
 

 

Oracle® Retail Point-of-Sale 

Operations Guide  
Release 11.1.3 

June 2007



 

 

Oracle® Retail Point-of-Sale Operations Guide, Release 11.1.3 

 

 

Copyright © 2007, Oracle. All rights reserved. 

Primary Author: Nathan Young 

The Programs (which include both the software and documentation) contain proprietary 
information; they are provided under a license agreement containing restrictions on use and 
disclosure and are also protected by copyright, patent, and other intellectual and industrial 
property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the 
extent required to obtain interoperability with other independently created software or as specified 
by law, is prohibited. 

The information contained in this document is subject to change without notice. If you find any 
problems in the documentation, please report them to us in writing. This document is not 
warranted to be error-free. Except as may be expressly permitted in your license agreement for 
these Programs, no part of these Programs may be reproduced or transmitted in any form or by 
any means, electronic or mechanical, for any purpose. 

If the Programs are delivered to the United States Government or anyone licensing or using the 
Programs on behalf of the United States Government, the following notice is applicable: 

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and 
technical data delivered to U.S. Government customers are "commercial computer software" or 
"commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-
specific supplemental regulations. As such, use, duplication, disclosure, modification, and 
adaptation of the Programs, including documentation and technical data, shall be subject to the 
licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent 
applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—
Restricted Rights (June 1987). Oracle Corporation, 500 Oracle Parkway, Redwood City, CA 94065 

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other 
inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate 
fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the 
Programs are used for such purposes, and we disclaim liability for any damages caused by such 
use of the Programs.  

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation 
and/or its affiliates. Other names may be trademarks of their respective owners. 

The Programs may provide links to Web sites and access to content, products, and services from 
third parties. Oracle is not responsible for the availability of, or any content provided on, third-
party Web sites. You bear all risks associated with the use of such content. If you choose to 
purchase any products or services from a third party, the relationship is directly between you and 
the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or 
(b) fulfilling any of the terms of the agreement with the third party, including delivery of products 
or services and warranty obligations related to purchased products or services. Oracle is not 
responsible for any loss or damage of any sort that you may incur from dealing with any third 
party.  



iii 

Value-Added Reseller (VAR) Language 
 
(i) the software component known as ACUMATE developed and licensed by Lucent Technologies 
Inc. of Murray Hill, New Jersey, to Oracle and imbedded in the Oracle Retail Predictive 
Application Server – Enterprise Engine, Oracle Retail Category Management, Oracle Retail Item 
Planning, Oracle Retail Merchandise Financial Planning, Oracle Retail Advanced Inventory 
Planning and Oracle Retail Demand Forecasting applications. 

(ii) the MicroStrategy Components developed and licensed by MicroStrategy Services Corporation 
(MicroStrategy) of McLean, Virginia to Oracle and imbedded in the MicroStrategy for Oracle Retail 
Data Warehouse and MicroStrategy for Oracle Retail Planning & Optimization applications. 

(iii) the SeeBeyond component developed and licensed by Sun MicroSystems, Inc. (Sun) of Santa 
Clara, California, to Oracle and imbedded in the Oracle Retail Integration Bus application. 

(iv) the Wavelink component developed and licensed by Wavelink Corporation (Wavelink) of 
Kirkland, Washington, to Oracle and imbedded in Oracle Retail Store Inventory Management. 

(v) the software component known as Crystal Enterprise Professional and/or Crystal Reports 
Professional licensed by Business Objects Software Limited (“Business Objects”) and imbedded in 
Oracle Retail Store Inventory Management. 

(vi) the software component known as Access Via™ licensed by Access Via of Seattle, Washington, 
and imbedded in Oracle Retail Signs and Oracle Retail Labels and Tags. 

(vii) the software component known as Adobe Flex™ licensed by Adobe Systems Incorporated of 
San Jose, California, and imbedded in Oracle Retail Promotion Planning & Optimization 
application. 

(viii) the software component known as Style Report™ developed and licensed by InetSoft 
Technology Corp. of Piscataway, New Jersey, to Oracle and imbedded in the Oracle Retail Value 
Chain Collaboration application. 

(ix) the software component known as i-net Crystal-Clear™ developed and licensed by I-NET 
Software Inc. of Berlin, Germany, to Oracle and imbedded in the Oracle Retail Central Office and 
Oracle Retail Back Office applications. 

(x) the software component known as WebLogic™ developed and licensed by BEA Systems, Inc. of 
San Jose, California, to Oracle and imbedded in the Oracle Retail Value Chain Collaboration 
application. 

(xi) the software component known as DataBeacon™ developed and licensed by Cognos 
Incorporated of Ottawa, Ontario, Canada, to Oracle and imbedded in the Oracle Retail Value Chain 
Collaboration application. 

 



 

iv 

Contents 
Preface ............................................................................................................................. vii 

Audience ............................................................................................................................... vii 
Related Documents.............................................................................................................. vii 
Customer Support...............................................................................................................viii 
Conventions.........................................................................................................................viii 

1 Introduction .................................................................................................................. 1 
Overview–What is RPOS? .....................................................................................................1 

Functional and Technical Capabilities ..........................................................................1 
Technical Architecture Overview .........................................................................................2 
RPOS’s Integration Points into the Retail Enterprise .........................................................3 
Javadoc for RPOS ....................................................................................................................3 
Where you can find more Information ................................................................................3 

2 Backend System Administration and Configuration ............................................... 5 
Supported Oracle Retail Products ........................................................................................5 
Supported Environments.......................................................................................................5 
Configuration (.cfg) Files .......................................................................................................5 

JDBC Configuration File (jdbc.cfg) ................................................................................6 
Network Configuration File (network.cfg) ..................................................................7 

Clientmaster Configuration File (client_master.cfg) ..........................................................8 
Class Names that Represent Daemons .........................................................................9 
Message Senders and Message Receivers...................................................................10 
Minute Delay for JMS Messaging................................................................................10 
End of Day or end of Session Download Waiting Times .........................................10 
Minimum Time for Data Refresh.................................................................................11 
Peer-to-Peer Communication.......................................................................................11 
Password Required........................................................................................................11 
Cashier Session and ‘go home’.....................................................................................11 
Peers.................................................................................................................................12 
Peer Timeout ..................................................................................................................13 
Initial Drawer Fund.......................................................................................................14 

Logging Information ............................................................................................................15 
Default Location of Client and Server Log Files........................................................15 
Logging Levels Established in Configuration Files (.cfg).........................................15 

Configuring JPOS Peripherals with retek_jpos.xml and jpos_peripherals.cfg.............16 
Exception Handling..............................................................................................................16 
Java Virtual Machine (JVM) Options .................................................................................16 
Pos.cfg.....................................................................................................................................17 
Business Rules Configuration through rules.xml.............................................................17 



 

v  

3 Technical Architecture .............................................................................................. 19 
Overview................................................................................................................................19 

RPOS and Integrated Store Operations (ISO) ............................................................19 
Advantages of the Architecture ...................................................................................19 

A High-Level View of the Tiered Model ...........................................................................21 
Presentation/Client Tier ...............................................................................................22 
In-Store Processor (optional) ........................................................................................26 
Middleware Tier ............................................................................................................26 
Application Tier .............................................................................................................27 
Data Tier..........................................................................................................................27 

RPOS Object Methodology ..................................................................................................27 
Business Objects .............................................................................................................27 

Distributed Topology ...........................................................................................................28 
Service Implementations......................................................................................................29 
Encryption Strategy ..............................................................................................................30 
Technical Support Services..................................................................................................30 

Offline Capabilities ........................................................................................................30 
Logging Service..............................................................................................................30 
Internationalization Service..........................................................................................30 
Security Service ..............................................................................................................31 

RPOS-related Java Terms and Standards ..........................................................................31 
4 Integration Interface Dataflows ................................................................................ 33 

Overview................................................................................................................................33 
From RPOS to a Wireless Store System (such as SIM)..............................................34 
From a Wireless Store System (such as SIM) to RPOS..............................................34 
From to RPOS to a Merchandising System (such as RMS) or to an (optional) Sales 
Audit System (such as ReSA).......................................................................................34 
From RPOS Client to the JMS queue...........................................................................35 
From the JMS queue to the RPOS Client ....................................................................35 
From RPOS Client to RPOS Client ..............................................................................35 

5 Functional Overviews................................................................................................ 37 
RPOS Management...............................................................................................................37 

Transaction Management .............................................................................................37 
Layaway Management..................................................................................................38 
Employee Management and Security .........................................................................38 
Employee Schedules......................................................................................................38 
Timecard Management .................................................................................................39 
Store Goals ......................................................................................................................39 
View Receipt Log ...........................................................................................................39 
Reports ............................................................................................................................39 



 

vi 

Customer Management........................................................................................................40 
RPOS Process Payments.......................................................................................................40 
RPOS Start-and-End-of-Day................................................................................................41 
RPOS Transactions................................................................................................................41 

Transactions Options.....................................................................................................41 
View Transaction ...........................................................................................................42 

Merchandise Return and Even Exchange..........................................................................42 
6 Messaging Framework .............................................................................................. 43 

Overview................................................................................................................................43 
Message Grouping................................................................................................................44 
Publish/Subscribe Managed Messaging ...........................................................................44 
Preconfigured Messengers...................................................................................................45 
Receiving Messages ..............................................................................................................46 

MessageReceiver Methods to Implement...................................................................46 
Building a Receiver step-by-step .................................................................................46 

Sending Messages .................................................................................................................46 
MessageSender Methods to Implement......................................................................47 
Building a Sender step-by-step ....................................................................................47 

7 Java Batch Processes............................................................................................... 49 
Batch Processing Overview .................................................................................................49 
Running a Java-Based Batch Process..................................................................................49 

Command Line Parameter Notes ................................................................................49 
Summary of Executable Files Associated to Java Packages and Classes ...............50 
Scheduler and the Command Line..............................................................................50 

Return Value Batch Standards ............................................................................................50 
Functional Descriptions and Dependencies ......................................................................51 
A Note about Multi-Threading and Multiple Processes .................................................51 
A Note about Restart and Recovery ...................................................................................51 
Batch Logging........................................................................................................................52 

A Appendix A: POS Upload File Layout Specification .............................................. 53 
Flat File used in the PosUpldGenerator Batch Process....................................................53 

B Appendix B: Manifest Deployment Process ........................................................... 57 
The two-step Manifest Process............................................................................................57 

Create the Manifest........................................................................................................57 
Push the Manifest to the Clients ..................................................................................58 





 

viii 

Preface 
Oracle Retail Operations Guides are designed so that you can view and understand the 
application’s ‘behind-the-scenes’ processing, including such information as the 
following: 
 Key system administration configuration settings 
 Technical architecture 
 Functional integration dataflow across the enterprise 
 Batch processing 

Audience 
Anyone who has an interest in better understanding the inner workings of the RPOS 
system can find valuable information in this guide. There are three audiences in general 
for whom this guide is written: 
 System analysts and system operation personnel: 

 who are looking for information about RPOS’s processes internally or in relation 
to the systems across the enterprise. 

 who operate RPOS on a regular basis. 
 Integrators and implementation staff who have the overall responsibility for 

implementing RPOS into their enterprise. 

 Business analysts who are looking for information about processes and interfaces to 
validate the support for business scenarios within RPOS and other systems across the 
enterprise. 

Related Documents 
For more information, see the following documents in the Oracle Retail Point-of-Sale 
Release 11.1.3 documentation set: 
 Oracle Retail Point-of-Sale Release Notes 
 Oracle Retail Point-of-Sale Installation Guide 
 Oracle Retail Point-of-Sale Online Help 
 Oracle Retail Point-of-Sale User Guide  
 Oracle Retail Point-of-Sale Application Builder User Guide 
 Oracle Retail Point-of-Sale Mission Control User Guide 
 Oracle Retail Point-of-Sale Receipt and Report Builder User Guide 



 

ix  

Customer Support 
 https://metalink.oracle.com  

When contacting Customer Support, please provide: 
 Product version and program/module name. 
 Functional and technical description of the problem (include business impact). 
 Detailed step-by-step instructions to recreate. 
 Exact error message received. 
 Screen shots of each step you take. 

Conventions 
Navigate: This is a navigate statement. It tells you how to get to the start of the procedure 
and ends with a screen shot of the starting point and the statement “the Window Name 
window opens.” 

Note: This is a note. It is used to call out information that is 
important, but not necessarily part of the procedure. 

This is a code sample 
 It is used to display examples of code 
 
A hyperlink appears like this. 
 

https://metalink.oracle.com/


 

Introduction 1 

1 
Introduction 

This operations guide serves as an Oracle Retail Point-of-Sale (RPOS) reference to explain 
‘backend’ processes. The guide is designed so that you can view and understand key 
system administered functions, including batch processing, the flow of data into and out 
of the application, and the application’s behind-the-scenes processing of data. 

Overview–What is RPOS? 
The RPOS solution delivers one of the most powerful, scalable, flexible, and stable point-
of-sale solutions available. RPOS offers the following key components of functionality 
and more: 
 Point-of-sale 
 Cash management 
 Customer management 
 Labor management 

Building on retail experience and research, the technology and retail business logic of 
RPOS adapts to a retailer’s business style, operating with existing networks, data 
repositories, hardware and operating systems.  

