Contents

Preface .. xxiii
Audience ... xxiii
Documentation Accessibility .. xxiii
Related Documentation ... xxiv
Conventions .. xxiv
What’s New in Oracle Application Server Administration? ... xxv
New Features for 10g (10.1.4.0.1) .. xxv

Part I Getting Started

1 Getting Started After Installing Oracle Application Server

1.1 Task 1: Set Up Environment Variables ... 1-1
1.2 Task 2: Use the Oracle Application Server Welcome Page ... 1-3
1.3 Task 3: Check Your Port Numbers ... 1-5
1.4 Task 4: Get Started with Managing Components .. 1-6
1.4.1 Getting Started with Oracle Process Manager and Notification Server (OPMN) 1-6
1.4.2 Getting Started with Oracle HTTP Server ... 1-7
1.4.3 Getting Started with Oracle Containers for J2EE (OC4J) .. 1-8
1.4.4 Getting Started with Identity Management Components ... 1-8
1.5 Task 5: Enable SSL (Optional) .. 1-9

2 Introduction to Administration Tools

2.1 Overview of Oracle Application Server Administration Tools .. 2-1
2.1.1 Managing Oracle Application Server with Oracle Enterprise Manager 10g 2-1
2.1.1.1 Using Application Server Control to Manage Oracle Application Server 2-2
2.1.1.2 Using Grid Control to Manage Your Enterprise ... 2-2
2.1.1.3 Using Database Control to Manage an OracleAS Metadata Repository Database 2-3
2.1.2 Managing Oracle Application Server from the Command Line .. 2-3
2.1.3 Using Other Tools to Monitor the Built-In Performance Metrics ... 2-4
2.2 About Oracle Enterprise Manager 10g Application Server Control .. 2-4
2.2.1 Components of the Application Server Control .. 2-4
3 Starting and Stopping

3.1 Overview of Starting and Stopping Procedures .. 3-1
3.2 Starting and Stopping Application Server Instances .. 3-1
 3.2.1 Starting OracleAS Infrastructure ... 3-2
 3.2.2 Stopping OracleAS Infrastructure ... 3-3
 3.2.3 Starting a Middle-Tier Instance ... 3-4
 3.2.4 Stopping a Middle-Tier Instance ... 3-5
 3.2.5 Starting Oracle Identity Federation ... 3-5
 3.2.6 Stopping Oracle Identity Federation ... 3-6
3.3 Starting and Stopping Components ... 3-6
 3.3.1 Starting and Stopping Components Using opmnctl ... 3-6
 3.3.2 Starting and Stopping Components Using Application Server Control Console 3-7
3.4 Enabling and Disabling Components ... 3-7
3.5 Starting and Stopping an Oracle Application Server Environment 3-8
3.5.1 Starting an Oracle Application Server Environment

- Page 3-8

3.5.2 Stopping an Oracle Application Server Environment

- Page 3-8

3.6 Starting and Stopping: Special Topics

- Page 3-9
 - 3.6.1 Starting and Stopping Log Loader
 - Page 3-9
 - 3.6.2 Starting and Stopping in High Availability Environments
 - Page 3-10
 - 3.6.3 Resolving OC4J Errors When Starting Multiple Instances
 - Page 3-10
 - 3.6.4 Forcing a Shut Down of OracleAS Metadata Repository
 - Page 3-13

Part II Basic Administration

4 Managing Ports

- 4.1 About Managing Ports
 - Page 4-1
- 4.2 Viewing Port Numbers
 - Page 4-2
- 4.3 Changing Ports
 - Page 4-2
 - 4.3.1 Changing Oracle Enterprise Manager Ports
 - Page 4-2
 - 4.3.2 Changing OC4J Ports
 - Page 4-4
 - 4.3.3 Changing the HTTP Server Port on an Identity Management Installation
 - Page 4-5
 - 4.3.4 Changing the HTTP Server Port on an Oracle Identity Federation Installation
 - Page 4-13
 - 4.3.5 Changing the Oracle HTTP Server Diagnostic Port
 - Page 4-17
 - 4.3.6 Changing the DCM Discovery Port
 - Page 4-17
 - 4.3.7 Changing the Java Object Cache Port
 - Page 4-18
 - 4.3.8 Changing the Log Loader Port
 - Page 4-18
 - 4.3.9 Changing OPMN Ports (ONS Local, Request, and Remote)
 - Page 4-19
 - 4.3.10 Changing the Port Tunneling Port
 - Page 4-20
 - 4.3.11 Changing Infrastructure Ports
 - Page 4-21
 - 4.3.11.1 Changing the OracleAS Metadata Repository Net Listener Port
 - Page 4-21
 - 4.3.11.2 Changing Oracle Internet Directory Ports
 - Page 4-26
 - 4.3.11.3 Changing OracleAS Certificate Authority Ports
 - Page 4-29

5 Managing Log Files

- 5.1 Introduction to Oracle Application Server Logging
 - Page 5-1
 - 5.1.1 Understanding Log File Data and Naming
 - Page 5-1
 - 5.1.2 Using a Log Repository
 - Page 5-3
 - 5.1.3 Configuring Component Logging Options
 - Page 5-3
- 5.2 Listing and Viewing Log Files with Application Server Control
 - Page 5-4
 - 5.2.1 Listing Log Files for Components
 - Page 5-4
 - 5.2.2 Listing Log Files from Oracle Application Server Components Pages
 - Page 5-5
 - 5.2.3 Using Log Files Advanced Search
 - Page 5-5
- 5.3 Searching Diagnostic Messages in a Log Repository
 - Page 5-6
 - 5.3.1 Getting Started with Log Repository
 - Page 5-6
 - 5.3.2 Searching Log Repository with Simple Search
 - Page 5-7
 - 5.3.3 Searching Log Repository with Advanced Search
 - Page 5-8
 - 5.3.4 Viewing Repository Log Entry Details
 - Page 5-9
 - 5.3.5 Using Regular Expressions with Log Repository Search
 - Page 5-9
- 5.4 Diagnosing Problems and Correlating Messages
 - Page 5-10
 - 5.4.1 Correlating Messages Across Log Files and Components
 - Page 5-10
5.4.2 Diagnosing Component Problems ... 5-11
5.5 Using Oracle Application Server Log Loader ... 5-11
5.5.1 Starting and Stopping Log Loader ... 5-11
5.5.2 Enabling and Disabling Log Loader .. 5-12
5.5.3 Updating the Log Configuration .. 5-12
5.5.4 Setting Log Loader Properties ... 5-12
5.5.5 Understanding Log Loader Diagnostic Messages 5-13
5.6 Advanced Logging Topics ... 5-14
5.6.1 Using the printlogs Tool to View Log Messages 5-14
5.6.2 Understanding ODL Messages and ODL Log Files 5-15
5.6.2.1 ODL Message Contents ... 5-15
5.6.2.2 ODL Log File Naming ... 5-16
5.6.3 Understanding Log Loader Log File Format Conversion 5-17
5.6.4 Component Diagnostic Log File Registration 5-18
5.6.5 Configuring Components to Produce ODL Messages and ECIDs 5-19
5.6.5.1 Configuring Oracle HTTP Server to Produce ODL Messages 5-19
5.6.5.2 Configuring OC4J to Produce ODL Messages 5-20
5.6.5.3 Configuring OC4J to Produce ECIDs ... 5-20
5.6.6 Creating and Managing a Diagnostic Message Database Repository 5-21
5.6.6.1 Creating a Diagnostic Message Database Repository 5-21
5.6.6.2 Removing Old Messages from the Diagnostic Message Repository ... 5-22
5.6.6.3 Deleting the Diagnostic Message Repository 5-22
5.6.6.4 Reconfiguring Log Loader to Use a File-Based Repository 5-22
5.6.7 Limitations and Configuration Issues ... 5-23

6 Managing an OracleAS Metadata Repository

6.1 Frequently Asked Questions About OracleAS Metadata Repository 6-1
6.2 Postinstallation Status of OracleAS Metadata Repository Schemas 6-4
6.3 Viewing OracleAS Metadata Repository Schema Passwords 6-6
6.3.1 Viewing OracleAS Metadata Repository Schema Passwords Using Oracle Directory Manager ... 6-7
6.3.2 Viewing OracleAS Metadata Repository Schema Passwords Using ldapsearch ... 6-7
6.4 Changing OracleAS Metadata Repository Schema Passwords 6-8
6.4.1 Changing Schema Passwords Using the Application Server Control Console 6-9
6.4.2 Changing Schema Passwords Using SQL*Plus 6-9
6.4.3 Changing Schema Passwords in Oracle Internet Directory 6-9
6.5 Changing the Character Set of OracleAS Metadata Repository 6-10
6.6 Renaming and Relocating OracleAS Metadata Repository Datafiles 6-11

Part III Advanced Administration

7 Reconfiguring Application Server Instances

7.1 Configuring Additional Components After Installation 7-1
7.1.1 Configuring OracleAS Single Sign-On After Installation 7-2
7.1.1.1 Configuring OracleAS Single Sign-On ... 7-2
7.1.1.2 Post-Configuration Tasks .. 7-2
7.1.2 Configuring Oracle Delegated Administration Services After Installation 7-3
7.1.2.1 Configuring mod_osso for Oracle Delegated Administration Services 7-3
7.1.2.2 Configuring Delegated Administration Service ... 7-5
7.1.2.3 Post-Configuration Tasks ... 7-6
7.1.3 Configuring Oracle Directory Integration Platform After Installation 7-6
7.2 Deconfiguring Components .. 7-7
7.3 Deleting OC4J Instances ... 7-7
7.4 Configuring 10.1.2 and 10.1.3 Middle Tiers to Use OracleAS Infrastructure 7-8
7.4.1 Configuring 10.1.2 Middle Tiers to Use Oracle Identity Management 7-9
7.4.2 Configuring 10.1.2 Middle-Tiers with Oracle Identity Management to Use OracleAS Metadata Repository ... 7-10
7.4.3 Configuring 10.1.2 Middle Tiers to Use an Existing Database as a Repository ... 7-11
7.4.4 Configuring 10.1.3 Middle Tiers to Use 10.1.4 Oracle Identity Management 7-13
7.5 Disabling and Enabling Anonymous Binds .. 7-15
7.5.1 Disabling Anonymous Binds for Run Time Environments 7-15
7.5.2 Enabling Anonymous Binds for Configuration Changes 7-17

8 Changing Network Configurations
8.1 Overview of Procedures for Changing Network Configurations 8-1
8.2 Changing the Hostname, Domain Name, or IP Address 8-1
8.2.1 Understanding the chgiphost Command .. 8-2
8.2.2 Changing the Hostname, Domain Name, or IP Address of an Identity Management Installation ... 8-3
8.2.3 Changing the Hostname, Domain Name, or IP Address of an Oracle Identity Federation Installation ... 8-15
8.2.4 Changing the Hostname or Domain Name of an OracleAS Certificate Authority Installation ... 8-21
8.2.5 Changing the IP Address of an Infrastructure Containing a Metadata Repository ... 8-21
8.2.6 Special Topics for Changing Your Hostname or Domain Name 8-24
8.2.6.1 Running SSLConfigTool for SSL Environments .. 8-24
8.2.6.2 Setting the Log Level for chgiphost ... 8-24
8.2.6.3 Customizing the chgiphost Command .. 8-24
8.2.6.4 Changing a Hostname After Upgrading from Windows 2000 to Windows 2003 ... 8-25
8.2.6.5 Recovering from Errors When Changing Your Hostname 8-26
8.3 Moving Between Off-Network and On-Network ... 8-26
8.3.1 Moving from Off-Network to On-Network (Static IP Address) 8-26
8.3.2 Moving from Off-Network to On-Network (DHCP) ... 8-27
8.3.3 Moving from On-Network to Off-Network (Static IP Address) 8-27
8.3.4 Moving from On-Network to Off-Network (DHCP) ... 8-27
8.4 Changing Between a Static IP Address and DHCP ... 8-27
8.4.1 Changing from a Static IP Address to DHCP .. 8-27
8.4.2 Changing from DHCP to a Static IP Address .. 8-28

9 Changing Infrastructure Services
9.1 Overview of Procedures for Changing Infrastructure Services 9-1
9.2 Changing the Oracle Internet Directory or Oracle HTTP Server Ports on Identity Management ... 9-3
10 Changing from a Test to a Production Environment

10.1 Understanding the Options for Creating a Production Middle Tier

10.1.1 Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment

10.1.1.1 Preexisting Configuration Assumptions

10.1.1.2 Procedure

10.1.2 Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management

10.1.2.1 Preexisting Configuration Assumptions

10.1.2.2 Procedure

10.1.3 Scenario 3: Moving Applications from a Test Middle Tier with Identity Management to a New Production Environment with a Product Metadata Repository to an Existing Production Environment with Identity Management

10.1.3.1 Preexisting Configuration Assumptions

10.1.3.2 Procedure

10.1.3.3 Creating a Second Middle-Tier Instance in the Production Environment

10.1.4 Related Procedures

10.2 Scenarios with a 10.1.2 Middle Tier

10.2.1 Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment

10.2.1.1 Preexisting Configuration Assumptions

10.2.1.2 Procedure

10.2.2 Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management

10.2.2.1 Preexisting Configuration Assumptions

10.2.2.2 Procedure

10.2.2.3 Creating a Second Middle-Tier Instance in the Production Environment

10.2.3 Scenario 3: Moving Applications from a Test Middle Tier with Identity Management and a Product Metadata Repository to an Existing Production Environment with Identity Management

10.2.3.1 Preexisting Configuration Assumptions

10.2.3.2 Procedure

10.2.3.3 Creating a Second Middle-Tier Instance in the Production Environment

10.2.4 Related Procedures

10.3 Scenarios with a 10.1.3 Middle Tier

10.3.1 Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment

10.3.1.1 Preexisting Configuration Assumptions

10.3.1.2 Procedure

10.3.2 Scenario 2: Creating a Test Environment for Development and Rolling Out J2EE Applications to a Production Environment with a Preexisting Oracle Identity Management

10.3.2.1 Preexisting Configuration Assumptions

10.3.2.2 Procedure

10.3.3 Related Procedures

10.4 Changing Oracle Internet Directory from Dual Mode to SSL Mode

10.4.1 Procedure

10.5 Changing the Metadata Repository Used by a Middle-Tier Instance

10.5.1 Sample Uses for This Procedure

10.5.2 Assumptions and Restrictions

10.5.3 Overview

10.5.4 Procedure

10.6 Changing the Metadata Repository Used by Identity Management

10.6.1 Sample Uses for This Procedure

10.6.2 Assumptions and Restrictions

10.6.3 Procedure
Part IV Secure Sockets Layer (SSL)

11 Overview of Secure Sockets Layer (SSL) in Oracle Application Server

11.1 What SSL Provides... 11-1
11.2 About Private and Public Key Cryptography................................. 11-2
11.3 How an SSL Session Is Set Up (the "SSL Handshake")..................... 11-3
11.4 Requirements for Using SSL in Oracle Application Server................. 11-4
11.5 Certificates and Oracle Wallets.. 11-4
11.5.1 How to Get a Certificate .. 11-5
11.5.2 Oracle Wallet .. 11-5
11.5.3 Client Certificates ... 11-6
11.6 SSL Configuration Overview .. 11-6
11.6.1 Default SSL Configuration ... 11-7
11.6.2 Partial SSL Configuration .. 11-7
11.7 Integration with Hardware Security Modules 11-7
11.7.1 Protocol Converters ... 11-8
11.7.2 Mathematics Accelerators (PKCS #11 Integration) 11-8

12 Using the SSL Configuration Tool

12.1 Overview .. 12-1
12.2 Understanding SSL Termination .. 12-2
12.3 Command Line Interface .. 12-4
12.3.1 Where Can I Find the SSL Configuration Tool? 12-5
12.3.2 Syntax .. 12-5
12.3.3 Configuration File for Silent Mode 12-6
12.3.4 Default Wallet Locations ... 12-7
12.4 Common SSL Configuration Scenarios ... 12-8
12.4.1 Configuring SSL to Load Balancer for OracleAS Single Sign-On/Oracle Delegated Administration Services.......................... 12-8
12.4.1.1 What It Does .. 12-9
12.4.1.2 Running the SSL Configuration Tool 12-10
12.4.1.3 For More Information ... 12-10
12.4.2 Configuring SSL to Load Balancer for OracleAS Portal 12-10
12.4.2.1 What It Does .. 12-11
12.4.2.2 Running the SSL Configuration Tool 12-12
12.4.2.3 For More Information ... 12-12
12.4.3 Configuring SSL to Oracle HTTP Server for Oracle HTTP Server/Oracle Containers for J2EE .. 12-13
12.4.3.1 What It Does .. 12-14
12.4.3.2 Running the SSL Configuration Tool 12-14
12.4.3.3 For More Information ... 12-14
12.4.4 Configuring SSL to OracleAS Web Cache for J2EE 12-15
12.4.4.1 What It Does .. 12-16
12.4.4.2 Running the SSL Configuration Tool 12-16
12.4.4.3 For More Information ... 12-17
13 Managing Wallets and Certificates

13.1 Using Oracle Wallet Manager... 13-1
13.1.1 Oracle Wallet Manager Overview ... 13-1
13.1.1.1 Wallet Password Management ... 13-2
13.1.1.2 Strong Wallet Encryption .. 13-2
13.1.1.3 Microsoft Windows Registry Wallet Storage .. 13-2
13.1.1.4 Backward Compatibility .. 13-3
13.1.1.5 Third-Party Wallet Support .. 13-3
13.1.1.6 LDAP Directory Support .. 13-3
13.1.2 Starting Oracle Wallet Manager ... 13-4
13.1.3 How to Create a Complete Wallet: Process Overview 13-4
13.1.4 Managing Wallets ... 13-5
13.1.4.1 Required Guidelines for Creating Wallet Passwords 13-6
13.1.4.2 Creating a New Wallet .. 13-6
13.1.4.3 Opening an Existing Wallet .. 13-8
13.1.4.4 Closing a Wallet .. 13-8
13.1.4.5 Exporting Oracle Wallets to Third-Party Environments 13-8
13.1.4.6 Exporting Oracle Wallets to Tools That Do Not Support PKCS #12 13-8
13.1.4.7 Uploading a Wallet to an LDAP Directory ... 13-9
13.1.4.8 Downloading a Wallet from an LDAP Directory 13-9
13.1.4.9 Saving Changes .. 13-10
13.1.4.10 Saving the Open Wallet to a New Location .. 13-10
13.1.4.11 Saving in System Default .. 13-10
13.1.4.12 Deleting the Wallet ... 13-11
13.1.4.13 Changing the Password .. 13-11
13.1.4.14 Using Auto Login .. 13-12

13.4.5 Configuring SSL to Oracle HTTP Server for OracleAS Single Sign-On/Oracle
Delegated Administration Services.. 12-17
13.4.5.1 What It Does .. 12-18
13.4.5.2 Running the SSL Configuration Tool .. 12-18
13.4.5.3 For More Information ... 12-19
13.4.6 Configuring SSL to Oracle HTTP Server for OracleAS Portal 12-19
13.4.6.1 What It Does .. 12-20
13.4.6.2 Running the SSL Configuration Tool .. 12-21
13.4.6.3 For More Information ... 12-22
13.4.7 Configuring an HTTP Instance .. 12-22
13.4.8 Configuring SSL for Cluster Configurations .. 12-22
13.5 Manual Steps .. 12-22
13.6 Troubleshooting the SSL Configuration Tool ... 12-23
13.6.1 General Troubleshooting Procedure... 12-23
13.6.2 Oracle Application Server Wireless Requires Manual Changes 12-24
13.6.3 Configuring Seeded Providers for OracleAS Portal 12-24
13.6.4 SSL Configuration Tool Does Not Support IASCONFIG_LOC Environment Variable ... 12-25
13.6.5 SSL Configuration Tool Does Not Modify sso_apache.conf File 12-25
13.6.6 SSL Configuration Tool Does Not Modify opmn.xml Parameters 12-25
14 Enabling SSL in the Infrastructure

14.1 SSL Communication Paths in the Infrastructure ... 14-1
14.2 Recommended SSL Configurations ... 14-3
14.3 Common SSL Configuration Tasks ... 14-3
 14.3.1 Configuring SSL for OracleAS Single Sign-On and Oracle Delegated Administration Services ... 14-4
 14.3.2 Configuring SSL for Oracle Internet Directory ... 14-4
 14.3.3 Configuring SSL for Oracle Internet Directory Replication Server and Oracle Directory Integration Platform 14-4
 14.3.4 Configuring SSL in the Identity Management Database 14-4
 14.3.5 Additional SSL Configuration in the OC4J_SECURITY Instance 14-4
 14.3.5.1 Configuring SSL from mod_oc4j to OC4J_SECURITY 14-4
 14.3.5.2 Using Port Tunneling from mod_oc4j to the OC4J_SECURITY Instance ... 14-5
 14.3.5.3 Configuring JDBC/SSL (ASO support) .. 14-5
 14.3.6 SSL in Oracle Application Server Certificate Authority 14-5

13.1 Managing Certificates .. 13-12
 13.1.1 Managing User Certificates .. 13-13
 13.1.2 Managing Trusted Certificates .. 13-18
 13.2 Performing Certificate Validation and CRL Management with the orapki Utility 13-20
 13.2.1 orapki Overview .. 13-20
 13.2.1.1 orapki Utility Syntax .. 13-20
 13.2.2 Displaying orapki Help ... 13-21
 13.2.3 Creating Signed Certificates for Testing Purposes 13-21
 13.2.4 Managing Oracle Wallets with the orapki Utility 13-21
 13.2.4.1 Creating and Viewing Oracle Wallets with orapki 13-22
 13.2.4.2 Adding Certificates and Certificate Requests to Oracle Wallets with orapki ... 13-22
 13.2.4.3 Exporting Certificates and Certificate Requests from Oracle Wallets with orapki ... 13-23
 13.2.5 Managing Certificate Revocation Lists (CRLs) with the orapki Utility 13-23
 13.2.5.1 About Certificate Validation with Certificate Revocation Lists 13-23
 13.2.5.2 Certificate Revocation List Management .. 13-24
 13.2.6 orapki Utility Commands Summary ... 13-28
 13.2.6.1 orapki cert create ... 13-28
 13.2.6.2 orapki cert display .. 13-28
 13.2.6.3 orapki crl delete ... 13-29
 13.2.6.4 orapki crl display .. 13-29
 13.2.6.5 orapki crl hash .. 13-30
 13.2.6.6 orapki crl list ... 13-30
 13.2.6.7 orapki crl upload .. 13-30
 13.2.6.8 orapki wallet add .. 13-31
 13.2.6.9 orapki wallet create ... 13-32
 13.2.6.10 orapki wallet display ... 13-32
 13.2.6.11 orapki wallet export .. 13-32
 13.3 Interoperability with X.509 Certificates .. 13-33
 13.3.1 Public-Key Cryptography Standards (PKCS) Support 13-33
 13.3.2 Multiple Certificate Support .. 13-33
14.3.7 Configuring SSL for Oracle Enterprise Manager 10g .. 14-5
14.3.7.1 Configuring Security for the Grid Control .. 14-5
14.3.7.2 Configuring Security for the Application Server Control Console 14-5

15 Enabling SSL in the Middle Tier
15.1 SSL Communication Paths in the Middle Tier ... 15-1
15.2 Recommended SSL Configurations .. 15-2
15.3 Common SSL Configuration Tasks for the Middle Tier ... 15-3
15.3.1 Enabling SSL in OracleAS Web Cache .. 15-3
15.3.2 Enabling SSL in Oracle HTTP Server ... 15-3
15.3.3 Enabling SSL in OC4J ... 15-3
15.3.3.1 Configuring SSL from Oracle HTTP Server to OC4J 15-3
15.3.3.2 Using Port Tunneling (iaspt) from Oracle HTTP Server to OC4J 15-3
15.3.3.3 Configuring ORMI/HTTP SSL ... 15-4
15.3.3.4 Configuring Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider for SSL with Oracle Internet Directory .. 15-4
15.3.3.5 Configuring Oracle HTTP Server for SSL ... 15-4
15.3.3.6 Configuring SSL in Standalone OC4J Installations 15-4
15.3.4 Enabling SSL in J2EE and Web Cache Installations .. 15-4
15.3.5 Enabling SSL in Virtual Hosts ... 15-4
15.3.6 Enabling SSL in OracleBI Discoverer .. 15-5
15.3.7 Enabling SSL in OracleAS Wireless ... 15-5
15.3.8 Enabling SSL in OracleAS Portal ... 15-5
15.3.9 Configuring SSL for Oracle Enterprise Manager 10g ... 15-6

16 Troubleshooting SSL
16.1 Name-Based Virtual Hosting and SSL .. 16-1
16.2 Common ORA Errors Related to SSL ... 16-1

Part V Backup and Recovery

17 Introduction to Backup and Recovery
17.1 Philosophy of Oracle Application Server Backup and Recovery 17-1
17.2 Overview of the Backup Strategy .. 17-3
17.2.1 Types of Backups ... 17-3
17.2.2 Oracle Application Server Component Backup Input Files 17-5
17.2.3 Recommended Backup Strategy .. 17-6
17.3 Overview of Recovery Strategies .. 17-7
17.4 What Is the Oracle Application Server Backup and Recovery Tool? 17-7
17.5 Assumptions and Restrictions .. 17-8
17.6 Roadmap for Getting Started with Backup and Recovery 17-8

18 Oracle Application Server Backup and Recovery Tool
18.1 How to Obtain the Oracle Application Server Backup and Recovery Tool 18-1
18.1.1 Manually Installing the OracleAS Backup and Recovery Tool 18-2
21 Troubleshooting the Backup and Recovery Tool

21.1 Problems and Solutions ... 21-1
21.1.1 Receiving restore_config Operation Fails Error 21-2
21.1.2 Receiving Missing Files Messages During restore_config Operation 21-2
21.1.3 File-Based Repository Restoration Fails .. 21-2
21.1.4 Cannot Run a Cold Backup on Identity Management or J2EE Instance 21-3
21.1.5 Failure Due to Loss or Corruption of OPMN.XML File 21-3
21.1.6 A restore_config Operation Fails .. 21-4
21.1.7 Backup Operation Fails on a DCM File-Based Repository 21-5
21.1.8 Timeout Occurs While Trying to Stop Processes Using opmnctl stopall 21-5
21.1.9 Using the Backup and Recovery Tool to Perform a Recovery Fails Due to an Unknown Log Sequence Number ... 21-5
21.1.10 Enterprise Manager Cannot Access Restored Nodes on New Hosts 21-5
21.1.11 Restore of OracleAS Portal Fails After Deleting OC4J Instance 21-6
21.1.12 Cold Backups Do Not Shut Down All Databases in RAC Environment 21-6
21.1.13 A restore_instance Fails at restore_repos Stage 21-6
21.1.14 Changing ORACLE_HOME May Cause Backup or Recovery Failure 21-7
21.1.15 Restore Operation Changes Farm Topology Leaving an Instance in Inconsistent State ... 21-7
21.1.16 Post-deployment Changes to Configuration Files Are Lost After Restoring DCM-Managed Components .. 21-8

Part VI Appendixes and Glossary

A Managing and Configuring Application Server Control

A.1 Starting and Stopping the Application Server Control A-1
A.1.1 Starting and Stopping the Application Server Control Console on UNIX ... A-1
A.1.2 Starting and Stopping the Application Server Control Console on Windows ... A-2
A.1.3 Verifying That the Application Server Control Is Running A-2
A.2 Understanding Application Server Control Console Processes on UNIX A-3
A.3 Changing the ias_admin Password .. A-4
A.3.1 Changing the Password Using the Application Server Control Console A-4
A.3.2 Changing the Password Using the emctl Command-Line Tool A-4
A.4 Configuring Security for Application Server Control Console A-5
A.5 Using the EM_OC4J_OPTS Environment Variable to Set Additional Application Server Control Options ... A-6
A.5.1 Summary of Options You Can Set with the EM_OC4J_OPTS Environment Variable ... A-7
A.5.2 Setting the EM_OC4J_OPTS Environment Variable A-7
A.6 Enabling ODL for the Application Server Control Log File A-8
A.6.1 Configuring the Application Server Control Logging Properties to Enable ODL A-8
A.6.2 About the Application Server Control ODL Logging Properties A-9
A.6.3 Configuring Logging Properties When ODL Is Not Enabled A-10
A.7 Enabling Enterprise Manager Accessibility Mode A-10
A.7.1 Making HTML Pages More Accessible .. A-10
A.7.2 Providing Textual Descriptions of Enterprise Manager Charts A-10
A.7.3 Modifying the uix-config.xml File to Enable Accessibility Mode A-11
I Viewing Oracle Application Server Release Numbers

I.1 Release Number Format ... I-1
I.2 Viewing Oracle Application Server Installation Release Numbers .. I-2
I.3 Viewing Component Release Numbers ... I-2
I.4 Viewing Oracle Internet Directory Release Numbers .. I-3
I.5 Viewing Metadata Repository Release Numbers ... I-4
I.6 Using the OPatch Utility .. I-5
I.6.1 Requirements ... I-5
I.6.2 Running the OPatch Utility ... I-6
I.6.2.1 apply Option .. I-6
I.6.2.2 lsinventory Option ... I-8
I.6.2.3 query Option .. I-8
I.6.2.4 rollback Option ... I-9
I.6.2.5 version Option .. I-10

J Troubleshooting Oracle Application Server

J.1 Diagnosing Oracle Application Server Problems ... J-1
J.2 Common Problems and Solutions .. J-1
J.2.1 Oracle Application Server Infrastructure Instance Will Not Start J-2
J.2.2 Cannot Reset Administrator (ias_admin) Password ... J-3
J.2.3 Cannot Restore Backup to a Different Host .. J-3
J.2.4 Application Performance Impacted by Garbage Collection Pauses J-3
J.2.5 Application Server Returns Connection Refused Errors .. J-3
J.2.6 Oracle HTTP Server Unable to Start Due to Port Conflict ... J-4
J.2.7 Machine Overloaded by Number of HTTPD Processes .. J-4
J.2.8 Oracle Application Server Process Does Not Start ... J-4
J.2.9 OPMN Start Up Consumes CPU Processing Capability .. J-4
J.2.10 OPMN Cannot Start ... J-4
J.2.11 DCM Daemon Cannot Start .. J-5
J.2.12 DCM Unable to Connect to the Directory .. J-5
J.2.13 DCM Cannot Access the Infrastructure Database .. J-5
J.2.15 Poor LDAP Search Performance .. J-5
J.2.16 Authentication Failed .. J-5
J.2.18 Standby Site Not Synchronized .. J-6
J.2.19 Failure to Bring Up Standby Instances After Failover or Switchover J-6
J.2.20 Previously Working Application Using ADF Business Components Throws JDBC Errors ... J-6
J.3 Troubleshooting Application Server Control ... J-6
J.3.1 Application Server Control General Problems and Solutions J-6
J.3.1.1 Resetting the Administrator (ias_admin) Password ... J-7
J.3.1.2 Unavailable Metric and Chart Data in the Application Server Control Console J-8
J.3.1.3 Application Server Status Is Down When Server Components Are Up J-8
J.3.1.4 Errors When Starting Application Server Control ... J-9
J.3.1.5 Problems Connecting to an Application Server Instance from Farm or Cluster Page J-10
List of Figures

1–1 Oracle Application Server Welcome Page ... 1–4
2–1 OracleAS Farm Home Page ... 2–9
2–2 Application Server Home Page .. 2–10
2–3 Topology Viewer ... 2–13
2–4 General Section of the Application Server Home Page ... 2–14
2–5 System Components Table on the Application Server Home Page 2–14
2–6 General Information and Load Statistics on the Host Home Page 2–15
2–7 Disk Space Usage Chart Available from the Host Home Page 2–15
2–8 Application Server All Metrics Page .. 2–16
2–9 Database Home Page in the Database Control Console .. 2–18
2–10 Grid Control Console Home Page .. 2–21
2–11 List of Application Servers in the Grid Control Console 2–21
5–1 Application Server Control Console View Logs Search Results 5–5
5–2 Search Log Repository Page ... 5–6
5–3 Search Log Repository Advanced Search Filter By Log File Attributes 5–8
5–4 Search Log Repository Advanced Search Filter By Log Entry Fields 5–9
5–5 Search Log Repository Log Entry Details Page .. 5–9
5–6 Log Loader Properties Page ... 5–13
7–1 Configuring Components with Application Server Control Console 7–2
7–2 Application Server Control Console Infrastructure Page .. 7–8
7–3 J2EE and Web Cache Using Identity Management .. 7–9
7–4 J2EE and Web Cache (with Identity Management) Using OracleAS Metadata 7–10
9–1 Changing from Original to New Identity Management .. 9–9
9–2 Original Metadata Repository .. 9–15
9–3 Original Metadata Repository and New Metadata Repository 9–16
9–4 Changing from the Original to the New Metadata Repository 9–17
10–1 Moving a J2EE Application from a Test Middle Tier with Oracle Identity 10–3
10–2 Moving an Application from a Test Middle Tier with Oracle Identity Management 10–5
to a New Production Environment .. 10–5
10–3 Moving an Application from a Test Middle Tier with Oracle Identity Management 10–8
10–4 and Product Metadata Repository to an Existing Production Environment with 10–8
Oracle Identity Management ... 10–8
10–5 Example 1: Moving an Application from a Test Middle Tier with Oracle Identity 10–18
10–6 Management to a New Production Environment .. 10–20
11–1 SSL Handshake .. 11–4
11–2 Communication Paths Between Components in Oracle Application Server 11–7
12–1 Common Oracle Application Server Topology ... 12–3
12–2 Topology and Summary of Changes ... 12–9
12–3 Topology and Summary of Changes ... 12–11
12–4 Topology and Summary of Changes ... 12–13
12–5 Topology and Summary of Changes ... 12–15
12–6 Topology and Summary of Changes ... 12–17
12–7 Topology and Summary of Changes ... 12–20
14–1 Identity Management Components and SSL Connection Paths 14–3
14–2 SSL Connection Paths in Oracle Enterprise Manager 10g 14–6
List of Tables

1–1 Oracle Application Server Environment Variables for UNIX ... 1–1
1–2 Oracle Application Server Environment Variables for Windows 1–2
1–3 Accessing Identity Management Components .. 1–9
2–1 Summary of the Application Server Control Underlying Technologies 2–6
2–2 Common Tasks to Perform from the Application Server Home Page 2–10
2–3 Summary of the Oracle Identity Management Management Pages in the Application Server Control Console ... 2–12
3–1 Example of Identical Port Ranges in Two Oracle Homes .. 3–11
3–2 Example of Using Unique Port Ranges in Two Oracle Homes .. 3–12
3–3 Example of Increasing the Retry Count in Two Oracle Homes 3–13
4–1 Changing Application Server Control Ports Using the emctl Command 4–3
5–1 Diagnostic Message Format by Component .. 5–2
5–2 Oracle Application Server Components Supporting Message Correlation 5–11
5–3 ODL Format Message Header Fields .. 5–16
5–4 Component IDs for Diagnostic Log File Configuration .. 5–18
5–5 Oracle Application Server Components with Options for Supporting ODL 5–19
6–1 Postinstallation Status of Schemas in a Metadata Repository .. 6–4
6–2 Methods for Changing Oracle Metadata Repository Schema Passwords 6–8
7–1 Components That Can Be Configured After Installation .. 7–2
7–2 Parameters for Configuring mod_osso .. 7–5
8–1 Supported Procedures for Hostname, Domain Name, and IP Address Changes 8–2
8–2 Options for the chgiphost Command .. 8–3
8–3 Prompts and Actions for chgiphost -idm ... 8–6
8–4 Prompts and Actions for chgiphost -fed ... 8–17
10–1 Test-to-Production Use Cases .. 10–2
10–2 Test-to-Production Scenarios .. 10–17
12–1 SSL Configuration Tool Command Line Options .. 12–5
12–2 Attributes for the <virtual_address> Element .. 12–6
12–3 Default Wallet Locations .. 12–8
13–1 PKI Wallet Encoding Standards .. 13–9
13–2 Certificate Request: Fields and Descriptions ... 13–13
13–3 Available Key Sizes .. 13–14
13–4 X.509 Version 3 KeyUsage Extension Types, Values, and Descriptions 13–34
13–5 Oracle Wallet Manager Import of Trusted Certificates to an Oracle Wallet 13–34
17–1 Oracle Application Server Component Backup Input Files .. 17–5
18–1 OracleAS Backup and Recovery Tool Files .. 18–1
18–2 Parameters in config.inp .. 18–6
18–3 Oracle Application Server Backup and Recovery Tool Modes and Arguments 18–12
20–1 Recovery Strategies for Data Loss, Host Failure, and Media Failure in Infrastructures 20–2
20–2 Recovery Strategies for Process Failures and System Outages in Infrastructures 20–3
A–1 Starting and Stopping the Application Server Control Console A–2
A–2 Summary of Application Server Control Console Processes .. A–4
A–3 ODL Properties in Application Server Control Console Logging Properties A–9
B–1 Oracle Application Server Command-Line Tools ... B–1
C–1 URLs for Components .. C–1
D–1 Oracle HTTP Server, OPMN, and OC4J Ports ... D–2
D–2 Infrastructure Ports .. D–5
D–3 Oracle Enterprise Manager 10g Grid Control Ports .. D–6
D–4 Port Numbers (Sorted by Port Number) ... D–6
E–1 Identity Management Schemas .. E–2
E–2 Product Metadata Schemas .. E–2
E–3 Management Schema .. E–3
Preface

This guide describes how to manage Oracle Application Server, including how to start and stop the Oracle Application Server, how to reconfigure components, and how to backup and recovery Oracle Application Server.

Audience

This guide is intended for administrators of Oracle Application Server.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.
Related Documentation

For more information, see these Oracle resources:

■ Oracle Application Server Documentation Library
■ Oracle Application Server Platform-Specific Documentation

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN):

http://www.oracle.com/technology/documentation/

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What’s New in Oracle Application Server Administration?

This preface introduces the new administrative features of Oracle Application Server 10g (10.1.4.0.1). This information is mostly useful to users who have managed previous releases of Oracle Application Server, including Oracle Application Server 10g Release 1 (9.0.4) and Release 2 (10.1.2).

New Features for 10g (10.1.4.0.1)

The new administrative features of 10g (10.1.4.0.1) include:

- The ability to administer Oracle Identity Federation, including:
 - Using the Oracle Identity Federation console. See Section 1.4.4.
 - Changing the HTTP server port for an Oracle Identity Federation installation. See Section 4.3.4.
 - Changing the hostname, domain name, or IP address of an Oracle Identity Federation installation. See Section 8.2.3.

- New Application Server Control Console pages to manage Oracle Identity Management. See Section 2.2.4.

- Identity Management Grid Control Plug-in, which enables you to monitor and manage Oracle Internet Directory, OracleAS Single Sign-On, Oracle Delegated Administration Services, and Oracle Directory Integration Platform, using the features of the Oracle Enterprise Manager 10g Grid Control Console. See Section 2.6.6.

- Support for configuring Release 2 (10.1.2) and Release 3 (10.1.3) middle tiers to use 10g (10.1.4.0.1) Identity Management components. See Section 7.4.
This part contains information for getting started with managing Oracle Application Server.

It contains the following chapters:

- Chapter 1, "Getting Started After Installing Oracle Application Server"
- Chapter 2, "Introduction to Administration Tools"
- Chapter 3, "Starting and Stopping"
Getting Started After Installing Oracle Application Server

This chapter describes tasks that you can take to get started managing Oracle Application Server after installation.

It contains the following topics:

- Task 1: Set Up Environment Variables
- Task 2: Use the Oracle Application Server Welcome Page
- Task 3: Check Your Port Numbers
- Task 4: Get Started with Managing Components
- Task 5: Enable SSL (Optional)

1.1 Task 1: Set Up Environment Variables

When you installed Oracle Application Server, you were logged in to your operating system as a particular user. You should always log in as this user to manage your installation because this user has permission to view and modify the files in your installation’s Oracle home.

To use Oracle Application Server, you must set environment variables as shown in the following tables:

- Table 1–1, "Oracle Application Server Environment Variables for UNIX"
- Table 1–2, "Oracle Application Server Environment Variables for Windows"

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>DISPLAY</td>
<td>hostname:display_number.screen_number</td>
</tr>
</tbody>
</table>

Beginning with Oracle Application Server 10g, very few tools require the DISPLAY variable. Only a few tools, such as oidadmin, require it.
Table 1–2 shows the environment variables for Windows.

Table 1–2 Oracle Application Server Environment Variables for Windows

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORACLE_HOME</td>
<td>Set to the full path of the installation’s Oracle home. The value is automatically set by Oracle Universal Installer.</td>
</tr>
<tr>
<td>ORACLE_SID</td>
<td>Set to the OracleAS Metadata Repository SID you supplied during installation. The default is <code>orcl</code>.</td>
</tr>
<tr>
<td>TEMP</td>
<td>Set to your temp directory, for example, C:\temp.</td>
</tr>
<tr>
<td>TMP</td>
<td>Set to your temp directory, for example, C:\temp.</td>
</tr>
</tbody>
</table>
Best Practices for Multiple Installations on a UNIX Host

If you have multiple installations of Oracle Application Server on a UNIX host, it is very important to completely set your environment when managing a particular installation.

Some Oracle Application Server commands use the ORACLE_HOME environment variable to determine which installation to operate on, and some use the directory location of the command. It is, therefore, not sufficient to simply reset your environment variables or `cd` to a different Oracle home as you move between installations. You must fully change to the new installation as follows:

1. Log in as the user who installed the application server instance that you want to work on.

 On UNIX hosts, you may also use the `su` command to switch to the user, but be sure to use the dash (`) option so your environment is set the same as it would have been had you actually logged in as that user.

 `su - user`

2. Set the correct environment variables for the installation, as described in Table 1–1.

3. Execute commands in the Oracle home of the correct installation.

Multiple Installations by the Same User

If you installed multiple installations as the same user, make sure that you are in the correct Oracle home and have the correct environment variables set when working on a particular installation. You may want to set up some scripts to make it easy to change from one installation to another.

1.2 Task 2: Use the Oracle Application Server Welcome Page

The Oracle Application Server Welcome Page is a great starting point for managing your application server. It includes the following:

- Information about the components included in the release
- A link to Release Notes
- A link to details about New Features in Oracle Application Server 10g (10.1.4.0.1)
- A link to the Oracle Enterprise Manager 10g Application Server Control Console—a Web-based tool for managing Oracle Application Server
- A link to the Oracle Application Server 10g (10.1.4.0.1) documentation library

Figure 1–1 shows part of the Oracle Application Server Welcome Page.
Accessing the Welcome Page

You can locate the URL for accessing the Welcome Page on the End of Installation Screen text, which is in the following file:

(UNIX) ORACLE_HOME/install/setupinfo.txt
(Windows) ORACLE_HOME\install\setupinfo.txt

To view the Welcome Page, connect to it using the HTTP listener port on your installation. For example:

http://hostname.domain:port

The default port is 7777.

Tip If you cannot access the Welcome Page, try the following:

1. Check setupinfo.txt and make sure you are using the correct URL (hostname and port number).

2. Try restarting Oracle HTTP Server:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server
 (UNIX) ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server

 (Windows) ORACLE_HOME\opmn\bin\opmnctl stopproc ias-component=HTTP_Server
 (Windows) ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=HTTP_Server
1.3 Task 3: Check Your Port Numbers

During installation, Oracle Application Server assigned port numbers to various components and services. It is important to check these port numbers for two reasons:

■ You need to know these port numbers in order to start managing your application server.

■ Oracle Application Server takes several measures to ensure that port number assignments are unique. However, it is possible that a port assignment could conflict with a non-Oracle Application Server process on your host that was not running during the installation. If you determine there is a conflict, stop the non-Oracle Application Server process and continue with the tasks in this chapter. Once you have completed the tasks in this chapter and have verified that your installation is running properly, you can consider changing Oracle Application Server port numbers.

See Also: Chapter 4 for information on changing port numbers

You can find the complete list of port numbers in:

(UNIX) ORACLE_HOME/install/portlist.ini
(Windows) ORACLE_HOME\install\portlist.ini

Example 1–1 shows a sample of this file from an Infrastructure installation on Windows.

Example 1–1 Sample portlist.ini File

;OracleAS Components reserve the following ports at install time.
;As a postinstallation step, you can reconfigure a component to use a different port.
;Those changes will not be visible in this file.

[System]
Host Name = host1.mycompany.com

[Ports]
Oracle HTTP Server port = 7779
Oracle HTTP Server Listen port = 7779
Oracle HTTP Server SSL port = 4443
Oracle HTTP Server Listen (SSL) port = 4443
Oracle Notification Server Request port = 6005
Oracle Notification Server Local port = 6102
Oracle Notification Server Remote port = 6202
ASG port = 7892
Java Object Cache port = 7002
Oracle HTTP Server Diagnostic port = 7202
Log Loader port = 44001
DCM Discovery port = 7101
Oracle Management Agent Port = 18121
Application Server Control RMI port = 18141
Application Server Control port = 18101
Oracle Internet Directory port = 389
Oracle Internet Directory (SSL) port = 636
Enterprise Manager Console HTTP Port (orcl1014) = 5500
Enterprise Manager Agent Port (orcl1014) = 1830

Note the following about portlist.ini:
You should leave the port numbers as they are until you have completed the tasks in this chapter and confirmed that all of your components are running properly. Then, you can consider changing port numbers, as described in Chapter 4. Note that some port numbers cannot be changed, and some require additional steps for updating other components.

The portlist.ini file contains port numbers for components you did not select during installation because Oracle Application Server reserves ports for all components during installation, even those that were not configured. These port numbers will be used if you configure components after installation. See Section 7.1, "Configuring Additional Components After Installation" for information.

The portlist.ini file contains the port numbers that were assigned during installation and is very useful for getting started. However, it is not updated if you modify port numbers after installation. Once you start managing the components, you should use the Application Server Control Console Ports property page for viewing port numbers, because it displays the current port numbers.

The portlist.ini file is not valid after you upgrade Oracle Application Server.

1.4 Task 4: Get Started with Managing Components

This task provides an introduction to managing components and includes instructions for accessing component administration tools, postinstallation notes about components, and pointers to more information. It contains the following topics:

- Getting Started with Oracle Process Manager and Notification Server (OPMN)
- Getting Started with Oracle HTTP Server
- Getting Started with Oracle Containers for J2EE (OC4J)
- Getting Started with Identity Management Components

See Also: Appendix C for a quick reference on how to access components Web user interface

Many of the following sections refer to specific ports. Review the portlist.ini file, at the following location, to find the port number for the specific port:

(UNIX) ORACLE_HOME/install/portlist.ini
(Windows) ORACLE_HOME\install\portlist.ini

1.4.1 Getting Started with Oracle Process Manager and Notification Server (OPMN)

Oracle Process Manager and Notification Server (OPMN) manages and monitors most Oracle Application Server components. It is installed and configured in every middle-tier and OracleAS Infrastructure installation and is essential for running Oracle Application Server.

You can use OPMN to start and stop your application server, monitor components, configure event scripts, and perform many other tasks related to process management. OPMN provides the opmnctl command. The executable file is located in the following directory:

(UNIX) ORACLE_HOME/opmn/bin
(Windows) ORACLE_HOME\opmn\bin

The following command queries the status of the components in your installation:
Getting Started After Installing Oracle Application Server

Task 4: Get Started with Managing Components

Getting Started After Installing Oracle Application Server

Example 1–2 shows sample output from the command on an Infrastructure instance. It displays the component name, process type, operating system process ID (PID), and status of each process.

Example 1–2 Sample Output from opmnctl status Command

<table>
<thead>
<tr>
<th>ias-component</th>
<th>process-type</th>
<th>pid</th>
<th>status</th>
</tr>
</thead>
<tbody>
<tr>
<td>DSA</td>
<td>DSA</td>
<td>N/A</td>
<td>Down</td>
</tr>
<tr>
<td>LogLoader</td>
<td>logloaderd</td>
<td>N/A</td>
<td>Down</td>
</tr>
<tr>
<td>dcm-daemon</td>
<td>dcm-daemon</td>
<td>4656</td>
<td>Alive</td>
</tr>
<tr>
<td>OC4J</td>
<td>OC4J_SECURITY</td>
<td>2468</td>
<td>Alive</td>
</tr>
<tr>
<td>HTTP_Server</td>
<td>HTTP_Server</td>
<td>3908</td>
<td>Alive</td>
</tr>
<tr>
<td>OID</td>
<td>OID</td>
<td>4364</td>
<td>Alive</td>
</tr>
</tbody>
</table>

The following commands start and stop OPMN and all OPMN-managed processes such as DCM, Oracle HTTP Server, OC4J instances, and Oracle Internet Directory, on UNIX:

```
ORACLE_HOME/opmn/bin/opmnctl startall
ORACLE_HOME/opmn/bin/opmnctl stopall
```

On Windows, you can invoke these commands from the Windows Start menu. For example to start all processes, on Windows 2000, select Start, Programs, Oracle Application Server Infrastructure - Oracle_home_name, Start Infrastructure Instance.

See Also:

- Section 2.1.2, "Managing Oracle Application Server from the Command Line"
- Oracle Process Manager and Notification Server Administrator's Guide for complete information about OPMN

Note that the following two processes are not started after you finish installing Oracle Application Server:

- Log Loader: This is a feature that compiles log messages from various log files into a single repository. If you would like to use Log Loader, you can start it after installation.

See Also: Chapter 5, especially Section 5.5.1, "Starting and Stopping Log Loader"

- DSA: This is the OracleAS Guard server. If you are using OracleAS Guard, you can start this after installation.

See Also: Oracle Application Server High Availability Guide

1.4.2 Getting Started with Oracle HTTP Server

Oracle HTTP Server is installed and configured with every middle-tier and OracleAS Infrastructure installation.

You can access Oracle HTTP Server as follows:
http://hostname.domain:port

In the example, port is the Oracle HTTP Server Listen port number, which is listed in the portlist.ini file.

For example:
http://hostname.domain:7777

When you access Oracle HTTP Server, you see the Oracle Application Server Welcome Page. Click the link for log on to Oracle Enterprise Manager 10g Application Server Control to log in to Application Server Control Console. Enter the administrator username (ias_admin) and password. Then, navigate to the Home page for the instance and click HTTP Server to manage Oracle HTTP Server.

See Also:
- Oracle HTTP Server Administrator’s Guide
- Section 2.3, "Getting Started with the Application Server Control Console"

1.4.3 Getting Started with Oracle Containers for J2EE (OC4J)

Oracle Containers for J2EE (OC4J) is a complete Java 2 Enterprise Edition (J2EE) environment.

When you install an Identity Management instance, you get the following OC4J instances, depending on your configuration:

- OC4J_FED: Supports Oracle Identity Federation
- OC4J_Security: Supports Identity Management Services
- oca: Supports OracleAS Certificate Authority

You can use Application Server Control Console to manage OC4J instances. From the Home page for the Oracle Application Server instance, click the OC4J instance.

See Also: Oracle Application Server Containers for J2EE User’s Guide for Release 2 (10.1.2)

1.4.4 Getting Started with Identity Management Components

Table 1–3 describes how to access the administration interfaces for the following Identity Management components:

- Oracle Internet Directory: Provides a scalable and highly available LDAPv3 directory service, built on Oracle database technology.
- Oracle Identity Federation: Provides standards-based, multi-protocol, and cross-domain single sign-on.
- Oracle Application Server Single Sign-On: Provides single sign-on access to Oracle and third-party Web applications.
- Oracle Delegated Administration Services: Provides trusted proxy-based administration of directory information by users and application administrators.
- Oracle Directory Integration Platform: Provides directory synchronization as well as provisioning tasks in a directory-centric environment.
Oracle Application Server Certificate Authority: Provides support for issuing, revoking, renewing, and publishing X.509v3 certificates to support PKI-based strong authentication methods.

Table 1–3 Accessing Identity Management Components

<table>
<thead>
<tr>
<th>Component</th>
<th>Command or URL</th>
</tr>
</thead>
</table>
| Oracle Internet Directory Manager | On UNIX, use the following command: $ORACLE_HOME/bin/oidadmin
| Oracle Identity Federation administration console | http://host:port/fedadmin
In the example, port is the Oracle HTTP Server Listen port number.
Log in as oif_admin using the password supplied during installation. |
In the example, port is the Oracle HTTP Server Listen port number.
Log in as orcladmin using the password supplied during installation. |
| Oracle Delegated Administration Services console | http://host:port/oiddas
In the example, port is the Oracle HTTP Server Listen port number.
Log in as orcladmin using the password supplied during installation. |
| Oracle Directory Integration Platform Administration tool | On UNIX, use the following command: $ORACLE_HOME/bin/dipassistant/gui
| OracleAS Certificate Authority Administration Interface | http://host:port/oca/admin
In the example, port is the Oracle Application Server Certificate Authority port.
Log in as OracleAS Certificate Authority Administrator using the password supplied during installation. |

1.5 Task 5: Enable SSL (Optional)

During installation, SSL is not configured for most components. If you would like to enable SSL, refer to Part IV, "Secure Sockets Layer (SSL)".
Task 5: Enable SSL (Optional)
Introduction to Administration Tools

This chapter introduces the Oracle Application Server administration tools. It contains the following topics:

- **Overview of Oracle Application Server Administration Tools**
- **About Oracle Enterprise Manager 10g Application Server Control**
- **Getting Started with the Application Server Control Console**
- **Monitoring and Diagnosing with the Application Server Control Console**
- **Managing the OracleAS Metadata Repository Database with Database Control**
- **About Oracle Enterprise Manager 10g Grid Control**

2.1 Overview of Oracle Application Server Administration Tools

Oracle realizes that the procedures you use to monitor and administer your application server components can vary, depending upon the size of your organization, the number of administrators you employ, and the types of components you manage. As a result, Oracle offers options for managing your Oracle Application Server installations.

These management options can be divided into the following categories:

- **Managing Oracle Application Server with Oracle Enterprise Manager 10g**
- **Managing Oracle Application Server from the Command Line**
- **Using Other Tools to Monitor the Built-In Performance Metrics**

2.1.1 Managing Oracle Application Server with Oracle Enterprise Manager 10g

The primary tool for managing Oracle Application Server—as well as your entire Oracle environment—is Oracle Enterprise Manager 10g.

With Enterprise Manager, you can use your Web browser to:

- Manage individual Oracle Application Server instances with Oracle Enterprise Manager 10g Application Server Control.
- Centrally manage all the components of your network and your enterprise with Oracle Enterprise Manager 10g Grid Control.
- Manage your Oracle Application Server Metadata Repository with the Oracle Enterprise Manager 10g Database Control.
When used together, Application Server Control, Grid Control, and Database Control provide a complete set of efficient tools to reduce the cost and complexity of managing your enterprise.

2.1.1.1 Using Application Server Control to Manage Oracle Application Server

Application Server Control is installed with every instance of Oracle Application Server. As a result, you can immediately begin managing your application server and its components from your Web browser.

Note: If you select the OracleAS Metadata Repository-only installation type, the Application Server Control is installed, but it is not configured or started automatically by the installation procedure. In fact, there is no need to start or use the Application Server Control Console for the Metadata Repository-only installation type.

See Section 2.5, "Managing the OracleAS Metadata Repository Database with Database Control" for information about managing the database that hosts the OracleAS Metadata Repository.

From the Application Server Control Console, you can monitor and administer a single Oracle Application Server instance, an Oracle Application Server Farm of application server instances, or Oracle Application Server Clusters.

The Application Server Control Console organizes a wide variety of performance data and administrative functions into distinct, Web-based home pages for each application server component. The Enterprise Manager home pages make it easy to locate the most important monitoring data and the most commonly used administrative functions—all from your Web browser.

For Oracle Identity Management 10g (10.1.4.0.1), additional features have been added to make it easier to manage your Oracle Identity Management components from the Application Server Control Console.

See Also: Section 2.2, "About Oracle Enterprise Manager 10g Application Server Control"

2.1.1.2 Using Grid Control to Manage Your Enterprise

Oracle Enterprise Manager 10g Grid Control is installed from a separate installation CD-ROM, that is part of the Oracle Application Server CD–ROM pack. It is also available for download from the Oracle Technology Network (OTN):

Grid Control Console provides a wider view of your enterprise so you can manage multiple Oracle Application Server instances, as well as your Oracle databases, hosts, listeners, and other components.

For Oracle Identity Management 10g (10.1.4.0.1), you can also install the new Identity Management Grid Control Plug-in, which provides additional features for managing your Oracle Identity Management environment.

See Also: Section 2.6, "About Oracle Enterprise Manager 10g Grid Control"
2.1.1.3 Using Database Control to Manage an OracleAS Metadata Repository Database

Oracle Enterprise Manager 10g Database Control is installed and configured when you install the OracleAS Metadata Repository. As a result, you can use Database Control Console to manage the OracleAS Metadata Repository database.

The Database Control Console is similar to the Application Server Control Console, but it is designed to help you manage your Oracle database. It provides a Web-based user interface for performing database management tasks. For example, you can monitor the performance of the database, schedule backups, and manage the tablespaces of the database.

See Also: Section 2.5, "Managing the OracleAS Metadata Repository Database with Database Control"

If you use OracleAS RepCA to install the OracleAS Metadata Repository in an existing database, Database Control will also be available if the existing database is an Oracle Database 10g database and if the Database Control was configured when the database was created.

Note that if you use Grid Control to manage your OracleAS Metadata Repository database, there is no need to use Database Control. All the features of Database Control are available from the database management pages within the Grid Control Console.

See Also: Section 2.6, "About Oracle Enterprise Manager 10g Grid Control"

2.1.2 Managing Oracle Application Server from the Command Line

Oracle Application Server also provides command-line interfaces to several key management technologies. After you become familiar with the architecture and components of your application server, command-line tools can help you automate your management procedures with scripts and custom utilities.

The most important administration command-line tools are:

- **opmnctl**, which provides a command-line interface to Oracle Process Manager and Notification Server (OPMN). You can use opmnctl to:
 - Start and stop components, instances, and OracleAS Clusters.
 - Monitor processes.

 See Also: Section 2.2.3, "About the Underlying Technologies" and Oracle Process Manager and Notification Server Administrator’s Guide

- **dcmctl**, which provides a command-line interface to Distributed Configuration Management (DCM). You can use dcmctl to:
 - Create and remove OC4J instances and OracleAS Clusters.
 - Deploy and undeploy OC4J applications.
 - Archive and restore configuration information.
 - Obtain configuration information.

 See Also: Section 2.2.3, "About the Underlying Technologies" and Distributed Configuration Management Administrator’s Guide
In addition to opmnctl and dcmctl, Oracle Application Server provides many other command-line tools for performing specific tasks.

See Also: Appendix B, "Oracle Application Server Command-Line Tools"

2.1.3 Using Other Tools to Monitor the Built-In Performance Metrics

After you install and start Oracle Application Server, the application server automatically begins gathering a set of built-in performance metrics. These built-in performance metrics are measured continuously using performance instrumentation inserted into the implementations of Oracle Application Server components.

The Application Server Control Console presents a subset of these performance metrics in an organized fashion on the application server component home pages. For example, the Oracle HTTP Server metrics are presented as a series of charts on the Status Metrics page, which is available from the Oracle HTTP Server home page. You can also display all the metrics for a particular component by using the All Metrics page.

See Also: Section 2.4.5, "Displaying the All Metrics Page for the Application Server or an Application Server Component"

Alternatively, you may want to view the complete set of built-in performance metrics, or you may need to monitor a specific set of application server component metrics. Oracle Application Server provides a set of command-line and servlet-based tools to view the Oracle Application Server built-in performance metrics directly, outside of the Application Server Control Console.

See Also: Oracle Application Server Performance Guide

2.2 About Oracle Enterprise Manager 10g Application Server Control

Oracle Enterprise Manager 10g Application Server Control provides Web-based management capabilities designed specifically for Oracle Application Server. Using the Application Server Control Console, you can monitor, diagnose, and configure the components of your application server. You can deploy applications, manage security, and create and manage OracleAS Clusters.

The following sections provide more information about Application Server Control:

- Components of the Application Server Control
- About the Enterprise Manager Home Pages
- About the Underlying Technologies
- Introducing the New Oracle Identity Management Features of Application Server Control
- Using the Application Server Control Console Online Help

2.2.1 Components of the Application Server Control

Application Server Control consists of:

- The Application Server Control Console and its Enterprise Manager home pages that you use to manage Oracle Application Server
These Web pages provide you with a high-level view of your Oracle Application Server environment. You can then drill down for more detailed performance and diagnostic information.

- The underlying software technologies that keep track of your application server instances and components

These technologies automatically perform many of the management tasks as you select options and functions within the Application Server Control Console. For example, they discover the components of each application server instance, gather and process performance data, and provide access to application configuration information.

2.2.2 About the Enterprise Manager Home Pages

Oracle Application Server provides a wide variety of software solutions designed to help you run all aspects of your business. As a result, you will want to manage Oracle Application Server from different levels of detail.

At times, you may want to manage a single application server instance; or, you may find it efficient to combine multiple instances into an OracleAS Clusters instance. At other times, you will want to manage a specific application server component.

To support these multiple levels of management, Oracle introduces the Oracle Enterprise Manager home pages. Each home page provides the information you need to monitor the performance and availability of Oracle Application Server from a particular level of management detail. Selected home pages also provide tools for configuring your Oracle Application Server components.

From each home page, you can obtain high-level information or you can drill down to get more specific information about an instance, component, or application.

Consider the following pages that are available when you use the Application Server Control Console:

- Use the OracleAS Farm page to view a set of related application server instances on your network and to create OracleAS Clusters that speed up the configuration and deployment of your Web applications. See Section 2.3.2, "Using the Oracle Application Server Farm Page" for more information.

- Use the Application Server Home page to manage all aspects of an individual application server instance. See Section 2.3.3, "Using the Application Server Home Page" for more information.

- Drill down to a component home page to monitor or configure an individual component of the application server. For example, use the Oracle HTTP Server Home page to monitor the performance of your Web server, or use the Oracle Containers for J2EE (OC4J) home page to deploy a custom Web-based application. See Section 2.3.4, "Using the Oracle Application Server Component Home Pages" for more information.

2.2.3 About the Underlying Technologies

The Application Server Control Console relies on various technologies to discover, monitor, and administer the Oracle Application Server environment. Table 2–1 provides a summary of the underlying technologies leveraged by the Application Server Control Console.
2.2.4 Introducing the New Oracle Identity Management Features of Application Server Control

For Oracle Identity Management 10g (10.1.4.0.1), Application Server Control introduces several new features for managing your Oracle Identity Management components.

For Oracle Identity Management 10g (10.1.4.0.1), Application Server Control Console includes management pages for the following Oracle Identity Management components:

- Oracle Internet Directory
- OracleAS Single Sign-On
- Delegated Administration Service
- Directory Integration Profile

See Also: Section 2.3.5, "Using the Oracle Identity Management Component Home Pages"

2.2.5 Using the Application Server Control Console Online Help

At any time while using the Application Server Control Console, you can click Help at the top of the page to get more information. In most cases, the Help window displays a help topic about the current page. Click Contents in the Help window to browse the list of help topics, or click Search to search for a particular word or phrase.
2.3 Getting Started with the Application Server Control Console

Use the following sections to get started with the Application Server Control Console and become familiar with the Enterprise Manager home pages within the Application Server Control Console:

- Displaying the Application Server Control Console
- Using the Oracle Application Server Farm Page
- Using the Application Server Home Page
- Using the Oracle Application Server Component Home Pages
- Using the Oracle Identity Management Component Home Pages

2.3.1 Displaying the Application Server Control Console

The following sections describe how to display the Application Server Control Console:

- Using the Application Server Control URL
- Displaying the Application Server Control Console from the Welcome Page

2.3.1.1 Using the Application Server Control URL

The URL for the Application Server Control Console, including the port number, is included in the text file that displays at the end of the Oracle Application Server installation procedure. This text file is saved in the following location after you install the application server:

(UNIX) ORACLE_HOME/install/setupinfo.txt
(Windows) ORACLE_HOME\install\setupinfo.txt

The Application Server Control Console URL typically includes the name of the host computer and the port number assigned to the Application Server Control Console during the installation. For example:

http://mgmthost1.acme.com:1156

2.3.1.2 Displaying the Application Server Control Console from the Welcome Page

To view the Application Server Control Console from the Oracle Application Server Welcome Page:

1. Display the Oracle Application Server Welcome Page by entering the following URL in your Web browser:

 http://hostname.domain:port

 For example:

 http://sys42.acme.com:7777

 Note: The default port for Oracle HTTP Server (and, as a result, the Welcome page) is provided at the end of the Oracle Application Server installation, as well as in the following text file in the install directory of the application server Oracle home:

 setupinfo.txt

Introduction to Administration Tools 2-7
2. **Click Log on to the Oracle Enterprise Manager 10g Application Server Control Console.**

 Enterprise Manager displays the administrator logon dialog box.

3. **Enter the Oracle Application Server administrator user name and password and click OK.**

 The user name for the administrator user is ias_admin. The password is the one you supplied during the installation of Oracle Application Server.

2.3.2 Using the Oracle Application Server Farm Page

For Oracle Identity Management 10g (10.1.4.0.1) installations, the first page to appear when you display the Application Server Control Console is the OracleAS Farm page (Figure 2–1).

2.3.2.1 About the Instances and Clusters Shown on the Farm Page

The Farm pages lists all the Oracle Application Server instances that are configured to use the services of the OracleAS Metadata Repository.

By default, the Oracle Identity Management components use schemas that are installed in the OracleAS Metadata Repository. As a result, the Oracle Identity Management application server instance appears in the list of standalone Oracle Application Server instances on the Farm page.

If you later install any Oracle Application Server 10g (9.0.4) or 10g Release 2 (10.1.2) middle tier instances, and you configure those middle tiers to use the 10g (10.1.4.0.1) OracleAS Metadata Repository, then those middle tiers will also appear in the list of standalone instances.

Middle tier instances can be grouped into Oracle Application Server Clusters. OracleAS Clusters make it easier to apply identical configuration changes across multiple middle tier instances.

2.3.2.2 Tasks You Can Perform From the Farm Page

Using the Farm page, you can perform the following tasks:

- View multiple application server instances that are using the services of the current OracleAS Metadata Repository, even if they reside on multiple hosts.

- Drill down to the Application Server Home page for each instance; for example, you can click the Oracle Identity Management instance to manage the Oracle Identity Management components you have installed.

- Create and manage OracleAS Clusters (applicable only if you later install or associate any 10g (9.0.4) or 10g Release 2 (10.1.2) middle tiers with the OracleAS Metadata Repository.)
2.3.3 Using the Application Server Home Page

From the Application Server Home page (Figure 2–2), you can start and stop the application server instance, monitor the overall performance of the server, and review the components of the server. You can also drill down and examine the performance of a particular component and configure the component.

For example, the Application Server Home page for an Oracle Identity Management 10g (10.1.4.0.1) instance includes links that display the Oracle Internet Directory, Oracle Delegated Administration Services, and Oracle Directory Integration Platform Home pages.
The Application Server Home page provides a table that lists the components of the application server. From this table, you can also get a snapshot of how each individual component is performing.

From the **System Components** table, you can display a home page for each component of the application server.

In addition, **Table 2–2** lists some of the common management tasks you can perform from the Oracle Application Server Home page.

Table 2–2 Common Tasks to Perform from the Application Server Home Page

<table>
<thead>
<tr>
<th>To Perform This Task</th>
<th>Click this Link, Button, or Tab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Locate and search the various Oracle Application Server log files, as well as the Oracle Application Server Log Repository.</td>
<td>Logs (at the top of the page)</td>
</tr>
<tr>
<td>Display the Topology Viewer, which provides a graphical view of the application server processes that are managed by OPMN.</td>
<td>Topology (at the top of the page)</td>
</tr>
<tr>
<td>For more information, see Section 2.4.1, "Reviewing the Application Server Component Topology".</td>
<td></td>
</tr>
<tr>
<td>Display a list of the applications deployed across all the OC4J instances within this Oracle Application Server.</td>
<td>J2EE Applications</td>
</tr>
</tbody>
</table>
2.3.4 Using the Oracle Application Server Component Home Pages

Component home pages vary from one component to another because each component has different monitoring and configuration requirements. However, most of the component home pages have the following common elements:

- A general information section that includes an icon to indicate the current state of the component and buttons for starting and stopping the component (if applicable).
- Status information, including CPU and memory usage information, so you can get a snapshot of how the component is performing.
- Component-specific information, such as a virtual hosts tab on the HTTP Server home page or a list of deployed applications on the OC4J home page.
- Links to administrative functions where appropriate, so you can modify the configuration of selected components. In many cases, this means you can use a graphical user interface to modify configuration files.

2.3.5 Using the Oracle Identity Management Component Home Pages

For Oracle Identity Management 10g (10.1.4.0.1), the System Components table on the Application Server Home page contains links to the Oracle Identity Management components. Each link displays the appropriate management page for the selected component.

Table 2–3 describes each of the Oracle Identity Management component pages and the management tasks you can perform from each of the component home pages.

For more information, click Help after selecting an option on the Application Server Home page.

See Also: Section 2.2.5, "Using the Application Server Control Console Online Help"
Table 2–3 Summary of the Oracle Identity Management Management Pages in the Application Server Control Console

<table>
<thead>
<tr>
<th>Component Home Page</th>
<th>Common Tasks</th>
<th>Usage Tips</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Internet Directory page</td>
<td>Start and stop the Oracle Internet Directory server, view performance metrics, obtain the active port numbers used by the directory, and display the Oracle Internet Directory Self-Service Console (also known as the Provisioning Console).</td>
<td>Click the number in the Configuration Set Number column of the Directory Server Instances page to display more details about the directory.</td>
</tr>
<tr>
<td>Oracle Application Server Single Sign-On page</td>
<td>View general information about the OracleAS Single Sign-On server, monitor the number of login failures, and quickly access the OracleAS Single Sign-On Administration Console.</td>
<td>Click the number next to any login failure entry to view the exact time the login failure occurred and the IP address the OracleAS Single Sign-On user.</td>
</tr>
<tr>
<td>Oracle Delegated Administration Services page</td>
<td>Monitor a set of Oracle Delegated Administration Services performance charts and quickly access the Oracle Delegated Administration Services Console (also known as the Provisioning Console).</td>
<td>To log in to the DAS console for the first time, enter orcladmin as the user name and the ias_admin password you assigned during the Oracle Application Server installation procedure.</td>
</tr>
<tr>
<td>Directory Integration Profile page</td>
<td>View a summary of the Oracle Directory Integration Platform server instances and integration profiles, as well as a set of Oracle Directory Integration Platform performance charts.</td>
<td>Click All Metrics to display a complete list of all the performance metrics available for the Oracle Directory Integration Platform component.</td>
</tr>
</tbody>
</table>

2.4 Monitoring and Diagnosing with the Application Server Control Console

The Application Server Control Console is designed to encourage a top-down approach to monitoring and diagnostic activities. For example, you can start by reviewing the basic characteristics of your application server and then drill down to examine the performance of individual components of the server.

The following sections provide an outline of this monitoring methodology:

- **Reviewing the Application Server Component Topology**
- **Reviewing General Information and Resource Usage**
- **Reviewing the Resources of the Application Server Host**
- **Monitoring Application Server Components**
- **Displaying the All Metrics Page for the Application Server or an Application Server Component**
- **Obtaining More Information About Monitoring Oracle Application Server**
2.4.1 Reviewing the Application Server Component Topology

Click **Topology** at the top of any page in Application Server Control Console to display the Topology Viewer (Figure 2–3). The Topology Viewer provides a graphical, real-time representation of application server processes managed by Oracle Process Manager and Notification Server (OPMN).

See Also: Section 2.2.3, “About the Underlying Technologies” for more information about OPMN and the other technologies used by Application Server Control.

The Topology Viewer identifies each component of the application server with an icon. The position of each icon on the page and the connections between the icons represent the relationships between each component. Visual clues in the Topology Viewer help you quickly identify components that are down or performing poorly.

If you are managing multiple application servers as part of an OracleAS Farm, the viewer also shows the relationships between the application server instances, including the OracleAS Clusters you have created.

From the Topology Viewer, you can perform the following tasks:

- View the status of components
- Start, stop, or restart processes
- Monitor performance across the application server environment
- Drill down to component home pages for details

See Also: "About Topology Viewer" in the Enterprise Manager online help.

Figure 2–3 Topology Viewer
2.4.2 Reviewing General Information and Resource Usage

The Application Server Home page provides general information about the status of your server, including the name, location, and application server availability. The home page also provides high-level information about CPU and memory usage. When reviewing the home page, review the CPU Usage and Memory Usage charts for excessive CPU or memory usage by the application server (Figure 2–4).

Figure 2–4 General Section of the Application Server Home Page

If you suspect that the application server is using too many resources, review the list of components to review the resource usage of each component (Figure 2–5).

Figure 2–5 System Components Table on the Application Server Home Page

Consider disabling any components that you are not currently using as part of this application server instance. Disabled components are not started when you start the application server and as a result do not consume system resources. You can always enable a disabled application server component at a later time.

See Also: 'Disabling and Enabling Components’ in the Enterprise Manager online help

2.4.3 Reviewing the Resources of the Application Server Host

Many performance or configuration issues are directly related to a lack of available resources on the host. Before you drill down to analyze the performance and resource usage of the individual application server components, review the resources and characteristics of the application server host.

Click the host name in the General section of the Application Server home page to display the Host home page. The Host home page provides a summary of the operating system, memory, and disk capacity. The Load section of the page provides a CPU chart that breaks down the CPU usage into categories of usage; the load metrics beneath the chart provide details about system memory usage (Figure 2–6).
Monitoring and Diagnosing with the Application Server Control Console

See Also: "About Memory Usage" in the Enterprise Manager online help for information about how Enterprise Manager calculates the memory usage for your application server.

Figure 2–6 General Information and Load Statistics on the Host Home Page

Scroll to the bottom of the page to view a set of links to real-time performance metrics. If you are concerned about the CPU and memory usage on the system, click **Top Processes** to display tables listing the processes that are using the most resources on the host.

Click **Filesystems** to display a bar chart that reveals the amount of disk space available on the application server host (Figure 2–7).

Figure 2–7 Disk Space Usage Chart Available from the Host Home Page

2.4.4 Monitoring Application Server Components

After you review the high-level performance metrics and the resources available on the application server host computer, you can then begin to look for potential issues within the individual application server components.

