que le
traitement avec fichiers n'a pas besoin d'évaluer la LUW qui peut être généralement considérée
comme le type de transaction traité par le fichier d'entrée.

9

Retek Merchandising System

Le schéma ci-dessous décrit le flux du programme de reprise/récupération avec tables :

Extraction
principale

Traitement

Extraction

Exécution

Logique de clôture

Logique d’initialisation
(appel de restart_init)

Fonction de traitement

Extraction
principale

Traitement

Extraction

Exécution

Logique de clôture

Logique d’initialisation
(appel de restart_init)

Fonction de traitement

Le schéma ci-dessous décrit le flux du programme de reprise/récupération avec fichiers

Boucle interne
Traite les enregistrements

individuels.

Traitement

Fin de boucle interne

Exécution

Fin de boucle externe

Logique d’initialisation
(appel de restart_init)

Ouvrir et rechercher
dans fichier

Boucle externe
Place plusieurs enregistrements

en mémoire tampon.

Logique de clôture

Boucle interne
Traite les enregistrements

individuels.

Traitement

Fin de boucle interne

Exécution

Fin de boucle externe

Logique d’initialisation
(appel de restart_init)

Ouvrir et rechercher
dans fichier

Boucle externe
Place plusieurs enregistrements

en mémoire tampon.

Logique de clôture

10

Chapitre 2 – Reprise et récupération Pro*C

Logique d'initialisation :

• Déclarations de variables

• Initialisation de fichiers

• Appel de la fonction restart_init() - détermine la logique de démarrage ou de reprise

• Première extraction sur la requête pilote

Logique de démarrage : initialise les compteurs/accumulateurs sur les valeurs de démarrage

Logique de reprise :

• Analyse du champ application_image de la table de signets dans les compteurs/accumulateurs

• Initialisation des compteurs/accumulateurs pour les valeurs des champs analysés

Processus/boucle d'exécution :

• Mises à jour et manipulations du processus

• Extraction du nouvel enregistrement

• Création de varchar depuis les compteurs/accumulateurs à transmettre au champ
application_image de la table restart_bookmark

• Appel de restart_commit()

Logique de clôture :

• Remise à zéro des pointeurs

• Clôture des curseurs/fichiers

• Appel de restart_close()

11

Retek Merchandising System

Description des fonctions API
restart_init :
Fonction d'initialisation pour le traitement batch avec tables.

Le processus rassemble des informations à partir des tables de contrôle de reprise

• Nombre total de traitements pour un programme et valeur de traitement affectée au processus
en cours.

• Nombre d'enregistrements à itérer dans le curseur pilote avant exécution (LUW).

• Chaîne de démarrage - signet de la dernière exécution à utiliser pour la reprise ou chaîne
nulle si le processus en cours est démarré pour la première fois et initialise l'enregistrement
de la reprise (restart_program_status).

• Le statut du programme est modifié en "démarré" pour le premier traitement disponible.

• Les informations d'activité sont mises à jour : opérateur, processus, heure de début, etc. et
tables de signets (restart_bookmark).

• Lors d'un premier démarrage, un enregistrement est inséré.

• Lors d'une reprise, les informations relatives à la chaîne de démarrage et au contexte
d'application de la dernière exécution sont extraites.

restart_file_init :
Fonction d'initialisation pour le traitement batch avec fichiers. Elle est appelée depuis les modules
de programme.

1 Le processus rassemble des informations à partir des tables de contrôle de reprise :

� nombre d'enregistrements à lire depuis le fichier pour le traitement
vectoriel et pour le cycle d'exécution

� point de démarrage du fichier - signet de la dernière exécution à utiliser
pour la reprise ou 0 pour un premier démarrage

2 Le processus initialise l'enregistrement de reprise (restart_program_status) :

� le statut du programme est modifié en "démarré" pour le traitement en
cours

� les informations d'activité sont mises à jour : opérateur, processus, heure
de début, etc.

3 Le processus initialise les tables de signets de reprise (restart_bookmark) :

� lors d'un premier démarrage, un enregistrement est inséré.

� lors d'une reprise, les informations relatives au point de démarrage du
fichier et au contexte d'application de la dernière exécution sont extraites

12

Chapitre 2 – Reprise et récupération Pro*C

restart_commit :
Fonction d'exécution des transactions traitées pour un nombre donné d'extractions de requêtes
pilotes. Elle est appelée depuis les modules de programme.

Le processus met à jour les informations de la chaîne de démarrage restart_bookmark et de
l'image d'application si un événement d'exécution est intervenu :

• le nombre actuel d'extractions de requêtes pilotes est supérieur ou égal au nombre maximal
défini dans la table restart_program_status (et extrait dans la fonction restart_init)

• la chaîne de signet du dernier enregistrement traité est supérieure ou égale au maximum
défini dans la table restart_program_status (et extraite dans la fonction restart_init)

• la chaîne de signet augmente le compteur

• la chaîne de signet définit la chaîne actuelle comme la dernière chaîne clé extraite

restart_file_commit :
Fonction d'exécution des transactions traitées après lecture d'un nombre de lignes depuis un
fichier simple. Elle est appelée depuis les modules de programme.

Le processus met à jour la table restart_bookmark :

• start_string est défini à l'emplacement du pointeur de fichier pour la lecture actuelle du fichier
simple

• l'image d'application est mise à jour avec les informations de contexte

restart_close :
Fonction de mise à jour des tables de reprise après la fin d'un programme.

Le processus détermine si le programme s'est terminé avec succès. Si le programme se termine
avec succès :

• la table restart_program_status est mise à jour avec les informations de fin et le statut est
remis à zéro

• l'enregistrement correspondant de la table restart_bookmark est supprimé

• la table restart_program_history contient une copie de l'enregistrement de la table
restart_program_status inséré dans celle-ci

• le restart_program_status est réinitialisé

Si le programme se termine avec des erreurs

• les transactions sont exécutées une nouvelle fois

• la colonne program_status de la table restart_program_status est définie à "interrompu dans
*" où * correspond à l'une des trois fonctions principales du batch : initialisation, traitement
ou finalisation

• les modifications sont envoyées

13

Retek Merchandising System

parse_array_args :
Cette fonction décompose une chaîne en composants et place les résultats dans un tableau
multidimensionnel. Elle est appelée uniquement dans le cadre de fonctions API et jamais dans les
modules de programme.

Le processus utilise une chaîne pour l'analyse et un pointeur vers un tableau de caractères.

Le premier caractère de la chaîne utilisée est le séparateur.

restart_file_write :
Cette fonction insère les résultats des fichiers temporaires dans des fichiers de sortie définitifs
lorsqu'un point d'exécution est atteint. Elle est appelée depuis les modules de programme.

restart_cat :
Cette fonction contient la logique d'insertion d'un fichier dans un autre. Elle est appelée
uniquement dans le cadre des fonctions API de reprise/récupération et jamais directement dans
les modules de programme.

En-têtes et bibliothèque de reprise
Les fichiers d'en-tête restart.h et std_err.h sont inclus dans retek.h pour pouvoir utiliser la
fonctionnalité de reprise/récupération.

restart.h
Ce fichier d'en-tête de bibliothèque contient des constantes, des substitutions de macros et des
définitions de variables globales externes ainsi que des prototypes de fonctions de
reprise/récupération.

Les variables globales définies incluent :

• le nombre de traitements affectés au processus en cours

• la valeur du nombre maximal de traitements du processus en cours

� pour les traitements avec tables, ce nombre est identique au nombre d'itérations de la
requête pilote avant exécution

� pour les traitements avec fichiers, ce nombre est identique au nombre de lignes lues
depuis un fichier simple et traitées à l'aide d'un tableau structuré avant que l'exécution ne
puisse intervenir

• le nombre actuel d'itérations de requêtes pilotes utilisées pour le traitement avec tables ou
l'index du tableau actuel utilisé dans le traitement avec fichiers

• le nom affecté à l'unité de travail logique ou au programme par le programmeur. Ce nom est
identique à la colonne restart_name des tables restart_program_status,
restart_program_history et restart_bookmark

14

Chapitre 2 – Reprise et récupération Pro*C

std_rest.h
Ce fichier d'en-tête de bibliothèque contient les déclarations de variables de reprise standard qui
sont visibles dans les modules de programme.