Functional and Technical Capabilities 
The system offers the following functional and technical capabilities: 
 The Java-based N-tier architecture is designed for high availability, with built-in 

redundancies. The multi-tiered platform adapts to changes in the environment from 
hardware additions to database changes, enhancing system life. Retailers can adapt 
the architecture to their business needs and can change the number of tiers without 
changing code. The system’s fit-client and network computer design make system 
upgrades, and price and inventory changes quick and easy, resulting in a lower cost 
of ownership. The separation of presentation, business logic, and data makes the 
software cleaner, more maintainable, and easier to modify.  

 RPOS allows a retailer to extend and modify point-of-sale (RPOS) functionality. With 
integrated application tools such as RPOS Tools Application Builder, RPOS Tools 
Mission Control, and RPOS Tools Receipt/Report Builder, RPOS expands the 
definition of a POS system by allowing you to customize the application to meet all 
of your business needs. The Mission Control management tool allows for the 
maintenance of multiple application servers and back-end services, locally or 
remotely. 

Note: These extension capabilities are not supported as part 
of the RPOS application, but exist as add-on tools for 
customer use. 

 Run-time recovery is possible from a fault on any tier. The system includes an online 
and an offline mode. Those transactions that are made during the offline mode are 
queued on the local terminal and automatically posted in chronological order, when 
the system’s comes back online. 



Technical Architecture Overview 

2 Oracle Retail Point-of-Sale 

 A business object and rule framework facilitates data validation. 
 An intuitive graphical-user interface (GUI) provides a comprehensive list of retail 

functionalities, along with online help and tips. 
 Integration to backend applications and data repositories can be customized. Data is 

delivered through a common gateway. The system’s messaging framework allows 
clients (cash registers, for example) to receive messages from and/or to send 
messages to topics and queues on a JMS server. RPOS supports multi-channel 
integration and handles large workloads while maintaining peak performance. 

Technical Architecture Overview 
RPOS’s robust distributed computing platform enables enhanced performance and 
allows for scalability. The following diagram offers a high-level conceptual view of the 
tiers. For a detailed description of this diagram, see Chapter 3, “Technical Architecture”. 

Presentation Tier

Middleware TierCluster

Application Tier

Data Tier

Persistence

KioskPOS Terminal

N+1 Strategy Application serverApplication serverApplication server

In-Store Processor (Optional)

In-Store Processor

Middleware Middleware

BrowserPDA

 



RPOS’s Integration Points into the Retail Enterprise 

Introduction 3 

RPOS’s Integration Points into the Retail Enterprise 
The following high-level diagram shows the overall direction of the data among systems 
and products across the enterprise. For a detailed description of this diagram, see 
“Chapter 4 – Integration Interface Dataflows”. 

JMS

Merchandising
system

(such as RMS)

External system

RPOS
Wireless store
system (such

as SIM)

Client Client

Sales audit
system (such

as ReSA)
Note:  Dotted
line denotes
optional system

 
RPOS-related dataflow across the enterprise 

Javadoc for RPOS 
Javadoc is the tool from Sun Microsystems that generates API documentation in HTML 
format. Oracle Retail provides Javadoc documentation generated from RPOS code. Click 
the HTML file named ‘index’ in the applicable Javadoc folder to open the Javadoc. 

Where you can find more Information 
You can get more information pertaining to RPOS from the following sources:  
 RPOS front-end documentation (for example, the RPOS User Guide and online help) 
 RPOS Installation Guide 
 Store Inventory Management (SIM) product documentation  
 Oracle Retail Merchandising System (RMS) product documentation  





 

Backend System Administration and Configuration 5 

2 
Backend System Administration and 

Configuration 
This chapter of the operations guide is intended for administrators who provide support 
and monitor the running system. 
The content in this chapter is not procedural, but is meant to provide descriptive 
overviews of the key system parameters. 

Supported Oracle Retail Products 
This version of RPOS is compatible with the following: 
 SIM 11.1 
 RMS 11.x and RMS 10.1 
 RPM 11.0 

Supported Environments 
For information about requirements for RPOS’s client, application server, and database 
server, see the RPOS Installation Guide. Note that the compiler vendor depends upon the 
deployed hardware. 

Configuration (.cfg) Files 
Some configurations for RPOS are located in .cfg files. The key system parameters 
contained in these file are described in this section. 
Note that within these .cfg files (and thus in some of the examples from those files 
below), a # sign that precedes a value in the file signifies that what follows is a comment 
and is not being utilized as a setting. 
Some settings in the .cfg files are configurable. Thus, when retailers install RPOS into an 
environment, they must update these values to their specific settings. Configuration files 
can be edited through a text editor or the Application Builder tool. 



Configuration (.cfg) Files 

6 Oracle Retail Point-of-Sale 

JDBC Configuration File (jdbc.cfg) 
This file delineates how the system uses the persistence layer. Key RPOS-related values 
within the file are shown below. Note that some values in the file may be intended for 
development purposes only or be related to another product (SIM, for example). 

Database Configuration 
The configuration in this file instructs the system about the database in which the RPOS 
tables reside. Note that a retailer using a specific database comments out any other 
database parameters in the configuration file. Under normal circumstances, the driver 
value should not change. The retailer establishes the machine name, the database name, 
the user name, and the password. The pool size pertains to the number of available 
database connections that the retailer intends to keep available in the pool. The 
application automatically adjusts the pool size as needed. JDBC_VERBOSE setting is for 
debugging purposes only. If a database connection is unused for a certain amount of 
time, it stops automatically. The lock setting describes how long the system attempts to 
procure a lock for the user before giving up and returning a message that the lock could 
not be attained. 
For example: 

# Oracle configuration 
DATABASE=ORACLE 
DRIVER=oracle.jdbc.driver.OracleDriver 
URL=jdbc:oracle:thin:@<RPOSDBMachineName>:1521:<RPOSDBName> 
POOL_INITIAL_SIZE=5 
USER_NAME=<RPOSUserId> 
PASSWORD=<password> 
total number of active connections in the connection pool 
MAX_ACTIVE=50# Maximum amount of time (in milliseconds) the connection pool 
should block 
# before throwing an exception when the pool is exhausted 
 MAX_WAIT=120000 
Cap on the total number of idle connections in the pool.   
MAX_IDLE=-1 
Minimum amount of time (in milliseconds) a connection may sit idle in the # 
pool before it is eligible for eviction.   
MIN_EVICTABLE_IDLE_TIME=3600000 
JDBC_VERBOSE=false 
#Time in seconds to keep unused connections (3600 = 1 hour) 
CONNECTION_EXPIRATION=3600 
#Time in seconds to wait on database locks 
LOCK_WAIT=5 



Configuration (.cfg) Files 

Backend System Administration and Configuration 7 

Specific Data Access Objects (DAO) Implementations 
These settings relate to data access-related information. The values allow the retailer to 
customize what class is used for data access for a given service. The settings in this 
section are (with few exceptions) associated with Oracle. The values should not to be 
changed if the system was purchased with RMS, which must use Oracle. A retailer doing 
custom work, however, can write an implementation that works for whatever database is 
being used and change the values in this section accordingly. 
For example: 
#Specific DAO Implementations 
COLLECTION_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.CollectionOracleDAO 
COMMONTRANSACTION_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.CommonTransaction
OracleDAO 
CUSTOMER_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.CustomerOracleDAO 
EMPAPPFORM_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmpAppFormOracleDAO 
EMPFORM_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmpFormOracleDAO 
EMPLOYEE_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmployeeOracleDAO 
EMPLOYEEAUTHINFO_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmployeeAuthInfoOr
acleDAO 
EMPLOYEETIMECARD_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmployeeTimecardOr
acleDAO 
EMPRESOURCE_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmpResourceOracleDAO 
EMPSALE_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EmpSaleOracleDAO 
EOD_DAO=com.retek.iso.cs.dataaccess.artsoracle.dao.EodOracleDAO 

Network Configuration File (network.cfg) 
Connectivity between the RPOS client and the middle tier is achieved via a Remote 
Naming Service (RNS), which provides the RPOS client with the necessary IP address 
and port to access the RPOS container. This configuration file includes parameters related 
to the naming service of Integrated Store Operations (ISO). The client sets the IP address 
to the server on which the code is running. The port number (3000 in the example below) 
can be left as the default, or it can be changed.  

Note: If the retailer changes the port number, the equivalent 
value must also be changed in RNS-related .bat/.sh files. 
The values must be kept in sync. 



Clientmaster Configuration File (client_master.cfg) 

8 Oracle Retail Point-of-Sale 

The MAXIMUM_CONNECT_ATTEMPTS value tells the system how many times it 
should attempt to connect before moving into offline mode, which prevents the user 
from continuing to use the system. The VERSION setting should not have to be changed. 
#  This is a comma-delimited list of addresses to the master naming 
#  service. 
#  Example:  10.9.1.47:3000,10.9.1.47:4000,10.9.1.47:5000 
#MASTER_NODE=<NamingServerIpAddress>:3000 
NOTE:Potr# 3001 is reserved by the exported MASTER_NODE 
MASTER_NODE=10.6.1.162:3000 
 
#  This is the address to the naming service for a specific  
#  application server. 
#  Each application server will have a unique address. 
#  The Node Monitor application  will bind to this. 
#APPLICATION_NODE=<AppServerIpAddress>:3001 
#NOTE:Port# 3003 is reserved by the exported APPLICATION_NODE 
APPLICATION_NODE=10.6.1.162:3002 
 
#  Maximum number of times to try to bind to a naming service before 
#  throwing a DowntimeException "Unable to find Naming Service". 
MAX_CONNECT_ATTEMPTS=2 
 
#  Version control number of the naming service that any client 
#  should look for.  This enables multiple versions to exist 
#  simultaneously. 
VERSION=1 

Clientmaster Configuration File (client_master.cfg) 
This file contains information related specifically to the RPOS client. Note that some 
values in the file may be intended for development purposes only or be related to 
another product (a SIM product, for example). 

Initial Class that is Run 
These parameters are associated with initial system processing. Under normal operating 
conditions, these parameters should not be changed. 
For example: 
#  This is always the initial class that is run.  This class could 
#  be used to update this file. 
STARTUP_BOOT_STRAP=com.retek.iso.cr.appmgr.bootstrap.InitialBootStrap 
#  comma delimited class name that need to be executed before any 
#  applications are loaded. 
BOOT_STRAP=com.retek.iso.cr.appmgr.bootstrap.UpdateBootStrap,com.retek.iso.cr.appm
gr.bootstrap.ClientServicesBootStrap,com.retek.iso.cr.appmgr.bootstrap.Merchandise
BootStrap,com.retek.iso.cr.appmgr.bootstrap.CorpMsgBootStrap,com.retek.iso.cs.sos.
SOSBootStrap,com.retek.iso.cr.appmgr.bootstrap.GUIBootStrap,com.retek.iso.cs.item. 
ItemFlatFileBootStrap,com.retek.iso.cs.pricing.PromotionBootStrap,com.retek.iso
.cs.employee.EmployeeBootStrap 
 
 



Clientmaster Configuration File (client_master.cfg) 

Backend System Administration and Configuration 9 

Depending on whether the client chooses to use XML or DAT (flat file) format the 
following file needs to be updated accordingly. 
 
 update.cfg 
 
 XML format: 
 SERVER_IMPL=com.retek.iso.cr.download.update.UpdateFileServices 
  
 DAT format: 
 SERVER_IMPL=com.retek.iso.cr.download.update.UpdateFlatFileServices 
 
 
 
 client_master.cfg 
 
 Please include based on the file format in the boot strap entry 
 
   XML format: 
  BOOT_STRAP= ...,com.retek.iso.cs.item.ItemBootStrap 
   
   DAT format: 
  BOOT_STRAP= ..., com.retek.iso.cs.item.ItemFlatFileBootStrap 
 
 item.cfg 
 
 XML format: 
 CLIENT_IMPL=com.retek.iso.cs.item.CMSItemFileServices 
 CLIENT_DOWNTIME=com.retek.iso.cs.item.CMSItemFileServices 
  
 DAT format: 
 CLIENT_IMPL=com.retek.iso.cs.item.CMSItemFlatFileServices 
 CLIENT_DOWNTIME=com.retek.iso.cs.item.CMSItemFlatFileServices 
 
 #Item Download Data file 
 CACHE_LIMIT=15000 
 HIT_THRESHOLD=3 
 ITEMS_FILENAME_PREFIX=_items 
 ITEMS_UPC_FILENAME_PREFIX=_itemupc 
 ITEM_DATA_CLIENT_DIR=data 

Class Names that Represent Daemons 
Where bootstraps run at the start of the program, daemons are threads that run 
continually while the client is running. Retailers may never need to change this setting 
unless they are adding additional daemons to the system. 
For example: 
# comma delimited class name that represent deamons. This is run  
# after the bootstrap is completed. 
DAEMON=com.retek.iso.cr.appmgr.daemon.UpdateDaemon,com.retek.iso.cs.merchandise.Me
rchandiseDaemon,com.retek.iso.cr.appmgr.daemon.MulticastReaderDaemon,com.retek.iso
.cr.appmgr.daemon.FileTransferDaemon 