To diagnose problems with individual application server components, click the component name in the **System Components** table on the Application Server home page. This technique of "drilling down" to obtain more detail can help you isolate problems in a particular component or area of the application server.

2.4.5 Displaying the All Metrics Page for the Application Server or an Application Server Component

The Application Server Control Console provides you with selected performance metrics that you can use to determine the overall performance of your application server. In some cases, the metrics are shown as performance charts; in other cases, you can monitor the real-time value of the metrics in numeric format.
For a comprehensive list of the metrics that are monitored by Enterprise Manager, you can view the All Metrics page. The All Metrics page is available from the Application Server Home page and from each of the component Home pages.

For example, to view All Metrics page for an application server instance:

1. Navigate to the Application Server Home page.
2. Click All Metrics in the Related Links section of the page.

 Enterprise Manager displays the All Metrics page for the application server.
3. Click Expand All to see all the application server metrics in each of the metric categories.

 Figure 2–8 shows the Application Server All Metrics page after you have expanded all the metric categories.
4. Click the name of metric to display the Metric detail page.
5. Click Help to display information about the metric.

To view the All Metrics page for a component, such as Oracle HTTP Server:

1. Navigate to the component Home page.
2. Click All Metrics in the Related Links section of the page.

 Enterprise Manager displays the All Metrics page for the selected component.
2.4.6 Obtaining More Information About Monitoring Oracle Application Server

For more complete information about monitoring Oracle Application Server, refer to the Application Server Control Console online help and the Oracle Application Server Performance Guide.

2.5 Managing the OracleAS Metadata Repository Database with Database Control

Many features of Oracle Application Server depend upon the OracleAS Metadata Repository, which uses an Oracle database to contain the OracleAS Metadata Repository. When you install the OracleAS Metadata Repository, you can choose to install a preconfigured instance of Oracle Database 10g for the OracleAS Metadata Repository.

See Also: Oracle Application Server Installation Guide for your platform

If you have installed and deployed Oracle Enterprise Manager 10g Grid Control, you can also use the Grid Control Console to manage the OracleAS Metadata Repository.

See Also: Section 2.6, "About Oracle Enterprise Manager 10g Grid Control"

However, if you are not centrally managing your environment with Grid Control, the database that is installed to host the OracleAS Metadata Repository comes with its own management tools.

Specifically, the OracleAS Metadata Repository database comes with Oracle Enterprise Manager 10g Database Control, which is provided with Oracle Database 10g.

To display the Database Control, which you can use to manage the OracleAS Metadata Repository database:

1. Use a Web browser to access the Database Control URL:

 http://hostname.domain:port/em

 In this example:
 - hostname is the name of the computer on which you installed Oracle Database.
 - domain is the domain of your computer.
 - port is the port number reserved for the Database Control during installation.

 If you do not know the correct port number to use, look for the following line in the portlist.ini file, which is stored in the install directory of your OracleAS Metadata Repository Oracle home:

 Enterprise Manager Console HTTP Port (db_name) = 5500

 The installation reserves the first available port from the range 5500 to 5519. For example, if you installed Oracle Database on host mgmt42, and the Database Control uses port 5500, enter the following URL:

 http://mgmt42.acme.com:5500/em

 Oracle Enterprise Manager displays the Database Control login page.
2. Log in to the database using the user name SYS and connect as SYSDBA. Use the password that you specified for the SYS account during the installation.

3. Enterprise Manager displays the Database Home page (Figure 2–9). From the Database Home page, you can review the current state of your database and access a wide range of monitoring and administration features.

See Also: Oracle 2 Day DBA in the Oracle Database 10g documentation library for an introduction to database management with the Database Control Console

Figure 2–9 Database Home Page in the Database Control Console

About Oracle Enterprise Manager 10g Grid Control

Application Server Control provides all the tools you need to manage your application server instances, farms, clusters, and system components. However, if you have an environment that includes other Oracle products and applications in addition to...
Oracle Application Server, consider using Oracle Enterprise Manager 10g Grid Control.

Grid Control, when used with Application Server Control, provides a wider view of your Oracle environment beyond the application server. From a central location, you can use the Grid Control Console to manage databases, application servers, and Oracle applications across your entire network.

The Grid Control Console offers advanced management features, such as a notification system to notify administrators of changes in your environment and a Job system to automate standard and repetitive tasks, such as executing a SQL script or executing an operating system command.

The following sections provide more information about Grid Control:

- About the Components of Grid Control
- Installing Grid Control
- Logging In to the Grid Control Console
- Viewing a List of Application Servers in the Grid Control Console
- Overview of Grid Control Monitoring Tasks
- Installing and Using the Identity Management Grid Control Plug-in
- Obtaining More Information About Grid Control

2.6.1 About the Components of Grid Control

When you centrally manage your enterprise, including your Oracle Application Server instances, you take advantage of the Enterprise Manager three-tier architecture:

- The Grid Control Console provides a Web-based graphical interface you can use to manage all aspects of your enterprise.

- The Oracle Management Service and Management Repository provide a scalable middle tier for storing crucial management data and processing system management tasks.

 Note that the Management Repository is a separate repository from the OracleAS Metadata Repository. The Management Repository is designed specifically for Enterprise Manager.

- The Oracle Management Agent, which you install on each host computer on which there are services to be monitored, monitors the host services and executes tasks from the Management Service.

 See Also: Oracle Enterprise Manager Concepts for more information about the Oracle Enterprise Manager 10g components and architecture

2.6.2 Installing Grid Control

You install Oracle Enterprise Manager 10g Grid Control from a separate CD-ROM.

To centrally manage your enterprise, you typically perform the following steps:

1. Install the Management Service and the Management Repository on a host computer.

2. Install the Oracle Management Agent on each of the computers that you want to manage from the Grid Control Console.
On each host, the Management Agent gathers information about the various targets on the host. A target is a software component (such as Oracle Application Server), a host computer, and or other service that you manage with Oracle Enterprise Manager 10g.

Specifically, information about the targets on a host are discovered by the Management Agent during the Management Agent installation. When a target is discovered, information about the target is added to the Management Repository and the target displayed in the list of managed targets in the Grid Control Console.

If you later install additional application servers on a managed host, you can add them to the Grid Control Console later. To add additional application server targets, click Add on the Application Servers page in the Grid Control Console, or use the Grid Control Management section of the Infrastructure page in the Application Server Control Console.

See Also: Oracle Enterprise Manager Grid Control Installation and Basic Configuration for complete instructions about installing Grid Control and starting and stopping the Grid Control components

Oracle Enterprise Manager Advanced Configuration for information about common configurations when installing the Grid Control components

"Configuring Your Application Server for Grid Control Management" in the Application Server Control Console online help

2.6.3 Logging In to the Grid Control Console

After you have configured and started Oracle Management Service, you can log in to the Grid Control Console by entering the following URL in your Web browser:

http://grid_control_hostname.domain:port/em

For example:

http://mgmthost2.acme.com:7777/em

If you are uncertain about the port number, you can refer to one of the following files in the install directory of the Management Service Oracle home after you install the Management Service:

- The setupinfo.txt, which includes information displayed by the Oracle Universal Installer at the end of the Grid Control install
- The portlist.ini, which describes the ports assigned during the Management Service installation

When the Grid Control login page appears, enter the username and password for the Super administrator SYSMAN account, which you defined during the Grid Control installation.

After you log in, Enterprise Manager displays the Grid Control Console Home page (Figure 2–10).
2.6.4 Viewing a List of Application Servers in the Grid Control Console

From the Grid Control Console home page, click the Targets tab and then click Application Servers in the horizontal navigation bar. Enterprise Manager displays the Application Servers page (Figure 2–11), which lists all the application servers currently being monitored by Oracle Management Agents in your enterprise.
This list provides you with a snapshot of the availability, number of alerts, and the CPU and memory usage of each application server target.

2.6.5 Overview of Grid Control Monitoring Tasks

After you have installed the Management Agent on the Oracle Application Server hosts and have identified your application server targets in the Grid Control Console, you can perform a variety of monitoring tasks. For example, you can:

- Set and adjust a set of default metric thresholds for the application servers that you monitor. You can then configure Enterprise Manager so you are notified automatically when a particular application server metric reaches its threshold.
- Organize your application server targets into groups so you can monitor them as a single unit; groups also allow you to compare the performance of the application servers you monitor and to perform administration tasks, such as blackouts, on the group.
- Review historical data and analyze trends in the performance of your application server components and J2EE applications. For example, you can:
 - Emulate and monitor the client experience from remote locations.
 - Measure real end-user performance against a Web application.
 - Trace Web site transactions through the application stack, Oracle HTTP Server, OC4J, and the back-end Oracle database.
 - Correlate application performance across components to rapidly isolate problems.
- Use Application Service Level Management to measure the performance and availability of your J2EE Web applications.
- Perform configuration management tasks, such as software and hardware inventory tracking, cloning, and patching.

2.6.6 Installing and Using the Identity Management Grid Control Plug-in

Identity Management Grid Control Plug-in is a new feature of Oracle Identity Management 10g (10.1.4.0.1). Identity Management Grid Control Plug-in enables you to monitor and manage Oracle Internet Directory, Oracle Application Server Single Sign-On, Oracle Delegated Administration Services, and Oracle Directory Integration Platform from your existing Oracle Enterprise Manager 10g Grid Control Console.

You install the Identity Management Grid Control Plug-in after you install Grid Control. Identity Management Grid Control Plug-in adds new capabilities for managing the Oracle Identity Management 10g (10.1.4.0.1) to the Grid Control Console.

See Also: "Installing the Oracle Identity Management Grid Control Plug-in" in the *Oracle Application Server Installation Guide*

Consider the following typical installation scenario. This scenario assumes the following:

- Oracle Enterprise Manager 10g Grid Control 10.2.0.1.0 or later is installed and running on a computer called `hostA`
- Oracle Management Agent 10.2.0.1.0 or later is installed and running on a computer called `hostB`
As a result, \texttt{hostB} (as well as any Oracle products installed on \texttt{hostB}) appears as managed targets in the Grid Control Console.

In this example environment, use the following typical steps to install and configure Identity Management Grid Control Plug-in:

1. Install the Identity Management Grid Control Plug-in on \texttt{hostA}.

 This step adds new Oracle Identity Management 10g (10.1.4.0.1) capabilities to the Grid Control Console and to the Oracle Management Service on \texttt{hostA}.

2. Install the Identity Management Grid Control Plug-in Agent on \texttt{hostB}.

 This step adds new Oracle Identity Management 10g (10.1.4.0.1) capabilities to the Management Agent on \texttt{hostB}.

3. Install Oracle Identity Management 10g (10.1.4.0.1) on \texttt{hostB}.

4. From the Grid Control Console, click \texttt{Add} on the Application Servers page to add the new Oracle Identity Management 10g (10.1.4.0.1) target to the list of managed targets.

 You can then begin managing and monitoring the Oracle Identity Management 10g (10.1.4.0.1) components from Grid Control Console using the new features of the Identity Management Grid Control Plug-in.

 \textbf{See Also:} "Identity Management Grid Control Plug-in" in the \textit{Oracle Identity Management Infrastructure Administrator’s Guide}

\textbf{2.6.7 Obtaining More Information About Grid Control}

For information about starting, configuring, and using Grid Control, see the most recent Oracle Enterprise Manager 10g documentation on the Oracle Technology Network:

http://www.oracle.com/technology/documentation/oem.html

In particular, refer to the following books in the Oracle Enterprise Manager 10g documentation library:

- \textit{Oracle Enterprise Manager Grid Control Installation and Basic Configuration}
- \textit{Oracle Enterprise Manager Concepts}
- \textit{Oracle Enterprise Manager Advanced Configuration}

The Grid Control Console also provides extensive online help. To display the Grid Control Console online help, click \textbf{Help} at the top of any of the Grid Control Console pages.
This chapter describes various procedures for starting and stopping Oracle Application Server. It contains the following topics:

- Overview of Starting and Stopping Procedures
- Starting and Stopping Application Server Instances
- Starting and Stopping Components
- Enabling and Disabling Components
- Starting and Stopping an Oracle Application Server Environment
- Starting and Stopping: Special Topics

3.1 Overview of Starting and Stopping Procedures

Oracle Application Server is a flexible product that you can start and stop in different ways, depending on your requirements. See the following sections:

- **Section 3.2, "Starting and Stopping Application Server Instances"**
 Use the procedures in this section when starting an instance from scratch, for example, after restarting a host, or when you want to stop your entire instance, for example, in preparation for shutting down your system.

- **Section 3.3, "Starting and Stopping Components"**
 Use the procedures in this section after you have started your instance and want to start or stop individual components.

- **Section 3.4, "Enabling and Disabling Components"**
 This section describes how to disable components (prevent them from starting when you start an instance) and enable components (allow them to start when you start an instance).

- **Section 3.5, "Starting and Stopping an Oracle Application Server Environment"**
 This section describes how to perform an orderly shutdown of your entire environment.

3.2 Starting and Stopping Application Server Instances

This section describes how to start and stop application server instances. It contains the following topics:
Starting and Stopping Application Server Instances

- Starting OracleAS Infrastructure
- Stopping OracleAS Infrastructure
- Starting Oracle Identity Federation
- Stopping Oracle Identity Federation
- Starting a Middle-Tier Instance
- Stopping a Middle-Tier Instance

3.2.1 Starting OracleAS Infrastructure

This section describes how to start all processes in an OracleAS Infrastructure. Follow this procedure after you have restarted your host, or any other time you want to start up your entire OracleAS Infrastructure.

This procedure applies to all OracleAS Infrastructure types:

- Oracle Identity Management and OracleAS Metadata Repository

 Follow both steps to start Oracle Identity Management and OracleAS Metadata Repository.

- OracleAS Metadata Repository only

 Follow only Step 1 to start OracleAS Metadata Repository. You do not need to perform the second step of starting Oracle Identity Management because you do not need OPMN or the Application Server Control Console in a OracleAS Metadata Repository-only installation.

- Oracle Identity Management only

 Follow only Step 2 to start Oracle Identity Management. Make sure the OracleAS Metadata Repository that supports Oracle Identity Management (residing in another Oracle home) is already started.

To start OracleAS Infrastructure:

1. If your OracleAS Infrastructure contains OracleAS Metadata Repository, start it as follows:

 a. Set the ORACLE_HOME environment variable to the OracleAS Infrastructure Oracle home.
 b. Set the ORACLE_SID environment variable to the OracleAS Metadata Repository SID (default is `orcl`).
 c. Start the Net Listener:

      ```bash
      ORACLE_HOME/bin/lsnrctl start
      ```
 d. Start the OracleAS Metadata Repository instance:

      ```bash
      ORACLE_HOME/bin/sqlplus /nolog
      SQL> connect SYS as SYSDBA
      SQL> startup
      SQL> quit
      ```
 e. Start the Oracle Enterprise Manager 10g Database Control:

      ```bash
      (UNIX) ORACLE_HOME/bin/emctl start dbconsole
      (Windows) ORACLE_HOME\bin\emctl start idbconsole
      ```
2. If your OracleAS Infrastructure contains Oracle Identity Management, start it as follows:

 a. Start components:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl startall`
 (Windows) `ORACLE_HOME\opmn\bin\opmnctl startall`

 This command starts OPMN and all OPMN-managed processes such as DCM, Oracle HTTP Server, OC4J instances, and Oracle Internet Directory. Alternatively, on Windows, you can start OPMN using the Windows Services control panel.

 b. Start the Application Server Control Console:

 (UNIX) `ORACLE_HOME/bin/emctl start iasconsole`
 (Windows) `ORACLE_HOME\bin\emctl start iasconsole`

 Alternatively, on Windows, you can start the Application Server Control Console using the Windows Services control panel. The name of the service for the Application Server Control uses the following format:

 `OracleOracleHomeNameASControl`

 See Section A.1 for more information on starting Application Server Control. Alternatively, on Windows, you can start the Infrastructure from the Programs menu: Start > Programs > Oracle Application Server Infrastructure - *Infra_name* > Start instanceName.

3.2.2 Stopping OracleAS Infrastructure

This section describes how to stop all processes in OracleAS Infrastructure. Follow this procedure when you are preparing to shut down your host, or any other time you want to stop your entire OracleAS Infrastructure.

This procedure applies to all OracleAS Infrastructure types:

- Oracle Identity Management and OracleAS Metadata Repository

 Follow both steps to stop Oracle Identity Management and OracleAS Metadata Repository.

- OracleAS Metadata Repository only

 Follow Step 2 only to stop OracleAS Metadata Repository.

- Oracle Identity Management only

 Follow Step 1 only to stop Oracle Identity Management.

To stop OracleAS Infrastructure:

1. If your OracleAS Infrastructure contains Oracle Identity Management, stop it as follows:

 a. Stop the Application Server Control Console:

 (UNIX) `ORACLE_HOME/bin/emctl stop iasconsole`
 (Windows) `ORACLE_HOME\bin\emctl stop iasconsole`

 Alternatively, on Windows, you can stop the Application Server Control Console using the Services control panel. See Section A.1.2 for more information.
b. Stop components:

(UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopall`
(Windows) `ORACLE_HOME\opmn\bin\opmnctl stopall`

This command stops OPMN and all OPMN-managed processes such as DCM, Oracle HTTP Server, OC4J instances, and Oracle Internet Directory. Alternatively, on Windows, you can stop OPMN using the Windows Services control panel.

2. If your OracleAS Infrastructure contains OracleAS Metadata Repository, stop it as follows:

 a. Set the ORACLE_HOME environment variable to the OracleAS Infrastructure Oracle home.
 b. Set the ORACLE_SID environment variable to the OracleAS Metadata Repository SID (default is `orcl`).
 c. Stop the OracleAS Metadata Repository instance:

   ```
   ORACLE_HOME/bin/sqlplus /nolog
   SQL> connect SYS as SYSDBA
   SQL> shutdown
   SQL> quit
   ```
 d. Stop the Net Listener:

   ```
   ORACLE_HOME/bin/lsnrctl stop
   ```
 e. Stop the Oracle Enterprise Manager 10g Database Control:

   ```
   (UNIX) `ORACLE_HOME/bin/emctl stop dbconsole`
   (Windows) `ORACLE_HOME\bin\emctl stop dbconsole`
   ```

Alternatively, on Windows, you can stop the Infrastructure from the Programs menu: Start > Programs > Oracle Application Server Infrastructure - `Infra_name` > Stop `instanceName`.

3.2.3 Starting a Middle-Tier Instance

This section describes how to start all processes in a 10.1.2 or 10.1.3 middle-tier instance. You can follow this procedure after you have restarted your host, or any other time you want to start up the entire instance.

To start a Release 2 (10.1.2) middle-tier instance:

1. If the middle-tier instance uses OracleAS Infrastructure services, such as Oracle Identity Management or OracleAS Metadata Repository, make sure they are started, as described in Section 3.2.1.

2. Start components:

   ```
   (UNIX) `ORACLE_HOME/opmn/bin/opmnctl startall`
   (Windows) `ORACLE_HOME\opmn\bin\opmnctl startall`
   ```

 This command starts OPMN and all OPMN-managed processes such as DCM, Oracle HTTP Server, OC4J instances, OracleAS Web Cache, OracleAS Forms Services, and OracleAS Reports Services.

3. Start the Application Server Control Console:

   ```
   (UNIX) `ORACLE_HOME/bin/emctl start iasconsole`
   (Windows) `ORACLE_HOME\bin\emctl start iasconsole`
   ```
Alternatively, on Windows, you can start the Application Server Control Console using the Services control panel. See Section A.1.2 for more information on starting Application Server Control Console.

Alternatively, on Windows, you can start the middle tier from the Programs menu. For example, for Release 10.1.2.0.2: Start > Programs > Oracle Application Server - Oracle_Home > Start > instanceName.

To start Release 3 (10.1.3) middle-tier instance, perform steps 1 and 2. The Application Server Control Console is started when you start the components in step 2.

3.2.4 Stopping a Middle-Tier Instance

This section describes how to stop all processes in a 10.1.2 or 10.1.3 middle-tier instance. Follow this procedure when you are preparing to shut down your host, or any other time you want to stop the entire instance.

To stop a 10.1.2 middle-tier instance:

1. Stop the Application Server Control Console:
 - (UNIX) `ORACLE_HOME/bin/emctl stop iasconsole`
 - (Windows) `ORACLE_HOME\bin\emctl stop iasconsole`

 Alternatively, on Windows, you can stop the Application Server Control Console using the Services control panel. See Section A.1.2 for more information on stopping Application Server Control Console.

2. Stop components:
 - (UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopall`
 - (Windows) `ORACLE_HOME\opmn\bin\opmnctl stopall`

 This command stops OPMN and all OPMN-managed processes such as DCM, Oracle HTTP Server, OC4J instances, and OracleAS Web Cache, OracleAS Forms Services, and OracleAS Reports Services.

 Alternatively, on Windows, you can stop the middle tier from the Programs menu. For example, for Release 10.1.2.0.2: Start > Programs > Oracle Application Server - Oracle_Home > Stop > instanceName.

 To stop a 10.1.3 middle-tier instance, perform step 2. The Application Server Control Console is stopped when you stop the components in step 2.

3.2.5 Starting Oracle Identity Federation

You can use either of the following methods to start Oracle Identity Federation:

- The following command:
 - (UNIX) `ORACLE_HOME/opmn/bin/opmnctl startproc process-type=OC4J_FED`
 - (Windows) `ORACLE_HOME\opmn\bin\opmnctl startproc process-type=OC4J_FED`

- Application Server Control Console:
 1. Navigate to the Application Server home page on the Application Server Control Console. Scroll to the System Components section.
 2. In the Select column, select OC4J_FED.
 3. Click Start on the top right of the System Components section.
These methods start the Oracle Identity Federation server and the Oracle Identity Federation Administration console.

3.2.6 Stopping Oracle Identity Federation

You can use either of the following methods to stop Oracle Identity Federation:

- The following command:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopproc process-type=OC4J_FED`

 (Windows) `ORACLE_HOME\opmn\bin\opmnctl stopproc process-type=OC4J_FED`

- Application Server Control Console:

 1. Navigate to the Application Server home page on the Application Server Control Console. Scroll to the System Components section.

 2. In the Select column, select OC4J_FED.

 3. Click Stop on the top right of the System Components section.

These methods stop the Oracle Identity Federation server and the Oracle Identity Federation Administration console.

3.3 Starting and Stopping Components

You can use the following tools to start, stop, restart, and view the status of components:

- The `opmnctl` command: See Section 3.3.1.

- Application Server Control Console: See Section 3.3.2.

These tools are completely compatible—they both use OPMN as their underlying technology for managing processes—and can be used interchangeably. For example, you can start a component using `opmnctl` and stop it using the Application Server Control Console.

Although the two tools can be used interchangeably, they offer different features. With the `opmnctl` command, you can start and stop sub-processes within components, as well as the entire component. For example, you can start and stop OracleAS Web Cache, or you can start and stop only the OracleAS Web Cache admin sub-process. With the Application Server Control Console, you can view components that cannot be started or stopped, but whose status depends on other components. For example, the Application Server Control Console displays the status of the Single Sign-On component, whose status depends on the HTTP_Server.

3.3.1 Starting and Stopping Components Using opmnctl

You can use the `opmnctl` command line tool to start and stop components. It is located in the following directory:

- (UNIX) `ORACLE_HOME/opmn/bin`
- (Windows) `ORACLE_HOME\opmn\bin`

To start, stop, or restart a component using `opmnctl`:

- `opmnctl stopproc ias-component=component`
- `opmnctl startproc ias-component=component`
- `opmnctl restartproc ias-component=component`

To start, stop, or restart the sub-process of a component:
Enabling and Disabling Components

Starting and Stopping

To view the status of components and processes:

```
opmnctl status
```

To learn more about using opmnctl, refer to Oracle Process Manager and Notification Server Administrator’s Guide.

3.3.2 Starting and Stopping Components Using Application Server Control Console

You can start, stop, restart, and view the status of components on the Application Server home page:

1. Navigate to the Application Server home page on the Application Server Control Console. Scroll to the System Components section.
2. In the Select column, select the components you want to start, stop, or restart.
3. Click the Start, Stop, or Restart button on the top right of the System Components section.

You can also start and stop individual components on each component home page.

3.4 Enabling and Disabling Components

When you disable a component, you prevent it from starting when you start the application server instance, and you remove it from the list of System Components displayed on the Application Server home page.

When you enable a component, you allow it to start when you start the application server instance, and it appears in the list of System Components displayed on the Application Server Control Console.

You can enable and disable components using the Application Server Control Console. On the Application Server Home page, click Enable/Disable Components.

From the resulting page, you can select which components to enable or disable. Notice that components that are dependent on each other are grouped, and are enabled or disabled together.

When you enable or disable components, consider the following restrictions and additional information:

- If you use the backup and recovery procedures documented in this book, you must run `bkp_restore.pl -m config` after you enable or disable components so the proper components are registered with the OracleAS Backup and Recovery Tool. See Chapter 17 for more information.

- You cannot disable or enable components that are part of OracleAS Clusters. As a result, the Enable/Disable Components button is not available on the Application Server Home page when you are managing an instance that belongs to a cluster.
This section provides procedures for starting and stopping an Oracle Application Server environment. An environment can consist of multiple OracleAS Infrastructure and middle-tier instances distributed across multiple hosts. These instances are dependent on each other and it is important to start and stop them in the proper order.

You can follow these procedures when you need to completely shut down your Oracle Application Server environment, for example, when preparing to perform a complete backup of your environment, or apply a patch.

3.5.1 Starting an Oracle Application Server Environment

To start an Oracle Application Server environment:

1. Start any OracleAS Infrastructure that contains only OracleAS Metadata Repository.

 If your environment has OracleAS Infrastructure installations that contain only OracleAS Metadata Repository, start those in any order. Note that for these installation types, you only need to start OracleAS Metadata Repository. You do not need to start any processes with opmnctl and you do not need to start the Application Server Control Console. See Section 3.2.1, "Starting OracleAS Infrastructure" for more information.

2. Start the OracleAS Infrastructure that contains Oracle Identity Management.

 If your environment uses Oracle Identity Management, start the OracleAS Infrastructure that contains Oracle Internet Directory. If this OracleAS Infrastructure contains OracleAS Metadata Repository, start that before you start Oracle Internet Directory. See Section 3.2.1, "Starting OracleAS Infrastructure" for more information.

3. Start the OracleAS Clusters.

 If your environment has middle-tier instances that are part of a cluster, start the clusters in any order.

 See Also: Oracle Application Server High Availability Guide

 If your environment contains middle-tier instances that are not part of a cluster, start them in any order. See Section 3.2.3, "Starting a Middle-Tier Instance" for more information.

3.5.2 Stopping an Oracle Application Server Environment

To stop all processes in an Oracle Application Server environment:

1. Stop OracleAS Clusters.
If your environment has middle-tier instances that are part of a cluster, stop the clusters in any order.

See Also: *Oracle Application Server High Availability Guide*

2. Stop middle-tier instances.

 If your environment contains middle-tier instances that are not part of a cluster, stop them in any order. See Section 3.2.4, "Stopping a Middle-Tier Instance" for more information.

3. Stop the OracleAS Infrastructure that contains Oracle Identity Management.

 If your environment uses Oracle Identity Management, stop the OracleAS Infrastructure that contains Oracle Internet Directory. If this OracleAS Infrastructure contains OracleAS Metadata Repository, stop that as well. See Section 3.2.2, "Stopping OracleAS Infrastructure".

4. Stop any OracleAS Infrastructure instances that contain only OracleAS Metadata Repository as described in Section 3.2.2, "Stopping OracleAS Infrastructure".

 If your environment has OracleAS Infrastructure installations that contain only OracleAS Metadata Repository, stop those in any order.

3.6 Starting and Stopping: Special Topics

This section contains the following special topics about starting and stopping Oracle Application Server:

- Starting and Stopping Log Loader
- Starting and Stopping in High Availability Environments
- Resolving OC4J Errors When Starting Multiple Instances
- Forcing a Shut Down of OracleAS Metadata Repository

3.6.1 Starting and Stopping Log Loader

The method for starting and stopping Oracle Application Server Log Loader is different from other components.

Log Loader is not started when you issue the `opmnctl startall` command or when you perform a Start All operation in the Application Server Control Console. You can start Log Loader in the following ways:

- Using the following command:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=LogLoader`

 (Windows) `ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=LogLoader`

- By clicking Start on the Log Loader page in the Application Server Control Console. See Section 5.5.1, "Starting and Stopping Log Loader" for more information.

Log Loader is stopped when you issue the `opmnctl stopall` command; however it is not stopped when you issue a Stop All operation in the Application Server Control Console. In the latter case, you can stop Log Loader in the following ways:

- Using the following command:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=LogLoader`

 (Windows) `ORACLE_HOME\opmn\bin\opmnctl stopproc ias-component=LogLoader`
By clicking **Stop** on the Log Loader page in the Application Server Control Console. See Section 5.5.1, "Starting and Stopping Log Loader" for more information.

3.6.2 Starting and Stopping in High Availability Environments

There are special considerations and procedures for starting and stopping High Availability environments such as:

- DCM-Managed Oracle Application Server Cluster
- Manually Managed Oracle Application Server Cluster
- Oracle Application Server Cold Failover Clusters
- Oracle Application Server Disaster Recovery (includes starting and stopping the DSA component)

See: *Oracle Application Server High Availability Guide* for information about starting and stopping in high-availability environments

3.6.3 Resolving OC4J Errors When Starting Multiple Instances

If you have multiple Oracle Application Server installations on one host and you start them at the same time (for example, to start OracleAS Clusters), OPMN may return an error like the following:

```xml
<process-type id="my_OC4J_instance">
  <process-set id="default_island">
    <process id="93388820" pid="24711" status="Stopped" index="1"
      log="/disk1/oracleas/opmn/logs/OC4J~my_OC4J_instance~default_island~1"
      operation="request" result="failure">
      <msg code="-21" text="failed to restart a managed process
        after the maximum retry limit">
        after the maximum retry limit"
      </msg>
    </process>
  </process-set>
</process-type>
```

This error indicates that an OC4J instance (*my_OC4J_instance*) failed to start. The problem could be caused by two different Oracle homes on the same host using the same port ranges for RMI, JMS, and AJP ports, and an OC4J instance in one Oracle home trying to use the same port as an OC4J instance in another Oracle home.

For example, assume you have two Oracle Application Server installations on one host that reside in *ORACLE_HOME1* and *ORACLE_HOME2*. Each installation contains one or more OC4J instances, and each OC4J instance is assigned a port range for AJP, RMI, and JMS ports.

You can check OC4J port range assignments by examining the *opmn.xml* file in both Oracle homes:

ORACLE_HOME1/opmn/conf/opmn.xml

ORACLE_HOME2/opmn/conf/opmn.xml

In each file, locate the OC4J instance entries, which start with a line like the following:

```xml
<process-type id='home' module-id='OC4J' ...
```

Within each entry, locate the RMI, JMS, and AJP port ranges, which looks like this:

```xml
<port id="ajp" range='12501-12600'/>
<port id="rmi" range='12401-12500'/>
```
Table 3–1 illustrates the problem of having the same OC4J port assignments in two Oracle homes—the AJP, RMI, and JMS port ranges in ORACLE_HOME1 are identical to the AJP, RMI, and JMS port ranges in ORACLE_HOME2. (Note that this example only lists the relevant lines from the opmn.xml.)

<table>
<thead>
<tr>
<th>OC4J Port Ranges in ORACLE_HOME1/opmn/conf/opmn.xml</th>
<th>OC4J Port Ranges in ORACLE_HOME2/opmn/conf/opmn.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td><ias-component id="OC4J"></td>
<td><ias-component id="OC4J"></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><process-type id="home" ... ></td>
<td><process-type id="home" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><port id="ajp" range="12501-12600"/></td>
<td><port id="ajp" range="12501-12600"/></td>
</tr>
<tr>
<td><port id="rmi" range="12401-12500"/></td>
<td><port id="rmi" range="12401-12500"/></td>
</tr>
<tr>
<td><port id="jms" range="12601-12700"/></td>
<td><port id="jms" range="12601-12700"/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></process-type></td>
<td></process-type></td>
</tr>
<tr>
<td><process-type id="OC4J_SECURITY" ... ></td>
<td><process-type id="OC4J_SECURITY" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><port id="ajp" range="12501-12600"/></td>
<td><port id="ajp" range="12501-12600"/></td>
</tr>
<tr>
<td><port id="rmi" range="12401-12500"/></td>
<td><port id="rmi" range="12401-12500"/></td>
</tr>
<tr>
<td><port id="jms" range="12601-12700"/></td>
<td><port id="jms" range="12601-12700"/></td>
</tr>
<tr>
<td></process-type></td>
<td></process-type></td>
</tr>
</tbody>
</table>

Port allocation for all OC4J instances within an Oracle Application Server instance is controlled by OPMN. So, having overlapping port ranges within a single opmn.xml file is not a problem. However, when two OPMNs on a host start processes at the same time, there is no coordination between them on port usage.

The algorithm OPMN uses to assign a port is:

1. Choose a port from the port range that is not currently marked as allocated to any processes managed by the OPMN in the local instance.
2. Before assigning the port, check to see if the port is in use by binding to it.
3. If the port is not in use (that is, OPMN could bind to it), then unbind and assign the port to a process (such as an OC4J instance) so it can bind to it, updating internal data structures with this assignment information.

In between the time that OPMN unbinds from the port and the assigned process binds to the port, it is possible for another process to bind to the port. This could be another OPMN on the host, or any other process that happens to try to bind to the same port number.

If your port range assignments are the same across Oracle homes, and you received the error shown at the beginning of this section, then probably two OPMN processes tried to bind the same port for their OC4J instances. There is no way to eliminate this problem completely (because there is a rare chance that a non-OPMN process could try to bind to the port at the same time) but you can reconfigure OPMN to reduce the chance of encountering it.

There are two options for addressing this problem:

- **Option 1: Assign Unique Port Ranges to Each Oracle Home**
- **Option 2: Increase the Maximum Number of Retries for Starting OC4J Instances**
Option 1: Assign Unique Port Ranges to Each Oracle Home

You can assign unique OC4J port ranges to each Oracle home, as shown in Table 3–2. Then, the OPMN in ORACLE_HOME1 and the OPMN in ORACLE_HOME2 will not attempt to use the same port numbers when assigning OPMN ports, and will not attempt to bind to the same port.

Table 3–2 Example of Using Unique Port Ranges in Two Oracle Homes

<table>
<thead>
<tr>
<th>OC4J Port Ranges in ORACLE_HOME1/opmn/conf/opmn.xml</th>
<th>OC4J Port Ranges in ORACLE_HOME2/opmn/conf/opmn.xml</th>
</tr>
</thead>
<tbody>
<tr>
<td><ias-component id="OC4J"></td>
<td><ias-component id="OC4J"></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><process-type id="home" ... ></td>
<td><process-type id="home" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><port id="ajp" range="12501-12600"/></td>
<td><port id="ajp" range="4601-4700"/></td>
</tr>
<tr>
<td><port id="rmi" range="12401-12500"/></td>
<td><port id="rmi" range="4701-4800"/></td>
</tr>
<tr>
<td><port id="jms" range="12601-12700"/></td>
<td><port id="jms" range="4801-4900"/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><process-type id="OC4J_SECURITY" ... ></td>
<td><process-type id="OC4J_SECURITY" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><port id="ajp" range="12501-12600"/></td>
<td><port id="ajp" range="4601-4700"/></td>
</tr>
<tr>
<td><port id="rmi" range="12401-12500"/></td>
<td><port id="rmi" range="4701-4800"/></td>
</tr>
<tr>
<td><port id="jms" range="12601-12700"/></td>
<td><port id="jms" range="4801-4900"/></td>
</tr>
<tr>
<td></process-type></td>
<td></process-type></td>
</tr>
</tbody>
</table>

To do this:

1. Choose unique port ranges for AJP, RMI, and JMS.
2. Edit ORACLE_HOME2/opmn/conf/opmn.xml.
3. For each OC4J instance in the file, change AJP, RMI, and JMS to use the new unique port ranges. For example:

 <port id="ajp" range="4601-4700"/>
 <port id="rmi" range="4701-4800"/>
 <port id="jms" range="4801-4900"/>

4. Save and close the file.
5. Reload OPMN:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl reload
 (Windows) ORACLE_HOME\opmn\bin\opmnctl reload

Option 2: Increase the Maximum Number of Retries for Starting OC4J Instances

OPMN attempts to start processes a certain number of times before declaring failure. For process types with port ranges, if the failure to start the process is due to the process not being able to bind to the assigned port number, OPMN attempts to start the process with a different port number in the specified range. You can have identical port ranges in two Oracle homes, and increase the number of times OPMN attempts to restart a process, so eventually OPMN will choose a port that works. This does not completely eliminate the problem, because there is a chance that OPMN will not find a port that works in 10 tries, but it does reduce the chance of encountering the problem.

The parameter that controls the number of retries is retry. The default value is 2. You can increase the parameter to a higher number, for example, 10, by following these steps in each Oracle home:
1. Edit `ORACLE_HOME/opmn/conf/opmn.xml`.

2. For each OC4J instance in the file, increase the retry value for start and restart. For example:

   ```xml
   <start timeout="600" retry='10'/>
   <restart timeout='720' retry='10'/>
   ```

3. Save and close the file.

4. Reload OPMN:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl reload`

 (Windows) `ORACLE_HOME\opmn\bin\opmnctl reload`

 Table 3–3 shows an example of the `opmn.xml` file in two Oracle homes on the same host after the retry count has been increased to 10.

<table>
<thead>
<tr>
<th>OC4J Port Ranges in <code>ORACLE_HOME1/opmn/conf/opmn.xml</code></th>
<th>OC4J Port Ranges in <code>ORACLE_HOME2/opmn/conf/opmn.xml</code></th>
</tr>
</thead>
<tbody>
<tr>
<td><code>ias-component id="OC4J"</code></td>
<td><code>ias-component id="OC4J"</code></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><process-type id="home" ... ></td>
<td><process-type id="home" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><start timeout="600" retry='10'/></td>
<td><start timeout="600" retry='10'/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><restart timeout='720' retry='10'/></td>
<td><restart timeout='720' retry='10'/></td>
</tr>
<tr>
<td><port id='ajp' range='12501-12600'/></td>
<td><port id='ajp' range='12501-12600'/></td>
</tr>
<tr>
<td><port id='rmi' range='12401-12500'/></td>
<td><port id='rmi' range='12401-12500'/></td>
</tr>
<tr>
<td><port id='jms' range='12601-12700'/></td>
<td><port id='jms' range='12601-12700'/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></process-type></td>
<td></process-type></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td><code>ias-component id="OC4J_SECURITY" ... ></code></td>
<td><code>ias-component id="OC4J_SECURITY" ... ></code></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><process-type id="OC4J_SECURITY" ... ></td>
<td><process-type id="OC4J_SECURITY" ... ></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><start timeout="600" retry='10'/></td>
<td><start timeout="600" retry='10'/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td><restart timeout='720' retry='10'/></td>
<td><restart timeout='720' retry='10'/></td>
</tr>
<tr>
<td><port id='ajp' range='12501-12600'/></td>
<td><port id='ajp' range='12501-12600'/></td>
</tr>
<tr>
<td><port id='rmi' range='12401-12500'/></td>
<td><port id='rmi' range='12401-12500'/></td>
</tr>
<tr>
<td><port id='jms' range='12601-12700'/></td>
<td><port id='jms' range='12601-12700'/></td>
</tr>
<tr>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></process-type></td>
<td></process-type></td>
</tr>
</tbody>
</table>

3.6.4 Forcing a Shut Down of OracleAS Metadata Repository

If you find that the OracleAS Metadata Repository instance is taking a long time to shut down, you can use the following command to force an immediate shutdown:

```
SQL> SHUTDOWN IMMEDIATE;
```

Immediate database shutdown proceeds with the following conditions:

- No new connections are allowed, nor are new transactions allowed to be started, after the statement is issued.
- Any uncommitted transactions are rolled back. (If long uncommitted transactions exist, this method of shutdown might not complete quickly, despite its name.)
- Oracle does not wait for users currently connected to the database to disconnect. Oracle implicitly rolls back active transactions and disconnects all connected users.
The next startup of the database will not require any instance recovery procedures.

See Also: Oracle Database Administrator’s Guide in the Oracle Database 10g documentation library
Part II
Basic Administration

This part describes basic administration tasks.
It contains the following chapters:
- Chapter 4, "Managing Ports"
- Chapter 5, "Managing Log Files"
- Chapter 6, "Managing an OracleAS Metadata Repository"
This chapter describes how to view and change Oracle Application Server port numbers. It contains the following topics:

- About Managing Ports
- Viewing Port Numbers
- Changing Ports

4.1 About Managing Ports

Many Oracle Application Server components and services use ports. As an administrator, it is important to know the port numbers used by these services, and to ensure that the same port number is not used by two services on your host.

Most port numbers are assigned during installation. Every component and service has an allotted port range, which is the set of port numbers Oracle Application Server attempts to use when assigning a port. Oracle Application Server starts with the lowest number in the range and performs the following checks:

- Is the port used by another Oracle Application Server installation on the host?
 The installation may be up or down at the time; Oracle Application Server can still detect if the port is used.

- Is the port used by a process that is currently running?
 This could be any process on the host, even a non-Oracle Application Server process.

If the answer to any of the preceding questions is yes, Oracle Application Server moves to the next highest port in the allotted port range and continues checking until it finds a free port.

You can override this behavior for some ports, and specify a port number assignment during installation. To do this, you edit a template file called staticports.ini, and launch Oracle Universal Installer with special options.

See Also:

- Appendix D for a list of allotted port ranges.
- Oracle Application Server Installation Guide for directions on overriding port assignments during installation with staticports.ini
4.2 Viewing Port Numbers

You can view port numbers on the Application Server Control Console Ports page. Click the Ports tab on the Application Server Home page. The Ports page displays the current port numbers and is updated any time you change a port number. For selected components, it also provides links to pages that allow you to change port numbers.

Note: Immediately after installation, you can view port number assignments in:

(UNIX) ORACLE_HOME/install/portlist.ini
(Windows) ORACLE_HOME\install\portlist.ini

If you change a port number, it is not updated in this file, so you can only rely on this file immediately after installation. In addition, this file is not valid after you upgrade Oracle Application Server. Use Application Server Control Console to view the port numbers.

4.3 Changing Ports

This section provides instructions for changing port numbers in Oracle Application Server instances. The instructions explain how to change the port number, and update any other components that might be affected.

Note: You can change a port number to any number you want, as long as it is an unused port. You do not have to use a port in the allotted port range for the component.

This section contains the following topics:

- Changing Oracle Enterprise Manager Ports
- Changing OC4J Ports
- Changing the HTTP Server Port on an Identity Management Installation
- Changing the HTTP Server Port on an Oracle Identity Federation Installation
- Changing the Oracle HTTP Server Diagnostic Port
- Changing the DCM Discovery Port
- Changing the Java Object Cache Port
- Changing the Log Loader Port
- Changing OPMN Ports (ONS Local, Request, and Remote)
- Changing the Port Tunneling Port
- Changing Infrastructure Ports

4.3.1 Changing Oracle Enterprise Manager Ports

After you have installed Oracle Application Server, you can change the following Oracle Enterprise Manager 10g ports associated with your Oracle Application Server instance:

- The Oracle Management Agent port, which is used for communications with the Management Agent
The Application Server Control Console port, which is used in the Application Server Control Console URL. For example, on UNIX:

http://appserver1.acme.com:1156

The Oracle Containers for J2EE (OC4J) Remote Method Invocation (RMI) port, which is used by the Application Server Control OC4J instance.

To view the current port values for these components, as well as the valid port number range for each component, navigate to the Ports page from the Application Server Home page for the instance.

You cannot modify the Enterprise Manager port numbers from the Ports page. Instead, use the following procedure to change the Application Server Control ports:

1. Change directory to the bin directory in the Oracle Application Server Oracle home.

2. Stop the Application Server Control Console.
 On UNIX systems, enter the following command:

 ORACLE_HOME/bin/emctl stop iasconsole

 On Windows systems, use the Services control panel to stop the Application Server Control service.

3. Use the following command to change one of the Enterprise Manager port values:

 (UNIX) ORACLE_HOME/bin/emctl config {agent port | iasconsole {port | rmiport}} port_number

 (Windows) ORACLE_HOME\bin\emctl config {agent port | iasconsole {port | rmiport}} port_number

 For example, to change the port used by the Application Server Control Console on UNIX:

 ORACLE_HOME/bin/emctl config iasconsole port 1812

4. Start Application Server Control.
 On UNIX systems, enter the following command:

 ORACLE_HOME/bin/emctl start iasconsole

 On Windows systems, use the Services control panel to start the Application Server Control service.

 Table 4–1 describes the configuration changes that are automatically performed when you use the emctl config command to change an Application Server Control port number.

<table>
<thead>
<tr>
<th>Port</th>
<th>Command Line</th>
<th>Actions Performed</th>
</tr>
</thead>
<tbody>
<tr>
<td>Application Server</td>
<td>emctl config iasconsole port</td>
<td>Changes the port value assigned to the StandaloneConsoleURL property in following configuration file:</td>
</tr>
<tr>
<td>Control port</td>
<td>port_number</td>
<td>(UNIX) ORACLE_HOME/sysman/emd/targets.xml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Windows) ORACLE_HOME/sysman/emd/targets.xml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Changes the port value assigned to the web-site tag in the following configuration file:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(UNIX) ORACLE_HOME/sysman/j2ee/config/emd-web-site.xml</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Windows) ORACLE_HOME/sysman/j2ee/config/emd-web-site.xml</td>
</tr>
</tbody>
</table>

Managing Ports 4-3
4.3.2 Changing OC4J Ports

This section describes how to change the following OC4J port numbers:

- AJP
- JMS
- RMI
- IIOP
- IIOPS1 (Server only)
- IIOPS2 (Server and client)

By default, Oracle Application Server does not use a single port number for each type of OC4J port. Instead, it uses a port range for each type of OC4J port and that range is the same for all OC4J instances on the host. During runtime, each OC4J instance on the host is assigned a single free port from the range. For example, if the default AJP range for every OC4J instance on a host is 12501-12600, then each OC4J instance is assigned a single free port from that range for its AJP port.

When changing an OC4J port number, you typically specify a new port range. The range may be a simple port range (12501-12600), a comma separated list of ports (12501, 12504, 12507), or a combination of both (12501-12580, 12583, 12590-12600). By default, the ranges contain 100 ports. If you specify a range that is too narrow, you may encounter problems when starting OC4J instances. The AJP and RMI port ranges are required; the others are optional.

Note: Note that because the IIOP, IIOPS1, and IIOPS2 ports are not configured by default, they may not be listed in the Ports page of Application Server Control Console or in opmn.xml. To configure them, you must manually add them to the opmn.xml file.

See the J2EE Interoperability chapter of the Oracle Containers for J2EE Services Guide for more information.

You can change OC4J port ranges using the Application Server Control Console or manual steps:

- Using the Application Server Control Console:
 1. Navigate to the Application Server instance Home page.
 2. Click Ports.
3. On the Ports page, locate the OC4J Instance and OC4J port range you want to change. Click the icon in the Configure column.

4. On the Server Properties page, enter the new port range in the appropriate field. Click Apply.

5. On the Confirmation page, click Yes, you want to restart now.

Using manual steps:

1. Open the opmn.xml file:
 - (UNIX) ORACLE_HOME/opmn/conf/opmn.xml
 - (Windows) ORACLE_HOME\opmn\conf\opmn.xml

2. Locate the element for the OC4J instance that contains the port range you want to change. For example, to change a port range for the home instance, locate this element:

   ```xml
   <process-type id="home" ...>
   ```

3. Within the OC4J instance element, there is a port element for each type of port. For example:

   ```xml
   <port id="ajp" range="12501-12600"/>
   <port id="rmi" range="12401-12500"/>
   <port id="jms" range="12601-12700"/>
   <port id="iiop" range="13301-13400"/>
   <port id="iiops1" range="13401-13500"/>
   <port id="iiops2" range="13501-13600"/>
   ```

4. Modify the range parameter for the port you want to change, and then save the file.

5. Reload OPMN:

 - (UNIX) ORACLE_HOME/opmn/bin/opmnctl reload
 - (Windows) ORACLE_HOME\opmn\bin\opmnctl reload

6. Start the OC4J instance that contains the port number you changed:

 - (UNIX) ORACLE_HOME/opmn/bin/opmnctl startproc process-type=OC4J_instance
 - (Windows) ORACLE_HOME\opmn\bin\opmnctl startproc process-type=OC4J_instance

 For example, if you changed a port number in the home instance on UNIX:

   ```bash
   ORACLE_HOME/opmn/bin/opmnctl startproc process-type=home
   ```

7. Run the following command:

 - (UNIX) ORACLE_HOME/dcm/bin/dcmctl updateConfig
 - (Windows) ORACLE_HOME\dcm\bin\dcmctl updateConfig

4.3.3 Changing the HTTP Server Port on an Identity Management Installation

This section describes how to change the Oracle HTTP Server HTTP or HTTPS listen port on an Identity Management installation. When you change this port number, you also effectively change the OracleAS Single Sign-On port number. This means you must update any middle-tier instances that use the OracleAS Single Sign-On port.

The following tasks describe how to update the Oracle HTTP Server port number on Identity Management, including updating other components in the Infrastructure and updating the middle-tier instances that use the port:

Important:

- Before changing the port number, ensure that all applications and services are configured to use the new port.
- Always test the new port configuration in a development or test environment before deploying to production.
- Use a tool like `netstat -tulpn` to verify that the new port is listening on the expected network interface and listening on the correct port.

Managing Ports 4-5
Task 1: Prepare the Middle-Tier Instances
Perform this task only if the Identity Management installation is being used by middle-tier instances. On each middle-tier instance that uses Identity Management, stop the middle-tier instance as follows:

1. On the Application Server Home page of the Application Server Control Console, click Stop All.
2. Leave the Application Server Control Console running.

It is important that you leave the Application Server Control Console running in each of the middle-tier instances while you perform this procedure.

Task 2: Prepare the Infrastructure Instances
Prepare the Infrastructure by taking the following steps:

1. Make sure that Identity Management and its associated OracleAS Metadata Repository are started on the Infrastructure whose port number you are changing.
2. If any middle-tier instances use different Metadata Repositories for their product metadata and DCM repositories, make sure those are started. In short, make sure all Metadata Repositories in your environment are started.

Task 3: Modify the Oracle HTTP Server Listen and Port Directives
If you are changing the HTTP port, change both the Listen and Port directives to the new port number in the Oracle HTTP Server httpd.conf file. You can perform this task using the Application Server Control Console or manual steps.

Using the Application Server Control Console:

1. Navigate to the Application Server Home page and click Ports.
2. On the Ports page, locate the Oracle HTTP Server listen port and click the icon in the Configure column.
3. On the Server Properties page:
Changing Ports

- Enter the new port number in the **Default Port** field. This is for the Port directive.

- Enter the new port number in the **Listening Port** column. This is for the Listen directive. There may be more than one listening port listed. The only way to tell which is the non-SSL listen port is to choose the one with the old non-SSL listen port value.

4. At the bottom of the page, click **Apply**.

5. On the Confirmation page, click **No**, you would not like to restart now.

Using manual steps:

1. Open the `httpd.conf` file:

 (UNIX) `ORACLE_HOME/Apache/Apache/conf/httpd.conf`

 (Windows) `ORACLE_HOME\Apache\Apache\conf\httpd.conf`

2. Update the non-SSL Listen and Port directives with the new port number, and then save the file.

 The value for Listen and Port must be the same port number. For example, to change the listener port to 7779:

   ```
   Listen 7779
   Port 7779
   ```

 There may be multiple Listen and Port directives in this file. Modify the Listen and Port directives that are not enclosed in an SSL virtual host container. The easiest way to locate the proper Listen and Port directives is to search the file for the old port number.

3. Run the following command:

 (UNIX) `ORACLE_HOME/dcm/bin/dcmctl updateConfig -ct ohs`

 (Windows) `ORACLE_HOME\dcm\bin\dcmctl updateConfig -ct ohs`

If you are changing the HTTPS port, change both the SSL Listen and Port directives to the new port number in the Oracle HTTP Server `ssl.conf` file. You must do this using the following manual steps:

1. Edit the `ssl.conf` file, located at:

 (UNIX) `ORACLE_HOME/Apache/Apache/conf/ssl.conf`

 (Windows) `ORACLE_HOME\Apache\Apache\conf\ssl.conf`

2. Update the SSL Listen and SSL Port directives with the new port number, and then save the file.

 The value for Listen and Port must be the same port number. For example, to change the listener port to 4445:

   ```
   Listen 4445
   Port 4445
   ```

 Save and close the file.

3. Run the following command:

 (UNIX) `ORACLE_HOME/dcm/bin/dcmctl updateConfig -ct ohs`

 (Windows) `ORACLE_HOME\dcm\bin\dcmctl updateConfig -ct ohs`
Task 4: Enable Oracle HTTP Server to Run as Root for Ports Less Than 1024 (UNIX Only)
Perform this task if you are changing the port to a value less than 1024 on UNIX.

By default, Oracle HTTP Server runs as a non-root user (the user that installed Oracle Application Server). On UNIX systems, if you change the Oracle Application Server non-SSL listen port number to a value less than 1024, you must enable Oracle HTTP Server to run as root, as follows:

1. Log in as root.
2. Run the following commands in the Infrastructure Oracle home:
   ```
   cd ORACLE_HOME/Apache/Apache/bin
   chown root .apachectl
   chmod 6750 .apachectl
   ```

Task 5: Update the Application Server Control Console
Update the Application Server Control Console with the new port number:

1. Open the targets.xml file:
   ```
   (UNIX) ORACLE_HOME/sysman/emd/targets.xml
   (Windows) ORACLE_HOME/sysman/emd/targets.xml
   ```
2. Update each occurrence of the old Oracle HTTP Server listen port number with the new port number, and then save the file.

 Depending on your configuration, this file may not contain any occurrences of the Oracle HTTP Server listen port, or it may contain many occurrences. The listen port may occur as a parameter on its own, or it may be part of a URL. The easiest way to edit this file is to search for all occurrences of the old Oracle HTTP Server listen port number, and replace them with the new port number.

3. Reload the Application Server Control Console:
   ```
   (UNIX) ORACLE_HOME/bin/emctl reload
   (Windows) ORACLE_HOME\bin\emctl reload
   ```

Task 6: Update OracleAS Single Sign-On
Perform this task if OracleAS Single Sign-On is configured to use the Oracle HTTP Server Listen port in the installation where you are changing the port.

1. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

2. Run one or both of the following commands in the OracleAS Single Sign-On Oracle home:
 To change the non-SSL port:
   ```
   (UNIX) ORACLE_HOME/sso/bin/ssocfg.sh http hostname new_non_ssl_port_number
   (Windows) ORACLE_HOME\sso\bin\ssocfg.bat http hostname new_non_ssl_port_number
   ```

 To change the SSL port:
   ```
   (UNIX) ORACLE_HOME/sso/bin/ssocfg.sh https hostname new_ssl_port_number
   (Windows) ORACLE_HOME\sso\bin\ssocfg.bat https hostname new_ssl_port_number
   ```

 In the examples:
Changing Ports

- **hostname** is the host on which OracleAS Single Sign-On is running.
- **new_non_ssl_port_number** is the new non-SSL Oracle HTTP Server listen port number.
- **new_ssl_port_number** is the new SSL Oracle HTTP Server listen port number.

Task 7: Re-register mod_osso

Re-register mod_osso as follows:

1. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

2. On Windows systems, set the PATH, for example:

   ```
   PATH=%PATH%;%ORACLE_HOME%\bin;%ORACLE_HOME%\lib
   ```

3. If you are changing the Oracle HTTP Server non-SSL listen port, take the following steps:

 a. Re-register mod_osso to take care of the default partner applications by executing the following command in the Identity Management Oracle home:

 On UNIX:

      ```
      ORACLE_HOME\sso\bin\ssoreg.sh
      -oracle_home_path identity_management_oracle_home
      -site_name identity_management_hostname:new_port_number
      -config_mod_osso TRUE
      -mod_osso_url mod_osso_url
      ```

 On Windows:

      ```
      ORACLE_HOME\sso\bin\ssoreg.bat
      -oracle_home_path middle_tier_oracle_home
      -site_name identity_management_hostname:new_port_number
      -config_mod_osso TRUE
      -mod_osso_url mod_osso_url
      ```

 For example, to change the Oracle HTTP Server listen port to 7779 on host myhost on UNIX:

      ```
      $ORACLE_HOME/sso/bin/ssoreg.sh
      -oracle_home_path /disk1/oracleas
      -site_name myhost:7779
      -config_mod_osso TRUE
      -mod_osso_url http://myhost.mydomain:7779
      ```

4. If you are changing the Oracle HTTP Server SSL listen port, perform the following steps.

 a. Re-register mod_osso with the new port number by executing the following command in the middle-tier Oracle home:

 On UNIX:

      ```
      ORACLE_HOME/sso/bin/ssoreg.sh
      -oracle_home_path identity_management_oracle_home
      -site_name identity_management_hostname:new_port_number
      -config_mod_osso TRUE
      ```
Changing Ports

- mod_osso_url mod_osso_url
- config_file path/osso-https.conf

On Windows:

ORACLE_HOME\sso\bin\ssoreg.bat
-oracle_home_path identity_management_oracle_home
-site_name identity_management_hostname:new_port_number
-config_mod_osso TRUE
-mod_osso_url mod_osso_url
-config_file path\osso-https.conf

For example, to change the Oracle HTTP Server SSL listen port to 7778 on myhost on UNIX:

$ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path /disk1/oracleas
-site_name myhost:4445
-config_mod_osso TRUE
-mod_osso_url http://myhost.mydomain:7778
-config_file $ORACLE_HOME/Apache/Apache/conf/osso/osso-https.conf

See Also: Oracle Application Server Single Sign-On Administrator’s Guide for more information on registering mod_osso

b. Edit the mod_osso.conf file, which is located at:

(UNIX) ORACLE_HOME/Apache/Apache/conf/mod_osso.conf
(Windows) ORACLE_HOME\Apache\Apache\conf\mod_osso.conf

In the mod_osso.conf file, comment the following directive, if you have not previously done so:

On UNIX:

LoadModule osso_module libexec/mod_osso.so

On Windows:

LoadModule osso_module modules\ApacheModuleOsso.dll

c. In the httpd.conf file, which is found in the same (conf) directory, add the directive that you just commented in the preceding step (if you have not previously done so). In a default setup, place the directive right after:

LoadModule wchandshake_module libexec/mod_wchandshake.so

5. Restart the Oracle HTTP Server:

(UNIX) ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=HTTP_Server
(Windows) ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=HTTP_Server

6. If you have configured or modified any additional partner applications, you must also re-register those.

See Also: Oracle Application Server Single Sign-On Administrator’s Guide for more information on registering mod_osso

Task 8: Update the OSSO URLs for Oracle Identity Federation

If Oracle Identity Federation is registered with OracleAS Single Sign-On and OracleAS Single Sign-On is configured to use the Oracle HTTP Server Listen port in the
installation where you are changing the port, update the OSSO URLs. In the Oracle Identity Federation Administration console:

1. Select **IdM Data Stores**, then **User Data Store**.
2. Select **OracleAS Single Sign-On**.
3. Update the **OSSO Login URL** and the **OSSO Logout URL** with the new port number.
4. Click **Save**.
5. Restart Oracle Identity Federation server:
 - (UNIX) `ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=OC4J_FED`
 - (Windows) `ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=OC4J_FED`

Task 9: Update Oracle Delegated Administration Services

If you have Oracle Delegated Administration Services configured, and Oracle Delegated Administration Services uses the new port number, follow these steps to update the Oracle Delegated Administration Services URL entry in Oracle Internet Directory.

You can find out what port Oracle Delegated Administration Services uses with the following command:

```
ldapsearch -h oid_host -p oid_port -D "cn=orcladmin" -w "password" -b "cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext" -s base 'objectclass=*' orcldasurlbase
```

To update Oracle Delegated Administration Services:

1. Create a file named `mod.ldif` with the following contents (you can create the file in any directory):

   ```
   dn:cn=OperationURLs,cn=DAS,cn=Products,cn=OracleContext
   changetype:modify
   replace:orcldasurlbase
   orcldasurlbase:http://hostname:new_http_port_number/
   ```

 Note the slash at the end of the `orcldasurlbase` URL.

2. Run the following command:

   ```
   ldapmodify -D cn=orcladmin -w password -p oid_port -f mod.ldif
   ```

Task 10: Update OracleAS Certificate Authority

If you are using OracleAS Certificate Authority:

1. Re-register OracleAS Certificate Authority with the OracleAS Single Sign-On server by executing the following command in the OracleAS Certificate Authority Oracle home:

 - (UNIX) `ORACLE_HOME/oca/bin/ocactl changesecurity -server_auth_port portnum`
 - (Windows) `ORACLE_HOME\oca\bin\ocactl changesecurity -server_auth_port portnum`

 In the example, `portnum` is the OracleAS Certificate Authority Server Authentication Virtual Host (SSL) port; the default is 6600.

 See Also: *Oracle Application Server Certificate Authority Administrator's Guide*
2. If OracleAS Certificate Authority is located in a different Oracle home than the OracleAS Single Sign-On server, restart Oracle HTTP Server and the oca instance in the OracleAS Certificate Authority Oracle home:

- On UNIX:
  ```
  ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server
  ORACLE_HOME/opmn/bin/opmnctl stopproc process-type=oca
  ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server
  ORACLE_HOME/opmn/bin/opmnctl startproc process-type=oca
  ```

- On Windows:
  ```
  ORACLE_HOME\opmn\bin\opmnctl stopproc ias-component=HTTP_Server
  ORACLE_HOME\opmn\bin\opmnctl stopproc process-type=oca
  ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=HTTP_Server
  ORACLE_HOME\opmn\bin\opmnctl startproc process-type=oca
  ```

Task 11: Restart the Identity Management Instance

Restart the Identity Management instance:

- On UNIX:
  ```
  ORACLE_HOME/bin/emctl stop iasconsole
  ORACLE_HOME/opmn/bin/opmnctl stopall
  ORACLE_HOME/bin/emctl start iasconsole
  ```

- On Windows:
  ```
  ORACLE_HOME\bin\emctl stop iasconsole
  ORACLE_HOME\opmn\bin\opmnctl stopall
  ORACLE_HOME\bin\emctl start iasconsole
  ```

Task 12: Restart OracleAS Certificate Authority

If OracleAS Certificate Authority is configured in this instance, restart it:

(UNIX) `ORACLE_HOME/oca/bin/ocactl start`
(Windows) `ORACLE_HOME\oca\bin\ocactl start`

Task 13: Update the Middle-Tier Instances to Use the New Port Number

Now that you have changed the Oracle HTTP Server port on the Identity Management installation, you must update all middle-tier instances to use the new port number.

1. Update each middle-tier instance using the Change Identity Management wizard in the Application Server Control Console. Note that the wizard does not prompt you for the new port number; it retrieves the port number internally.

On each middle-tier instance that uses Identity Management:

a. Using the Application Server Control Console, navigate to the Application Server Home page for the middle-tier instance.

b. Click the **Infrastructure** link.

c. On the Infrastructure page, in the **Identity Management** section, click **Change**.

d. Follow the steps in the wizard.

e. When the wizard is finished, navigate to the Application Server Home page and start the middle-tier instance by clicking **Start All**.
2. Refresh the Oracle Internet Directory cache in your applications:
 a. Log in to Portal.
 b. Click the Administrator tab.
 c. Click the global settings link.
 d. Select the SSO/OID tab.
 e. Check the refresh Oracle Internet Directory cache settings and click Apply.

4.3.4 Changing the HTTP Server Port on an Oracle Identity Federation Installation

This section describes how to change the Oracle HTTP Server HTTP or HTTPS listen port on an Oracle Identity Federation installation. To change the port number, perform the following tasks:

- Task 1, "Change the HTTP Server Port"
- Task 2, "Change the Server Configuration for Oracle Identity Federation"
- Task 3, "Distribute the Updated Metadata to Peer Providers"
- Task 4, "Change the Assertion Profiles and Domain Information for SAML.1x or WS-Federation"
- Task 5, "Update the Configuration Information for the SAML 1.x or WS-Federation Peer Providers"
- Task 6, "Update Oracle Access Manager Host IDs"
- Task 7, "Update OracleAS Single Sign-On"
- Task 8, "Update the Oracle Identity Federation Monitoring Console"
- Task 9, "Restart the Oracle Identity Federation Server"

See Also: Oracle Identity Federation Administrator’s Guide for more information about Oracle Identity Federation

Task 1 Change the HTTP Server Port

Change the HTTP Server port, as described in the following tasks in Section 4.3.3:

1. Task 3: Modify the Oracle HTTP Server Listen and Port Directives
2. Task 4: Enable Oracle HTTP Server to Run as Root for Ports Less Than 1024 (UNIX Only)
3. Task 5: Update the Application Server Control Console
4. Restart the Oracle HTTP Server:
 (UNIX) ORACLE_HOME/opmn/bin/opmncntl restartproc process-type=HTTP_Server
 (Windows) ORACLE_HOME\opmn\bin\opmncntl restartproc process-type=HTTP_Server

Task 2 Change the Server Configuration for Oracle Identity Federation

Change the server configuration for Oracle Identity Federation:

1. From a browser, log into the Oracle Identity Federation Administration console, using the following URL:

 http://oif_host:port/fedadmin

 In the URL, oif_host is the host on which Oracle Identity Federation is installed and port is the port number of the Oracle HTTP Server.
Changing Ports

The username is oif_admin; the password is the password that you specified at installation.

2. Select Server Configuration, then General, then Server Properties.

3. In the Server Port and SOAP Port fields, change the port number to the new number for Oracle HTTP Server.

4. Click Save.

5. Restart the Oracle Identity Federation server:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=OC4J_FED
 (Windows) ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=OC4J_FED

Task 3 Distribute the Updated Metadata to Peer Providers

Save the updated metadata and distribute it to the peer providers (Identity Providers and Service Providers) in your Circle of Trust:

1. From a browser, navigate to the Oracle Identity Federation metadata file:
 - If Oracle Identity Federation is used as an Identity Provider, use the following URL:
 http://oif_host:port/fed/idp/metadata_file
 - If Oracle Identity Federation is used as a Service Provider, use the following URL:
 http://oif_host:port/fed/sp/metadata_file

 In the URLs, oif_host is the host on which Oracle Identity Federation is installed; port is the listen port number of the Oracle HTTP Server; metadata_file is the metadata file used for the protocol you are using. For example, the metadata file for the protocol SAML 2.0 is metadatav20.

2. From the browser, save the page.

3. If the peer provider is part of an Oracle Identity Federation installation that you do not administer, or if the peer provider is a software component other than Oracle Identity Federation, send the updated metadata document, in a secure manner, to the administrator for the peer provider.

 If you administer a peer provider that is part of an Oracle Identity Federation administration, you must load the new metadata file into the peer provider, as described in Steps 4 and 5.

4. If you changed the Oracle HTTP Server listen port for the Oracle Identity Federation instance that is configured as a Service Provider, and you must load the new metadata file for the Service Provider into the Identity Provider configuration in the Circle of Trust.

 In the Oracle Identity Federation Administration console for the Identity Provider:
 a. Select Server Configuration, then Circle of Trust.
 b. In the Service Provider table, select the Service Provider that has had its port number changed and click Update.

 The Edit Trusted Provider page is displayed.
 c. For Description, enter a description of the file.
 d. For Metadata Location, click Browse to locate the metadata file you downloaded for the Service Provider.
e. Click Load New.
f. Click Apply.
g. Click Refresh Server.

5. If you changed the Oracle HTTP Server listen port for the Oracle Identity Federation instance that is configured as an Identity Provider, you must load the new metadata file for the Identity Provider into the Service Provider configuration in the Circle of Trust.

In the Oracle Identity Federation Administration console for the Service Provider:

a. Select Server Configuration, then Circle of Trust.
b. In the Identity Provider table, select the Identity Provider that has had its port number changed and click Update.
 The Edit Trusted Provider page is displayed.
c. For Description, enter a description of the file.
d. For Metadata Location, click Browse to locate the metadata file you downloaded for the Identity Provider.
e. Click Load New.
f. Click Apply.
g. Click Refresh Server.

Task 4 Change the Assertion Profiles and Domain Information for SAML.1x or WS-Federation
Change the assertion profiles and domain information for SAML.1x or WS-Federation.

In the Oracle Identity Federation Administration console:

1. Change the assertion profiles for SAML.1x or WS-Federation:
 a. Select SAML.1x-WS-Fed, then select Assertion Profiles.
 b. Click the link in the Name field.
 c. In the Issuer field, change the port number to the new port.
 d. Click Submit.

2. Change the domain information for SAML.1x or WS-Federation:
 a. Select SAML.1x-WS-Fed, then select Domains.
 b. Click MyDomain.
 c. In the Modify MyDomain page, change the port number in all the fields that contain it.
 d. Click Submit.

Task 5 Update the Configuration Information for the SAML 1.x or WS-Federation Peer Providers
Update the configuration information for the SAML.1x or WS-Federation peer providers.

To do this, communicate the change to the partner enterprises that use SAML 1.x or WS-Federation to federate your enterprise. The partner administrator must make the configuration changes using the appropriate administration interface. If the partner is using Oracle Identity Federation, the partner uses the Oracle Identity Federation
Administration console to change the port numbers in the URLs, and if necessary, the Issuer and WS-Federation Realm URIs. The steps are similar to those described in Task 4.

Task 6 Update Oracle Access Manager Host IDs

If your environment uses the Oracle Access Manager User Data Store and Oracle Access Manager is configured to use Host IDs, update the Host IDs:

1. In a browser, log into the Oracle Access Manager Console, using the following URL:

 http://hostname:port/access/oblix

 In the URL, *hostname* is the name of the computer on which the Policy Manager is installed and *port* is the HTTP port for the Policy Manager.

2. Enter your user name and password, then click **Login**.

3. Click **Access System Console**.

4. Select **Access System Configuration**.

5. In the left panel, click **Host Identifiers**.

 If the page reports the following, you do not need to make any modifications; skip to **Task 7**:

 No host identifier entries found in the Directory Server.

 If you do not see this message, go to Step 6.

6. If **Fed HostID** is listed, take the following steps. (Note that, for convenience and consistency, the identifier is always "Fed HostID,” even in languages other than English.)

 a. Click **Fed HostID**, then click **Modify**.

 b. Change the port number to the new port number in the hostname variation.

 c. Click **Save**.

7. If **Fed HostID** is not listed, take the following steps:

 a. Click **Add**.

 b. For **Name**, enter **Fed HostID**.

 c. Enter the hostname variation:

 hostname:port

 In the example, *hostname* is the Oracle Identity Federation server hostname and *port* is the new port number for Oracle HTTP Server.

 d. Click **Save**.

Task 7 Update OracleAS Single Sign-On

If Oracle Identity Federation is registered with OracleAS Single Sign-On, take the following steps on the OracleAS Single Sign-On instance:

1. Update the port number in the **SASSOAuthnUrl** and **SASSOLogoutUrl** properties in the following file:

 (UNIX) *ORACLE_HOME\sso\conf\policy.properties

 (Windows) *ORACLE_HOME\sso\conf\policy.properties
2. Restart the OC4J_Security OC4J instance:

 (UNIX) $ORACLE_HOME/opmn/bin/opmnctl startproc process-type=OC4J_Security
 (Windows) $ORACLE_HOME\opmn\bin\opmnctl startproc process-type=OC4J_Security

Task 8 Update the Oracle Identity Federation Monitoring Console

Update the Oracle Identity Federation monitoring console:

1. From a browser, log into the Oracle Identity Federation monitoring console, using
 the following URL:

 `http://oif_host:port/fedmon`

 In the URL, `oif_host` is the host on which Oracle Identity Federation is installed
 and `port` is the port number of the Oracle HTTP Server.

 The username is `oif_mon`; the password is the password that you specified at
 installation.

2. Select Configuration, then Monitored Installations.

3. For Federation Server URL, update the port number.

4. Click Update.

Task 9 Restart the Oracle Identity Federation Server

Restart the Oracle Identity Federation server:

 (UNIX) $ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=OC4J_FED
 (Windows) $ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=OC4J_FED

4.3.5 Changing the Oracle HTTP Server Diagnostic Port

To change the Oracle HTTP Server Diagnostics port number:

1. Open the `dms.conf` file:

 (UNIX) $ORACLE_HOME/Apache/Apache/conf/dms.conf
 (Windows) $ORACLE_HOME\Apache\Apache\conf\dms.conf

2. Change the old port number to the new port number everywhere it appears in the
 file, and then save the file. This update includes the Listen, OpmnHostPort,
 Redirect, and VirtualHost directives.

3. Restart Oracle HTTP Server:

 (UNIX) $ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=HTTP_Server
 (Windows) $ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=HTTP_Server

4.3.6 Changing the DCM Discovery Port

To change the DCM Discovery port number:

1. Open the `dcmCache.xml` file:

 (UNIX) $ORACLE_HOME/dcm/config/dcmCache.xml
 (Windows) $ORACLE_HOME\dcm\config\dcmCache.xml

2. Under the `<communication>` element, update the `discovery-port` parameter
 in the `<coordinator>` element with the new port number, and then save the file.

 For example:
3. In every instance in the farm, stop the Application Server Control Console and stop the DCM daemon:

 - On UNIX:

     ```
     ORACLE_HOME/bin/emctl stop iasconsole
     ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=dcm-daemon
     ```

 - On Windows:

     ```
     ORACLE_HOME\bin\emctl stop iasconsole
     ORACLE_HOME\opmn\bin\opmnctl stopproc ias-component=dcm-daemon
     ```

 It is important that you make sure all Application Server Control Console instances and DCM daemons in the farm are stopped before you proceed to the next step.

4. In every instance in the farm, start the DCM daemon and the Application Server Control Console:

 - On UNIX:

     ```
     ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=dcm-daemon
     ORACLE_HOME/bin/emctl start iasconsole
     ```

 - On Windows:

     ```
     ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=dcm-daemon
     ORACLE_HOME\bin\emctl start iasconsole
     ```

4.3.7 Changing the Java Object Cache Port

Java Object Cache must be configured before you change the port number.