Les définitions des variables incluses sont les suivantes :

• valeur de la chaîne concaténée de la clé de requête pilote extraite en cours de traitement

• valeur de la chaîne concaténée de la clé de requête pilote suivante dans le traitement

• message d'erreur transmis à la fonction restart_close et mis à jour dans restart_program_status

• chaîne concaténée des informations de contexte d'application, par exemple, les compteurs et
accumulateurs

• nom du pilote de traitement, par exemple, rayon, magasin, entrepôt, etc.

• nombre total de traitements utilisés par ce programme

• pointeur à transmettre à la fonction d'initialisation pour détailler le nombre de valeurs de
traitement

En-têtes et bibliothèques de reprise mis à jour
La bibliothèque de reprise/récupération RMS actuelle a été mise à jour avec la version 9, 10 et 11
afin d'optimiser la gestion, de simplifier le codage et d'améliorer les performances. Tout en
préservant la fonctionnalité et le mécanisme actuels de la reprise/récupération batch, les
améliorations et perfectionnements suivants ont été apportés :

• Organisation des variables globales associées à la reprise/récupération

• Possibilité pour le développeur des batch de contrôler entièrement les paramètres des
variables de reprise/récupération transmis au cours de l'initialisation

• Retrait des fichiers d'écriture temporaires pour accélérer le processus d'exécution

• Déplacement d'un nombre plus important d'informations et de processus du code batch vers le
code de bibliothèque

• Ajout d'un nombre plus important d'informations dans les tables de reprise/récupération à des
fins d'optimisation

15

Retek Merchandising System

retek_2.h
Ce fichier d'en-tête de bibliothèque est inclus par tous les codes C de Retek et permet de
centraliser toutes les insertions du système, les définitions de macros, les variables globales, les
prototypes de fonctions et notamment, les structures à utiliser dans la nouvelle bibliothèque de
reprise/récupération.

Les variables globales utilisées par l'ancienne bibliothèque de reprise/récupération sont toutes
supprimées. À la place, chaque programme batch déclare les variables requises et appelle la
fonction retek_init() pour les renseigner à partir des tables de reprise/récupération. Par
conséquent, seules les variables suivantes sont déclarées :

• gi_no_commit : balise de l'option de ligne de commande NO_COMMIT (utilisée à des fins
d'optimisation)

• gi_error_flag : balise d'erreur fatale

• gi_non_fatal_err_flag : balise d'erreur non fatale

En outre, la structure de rtk_file est définie pour la gestion de toutes les interfaces de fichiers
associées à la fonction de reprise/récupération. Les fonctions d'activité sur la structure de fichiers
sont également définies.

#define NOT_PAD 1000 /* Flag not to pad thread_val */

#define PAD 1001 /* Flag to pad thread_val at the
end */

#define TEMPLATE 1002 /* Flag to pad thread_val using
filename template */

#define MAX_FILENAME_LEN 50

typedef struct

{

 FILE* fp; /* File pointer */

 char filename[MAX_FILENAME_LEN + 1]; /* Filename */

 int pad_flag; /* Flag whether to pad thread_val to filename
*/

} rtk_file;

int set_filename(rtk_file* file_struct, char* file_name, int
pad_flag);

FILE* get_FILE(rtk_file* file_struct);

int rtk_print(rtk_file* file_struct, char* format, ...);

int rtk_seek(rtk_file* file_struct, long offset, int whence);

Les paramètres que retek_init() doit renseigner doivent être transmis dans un format connu de
retek_init(). Une structure est définie ici à cet effet. Un tableau contenant les paramètres de ce
type de structure est obligatoire dans chaque programme batch. Les autres conditions sont les
suivantes :

16

Chapitre 2 – Reprise et récupération Pro*C

Initialisation obligatoire à chaque programme batch.

• La longueur des noms, types et sous-types ne doit pas dépasser les définitions ici.

• Le type ne peut être que : "int", "uint", "long", "string" ou "rtk_file".

• Pour les types "int", "uint" ou "long", utilisez "" comme sous-type.

• Pour le type "string", le sous-type peut être uniquement "S" (chaîne de démarrage) sauf si la
chaîne représente la valeur du traitement ou le nombre de traitements, dans ce cas utilisez “”
comme sous-type ou "I" (chaîne d'image).

• Pour le type "rtk_file", le sous-type peut uniquement être "I" (saisie) ou "O" (sortie).
#define NULL_PARA_NAME 51

#define NULL_PARA_TYPE 21

#define NULL_PARA_SUB_TYPE 2

typedef struct

{

 char name[NULL_PARA_NAME];

 char type[NULL_PARA_TYPE];

 char sub_type[NULL_PARA_SUB_TYPE];

} init_parameter;

Nouvelles fonctions de reprise/récupération
Depuis la version 9.0, tous les nouveaux programmes batch sont codés à l'aide de nouvelles
fonctions de reprise/récupération. Les programmes batch utilisant les anciennes fonctions API de
reprise/récupération sont encore utilisés. Par conséquent, Retek met actuellement à jour deux
ensembles de bibliothèques de reprise/récupération.

int retek_init(int num_args, init_parameter *parameter, ...)
retek_init initialise la reprise/récupération (pour traitements avec tables et fichiers) :

1 Transmet num_args comme nombre d'éléments dans le tableau init_parameter, puis dans le
tableau init_parameter, puis les variables qu'un programme batch doit initialiser dans l'ordre
et les types définis dans le tableau init_parameter. Toutes les variables int, uint et long
doivent être transmises pour référence.

2 Extrait toutes les valeurs au niveau des variables globales et des modules des bases de
données.

3 Initialise les enregistrements pour RESTART_PROGRAM_STATUS et
RESTART_BOOKMARK.

4 Analyse les variables d'initialisation définies par l'utilisateur (variable arg list).

5 Renvoie NO_THREAD_AVAILABLE s'il n'existe aucun enregistrement qualifié dans
RESTART_CONTROL ou RESTART_PROGRAM_STATUS.

6 Exécution.

17

Retek Merchandising System

int retek_commit(int num_args, ...)
retek_commit effectue une vérification et une exécution, le cas échéant (pour les traitements avec
tables et fichiers) :

1 Transmet num_args, puis les variables pour start_string en premier et celles de la chaîne
d'image (le cas échant) ensuite. num_args représente le nombre total de variables pour ces
deux groupes. Ce sont toutes des variables de type chaîne transmises dans le même ordre que
dans retek_init() ;

2 Concatène start_string, soit par transmission de variables (traitement avec tables), soit depuis
la fonction ftell des pointeurs de fichiers d'entrée (traitement avec fichiers) ;

3 Vérifie si le point d'exécution est atteint (vérification du compteur et si traitement avec tables,
comparaison des chaînes de démarrage) ;

4 Si le point d'exécution est atteint, image_string est concaténé à partir des variables transmises
(le cas échéant) et la fonction internal_commit() est appelée pour extraire out_file_string et
mettre à jour la table RESTART_BOOKMARK ;

5 Lors du traitement avec tables, pl_current_count est incrémenté et ps_cur_string est mis à
jour.

int commit_point_reached(int num_args, ...)
commit_point_reached vérifie si le point d'exécution a été atteint (pour les traitements avec tables
et fichiers). La différence entre cette fonction et la vérification dans retek_commit() réside dans le
fait que pl_current_count et ps_cur_string ne sont pas mis à jour ici. Cette fonction de vérification
est conçue pour être utilisée avec retek_force_commit(), et la logique permettant d'assurer
l'intégrité de la LUW existe dans le programme batch de l'utilisateur. Elle peut également être
utilisée avec retek_commit() pour d'autres traitements au moment de l'exécution.

1 Transmet num_args, puis toutes les variables de type chaîne pour start_string dans le même
ordre que dans retek_init(). num_args représente le nombre de variables pour start_string. S'il
n'existe aucun start_string (comme dans traitement avec fichiers) la transmission est NULLE.

2 Pour les traitements avec tables, si pl_curren_count atteint pl_max_counter et si la chaîne de
signet nouvellement concaténée est différente de ps_cur_string, 1 est renvoyé ; dans le cas
contraire, 0 est renvoyé.