Clientmaster Configuration File (client_master.cfg) 

10 Oracle Retail Point-of-Sale 

Message Senders and Message Receivers 
The parameters below are designed for RPOS’s JMS functionality. RPOS provides the 
ability for registers and servers to send messages to topics and queues on a Java 
Messaging Service (JMS) server. The messaging framework allows the clients to receive 
messages from topics and queues on a JMS server. RPOS uses messaging via JMS to 
perform tasks such as updating the client. For example, a price update during the day 
could be pushed out through messaging functionality from a price update sender to a 
price update receiver. 
The parameters below provide the system with the names of the message receivers and 
the message senders, either of which may be preconfigured with the system or created by 
the retailer. A retailer that created a message sender or a message receiver would have to 
configure the values in this portion of the file. 
For more information regarding messaging, see “Chapter 6 – Messaging framework”. 
For example: 
# Messaging - started after daemons have been started. 
# comma delimited lists of MessageReceiver and MessageSender subclasses 
# to be run by the MessagingManager. 
MESSAGE_RECEIVERS=com.retek.iso.cr.messaging.CorporateMessageReceiver,com.retek.is
o.cr.messaging.ConfigurationChangeReceiver,com.retek.iso.cs.item.PriceUpdateReceiv
er,com.retek.iso.cr.messaging.ClearExceptionReceiver 
MESSAGE_SENDERS=com.retek.iso.cr.messaging.InformationMessageSender,com.retek.iso.
cr.messaging.ExceptionMessageSender 

Minute Delay for JMS Messaging 
The parameters below determine the intervals the system uses to check for the existence 
of messages on the JMS queue(s) and the intervals the system uses to send messages to 
the JMS queue(s). The values are in minutes and are according to message type. In one of 
the values below, for example, the system checks for messages of the message type 
‘corporate receiver’ every ten minutes. 
For example: 
EXCEPTION_SENDER_INTERVAL=5 
CORP_MESSAGE_RECEIVER_INTERVAL=10 
CONFIG_CHANGE_RECEIVER_INTERVAL=1 
PRICE_UPDATE_RECEIVER_INTERVAL=5 

End of Day or end of Session Download Waiting Times 
After an ‘end of day’ (EOD) or an ‘end of session’ (EOS) has been completed, the system’s 
applicable daemon waits this many minutes before attempting to update its item file(s) 
or other files set up on the retailer’s headquarters application server.  
For example: 
# maximum number of minutes to wait after eod/eos before download code updates 
UPDATE_DOWNLOAD_WAIT=360 

After an ‘end of day’ (EOD) or an ‘end of session’ (EOS) has been completed, the system’s 
applicable daemon waits this many minutes before attempting to update its merchandise 
media. 
For example: 
# maximum number of minutes to wait after eod/eos before download merchandise 
MERCHANDISE_DOWNLOAD_WAIT=360 



Clientmaster Configuration File (client_master.cfg) 

Backend System Administration and Configuration 11 

Minimum Time for Data Refresh 
The system does not update its files unless this number of hours has passed. Because of 
these values, if a client is frequently restarted, the system considers its data to continue to 
be valid.  
For example: 
#Number of hours before the items file will be updated, since the last update 
ITEMS_DOWNLOAD_HOURS=12 
#Number of hours before the employees file will be updated, since the last update 
EMPLOYEES_DOWNLOAD_HOURS=12 
#Number of hours before the promotions files will be updated, since the last 
update 
PROMOTIONS_DOWNLOAD_HOURS=12 

Peer-to-Peer Communication 
Over the local network, RPOS uses a multicast method of communication in its peer-to-
peer client communications. Through multicast, a source host sends a message to a group 
of destination hosts. In order to facilitate peer-to-peer processing (that is, for the clients to 
be connected to one another), the values below must be the same for every RPOS client. 
For more information about peer-to-peer processing, see the section, ‘Key components in 
the client architecture’ in “Chapter 3 – Technical Architecture”. 
For example: 
#peer to peer parms, ex 224.3.3.15; 2001; 60000 
MULTICAST_ADDRESS=224.3.3.15 
MULTICAST_PORT=2001 
MULTICAST_RATE=60000 

Password Required 
The parameter below determines whether or not the user, after signing in, must enter a 
password to gain access to the client.  
For example: 
# Require the employee to also enter a password after providing a signon 
IS_PASSWORD_REQUIRED=false 

Cashier Session and ‘go home’ 
Once the user logs in, he or she can start a cashier session. The ‘go home’ in RPOS is the 
starting screen where the user logs in. This value determines whether the user has to log 
in once the user performs a ‘go home’. Retailers can use this setting as a way to make a 
new cashier sign in after the previous cashier has signed off. 
For example: 
#Can the user continue after each Go Home without logging in 
CASHIER_SESSION=false 



Clientmaster Configuration File (client_master.cfg) 

12 Oracle Retail Point-of-Sale 

Peers 
These settings, described below, pertain to classes that are instrumental to the system’s 
peer-to-peer communication among the clients. A retailer adding new components of 
peer-to-peer functionality would have to add any applicable additional class names here. 

Park 
The ‘park’ parameter helps enable a user to ‘park’ a transaction. For example, suppose a 
user is in the middle of a transaction on one client and suspends it. The user could go to 
another client and, because of the system’s peer-to-peer functionality, recall the same 
transaction. When instructed to recall a client that does not currently have the 
transaction, it goes to the other clients to determine if they do. Suspend/recall 
functionality thus works across registers. 
For example: 
PEER.park=com.retek.iso.cr.park.ParkRMIPeerImpl 

Employee 
If a client does not have an employee, this parameter helps enable the client go to other 
clients, through the system’s peer-to-peer functionality, to find the employee data. 
For example: 
PEER.employee=com.retek.iso.cs.employee.CMSEmployeeRMIPeerImpl 

Update 

Note: The value below pertains to non-bootstrap-related 
updates only. 

When updates are downloaded, only one client performs the download. Through the 
peer-to-peer functionality, the updates are then shared with the other clients. 
For example: 
PEER.update=com.retek.iso.cr.download.update.UpdateRMIPeerImpl 

Persist 
Within RPOS, Java objects can be stored as files. Through peer-to-peer functionality, 
clients can share this data.  
For example: 
PEER.persist=com.retek.iso.cr.persist.PersistRMIPeerImpl 



Clientmaster Configuration File (client_master.cfg) 

Backend System Administration and Configuration 13 

Peer Timeout 
These parameters represent in milliseconds the amount of time a peer client waits before 
it stops trying to communicate with another peer client.  
For example: 
# Peer timeout - number of milliseconds that the peer will wait before a timeout 
PEER_TIMEOUT=2000 

Logging 
This parameter contains logging information related specifically to the RPOS client. The 
retailer can specify the log filename. The system’s default uses the directory specified, 
and separate log files can exist for unique clients. The LOGGING_PAUSE value tells the 
system how long to wait before writing data to the log file. 
For example: 
#logging 
LOGGING_IMPL=com.retek.iso.cr.logging.LoggingFileServices 
#  uncommenting this line will use this as the client log filename 
#  rather than the name that includes the timestamp 
#LOGGING_FILE_NAME=..\\log\\client.log 
LOGGING_LEVEL=4 
LOGGING_PAUSE=5000 
LOGGING_SYSTEM_OUT=true 
LOGGING_SYSTEM_ERR=true 

List of Resource Bundles 
Resource bundles are Java files related to the internationalization process. This entry 
specs the system’s default resource bundles. Language-specific versions are handled 
automatically based on the configured user’s locale. These values should not have to be 
changed even when the system is offered in different languages. 
For example: 
# Comma-delimited list of classes of resource bundles 
MESSAGE_BUNDLE=com.retek.iso.cs.util.MessageBundle,com.retek.iso.cs.util.
MnemonicMessageBundle,com.retek.iso.cs.util.RuleMessageBundle,com.retek.i
so.cs.util.ConfigMessageBundle,com.retek.iso.cs.util.TAConfigMessageBundl
e,com.retek.iso.cs.util.TAMessageBundle,com.retek.iso.cs.util.MaskResourc
eBundle 

Look and Feel of the Client 
These parameters allow the retailer to customize the appearance of the application on the 
PC. However, Oracle Retail does not recommend that these values be changed.  



Clientmaster Configuration File (client_master.cfg) 

14 Oracle Retail Point-of-Sale 

For example: 
#  Attempt to use one of the following Look And Feels from LF1 to 
#  LFn. 
LOOK_FEEL_KEY=LF1,LF2,LF3,LF4,LF5 
LF1=com.retek.iso.cr.swing.plaf.metal.ConfigurableMetalLookAndFeel 
LF2=com.apple.mrj.swing.MacLookAndFeel 
LF3=com.sun.java.swing.plaf.windows.WindowsLookAndFeel 
LF4=javax.swing.plaf.metal.MetalLookAndFeel 
LF5=com.sun.java.swing.plaf.motif.MotifLookAndFeel 
 
# The direction the toolbar and appbar will show up 
#     0 - Bottom Right 
#     1 - Bottom Left 
#     2 - Upper Right 
#     3 - Upper Left 
USER_PREFERENCES.ANCHOR=0 
# Show a splash 
SHOW_SPLASH=FALSE 
 
#  The milliseconds delay to wait before enabling a button on a 
#  newly displayed applet 
# Suggested value: 200 (two tenths of a second) 
BUTTON_DELAY=0 
#  whether the button text should be displayed with HTML.  Useful 
#  for word-wrapping. 
FORMAT_BUTTONS_WITH_HTML=false 

Initial Drawer Fund 
This parameter instructs the system to prompt the user, at the start of the day, to input 
the amount that resides within the cash drawer. The user can enter an amount but does 
not have to. 
For example: 
# use initial drawer fund? 
USE_INITIAL_DRAWER_FUND=YES 

Client Services Loaded by Bootstraps 
These parameters are associated with the initial system processing of client services. 
Under normal operating conditions, these parameters should not have to be changed. 
For example: 
#Client Services loaded by bootstraps 
SERVICES_LIST=AUTH_SRVC,CUSTOMER_SRVC,CREDIT_AUTH_SRVC,EMPLOYEE_SRVC,EMPLOYEERESOU
RCE_SRVC,FILETRANSFER_SRVC,FORM_SRVC,GOAL_SRVC,ITEM_SRVC,LAYAWAY_SRVC,MERCHANDISE_
SRVC,PROMOTION_SRVC,READINGS_SRVC,REDEEMABLE_SRVC,REGISTER_SRVC,ROLE_SRVC,SCHEDULE
_SRVC,STORE_SRVC,TAX_SRVC,TIMECARD_SRVC,TRANSACTIONEOD_SRVC,TRANSACTIONSOS_SRVC,TX
N_NUMBER_SRVC,TXN_POS_SRVC,TXN_POSTER_SRVC,VALUEADDEDTAX_SRVC 
 
AUTH_SRVC=com.retek.iso.cs.auth.CMSAuthClientServices 
CUSTOMER_SRVC=com.retek.iso.cs.customer.CMSCustomerClientServices 
CREDIT_AUTH_SRVC=com.retek.iso.cs.authorization.bankcard.CMSCreditAuthClientServic
es 
EMPLOYEE_SRVC=com.retek.iso.cs.employee.CMSEmployeeClientServices 
EMPLOYEERESOURCE_SRVC=com.retek.iso.cs.scheduling.CMSEmployeeResourceClientService
s 
FILETRANSFER_SRVC=com.retek.iso.cs.filetransfer.CMSFileTransferClientServices 
FORM_SRVC=com.retek.iso.cs.forms.CMSFormClientServices 
GOAL_SRVC=com.retek.iso.cs.goaling.CMSGoalingClientServices 
ITEM_SRVC=com.retek.iso.cs.item.CMSItemClientServices 
LAYAWAY_SRVC=com.retek.iso.cs.layaway.CMSLayawayClientServices 



Logging Information 

Backend System Administration and Configuration 15 

MERCHANDISE_SRVC=com.retek.iso.cs.merchandise.CMSMerchandiseClientServices 
PROMOTION_SRVC=com.retek.iso.cs.pricing.CMSPromotionClientServices 
READINGS_SRVC=com.retek.iso.cs.readings.CMSReadingsClientServices 
REDEEMABLE_SRVC=com.retek.iso.cs.payment.CMSRedeemableClientServices 
REGISTER_SRVC=com.retek.iso.cs.register.CMSRegisterClientServices 
ROLE_SRVC=com.retek.iso.cs.scheduling.CMSRoleClientServices 
SCHEDULE_SRVC=com.retek.iso.cs.scheduling.CMSScheduleClientServices 
STORE_SRVC=com.retek.iso.cs.store.CMSStoreClientServices 
TAX_SRVC=com.retek.iso.cs.tax.CMSTaxClientServices 
TIMECARD_SRVC=com.retek.iso.cs.timecard.CMSTimecardClientServices 
TRANSACTIONEOD_SRVC=com.retek.iso.cs.eod.CMSTransactionEODClientServices 
TRANSACTIONSOS_SRVC=com.retek.iso.cs.sos.CMSTransactionSOSClientServices 
TXN_POS_SRVC=com.retek.iso.cs.pos.CMSTransactionPOSClientServices 
TXN_POSTER_SRVC=com.retek.iso.cs.txnposter.CMSTxnPosterClientServices 
TXN_NUMBER_SRVC=com.retek.iso.cs.txnnumber.CMSTransactionNumberClientServices 
VALUEADDEDTAX_SRVC=com.retek.iso.cs.tax.CMSValueAddedTaxClientServices 