See Also: *Oracle Containers for J2EE Services Guide* for information about configuring Java Object Cache

To change the Java Object Cache port number:

1. Open the javacache.xml file:

 (UNIX) `ORACLE_HOME/javacache/admin/javacache.xml`

 (Windows) `ORACLE_HOME\javacache\admin\javacache.xml`

2. Under the `<communication>` element, update the `discovery-port` parameter in the `<coordinator>` element with the new port number, and then save the file.

 For example:

   ```
   <coordinator discovery-port="7010"/>
   ```

3. Restart all OC4J instances which contain J2EE applications that use JavaCache:

 (UNIX) `ORACLE_HOME/dcm/bin/dcmctl restart -co OC4J_INSTANCE`

 (Windows) `ORACLE_HOME\dcm\bin\dcmctl restart -co OC4J_INSTANCE`

4.3.8 Changing the Log Loader Port

To change the Log Loader port:

1. Stop the Log Loader:
a. Using the Application Server Control Console, navigate to the Home page for the instance whose Log Loader port you want to change.

b. Click Logs in the upper-right corner.

c. On the View Logs page, click Search Log Repository.

d. On the View Logs page, click Log Loader.

e. On the Log Loader page, click Stop.

2. Change the Log Loader port number:

a. On the Log Loader page, in the Administration section, click Log Loader Properties.

b. On the Log Loader Properties page, enter the new port number in the Log Loader Port field.

c. Click Apply.

3. Start the Log Loader:

a. At the top of the Log Loader Properties page, click Log Loader to get back to the Log Loader page.

b. On the Log Loader page, click Start.

4.3.9 Changing OPMN Ports (ONS Local, Request, and Remote)

This section describes how to change any of the following port numbers:

- ONS Local port
- ONS Request port
- ONS Remote port

To change these ports:

1. Stop the Application Server Control Console, OPMN and all OPMN-managed processes:

 - On UNIX:

 ORACLE_HOME/bin/emctl stop iasconsole
 ORACLE_HOME/opmn/bin/opmnctl stopall

 - On Windows:

 ORACLE_HOME\bin\emctl stop iasconsole
 ORACLE_HOME\opmn\bin\opmnctl stopall

2. Open the opmn.xml file:

 (UNIX) ORACLE_HOME/opmn/conf/opmn.xml
 (Windows) ORACLE_HOME\opmn\conf\opmn.xml

3. Under the <notification-server> element, modify the local, remote, or request parameter, as desired, in the <port> element, and then save the file.

 For example:

 `<port local="6101" remote="6201" request="6004"/>

4. Start OPMN:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl start
4.3.10 Changing the Port Tunneling Port

To change the Port Tunneling port number:

1. Open the opmn.xml file:

 (UNIX) ORACLE_HOME/opmn/conf/opmn.xml
 (Windows) ORACLE_HOME\opmn\conf\opmn.xml

2. Under the <ias-component id="IASPT"> element, update the range parameter in the <port> element with the new range. For example:

 <port id="ajp" range="7501-7503"/>

 Note that the port number range specified in opmn.xml overrides any port number specified in iaspt.conf. So you only need to update the port number in opmn.xml.

3. Reload OP MN, then stop and restart all OPMN processes and the Application Server Control Console:

 ■ On UNIX:

 ORACLE_HOME/opmn/bin/opmnctl reload
 ORACLE_HOME/bin/emctl stop iasconsole
 ORACLE_HOME/opmn/bin/opmnctl stopall
 ORACLE_HOME/opmn/bin/opmnctl startall
 ORACLE_HOME/bin/emctl start iasconsole

 ■ On Windows:

 ORACLE_HOME\opmn\bin\opmnctl reload
 ORACLE_HOME\bin\emctl stop iasconsole
 ORACLE_HOME\opmn\bin\opmnctl stopall
 ORACLE_HOME\opmn\bin\opmnctl startall
4.3.11 Changing Infrastructure Ports

This section contains the following topics:

- Changing the OracleAS Metadata Repository Net Listener Port
- Changing Oracle Internet Directory Ports
- Changing OracleAS Certificate Authority Ports

For information about changing other ports in the Identity Management installation, see the previous sections.

4.3.11.1 Changing the OracleAS Metadata Repository Net Listener Port

First, determine if it is necessary to change the OracleAS Metadata Repository listener port number. If you are concerned about the fact that you have another database on your host using the same port, it is possible that the OracleAS Metadata Repository and the other database can use the same port.

The following are guidelines for port usage by multiple databases on the same host:

- Multiple Oracle9i and Oracle Database 10g databases can share the same Oracle Net listener port. If you install a OracleAS Metadata Repository on a host that contains Oracle9i and Oracle Database 10g databases, they can all use port 1521. There is no need to change the OracleAS Metadata Repository port number.

- If the other databases on your system are Oracle8i databases running the Net8 listener, then the OracleAS Metadata Repository must use a different port. They cannot share the same port.

If you determine that you want to change the OracleAS Metadata Repository listener port, follow the steps in this section. An OracleAS Metadata Repository may be used in several different ways. Use the following table to determine the steps that are required for changing your type of OracleAS Metadata Repository:

<table>
<thead>
<tr>
<th>If the Metadata Repository is used as follows:</th>
<th>Follow these tasks to change its Oracle Net listener port:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Identity Management Repository, Product Metadata Repository, and Management (DCM) Repository</td>
<td>Task 1: Stop Middle-Tier Instances</td>
</tr>
<tr>
<td>Registered with Oracle Internet Directory</td>
<td>Task 2: Change the OracleAS Metadata Repository Oracle Net Listener Port</td>
</tr>
<tr>
<td></td>
<td>Task 3: Update Oracle Internet Directory</td>
</tr>
<tr>
<td></td>
<td>Task 4: Update OracleAS Single Sign-On</td>
</tr>
<tr>
<td></td>
<td>Task 5: Update OracleAS Certificate Authority</td>
</tr>
<tr>
<td></td>
<td>Task 6: Update the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>Task 7: Update Middle-Tier Instances</td>
</tr>
</tbody>
</table>
Changing Ports

<table>
<thead>
<tr>
<th>If the Metadata Repository is used as follows:</th>
<th>Follow these tasks to change its Oracle Net listener port:</th>
</tr>
</thead>
<tbody>
<tr>
<td>■ Identity Management Repository only</td>
<td>Task 1: Stop Middle-Tier Instances</td>
</tr>
<tr>
<td>■ Registered with Oracle Internet Directory</td>
<td>Task 2: Change the OracleAS Metadata Repository Oracle Net Listener Port</td>
</tr>
<tr>
<td></td>
<td>Task 3: Update Oracle Internet Directory</td>
</tr>
<tr>
<td></td>
<td>Task 4: Update OracleAS Single Sign-On</td>
</tr>
<tr>
<td></td>
<td>Task 5: Update OracleAS Certificate Authority</td>
</tr>
<tr>
<td></td>
<td>Task 6: Update the Application Server Control Console</td>
</tr>
<tr>
<td>■ Product Metadata and Management (DCM)</td>
<td>Task 1: Stop Middle-Tier Instances</td>
</tr>
<tr>
<td>Repository</td>
<td>Task 2: Change the OracleAS Metadata Repository Oracle Net Listener Port</td>
</tr>
<tr>
<td>■ Registered with Oracle Internet Directory</td>
<td>Task 3: Update Oracle Internet Directory</td>
</tr>
<tr>
<td></td>
<td>Task 7: Update Middle-Tier Instances</td>
</tr>
<tr>
<td>■ Management (DCM) Repository only</td>
<td>Task 2: Change the OracleAS Metadata Repository Oracle Net Listener Port</td>
</tr>
<tr>
<td>■ Not registered with Oracle Internet Directory</td>
<td>Task 8: Update J2EE and Web Cache Instances</td>
</tr>
</tbody>
</table>

Task 1: Stop Middle-Tier Instances

Stop all middle-tier instances that use the Metadata Repository by executing the following command in each middle-tier Oracle home:

Framework:

(UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopall`

(Windows) `ORACLE_HOME\opmn\bin\opmnctl stopall`

Task 2: Change the OracleAS Metadata Repository Oracle Net Listener Port

On the OracleAS Metadata Repository host:

1. Make sure that the ORACLE_HOME and ORACLE_SID environment variables are set.

2. If OPMN is running, stop it:

 Framework:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopall`
 (Windows) `ORACLE_HOME\opmn\bin\opmnctl stopall`

3. Stop the OracleAS Metadata Repository listener:

 `lsnrctl stop`

4. Edit the `listener.ora` file, which is located at:

 Framework:

 (UNIX) `ORACLE_HOME/network/admin/listener.ora`
 (Windows) `ORACLE_HOME\network\admin\listener.ora`

 Under the LISTENER entry, update the value for PORT. Save the file.

5. Edit the `tnsnames.ora` file. The default location is:

 Framework:

 (UNIX) `ORACLE_HOME/network/admin/tnsnames.ora`
 (Windows) `ORACLE_HOME\network\admin\tnsnames.ora`

 Make the following changes to the file:

 a. Update the PORT value in each entry that applies to OracleAS Metadata Repository.

 b. Add an entry like the following:
newnetport =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = tcp) (HOST = hostname) (PORT = port)))

In the example, hostname is the fully-qualified hostname and port is the new port number.

6. Start the OracleAS Metadata Repository listener:
 lsnrctl start

7. Using SQL*Plus, log in to the OracleAS Metadata Repository as the SYSTEM user with SYSDBA privileges and run the following command:
 SQL> ALTER SYSTEM SET local_listener='newnetport' scope=spfile;

8. Using SQL*Plus, restart OracleAS Metadata Repository:
 SQL> SHUTDOWN
 SQL> STARTUP

9. Start Oracle Internet Directory:
 ■ On UNIX:
 ORACLE_HOME/opmn/bin/opmnctl start
 ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=OID
 ■ On Windows:
 ORACLE_HOME\opmn\bin\opmnctl start
 ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=OID

Task 3: Update Oracle Internet Directory
On the Identity Management host, update Oracle Internet Directory with the new Oracle Net listener port number:

1. Start Oracle Directory Manager:
 ■ On UNIX, use the following command:
 ORACLE_HOME/bin/oidadmin
 ■ On Windows, navigate to Oracle Directory Manager (Start, Programs, Oracle Application Server Infrastructure - Oracle_Home, Integrated Management Tools, Oracle Directory Manager)

2. Log in to Oracle Directory Manager.

3. In the System Objects frame:
 a. Expand Entry Management.
 b. Expand cn=Oracle Context.
 c. Select the DBName for the OracleAS Metadata Repository. For example, if the DBName is the default, orcl, select cn=ORCL.
 d. On the Properties tab, update the PORT parameter in the orclnetdescstring field with the new port number.

4. Click Apply.

5. In the System Objects frame:
Changing Ports

4-24
Oracle Application Server Administrator’s Guide

a. Under \texttt{cn=Oracle Context}, select the DBName for the OracleAS Metadata Repository. For example, if the DBName is the default, \texttt{orcl}, select \texttt{cn=ORCL}.

b. Expand \texttt{cn=DESCRIPTION_0}.

c. Select \texttt{cn=ADDRESS_0}.

d. On the Properties tab, update the \texttt{PORT} parameter in the \texttt{orclnetaddressstring} field with the new port number.

6. Click \texttt{Apply}.

7. Start OPMN in the Oracle Internet Directory Oracle home:

 (UNIX) \texttt{ORACLE_HOME/opmn/bin/opmnctl startall}

 (Windows) \texttt{ORACLE_HOME\opmn\bin\opmnctl startall}

Task 4: Update OracleAS Single Sign-On

From the OracleAS Single Sign-On Oracle home:

1. On UNIX systems, set the \texttt{LD_LIBRARY_PATH}, \texttt{LD_LIBRARY_PATH_64}, \texttt{LIB_PATH}, or \texttt{SHLIB_PATH} environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

2. Update OracleAS Single Sign-On with the new repository port number by executing the following command:

 - On UNIX:

 \texttt{$ORACLE_HOME/jdk/bin/java -jar$ORACLE_HOME/sso/lib/ossoca.jar reassoc -repos$ORACLE_HOME}

 - On Windows:

 \texttt{%ORACLE_HOME%\jdk\bin\java -jar%ORACLE_HOME%\sso\lib\ossoca.jar reassoc -repos%ORACLE_HOME%}

3. Restart OC4J:

 (UNIX) \texttt{ORACLE_HOME/opmn/bin/opmnctl restartproc ias-component=OC4J}

 (Windows) \texttt{ORACLE_HOME\opmn\bin\opmnctl restartproc ias-component=OC4J}

Task 5: Update OracleAS Certificate Authority

If OracleAS Certificate Authority is configured in the Identity Management installation:

1. Run the following command:

 (UNIX) \texttt{ORACLE_HOME/oca/bin/ocactl updateconnection}

 (Windows) \texttt{ORACLE_HOME\oca\bin\ocactl updateconnection}

2. Restart OracleAS Certificate Authority:

 (UNIX) \texttt{ORACLE_HOME/oca/bin/ocactl stop}

 (UNIX) \texttt{ORACLE_HOME/oca/bin/ocactl start}

 (Windows) \texttt{ORACLE_HOME\oca\bin\ocactl stop}

 (Windows) \texttt{ORACLE_HOME\oca\bin\ocactl start}

If you are not sure if OracleAS Certificate Authority is configured, examine the Application Server Control Home page to see if it is listed in the Components section.
Task 6: Update the Application Server Control Console
Update the Application Server Control Console with the new port number:

1. In the Identity Management Oracle home, edit the following file:
 (UNIX) ORACLE_HOME/sysman-emd/targets.xml
 (Windows) ORACLE_HOME\sysman\emd\targets.xml

2. Update the old OracleAS Metadata Repository port number with the new port number:
 a. Locate the oracle_ldap target and update the PORT parameter in the ConnectDescriptor value with the new port number. The easiest way to find this is to search the file for the old port number.
 b. Save the file.

3. Reload the Application Server Control Console:
 (UNIX) ORACLE_HOME/bin/emctl reload
 (Windows) ORACLE_HOME\bin\emctl reload

Task 7: Update Middle-Tier Instances
In each middle-tier Oracle home that uses OracleAS Metadata Repository:

1. Update the following file with the new Oracle Net listener port number:
 (UNIX) ORACLE_HOME/network/admin/tnsnames.ora
 (Windows) ORACLE_HOME\network\admin\tnsnames.ora

2. Check the following file:
 (UNIX) ORACLE_HOME/Apache/modplsql/conf/dads.conf
 (Windows) ORACLE_HOME\Apache\modplsql\conf\dads.conf

 Locate the line that begins with PlsqlDatabaseConnectString.
 ■ If the line ends with ServiceNameFormat or SIDFormat, update the line with the new OracleAS Metadata Repository port number, save the file, and restart Oracle HTTP Server.
 ■ If the line ends with NetServiceNameFormat, you do not need to do anything.

3. Start the middle-tier instance:
 (UNIX) ORACLE_HOME/opmn/bin/opmnctl startall
 (Windows) ORACLE_HOME\opmn\bin\opmnctl startall

Task 8: Update J2EE and Web Cache Instances
If the Metadata Repository is not registered with Oracle Internet Directory and is used to store information about an OracleAS Database-Based Farm, you must update each J2EE and Web Cache instance that uses the Metadata Repository, as follows:

1. Using the Application Server Control Console, navigate to the Home page for the J2EE and Web Cache instance.

2. Click the Infrastructure link.

3. On the Infrastructure page, in the OracleAS Farm Repository Management section, click Change.

4. Select Existing Database.
5. Follow the steps in the wizard for supplying the new Metadata Repository port number.

6. When the wizard is finished, navigate to the instance Home page and start your instance by clicking Start All.

4.3.11.1 Changing the KEY Value for an IPC Listener

It is not possible to run two listeners at the same time that are configured to use the same KEY value in their IPC protocol address. By default, the OracleAS Metadata Repository listener has its IPC KEY value set to EXTPROC. Hence, if your computer has another IPC listener that uses the EXTPROC key, you should configure the OracleAS Metadata Repository listener to use some other key value such as EXTPROC1.

To change the KEY value of an IPC listener:

1. Stop the listener (make sure your ORACLE_HOME environment variable is set first):
 \[
 \text{lsnrctl stop}
 \]

2. Edit the listener.ora and tnsnames.ora files. In each file, find the following line:
 \[
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC))
 \]
 Change it to the following:
 \[
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1))
 \]

3. Restart the listener:
 \[
 \text{lsnrctl start}
 \]

4.3.11.2 Changing Oracle Internet Directory Ports

This section describes how to change the Oracle Internet Directory SSL or non-SSL port on an Identity Management installation. When you change this port number, you must update any middle-tier instances that use the Identity Management installation.

The following tasks describe how to update the Oracle Internet Directory port number on Identity Management, including updating other components in the Infrastructure and updating the middle-tier instances that use the port:

- Task 1: Prepare the Middle-Tier Instances
- Task 2: Prepare the Infrastructure Instances
- Task 3: Change the Oracle Internet Directory Port
- Task 4: Reconfigure OracleAS Certificate Authority
- Task 5: Restart the Identity Management Instance
- Task 6: Update the Middle-Tier Instances to Use the New Port Number

Task 1: Prepare the Middle-Tier Instances

Perform this task only if the Identity Management installation is being used by middle-tier instances. On each middle-tier instance that uses Identity Management, stop the middle-tier instance as follows:

1. On the Application Server Home page of the Application Server Control Console, click Stop All.

2. Leave the Application Server Control Console running.
It is important that you leave the Application Server Control Console running in each of the middle-tier instances while you perform this procedure.

Task 2: Prepare the Infrastructure Instances

Prepare the Infrastructure instances by taking these steps:

1. Make sure that Identity Management and its associated OracleAS Metadata Repository are started on the Infrastructure whose port number you are changing.

2. If any middle-tier instances use a different OracleAS Metadata Repository for their product metadata and DCM repositories, make sure those repositories are started. In short, make sure all Metadata Repositories in your environment are started.

Task 3: Change the Oracle Internet Directory Port

Change the Oracle Internet Directory port by taking these steps:

1. On the Oracle Internet Directory host:

 a. Create a file named `mod.ldif` with the following contents. You can create the file in any directory.

 For non-SSL port:

      ```
      dn: cn=configset0, cn=osdldapd, cn=subconfigsubentry  
      changetype:modify  
      replace:orclnonsslport  
      orclnonsslport:new_nonssl_port_number
      ```

 For SSL port:

      ```
      dn: cn=configset0, cn=osdldapd, cn=subconfigsubentry  
      changetype:modify  
      replace:orclsslport  
      orclsslport:new_ssl_port_number
      ```

 b. Run the following command:

 For non-SSL port:

      ```bash
      ldapmodify -D cn=orcladmin -w password -p oid_port -f mod.ldif
      ```

 For SSL port:

      ```bash
      ldapmodify -D cn=orcladmin -w password -p oid_port -U SSLAuth -f mod.ldif
      ```

 Note that `oid_port` is the old Oracle Internet Directory non-SSL port number. If you are changing the SSL port, provide the additional `-U` argument to specify the SSL authentication mode. Use one of the following values for `SSLAuth`: 1 for no authentication required; 2 for one-way authentication required; 3 for two-way authentication required.

2. On the Oracle Internet Directory host, stop the entire instance that contains Oracle Internet Directory, as well as the Application Server Control Console:

 a. On UNIX:

      ```bash
      ORACLE_HOME/bin/emctl stop iasconsole  
      ORACLE_HOME/opmn/bin/opmnctl stopall
      ```

 b. On Windows:

      ```bash
      ORACLE_HOME\bin\emctl stop iasconsole  
      ORACLE_HOME\opmn\bin\opmnctl stopall
      ```
3. Perform this step in the Oracle Internet Directory Oracle home. If you have OracleAS Metadata Repository installed in other Oracle homes that are registered with this Oracle Internet Directory, perform this step in each of those Oracle homes as well.
 a. Open the `ldap.ora` file:

 (UNIX) `ORACLE_HOME/ldap/admin/ldap.ora`
 (Windows) `ORACLE_HOME\ldap\admin\ldap.ora`

 b. Modify the following line, specifying the new port number. Then, save the file.

 `DIRECTORY_SERVERS=(myhost.myco.com:non_ssl_port:ssl_port)`

 c. Open the `ias.properties` file:

 (UNIX) `ORACLE_HOME/config/ias.properties`
 (Windows) `ORACLE_HOME\config\ias.properties`

 d. Change the value of `OIDport` (for an non-SSL port change) or `OIDsslport` (for an SSL port change) to the new port number, and then save the file.

4. On the Oracle Internet Directory host, start the instance that contains Oracle Internet Directory, and start the Application Server Control Console:

 a. On UNIX:

 `ORACLE_HOME/opmn/bin/opmnctl startall`
 `ORACLE_HOME/bin/emctl start iasconsole`

 b. On Windows:

 `ORACLE_HOME\opmn\bin\opmnctl startall`
 `ORACLE_HOME\bin\emctl start iasconsole`

5. Perform this step in the OracleAS Single Sign-On Oracle home:

 a. On UNIX systems, set the `LD_LIBRARY_PATH`, `LD_LIBRARY_PATH_64`, `LIB_PATH`, or `SHLIB_PATH` environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

 b. Run the following command in the OracleAS Single Sign-On Oracle home:

 `$ORACLE_HOME/jdk/bin/java -jar $ORACLE_HOME/sso/lib/ossoca.jar reassoc -repos $ORACLE_HOME`

Task 4: Reconfigure OracleAS Certificate Authority

Perform this task if you are using OracleAS Certificate Authority:

1. If OracleAS Certificate Authority is running in a different Oracle home, do the following steps in the OracleAS Certificate Authority Oracle home:

 a. Open the `ias.properties` file:

 (UNIX) `ORACLE_HOME/config/ias.properties`
 (Windows) `ORACLE_HOME\config\ias.properties`

 b. Change the value of `OIDport` (for a non-SSL port change) or `OIDsslport` (for an SSL port change) to the new port number, and then save the file.
2. Update OracleAS Certificate Authority with the new Oracle Internet Directory port number by executing the following command in the OracleAS Certificate Authority Oracle home:

(UNIX) \texttt{ORACLE_HOME}/oca/bin/ocactl changesecurity -server_auth_port portnum
(Windows) \texttt{ORACLE_HOME}/oca\bin\ocactl changesecurity -server_auth_port portnum

In the example, \texttt{portnum} is the OracleAS Certificate Authority Server Authentication Virtual Host (SSL) port; the default is 6600.

\textbf{See Also:} Oracle Application Server Certificate Authority Administrator’s Guide for more information

\textbf{Task 5: Restart the Identity Management Instance}

Restart the Identity Management instance:

- On UNIX:
 \begin{itemize}
 \item \texttt{ORACLE_HOME}/bin/emctl stop iasconsole
 \item \texttt{ORACLE_HOME}/opmn/bin/opmnctl stopall
 \item \texttt{ORACLE_HOME}/opmn/bin/opmnctl startall
 \item \texttt{ORACLE_HOME}/bin/emctl start iasconsole
 \end{itemize}

- On Windows:
 \begin{itemize}
 \item \texttt{ORACLE_HOME}\bin\emctl stop iasconsole
 \item \texttt{ORACLE_HOME}\opmn\bin\opmnctl stopall
 \item \texttt{ORACLE_HOME}\opmn\bin\opmnctl startall
 \item \texttt{ORACLE_HOME}\bin\emctl start iasconsole
 \end{itemize}

\textbf{Task 6: Update the Middle-Tier Instances to Use the New Port Number}

On each middle-tier instance that uses the Identity Management installation, run the Change Identity Management Services wizard and start the instance:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the middle-tier instance.
2. Click the \textbf{Infrastructure} link.
3. On the Infrastructure page, in the Identity Management section, click \textbf{Change}.
4. Follow the steps in the wizard for supplying the new Oracle Internet Directory port number.
5. When the wizard is finished, navigate to the Application Server Home page and start the middle-tier instance by clicking \textbf{Start All}.

\textbf{4.3.11.3 Changing OracleAS Certificate Authority Ports}

This section describes how to change the following port numbers:

- OracleAS Certificate Authority Server Authentication Virtual Host (SSL)
- OracleAS Certificate Authority Mutual Authentication Virtual Host (SSL)

To change either of these port numbers:

1. Open the \texttt{ocm_apache.conf} file in the Oracle home of the Infrastructure that contains OracleAS Certificate Authority:

(UNIX) \texttt{ORACLE_HOME}/Apache/Apache/conf/ocm_apache.conf
(Windows) \texttt{ORACLE_HOME}/Apache\Apache\conf\ocm_apache.conf
Changing Ports

a. Modify the Server or Mutual port, or both, and then save the file.
 Note that each port number is listed in the file in two places:
 - As a Listen directive
 - As a default virtual host
 The easiest way to find these is to search for the old port number.

b. Run the following command:

 (UNIX) `ORACLE_HOME/dcm/bin/dcmctl updateConfig -ct ohs`
 (Windows) `ORACLE_HOME\dcm\bin\dcmctl updateConfig -ct ohs`

2. Run the following command (make sure your ORACLE_HOME environment variable is set first):

 `sqlplus oca/oca_admin_password @$ORACLE_HOME/oca/sql/ocaportchg`

 a. Enter the Server Authentication Only port when prompted. If you do not want to change this port number, enter the old port number.
 b. Enter the Mutual Authentication port when prompted. If you do not want to change this port number, enter the old port number.

3. Re-register OracleAS Certificate Authority with the OracleAS Single Sign-On server by executing the following command in the OracleAS Certificate Authority Oracle home:

 (UNIX) `ORACLE_HOME/oca/bin/ocactl changesecurity -server_auth_port portnum`
 (Windows) `ORACLE_HOME\oca\bin\ocactl changesecurity -server_auth_port portnum`

 In the example, `portnum` is the OracleAS Certificate Authority Server Authentication Virtual Host (SSL) port; the default is 6600.

 See Also: Oracle Application Server Certificate Authority Administrator’s Guide

4. Restart Oracle HTTP Server:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl restartproc type=ohs`
 (Windows) `ORACLE_HOME\opmn\bin\opmnctl restartproc type=ohs`

5. Restart the OracleAS Certificate Authority OC4J instance:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl restartproc type=oc4j instancename=oca`
 (Windows) `ORACLE_HOME\opmn\bin\opmnctl restartproc type=oc4j instancename=oca`

6. Start Oracle Application Server Certificate Authority:

 (UNIX) `ORACLE_HOME/oca/bin/ocactl start`
 (Windows) `ORACLE_HOME\oca\bin\ocactl start`
Managing Log Files

Oracle Application Server components generate log files containing messages that record all types of events, including startup and shutdown information, errors, warning messages, access information on HTTP requests, and additional information. This chapter describes how to view and manage log files to assist in monitoring system activity and in diagnosing system problems.

It contains the following topics:

- Introduction to Oracle Application Server Logging
- Listing and Viewing Log Files with Application Server Control
- Searching Diagnostic Messages in a Log Repository
- Diagnosing Problems and Correlating Messages
- Using Oracle Application Server Log Loader
- Advanced Logging Topics

5.1 Introduction to Oracle Application Server Logging

The Application Server Control Console lets you list and search log files across Oracle Application Server components. You can view log files from the Application Server Control Console pages or download a log file to your local client and view the log files using another tool.

This section covers the following topics:

- Understanding Log File Data and Naming
- Using a Log Repository
- Configuring Component Logging Options

5.1.1 Understanding Log File Data and Naming

Several Oracle Application Server components use Oracle Diagnostic Logging (ODL). Using ODL, log file naming and the format of the contents of log files conforms to an Oracle standard and the diagnostic messages are written in XML. Some Oracle Application Server components do not use ODL, and write their diagnostic messages using a component-specific text format.

Using ODL provides the following benefits:

- ODL limits the total amount of diagnostic information saved.
Older segments of log files are removed and newer segments are saved in chronological fashion.

Components can remain active, and do not need to be shutdown, when diagnostic logging files are cleaned.

Table 5–1 lists the supported message formats for each Oracle Application Server component. Some components optionally support ODL format, where ODL is not the default format.

Table 5–1 Diagnostic Message Format by Component

<table>
<thead>
<tr>
<th>Component</th>
<th>Default Format</th>
<th>ODL Support</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Application Development Framework</td>
<td>ODL</td>
<td>Yes</td>
<td>ORACLE_HOME/bc4j/logs/OC4J_Name</td>
</tr>
<tr>
<td>DCM</td>
<td>ODL</td>
<td>Yes</td>
<td>ORACLE_HOME/dcm/logs</td>
</tr>
<tr>
<td>Enterprise Manager</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/sysman/log</td>
</tr>
<tr>
<td>HTTP Server</td>
<td>Text</td>
<td>Yes</td>
<td>ORACLE_HOME/Apache/Apache/logs/error_log.ctime</td>
</tr>
<tr>
<td>Log Loader</td>
<td>ODL</td>
<td>Yes</td>
<td>ORACLE_HOME/diagnostics/logs</td>
</tr>
<tr>
<td>OC4J instance_name</td>
<td>Text</td>
<td>Yes</td>
<td>ORACLE_HOME/j2ee/instance_name/log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORACLE_HOME/j2ee/instance_name/application-deployments/application_name/application.log</td>
</tr>
<tr>
<td>Oracle Delegated Administration Services</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/opmn/logs/OC4JOC4J_SECURITYdefault_island~1</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/oca/logs/admin.log</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Logging for user and administrator usage, other than command line, is stored in the database and accessed through the Oracle Application Server Certificate Authority (OCA) Administrator web interface.</td>
</tr>
<tr>
<td>Oracle Identity Federation</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/fed/log</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/ldap/log</td>
</tr>
<tr>
<td>OPMN</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/opmn/logs/...</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>ORACLE_HOME/opmn/logs/component_type-...</td>
</tr>
<tr>
<td>Port Tunneling</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/iaspt/logs</td>
</tr>
<tr>
<td>Single Sign-On</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/sso/log</td>
</tr>
<tr>
<td>Universal Installer</td>
<td>Text</td>
<td>No</td>
<td>ORACLE_HOME/cfgtoollogs</td>
</tr>
</tbody>
</table>

^1 Locations are shown in UNIX format. Invert the slashes for Windows format.

Regardless of the format of the messages that are stored in log files, ODL or text-based, you can view log files using the Application Server Control Console, or you can download log files to your local client and view them using another tool (for example a text editor, or another file viewing utility).
5.1.2 Using a Log Repository

The Application Server Control Console supports viewing diagnostic messages from a Log Repository. A Log Repository can be file-based or stored in a database, and contains messages collected from multiple diagnostic log files across components. The Log Repository does not contain messages from access or trace log files because access logs and trace logs are verbose and do not contain diagnostic information.

The Oracle Application Server Log Loader component initializes and updates the data in a Log Repository. After the Log Loader starts, it stores information from diagnostic log files to the Log Repository at regular intervals.

Using a Log Repository consolidates Oracle Application Server log file data. Then, you can use the Application Server Control Console to easily search and view log file data generated by multiple components. Using a Log Repository can speed up the diagnostic process and reduce the resources required to support Oracle Application Server.

See Also: Section 5.3, "Searching Diagnostic Messages in a Log Repository"

Note: By default, the Log Loader is not started. Use the Application Server Control Console or OPMN to start Log Loader, as described in Section 5.5.1.

5.1.3 Configuring Component Logging Options

Administrators configure logging options to manage and limit the logging information that Oracle Application Server components generate and save.

Note: The Application Server Control Console does not directly support configuring logging options. In many cases, to configure component logging options, you need to use the Application Server Control Console Advanced Server Properties page to edit the values in configuration files.

The logging configuration options include:

- Specifying log file names and pathnames: Most Oracle Application Server components let you specify the directory for storing diagnostic log files. Specifying the diagnostic logging directory allows administrators to manage system and network resources.

- Limiting log file size: As Oracle Application Server components run and generate diagnostic messages, the size of the log files increases. Oracle Application Server components use one of several strategies to deal with log file size. Some components allow log files to keep increasing in size; in this case, it is the administrator’s responsibility to monitor and clean up the log files. Other
components, including OC4J, let you specify configuration options that limit how much log file data is collected and saved.

- Using log file archiving: Certain Oracle Application Server components let you specify configuration options to control the size of diagnostic logging directories. This lets you determine a maximum size for the directories containing a component’s log files. When the maximum size is reached, older logging information is deleted before newer logging information is saved.

- Setting component logging levels: Certain Oracle Application Server components, including Oracle HTTP Server, allow administrators to configure logging levels. By configuring logging levels, the number of messages saved to diagnostic log files can be reduced. For example, you can set the logging level so that the system reports and saves only critical messages.

See Also: Oracle Application Server component documentation for information on setting logging configuration options

5.2 Listing and Viewing Log Files with Application Server Control

Use Application Server Control Console to list log files by selecting the Logs link on the Application Server Control Console. This displays the View Logs page.

See Also: Section 5.6.1, "Using the printlogs Tool to View Log Messages" for information on the printlogs command-line tool

This section covers the following:

- Listing Log Files for Components
- Listing Log Files from Oracle Application Server Components Pages
- Using Log Files Advanced Search

5.2.1 Listing Log Files for Components

You can list the log files for individual components from the Application Server Control Console. To list the log files, perform the following steps:

1. Select the Logs link on the Application Server Control Console. The View Logs page is displayed.

2. To view all components, click Move All to move all available components to Selected Components. To view some components, select them in the Available Components box and click Move.

3. Click Search to list the log files for the selected components.

4. After the search returns, the Results section shows log file information such as the name of the component associated with a log file and a link to the log file, as shown in Figure 5–1.
5.2.2 Listing Log Files from Oracle Application Server Components Pages

After you select a system component link on the Application Server Control Console Home page, you can view the log files for the selected component by clicking **Logs** at the top of the page. When you click **Logs**, the Application Server Control searches for the log files associated with the current component. Then, you can view the log files on the resulting View Logs page by selecting the links in the **Log Files** column in the **Results** table.

For example, if you click **Logs** on the HTTP Server Home page, Application Server Control searches for the log files associated with the Oracle HTTP Server and displays the View Logs page with a list of Oracle HTTP Server log files in the Results table.

When you select the **Logs** link from a component page, the log file pages include a **Return to** link at the bottom of each page. The **Return to** link returns you to the component page from which you selected the **Logs** link.

5.2.3 Using Log Files Advanced Search

You can filter the search for log files by certain log file attributes by using the Advanced Search page of the Application Server Control Console.

You can list log files using a search filter by performing the following steps:
1. Select the **Logs** link on an Application Server Control Console page. The View Logs page is shown.

2. Click **Advanced Search** to display the View Logs Advanced Search page. The Advanced Search page lets you list log files for Oracle Application Server components and enables you to filter the search for log files by certain log file attributes.

3. Select the desired components from the **Available Components** box and click **Move** or **Move All** to move components to the **Selected Components** box.

4. Select a field from the **Log File Attribute** list.

5. Click **Add Row** to add a row for the selected log file attribute.

6. Enter the desired search value in the **Value** field.

7. If you want to select additional fields with values, click **Add Another Row** and enter additional values.

8. Click **Search** to perform the search. When the search returns, the **Results** section shows log files with matching fields.

To obtain more information on filtering using log file attributes, click the information icon next to the **Log File Attribute** list.

Figure 5–2 shows the Advanced Search Filter By Log File Attributes selection box, with the **Log File Attribute** list and the **Add Another Row** button.

Figure 5–2 Log Files Advanced Search Filter By Log File Attributes

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Value</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr>
<td>[Log File Attribute]</td>
<td>[OPKNN Process Set ID]</td>
<td>[Add Another Row]</td>
</tr>
<tr>
<td>[Log File Attribute]</td>
<td>[HTTP_Servlet]</td>
<td>[Add Another Row]</td>
</tr>
</tbody>
</table>

5.3 Searching Diagnostic Messages in a Log Repository

The Application Server Control Console lets you search through diagnostic messages in a Log Repository containing messages collected from several Oracle Application Server components. The advantage of using a Log Repository is that you can search, view, and correlate diagnostic messages in a uniform way across multiple Oracle Application Server components.

This section covers the following topics:

- **Getting Started with Log Repository**
- **Searching Log Repository with Simple Search**
- **Searching Log Repository with Advanced Search**
- **Viewing Repository Log Entry Details**
- **Using Regular Expressions with Log Repository Search**

5.3.1 Getting Started with Log Repository

The Log Repository must contain diagnostic messages before you can search it. The Log Repository is initialized and updated by the Log Loader component. Thus, the Log Loader must be started before you can search the Log Repository. The Log Loader
is not started automatically; you must start the Log Loader to make sure that the Log Repository is updated.

See: Section 5.5, "Using Oracle Application Server Log Loader" for information on starting and using Log Loader.

5.3.2 Searching Log Repository with Simple Search

To search for diagnostic log entries in the Log Repository using simple search criteria, do the following:

1. Select the Logs link on an Application Server Control Console page. The View Logs page is shown.

2. From the View Logs page, click Search Log Repository.

3. Select components from the Available Components box, then click Move or Move All to move the selected components to the Selected Components box. This step is optional.

4. Use the default selections, or select the available search and result display options. The online help describes the available search and display options for the Search Log Repository page.

Note: The Message Type selection box includes the Unknown option. Some components do not include a message type when the component writes log file entries. These messages are loaded into the Log Repository with Unknown specified as the message type.

5. Click Search to search for messages in the Log Repository that match the constraints you specify. When the search returns, the Results section shows the matching diagnostic log messages from the Log Repository.

Figure 5–3 shows the Search Log Repository page.
5.3.3 Searching Log Repository with Advanced Search

With the Advanced Search feature, you can select from a set of repository query fields that can restrict the list of log message entries to those that apply to your criteria.

Take the following steps:

1. Select the Logs link on an Application Server Control Console page. The View Logs page is shown.

2. From the View Logs page, click Search Log Repository, then click Advanced Search.

3. On the Search Log Repository Advanced Search page, use the Filter By Log Entry Fields box to select log message fields and values to search. Select multiple fields by clicking Add Another Row. When you specify values for multiple fields, the search only returns results that match all of the specified constraints. The online help describes the available search and display options for the Search Log Repository page.

4. Use the default selections, or specify search and result date range and message type options by making selections and entering constraints.
5. Click **Search** to search for messages in the Log Repository that match the selection constraints. When the search returns, the Results section shows the matching log entries.

Figure 5–4 shows the Advanced Search Log Repository **Filter By Log Entry Fields** section.

5.3.4 **Viewing Repository Log Entry Details**

To view a log entry, either select the link shown in the **Time** field of the Results area on the View Logs page, or select entries in the **Select** field and then click **View Details**. The Log Entry Details page is displayed, as shown in Figure 5–5. It displays information about the log entry, including the Message Type, Component, the Message Text, and, if available, the Execution Context ID (ECID).

Figure 5–5 **Log Repository Log Entry Details Page**

5.3.5 **Using Regular Expressions with Log Repository Search**

Regular expression matching is applied when the check box in the Regular Expression field is selected on the Log Repository Simple Search or Advanced Search page. On the Simple Search page, the Regular Expression check box is under the **Message Text** field. On the Advanced Search page, the Regular Expression check box is in the **Filter by Log Entry Fields** box. Using a regular expression in a search enables you to enter a pattern description to match strings for a Log Repository search.

The Log Repository search uses the Apache Jakarta regular expression engine, which uses "+" for a string of characters, "?" for a single character, and supports boundary matches, including "^" for a match only at the beginning of an entry, and "$" for a
match only at the end of an entry, and special characters, including "\t" for Tab, "\n" for newline, "\r" for return, and "\f" for form feed.

See Also: http://jakarta.apache.org/regexp for more information on supported regular expressions

5.4 Diagnosing Problems and Correlating Messages

Generally, administrators and others view log file data to diagnose, monitor, and search for component errors or problems that may cause component errors. The Application Server Control Console supports a unified architecture and provides cross-component tools that can assist you in these tasks.

This section covers the following topics:

■ Correlating Messages Across Log Files and Components
■ Diagnosing Component Problems

5.4.1 Correlating Messages Across Log Files and Components

Certain Oracle Application Server components provide message correlation information for diagnostic messages. Message correlation information helps those viewing diagnostic messages determine relationships between messages across components. The Execution Context ID (ECID) is a globally unique identifier associated with a thread of execution. The ECID helps you to use log file entries to correlate messages from one application or across application server components. By searching related messages using the message correlation information, multiple messages can be examined and the component that first generates a problem can be identified (this technique is called first-fault component isolation). Message correlation data can help establish a clear path for a diagnostic message across components, within which errors and related behavior can be understood.

When you view an entry on the Log Entry Details page in the Application Server Control Console, if the Execution Context ID field is available, it displays the Execution Context ID as a link. Selecting the Execution Context ID link shows you all the diagnostic messages in the Log Repository with the same execution context ID.

You can use the ECID to track requests as they move through Oracle Application Server.

The ECID takes the following format:

\texttt{request_id, sequence_number}

■ The \texttt{request_id} is a unique string that is associated with each request.
■ The \texttt{sequence_number} represents the hop number of the request, as it passes through Oracle Application Server (or through the component).

For example, when Oracle HTTP Server handles the request, it assigns an initial sequence number of 0 to a request. After that, the sequence number is incremented as the request moves through Oracle Application Server components.

Table 5–2 lists the Oracle Application Server components that provide message correlation information (using an ECID), and if a component supports message correlation, but it is not enabled by default.
5.4.2 Diagnosing Component Problems

When an Oracle Application Server component has a problem, you can isolate and determine the cause of the problem by viewing the diagnostic messages. The following general techniques can assist you in accomplishing this task:

- Search for errors, or warnings, related to the problem
- Correlate the errors across components
- Correlate the errors across a time interval
- Perform component-based analysis

Using a Log Repository can make searching for the root cause of a problem much easier. A Log Repository consolidates log file data and enables you to easily search, correlate, and view log file data that is generated by multiple Oracle Application Server components. A Log Repository correlates cross-component information by time, and correlates events that occur in a cascading fashion. Once a problem is isolated to a particular component in the repository, then, if needed, the problem can be further analyzed by examining the component-specific diagnostic files.

5.5 Using Oracle Application Server Log Loader

The Oracle Application Server Log Loader component is a process that periodically updates a Log Repository. A Log Repository stores diagnostic messages read from multiple log files across Oracle Application Server components in a single Oracle home. After the Log Loader starts, at regular intervals it reads the contents of log files incrementally and writes the contents to the Log Repository.

This section covers the following topics:

- Starting and Stopping Log Loader
- Enabling and Disabling Log Loader
- Updating the Log Configuration
- Setting Log Loader Properties
- Understanding Log Loader Diagnostic Messages

5.5.1 Starting and Stopping Log Loader

You can use the controls on the Application Server Control Console Log Loader page to start and stop the Log Loader.
To start the Log Loader, perform the following steps:

1. Select the **Logs** link on any Application Server Control Console page.
2. From the View Logs page, select the **Search Log Repository** link.
3. Click **Log Loader**.
4. On the Log Loader page, click **Start**.
5. On the confirmation page, you can click one of the following:
 - **Cancel**: Cancels the operation.
 - **Start**: Starts the Log Loader, but it does not load any existing log messages from component log files. Only messages that are added to the component logs after the Log Loader is started are added to the Log Repository.
 - **Start and Load Existing Logs**: Starts the Log Loader and loads all existing log messages from component log files. Any messages that are added to the component logs after the Log Loader is started are also added to the Log Repository.

5.5.2 Enabling and Disabling Log Loader

On the Log Loader page, the **Enable** button enables the Log Loader. By default, when you first install Oracle Application Server, the Log Loader is enabled, but not started. When you disable the Log Loader, Enterprise Manager stops the Log Loader and the Log Loader component does not appear in the list of components on the View Logs page.

When you enable the Log Loader, the Log Loader component appears in the components list on the View Logs page, but it is not started.

5.5.3 Updating the Log Configuration

When the Log Loader starts, it loads configuration information about the component log files it will use as sources for the diagnostic messages that are stored in the Log Repository. (This includes information on the location and format of the log files).

Most log configuration files are installed when Oracle Application Server components are configured. The log configuration files for HTTP Server, OPMN, OC4J, and the Log Loader are generated when the Log Loader is initially started.

If configuration changes are made that affect the location of diagnostic log files for these components, click **Update Log Configuration** on the Log Loader page to regenerate the log configuration files for these components. This ensures the Log Loader is loading the correct set of logs into the Log Repository.

See Also: Section 5.6.4, "Component Diagnostic Log File Registration"

5.5.4 Setting Log Loader Properties

You can set Log Loader properties from the Log Loader page. To navigate to the Log Loader page:
1. Select the Logs link on any Application Server Control Console page.
2. From the View Logs page, select the Search Log Repository link.
3. Click Log Loader.
4. Select the Log Loader Properties link in the Administration section. The Log Loader Properties page includes fields showing the current values for the Log Loader properties.

To change the Log Loader properties, perform the following steps:
1. Enter updated values in the appropriate fields on the Log Loader Properties page.
2. Click Apply to apply the new values.

Figure 5–6 shows the Application Server Control Console Log Loader Properties page.

Figure 5–6 Log Loader Properties Page

These properties can be used to control the behavior of the Log Loader and the size of the Log Repository it updates:

- Location of Log Repository: `diagnostics/repository` (This property identifies the directory where the Log Repository is located.)
- Maximum size of Log Repository (MB): 50 (The total size of the Log Repository is controlled by this property.)
- Size of each segment (MB): 5 (The Log Repository is a set of files called segments. Segments are used to control the size of the repository.)
- Interval between loads (Minutes): 5 (This property defines how often the Log Loader reads current log files and updates the Log Repository.)
- Maximum load size (KBytes): 51200 (The Log Loader may stop the loading of some log entries if a log file has grown very large since it was last loaded. This property controls the maximum number of bytes that may be loaded from a file or set of CIL files during a run of the Loader.)
- Log Loader Port: 44003 (This property identifies the communication port used by the Log Loader.)

The Application Server Control Console online help includes detailed information on the Log Loader Properties fields.

5.5.5 Understanding Log Loader Diagnostic Messages

The Log Loader logs its diagnostic messages, including errors, to its log file. Diagnostic messages might include errors encountered due to an incorrect configuration, or errors that occur while the Log Loader is reading data from a log file or is writing data to the log repository.

The common Log Loader problems include:

- Errors in the Log Loader configuration file `(ORACLE_HOME/diagnostics/config/logloader.xml)`. Errors in the configuration file usually prevent the Log Loader from running. Such errors need to be corrected before the Log Loader can work properly.
Configuration errors that occur when a component’s registration file contains errors (ORACLE_HOME/diagnostics/config/registration/*.xml). Errors in the registration files do not prevent the Log Loader from running but may prevent the contents of certain log files from being loaded in the repository. Typically, there are two common types of registration file errors:

- XML syntax errors that prevent the file from being parsed. If such errors are encountered, the Log Loader completely ignores the contents of the file.

- A wrong path specified for a configuration file. If the Log Loader cannot find a log file at the specified path, it issues a Warning level diagnostic message. This does not always indicate an error. For example, it is possible that the component that generates that log was not active when the Log Loader started and the log file had not been created yet. The Log Loader continues to look for the log file and starts reading messages when the log file is created.

Errors may occur while the Log Loader is reading messages from a log file. If the log file includes contents that cannot be read or parsed, then the Log Loader issues a log message indicating that it cannot read part of the contents of the file. In this case, the Log Loader attempts to recover from the error and continue to read the log file.

Errors may occur when writing messages to the repository (for example, a disk error). This type of error may indicate a problem that may require attention from the system administrator to correct the problem.

The Log Loader produces an error message when it skips reading log files because a log file exceeds the currently specified maximum load size. The maximum load size can be specified on the Log Loader properties page.

In this case, the Log Loader logs an error message in the following format:

Size of data to be read from log /logfile exceeds threshold of x bytes. Skipping y_skipped bytes and moving to end of log.

This message indicates the size of data to be read exceeds the specified maximum load size x, and that the Log Loader is skipping to the end of the log file. The error message provides information on the name of the log file, /logfile, and the number of bytes skipped, y_skipped.

5.6 Advanced Logging Topics

This section covers the following topics:

- Using the printlogs Tool to View Log Messages
- Understanding ODL Messages and ODL Log Files
- Understanding Log Loader Log File Format Conversion
- Component Diagnostic Log File Registration
- Configuring Components to Produce ODL Messages and ECIDs
- Creating and Managing a Diagnostic Message Database Repository
- Limitations and Configuration Issues

5.6.1 Using the printlogs Tool to View Log Messages

The printlogs tool is a command-line alternative to the Application Server Control Console for viewing log messages. The printlogs tool supports a variety of options
for gathering and filtering log messages, and prints the results to standard output in a single format. For example, you can use `printlogs` to:

- Read log messages from the Log Repository or individual log files
- Filter log messages according to timestamp or log field value
- Print log messages in ODL or text format
- Sort log messages by field
- Report the number of log messages of a specified type
- Run in a continuous loop, printing log reports and sleeping for a specified amount of time

See Also: Appendix F for more information about the `printlogs` tool

5.6.2 Understanding ODL Messages and ODL Log Files

This section covers the following topics about Oracle Diagnostic Logging (ODL):

- ODL Message Contents
- ODL Log File Naming

5.6.2.1 ODL Message Contents

When a component uses ODL, diagnostic messages are written to log files using XML format. Each message includes a HEADER element containing information about the message, optionally a CORRELATION_DATA element containing information to assist in correlating messages across components, and a PAYLOAD element containing the message text including optional arguments and associated values.

Example 5–1 shows a sample ODL format message that includes the optional CORRELATION_DATA element.

Example 5–1 Sample ODL Message Content

```
<Message>
  <Header>
    <TSTZ_ORIGINATING>2002-04-01T18:38:48.058-08:00</TSTZ_ORIGINATING>
    <ORG_ID>oracle.com</ORG_ID>
    <COMPONENT_ID>OHS</COMPONENT_ID>
    <HOSTING_CLIENT_ID>0.0.255.255</HOSTING_CLIENT_ID>
    <MSG_TYPE TYPE="ERROR"></MSG_TYPE>
    <MSG_LEVEL>17</MSG_LEVEL>
    <HOST_ID>test-perf9</HOST_ID>
    <HOST_NWADDR>0.0.255.255</HOST_NWADDR>
    <MODULE_ID>apache_core</MODULE_ID>
    <PROCESS_ID>5713</PROCESS_ID>
  </Header>
  <CORRELATION_DATA>
    <EXEC_CONTEXT_ID>
      <UNIQUE_ID>1017715128:255..255.255.88:5713:0:1</UNIQUE_ID>
      <SEQ>1</SEQ>
    </EXEC_CONTEXT_ID>
  </CORRELATION_DATA>
  <Payload>
    <MSG_TEXT>File does not exist: /files/Apache/docs/images/java-apache-project.gif</MSG_TEXT>
  </Payload>
</Message>
```
Table 5–3 describes the contents of an ODL message header. For any given component that produces ODL format messages, the optional header fields may not be present in the generated diagnostic messages.

<table>
<thead>
<tr>
<th>Header Field Name</th>
<th>Description</th>
<th>Required</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENT_ID</td>
<td>The product or component ID for the component that originated the message.</td>
<td>Required</td>
</tr>
<tr>
<td>HOST_ID</td>
<td>The DNS host network ID.</td>
<td>Optional</td>
</tr>
<tr>
<td>HOST_NWADDR</td>
<td>The IP or other network address for the originating host.</td>
<td>Optional</td>
</tr>
<tr>
<td>HOSTING_CLIENT_ID</td>
<td>The ID of the client or security group to which the message relates.</td>
<td>Optional</td>
</tr>
<tr>
<td>MODULE_ID</td>
<td>The ID for the module that originated the message.</td>
<td>Optional</td>
</tr>
<tr>
<td>MSG_GROUP</td>
<td>The name of the group to which the message belongs, for purposes of selecting similar messages.</td>
<td>Optional</td>
</tr>
<tr>
<td>MSG_ID</td>
<td>The message ID, which uniquely identifies the message.</td>
<td>Optional</td>
</tr>
<tr>
<td>MSG_LEVEL</td>
<td>An integer value that qualifies the message type (MSG_TYPE). Lower level values are for higher severity errors. Possible values are 1 through 32.</td>
<td>Optional</td>
</tr>
<tr>
<td>MSG_TYPE</td>
<td>The type of the message. Possible values are: INTERNAL_ERROR, ERROR, WARNING, NOTIFICATION, TRACE, UNKNOWN. If MSG_TYPE is included, the TYPE attribute is required when MSG_TYPE is included in the message header.</td>
<td>Required</td>
</tr>
<tr>
<td>ORG_ID</td>
<td>The organization ID for the originating component. This is usually the domain name for the organization.</td>
<td>Optional</td>
</tr>
<tr>
<td>PROCESS_ID</td>
<td>The process ID for the process, or execution unit associated with the message. Java components may use this field to specify the process ID and the thread ID, or only the thread ID.</td>
<td>Optional</td>
</tr>
<tr>
<td>TSTZ_NORMALIZED</td>
<td>The timestamp normalized for clock drift across hosts. This field is used when the diagnostic message is copied to a repository in a different hosts.</td>
<td>Optional</td>
</tr>
<tr>
<td>TSTZ_ORIGINATING</td>
<td>The timestamp with local time zone. This specifies the date and time when the message was generated.</td>
<td>Required</td>
</tr>
<tr>
<td>USER_ID</td>
<td>The User ID associated with the message.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

5.6.2.2 ODL Log File Naming

Using ODL, Oracle Application Server components write diagnostic log files to a logging directory. Components determine the names for logging directories using a component-specific naming convention.

An ODL log is a set of log files that includes: the current ODL log file, typically named log.xml, and zero or more ODL Archives (segment files) that contain older messages. As the log file grows, new information is added to the end of the log file, log.xml. When the log file reaches the maximum segment size, it is renamed and a new log file, log.xml is created. (You can specify the maximum ODL segment size using component-specific configuration options.)
Segment files are created when the ODL log file `log.xml` reaches the maximum segment size. That is, the `log.xml` is renamed to `logn.xml`, where `n` is an integer, and a new `log.xml` file is created when the component generates new diagnostic messages.

To limit the size of the ODL log, components use a configuration option specifying the maximum size of the logging directory. Whenever the sum of the sizes of all of the files in the directory reaches the maximum, the oldest archive is deleted to keep the total size under the specified limit.

For example, when the maximum directory size is reached, with the starting segment file named `log9872`, the following files could be present in the log file directory:

<table>
<thead>
<tr>
<th>File</th>
<th>Size</th>
</tr>
</thead>
<tbody>
<tr>
<td>log.xml</td>
<td>10002</td>
</tr>
<tr>
<td>log9872.xml</td>
<td>15000</td>
</tr>
<tr>
<td>log9873.xml</td>
<td>15000</td>
</tr>
<tr>
<td>log9874.xml</td>
<td>15000</td>
</tr>
<tr>
<td>log9875.xml</td>
<td>15000</td>
</tr>
<tr>
<td>log9876.xml</td>
<td>15000</td>
</tr>
</tbody>
</table>

In this case, when `log.xml` fills up, `log9872.xml` is removed and `log.xml` is moved to the new file `log9877.xml`. New diagnostic messages then are written to a new `log.xml`.

5.6.3 Understanding Log Loader Log File Format Conversion

The Log Loader reads logs in several different formats and it converts the contents of non-ODL logs to ODL format. In most cases, the resulting ODL log record will contain only a timestamp and the message text from the original log entry. Values for other ODL message fields, such as COMPONENT_ID and MODULE_ID can be provided in the log registration file for each log, so that these values are set to all log records parsed from the log. The Log Loader attempts to determine the severity or level of each non-ODL log and generate an appropriate ODL message type. However, in many cases, if the severity or level cannot be determined, the resulting ODL log record will have the message type set to `UNKNOWN`.

The Log Loader can even read unformatted logs, which may not contain even timestamp values. This is the case for several logs in the `ORACLE_HOME/opmn/logs` directory which contain redirected output from Oracle Application Server processes managed by Oracle Process Manager and Notification Server (OPMN). When log entries do not contain a timestamp, the Log Loader sets the timestamp to the value of the last known timestamp for that log. The value of the last known timestamp is determined according to the following rules:
1. The initial value of the last known timestamp is zero. Note that whenever adding a log record to the repository, a zero value timestamp is converted to the current time.

2. If the Log Loader finds an OPMN-generated timestamp, it sets the last known timestamp with its value.

3. When the Log Loader reaches the end of the log, it sets the last known timestamp with the current time. If the Log Loader is running regularly, such as once every five minutes, this results in timestamps that are approximate to the actual time the message was written, within a five minute range. If the Log Loader is not run frequently, the value of these timestamps could be inaccurate.

Note: The OC4J redirected logs found in the `ORACLE_HOME/opmn/logs` directory are not treated as unformatted logs, because each line in the OC4J logs contains a timestamp. Most other logs in this directory are treated as unformatted logs, and have timestamps assigned according to the preceding rules.

5.6.4 Component Diagnostic Log File Registration

The Application Server Control Console and the Log Loader read Oracle Application Server component diagnostic registration files to determine names, locations, and additional configuration information about diagnostic log files. The directory `ORACLE_HOME/diagnostics/config/registration` contains the diagnostic log file registration files.

Oracle Application Server components may have multiple registration files in the configuration registration directory.

The format for the registration files includes a Oracle Application Server component ID, and extension, `.xml`. Table 5-4 lists the Oracle Application Server components and their associated component IDs.

Note: The components create the component diagnostic registration files. Normally, Oracle Application Server administrators should not modify these files.

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Component ID</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADF</td>
<td>ADFBC</td>
</tr>
<tr>
<td>Backup and Restore</td>
<td>BACKUP</td>
</tr>
<tr>
<td>DCM</td>
<td>DCM</td>
</tr>
<tr>
<td>Enterprise Manager</td>
<td>EM</td>
</tr>
<tr>
<td>HTTP Server</td>
<td>OHS</td>
</tr>
<tr>
<td>Infrastructure Database</td>
<td>RDBMS</td>
</tr>
<tr>
<td>Listener for Infrastructure Database</td>
<td>LISTENER</td>
</tr>
<tr>
<td>Log Loader</td>
<td>LOGLOADER</td>
</tr>
<tr>
<td>OC4J</td>
<td>OC4J</td>
</tr>
<tr>
<td>OPMN</td>
<td>OPMN</td>
</tr>
</tbody>
</table>
5.6.5 Configuring Components to Produce ODL Messages and ECIDs

Table 5–5 lists the Oracle Application Server components that support ODL messages but that generate text messages by default. By making configuration changes, you can configure these components to produce ODL messages and for OC4J, an ECID.

This section covers the following topics:

- Configuring Oracle HTTP Server to Produce ODL Messages
- Configuring OC4J to Produce ODL Messages
- Configuring OC4J to Produce ECIDs

See Table 5–1 for the complete list of Oracle Application Server components that produce ODL messages.

Table 5–5 Oracle Application Server Components with Options for Supporting ODL

<table>
<thead>
<tr>
<th>Component</th>
<th>Default Format</th>
<th>ODL Support</th>
<th>Location¹</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Server</td>
<td>Text</td>
<td>Yes</td>
<td>ORACLE_HOME/Apache/Apache/logs</td>
</tr>
</tbody>
</table>
| OC4J Instance | Text | Yes | ORACLE_HOME/j2ee/instance_name/log
| | | | ORACLE_HOME/j2ee/application-deployments/application_name/application.log |

¹ Locations are shown in UNIX format. Invert the slashes for Windows format.

5.6.5.1 Configuring Oracle HTTP Server to Produce ODL Messages

To configure the Oracle HTTP Server to produce ODL messages, perform the following steps:

1. Add a directory named oracle where the Oracle HTTP Server ODL messages will be stored. The directory should be located at the following location:

 (UNIX) ORACLE_HOME/Apache/Apache/logs
 (Windows) ORACLE_HOME/Apache/Apache/logs

2. Using the Application Server Control Console or the dcmctl command line utility, modify the httpd.conf file to set the value of the OraLogMode and OraLogSeverity directives. Using the Application Server Control Console, from the Administration section of the HTTP_Server page, select the Advanced Server Properties link. Specify the OraLogMode and OraLogSeverity directives in httpd.conf.

 For example:

 OraLogMode oracle
 OraLogSeverity NOTIFICATION

3. Using the Application Server Control Console, restart the HTTP Server.
5.6.5.2 Configuring OC4J to Produce ODL Messages

The supplied configuration files for OC4J include commented out specifications for ODL logging. Enabling ODL logging in OC4J involves uncommenting the ODL configuration options and restarting the associated OC4J instance.

To change the ODL logging configuration for OC4J, use the Application Server Control Console. Select the Administration link for the OC4J instance for which you want to enable ODL logging. Then, select the Advanced Properties link to show the Advanced Server Properties page. On this page, edit the configuration files and uncomment the lines that contain the <odl> element.

See Also: Chapter 3, "Advanced Configuration Development, and Deployment" in Oracle Application Server Containers for J2EE User’s Guide, Release 2 (10.1.2)

5.6.5.3 Configuring OC4J to Produce ECIDs

OC4J supports generating an Execution Context ID (ECID) for its log file entries. You can use the ECID to track requests as they move through Oracle Application Server, or through OC4J. By default, ECID generation is disabled in OC4J.

To enable ECID generation in OC4J, set the Java command-line option -Doracle.dms.transtrace.ecidenabled=true.

To modify Java command-line options using the Application Server Control Console, do the following:

1. Select the Administration link on the OC4J Home page of the application server instance of interest.
3. Scroll down to the Multiple VM Configuration section. This section defines the ports and the command line options for OC4J and for the JVM that runs OC4J processes.
4. In the Command Line Options section, add the following at the end of the Java Options text field:
 -Doracle.dms.transtrace.ecidenabled=true
5. Click Apply.

Note the following when setting the oracle.dms.transtrace.ecidenabled property:

- The default value for oracle.dms.transtrace.ecidenabled is false.
- The property applies for the entire OC4J instance and it cannot be set to different values for different applications running on OC4J.
- When ODL is enabled for OC4J and the value for oracle.dms.transtrace.ecidenabled is false, OC4J uses an ECID that is generated from within OC4J, rather than receiving the ECID from Oracle HTTP Server. When ODL is enabled for OC4J, all log messages should include an ECID.

See Also: "Advanced Configuration Development, and Deployment" in Oracle Application Server Containers for J2EE User’s Guide, Release 2 (10.1.2)
5.6.6 Creating and Managing a Diagnostic Message Database Repository

You can use SQL scripts to create and manage a database repository for diagnostic messages. By creating a database repository for diagnostic messages, you can search, view, and correlate diagnostic messages across multiple Oracle Application Server instances.

Use the SQL scripts described in the following sections to create and manage a repository for diagnostic messages. The scripts are located in the following directory:

- On UNIX:
 \(\text{ORACLE_HOME/diagnostics/admin} \)

- On Windows:
 \(\text{ORACLE_HOME\diagnostics\admin} \)

The database that hosts the Log Repository can be an Oracle9i database or an Oracle Database 10g database.

5.6.6.1 Creating a Diagnostic Message Database Repository

To create a diagnostic message database repository, take the following steps:

1. Make sure the ORACLE_HOME and ORACLE_SID environment variables are set.

2. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you have to set depend on the type of your UNIX operating system.

3. Choose an existing tablespace or create a new tablespace for the repository.

 To create a new tablespace, connect to an Oracle database as an administrator and run the script \text{dmrep_tablespace.sql}. This script requires two arguments: the name of the tablespace to be created and the location of the tablespace datafile, for example:

 \[
 \text{SQL> CONNECT SYS AS SYSDBA;}
 \]

 \[
 \text{...}
 \]

 \[
 \text{SQL> @ORACLE_HOME/diagnostics/admin/dmrep_tablespace.sql dmrep}
 \]

 \[
 \text{ORACLE_HOME/diagnostics/repository/dmrep.dbf}
 \]

4. Choose an existing user or create a new user.

 To create a new user, connect to the Oracle database containing the tablespace for the repository as an administrator and run the script \text{dmrep_user.sql}. This script requires three arguments: name of the user, user password, and the default user tablespace. Use the tablespace you designated for the repository for the default user tablespace, for example:

 \[
 \text{SQL> @ORACLE_HOME/diagnostics/admin/dmrep_user.sql dmrepusr dmreppw dmrep}
 \]

5. Create the diagnostic message repository schema.

 To create the diagnostic message repository schema, run the script \text{dmrep_create.sql}. Connect to the new or existing tablespace as the designated user, for example:

 \[
 \text{SQL> CONNECT dmrepusr}
 \]

 \[
 \text{...}
 \]

 \[
 \text{SQL> @ORACLE_HOME/diagnostics/admin/dmrep_create.sql}
 \]
6. Change the Log Loader configuration to use the diagnostic message repository.

In order for the Log Loader to load diagnostic messages into the repository, you must update the repository element in the logloader.xml file. To edit the repository element, you must know the JDBC URL for the database hosting the diagnostic message repository. Replace the contents of the repository element with the following:

```xml
<repository>
  <database_repository
    url="jdbc:oracle:thin:@DB host:DB port:DB instance"
    user="dmrepusr"/>
</repository>
```

Replace the variables in the preceding example with the values for your installation.

Store the repository password for your installation in a wallet in the Log Loader configuration directory, using the following command:

```
(UNIX) ORACLE_HOME/diagnostics/bin/logloader -storePassword -user dmrepusr -pwd dmreppw
(Windows) ORACLE_HOME\diagnostics\bin\logloader -storePassword -user dmrepusr -pwd dmreppw
```

5.6.6.2 Removing Old Messages from the Diagnostic Message Repository

Use the script `dmrep_drop.sql` to delete messages that are older than a specified number of days, hours, minutes, or seconds. The script takes two arguments:

- **N**, which is the number of units
- **Unit**, which must be one of the following: DAY, HOUR, MINUTE, or SECOND

The following is an example of the script with arguments:

```
SQL> @ORACLE_HOME/diagnostics/admin/dmrep_cleanup.sql 7 DAY
```

5.6.6.3 Deleting the Diagnostic Message Repository

Use the script `dmrep_drop.sql` to delete the schema for the diagnostic message repository. The following is an example of deleting the DMREP schema:

```
SQL> CONNECT dmrepusr
...
SQL> @ORACLE_HOME/diagno.../admin/dmrep_drop.sql
```

To delete the user and tablespace, connect to the database as administrator and run the SQL commands for dropping a user and dropping a tablespace. The following example drops a user and tablespace, including contents and datafiles:

```
SQL> CONNECT SYS AS SYSDBA
...
SQL> DROP USER dmrepusr;
SQL> DROP TABLESPACE dmrep INCLUDING CONTENTS AND DATAFILES;
```

5.6.6.4 Reconfiguring Log Loader to Use a File-Based Repository

If you want to use a file-based repository instead of a database repository for the diagnostic message repository, you must update the repository element in the logloader.xml file. Replace the contents of the repository element with the following:

```xml
<repository>
  <xml_repository
```

Advanced Logging Topics

5-22 Oracle Application Server Administrator's Guide
5.6.7 Limitations and Configuration Issues

Note the following limitations and configuration issues with log files:

- The Logs link in the Application Server Control Console gives you an integrated view of many Oracle Application Server component log files. However, some Oracle Application Server component log files are not exposed through Application Server Control Console pages.

In addition, certain log files are only available at the component level. Oracle Application Server components use the directory $ORACLE_HOME/diagnostics/config/registration$ to make their log files visible to the Application Server Control Console.

- If you shut down the Log Loader after the database is shutdown, and you restart Log Loader after the database is restarted, some messages may be reloaded to the repository database twice.

Usually, Log Loader saves its state after each load. However, if the database is shutdown first, Log Loader does not save its state. When it restarts, it resets its state to the end of the last successful load and will repeat any load that was unsuccessful. If the repository database was shutdown in the middle of that load, some of the records may have been written to the repository database, but the entire load will be repeated.
Managing an OracleAS Metadata Repository

This chapter provides information on managing OracleAS Metadata Repository. It contains the following topics:

- Frequently Asked Questions About OracleAS Metadata Repository
- Postinstallation Status of OracleAS Metadata Repository Schemas
- Viewing OracleAS Metadata Repository Schema Passwords
- Changing OracleAS Metadata Repository Schema Passwords
- Changing the Character Set of OracleAS Metadata Repository
- Renaming and Relocating OracleAS Metadata Repository Datafiles

6.1 Frequently Asked Questions About OracleAS Metadata Repository

OracleAS Metadata Repository is an Oracle Database 10g database and can be managed using standard database procedures and tools. However, there are some considerations for managing OracleAS Metadata Repository within the Oracle Application Server environment. This section answers frequently asked questions about managing the Metadata Repository.

- **What is a Metadata Repository?**
 A Metadata Repository is a database. It is pre-seeded with schemas to support Oracle Application Server components and services. See Appendix E for information on the schemas that are pre-seeded in the Metadata Repository.

- **When is a Metadata Repository required?**
 A Metadata Repository is required by the following installations:
 - An Identity Management installation requires one for Identity Management schemas.
 - A J2EE and Web Cache installation that is part of OracleAS Clusters managed by a database repository requires one for the Management (DCM) schema.
 - A Portal and Wireless installation requires one for product metadata schemas.
 - A Business Intelligence and Forms installation requires one for product metadata schemas.

 Note: The J2EE and Web Cache, Portal and Wireless, and Business Intelligence and Forms installations refer to 10.1.2 or 10.1.3 middle tiers.

- **How can I obtain a Metadata Repository?**
You can obtain a Metadata Repository in either of the following ways:

- You can install a Metadata Repository as part of an Infrastructure installation with Oracle Universal Installer.

 See Also: Oracle Application Server Installation Guide

- You can install a Metadata Repository into an existing database using the Oracle Application Server Repository Creation Assistant.

 See Also: Oracle Application Server Metadata Repository Creation Assistant User’s Guide

■ **Are there any tools for managing the Metadata Repository?**

You can use Oracle Enterprise Manager. See Section 2.5, "Managing the OracleAS Metadata Repository Database with Database Control" for more information.

■ **Can I use the Metadata Repository to deploy applications?**

No. The Metadata Repository is not supported for deploying applications.

■ **Are there any database features that are not supported by the Metadata Repository?**

The following tablespace management features are not supported:

- Using ALTER TABLESPACE to assign a different default tablespace to a user
- Using ALTER TABLESPACE to reduce the number of tablespaces that were created when you initially created the Metadata Repository
- Renaming a tablespace

It is, however, possible to use ALTER TABLESPACE to do segment management using autoextend or any other feature.

■ **Can a Metadata Repository coexist on a host with other databases?**

Yes. As long as each database has a unique SID and global database identifier. The databases may be able to share a Net listener as follows:

- Multiple Oracle9i and Oracle 10g databases can share the same Net listener port. If the other databases on your host are Oracle9i or Oracle 10g databases, the Metadata Repository can use the same Net listener port (for example, 1521) as the other databases.
- If the other databases on your system are Oracle8i databases running Oracle Net8 listener, then the Metadata Repository must use a different port for its Net listener.

■ **Can I change the Metadata Repository Net listener port after installation?**

Yes. Refer to Section 4.3.11.1, "Changing the OracleAS Metadata Repository Net Listener Port" for more information.

■ **Can I change the Metadata Repository SID and global database name after installation?**

No. This is not supported.

■ **Can I change the character set of the Metadata Repository?**
Yes. Follow the instructions for changing the character set in the database documentation, then refer to Section 6.5, "Changing the Character Set of OracleAS Metadata Repository" for updates you need to make to Oracle Application Server.

- **Can I tune the Metadata Repository?**
 Yes, you can apply database tuning strategies to the Metadata Repository.
 One important point is that the processes and sessions parameters in the Oracle init$SID.ora configuration file should be tuned to allow the Metadata Repository to handle the maximum number of database sessions used by Oracle Application Server middle-tier installations, or other middle-tier installations accessing the Metadata Repository.

 The primary consumers of database sessions are OracleAS Portal and OracleAS Wireless. An init$SID.ora setting of processes=150 should support four middle-tier installations that include these components. Note that an OracleAS Portal best practice recommendation is to relocate the Portal instance out of the Infrastructure, which reduces the database connections requirement.

 See Also: Oracle Application Server Performance Guide for a detailed description of the database connection usage of mod_plsql in an OracleAS Portal installation

- **Can I change Metadata Repository schema passwords?**
 Yes. However, you must make sure to use the correct procedure. Some schemas store their passwords in Oracle Internet Directory and you must change their passwords using the Application Server Control Console so the password is updated in Oracle Internet Directory and the database. See Section 6.4, "Changing OracleAS Metadata Repository Schema Passwords" for more information.

- **Can I delete schemas that I am not using from the Metadata Repository?**
 No. You should never delete any of the schemas that are provided with the Metadata Repository.

- **Can I rename or relocate Metadata Repository datafiles after installation?**
 Yes. See Section 6.6, "Renaming and Relocating OracleAS Metadata Repository Datafiles" for more information.

- **Can I configure my Metadata Repository for high availability?**
 Yes. Oracle Application Server offers high availability options for the Metadata Repository, including:
 - Oracle Application Server Cold Failover Clusters
 - DCM-Managed Oracle Application Server Cluster
 - Oracle Application Server Disaster Recovery

 See: Oracle Application Server High Availability Guide

- **Can I enable archive logging on the Metadata Repository?**
 Yes. Oracle recommends this as part of the backup and recovery strategy. See Section 19.2.2, “Enabling ARCHIVELOG Mode” for more information.

- **How can I back up and recover the Metadata Repository?**
Oracle provides a backup and recovery strategy for your entire Oracle Application Server environment, including the Metadata Repository. See Part V, "Backup and Recovery" for more information.

6.2 Postinstallation Status of OracleAS Metadata Repository Schemas

Table 6–1 shows the status of Metadata Repository schemas immediately after installation. The table contains the account status and initial password for each schema, depending on whether or not the Metadata Repository is registered with Oracle Internet Directory.

To unlock an account using SQL*Plus (be sure to set your ORACLE_HOME and ORACLE_SID environment variables before you run these commands):

```
ORACLE_HOME/bin/sqlplus 'SYS/password_for_sys AS SYSDBA'
```

```
SQL> ALTER USER schema ACCOUNT UNLOCK;
```

To lock an account:

```
ORACLE_HOME/bin/sqlplus 'SYS/password_for_sys AS SYSDBA'
```

```
SQL> ALTER USER schema ACCOUNT LOCK;
```

The method for changing passwords varies by schema. Refer to Section 6.4 to determine the proper way to change a password.