3 Pour les traitements avec fichiers, si pl_curren_count atteint pl_max_counter, 1 est renvoyé ;
dans le cas contraire, 0 est renvoyé.

int retek_force_commit(int num_args, ...)
retek_force_commit s'exécute toujours (pour traitements avec tables et fichiers) ;

1 Transmet num_args, puis les variables pour start_string en premier et celles de la chaîne
d'image (le cas échant) ensuite. num_args représente le nombre total de variables pour ces
deux groupes. Ce sont toutes des variables de type chaîne transmises dans le même ordre que
dans retek_init() ;

2 Concatène start_string, soit par transmission de variables (traitements avec tables), soit depuis
la fonction ftell des pointeurs de fichiers d'entrée (traitements avec fichiers) ;

3 image_string est concaténé à partir des variables transmises (le cas échéant) et la fonction
internal_commit() est appelée pour extraire out_file_string et mettre à jour la table
RESTART_BOOKMARK ;

18

Chapitre 2 – Reprise et récupération Pro*C

4 Lors du traitement avec tables, pl_current_count est incrémenté et ps_cur_string est mis à
jour.

int retek_close(void)
retek_close clôt la reprise/récupération (pour les traitements avec tables et fichiers) :

1 Si l'option de ligne de commande gi_error_flag ou NO_COMMIT est VRAIE, tous les
changements des bases de données sont exécutés à nouveau.

2 Mise à jour de la table RESTART_PROGRAM_STATUS en fonction de gi_error_flag.

3 S'il n'existe aucun gi_error_flag, un enregistrement est inséré dans la table
RESTART_PROGRAM_HISTORY avec des informations extraites des tables
RESTART_CONTROL, RESTART_PROGRAM_BOOKMARK et
RESTART_PROGRAM_STATUS.

4 S'il n'existe aucun gi_error_flag, l'enregistrement RESTART_BOOKMARK est supprimé.

5 Exécution.

6 Clôt toutes les suites de données des fichiers ouverts.

Int retek_refresh_thread(void)
Actualise le traitement d'un programme pour pouvoir l'exécuter une nouvelle fois.

1 Met à jour l'enregistrement RESTART_PROGRAM_STATUS pour que le statut
PROGRAM_STATUS du programme en cours soit "prêt pour démarrage".

2 Supprime tous les enregistrements RESTART_BOOKMARK pour le programme en cours.

3 Exécution.

void increment_current_count(void)
increment_current_count augmente pl_current_count de 1.

	 Remarque : appelé depuis get_record() de intrface.pc pour E/S avec fichiers.

int parse_name_for_thread_val(char* name)
parse_name_for_thread_val analyse la valeur du traitement à partir de l'extension du nom de
fichier défini.

int is_new_start(void)
is_new_start vérifie si l'exécution en cours est un nouveau démarrage ; si tel est le cas, 1 est
renvoyé, dans le cas contraire, 0 est renvoyé.

19

Retek Merchandising System

Seuil d'exécution avec requêtes
Les capacités de reprise sont centrées autour de l'unité de travail logique d'un programme (LUW).
Un programme batch exécute des transactions et active des points d'exécution en fonction de la
LUW. Une LUW est composée d'une clé de transaction (telle que article-magasin) et d'un nombre
maximal d'exécutions. Les événements d'exécution interviennent après le traitement d'un nombre
donné de clés de transaction. Au moment de l'exécution, les informations de la clé nécessaires à
la reprise sont stockées dans la table de reprise. Lors d'une exception résolue ou non, les
transactions sont renvoyées vers le dernier point d'exécution. Au moment de la reprise, les
informations de la clé de reprise sont extraites des tables pour permettre au processus de
continuer le traitement des données non traitées.

20

Chapitre 3 – Multi-traitements Pro*C

Chapitre 3 – Multi-traitements Pro*C
L'exécution de plusieurs instances d'un programme donné peut se faire à l'aide de "traitements".
Des curseurs pilotes doivent être divisés en segments discrets de données exécutés par différents
traitements. Ce traitement est réalisé à l'aide de procédures stockées qui séparent les mécanismes
de traitements (par exemple, rayons ou magasins) en traitements particuliers pour une valeur
donnée (par exemple, rayon 1001) et du nombre total de traitements pour un processus donné.

L'exécution avec fichiers n'utilise pas réellement de “traitement“. Le même fichier de données ne
sera jamais traité par plusieurs processus. Le multi-traitements est réalisé en divisant les données
en fichiers distincts qui seront traités par un processus distinct. La valeur du traitement est
reportée dans le fichier d'entrée. Cela est nécessaire pour s'assurer que les informations
appropriées peuvent être associées au fichier correspondant dans l'éventualité d'une reprise.

RMS a une longueur de stockage de 10 chiffres. Par conséquent, les valeurs de traitement
pouvant être fonction du numéro de stockage, doivent pouvoir comprendre 10 chiffres également.
Dans la mesure où les valeurs de traitement sont déclarées comme des variables "C" de type int
(long), elles sont limitées à 9 chiffres par le système.

Cela ne signifie pas que vous ne pouvez pas utiliser de numéros de stockage à 10 chiffres. Cela
signifie que si vous utilisez des numéros de stockage à 10 chiffres, vous ne pouvez pas les utiliser
comme valeurs de traitement.

Description de l'exécution de traitements
L'utilisation de plusieurs traitements ou processus dans le traitement batch de Retek améliore
l'efficacité et réduit la durée de traitement. Le processus de traitement a fourni un maximum de
flexibilité à l'utilisateur final en ce qui concerne la définition du nombre de traitements selon
lequel un programme doit être divisé.

À l'origine, la fonction de traitement devait être utilisée directement dans les requêtes pilotes.
Cependant, cette méthode s'est avérée très lente et donc inutilisable. Au lieu d'utiliser l'appel de
fonctions directement dans les requêtes pilotes, l'application effectue la jointure des tables de
requêtes pilotes en une seule vue (par exemple, v_restart_store) qui inclut la fonction.

21

Retek Merchandising System

Fonction de traitement avec requêtes
Une procédure stockée a été créée pour déterminer les valeurs de traitement. restart_thread_return
renvoie une valeur de traitement dérivée de la valeur numérique d'un pilote, telle que le nombre
de rayons, et le nombre total de traitements dans un processus donné. Les clients doivent être en
mesure de déterminer le meilleur algorithme pour leur application et si une méthode différente de
segmentation de données est nécessaire, la fonction restart_thread_return peut être modifiée ou
une autre fonction peut être utilisée dans les vues contenant la fonction.

Actuellement la fonction restart_thread_return est une routine de module très simple :
CREATE OR REPLACE FUNCTION RESTART_THREAD_RETURN (in_unit_value
NUMBER,

 in_total_threads NUMBER)

 RETURN NUMBER IS

 ret_val NUMBER;

BEGIN

 ret_val := MOD(ABS(in_unit_value),in_total_threads) + 1;

 RETURN ret_val;

END;

Vue de reprise avec requêtes
Chaque vue de reprise contient quatre éléments :

• le nom du mécanisme de traitement, driver_name

• le nombre total de traitements dans un groupement, num_threads

• la valeur du mécanisme pilote, driver_value

• la valeur du traitement pour cette combinaison donnée de driver_name, num_threads et de
valeur de pilote, thread_val

La vue est basée sur la table restart_control et une table d'informations, telle que DEPS ou
STORES. Une ligne existe dans la vue pour chaque valeur de pilote et chaque total de valeur de
traitements. Par conséquent, si un détaillant utilise toujours le même nombre de traitements pour
un pilote donné (rayon, magasin, etc.), la vue est relativement petite. Par exemple, si tous les
programmes d'un détaillant, traités par rayon, contiennent un nombre total de 5 traitements, la vue
ne contient qu'une seule valeur pour chaque rayon. Par exemple, si le nombre total de rayons est
10, v_restart_dept contiendra 10 lignes. Cependant, si le détaillant souhaite que l'un des
programmes contienne 10 traitements, il y aura 2 lignes pour chaque rayon : une pour 5
traitements et une autre pour 10 traitements (par exemple, si le nombre total de rayons est de 10,
v_restart_dept contiendra 20 lignes). Bien évidemment, il est recommandé aux détaillants de
réduire au maximum le nombre total de traitements pour un pilote de traitement afin de réduire la
portée de la jointure des tables du curseur pilote de la vue.