Logging Information 
Default Location of Client and Server Log Files 

UNIX 
Log files related to the client are located in the following directory: 
clientUnix\retek\RPOS\files\prod\log 

Log files related to the server are located in the following directory: 
serverUnix\retek\RPOS\files\prod\log 

Windows 
Log files related to the client are located in the following directory: 
clientWindows\retek\RPOS\prod\log 

Log files related to the server are located in the following directory: 
serverWindows\retek\RPOS\files\prod\log 

Logging Levels Established in Configuration Files (.cfg) 
Logging levels can be established configuration files (such as item.log). This level of 
logging can be helpful when troubleshooting specific parts of the application. For 
example, if the application is experiencing issues in a specific area, the logger can set to a 
higher degree of granularity. For example, the stockcount.cfg file contains the following 
entry: 
# Logging 
LOGGING_IMPL=com.retek.iso.cr.logging.LoggingFileServices 
LOGGING_FILE_NAME=../log/item.log  
LOGGING_LEVEL=4 
LOGGING_PAUSE=5000 
LOGGING_SYSTEM_OUT=true 
LOGGING_SYSTEM_ERR=true 



Configuring JPOS Peripherals with retek_jpos.xml and jpos_peripherals.cfg 

16 Oracle Retail Point-of-Sale 

Configuring JPOS Peripherals with retek_jpos.xml and 
jpos_peripherals.cfg  

The following high-level steps provide an outline of what is necessary to configure 
peripherals for RPOS. The actual installation of peripherals can be a highly involved 
because of the wide variety of driver vendors (such as IBM), device-specific driver 
versions, and so on. 
1. Install the JPOS-compliant drivers specific to the peripherals. 
2. In Javapos/retek_jpos.xml, set up the Javapos definition of peripheral for the driver 

that was installed. Configure the applicable values in the file for the device-level 
specification. Formats defined for different devices are defined per the JPOS 
standard. 

3. Configure the jpos_peripherals.cfg so that the supported JPOS device type maps to 
the name used to define the device in the retek_jpos.xml.  

Exception Handling 
The primary types of exceptions within the RPOS system include the following: 
 com.retek.iso.cr.rules.BusinessRuleException 

This exception indicates that a business rule has been violated. 
 com.retek.iso.cr.appmgr.ApplicationException 

This exception is used to wrap lower system-level exceptions that occur throughout 
the framework. This class should be used to specify what the application needs to 
handle this exception with business logic, allowing lower level exceptions that occur 
to fall through and be handled differently.  

 com.retek.iso.cs.dataaccess.DAOException 
A DAOException is an exception thrown by the DAO. When some code has caught 
an exception in a DAO, it should throw a DAOException upward as a result. This 
class allows the original exception to continue to be accessible.  

Java Virtual Machine (JVM) Options 
Any JVM modifier (that is, any that can be specified in the ‘Java’ program) can be 
specified in the POSMainContainer.xml file. 
For example, if out of memory issues occur because of the amount of data involved 
during runtime, the JVM setting can be adjusted in the section of the 
RSSMainContainer.xml file shown below. Note that in the example below the 128m 
stands for 128 megabytes, the value that would need to be increased. 
For example: 
<jvmLineArgs length="2"> 
            <java.lang.String>-Xms4m</java.lang.String> 
            <java.lang.String>-Xmx128m</java.lang.String> 
        </jvmLineArgs> 



Pos.cfg 

Backend System Administration and Configuration 17 

Pos.cfg 
This file should not have to be changed. The file contains transaction types that are 
supported throughout the system’s code. 

Business Rules Configuration through rules.xml 
Business analysts can use RPOS’s business rule engine to modify the behavior of the 
RPOS system. Business objects enforce and encapsulate business rules keeping objects 
from being corrupted by faulty user-interface code. Business rules are a quick way for a 
developer to change the behavior of a business object or its process without adding to 
core behavior. For more information about business objects, see “Chapter 3 – Technical 
Architecture”. 
Business rules are pluggable which allows them to be modified separately from the core 
code. They can be added today and removed tomorrow. Once a rule written, an analyst 
can add or remove the rule without the use of a developer. 
The following diagram and the bullet points that follow the diagram provide an 
illustration of the rules engine and the role that rules.xml plays in relation to it. 

Item
String id

String getId()

void doSetId(String)
NoNegativeIds

RulesInfo execute(Item, String)

BusinessRule

RulesInfo execute(Object[])

void setId(String)

Business Rule
Engine

Business Rule
Mapping

XML

 

Business rule engine and configuration 



Business Rules Configuration through rules.xml 

18 Oracle Retail Point-of-Sale 

Business object ‘set’ methods call the rule engine. 
 Application Builder is used to build rules mapping. 
 The rule engine maps methods to rules. 
 Rules execute and return success / fail. 
 Information includes message to users. 

For example, a portion of rules.xml is shown below: 
  <?xml version="1.0" encoding="UTF-8" ?>  
- <CMS_OBJECT> 
- <RULE_REPOSITORY> 
  <ruleExecutionLoggingRequested>false</ruleExecutionLoggingRequested>  
  <ruleFailureLoggingRequested>false</ruleFailureLoggingRequested>  
- <RULE_ASSIGNMENT name="ADDITIONAL_EMP_INFO.isShowable"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.employee.AdditionalEmpInfoButtonShows</ruleAssign
mentRuleClass>  
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT name="ADDITIONAL_EMP_INFO_PREV.isShowable"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.employee.StandardEmpInfoButtonShows</ruleAssignme
ntRuleClass>  
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT name="ADD_BENEFIT.isShowable"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.timecard.EmployeeMayNotModOwnTimecard</ruleAssign
mentRuleClass>  
  <ruleAssignmentRuleClass 
index="1">com.retek.iso.cs.rules.timecard.EmployeeMayNotModOtherStoresTimecard</ru
leAssignmentRuleClass>  
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT name="com.retek.iso.cs.pos.CMSLayawayLineItem.setQuantity"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.item.MiscItemsNotEligibleForQtyChange</ruleAssign
mentRuleClass>  
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT 
name="com.retek.iso.cs.pos.CMSReturnLineItem.adjustMarkdownAmount"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.lineitem.LineItemMarkdownIsValid</ruleAssignmentR
uleClass>  
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT name="com.retek.iso.cs.pos.CMSReturnLineItem.adjustUnitPrice"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.lineitem.AdjustManualUnitPriceIsValid</ruleAssign
mentRuleClass>  
- <RULE_ASSIGNMENT 
name="com.retek.iso.cs.pos.CMSReturnLineItemDetail.clearManualTaxAmount"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.lineitem.TaxAmountCannotBeClearedOnReturnLineDeta
il</ruleAssignmentRuleClass>  
  </RULE_ASSIGNMENT> 
  </RULE_ASSIGNMENT> 
- <RULE_ASSIGNMENT name="com.retek.iso.cs.transfer.CMSTransferOut.testIsVoidable"> 
  <ruleAssignmentRuleClass 
index="0">com.retek.iso.cs.rules.transaction.TransferOutCannotBeVoidedIfCompleted<
/ruleAssignmentRuleClass>  
  </RULE_ASSIGNMENT> 
  </RULE_REPOSITORY> 
  </CMS_OBJECT> 



 

Technical Architecture 19 

3 
Technical Architecture 

This chapter describes the overall software architecture for RPOS, offering a high-level 
discussion of the general structure of the system, including the various layers of Java 
code. This information is valuable in the following scenarios, among others:  
 When the retailer wishes to take advantage of RPOS’s extensible capabilities and 

write its own code to fit into the RPOS system.  
 When the retailer wishes to implement the system for various databases (Oracle, 

DB2, and so on).  
For those who are less familiar with Java terminology, a description of RPOS-related Java 
terms and standards is provided for your reference at the end of this chapter. 

Overview 
RPOS and Integrated Store Operations (ISO) 

ISO is a group of in-store operations applications that will use and share common 
business logic, configuration utilities and technology infrastructure. The applications are 
proven to simplify store operations by improving customer service and decreasing costs. 
RPOS is an application on the ISO platform.  

Advantages of the Architecture 

Scalability 
RPOS’s robust distributed computing platform enables enhanced performance and 
allows for scalability. Hardware and software can be added to meet retailer requirements 
for each of the tiers. When component services no longer support the number of user-
defined requests, horizontal scaling is necessary to add additional software services. 
RPOS is comprised of component services that represent a retailer’s business 
requirements. These services are loaded (or unloaded) according to user-defined 
parameters (scaling to meet the user’s needs). For example, if a single service can handle 
50 concurrent requests, 2 services can handle 100 concurrent requests, 3 can handle 150, 
and so on.  
Vertical scaling is necessary when hardware can no longer support additional services; 
the retailer can add additional hardware or upgrade existing hardware for vertical 
scaling. For example, a retailer might add a processor, upgrade processors, add more 
memory, or add new hardware to the application server farm. 

High Availability 
RPOS’s availability is designed to increase based on customer demands. It has no single-
point-of-failure, software or hardware, and while it is designed for server clusters, 
clusters are not required. Middleware is designed to run in a clustered environment or 
on a low-cost blade server. 



Overview 

20 Oracle Retail Point-of-Sale 

Flexibility 
RPOS supports multiple network topologies through configuration rather than through 
extensive code changes. RPOS supports multiple database interfaces. RPOS’s Java-based 
tiers facilitate operating system (OS) independence while employing existing hardware. 
For the retailer, data placement can be based on business requirements rather than on 
technical limitations. The code has been written to run wherever Java is run. The same 
object model is on all devices within the platform, regardless of the operating system 
being used on individual devices. 

Fault Toleration 
RPOS continues to operate in the event of system failure. Each POS terminal within the 
local area network (LAN) is mirrored and has the ability to operate independent of the 
LAN and wide-area network (WAN). In the event of a failure within the LAN or WAN, 
POS terminals switch to offline mode without user intervention and continue to function. 

Cost Effectiveness 
RPOS uses open source market-proven technology. Object-oriented design increases 
reusability for faster development and deployment. The reuse of business objects and 
function allows for faster integration to enterprise subsystems. N-tier architecture has 
become an industry standard. Multi-tiered physically distributed architecture extends the 
life of the system. 

Manageability 
The n-tier architecture of RPOS allows for the encapsulation of business logic, shielding 
the client from the complexity of the back-end system. Any given tier need not be 
concerned with the internal functional tasks of any other tier. 
RPOS provides a retailer with the ability to remotely manage, debug, and tune 
application servers. POS terminals within the platform self-update allowing for quick 
and easily managed updates. 



A High-Level View of the Tiered Model 

Technical Architecture 21 

A High-Level View of the Tiered Model 
The following diagram, together with the explanations that follow, offer a high-level 
conceptual view of the tiers and their responsibilities within the architecture. 

Presentation Tier

Middleware TierCluster

Application Tier

Data Tier

Persistence

KioskPOS Terminal

N+1 Strategy Application serverApplication serverApplication server

In-Store Processor (Optional)

In-Store Processor

Middleware Middleware

BrowserPDA

 
Conceptual view of the tiered model 

 



A High-Level View of the Tiered Model 

22 Oracle Retail Point-of-Sale 

Presentation/Client Tier 
This tier handles the presentation of the application, including its user interface. The 
presentation tier consists of the store-level clients on which RPOS runs. The presentation 
tier allows for retailers to implement multi-channel presentations without modifying the 
architecture’s backend. The GUI is responsible for presenting data to the user and for 
receiving data directly from the user through the ‘front end’. The presentation tier only 
interacts with the middle tier (as opposed to the database tier). Various new interfaces 
can be constructed using the same core business objects.  

Business Process Flow from a User’s Point of View 
The presentation tier drives business process flow from the user’s point of view. Sales 
associates and store managers employ POS terminals to ring a sale, manage a store, and 
so on. Customers and sales associates can use kiosks and PDAs to create a bridal registry, 
scan items, and suspend transactions for retrieval at another POS device. With a browser, 
users can make purchases online while sitting at home. In all instances, business flow is 
driven by the user.  

Rich Client 
To facilitate the demands and complexity of point-of-sale demands, the RPOS front end 
facilitates robust client-side processing. The POS terminal interface was developed using 
Swing, which is a toolkit for creating rich graphical user interfaces (GUIs) in Java 
applications. Caching is utilized for increased performance. Abstract client services 
provide transparent access to network implementations. 