<table>
<thead>
<tr>
<th>Schema</th>
<th>Account Status (Registered with Oracle Internet Directory)</th>
<th>Password (Registered with Oracle Internet Directory)</th>
<th>Account Status (Not Registered with Oracle Internet Directory)</th>
<th>Password (Not Registered with Oracle Internet Directory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANONYMOUS</td>
<td>OPEN</td>
<td>RANDOM</td>
<td>OPEN</td>
<td>RANDOM</td>
</tr>
<tr>
<td>B2B</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>BAM</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>CTXSYS</td>
<td>LOCKED</td>
<td>RANDOM</td>
<td>LOCKED</td>
<td>RANDOM</td>
</tr>
<tr>
<td>DBSNMP</td>
<td>OPEN</td>
<td>Set by user during installation</td>
<td>OPEN</td>
<td>Set by user during installation</td>
</tr>
<tr>
<td>DCM</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>DIP</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>DISCOVERER5</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>DMSYS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>DSGATEWAY1</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>EXPSYS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>INTERNET_APPSERVER_</td>
<td>LOCKED, NO CREATE SESSION</td>
<td>EXPired</td>
<td>LOCKED, NO CREATE SESSION</td>
<td>EXPired</td>
</tr>
<tr>
<td>REGISTRY</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IP2</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>MDDATA</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>MDSYS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>MGMT_VIEW</td>
<td>OPEN</td>
<td>RANDOM</td>
<td>OPEN</td>
<td>RANDOM</td>
</tr>
<tr>
<td>OCA</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
</tbody>
</table>
Table 6–1 (Cont.) Postinstallation Status of Schemas in a Metadata Repository

<table>
<thead>
<tr>
<th>Schema</th>
<th>Account Status (Registered with Oracle Internet Directory)</th>
<th>Password (Registered with Oracle Internet Directory)</th>
<th>Account Status (Not Registered with Oracle Internet Directory)</th>
<th>Password (Not Registered with Oracle Internet Directory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ODS</td>
<td>OPEN</td>
<td>Same as the <code>ias_admin</code> password supplied during installation</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>OEM_REPOSITORY</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>OPEN</td>
<td>RANDOM</td>
</tr>
<tr>
<td>OLAPSYS</td>
<td>LOCKED</td>
<td>RANDOM</td>
<td>LOCKED</td>
<td>RANDOM</td>
</tr>
<tr>
<td>ORABPEL</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORAOCA_PUBLIC</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORASSO</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORASSO_DS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORASSO_PA</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORASSO_PS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORASSO_PUBLIC</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORDPLUGINS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>ORDSYS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>OUTLN</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>OWF_MGR</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>PORTAL</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>PORTAL_APP</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>PORTAL_DEMO</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>PORTAL_PUBLIC</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>SCOTT</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>SI_INFORMTN_SCHEMA</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>SYS</td>
<td>OPEN</td>
<td>Set by user during installation</td>
<td>OPEN</td>
<td>Set by user during installation</td>
</tr>
<tr>
<td>SYSMAN</td>
<td>OPEN</td>
<td>Set by user during installation</td>
<td>OPEN</td>
<td>Set by user during installation</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>OPEN</td>
<td>Set by user during installation</td>
<td>OPEN</td>
<td>Set by user during installation</td>
</tr>
<tr>
<td>UDDISYS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>WCRSYS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>WIRELESS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>WK_TEST</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
</tbody>
</table>

Managing an OracleAS Metadata Repository 6-5
6.3 Viewing OracleAS Metadata Repository Schema Passwords

If a Metadata Repository is registered with Oracle Internet Directory, some schema passwords are stored in the directory and you can view them using Oracle Internet Directory tools.

You can view the passwords for the following schemas in Oracle Internet Directory:

- B2B
- BAM
- DCM
- DISCOVERER5
- DSGATEWAY
- OCA
- ODS
- ORABPEL
- ORAOGA_PUBLIC
- ORASSO
- ORASSO_DS
- ORASSO_PA
- WKPROXY
- WKSYS
- XDB

You can view the passwords using the following procedures:

- Viewing OracleAS Metadata Repository Schema Passwords Using Oracle Directory Manager
- Viewing OracleAS Metadata Repository Schema Passwords Using ldapsearch

Note that in Table 6–1, some of the schemas refer to components of a middle-tier instance, such as a Release 2 (10.1.2.0.2) middle-tier. Appendix E lists the components and their schemas.

Table 6–1 (Cont.) Postinstallation Status of Schemas in a Metadata Repository

<table>
<thead>
<tr>
<th>Schema</th>
<th>Account Status (Registered with Oracle Internet Directory)</th>
<th>Password (Registered with Oracle Internet Directory)</th>
<th>Account Status (Not Registered with Oracle Internet Directory)</th>
<th>Password (Not Registered with Oracle Internet Directory)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WKPROXY</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>WKSYS</td>
<td>OPEN</td>
<td>RANDOM—Stored in Oracle Internet Directory</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>WMSYS</td>
<td>LOCKED</td>
<td>EXPIRED</td>
<td>LOCKED</td>
<td>EXPIRED</td>
</tr>
<tr>
<td>XDB</td>
<td>LOCKED</td>
<td>RANDOM</td>
<td>LOCKED</td>
<td>RANDOM</td>
</tr>
</tbody>
</table>

1 Beginning with Oracle Application Server 10g Release 2 (10.1.2), the DSGATEWAY schema is not used. It is provided for backward compatibility.

2 Beginning with Oracle Application Server 10g Release 2 (10.1.2), the IP schema does not contain any data. It is has been replaced by the B2B schema and is provided only for backward compatibility.
6.3.1 Viewing OracleAS Metadata Repository Schema Passwords Using Oracle Directory Manager

To view Metadata Repository schema passwords using Oracle Directory Manager, take the following steps:

1. Start Oracle Directory Manager:
 - On UNIX, use the following command:
     ```bash
     ORACLE_HOME/bin/oidadmin
     ```
 - On Windows, navigate to Oracle Directory Manager (Start, Programs, Oracle Application Server Infrastructure - Oracle_Home, Integrated Management Tools, Oracle Directory Manager)

2. Log in to Oracle Directory Manager as the orcladmin user.

3. In the System Objects frame, expand Entry Management, expand cn=OracleContext, expand cn=Products, expand cn=IAS, expand cn=IAS Infrastructure Databases, and expand orclReferenceName=dbname for the Metadata Repository.

4. Select the OrclResourceName=\[schema_name\] entry for the schema whose password you want to view.

5. In the Properties tab, you can view the password in the orclpasswordattribute field.

6.3.2 Viewing OracleAS Metadata Repository Schema Passwords Using ldapsearch

You can view Metadata Repository schema passwords by using `ldapsearch`, a command-line tool. The command uses the following format:

```bash
ORACLE_HOME/bin/ldapsearch -p \[oid\_port\] -h \[oid\_hostname\] -D "cn=orcladmin" -w \[orcladmin\_password\] -b "orclresourcename=\[schema\_name\], orclreferencename=\[metadata\_rep\_global\_db\_name\], cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext" -s base "objectclass=*
```

The command returns several lines of output. The password is listed in the following line:

```
orclpasswordattribute=\[password\]
```

The following example uses the `ldapsearch` tool to request the ORASSO schema password.

```bash
ORACLE_HOME/bin/ldapsearch -p 13060 -h myhost -D "cn=orcladmin" -w mypassword -b "orclresourcename=ORASSO, orclreferencename=orcl.mycompany.com, cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext" -s base "objectclass=*
```

The command returns the ORASSO schema password, which is Og23NI78 in this example:

```
OrclResourceName=ORASSO,orclReferenceName=orcl.mycompany.com
orclpasswordattribute=Og23NI78
```
6.4 Changing OracleAS Metadata Repository Schema Passwords

The method for changing schema passwords in the Metadata Repository varies by schema. Some schemas store their passwords in Oracle Internet Directory; you must change their passwords using the Application Server Control Console so that both Oracle Internet Directory and the database are updated. Other schemas do not store their passwords in Oracle Internet Directory; you change their passwords in the database using SQL*Plus. A few schemas require special steps for changing their passwords.

Table 6–2 lists the appropriate method for changing Metadata Repository schemas for OracleAS Infrastructure components.

Table 6–2 Methods for Changing Oracle Metadata Repository Schema Passwords

<table>
<thead>
<tr>
<th>Schema</th>
<th>Method for Changing Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM</td>
<td>If the Metadata Repository is registered with Oracle Internet Directory, you must change the password in two places:</td>
</tr>
<tr>
<td></td>
<td>■ Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
<tr>
<td></td>
<td>■ Manually change the password in Oracle Internet Directory. See Section 6.4.3.</td>
</tr>
<tr>
<td></td>
<td>If the Metadata Repository is not registered with Oracle Internet Directory, you need to change the password only in the database using SQL*Plus.</td>
</tr>
<tr>
<td>IP¹</td>
<td>You must change the password in two places:</td>
</tr>
<tr>
<td></td>
<td>■ Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
<tr>
<td></td>
<td>■ Manually change the password in Oracle Internet Directory. See Section 6.4.3.</td>
</tr>
<tr>
<td>OCA</td>
<td>This schema requires special steps. Refer to Oracle Application Server Certificate Authority Administrator’s Guide for advanced topics in administration.</td>
</tr>
<tr>
<td>ODS</td>
<td>This schema requires special steps. Refer to Oracle Internet Directory Administrator’s Guide for information on resetting the default password for the database.</td>
</tr>
<tr>
<td>ORASSO</td>
<td>Use the Application Server Control Console. Navigate to the Application Server Home Page for the Infrastructure (Identity Management) installation and follow the instructions in Section 6.4.1. Then, in the Application Server Control Console, navigate to the Application Server Home page. Select the check box next to HTTP Server and click Restart. Select the check box next to OC4J_SECURITY and click Start.</td>
</tr>
<tr>
<td>ORASSO_DS</td>
<td>Use the Application Server Control Console. Navigate to the Application Server Home Page for the Infrastructure (Identity Management) installation and follow the instructions in Section 6.4.1.</td>
</tr>
<tr>
<td>ORASSO_PA</td>
<td>Use the Application Server Control Console. Navigate to the Application Server Home Page for the Infrastructure (Identity Management) installation and follow the instructions in Section 6.4.1.</td>
</tr>
</tbody>
</table>
| ORASSO_PS | Use the Application Server Control Console. Navigate to the Application Server Home Page for the Infrastructure (Identity Management) installation and follow the instructions in Section 6.4.1. Changing the ORASSO_PS password requires that the database link from all Portal schemas to the ORASSO_PS schema be re-created. To do this, run the following command for each affected Portal instance:

```
ORACLE_HOME/portal/conf/ptlconfig -dad dad_name -site [-pw PORTAL_schema_password]
```

See the Oracle Application Server Portal Configuration Guide, Release 2 (10.1.2) for more information. |
| ORASSO_PUBLIC | Use the Application Server Control Console. Navigate to the Application Server Home Page for the Infrastructure (Identity Management) installation and follow the instructions in Section 6.4.1. |
6.4.1 Changing Schema Passwords Using the Application Server Control Console

Some schemas store their passwords in Oracle Internet Directory. You must change their passwords using the Application Server Control Console so the password is updated in both the database and Oracle Internet Directory.

To change a schema password using the Application Server Control Console:

1. Depending on the schema, navigate to the home page for the middle-tier instance or the Infrastructure. Refer to Table 6–2 to determine which home page to use.
2. On the home page, click Infrastructure.
4. On the Change Schema Password page, select the schema. Enter the new password in the Password and Confirm Password fields. Click OK.

6.4.2 Changing Schema Passwords Using SQL*Plus

You can change some schema passwords directly in the database using SQL*Plus. To do so, connect to the database as a user with SYSDBA privileges and issue the following command:

```sql
SQL> ALTER USER schema IDENTIFIED BY new_password;
```

For example, to change the DCM schema password to abc123:

```sql
SQL> ALTER USER DCM IDENTIFIED BY abc123;
```

6.4.3 Changing Schema Passwords in Oracle Internet Directory

A few schemas (DCM, B2B, OWF_MGR) require you to manually update the password in the Metadata Repository and in Oracle Internet Directory. Use the following procedure to change these passwords:

1. Start Oracle Directory Manager:

 - On UNIX, use the following command:
     ```bash
     ORACLE_HOME/bin/oidadmin
     ```

 - On Windows, navigate to Oracle Directory Manager (Start, Programs, Oracle Application Server Infrastructure - Oracle_Home, Integrated Management Tools, Oracle Directory Manager)

2. Log in to Oracle Directory Manager as the orcladmin user.

Table 6–2 (Cont.) Methods for Changing Oracle Metadata Repository Schema Passwords

<table>
<thead>
<tr>
<th>Schema</th>
<th>Method for Changing Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>OWF_MGR</td>
<td>You must change the password in two places:</td>
</tr>
<tr>
<td></td>
<td>- Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
<tr>
<td></td>
<td>- Manually change the password in Oracle Internet Directory. See Section 6.4.3.</td>
</tr>
<tr>
<td>SCOTT</td>
<td>Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
<tr>
<td>SYS</td>
<td>Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
<tr>
<td>SYSTEM</td>
<td>Use SQL*Plus to change the password directly in the database. See Section 6.4.2.</td>
</tr>
</tbody>
</table>

1. Beginning with Oracle Application Server 10g Release 2 (10.1.2), the IP schema does not contain any data. It has been replaced by the B2B schema and is provided only for backward compatibility.

Beginning with Oracle Application Server 10g Release 2 (10.1.2), the IP schema does not contain any data. It has been replaced by the B2B schema and is provided only for backward compatibility.
3. In the System Objects frame, expand **Entry Management**, expand `cn=OracleContext`, expand `cn=Products`, expand `cn=IAS`, expand `cn=IAS Infrastructure Databases`, and expand `orclReferenceName=dbname` for the Metadata Repository.

4. Select the `OrclResourceName=schema_name` entry for the schema whose password you want to change.

5. In the Properties tab, update the password in the `orclpasswordattribute` field.

6. Click **Apply**.

6.5 Changing the Character Set of OracleAS Metadata Repository

You can change the character set of the OracleAS Metadata Repository by following the instructions for changing the character set in the database documentation.

Then, take the following steps to configure the middle tier and infrastructure to work with OracleAS Metadata Repository after its character set has been changed:

1. Modify the character set of all Database Access Descriptors (DADs) accessing the metadata repository to the new database character set:
 a. Using the Application Server Control Console, navigate to the middle-tier instance home page.
 b. In the System Components section, click **HTTP_Server**.
 c. On the HTTP_Server home page, click **Administration**.
 d. On the HTTP_Server Administration page, click **PL/SQL Properties**. This opens the `mod_plsql` Services page.
 e. Scroll to the DADs section and click the name of the DAD that you want to configure. This opens the Edit DAD page.
 f. In the **NLS Language** field, type in a NLS_LANG value whose character set is the same as the new character set for OracleAS Metadata Repository.
 g. Click **OK**.
 h. Repeat steps e to g for all DADs accessing OracleAS Metadata Repository.

2. Reconfigure the Oracle Ultra Search index as follows:
 a. Connect to OracleAS Metadata Repository as WKSYS and invoke the following SQL script to reconfigure the default cache character set and index preference:
      ```sql
      (UNIX) ORACLE_HOME/ultrasearch/admin/wk0prefcheck.sql
      (Windows) ORACLE_HOME\ultrasearch\admin\wk0prefcheck.sql
      ```
 b. Connect to OracleAS Metadata Repository as the default user (WKTEST) and invoke the following SQL script:
      ```sql
      (UNIX) ORACLE_HOME/ultrasearch/admin/wk0idxcheck.sql
      (Windows) ORACLE_HOME\ultrasearch\admin\wk0idxcheck.sql
      ```
 The script asks you to enter the instance name (`WK_INST`). Enter `y` when prompted to proceed with the change.
 This script reconfigures the instance (in this case, the default instance). It also truncates the Oracle Text index used by Oracle Ultra Search. You must force a recrawl to rebuild the index.
c. Repeat step b for all Oracle Ultra Search instances that were created before you changed the database character set. Invoke the script as the instance owner, and then force a recrawl of all data sources.

3. If you installed OracleAS Portal, you must make sure that it is configured with the same languages as the OracleAS Infrastructure (which includes OracleAS Metadata Repository) to avoid problems with set language requests sent to OracleAS Single Sign-On. To configure additional languages for OracleAS Portal, you run the ptlang tool.

 See: The section "Configuring Language Support" in the Oracle Application Server Portal Configuration Guide, Release 2 (10.1.2) for information on the ptlang tool

6.6 Renaming and Relocating OracleAS Metadata Repository Datafiles

When you install OracleAS Metadata Repository, you can choose the location for its datafiles. The default location is `ORACLE_HOME/oradata/SID`. After installation, you may want to relocate datafiles to a different directory. For example, you may want to move them to a directory on a file system with more space. Or, you may want to move them to a directory on a different disk for performance reasons. Another thing you may want to do is keep the datafiles in the same directory, but rename them.

This section provides a procedure for renaming or relocating datafiles. You can use this procedure on one or more datafiles, and the datafiles may be in multiple tablespaces.

This procedure applies to:

- The datafiles associated with Oracle Application Server schemas and tablespaces. See Appendix E for a list of schemas.
- The following standard Oracle database datafiles:
 - `drsys01.dbf`
 - `system01.dbf`
 - `temp01.dbf`
 - `users01.dbf`

The following example shows how to relocate two datafiles in two different tablespaces, as follows:

- Relocate the `oca.dbf` datafile in the OCATS tablespace from `/infra_home/oradata/orcl/oca.dbf` to `/new_directory/oca.dbf`
- Relocate the `dcm.dbf` datafile in the DCM schema from `/infra_home/oradata/orcl/dcm.dbf` to `/new_directory/dcm.dbf`

Before you start the procedure:

- Make sure you have a complete cold backup of OracleAS Metadata Repository. See Part V, "Backup and Recovery" for more information.
- Connect to OracleAS Metadata Repository as a user with administrator privileges. You must have the ALTER DATABASE system privilege to relocate datafiles.
- Read through the entire procedure before you start.

The procedure is as follows:

1. Verify the location of your datafiles.
You can verify the location of datafiles in a particular tablespace by querying the data dictionary view DBA_DATA_FILES.

For example, to query the location of datafiles in the OCATS and DCM tablespaces:

```sql
SQL> SELECT FILE_NAME, BYTES FROM DBA_DATA_FILES
WHERE TABLESPACE_NAME = 'OCATS' OR TABLESPACE_NAME = 'DCM';
```

<table>
<thead>
<tr>
<th>FILE_NAME</th>
<th>BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>/infra_home/oradata/orcl/oca.dbf</td>
<td>78643200</td>
</tr>
<tr>
<td>/infra_home/oradata/orcl/dcm.dbf</td>
<td>96993280</td>
</tr>
</tbody>
</table>

2. Shut down all middle-tier instances that use OracleAS Metadata Repository.

3. Stop the Infrastructure that contains OracleAS Metadata Repository, then start the OracleAS Metadata Repository instance and mount the database without opening it, as follows:
 a. Stop the Application Server Control Console and OPMN-managed processes:
 * On UNIX systems:
        ```
        ORACLE_HOME/bin/emctl stop iasconsole
        ORACLE_HOME/opmn/bin/opmnctl stopall
        ```
 * On Windows systems:
        ```
        ORACLE_HOME\bin\emctl stop iasconsole
        ORACLE_HOME\opmn\bin\opmnctl stopall
        ```
 b. Leave the Metadata Repository listener running.
 c. Stop the OracleAS Metadata Repository instance (make sure the ORACLE_HOME environment variable is set):
      ```
      sqlplus /nolog
      SQL> CONNECT SYS as SYSDBA
      SQL> SHUTDOWN
      ```
 d. Start an OracleAS Metadata Repository instance and mount the database without opening it:
      ```
      SQL> STARTUP MOUNT
      ```

4. Move the datafiles to their new location using the operating system. For example:
 a. On UNIX systems:
      ```
      mv /infra_home/oradata/orcl/oca.dbf /new_directory/oca.dbf
      mv /infra_home/oradata/orcl/dcm.dbf /new_directory/dcm.dbf
      ```
 b. On Windows systems:
      ```
      rename C:\infra_home\oradata\orcl\oca.dbf D:\new_directory\oca.dbf
      rename C:\infra_home\oradata\orcl\dcm.dbf D:\new_directory\dcm.dbf
      ```

 Note: You can execute an operating system command to copy a file by using the SQL*Plus HOST command.

5. Use ALTER DATABASE to rename the file pointers in the database’s control file:
ALTER DATABASE RENAME FILE '/infra_home/oradata/orcl/oca.dbf',
'/infra_home/oradata/orcl/dcm.dbf'
TO '/new_directory/oca.dbf',
'/new_directory/dcm.dbf';

The new files must already exist; this statement does not create the files. Always provide complete filenames (including their full paths) to properly identify the old and new datafiles. In particular, specify the old datafile name exactly as it appears in the DBA_DATA_FILES view of the data dictionary.

6. Shut down OracleAS Metadata Repository, then perform a normal startup of the Infrastructure:
 a. Leave the OracleAS Metadata Repository listener running.
 b. Shut down OracleAS Metadata Repository:
 SQL> SHUTDOWN
 c. Start OracleAS Metadata Repository:
 SQL> STARTUP
 d. Start OPMN-managed processes and the Application Server Control Console:
 – On UNIX systems:
 `ORACLE_HOME/opmn/bin/opmnctl startall`
 `ORACLE_HOME/bin/emctl start iasconsole`
 – On Windows systems:
 `ORACLE_HOME\opmn\bin\opmnctl startall`
 `ORACLE_HOME\bin\emctl start iasconsole`

7. Start the middle-tier instances that use the Infrastructure.

8. Verify the new location of your datafiles.

 SQL> SELECT FILE_NAME, BYTES FROM DBA_DATA_FILES
 WHERE TABLESPACE_NAME = 'OCATS' OR TABLESPACE_NAME = 'DCM';

<table>
<thead>
<tr>
<th>FILE_NAME</th>
<th>BYTES</th>
</tr>
</thead>
<tbody>
<tr>
<td>/new_directory/oca.dbf</td>
<td>78643200</td>
</tr>
<tr>
<td>/new_directory/dcm.dbf</td>
<td>96993280</td>
</tr>
</tbody>
</table>

9. Perform a complete cold backup of OracleAS Metadata Repository. After making any structural changes to a database, always perform an immediate and complete backup.

 See Also: Part V, "Backup and Recovery"
This part describes advanced administration tasks that involve reconfiguring Oracle Application Server.

It contains the following chapters:

- Chapter 7, "Reconfiguring Application Server Instances"
- Chapter 8, "Changing Network Configurations"
- Chapter 9, "Changing Infrastructure Services"
- Chapter 10, "Changing from a Test to a Production Environment"
Reconfiguring Application Server Instances

When you installed Oracle Application Server, you chose an installation type and the components you wanted to configure. For Identity Management installations, you could choose whether or not to configure Oracle Delegated Administration Services or OracleAS Single Sign-On. After installation, you may want to configure these components. Or, you may want to start using Infrastructure Services with your J2EE and Web Cache installation. This chapter describes how to make these types of changes.

It contains the following topics:

- Configuring Additional Components After Installation
- Deconfiguring Components
- Deleting OC4J Instances
- Configuring 10.1.2 and 10.1.3 Middle Tiers to Use OracleAS Infrastructure
- Disabling and Enabling Anonymous Binds

If you have disabled anonymous binds in Oracle Internet Directory, you must enable them before you make configuration changes. See Section 7.5, "Disabling and Enabling Anonymous Binds" for more information.

Note: In this chapter, discussions of middle-tier installations or J2EE and Web Cache installations refer to Release 2 (10.1.2) or Release 3 (10.1.3) instances.

7.1 Configuring Additional Components After Installation

When you installed Oracle Application Server, you were allowed to select the components you wanted to configure. You may decide later you want to configure one of the components you did not select during installation. For example, if you installed Oracle Infrastructure and did not choose to configure Single Sign-On Authority, you can configure Single Sign-On Authority after installation.

You can configure components after installation using the Select Component page in the Application Server Control Console. From the Home page, click Configure Component. The Select Component page is displayed, as shown in Figure 7–1.
Figure 7–1 Configuring Components with Application Server Control Console

Table 7–1 lists which components can be configured after installation and provides pointers to instructions for using Application Server Control Console to configure and verify each component.

Table 7–1 Components That Can Be Configured After Installation

<table>
<thead>
<tr>
<th>To configure this component:</th>
<th>In these Installation types:</th>
<th>For instructions, refer to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Single Sign-On</td>
<td>Infrastructure</td>
<td>Section 7.1.1</td>
</tr>
<tr>
<td>Delegated Administration</td>
<td>Infrastructure</td>
<td>Section 7.1.2</td>
</tr>
<tr>
<td>Service</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Directory Integration</td>
<td>Infrastructure</td>
<td>Section 7.1.3</td>
</tr>
<tr>
<td>Platform</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

7.1.1 Configuring OracleAS Single Sign-On After Installation

This section describes how to configure OracleAS Single Sign-On after installation.

7.1.1.1 Configuring OracleAS Single Sign-On

To configure OracleAS Single Sign-On, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the Infrastructure instance in which you want to configure OracleAS Single Sign-On.

2. On the Application Server Home page, in the System Components section, click Configure Component.

4. On the Login page:
 - **User Name**: Enter cn=orcladmin, or the distinguished name of a user in the iASAdmins group.
 - **Password**: Enter the password for the user.

 The SSL Only check box is grayed out because you cannot change this feature in this operation.

5. Click Finish.

7.1.1.2 Post-Configuration Tasks

When the configuration is finished, take the following steps:

1. In the Application Server Control Console Confirmation page, click OK. The Application Server Home page appears.
2. If you did not have an OC4J_SECURITY instance before, you will have one now. The OC4J_SECURITY instance will have a status of Down. You will also have a Single Sign-On:orasso instance with a status of Down. Select the check box next to OC4J_SECURITY and click Start.

 Note: You cannot start the Single Sign-On:orasso instance. This feature is started and stopped when you start and stop HTTP_Server and OC4J_SECURITY.

3. When the operation completes, verify that OC4J_SECURITY has a status of Up.

 Note: The Single Sign-On:orasso status may be displayed as Down. This is normal. The status should be updated approximately five minutes after configuration.

4. Select HTTP_Server and click Restart.

5. Verify that you can access OracleAS Single Sign-On at the following URL:

 \[http://hostname.domain:port/pls/orasso\]

 In the URL, hostname.domain is the host on which OracleAS Single Sign-On is installed and port is the Infrastructure HTTP Server port.

 In the OracleAS Single Sign-On Welcome page, log in as orcladmin with the orcladmin password.

 See Also: Oracle Application Server Single Sign-On Administrator's Guide for more information on configuring OracleAS Single Sign-On

7.1.2 Configuring Oracle Delegated Administration Services After Installation

This section describes how to configure Oracle Delegated Administration Services after installation.

When you configure Oracle Delegated Administration Services after installation, you will see the following results:

- The URL for Oracle Delegated Administration Services is set up.
- The appropriate privileges are created.
- Oracle Delegated Administration Services are deployed in the OC4J_SECURITY instance.

7.1.2.1 Configuring mod_osso for Oracle Delegated Administration Services

Before you configure Oracle Delegated Administration Services, you must make sure mod_osso is configured, as follows:

1. Check if mod_osso is configured in the Oracle home where you want to configure Oracle Delegated Administration Services. Examine the following file:

 - On UNIX systems:
 \[ORACLE_HOME/Apache/Apache/conf/httpd.conf\]

 Look for the following line in the file:
 \[include "ORACLE_HOME/Apache/Apache/conf/mod_osso.conf"\]

 - On Windows systems:
 \[ORACLE_HOME\Apache\Apache\conf\httpd.conf\]

 Look for the following line in the file:
include "ORACLE_HOME\Apache\Apache\conf\mod_osso.conf"

ORACLE_HOME refers to the directory where you want to configure Oracle Delegated Administration Services.

If the line starts with #, then it is commented out and mod_osso is not configured in this installation. Perform step 2 to configure mod_osso.

If the line is not commented out, mod_osso is already configured. You can proceed and configure Oracle Delegated Administration Services using Application Server Control, as described in Section 7.1.2.2.

2. To configure mod_osso, perform these steps:
 a. Set the **ORACLE_HOME** environment variable to the full path of the directory where you want to configure Oracle Delegated Administration Services.
 b. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you have to set depend on the type of your UNIX operating system.
 c. On Windows systems, set the PATH environment variable to contain %ORACLE_HOME%\lib.
 d. Run the following command (all on one line). **Note:** for the -classpath parameter, do not type any space characters after the colon (:) and semicolon (;) characters, as indicated by *<no spaces>*.

 On UNIX:

   ```
   $ORACLE_HOME/jdk/bin/java
   -classpath .:$ORACLE_HOME/sso/lib/ossoreg.jar:<no spaces>
   $ORACLE_HOME/jlib/ojmisc.jar:<no spaces>
   $ORACLE_HOME/jlib/repository.jar:<no spaces>
   $ORACLE_HOME/j2ee/home/jazn.jar:$ORACLE_HOME/jdk/lib/dt.jar:<no spaces>
   $ORACLE_HOME/jdk/lib/tools.jar:$ORACLE_HOME/jlib/infratool.jar
   oracle.ias.configtool.UseInfrastructure
   -f $ORACLE_HOME/config/infratool_mod_osso.properties
   -h OIDhost -p OIDport -u OIDadminName -w OIDclearTextPassword
   -o ORACLE_HOME -m ASinstanceName
   -infra infraGlobalDBName -mh host -sso true
   -sslp sslPort -sslf false
   ```

 On Windows:

   ```
   %ORACLE_HOME%\jdk\bin\java
   -classpath .;%ORACLE_HOME%\sso\lib\ossoreg.jar;
   %ORACLE_HOME%\jlib\ojmisc.jar;
   %ORACLE_HOME%\jlib\repository.jar;
   %ORACLE_HOME%\j2ee\home\jazn.jar;
   %ORACLE_HOME%\jdk\lib\dt.jar;
   %ORACLE_HOME%\jdk\lib\tools.jar;%ORACLE_HOME%\jlib\infratool.jar
   oracle.ias.configtool.UseInfrastructure
   -f %ORACLE_HOME%\config\infratool_mod_osso.properties
   -h OIDhost -p OIDport -u OIDadminName -w OIDclearTextPassword
   -o ORACLE_HOME -m ASinstanceName
   -infra infraGlobalDBName -mh host -sso true
   -sslp sslPort -sslf false
   ```

 Table 7–2 describes the parameters that require values.
3. If you needed to perform the previous step, restart OC4J and Oracle HTTP Server, using the opmnctl command:
 - On UNIX systems:

     ```
     ORACLE_HOME/opmn/bin/opmnctl restartproc ias-component=OC4J
     ORACLE_HOME/opmn/bin/opmnctl restartproc ias-component=HTTP_Server
     ```
 - On Windows systems:

     ```
     ORACLE_HOME\opmn\bin\opmnctl restartproc ias-component=OC4J
     ORACLE_HOME\opmn\bin\opmnctl restartproc ias-component=HTTP_Server
     ```

7.1.2.2 Configuring Delegated Administration Service

To configure Oracle Delegated Administration Services, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the Infrastructure instance in which you want to configure Oracle Delegated Administration Services.
2. On the Application Server Home page, in the System Components section, click Configure Component.

3. On the Select Component page, select Delegated Administration Service. Click Continue.

4. On the Login page:
 - User Name: Enter cn=orcladmin.
 - Password: Enter the password for the user.
 The SSL Only check box is grayed out because you cannot change this feature in this operation.

5. Click Finish.

7.1.2.3 Post-Configuration Tasks
When the configuration is finished, take the following steps:

1. In the Application Server Control Console Confirmation page, click OK. The Application Server Home page appears.

2. If you did not have an OC4J_SECURITY instance before, you will have one now. The OC4J_SECURITY instance will have a status of Down. Select the check box next to OC4J_SECURITY and click Start.

3. Select HTTP_Server and click Restart.

4. Stop and restart all components, using the opmnctl command:
 - On UNIX systems:
     ```
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ORACLE_HOME/opmn/bin/opmnctl startall
     ```
 - On Windows systems:
     ```
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ORACLE_HOME\opmn\bin\opmnctl startall
     ```

5. Verify that Oracle Delegated Administration Services is started by navigating to the following URL:
   ```
   http://hostname.domain:port/oiddas
   ```
 In the URL, hostname.domain is the host on which Oracle Delegated Administration Services is installed and port is the Infrastructure HTTP Server port.

See Also: Oracle Internet Directory Administrator’s Guide for more information on configuring Oracle Delegated Administration Services

7.1.3 Configuring Oracle Directory Integration Platform After Installation
To configure Oracle Directory Integration Platform after installation, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the Infrastructure instance in which you want to configure Oracle Directory Integration Platform.

2. On the Application Server Home page, in the System Components section, click Configure Component.
3. On the Select Component page, select **Directory Integration and Provisioning**. Click **Continue**.

4. On the Login page:
 - **User Name**: Enter `cn=orcladmin`.
 - **Password**: Enter the password for the user.

 The **SSL Only** check box is grayed out because you cannot change this feature in this operation.

5. Click **Finish**.

6. When the configuration is finished, click **OK**. The Application Server Home page appears.

 See Also: *Oracle Internet Directory Administrator’s Guide* for more information on configuring Oracle Directory Integration Platform

7.2 Deconfiguring Components

After you have configured a component, you cannot deconfigure it. An alternative is to disable the component, which prevents it from starting when you start your application server instance. It also removes the component from the System Components list in the Application Server Control Console, and from the `opmnctl status` output. Section 3.4, "Enabling and Disabling Components" describes how to disable a component.

7.3 Deleting OC4J Instances

Guidelines for deleting OC4J instances are as follows:

- You cannot delete OC4J instances that were created by Oracle Application Server during installation.

 These include `OC4J_FED` and `OC4J_SECURITY`. An alternative is to disable an OC4J instance, which prevents it from starting when you start your application server instance. It also removes the component from the System Components list on the Application Server Control Console, and from the `opmnctl status` output.

 See Also: Section 3.4, "Enabling and Disabling Components"

- You can delete OC4J instances that were created by a user after installation.

Deleting these instances removes all applications deployed to the instance. You can delete an OC4J instance using `dcmctl` or the Application Server Control Console.

To delete an OC4J instance using `dcmctl`:

(UNIX) `ORACLE_HOME`/dcm/bin/dcmctl removeComponent -co OC4J_instance_name

(Windows) `ORACLE_HOME`/dcm\bin\dcmctl removeComponent -co OC4J_instance_name

For example, on UNIX:

`ORACLE_HOME`/dcm/bin/dcmctl removeComponent -co OC4J_myapps

To delete an OC4J instance using the Application Server Control Console:
1. Navigate to the Application Server Home page for the instance that contains the OC4J instance.
2. In the System Components section, select the check box for the OC4J instance and click **Delete OC4J Instance**.

7.4 Configuring 10.1.2 and 10.1.3 Middle Tiers to Use OracleAS Infrastructure

You can configure a Release 2 (10.1.2.0.2) J2EE and Web Cache or a Release 3 (10.1.3) middle-tier instance to use a 10g (10.1.4.0.1) OracleAS Infrastructure.

You do this by using the Infrastructure page on the Application Server Control Console. **Figure 7–2** shows the Infrastructure page for a Release 2 (10.1.2.0.2) middle tier.

Figure 7–2 Application Server Control Console Infrastructure Page

This section contains the following procedures for configuring a middle-tier instance to use Infrastructure services:

- **To configure a Release 2 (10.1.2.0.2) J2EE and Web Cache instance to use Oracle Identity Management**, refer to Section 7.4.1.
- **To configure a Release 2 (10.1.2.0.2) J2EE and Web Cache instance to use OracleAS Metadata Repository**, refer to Section 7.4.2. Note that the instance must already use Oracle Identity Management.
- **To configure a Release 2 (10.1.2.0.2) J2EE and Web Cache instance to use an Existing Database** (an OracleAS Metadata Repository that is not registered with Oracle Internet Directory used by this instance), refer to Section 7.4.3. Note that the instance may or may not use Oracle Identity Management.
- **To configure a Release 3 (10.1.3) middle-tier instance to use Identity Management**, see Section 7.4.4.
7.4.1 Configuring 10.1.2 Middle Tiers to Use Oracle Identity Management

This section describes how to configure a J2EE and Web Cache, Release 2 (10.1.2.0.2), instance to use Oracle Identity Management, 10g (10.1.4.0.1), as shown in Figure 7–3.

Before you start, make sure that:

- The Oracle Identity Management instance is started (status is Up).
- You know the Oracle Internet Directory host and port numbers.
- You know the password for cn=orcladmin, or another user who is a member of the iASAdmins group.

Then, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the J2EE and Web Cache instance.
2. Click Infrastructure.
4. On the Internet Directory page:
 - **Host:** Enter the fully-qualified name of the Oracle Internet Directory host.
 - **Port:** If you do not check Use only SSL connections with Internet Directory, enter the non-SSL Oracle Internet Directory port number. Otherwise, enter the SSL Oracle Internet Directory port number.
 - **Use only SSL connections with Internet Directory:** By default, some middle-tier components connect to Oracle Internet Directory using non-SSL connections. If you want components to connect only to Oracle Internet Directory using SSL, check this box and make sure you entered the SSL Oracle Internet Directory port number in the Port field.

Note: If you enter an SSL port number and inadvertently do not select Use only SSL connections with Internet Directory, the SSL port number takes precedence and connections to the Oracle Internet Directory are limited to secure connections only.

If this is not the behavior you intended, you can return to the Identity Management Wizard, enter a non-SSL port in the Port field, and make sure that Use only SSL connections with Internet Directory is cleared.

5. On the Login page:

Click Next.
Configuring 10.1.2 and 10.1.3 Middle Tiers to Use OracleAS Infrastructure

- **User Name:** Enter cn=orcladmin, or the distinguished name of a user in the iASAdmins group.
- **Password:** Enter the password for the user.

Click Next.

6. On the Validation page, you receive informational messages regarding the validation of this operation and a warning that all of the components in the instance will be stopped. If you receive any error message, follow the instructions for investigating them. Otherwise, if the operation is valid, click Finish.

7. When the operation is finished, you must restart the components in the J2EE and Web Cache instance.
 a. Click Home to navigate to the Home page for the middle-tier instance.
 b. Click Start All.

Your J2EE and Web Cache instance is now configured to use Oracle Identity Management services.

See Also: Oracle Identity Management Infrastructure Administrator’s Guide

7.4.2 Configuring 10.1.2 Middle-Tiers with Oracle Identity Management to Use OracleAS Metadata Repository

This section describes how to configure a J2EE and Web Cache, Release 2 (10.1.2.0.2), instance to use OracleAS Metadata Repository, 10g (10.1.4.0.1). This procedure requires that the J2EE and Web Cache instance is already using Oracle Identity Management, and OracleAS Metadata Repository is registered with that Oracle Identity Management, as shown in Figure 7–4.

Figure 7–4 J2EE and Web Cache (with Identity Management) Using OracleAS Metadata Repository

Before you start, make sure that:

- OracleAS Metadata Repository is started (status is Up).
- The Oracle Identity Management instance is started (status is Up).
- You know the password for cn=orcladmin, or another user who is a member of the iASAdmins group.

Then, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the J2EE and Web Cache instance.
2. Click Infrastructure.
3. On the Infrastructure page, in the OracleAS Farm Repository Management section, click Configure.

5. On the Internet Directory page:
 - **User Name**: Enter `cn=orcladmin` or the distinguished name of a user in the `iASAdmins` group.
 - **Password**: Enter the password for the user.

 Notice that Use Only SSL connections with Internet Directory is grayed out. This is because you cannot specify this option in this operation. Click Next.

6. On the Location page, select the OracleAS Metadata Repository you want to use from the Repository list. The Default Schema is always DCM. Then, click Next.

7. On the Validation page, you receive informational messages regarding the validation of this operation and a warning that components will be stopped. If you receive any error message, follow the instructions for investigating them. Otherwise, if the repository you specified is valid, click Finish.

8. When the operation is finished, you must restart the components in the J2EE and Web Cache instance.
 a. Click Home to navigate to the Home page for the middle-tier instance.
 b. Click Start All.

Your J2EE and Web Cache instance is now in the OracleAS Metadata Repository’s farm and can join an instance of OracleAS Clusters in that farm.

See Also: Oracle Application Server High Availability Guide for information on creating and using OracleAS Clusters

7.4.3 Configuring 10.1.2 Middle Tiers to Use an Existing Database as a Repository

This section describes how to configure a J2EE and Web Cache, Release 2 (10.1.2.0.2), instance to use an existing Database (a 10g (10.1.4.0.1) OracleAS Metadata Repository that is not registered with Oracle Internet Directory) as the metadata repository. The J2EE and Web Cache instance may use Oracle Identity Management, as shown in Figure 7–5, or it may not, as shown in Figure 7–6.

See Also: Oracle Application Server High Availability Guide for information on creating and using OracleAS Clusters

Figure 7–5 J2EE and Web Cache (with Identity Management) Using an Existing Database

Figure 7–6 shows the J2EE and Web Cache instance using an existing database as a metadata repository, but not using Oracle Identity Management.
Before you start, make sure that:

- The Existing Database is started (status is Up).
- You know the Net listener port and the service name for the Existing Database. These are listed in the entry for the Existing Database in the following file:
 - On UNIX systems:
    ```
    EXISTING_DB_ORACLE_HOME/network/admin/tnsnames.ora
    ```
 - On Windows systems:
    ```
    EXISTING_DB_ORACLE_HOME\network\admin\tnsnames.ora
    ```
- You know the password for the DCM schema in the database.

 If you have just installed the Existing Database and have not used the DCM schema yet, note that the password is generated randomly during installation. To change the random password to a known value, use the `ALTER USER` command in `SQL*Plus`, as shown in the following example (be sure to set the `ORACLE_HOME` and `ORACLE_SID` environment variables first):

  ```
  sqlplus "SYS/sys_password" as SYSDBA"  
  SQL> ALTER USER dcm IDENTIFIED BY new_password;  
  ```

Then, take the following steps:

1. Using the Application Server Control Console, navigate to the Application Server Home page for the J2EE and Web Cache instance.
2. Click **Infrastructure**.
3. On the Infrastructure page, in the OracleAS Farm Repository Management section, click **Configure**.
4. On the Source page, choose **Existing Database**. (Note: If the OracleAS Metadata Repository option is grayed out, it is because the J2EE and Web Cache instance is not using Oracle Identity Management). Then, click **Next**.
5. On the Login page, fill in the following fields:
 - **User Name**: DCM.
 - **Password**: Enter the DCM schema password.
 - **Hostname and Port**: Enter the hostname and Net listener port for the Existing Database. For example: `myhost:1521`.
 - **Service Name**: Enter the service name for the Existing Database. For example, `orcl.myco.com`.

 Click **Next**.
6. On the Validation page, you receive informational messages regarding the validation of this operation. If you receive any error message, follow the instructions provided.
instructions for investigating them. Otherwise, if the operation is valid, click Finish.

7. When the operation is finished, you must restart the components in the J2EE and Web Cache instance.
 a. Click Home to navigate to the Home page for the instance.
 b. Click Start All.

Your J2EE and Web Cache instance is now in the Existing Database’s farm and can join an instance of OracleAS Clusters in that farm.

7.4.4 Configuring 10.1.3 Middle Tiers to Use 10.1.4 Oracle Identity Management

This section describes how to configure a 10.1.3 middle-tier instance to use Oracle Identity Management, 10g (10.1.4.0.1), as shown in Figure 7–3.

Before you start, make sure that:
- The Oracle Identity Management instance is started (status is Up).
- You know the Oracle Internet Directory host and port numbers.
- You know the password for cn=orcladmin, or another user who is a member of the iASadmins group.

Task 1: Enable SSO Authentication (Optional)
If you want to enable SSO authentication for deployed applications, you must take the following steps before you use the Identity Management wizard described in "Task 2: Configure the Middle-Tier Instance for Identity Management":

1. On the Identity Management host, set the environment variables ORACLE_HOME and ORACLE_SID.
2. On the Identity Management host, run the ssoreg script, using the -remote_midiier option. The file is located at:
 (UNIX) ORACLE_HOME/sso/bin/ssoreg.sh
 (Windows) ORACLE_HOME\sso\bin\ssoreg.bat

 For example, on LINUX:
 $ORACLE_HOME/sso/bin/ssoreg.sh -oracle_home_path $ORACLE_HOME
 -config_mod_osso TRUE
 -site_name myhost.com:7778
 -remote_midiier
 -config_file $ORACLE_HOME/Apache/Apache/conf/osso/myosso.conf
 -mod_osso_url http://myhost.com:7778
The resulting configuration file (mysso.conf in the example) is an obfuscated osso configuration file.

3. Copy the obfuscated osso configuration file to the middle-tier instance.

4. On the middle-tier host, run the following script to complete the registration:

 (UNIX) `ORACLE_HOME/Apache/Apache/bin/osso1013 config_file`
 (Windows) `perl ORACLE_HOME\Apache\Apache\bin\osso1013 config_file`

Task 2: Configure the Middle-Tier Instance for Identity Management

To configure the middle-tier instance to use Identity Management, take the following steps:

1. Using the Application Server Control Console, navigate to the OC4J Home page for the middle-tier instance.

2. Click **Administration**.

3. In the Task Name column of the table, expand **Security** if it is not already expanded. Then, in the **Identity Management** row, click the **Go to Task** icon.

4. On the Identity Management page, click **Configure**.

5. On the Configure Identity Management: Connect Information page:

 - **Oracle Internet Directory Host**: Enter the fully-qualified name of the Oracle Internet Directory host.
 - **Oracle Internet Directory User**: Enter the distinguished name of a user, such as `cn=orcladmin`, in the iASAdmins group.
 - **Password**: Enter the password for the user.

 This password will be used as the default password for the oc4jadmin user created in Oracle Internet Directory.
 - **Use only SSL connections to the Internet Directory**: Select this option if you want middle-tier components to connect to Oracle Internet Directory using only SSL.

 Then, in the **Oracle Internet Directory SSL Port** field, enter the Oracle Internet Directory SSL port number.
 - **Use non-SSL connections to the Internet Directory**: Select this option if you want middle-tier components to connect to Oracle Internet Directory using non-SSL connections.

 Then, in the **Oracle Internet Directory Port** field, enter the Oracle Internet Directory non-SSL port number.

 Click **Next**.

6. On the Configure Identity Management: Application Server Control page, you can specify if you want to configure the Application Server Control to use Identity Management as its security provider, for authentication and authorization of administrative users. If you do, select **Use Oracle Identity Management Security Provider**.

 Note the following:

 - Any Application Server Control administrator users created for the current security provider will not be able to access the Application Server Control after you make this change. Only users and groups defined in Oracle Internet Directory will be able to access the Application Server Control Console.
7. On the Configure Identity Management: Deployed Applications page, you can specify security options for applications deployed in this OC4J instance. For each application:

- **Use OID Security Provider:** Select this option to configure applications to use Identity Management as its security provider for authentication and authorization.

 Note that you cannot change the security provider for the default application.

- **Enable SSO Authentication:** If you selected *Use OID Security Provider,* you can select this option to use Single Sign-On authentication. Note, however, that you must have first registered your instance of Oracle Application Server with the OracleAS Single Sign-On server. See "Task 1: Enable SSO Authentication (Optional)" for more information.

Click **Configure.**

8. When the operation is finished, you need to restart the OC4J instance. Do not click **Restart** on the Confirmation page. Instead, navigate to the Cluster Topology page, select the OC4J instance, and click **Restart.**

Your middle tier is now configured to use Oracle Identity Management services.

See Also: *Oracle Identity Management Infrastructure Administrator’s Guide*

7.5 Disabling and Enabling Anonymous Binds

Beginning with Release 2 (10.1.2.0.2), you can enable and disable anonymous binds (anonymous authentication) in Oracle Internet Directory. By default, anonymous binds are enabled.

Although disabling anonymous binds is useful in many runtime environments, most configuration changes, such as the following, require that anonymous binds are enabled:

- Installing new components with Oracle Universal Installer
- Configuring components with Application Server Control Console
- Changing the host name, domain name, or IP address of a host on which you have installed Oracle Application Server
- Cloning

7.5.1 Disabling Anonymous Binds for Run Time Environments

To disable anonymous binds, take the following steps:

1. Shut down all middle tiers that are connected to the OracleAS Infrastructure, as described in **Section 3.2.4.**

2. Shut down OracleAS Infrastructure, in all Infrastructure Oracle homes:

 (UNIX) `ORACLE_HOME/opmn/bin/opmnctl stopall`

 (Windows) `ORACLE_HOME\opmn\bin\opmnctl stopall`

3. Start Oracle Internet Directory, because it must be started while you perform the procedure:
Disabling and Enabling Anonymous Binds

4. Edit the `ias.properties` file for each middle tier connected to the OracleAS Infrastructure and for the Infrastructure Oracle home that contains OracleAS Single Sign-On and Oracle Delegated Administration Services. The `ias.properties` file is located in the following directory:

 (UNIX) `ORACLE_HOME/config`
 (Windows) `ORACLE_HOME\config`

 In the `ias.properties` file, add the `OIDAnonymousDisabled` property to the file and set it to `true`:

 `OIDAnonymousDisabled=true`

5. Edit the `dads.conf` file for each middle tier connected to the OracleAS Infrastructure and for the Infrastructure Oracle home that contains OracleAS Single Sign-On and Oracle Delegated Administration Services. The `dads.conf` file is located in the following directory:

 (UNIX) `ORACLE_HOME/Apache/modplsql/conf`
 (Windows) `ORACLE_HOME\Apache\modplsql\conf`

 By default, the `PlsqlDatabaseConnectString` parameter contains a value that uses the LDAP name resolution format, for example:

 `PlsqlDatabaseConnectString cn=orcl, cn=oraclecontext NetServiceNameFormat`

 Comment out this line. (Do not delete it because you will need to revert to it if you want to enable anonymous binds in the future.)

 Add the following line, which changes the value of the `PlsqlDatabaseConnectString` parameter to use the `host:port:service` format instead of LDAP name resolution:

 `PlsqlDatabaseConnectString db_host:db_hostdb_listener_port:db_service_name`

 In the example, `db_host` is the name of the host on which the OracleAS Metadata Repository for OracleAS Single Sign-On is installed, `db_listener_port` is the listener port for that OracleAS Metadata Repository, and `db_service_name` is the service name for the OracleAS Metadata Repository.

6. Use the `ldapmodify` command to disable anonymous binds. Use the command on the Oracle home that contains Oracle Internet Directory.

 Take the following steps:

 a. Create a text file with the following lines:

      ```
      dn:
      changetype: modify
      replace: orclanonymousbindsflag
      orclanonymousbindsflag: 0
      ```

 b. Use the `ldapmodify` command, calling the text file created in the previous step as input. In the following example, the text file is named `anon_off.ldif`:

      ```
      (Unix) `ORACLE_HOME/bin/ldapmodify -h host -p port -D cn=orcladmin -w password -v -f anon_off.ldif`
      (Windows) `ORACLE_HOME\bin\ldapmodify -h host -p port -D cn=orcladmin -w password -v -f anon_off.ldif`
      ```
7. Stop Oracle Internet Directory:

(UNIX) $ORACLE_HOME/bin/oidmon connect=db_connect_string stop
(Windows) $ORACLE_HOME\bin\oidmon connect=db_connect_string stop

8. Start OracleAS Infrastructure, including Oracle Internet Directory, in the Oracle Internet Directory Oracle home, then in any other OracleAS Infrastructure Oracle homes:

(UNIX) $ORACLE_HOME/opmn/bin/opmnctl startall
(Windows) $ORACLE_HOME\opmn\bin\opmnctl startall

9. Start all middle tiers that are connected to the Infrastructure, as described in Section 3.2.3, "Starting a Middle-Tier Instance".

7.5.2 Enabling Anonymous Binds for Configuration Changes

If you have disabled anonymous binds, you must take the following steps to enable anonymous binds before you can make configuration changes to Oracle Application Server middle tiers or OracleAS Infrastructure:

1. Shut down all middle tiers that are connected to the OracleAS Infrastructure, as described in Section 3.2.4, "Stopping a Middle-Tier Instance".

2. Shut down OracleAS Infrastructure, in all Infrastructure Oracle homes:

(UNIX) $ORACLE_HOME/opmn/bin/opmnctl stopall
(Windows) $ORACLE_HOME\opmn\bin\opmnctl stopall

3. Start Oracle Internet Directory, because it must be started while you perform the procedure:

(UNIX) $ORACLE_HOME/bin/oidmon connect=db_connect_string start
(Windows) $ORACLE_HOME\bin\oidmon connect=db_connect_string start

4. Edit the ias.properties file for each middle tier connected to the OracleAS Infrastructure and for the Infrastructure Oracle home that contains OracleAS Single Sign-On and Oracle Delegated Administration Services. The ias.properties file is located in the following directory:

(UNIX) $ORACLE_HOME/config
(Windows) $ORACLE_HOME\config

In the ias.properties file, set the OIDAnonymousDisabled property to false:

OIDAnonymousDisabled=false

If the property does not exist in the file, or if it is set to false, anonymous binds are enabled.

5. Edit the dads.conf file for each middle tier connected to the OracleAS Infrastructure and for the Infrastructure Oracle home that contains OracleAS Single Sign-On and Oracle Delegated Administration Services. The dads.conf file is located in the following directory:

(UNIX) $ORACLE_HOME/Apache/modplsql/conf
(Windows) $ORACLE_HOME\Apache\modplsql\conf

If you previously commented out the line that contains the PlsqlDatabaseConnectString parameter with a value that uses the LDAP name
resolution format, uncomment out that line. If you deleted the line, add a line using the following format:

```
PlsqlDatabaseConnectString cn=orcl, cn=oraclecontext NetServiceNameFormat
```

If you previously added a line similar to the following, which contains the
PlsqlDatabaseConnectString parameter with a value that use
host:port:service format, comment out the line:

```
PlsqlDatabaseConnectString db_host:db_hostdb_listener_port:db_service_name
```

6. Use the ldapmodify command to enable anonymous binds. Use the command on the Oracle home that contains Oracle Internet Directory.

Take the following steps:

- **a. Create a text file with the following lines:**

  ```
  dn:
  changetype: modify
  replace: orclanonymousbindsflag
  orclanonymousbindsflag: 1
  ```

- **b. Use the ldapmodify command, calling the text file created in the previous step as input. In the following example, the text file is named anon_on.ldif:**

  ```
  (Unix) ORACLE_HOME/bin/ldapmodify -h host -p port -D cn=orcladmin -w password -v -f anon_on.ldif
  (Windows) ORACLE_HOME\bin\ldapmodify -h host -p port -D cn=orcladmin -w password -v -f anon_on.ldif
  ```

7. Stop Oracle Internet Directory:

- **(UNIX)** `ORACLE_HOME/bin/oidmon connect=db_connect_string stop`
- **(Windows)** `ORACLE_HOME\bin\oidmon connect=db_connect_string stop`

8. Start OracleAS Infrastructure, including Oracle Internet Directory, in the Oracle Internet Directory Oracle home, then in any other OracleAS Infrastructure Oracle homes:

- **(UNIX)** `ORACLE_HOME/opmn/bin/opmnctl startall`
- **(Windows)** `ORACLE_HOME\opmn\bin\opmnctl startall`

9. Start all middle tiers that are connected to the Infrastructure, as described in Section 3.2.3, "Starting a Middle-Tier Instance".
This chapter provides procedures for changing the network configuration of an Oracle Application Server host.

It contains the following topics:

- **Overview of Procedures for Changing Network Configurations**
- **Changing the Hostname, Domain Name, or IP Address**
- **Moving Between Off-Network and On-Network**
- **Changing Between a Static IP Address and DHCP**

8.1 Overview of Procedures for Changing Network Configurations

The following procedures for changing network configurations are presented in this chapter:

- **Changing the Hostname, Domain Name, or IP Address**

 This section describes how to update Oracle Application Server when changing the hostname, domain name, or IP address of a host.

- **Moving Between Off-Network and On-Network**

 This section provides procedures for moving an Oracle Application Server host on and off the network. You may use DHCP or a static IP address when on the network. You can use these procedures, for example, if you installed Oracle Application Server on your laptop and want to connect to different networks to use it.

- **Changing Between a Static IP Address and DHCP**

 This section provides procedures for changing from a static IP address to DHCP, and from DHCP to a static IP address. You might use these if you install on a static IP address but then decide you want to use DHCP so you can be more mobile, or if you are using DHCP and must connect to a network using a static IP address.

 If you have disabled anonymous binds in Oracle Internet Directory, you must enable them before you make configuration changes. See Section 7.5 for more information.

8.2 Changing the Hostname, Domain Name, or IP Address

You may want to change the hostname, domain name, or IP address of the host after you have installed Oracle Application Server. Depending on your installation type, you can perform some or all of these operations.
Many of the procedures in this section use the `chgiphost` command. See Section 8.2.1 for more information about the command.

Table 8–1 summarizes the installation types that support hostname, domain name, and IP address changes, and provides pointers to the appropriate procedures.

<table>
<thead>
<tr>
<th>Installation Type</th>
<th>Changing the Hostname or Domain Name</th>
<th>Changing the IP Address</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infrastructure: Identity Management only</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td>Identity Management installations with the following components configured on the host to be changed:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Oracle Internet Directory only</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ OracleAS Single Sign-On, Oracle Delegated Administration Services, and (optionally) Oracle Directory Integration Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>■ Oracle Internet Directory, OracleAS Single Sign-On, Oracle Delegated Administration Services, and (optionally) Oracle Directory Integration Platform</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Infrastructure: Identity Management and Metadata Repository</td>
<td>Not supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Section 8.2.5</td>
</tr>
<tr>
<td>Infrastructure: Metadata Repository only</td>
<td>Not supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td></td>
<td>See Section 8.2.5</td>
</tr>
<tr>
<td>Oracle Identity Federation</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>See Section 8.2.3</td>
<td>See Section 8.2.3</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>Supported</td>
<td>Supported</td>
</tr>
<tr>
<td></td>
<td>See Section 8.2.4</td>
<td>Simply change the address in your operating system. No updates to Oracle Application Server are required.</td>
</tr>
</tbody>
</table>

For the procedures in this chapter, a Metadata Repository is one created by an installation of OracleAS Infrastructure or by the running Oracle Application Server Repository Creation Assistant.

See Also:

- *Oracle Application Server Administrator’s Guide*, Release 2 (10.1.2) for information on changing the network information for a 10.1.2 middle tier
- *Oracle Application Server Administrator’s Guide*, Release 3 (10.1.3) for information on changing the network information for a 10.1.3 middle tier

8.2.1 Understanding the chgiphost Command

The `chgiphost` command-line utility changes the hostname, domain name, or IP address of an Oracle Application Server installation.

The utility is located at:
Changing the Hostname, Domain Name, or IP Address

On UNIX systems:

```
ORACLE_HOME/chgip/scripts/chgiphost.sh
```

On Windows systems:

```
ORACLE_HOME\chgip\scripts\chgiphost.bat
```

Table 8–2 shows the options for the command.

<table>
<thead>
<tr>
<th>Options</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-fed</td>
<td>Changes the hostname, domain name, or IP address of an Oracle Identity Federation installation</td>
</tr>
<tr>
<td>-help</td>
<td>Displays command-line Help for the utility</td>
</tr>
<tr>
<td>-idm</td>
<td>Changes the hostname, domain name, or IP address of an Identity Management only instance</td>
</tr>
<tr>
<td>-infra</td>
<td>Changes the IP address of an Infrastructure instance</td>
</tr>
<tr>
<td>-silent</td>
<td>Runs the command in silent mode</td>
</tr>
<tr>
<td>-version</td>
<td>Displays the version of the utility</td>
</tr>
</tbody>
</table>

Note that if you use `chgiphost` to change the hostname, domain name, or IP address, it does not update the instance name. For example, assume that the original instance name, with the hostname and domain name appended, is:

```
1014im.myhost1.mydomain.com
```

If you change the hostname to `myhost2`, the instance name does not change; it remains the same.

See Also:

- Section 8.2.6.2, "Setting the Log Level for chgiphost"
- Section 8.2.6.3, "Customizing the chgiphost Command"

8.2.2 Changing the Hostname, Domain Name, or IP Address of an Identity Management Installation

This section describes how to change the hostname, domain name, or IP address on a host that contains an Identity Management installation. This procedure applies to any Identity Management-only installation (one that does not include a Metadata Repository), including the following:

- Identity Management with only Oracle Internet Directory configured
- Identity Management with OracleAS Single Sign-On and Oracle Delegated Administration Services configured, and, optionally, Oracle Directory Integration Platform
- Identity Management with Oracle Internet Directory, OracleAS Single Sign-On, and Oracle Delegated Administration Services configured and, optionally, Oracle Directory Integration Platform
- Identity Management with Oracle Identity Federation configured
The following sections describe the procedure:

- **Before You Begin**
- **Task 1: Shut Down Middle-Tier Instances**
- **Task 2: Prepare Your Host**
- **Task 3: Change the Hostname, Domain Name, or IP Address**
- **Task 4: Run the chgiphost Command**
- **Task 5: Restart Your Environment**
- **Task 6: Update Your Environment**
- **Task 7: Update Oracle Internet Directory If LDAP-Based Replication Is Used**
- **Task 8: Update Oracle Identity Federation**

Before You Begin

Review the following items before you start the procedure:

- Consider changing the log level before running the `chgiphost` command so you can view more detailed information. See Section 8.2.6.2 for more information.
- If your old hostname is a string that is likely to appear in a configuration file, the `chgiphost` command may encounter problems when trying to update the configuration files. Refer to Section 8.2.6.3 for information on how to avoid this problem.
- Write down the old hostname and IP address before you begin. You will be prompted for these values.
- Oracle recommends that you perform a backup of your environment before you start this procedure. Refer to Part V, "Backup and Recovery" for more information.

Task 1: Shut Down Middle-Tier Instances

For each middle-tier instance that uses Identity Management, stop the Application Server Control Console and the middle-tier instance using the following commands:

- **On UNIX systems:**

  ```
  ORACLE_HOME/bin/emctl stop iasconsole
  ORACLE_HOME/opmn/bin/opmnctl stopall
  ```

- **On Windows systems:**

  ```
  ORACLE_HOME\bin\emctl stop iasconsole
  ORACLE_HOME\opmn\bin\opmnctl stopall
  ```

Task 2: Prepare Your Host

Prepare your host for the hostname change by stopping all processes:

1. Set the ORACLE_HOME environment variable.
2. Shut down the Identity Management installation, including the servers, such as Oracle Directory Server, Oracle Directory Integration Platform server, and
Replication Server, and the Application Server Control Console. For example, on UNIX, use the following commands:

```
ORACLE_HOME/bin/emctl stop iasconsole
ORACLE_HOME/bin/oidctl server=odisrv instance=instance_number stop
ORACLE_HOME/bin/oidctl connect=global_db_name server=oidrepld instance=instance_number stop
ORACLE_HOME/bin/oidctl server=oidldapd instance=instance_number stop
ORACLE_HOME/opmn/bin/opmnctl stopall
```

3. To make sure Oracle Application Server processes will not start automatically after a restart of the host, disable any automated startup scripts you may have set up, such as `/etc/init.d` scripts.

Task 3: Change the Hostname, Domain Name, or IP Address

Update your operating system with the new hostname, domain name, or IP address. Consult your operating system documentation for information on how to perform the following steps:

1. Make the updates to your operating system to properly change hostname, domain name, or both.
2. Restart the host, if necessary for your operating system.
3. Verify that you can ping the host from another host in your network. Be sure to ping using the new hostname to make sure everything is resolving properly.

Task 4: Run the chgiphost Command

Perform these steps using the Identity Management Oracle home:

1. Log in to the host as the user that installed Identity Management.
2. Set the ORACLE_HOME environment variable. Do not use a trailing slash (UNIX) or backslash (Windows) when specifying the ORACLE_HOME variable.
3. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.
4. Run the following commands in the Identity Management Oracle home:
 - On UNIX systems:
     ```
     cd ORACLE_HOME/chgip/scripts
     ./chgiphost.sh -idm
     ```
 - On Windows systems:
     ```
     cd ORACLE_HOME\chgip\scripts
     cmd /c chgiphost.bat -idm
     ```

The `chgiphost` command prompts for information, as shown in Table 8–3. Note that the prompts may provide values in parentheses. You can enter a different value, or press the return key to accept the suggested value.
Changing the Hostname, Domain Name, or IP Address

Task 5: Restart Your Environment
Restart the Identity Management installation and any other instances that you stopped during this procedure:

1. Restart the Identity Management instance, using the following commands:

 ■ On UNIX systems:

   ```bash
   ORACLE_HOME/opmn/bin/opmnctl stopall
   ORACLE_HOME/bin/emctl start iasconsole
   ```

 ■ On Windows systems:

   ```cmd
   ORACLE_HOME\opmn\bin\opmnctl stopall
   ORACLE_HOME\bin\emctl start iasconsole
   ```

2. If you disabled any processes for automatically starting Oracle Application Server at the beginning of this procedure, enable them.

Task 6: Update Your Environment
This task contains the steps to update your environment for the new hostname, domain name, or IP address. The steps you need to take depend on how your environment is configured. If you changed the hostname or IP address of the host containing:

 ■ **Oracle Internet Directory only**: See "Configuration 1: Oracle Internet Directory Only". Oracle Internet Directory is installed on one host and the other Identity Management components are installed on another host and you change the host that contains Oracle Internet Directory. In this case, you must update the other Identity Management components and the middle tiers that use this Identity Management.

 ■ **Identity Management components other than Oracle Internet Directory**: See "Configuration 2: OracleAS Single Sign-On, Oracle Delegated Administration"
Services, and (optionally) Oracle Directory Integration Platform*. Oracle Internet Directory is installed on one host and the other Identity Management components are installed on another host and you change the host that contains the other Identity Management components. In this case, you must update the middle tiers that use this Identity Management.

- **Oracle Internet Directory and other Identity Management components**: See "Configuration 3: Oracle Internet Directory, OracleAS Single Sign-On, Oracle Delegated Administration Services, and (optionally) Oracle Directory Integration Platform*. Oracle Internet Directory and the other Identity Management components are installed on the same host. In this case, you must update the middle tiers that use this Identity Management.

If your environment uses LDAP-based replication of Oracle Internet Directory and Oracle Internet Directory is on a different host than OracleAS Metadata Repository, you can change the hostname, domain name, or IP address of the host containing the Master (supplier) or Replica (consumer) Oracle Internet Directory. See Task 7: Update Oracle Internet Directory If LDAP-Based Replication Is Used on page 8-11 for information.

Configuration 1: Oracle Internet Directory Only In this case, Oracle Internet Directory is installed on one host and the other Identity Management components are installed on another host and you changed the host that contains Oracle Internet Directory. Take the following steps:

1. In the OracleAS Single Sign-On installation, stop the Infrastructure processes and the Application Server Control Console:
 - On UNIX systems:
     ```
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ORACLE_HOME/bin/emctl stop iasconsole
     ```
 - On Windows systems:
     ```
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ORACLE_HOME\bin\emctl stop iasconsole
     ```

2. Update the `ias.properties` file in every instance that uses Oracle Internet Directory. This includes other Identity Management instances (OracleAS Single Sign-On, Oracle Delegated Administration Services, and Oracle Directory Integration Platform) and middle-tier instances (such as J2EE and Web Cache, Portal and Wireless, and Business Intelligence and Forms).

 In each Oracle home, update the following file:
 - (UNIX) `ORACLE_HOME/config/ias.properties`
 - (Windows) `ORACLE_HOME\config\ias.properties`

 In the file, update the `OIDhost` parameter in with the new hostname:
   ```
   OIDhost=newhost.us.oracle.com
   ```

3. Update the `ldap.ora` file in every instance that uses Oracle Internet Directory. This includes other Identity Management instances and middle-tier instances.

 In each Oracle home, edit the following file:
 - (UNIX) `ORACLE_HOME/ldap/admin/ldap.ora`
 - (Windows) `ORACLE_HOME\ldap\admin\ldap.ora`
In the file, update the `DIRECTORY_SERVERS` parameter with the new fully qualified hostname.

4. In the Oracle homes for the other Identity Management components and the middle-tier instances, restart OPMN and Application Server Control Console:
 - On UNIX systems:

 \begin{verbatim}
 ORACLE_HOME/opmn/bin/opmnctl start
 ORACLE_HOME/bin/emctl start iasconsole
 \end{verbatim}
 - On Windows systems:

 \begin{verbatim}
 ORACLE_HOME\opmn\bin\opmnctl start
 ORACLE_HOME\bin\emctl start iasconsole
 \end{verbatim}

5. In the Oracle homes for the other Identity Management components and each middle tier, run the Change Identity Management Services wizard and supply the new Oracle Internet Directory information:
 b. Click the **Infrastructure** link.
 c. On the Infrastructure page, in the Identity Management section, click **Change**.
 d. Follow the steps in the wizard for supplying the new Identity Management information (new hostname).

 Note that although you may see the new Internet Directory host and port on the page, you still need to perform this step. The Application Server Control Console displays the virtual hostname only because it read it from the updated `ias.properties` file.

6. When the wizard completes, it asks you to restart the affected components. Run the following commands in each Oracle home:
 - On UNIX systems:

 \begin{verbatim}
 ORACLE_HOME/opmn/bin/opmnctl stopall
 ORACLE_HOME/bin/emctl startall
 \end{verbatim}
 - On Windows systems:

 \begin{verbatim}
 ORACLE_HOME\opmn\bin\opmnctl stopall
 ORACLE_HOME\bin\emctl startall
 \end{verbatim}

7. If OracleAS Certificate Authority is installed, take the following steps:
 a. Stop OracleAS Certificate Authority, the OC4J `oca` process, and the Oracle HTTP Server on the host running OracleAS Certificate Authority. For example, on UNIX, execute the following commands:

 \begin{verbatim}
 ORACLE_HOME/oca/bin/ocactl stop
 ORACLE_HOME/opmn/bin/opmnctl stopproc process-type=oca
 ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server
 \end{verbatim}
 b. Edit the following file and change the name of the host listed in the file:

 (UNIX) `ORACLE_HOME/oca/conf/oca.conf`
 (Windows) `ORACLE_HOME\oca\conf\oca.conf`
 c. Reassociate with OracleAS Single Sign-On and Oracle Internet Directory. For example, on UNIX:
Changing the Hostname, Domain Name, or IP Address

ORACLE_HOME/oca/bin/ocactl changesecurity -server_auth_port OcaSslPort

d. Start Oracle HTTP Server, the OC4J oca process, and OracleAS Certificate Authority. For example, on UNIX:

- **ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server**
- **ORACLE_HOME/opmn/bin/opmnctl startproc process-type=oca**
- **ORACLE_HOME/oca/bin/ocactl start**

Configuration 2: OracleAS Single Sign-On, Oracle Delegated Administration Services, and (optionally) Oracle Directory Integration Platform In this case, Oracle Internet Directory is installed on one host and the other Identity Management components are installed on another host and you changed the host that contains the other Identity Management components.

In each middle-tier installation (such as J2EE and Web Cache, Portal and Wireless, or Business Intelligence and Forms installations), take the following steps:

1. Start the OPMN and the Application Server Control Console:
 - On UNIX systems:
 - **ORACLE_HOME/opmn/bin/opmnctl start**
 - **ORACLE_HOME/bin/emctl start iasconsole**
 - On Windows systems:
 - **ORACLE_HOME\opmn\bin\opmnctl start**
 - **ORACLE_HOME\bin\emctl start iasconsole**

2. In the Oracle home for each middle tier, run the Change Identity Management Services wizard and supply the new Oracle Internet Directory information:
 b. Click the **Infrastructure** link.
 c. On the Infrastructure page, in the Identity Management section, click **Change**.
 d. Follow the steps in the wizard for supplying the new Identity Management information (new hostname).

 Note that although you may see the new Internet Directory host and port on the page, you still need to perform this step. The Application Server Control Console displays the virtual hostname only because it read it from the updated **ias.properties** file.

3. Restart the affected components. Run the following commands in each Oracle home:
 - On UNIX systems:
 - **ORACLE_HOME/opmn/bin/opmnctl stopall**
 - **ORACLE_HOME/opmn/bin/opmnctl startall**
 - On Windows systems:
 - **ORACLE_HOME\opmn\bin\opmnctl stopall**
 - **ORACLE_HOME\opmn\bin\opmnctl startall**
Configuration 3: Oracle Internet Directory, OracleAS Single Sign-On, Oracle Delegated Administration Services, and (optionally) Oracle Directory Integration Platform

In this case, Oracle Internet Directory and the other Identity Management components are installed on the same host and this is the host you changed. Take the following steps:

1. Start the OPMN and the Application Server Control Console:
 - On UNIX systems:

     ```
     ORACLE_HOME/opmn/bin/opmnctl start
     ORACLE_HOME/bin/emctl start iasconsole
     ```
 - On Windows systems:

     ```
     ORACLE_HOME\opmn\bin\opmnctl start
     ORACLE_HOME\bin\emctl start iasconsole
     ```

2. Update the `ias.properties` file in every middle-tier instance.
 In each Oracle home, update the following file:
 - (UNIX) `ORACLE_HOME/config/ias.properties`
 - (Windows) `ORACLE_HOME\config\ias.properties`

 In the file, update the `OIDhost` parameter in with the new hostname:

   ```
   OIDhost=newhost.us.oracle.com
   ```

3. Update the `ldap.ora` file in every middle-tier instance that uses the Identity Management instance.
 In each Oracle home, edit the following file:
 - (UNIX) `ORACLE_HOME/ldap/admin/ldap.ora`
 - (Windows) `ORACLE_HOME\ldap\admin\ldap.ora`

 In the file, update the `DIRECTORY_SERVERS` parameter with the new fully qualified hostname.

4. In each middle-tier installation, run the Change Identity Management Services wizard:
 a. Using the Application Server Control Console, navigate to the Application Server Home page for the middle-tier instance.
 b. Click the Infrastructure link.
 c. On the Infrastructure page, in the Identity Management section, click Change.

 Note that the Infrastructure page may display an error, but the error will be resolved after you complete the steps in the wizard.
 d. Follow the steps in the wizard for supplying the new Identity Management information.