Voici un exemple dans lequel la même valeur de pilote peut résulter en différentes valeurs de
traitements. Cet exemple utilise la fonction restart_thread_return actuellement écrite pour dériver
les valeurs de traitement.

22

Chapitre 3 – Multi-traitements Pro*C

DRIVER_NAME NUM_THREADS DRIVER_VAL THREAD_VAL

DEPT 1 101 1

DEPT 2 101 2

DEPT 3 101 3

DEPT 4 101 2

DEPT 5 101 2

DEPT 6 101 6

DEPT 7 101 4
Voici un exemple de l'aspect d'une répartition de magasins avec 10 magasins et 5 traitements :

DRIVER_NAME NUM_THREADS DRIVER_VAL THREAD_VAL

STORE 5 1 2

STORE 5 2 3

STORE 5 3 4

STORE 5 4 5

STORE 5 5 1

STORE 5 6 2

STORE 5 7 3

STORE 5 8 4

STORE 5 9 5

STORE 5 10 1

Syntaxe :

Voici un exemple de la syntaxe nécessaire à la création de la vue pour la jointure multi-
traitements, créée avec script (reportez-vous à la section sur les traitements pour plus
d'informations sur la fonction restart_thread_return) :

create or replace view v_restart_store as

 select rc.driver_name driver_name,

 rc.num_threads num_threads,

 s.store driver_value,

 restart_thread_return(s.store, rc.num_threads) thread_val

 from restart_control rc, store s

 where rc.driver_name = 'STORE'

23

Retek Merchandising System

Retek Sales Audit ou ReSA (audit des ventes Retek) utilise un schéma de traitement différent.
Dans la mesure où ReSA doit être exécuté 24 heures sur 24 et 7 jours sur 7, il n'existe aucun
écran batch. Cela signifie que des programmes batch peuvent être exécutés lorsque des
utilisateurs sont en ligne. ReSA a résolu ce problème de conflit en créant un mécanisme de
verrouillage pour les données organisées par jour magasin. Ces verrouillages fournissent un
schéma de traitement naturel. Les programmes qui utilisent toutes les données des jours magasin
essaient de verrouiller d'abord le jour magasin. Si le verrouillage échoue, le programme passe tout
simplement au jour magasin suivant. Cela a pour effet d'équilibrer automatiquement la charge de
travail entre tous les programmes en cours d'exécution.

Gestion du schéma de traitement
Tous les noms de programmes sont stockés dans la table restart_control avec leur description
fonctionnelle, le pilote de requête (rayon, magasin, famille, etc) et le nombre associé de
traitements défini par l'utilisateur. L'utilisateur doit pouvoir naviguer dans tous les programmes
pour consulter le nom, la description et le pilote de requête et si la balise update_allowed est
définie sur vrai, modifier le nombre de traitements (la mise à jour est définie sur vrai).

Avec fichiers
Les exécutions avec fichiers n'utilisent pas vraiment plusieurs traitements. Par conséquent, le
nombre de traitements défini dans la table restart_control doit toujours être égal à un. Cependant,
un enregistrement restart_program_status doit être créé pour chaque fichier d'entrée traité pour le
module du programme. Par ailleurs, la valeur de traitement affectée doit être contenue dans le
nom du fichier d'entrée. La fonction restart_parse_name incluse dans le module de programme
analyse la valeur de traitement à partir du nom du programme et l'utilise pour déterminer la
disponibilité et les conditions de reprise de la table restart_program_status.

Reportez-vous au début de la section consacrée au multi-traitements pour une présentation des
limites de l'utilisation de valeurs de traitement importantes (supérieures à 9 chiffres).

24

Chapitre 3 – Multi-traitements Pro*C

Avec requêtes
Lorsque le nombre de traitements est modifié dans la table restart_control, le formulaire doit
d'abord vérifier qu'aucun enregistrement pour ce programme n'est en cours de traitement dans la
table restart_program_status (c'est-à-dire que tous les enregistrements = "Terminé"). Le
programme doit insérer ou supprimer des lignes selon que le nouveau nombre de traitements est
supérieur ou inférieur à l'ancien nombre. Si le nouveau nombre est inférieur à l'ancien, tous les
enregistrements pour le program_name dont le nombre de traitements est supérieur au nouveau
seront supprimés. Si le nouveau nombre est supérieur à l'ancien, de nouvelles lignes seront
insérées. Un nouvel enregistrement est inséré pour chaque combinaison restart_name/thread_val.

Par exemple, si le programme batch SALDLY voit son nombre de traitements passer de 2 à 3,
une ligne supplémentaire (3) est ajoutée à la table restart_program_status. De même, si le nombre
de traitements est réduit à 1 dans cet exemple, les lignes 2 et 3 sont supprimées.

Table restart_program_status originale :

ligne n° restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

2 WinSal -main 2 WinSal …

Table restart_program_status après insertion :

ligne n° restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

2 WinSal -main 2 WinSal …

3 WinSal -main 3 WinSal …

Table restart_program_status après suppression :

ligne n° restart_name thread_val program_name etc…

1 WinSal -main 1 WinSal …

Les utilisateurs doivent également être en mesure de modifier la colonne commit_max_ctr de la
table restart_program_status. Ils peuvent ainsi contrôler le nombre d'itérations dans la requête
pilote ou le nombre de lignes lu à partir d'un fichier simple qui détermine l'unité de travail logique
(LUW).

Gestion des batchs
Les utilisateurs doivent être en mesure de consulter le statut de tous les enregistrements de la
table restart_program_status. Il s'agit de l'emplacement où l'utilisateur peut consulter les messages
d'erreur des programmes interrompus ainsi que les statistiques et l'historique des exécutions de
batch. Les seuls champs modifiables sont program_status et restart_flag. L'utilisateur doit pouvoir
redéfinir le champ restart_flag de "N" à "Y" dans les enregistrements dont le statut est
interrompu, redéfinir les enregistrements démarrées à interrompu en cas d'interruption (fin
inhabituelle) et tous les enregistrements en cas de restauration à partir d'une inscription/nouvelle
exécution de tous les batch.

25

Retek Merchandising System

Planification et initialisation du batch de reprise
Avant d'exécuter tout batch avec la logique de reprise/récupération, un programme d'initialisation
doit être exécuté pour mettre à jour le statut dans la table restart_program_status. Ce programme
doit mettre à jour le program_status sur "prêt pour démarrage" lorsque le program_status d'un
enregistrement est défini à "terminé". Tous les programmes qui ont échoué lors de la dernière
exécution des batch restent donc inchangés.

Pré- et post-traitements
En raison de la nature de l'algorithme de traitement, les programmes individuels doivent exécuter
un pré- ou post-programme pour initialiser les variables ou les fichiers avant l'exécution de tout
traitement ou la mise à jour des données finales après l'exécution de tous les traitements. La
décision a été prise de créer des pré- et post-programmes dans ce cas, plutôt que de laisser la
logique de reprise/récupération décider si le traitement en cours d'exécution est le premier ou le
dernier d'un programme donné.

26

Chapitre 4 – Traitement vectoriel Pro*C

Chapitre 4 – Traitement vectoriel Pro*C
L'architecture des batch de Retek utilise le traitement vectoriel pour améliorer les performances
lorsque cela est possible. Au lieu de traiter des instructions SQL à l'aide de données scalaires, les
données sont regroupées en tableaux et utilisées comme variables de liaison dans les instructions
SQL. Cette méthode permet d'améliorer les performances en réduisant le trafic sur le
serveur/client et le réseau.

Le traitement vectoriel est utilisé pour sélectionner, insérer et mettre à jour les instructions. En
règle générale, Retek ne définit pas les tailles des tableaux de façon statistique, mais utilise la
variable d'exécution de reprise maximale comme multiple de dimensionnement. Les utilisateurs
doivent se souvenir de cela lorsqu'ils définissent le nombre maximal d'exécutions dans le
système.