Peripherals 
The client interacts with POS peripherals using jPOS, an opensource Java-based financial 
transaction library/framework. RPOS also supports some peripherals using standards 
other than jPOS. The system can be configured to support jPOS-compliant peripherals 
that include the following: 
 Printers 
 Scanners 
 Cash drawer 
 Line display 

Note: Magnetic strip readers (MSR) can be supported via 
methods other than JPOS. 

 MSR 
The client framework is designed as a touchscreen and keyboard-driven Java application. 
There is no need to attach a mouse to drive the application. 
For information about the configuration of peripherals, see “Chapter 2 – Backend system 
administration and configuration”. 

Pluggable Business Rules 
The client architecture includes pluggable business rules. For more information about 
business rules, see “Chapter 2 – Backend System Administration and Configuration”. 



A High-Level View of the Tiered Model 

Technical Architecture 23 

Key Components in the Client Architecture 
The diagram below illustrates key components within the client. Explanations of each 
item on the diagram follow it.  

Network Downtime Manager
(WAN)

Services Proxy

Presentation Layer

“

Client Framework

JavaBeansBusiness
Rules

Configuration

Application Manager

Global

Session

Trans Session

State
Repository
Manager

Daemon
Manager

Bootstrap
Manager

Theme
ManagerManifest

Update

Peer-to-Peer
Manager (LAN)

Applet
Manager

Message
Manager

Logging

 
RPOS’s key client architectural components 

 State repository manager  
 Global repository 

The repository provides access to persisted objects. Security prevents application 
programmers from overwriting global objects. All client services’ objects are 
stored in the repository for easy access. The system provides serialization option 
(to local storage). 

 Session repository 
This component provides the same functionality as global repository, but for 
transient objects. The system has relaxed security for application programmers. 
The repository is ‘cleaned out’ when a transaction is completed. 

 Trans session repository 
The new trans session state repository is intended for objects existing between 
operator sessions. 



A High-Level View of the Tiered Model 

24 Oracle Retail Point-of-Sale 

 Application manager 
The application manager provides a common platform for all client processes. Thus 
RPOS includes a common programming API interface into GUI development. 
Commonly used methods include the following: 
setTheme() 
goBack() 
goHome() 
showApplet() 
showErrorDlg() 
showOptionDlg() 
showMenu 

 Applet manager 
This component is responsible for managing the applets that form an application. All 
screens extend CMSApplet which contains all the hooks into the framework. The 
component manages the lifecycle of an applet and caches all applets for increased 
performance. Commonly used methods include the following: 
init() 
start() 
stop() 
getVersion() 
pageUp() 
pageDown() 
getScreenName() 

 Network downtime manager 
This component manages all client services. If any client service fails, the component 
sends all client services into ‘offline’ mode. In offline mode, the component monitors 
the network for an ‘up’ condition and reconnects all client services. 

 Bootstrap manager 
This configuration-based component dynamically manages the start-up process. The 
component must extend BootStrap class to inherit base behavior. 

 Daemon manager 
This configuration-based component dynamically manages all daemon threads. The 
component must extend Daemon class to inherit base behavior. 

 Theme manager 
Themes are comprised of various images, fonts, and colors that determine the look 
and feel of RPOS. This component is incorporated into JavaBeans for global 
configuration. The component facilitates the retailer’s ability to change themes 
dynamically. 

 Peer-to-peer manager 
This component, which uses a combination of TCP/UDP network protocols, is 
responsible for the following: 
 Suspend / recall transactions 
 Employee and item file updates 
 Manifest software updates 

 Manifest update daemon 
This configurable component provides automatic updates to client software or files. 
Modes (wait, install, and remove) are provided for more control of the update 
process. As the diagram below illustrates. This component uses peer-to-peer 
communication for LAN distribution. 



A High-Level View of the Tiered Model 

Technical Architecture 25 

Manifest

Update Daemon

Manifest
Peer-to-Peer

Manifest

Update DaemonUpdate Daemon

Manifest
Peer-to-PeerPeer-to-Peer

 

Manifest software deployment process 



A High-Level View of the Tiered Model 

26 Oracle Retail Point-of-Sale 

In-Store Processor (optional) 
In-store processors act as additional application servers and allow for thinner clients. 
This tier is an optional tier in the ISO logical architecture. An in-store processor is not 
required in POS’s logical architecture. 

Middleware Tier 
Connectivity between the RPOS client and the middle tier is achieved via a 
Remote Naming Service (RNS), which provides the RPOS client with the 
necessary IP address and port. The remote naming service (RNS), or middleware tier 
of the RPOS platform, essentially serves as a communication bridge between the clients 
and the application server.  
The RNS is a single server or a clustered configuration of servers sharing the same virtual 
IP address. The RNS provides the store-level clients on the presentation tier with 
references to POS services running on the application tier. The IP address of the RNS is 
all that is required for the clients. 
The middleware tier handles high availability, fault tolerance, remote object binding or 
lookup, and load distribution. The middleware can reside at the application tier level in a 
non-production environment. 
The following diagram describes how middleware directs traffic to available application 
servers. 

Direct call
is made.

Client

MiddlewareApp server

Customer component

App server

Customer component

Initial
bind

After
call
fails

1

2

3

3

4

5

Not available

Bounces
back to
Middleware

Redirected to
available
server through
a re-direct call

 

Middleware directing traffic 



RPOS Object Methodology 

Technical Architecture 27 

Application Tier 
The application tier is where the application servers reside. All client requests are 
processed on the application servers. The application servers communicate directly with 
the database tier, process the data, and return the results to the clients. 
The application tier provides vertical scalability and horizontal scalability for the 
presentation tier and employs an N+1 strategy for high availability. Application servers 
within this tier house remote components or POS services that can be accessed from 
anywhere on the network. Services can provide complicated processing, access to data, 
and interaction with another system that deals with a specific business function (for 
example, inventory or merchandise subsystems). 

Data Tier 
The data tier is where the database servers and data reside. This tier, also called the 
persistence tier, is completely transparent to the client while providing data persistence. 
This tier can contain legacy applications such as inventory management and 
merchandising systems that provide behavior for current applications. This tier is 
configured based on the preferences and needs of a retailer’s business. 

RPOS Object Methodology 
An object is a self-contained software entity that consists of both data and procedures to 
manipulate the data. The RPOS architecture uses streamlined object modeling based on 
the Coad Methodology. The Coad Methodology is a pure object approach in which 
system objects are designed around what the domain is, rather than around how to solve 
problems within a domain. Objects are easily extended to provide new domain-specific 
capabilities. 

Business Objects 
RPOS business objects are separate from the user interface and database. In other words, 
presentation is separate from processing, which is separate from persistence. Separated 
business objects allow for new interfaces to be constructed using the same core business 
objects.  
Business objects enforce and encapsulate business rules keeping objects from being 
corrupted by faulty user-interface code. Business rules are pluggable which allows them 
to be modified separate from the core code. Analysis, design, and implementation 
patterns ensure a highly extensible framework. 



Distributed Topology 

28 Oracle Retail Point-of-Sale 

Distributed Topology 
One of RPOS’s most significant advantages is its flexible distributed topology. RPOS 
offers complete location transparency because the location of data and/or services is 
based upon the retailer’s business requirements, not upon technical limitations. RPOS’s 
client server connection utilizes Remote Method Invocation (RMI). For RPOS, the use of 
RMI means that the application can take advantage of distributed objects; that is, the 
server can be geographically distributed, residing at a central location. Because the server 
does not have to be in the same store as the in-store clients, the clients log onto the server 
‘over the wire’.  
RPOS’s RMI stub resides on the client side of the client/server relationship. The RMI stub 
contains no business logic but contains only enough code to effectively ‘pass through’ 
data. As far as the clients are concerned, all the processing occurs locally because they 
interact only with the stub, which is local. The GUI uses helper classes to ‘talk’ with the 
stub. 
Connectivity between the RPOS client and the middle tier is achieved via a Remote 
Naming Service (RNS), which provides the RPOS client with the necessary IP address 
and port. The remote naming service (RNS), or middleware tier of the RPOS platform, 
essentially serves as a communication bridge between the clients and the application 
server.  



Service Implementations 

Technical Architecture 29 

Service Implementations 
Service implementations 
The following diagram describes an implementation of services. 

User Interface
Client Services Client

Server

OnlineOffline

Services
Implementations

Services
Implementations

File Services Network Routing
Services

Network Routing Services

Workflow Engine Services

 

Services implementation 



Encryption Strategy 

30 Oracle Retail Point-of-Sale 

Encryption Strategy 
This version (as reflected on the title page) of the RPOS software is capable of the 
following: 
1. Operating on a self check out solution. 
2. Providing the ability to encrypt based on the algorithms supported by the Java 

Cryptography Extension (JCE). 

Technical Support Services 
Technical services hold the application together by providing common services to the 
application, services that are not necessarily driven by business requirements. In order to 
increase the maintainability of the code, a number of base technical services are provided 
in RPOS. They are described below.  

Offline Capabilities 
In the event of a network or system failure, RPOS's Java-based multi-tiered platform 
allows retailers to run a register offline. An RPOS client automatically detects a network 
outage or failure in the backend systems and attempts to connect to other available 
application services. Further failure results in the client’s switching to the customer 
defined downtime functionality, and transactions begin queuing locally.   
RPOS captures transaction data from a client register and stores the data in a Java 
serialized object format. All transactions performed while a register is in offline mode are 
stored locally. These objects are either processed in real-time or written to local storage in 
an XML or sequential flat file format.   
The mission critical design of RPOS guarantees that all data is delivered to the back-end 
repository or stored locally and queued until the network or back-end repository is 
available.  When the client register automatically detects that the network or back-end 
repository is available, all locally stored transactions are automatically posted in 
sequential order to the back-end without any user intervention or management. 
The more offline functionality desired, the more data (potentially) must be stored on the 
client.  For example, a customer’s requirements might state that a register should be able 
to continue to ring sales in the event of a network outage. This required the price look up 
(PLU) table and a subset of the company’s employee table (for operator and salesperson 
lookups) to reside on the client.  
When normal connections are restored, RPOS recognizes the online state and uploads all 
stored transactions for processing. 

Logging Service 
This service provides the system with a standard method for logging information to a flat 
text file. 

Internationalization Service 
This service uses Java classes with a .java extension to provide configurability for on-
screen messages (such as on screen labels or error messages). To change the language for 
the RPOS GUI screens, the retailer can edit these .java files and recompile them without 
impacting the business functionality of the application. Note that although this service 
supports any number of languages, the screen flow remains left to right, top to bottom. 
RPOS uses standard Java resource bundle support.  



RPOS-related Java Terms and Standards 

Technical Architecture 31 

Security Service 
The security service provides basic authorization and authentication functionality during 
user logon. The association of the user to security roles controls user access to the 
functional areas of the application. The security service validates a user’s identity against 
a security store and retrieves the role memberships and role authorizations for that user 
upon a successful logon.  

RPOS-related Java Terms and Standards 
RPOS is deployed using the technologies, methods, versions and/or design patterns 
defined in this section. 
Data Access Object (DAO) 
This design pattern isolates data access and persistence logic. The rest of the component 
can thus ignore the persistence details (the database type or version, for example).  
Java Development Kit (JDK), version 1.4.1 
Standard Java development tools from Sun Microsystems. 
Java Messaging Service (JMS) Topic 
A JMS topic is message-oriented middleware. The topic can be thought of as 
broadcasting a message to RPOS clients.  
JDBC 
JDBC is a means for Java-architected applications such as RPOS to execute SQL 
statements against an SQL-compliant database, such as Oracle. Part of Sun’s J2EE 
specification, most database vendors implement this specification. 
Naming Conventions in Java 
 Packages: The prefix of a unique package name is written in all-lowercase letters. 
 Classes: These descriptive names are unabbreviated nouns that have both lower and 

upper case letters.  
 Interfaces: These descriptive names are unabbreviated nouns that have both lower 

and upper case letters. The first letter of each internal word is capitalized. 
 Methods: Methods begin with a lowercased verb. The first letter of each internal 

word is capitalized. 
Persistence 
The protocol for transferring the state of a business object between variables and an 
underlying database.  
Persistent Connections 
The state of connection between an application and the database. 
Remote Interface 
The client side interface to a service. This interface defines the server-side methods 
available in the client tier.  
Remote Method Invocation (RMI)  
RMI offers a simple and direct model for distributed computation with Java objects. 
Remote method invocation (RMI) is the action of invoking a method of a remote interface 
on a remote object. Most importantly, a method invocation on a remote object has the 
same syntax as a method invocation on a local object. 



RPOS-related Java Terms and Standards 

32 Oracle Retail Point-of-Sale 

Skeleton 
The skeleton understands how to communicate with the stub across the RMI link. The 
skeleton performs all of the following: 
 ‘Talks’ with the stub. 
 Reads the parameters for the method call from the link. 
 Makes the call to the remote service implementation object, accepts the return value, 

and then writes the return value back to the stub. 
Stub 
The stub contains information that allows it to connect to a remote object, which contains 
the implementation of the methods. The stub implements the same set of remote 
interfaces as the remote object’s class.  
 