5. Restart the affected components. Run the following commands in each Oracle home:
 - On UNIX systems:

     ```
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ORACLE_HOME/bin/emctl start all
     ```
 - On Windows systems:
Task 7: Update Oracle Internet Directory If LDAP-Based Replication Is Used
If your environment uses LDAP-based replication of Oracle Internet Directory and Oracle Internet Directory is on a different host than OracleAS Metadata Repository, you can change the hostname, domain name or IP address of the host containing the Master (supplier) or Replica (consumer) Oracle Internet Directory:

- Configuration A: Host with Master Oracle Internet Directory is Changed
- Configuration B: Host with Replica Oracle Internet Directory is Changed

Configuration A: Host with Master Oracle Internet Directory is Changed
If you change the hostname, domain name, or IP address of the host containing the Master Oracle Internet Directory, take the following steps:

1. Obtain the replica ID of the Master Oracle Internet Directory:
   ```bash
   ldapsearch -p master_port -h master_host -b "" -s base "objectclass=*
   orclreplicaid
   ```
2. On both the Master and the Replica, update either `orclreplicauri` or `orclreplicasecondaryuri` or both, if they exist, in the replica entry of the Master Oracle Internet Directory. Take the following steps:
 a. Create a file named `mod.ldif` and enter the following lines in the file:
      ```
      dn: orclreplicaid=master_replicaID, cn=replication configuration
      changetype: modify
      replace: orclreplicauri
      orclreplicauri: ldap://new_master_host:new_master_port/
      ```
 In the example, `master_replicaID` is the ID obtained in Step a, `new_master_host` is the new hostname of the Master Oracle Internet Directory, and `new_master_port` is the port number for the Master Oracle Internet Directory.
 b. Run the following command on the Master:
      ```bash
      ldapmodify -p master_port -h master_host -f mod.ldif
      ```
 c. Run the following command on the Replica:
      ```bash
      ldapmodify -p replica_port -h replica_host -f mod.ldif
      ```
3. Restart the Replication server at the Replica:
   ```bash
   oidctl server=oidrepld inst=inst_num connect=connect_string flags="-h
   replica_host -p replica_port -m false" stop
   oidctl server=oidrepld inst=inst_num connect=connect_string flags="-h
   replica_host -p replica_port -m false" start
   ```
 In the example, `replica_host` is the hostname of the Replica Oracle Internet Directory and `replica_port` is the port of the Replica Oracle Internet Directory.

Configuration B: Host with Replica Oracle Internet Directory is Changed
If you change the hostname, domain name, or IP address of the host containing the Replica Oracle Internet Directory, take the following steps:
1. Obtain the replica ID of the Replica Oracle Internet Directory:

 ldapsearch -p replica_port -h replica_host -b '' -s base 'objectclass=*'
 orclreplicaid

2. On both the Master and the Replica, update either orclreplicauri or orclreplicasecondaryuri or both, if they exist, in the replica entry of the Replica Oracle Internet Directory. Take the following steps:
 a. Create a file named mod.ldif and enter the following lines in the file:

 dn: orclreplicaid=replica_replicaID, cn=replication configuration
 changetype:modify
 replace: orclreplicauri
 orclreplicauri: ldap://new_replica_host:new_replica_port/

 In the example, replica_replicaID is the ID obtained in Step a, new_replica_host is the new hostname of the Replica Oracle Internet Directory, and new_replica_port is the port number for the Replica Oracle Internet Directory.

 b. Run the following command on the Master:

 ldapmodify -p master_port -h master_host -f mod.ldif

 c. Run the following command on the Replica:

 ldapmodify -p replica_port -h replica_host -f mod.ldif

3. Restart the Replication server at the Replica:

 oidctl server=oidrepld inst=inst_num connect=connect_string flags='"-h
 new_replica_host -p new_replica_port -m false" stop
 oidctl server=oidrepld inst=inst_num connect=connect_string flags='"-h
 new_replica_host -p new_replica_port -m false" start

 In the example, new_replica_host is the new hostname of the Replica Oracle Internet Directory and new_replica_port is the port of the Replica Oracle Internet Directory.

Task 8: Update Oracle Identity Federation

If your environment includes Oracle Identity Federation and Oracle Identity Federation uses Oracle Internet Directory or OracleAS Single Sign-On, update the Oracle Identity Federation configuration by taking the following steps:

1. In the Oracle home for the Oracle Identity Federation instance, run the Change Identity Management Services wizard and supply the new Oracle Internet Directory information:
 b. Click the Infrastructure link.
 c. On the Infrastructure page, in the Identity Management section, click Change.
 d. Follow the steps in the wizard for supplying the new Identity Management information (new hostname).

 Note that although you may see the new Internet Directory host and port on the page, you still need to perform this step. The Application Server Control Console displays the virtual hostname only because it read it from the updated ias.properties file.
2. When the wizard completes, it asks you to restart the affected components. Run the following commands in the Oracle home:
 - On UNIX systems:
     ```bash
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ORACLE_HOME/opmn/bin/opmnctl startall
     ```
 - On Windows systems:
     ```bash
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ORACLE_HOME\opmn\bin\opmnctl startall
     ```

3. From a browser, log into the Oracle Identity Federation Administration console, using the following URL:
   ```
   http://oif_host:port/fedadmin
   ```
 In the URL, `oif_host` is the host on which Oracle Identity Federation is installed and `port` is the port number of the Oracle HTTP Server.
 The username is `oif_admin`; the password is the password you specified at installation.

4. If you changed the network information of the Oracle Internet Directory instance, take the following steps:
 a. Choose IDM Data Stores, then User Data Store.
 b. For Select Active Repository, select LDAP Directory.
 c. In the Repository Parameters section, enter the following information:
 - For **Connection URL(s)**, change the hostname or domain name, entering the new information for Oracle Internet Directory, in the following format:
        ```
        ldap://oid_hostname.domainname:port
        ```
 For example, if you changed the hostname to newhost, the domain name to mydomain, (and the port remained 389), enter the following:
        ```
        ldap://newhost.mydomain:389
        ```
 - For **Bind DN**, enter the administrator account DN to use to connect to the LDAP directory. For example:
        ```
        cn=orcladmin
        ```
 - For **Password**, enter the administrator account password to use to connect to the LDAP directory.
 - For the other fields, see the online Help for the page.
 d. Click **Save**.
 e. From the IDM Data Stores tab, choose Federation Data Store.
 f. For Select Active Repository, select LDAP Directory.
 g. For **Connection URL(s)**, change the hostname or domain name, entering the new information for Oracle Internet Directory, in the following format:
      ```
      ldap://oid_hostname.domainname:port
      ```
 For example, if you changed the hostname to newhost, the domain name to mydomain, (and the port remained 389), enter the following:
Changing the Hostname, Domain Name, or IP Address

5. If you changed the network information of the OracleAS Single Sign-On instance, take the following steps:

a. Choose IDM Data Stores, then User Data Store.

b. For Select Active Repository, select OracleAS Single Sign-On.

c. In the Repository Parameters section, enter the following information:

 - For Connection URL(s), change the hostname or domain name, entering the new information for the OracleAS Single Sign-On instance, in the following format:

 \texttt{ldap://sso_hostname.domainname:port}

 For example, if you changed the hostname to newhost, the domain name to mydomain, (and the port remained 389), enter the following:

 \texttt{ldap://newhost.mydomain:389}

 - For Bind DN, enter the administrator account DN to use to connect to the LDAP directory. For example:

 \texttt{cn=orcladmin}

 - For Password, enter the administrator account password to use to connect to the LDAP directory.

 - For the other fields, see the online Help for the page.

d. For OSSO Login URL, change the hostname or domain name, entering the new information for the OracleAS Single Sign-On instance, in the following format:

 \texttt{http://sso_hostname.domainname:port/sso/auth}

e. For OSSO Logout URL, change the hostname or domain name, entering the new information for the OracleAS Single Sign-On instance, in the following format:

 \texttt{http://sso_hostname.domainname:port/sso/logout}

f. Click Save.

g. If any resource is protected by Oracle Identity Federation using a virtual host and a non-default (other than osso.conf) partner application, re-register mod_osso with the new hostname or domain name. Do this by running the following command:

 On UNIX systems:

 \texttt{ORACLE_HOME/sso/bin/ssoreg.sh -oracle_home_path identity_management_oracle_home -site_name newhostname:port -config_mod_osso TRUE -mod_osso_url http://newhostname:port -virtualhost -config_file path/osso-https.conf}

 On Windows systems:
ORACLE_HOME\sso\bin\ssoreg.bat
-oracle_home_path identity_management_oracle_home
-site_name newhostname:port
-config_mod_osso TRUE
-mod_osso_url http://newhostname:port
-virtualhost
-config_file path\osso-https.conf

In the examples, the config_file parameter is the name of the file, including the full path, that is used in the partner application or resource protection.

For example, if you changed the hostname to newhost on UNIX:

$ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path /disk1/oracleas
-site_name newhost:4445
-config_mod_osso TRUE
-mod_osso_url http://newhost.mydomain:7778
-virtualhost
-config_file $ORACLE_HOME/Apache/Apache/conf/osso/osso-https.conf

6. Restart the Oracle Identity Federation server and Oracle HTTP Server:

(UNIX) ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=OC4J_FED
(UNIX) ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=HTTP_Server
(Windows) ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=OC4J_FED
(Windows) ORACLE_HOME\opmn\bin\opmnctl restartproc process-type=HTTP_Server

8.2.3 Changing the Hostname, Domain Name, or IP Address of an Oracle Identity Federation Installation

This section describes how to change the hostname, domain name, or IP address on a host that contains an Oracle Identity Federation installation. This procedure applies to the following types of environments:

- Oracle Identity Federation used as the Service Provider, and where Oracle Internet Directory is the Federation Data Store and the Metadata Repository is the Federation Transient Store. Oracle Identity Federation may or may not be associated with OracleAS Single Sign-On.
- Oracle Identity Federation used as the Identity Provider, and where Oracle Internet Directory is the Federation Data Store and the Metadata Repository is the Federation Transient Store. Oracle Identity Federation may or may not be associated with OracleAS Single Sign-On.

The following sections describe the procedure:

- Before You Begin
- Task 1: Prepare Your Host
- Task 2: Change the Hostname, Domain Name, or IP Address
- Task 3: Run the chgiphost Command
- Task 4: Restart Your Environment
- Task 5: Update the Metadata for the Identity Provider
- Task 6: Update the Metadata for the Service Provider
- Task 7: Update OracleAS Single Sign-On
Before You Begin

Review the following items before you start the procedure:

- Consider changing the log level before running the chgiphost command so you can view more detailed information. See Section 8.2.6.2 for more information.

- If your old hostname is a string that is likely to appear in a configuration file, the chgiphost command may encounter problems when trying to update the configuration files. Refer to Section 8.2.6.3 for information on how to avoid this problem.

- Write down the old hostname and IP address before you begin. You will be prompted for these values.

- Oracle recommends that you perform a backup of your environment before you start this procedure. Refer to Part V, "Backup and Recovery" for more information.

Task 1: Prepare Your Host

Prepare your host for the hostname change:

1. Set the ORACLE_HOME environment variable.

2. Shut down the Oracle Identity Federation installation, including the Oracle Identity Federation server and Application Server Control Console. For example, on UNIX, use the following commands:

   ```bash
   ORACLE_HOME/bin/emctl stop iasconsole
   ORACLE_HOME/opmn/bin/opmnctl stopall
   ```

3. To make sure Oracle Application Server processes will not start automatically after a restart of the host, disable any automated startup scripts you may have set up, such as `/etc/init.d` scripts.

Task 2: Change the Hostname, Domain Name, or IP Address

Update your operating system with the new hostname, domain name, or IP address. Consult your operating system documentation for information on how to perform the following steps:

1. Make the updates to your operating system to properly change hostname, domain name, or both.

2. Restart the host, if necessary for your operating system.

3. Verify that you can ping the host from another host in your network. Be sure to ping using the new hostname to make sure everything is resolving properly.

Task 3: Run the chgiphost Command

Perform these steps from the Oracle Identity Federation Oracle home:

1. Log in to the host as the user that installed Oracle Identity Federation.

2. Set the ORACLE_HOME environment variable. Do not use a trailing slash (UNIX) or backslash (Windows) when specifying the ORACLE_HOME variable.

3. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1-1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

4. Run the following commands in the Oracle Identity Federation Oracle home:

 - On UNIX systems:
Changing the Hostname, Domain Name, or IP Address

```
cd ORACLE_HOME/chgip/scripts
./chgiphost.sh -fed
```

- On Windows systems:
  ```
cd ORACLE_HOME/chgip\scripts
cmd /c chgiphost.bat -fed
```

The `chgiphost` command prompts for information, as shown in Table 8–3. Note that the prompts may provide values in parentheses. You can enter a different value, or press the return key to accept the suggested value.

<table>
<thead>
<tr>
<th>Prompt</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter fully qualified hostname</td>
<td>Enter the new fully qualified hostname. This may be a new hostname, domain name, or both.</td>
</tr>
<tr>
<td>(hostname.domainname) of destination</td>
<td></td>
</tr>
<tr>
<td>Enter fully qualified hostname</td>
<td>Enter the original fully qualified hostname and domain name.</td>
</tr>
<tr>
<td>(hostname.domainname) of source</td>
<td></td>
</tr>
<tr>
<td>Enter valid IP Address of destination</td>
<td>If you changed the IP address of the host, enter the new IP address.</td>
</tr>
<tr>
<td></td>
<td>Otherwise, enter the current IP address.</td>
</tr>
<tr>
<td>Enter valid IP Address of source</td>
<td>If you changed the IP address of the host, enter the old IP address.</td>
</tr>
<tr>
<td></td>
<td>Otherwise, enter the current IP address.</td>
</tr>
<tr>
<td>OIDAdmin Password:</td>
<td>Enter the <code>cn=orcladmin</code> password for the Oracle Internet Directory in which this instance is registered.</td>
</tr>
</tbody>
</table>

5. Verify that the tool ran successfully by checking for errors in the files in the following directory:

 (UNIX) `ORACLE_HOME/chgip/log`
 (Windows) `ORACLE_HOME\chgip\log`

Task 4: Restart Your Environment

Restart the Oracle Identity Federation installation and any other instances that you stopped during this procedure:

1. Restart the Oracle Identity Federation instance, using the following commands:
 - On UNIX systems:
     ```
     ORACLE_HOME/opmn/bin/opmnctl startall
     ORACLE_HOME/bin/emctl start iasconsole
     ```
 - On Windows systems:
     ```
     ORACLE_HOME\opmn\bin\opmnctl startall
     ORACLE_HOME\bin\emctl start iasconsole
     ```

2. If you disabled any processes for automatically starting Oracle Application Server at the beginning of this procedure, enable them.

Task 5: Update the Metadata for the Identity Provider

If you changed the hostname, domain name, or IP address of the Oracle Identity Federation instance that is configured as an Identity Provider, you must load the new metadata file for the Identity Provider into the Service Provider configuration in the Circle of Trust. Take the following steps:
1. From a browser, navigate to the Oracle Identity Federation Identity Provider’s metadata file, using the following URL:

 http://oif_host:port/fed/idp/metadata_file

 In the URL, oif_host is the host on which Oracle Identity Federation is installed as an Identity Provider; port is the port number of the Oracle HTTP Server; metadata_file is the metadata file used for the protocol you are using. For example, the metadata file for the protocol SAML 2.0 is metadatav20.

2. From the browser, save the page.

3. From a browser, log into the Oracle Identity Federation Administration console for the Service Provider, using the following URL:

 http://oif_host:port/fedadmin

 In the URL, oif_host is the host on which Oracle Identity Federation is installed as the Service Provider and port is the port number of the Oracle HTTP Server.

 The username is oif_admin; the password is the password that you specified at installation.

4. Select Server Configuration, then Circle of Trust.

5. In the Identity Provider table, select the Identity Provider that has had its network information changed and click Update.

 The Edit Trusted Provider page is displayed.

6. For Description, enter a description of the file.

7. For Metadata Location, click Browse to locate the metadata file you downloaded for the Identity Provider.

8. Click Load New.

9. Click Apply.

10. Click Refresh Server.

Note: The Identity Provider tab (Server Configuration > Identity Provider) continues to have the old hostname information in the Provider ID (URI) field. This is expected. It allows the user federations that were created before the hostname was changed to continue to function.

Task 6: Update the Metadata for the Service Provider

If you changed the hostname, domain name, or IP address of the Oracle Identity Federation instance that is configured as a Service Provider, you must load the new metadata file for the Service Provider into the Identity Provider configuration in the Circle of Trust. Take the following steps:

1. From a browser, navigate to the Oracle Identity Federation Service Provider’s metadata file, using the following URL:

 http://oif_host:port/fed/sp/metadata_file

 In the URL, oif_host is the host on which Oracle Identity Federation is installed as a Service Provider; port is the port number of the Oracle HTTP Server; metadata_file is the metadata file used for the protocol you are using. For example, the metadata file for the protocol SAML 2.0 is metadatav20.
2. From the browser, save the page.

3. From a browser, log into the Oracle Identity Federation Administration console for the Identity Provider, using the following URL:

 http://oif_host:port/fedadmin

 In the URL, `oif_host` is the host on which Oracle Identity Federation is installed as the Identity Provider and `port` is the port number of the Oracle HTTP Server.

 The username is `oif_admin`; the password is the password you specified at installation.

4. Select Server Configuration, then Circle of Trust.

5. In the Service Provider table, select the Service Provider that has had its network information changed and click Update.

 The Edit Trusted Provider page is displayed.

6. For Description, enter a description of the file.

7. For Metadata Location, click Browse to locate the metadata file you downloaded for the Service Provider.

8. Click Load New.

9. Click Apply.

10. Click Refresh Server.

Note: The Service Provider tab (Server Configuration > Service Provider) continues to have the old hostname information in the Provider ID (URI) field. This is expected. It allows the user federations that were created before the hostname was changed to continue to function.

Task 7: Update OracleAS Single Sign-On

If Oracle Identity Federation is associated with OracleAS Single Sign-On, take the following steps:

1. On the OracleAS Single Sign-On instance, update the `SASSOAuthnUrl` and `SASSOLogoutUrl` properties in the following file with the new network information:

 (UNIX) `ORACLE_HOME/sso/conf/policy.properties`

 (Windows) `ORACLE_HOME\sso\conf\policy.properties`

 For example, if you changed the hostname and domain name to new.cp.com, change the properties to the following:

 `SASSOAuthnUrl = http://new.cp.com:port/sso/authn`

 `SASSOLogoutUrl = http://new.cp.com:port/jsp/sasso_logout_success.jsp`

2. On the Oracle Identity Federation installation, edit the following file to update the IP address, if it has been changed:

 (UNIX) `ORACLE_HOME/Apache/Apache/conf/httpd.conf`

 (Windows) `ORACLE_HOME\Apache\Apache\conf\httpd.conf`

3. On the Oracle Identity Federation installation, re-register `mod_osso` with the new hostname or domain name by running the following command:
Changing the Hostname, Domain Name, or IP Address

On UNIX:

```
ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path identity_management_oracle_home
-site_name newhostname:port
-config_mod_osso TRUE
-mod_osso_url http://newhostname:port
-virtualhost
-config_file path/osso-file.conf
```

On Windows:

```
ORACLE_HOME\sso\bin\ssoreg.bat
-oracle_home_path identity_management_oracle_home
-site_name newhostname:port
-config_mod_osso TRUE
-mod_osso_url http://newhostname:port
-virtualhost
-config_file path\osso-file.conf
```

In the examples, `path/osso-file.conf`, refers to the SSO partner application configuration file. The file name should be the same as the one defined for resource protection by OracleAS Single Sign-On for Oracle Identity Federation.

For example, if you changed the hostname to newhost on UNIX:

```
$ORACLE_HOME/sso/bin/ssoreg.sh
-oracle_home_path /disk1/oracleas
-site_name newhost:4445
-config_mod_osso TRUE
-mod_osso_url http://newhost.mydomain:7778
-virtualhost
-config_file $ORACLE_HOME/Apache/Apache/conf/osso/my-osso-file.conf
```

4. Regenerate the OSSO secret in Oracle Identity Federation and copy it to the OracleAS Single Sign-On home:

 a. From a browser, log into the Oracle Identity Federation Administration console for the Identity Provider, using the following URL:

   ```
   http://oif_host:port/fedadmin
   ```

 In the URL, `oif_host` is the host on which Oracle Identity Federation is installed as the Identity Provider and `port` is the port number of the Oracle HTTP Server.

 The username is `oif_admin`; the password is the password you specified at installation.

 b. Choose **IdM Data Stores**, then **User Data Stores**.

 c. In the Oracle SSO Parameters section, for **Regenerate OSSO Secret**, click **Update**. This updates the key and generates an updated keystore file.

 d. Stop processes in the OracleAS Single Sign-On installation:

   ```
   (UNIX) ORACLE_HOME/opmn/bin/opmnctl stopall
   (Windows) ORACLE_HOME\opmn\bin\opmnctl stopall
   ```

 e. Copy the keystore file from the Oracle Identity Federation home to the OracleAS Single Sign-On home. For example:

   ```
   cp OIF_HOME/sso/conf/keystore SSO_HOME/sso/conf/
   ```
5. In both the Identity Management instance and the Oracle Identity Federation instance, restart the processes:
 - On UNIX systems:
     ```
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ORACLE_HOME/opmn/bin/opmnctl startall
     ```
 - On Windows systems:
     ```
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ORACLE_HOME\opmn\bin\opmnctl startall
     ```

See Also: *Oracle Identity Federation Administrator’s Guide* for more information about Oracle Identity Federation

8.2.4 Changing the Hostname or Domain Name of an OracleAS Certificate Authority Installation

If you have installed OracleAS Certificate Authority, and you want to change the name of the OracleAS Certificate Authority host, you must perform these steps:

1. Verify that Oracle Internet Directory and OracleAS Metadata Repository are started.
2. Stop OracleAS Certificate Authority, the OC4J `oca` process, and the Oracle HTTP Server on the host running OracleAS Certificate Authority. For example, on UNIX, execute the following commands:
   ```
   ORACLE_HOME/oca/bin/ocactl stop
   ORACLE_HOME/opmn/bin/opmnctl stopproc process-type=oca
   ORACLE_HOME/opmn/bin/opmnctl stopproc ias-component=HTTP_Server
   ```
3. Change the name of the host where OracleAS Certificate Authority is running.
4. Regenerate the SSL wallet. For example, on UNIX:
   ```
   ORACLE_HOME/oca/bin/ocactl generatewallet -type CASSL
   ```
5. Reassociate with OracleAS Single Sign-On and Oracle Internet Directory. For example, on UNIX:
   ```
   ORACLE_HOME/oca/bin/ocactl changesecurity -server_auth_port OcaSslPort
   ```
6. Start Oracle HTTP Server, the OC4J `oca` process, and OracleAS Certificate Authority. For example, on UNIX:
   ```
   ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=HTTP_Server
   ORACLE_HOME/opmn/bin/opmnctl startproc process-type=oca
   ORACLE_HOME/oca/bin/ocactl start
   ```

8.2.5 Changing the IP Address of an Infrastructure Containing a Metadata Repository

This section describes how to change the IP address of a host that contains either of the following Infrastructure installation types:

- Metadata Repository only
- Identity Management and Metadata Repository

Note that you cannot change the hostname or domain name that contains a Metadata Repository.

The following sections describe the procedure:
Before You Begin
Review the following items before you start the procedure:
- Write down the old IP address before you begin. You will be prompted for this during the procedure.
- Oracle recommends that you perform a backup of your environment before you start this procedure. Refer to Part V, "Backup and Recovery" for more information.

Task 1: Shut Down Middle-Tier Instances
Shut down all middle-tier instances that use the Infrastructure installation, even if they are on other hosts.

Task 2: Prepare Your Host
Prepare your host for the change by stopping all processes:
1. Set the ORACLE_HOME and ORACLE_SID environment variables.
2. Shut down the Infrastructure:
 - On UNIX systems:
     ```bash
     ORACLE_HOME/bin/emctl stop iasconsole
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ```
 - On Windows systems:
     ```bash
     ORACLE_HOME\bin\emctl stop iasconsole
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ```
3. Shut down the listener and database:
   ```bash
   lsnrctl stop
   sqlplus /nolog
   SQL> CONNECT SYS as SYSDBA
   SQL> SHUTDOWN
   SQL> quit
   ```
4. Verify that all Oracle Application Server processes have stopped.
5. To make sure Oracle Application Server processes will not start automatically after a restart of the host, disable any automated startup scripts you may have set up, such as /etc/init.d scripts.

Task 3: Change the IP Address
Update your operating system with the new IP address. Consult your operating system documentation for information on how to perform the following steps:
1. Make the updates to your operating system to properly change the IP address.
2. Restart the host, if required by your operating system.

3. Verify that you can ping the host from another host in your network. Be sure to ping using the new IP address to make sure everything is resolving properly.

Task 4: Update the Infrastructure

Update the Infrastructure on your host with the new IP address:

1. Log in to the host as the user that installed the Infrastructure.

2. Set the ORACLE_HOME and ORACLE_SID environment variables. Do not use a trailing slash (UNIX) or backslash (Windows) when specifying the ORACLE_HOME variable.

3. On UNIX systems, set the LD_LIBRARY_PATH, LD_LIBRARY_PATH_64, LIB_PATH, or SHLIB_PATH environment variables to the proper values, as shown in Table 1–1. The actual environment variables and values that you must set depend on the type of your UNIX operating system.

4. Start the database and listener:

   ```
   sqlplus /nolog
   SQL> CONNECT SYS as SYSDBA
   SQL> STARTUP
   SQL> quit
   lsnrctl start
   ```

5. Start OPMN:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl start
 (Windows) ORACLE_HOME\opmn\bin\opmnctl start

6. Start Oracle Internet Directory:

 (UNIX) ORACLE_HOME/opmn/bin/opmnctl startproc ias-component=OID process-type=OID
 (Windows) ORACLE_HOME\opmn\bin\opmnctl startproc ias-component=OID process-type=OID

7. Run the following commands in the Infrastructure Oracle home:

 - On UNIX systems:
     ```
     cd ORACLE_HOME/chgip/scripts
     ./chgiphost.sh -infra
     ```

 - On Windows systems:
     ```
     cd ORACLE_HOME\chgip\scripts
     cmd /c chgiphost.bat -infra
     ```

 The chgiphost command prompts for the old and new IP address.

8. Verify that the tool ran successfully by checking for errors in the files in the following directory:

 (UNIX) ORACLE_HOME/chgip/log
 (Windows) ORACLE_HOME/chgip\log

Task 5: Restart Your Environment

Start the remaining components of the Infrastructure and start any middle-tier instances that use it:
1. Start the Infrastructure:
 - On UNIX systems:
     ```
     ORACLE_HOME/opmn/bin/opmnctl startall
     ORACLE_HOME/bin/emctl start iasconsole
     ```
 - On Windows systems:
     ```
     ORACLE_HOME\opmn\bin\opmnctl startall
     ORACLE_HOME\bin\emctl start iasconsole
     ```

2. If a middle-tier instance is on the same host as the Infrastructure, then you need to run the `chgiphost` command on the middle-tier instance before restarting the middle-tier processes.

3. If you disabled any processes for automatically starting Oracle Application Server at the beginning of this procedure, enable them.

8.2.6 Special Topics for Changing Your Hostname or Domain Name

This section contains the following special topics that apply to changing the hostname or domain name of an Oracle Application Server host:

- Running SSLConfigTool for SSL Environments
- Setting the Log Level for chgiphost
- Customizing the chgiphost Command
- Changing a Hostname After Upgrading from Windows 2000 to Windows 2003
- Recovering from Errors When Changing Your Hostname

8.2.6.1 Running SSLConfigTool for SSL Environments

After running the `chgiphost` command, you must run the `SSLConfigTool` utility to complete the necessary Oracle Directory Integration Platform server registration and OracleAS Single Sign-On re-association and re-registration.

See Also: Chapter 12 for information about running the `SSLConfigTool` utility

8.2.6.2 Setting the Log Level for chgiphost

By default, the console log level for the `chgiphost` command is SEVERE. This causes only critical information to be printed while running `chgiphost`. To view additional progress information, set the console log level to `CONFIG` as follows:

1. Edit the following file:
   ```
   (UNIX) ORACLE_HOME/chgip/config/chgip.log.properties
   (Windows) ORACLE_HOME\chgip\config\chgip.log.properties
   ```

2. Change the `java.util.logging.ConsoleHandler.level` parameter to `CONFIG`:
   ```
   java.util.logging.ConsoleHandler.level = CONFIG
   ```

8.2.6.3 Customizing the chgiphost Command

By default, the `chgiphost` command updates key configuration files in the Oracle home with the new hostname. If any of the following cases apply to your installation, you may want to consider customizing the behavior of the `chgiphost` command:
■ You have created additional configuration files that contain the hostname and want the chgiphost command to update those files.

To update these files, add their full path name to the following file before running chgiphost:

(UNIX) ORACLE_HOME/chgip/config/hostname.lst
(Windows) ORACLE_HOME\chgip\config\hostname.lst

■ Your old hostname is very short (one or two letters) or is a string that is likely to appear in a configuration file.

Before running chgiphost, examine each of the files listed in hostname.lst to determine if the old hostname exists in any settings in those files. If you find a match, you can correct those settings after you run chgiphost.

■ Your Oracle home contains the hostname in its full path.

In this case, the chgiphost command may not update your configuration files properly. You can avoid this problem by using a Java utility called FileFixer, which searches for specific text strings in a file by matching regular expressions, and updates them to their new values. Note that FileFixer searches for patterns one line at a time. It cannot match patterns across lines.

To use FileFixer:

1. Make a copy of the following file:

(UNIX) ORACLE_HOME/chgip/config/hostname_short_sample.lst.xml
(Windows) ORACLE_HOME\chgip\config\hostname_short_sample.lst.xml

2. Edit your copy of the file to specify the regular expression matching required for your old and new hostnames. The file contains an example of how to do this.

3. Specify the file when running the chgiphost command:

 ./chgiphost option -hostnameShortXml full_path_to_your_xml_file

 For example, if you named your file /mydir/my_sample.lst.xml, and you are updating a middle-tier installation on UNIX, run chgiphost as follows:

 ./chgiphost -mid -hostnameShortXml /mydir/my_sample.lst.xml

8.2.6.4 Changing a Hostname After Upgrading from Windows 2000 to Windows 2003

When you upgrade from Windows 2000 to Windows 2003, lowercase letters in your hostname may be changed to uppercase letters. For example, if your hostname is myhost before the upgrade, it may be changed to MYHOST. If this occurs, some Oracle Application Server processes may not function properly.

To resolve this problem, you do not need to run the chgiphost command to update Oracle Application Server. You can simply add an entry with the lowercase hostname to the hosts file:

OS_path\system32\drivers\etc\hosts

For example, if your fully qualified hostname was myhost.mydomain before the upgrade, and your IP address is 1.2.3.4, add the following line:

1.2.3.4 myhost.mydomain myhost
8.2.6.5 Recovering from Errors When Changing Your Hostname

This section describes how to recover from typical errors you might encounter when using the `chgiphost` command. It contains the following scenarios:

- Scenario 1: You Specified the Wrong Destination Name
- Scenario 2: You Encountered an Error when Running `chgiphost`

Scenario 1: You Specified the Wrong Destination Name

Suppose you ran the `chgiphost` command but specified the wrong destination name. In this case, you can remedy the error by running `chgiphost` again. Here are the details.

Suppose the current source hostname is loire985, the incorrect destination hostname you specified is mqa985, and the correct destination hostname is sqb985. Initially, you ran `chgiphost` with `source = loire985` and `destination = mqa985`.

To recover from this error:

1. Run `chgiphost` with `source = mqa985` and `destination = sqb985`.
2. Run `chgiphost` again with `source = loire985` and `destination = sqb985`.

Scenario 2: You Encountered an Error when Running `chgiphost`

For example, you will get an error message if you enter the wrong password for Oracle Internet Directory. In this case, you should run `chgiphost` again, with the same source and destination hostnames as before, and make sure to supply the correct password when prompted.

If you encounter an error when running `chgiphost`, you should fix the error and run `chgiphost` again.

8.3 Moving Between Off-Network and On-Network

This section describes how to move an Oracle Application Server host on and off the network. The following assumptions and restrictions apply:

- The host must contain an Infrastructure and middle-tier instance, or a middle-tier instance that does not use an Infrastructure, that is, the entire Oracle Application Server environment must be on the host.
- DHCP must be used in loopback mode. Refer to Oracle Application Server Installation Guide for more information.
- Only IP address change is supported; the hostname must remain unchanged.
- Hosts in DHCP mode should not use the default hostname (`localhost.localdomain`). The hosts should be configured to use a standard hostname and the loopback IP should resolve to that hostname.
- A loopback adapter is required for all off-network installations (DHCP or static IP). Refer to Oracle Application Server Installation Guide for more information.

8.3.1 Moving from Off-Network to On-Network (Static IP Address)

This procedure assumes you have installed Oracle Application Server on a host that is off the network, using a standard hostname (not `localhost`), and would like to move on the network and use a static IP address. The IP address may be the default loopback IP, or any standard IP address.
To move onto the network, you can simply connect the host to the network. No updates to Oracle Application Server are required.

8.3.2 Moving from Off-Network to On-Network (DHCP)

This procedure assumes you have installed Oracle Application Server on a host that is off the network, using a standard hostname (not localhost), and would like to move on the network and use DHCP. The IP address of the host can be any static IP address or loopback IP address, and should be configured to the hostname.

To move onto the network:

1. Connect the host to the network using DHCP.
2. Configure the hostname to the loopback IP address only.

8.3.3 Moving from On-Network to Off-Network (Static IP Address)

Follow this procedure if your host is on the network, using a static IP address, and you would like to move it off the network:

1. Configure the /etc/hosts file so the IP address and hostname can be resolved locally.
2. Take the host off the network.

There is no need to perform any steps to change the hostname or IP address.

8.3.4 Moving from On-Network to Off-Network (DHCP)

Follow this procedure if your host is on the network, using DHCP in loopback mode, and you would like to move it off the network:

1. Configure the /etc/hosts file so the IP address and hostname can be resolved locally.
2. Take the host off the network.

There is no need to perform any steps to change the hostname or IP address.

8.4 Changing Between a Static IP Address and DHCP

This section describes how to change between a static IP address and DHCP. The following assumptions and restrictions apply:

- The host must contain an Infrastructure and middle-tier instance, or a middle-tier instance that does not use an Infrastructure. That is, the entire Oracle Application Server environment must be on the host.
- DHCP must be used in loopback mode. Refer to Oracle Application Server Installation Guide for more information.
- Only IP address change is supported; the hostname must remain unchanged.
- Hosts in DHCP mode should not use the default hostname (localhost.localdomain). The hosts should be configured to use a standard hostname and the loopback IP should resolve to that hostname.

8.4.1 Changing from a Static IP Address to DHCP

To change a host from a static IP address to DHCP:
1. Configure the host to have a hostname associated with the loopback IP address before you convert the host to DHCP.

2. Convert the host to DHCP. There is no need to update Oracle Application Server.

8.4.2 Changing from DHCP to a Static IP Address

To change a host from DHCP to a static IP address, configure the host to use a static IP address.

There is no need to update Oracle Application Server.
This chapter provides procedures for changing the Infrastructure Services used by a middle-tier instance.

It contains the following topics:

- Overview of Procedures for Changing Infrastructure Services
- Changing the Oracle Internet Directory or Oracle HTTP Server Ports on Identity Management
- Changing Oracle Internet Directory from Dual Mode to SSL Mode
- Moving Identity Management to a New Host
- Changing the Metadata Repository Used by a Middle-Tier Instance
- Changing the Metadata Repository Used by Identity Management

9.1 Overview of Procedures for Changing Infrastructure Services

Most middle-tier instances use Infrastructure Services, such as Identity Management Services and the Metadata Repository. These services are usually assigned during installation.

After installation, you may want to change the Infrastructure Services used by a middle-tier instance. For example, you may want to use an Identity Management Service on a different host. Or, you may want to use a different Metadata Repository.

You can change Infrastructure Services using the Infrastructure page on the Application Server Control Console. Figure 9–1 shows the page for a Release 2 (10.1.2.0.2) middle-tier instance. Notice that you can use this page to change the Identity Management or the Metadata Repository used by a middle-tier instance.
Overview of Procedures for Changing Infrastructure Services

Figure 9–1 Application Server Control Console Infrastructure Page

You must change Infrastructure Services when you change any of the following:

■ The HTTP OracleAS Single Sign-On port number on an Identity Management installation
■ The Oracle Internet Directory non-SSL or SSL port number
■ The Oracle Internet Directory Mode (Dual-mode or SSL)
■ The host on which Identity Management or the OracleAS Metadata Repository resides

If you have disabled anonymous binds in Oracle Internet Directory, you must enable them before you make configuration changes. See Section 7.5 for more information.

Note that if you change between a File-based farm and a Database-based farm, you must restart Application Server Control Console, using the emctl command, to see the change reflected in the console.

You cannot simply use the wizard to change from one Infrastructure service to another. You must first perform manual tasks to create and prepare the new Infrastructure service. This chapter describes the following supported procedures for changing Infrastructure Services:

■ Changing the Oracle Internet Directory or Oracle HTTP Server Ports on Identity Management

Use this procedure if you need to change the Oracle Internet Directory listener port or the HTTP listener port for Oracle Internet Directory on an Identity Management installation. In addition to changing the port numbers, you must update middle-tier instances with the new port information, which requires changing Infrastructure Services.

■ Changing Oracle Internet Directory from Dual Mode to SSL Mode

Use this procedure if you want to change the Oracle Internet Directory mode from non-SSL to SSL. In addition to changing the mode, you must update middle-tier instances with the new mode, which requires changing Infrastructure Services.

■ Moving Identity Management to a New Host
Use this procedure if you want to move your Identity Management installation, and its associated Metadata Repository, to a new host. After you perform the move, you must update middle-tier instances with the new host information for Identity Management, which requires changing Infrastructure Services.

- **Changing the Metadata Repository Used by a Middle-Tier Instance**
 Use this procedure if you want to move the Metadata Repository used for product metadata by middle-tier instances to a new host.

- **Changing the Metadata Repository Used by Identity Management**
 Use this procedure if you want to move the Metadata Repository used by Identity Management to a different host.

9.2 Changing the Oracle Internet Directory or Oracle HTTP Server Ports on Identity Management

To change the Oracle Internet Directory non-SSL or SSL port on an Identity Management installation, refer to Section 4.3.11.2.

To change the Oracle HTTP Server non-SSL or SSL Listen port on an Identity Management installation, which effectively changes the OracleAS Single Sign-On port, refer to Section 4.3.3.

9.3 Changing Oracle Internet Directory from Dual Mode to SSL Mode

When you install Identity Management, you are asked to choose a mode for Oracle Internet Directory. The default mode is dual mode, which allows some components to access Oracle Internet Directory using non-SSL connections. During the installation, you can choose SSL mode, which specifies that all components must use SSL when connecting to the directory.

If you did not choose SSL mode during the installation, and want to change to SSL mode after installation, follow the procedure in this section. It includes changing the mode of the Oracle Internet Directory, and updating middle-tier instances to use the new mode.

9.3.1 Procedure

To change Oracle Internet Directory to SSL mode, perform the following tasks:

- **Task 1: Stop Middle-Tier Instances**
- **Task 2: Change the Oracle Internet Directory Mode**
- **Task 3: Change Middle-Tier Instances to Use SSL Mode**

Task 1: Stop Middle-Tier Instances

Stop all middle-tier instances that use Oracle Internet Directory. Using the Application Server Control Console, navigate to the Home page for each middle-tier instance and click **Stop All**. Be sure to leave Application Server Control running.

Task 2: Change the Oracle Internet Directory Mode

Perform this task on the Infrastructure that contains Oracle Internet Directory.

1. Create a file named `mod.ldif` and enter the following lines in the file:

   ```
   dn:cn=configset0,cn=osldapd,cn=subconfigsubentry
   ```
Changing Oracle Internet Directory from Dual Mode to SSL Mode

```plaintext
changetype:modify
replace:orclsslenable
orclsslenable:1
```

2. Run the following command:

```plaintext
ldapmodify -D cn=orcladmin -w orcladmin_passwd -p oid_port -v -f mod.ldif
```

In the example, `oid_port` is the non-SSL Oracle Internet Directory port. This is listed as `OIDport` in `ORACLE_HOME/config/ias.properties`

Note that if you are using OracleAS Cold Failover Cluster, you must use the following command:

```plaintext
ldapmodify -D cn=orcladmin -w orcladmin_passwd -h virtual_hostname -p oid_port -v -f mod.ldif
```

In the example, `virtual_hostname` is the virtual hostname of the OracleAS Cold Failover Cluster.

3. Stop the entire instance that contains Oracle Internet Directory:

 - On UNIX systems:
     ```plaintext
     ORACLE_HOME/bin/emctl stop iasconsole
     ORACLE_HOME/opmn/bin/opmnctl stopall
     ```
 - On Windows systems:
     ```plaintext
     ORACLE_HOME\bin\emctl stop iasconsole
     ORACLE_HOME\opmn\bin\opmnctl stopall
     ```

4. Edit the following file:

 (UNIX) `ORACLE_HOME/ldap/admin/ldap.ora`
 (Windows) `ORACLE_HOME\ldap\admin\ldap.ora`

 a. Modify the following line to remove the non-SSL port number:

   ```plaintext
   DIRECTORY_SERVERS=(myhost.myco.com::sslport)
   ```

 b. Save and close the file.

5. If the OracleAS Metadata Repository was created using OracleAS RepCA, take the following steps:

 a. Copy the `ldap.ora` file from the Identity Management Oracle home to the Oracle home for the OracleAS Metadata Repository. For example, for 10g (10.1.4.0.1), the location is:

 (UNIX) `ORACLE_HOME/ldap/admin`
 (Windows) `ORACLE_HOME\ldap\admin`

 b. Edit the `sqlnet.ora` file that is located in the following location in the Oracle home for the OracleAS Metadata Repository:

 (UNIX) `ORACLE_HOME/network/admin`
 (Windows) `ORACLE_HOME\network\admin`

 Add LDAP to the `NAMES.DIRECTORY_PATH` entry, as shown in the following example:

   ```plaintext
   NAMES.DIRECTORY_PATH= (LDAP, TNSNAMES, ONAMES, HOSTNAME)
   ```

6. Edit the following file:
(UNIX) `ORACLE_HOME/config/ias.properties`
(Windows) `ORACLE_HOME\config\ias.properties`

a. In the file, change the `SSLOnly` parameter as follows:

```
SSLOnly=true
```

b. Save and close the file.

7. Start the entire instance that contains Oracle Internet Directory:

- On UNIX systems:
  ```
  ORACLE_HOME/opmn/bin/opmnctl startall
  ORACLE_HOME/bin/emctl start iasconsole
  ```

- On Windows systems:
  ```
  ORACLE_HOME\opmn\bin\opmnctl startall
  ORACLE_HOME\bin\emctl start iasconsole
  ```

Task 3: Change Middle-Tier Instances to Use SSL Mode

In each middle-tier instance, run the Change Identity Management wizard and restart the instance:

1. Using the Application Server Control Console, navigate to the Home page for the middle-tier instance.

2. Click **Infrastructure**.

3. On the Infrastructure Page, in the Identity Management section, click **Change**.

4. On the Internet Directory page:

 - **Host**: Enter the fully-qualified name of the Oracle Internet Directory host.
 - **Port**: Enter the SSL Oracle Internet Directory port number.
 - **Use only SSL connections with Internet Directory**: Check this box.

 Click **Next**.

5. On the Login page:

 - **User Name**: Enter `cn=orcladmin`, or the distinguished name of a user in the `iASAdmins` group.
 - **Password**: Enter the password for the user.

 Click **Next**.

6. On the Validation page, you will receive informational messages regarding the validation of this operation. If you receive any error message, follow the instructions for investigating them. Otherwise, if the operation is valid, click **Finish**.

7. When the operation is finished, start the components in the middle-tier instance:

 a. Click **Home** to navigate to the Home page for the instance.

 b. Click **Start All**.
9.4 Moving Identity Management to a New Host

This section provides a procedure for moving Identity Management to a new host. This procedure involves creating a replica (or copy) of the original Identity Management on a different host, along with its own new Metadata Repository, and then changing the middle-tier instance to use the new Identity Management.

9.4.1 Sample Uses for This Procedure

The following are sample uses for this procedure:

■ You have an existing Identity Management and associated Metadata Repository that is used by one or more middle-tier instances. Your organization intends to replace the current Identity Management host with a new system. You can use this procedure to create a replica of the Identity Management, along with its own Metadata Repository, and change the middle-tier instances to use the new Identity Management. You can then retire the original host.

■ You want to create a failover environment for your Identity Management. You can use this procedure to create a replica of the current Identity Management, along with its own Metadata Repository. You can keep the replica running so it stays synchronized with the original Identity Management. You can perform regular exports of data in the original Metadata Repository and save them. In the event that you lose the original Identity Management, you can import the data to the new Metadata Repository, and change the middle-tier instances to use the new Identity Management. Refer to Section 9.4.4, "Strategy for Performing Failover with This Procedure" for more information.

9.4.2 Assumptions and Restrictions

■ For both the original and new installations, Identity Management and Metadata Repository can exist in the same Oracle home, or in separate Oracle homes (same or different host). If they are in separate Oracle homes, perform the operations on each in their own Oracle home.

■ For both the original and new installations, the Identity Management components (OracleAS Single Sign-On, Oracle Internet Directory, Delegated Administration Services, Oracle Directory Integration Platform) can exist in the same Oracle home, or can exist in separate Oracle homes (same or different host). If they exist in separate Oracle homes, perform the operations on each in their own Oracle home.

■ The middle-tier instances can be either Release 2 (10.1.2.0.2) or Release 3 (10.1.3).

■ The Metadata Repository used by middle-tier instances for product metadata is not affected by this procedure.

– If the middle-tier instances store product metadata in the same Metadata Repository that the original Identity Management uses, they will continue to use that Metadata Repository after you have changed them to the new Identity Management. If you want, you can change them to use a different Metadata Repository after you have finished moving Identity Management. Refer to Section 9.5.
If the middle-tier instances store product metadata in a separate Metadata Repository, they will continue to use that Metadata Repository after you have changed them to the new Identity Management.

- Oracle Identity Federation may or may not be associated with the Identity Management instance.
- This procedure does not take OracleAS Certificate Authority into consideration.

See Also: Oracle Application Server Certificate Authority Administrator’s Guide for information on updating OracleAS Certificate Authority when changing Identity Management services

9.4.3 Procedure

This section describes how to move an Identity Management installation to a new host.

The following presents an overview of the procedure:

1. You have an original Identity Management (also called the Master) used by one or more middle-tier instances. The Identity Management instance has a Metadata Repository. You install and set up a new Identity Management (also called the Replica). This Identity Management instance has its own Metadata Repository. The Oracle Internet Directory in the new Identity Management is an LDAP-based replica of the original Oracle Internet Directory. Replication takes place constantly from the original Oracle Internet Directory to the new Oracle Internet Directory.

Figure 9–2 illustrates this scenario.
Moving Identity Management to a New Host

Figure 9–2 Original Host (Master) and New Host (Replica)

2. You migrate OracleAS Single Sign-On and Oracle Directory Integration Platform data from the original Metadata Repository (Master) to the new Metadata Repository (Replica).

See: "Task 2: Migrate OracleAS Single Sign-On and Oracle Directory Integration Platform Data"

3. You change the middle-tier instances to use the new Identity Management.

See: "Task 3: Change Middle-Tier Instances to the New Identity Management"

4. If your environment includes Oracle Identity Federation, change it to use the new Identity Management.

See "Task 4: Change Oracle Identity Federation to the New Identity Management"

5. You stop the LDAP-based replication.

See: "Task 5: Stop Replication"

Figure 9–3 illustrates the steps described.
Task 1: Install and Set Up the New Identity Management and Metadata Repository

In this task, you install and set up the new Identity Management and its associated Metadata Repository. The new Identity Management is an LDAP-based replica of the original Identity Management.

1. Read Section H.1, "About LDAP-Based Replicas" to learn about LDAP-based replicas and how they are used for this procedure.

2. Follow the procedure in Section H.2, "Installing and Setting Up an LDAP-Based Replica" to install and set up the new Identity Management and Metadata Repository.

3. After installation, the replica is in read-only mode. To change it to read-write mode, take the following steps:
 a. Create a file named `mod.ldif` and enter the following lines in the file:
      ```
      dn: 
      changetype:modify 
      replace:orclservermode 
      orclservermode:rw 
      ```
 b. Run the following command in the replica Oracle home:
      ```
      ldapmodify -D cn=orcladmin -w replica_orcladmin_passwd -p replica_oid_port 
      -v -f mod.ldif 
      ```
In the example, `replica_oid_port` is the non-SSL Oracle Internet Directory port for the replica. This is listed as `OIDport` in `ORACLE_HOME/config/ias.properties`.

Task 2: Migrate OracleAS Single Sign-On and Oracle Directory Integration Platform Data

In this task, you migrate the OracleAS Single Sign-On and Oracle Directory Integration Platform data from the original Metadata Repository to the new Metadata Repository. The source for the migration is the original Metadata Repository (Master) and the target for the migration is the new Metadata Repository (Replica).

This task contains the following subtasks:

- Migrate the OracleAS Single Sign-On Data
- Migrate the Oracle Directory Integration Platform Data

Note: Make sure the ORACLE_HOME and ORACLE_SID environment variables are set before you begin. This applies to all platforms.

Migrate the OracleAS Single Sign-On Data

To migrate the OracleAS Single Sign-On data:

1. Obtain the ORASSO schema password on the master:

   ```bash
   MASTER_HOME/bin/ldapsearch -p master_oid_port -h master_host
   -D "cn=orcladmin" -w master_orcladmin_passwd
   -b "orclresourcename=orasso, orclreferencename=master_global_db_name,
   cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext"
   -s base "objectclass=*" orclpasswordattribute
   ``

   This command prints the ORASSO password in a line like the following:

   ```
 orclpasswordattribute=LAetjdQ5
   ```

2. Export the OracleAS Single Sign-On data from the master, ensuring that the ORACLE_HOME environment variable is set before you run this command:

   ```bash
 MASTER_HOME/sso/bin/ssomig -export -s orasso -p master_orasso_passwd
 -c master_db_name -log_d $MASTER_HOME/sso/log
 ``

 In the example, `master_orasso_passwd` is the ORASSO password obtained in the previous step.

3. Copy the `ssomig.dmp` and `ssoconf.log` files from the master to the replica, preserving the exact full path for each file:

 UNIX:
   ```bash
   cp MASTER_HOME/sso/log/ssomig.dmp REPLICA_HOME/sso/log/ssomig.dmp
   cp MASTER_HOME/sso/log/ssoconf.log REPLICA_HOME/sso/log/ssoconf.log
   ```

 Windows:
   ```bash
   copy MASTER_HOME\sso\log\ssomig.dmp REPLICA_HOME\sso\log\ssomig.dmp
   copy MASTER_HOME\sso\log\ssoconf.log REPLICA_HOME\sso\log\ssoconf.log
   ```

4. Obtain the ORASSO schema password on the replica:

   ```bash
   REPLICA_HOME/bin/ldapsearch -p replica_oid_port -h replica_host
   ```
5. Import the OracleAS Single Sign-On data to the replica:

```
REPLICA_HOME/sso/bin/ssomig -import -overwrite -s orasso
-p replica_orasso_passwd -c replica_db_name
-log_d $REPLICA_HOME/sso/log -discoforce
```

In the example, `replica_orasso_passwd` is the ORASSO password obtained in the previous step.

Check the following log files for errors:

```
MASTER_HOME/sso/log/ssomig.log
REPLICA_HOME/sso/log/ssomig.log
```

See Also: Oracle Application Server Single Sign-On Administrator’s Guide for information on interpreting messages in the log files

Migrate the Oracle Directory Integration Platform Data

Run the Oracle Directory Integration Platform configuration assistant command to migrate the profile data and restart the Oracle Directory Integration Platform instance on the new host (the replica). For example, on UNIX, the command takes the following format:

```
REPLICA_HOME/bin/oidca mode=DIP
-silent
oidhost=replica_oid_host connstr=replica_oid_db_connect_string
sslport=replica_oid_ssl_port
sudn=replica_oid_user_dn
supwd=replica_oid_user_password
iaspwd=replica_ias_admin_password
odspwd=oid_db_schema_password
iasinstance=1014_iasinstance_name -ldapreadonly
masteroidhost=master_oid_host
masteroidport=master_oid_ssl_or_nonssl_port [-ssl]
mastersudn=master_user_dn
mastersupwd=master_user_password
```

In the example:

- `replica_oid_host` is the hostname of the replica Oracle Internet Directory.
- `replica_oid_db_connect_string` is the short name of database connection string. For example, if the connection string is `orcl.mydomain.com`, the value of this parameter is `orcl`.
- `replica_oid_ssl_port` is the SSL port number of the replica Oracle Internet Directory.
- `replica_oid_user_dn` is the DN of the replica Oracle Internet Directory user needed to bind to the directory (for example, `cn=orcladmin`).
- `replica_oid_user_password` is the user password needed to bind to the replica directory.
- `replica_iasadmin_password` is the password for the ias_admin user.
Moving Identity Management to a New Host

- `oid_db_schema_password` is the password for the Oracle Internet Directory schema.
- `1014_iasinstance_name` is the name for the new instance.
- `master_oid_host` is the hostname of the master Oracle Internet Directory.
- `master_oid_ssl_or_nonssl_port` is the SSL or non-SSL port number of the master Oracle Internet Directory.
- `master_user_dn` is the DN of the master Oracle Internet Directory user needed to bind to the directory (for example, `cn=orcladmin`).
- `master_user_password` is the user password needed to bind to the master directory.

Task 3: Change Middle-Tier Instances to the New Identity Management

In each middle-tier instance, run the Change Identity Management wizard and restart the instance.

For each Release 2 (10.1.2.0.2) middle-tier instance, take the following steps:
1. Using the Application Server Control Console, navigate to the Home page for the middle-tier instance.
2. Click Infrastructure.
4. Follow the steps in the wizard for supplying the new Identity Management information.
5. When the wizard is finished, navigate to the Home page for the instance and start your instance by clicking Start All.

For each Release 3 (10.1.3) middle-tier instance, take the following steps:
1. Using the Application Server Control Console, navigate to the OC4J Home page for the middle-tier instance.
2. Click Administration.
3. In the Task Name column of the table, expand Security if it is not already expanded. Then, in the Identity Management row, click the Go to Task icon.
5. Follow the steps in the wizard for supplying the new Identity Management information. See Section 7.4.4 for more information.
6. When the operation is finished, you need to restart the OC4J instance. Do not click Restart on the Confirmation page. Instead, navigate to the Cluster Topology page, select the OC4J instance, and click Restart.

Task 4: Change Oracle Identity Federation to the New Identity Management

If Oracle Identity Federation uses the Identity Management instance, change it to use the new Identity Management, by taking the steps in "Task 8: Update Oracle Identity Federation" in Section 8.2.2.

See Also: Oracle Identity Federation Administrator’s Guide
Task 5: Stop Replication

Stop the replication between the original Identity Management and the new Identity Management (Replica) by running the following command in the new Identity Management Oracle home:

```
oidctl connect=global_db_name server=oidrepld instance=1 flags="-p oid_port" stop
```

In the example, `global_db_name` is the global database name of the new Identity Management. (This is referred to as `replica_db_name` in Section H.2.)

In the example, `oid_port` is the non-SSL Oracle Internet Directory port in the new Identity Management.

9.4.4 Strategy for Performing Failover with This Procedure

As mentioned in Section 9.4.1, you can modify this procedure to perform failover for Identity Management. This enables you to move your middle-tier instances to the new Identity Management in case the original is lost.

To perform failover:

1. Install and set up the new Identity Management as described in "Task 1: Install and Set Up the New Identity Management and Metadata Repository".

2. Export Oracle Application Server Single Sign-On and Oracle Directory Integration Platform data on a regular basis from the original Metadata Repository. You do not need to import the data into the new Metadata Repository. You only need to export the data and copy the files to the new Metadata Repository Host. Refer to "Task 2: Migrate OracleAS Single Sign-On and Oracle Directory Integration Platform Data".

3. If you lose the original Identity Management:
 a. Stop replication. Refer to "Task 5: Stop Replication".
 b. Import your most recent copy of the Oracle Application Server Single Sign-On and Oracle Directory Integration Platform data into the new Identity Management repository. Refer to "Task 2: Migrate OracleAS Single Sign-On and Oracle Directory Integration Platform Data".
 c. Change the middle-tier instances to use the new Identity Management. Refer to "Task 3: Change Middle-Tier Instances to the New Identity Management".

9.5 Changing the Metadata Repository Used by a Middle-Tier Instance

This section provides a procedure for changing the Metadata Repository used by a Release 2 (10.1.2.0.2) middle-tier instance. This procedure involves making a copy of the original Metadata Repository on a different host, and then changing the middle-tier instance to use the new Metadata Repository.

9.5.1 Sample Uses for This Procedure

The following are sample uses for this procedure:

- You have an existing Metadata Repository that is used by one or more middle-tier instances. Your organization intends to replace the current Metadata Repository host with a new system. You can use this procedure to copy the Metadata Repository to the new host and change your middle-tier instances to use the new Metadata Repository. You can then retire the original host.
You want to move a Metadata Repository from a host in your test environment to a host in your Production Environment. You can use this procedure to copy the Metadata Repository from the test-to-production host, and change your test middle-tier instances to use the new Metadata Repository.

9.5.2 Assumptions and Restrictions

In this scenario:

- The middle-tier instances use Identity Management.
- The Identity Management installation does not use the original Metadata Repository for its Identity Management schemas; it uses a separate Metadata Repository.
- The original Metadata Repository:
 - Is used for product metadata and DCM management only (it is not used by Identity Management)
 - Must be registered with Oracle Internet Directory
- The new Metadata Repository:
 - Must not be registered with Oracle Internet Directory initially. During the procedure, you will register it with the same Oracle Internet Directory as the original Metadata Repository.
 - Must be created with the same Oracle home, datafile location, SID, and global database name as the original Metadata Repository. You will eventually change the global database name to a unique name.
- OracleAS Certificate Authority is not supported by this procedure and must not be configured in your environment.
- If the Metadata Repository is used for OracleAS Clusters, the cluster members will not be accessible until all members of the cluster have been changed to the new Metadata Repository.

9.5.3 Overview

An overview of the procedure is as follows:

1. You have an original Metadata Repository. It is used by one or more middle-tier instances for product metadata. The middle-tier instances use Identity Management, and the Metadata Repository is registered with Oracle Internet Directory in that Identity Management.

 Figure 9–4 shows the original Metadata Repository (orcl1.myco.com).
2. You create a copy of the original Metadata Repository by installing a new Metadata Repository, backing up the original Metadata Repository, and restoring to the new Metadata Repository.

Figure 9–5 shows the original and new Metadata Repositories.
The following table shows sample attributes for the original and new Metadata Repositories after you installed the new Metadata Repository:

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Original Metadata Repository</th>
<th>New Metadata Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle home</td>
<td>/private/oraHome</td>
<td>/private/oraHome</td>
</tr>
<tr>
<td>Datafile location</td>
<td>/private/oraHome/oradata</td>
<td>/private/oraHome/oradata</td>
</tr>
<tr>
<td>SID</td>
<td>orcl1</td>
<td>orcl1</td>
</tr>
<tr>
<td>Global database name</td>
<td>orcl1.myco.com</td>
<td>orcl1.myco.com</td>
</tr>
<tr>
<td>Registered with Oracle</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td>Internet Directory?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. You perform the following general procedures to change to the new Metadata Repository. The tasks are shown in Figure 9–6.

 - 1: Change the global database name of the new Metadata Repository to a unique name (in this sample, orcl2.myco.com).
 - 2: Register the new Metadata Repository with the same Oracle Internet Directory as the old Metadata Repository.
 - 3: Change the middle-tier instances to use the new Metadata Repository.
Changing the Metadata Repository Used by a Middle-Tier Instance

Figure 9–6 Changing from the Original to the New Metadata Repository

The following table shows the sample attributes for the original Metadata Repository and the attributes for the new Metadata Repository after you perform this step.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Original Metadata Repository</th>
<th>New Metadata Repository</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle home</td>
<td>/private/oraHome</td>
<td>/private/oraHome</td>
</tr>
<tr>
<td>Datafile location</td>
<td>/private/oraHome/oradata</td>
<td>/private/oraHome/oradata</td>
</tr>
<tr>
<td>SID</td>
<td>orcl1</td>
<td>orcl1</td>
</tr>
<tr>
<td>Global database name</td>
<td>orcl1.myco.com</td>
<td>orcl2.myco.com</td>
</tr>
<tr>
<td>Registered with Oracle Internet Directory?</td>
<td>Yes</td>
<td>Yes</td>
</tr>
</tbody>
</table>

4. If you are using the scenario where you no longer require the original Metadata Repository, you can deinstall the original Metadata Repository.

9.5.4 Procedure

To change the Metadata Repository, perform the following tasks:

- Task 1: Install the New Metadata Repository
- Task 2: Back Up the Original Metadata Repository
- Task 3: Restore the Backup to the New Metadata Repository
- Task 4: Configure Oracle Ultra Search Metadata in the New Metadata Repository
- Task 5: Change the Global Database Name for the New Metadata Repository
- Task 6: Register the New Metadata Repository with Oracle Internet Directory
Task 7: Change Middle-Tier Instances to the New Metadata Repository

Task 8: Update the Farm Name

Before You Begin
If your middle-tier instances use OracleAS Portal and Oracle Ultra Search, you will need to supply the WKSYS schema password later in this procedure. You should obtain this password now from the old Metadata Repository.

Note: For information on how to obtain the WKSYS password, see Section 6.3.

Task 1: Install the New Metadata Repository
Install the new Metadata Repository as follows:

1. Make sure you install the Metadata Repository into an Oracle home that has the same path as the old Metadata Repository Oracle home.
2. Use Oracle Universal Installer to install the Metadata Repository.
3. Choose to install an Infrastructure.
4. Choose to install a Metadata Repository only.
5. Do not register the Metadata Repository with Oracle Internet Directory.
6. Specify the same SID and global database name as the old Metadata Repository.
7. Specify the same datafile location as the old Metadata Repository.

Task 2: Back Up the Original Metadata Repository
In this task, you create a backup of the original Metadata Repository. This section provides the steps for creating the backup using Oracle Recovery Manager; however, if you are an experienced DBA, you can back up the Metadata Repository according to your standard practices.

Perform all of the steps in this task on the original Metadata Repository host:

1. Create directories to store backup files and log files. For example:

 mkdir -p BACKUP_DIR/log_files
 mkdir -p BACKUP_DIR/db_files

2. Make sure the original Metadata Repository is started.
3. Make sure you have set the ORACLE_HOME and ORACLE_SID environment variables.
4. Connect to the database as a user with SYSDBA privileges.
5. Obtain the DBID of the original Metadata Repository using SQL*Plus:

 SQL> SELECT DBID FROM v$database;

 Make note of this value; you will use it later in the procedure.
6. Create a file named BACKUP_DIR/cold_backup.rcv. Enter the following lines in the file:

 shutdown immediate;
 startup mount;
 configure controlfile autobackup on;
configure controlfile autobackup format for device type disk to 'BACKUP_DIR/db_files/%P';

run {
allocate channel dev1 device type disk format 'BACKUP_DIR/db_files/%U';
backup database plus archivelog;
release channel dev1;
}

In the file, substitute the full path for BACKUP_DIR.

7. Run Oracle Recovery Manager to back up the Metadata Repository.
 • You can run Oracle Recovery Manager on the Metadata Repository host as follows (the following is a single command; type it all on one line):

     ```
     ORACLE_HOME/bin/rman target /
     cmdfile=BACKUP_DIR/cold_backup.rcv > BACKUP_DIR/log_files/backup.log
     ```

 Note that the preceding command contains a forward slash "/" character.
 • You can run Oracle Recovery Manager from another host on the network as follows (the following is a single command; type it all on one line):

     ```
     ORACLE_HOME/bin/rman target SYS/oracle@trgt
     cmdfile=BACKUP_DIR/cold_backup.rcv > BACKUP_DIR/log_files/backup.log
     ```

8. Copy the backup directories to the new host.

Note: If you copy the files to a different location on the new host, you must use the CATALOG command to update the RMAN repository with the new filenames and use the CHANGE ... UNCATALOG command to uncatalog the old filenames.

See *Oracle Database Backup and Recovery Advanced User’s Guide* in the Oracle Database documentation for more information about the CATALOG command.

Task 3: Restore the Backup to the New Metadata Repository

In this task, you restore the backup to the new Metadata Repository.

Perform all of the steps in this task on the new Metadata Repository host:

1. Make sure the new Metadata Repository is shut down:

   ```
   sqlplus "SYS/sys_password" as SYSDBA
   SQL> SHUTDOWN IMMEDIATE;
   ```

2. Regenerate the password file:
 • On UNIX:

     ```
     mv ORACLE_HOME/dbs/orapwORACLE_SID ORACLE_HOME/dbs/orapwORACLE_SID.old
     ORACLE_HOME/bin/orapwd file=ORACLE_HOME/dbs/orapwORACLE_SID password=new_password
     ```

 • On Windows:

     ```
     move ORACLE_HOME\database\PW Rory ORACLE_HOME\database\PW Rory.old
     ```
-changing the metadata repository used by a middle-tier instance

3. Start the new Metadata Repository but do not mount it:

 SQL> STARTUP NOMOUNT;

4. Create a file named BACKUP_DIR/restore.rcv that contains the following lines. In the file, substitute the full path for BACKUP_DIR and the DBID value you obtained in the previous task for dbid.

 set dbid=DBID;
 connect target /;
 set controlfile autobackup format for device type disk to 'BACKUP_DIR/db_files/%F';
 restore controlfile from autobackup;
 startup mount force;

 run {
 allocate channel dev1 device type disk format 'BACKUP_DIR/db_files/%U';
 restore database;
 release channel dev1;
 alter database open resetlogs;
 }

5. Run Oracle Recovery Manager to restore the Metadata Repository.

 a. If you are logged into the host machine for the Metadata Repository, run the following command:

 "ORACLE_HOME/bin/rman cmdfile=BACKUP_DIR/restore.rcv > BACKUP_DIR/log_files/restore.log"

 b. If you are accessing the host machine for the Metadata Repository from another machine on the network, edit the following file:

 "BACKUP_DIR/restore.rcv"

 Make sure the file contains the following line:

 "TARGET SYS/oracle@trgt"

 Run the following command:

 "ORACLE_HOME/bin/rman cmdfile=BACKUP_DIR/restore.rcv > BACKUP_DIR/log_files/restore.log"

6. After you restore using Oracle Recovery Manager, determine if the TEMP tablespace has a datafile by connecting to the database as a user with SYSDBA privileges and running the following command in SQL*Plus:

 SQL> SELECT file_name FROM dba_temp_files WHERE tablespace_name LIKE 'TEMP';

 If the preceding command does not return any files, take the following steps:

 a. Check if the following file exists on your system:

 "ORADATA_DIRECTORY/db_name/temp01.dbf"
b. If the file exists, enter the following command:

```sql
SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/db_name/temp01.dbf' SIZE 5120K REUSE AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;
```

If the file does not exist, enter the following command:

```sql
SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/db_name/temp01.dbf' SIZE 5120K AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;
```

Note that you must type the preceding commands on one line, and `db_name` is the first portion of the new global database name.

Task 4: Configure Oracle Ultra Search Metadata in the New Metadata Repository

Perform this task on the new Metadata Repository:

1. Make sure the ORACLE_HOME and ORACLE_SID environment variables are set.
2. Run the following commands:

   ```
   (UNIX)    cd ORACLE_HOME/ultrasearch/admin
   (Windows) cd ORACLE_HOME\ultrasearch\admin
   sqlplus "SYS/sys_password as SYSDBA"
   SQL> @wk0config.sql WksysPw JDBC_ConnStr LAUNCH_ANYWHERE ""
   
   (Note the two double quotes at the end of the preceding command.)
   ```

 (In the example:
 - `WksysPw` is the password of the WKSYS schema that you obtained at the beginning of this procedure.
 - `JDBC_ConnStr` is the JDBC connection string `host:port:SID`, for example: `myhost:1521:testdb`.
 - `LAUNCH_ANYWHERE` is `TRUE` if the Metadata Repository is in Real Application Clusters mode, otherwise `FALSE`. For this procedure, set it to `FALSE`.

Task 5: Change the Global Database Name for the New Metadata Repository

In this task, you change the global database name of the new Metadata Repository to a new, unique name so you can register it with Oracle Internet Directory.

Perform all of the steps in this task on the new Metadata Repository host:

1. Run the following commands to set up the database:

   ```
   sqlplus "SYS/sys_password as SYSDBA"
   SQL> ALTER SYSTEM SWITCH logfile;
   SQL> ALTER DATABASE BACKUP CONTROLFILE TO TRACE RESETLOGS;
   ```

2. Check the spfile using SQL*Plus:

   ```sql
   SQL> SELECT value FROM v$parameter WHERE name='spfile';
   ```

 If the previous command returns no rows, skip this step.

 Check if the previous command returns output like the following:

   ```
   VALUE
   /dbs/spfile@.ora
   ```
If it does, run the following command to create a pfile from the spfile:

- **On Unix:**
  ```sql
  SQL> CREATE pfile='ORACLE_HOME/dbs/initORACLE_SID.ora' FROM spfile;
  ```

- **On Windows:**
  ```sql
  SQL> CREATE pfile='%ORACLE_HOME%\database\initORACLE_SID.ora' FROM spfile;
  ```

In the example, `ORACLE_SID` is the SID of the original and new Metadata Repository.

4. Shut down the new Metadata Repository:

   ```sql
   SQL> SHUTDOWN IMMEDIATE;
   ```

 The database must be shut down with SHUTDOWN NORMAL or SHUTDOWN IMMEDIATE. Do not use SHUTDOWN ABORT.

5. Rename the spfile so the pfile will be used when the database instance is restarted:

 - **On Unix:**
     ```
     cd ORACLE_HOME/dbs
     mv spfileORACLE_SID.ora spfileORACLE_SID.ora.save
     ```

 - **On Windows:**
     ```
     cd ORACLE_HOME\database
     rename spfileORACLE_SID.ora spfileORACLE_SID.ora.save
     ```

6. Edit the following file:

 (UNIX) `ORACLE_HOME/dbs/initORACLE_SID.ora`
 (Windows) `ORACLE_HOME\database\initORACLE_SID.ora`

 Update the `db_name` to the new `db_name` (the first portion of the new global database name). For example, if the new global database name is `orcl1.myco.com`, the value of `db_name` should be `orcl1`. Note that this is not necessarily (nor likely) the same value as the SID on the new Metadata Repository.

 Also, update all other instances of the old `db_name` to the new `db_name`. Specifically, you should update directory paths that contain the old `db_name`. If the directory paths are not updated, when you run the `ccf.sql` script in step 16, the script will fail.

7. Rename the following directory with the new `db_name`:

 (UNIX) `ORADATA_DIRECTORY/db_name`
 (Windows) `ORADATA_DIRECTORY\db_name`

8. Rename the control files so they do not exist later when the new ones are created:

 (UNIX) `cd ORADATA_DIRECTORY/db_name`
 (Windows) `cd ORADATA_DIRECTORY\db_name`

   ```
   mv control01.ctl control01.ctl.old
   mv control02.ctl control02.ctl.old
   mv control03.ctl control03.ctl.old
   ```

9. Rename the following directory with the new `db_name`:

 (UNIX) `ORACLE_HOME/admin/db_name`
 (Windows) `ORACLE_HOME\..\admin\db_name`
Note that on Windows, the `admin` directory is in the same directory as the Oracle home.

10. Edit the following file:

 (UNIX) \ORACLE_HOME\admin\db_name\pfile\init.ora.NNNNNNNNNNNNNNNNN
 (Windows) \ORACLE_HOME\..\admin\db_name\pfile\init.ora.NNNNNNNNNNNNNNNNN

 Note that the filename includes a random number at the end.

 Change all instances of the old `db_name` to the new `db_name`; do not update
 the SID. To do this, change the old `db_name` in all directory paths and the `db_name`
 parameter.

11. Change to the trace file directory:

 (UNIX) \cd \ORACLE_HOME\admin\db_name\udump
 (Windows) \cd \ORACLE_HOME\..\admin\db_name\udump

 Note that the preceding is the default location for the trace file directory. This
 location can be overridden by the `user_dump_dest` parameter in `initORACLE_`
 `SID.ora` or `spfileORACLE_SID.ora`.

12. Locate the trace file; it has a name of the form `ORACLE_SID_ora_NNNNNN.trc`,
 where `NNNNNN` is a number. Choose the trace file with the most recent modification
 date.

13. Copy the contents of the trace file, starting from the line with `STARTUP NOMOUNT`
 to the end of the file, into a new file named `BACKUP_DIR/ccf.sql`.

 Do not copy any the following lines, if they exist:

 *** TIMESTAMP krrr.c
 ARCH: Archival disabled due to shutdown: 1089

14. Edit `BACKUP_DIR/ccf.sql` as follows. (Example 9–1 shows an example of the
 `ccf.sql` file after performing the edits in this step.)

 a. Update the following line with the new global database name and change
 `REUSE` to `SET`:

 Before modification:

 CREATE CONTROLFILE REUSE DATABASE "Old_Global_DB_Name" RESETLOGS ...

 After modification:

 CREATE CONTROLFILE SET DATABASE "New_Global_DB_Name" RESETLOGS ...

 b. Remove the line that appears in one of the following two forms:

 # STANDBY LOGFILE
 -- STANDBY LOGFILE

 c. Comment out the following lines, if they exist, with "REM", as shown:

 REM RECOVER DATABASE USING BACKUP CONTROLFILE

 REM VARIABLE RECNO NUMBER;

 REM EXECUTE :RECNO := SYSDBMS_BACKUP_RESTORE.SETCONFIG(‘CONTROLFILE
 AUTOBACKUP’, ‘ON’);

 REM VARIABLE RECNO NUMBER;
Changing the Metadata Repository Used by a Middle-Tier Instance

REM EXECUTE :RECNO := SYS.DBMS_BACKUP_
RESTORE.SETCONFIG('CONTROLFILEAUTOBACKUP FORMAT FOR DEVICE TYPE', 'DISK TO
BACKUP_DIR/db_files/%F');

REM ALTER TABLESPACE TEMP ADD TEMPFILE
'ORACLE_HOME/TMP01.DBF' SIZE 5242880 AUTOEXTEND ON MAXSIZE 4294950912
REUSE;

d. Change all comment symbols to REM. Depending on your platform, the
 comment symbol may be # or --.