Un facteur important à prendre en compte lors de l'utilisation du traitement vectoriel réside dans
le fait qu'Oracle ne permet pas d'activité vectorielle sur plus de 32 000 enregistrements à la fois.
Les bibliothèques de reprise/récupération de Retek ont été mises à jour pour définir des macros
pour la valeur suivante : MAX_ORACLE_ARRAY_SIZE.

Tous les programmes batch qui utilisent le traitement vectoriel doivent limiter la taille de leurs
tableaux à la valeur MAX_ORACLE_ARRAY_SIZE.

Si le nombre maximal d'exécutions est utilisé pour la taille du traitement vectoriel, vérifiez-le
après l'appel à la fonction restart_init() et, le cas échéant, redéfinissez-le à la valeur maximale si
elle est supérieure. Si la fonction retek_init() est utilisée pour l'initialisation, vérifiez le nombre
maximal d'exécutions renvoyé et redéfinissez-le à la taille maximale si elle est supérieure. Dans le
cas de rsetek_init(), redéfinissez le nombre maximal d'exécutions internes de la bibliothèque en
appelant la variable externe de type "int" limit_commit_max_ctr (int sans signe new_max_ctr).

Si d'autres variables sont utilisées pour le dimensionnement du traitement vectoriel, l'étape en
cours du traitement vectoriel doit être encapsulée dans une boucle d'appel qui effectue les
activités vectorielles dans des sous-segments des tableaux où chaque sous-segment correspond au
maximum à la valeur MAX_ORACLE_ARRAY_SIZE. Actuellement, tous les programmes batch
de Retek sont mis en œuvre de cette façon.

27

Chapitre 5 – Formats d'entrée et de sortie Pro*C

Chapitre 5 – Formats d'entrée et de
sortie Pro*C
Les programmes batch de Retek utilisent les saisies à la fois des tables et des fichiers simples. Par
ailleurs, les traitements peuvent entraîner la modification des structures des données et l'écriture
des données de sortie. Le traitement E/S avec fichiers joue le rôle d'interface entre Retek et les
systèmes externes.

Présentation générale de l'interface
Pour simplifier les conditions d'interface, Retek exige que toutes les transactions entrantes et
sortantes sur fichiers utilisent des présentations de fichiers standard. Il existe deux types de
présentations de fichiers, présentation de détails uniquement et présentation de détails principaux,
qui sont décrits ci-après.

Une interface API existe au sein de Retek pour simplifier le codage et la gestion des fichiers
d'entrée. L'interface API fournit des fonctionnalités de lecture des fichiers d'entrée, assure
l'intégrité de la présentation des fichiers et écrit et gère les fichiers des transactions rejetées.

Présentations des fichiers standard
La bibliothèque d'interface RMS prend en charge deux présentations de fichiers standard ; une
pour le traitement des détails principaux et une pour le traitement des détails uniquement. Les
sous-détails ne sont pas pris en charge par les fonctions de la bibliothèque d'interface de base
RMS.

Un code d'identification à 5 caractères ou un type d'enregistrement identifie tous les
enregistrements d'un fichier E/S, quel que soit le type de fichier. Les types d'enregistrements
valides incluent les valeurs suivantes :

• FHEAD—En-tête de fichier

• FDETL—Détail de fichier

• FTAIL—En-queue de fichier

• THEAD—En-tête de transaction

• TDETL—Détail de transaction

• TTAIL—En-queue de transaction

Chaque ligne du fichier doit commencer par le code du type d'enregistrement suivi d'un ID de
l'enregistrement à 10 caractères.

29

Retek Merchandising System

Fichiers de détails uniquement
Les présentations de fichiers possèdent un enregistrement d'en-tête de fichier standard, un
enregistrement détaillé pour chaque transaction à traiter ainsi qu'un enregistrement d'en-queue de
fichier. Les types d'enregistrement valides sont FHEAD, FDETL et FTAIL.

Exemple :
FHEAD0000000000STKU1996010100000019960929

FDETL0000000001SKU100000040000011011

FDETL0000000001SKU100000050003002001

FDETL0000000001SKU100000050003002001

FTAIL00000000020000000003

Fichiers de détails principaux
Les présentations de fichiers possèdent un enregistrement d'en-tête de fichier standard, un
ensemble d'enregistrements pour chaque transaction à traiter et un enregistrement d'en-queue de
fichier. Cet ensemble de transactions contient un enregistrement d'en-tête d'ensemble de
transactions, les détails de l'ensemble de transactions pour les détails au sein de la transaction et
un enregistrement d'en-queue de transaction. Les types d'enregistrements valides sont FHEAD,
THEAD, TDETL, TTAIL et FTAIL.

Exemple :
FHEAD0000000001RTV 19960908172000

THEAD000000000200000000001234199609091202000000000003R

TDETL000000000300000000001234000001SKU10000012

TTAIL0000000004000001

THEAD000000000500000000001234199609091202001215720131R

TDETL000000000600000000001234000001UPC400100002667

TDETL000000000700000000001234000001UPC400100002643 0

TTAIL0000000008000002

FTAIL00000000090000000007

Nom de
l'enregistrement

Nom du
champ

Type de
champ

Valeur par
défaut

Description

En-tête de fichier Descripteur
d'enregistrem
ent de type
de fichier

Char.(5) FHEAD Identifie le type
d'enregistrement de fichier

 Identifiant de
ligne de
fichier

Number
(10)

Défini par le
système
externe

Numéro de la ligne du
fichier actuel

30

Chapitre 5 – Formats d'entrée et de sortie Pro*C

Nom de
l'enregistrement

Nom du
champ

Type de
champ

Valeur par
défaut

Description

 Définition du
type de
fichier

Char.(4) s/o Identifie le type de
transaction

 Date de
création du
fichier

Date Date de
création

Date d'écriture du fichier
par le système externe.

En-tête de
transaction

Descripteur
d'enregistrem
ent de type
de fichier

Char.(5) THEAD Identifie le type
d'enregistrement de fichier

 Identifiant de
ligne de
fichier

Number
(10)

Défini par le
système
externe

Numéro de la ligne du
fichier actuel

 Numéro
contrôle
ensemble
transactions

Char.(14) Défini par le
système
externe

Utilisé pour assurer une
vérification unique des
transactions.

 Date de la
transaction

Char.(14) Défini par le
système
externe

Date de transaction créée
dans le système externe.

Détail de transaction Descripteur
d'enregistrem
ent de type
de fichier

Char.(5) TDETL Identifie le type
d'enregistrement de fichier

 Identifiant de
ligne de
fichier

Number
(10)

Défini par le
système
externe

Numéro de la ligne du
fichier actuel

 Numéro
contrôle
ensemble
transactions

Char.(14) Défini par le
système
externe

Utilisé pour assurer une
vérification unique des
transactions.

 Numéro de
la séquence
du détail

Char.(6) Défini par le
système
externe

Numéro séquentiel affecté
pour détailler les
enregistrements d'une
transaction.

En-queue de
transaction

Descripteur
d'enregistrem
ent de type
de fichier

Char.(5) TTAIL Identifie le type
d'enregistrement de fichier

31

Retek Merchandising System

Nom de
l'enregistrement

Nom du
champ

Type de
champ

Valeur par
défaut

Description

 Identifiant de
ligne de
fichier

Number
(10)

Défini par le
système
externe

Numéro de la ligne du
fichier actuel

 Comptage
des lignes de
détail de la
transaction

Number (6) Total des
lignes de
détails

Nombre de lignes de détails
dans une transaction.

Fin de fichier Descripteur
d'enregistrem
ent de type
de fichier

Char.(5) FTAIL Identifie le type
d'enregistrement de fichier

 Identifiant de
ligne de
fichier

Number
(10)

Défini par le
système
externe

Numéro de la ligne du
fichier actuel

 Nombre total
de lignes
transaction

Number
(10)

Total de
toutes les
lignes de
transaction

Toutes les lignes du fichier
moins les enregistrements
d'en-tête et d'en-queue de
fichier

32

Chapitre 5 – Formats d'entrée et de sortie Pro*C

Echange de données informatisé (EDI)
Apparus dans la version 7.0, les fichiers EDI utilisés ou créés par RMS ont un format générique :
RMS ne prend plus en charge les normes EDI particulières. En traitant les entrées et sorties EDI
au format générique, RMS ne se limite plus à une seule norme, ce qui permet aux clients de Retek
d'utiliser au mieux toutes les normes qu'ils ont choisies. La conversion du format des fichiers
d'entrée et de sortie EDI de n'importe quel format et vers n'importe quel format à l'aide d'un
logiciel tiers est une "méthode courante".