 

Integration Interface Dataflows 33 

4 
Integration Interface Dataflows 

Overview 
This chapter provides an overview as to how RPOS is functionally integrated with other 
systems (including other Oracle Retail systems). The discussion primarily concerns the 
flow of RPOS-related business data across the enterprise. 
A diagram shows the overall direction of the data among the products. The 
accompanying explanations of this diagram are written from a system-to-system 
perspective, illustrating the movement of data. Note that this discussion focuses on the 
functional use of data; the means of data movement (for example, batch) is not illustrated 
in this chapter. 

JMS

Merchandising
system

(such as RMS)

External system

RPOS
Wireless store
system (such

as SIM)

Client Client

Sales audit
system (such

as ReSA)
Note:  Dotted
line denotes
optional system

 
RPOS-related dataflow 

 



Overview 

34 Oracle Retail Point-of-Sale 

Note: Because RPOS and SIM can share a database, the 
dataflow between the systems can be substantial. The data 
that is described below is not comprehensive but presents a 
high-level view of some of the key exchanges between the 
systems and the distinctions each makes regarding the data.  

From RPOS to a Wireless Store System (such as SIM) 
 Stock-on-hand (SOH) data 

Stock-on-hand updates, due to sales and returns, are reflected by SIM within its GUI. 
Stock-on-hand data is held in quantities within buckets (for example, available, 
unavailable, damaged, reserved, and so on). 

 New employee data 
Employees created in RPOS can receive logon privileges in SIM. Note though that 
this dataflow does not apply if the SIM system is integrated with LDAP. 

From a Wireless Store System (such as SIM) to RPOS 
 Stock-on-hand (SOH) data 

Stock-on-hand updates, due to transfers and so on, are communicated to RPOS.  
 Item data  

 Description of the item 
 Item code 

 Location data  
To RPOS, location data consists of updated store information. RPOS does not 
recognize warehouse data. 

 Item-location association and price data 
For the purposes of RPOS, this data is related to specific items in a store. For 
example, in this Canadian store, an item is being sold for this many Canadian dollars. 

 Tax data at the location level 
For RPOS’s purposes, a given store has a tax rate of this amount.  

 Promotions data and promotions-item association data 
RPM both defines promotions and links promotions to items. RPOS applies this data 
in transactions.  

From to RPOS to a Merchandising System (such as RMS) or to an (optional) Sales Audit 
System (such as ReSA) 

 Transaction data 
RPOS exports a transaction log (in the RPOS upload format) with data such as all sale 
and return transactions that the system has processed. Note that complete layaways 
are treated as sales. Oracle Retail Sales Audit (ReSA) is a tool that monitors the 
reliability and accuracy of transaction data and compares the data to the rules and 
guidelines that a retailer establishes. ReSA flags inaccurate data for sales auditors, 
who can then correct the errors. 



Overview 

Integration Interface Dataflows 35 

From RPOS Client to the JMS queue 
 Sender data 

Senders send data messages to topics and queues on a Java Messaging Service (JMS) 
server.  For more information regarding messaging, see “Chapter 6 – Messaging 
framework”. 
 Logging-related data 

The information sender returns the contents of the client log files. Through 
mission control, the retailer can access this data for remote administration 
purposes. Examples of information include starting these services, going online, 
and so on. 

 Exception-related data 
The exception sender returns the contents of the client’s error log files. Through 
mission control, the retailer can access this data for remote administration 
purposes. Exceptions are created when problems occur with the system. 

From the JMS queue to the RPOS Client 
 Receiver data 

Receivers receive data messages to topics and queues on a Java Messaging Service 
(JMS) server. For more information regarding messaging, see “Chapter 6 – 
Messaging framework”. 

 Corporate message data 
The retailer can send a text string to the front screen of the clients with any 
message that suits business needs, (a welcome message, the latest news, 
reminders, and so on). 

 Exception clearing 
This message clears the error log so that a client does not have to continue to see 
exceptions that have already been addressed and/or resolved.  

 Price update 
An external system can publish price updates to the JMS queue, and RPOS can 
subscribe to get price changes. RPOS uses the information to update its item file, 
which contains the price data. 

From RPOS Client to RPOS Client  
Peer-to-peer functionality within RPOS is both configurable and extensible. The dataflow 
below is what is configured as ‘out of the box’ functionality. For more information, see 
‘Clientmaster configuration file (client_master.cfg)’ in “Chapter 2 – Backend system 
administration and configuration”. 
 Suspend/recall data 

When a user is in the middle of a transaction on one client and suspends it, the user 
can go to another client and recall the same transaction.  

 Updated employee data 
If a client does not have updated employee data, a client can access the data from 
another client to find the employee data. 

 Manifest update 
The Manifest can contain any combination of files, including the following: software 
updates, images, binary files, text files, Java Virtual Machines (JVMs), PLU updates, 
and so on.  





 

Functional Overviews 37 

5 
Functional Overviews 

This chapter provides information concerning the various aspects of RPOS functionality. 

RPOS Management  
RPOS management 

Transaction management  Performs financial tasks. 

Layaway management  Prints layaway reports and returns a layaway 
item to stock. 

Employee management  Manages your employees and access and 
complete various employment forms. 

Timecard management  Manages your employees and timecards. 

Store goals  Manages sales goals for the store and 
employees. 

View receipt log  Allows for the viewing of receipts printed store-
wide. 

End of session Closes a register. 

End of day  Records end-of-day totals and deposits. 

Reports Allows you to monitor and track a store’s 
performance, consumer trends, and so on. 

Transaction Management 
In addition to performing transaction functions, RPOS also allows a manager to perform 
financial tasks specific to his or her managerial duties. Among these tasks are the 
following: 
 Voiding transactions  
 Recording paidouts, which are given in the form of cash, for store expenses 
 Recording cash drops, or nightly deposits, into the system at the end of the business 

day 
 Collect incoming money not resulting from transactions 



RPOS Management 

38 Oracle Retail Point-of-Sale 

Layaway Management 
The layaway management features in RPOS enable you to perform the following tasks: 
 Return a layaway item to stock 
 Print reports for outstanding layaway payments 
 Print reports for overdue layaway payments 

In instances where a customer has put an item on layaway and decided not to purchase 
that item, RPOS will have the capability to return that item to stock. Also, the layaway 
reporting feature in RPOS helps manage the outstanding and overdue layaway 
transactions. 

Employee Management and Security 
The employee management option allows you to manage your employees and to access 
and complete various employment forms including:  
 Employee applications: This feature enables you to view current employee data or to 

enter new employee data into the system. 
 Time off request: This feature enables you to view existing time off requests or 

submit new time off requests (vacation, sick leave, personal leave) into the system. 
 This feature allows you to view and modify an employee’s W-4 data. 
 This feature allows you to view and modify an employee’s I-9data. 

Employee security is also maintained in RPOS. Employee security determines which 
parts of RPOS various employees can access. Within the employee security portion of 
RPOS you are able to view current employees’ security status, create new employees, 
assign and modify security roles for employees create or terminate employee status. 

Employee Schedules 
RPOS’s labor scheduling features optimize employee resources for labor management 
and provide you with the ability to plan, track, and analyze labor resources and 
scheduling. Using RPOS, labor scheduling is a two-fold process. The employee 
scheduling information option is used in conjunction with the maintain schedule option 
to create, maintain, generate, and print schedules. By accessing and editing the following 
information, you are able to add, modify, and maintain employee schedule resources for 
each employee. 

Employee schedule resources 

Employee name Store number and name 

Store phone number Target and maximum hours 

Current employee access role or roles assigned 
to the employee 

Current employee role or roles assigned to the 
employee 

Current time-off requests assigned to the 
employee 

Current re-occurring availability (preferred 
availability and unavailability) information 

 



RPOS Management 

Functional Overviews 39 

As schedule information is gathered for individual employees, RPOS also has the 
capability to generate schedules based on the user defined labor resource needs. Among 
the scheduling options in RPOS are the following: 

Maintain employee schedules 

Create new schedule Work with existing schedule 

Copy existing schedule Generate schedule 

Manage schedule shifts Modify schedule shifts 

Delete a schedule shift from schedule Manually assign employee schedule to shift 

Unassign employee from schedule shift Resolve schedule conflicts 

Timecard Management 
This feature enables you to view employee timecards, modify employee timecards, view 
and modify employee benefit hours (sick time, personal time, and so on) and view 
timecard adjustments.  

Store Goals 
The creation and maintenance of store and employee goals is also part of RPOS 
functionality. You can choose to view existing store goals, enter new store goals, modify 
employee goals, delete employee goals, restored deleted goals, and view the goaling 
graph. 

View Receipt Log 
This feature will generate a log for all receipts printed storewide. The receipts in the log 
are displayed as they would if they were printed. 

Reports 
RPOS allows you to view and print various reports so you can monitor and track 
activities such as store performance and customer buying habits. The following reports 
can be generated in RPOS:  
 Item code net sales: Allows you to view all transactions for a specific item code. 
 Consultant net sales: View all employees’ yearly, monthly, weekly, and current net 

sales. 
 Net sales by transaction type: Allows you to view a report of transaction types and 

the transaction type totals. 



Customer Management 

40 Oracle Retail Point-of-Sale 

Customer Management 
This feature allows you to manage customer information. You can also view a customer's 
transaction history and merge customer information. The following table lists the various 
customer management options in RPOS. 

Customer management 

Customer lookup Allows you to search for customer information 
by either the customer’s phone number or the 
customer’s name.  

Credit application Submits an application for a store credit card for 
a customer. 
 

Change quantity Changes the quantity of a line item for a special 
order. 

Delete Deletes a line item from a special order. 
 

Modify customer Changes a customer's personal information. The 
customer's main phone number cannot be 
modified. 

Modify info Modifies the information for a special order. 

RPOS Process Payments  
In RPOS, there are numerous payment types, and a customer can pay for a transaction 
using a single payment type or a combination of payment types. Among these payment 
types are the following:  

POS payment tenders 

Major credit cards Stored value card 

Debit cards Traveler’s checks 

Gift certificate/Gift card Unlimited split tendering 

Money order Canadian cash/check 

Electronic signature capture Foreign tender support 

Cash Coupons/Trade certificates 

In-house credit card Store credit issue 

Checks User defined tender options 

Note: Depending on the type of payment being made, there 
will be certain rules and restrictions for each of the different 
payment types. For example, if a customer is paying with a 
coupon, the coupon value cannot be greater than the amount 
due. In many instances, the RPOS system will alert you to 
these rules and restrictions. 



RPOS Start-and-End-of-Day 

Functional Overviews 41 

RPOS Start-and-End-of-Day 
When the store terminals are powered on at the start of a business day, a manager must 
perform the start-of-day functions to allow other users access to RPOS. Included in the 
start-of-day procedures are entering the store ID and password, the operator ID and the 
drawer fund amount. Many of these features are customizable and aspects such as the 
start/end drawer fund, employee security privileges, system updates, and 
register/operator/store level accountability can be modified by person(s) with those 
privileges. 
Similarly, RPOS also performs many end-of-day tasks. Before end-of-day totals and 
deposits can be made, you are required to perform an ‘end-of-session’ for all but one of 
the registers. After this has been executed, the end of day reporting feature can be 
accessed in the management menu.  Among the reports included are the over/short 
report, the bank report, and the currency media report. These reports can be generated 
after the deposit totals are displayed in RPOS and verified. 

RPOS Transactions 
When a transaction is being processed after an item has been scanned, you have the 
capability to apply several different options to that transaction. After the transaction 
exists, you can view that transaction using various search options.  

Transactions Options 
The transaction options allow you to apply different options to a transaction after you 
have scanned or entered an item code. The following table contains a list of the 
transaction options in RPOS: 

Transaction options in RPOS 

Modify the quantity of 
purchase items 

Apply discounts and 
markdowns 

Delete a purchase item 

Return a purchase item Process a layaway transaction Suspend a transaction 

Assign a sales associate to a 
transaction 

Assign a customer to a 
transaction 

View line item details of a 
transaction 

Cancel a transaction Add miscellaneous items to a 
transaction 

Add shipping information to a 
transaction 



Merchandise Return and Even Exchange 

42 Oracle Retail Point-of-Sale 

View Transaction 
You can view past transactions using the various search options below.  

View transactions 

Discount-search for transactions with a specific 
discount type 

Payment type - view transactions by payment 
type 

Shipping- search for transactions with shipping 
information 

Transaction – view transactions with a specific 
transaction option 

Operator- view transactions by the operator 
who performed transaction 

Customer – view transactions by customer 

Consultant – view transactions by sales 
associate that performed transaction 

All – view all transactions for a specific date 

Merchandise Return and Even Exchange 
When merchandise is returned by a customer, the merchandise return functionality can 
be used. Functionality extends to the return and exchange of  multiple items. 
Merchandise returns can be made with or without an exchange. 



 

Messaging Framework 43 

6 
Messaging Framework 

Overview 
RPOS provides the ability for registers and servers to send messages to topics and queues 
on a Java Messaging Service (JMS) server. As the diagram below illustrates, the 
messaging framework allows the clients to receive messages from topics and queues on a 
JMS server. RPOS uses messaging via JMS to perform tasks such as updating the client. 
For example, a price update during the day could be pushed out through messaging 
functionality. Messages can be created in Mission Control through the interface.  