Dans le passé, les transactions EDI dans RMS étaient conformes aux normes ASC X12/VICS
(version 3040) et ANA/TRADACOMS. Elles adoptent maintenant un format qui applique les
normes d'interface de fichier RMS. Les fichiers entrants et sortants sont écrits dans une
présentation à champs fixes avec des enregistrements standard d'en-tête et d'en-queue de fichier.
Les informations de transaction sont incluses dans des enregistrements de présentation
principaux/de détails ou de détails uniquement. Les présentations correspondent aux fichiers
d'interface utilisés ailleurs dans RMS.

Les processus batch EDI de RMS écrivent les fichiers de transactions sortantes dans un format de
présentation générique, ces fichiers sont ensuite convertis par le logiciel tiers pour appliquer la
norme requise par chaque partenaire commercial. Les versions après conversion sont transmises
au partenaire commercial. Les transactions entrantes doivent être mises en forme par le partenaire
commercial dans une norme prédéfinie, transmises puis converties par le logiciel de conversion
du client Retek en présentation de fichier générique. Le fichier générique est utilisé comme
fichier d'entrée pour le traitement batch EDI de RMS.

Retek ne peut plus continuer à gérer des codes qui prennent en charge des normes EDI
particulières. Il existe plusieurs normes valides utilisées par les fournisseurs et les détaillants. Par
ailleurs, ces normes existent en plusieurs versions. La majorité des détaillants utilisent déjà des
logiciels pour associer et convertir les transactions EDI dans la norme ou la version requise. Il
existe d'excellents logiciels tiers, tels que le convertisseur Gentran™ de Sterling Software, qui
convertit de façon efficace les transactions entrantes et sortantes aux formats requis. L'utilisation
de logiciels tiers n'est pas seulement une pratique commune, mais également la meilleure
méthode utilisée à ce jour par les détaillants.

33

Chapitre 6 – Architecture RETL pour système RMS-RDF

Chapitre 6 – Architecture RETL pour
système RMS-RDF
Le système RMS travaille avec la structure RETL (Retek Extract Transform and Load). Cette
architecture optimise un outil haute performance de traitement des données qui permet aux
processus batch de bases de données de tirer parti des capacités de traitement parallèles.

La structure RETL exécute et analyse les opérateurs valides qui composent les scripts XML.

Ce chapitre offre une présentation du traitement RMS RETL. Vous trouverez des informations
supplémentaires sur l'outil RETL dans le tout dernier Guide du programmateur RETL.

Concept architectural
Le schéma ci-dessous illustre l'architecture de traitement de l'extraction. Plutôt que de gérer les
captures de modification à mesure qu'elles se produisent dans le système source au cours de la
journée, le processus extrait les données actuelles du système source. Les données extraites sont
sorties sur des fichiers plats. Ces fichiers plats sont alors disponibles pour des produits tels que
RDW (Retek Data Warehouse) et RDF (Retek Demand Forecasting, Prévision de la demande
Retek).

Le système cible (RDW ou RDF par exemple) possède sa propre méthode de finalisation des
transformations et de chargement des données nécessaires, qui peuvent passer par un traitement
supplémentaire dans le nouvel environnement.

L'architecture est basée sur deux étapes distinctes, illustrées par le schéma ci-dessous. Etape 1 :
extraction de la base de données RMS à l'aide de flux spécifiquement définis. On obtient en sortie
des fichiers de données au format schéma spécifiquement défini. Cette étape ne comprend aucun
code spécifique à la destination.

Etape 2 : introduit un flux spécifique à la destination. Dans ce cas, les flux destinés au produit
RDF/RPAS transforment les données de manière à ce que le système RDF puisse importer
correctement les données.

35

Retek Merchandising System

Etape 1
Processus d’extraction

de RMS

Schémas de sortie et
de flux d’extraction

de RMS

Etape 2
Processus de
transformation

Flux de
transformation

BD RMS

BD de destination

Fichiers d’extraction de RMS
(Format de schéma en sortie)

Charger fichiers

Etape 1
Processus d’extraction

de RMS

Schémas de sortie et
de flux d’extraction

de RMS

Etape 2
Processus de
transformation

Flux de
transformation

BD RMS

BD de destination

Fichiers d’extraction de RMS
(Format de schéma en sortie)

Charger fichiers

Les deux étapes du traitement RETL

36

Chapitre 7 – Présentation du programme RETL pour l'interface RMS-RDF

Chapitre 7 – Présentation du programme
RETL pour l'interface RMS-RDF
Ce chapitre récapitule les caractéristiques du programme RETL utilisées pour les extractions
RMS (RMSE). Vous trouverez des informations supplémentaires sur l'outil RETL dans le tout
dernier Guide du programmateur RETL.

	 Remarque : Dans cette section, certains exemples font référence à des programmes
RETL n'ayant aucun lien avec le système RMS. Les références à ces programmes ne sont
données qu'à titre d'indication.

Installation
Sélectionnez le répertoire où vous souhaitez installer RMS ETL. Ce répertoire (aussi intitulé
MMHOME) est l'emplacement d'où les fichiers RMS ETL sont extraits.

L'arborescence de codes ci-dessous est utilisée pour la structure RETL au cours des extractions,
transformations et chargements. Il y est fait référence dans cette documentation.

<base directory (MMHOME)>

 /data

 /error

 /log

 /rfx

 /bookmark

 /etc

 /lib

 /schema

 /src

37

Retek Merchandising System

Configuration
RETL
Avant de configurer et d'exécuter RMS ETL, installez la version 11.2 de RETL ou une version
supérieure (requise pour exécuter RMS ETL). Exécutez le script “verify_retl” (inclus dans
l'installation de RETL) pour vous assurer du bon fonctionnement de RETL avant de poursuivre.

Utilisateur et autorisations RETL
RMS ETL est installé et exécuté en tant qu'utilisateur RETL. Par ailleurs, les autorisations sont
configurées suivant le Guide du programmateur RETL. RMS ETL lit les données, crée, supprime
et met à jour les tables. Si ces autorisations ne sont pas configurées correctement, les extractions
échoueront.

Variables d'environnement
Consultez le Guide du programmateur RETL pour connaître les variables d'environnement RETL
à configurer pour votre version de RETL. Vous devrez définir MMHOME comme répertoire de
base pour RMS RETL. Il s'agit du répertoire de plus haut niveau que vous ayez sélectionné au
cours de l'installation (reportez-vous à la section "Installation" ci-dessus). Dans votre fichier
.kshrc, vous devez ajouter une ligne analogue à celle ci-dessous :

export MMHOME=<base directory for RMS ETL>

paramètres rmse_config.env
Certaines variables doivent être modifiées en fonction de vos paramètres locaux :

Par exemple :
export DBNAME=int9i

export RMS_OWNER=steffej_rms1011

export BA_OWNER=rmsint1011

Vous devez configurer la variable d'environnement PASSWORD soit dans le fichier
rmse_config.env, soit dans .kshrc, soit à un autre emplacement pouvant être consulté. Dans
l'exemple ci-dessous, si la ligne est ajoutée à rmse_config.env, le mot de passe ‘mypasswd’
servira à ouvrir une session sur la base de données :

export PASSWORD=mypasswd

Pour le système RMSE, veillez à revoir les paramètres d'environnement du fichier
rmse_config.env avant d'exécuter des modules batch.

Etapes à suivre pour configurer RETL
1 Ouvrez une session sur le serveur Unix avec un compte Unix pouvant exécuter les scripts

RETL.

2 Changez les répertoires en : <base_directory>/rfx/etc.

38

Chapitre 7 – Présentation du programme RETL pour l'interface RMS-RDF

3 Modifiez le script rmse_config.env :

a Donnez à la variable DBNAME le nom de la base de données RMS.

b Donnez à la variable RMS_OWNER le nom d'utilisateur du propriétaire du schéma RMS.

c Donnez à la variable BA_OWNER le nom d'utilisateur de l'utilisateur du batch RMSE.

Code de retour au programme
Les programmes RETL utilisent un code de retour pour indiquer une exécution réussie. Si
l'exécution du programme a réussi, le code renvoyé est zéro (0). Si l'exécution du programme a
échoué, il s'agira d'une valeur non nulle.

Fichiers de contrôle du statut du programme
Pour éviter qu'un programme ne s'exécute alors que le même programme est déjà en cours
d'exécution avec le même groupe de données, le code RMSE utilise un fichier de contrôle du
statut du programme. Au début de chaque module, rmse_config.env est exécuté. Il vérifie
l'existence du fichier de contrôle du statut du programme. Si le fichier existe, le message
"${PROGRAM_NAME} has already started" est reporté et le module se ferme. Si le fichier
n'existe pas, un fichier de contrôle du statut du programme est créé et le module s'exécute.

Si le module échoue à un moment donné, le fichier de contrôle du statut du programme n'est pas
supprimé. C'est à l'utilisateur de le supprimer avant d'exécuter de nouveau le module.

Conventions de dénomination des fichiers
La convention de dénomination du fichier de contrôle de statut du programme permet d'exécuter
un programme, dont l'entrée est un fichier texte, plusieurs fois et en même temps avec différents
fichiers.

Le nom et le répertoire du fichier de contrôle du statut du programme est défini dans le fichier de
configuration (rmse_config.env). Le répertoire par défaut est $MMHOME/error. La convention
de dénomination du fichier de contrôle du statut du programme attribue par défaut le nom de
fichier suivant, séparé par des points :

• Nom du programme

• "statut"

• Date virtuelle d'activité à laquelle le module a été exécuté

Par exemple, le fichier de contrôle de statut du programme invildex est intitulé comme suit pour
l'exécution de batch du 5 janvier 2001 :

$MMHOME/error/rmse_daily_sales.status.20010105

39

Retek Merchandising System

Reprise et récupération
RETL traitant tous les enregistrements comme un tout (et non pas individuellement), la méthode
de reprise et de récupération doit être différente de celle utilisée pour Pro*C. Le processus de
reprise et de récupération a deux objectifs :

1 Eviter la perte de données due à la défaillance du programme ou de la base de données.

2 Améliorer les performances, lors d'une reprise suite à une défaillance du programme ou de la
base de données, en limitant le volume de données devant être retraitées.

Les modules RMS Extract (RMSE) extraient les données d'une base de données de transaction ou
d'un fichier texte sources et inscrivent les données dans un fichier texte. Les modules RMS Load
(RMSL) importent les données de fichiers plats, effectuent des transformations si nécessaire, puis
chargent les données dans les tables RMS appropriées.

La plupart des modules utilisent un seul flux RETL et ne requièrent ni reprise ni récupération. Si
pour quelque raison que ce soit, le processus d'extraction échoue, il est possible de régler le
problème et d'exécuter de nouveau le processus depuis le début sans perte de données. Pour un
module utilisant un fichier texte comme entrée, il existe deux solutions permettant d'exécuter de
nouveau le module depuis le début :

1 Exécuter de nouveau le module avec l'intégralité du fichier d'entrée.

2 Exécuter de nouveau le module uniquement avec les enregistrements n'ayant pas été traités
correctement la première fois et enchaîner le fichier obtenu avec le fichier de sortie de la
première exécution.

Pour limiter le volume de données devant être retraitées, il existe des modules plus complexes qui
requièrent l'usage de plusieurs flux RETL et qui utilisent une méthode de signets pour la reprise
et la récupération. Cette méthode permet de relancer le module à partir du dernier point
d'exécution réussi et de terminer l'exécution. La méthode de reprise/récupération par signets
introduit un signet qui indique l'étape suivante du processus devant être exécutée. Pour chaque
étape, le signet est inscrit dans un fichier de signets et lu à partir de celui-ci.

	 Remarque : Si pour régler le problème à l'origine de la défaillance, il faut modifier des
données de la table ou du fichier source, le fichier de signets doit être supprimé et le
processus doit être exécuté de nouveau depuis le début afin d'extraire les données
modifiées.

Fichier de signets
Le nom et le répertoire du fichier de signets pour la reprise et la récupération sont définis dans le
fichier de configuration (rmse_config.env). Le répertoire par défaut est
$MMHOME/rfx/bookmark. La convention de dénomination du fichier de signets attribue par
défaut le nom de fichier suivant, séparé par des points :

• Nom du programme

• Le premier nom de fichier, s'il en est spécifié un dans la ligne de commande

• "bkm"

• Date virtuelle d'activité à laquelle le module a été exécuté

40

Chapitre 7 – Présentation du programme RETL pour l'interface RMS-RDF

Par exemple, le signet du programme invildex est inscrit dans le fichier suivant pour
l'exécution de batch du 5 janvier 2001 :

$MMHOME/rfx/bookmark/invildex.invilddm.txt.bkm.20010105

Consignation des messages
Les journaux des messages sont écrits quotidiennement au format décrit dans cette section.

Fichier journal quotidien
Chaque programme RETL écrit un message dans le fichier journal quotidien lorsqu'il démarre et
se ferme. Le nom et le répertoire du fichier journal quotidien est défini dans le fichier de
configuration (rmse_config.env). Le répertoire par défaut est $MMHOME/log. Tous les fichiers
journaux sont codés au format UTF-8.

La convention de dénomination du fichier journal quotidien attribue par défaut le nom de fichier
suivant, séparé par des points :

• Date virtuelle d'activité à laquelle les modules sont exécutés

• ".log"

Par exemple, l'emplacement et le nom du fichier journal pour la date virtuelle d'activité du 5
janvier 2001 est :

$MMHOME/log/20010105.log

Format
Comme l'illustrent les exemples ci-dessous, chaque message écrit dans un fichier journal
comporte le nom du programme, une indication temporelle et un message d'information ou
d'erreur :

cusdemogdm 13:20:01: Program Starting...

cusdemogdm 13:20:05: Build update and insert data.

cusdemogdm 13:20:13: Analyze table rdw10dev.cust_demog_dm_upd

cusdemogdm 13:20:14: Insert/Update target table.

cusdemogdm 13:20:23: Analyze table rdw10dm.cust_demog_dm

cusdemogdm 13:20:27: Program Completed...

Si un programme s'interrompt avant exécution complète, un fichier d'erreur est normalement
généré, indiquant où le problème s'est produit dans le processus. Certains messages d'erreur
inscrits sur le fichier journal, tels que ‘No output file specified’ (aucun fichier de sortie spécifié),
ne requièrent l'écriture d'aucune explication supplémentaire dans le fichier d'erreurs.

41

Retek Merchandising System

Fichier d'erreurs de programme
En plus du fichier journal quotidien, chaque programme écrit son propre flux détaillé et ses
propres messages d'erreur. Afin d'éviter la saturation du fichier journal quotidien, chaque
programme écrit ses erreurs dans un fichier d'erreurs distinct propre à chaque exécution.

Le nom et le répertoire du fichier d'erreurs du programme est défini dans le fichier de
configuration (RMSE_config.env). Le répertoire par défaut est $MMHOME/error. Toutes les
erreurs et tous les messages de traitement courants d'un programme donné, un jour donné, sont
répertoriées dans ce fichier d'erreurs (par exemple, ce fichier contiendra les erreurs stderr et
stdout de l'appel à RETL). Tous les fichiers d'erreurs sont codés au format UTF-8.

La convention de dénomination du fichier d'erreurs du programme attribue par défaut le nom de
fichier suivant, séparé par des points :

• Nom du programme

• Date virtuelle d'activité à laquelle le module a été exécuté

Par exemple, toutes les erreurs et informations de consignation du programme
rms_item_master sont écrites dans le fichier suivant pour l'exécution de batch du 5 janvier
2001 :

$MMHOME/error/rms_item_master.20010105

Fichiers de rejet RMSE
Les modules d'extraction RMSE produisent parfois un fichier de rejet en cas de problème lié aux
données (données introuvables dans des tables de conversion requises par exemple). Le module
tente de traiter toutes les données puis indique que certains enregistrements ont été rejetés. Ainsi,
tous les problèmes relatifs aux données peuvent être identifiés en une seule fois et résolus. Le
module peut alors être exécuté de nouveau. Si un module rejette des enregistrements, le fichier de
rejet n'est pas supprimé. C'est à l'utilisateur de le supprimer avant de lancer une nouvelle
exécution du module.