Mission
Control

JMS

POS terminal

POS Terminal

Messsage

Message

Message

Other
message

generation
methods

Messsage

 
Messaging scenario in RPOS 

Messaging functionality can be extended. JMS is capable of sending almost any object as 
a message’s contents, though messages must meet specifications. For the purposes of 
simplification, RPOS has been designed to easily send messages in the form of 
java.lang.String and java.util.Properties objects. 
JMS provides two types or models of messaging: point-to-point and publish/subscribe. 
In the point-to-point model, a message consumer establishes a named queue and listens 
for messages placed into the queue. In the publish/subscribe model, messages are 
published to and retrieved from named topics. RPOS uses the publish/subscribe model 
more frequently and thus provides more features for that model than the point-to-point 
model. 



Message Grouping 

44 Oracle Retail Point-of-Sale 

Message Grouping 
RPOS includes message grouping as an additional feature based upon the source or 
destination for a message. This feature is primarily used in the publish/subscribe model. 
A group is a named path similar to a Java package. The overall grouping structure is 
fairly arbitrary, but all groups must start at the same node (typically the company name). 
Each POS terminal has a group ID. A group specification for the Houston offices of the 
imaginary company Foo might look like the following: 
 Foo.USA.TX.Houston 

In the RPOS system, a Store object knows about its group (see the method 
com.retek.iso.cr.store.Store.getGroupIdentifier()). Store clients are automatically grouped 
in their stores. A group specification for a client (number 101) in a store (number 1101) 
with the group identifier above would be: 
 Foo.USA.TX.Houston.Store.1101.TYPE_POS: 101 

Message grouping is used by the messaging architecture in RPOS to allow message 
senders to target their messages to specific groups. For example, a message sent to the 
group Foo.USA.TX.Houston will reach all devices in the Houston group, including the 
example device above. However, this message would not be noticed at all by devices in 
the Foo.USA.TX.Austin group.JMS. 

Publish/Subscribe Managed Messaging 
Managed messaging takes its name from the message manager which is the main base of 
operations for the sending and receiving of messages in this approach. It manages the 
message sender objects and the message receiver objects (collectively called ‘messengers’) 
that know what messages to send and what to do with incoming messages. 
There are two message manager implementations: MessageManager and 
com.retek.iso.cr.node.ServerMessageManager.  
The first implementation is used by the POS and reads its configuration information from 
the client_master.cfg configuration file. (For more information about the configuration of 
this file, see “Chapter 2 – Backend system administration and configuration”.) It reads 
the MESSAGE_RECEIVERS and MESSAGE_SENDERS properties in the file, and 
initializes the messengers from the classes listed in those properties. The second 
implementation is used by the application server container processes. The container 
reads its configuration from an XML file and puts the messengers elements as a list of 
classes into the com.retek.iso.cr.messaging.messengers.server system property. The 
message manager then reads this list and instantiate the messengers. 



Preconfigured Messengers 

Messaging Framework 45 

Preconfigured Messengers 
The RPOS system is preconfigured to send two types of messages. The first is an 
informational message. This message is sent to the VM_INFO topic. The second is a 
message on the status of the client, and this message type is sent to the EXCEPTION 
topic. Both the RPOS client and services containers send these messages. 
The system’s types of preconfigured receivers are shown below.  

Note: The actual names of the preconfigured receivers are 
not what is shown. The names below are used for 
illustration purposes. 

 Receiver 1 
This receiver type clears the exception or error log on either the client or server. It 
listens for messages from the CLEAR_EXCEPTIONS topic and expects a properties 
object containing the single key CLEAR. If the value for the key is true, the errors are 
cleared. 

 Receiver 2 
This receiver type allows properties in configuration files to be changed. It listens to 
the CONFIGURATION_CHANGE topic and expects a properties object that specifies 
the name of the configuration file to be changed, the key to change, and the new 
value. 

 Receiver 3 
This receiver type runs in service container processes. It tells the container to make 
some or all of the services it contains available or unavailable. 

 Receiver 4 
This receiver type runs on RPOS clients. It allows new messages from corporate 
headquarters to be displayed on the RPOS terminal. 

 Receiver 5 
This receiver type listens for price updates for RPOS. 

To receive or send other types of messages, you can create implementations of the 
abstract classes MessageReceiver and MessageSender respectively. 



Receiving Messages 

46 Oracle Retail Point-of-Sale 

Receiving Messages 
Classes that want to process incoming messages should subclass MessageReceiver and 
implement its four abstract methods: init(), getTopic(), getGroup(), and 
hasMessages(IMessageSubscriber). 

MessageReceiver Methods to Implement 
init() 

The init() method is used to perform any initialization your receiver deems necessary. 
One task that should be performed is to set the value of the repeatInterval attribute. The 
repeat interval indicates the number of minutes between message checks. A value less 
than one (1) will cause the receiver to check for messages only once. 
getTopic() 

The getTopic() method should return a String indicating the name of the topic of interest 
to the receiver. A receiver should always return the same topic. 
getGroup() 

The getGroup() method returns the group to which the receiver belongs. This can be 
retrieved using the MessagingGroupService. For example: 
MessagingGroupService.getCurrent().getDevice(); 
hasMessages(IMessageSubscriber) 

The hasMessages(IMessageSubscriber) is called when the receiver checks for messages 
and finds that some are present. The messages themselves can be retrieved using the 
getMessages() method of the IMessageSubscriber interface. The java.util.ArrayList 
returned by this method should be filled with all of the string and/or properties objects 
that were sent as messages to that topic and that were also sent to the receiver’s group or 
one of its group’s ancestors and that have not been previously retrieved. 
The contents of messages sent to a topic are not specified by RPOS, but by the sender of 
the message. Typically, though not always, one of the keys in a Properties message 
should be ‘DEVICE’ and its value is the String representation of the group information 
for the sender of the message. 

Building a Receiver step-by-step 
The following six steps are required to create a new message receiver. 
1. Subclass MessageReceiver. 
2. Implement the init() method, being sure to set the repeatInterval appropriately. 
3. Implement the getTopic() method to return the name of the topic of interest. 
4. Implement the getGroup() method to indicate the group of the client. 
5. Implement hasMessages(IMessageSubscriber) to extract the messages and take 

appropriate action. 
6. Add the fully-qualified class name of the new receiver to the MESSAGE_RECEIVERS 

key in client_master.cfg. 

Sending Messages 
Classes that want to send messages should subclass MessageSender and implement its 
four abstract methods: init(), getTopic(), getGroup(), and getMessage(). 



Sending Messages 

Messaging Framework 47 

MessageSender Methods to Implement 
init() 

The init() method is used to perform any initialization your receiver deems necessary. 
One task that should be performed is to set the value of the repeatInterval attribute. The 
repeat interval determines the number of minutes the RPOS messaging architecture will 
wait between calls to the getMessage() method. A value less than one (1) will cause the 
getMessage() method to be called only once. 
getTopic() 

The getTopic() method should return a String indicating the name of the topic to which 
messages will be posted. A sender should always return the same topic. 
getGroup() 

The getGroup() method should return the group to which messages will be sent. 
Returning null will cause the message to be sent to all groups. 
getMessage() 

The getMessage() method is called by the RPOS messaging architecture to ask the sender 
if it has a message to send. Returning null indicates that no message is to be sent. 
Although the declared return type for this method is Object, currently, the RPOS 
messaging architecture only fully supports String and Properties objects. All other types 
are converted to String objects using the toString() method and are published to the 
topic in that form. 

Building a Sender step-by-step 
The following six steps are required to create a new message sender. 
1. Subclass MessageSender. 
2. Implement the init() method, being sure to set the repeatInterval appropriately. 
3. Implement the getTopic() method to return the name of the topic that will receive 

the messages. 
4. Implement the getGroup() method to indicate the group that should receive the 

messages. 
5. Implement getMessage() to return a String or Properties object to be used as message 

content. 
6. Add the fully-qualified class name of the new receiver to the MESSAGE_SENDERS 

key in client_master.cfg. 
 





 

Java Batch Processes 49 

7 
Java Batch Processes 

This chapter provides the following: 
 An overview of RPOS’s batch processing  
 A description of how to run batch processes, along with key parameters 
 A functional summary of each batch process, along with its dependencies 
 A description of some of the features of the batch processes (batch return values, and 

so on) 

Batch Processing Overview 
RPOS’s batch processes are run in Java. For the most part, batch processes engage in their 
own primary processing. However, there are some calls from the batch processes which 
utilize code from the normal services that are running in the server. Usually, this 
processing occurs when the batch processes engage in actions outside their primary 
processing (for example, when they utilize a helper method, touch the database, and so 
on).  
Note the following characteristics of the RPOS’s batch processes: 
 They are not accessible through a graphical user interface (GUI). 
 They are scheduled by the retailer. 
 They are designed to process large volumes of data, depending upon the 

circumstances and process.   

Running a Java-Based Batch Process 
For UNIX systems, Java processes are scheduled through executable shell scripts (.sh 
files). For Windows systems, Java processes are scheduled through executable batch files 
(.bat files). 
Oracle Retail provides the shell scripts (.sh files) and batch files (.bat files). They perform 
the following internally: 
 Set up the Java runtime environment before the Java process is run. 
 Trigger the Java batch process. 
 Those processes that are ‘download’ processes bring data into RPOS from an external 

system such as a merchandising system (RMS, for example). Those that are 
‘uploaded’ export data to an external system such as a merchandising system. 

Command Line Parameter Notes 
Note the following information regarding command line parameters and the batch 
processes that are described in this chapter: 
 For UpdateStoreDataFiles and the PosUpldGenerator, no parameter is necessary. By 

default, they process for all locations. However, you can specify one or more store 
numbers (IDs such as 5000, for example) as a command line parameter.  



Return Value Batch Standards 

50 Oracle Retail Point-of-Sale 

Summary of Executable Files Associated to Java Packages and Classes 
The following table describes the executable shell scripts, batch files, and Java packages 
along with the main class within them that defines the (batch) Java class that runs. 

Executable shell script Executable batch file 
for windows 

Java package Class 

UpdateStoreDataFiles.sh 
Note: This command (and 
the equivalent .bat 
command) runs four batch 
processes, which are 
shown in the class column 
of this table. 

UpdateStoreDataFiles.
bat 
 

com.retek.iso.cs.cs  UpdateStoreEmpl
oyeeFiles 

 UpdateStoreItemFi
les 

 UpdateStoreProm
otionFiles 

 UpdateStoreThres
hholdPromotionFi
les 

PosUpldGenerator.sh PosUpldGenerator.bat com.retek.iso.cs.rms PosUpldGenerator 

Scheduler and the Command Line 
If the retailer uses a scheduler, arguments are placed into the scheduler. 
If the retailer does not use a scheduler, arguments must be passed in at the command 
line. 
Usage instructions are provided at the command line if incorrect parameters are passed. 

Return Value Batch Standards 
The following guidelines describe the function return values and the program return 
values that RPOS’s batch processes utilize:  
 0 - The function completed without error, and processing should continue normally.  
 1 - A non-fatal error occurred (such as validation of an input record failed), and the 

calling function should either pass this error up another level or handle the 
exception. 



Functional Descriptions and Dependencies 

Java Batch Processes 51 

Functional Descriptions and Dependencies 
The following table summarizes RPOS’s batch processes and includes both a description 
of each batch process’s business functionality and its batch dependencies. 

Batch process Details Batch 
dependencies 

PosUpldGenerator This batch process exports a transaction 
log with data such as all sale and return 
transactions that the system has 
processed. The batch process writes the 
data to flat files in POS upload format. 
This batch process produces files with 
names that include a time-date stamp 
and the store number.  
See “Appendix A – POS upload file 
layout specification” later in this 
document. 

Ad hoc 

UpdateStoreDataFiles This batch process generates XML files 
that are used by the RPOS clients (such 
as cash registers) in each store. The 
retailer can specify what stores the files 
are to be used in. Files that are generated 
include the following:  
 Items  
 Employee 
 Promotions 
 Threshhold promotions 

Daily 

A Note about Multi-Threading and Multiple Processes 
RPOS’s batch processes are currently not set up to be multi-threaded or to undergo multi-
processing. 

A Note about Restart and Recovery 
RPOS Java-based batch processes do not utilize any type of restart and recovery. Rather, 
if a restart is required, a batch process can simply be restarted.  



Batch Logging 

52 Oracle Retail Point-of-Sale 

Batch Logging 
Log files are located in the same directory as the file being processed. 
The system logs the following two types of messages for some batch processes: 
 Warnings 

Warnings are not as serious as errors. They are logged for informational purposes, 
and they do not affect the running of the batch process.  

 Errors 
Errors are the more serious of the two types of error messages. If these occur, they do 
affect the processing of the file.  



 

Appendix A: POS Upload File Layout Specification 53 

A 
Appendix A: POS Upload File Layout 

Specification 
Flat File used in the PosUpldGenerator Batch Process 

Record Name Field Name Field Type Default Value Description 

File Header File Type Record 
Descriptor 

Char(5) FHEAD Identifies file record 
type 

 File Line Identifier Char(10) specified by 
external system 

ID of current line 
being processed by 
input file. 