Les enregistrements du fichier de rejet contiennent un message d'erreur et des informations de
clés provenant de l'enregistrement rejeté. L'exemple suivant illustre un enregistrement rejeté pour
cause de problèmes rencontrés dans la bibliothèque de conversion des devises :

Currency Conversion Failed|101721472|20010309

L'exemple suivant illustre un enregistrement rejeté pour cause de problèmes rencontrés lors de la
recherche d'informations dans une table source :

Unable to find item_master record for Item|101721472

Le nom et le répertoire du fichier de rejet est défini dans le fichier de configuration
(rmse_config.env). Le répertoire par défaut est $MMHOME/data.

	 Remarque : Un répertoire destiné uniquement aux fichiers de rejet peut être créé. Le
fichier rmse_config.env doit être modifié pour renvoyer à ce répertoire.

42

Chapitre 7 – Présentation du programme RETL pour l'interface RMS-RDF

La convention de dénomination du fichier de rejet attribue par défaut le nom de fichier suivant,
séparé par des points :

• Nom du programme

• Le premier nom de fichier, s'il en est spécifié un dans la ligne de commande

• "rej"

• Date virtuelle d'activité à laquelle le module a été exécuté

Par exemple, tous les enregistrements rejetés du programme slsildmex sont placés dans le
fichier suivant pour l'exécution de batch du 5 janvier 2001 :

$MMHOME/data/slsildmex.slsildmdm.txt.rej.20010105

Fichiers de schéma
RETL utilise des fichiers de schéma pour spécifier le format des groupes de données entrants ou
sortants. Le fichier de schéma définit le type de données et le format de chaque colonne, qui est
ensuite utilisée dans RETL pour formater/manipuler les données. Vous trouverez des
informations supplémentaires sur les fichiers de schéma dans le tout dernier Guide du
programmateur RETL. Etant donné que les noms des fichiers de schéma ne changent pas
régulièrement, ils sont figés dans le code de chaque module. Tous les noms de fichiers de ce type
finissent par ".schema" et sont placés dans le répertoire "rfx/schema".

Paramètres de ligne de commande
Pour que chaque module RETL fonctionne, il est parfois nécessaire de faire passer les chemins et
noms de fichiers de données entrants et sortants par la ligne de commande Unix.

RMSE
Les modules d'extraction RMSE ne requièrent la saisie d'aucun paramètre. Le chemin/nom du
fichier sortant par défaut est $DATA_DIR/(nom du programme RMSE).dat. De même, le format
de schéma des enregistrements de ces fichiers sont spécifiés dans le fichier -
$SCHEMA_DIR/(nom du programme RMSE).schema.

43

Retek Merchandising System

Situations courantes d'exécution et de débogage
Les exemples suivants illustrent les situations courantes d'exécution et de débogage pour divers
types de programmes. Tous les noms de fichiers mentionnés ci-dessous (fichier journal, d'erreur,
etc...) font référence à l'exécution d'un module réalisée à la date virtuelle d'activité du 9 mars
2001. Pour connaître l'emplacement de chaque fichier, reportez-vous aux conventions de
dénomination décrites antérieurement.

Par exemple :

Pour exécuter rmse_stores.ksh :

1 Modifiez les répertoires : $MMHOME/rfx/src.

2 A l'invite Unix, saisissez :
%rmse_stores.ksh

Si le module s'exécute correctement, les résultats suivants sont obtenus :

1 Fichier journal : Le fichier journal d'aujourd'hui, 20010309.log, contient les messages
“Program started …” et “Program completed successfully” pour rmse_stores.

2 Données : Le fichier rmse_stores.dat se trouve dans le répertoire de données et contient les
enregistrements extraits.

3 Schéma : Le fichier rmse_stores.schema se trouve dans le répertoire des schémas et contient
la définition du fichier de données fournie ci-dessus, au numéro 2.

4 Fichier d'erreurs : Le fichier d'erreurs du programme, rmse_stores.20010309, contient le
flux RETL standard (qui finit par "All threads complete" et "Flow ran successfully") et ne
contient aucun message d'erreur supplémentaire.

5 Contrôle du statu du programme : Le fichier de contrôle du statut du programme
rmse_stores.status.20010309 n'existe pas.

6 Fichier de rejet : Le fichier de rejet rmse_stores.rej.20010309 n'existe pas.

Si le module ne s'exécute pas, les résultats suivants sont obtenus :

1 Fichier journal : Le fichier journal d'aujourd'hui, 20010309.log, ne contient pas le message
“Program completed successfully” pour rmse_stores.

2 Données : Le fichier rmse_stores.dat se trouve peut-être dans le répertoire de données mais
ne contient pas obligatoirement tous les enregistrements extraits.

3 Schéma : Le fichier rmse_stores.schema se trouve dans le répertoire des schémas et contient
la définition du fichier de données fournie ci-dessus, au numéro 2.

4 Fichier d'erreurs : Le fichier d'erreurs du programme, rmse_stores.20010309, contient peut-
être un message d'erreur.

5 Contrôle de l'état du programme : Le fichier de contrôle du statut du programme,
rmse_stores.status.20010309, existe.

6 Fichier de rejet : Le fichier de rejet rmse_stores.rej.20010309 n'existe pas car ce module ne
rejette pas les enregistrements.

7 Fichier de signets : Le fichier de signets rmse_stores.bkm.20010309 n'existe pas car ce
module n'utilise ni la reprise ni la récupération.

44

Chapitre 7 – Présentation du programme RETL pour l'interface RMS-RDF

Pour exécuter de nouveau le module, procédez comme suit :

1 Trouvez et réglez le problème à l'origine de l'erreur.

2 Supprimez le fichier de contrôle du statut du programme.

3 Modifiez les répertoires : $MMHOME/rfx/src. A l'invite Unix, saisissez :
%rmse_stores.ksh

45

	Contenu
	Chapitre 1 – Introduction
	Chapitre 2 – Reprise et récupération Pro*C
	Descriptions et définitions des tables
	restart_control
	restart_program_status
	restart_program_history
	restart_bookmark
	v_restart_x

	Présentation des modèles de données
	Pourquoi les tables restart_program_status et restart_bookma

	Configuration physique
	Reprise/récupération avec tables et fichiers
	Description des fonctions API
	restart_init :
	restart_file_init :
	restart_commit :
	restart_file_commit :
	restart_close :
	parse_array_args :
	restart_file_write :
	restart_cat :
	En-têtes et bibliothèque de reprise
	En-têtes et bibliothèques de reprise mis à jour
	Nouvelles fonctions de reprise/récupération

	Seuil d'exécution avec requêtes

	Chapitre 3 – Multi-traitements Pro*C
	Description de l'exécution de traitements
	Fonction de traitement avec requêtes
	Vue de reprise avec requêtes
	Gestion du schéma de traitement
	Avec fichiers
	Avec requêtes

	Gestion des batchs
	Planification et initialisation du batch de reprise
	Pré- et post-traitements

	Chapitre 4 – Traitement vectoriel Pro*C
	Chapitre 5 – Formats d'entrée et de sortie Pro*C
	Présentation générale de l'interface
	Présentations des fichiers standard

	Fichiers de détails uniquement
	Fichiers de détails principaux

	Echange de données informatisé (EDI)

	Chapitre 6 – Architecture RETL pour système RMS-RDF
	Concept architectural

	Chapitre 7 – Présentation du programme RETL pour l'interface
	Installation
	Configuration
	RETL
	Utilisateur et autorisations RETL
	Variables d'environnement
	paramètres rmse_config.env

	Code de retour au programme
	Fichiers de contrôle du statut du programme
	Conventions de dénomination des fichiers
	Reprise et récupération
	Fichier de signets

	Consignation des messages
	Fichier journal quotidien
	Format
	Fichier d'erreurs de programme

	Fichiers de rejet RMSE
	Fichiers de schéma
	Paramètres de ligne de commande
	RMSE

	Situations courantes d'exécution et de débogage