 File Type 
Definition 

Char(4) POSU Identifies file as ‘POS 
Upload’ 

 File Create Date Char(14) create date Date file was written 
by external system 

 Location Number Number(10) specified by 
external system 

Store identifier 

 Vat include 
indicator 

Char(1)  Determines whether 
or not the store stores 
values including vat.  
Not required but 
populated by Oracle 
Retail sales audit 

 Vat region Number(4)  Vat region the given 
location is in.  Not 
required but 
populated by Oracle 
Retail sales audit 

 Currency code Char(3)  Currency of the 
given location.  Not 
required but 
populated by Oracle 
Retail sales audit 

 Currency retail 
decimals 

Number(1)  Number of decimals 
supported by given 
currency for retails.  
Not required but 
populated by Oracle 
Retail sales audit 

Transaction 
Header 

File Type Record 
Descriptor 

Char(5) THEAD Identifies transaction 
record type 

 File Line Identifier Char(10) specified by 
external system 

ID of current line 
being processed by 
input file. 



Flat File used in the PosUpldGenerator Batch Process 

54 Oracle Retail Point-of-Sale 

Record Name Field Name Field Type Default Value Description 

 Transaction Date Char(14) transaction date Date sale/return 
transaction was 
processed at the POS 

 Item Type Char(3) REF 
ITM 

Item type will be 
represented as a REF 
or ITM 

 Item Value Char(25) item identifier The id number of an 
ITM or REF 

 Dept Number(4) Item’s dept Dept of item sold or 
returned.  Not 
required but 
populated by Oracle 
Retail sales audit 

 Class Number(4) Item’s class Class of item sold or 
returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Subclass Number(4) Item’s subclass Subclass of item sold 
or returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Pack Indicator Char(1) Item's pack 
indicator 

Pack indicator of 
item sold or 
returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Item level Number(1) Item's item level Item level of item 
sold or returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Tran level Number(1) Item's tran level Tran level of item 
sold or returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Wastage Type Char(6) Item’s wastage 
type 

Wastage type of item 
sold or returned. Not 
required but 
populated by Oracle 
Retail sales audit 



Flat File used in the PosUpldGenerator Batch Process 

Appendix A: POS Upload File Layout Specification 55 

Record Name Field Name Field Type Default Value Description 

 Wastage Percent Number(12) Item’s wastage 
percent 

Wastage percent of 
item sold or 
returned. Not 
required but 
populated by Oracle 
Retail sales audit 

 Transaction Type Char(1) ‘S’ – sales 
‘R’ - return 

Transaction type 
code to specify 
whether transaction 
is a sale or a return 

 Drop Shipment 
Indicator 

Char(1) 'Y' 
'N' 

Indicates whether the 
transaction is a drop 
shipment or not. If it 
is a drop shipment, 
indicator will be 'Y'. 
This field is not 
required, but will be 
defaulted to 'N' if 
blank. 

 Total Sales 
Quantity 

Number(12)  Number of units sold 
at a particular 
location with 4 
implied decimal 
places. 

 Selling UOM Char(4)  UOM at which this 
item was sold. 

 Sales Sign Char(1) ‘P’ - positive 
‘N’ - negative 

Determines if the 
Total Sales Quantity 
and Total Sales Value 
are positive or 
negative. 

 Total Sales Value Number(20) 
 

 Sales value, net sales 
value of goods 
sold/returned with 4 
implied decimal 
places. 

 Last Modified Date Char(14)  For VBO future use 

Transaction 
Detail 

File Type Record 
Descriptor 

Char(5) TDETL Identifies transaction 
record type 

 File Line Identifier Char(10) specified by 
external system 

ID of current line 
being processed by 
input file. 

 Promotional Tran 
Type 

Char(6) promotion type – 
valid values see 
code_detail table. 

Code for 
promotional type 
from code_detail, 
code_type = ‘PRMT’ 

 Promotion 
Number 

Number(10) promotion 
number 

Promotion number 
from the RMS 



Flat File used in the PosUpldGenerator Batch Process 

56 Oracle Retail Point-of-Sale 

Record Name Field Name Field Type Default Value Description 

 Sales Quantity Number(12)  Number of units sold 
in this prom type 
with 4 implied 
decimal places. 

 Sales Value Number(20)  Value of units sold in 
this prom type with 4 
implied decimal 
places. 

 Discount Value Number(20)  Value of discount 
given in this prom 
type with 4 implied 
decimal places. 

Transaction 
Trailer 

File Type Record 
Descriptor 

Char(5) TTAIL Identifies file record 
type 

 File Line Identifier Char(10) specified by 
external system 

ID of current line 
being processed by 
input file. 

 Transaction Count Number(6) specified by 
external system 

Number of TDETL 
records in this 
transaction set 

File Trailer File Type Record 
Descriptor 

Char(5) FTAIL Identifies file record 
type 

 File Line Identifier Number(10) specified by 
external system 

ID of current line 
being processed by 
input file. 

 File Record 
Counter 

Number(10)  Number of 
records/transactions 
processed in current 
file (only records 
between head & tail) 

 



 

Appendix B: Manifest Deployment Process 57 

B 
Appendix B: Manifest Deployment Process 

Software updates and data file updates are pushed out from the application server in an 
automated process called a Manifest. The Manifest can contain any combination of files, 
including the following: software updates, images, binary files, text files, Java Virtual 
Machines (JVMs), PLU updates, and so on. The process uses a combination of TCP/IP 
and UPD/IP for peer-to-peer (P2P) pushes of the Manifest between client terminals. 
Mission control can be used to create/generate manifests. The format of the manifest files 
is highly specific. 
There are two types of Manifest updates: full and incremental. A Manifest is pushed out 
to the clients in a two-phase process. Each client is scheduled to check for updates at a 
pre-scheduled time determined by a pluggable daemon thread. 
If there is more than one client in a store, the first client that receives the Manifest locks 
out all other clients in that location from receiving the Manifest. Once the first client 
receives the Manifest, it uses P2P networking to update the remaining in-store clients. 
The initial push sends the updates in a ‘wait-to-install’ state that allows system 
administrators time to check the Manifest logs and verify that all clients receive the 
updates and that there are no network or hardware outages.  
At the system administrators’ discretion, the Manifest status is either changed to install 
on the application server, or the update is completely removed. When each client checks 
in at its pre-scheduled time and sees the status as ‘install,’ it installs the new software or 
data files. The system administrator can now view the Manifest logs to determine if there 
are any errors or clients that did not install the Manifest properly. 

Note: Before you begin the Manifest process, you must 
ensure all RPOS files residing on each client terminal are 
writeable. If the RPOS files are read-only, RPOS will not be 
able to update itself and the Manifest will not work. 

The two-step Manifest Process 
Create the Manifest 

The first step of the Manifest is to create the Manifest that contains all the software 
updates and data file updates. The Manifest and the updated files will be saved on the 
application servers.   
To create a Manifest: 
1. On all application servers, create the following directory: /rpos/update/manifest 
2. Create a .dat file called manifest.dat. The manifest.dat file will contain the parameters 

for each Manifest. 
3. Create a directory for each Manifest if there are multiple Manifests. Each Manifest 

directory will contain the software updates and data file updates for that Manifest. 
4. Within the manifest.dat file, create parameters for each Manifest. The parameters for 

each Manifest defines the parent directory for the Manifest, the Manifest status, and 
the Manifest date.  



The two-step Manifest Process 

58 Oracle Retail Point-of-Sale 

Note: When you create the Manifest, it is recommended that 
you set the value for the Manifest status to WAIT and that 
you set the value for the Manifest date to a date prior to the 
actual installation of the updated files on the client side. This 
helps ensure that all client terminals have successfully 
downloaded the Manifest and that the application servers 
have been updated with the new code. 

Note: Once you change the status of a Manifest from WAIT 
to another status, we do not recommend that you change the 
status back to WAIT. If you do so, there is a possibility that 
the clients will become out of sync and run different versions 
of RPOS. 

Push the Manifest to the Clients 
To push the Manifest to the clients: 
1. Install the Manifest patch on all the clients. 

All clients must be updated with an applicable patch .jar before they can download a 
Manifest. You will only have to install the Manifest patch once. After you install the 
Manifest patch, the clients are ready to download future Manifests. The following 
classes are needed so the client will download and restart the Manifest properly: 
 BrowserManager.class 
 IBrowserManager.class 
 UpdateBootstrap.class 
 UpdatePeerRmiServerImpl.class 
 UpdatePeerRmiServerImpl_Skel.class 
 UpdatePeerRmiServerImpl_Stub.class 
 UpdateRMIServerImpl_Skel.class 
 UpdateRMIServerImpl_Stub.class 
 ClientManage.class 

2. Install the Manifest patch on all the application servers. 
The class files and configuration file are needed to be able to create a new 
UpdateService component to be added to a container. The clients will bind to this 
service during the UpdateBootstrap and UpdateDaemon processes. 

3. Update the application servers. 
After all the clients have installed the Manifest patch and are ready to download the 
Manifest, you can update the application servers with the updated code. A few days 
before you want to upgrade to the new version, copy the rpos/update and its content 
onto the application servers which are still running the old version of RPOS. The file 
rpos/update/manifest/manifest.dat should be updated. The clients will begin 
downloading the Manifest a few hours after the end-of-day is done (or during the 
start-of-day process). All files will be downloaded and stored in directory 
rpos\download. On the night you want to update to the new version of RPOS, make 
sure the clients have performed the end-of-day process. The next day, the clients will 
begin the installation process when start of day begins. 


	Preface
	Audience
	Related Documents
	Customer Support
	Conventions

	Introduction
	Overview–What is RPOS?
	Functional and Technical Capabilities

	Technical Architecture Overview
	RPOS’s Integration Points into the Retail Enterprise
	Javadoc for RPOS
	Where you can find more Information

	Backend System Administration and Configuration
	Supported Oracle Retail Products
	Supported Environments
	Configuration (.cfg) Files
	JDBC Configuration File (jdbc.cfg)
	Network Configuration File (network.cfg)

	Clientmaster Configuration File (client_master.cfg)
	Class Names that Represent Daemons
	Message Senders and Message Receivers
	Minute Delay for JMS Messaging
	End of Day or end of Session Download Waiting Times
	Minimum Time for Data Refresh
	Peer-to-Peer Communication
	Password Required
	Cashier Session and ‘go home’
	Peers
	Peer Timeout
	Initial Drawer Fund

	Logging Information
	Default Location of Client and Server Log Files
	Logging Levels Established in Configuration Files (.cfg)

	Configuring JPOS Peripherals with retek_jpos.xml and jpos_peripherals.cfg 
	Exception Handling
	Java Virtual Machine (JVM) Options
	Pos.cfg
	Business Rules Configuration through rules.xml

	Technical Architecture
	Overview
	RPOS and Integrated Store Operations (ISO)
	Advantages of the Architecture

	A High-Level View of the Tiered Model
	Presentation/Client Tier
	In-Store Processor (optional)
	Middleware Tier
	Application Tier
	Data Tier

	RPOS Object Methodology
	Business Objects

	Distributed Topology
	Service Implementations
	Encryption Strategy
	Technical Support Services
	Offline Capabilities
	Logging Service
	Internationalization Service
	Security Service

	RPOS-related Java Terms and Standards

	Integration Interface Dataflows
	Overview
	From RPOS to a Wireless Store System (such as SIM)
	From a Wireless Store System (such as SIM) to RPOS
	From to RPOS to a Merchandising System (such as RMS) or to an (optional) Sales Audit System (such as ReSA)
	From RPOS Client to the JMS queue
	From the JMS queue to the RPOS Client
	From RPOS Client to RPOS Client 


	Functional Overviews
	RPOS Management 
	Transaction Management
	Layaway Management
	Employee Management and Security
	Employee Schedules
	Timecard Management
	Store Goals
	View Receipt Log
	Reports

	Customer Management
	RPOS Process Payments 
	RPOS Start-and-End-of-Day
	RPOS Transactions
	Transactions Options
	View Transaction

	Merchandise Return and Even Exchange

	Messaging Framework
	Overview
	Message Grouping
	Publish/Subscribe Managed Messaging
	Preconfigured Messengers
	Receiving Messages
	MessageReceiver Methods to Implement
	Building a Receiver step-by-step

	Sending Messages
	MessageSender Methods to Implement
	Building a Sender step-by-step


	Java Batch Processes
	Batch Processing Overview
	Running a Java-Based Batch Process
	Command Line Parameter Notes
	Summary of Executable Files Associated to Java Packages and Classes
	Scheduler and the Command Line

	Return Value Batch Standards
	Functional Descriptions and Dependencies
	A Note about Multi-Threading and Multiple Processes
	A Note about Restart and Recovery
	Batch Logging

	Appendix A: POS Upload File Layout Specification
	Flat File used in the PosUpldGenerator Batch Process

	Appendix B: Manifest Deployment Process
	The two-step Manifest Process
	Create the Manifest
	Push the Manifest to the Clients