Example 9–1 Example ccf.sql File after Edits

STARTUP NOMOUNT
CREATE CONTROLFILE set DATABASE "NEW DATABASE" RESETLOGS ARCHIVELOG
MAXLOGFILES 50
MAXLOGMEMBERS 5
MAXDATAFILES 100
MAXINSTANCES 1
MAXLOGHISTORY 226
LOGFILE
GROUP 1 '/private1/inst/oradata/orcl/redo01.log' SIZE 50M,
GROUP 2 '/private1/inst/oradata/orcl/redo02.log' SIZE 50M,
GROUP 3 '/private1/inst/oradata/orcl/redo03.log' SIZE 50M
DATAFILE
'/private1/inst/oradata/orcl/system01.dbf',
'/private1/inst/oradata/orcl/undotbs01.dbf',
'/private1/inst/oradata/orcl/dzysys01.dbf',
'/private1/inst/oradata/orcl/dcm.dbf',
'/private1/inst/oradata/orcl/portal.dbf',
'/private1/inst/oradata/orcl/ptldoc.dbf',
'/private1/inst/oradata/orcl/ptlidx.dbf',
'/private1/inst/oradata/orcl/ptllog.dbf',
'/private1/inst/oradata/orcl/oca.dbf',
'/private1/inst/oradata/orcl/disopcpltcl.dbf',
'/private1/inst/oradata/orcl/disopcpltml.dbf',
'/private1/inst/oradata/orcl/oss_systt01.dbf',
'/private1/inst/oradata/orcl/wcrsrs01.dbf',
'/private1/inst/oradata/orcl/uddisys01.dbf',
'/private1/inst/oradata/orcl/ip_dt.dbf',
'/private1/inst/oradata/orcl/ip_rt.dbf',
'/private1/inst/oradata/orcl/ip_idx.dbf',
'/private1/inst/oradata/orcl/ip_lob.dbf',
'/private1/inst/oradata/orcl/attrsl_oid.dbf',
'/private1/inst/oradata/orcl/battrsl_oid.dbf',
'/private1/inst/oradata/orcl/gcatsl_oid.dbf',
'/private1/inst/oradata/orcl/gdefault1_oid.dbf',
'/private1/inst/oradata/orcl/svrmgl_oid.dbf',
'/private1/inst/oradata/orcl/orcl/ias_meta01.dbf'
CHARACTER SET WE8MSWIN1252 ;
REM Configure RMAN configuration record 1
REM VARIABLE RECNO NUMBER;
REM EXECUTE :RECNO := SYS.DBMS_BACKUP_RESTORE.SETCONFIG('CONTROLFILE
AUTOBACKUP', 'ON');
REM Configure RMAN configuration record 2
REM VARIABLE RECNO NUMBER;
REM EXECUTE :RECNO := SYS.DBMS_BACKUP_RESTORE.SETCONFIG('CONTROLFILE AUTOBACKUP
FORMAT FOR DEVICE TYPE', 'DISK TO /private1/inst/backup_dir/db_files/%F');
REM Recovery is required if any of the datafiles are restored backups, REM or if the last shutdown was not normal or immediate. REM RECOVER DATABASE USING BACKUP CONTROLFILE REM Database can now be opened zeroing the online logs. ALTER DATABASE OPEN RESETLOGS; REM No tempfile entries found to add.

15. Edit the following script:

```
BACKUP_DIR/ccf.sql
```

Replace the old global database name with the new global database name throughout the script.

16. Run the `ccf.sql` script:

```
SQL> @BACKUP_DIR/ccf.sql
```

17. Change the global database name in the database, specifying the `New_Global_DB_Name`:

```
SQL> ALTER DATABASE RENAME global_name TO New_Global_DB_Name;
```

18. Determine if the TEMP tablespace has a datafile by connecting to the database as a user with SYSDBA privileges and running the following command in SQL*Plus:

```
SQL> SELECT file_name FROM dba_temp_files WHERE tablespace_name LIKE 'TEMP';
```

If the preceding command does not return any files, take the following steps:

a. Check if the following file exists on your system:

```
ORADATA_DIRECTORY/db_name/temp01.dbf
```

b. If the file exists, enter the following command:

```
SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/db_name/temp01.dbf' SIZE 5120K REUSE AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;
```

If the file does not exist, enter the following command:

```
SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/db_name/temp01.dbf' SIZE 5120K AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;
```

Note that you must type the preceding commands on one line, and `db_name` is the first portion of the new global database name.

19. Update the service name and the global database name to the new global database name in the following file:

(UNIX) `ORACLE_HOME/network/admin/tnsnames.ora`
(Windows) `ORACLE_HOME\network\admin\tnsnames.ora`

Note that you should not change the SID.

20. Edit the following file:

(UNIX) `ORACLE_HOME/config/ias.properties`
(Windows) `ORACLE_HOME\config\ias.properties`

Change the `InfrastructureDBCommonName` parameter to the new global database name.
Task 6: Register the New Metadata Repository with Oracle Internet Directory

In this task, you register the new Metadata Repository with the same Oracle Internet Directory used by the original Metadata Repository. To do this, you run Oracle Application Server Repository Creation Assistant (OracleAS RepCA), a wizard that guides you through the registration.

Note: OracleAS RepCA is available on the "OracleAS RepCA" CD-ROM.

1. Using SQL*Plus, log in to the new Metadata Repository as SYS with SYSDBA privileges.
 a. Run the following SQL commands:

 SQL> EXECUTE dbms_ias_version.set_component_loading(component_id=>'MRC', component_name=>'Oracle Application Server Metadata Repository Version', schema_name=>'SYS');

 SQL> EXECUTE dbms_ias_version.set_component_valid(component_id=>'MRC');

 b. Verify that the following command returns the following value:

 SQL> SELECT comp_name, version, status FROM app_registry WHERE comp_id='MRC';

COMP_NAME	VERSION	STATUS
Oracle Application Server Metadata Repository Version-R	10.1.4.0.1	VALID

2. Register the new Metadata Repository with Oracle Internet Directory:

 See Also: Oracle Application Server Metadata Repository Creation Assistant User’s Guide for more information on how to perform the following steps

 a. Install OracleAS RepCA into its own Oracle home on the host where the new Metadata Repository resides. In the Select a Product to Install screen, choose Oracle Application Server Repository Creation Assistant.

 b. Run OracleAS RepCA as follows:

 (UNIX) ORACLE_HOME_RepCA/runRepca
 (Windows) ORACLE_HOME_RepCA\runRepca.bat

 The wizard guides you through the process.

 c. When the process is finished, an ldap.ora file is created in the OracleAS RepCA Oracle home. Copy this file to the new Metadata Repository Oracle home.

 Copy the file from:

 (UNIX) ORACLE_HOME_RepCA/network/admin/ldap.ora
 (Windows) ORACLE_HOME_RepCA\network\admin\ldap.ora

 To:

 (UNIX) ORACLE_HOME_NEW_METADATA_REPOSITORY/network/admin/ldap.ora
 (Windows) ORACLE_HOME_NEW_METADATA_REPOSITORY\network\admin\ldap.ora
Task 7: Change Middle-Tier Instances to the New Metadata Repository

On each middle-tier instance you want to change to the new Metadata Repository, run the Change Metadata Repository wizard and restart the instance. For example, for a 10.1.2 middle-tier:

1. Using the Application Server Control Console, navigate to the Home page for the middle-tier instance.
2. Make sure all components except Management are down. If not, click Stop All to stop them. Note that this will not stop Management.
3. Click Infrastructure.
4. On the Infrastructure Page, in the Metadata Repository section, click Change.
5. Follow the steps in the wizard for supplying the new Metadata Repository information.
6. When the wizard is finished, navigate to the Home page for the instance and start your instance by clicking Start All.

Task 8: Update the Farm Name

Run the following command in the Oracle home of one of the middle-tier instances that you changed to use the new Metadata Repository in the previous task:

(UNIX) ORACLE_HOME/dcm/bin/dcmctl resetFarmName new_farm_name
(Windows) ORACLE_HOME\dcm\bin\dcmctl resetFarmName new_farm_name

In the example, new_farm_name is the global database name of the new Metadata Repository.

Note: You only need to run the command in one middle-tier instance. The command updates all other instances.

9.6 Changing the Metadata Repository Used by Identity Management

This section provides a procedure for changing the Metadata Repository used by Identity Management. This procedure applies if the Metadata Repository is also used by a Release 2 (10.1.2.0.2) middle-tier instance that is connected to the Identity Management instance.

The procedure involves making a copy of the original Metadata Repository on a different host, and then changing the Identity Management and middle-tier components to use the new Metadata Repository.

9.6.1 Sample Uses for This Procedure

The following are sample uses for this procedure:

- You have an Identity Management installation using a Metadata Repository, and a middle-tier instance connected to the Identity Management instance may be using the same Metadata Repository. You want to move the Metadata Repository to a different host so you can retire the original Metadata Repository.
- Your current Metadata Repository host is overloaded and you want to move the Metadata Repository to a host that can handle a heavier load.
9.6.2 Assumptions and Restrictions

In this scenario:

- The Identity Management installation can reside in one Oracle home, or its components can be distributed across several Oracle homes.
- A middle-tier instance that is connected to Identity Management can use the same Metadata Repository.
- The new Metadata Repository:
 - Must reside on a different host than the original Metadata Repository. That host must use the same operating system platform as the original.
 - Must use the same Oracle home, datafile location, SID, and global database name as the original Metadata Repository.
 - Can use a different database listener port than the original.

9.6.3 Procedure

To change the Metadata Repository, perform the following tasks:

- Task 1: Install the New Metadata Repository
- Task 2: Shut Down Your Environment
- Task 3: Back Up the Original Metadata Repository
- Task 4: Restore the Backup to the New Metadata Repository
- Task 5: Configure Oracle Ultra Search Metadata in the New Metadata Repository
- Task 6: Update Oracle Internet Directory
- Task 7: Shut Down the Original Metadata Repository
- Task 8: Start Oracle Internet Directory Using Special Commands
- Task 9: Update the Oracle Internet Directory Database Registration
- Task 10: Stop Oracle Internet Directory Using Special Commands
- Task 11: Start Your Environment
- Task 12: Update OracleAS Certificate Authority

Before You Begin

If your middle-tier instances use OracleAS Portal and Oracle Ultra Search, you will need to supply the WKSYS schema password later in this procedure. You should obtain this password now from the old Metadata Repository.

Note: For information on how to obtain the WKSYS password, see Section 6.3.

Task 1: Install the New Metadata Repository

Install the new Metadata Repository on a different host, as follows:

1. Make sure you install the Metadata Repository into an Oracle home that has the same path as the old Metadata Repository Oracle home.
2. Use Oracle Universal Installer to install the Metadata Repository.
3. Choose to install an Infrastructure.
4. Choose to install a Metadata Repository only.
5. Do not register the Metadata Repository with Oracle Internet Directory.
6. Specify the same SID and global database name as the old Metadata Repository.
7. Specify the same datafile location as the old Metadata Repository.

Task 2: Shut Down Your Environment

Shut down your environment:

1. Shut down all middle-tier instances that use this instance of Identity Management.
   ```
   ORACLE_HOME/opmn/bin/opmnctl stopall
   ORACLE_HOME\opmn\bin\opmnctl stopall
   ```

2. Run the following command in the Identity Management Oracle home:
   ```
   ORACLE_HOME/opmn/bin/opmnctl stopall
   ORACLE_HOME\opmn\bin\opmnctl stopall
   ```
 If the Identity Management installation is distributed across several Oracle homes, also run the command in the Oracle Internet Directory Oracle home.

3. If you use OracleAS Certificate Authority, stop it as follows:
   ```
   (UNIX) ORACLE_HOME/oca/bin/ocactl stop
   (Windows) ORACLE_HOME\oca\bin\ocactl stop
   ```

Task 3: Back Up the Original Metadata Repository

In this task, you create a backup of the original Metadata Repository. This section provides the steps for doing this using Oracle Recovery Manager; however, if you are an experienced DBA, you can back up the Metadata Repository according to your standard practices.

Perform all of the steps in this task on the original Metadata Repository host:

1. Create directories to store backup files and log files. For example:
   ```
   mkdir -p BACKUP_DIR/log_files
   mkdir -p BACKUP_DIR/db_files
   ```

2. Make sure the original Metadata Repository is started.

3. Make sure you have set the ORACLE_HOME and ORACLE_SID environment variables before you run the SQL*Plus command.

4. Obtain the DBID of the original Metadata Repository using SQL*Plus:
   ```
   sqlplus "SYS/sys_password as SYSDBA"
   SQL> SELECT DBID FROM v$database;
   ```
 Make note of this value; you will use it later in the procedure.

5. Create a file named `BACKUP_DIR/cold_backup.rcv`. Enter the following lines in the file:
   ```
   shutdown immediate;
   startup mount;
   configure controlfile autobackup on;
   configure controlfile autobackup format for device type disk to 'BACKUP_DIR/db_files/%F';
   ```
run {
allocate channel dev1 device type disk format 'BACKUP_DIR/db_files/%U';
backup database plus archivelog;
release channel dev1;
}

In the file, substitute the full path for BACKUP_DIR.

6. Run Oracle Recovery Manager to back up the Metadata Repository.
 - You can run Oracle Recovery Manager on the Metadata Repository host as follows (the following is a single command; type it all on one line):
     ```
     ORACLE_HOME/bin/rman target /
cmdfile=BACKUP_DIR/cold_backup.rcv > BACKUP_DIR/log_files/backup.log
     ```
 Note that the preceding command contains a forward slash "/" character.
 - You can run Oracle Recovery Manager from another host on the network as follows (the following is a single command; type it all on one line):
     ```
     ORACLE_HOME/bin/rman target SYS/oracle@trgt
cmdfile=BACKUP_DIR/cold_backup.rcv > BACKUP_DIR/log_files/backup.log
     ```

7. Copy the backup directories to the new host.

Note: If you copy the files to a different location on the new host, you must use the CATALOG command to update the RMAN repository with the new filenames and use the CHANGE ... UNCATALOG command to uncatalog the old filenames.

See Oracle Database Backup and Recovery Advanced User’s Guide in the Oracle Database documentation for more information about the CATALOG command.

Task 4: Restore the Backup to the New Metadata Repository

In this task, you restore the backup to the new Metadata Repository.

Perform all of the steps in this task on the new Metadata Repository host:

1. Make sure the new Metadata Repository is shut down:
   ```
   sqlplus "SYS/sys_password as SYSDBA"
   SQL> SHUTDOWN IMMEDIATE;
   ```

2. Regenerate the password file:
 - On UNIX:
     ```
     mv ORACLE_HOME/dbs/orapwORACLE_SID.ORACLE_HOME/dbs/orapwORACLE_SID.old
     ORACLE_HOME/bin/orapwd file=ORACLE_HOME/dbs/orapwORACLE_SID password=new_password
     ```
 - On Windows:
     ```
     mv ORACLE_HOME\database\PWDORACLE_SID.ora ORACLE_HOME\database\PWDORACLE_SID.ora.old
     ORACLE_HOME\bin\orapwd file=ORACLE_HOME\database\PWDORACLE_SID.ora password=new_password
     ```
In the example, \texttt{new_password} is the new SYS password. You can use the old SYS password, or set it to a new password.

3. Start the new Metadata Repository, but do not mount it:

 \texttt{SQL> STARTUP NOMOUNT;}

4. Create a file named \texttt{BACKUP_DIR/restore.rcv} that contains the following lines. In the file, substitute the full path for \texttt{BACKUP_DIR} and the \texttt{DBID} obtained in the previous task.

 set dbid=DBID;
 connect target /
 set controlfile autobackup format for device type disk to '
 `BACKUP_DIR/db_files/%P';
 restore controlfile from autobackup;
 startup mount force;

 run {
 allocate channel dev1 device type disk format
 `
 `BACKUP_DIR/db_files/%U';
 restore database;
 release channel dev1;
 alter database open resetlogs;
 }

5. Run Oracle Recovery Manager to restore the Metadata Repository:

 \texttt{ORACLE_HOME/bin/rman cmdfile=BACKUP_DIR/restore.rcv >}
 \texttt{BACKUP_DIR/log_files/restore.log}

6. After you restore using Oracle Recovery Manager, determine if the TEMP tablespace has a datafile by connecting to the database as a user with SYSDBA privileges and running the following command in SQL*Plus:

 \texttt{SQL> SELECT file_name FROM dba_temp_files WHERE tablespace_name LIKE 'TEMP';}

If the preceding command does not return any files, take the following steps:

a. Check if the following file exists on your system:

 \texttt{ORADATA_DIRECTORY/db_name/temp01.dbf}

b. If the file exists, enter the following command:

 \texttt{SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/}
 \texttt{db_name/temp01.dbf' SIZE 5120K REUSE AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;}

 If the file does not exist, enter the following command:

 \texttt{SQL> ALTER TABLESPACE "TEMP" ADD TEMPFILE 'ORADATA_DIRECTORY/}
 \texttt{db_name/temp01.dbf' SIZE 5120K AUTOEXTEND ON NEXT 8k MAXSIZE unlimited;}

 Note that you must type the preceding commands on one line, and \texttt{db_name} is the first portion of the new global database name.

\textbf{Task 5: Configure Oracle Ultra Search Metadata in the New Metadata Repository}

If a middle-tier instance uses this Metadata Repository, perform this task on the new Metadata Repository:

1. Make sure the ORACLE_HOME and ORACLE_SID environment variables are set.
2. Run the following commands:

(UNIX) cd ORACLE_HOME/ultrasearch/admin
(Windows) cd ORACLE_HOME\ultrasearch\admin

sqlplus "SYS/sys_password as SYSDBA"
SQL> @wk0config.sql WksysPw JDBC_ConnStr LAUNCH_ANYWHERE ""

(Note the two double quotes at the end of the preceding command.)

In the example:
- WksysPw is the password of the WKSYS schema that you obtained at the beginning of this procedure.
- JDBC_ConnStr is the JDBC connection string host:port:SID, for example: myhost:1521:testdb.
- LAUNCH_ANYWHERE is TRUE if the Metadata Repository is in Real Application Clusters mode, otherwise FALSE. For this procedure, set it to FALSE.

Task 6: Update Oracle Internet Directory
In the Oracle Internet Directory home, update the following file with the new Metadata Repository hostname (and, optionally, the new port number):

(UNIX) ORACLE_HOME/network/admin/tnsnames.ora
(Windows) ORACLE_HOME\network\admin\tnsnames.ora

After you modify the file, use the tnsping command to make sure you can reach the new Metadata Repository:

(UNIX) ORACLE_HOME/bin/tnsping net_service_name
(Windows) ORACLE_HOME\bin\tnsping net_service_name

For example, on UNIX:

ORACLE_HOME/bin/tnsping orcl

Task 7: Shut Down the Original Metadata Repository
Shut down the original Metadata Repository using your usual procedure.

Task 8: Start Oracle Internet Directory Using Special Commands
Start Oracle Internet Directory by taking the following steps (do not use opmnctl):

1. Change directory to the Oracle Internet Directory home.
2. Set the ORACLE_SID environment variable to the new Metadata Repository SID (the default is orcl).
3. Start the Oracle Internet Directory monitor:

(UNIX) ORACLE_HOME/bin/oidmon connect=connectstring start
(Windows) ORACLE_HOME\bin\oidmon connect=connectstring start

For example, on Windows:

OraHome1_AS\bin\oidmon connect=orcl start

Task 9: Update the Oracle Internet Directory Database Registration
Update Oracle Internet Directory with the new Metadata Repository hostname and, optionally, new port number:
1. Start Oracle Directory Manager:
 - On UNIX, use the following command:
     ```bash
     $ ORACLE_HOME/bin/oidadmin
     ```
 - On Windows, navigate to Oracle Directory Manager (Start, Programs, Oracle Application Server Infrastructure - Oracle_Home, Integrated Management Tools, Oracle Directory Manager.)

2. Log in to Oracle Directory Manager.

3. In the System Objects frame:
 a. Expand Entry Management.
 b. Expand cn=Oracle Context.
 c. Select the DBName for the OracleAS Metadata Repository. For example, if the DBName is the default, `orcl`, select `cn=ORCL`.

4. On the Properties tab, update the `HOST` parameter in the `orclnetdescstring` field with the new hostname. Update the `PORT` parameter if you have changed the port number.

5. Click Apply.

Task 10: Stop Oracle Internet Directory Using Special Commands

Stop Oracle Internet Directory by taking the following steps (do not use opmnctl):

1. Change directory to the Oracle Internet Directory Oracle home.

2. Set the ORACLE_SID environment variable to the new Metadata Repository SID (the default is `orcl`).

3. Stop the Oracle Internet Directory monitor:
 - (UNIX) `ORACLE_HOME/bin/oidmon connect=connectstring stop`
 - (Windows) `ORACLE_HOME\bin\oidmon connect=connectstring stop`

For example, on Windows:

```
OraHome1_AS\bin\oidmon connect=orcl stop
```

Task 11: Start Your Environment

Start your environment as follows:

1. Start the Identity Management installation by running the following command in the Identity Management Oracle home:

   ```bash
   $ ORACLE_HOME/opmn/bin/opmnctl startall
   ```

 If the Identity Management installation is distributed across several Oracle homes, run the command in the Oracle Internet Directory home.

2. Start all middle-tier instances that use Identity Management by running the following command in the middle tier Oracle home:

   ```bash
   $ ORACLE_HOME/opmn/bin/opmnctl startall
   ```

Task 12: Update OracleAS Certificate Authority

If you use OracleAS Certificate Authority, update it as follows:
1. Associate it with the new Metadata Repository:
 (UNIX) `ORACLE_HOME/oca/bin/ocactl updateconnection`
 (Windows) `ORACLE_HOME\oca\bin\ocactl updateconnection`

2. Start OracleAS Certificate Authority:
 (UNIX) `ORACLE_HOME/oca/bin/ocactl start`
 (Windows) `ORACLE_HOME\oca\bin\ocactl start`
Changing from a Test to a Production Environment

This chapter provides use cases for changing from a test to a production environment. You can develop and test applications in a test environment, and then eventually roll out the test applications and, optionally, test data to your production environment. You can also use this approach for testing and rolling out upgrades.

It contains the following topics:

- Understanding the Options for Creating a Production Middle Tier
- Scenarios with a 10.1.2 Middle Tier
- Scenarios with a 10.1.3 Middle Tier

See Also: Section 4.3, "Reassociation" in the Oracle Identity Federation Administrator’s Guide for further information about moving data in an environment with an Oracle Identity Federation instance

10.1 Understanding the Options for Creating a Production Middle Tier

Many of the scenarios presented in this chapter describe creating a production middle-tier instance in a configuration that already includes a test middle-tier instance for application development. For these scenarios, you have the choice of three options. You can:

- For 10g Release 2 (10.1.2) middle-tier environments, clone the test middle-tier instance.
 Use this option to preserve configuration settings.

- Point the 10g Release 2 (10.1.2) or 10g Release 3 (10.1.3) test middle-tier instance to the production Oracle Identity Management.
 Use this option if you want to repurpose the test middle-tier instance as the production middle-tier instance.

- Install a 10g Release 2 (10.1.2) or 10g Release 3 (10.1.3) middle-tier instance into the production environment, and then redeploy applications.
 Use this option when you are creating the production middle-tier instance in a different operating system than the test middle-tier instance.
10.2 Scenarios with a 10.1.2 Middle Tier

Table 10–1 provides guidance on how to find the scenario that applies to your application and configuration environment.

<table>
<thead>
<tr>
<th>Type of Application</th>
<th>Configuration Assumptions</th>
<th>Refer To This Use Case Scenario:</th>
</tr>
</thead>
<tbody>
<tr>
<td>J2EE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 1</td>
<td>Test Environment Includes: Middle-tier instance and Oracle Identity Management already exists. Production Environment: The production environment does not exist. You want to create a middle-tier instance and Oracle Identity Management.</td>
<td>See Also: Section 10.2.1, “Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment”</td>
</tr>
<tr>
<td>Non-J2EE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scenario 2</td>
<td>Test Environment: The test environment does not exist. You want to create a middle-tier instance and Oracle Identity Management. Production Environment: Oracle Identity Management already exists. You want to create a middle-tier instance.</td>
<td>See Also: Section 10.2.2, “Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management”</td>
</tr>
<tr>
<td>Scenario 3</td>
<td>Test Environment: The test environment does not exist. You want to create a middle-tier instance, Oracle Identity Management, and a Metadata Repository for product metadata. Production Environment: Oracle Identity Management already exists. You want to create a middle-tier instance, and a Metadata Repository for product metadata.</td>
<td>See Also: Section 10.2.3, “Scenario 3: Moving Applications from a Test Middle Tier with Identity Management and a Product Metadata Repository to an Existing Production Environment with Identity Management”</td>
</tr>
</tbody>
</table>

This section contains the following topics:
- Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment
- Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management
- Scenario 3: Moving Applications from a Test Middle Tier with Identity Management and a Product Metadata Repository to an Existing Production Environment with Identity Management
- Related Procedures

10.2.1 Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment

In this scenario, you have a J2EE application on a test middle-tier instance with Oracle Identity Management. You want to create a new production environment that includes a 10g Release 2 (10.1.2) middle-tier instance with the J2EE application and a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository. Figure 10–1 shows this scenario.
Scenarios with a 10.1.2 Middle Tier

Figure 10–1 MOVING A J2EE APPLICATION FROM A TEST MIDDLE TIER WITH ORACLE IDENTITY MANAGEMENT

10.2.1.1 Preexisting Configuration Assumptions
This scenario assumes the following configuration:
- The test environment includes a 10g Release 2 (10.1.2) middle-tier instance with a J2EE application and a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository.
- The production middle-tier instance does not the exist, and the production Oracle Identity Management may exist.

10.2.1.2 Procedure
For this scenario, you create the production environment by following these tasks:

1. If the production Oracle Identity Management and Metadata Repository does not exist, install and configure it:
 a. Install Oracle Application Server 10g (10.1.4.0.1) using Oracle Universal Installer.
 b. From the Select a Product to Install screen, choose Oracle Application Server Infrastructure 10g.
 c. From the Select Installation Type screen, choose Identity Management and Metadata Repository.
 d. From the Select Configuration Options screen, choose Oracle Internet Directory.

2. Install the 10g Release 2 (10.1.2) production middle-tier instance.
 a. Install Oracle Application Server using Oracle Universal Installer.
b. From the Select a Product to Install screen, choose the appropriate middle tier type for your environment.

3. Redeploy J2EE application EAR files to the new middle tier. You can use one of the following mechanisms:
 - Use the DCM redeployApplication command.
 - Navigate to the OC4J Home page -> Applications tab in Oracle Enterprise Manager 10g Application Server Control Console and click Deploy EAR file.

See Also:
 - Oracle Application Server Containers for J2EE User’s Guide for more information about redeploying application EAR files
 - "Deploying a New OC4J Application" in Enterprise Manager Online Help for instructions

10.2.2 Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management

In this scenario, you have an existing production environment that includes a 10g (10.1.4.0.1) Oracle Identity Management installation with a Metadata Repository. You would like to create a test environment for developing and testing applications. You would then like to roll out these applications to the production environment.

For this scenario, you create a test environment by installing and setting up a replica of the production Oracle Identity Management. The Oracle Identity Management has its own Metadata Repository. The Oracle Internet Directory in the test Oracle Identity Management is an LDAP-based replica of the production Oracle Internet Directory. Replication takes place constantly from the production Oracle Internet Directory to the test Oracle Internet Directory. This replica has its own Metadata Repository. You then install a test middle-tier instance to use the test Oracle Identity Management.

After developing and testing your applications, you create a production middle-tier instance by either cloning the test middle-tier instance, or installing a middle tier into the production environment, and then redeploying the applications.

Figure 10–2 shows an example of this scenario.
10.2.2.1 Preexisting Configuration Assumptions
This scenario assumes the following configuration:

- The test environment does not exist.
- The production environment includes only a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository.

10.2.2.2 Procedure
This procedure contains the following tasks:

- Task 1: Configure the Test Oracle Identity Management and Metadata Repository
- Task 2: Set Up the Test Middle-Tier Instance
- Task 3: Set Up the Production Middle-Tier Instance

Task 1: Configure the Test Oracle Identity Management and Metadata Repository
To configure the test Oracle Identity Management and Metadata Repository, set up Oracle Identity Management 10g (10.1.4.0.1) in the test environment. Use these subtasks to perform this configuration:

1. Perform procedure “Install and Set Up the Test Oracle Identity Management and Metadata Repository” on page 10-10.
2. Perform procedure “Identify the Test Oracle Internet Directory as a Pilot” on page 10-11.
Task 2: Set Up the Test Middle-Tier Instance
To configure the 10g Release 2 (10.1.2) test middle-tier instance, install the middle-tier instance and develop and test applications. Use these subtasks to perform this configuration:

1. Perform procedure "Install Test Middle-Tier Instance" on page 10-11.
2. Perform procedure "Develop and Test Your Applications" on page 10-11.

Task 3: Set Up the Production Middle-Tier Instance
To create the 10g Release 2 (10.1.2) production middle-tier instance, you can either clone the test middle-tier instance or perform a middle-tier installation. If you do not want to create a separate production middle-tier instance, you can choose to point the test middle-tier instance to the production Oracle Identity Management.

When you clone a test middle-tier instance, you must also migrate data from the test Oracle Identity Management to the production Oracle Identity Management, and associate the production middle-tier instance with the production Oracle Identity Management. Perform the following procedures to clone the test middle-tier instance:

2. Perform procedure "Quiesce the Distributed Directory Environment" on page 10-12.
3. Perform procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-12.
6. Perform procedure "Change Middle-Tier Instance to the Production Oracle Identity Management" on page 10-17.

To point the test middle-tier instance to the production Oracle Identity Management, perform the same tasks for cloning, except for Task 5.

To install the production middle-tier instance:

1. Install the production middle-tier instance.
 a. Install Oracle Application Server using Oracle Universal Installer.
 b. From the Select a Product to Install screen, choose the appropriate middle tier type for your environment.

2. Redeploy J2EE application EAR files to the new middle tier. You can use one of the following mechanisms:
 - Use the DCM redeployApplication command.
 - Navigate to the OC4J Home page -> Applications tab in Oracle Enterprise Manager 10g Application Server Control Console and click Deploy EAR file.
Scenarios with a 10.1.2 Middle Tier

See Also:

- Oracle Application Server Containers for J2EE User’s Guide for more information about redeploying application EAR files
- "Deploying a New OC4J Application" in Enterprise Manager Online Help for instructions

When you install, data in the test Oracle Identity Management is not migrated to the production environment.

10.2.2.3 Creating a Second Middle-Tier Instance in the Production Environment

If you want to deploy a test application to another 10g Release 2 (10.1.2) middle-tier instance in the production environment, perform these tasks to create a second middle-tier instance:

1. Perform step 2 in "Task 1: Configure the Test Oracle Identity Management and Metadata Repository" on page 10-5.
2. Perform procedure "Task 2: Set Up the Test Middle-Tier Instance" on page 10-6.
3. Perform procedure "Task 3: Set Up the Production Middle-Tier Instance" on page 10-6.

10.2.3 Scenario 3: Moving Applications from a Test Middle Tier with Identity Management and a Product Metadata Repository to an Existing Production Environment with Identity Management

This scenario is similar to Section 10.2.2, "Scenario 2: Moving Applications from a Test Middle Tier with Identity Management to a Production Environment with a Preexisting Identity Management", except the test middle-tier instance has an additional Metadata Repository for product metadata. With this scenario, you develop and test one application or a set of related applications against the same Oracle Identity Management. You then roll out these applications at the same time to the production environment. After deploying the first set of applications, you can develop, test, and deploy a second set of applications. In this manner, this scenario works like an assembly line.

You start by creating a test environment with a replica of the production Oracle Identity Management. You then install a test middle-tier instance to use the test Oracle Identity Management and a separate Metadata Repository for the product metadata.

You then configure the production environment. You move the test product Metadata Repository to the production environment. You then create a production middle-tier instance by either cloning the test middle-tier instance, or installing a middle tier into the production environment, and then redeploying the applications.

Figure 10–3 shows an example of this scenario.
10.2.3.1 Preexisting Configuration Assumptions

This scenario assumes the following configuration:

- The test environment does not exist.
- The production environment includes only a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository.

10.2.3.2 Procedure

This procedure contains the following tasks:

- **Task 1**: Configure the Test Oracle Identity Management and Metadata Repository
- **Task 2**: Create the Test Product Metadata Repository
- **Task 3**: Set Up the Test Middle-Tier Instance
- **Task 4**: Move Test Product Metadata Repository to Production Environment
- **Task 5**: Set Up the Production Middle-Tier Instance

Task 1: Configure the Test Oracle Identity Management and Metadata Repository

To configure the test Oracle Identity Management and Metadata Repository, set up 10g (10.1.4.0.1) Oracle Identity Management in the test environment. Use these subtasks to perform this configuration:

1. Perform procedure "Install and Set Up the Test Oracle Identity Management and Metadata Repository" on page 10-10.
2. Perform procedure "Identify the Test Oracle Internet Directory as a Pilot" on page 10-11.
Task 2: Create the Test Product Metadata Repository
To configure the test product Metadata Repository, follow the procedure “Install and Populate Test Product Metadata Repository” on page 10-11.

Task 3: Set Up the Test Middle-Tier Instance
To configure the 10g Release 2 (10.1.2) test middle-tier instance, install the middle-tier instance and develop and test applications. Follow these procedures to perform this configuration:

1. Perform procedure "Install Test Middle-Tier Instance" on page 10-11.
2. Perform procedure "Develop and Test Your Applications" on page 10-11.

Task 4: Move Test Product Metadata Repository to Production Environment
To configure the 10g (10.1.4.0.1) production product Metadata Repository, follow the procedure "Move the Test Product Metadata Repository to Production" on page 10-13.

Task 5: Set Up the Production Middle-Tier Instance
To create the 10g Release 2 (10.1.2) production middle-tier instance, you can either clone the test middle-tier instance or perform a middle-tier installation. If you do not want to create a separate production middle-tier instance, you can choose to point the test middle-tier instance to the production Oracle Identity Management.

When you clone a test middle-tier instance, you must also migrate data from the test Oracle Identity Management to the production Oracle Identity Management, and associate the production middle-tier instance with the production Oracle Identity Management. Perform these procedures to clone the test middle-tier instance:

2. Perform procedure “Quiesce the Distributed Directory Environment” on page 10-12.
3. Perform procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-12.
6. Perform procedure "Change Middle-Tier Instance to the Production Oracle Identity Management" on page 10-17.

To point the test middle-tier instance to the production Oracle Identity Management, perform the same tasks for cloning, except for Task 5.

To install the production middle-tier instance:

1. Install the production middle-tier instance.
2. Redeploy J2EE application EAR files to the new middle tier. You can use one of the following mechanisms:
 - Use the DCM redeployApplication command.
 - Navigate to the OC4J Home page -> Applications tab in Oracle Enterprise Manager 10g Application Server Control Console and click Deploy EAR file.
10.2.3.3 Creating a Second Middle-Tier Instance in the Production Environment

If you want to deploy a test application to another 10g Release 2 (10.1.2) middle-tier instance in the production environment, perform these tasks to create a second middle-tier instance:

1. Perform subtask 2 in "Task 1: Configure the Test Oracle Identity Management and Metadata Repository" on page 10-5.
2. Perform procedure "Task 2: Set Up the Test Middle-Tier Instance" on page 10-6.
3. Perform procedure "Task 3: Set Up the Production Middle-Tier Instance" on page 10-6.

10.2.4 Related Procedures

Related procedures for scenarios 2 and 3 include:

- Install and Set Up the Test Oracle Identity Management and Metadata Repository
- Identify the Test Oracle Internet Directory as a Pilot
- Install and Populate Test Product Metadata Repository
- Install Test Middle-Tier Instance
- Develop and Test Your Applications
- Clean Up Test Oracle Internet Directory
- Quiesce the Distributed Directory Environment
- End Pilot Mode on the Test Oracle Internet Directory
- Move the Test Product Metadata Repository to Production
- Migrate Oracle Internet Directory Data to Production
- Change Middle-Tier Instance to the Production Oracle Identity Management

Install and Set Up the Test Oracle Identity Management and Metadata Repository

In this procedure, you install and set up the test Oracle Identity Management and its associated Metadata Repository. The test Oracle Identity Management is an LDAP-based replica of the original Oracle Identity Management.

1. Read Section H.1, "About LDAP-Based Replicas" on page H-1 to learn about LDAP-based Replicas and how they are used for this procedure.
2. Follow the procedure in Section H.2, "Installing and Setting Up an LDAP-Based Replica" on page H-3 to install and set up the test Oracle Identity Management and Metadata Repository.
Identify the Test Oracle Internet Directory as a Pilot

Run the following command from the Oracle home of the test Oracle Internet Directory:

tool -pilotreplica begin -bind test_oid_host:test_oid_port/test_replication_dn_passwd

In the syntax:

- `test_oid_host` is the host name of the test directory server.
- `test_oid_port` is the LDAP port of the test directory server.
- `test_replication_dn_passwd` is the password of the replication DN of the test directory server. By default, it is the same as the superuser DN (`cn=orcladmin`) password.

See Also:

- Appendix H for more information about LDAP replication
- Oracle Identity Management User Reference for more information about remtool and directory replication

Install and Populate Test Product Metadata Repository

Create a new database and populate it with the OracleAS Metadata Repository.

1. Install Oracle Application Server 10g (10.1.4.0.1) using Oracle Universal Installer.
2. From the Select a Product to Install screen, choose Oracle Application Server Infrastructure 10g.
3. From the Select Installation Type screen, choose Metadata Repository.

Install Test Middle-Tier Instance

Install your test middle-tier instances and configure them to use the test Oracle Identity Management according to what you want to test:

1. Install Oracle Application Server using Oracle Universal Installer.
2. From the Select a Product to Install screen, choose the appropriate middle tier type for your environment.

Develop and Test Your Applications

Develop and test applications in your test environment.

Clean Up Test Oracle Internet Directory

You can clean up (delete) the data that is modified or added on the test Oracle Internet Directory so that it is not migrated to the production Oracle Internet Directory. This might be a requirement of a middle-tier component or might be desired by the administrator who maintains Oracle Internet Directory consistency in the production Oracle Internet Directory.

To clean up the data, use the `ldapdelete` command-line utility and delete entries that should not be migrated.

See Also: Oracle Identity Management User Reference for more information about the `ldapdelete` command
Quiesce the Distributed Directory Environment

It is very important to quiesce the distributed directory environment while the data migration from the test to the production takes place. This ensures that there are no conflicting updates, and therefore no data loss or corruption.

To quiesce the distributed directory environment:

1. Make sure both the test and production Oracle Internet Directories are up and running.

2. Change the directory server on the test node to read-only mode.

 On the test host, create an LDIF file named `readonly.ldif` that contains the following lines:

   ```
   dn: 
   changetype:modify
   replace:orclservermode
   orclservermode:r
   ```

 Run the following command:

   ```
   TEST_HOME/bin/ldapmodify -p test_oid_port -D cn=orcladmin 
   -w test_orcladmin_passwd -v -f readonly.ldif
   ```

 In the syntax:

 `test_oid_port` is the LDAP port of the test directory server.

 `test_orcladmin_password` is the password of the superuser DN (`cn=orcladmin`).

3. Wait until all the pending changes are applied to both nodes and the nodes are completely in sync. There is no tool to automatically detect this, but you can monitor the replication log files and make sure there are no new changes being processed by any node in the directory replication group, which ensures that the directory replication group is in a quiesced state.

End Pilot Mode on the Test Oracle Internet Directory

Run the following command from the Oracle home of the test Oracle Internet Directory:

```
remtool -pilotreplica end -bind test_oid_host:test_oid_port/test_replication_dn_passwd [-bkup fname]
```

In the syntax:

`test_oid_host` is the host name of the test directory server.

`test_oid_port` is the LDAP port of the test directory server.

`test_replication_dn_passwd` is the password of the replication DN of the test directory server. By default, it is the same as the superuser DN (`cn=orcladmin`) password.

`fname` specifies the backup file in which to store entries that were modified after pilot mode was started. The entries are in LDIF format. You will use this file in procedure "Migrate Oracle Internet Directory Data to Production" on page 10-13.
Move the Test Product Metadata Repository to Production
You have several options for moving your test product Metadata Repository to your production environment:

■ You can continue to use the test Metadata Repository in your production environment, thereby deeming it to be a production Metadata Repository. In this case, no further action is required.

■ You can copy the Metadata Repository to a production host and change your middle-tier instances to use it. Follow the procedure in Section 9.5, "Changing the Metadata Repository Used by a Middle-Tier Instance".

■ If you do not want to retain the test data in the Metadata Repository, you can install a new Metadata Repository in the production environment, and change the middle-tier instances to use that.

Install an Infrastructure using Oracle Universal Installer. Select the Metadata Repository only option. Register the Metadata Repository with the production Oracle Identity Management.

Change each of the former test middle-tier instances to use the new Metadata Repository. On each middle-tier instance:

1. Using the Application Server Control Console, navigate to the Instance Home Page for the middle-tier instance.
2. Click Infrastructure.
3. On the Infrastructure Page, in the Metadata Repository section, click Change.
4. Follow the tasks in the wizard for supplying the new Metadata Repository information.
5. When the wizard is finished, navigate to the Instance Home Page and start your instance by clicking Start All.

Migrate Oracle Internet Directory Data to Production
This procedure describes how to migrate Oracle Internet Directory data from a test Oracle Identity Management to the production Oracle Identity Management.

Note: Make sure the ORACLE_HOME and ORACLE_SID environment variables are set before you begin. This applies to all operating systems.

1. Migrate test Oracle Internet Directory data to the production environment by running the following command.

 PRODUCTION_HOME/bin/ldapaddmt -h production_oid_host
 -p production_oid_port -D 'cn=orcladmin'
 -w production_orcladmin_passwd -r -f fname
Make sure you specify the \(-r\) argument to migrate data and resolve conflicts. Also, ensure you specify the LDIF file you obtained in procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-12 for the \(-f\) argument.

In the syntax:

- `production_oid_host` is the host of the production directory server.
- `production_oid_port` is the LDAP port of the production directory server.
- `production_orcladmin_password` is the password of the superuser DN (cn=orcladmin).
- `fname` specifies the LDIF file you specified in procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-12.

2. Validation step. Verify that the migration of Oracle Internet Directory data succeeded.

Verify that `ldapaddmt` reported success. You can check the `add.log` file for errors, which is created in the directory from which you ran the `ldapaddmt` command.

- If `add.log` is empty, the command succeeded.
- If `add.log` contains errors such as `Additional Info: Parent entry not found in the directory`, then the entries in the LDIF file are not in the correct order—the child entry is before the parent entry. Run `ldapaddmt` again and this will take care of adding the child entries.

See Also: Oracle Internet Directory Administrator’s Guide for information on interpreting messages in log files.

If necessary, repeat Step 1.

To migrate the OracleAS Single Sign-On data:

a. Obtain the ORASSO schema password on the test Metadata Repository:

```
TEST_HOME/bin/ldapsearch -h test_oid_host -p test_oid_port
-D "cn=orcladmin" -w test_orcladmin_passwd
-b "orcrname=orasso, orcrname=test_oid_global_db_name, cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext" -s base *objectclass=* orclpasswordattribute
```

In the syntax:

- `test_oid_host` is the host of the test directory server.
- `test_oid_port` is the LDAP port of the test directory server.
- `test_orcladmin_password` is the password of the superuser DN (cn=orcladmin).
- `test_oid_global_dbname` is the global database name of the test Metadata Repository.

This command prints the ORASSO password in a line like the following:

`orclpasswordattribute=LAetjdQ5`
b. Export the OracleAS Single Sign-On data from the test environment, ensuring that the ORACLE_HOME environment variable is set before you run this command:

```
TEST_HOME/sso/bin/ssomig -export -s orasso -p test_orasso_passwd -c test_net_service_name -log_d $TEST_HOME/sso/log
```

In the syntax:
- `test_orasso_passwd` is the ORASSO password obtained in the previous step.
- `test_net_service_name` is the database name of the test Metadata Repository.

c. Copy the ssomig.dmp and ssoconf.log files from the test to the production directory server, preserving the exact full path for each file:

```
cp TEST_HOME/sso/log/ssomig.dmp PRODUCTION_HOME/sso/log/ssomig.dmp
cp TEST_HOME/sso/log/ssoconf.log PRODUCTION_HOME/sso/log/ssoconf.log
```

d. Obtain the ORASSO schema password on the production Metadata Repository:

```
PRODUCTION_HOME/bin/ldapsearch -h production_oid_host -D "cn=orcladmin" -p production_oid_port -w production_orcladmin_password -b "orclresourcename=orasso, orclreferencename=production_global_db_name, cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext" -s base "objectclass/orders" orclpasswordattribute
```

In the syntax:
- `production_oid_host` is the host of the production directory server.
- `production_oid_port` is the LDAP port of the production directory server.
- `production_orcladmin_password` is the password of the superuser DN (cn=orcladmin).
- `production_oid_global_dbname` is the global database name of the production Metadata Repository.

e. Import the OracleAS Single Sign-On data to the production Metadata Repository:

```
PRODUCTION_HOME/sso/bin/ssomig -import -overwrite -s orasso -p production_orasso_passwd -c production_net_service_name -log_d $PRODUCTION_HOME/sso/log -discoforce
```

In the syntax:
- `production_orasso_passwd` is the ORASSO password obtained in the previous step.
- `production_net_service_name` is the database name of the production Metadata Repository.

Verify that the OracleAS Single Sign-On migration tool reported success. You can also check the following log files for errors:

```
TEST_HOME/sso/log/ssomig.log
PRODUCTION_HOME/sso/log/ssomig.log
```
To migrate the Oracle Directory Integration Platform data:

Run the Oracle Directory Integration Platform configuration assistant command to migrate the profile data and restart the Oracle Directory Integration Platform instance on the new host (the production host). For example, on UNIX, the command takes the following format:

```
PRODUCTION_HOME/bin/oidca mode=DIP
   -silent
   oidhost=production_oid_host connstr=production_oid_db_connect_string
   sslport=production_oid_ssl_port
   sudn=production_oid_user_dn
   supwd=production_oid_user_password
   iaspwd=production_ias_admin_password
   odspwd=oid_db_schema_password
   iasinstance=1014_iasinstance_name -ldapreadonly
   masteroidhost=test_oid_host
   masteroidport=test_oid_ssl_or_nonssl_port [-ssl]
   mastersudn=test_user_dn
   mastersupwd=test_user_password
```

In the example:

- `production_oid_host` is the hostname of the production Oracle Internet Directory.
- `production_oid_db_connect_string` is the short name of database connection string. For example, if the connection string is `orcl.mydomain.com`, the value of this parameter is `orcl`.
- `production_oid_ssl_port` is the SSL port number of the production Oracle Internet Directory.
- `production_oid_user_dn` is the DN of the production Oracle Internet Directory user needed to bind to the directory (for example, `cn=orcladmin`).
- `production_oid_user_password` is the user password needed to bind to the production directory.
- `production_iasadmin_password` is the password for the ias_admin user.
- `oid_db_schema_password` is the password for the Oracle Internet Directory schema.
- `1014_iasinstance_name` is the name for the new instance.
- `test_oid_host` is the hostname of the test Oracle Internet Directory.
- `test_oid_ssl_or_nonssl_port` is the SSL or non-SSL port number of the test Oracle Internet Directory.
- `test_user_dn` is the DN of the test Oracle Internet Directory user needed to bind to the directory (for example, `cn=orcladmin`).
- `test_user_password` is the user password needed to bind to the test directory.

4. (Optional) Perform post-migration cleanup tasks.

Some middle-tier components might have special cleanup requirements after you have changed to the production environment. You can perform these cleanup
tasks to the test environment after the middle-tier instances have been changed to the production node.

Change Middle-Tier Instance to the Production Oracle Identity Management

In each production middle-tier instance, run the Change Identity Management wizard and restart the instance:

1. Using the Application Server Control Console, navigate to the Instance Home Page for the middle-tier instance.
2. Click **Infrastructure**.
3. On the Infrastructure Page, in the **Identity Management** section, click **Change**.
4. Follow the tasks in the wizard for supplying the production Oracle Identity Management information.
5. When the wizard is finished, navigate to the Instance Home Page and start your instance by clicking **Start All**.

10.3 Scenarios with a 10.1.3 Middle Tier

Table 10–1 provides guidance on how to find the scenario that applies to your application and configuration environment.

<table>
<thead>
<tr>
<th>Scenario</th>
<th>Configuration Assumptions</th>
<th>Refer To This Scenario:</th>
</tr>
</thead>
</table>
| Scenario 1 | **Test Environment**: Middle-tier instance and Oracle Identity Management already exists.
Production Environment: The production environment does not exist. You want to create a middle-tier instance and Oracle Identity Management. | Section 10.3.1, "Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment" |
| Scenario 2 | **Test Environment**: The test environment does not exist. You want to create a middle-tier instance and Oracle Identity Management.
Production Environment: Oracle Identity Management already exists. You want to either create a middle-tier instance or configure the test middle-tier instance to point to the production Oracle Identity Management. | Section 10.3.2, "Scenario 2: Creating a Test Environment for Development and Rolling Out J2EE Applications to a Production Environment with a Preexisting Oracle Identity Management" |

This section contains the following topics:

- **Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment**
- **Scenario 2: Creating a Test Environment for Development and Rolling Out J2EE Applications to a Production Environment with a Preexisting Oracle Identity Management**
- **Related Procedures**
10.3.1 Scenario 1: Moving J2EE Applications from a Test Middle Tier with Oracle Identity Management to a New Production Environment

In this scenario, you have a J2EE application on a test middle-tier instance with Oracle Identity Management. You want to create a new production environment that includes a 10g Release 3 (10.1.3) middle-tier instance with the J2EE application and a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository. Figure 10–1 shows this scenario.

![Moving a J2EE Application from a Test Middle Tier with Oracle Identity Management](image)

10.3.1.1 Preexisting Configuration Assumptions

This scenario assumes the following configuration:

- The test environment includes a middle-tier instance with a J2EE application and a 10g (10.1.4.0.1) Oracle Identity Management installation with a Metadata Repository.
- The production middle-tier instance does not exist, and the production Oracle Identity Management may exist.

10.3.1.2 Procedure

For this scenario, you create the production environment by following these tasks:

1. If the production Oracle Identity Management and Metadata Repository does not exist, install and configure it:
 a. Install Oracle Application Server 10g (10.1.4.0.1) using Oracle Universal Installer.
 b. From the Select a Product to Install screen, choose Oracle Application Server Infrastructure 10g.
c. From the Select Installation Type screen, choose Identity Management and Metadata Repository.

d. From the Select Configuration Options screen, choose Oracle Internet Directory.

2. Install a 10g Release 3 (10.1.3) production middle-tier instance.
 a. Install Oracle Application Server using Oracle Universal Installer.
 b. From Oracle Application Server 10g 10.1.3 Installation screen, follow the prompts to install the middle tier.

3. Deploy J2EE application EAR files to the new middle tier. You can use one of the following mechanisms:
 - Use the admin_client.jar utility with the -deploy command.
 - Navigate to the OC4J Home page -> Applications tab in Oracle Enterprise Manager 10g Application Server Control Console, select the application, and click Deploy.

See Also:
- Oracle Containers for J2EE Configuration and Administration Guide for more information about the admin_client.jar utility
- "Deploying an Application" in Enterprise Manager Online Help

Perform these substeps for application usage:
 a. Point the production middle-tier instance to the production Oracle Identity Management, as described in "Task 3: Change Middle-Tier Instances to the New Identity Management" on page 9-12.
 b. Use Delegated Administration Services to create any users needed for the redeployed J2EE applications, and grant the necessary permission for the applications.

See Also: Oracle Identity Management Guide to Delegated Administration

c. Test the applications in the production environment.

10.3.2 Scenario 2: Creating a Test Environment for Development and Rolling Out J2EE Applications to a Production Environment with a Preexisting Oracle Identity Management

In this scenario, you have an existing production environment that includes an Oracle Identity Management installation with a Metadata Repository. You would like to create a test environment for developing and testing applications. You would then like to roll out these applications to the production environment.

For this scenario, you create a test environment by installing and setting up a replica of production Oracle Identity Management. The 10g (10.1.4.0.1) Oracle Identity Management has its own Metadata Repository. The Oracle Internet Directory in the test Oracle Identity Management is an LDAP-based replica of the production Oracle Internet Directory. Replication takes place constantly from the production Oracle Internet Directory to the test Oracle Internet Directory. This replica has its own Metadata Repository. You then install a 10g Release 3 (10.1.3) test middle-tier instance to test Oracle Identity Management.
Figure 10–2 shows an example of this scenario in which you install a new 10g Release 3 (10.1.3) production middle-tier instance.

Figure 10–5 Example 1: Moving an Application from a Test Middle Tier with Oracle Identity Management to a New Production Environment

10.3.2.1 Preexisting Configuration Assumptions
This scenario assumes the following configuration:

■ The test environment does not exist.
■ The production environment includes only a 10g (10.1.4.0.1) Oracle Identity Management with a Metadata Repository.

10.3.2.2 Procedure
This procedure contains the following tasks:

■ Task 1: Configure the Test Oracle Identity Management and Metadata Repository
■ Task 2: Set Up the Test Middle-Tier Instance
■ Task 3: Set Up the Production Middle-Tier Instance
■ Task 4: Deploy Applications

Task 1: Configure the Test Oracle Identity Management and Metadata Repository
To configure the test Oracle Identity Management and Metadata Repository, set up Oracle Identity Management 10g (10.1.4.0.1) in the test environment. Use these subtasks to perform this configuration:

1. Perform the procedure “Install and Set Up the Test Oracle Identity Management and Metadata Repository” on page 10-22.
2. Perform the procedure “Identify the Test Oracle Internet Directory as a Pilot” on page 10-22.
Task 2: Set Up the Test Middle-Tier Instance
To configure the test middle-tier instance, install the 10g Release 3 (10.1.3) middle-tier instance and develop and test applications. Use these subtasks to perform this configuration:

1. Perform the procedure "Install Test Middle-Tier Instance" on page 10-23.
2. Associate the test Oracle Internet Directory with the test middle-tier instance.

See Also: Oracle Containers for J2EE Security Guide
3. Perform the procedure "Develop and Test Your Applications" on page 10-23.

Task 3: Set Up the Production Middle-Tier Instance
To create a production middle-tier instance, you perform a middle-tier installation. If you do not want to create a separate production middle-tier instance, you can choose to point the test middle-tier instance to the production Oracle Identity Management.

To install the 10g Release 3 (10.1.3) production middle-tier instance:

1. Install the production middle-tier instance.
 a. Install Oracle Application Server using Oracle Universal Installer.
 b. From Oracle Application Server 10g 10.1.3 Installation screen, follow the prompts to install the middle tier.

When you install, data in the test Oracle Identity Management is not migrated from to the production environment. You can choose instead to point the test middle-tier instance to the production Oracle Identity Management.

When you point the test middle-tier instance to the production Oracle Identity Management, you must also migrate data from the test Oracle Identity Management to the production Oracle Identity Management, and associate the production middle-tier instance with the production Oracle Identity Management.

To point the test middle-tier instance to the production Oracle Identity Management:

1. Perform the procedure "Clean Up Test Oracle Internet Directory" on page 10-23.
2. Perform the procedure "Quiesce the Distributed Directory Environment" on page 10-23.
5. Perform the procedure "Task 3: Change Middle-Tier Instances to the New Identity Management" on page 9-12.

Task 4: Deploy Applications
To deploy applications:

1. Deploy J2EE application EAR files to the new middle tier. You can use one of the following mechanisms:
 ■ Use the admin_client.jar utility with the -deploy command.
 ■ Navigate to the OC4J Home page -> Applications tab in Oracle Enterprise Manager 10g Application Server Control Console, select the application, and click Deploy.
Scenarios with a 10.1.3 Middle Tier

See Also:
- Oracle Containers for J2EE Configuration and Administration Guide for more information about the admin_client.jar utility
- "Deploying an Application" in Enterprise Manager Online Help

2. Point the production middle-tier instance to the production Oracle Identity Management, as described in "Task 3: Change Middle-Tier Instances to the New Identity Management" on page 9-12.

3. Use Delegated Administration Services to create any users needed for the redeployed J2EE applications, and grant the necessary permission for the applications.

See Also: Oracle Identity Management Guide to Delegated Administration

4. Test the applications in the production environment.

After developing and testing your applications, create a production middle-tier instance or use the existing test middle-tier instance.

10.3.3 Related Procedures

Related procedures for Scenario 2 include:

- Install and Set Up the Test Oracle Identity Management and Metadata Repository
- Identify the Test Oracle Internet Directory as a Pilot
- Install and Populate Test Product Metadata Repository
- Install Test Middle-Tier Instance
- Develop and Test Your Applications
- Clean Up Test Oracle Internet Directory
- Quiesce the Distributed Directory Environment
- End Pilot Mode on the Test Oracle Internet Directory
- Migrate Oracle Internet Directory Data to Production

Install and Set Up the Test Oracle Identity Management and Metadata Repository

In this procedure, you install and set up a 10g (10.1.4.0.1) of the test Oracle Identity Management and its associated Metadata Repository. The test Oracle Identity Management is an LDAP-based replica of the original Oracle Identity Management.

1. Read Section H.1, "About LDAP-Based Replicas" to learn about LDAP-based Replicas and how they are used for this procedure.

2. Follow the procedure in Section H.2, "Installing and Setting Up an LDAP-Based Replica" to install and set up the test Oracle Identity Management and Metadata Repository.

Identify the Test Oracle Internet Directory as a Pilot

Run the following command from the Oracle home of the test Oracle Internet Directory:

```bash
remtool -pilotreplica begin -bind test_oid_host:test_oid_port/test_replication_dn_```
In the syntax:

- `test_oid_host` is the host name of the test directory server.
- `test_oid_port` is the LDAP port of the test directory server.
- `test_replication_dn_passwd` is the password of the replication DN of the test directory server. By default, it is the same as the superuser DN (`cn=orcladmin`) password.

See Also:
- Appendix H for more information about LDAP replication
- Oracle Identity Management User Reference for more information about `remtool` and directory replication

Install and Populate Test Product Metadata Repository
Create a new database and populate it with the OracleAS Metadata Repository.

1. Install Oracle Application Server using Oracle Universal Installer.
2. From the Select a Product to Install screen, select OracleAS Infrastructure.
3. From the Select Installation Type screen, select Metadata Repository.

Install Test Middle-Tier Instance
Install the 10g Release 3 (10.1.3) test middle-tier instances and configure them to use the test Oracle Identity Management according to what you want to test:

1. Install Oracle Application Server using Oracle Universal Installer.
2. From Oracle Application Server 10g 10.1.3 Installation screen, follow the prompts to install the middle tier.

Develop and Test Your Applications
Develop and test applications in your test environment.

Clean Up Test Oracle Internet Directory
You can clean up (delete) the data that is modified or added on the test Oracle Internet Directory so that it is not migrated to the production Oracle Internet Directory. This might be a requirement of a middle-tier component or might be desired by the administrator who maintains Oracle Internet Directory consistency in the production Oracle Internet Directory.

To clean up the data, use the `ldapdelete` command-line utility and delete entries that should not be migrated.

See Also: Oracle Identity Management User Reference for more information about the `ldapdelete` command

Quiesce the Distributed Directory Environment
It is very important to quiesce the distributed directory environment while the data migration from the test to the production takes place. This ensures that there are no conflicting updates, and therefore no data loss or corruption.

To quiesce the distributed directory environment:
1. Make sure both the test and production Oracle Internet Directories are up and running.

2. Change the directory server on the test node to read-only mode.

   On the test host, create an LDIF file named `readonly.ldif` that contains the following lines:
   
   ```
 dn:
 changetype:modify
 replace:orclservermode
 orclservermode:r
   ```
   
   Run the following command:
   
   ```bash
 TEST_HOME/bin/ldapmodify -p test_oid_port -D cn=orcladmin
 -w test_orcladmin_passwd -v -f readonly.ldif
   ```
   
   In the syntax:
   
   - `test_oid_port` is the LDAP port of the test directory server.
   - `test_orcladmin_password` is the password of the superuser DN (cn=orcladmin).

3. Wait until all the pending changes are applied to both nodes and the nodes are completely in sync. There is no tool to automatically detect this, but you can monitor the replication log files and make sure there are no new changes being processed by any node in the directory replication group, which ensures that the directory replication group is in a quiesced state.

**End Pilot Mode on the Test Oracle Internet Directory**

Run the following command from the Oracle home of the test Oracle Internet Directory:

```bash
remtool -pilotreplica end -bind test_oid_host:test_oid_port/test_replication_dn_passwd [-bkup fname]
```

In the syntax:

- `test_oid_host` is the host name of the test directory server.
- `test_oid_port` is the LDAP port of the test directory server.
- `test_replication_dn_passwd` is the password of the replication DN of the test directory server. By default, it is the same as the superuser DN (cn=orcladmin) password.

- `fname` specifies the backup file in which to store entries that were modified after pilot mode was started. The entries are in LDIF format. You will use this file in procedure "Migrate Oracle Internet Directory Data to Production" on page 10-24.

**See Also:**

- Appendix H for more information about LDAP replication
- Oracle Identity Management User Reference for more information about `remtool` and directory replication

**Migrate Oracle Internet Directory Data to Production**

This procedure describes how to migrate Oracle Internet Directory data from a test Oracle Identity Management to the production Oracle Identity Management.
Scenarios with a 10.1.3 Middle Tier

1. Migrate test Oracle Internet Directory data to the production environment by running the following command.

   ```bash
 PRODUCTION_HOME/bin/ldapaddmt -h production_oid_host
 -p production_oid_port -D 'cn=orcladmin'
 -w production_orcladmin_password -r -f fname
   ```

   Make sure you specify the `-r` argument to migrate data and resolve conflicts. Also, ensure you specify the LDIF file you obtained in procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-24 for the `-f` argument.

   In the syntax:

   - `production_oid_host` is the host of the production directory server.
   - `production_oid_port` is the LDAP port of the production directory server.
   - `production_orcladmin_password` is the password of the superuser DN (cn=orcladmin).
   - `fname` specifies the LDIF file you specified in procedure "End Pilot Mode on the Test Oracle Internet Directory" on page 10-24.

2. Validation step. Verify that the migration of Oracle Internet Directory data succeeded.

   Verify that `ldapaddmt` reported success. You can check the `add.log` file for errors, which is created in the directory from which you ran the `ldapaddmt` command.

   - If `add.log` is empty, the command succeeded.
   - If `add.log` contains errors such as Additional Info: Parent entry not found in the directory, then the entries in the LDIF file are not in the correct order—the child entry is before the parent entry. Run `ldapaddmt` again and this will take care of adding the child entries.

   **See Also:** *Oracle Internet Directory Administrator’s Guide* for information on interpreting messages in log files

   If necessary, repeat Step 1.


   To migrate the OracleAS Single Sign-On data:

   a. Obtain the `ORASSO` schema password on the test Metadata Repository:

   ```bash
 TEST_HOME/bin/ldapsearch -h test_oid_host -p test_oid_port
 -D "cn=orcladmin" -w test_orcladmin_password
 -b "orclresourcename=orasso, orclreferencename=test_oid_global_db_name,
 cn=ias infrastructure databases, cn=ias, cn=products, cn=oraclecontext" -s
 base "objectclass="" orclpasswordattribute
   ```

   In the syntax:

   - `test_oid_host` is the host of the test directory server.
test_oid_port is the LDAP port of the test directory server.

test_orcladmin_password is the password of the superuser DN (cn=orcladmin).

test_oid_global_dbname is the global database name of the test Metadata Repository.

This command prints the ORASSO password in a line like the following:

crlpasswordattribute=LAetjdQ5

b. Export the OracleAS Single Sign-On data from the test environment, ensuring that the ORACLE_HOME environment variable is set before you run this command:

    TEST_HOME/sso/bin/ssomig -export -s orasso -p test_orasso_passwd
    -c test_net_service_name -log_d $TEST_HOME/sso/log

In the syntax:

test_orasso_passwd is the ORASSO password obtained in the previous step.

test_net_service_name is the database name of the test Metadata Repository.

c. Copy the ssomig.dmp and ssoconf.log files from the test to the production directory server, preserving the exact full path for each file:

    cp TEST_HOME/sso/log/ssomig.dmp PRODUCTION_HOME/sso/log/ssomig.dmp
    cp TEST_HOME/sso/log/ssoconf.log PRODUCTION_HOME/sso/log/ssoconf.log

d. Obtain the ORASSO schema password on the production Metadata Repository:

    PRODUCTION_HOME/bin/ldapsearch -h production_oid_host -D "cn=orcladmin"
    -p production_oid_port
    -w production_orcladmin_password -b "orclresourcename=orasso,
    orclreferencename=production_global_db_name, cn=ias infrastructure
    databases, cn=ias, cn=products, cn=oraclecontext"
    -s base "objectclass=*", orclpasswordattribute

In the syntax:

    production_oid_host is the host of the production directory server.

    production_oid_port is the LDAP port of the production directory server.

    production_orcladmin_password is the password of the superuser DN (cn=orcladmin).

    production_oid_global_dbname is the global database name of the production Metadata Repository.

e. Import the OracleAS Single Sign-On data to the production Metadata Repository:

    PRODUCTION_HOME/sso/bin/ssomig -import -overwrite -s orasso
    -p production_orasso_passwd -c production_net_service_name
    -log_d $PRODUCTION_HOME/sso/log -discoforce

In the syntax:

    production_orasso_passwd is the ORASSO password obtained in the previous step.
production_net_service_name is the database name of the production Metadata Repository.

Verify that the OracleAS Single Sign-On migration tool reported success. You can also check the following log files for errors:

TEST_HOME/sso/log/ssomig.log
PRODUCTION_HOME/sso/log/ssomig.log

See Also: Oracle Application Server Single Sign-On Administrator's Guide for information on interpreting messages in the log files

To migrate the Oracle Directory Integration Platform data:

Run the Oracle Directory Integration Platform configuration assistant command to migrate the profile data and restart the Oracle Directory Integration Platform instance on the new host (the production host). For example, on UNIX, the command takes the following format:

PRODUCTION_HOME/bin/oidca mode=DIP
-silent
oidhost=production_oid_host connstr=production_oid_db_connect_string
sslport=production_oid_ssl_port
sudn=production_oid_user_dn
supwd=production_oid_user_password
iaspwd=production_ias_admin_password
odspwd=oid_db_schema_password
iasinstance=1014_iasinstance_name -ldapreadonly
masteroidhost=test_oid_host
masteroidport=test_oid_ssl_or_nonssl_port [-ssl]
mastersudn=test_user_dn
mastersupwd=test_user_password

In the example:

- production_oid_host is the hostname of the production Oracle Internet Directory.
- production_oid_db_connect_string is the short name of database connection string. For example, if the connection string is orcl.mydomain.com, the value of this parameter is orcl.
- production_oid_ssl_port is the SSL port number of the production Oracle Internet Directory.
- production_oid_user_dn is the DN of the production Oracle Internet Directory user needed to bind to the directory (for example, cn=orcladmin).
- production_oid_user_password is the user password needed to bind to the production directory.
- production_iasadmin_password is the password for the ias_admin user.
- oid_db_schema_password is the password for the Oracle Internet Directory schema.
- 1014_iasinstance_name is the name for the new instance.
- test_oid_host is the hostname of the test Oracle Internet Directory.
■ `test_oid_ssl_or_nonssl_port` is the SSL or non-SSL port number of the test Oracle Internet Directory.

■ `test_user_dn` is the DN of the test Oracle Internet Directory user needed to bind to the directory (for example, `cn=orcladmin`).

■ `test_user_password` is the user password needed to bind to the test directory.

4. (Optional) Perform post-migration cleanup tasks.

Some middle-tier components might have special cleanup requirements after you have changed to the production environment. You can perform these cleanup tasks to the test environment after the middle-tier instances have been changed to the production node.
Part IV
Secure Sockets Layer (SSL)

This part contains the following chapters:

- Chapter 11, "Overview of Secure Sockets Layer (SSL) in Oracle Application Server"
- Chapter 12, "Using the SSL Configuration Tool"
- Chapter 13, "Managing Wallets and Certificates"
- Chapter 14, "Enabling SSL in the Infrastructure"
- Chapter 15, "Enabling SSL in the Middle Tier"
- Chapter 16, "Troubleshooting SSL"
In Oracle Application Server, components send requests to and receive responses from other components. These components can be Oracle Application Server components (such as OracleAS Single Sign-On, OracleAS Web Cache, or Oracle HTTP Server) or external clients such as browsers.

To secure these communications, you can configure Oracle Application Server to use SSL, which is an industry standard for securing communications. Oracle Application Server supports SSL versions 2 and 3, as well as TLS version 1.

This chapter provides an overview of SSL and how you can use it with Oracle Application Server. It contains the following topics:

- What SSL Provides
- About Private and Public Key Cryptography
- How an SSL Session Is Set Up (the "SSL Handshake")
- Requirements for Using SSL in Oracle Application Server
- Certificates and Oracle Wallets
- SSL Configuration Overview
- Integration with Hardware Security Modules

### 11.1 What SSL Provides

SSL secures communication by providing message encryption, integrity, and authentication. The SSL standard allows the involved components (such as browsers and HTTP servers) to negotiate which encryption, authentication, and integrity mechanisms to use.

- **Encryption** allows only the intended recipient to read the message. SSL can use different encryption algorithms to encrypt messages. During the SSL handshake that occurs at the start of each SSL session, the client and the server negotiate which algorithm to use. Examples of encryption algorithms supported by SSL include AES, RC4, and 3DES.

- **Integrity** ensures that a message sent by a client is received intact by the server, untampered. To ensure message integrity, the client hashes the message into a digest using a hash function and sends this *message digest* to the server. The server also hashes the message into a digest and compares the digests. Because SSL uses hash functions that make it computationally infeasible to produce the same digest from two different messages, the server can tell that if the digests do
not match, then someone had tampered with the message. An example of a hash function supported by SSL is SHA1.

- Authentication enables the server and client to check that the other party is who it claims to be. When a client initiates an SSL session, the server typically sends its certificate to the client. Certificates are digital identities that are issued by trusted certificate authorities, such as Verisign. Section 11.5, "Certificates and Oracle Wallets" describes certificates in more detail.

The client verifies that the server is authentic and not an imposter by validating the certificate chain in the server certificate. The server certificate is guaranteed by the certificate authority (CA) who signed the server certificate.

The server can also require the client to have a certificate, if the server needs to authenticate the identity of the client.

### 11.2 About Private and Public Key Cryptography

To provide message integrity, authentication, and encryption, SSL uses both private and public key cryptography.

#### Private Key Cryptography

Private, or symmetric, key cryptography requires a single, secret key shared by two or more parties to secure communication. This key is used to encrypt and decrypt secure messages sent between the parties. This requires prior and secure distribution of the key to each party. The problem with this method is that it is difficult to securely transmit and store the key.

In SSL, each party calculates the secret key individually using random values known to each side. The parties then send messages encrypted using the secret key.

#### Public Key Cryptography

Public key cryptography solves this problem by employing public and private key pairs and a secure method for key distribution. The freely available public key is used to encrypt messages that can only be decrypted by the holder of the associated private key. The private key is securely stored, together with other security credentials, in an encrypted container such as an Oracle wallet.

Public key algorithms can guarantee the secrecy of a message, but they do not necessarily guarantee secure communication because they do not verify the identities of the communicating parties. To establish secure communication, it is important to verify that the public key used to encrypt a message does in fact belong to the target recipient. Otherwise, a third party can potentially eavesdrop on the communication and intercept public key requests, substituting its own public key for a legitimate key (the **man-in-the-middle** attack).

To avoid such an attack, it is necessary to verify the owner of the public key, a process called authentication. Authentication can be accomplished through a certificate authority (CA), which is a third party trusted by both of the communicating parties.

The CA issues public key certificates that contain an entity's name, public key, and certain other security credentials. Such credentials typically include the CA name, the CA signature, and the certificate effective dates (From Date, To Date).

The CA uses its private key to encrypt a message, while the public key is used to decrypt it, thus verifying that the message was encrypted by the CA. The CA public key is well known, and does not have to be authenticated each time it is accessed. Such CA public keys are stored in wallets.
11.3 How an SSL Session Is Set Up (the "SSL Handshake")

The SSL protocol has two phases: the handshake phase and the data transfer phase. The handshake phase authenticates the server and optionally the client, and establishes the cryptographic keys that will be used to protect the data to be transmitted in the data transfer phase.

When a client requests an SSL connection to a server, the client and server first exchange messages in the handshake phase. (A common scenario is a browser requesting a page using the https:// (instead of http://) protocol from a server. The https protocol indicates the usage of SSL with HTTP.)

Figure 11–1 shows the handshake messages for a typical SSL connection between a Web server and a browser. The following steps are shown in the figure:

1. The client sends a Hello message to the server.
   The message includes a list of algorithms supported by the client and a random number that will be used to generate the keys.

2. The server responds by sending a Hello message to the client. This message includes:
   - The algorithm to use. The server selected this from the list sent by the client.
   - A random number, which will be used to generate the keys.

3. The server sends its certificate to the client.

4. The client authenticates the server using the server’s certificate.

5. The client generates a random value ("pre-master secret"), encrypts it using the server’s public key, and sends it to the server.

6. The server uses its private key to decrypt the message to retrieve the pre-master secret.

7. The client and server separately calculate the keys that will be used in the SSL session.
   These keys are not sent to each other because the keys are calculated based on the pre-master secret and the random numbers, which are known to each side. The keys include:
   - Encryption key that the client uses to encrypt data before sending it to the server
   - Encryption key that the server uses to encrypt data before sending it to the client
   - Key that the client uses to create a message digest of the data
   - Key that the server uses to create a message digest of the data
   The encryption keys are symmetric, that is, the same key is used to encrypt and decrypt the data.

8. The client and server send a Finished message to each other. These are the first messages that are sent using the keys generated in the previous step (the first "secure" messages).
   The Finished message includes all the previous handshake messages that each side sent. Each side verifies that the previous messages that it received match the messages included in the Finished message. This checks that the handshake messages were not tampered with.
9. The client and server now transfer data using the encryption and hashing keys and algorithms.

**Figure 11–1 SSL Handshake**

<table>
<thead>
<tr>
<th>SSL Handshake Phase</th>
<th>Client</th>
<th>Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sends Hello Message</td>
<td></td>
<td>Sends Hello Message</td>
</tr>
<tr>
<td>Algorithm, random number</td>
<td></td>
<td>Generates random value (pre-master secret) and encrypts it with the server’s public key</td>
</tr>
<tr>
<td>Certificate</td>
<td></td>
<td>Encrypts pre-master secret</td>
</tr>
<tr>
<td>Authenticates Server</td>
<td></td>
<td>Decrypts to retrieve pre-master secret</td>
</tr>
<tr>
<td>Encrypts pre-master secret</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Calculates keys</td>
<td></td>
<td>Sends finished message</td>
</tr>
<tr>
<td>Sends finished message</td>
<td></td>
<td>Sends finished message</td>
</tr>
<tr>
<td>SSL Data Transfer Phase</td>
<td></td>
<td>Data</td>
</tr>
</tbody>
</table>

### 11.4 Requirements for Using SSL in Oracle Application Server

To use SSL in Oracle Application Server:

- You need a certificate and an Oracle wallet for your site. This certificate is used by clients to verify that they are not connecting to an imposter site.
- If you need to authenticate your clients, the clients will need certificates as well.
- You need to configure Oracle Application Server components (for example, Oracle HTTP Server) to accept and transmit messages over SSL.
- SSL is resource-intensive. If you expect heavy SSL traffic, then you should consider getting an SSL accelerator.

The following sections in this chapter describe these topics in more detail.

### 11.5 Certificates and Oracle Wallets

You need a certificate for your site. When clients connect to your site requesting SSL communication, you usually have to send your certificate to them so that they can authenticate you.

Oracle Application Server supports X.509 V3 certificates, and certificates that conform to the PKIX standard (RFC 3280).
11.5.1 How to Get a Certificate

You get certificates from certificate authorities (CAs). CAs are trusted entities who sign the certificates that they issue with their private key. Clients can verify the issuer of a certificate (by using the CA’s public key). Examples of CAs include Verisign (http://www.verisign.com) and Thawte (http://www.thawte.com).

Oracle Application Server also has a certificate authority, called OracleAS Certificate Authority (OCA). You can use it to set up your own certificate authority. See the Oracle Application Server Certificate Authority Administrator’s Guide for details.

To get a certificate, you submit a certificate request to a CA. The certificate request contains your information including your public key. You can use tools to generate a certificate request; these tools can generate private and public key pairs for you. Examples of tools that can generate certificate requests include Oracle Wallet Manager and Sun’s keytool (for OC4J only). For information on Oracle Wallet Manager, see Chapter 13.

Among other items, a certificate includes the following pieces of data:

- Certificate owner’s name
- Certificate owner’s public key
- CA’s name
- Certificate expiration date
- Certificate serial number

Certificates are valid until they expire or until they are revoked.

Note that if you use OracleAS Certificate Authority (OCA) to create certificates for your server, most browsers will not accept these certificates without input from the browser user. This is because most browsers are preconfigured to accept certificates from certain CAs, and OCA is not one of them. The browser will reject the certificate from the server unless the user chooses to accept certificates from the server or import the CA’s certificate.

This problem exists for all CAs until the CA’s certificate is imported into the browsers. For more information, see the Oracle Application Server Certificate Authority Administrator’s Guide.

11.5.2 Oracle Wallet

An Oracle wallet is a container that stores your credentials, such as certificates, certificate requests, and private keys. You can store Oracle wallets on the file system or in LDAP directories such as Oracle Internet Directory. Oracle wallets are password-protected.

You manage Oracle wallets using Oracle Wallet Manager. Use Oracle Wallet Manager to perform tasks such as creating Oracle wallets, creating certificate requests, importing certificates into the wallet, and uploading wallets to an LDAP directory.

Oracle Wallet Manager supports PKCS #11 and PKCS #12 wallets:

- Scenario 1: You generate a certificate request using Oracle Wallet Manager and decide to store the private key on the file system. When you get your certificate from the CA, you can import it into an Oracle wallet. This wallet uses the PKCS #12 format. See Section 13.1.4.2.1 for details.

- Scenario 2: You generate a certificate request using Oracle Wallet Manager and decide to store the private key on a hardware security module. When you get your...
certificate from the CA, you can import it into an Oracle wallet. This wallet uses the PKCS #11 format. See Section 13.1.4.2.2 for details.

- Scenario 3: You already have a certificate in a wallet that uses the PKCS #12 format, and you want to use it with Oracle Application Server. The wallet was created using a third-party tool. In this case, use the tool that was used to create the wallet and export the wallet to a file on the file system. You can then import the wallet. See Section 13.1.5.1.3 for details.

Components That Use Oracle Wallets
Oracle Application Server components that act as SSL servers need Oracle wallets (the wallet already contains the certificate that you want the server to use). Examples of these components include Oracle HTTP Server, OracleAS Web Cache, OPMN, Oracle Internet Directory, and the Port Tunneling daemon (iaspt).

You configure the component with the location of the Oracle wallet. For example, to configure Oracle HTTP Server for SSL, you specify the location of the wallet using the SSLWallet directive. Refer to the component guide for specific instructions on how to specify the wallet location for the component.

---

**Note:** The OC4J component uses a keystore instead of an Oracle wallet to store its certificate. You use a tool called keytool to import certificates into keystores. See the Oracle Containers for J2EE Security Guide for details on keystores and keytool.

---

11.5.3 Client Certificates

If you need to authenticate your clients, you can configure the Oracle HTTP Server to require clients to send their certificates. Clients can also get their certificates from CAs.

If the clients are Oracle components, for example, OracleAS Web Cache can act as a client when communicating with Oracle HTTP Server, the client component can store its certificate in an Oracle wallet. OPMN also acts as a client when configured for SSL.

If the client is a browser, the client does not need an Oracle wallet. You can just import the certificate into the browser.

Other types of clients, such as SOAP or Web Services clients, have their own ways of configuring certificates and certificate stores.

11.6 SSL Configuration Overview

You enable components in Oracle Application Server to use SSL using the Application Server Control. In some cases, you edit configuration files by hand.

SSL secures communication between two parties: a client and a server. If three or more parties are involved, for example, client browser, OracleAS Web Cache, Oracle HTTP Server, and OC4J, then you may have to configure all components to use SSL.

Figure 11–2 shows typical communication paths between Oracle Application Server components and the protocols that they use. For example, browsers use HTTP to communicate with OracleAS Web Cache, and Oracle HTTP Server uses AJP to communicate with OC4J. All these protocols can work with SSL.
11.6.1 Default SSL Configuration

If you select the default options in the Oracle Application Server installation, none of the components are configured for SSL.

On installation screens where you specify the Oracle Internet Directory host and port, there is an option marked "Use only SSL connections with this Oracle Internet Directory." If you select this option, you need to provide Oracle Internet Directory’s SSL port number, and the installer configures the components to use SSL only to communicate with Oracle Internet Directory during runtime.

11.6.2 Partial SSL Configuration

Oracle Application Server enables you to configure SSL for only the paths you want to secure. There are many paths used by components, as shown in Figure 11–2.

You might not want to secure all paths for the following reasons:

- SSL is resource-intensive. If you have heavy SSL traffic, then you probably need to offload SSL processing to an SSL accelerator. See Section 11.7 for details.
- If your computers are behind firewalls, you might need to secure only paths that are accessed by the public. For example, you might need to secure only OracleAS Web Cache and Oracle HTTP Server if the public can access only these components.

11.7 Integration with Hardware Security Modules

When clients connect to your site using SSL, the extra processing required for SSL strains your servers, and your site as a whole (SSL as well as non-SSL connections) will experience slower performance and throughput. You should consider using SSL accelerator hardware to offload SSL computations and improve performance.
Types of SSL accelerators:

- Protocol Converters
- Mathematics Accelerators (PKCS #11 Integration)

11.7.1 Protocol Converters

Protocol converters convert HTTPS traffic to HTTP. Protocol converters are standalone hardware machines. Oracle Application Server supports protocol converters from companies such as:

- F5 (http://www.f5.com)
- Cisco (http://www.cisco.com)
- SonicWall (http://www.sonicwall.com)

Note: SSL connections to protocol converters terminate at the protocol converter. When the converters forward the requests to Oracle Application Server, most of them do so in an unencrypted fashion.

For the protocol converters that forward the requests to Oracle Application Server using SSL, this is still faster than not using a protocol converter because using a protocol converter eliminates most SSL key exchanges (which is the expensive operation).

11.7.2 Mathematics Accelerators (PKCS #11 Integration)

Mathematics accelerators improve the speed of math operations used by SSL. Such devices are usually plugged into a server (often through TCP/IP). Such devices often have additional features such as key management and secure key stores.

Oracle Application Server supports mathematics accelerators that follow the PKCS #11 standard. For a list of certified accelerators, you can check the OracleMetaLink site, http://www.oracle.com/support/metalink/index.html.
This chapter describes how to use the SSL Configuration Tool. The following topics are covered:

- Overview
- Understanding SSL Termination
- Command Line Interface
- Common SSL Configuration Scenarios
- Manual Steps
- Troubleshooting the SSL Configuration Tool

**Note:** In this chapter, references to middle-tier components, such as OracleAS Web Cache, refer to Release 10.1.2 or 10.1.3.

For more information about which specific versions are compatible with 10g (10.1.4.0.1), see the Oracle Application Server Upgrade and Compatibility Guide.

### 12.1 Overview

The SSL Configuration Tool is designed to be run after a successful Oracle Application Server installation to automate many of the manual steps currently required for securing HTTP. This means that all Oracle homes you plan to install are successfully installed. If you have a topology where both an OracleAS Infrastructure and middle tier are present, be sure to run the SSL Configuration Tool against the OracleAS Infrastructure first, then the middle tier.

**Note:** The SSL Configuration Tool is only supported for Oracle Application Server 10g (10.1.4.0.1) and Release 2 (10.1.2).

If you install Oracle Application Server and choose to make some configuration changes before running the SSL Configuration Tool, you should run the tool and then refer to the SSL Configuration Tool log files to verify that your changes were not overwritten. The SSL Configuration Tool creates log files in the directory from which the tool is run. A new log file is created each time the tool is run. For these reasons, it is suggested that you create a separate directory from which you can run the SSL Configuration Tool.
If you encounter any problems, you should run the SSL Configuration Tool with the \texttt{-rollback} option to revert back to your configuration environment prior to running the tool. See Section 12.6 for information about troubleshooting the SSL Configuration Tool.

The SSL Configuration Tool is available with any Oracle Application Server installation type. OracleAS Infrastructure installations are the only installation type that support SSL configuration during the installation. This option is available on one of the installation screens. See \textit{Oracle Application Server Installation Guide} for more information.

\textbf{Note:} OracleAS Web Cache is the only standalone type supported by the SSL Configuration Tool. All other standalone types (for example, Apache) are not supported.

In some cases, the SSL Configuration Tool cannot completely configure SSL for your specific topology. When this occurs, you should refer to the appropriate component documentation for instructions on how to complete your SSL configuration manually. For some links to documentation containing manual steps, see Section 12.5.

\textbf{Note:} The SSL Configuration Tool will shut down all necessary components before making any changes. Therefore, you do not need to perform any manual component shutdowns before running the SSL Configuration Tool.

\section*{12.2 Understanding SSL Termination}

Oracle Application Server ships Oracle HTTP Server (OHS) as the web server software application. It can be configured to serve HTTP requests directly from the Internet. Optionally, OracleAS Web Cache can be installed in front of Oracle HTTP Server to improve performance and scalability. Many customers choose to further increase scalability by putting a load balancer (LBR) in front of both OracleAS Web Cache and Oracle HTTP Server, as illustrated in Figure 12–1.
HTTPS requests can be allowed to reach the load balancer, OracleAS Web Cache, or Oracle HTTP Server. Any one of these components can be configured as the SSL termination point, while any component before the termination point will be SSL.
secured. For example, in Figure 12–1, if OracleAS Web Cache is configured as the termination point, then the load balancer would be SSL secured.

**SSL Termination at the Load Balancer**

HTTPS requests are terminated at the load balancer in the following scenarios:
- HTTPS Request --> Load Balancer (with SSL accelerator) --> OracleAS Web Cache --> Oracle HTTP Server
- HTTPS Request --> Load Balancer (with SSL accelerator) --> Oracle HTTP Server

With SSL accelerator turned on, HTTPS traffic will terminate at the load balancer, meaning that the load balancer performs decryption and sends plain HTTP traffic to either OracleAS Web Cache or Oracle HTTP Server.

**SSL Termination at OracleAS Web Cache**

HTTPS requests are terminated at OracleAS Web Cache in the following scenarios:
- HTTPS Requests --> Load Balancer (without SSL accelerator) --> OracleAS Web Cache (with HTTPS termination) --> Oracle HTTP Server
- HTTPS Requests --> OracleAS Web Cache (with HTTPS termination) --> Oracle HTTP Server

The load balancer without SSL accelerator turned on sends HTTPS traffic to OracleAS Web Cache. OracleAS Web Cache, in turn, configured with SSL termination, performs decryption and sends plain HTTP traffic to Oracle HTTP Server.

**SSL Termination at Oracle HTTP Server**

HTTPS requests are terminated at Oracle HTTP Server in the following scenarios:
- HTTPS Requests --> Load Balancer (without SSL accelerator) --> OracleAS Web Cache (without HTTPS termination) --> Oracle HTTP Server
- HTTPS Requests --> OracleAS Web Cache (without HTTPS termination) --> Oracle HTTP Server
- HTTPS requests --> Load Balancer (without SSL accelerator) --> Oracle HTTP Server

The load balancer without SSL accelerator and OracleAS Web Cache without HTTPS termination will both accept and forward HTTPS requests. When these requests reach Oracle HTTP Server with SSL termination configured, Oracle HTTP Server will perform decryption and send plain HTTP traffic to other Oracle Application Server components.

### 12.3 Command Line Interface

This section describes how to use the `SSLConfigTool` command. It contains the following sections:
- **Where Can I Find the SSL Configuration Tool?**
- **Syntax**
- **Configuration File for Silent Mode**
- **Default Wallet Locations**
12.3.1 Where Can I Find the SSL Configuration Tool?

The SSLConfigTool executable is located in the `ORACLE_HOME/bin` directory.

12.3.2 Syntax

The `SSLConfigTool` command is used as follows:

```bash
SSLConfigTool { -config_w_prompt
 | -config_w_file input_file_name
 | -config_w_default
 | -rollback }
[-dry_run]
[-wc_for_infra]
[-secure_admin]
[-opwd orcladmin_pwd]
[-ptl_dad dad_name]
[-ptl_inv_pwd ptl_inv_pwd]
```

Table 12–1 describes the command line options for the `SSLConfigTool` command.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-config_w_prompt</code></td>
<td>Run in interactive mode.</td>
</tr>
<tr>
<td><code>-config_w_file input_file_name</code></td>
<td>Run in silent mode using the values specified in the <code>input_file_name</code> file. This input file should be an XML file. For more information, see Section 12.3.3.</td>
</tr>
<tr>
<td><code>-config_w_default</code></td>
<td>Run in silent mode using the values specified in the <code>portlist.ini</code> and <code>ias.properties</code> files.</td>
</tr>
<tr>
<td><code>-rollback</code></td>
<td>Revert to the prior state before the command was last run. SSO registration will be done using virtual host and port.</td>
</tr>
<tr>
<td><code>-dry_run</code></td>
<td>Print the steps without implementing them.</td>
</tr>
<tr>
<td><code>-wc_for_infra</code></td>
<td>Force OracleAS Web Cache to be used as a load balancer for an infrastructure environment. Note that the OracleAS Infrastructure installation does not include OracleAS Web Cache. If you want to configure this environment, you must make sure OracleAS Web Cache is installed separately.</td>
</tr>
<tr>
<td><code>-secure_admin</code></td>
<td>Secure the OracleAS Web Cache and Enterprise Manager administration ports (the ports used to display Application Server Control Console).</td>
</tr>
<tr>
<td><code>-opwd orcladmin_pwd</code></td>
<td>Set the Oracle administrator password. This parameter is required.</td>
</tr>
<tr>
<td><code>-ptl_dad dad_name</code></td>
<td>Set the Portal dad name. If no name is specified, the default &quot;portal&quot; will be used.</td>
</tr>
<tr>
<td><code>-ptl_inv_pwd ptl_inv_pwd</code></td>
<td>Set the Portal invalidation password used to send invalidation to OracleAS Web Cache. This parameter is required if you installed OracleAS Portal. If you are running <code>SSLConfigTool</code> with the <code>-rollback</code> parameter, this parameter is not required.</td>
</tr>
</tbody>
</table>

The `-config_w_prompt`, `-config_w_file`, `-config_w_default`, and `-rollback` parameters are mutually exclusive; only one can be used with the `SSLConfigTool` command.
If you choose to run the tool interactively with the `-config_w_prompt` parameter, you will be prompted for the appropriate information one question at a time.

If you choose to run the tool silently by specifying a configuration file with the `-config_w_file` parameter, you should read Section 12.3.3, "Configuration File for Silent Mode" for information about constructing a valid input file.

### 12.3.3 Configuration File for Silent Mode

If you run SSLConfigTool in silent mode, you must provide an input file describing the components in the deployment topology.

The input file contains two main sections, `<mid_tier>` and `<infra>`, inside the `<sslconfig>` element:

```xml
<sslconfig>
 <mid_tier>
 ...
 </mid_tier>
 <infra>
 ...
 </infra>
</sslconfig>
```

The `<mid_tier>` and `<infra>` elements contain information the SSL Configuration Tool needs to know about this Oracle Application Server instance. The content inside both the `<mid_tier>` and `<infra>` elements must look like this:

```xml
<virtual_address ssl='on|off'
 host='...'
 port='...'
 inv_port='...'
 ssl_terminate='lbr|wc|ohs' />
<lbr loopback_port='...' />
<wc wallet='...' os_wallet='...' />
<ohs wallet='...'>
 <servers>
 <server host='...' port='...' />
 </servers>
</ohs>
```

Each element is described in further detail in the remainder of this section. All elements and attributes have default values assigned in either the `portlist.ini` or `ias.properties` file.

#### `<virtual_address>` Element

This is a required element used to describe this virtual host. Its attributes are summarized in Table 12–2.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| ssl       | Required attribute. Sets whether SSL is on or off. Valid values are:
|           | - on (enable HTTPS)
|           | - off (enable HTTP) |
| host      | Required attribute. Virtual host name. |
| port      | Required attribute. Virtual host port number. |
Using the SSL Configuration Tool

12-7

Table 12-2  (Cont.) Attributes for the <virtual_address> Element

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>inv_port</td>
<td>Optional attribute. Specify the OracleAS Web Cache invalidation port. This attribute is only relevant for OracleAS Portal installations.</td>
</tr>
</tbody>
</table>
| ssl_terminate | Required attribute when the ssl value is on. Sets the SSL termination point. All components up to the specified termination point will be secured in SSL. Valid values are:  
|             | • lbr (load balancer)  
|             | • wc (OracleAS Web Cache)  
|             | • ohs (Oracle HTTP Server)  
|             | For more information, see Section 12.2.                                    |

<lbr> Element

This element is required if there is a load balancer present in your topology. The <lbr> element takes one attribute, loopback_port, which is used to specify the loopback port number.

<wc> Element

This element is required if OracleAS Web Cache is present in your topology. The <wc> element takes the following optional attributes:

- wallet—Location of the OracleAS Web Cache front-end wallet (used to communicate with an external browser).
- os_wallet—Location of the OracleAS Web Cache back-end wallet (used to communicate with Oracle HTTP Server).
- loopback_port—Loopback port number when there is no load balancer present in your topology and OracleAS Web Cache is acting as the load balancer. This attribute is valid for OracleAS Portal installations only.

See Section 12.3.4 for default wallet locations.

<ohs> Element

This element is used in conjunction with the <wc> element; if OracleAS Web Cache is not present in your topology, then this element is not needed. In addition, this element is also not needed if OracleAS Web Cache and Oracle HTTP Server are installed on the same machine, and OracleAS Web Cache maps to the Oracle HTTP Server in the same Oracle home.

The <ohs> element takes one optional attribute, wallet, which is used to specify the location of the Oracle HTTP Server (Apache) wallet. See Section 12.3.4 for default wallet locations.

Additionally, the <ohs> element requires one <servers> element for each Oracle HTTP Server in the topology. The <servers> element takes the following attributes:

- host—Name of the Oracle HTTP Server
- port—Oracle HTTP Server listen port

There must be one <servers> element for each Oracle HTTP Server in your topology.

12.3.4 Default Wallet Locations

Default wallet locations are listed in Table 12-3.
To specify your own wallet location, you must supply either the absolute path from the root (/) directory or a relative path from the Oracle home directory.

The following are some examples of an absolute path:

/etc/wallets/absolute/path/to/my/companys/wallet (UNIX)
C:\product\OracleAS\10.1.2\absolute\path\to\my\companys\wallet (Windows)

The following are some examples of a relative path:

%ORACLE_HOME%/relative/path/to/my/companys/wallet (UNIX)
%ORACLE_HOME%/relative\path\to\my\companys\wallet (Windows)

### 12.4 Common SSL Configuration Scenarios

This section describes how to use the SSL Configuration Tool for the following common topologies:

- Configuring SSL to Load Balancer for OracleAS Single Sign-On/Oracle Delegated Administration Services
- Configuring SSL to Load Balancer for OracleAS Portal
- Configuring SSL to Oracle HTTP Server for Oracle HTTP Server/Oracle Containers for J2EE
- Configuring SSL to OracleAS Web Cache for J2EE
- Configuring SSL to Oracle HTTP Server for OracleAS Single Sign-On/Oracle Delegated Administration Services
- Configuring SSL to Oracle HTTP Server for OracleAS Portal
- Configuring an HTTP Instance
- Configuring SSL for Cluster Configurations

#### 12.4.1 Configuring SSL to Load Balancer for OracleAS Single Sign-On/Oracle Delegated Administration Services

This configuration enables SSL at the load balancer for OracleAS Single Sign-On (SSO)/Oracle Delegated Administration Services (DAS). The load balancer acts as the front end for the SSO server (Figure 12–2).

SSL terminates at load balancer, meaning that the load balancer performs decryption and sends plain HTTP traffic directly to Oracle HTTP Server for infrastructure installations.
12.4.1.1 What It Does

The SSL Configuration Tool performs the following to enable HTTPS:

- Changes the `httpd.conf` file to refer to the load balancer’s host and port.
- Runs the `ssocfg` script to configure the SSO server.
- Runs the `ssoreg` script to re-register `mod_osso` in the current `ORACLE_HOME`.
- Modifies the DAS operation URL in the Oracle Internet Directory.
- Modifies the `targets.xml` file.

If you have multiple SSO/DAS homes in a high-availability environment, you must run `SSLConfigTool` in each home, then perform step 6 in the list of manual steps in Section 12.5.
12.4.1.2 Running the SSL Configuration Tool

Run the following command to configure SSL for this scenario. The name of the input configuration file is `sslct_config.xml` and the Oracle administrator password is `welcome1`.

```
SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1
```

The following are the contents of the `sslct_config.xml` input configuration file:

```
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="mylogin.us.oracle.com"
 port="443"
 ssl_terminate="lbr" />
 </mid_tier>
</sslconfig>
```

To configure SSL interactively, use the `-config_w_prompt` option, as shown in the following example. The answers to the questions are in **bold**:

```
SSLConfigTool -config_w_prompt -opwd welcome1
```

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let’s start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: **y**
What is the virtual host name for your site? [mylogin.us.oracle.com]: **mylogin.us.oracle.com**
What is the virtual port number for your site? [4443]: **443**
Does your site have an external load balancer (LBR)? [y]: **y**
Note: Do NOT include OracleAS Web Cache as LBR here.
Does your site have OracleAS Web Cache? [y]: **n**
Does your Oracle HTTP Server (OHS) accept requests in SSL protocol? [y]: **n**
You have supplied all the information. Are you ready to continue? [y]: **y**

12.4.1.3 For More Information

For detailed information about configuring SSL in this scenario, see:

- Appendix E, "Enabling SSL and PKI on SSO" in the *Oracle Application Server Certificate Authority Administrator’s Guide*.

12.4.2 Configuring SSL to Load Balancer for OracleAS Portal

This configuration enables SSL for OracleAS Portal. A load balancer acts as the front end for two OracleAS Portal middle tiers, each with its own OracleAS Web Cache and Oracle HTTP Server instances in the same `ORACLE_HOME`. In addition, the two OracleAS Web Caches have been manually clustered together (Figure 12–3).

SSL terminates at load balancer, meaning that the load balancer performs decryption and sends plain HTTP traffic directly to OracleAS Web Cache and then to Oracle HTTP Server.
12.4.2.1 What It Does

The SSL Configuration Tool performs the following to enable HTTPS:

- Changes the `httpd.conf` file to refer to the load balancer’s host and port.
- Runs the `ssoreg` script to re-register `mod_osso` in the current `ORACLE_HOME`.
- Modifies the `iasconfig.xml` file and then runs the `ptlconfig` script against it.
- Modifies the `webcache.xml` file to create a new site, does the proper site-to-server mappings, and points to any user-specified wallet locations.
- Modifies the `targets.xml` file.

If you have multiple OracleAS Portal instances, you must run `SSLConfigTool` for each OracleAS Portal instance, then perform steps 2, 3, 4, and 6 in the list of manual steps in Section 12.5. If you are using OracleAS Wireless with OracleAS Portal, you must also perform step 5.
12.4.2.2 Running the SSL Configuration Tool

Run the following command to configure SSL for this scenario. The name of the input configuration file is `sslct_config.xml`, the Oracle administrator password is `welcome1`, and the Portal invalidation password is also `welcome1`.

```
SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1 -ptl_inv_pwd welcome1
```

The following shows the contents of the `sslct_config.xml` input configuration file:

```xml
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="mylogin.us.oracle.com"
 port="443"
 inv_port="4001"
 ssl_terminate="lbr" />
 <lbr loopback_port="7780" />
 </mid_tier>
 <wc/>
 <ohs>
 <servers>
 <server host="ohs6.us.oracle.com" port="7778"/>
 <server host="ohs8.us.oracle.com" port="7778"/>
 </servers>
 </ohs>
</sslconfig>
```

To configure SSL interactively, use the `-config_w_prompt` option, as shown in the following example. The answers to the questions are in bold:

```
SSLConfigTool -config_w_prompt -opwd welcome1 -ptl_inv_pwd welcome1
```

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let’s start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: y
What is the virtual host name for your site? [mylogin.us.oracle.com]: mylogin.us.oracle.com
What is the virtual port number for your site? [4443]: 443
What is the invalidation port number your Portal uses? [4001]: 4001
Does your site have an external load balancer (LBR)? [y]: y
Note: Do NOT include OracleAS Web Cache as LBR here. [y]: y
Does your site have OracleAS Web Cache? [y]: y
Does your Web Cache accept requests in SSL protocol? [y]: n
Does your Oracle HTTP Server (OHS) accept requests in SSL protocol? [y]: n
What is the Portal loop-back port in LBR or Web Cache? [7780]: 7780
How many OHS instances does your Web cache route traffic to? [1]: 2
Please enter host name for OHS #1: ohs6.us.oracle.com
Please enter port number for OHS #1: 7778
Please enter host name for OHS #2: ohs8.us.oracle.com
Please enter port number for OHS #2: 7778
You have supplied all the information. Are you ready to continue? [y]: y

12.4.2.3 For More Information

For detailed information about configuring SSL in this scenario, see:
12.4.3 Configuring SSL to Oracle HTTP Server for Oracle HTTP Server/Oracle Containers for J2EE

This configuration enables SSL for Oracle HTTP Server/OC4J. Two Oracle HTTP Servers are configured in a high-availability environment and both are configured to accept HTTPS requests from a front-end load balancer (Figure 12–4).

SSL terminates at Oracle HTTP Server, meaning that Oracle HTTP Server performs decryption and sends plain HTTP traffic directly to other Oracle Application Server components.

**Figure 12–4 Topology and Summary of Changes**
12.4.3.1 What It Does
The SSL Configuration Tool does the following to enable HTTPS:

- Changes the `opmn.xml` file to enable Oracle HTTP Server.
- Changes the `ssl.conf` file to point to the specified wallet location.
- Runs the `ssoreg` script to re-register `mod_osso` in the current Oracle Home if SSO is enabled.

For multiple Oracle Containers for J2EE (OC4J) homes in a high availability environment, you must run `SSLConfigTool` in each home, then perform step 6 in the list of manual steps in Section 12.5 if OC4J is protected by OracleAS Single Sign-On.

12.4.3.2 Running the SSL Configuration Tool
Run the following command to configure SSL for this scenario. The name of the input configuration file is `sslct_config.xml` and the Oracle administrator password is `welcome1`.

```
SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1
```

The following shows the contents of the `sslct_config.xml` input configuration file:

```
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="mylogin.us.oracle.com"
 port="443"
 ssl_terminate="ohs" />
 </mid_tier>
</sslconfig>
```

To configure SSL interactively, use the `-config_w_prompt` option, as shown in the following example. The answers to the questions are in bold:

```
SSLConfigTool -config_w_prompt -opwd welcome1
```

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let's start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: y
What is the virtual host name for your site? [mylogin.us.oracle.com]: mylogin.us.oracle.com
What is the virtual port number for your site? [4443]: 443
Does your site have an external load balancer (LBR)? [y]: y
Note: Do NOT include OracleAS Web Cache as LBR here. [y]: y
Does your site have OracleAS Web Cache? [y]: n
Do you want to supply your own wallet location for OHS? [n]: n
You have supplied all the information. Are you ready to continue? [y]: y

12.4.3.3 For More Information
For detailed information about configuring SSL in this scenario, see:

- Understanding the Enterprise Deployment Architectures", "myJ2EE" in the Oracle Application Server Enterprise Deployment Guide.
Chapter 6, "Installing and Configuring the myJ2EECompany Application Infrastructure" in the Oracle Application Server Enterprise Deployment Guide.

12.4.4 Configuring SSL to OracleAS Web Cache for J2EE

This scenario enables SSL for J2EE in smaller Oracle Application Server shops, where there is no load balancer and OracleAS Web Cache is used as the load balancer (Figure 12–5).

SSL terminates at OracleAS Web Cache, meaning that OracleAS Web Cache performs decryption and sends plain HTTP traffic directly to Oracle HTTP Server. Alternatively, if OracleAS Web Cache is not used, then SSL would terminate at Oracle HTTP Server.

Figure 12–5  Topology and Summary of Changes
12.4.4.1 What It Does
The SSL Configuration Tool does the following to enable HTTPS:

- Changes the opmn.xml file to enable Oracle HTTP Server.
- Changes the ssl.conf file to point to the load balancer’s host and port.
- Runs the ssoreg script to re-register mod_osso in the current ORACLE_HOME if SSO is enabled.
- Modifies the webcache.xml file to define the new site, origin server, listen port, does the proper site-to-server mappings, and points to any user-specified wallet locations.

12.4.4.2 Running the SSL Configuration Tool
Run the following command to configure SSL for this scenario. The name of the input configuration file is sslct_config.xml and the Oracle administrator password is welcome1.

SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1

The following shows the contents of the sslct_config.xml input configuration file:

```xml
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="mylogin.us.oracle.com"
 port="443"
 ssl_terminate="wc" />
 </wc/>
 <ohs>
 <servers>
 <server host="ohs6.us.oracle.com" port="7778" />
 <server host="ohs8.us.oracle.com" port="7778" />
 </servers>
 </ohs>
 </mid_tier>
</sslconfig>
```

To configure SSL interactively, use the -config_w_prompt option, as shown in the following example. The answers to the questions are in bold:

SSLConfigTool -config_w_prompt -opwd welcome1

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let’s start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: y
What is the virtual host name for your site? [mylogin.us.oracle.com]: mylogin.us.oracle.com
What is the virtual port number for your site? [4443]: 443
Does your site have an external load balancer (LBR)? [y]: n
Note: Do NOT include OracleAS Web Cache as LBR here. [y]: n
Does your Oracle HTTP Server (OHS) accept requests in SSL protocol? [y]: n
Do you want to supply your own wallet locations for Web Cache? [n]: n
How many OHS instances does your Web cache route traffic to? [1]: 2
Please enter host name for OHS #1: ohs6.us.oracle.com
Please enter port number for OHS #1: *4443*
Please enter host name for OHS #2: *ohs8.us.oracle.com*
Please enter port number for OHS #2: *4443*
You have supplied all the information. Are you ready to continue? [y]: y

### 12.4.4.3 For More Information

For detailed information about configuring SSL in this scenario, see Chapter 9, "Configuring OracleAS Web Cache for HTTPS Requests" in *Oracle Application Server Web Cache Administrator’s Guide*.

### 12.4.5 Configuring SSL to Oracle HTTP Server for OracleAS Single Sign-On/Oracle Delegated Administration Services

This scenario enables SSL for OracleAS Single Sign-On/DAS with Oracle HTTP Server acting as the front end. There is no load balancer or front-end OracleAS Web Cache in this scenario (Figure 12–6).

SSL terminates at the Oracle HTTP Server tier. This means Oracle HTTP Server performs decryption and sends plain HTTP traffic directly to other Oracle Application Server components.

*Figure 12–6  Topology and Summary of Changes*
12.4.5.1 What It Does
The SSL Configuration Tool does the following to enable HTTPS:

- Changes the `opmn.xml` file to enable Oracle HTTP Server.
- Changes the `ssl.conf` file to point to the load balancer’s host and port.
- Runs the `ssocfg` script to configure the OracleAS Single Sign-On Server.
- Runs the `ssoreg` script to re-register `mod_osso` in the current `ORACLE_HOME` if SSO is enabled.
- Modifies the Oracle Delegated Administration Services operation URL in Oracle Identity Management and the `ssl.conf` file to add rewrite directives.
- Modifies the `targets.xml` file.

If you have multiple SSO/DAS homes in a high availability environment, you must run `SSLConfigTool` in each home, then perform step 6 in the list of manual steps in Section 12.5.

12.4.5.2 Running the SSL Configuration Tool
Run the following command to configure SSL for this scenario. The name of the input configuration file is `sslct_config.xml` and the Oracle administrator password is `welcome1`.

```
SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1
```

The following shows the contents of the `sslct_config.xml` input configuration file:

```
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="ohs6.us.oracle.com"
 port="443"
 ssl_terminate="ohs" />
 </mid_tier>
</sslconfig>
```

To configure SSL interactively, use the `-config_w_prompt` option, as shown in the following example. The answers to the questions are in **bold**:

```
SSLConfigTool -config_w_prompt -opwd welcome1
```

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let’s start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: **y**
What is the virtual host name for your site? [mylogin.us.oracle.com]: **ohs6.us.oracle.com**
What is the virtual port number for your site? [4443]: **443**
Does your site have an external load balancer (LBR)? [n]: **y**
Note: Do NOT include OracleAS Web Cache as LBR here. Does your site have OracleAS Web Cache? [y]: **n**
Do you want to supply your own wallet location for OHS? [n]: **n**
You have supplied all the information. Are you ready to continue? [y]: **y**
12.4.5.3 For More Information
For detailed information about configuring SSL in this scenario, see:

- Appendix E, "Enabling SSL and PKI on SSO" in the Oracle Application Server Certificate Authority Administrator’s Guide.

12.4.6 Configuring SSL to Oracle HTTP Server for OracleAS Portal
This scenario enables SSL for OracleAS Portal. A load balancer and OracleAS Web Cache are both in front of OracleAS Portal. The OracleAS Web Cache is a standalone installation, and uses the Oracle HTTP Server in the middle tier. The OracleAS Web Cache from the OracleAS Portal installation is rendered inactive (Figure 12–7).

For the purposes of this configuration, you should specify Oracle HTTP Server as the point of SSL termination. HTTPS, however, is used throughout OracleAS Portal.
12.4.6.1 What It Does

The SSL Configuration Tool does the following to enable HTTPS:

- Changes the `opmn.xml` file to enable Oracle HTTP Server.
- Changes the `ssl.conf` file to point to the load balancer’s host and port.
- Runs the `ssoreg` script to re-register `mod_osso` in the current `ORACLE_HOME` if SSO is enabled.
- Modifies the `iasconfig.xml` file and then runs the `ptlscript` script against it.
- Modifies the web.xml file to refer to the load balancer’s port.
- Modifies the webcache.xml file to define the new site, origin server, listen port, does the proper site-to-server mappings, and points to any user-specified wallet locations if OracleAS Web Cache is installed.

If you have multiple OracleAS Portal instances, you must run SSLConfigTool for each Portal instance, then perform steps 2, 3, 4, and 6 in the list of manual steps in Section 12.5. If you are using OracleAS Wireless with OracleAS Portal, you must also perform step 5.

### 12.4.6.2 Running the SSL Configuration Tool

Run the following command to configure SSL for this scenario. The name of the input configuration file is sslct_config.xml, the Oracle administrator password is welcome1, and the Portal invalidation password is also welcome1.

```bash
SSLConfigTool -config_w_file sslct_config.xml -opwd welcome1 -ptl_inv_pwd welcome1
```

The following shows the contents of the sslct_config.xml input configuration file:

```xml
<sslconfig>
 <mid_tier>
 <virtual_address ssl="on"
 host="mylogin.us.oracle.com"
 port="443"
 inv_port="4001"
 ssl terminate="ohs" />
 <lbr loopback_port="7780" />
 <wc/>
 <ohs>
 <servers>
 <server host="machine_6.us.oracle.com" port="4443" />
 </servers>
 </ohs>
 </mid_tier>
</sslconfig>
```

To configure SSL interactively, use the -config_w_prompt option, as shown in the following example. The answers to the questions are in bold:

```bash
SSLConfigTool -config_w_prompt -opwd welcome1 -ptl_inv_pwd welcome1
```

Welcome to the OracleAS SSL Configuration Tool.
Below you will be guided with a series of questions.
If a question has the default answer, the answer will be enclosed inside [square brackets].
Let’s start now...

Do you want to configure your site to accept browser requests using SSL protocol? [y]: **y**
What is the virtual host name for your site? [mylogin.us.oracle.com]: **mylogin.us.oracle.com**
What is the virtual port number for your site? [4443]: **443**
What is the invalidation port number your Portal uses? [4001]: **4001**
Does your site have an external load balancer (LBR)? [y]: **y**
Note: Do NOT include OracleAS Web Cache as LBR here.
Does your Web Cache accept requests in SSL protocol? [y]: **y**
Does your Oracle HTTP Server (OHS) accept requests in SSL protocol? [y]: **y**
What is the Portal loop-back port in LBR or Web Cache? [7780]: **7780**
Do you want to supply your own wallet locations for Web Cache? [n]: **n**
Do you want to supply your own wallet location for OHS? [n]: n
How many OHS instances does your Web Cache route traffic to? [1]: 1
What is the host name for OHS? [ohs6.us.oracle.com]: ohs6.us.oracle.com
What is the port number for OHS? [4443]: 4443
You have supplied all the information. Are you ready to continue? [y]: y

12.4.6.3 For More Information
For detailed information about configuring SSL in this scenario, see Section 6.3.2.1, "Configuring SSL for OracleAS Portal" in the Oracle Application Server Portal Configuration Guide.

12.4.7 Configuring an HTTP Instance
The SSL Configuration Tool can also be used to configure an HTTP-only instance. To accomplish this using a configuration input file, set the ssl attribute of the <virtual_address> element to "off," as shown in the following example:

```xml
<sslconfig>
 <mid_tier>
 <virtual_address ssl="off"
 host="mylogin.us.oracle.com"
 port="80" />
 </mid_tier>
</sslconfig>
```

To configure HTTP using the SSL Configuration Tool in interactive mode, answer n to the following question:

Do you want to configure your site to accept browser requests using SSL protocol? [y]: n

12.4.8 Configuring SSL for Cluster Configurations
To configure SSL in a clustered environment (for example, clustered Identity Management or Oracle Application Server High Availability Solutions), perform the following steps:

1. Add the first node and HTTPS listener port to the new load balancer configuration. Refer to your load balancer documentation for information on how to do this.
2. Run the SSL Configuration Tool on the first node to enable HTTPS.
3. Add the second node and HTTPS listener port to the load balancer configuration. Refer to your load balancer documentation for information on how to do this.
4. Run the SSL Configuration Tool on the second node to enable HTTPS.

12.5 Manual Steps
After the SSL Configuration Tool has run, you will see the following message:

The tool has completed the configuration steps. But please keep in mind that there are still some manual steps left for you to perform before you can use the environment in SSL mode.
1) The tool has not done anything about the SSL certificates. You need to make sure you use a real certificate inside the wallets.
2) The tool has done limited configuration about EM monitoring. E.g. you need to import the root CA certificate into EM wallet, etc.
You need to follow the instructions in the documentation.
3) You may need to cluster Web Cache on your own.
4) You may need to manually upload the Portal Preference Store to the database using Portal scripts.
5) You may need to configure Wireless following the instructions in the documentation.
6) When you have multiple installations of the same type, you need to manually copy osso.conf from one install to the rest as well as run 'ssotransfer' command against them.
For more, please refer to the documentation.

The corresponding documentation for these tasks can be found as listed in the following:

1. See Chapter 13 for information about certificates and wallets.
2. See Section 14.3.7 for details about how to enable SSL communication in Oracle Enterprise Manager 10g.
   For information about configuring a certificate in Oracle Enterprise Manager 10g, refer to the section titled "Enabling Monitoring of the Load Balancing Router’s OracleAS Portal Host and Port Settings" in the Oracle Application Server Enterprise Deployment Guide.
6. See Section 4.3.2.4, "Reregistering mod_osso on the Partner Application Middle Tiers" in the Oracle Application Server Single Sign-On Administrator’s Guide for an example of how to do this procedure.

12.6 Troubleshooting the SSL Configuration Tool

This section contains information that may help you in the event you encounter any problems while running the SSL Configuration Tool. The following topics are covered:

- General Troubleshooting Procedure
- Oracle Application Server Wireless Requires Manual Changes
- Configuring Seeded Providers for OracleAS Portal
- SSL Configuration Tool Does Not Support IASCONFIG_LOC Environment Variable
- SSL Configuration Tool Does Not Modify sso_apache.conf File
- SSL Configuration Tool Does Not Modify opmn.xml Parameters

12.6.1 General Troubleshooting Procedure

If the SSL Configuration Tool is able to detect a specific error, it will print some instructions on the screen and then exit. You should follow these instructions and take the recommended actions listed. For example:
Troubleshooting the SSL Configuration Tool

Executing command:
/scratch/testuser/product/10.1.3/OracleAS/opmn/bin/opmnctl stopproc
ias-component=dcm-daemon

ERROR: failed to run '/scratch/testuser/product/10.1.3/OracleAS/opmn/bin/opmnctl'.
ACTION: Please refer to the log file for the previous command.
ACTION: You may try running it explicitly from the command line to get more
information about the error.

If the SSL Configuration Tool hangs while it is running, you should press CTRL-C to
exit. On the screen, you should see a series of commands that have been executed up
to the point where you had to exit. Start with the most recent command and work
backward, consulting the documentation as necessary to determine the nature of the
problem.

In either case, whether the SSL Configuration Tool exits or hangs, you should make the
changes and run the SSLConfigTool command again. If the problems persist, you
should run the SSLConfigTool -rollback command to revert to the environment
prior to running the SSLConfigTool command.

**Note:** You do not need to run the SSLConfigTool -rollback
command if you do not see this line upon execution (the directories in
this example may differ from your own):

```
Configuring HTTPS for your ORACLE_HOME at:
/private/iasinst/work/ssltool_A
Backing up file '/private/iasinst/work/ssltool_A/opmn/conf/opmn.xml'
to file '/private/iasinst/work/ssltool_A/opmn/conf/opmn.xml.orig_SSLConfigTool'
```

This is because no files on your system are changed prior to this point
in the execution of the SSLConfigTool command.

If you encounter failures during the execution of the SSLConfigTool -rollback
command, you must resolve the issues and run the SSLConfigTool -rollback
again. This procedure must be repeated until you have a successful rollback. If you are
unable to rollback successfully, contact your Oracle support representative for
assistance.

### 12.6.2 Oracle Application Server Wireless Requires Manual Changes

Modifying OracleAS Web Cache settings (for example, changing the Listener port) can
affect the OracleAS Portal URL. Rather than pointing to https, the URL will begin
with http. To fix this, you must manually update your OracleAS Wireless settings.
Refer to the following sections in *Oracle Application Server Portal Configuration Guide* for
details:

- Section 6.3.2.1.3, "SSL to OracleAS Web Cache"
- Section C.8, "Using the cfgiasw Script to Configure Mobile Settings"

### 12.6.3 Configuring Seeded Providers for OracleAS Portal

OracleAS Portal includes several default (seeded) user accounts and groups. The SSL
Configuration Tool is not able to configure SSL for seeded user accounts and groups;
you must enable SSL for them manually. For the manual steps, see "Configuring
External SSL Manually" in *Oracle Application Server Portal Configuration Guide*. 
12.6.4 SSL Configuration Tool Does Not Support IASCONFIG_LOC Environment Variable

The IASCONFIG_LOC environment variable is used to override the default location of the iasconfig.xml file (the Portal Dependency Settings file). The SSL Configuration Tool does not modify the IASCONFIG_LOC environment variable, which means only the iasconfig.xml file in the default location (ORACLE_HOME/portal/conf) will be updated during SSL configuration.

For more information about the IASCONFIG_LOC environment variable, see Appendix A, "Using the Portal Dependency Settings Tool and File" in Oracle Application Server Portal Configuration Guide.

12.6.5 SSL Configuration Tool Does Not Modify sso_apache.conf File

The SSL Configuration Tool does not modify the sso_apache.conf file. This file needs to be modified in order for external applications to work in an SSL environment.

For information about modifying the sso_apache.conf file, see Section 7.3, "Protect Single Sign-On URLs" in Oracle Application Server Single Sign-On Administrator's Guide.

12.6.6 SSL Configuration Tool Does Not Modify opmn.xml Parameters

If you install Oracle Business Intelligence, OracleBI Discoverer adds the following parameters to the opmn.xml file:

- oracle.discoverer.applications.host
- oracle.discoverer.applications.port

By default, the oracle.discoverer.applications.host parameter is set to the local host, and the oracle.discoverer.applications.port parameter is set to the Apache non-SSL port.

The SSL Configuration Tool does not modify these parameters, so you have to modify them manually after running the SSL Configuration Tool:

- Change oracle.discoverer.applications.host to point to your LBR’s virtual IP address (if you are using an LBR).
- Change oracle.discoverer.applications.port to point to your SSL port.

After making these changes, save opmn.xml, then run the following commands:

opmnctl reload
opmnctl restartproc type=oc4j instancename=OC4J_BI_FORMS
Managing Wallets and Certificates

This chapter explains how to obtain and manage security credentials for Oracle Application Server resources. Security administrators can use Oracle Wallet Manager and its command-line utility, orapki, to manage public key infrastructure (PKI) credentials on Oracle clients and servers. These tools create credentials that can be read by Oracle Database, Oracle Application Server 10g, and the Oracle Identity Management infrastructure.

This chapter contains the following topics:

- Using Oracle Wallet Manager
- Performing Certificate Validation and CRL Management with the orapki Utility
- Interoperability with X.509 Certificates

Note: If you already have certificates provisioned, the following sections may provide all of the information you need:

Section 13.1.2, “Starting Oracle Wallet Manager”
Section 13.3, “Interoperability with X.509 Certificates”

13.1 Using Oracle Wallet Manager

This section describes Oracle Wallet Manager, a GUI tool used to manage PKI certificates. It contains the following topics:

- Oracle Wallet Manager Overview
- Starting Oracle Wallet Manager
- How to Create a Complete Wallet: Process Overview
- Managing Wallets
- Managing Certificates

13.1.1 Oracle Wallet Manager Overview

Oracle Wallet Manager is an application used to manage and edit security credentials in Oracle wallets. A wallet is a password-protected container that stores authentication and signing credentials, including private keys, certificates, and trusted certificates, all of which are used by SSL for strong authentication. You can use Oracle Wallet Manager to perform the following tasks:

- Create wallets
■ Generate certificate requests
■ Open wallets to access PKI-based services
■ Save credentials to hardware security modules by using APIs which comply to Public-Key Cryptography Standard #11 specification
■ Upload wallets to and download them from an LDAP directory
■ Import third-party PKCS #12-format wallets to use in an Oracle environment
■ Export Oracle wallets to third-party environments

The following topics describe Oracle Wallet Manager features:

■ Wallet Password Management
■ Strong Wallet Encryption
■ Microsoft Windows Registry Wallet Storage
■ Backward Compatibility
■ Third-Party Wallet Support
■ LDAP Directory Support

13.1.1.1 Wallet Password Management
Oracle wallets are password protected. Oracle Wallet Manager includes an enhanced wallet password management module that enforces the following password management policy guidelines:

■ Minimum password length (8 characters)
■ Maximum password length unlimited
■ Alphanumeric character mix required

13.1.1.2 Strong Wallet Encryption
Oracle Wallet Manager stores private keys associated with X.509 certificates and uses Triple-DES encryption.

13.1.1.3 Microsoft Windows Registry Wallet Storage
As an option, Oracle Wallet Manager enables you to store multiple Oracle wallets in the user profile area of the Microsoft Windows system registry or in a Windows file management system. Storing your wallets in the registry provides the following benefits:

■ **Better Access Control.** Wallets stored in the user profile area of the registry are only accessible by the associated user. User access controls for the system thus become, by extension, access controls for the wallets. In addition, when a user logs out of a system, access to that user’s wallets is effectively precluded.

■ **Easier Administration.** Since wallets are associated with specific user profiles, no file permissions need to be managed, and the wallets stored in the profile are automatically deleted when the user profile is deleted. Oracle Wallet Manager can be used to create and manage the wallets in the registry.

13.1.1.3.1 Options Supported:
■ Open wallet from the registry
■ Save wallet to the registry
Using Oracle Wallet Manager

Managing Wallets and Certificates

13.1.1.4 Backward Compatibility
Oracle Wallet Manager is backward-compatible to Release 8.1.7 of the database.

13.1.1.5 Third-Party Wallet Support
Oracle Wallet Manager can use PKI credentials from the following third-party applications:
- Microsoft Internet Explorer 5.0 and later
- Netscape Communicator 4.7.2 and later
- OpenSSL

Browser PKI credential stores (those from Microsoft Internet Explorer and Netscape) hold user certificates, which contain the subject’s public key and identifying information, and their associated trusted certificates. To use these credentials, you must export them from the third-party environment and save them in PKCS #12 format. Then, you can use Oracle Wallet Manager to open them for use with SSL.

See Also: "Section 13.1.5.1.3, "Importing Certificates Created with a Third-Party Tool"

13.1.1.6 LDAP Directory Support
Oracle Wallet Manager can upload wallets to and retrieve them from an LDAP-compliant directory. Storing wallets in a centralized LDAP-compliant directory lets users access them from multiple locations or devices, ensuring consistent and reliable user authentication while providing centralized wallet management throughout the wallet life cycle. To prevent accidental over-write of functional wallets, only wallets containing an installed certificate can be uploaded.

Directory user entries must be defined and configured in the LDAP directory before Oracle Wallet Manager can be used to upload or download wallets for a user. If a directory contains Oracle8i (or prior) users, they are automatically upgraded to use the wallet upload and download feature on first use.

Oracle Wallet Manager downloads a user wallet by using a simple password-based connection to the LDAP directory. However, for uploads it uses an SSL connection if the open wallet contains a certificate with SSL Oracle PKI certificate usage. If an SSL certificate is not present in the wallet, password-based authentication is used.

Note: The directory password and the wallet password are independent, and can be different. Oracle Corporation recommends that these passwords be maintained to be consistently different, where neither one can logically be derived from the other.
13.1.2 Starting Oracle Wallet Manager

To start Oracle Wallet Manager:

- Windows: Select Start > Programs > Oracle-Home_Name > Network Administration > Wallet Manager
- UNIX: At the command line, enter owm.

13.1.3 How to Create a Complete Wallet: Process Overview

A wallet is a necessary repository in which to securely store user certificates and the trust points needed to validate the certificates of peers.

The following steps provide an overview of the complete wallet creation process:

1. Use Oracle Wallet Manager to create a new wallet:
   - See Section 13.1.4.1 for information about creating a wallet password.
   - See Section 13.1.4.2 for information about creating standard wallets (store credentials on your file system) and hardware security module wallets.

2. Generate a certificate request. Note that when you create a new wallet with Oracle Wallet Manager, the tool automatically prompts you to create a certificate request. See Section 13.1.5.1.1 for information about creating a certificate request.

3. Send the certificate request to the CA you want to use. You can copy and paste the certificate request text into an e-mail message, or you can export the certificate request to a file. See Section 13.1.5.1.7. Note that the certificate request becomes part of the wallet and must remain there until you remove its associated certificate.

4. When the CA sends your signed user certificate and its associated trusted certificate, then you can import these certificates in the following order. (Note that user certificates and trusted certificates in the PKCS #7 format can be imported at the same time.)
   - First import the CA’s trusted certificate into the wallet. See Section 13.1.5.2.1. Note that this step may be optional if the new user certificate has been issued by one of the CAs whose trusted certificate is already present in Oracle Wallet Manager by default.
   - After you have successfully imported the trusted certificate, then import the user certificate that the CA sent to you into your wallet. See Section 13.1.5.1.2.

See Also:
- Section 13.1.4.7, "Uploading a Wallet to an LDAP Directory"
- Section 13.1.4.8, "Downloading a Wallet from an LDAP Directory"
- Section 13.3.2, "Multiple Certificate Support"
5. (Optional) Set the auto login feature for the wallet. See Section 13.1.4.14.

Typically, this feature, which enables PKI-based access to services without a password, is required for most wallets. It is required for database server and client wallets. It is only optional for products that take the wallet password at the time of startup.

After completing the preceding process, you have a wallet that contains a user certificate and its associated trust points.

### 13.1.4 Managing Wallets

This section describes how to create a new wallet and perform associated wallet management tasks in the following topics:

- Required Guidelines for Creating Wallet Passwords
- Creating a New Wallet
- Opening an Existing Wallet
- Closing a Wallet
- Exporting Oracle Wallets to Third-Party Environments
- Exporting Oracle Wallets to Tools That Do Not Support PKCS #12
- Uploading a Wallet to an LDAP Directory
- Downloading a Wallet from an LDAP Directory
- Saving Changes
- Saving the Open Wallet to a New Location
- Saving in System Default
- Deleting the Wallet
- Changing the Password
- Using Auto Login

**Note:** The BASE64 encoded PKCS#7 format used by most certificate authorities typically uses the following header and footer lines:

```
-----BEGIN PKCS7-----
-----END PKCS7-----
```

Regular certificates contain the following header & footer lines:

```
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----
```

However, some certificate authorities use BEGIN CERTIFICATE and END CERTIFICATE header and footer lines in PKCS #7 format certificates as well. When certificates of PKCS #7 format are imported, the certificate authority certificates are imported as trusted certificates.

If you import the user certificate without its certificate authority certificate, Oracle Wallet Manager prompts you for the certificate authority certificate that issued the user certificate.
13.1.4.1 Required Guidelines for Creating Wallet Passwords

Because an Oracle wallet contains user credentials that can be used to authenticate the user to multiple databases, it is especially important to choose a strong wallet password. A malicious user who guesses the wallet password can access all the databases to which the wallet owner has access.

Passwords must contain at least eight characters that consist of alphabetic characters combined with numbers or special characters.

**Caution:** It is strongly recommended that users avoid choosing easily guessed passwords based on user names, phone numbers, or government identification numbers, such as "admin0," "oracle1," or "2135551212A." This prevents a potential attacker from using personal information to deduce the users' passwords. It is also a prudent security practice for users to change their passwords periodically, such as once in each month or once in each quarter.

When you change passwords, you must regenerate auto login wallets.

See Also:

- Section 13.1.1.1, "Wallet Password Management"
- Section 13.1.4.14, "Using Auto Login"

13.1.4.2 Creating a New Wallet

You can use Oracle Wallet Manager to create PKCS #12 wallets (the standard default wallet type) that store credentials in a directory on your file system. It can also be used to create PKCS #11 wallets that store credentials on a hardware security module for servers, or private keys on tokens for clients. The following sections explain how to create both types of wallets by using Oracle Wallet Manager.

13.1.4.2.1 Creating a Standard Wallet

Unless you have a hardware security module (a PKCS #11 device), then you should use a standard wallet that stores credentials in a directory on your file system.

To create a standard wallet, perform the following tasks:

1. Choose **Wallet > New** from the menu bar. The New Wallet dialog box appears.
2. Follow the guidelines in Section 13.1.4.1 and enter a password in the **Wallet Password** field. This password protects unauthorized use of your credentials.
3. Re-enter that password in the **Confirm Password** field.
4. Choose **Standard** from the **Wallet Type** list.
5. Click **OK** to continue. If the entered password does not conform to the required guidelines, then the following message appears:

   Password must have a minimum length of eight characters, and contain alphabetic characters combined with numbers or special characters.

   Do you want to try again?

6. An alert is displayed, and informs you that a new empty wallet has been created. It prompts you to decide whether you want to add a certificate request. See Section 13.1.5.1.1.
If you choose No, you are returned to the Oracle Wallet Manager main window. The new wallet you just created appears in the left window pane. The certificate has a status of [Empty], and the wallet displays its default trusted certificates.

7. Select Wallet > Save In System Default to save the new wallet.

If you do not have permission to save the wallet in the system default, you can save it to another location. This location must be used in the SSL configuration for clients and servers.

A message at the bottom of the window confirms that the wallet was successfully saved.

13.1.4.2.2 Creating a Wallet to Store Hardware Security Module Credentials

To create a wallet to store credentials on a hardware security module that complies with PKCS #11, perform the following tasks:

1. Choose Wallet > New from the menu bar; the New Wallet dialog box appears.
2. Follow Section 13.1.4.1 and enter a password in the Wallet Password field.
3. Re-enter that password in the Confirm Password field.
4. Choose PKCS11 from the Wallet Type list, and click OK to continue. The New PKCS11 Wallet window appears.
5. Choose a vendor name from the Select Hardware Vendor list.

Note: In the current release of Oracle Wallet Manager, only nCipher hardware has been certified to interoperate with Oracle wallets.

6. In the PKCS11 library filename field, enter the path to the directory in which the PKCS11 library is stored, or click Browse to find it by searching the file system.
7. Enter the SmartCard password, and choose OK.

The smart card password, which is different from the wallet password, is stored in the wallet.

8. An alert is displayed, and informs you that a new empty wallet has been created. It prompts you to decide whether you want to add a certificate request. See Section 13.1.5.1.1.

If you choose No, you are returned to the Oracle Wallet Manager main window. The new wallet you just created appears in the left window pane. The certificate has a status of [Empty], and the wallet displays its default trusted certificates.

9. Select Wallet > Save In System Default to save the new wallet.

If you do not have permission to save the wallet in the system default, you can save it to another location.

A message at the bottom of the window confirms that the wallet was successfully saved.

Note: If you change the SmartCard password or move the PKCS #11 library, an error message displays when you try to open the wallet. Then, you are prompted to enter the new SmartCard password or the new path to the library.
13.1.4.3 Opening an Existing Wallet
Open a wallet that already exists in the file system directory as follows:

1. Choose Wallet > Open from the menu bar. The Select Directory dialog box appears.
2. Navigate to the directory location in which the wallet is located, and select the directory.
3. Choose OK. The Open Wallet dialog box appears.
4. Enter the wallet password in the Wallet Password field.
5. Choose OK.

You are returned to the main window and a message appears at the bottom of the window indicating the wallet was opened successfully. The wallet's certificate and its trusted certificates are displayed in the left window pane.

13.1.4.4 Closing a Wallet
To close an open wallet in the currently selected directory:
Choose Wallet > Close.

A message appears at the bottom of the window to confirm that the wallet is closed.

13.1.4.5 Exporting Oracle Wallets to Third-Party Environments
Oracle Wallet Manager can export its own wallets to third-party environments.

To export a wallet to third-party environments:
1. Use Oracle Wallet Manager to save the wallet file.
2. Follow the procedure specific to your third-party product to import an operating system PKCS #12 wallet file created by Oracle Wallet Manager (called ewallet.p12 on UNIX and Windows platforms).

---

**Note:**
- Oracle Wallet Manager supports multiple certificates for each wallet, yet current browsers typically support import of single-certificate wallets only. For these browsers, you must export an Oracle wallet containing a single key-pair.
- Oracle Wallet Manager supports wallet export to only Netscape Communicator 4.7.2 and later, OpenSSL, and Microsoft Internet Explorer 5.0 and later.

---

13.1.4.6 Exporting Oracle Wallets to Tools That Do Not Support PKCS #12
You can export a wallet to a text-based PKI format if you want to put a wallet into a tool that does not support PKCS #12. Individual components are formatted according to the standards listed in Table 13–1. Within the wallet, only those certificates with SSL key usage are exported with the wallet.

To export a wallet to text-based PKI format:
2. Enter the destination file system directory for the wallet, or navigate to the directory structure under Folders.
3. Enter the destination file name for the wallet.
4. Choose OK to return to the main window.

### Table 13–1 PKI Wallet Encoding Standards

<table>
<thead>
<tr>
<th>Component</th>
<th>Encoding Standard</th>
</tr>
</thead>
<tbody>
<tr>
<td>Certificate chains</td>
<td>X509v3</td>
</tr>
<tr>
<td>Trusted certificates</td>
<td>X509v3</td>
</tr>
<tr>
<td>Private keys</td>
<td>PKCS #8</td>
</tr>
</tbody>
</table>

### 13.1.4.7 Uploading a Wallet to an LDAP Directory

To upload a wallet to an LDAP directory, Oracle Wallet Manager uses SSL if the specified wallet contains an SSL certificate. Otherwise, it lets you enter the directory password.

To prevent accidental destruction of your wallet, Oracle Wallet Manager will not permit you to execute the upload option unless the target wallet is currently open and contains at least one user certificate.

**To upload a wallet:**

1. Choose Wallet > Upload Into The Directory Service. If the currently open wallet has not been saved, a dialog box appears with the following message:
   
   Wallet needs to be saved before uploading.

   Choose Yes to proceed.

2. Wallet certificates are checked for SSL key usage. Depending on whether or not a certificate with SSL key usage is found in the wallet, one of the following results occur:

   - **If at least one certificate has SSL key usage:** When prompted, enter the LDAP directory server hostname and port information, then click OK. Oracle Wallet Manager attempts connection to the LDAP directory server using SSL. A message appears indicating whether the wallet was uploaded successfully or it failed.
   
   - **If no certificates have SSL key usage:** When prompted, enter the user's distinguished name (DN), the LDAP server hostname and port information, and click OK. Oracle Wallet Manager attempts connection to the LDAP directory server using simple password authentication mode, assuming that the wallet password is the same as the directory password.

   If the connection fails, a dialog box prompts for the directory password of the specified DN. Oracle Wallet Manager attempts connection to the LDAP directory server using this password and displays a warning message if the attempt fails. Otherwise, Oracle Wallet Manager displays a status message at the bottom of the window indicating that the upload was successful.

### 13.1.4.8 Downloading a Wallet from an LDAP Directory

When a wallet is downloaded from an LDAP directory, it is resident in working memory. It is not saved to the file system unless you expressly save it using any of the Save options described in the following sections.
To download a wallet from an LDAP directory:

1. Choose **Wallet > Download From The Directory Service**.

2. A dialog box prompts for the user’s distinguished name (DN), and the LDAP directory password, hostname, and port information. Oracle Wallet Manager uses simple password authentication to connect to the LDAP directory.

   Depending on whether the downloading operation succeeds or not, one of the following results occurs:

   - **If the download operation fails**: Check to make sure that you have correctly entered the user’s DN, and the LDAP server hostname and port information.

   - **If the download is successful**: Choose **OK** to open the downloaded wallet. Oracle Wallet Manager attempts to open that wallet using the directory password. If the operation fails after using the directory password, then a dialog box prompts for the wallet password.

     If Oracle Wallet Manager cannot open the target wallet using the wallet password, then check to make sure you entered the correct password. Otherwise a message displays at the bottom of the window, indicating that the wallet was downloaded successfully.

### 13.1.4.9 Saving Changes

To save your changes to the current open wallet:

Choose **Wallet > Save**.

A message at the bottom of the window confirms that the wallet changes were successfully saved to the wallet in the selected directory location.

### 13.1.4.10 Saving the Open Wallet to a New Location

To save open wallets to a new location, use the **Save As** menu option:

1. Choose **Wallet > Save As**. The Select Directory dialog box appears.

2. Select a directory location in which to save the wallet.

3. Choose **OK**.

   The following message appears if a wallet already exists in the selected location:

   A wallet already exists in the selected path. Do you want to overwrite it?

   Choose **Yes** to overwrite the existing wallet, or **No** to save the wallet to another location.

   A message at the bottom of the window confirms that the wallet was successfully saved to the selected directory location.

### 13.1.4.11 Saving in System Default

To save wallets in the default directory location, use the **Save In System Default** menu option:
Choose **Wallet > Save In System Default.**

A message at the bottom of the window confirms that the wallet was successfully saved in the system default wallet location as follows for UNIX and Windows platforms:

- (UNIX) /etc/ORACLE/WALLETS/$USER/
- (Windows) %USERPROFILE%\ORACLE\WALLETS\

---

**Note:**

- SSL uses the wallet that is saved in the system default directory location.
- Some Oracle applications are not able to use the wallet if it is not in the system default location. Check the Oracle documentation for your specific application to determine whether wallets must be placed in the default wallet directory location.

---

### 13.1.4.12 Deleting the Wallet

To delete the current open wallet:

1. Choose **Wallet > Delete.** The Delete Wallet dialog box appears.
2. Review the displayed wallet location to verify you are deleting the correct wallet.
3. Enter the wallet password.
4. Choose **OK.** A dialog panel appears to inform you that the wallet was successfully deleted.

**Note:** Any open wallet in application memory will remain in memory until the application exits. Therefore, deleting a wallet that is currently in use does not immediately affect system operation.

---

### 13.1.4.13 Changing the Password

A password change is effective immediately. The wallet is saved to the currently selected directory, with the new encrypted password.

**Note:** If you are using a wallet with auto login enabled, you must regenerate the auto login wallet after changing the password. See Section 13.1.4.14.

To change the password for the current open wallet:

1. Choose **Wallet > Change Password.** The Change Wallet Password dialog box appears.
2. Enter the existing wallet password.
3. Enter the new password.
4. Re-enter the new password.
5. Choose **OK.**
A message at the bottom of the window confirms that the password was successfully changed.

**See Also:**
- Section 13.1.4.1, "Required Guidelines for Creating Wallet Passwords"
- Section 13.1.1.1, "Wallet Password Management"

### 13.1.4.14 Using Auto Login

The Oracle Wallet Manager auto login feature creates an obfuscated copy of the wallet and enables PKI-based access to services without a password until the auto login feature is disabled for the wallet. File system permissions provide the necessary security for auto login wallets.

You must enable auto login if you want single sign-on access to multiple Oracle databases, which is disabled by default. Sometimes these are called "SSO wallets" because they provide single sign-on capability.

#### 13.1.4.14.1 Enabling Auto Login

To enable auto login:

1. Choose Wallet from the menu bar.
2. Check Auto Login. A message at the bottom of the window indicates that auto login is enabled.

#### 13.1.4.14.2 Disabling Auto Login

To disable auto login:

1. Choose Wallet from the menu bar.
2. Uncheck Auto Login. A message at the bottom of the window indicates that auto login is disabled.

### 13.1.5 Managing Certificates

Oracle Wallet Manager uses two kinds of certificates: user certificates and trusted certificates. All certificates are signed data structures that bind a network identity with a corresponding public key. User certificates are used by end entities, including server applications, to validate an end entity's identity in a public key/private key exchange. In comparison, trusted certificates are any certificates that you trust, such as those provided by CAs to validate the user certificates that they issue.

This section describes how to manage both certificate types, in the following subtopics:

- Managing User Certificates
- Managing Trusted Certificates

**Note:** Before a user certificate can be installed, the wallet must contain the trusted certificate representing the certificate authority who issued that user certificate. However, whenever you create a new wallet, several publicly trusted certificates are automatically installed, since they are so widely used. If the necessary certificate authority is not represented, you must install its certificate first.

Also, you can import using the PKCS#7 certificate chain format, which gives you the user certificate and the CA certificate at the same time.
13.1.5.1 Managing User Certificates
User certificates can be used by end users, smart cards, or applications, such as Web servers. Server certificates are a type of user certificate. For example, if a CA issues a certificate for a Web server, placing its distinguished name (DN) in the Subject field, then the Web server is the certificate owner, thus the “user” for this user certificate.

Managing user certificates involves the following tasks:

- Adding a Certificate Request
- Importing the User Certificate into the Wallet
- Importing Certificates Created with a Third-Party Tool
- Removing a User Certificate from a Wallet
- Removing a Certificate Request
- Exporting a User Certificate
- Exporting a User Certificate Request

13.1.5.1.1 Adding a Certificate Request
You can add multiple certificate requests with Oracle Wallet Manager. When adding multiple requests, Oracle Wallet Manager automatically populates each subsequent request dialog box with the content of the initial request that you can then edit.

The actual certificate request becomes part of the wallet. You can reuse any certificate request to obtain a new certificate. However, you cannot edit an existing certificate request. Store only a correctly filled out certificate request in a wallet.

To create a PKCS #10 certificate request:

2. Enter the information specified in Table 13–2.
3. Choose OK. A message informs you that a certificate request was successfully created. You can either copy the certificate request text from the body of this dialog panel and paste it into an e-mail message to send to a certificate authority, or you can export the certificate request to a file.
4. Choose OK to return to the Oracle Wallet Manager main window. The status of the certificate changes to [Requested].

See Also: “Section 13.1.5.1.7, "Exporting a User Certificate Request"

<table>
<thead>
<tr>
<th>Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Common Name</td>
<td>Mandatory. Enter the name of the user’s or service’s identity. Enter a user’s name in first name / last name format. Example: Eileen.Sanger</td>
</tr>
<tr>
<td>Organizational Unit</td>
<td>Optional. Enter the name of the identity’s organizational unit. Example: Finance.</td>
</tr>
<tr>
<td>Organization</td>
<td>Optional. Enter the name of the identity’s organization. Example: XYZ Corp.</td>
</tr>
<tr>
<td>Locality/City</td>
<td>Optional. Enter the name of the locality or city in which the identity resides.</td>
</tr>
</tbody>
</table>
Table 13–3 lists the available key sizes and the relative security each size provides. Typically, CAs use key sizes of 1024 or 2048. When certificate owners wish to keep their keys for a longer duration, they choose 3072 or 4096 bit keys.

Table 13–3  Available Key Sizes

<table>
<thead>
<tr>
<th>Key Size</th>
<th>Relative Security Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>512 or 768</td>
<td>Not regarded as secure</td>
</tr>
<tr>
<td>1024 or 2048</td>
<td>Secure</td>
</tr>
<tr>
<td>3072 or 4096</td>
<td>Very secure</td>
</tr>
</tbody>
</table>

13.1.5.1.2 Importing the User Certificate into the Wallet  When the Certificate Authority grants you a certificate, it may send you an e-mail that has your certificate in text (BASE64) form or attached as a binary file.

Note: Certificate authorities may send your certificate in a PKCS #7 certificate chain or as an individual X.509 certificate. Oracle Wallet Manager can import both types.

PKCS #7 certificate chains are a collection of certificates, including the user’s certificate and all of the supporting trusted CA and subCA certificates.

In contrast, an X.509 certificate file contains an individual certificate without the supporting certificate chain.

However, before you can import any such individual certificate, the signer’s certificate must be a Trusted Certificate in the wallet.

To import the user certificate from the text of the Certificate Authority’s e-mail, copy the certificate, represented as text (BASE64), from the certificate authority’s e-mail message. Include the lines Begin Certificate and End Certificate.


2. Choose Paste the certificate, and then click OK. Another Import Certificate dialog box appears with the following message:
Please provide a base64 format certificate and paste it below.

3. Paste the certificate into the dialog box, and choose OK.
   a. If the certificate received is in PKCS#7 format, it is installed, and all the other certificates included with the PKCS#7 data are placed in the Trusted Certificate list.
   b. If the certificate received is not in PKCS#7 format, and the certificate of its CA is not already in the Trusted Certificates list, then more must be done. Oracle Wallet Manager will ask you to import the certificate of the CA that issued your certificate. This CA certificate will be placed in the Trusted Certificates list. (If the CA certificate was already in the Trusted Certificates list, your certificate is imported without additional steps.)

After either (a) or (b) succeeds, a message at the bottom of the window confirms that the certificate was successfully installed. The Oracle Wallet Manager main window reappears, and the status of the corresponding entry in the left panel subtree changes to [Ready].

**Note:**
The standard X.509 certificate includes the following start and end text:

```
-----BEGIN CERTIFICATE-----
-----END CERTIFICATE-----
```

A typical PKCS#7 certificate includes more, as described earlier, and includes the following start and end text:

```
-----BEGIN PKCS7-----
-----END PKCS7-----
```

You can use the standard Ctrl+c to copy, including all dashes, and Ctrl+v to paste.

**To import the certificate from a file:**
The user certificate in the file can be in either text (BASE64) or binary (der) format.

2. Choose **Select a file that contains the certificate**, and click **OK**. Another Import Certificate dialog box appears.
3. Enter the path or folder name of the certificate file location.
4. Select the name of the certificate file (for example, `cert.txt`, `cert.der`).
5. Choose **OK**.
   a. If the certificate received is in PKCS#7 format, it is installed, and all the other certificates included with the PKCS#7 data are placed in the Trusted Certificate list.
   b. If the certificate received is not in PKCS#7 format, and the certificate of its CA is not already in the Trusted Certificates list, then more must be done. Oracle Wallet Manager will ask you to import the certificate of the CA that issued your certificate. This CA certificate will be placed in the Trusted Certificates list. (If the CA certificate was already in the Trusted Certificates list, your certificate is imported without additional steps.)
After either (a) or (b) succeeds, a message at the bottom of the window confirms that the certificate was successfully installed. You are returned to the Oracle Wallet Manager main panel, and the status of the corresponding entry in the left panel subtree changes to [Ready].

13.1.5.1.3 Importing Certificates Created with a Third-Party Tool

Third-party certificates are those created from certificate requests that were not generated using Oracle Wallet Manager. These third-party certificates are actually wallets, in the Oracle sense, because they contain more than just the user certificate; they also contain the private key for that certificate. Furthermore, they include the chain of trusted certificates validating that the certificate was created by a trustworthy entity.

Oracle Wallet Manager makes these wallets available in a single step by importing them in PKCS#12 format, which includes all three elements described earlier: the user certificate, the private key, and the trusted certificates. It supports the following PKCS#12-format certificates:

- Netscape Communicator 4.x
- Microsoft Internet Explorer 5.x and later

Oracle Wallet Manager adheres to the PKCS#12 standard, so certificates exported by any PKCS#12-compliant tool should be usable with Oracle Wallet Manager.

Such third-party certificates cannot be stored into existing Oracle wallets because they would lack the private key and chain of trusted authorities. Therefore, each such certificate is exported and retrieved instead as an independent PKCS#12 file, that is, as its own wallet.

To import a certificate created with a third-party tool, you must first export it from the application you are using, and then save it as a wallet file that can be read by Oracle Wallet Manager. See Section 13.1.5.1.3 for information about importing certificates that are created with third-party tools.

To import a certificate created with a third-party tool, perform the following steps:

1. Follow the procedures for your particular product to export the certificate. Take the actions indicated in the exporting product to include the private key in the export, and specify the new password to protect the exported certificate. Also include all associated trust points. (Under PKCS #12, browsers do not necessarily export trusted certificates, other than the signer's own certificate. You may need to add additional certificates to authenticate to your peers. You can use Oracle Wallet Manager to import trusted certificates.)

The resulting file, containing the certificate, the private key, and the trust points, is the new wallet that enables the third-party certificate to be used.

2. Save the exported certificate to a file name appropriate for your operating system in a directory expected by Oracle Wallet Manager.

For UNIX and Windows, the appropriate file name is `ewallet.p12`.

For other operating systems, see the Oracle documentation for the applicable operating system.

3. Use Oracle Wallet Manager to navigate to the directory in which you saved the `ewallet.p12` file and open it to use the PKI credentials it contains.
If you exported the trusted certificate separately, then you must import the trusted certificate first before you open the ewallet.p12 file that contains the imported third-party user certificate.

**Note:** The password will be required whenever the associated application starts up or otherwise needs the certificate. To make such access automatic, see Section 13.1.4.14, "Using Auto Login".

However, if the private key for the desired certificate is held in a separate hardware security module, you will not be able to import that certificate.

If you exported the trusted certificate separately, then you must import the trusted certificate first before you open the ewallet.p12 file that contains the imported third-party user certificate.

**See Also:** "Section 13.1.5.2.1, "Importing a Trusted Certificate"

**13.1.5.1.4 Removing a User Certificate from a Wallet** To remove a user certificate from a wallet:

1. In the left panel subtree, select the certificate that you want to remove.
2. Choose **Operations > Remove User Certificate**. A dialog panel appears and prompts you to verify that you want to remove the user certificate from the wallet.
3. Choose **Yes** to return to the Oracle Wallet Manager main panel. The certificate displays a status of [Requested].

**13.1.5.1.5 Removing a Certificate Request** You must remove a certificate before removing its associated request.

To remove a certificate request:

1. In the left panel subtree, select the certificate request that you want to remove.
2. Choose **Operations > Remove Certificate Request**.
3. Click **Yes**. The certificate displays a status of [Empty].

**13.1.5.1.6 Exporting a User Certificate** To save the certificate in a file system directory, export the certificate by using the following steps:

1. In the left panel subtree, select the certificate that you want to export.
3. Enter the file system directory location in which you want to save your certificate, or navigate to the directory structure under **Folders**.
4. Enter a file name for your certificate in the **Enter File Name** field.
5. Choose **OK**. A message at the bottom of the window confirms that the certificate was successfully exported to the file. You are returned to the Oracle Wallet Manager main window.

**See Also:** "Section 13.1.4.5 for information about exporting wallets. Note that Oracle Wallet Manager supports storing multiple certificates in a single wallet, yet current browsers typically support only single-certificate wallets. For these browsers, you must export an Oracle wallet that contains a single key-pair."
13.1.5.1.7 Exporting a User Certificate Request

To save the certificate request in a file system directory, export the certificate request by using the following steps:

1. In the left panel subtree, select the certificate request that you want to export.
3. Enter the file system directory location in which you want to save your certificate request, or navigate to the directory structure under Folders.
4. Enter a file name for your certificate request, in the Enter File Name field.
5. Choose OK. A message at the bottom of the window confirms that the certificate request was successfully exported to the file. You are returned to the Oracle Wallet Manager main window.

13.1.5.2 Managing Trusted Certificates

Managing trusted certificates includes the following tasks:

- Importing a Trusted Certificate
- Removing a Trusted Certificate
- Exporting a Trusted Certificate
- Exporting All Trusted Certificates

13.1.5.2.1 Importing a Trusted Certificate

You can import a trusted certificate into a wallet in either of two ways: paste the trusted certificate from an e-mail that you receive from the certificate authority, or import the trusted certificate from a file.

Oracle Wallet Manager automatically installs trusted certificates from VeriSign, RSA, Entrust, and GTE CyberTrust when you create a new wallet.

To copy and paste the text only (BASE64) trusted certificate:

Copy the trusted certificate from the body of the e-mail message you received that contained the user certificate. Include the lines Begin Certificate and End Certificate.

2. Choose Paste the Certificate, and click OK. Another Import Trusted Certificate dialog panel appears with the following message:

   Please provide a base64 format certificate and paste it below.

3. Paste the certificate into the window, and click OK. A message at the bottom of the window informs you that the trusted certificate was successfully installed.
4. Choose OK. You are returned to the Oracle Wallet Manager main panel, and the trusted certificate appears at the bottom of the Trusted Certificates tree.

---

**Keyboard shortcuts for copying and pasting certificates:**

Use Ctrl+c to copy, and use Ctrl+v to paste.

---

**To import a file that contains the trusted certificate:**

The file containing the trusted certificate should have been saved in either text (BASE64) or binary (der) format.

2. Enter the path or folder name of the trusted certificate location.

3. Select the name of the trusted certificate file (for example, cert.txt).

4. Choose OK. A message at the bottom of the window informs you that the trusted certificate was successfully imported into the wallet.

5. Choose OK to exit the dialog panel. You are returned to the Oracle Wallet Manager main panel, and the trusted certificate appears at the bottom of the Trusted Certificates tree.

13.1.5.2.2 Removing a Trusted Certificate You cannot remove a trusted certificate if it has been used to sign a user certificate still present in the wallet. To remove such trusted certificates, you must first remove the certificates it has signed. Also, you cannot verify a certificate after its trusted certificate has been removed from your wallet.

To remove a trusted certificate from a wallet:

1. Select the trusted certificate listed in the Trusted Certificates tree.

2. Choose Operations > Remove Trusted Certificate from the menu bar.

   A dialog panel warns you that your user certificate will no longer be verifiable by its recipients if you remove the trusted certificate that was used to sign it.

3. Choose Yes. The selected trusted certificate is removed from the Trusted Certificates tree.

13.1.5.2.3 Exporting a Trusted Certificate To export a trusted certificate to another file system location:

1. In the left panel subtree, select the trusted certificate that you want to export.


3. Enter a file system directory in which you want to save your trusted certificate, or navigate to the directory structure under Folders.

4. Enter a file name to save your trusted certificate.

5. Choose OK. You are returned to the Oracle Wallet Manager main window.

13.1.5.2.4 Exporting All Trusted Certificates To export all of your trusted certificates to another file system location:


2. Enter a file system directory location in which you want to save your trusted certificates, or navigate to the directory structure under Folders.

3. Enter a file name to save your trusted certificates.

4. Choose OK. You are returned to the Oracle Wallet Manager main window.
13.2 Performing Certificate Validation and CRL Management with the orapki Utility

The orapki utility is a command-line tool that you can use to manage certificate revocation lists (CRLs), create and manage Oracle wallets, and to create signed certificates for testing purposes.

The following topics describe this tool and how to use it:

- orapki Overview
- Displaying orapki Help
- Creating Signed Certificates for Testing Purposes
- Managing Oracle Wallets with the orapki Utility
- Managing Certificate Revocation Lists (CRLs) with the orapki Utility
- orapki Utility Commands Summary

13.2.1 orapki Overview

The orapki utility is provided to manage public key infrastructure (PKI) elements, such as wallets and certificate revocation lists, on the command line so the tasks it performs can be incorporated into scripts. This enables you to automate many of the routine tasks of maintaining a PKI.

This command-line utility can be used to perform the following tasks:

- Creating signed certificates for testing purposes
- Manage Oracle wallets:
  - Create and display Oracle wallets
  - Add and remove certificate requests
  - Add and remove certificates
  - Add and remove trusted certificates
- Manage certificate revocation lists (CRLs):
  - Renaming CRLs with a hash value for certificate validation
  - Uploading, listing, viewing, and deleting CRLs in Oracle Internet Directory

13.2.1.1 orapki Utility Syntax

The basic syntax of the orapki command-line utility is as follows:

```
orapki module command -parameter value
```

In the preceding command, module can be wallet (Oracle wallet), crl (certificate revocation list), or cert (PKI digital certificate). The available commands depend on the module you are using. For example, if you are working with a wallet, then you can add a certificate or a key to the wallet with the add command. The following example adds the user certificate located at /private/lhale/cert.txt to the wallet located at ORACLE_HOME/wallet/ewallet.p12:

```
orapki wallet add -wallet ORACLE_HOME/wallet/ewallet.p12 -user_cert -cert /private/lhale/cert.txt
```
13.2.2 Displaying orapki Help

You can display all the orapki commands that are available for a specific mode by entering the following at the command line:

orapki mode help

For example, to display all available commands for managing certificate revocation lists (CRLs), enter the following at the command line:

orapki CRL help

**Note:** Using the -summary, -complete, or -wallet command options is always optional. A command will still run if these command options are not specified.

13.2.3 Creating Signed Certificates for Testing Purposes

This command-line utility provides a convenient, lightweight way to create signed certificates for testing purposes. The following syntax can be used to create signed certificates and to view certificates:

**To create a signed certificate for testing purposes:**

orapki cert create [-wallet wallet_location] -request certificate_request_location
-certificate_location -validity number_of_days [-summary]

This command creates a signed certificate from the certificate request. The -wallet parameter specifies the wallet containing the user certificate and private key that will be used to sign the certificate request. The -validity parameter specifies the number of days, starting from the current date, that this certificate will be valid. Specifying a certificate and certificate request is mandatory for this command.

**To view a certificate:**

orapki cert display -cert certificate_location [-summary | -complete]

This command enables you to view a test certificate that you have created with orapki. You can choose either -summary or -complete, which determines how much detail the command will display. If you choose -summary, the command will display the certificate and its expiration date. If you choose -complete, it will display additional certificate information, including the serial number and public key.

13.2.4 Managing Oracle Wallets with the orapki Utility

The following sections describe the syntax used to create and manage Oracle wallets with the orapki command-line utility. You can use these orapki utility wallet module commands in scripts to automate the wallet creation process.

- Creating and Viewing Oracle Wallets with orapki
- Adding Certificates and Certificate Requests to Oracle Wallets with orapki
- Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

**Note:** The -wallet parameter is mandatory for all wallet module commands.
13.2.4.1 Creating and Viewing Oracle Wallets with orapki

To create an Oracle wallet:

orapki wallet create -wallet wallet_location

This command will prompt you to enter and re-enter a wallet password. It creates a wallet in the location specified for -wallet.

To create an Oracle wallet with auto login enabled:

orapki wallet create -wallet wallet_location -auto_login

This command creates a wallet with auto login enabled, or it can also be used to enable auto login on an existing wallet. If the wallet_location already contains a wallet, then auto login will be enabled for it. To turn the auto login feature off, use Oracle Wallet Manager. See Section 13.1.4.14 for details.

---

Note: For wallets with the auto login feature enabled, you are prompted for a password only for operations that modify the wallet, such as add.

---

To view an Oracle wallet:

orapki wallet display -wallet wallet_location

Displays the certificate requests, user certificates, and trusted certificates contained in the wallet.

13.2.4.2 Adding Certificates and Certificate Requests to Oracle Wallets with orapki

To add a certificate request to an Oracle wallet:

orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048

This command adds a certificate request to a wallet for the user with the specified distinguished name (user_dn). The request also specifies the requested certificate's key size (512, 1024, or 2048 bits). To sign the request, export it with the export option. See Section 13.2.4.3.

To add a trusted certificate to an Oracle wallet:

orapki wallet add -wallet wallet_location -trusted_cert -cert certificate_location

This command adds a trusted certificate, at the specified location (-cert certificate_location), to a wallet. You must add all trusted certificates in the certificate chain of a user certificate before adding a user certificate, or the command to add the user certificate will fail.

To add a root certificate to an Oracle wallet:

orapki wallet add -wallet wallet_location -dn certificate_dn -keySize 512|1024|2048 -self_signed -validity number_of_days

This command creates a new self-signed (root) certificate and adds it to the wallet. The -validity parameter (mandatory) specifies the number of days, starting from the current date, that this certificate will be valid. You can specify a key size for this root certificate (-keySize) of 512, 1024, or 2048 bits.
To add a user certificate to an Oracle wallet:

```bash
orapki wallet add -wallet wallet_location -user_cert -cert certificate_location
```

This command adds the user certificate at the location specified with the `-cert` parameter to the Oracle wallet at the `wallet_location`. Before you add a user certificate to a wallet, you must add all the trusted certificates that make up the certificate chain. If all trusted certificates are not installed in the wallet before you add the user certificate, then adding the user certificate will fail.

### 13.2.4.3 Exporting Certificates and Certificate Requests from Oracle Wallets with orapki

**To export a certificate from an Oracle wallet:**

```bash
orapki wallet export -wallet wallet_location -dn certificate_dn -cert certificate_filename
```

This command exports a certificate with the subject's distinguished name (`-dn`) from a wallet to a file that is specified by `-cert`.

**To export a certificate request from an Oracle wallet:**

```bash
orapki wallet export -wallet wallet_location -dn certificate_request_dn -request certificate_request_filename
```

This command exports a certificate request with the subject's distinguished name (`-dn`) from a wallet to a file that is specified by `-request`.

### 13.2.5 Managing Certificate Revocation Lists (CRLs) with the orapki Utility

CRLs must be managed with orapki. This utility creates a hashed value of the CRL issuer's name to identify the CRLs location in your system. If you do not use orapki, your Oracle server cannot locate CRLs to validate PKI digital certificates. The following sections describe CRLs, how you use them, and how to use orapki to manage them:

- Section 13.2.5.1, "About Certificate Validation with Certificate Revocation Lists"
- Section 13.2.5.2, "Certificate Revocation List Management"

#### 13.2.5.1 About Certificate Validation with Certificate Revocation Lists

The process of determining whether a given certificate can be used in a given context is referred to as certificate validation. Certificate validation includes determining that:

- A trusted certificate authority (CA) has digitally signed the certificate.
- The certificate's digital signature corresponds to the independently-calculated hash value of the certificate itself and the certificate signer's (CA's) public key.
- The certificate has not expired.
- The certificate has not been revoked.

The SSL network layer automatically performs the first three validation checks, but you must configure certificate revocation list (CRL) checking to ensure that certificates have not been revoked. CRLs are signed data structures that contain a list of revoked certificates. They are usually issued and signed by the same entity who issued the original certificate.
13.2.5.1.1 What CRLs Should You Use? You should have CRLs for all of the trust points that you honor. The trust points are the trusted certificates from a third-party identity that is qualified with a level of trust. Typically, the certificate authorities you trust are called trust points.

13.2.5.1.2 How CRL Checking Works Certificate revocation status is checked against CRLs which are located in file system directories, Oracle Internet Directory, or downloaded from the location specified in the CRL Distribution Point (CRL DP) extension on the certificate. If you store your CRLs on the local file system or in the directory, then you must update them regularly. If you use CRL DPs then CRLs are downloaded each time a certificate is used so there is no need to regularly refresh the CRLs.

The server searches for CRLs in the following locations in the order listed. When the system finds a CRL that matches the certificate CA’s DN, it stops searching.

1. Local file system
   The system checks the sqlnet.ora file for the SSL_CRL_FILE parameter first, followed by the SSL_CRL_PATH parameter. If these two parameters are not specified, then the system checks the wallet location for any CRLs.
   
   Note: if you store CRLs on your local file system, then you must use the orapki utility to periodically update them. See Section 13.2.5.2.1, "Renaming CRLs with a Hash Value for Certificate Validation".

2. Oracle Internet Directory
   If the server cannot locate the CRL on the local file system and directory connection information has been configured in the ORACLE_HOME/ldap/admin/ldap.ora file, then the server searches in the directory. It searches the CRL subtree by using the CA’s distinguished name (DN) and the DN of the CRL subtree.
   
   The server must have a properly configured ldap.ora file to search for CRLs in the directory. It cannot use the Domain Name System (DNS) discovery feature of Oracle Internet Directory. Also note that if you store CRLs in the directory, then you must use the orapki utility to periodically update them. See Section 13.2.5.2.2, "Uploading CRLs to Oracle Internet Directory".

3. CRL DP
   If the CA specifies a location in the CRL DP X.509, version 3, certificate extension when the certificate is issued, then the appropriate CRL that contains revocation information for that certificate is downloaded. Currently, Oracle Advanced Security supports downloading CRLs over HTTP and LDAP.

---

Notes:

- For performance reasons, only user certificates are checked.
- Oracle recommends that you store CRLs in the directory rather than the local file system.

----------------------------------------------------------------------------------

13.2.5.2 Certificate Revocation List Management

Before you can enable certificate revocation status checking, you must ensure that the CRLs you receive from the CAs you use are in a form (renamed with a hash value) or in a location (uploaded to the directory) in which your system can use them. Oracle
Advanced Security provides a command-line utility, orapki, that you can use to perform the following tasks:

- Renaming CRLs with a Hash Value for Certificate Validation
- Uploading CRLs to Oracle Internet Directory
- Listing CRLs Stored in Oracle Internet Directory
- Viewing CRLs in Oracle Internet Directory
- Deleting CRLs from Oracle Internet Directory

**Note:** CRLs must be updated at regular intervals (before they expire) for successful validation. You can automate this task by using orapki commands in a script.

You can also use LDAP command-line tools to manage CRLs in Oracle Internet Directory.

**See Also:** Oracle Identity Management User Reference for information about LDAP command-line tools and their syntax.

### 13.2.5.2.1 Renaming CRLs with a Hash Value for Certificate Validation

When the system validates a certificate, it must locate the CRL issued by the CA who created the certificate. The system locates the appropriate CRL by matching the issuer name in the certificate with the issuer name in the CRL.

When you specify a CRL storage location for the Certificate Revocation Lists Path field in Oracle Net Manager (sets the SSL_CRL_PATH parameter in the sqlnet.ora file), use the orapki utility to rename CRLs with a hash value that represents the issuer's name. Creating the hash value enables the server to load the CRLs.

On UNIX operating systems, orapki creates a symbolic link to the CRL. On Windows operating systems, it creates a copy of the CRL file. In either case, the symbolic link or the copy created by orapki are named with a hash value of the issuer's name. Then when the system validates a certificate, the same hash function is used to calculate the link (or copy) name so the appropriate CRL can be loaded.

Depending on your operating system, enter one of the following commands to rename CRLs stored in the file system.

**To rename CRLs stored in UNIX file systems:**

```bash
orapki crl hash -crl crl_filename [-wallet wallet_location] -symlink crl_directory [-summary]
```

**To rename CRLs stored in Windows file systems:**

```bash
orapki crl hash -crl crl_filename [-wallet wallet_location] -copy crl_directory [-summary]
```

In the preceding commands, `crl_filename` is the name of the CRL file, `wallet_location` is the location of a wallet that contains the certificate of the CA that issued the CRL, and `crl_directory` is the directory in which the CRL is located.

Using `-wallet` and `-summary` are optional. Specifying `-wallet` causes the tool to verify the validity of the CRL against the CA's certificate prior to renaming the CRL. Specifying the `-summary` option causes the tool to display the CRL issuer's name.
13.2.5.2.2 Uploading CRLs to Oracle Internet Directory  Publishing CRLs in the directory enables CRL validation throughout your enterprise, eliminating the need for individual applications to configure their own CRLs. All applications can use the CRLs stored in the directory in which they can be centrally managed, greatly reducing the administrative overhead of CRL management and use.

The user who uploads CRLs to the directory by using orapki must be a member of the directory group CRLAdmins (cn=CRLAdmins,cn=groups,%s_OracleContextDN%). This is a privileged operation because these CRLs are accessible to the entire enterprise. Contact your directory administrator to be added to this administrative directory group.

To upload CRLs to the directory, enter the following at the command line:

```
orapki crl upload -crl crl_location
-ldap hostname:ssl_port -user username [-wallet wallet_location] [-summary]
```

In the preceding command, crl_location is the file name or URL in which the CRL is located, hostname and ssl_port (SSL port with no authentication) are for the system on which your directory is installed, username is the directory user who has permission to add CRLs to the CRL subtree, and wallet_location is the location of a wallet that contains the certificate of the CA that issued the CRL.

Using -wallet and -summary are optional. Specifying -wallet causes the tool to verify the validity of the CRL against the CA’s certificate prior to uploading it to the directory. Specifying the -summary option causes the tool to print the CRL issuer’s name and the LDAP entry in which the CRL is stored in the directory.

---

**Note:**

- The orapki utility will prompt you for the directory password when you perform this operation.
- Ensure that you specify the directory SSL port on which the Diffie-Hellman-based SSL server is running. This is the SSL port that does not perform authentication. Neither the server authentication nor the mutual authentication SSL ports are supported by the orapki utility.

13.2.5.2.3 Listing CRLs Stored in Oracle Internet Directory  You can display a list of all CRLs stored in the directory with orapki, which is useful for browsing to locate a particular CRL to view or download to your local system. This command displays the CA who issued the CRL (Issuer) and its location (DN) in the CRL subtree of your directory.

To list CRLs in Oracle Internet Directory, enter the following at the command line:

```
orapki crl list -ldap hostname:ssl_port
```

In the preceding command, the hostname and ssl_port are for the system on which your directory is installed. Note that this is the directory SSL port with no authentication as described in the preceding section.

13.2.5.2.4 Viewing CRLs in Oracle Internet Directory  You can view specific CRLs that are stored in Oracle Internet Directory in a summarized format or you can request a complete listing of revoked certificates for the specified CRL. A summary listing provides the CRL issuer’s name and its validity period. A complete listing provides a list of all revoked certificates contained in the CRL.
To view a summary listing of a CRL in Oracle Internet Directory, enter the following at the command line:

```
orapki crl display -crl crl_location [-wallet wallet_location] -summary
```

In the preceding command, `crl_location` is the location of the CRL in the directory. It is convenient to paste the CRL location from the list that displays when you use the `orapki crl list` command. See Section 13.2.5.2.3, "Listing CRLs Stored in Oracle Internet Directory".

To view a list of all revoked certificates contained in a specified CRL, which is stored in Oracle Internet Directory, enter the following at the command line:

```
orapki crl display -crl crl_location [-wallet wallet_location] -complete
```

For example, the following `orapki` command:

```
orapki crl display -crl $T_WORK/pki/wlt_crl/nzcrl.txt -wallet $T_WORK/pki/wlt_crl -complete
```

produces the following output, which lists the CRL issuer's DN, its publication date, date of its next update, and the revoked certificates it contains:

```
issuer = CN=root,C=us, thisUpdate = Sun Nov 16 10:56:58 PST 2003,
nextUpdate = Mon Sep 30 11:56:58 PDT 2013, revokedCertificates =
{(serialNo = 153328337133459399575438325845117876415,
 revocationDate - Sun Nov 16 10:56:58 PST 2003)}
CRL is valid
```

Using the `-wallet` option causes the `orapki crl display` command to validate the CRL against the CA's certificate.

Depending on the size of your CRL, choosing the `-complete` option may take a long time to display.

You can also use Oracle Directory Manager, a graphical user interface tool that is provided with Oracle Internet Directory, to view CRLs in the directory. CRLs are stored in the following directory location:

```
cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext
```

### 13.2.5.2.5 Deleting CRLs from Oracle Internet Directory

The user who deletes CRLs from the directory by using `orapki` must be a member of the directory group `CRLAdmins`. See Section 13.2.5.2.2, "Uploading CRLs to Oracle Internet Directory" for information about this directory administrative group.

To delete CRLs from the directory, enter the following at the command line:

```
orapki crl delete -issuer issuer_name -ldap hostname:ssl_port
-user username [-summary]
```

In the preceding command, `issuer_name` is the name of the CA who issued the CRL, the `hostname` and `ssl_port` are for the system on which your directory is installed, and `username` is the directory user who has permission to delete CRLs from the CRL subtree. Note that this must be a directory SSL port with no authentication. See Section 13.2.5.2.2, "Uploading CRLs to Oracle Internet Directory" for more information about this port.

Using the `-summary` option causes the tool to print the CRL LDAP entry that was deleted.

For example, the following `orapki` command:
Performing Certificate Validation and CRL Management with the orapki Utility

orapki crl delete -issuer 'CN=root,C=us'
-ldap machine1:3500 -user cn=orcladmin -summary

produces the following output, which lists the location of the deleted CRL in the directory:
Deleted CRL at cn=root
cd45860c.rN,cn=CRLValidation,cn=Validation,cn=PKI,cn=Products,cn=OracleContext

13.2.6 orapki Utility Commands Summary
This section lists and describes the following orapki commands:
- orapki cert create on page 13-28
- orapki cert display on page 13-28
- orapki crl delete on page 13-29
- orapki crl display on page 13-29
- orapki crl hash on page 13-30
- orapki crl list on page 13-30
- orapki crl upload on page 13-30
- orapki wallet add on page 13-31
- orapki wallet create on page 13-32
- orapki wallet display on page 13-32
- orapki wallet export on page 13-32

13.2.6.1 orapki cert create
The following sections describe this command.

13.2.6.1.1 Purpose Use this command to create a signed certificate for testing purposes.

13.2.6.1.2 Syntax orapki cert create [-wallet wallet_location]
-request certificate_request_location
-cert certificate_location -validity number_of_days [-summary]

- The -wallet parameter specifies the wallet containing the user certificate and private key that will be used to sign the certificate request.
- The -request parameter (mandatory) specifies the location of the certificate request for the certificate you are creating.
- The -cert parameter (mandatory) specifies the directory location in which the tool places the new signed certificate.
- The -validity parameter (mandatory) specifies the number of days, starting from the current date, that this certificate will be valid.

13.2.6.2 orapki cert display
The following sections describe this command.

13.2.6.2.1 Purpose Use this command to display details of a specific certificate.
### 13.2.6.2 Syntax
```
orapki cert display -cert certificate_location [-summary|-complete]
```

- The `-cert` parameter specifies the location of the certificate you want to display.
- You can use either the `-summary` or the `-complete` parameter to display the following information:
  - `-summary` displays the certificate and its expiration date
  - `-complete` displays additional certificate information, including the serial number and public key

### 13.2.6.3 orapki crl delete

The following sections describe this command.

#### 13.2.6.3.1 Purpose
Use this command to delete CRLs from Oracle Internet Directory. Note that the user who deletes CRLs from the directory by using `orapki` must be a member of the `CRLAdmins (cn=CRLAdmins,cn=groups,%s_OracleContextDN%)` directory group.

#### 13.2.6.3.2 Prerequisites
None

#### 13.2.6.3.3 Syntax
```
orapki crl delete -issuer issuer_name -ldap hostname:ssl_port -user username [-summary]
```

- The `-issuer` parameter specifies the name of the certificate authority (CA) who issued the CRL.
- The `-ldap` parameter specifies the hostname and SSL port for the directory in which the CRLs are to be deleted. Note that this must be a directory SSL port with no authentication. See Section 13.2.5.2.2, "Uploading CRLs to Oracle Internet Directory" for more information about this port.
- The `-user` parameter specifies the username of the directory user who has permission to delete CRLs from the CRL subtree in the directory.
- The `-summary` parameter is optional. Using it causes the tool to print the CRL LDAP entry that was deleted.

### 13.2.6.4 orapki crl display

The following sections describe this command.

#### 13.2.6.4.1 Purpose
Use this command to display specific CRLs that are stored in Oracle Internet Directory.

#### 13.2.6.4.2 Syntax
```
orapki crl display -crl crl_location [-wallet wallet_location] [-summary|-complete]
```

- The `-crl` parameter specifies the location of the CRL in the directory. It is convenient to paste the CRL location from the list that displays when you use the `orapki crl list` command. See Section 13.2.6.6, "orapki crl list".
- The `-wallet` parameter (optional) specifies the location of the wallet that contains the certificate of the certificate authority (CA) who issued the CRL. Using it causes the tool to verify the validity of the CRL against the CA's certificate prior to displaying it.
Choosing either the -summary or the -complete parameters displays the following information:

- -summary provides a listing that contains the CRL issuer's name and the CRL's validity period.
- -complete provides a list of all revoked certificates that the CRL contains. Note that this option may take a long time to display, depending on the size of the CRL.

### 13.2.6.5 orapki crl hash

The following sections describe this command.

#### 13.2.6.5.1 Purpose

Use this command to generate a hash value of the certificate revocation list (CRL) issuer to identify the location of the CRL in your file system for certificate validation.

#### 13.2.6.5.2 Syntax

```
orapki crl hash -crl crl_filename|URL
[-wallet wallet_location] [-symlink|-copy] crl_directory [-summary]
```

- The -crl parameter specifies the filename that contains the CRL or the URL in which it can be found.
- The -wallet parameter (optional) specifies the location of the wallet that contains the certificate of the certificate authority (CA) who issued the CRL. Using it causes the tool to verify the validity of the CRL against the CA's certificate prior to uploading it to the directory.
- Depending on your operating system, use either the -symlink or the -copy parameter:
  - UNIX: Use -symlink to create a symbolic link to the CRL at the crl_directory location
  - Windows: Use -copy to create a copy of the CRL at the crl_directory location
- The -summary parameter (optional) causes the tool to display the CRL issuer's name.

### 13.2.6.6 orapki crl list

The following sections describe this command.

#### 13.2.6.6.1 Purpose

Use this command to display a list of CRLs stored in Oracle Internet Directory. This is useful for browsing to locate a particular CRL to view or download to your local file system.

#### 13.2.6.6.2 Syntax

```
orapki crl list -ldap hostname:ssl_port
```

The -ldap parameter specifies the hostname and SSL port for the directory server from which you want to list CRLs. Note that this must be a directory SSL port with no authentication. See Section 13.2.5.2.2 for more information about this port.

### 13.2.6.7 orapki crl upload

The following sections describe this command.
13.2.6.7.1 **Purpose** Use this command to upload certificate revocation lists (CRLs) to the CRL subtree in Oracle Internet Directory. Note that you must be a member of the directory administrative group `CRLAdmins (cn=CRLAdmins, cn=groups, %s_OracleContextDN%)` to upload CRLs to the directory.

13.2.6.7.2 **Syntax**

```
orapki crl upload -crl crl_location
-ldap hostname:ssl_port -user username
[-wallet wallet_location] [-summary]
```

- The `-crl` parameter specifies the directory location or the URL of the CRL that you are uploading to the directory.
- The `-ldap` parameter specifies the hostname and SSL port for the directory to which you are uploading the CRLs. Note that this must be a directory SSL port with no authentication. See Section 13.2.5.2.2 for more information about this port.
- The `-user` parameter specifies the username of the directory user who has permission to add CRLs to the CRL subtree in the directory.
- The `-wallet` parameter specifies the location of the wallet that contains the certificate of the certificate authority (CA) who issued the CRL. This is an optional parameter. Using it causes the tool to verify the validity of the CRL against the CA's certificate prior to uploading it to the directory.
- The `-summary` parameter is optional. Using it causes the tool to display the CRL issuer's name and the LDAP entry in which the CRL is stored in the directory.

13.2.6.8 **orapki wallet add**

The following sections describe this command.

13.2.6.8.1 **Purpose** Use this command to add certificate requests and certificates to an Oracle wallet.

13.2.6.8.2 **Syntax** To add certificate requests:

`orapki wallet add -wallet wallet_location -dn user_dn -keySize 512|1024|2048`

- The `-wallet` parameter specifies the location of the wallet to which you want to add a certificate request.
- The `-dn` parameter specifies the distinguished name of the certificate owner.
- The `-keySize` parameter specifies the key size for the certificate.
- To sign the request, export it with the export option. See Section 13.2.6.11.

To add trusted certificates:

`orapki wallet add -wallet wallet_location -trusted_cert -cert certificate_location`

- The `-trusted_cert` parameter causes the tool to add the trusted certificate, at the location specified with `-cert`, to the wallet.

To add root certificates:

`orapki wallet add -wallet wallet_location -dn certificate_dn -keySize 512|1024|2048 -self_signed -validity number_of_days`

- The `-self_signed` parameter causes the tool to create a root certificate.
- The `-validity` parameter is mandatory. Use it to specify the number of days, starting from the current date, that this root certificate will be valid.
To add user certificates:

```
orapki wallet add -wallet wallet_location -user_cert -cert certificate_location
```

- The `-user_cert` parameter causes the tool to add the user certificate at the location specified with the `-cert` parameter to the wallet. Before you add a user certificate to a wallet, you must add all the trusted certificates that make up the certificate chain. If all trusted certificates are not installed in the wallet before you add the user certificate, then adding the user certificate will fail.

### 13.2.6.9 orapki wallet create

The following sections describe this command.

#### 13.2.6.9.1 Purpose
Use this command to create an Oracle wallet or to set auto login on for an Oracle wallet.

#### 13.2.6.9.2 Syntax
```
orapki wallet create -wallet wallet_location [-auto_login]
```

- The `-wallet` parameter specifies a location for the new wallet or the location of the wallet for which you want to turn on auto login.
- The `-auto_login` parameter creates an auto login wallet, or it turns on automatic login for the wallet specified with the `-wallet` option. See Section 13.1.4.14 for details about auto login wallets.

### 13.2.6.10 orapki wallet display

The following sections describe this command.

#### 13.2.6.10.1 Purpose
Use this command to view the certificate requests, user certificates, and trusted certificates in an Oracle wallet.

#### 13.2.6.10.2 Syntax
```
orapki wallet display -wallet wallet_location
```

- The `-wallet` parameter specifies a location for the wallet you want to open if it is not located in the current working directory.

### 13.2.6.11 orapki wallet export

The following sections describe this command.

#### 13.2.6.11.1 Purpose
Use this command to export certificate requests and certificates from an Oracle wallet.

#### 13.2.6.11.2 Syntax To export a certificate from an Oracle wallet:
```
orapki wallet export -wallet wallet_location -dn certificate_dn -cert certificate_filename
```

- The `-wallet` parameter specifies the location of the wallet from which you want to export the certificate.
- The `-dn` parameter specifies the distinguished name of the certificate.
- The `-cert` parameter specifies the name of the file that contains the exported certificate.

To export a certificate request from an Oracle wallet:
```
orapki wallet export -wallet wallet_location -dn
```
The `-request` parameter specifies the name of the file that contains the exported certificate request.

### 13.3 Interoperability with X.509 Certificates

Oracle Wallet Manager functionality supports users who already have certificates provisioned. If you do not use Oracle Wallet Manager to create certificates, you can use it to manage and store certificates created previously.

#### 13.3.1 Public-Key Cryptography Standards (PKCS) Support

Oracle Wallet Manager stores X.509 certificates and private keys in Public-Key Cryptography Standards (PKCS) #12 format, and generates certificate requests according to the PKCS #10 specification developed by RSA Laboratories. This makes the Oracle wallet structure interoperable with supported third-party PKI applications, and provides wallet portability across operating systems.

Oracle Wallet Manager wallets can be enabled to store credentials on hardware security modules using APIs that conform to the PKCS #11 specification. When PKCS11 wallet type is chosen at the time of wallet creation, then all keys stored in that wallet are saved to a hardware security module or token, such as smart cards, PCMCIA cards, smart diskettes, or other types of portable hardware devices that store private keys, perform cryptographic operations, or both.

**See Also:**

- Section 13.1.5.1.3, "Importing Certificates Created with a Third-Party Tool"
- Section 13.1.4.5, "Exporting Oracle Wallets to Third-Party Environments"
- Section 13.1.4.2.2, "Creating a Wallet to Store Hardware Security Module Credentials"
- To view PKCS standards documents, navigate to the following URL: http://www.rsasecurity.com/rsalabs/

#### 13.3.2 Multiple Certificate Support

Oracle Wallet Manager enables you to store multiple certificates for each wallet, supporting the following Oracle PKI certificate usages:

- SSL
- S/MIME signature
- S/MIME encryption
- Code-Signing
- CA Certificate Signing

Oracle Wallet Manager supports multiple certificates for a single digital entity, where each certificate can be used for a set of Oracle PKI certificate usages, but the same certificate cannot be used for all such usages (See Table 13–4 and Table 13–5 for legal usage combinations). There must be a one-to-one mapping between certificate requests and certificates. The same certificate request can be used to obtain multiple certificates;
However, more than one certificate for each certificate request cannot be installed in the same wallet at the same time.

Oracle Wallet Manager uses the X.509 Version 3 KeyUsage extension types to define Oracle PKI certificate usages. The key usage extension types are optional bits that can be set in certificates. Setting these bits defines what purpose the certificate’s key can be used for. When certificates are issued, the certificate authority sets these bits according to the type of certificate that you have requested. Table 13–4 lists and describes these key usage types.

<table>
<thead>
<tr>
<th>KeyUsage Extension Type</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>digitalSignature</td>
<td>0</td>
<td>Used for entity authentication and to authenticate data origin integrity.</td>
</tr>
<tr>
<td>nonRepudiation</td>
<td>1</td>
<td>Used to protect against the signing entity falsely denying some action.</td>
</tr>
<tr>
<td>keyEncipherment</td>
<td>2</td>
<td>Used when the subject public key is used for key transport.</td>
</tr>
<tr>
<td>dataEncipherment</td>
<td>3</td>
<td>Used when the subject public key is used for enciphering data, other than cryptographic keys.</td>
</tr>
<tr>
<td>keyAgreement</td>
<td>4</td>
<td>Used when the subject public key is used for key agreement during SSL connection negotiation.</td>
</tr>
<tr>
<td>keyCertSign</td>
<td>5</td>
<td>Used when the subject public key is used for verifying a signature on certificates. May only be used in CA certificates.</td>
</tr>
<tr>
<td>cRLSign</td>
<td>6</td>
<td>Used when the subject public key is used for verifying a signature on certificate revocation lists.</td>
</tr>
<tr>
<td>encipherOnly</td>
<td>7</td>
<td>When the encipherOnly bit is asserted, the keyAgreement bit must also be set. When these two bits are set the subject public key may be used only for enciphering data while performing key agreement.</td>
</tr>
<tr>
<td>decipherOnly</td>
<td>8</td>
<td>As with the encipherOnly bit, the keyAgreement bit must also be set when decipherOnly is set. When these two bits (decipherOnly and keyAgreement) are set the subject public key may be used only for deciphering data while performing key agreement.</td>
</tr>
</tbody>
</table>

See Also: The Internet Engineering Task Force RFC #2459, Internet X.509 Public Key Infrastructure Certificate and CRL Profile, for a complete description of the KeyUsage extension types at the following URL:

http://www.ietf.org

When installing a certificate (user certificate or trusted certificate), Oracle Wallet Manager maps the KeyUsage extension values to Oracle PKI certificate usages as specified in Table 13–4 and Table 13–5.

<table>
<thead>
<tr>
<th>KeyUsage Value</th>
<th>Critical?</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>none</td>
<td>NA</td>
<td>Importable.</td>
</tr>
<tr>
<td>Any combination excluding 5</td>
<td>Yes</td>
<td>Not importable.</td>
</tr>
<tr>
<td>Any combination excluding 5</td>
<td>No</td>
<td>Importable.</td>
</tr>
<tr>
<td>5 alone, or any combination including 5</td>
<td>NA</td>
<td>Importable.</td>
</tr>
</tbody>
</table>

1 If the KeyUsage extension is critical, the certificate cannot be used for other purposes.

You should obtain certificates from the certificate authority with the correct KeyUsage value for the required Oracle PKI certificate usage. A single wallet can contain multiple key pairs for the same usage. Each certificate can support multiple Oracle PKI
certificate usages, as indicated by Table 13–4 and Table 13–5. Oracle PKI applications use the first certificate containing the required PKI certificate usage.

**For example:** For SSL usage, the first certificate containing the SSL Oracle PKI certificate usage is used.

If you do not have a certificate with SSL usage, then an ORA-28885 error (No certificate with required key usage found) is returned.
Enabling SSL in the Infrastructure

This chapter provides instructions for enabling SSL in Infrastructure installations. It contains these topics:

- SSL Communication Paths in the Infrastructure
- Recommended SSL Configurations
- Common SSL Configuration Tasks

14.1 SSL Communication Paths in the Infrastructure

This section identifies all SSL communication paths used in the Oracle Application Server Infrastructure, and provides cross-references to the configuration instructions in component guides in the Oracle Application Server documentation library.

---

**Note:** When you install Identity Management, you are prompted to select a mode for Oracle Internet Directory. The default mode is dual mode, which allows some components to access Oracle Internet Directory using non-SSL connections. If SSL mode was chosen during installation, then all installed components must use SSL when connecting to the directory.

Before you begin SSL configuration, determine the Oracle Internet Directory mode. Start the `oidadmin` tool and view the SSL mode in Oracle Directory Manager. Go to the Directory Server and select View Properties > SSL Settings.

---

The following are the communication paths through the Oracle Application Server Infrastructure, and their related SSL configuration instructions:

- **Oracle HTTP Server to the OC4J_SECURITY instance**
  
  To configure the AJP communication over SSL, you must configure `mod_oc4j`'s communication with the `iaspt` daemon. To do this, follow the instructions in the *Oracle HTTP Server Administrator's Guide*, section titled "Enabling SSL for mod_oc4j."

- **Oracle HTTP Server to iaspt (Port Tunneling) and then to the OC4J_SECURITY instance**
  
  To configure this connection path for SSL, follow the instructions in the *Oracle HTTP Server Administrator's Guide*, section titled "Understanding Port Tunneling."

- **The OC4J_SECURITY instance to Oracle Internet Directory**
To configure this connection path for SSL, follow the instructions in the Oracle Application Server Single Sign-On Administrator’s Guide, section titled "Enable SSL on the Single Sign-On Middle Tier". It explains how to configure SSL communication between the browser and the OracleAS Single Sign-On server.

Oracle Delegated Administration Services is SSL-enabled after you configure the Oracle HTTP Server for SSL. The Oracle Delegated Administration Services communication to Oracle Internet Directory is always SSL-enabled; you do not have to perform any configuration tasks to accomplish this. (OracleAS Single Sign-On, Oracle Application Server Certificate Authority, and Oracle Delegated Administration Services communicate with Oracle Internet Directory in SSL mode by default.)

- **Oracle Directory Integration Platform to Oracle Internet Directory and Oracle Internet Directory replication server to Oracle Internet Directory**

  As shown in Figure 14-1, a variety of components and communication paths may be configured for SSL. The following lists references to the instructions for each:

  - Communication between the Oracle Internet Directory Replication server and the Oracle Internet Directory server: Oracle Internet Directory Administrator’s Guide, section titled "Secure Sockets Layer (SSL) and Oracle Internet Directory Replication"


- **The OC4J_SECURITY instance to the Metadata Repository database and Oracle Internet Directory**

  If Oracle Internet Directory configured to accept SSL connections on the SSL port specified, you need only specify the SSL protocol and SSL port in the JDBC URL requesting an application, as follows:

  ldaps://host:sslport/...

  Note that when you are using a secure connection, you must add an s to the name of the protocol. For example, use ldaps instead of ldap.

  If Oracle Internet Directory is not configured to accept SSL connections on the SSL port, you must modify the configuration. See Oracle Internet Directory Administrator’s Guide, the chapter titled "Secure Sockets Layer (SSL) and the Directory."
14.2 Recommended SSL Configurations

The Oracle Application Server Security Guide discusses security concepts in detail and provides recommendations for configuring security in various configurations. The "Recommended Deployment Topologies" chapter presents sample architectures for Oracle Application Server 10g (10.1.4.0.1) installation types. After you have identified the components on which you need to enable SSL, use the instructions in this chapter and Chapter 15, "Enabling SSL in the Middle Tier" to configure the components.

Configuring SSL in OracleAS Single Sign-On and Oracle Delegated Administration Services is typical in the recommended deployment topologies (as described in Section 14.3.1). Configuring SSL in all Infrastructure communication paths is described in Section 14.1.

14.3 Common SSL Configuration Tasks

This section provides references to the component guides in the Oracle Application Server documentation library that provide instructions for configuring SSL in individual components.
14.3.1 Configuring SSL for OracleAS Single Sign-On and Oracle Delegated Administration Services

Follow the instructions in the Oracle Application Server Single Sign-On Administrator’s Guide to configure SSL communication between the browser and the OracleAS Single Sign-On server (section titled "Enable SSL on the Single Sign-On Middle Tier").

Oracle Delegated Administration Services is SSL-enabled after you configure the Oracle HTTP Server for SSL (as described in "Enable SSL on the Single Sign-On Middle Tier"). The Oracle Delegated Administration Services communication to Oracle Internet Directory is always SSL-enabled; you do not have to perform any configuration tasks to accomplish this.

14.3.2 Configuring SSL for Oracle Internet Directory

Instructions for configuring SSL communication in Oracle Internet Directory are provided in the following:

- Oracle Internet Directory Administrator’s Guide, chapter titled “Secure Sockets Layer (SSL) and the Directory”
- Oracle Internet Directory Administrator’s Guide, section titled "Configuring SSL Parameters"
- Oracle Internet Directory Administrator’s Guide, section titled "Limitations of the Use of SSL in 10g (10.1.4.0.1)"

14.3.3 Configuring SSL for Oracle Internet Directory Replication Server and Oracle Directory Integration Platform

As shown in Figure 14–1, a variety of components and communication paths may be configured for SSL. The following lists references to the instructions for each:

- Communication between the Oracle Internet Directory Replication server and the Oracle Internet Directory server: Oracle Internet Directory Administrator’s Guide, section titled "Secure Sockets Layer (SSL) and Oracle Internet Directory Replication"

14.3.4 Configuring SSL in the Identity Management Database

Follow the instructions in the Oracle Application Server Single Sign-On Administrator’s Guide, section titled "Reconfigure the Identity Management Infrastructure Database" to configure SSL communication to the Identity Management database.

14.3.5 Additional SSL Configuration in the OC4J_SECURITY Instance

This section provides references to SSL configuration information for mod_oc4j and OC4J.

14.3.5.1 Configuring SSL from mod_oc4j to OC4J_SECURITY

To configure the AJP communication over SSL, you must configure mod_oc4j’s communication with the 1aspct daemon. To do this, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Enabling SSL between mod_oc4j and OC4J."
14.3.5.2 Using Port Tunneling from mod_oc4j to the OC4J_SECURITY Instance

To configure this connection path for SSL, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Understanding Port Tunneling."

14.3.5.3 Configuring JDBC/SSL (ASO support)

If Oracle Internet Directory configured to accept SSL connections on the SSL port specified, you need only specify the SSL protocol and SSL port in the JDBC URL requesting an application, as follows:

ldaps://host:sslport/...

Note that when you are using a secure connection, you must add an s to the name of the protocol. For example, use ldaps instead of ldap.

If Oracle Internet Directory is not configured to accept SSL connections on the SSL port, you must modify the configuration. See Oracle Internet Directory Administrator’s Guide, chapter titled "Secure Sockets Layer (SSL) and the Directory."

14.3.6 SSL in Oracle Application Server Certificate Authority

Oracle Application Server Certificate Authority is SSL-enabled by default, so there are no configuration tasks associated with this component.

**Tip:** OracleAS Certificate Authority simplifies the task of certificate provisioning for Identity Management users (certificate are automatically provisioned to OracleAS Single Sign-On-authenticated users).


14.3.7 Configuring SSL for Oracle Enterprise Manager 10g

Oracle Enterprise Manager 10g comprises two components, each of which can be configured for SSL communication: Grid Control Console and Application Server Control Console.

14.3.7.1 Configuring Security for the Grid Control

Follow the steps in the "Configuring Security for Grid Control" in the Oracle Enterprise Manager Advanced Configuration Guide.

14.3.7.2 Configuring Security for the Application Server Control Console

The communication paths of interest in the SSL configuration of Application Server Control Console are shown in Figure 14–2, and are labeled https.
To secure the communications between the Web browser and the Application Server Control Console, and between the Application Server Control Console and the Management Agent, you can use the `emctl secure iasconsole` command-line utility. See Section A.4 for instructions.

The communication (that is, obtaining monitoring information and configuration and administration tasks) between the Management Agent and the application server being monitored, and the Application Server Control and the application server being administered is not affected in any way when you use the `emctl secure iasconsole` utility. Those communication paths are not secured until you perform the application server security configuration steps for the particular path. Instructions on configuring SSL for application server communication paths are provided in Section 14.1 and Section 15.1. In addition to their SSL configuration, some components also require that you perform configuration changes to the Application Server Control’s Management Agent. The instructions for these changes are included with the instructions for enabling the components for SSL.

For information and instructions on configuring SSL in the Application Server Control Console, see Section A.4.
Enabling SSL in the Middle Tier

This chapter provides instructions for enabling SSL in Oracle Application Server middle-tier installations.

It contains these topics:

- SSL Communication Paths in the Middle Tier
- Recommended SSL Configurations
- Common SSL Configuration Tasks for the Middle Tier

**Note:** In this chapter, references to middle-tier components, such as OracleAS Web Cache, refer to Release 10.1.2 or 10.1.3.

For more information about which specific versions are compatible with 10g (10.1.4.0.1), see the Oracle Application Server Upgrade and Compatibility Guide.

15.1 SSL Communication Paths in the Middle Tier

This section identifies all SSL communication paths used in the Oracle Application Server middle-tier installation types, and provides cross-references to the configuration instructions in component guides in the Oracle Application Server documentation library.

The following are communication paths through the Oracle Application Server middle tier, and their related SSL configuration instructions:

**Note:** In most cases, SSL can be configured with the SSL Configuration Tool. For more information, see Chapter 12.

- **External Clients or Load Balancer to Oracle HTTP Server**
  
  To configure the Oracle HTTP Server for SSL, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Enabling SSL."

- **External Clients or Load Balancer to OracleAS Web Cache**
  

- **OracleAS Web Cache to Oracle HTTP Server**

- **Oracle HTTP Server to OC4J Applications (AJP)**
  To configure the AJP communication over SSL, you must configure mod_oc4j’s communication with the iaspt daemon. To do this, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Configuring mod_oc4j to Use SSL."

- **Oracle HTTP Server to iaspt and then to OC4J**
  To configure this connection path for SSL, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled “Understanding Port Tunneling.”

- **OC4J (the JAAS provider) to Oracle Internet Directory**
  To configure the provider, follow the instructions in the Oracle Containers for J2EE Security Guide. To configure the provider for SSL, set the SSL_ONLY_FLAG to true.

- **OC4J to the database (ASO)**
  If Oracle Internet Directory is configured to accept SSL connections on the SSL port specified, you need only specify the SSL protocol and SSL port in the JDBC URL requesting an application, as follows:
  ```
 ldaps://host:sslport/...
  ```
  Note that when you are using a secure connection, you must add an s to the name of the protocol. For example, use ldaps instead of ldap.
  If Oracle Internet Directory is not configured to accept SSL connections on the SSL port, you must modify the configuration. See Oracle Internet Directory Administrator’s Guide, section titled "Secure Sockets Layer (SSL) and the Directory."

- **ORMI (Oracle Remote Method Invocation, a custom wire protocol) over HTTP and HTTP over SSL**
  ORMI over SSL is not supported. To configure similar functionality, you can configure ORMI over HTTP, and then configure HTTP for SSL.
  See the Oracle Containers for J2EE Services Guide, section titled “Configuring ORMI Tunnelling Through HTTP” for instructions on how to configure ORMI/HTTP.

- **SSL into standalone OC4J (HTTPS)**
  To configure this connection path for SSL, follow the instructions in the Oracle Containers for J2EE Security Guide, section titled "Configuring SSL in OC4J." It explains how to use SSL to secure communication between clients and an OC4J instance.

- **OracleAS Portal Parallel Page Engine (the servlet in the OC4J_PORTAL instance) to OracleAS Web Cache (HTTPS)**
  To configure this connection path for SSL, follow the instructions in the Oracle Containers for J2EE Security Guide, section titled "Configuring SSL in OC4J.”

### 15.2 Recommended SSL Configurations

The Oracle Application Server Security Guide discusses security concepts in detail and provides recommendations for configuring security in various configurations. The "Recommended Deployment Topologies" chapter presents sample architectures for
Oracle Application Server 10g (10.1.4.0.1) installation types. After you have identified the components on which you need to enable SSL, use the instructions in this chapter and Chapter 14, "Enabling SSL in the Infrastructure" to configure the components.

15.3 Common SSL Configuration Tasks for the Middle Tier

This section identifies some commonly used SSL configurations in the Oracle Application Server middle-tier installation types, and provides cross-references to the configuration instructions in component guides in the Oracle Application Server documentation library.

15.3.1 Enabling SSL in OracleAS Web Cache

OracleAS Web Cache is part of all Oracle Application Server middle-tier installations. To configure it for SSL, follow the instructions in chapter "Configuring OracleAS Web Cache for HTTPS Requests" in the Oracle Application Server Web Cache Administrator’s Guide.

A script, SSLConfigTool, automates the SSL configuration of the following:
- HTTPS listening ports and wallet location for the cache
- HTTPS operations ports for the cache
- Site for HTTPS requests
- HTTPS port and wallet location for the origin server
- Site-to-server mapping

For instructions on using this script, see Chapter 12.

15.3.2 Enabling SSL in Oracle HTTP Server

Oracle HTTP Server is part of all Oracle Application Server middle-tier installations. To configure it for SSL, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled “Enabling SSL.”

A script, SSLConfigTool, automates the setting of the SSL parameters in the httpd.conf file. For more information about this script, see Chapter 12.

15.3.3 Enabling SSL in OC4J

To configure SSL connections to OC4J clients, follow the instructions in the Oracle Containers for J2EE Security Guide section titled "Oracle HTTPS for Client Connections."

15.3.3.1 Configuring SSL from Oracle HTTP Server to OC4J

To configure the AJP communication over SSL, you must configure mod_oc4j’s communication with the iaspt daemon. To do this, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Enabling SSL between mod_oc4j and OC4J."

15.3.3.2 Using Port Tunneling (iaspt) from Oracle HTTP Server to OC4J

To configure this connection path for SSL, follow the instructions in the Oracle HTTP Server Administrator’s Guide, section titled "Understanding Port Tunneling."
15.3.3.3 Configuring ORMI/HTTP SSL
ORMI over SSL is not supported. To configure similar functionality, you can configure ORMI over HTTP, and then configure HTTP for SSL.

See the Oracle Containers for J2EE Services Guide, section titled "Configuring ORMI Tunnelling Through HTTP" for instructions on how to configure ORMI/HTTP.

15.3.3.4 Configuring Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider for SSL with Oracle Internet Directory
To configure the provider, follow the instructions in the Oracle Application Server Enterprise Deployment Guide, section titled "Configuring Application Authentication and Authorization." To configure the provider for SSL, set the SSL_ONLY_FLAG to true.

15.3.3.5 Configuring Oracle HTTP Server for SSL
The Oracle Containers for J2EE Security Guide, section titled "Enabling SSL in OC4J" explains how to configure Oracle HTTP Server for SSL.

15.3.3.6 Configuring SSL in Standalone OC4J Installations
The Oracle Containers for J2EE Security Guide, section titled "Enabling SSL in OC4J" explains how to use SSL to secure communication between clients and an OC4J instance.

15.3.4 Enabling SSL in J2EE and Web Cache Installations
Depending on your security needs and the configuration of the Oracle Application Server J2EE and Web Cache installation, you may implement secure communication in one or more of the installed components. Configuring the first listener (whether it is OracleAS Web Cache or the Oracle HTTP Server) may be sufficient.

To configure the Oracle HTTP Server for SSL, follow the steps in "Enabling SSL for Oracle HTTP Server" in the Oracle HTTP Server Administrator’s Guide.


A script called SSLConfigTool is provided to automate some of the configuration tasks. For instructions on using this script, see Chapter 12.

15.3.5 Enabling SSL in Virtual Hosts
You can use virtual hosts to deploy multiple Web sites on a single Oracle HTTP Server (for example, to make an application available over the HTTP protocol and the HTTPS protocol).


The scenario presented assumes that the following conditions are in effect:

- The host name of the application middle tier is app.mydomain.com (replace this name with the host name of your application middle tier).
The middle tier is already configured as a non-SSL partner application (this is typically done during installation).

The default SSL port number of the application middle tier is 4443.

15.3.6 Enabling SSL in Oracle BI Discoverer

The Oracle Business Intelligence Discoverer Configuration Guide explains how to configure Oracle BI Discoverer for SSL.

For a discussion of Oracle Application Server Framework Security, including the SSL protocols for Oracle Business Intelligence, see the Oracle Business Intelligence Discoverer Configuration Guide, section titled "Using Discoverer with OracleAS Framework Security."

For information on implementing SSL in Oracle BI Discoverer, see the Oracle Business Intelligence Discoverer Configuration Guide, section titled "What is HTTPS and why should I use it?"

For instructions on enabling Oracle BI Discoverer for SSL, see the Oracle Business Intelligence Discoverer Configuration Guide, section titled "About running Discoverer over HTTPS."

15.3.7 Enabling SSL in OracleAS Wireless

For instructions on configuring SSL in OracleAS Wireless, see the Wireless Security chapter in the Oracle Application Server Wireless Administrator’s Guide. The section titled "Site Administration" explains how to use the System Manager HTTP, HTTPS configuration page in Oracle Enterprise Manager 10g to configure the Wireless site’s proxy server settings, URLs, and SSL certificates.

15.3.8 Enabling SSL in OracleAS Portal

OracleAS Portal uses a number of different components for HTTP communication (such as the Parallel Page Engine, Oracle HTTP Server, and OracleAS Web Cache), each of which may act as a client or server. As a result, each component in the Oracle Application Server middle tier may be configured individually to use the HTTPS protocol instead of HTTP.

These components’ interaction with OracleAS Portal involves a number of distinct network hops. These include:

- Between the client browser and the entry point of the OracleAS Portal environment; the entry point can be OracleAS Web Cache or a network edge hardware device such as a reverse proxy or SSL accelerator
- Between OracleAS Web Cache and the Oracle HTTP Server of the Oracle Application Server middle tier
- Between the client browser and the Oracle HTTP Server of the OracleAS Single Sign-On/Oracle Internet Directory (or Infrastructure) tier
- A loop back connection between the Parallel Page Engine (PPE) on the middle tier and OracleAS Web Cache or the front-end reverse proxy
- Between the Parallel Page Engine (PPE) and the Remote Web Provider producing Portlet content
- Between the OracleAS Portal infrastructure and the Oracle Internet Directory server
The following sections in the Oracle Application Server Portal Configuration Guide provide an overview of the most common SSL configurations for OracleAS Portal and instructions for implementing them:


- SSL to OracleAS Web Cache: Follow the instructions in the Oracle Application Server Portal Configuration Guide to configure a secure connection to OracleAS Web Cache.


- External SSL with non-SSL within Oracle Application Server: Follow the instructions in the Oracle Application Server Portal Configuration Guide to configure OracleAS Portal such that the site is externally accessible through SSL URLs, with the Oracle Application Server running in non-SSL mode.

Note: For general information on securing OracleAS Portal, see the Oracle Application Server Portal Configuration Guide (Chapter 6, Securing OracleAS Portal).

### 15.3.9 Configuring SSL for Oracle Enterprise Manager 10g

See Section 14.3.7, "Configuring SSL for Oracle Enterprise Manager 10g".
This chapter lists common questions and errors related to SSL.

It contains these topics:

- Name-Based Virtual Hosting and SSL
- Common ORA Errors Related to SSL

16.1 Name-Based Virtual Hosting and SSL

You cannot use name-based virtual hosting with SSL. This is a limitation of SSL.

If you need to configure multiple virtual hosts with SSL, here are some possible workarounds:

- Use IP-based virtual hosting. To do this, you configure multiple IP addresses for your computer, and map each IP address to a different virtual name.

- If you are willing to use non-standard port numbers, you can associate the same IP with different names, but you must configure each name with a different port number (for example, `name1:443`, `name2:553`). This enables you to use the same IP, but you have to use non-standard port numbers. Only one name can use the standard 443 port; other names must use other port numbers.

16.2 Common ORA Errors Related to SSL

You may need to enable Oracle Net tracing to determine the cause of an error. For information about setting tracing parameters for Oracle Net, see Oracle Database Net Services Administrator’s Guide.

ORA-28759: Failure to Open File

**Cause:** The system could not open the specified file. Typically, this error occurs because the Oracle wallet cannot be found.

**Action:** Check the following:

- Ensure that the Oracle wallet is located either in the default location (`ORACLE_HOME/Apache/Apache/conf/ssl.wlt/default`) or in the location specified by the `SSLWallet` directive in the `ORACLE_HOME/Apache/Apache/conf/ssl.conf` file. This should be the same directory location where you saved the wallet.

- Enable Oracle Net tracing to determine the name of the file that cannot be opened and the reason.
Ensure that auto login was enabled when you saved the Oracle wallet. See Section 13.1.4.14 for details.

**ORA-28786: Decryption of Encrypted Private Key Failure**

**Cause:** An incorrect password was used to decrypt an encrypted private key. Frequently, this happens because an auto login wallet is not being used.

**Action:** Use Oracle Wallet Manager to turn the auto login feature on for the wallet. Then re-save the wallet. See Section 13.1.4.14.

**ORA-28858: SSL Protocol Error**

**Cause:** This is a generic error that can occur during SSL handshake negotiation between two processes.

**Action:** Enable Oracle Net tracing and attempt the connection again to produce trace output. Then contact Oracle customer support with the trace output.

**ORA-28859 SSL Negotiation Failure**

**Cause:** An error occurred during the negotiation between two processes as part of the SSL protocol. This error can occur when two sides of the connection do not support a common cipher suite.

**Action:** Ensure that the cipher suites configured on Oracle HTTP Server and on the client (which is the browser) are compatible for both client and server.

To check the cipher suites configured on Oracle HTTP Server, check the SSLCipherSuite directive in the ORACLE_HOME/Apache/Apache/conf/ssl.conf file.

To check the cipher suites configured on your browser, see the documentation for your browser. Each type of browser has its own way of setting the cipher suite.

You should also ensure that the SSL versions on both the client and the server match, or are compatible. For example, if the server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the SSL connection will fail.

**ORA-28862: SSL Connection Failed**

**Cause:** This error occurred because the peer closed the connection.

**Action:** Check the following:

- Ensure that the Oracle wallet is located either in the default location (ORACLE_HOME/Apache/Apache/conf/ssl.wlt/default) or in the location specified by the SSLWallet directive in the ORACLE_HOME/Apache/Apache/conf/ssl.conf file. This should be the same directory location where you saved the wallet.

- Check that the cipher suites are compatible for both client and server. See "ORA-28859 SSL Negotiation Failure" for details on how to check the cipher suite.

- Check that the names of the cipher suites are spelled correctly.

- Ensure that the SSL versions on both the client and the server match, or are compatible. Sometimes this error occurs because the SSL version specified on the server and client do not match. For example, if the server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the SSL connection will fail.

- For more diagnostic information, enable Oracle Net tracing on the peer.

**ORA-28865: SSL Connection Closed**
**Cause:** The SSL connection closed because of an error in the underlying transport layer, or because the peer process quit unexpectedly.

**Action:** Check the following:

- Ensure that the SSL versions on both the client and the server match, or are compatible. Sometimes this error occurs because the SSL version specified on the server and client do not match. For example, if the server accepts only SSL 3.0 and the client accepts only TLS 1.0, then the SSL connection will fail.

- If you are using a Diffie-Hellman anonymous cipher suite and the `SSLVerifyClient` directive is set to `require` in the `ssl.conf` file, then the client does not pass its certificate to the server. When the server does not receive the client's certificate, the server cannot authenticate the client so the connection is closed. To resolve this, use a different cipher suite, or set the `SSLVerifyClient` directive to `none` or `optional`. See "ORA-28859 SSL Negotiation Failure" for details on how to check the cipher suite.

- Enable Oracle Net tracing and check the trace output for network errors.

**ORA-28868: Peer Certificate Chain Check Failed**

**Cause:** When the peer presented the certificate chain, it was checked and that check failed. This failure can be caused by a number of problems, including:

- One of the certificates in the chain is expired.

- A certificate authority for one of the certificates in the chain is not recognized as a trust point.

- The signature in one of the certificates cannot be verified.

**Action:** Follow the instructions in Section 13.1.4.3, "Opening an Existing Wallet" to use Oracle Wallet Manager to open your wallet, and check the following:

- Ensure that all of the certificates installed in your wallet are current (not expired).

- Ensure that a certificate authority’s certificate from your peer’s certificate chain is added as a trusted certificate in your wallet. See Section 13.1.5.2.1 to use Oracle Wallet Manager to import a trusted certificate.

**ORA-28885: No certificate with the required key usage found.**

**Cause:** Your certificate was not created with the appropriate X.509 Version 3 key usage extension.

**Action:** Use Oracle Wallet Manager to check the certificate’s key usage. See Table 13–4.

**ORA-29024: Certificate Validation Failure**

**Cause:** The certificate sent by the other side could not be validated. This may occur if the certificate has expired, has been revoked, or is invalid for another reason.

**Action:** Check the following:

- Check the certificate to determine whether it is valid. If necessary, get a new certificate, inform the sender that her certificate has failed, or resend.

- Check to ensure that the server’s wallet has the appropriate trust points to validate the client’s certificate. If it does not, then use Oracle Wallet Manager
to import the appropriate trust point into the wallet. See Section 13.1.5.2.1 for details.

■ Ensure that the certificate has not been revoked and that certificate revocation list (CRL) checking is enabled. See Section 13.2.5.

**ORA-29223: Cannot Create Certificate Chain**

**Cause:** A certificate chain cannot be created with the existing trust points for the certificate being installed. Typically, this error is returned when the peer does not give the complete chain and you do not have the appropriate trust points to complete it.

**Action:** Use Oracle Wallet Manager to install the trust points that are required to complete the chain. See Section 13.1.5.2.1.
Backup and recovery refers to the various strategies and procedures involved in guarding against hardware failures and data loss, and reconstructing data should loss occur. This part describes how to back up and recover Oracle Application Server.

This part contains the following chapters:

- Chapter 17, "Introduction to Backup and Recovery"
- Chapter 18, "Oracle Application Server Backup and Recovery Tool"
- Chapter 19, "Backup Strategy and Procedures"
- Chapter 20, "Recovery Strategies and Procedures"
- Chapter 21, "Troubleshooting the Backup and Recovery Tool"
This chapter provides information on getting started with Oracle Application Server backup and recovery.

It contains the following topics:

- Philosophy of Oracle Application Server Backup and Recovery
- Overview of the Backup Strategy
- Overview of Recovery Strategies
- What Is the Oracle Application Server Backup and Recovery Tool?
- Assumptions and Restrictions
- Roadmap for Getting Started with Backup and Recovery

17.1 Philosophy of Oracle Application Server Backup and Recovery

This section introduces the philosophy for backing up and recovering your Oracle Application Server environment. An Oracle Application Server environment can consist of different components and configurations. To determine which components and configurations best meet your requirements, refer to the Oracle Application Server Installation Guide and Oracle Application Server Concepts.

Note: As this is an Infrastructure only release, any mention of a middle-tier component refers to either a Release 10.1.3 or Release 10.1.2 middle-tier component.

A typical Oracle Application Server Infrastructure environment contains Identity Management and a Metadata Repository.

The installations in an Oracle Application Server environment are interdependent in that they contain configuration information, applications, and data that are kept in sync. For example, when you perform a configuration change, you might update configuration files in the middle-tier installation and Infrastructure; when you deploy an application, you might deploy it to all middle-tier installations; and when you perform an administrative change on a middle-tier installation, you might update data in the Metadata Repository.

It is, therefore, important to consider your entire Oracle Application Server environment when performing backup and recovery. For example, you should not back up your middle-tier installation on Monday and your Infrastructure on Tuesday. If you lose files in your middle-tier installation on Monday, you could restore it to Monday’s state. However, your Infrastructure would be in its current state—out of sync with the...
middle tier. And, because you backed up the Infrastructure on Tuesday, you would have no means of restoring it to a state in sync with Monday’s middle-tier installation. You would not be able to restore your environment to a consistent state.

Instead, you should back up your entire Oracle Application Server environment at once. Then, if a loss occurs, you can restore your entire environment to a consistent state.

For the purposes of backup and recovery, you can divide your Oracle Application Server environment into different types of files, as shown in Figure 17–1.

**Figure 17–1 Types of Files for Oracle Application Server Backup and Recovery**

The types of files for backup and recovery are:

- **Oracle software files**
  These are static files such as binaries and libraries. They reside in the middle-tier and Infrastructure Oracle homes. They are created at installation time.

- **Configuration files**
  These files contain configuration information and deployed applications. They reside in the middle-tier and Infrastructure Oracle homes. They are created at installation or runtime and are updated during the normal operation of your application server.

  There are two types of configuration files: configuration files managed by Distributed Configuration Management (DCM) and configuration files not managed by DCM. The files managed by DCM contain configuration information for OHS, OC4J, OPMN, Logloader, and JAZN. Components not managed by DCM include Portal and Wireless. The Backup and Recovery Tool creates an archive for each group of these components. The archives are stored in the same directory. In order to maintain synchronicity, the configuration files archive and the DCM-managed configuration files archive are paired by a unique timestamp. During restores, you specify the timestamp and the tool uses the timestamp to identify and restore both archives.

- **Metadata Repository files**
  These are the datafiles and control files that make up your Metadata Repository. They reside in the Infrastructure Oracle home. They are created at installation time and are updated during the normal operation of your application server.

- **Oracle system files**
These files may be in the `/var/opt/oracle` or `/etc` directory, and the `oraInventory` directory. They exist on each host in your Oracle Application Server environment. They usually reside outside of your Oracle Application Server installations, although the `oraInventory` directory may be in an Oracle home. They are created and updated by Oracle Universal Installer at installation time and contain information about your installations. On Windows, some registries are created by the installer.

The strategies and procedures in this book involve backing up and recovering these different types of files in a manner that maintains your Oracle Application Server environment in a consistent state.

**Note:** Your Oracle Application Server environment contains additional files to those mentioned in this section, such as log files; database configuration files, including `orapwd`, and `spfile/pfile`; and additional files you may deploy in the Oracle home, such as static HTML files and CGI scripts. You can add any of these files to the backup list.

### 17.2 Overview of the Backup Strategy

This section describes the backup strategy used in this book. It contains the following topics:

- Types of Backups
- Recommended Backup Strategy

#### 17.2.1 Types of Backups

The Oracle Application Server backup strategy involves two types of backups:

- Image Backup
- Instance Backup

**Image Backup**

An image backup of an Oracle Application Server instance includes the Oracle Home directory of that instance, the `OraInventory` directory, the `oratab` file, and Windows registries on that node and finally a cold instance backup of that Oracle Application Server instance. The Oracle Home directory contains all the binary files, executables, initialization files, configuration files, log files, and so forth of the OracleAS instance and of all components and deployed applications in that instance. The `OraInventory` directory contains the installation information for the instance.

In **Figure 17–2**, the files that are backed up during an image backup of an Oracle Application Server environment are shaded. An image backup includes everything necessary to restore the initial installation of your Oracle Application Server environment including the Metadata Repository if the instance is an Infrastructure. To avoid an inconsistent backup, do not make any configuration changes until the backup is completed for all Oracle Application Server instances.
Overview of the Backup Strategy

Figure 17–2  Files Backed Up in an Image Backup of an Oracle Application Server Environment

Instance Backup
The contents of an Instance Backup depends on the type of Oracle Application Server instance that is being backed up. There are three types of instance backups:

- **Oracle Application Server Infrastructure Instance Backup**—The Backup and Recovery Tool first backs up the entire Oracle Metadata Repository database. The database contains the product metadata schemas for Oracle Application Server middle-tier components such as OracleAS Portal and OracleAS Wireless. If Identity Management is also installed in this instance, then the database may also contain the configuration information of the Oracle Internet Directory and Oracle Application Server Single Sign-On components of the Identity Management Service. Next, the tool requests Distributed Configuration Management (DCM) to create and export a consistent archive (jar file) of the configuration schemas from the DCM repository for DCM-managed components like Oracle HTTP Server and Oracle Containers for J2EE (OC4J). Then, the tool adds the archive file to the backup. Finally, for each configured component, the tool backs up all the local copies of the configuration files specified for that component in its backup input file. For a list of component backup files, see Table 17–1.

- **Oracle Application Server Middle-Tier Instance Backup**—Contains the configuration information of all its Oracle Application Server components and deployed applications. Some of these components, like OracleAS Portal, OracleAS Wireless, Integration B2B, and Oracle Business Intelligence Discoverer are not managed by DCM. They have their product metadata in the Oracle Application Server Metadata Repository database which is backed up by the Backup and Recovery Tool in the Oracle Application Server Infrastructure instance. Other components like the Oracle HTTP Server, OC4J, Oracle Process Management and Notification Server (OPMN) and Java Authentication and Authorization Service (JAZN) are managed by DCM. The configuration information, for these components and the deployed J2EE applications, is stored in the DCM repository which can be a file-based repository or a database repository. As in an Infrastructure instance backup, the tool requests DCM to create and export a consistent archive of the configuration schemas from the DCM repository and adds the archive to the middle-tier instance backup. The tool also backs up all the local copies of the configuration files specified for each configured mid-tier component in its backup input file.

- **Oracle Application Server Metadata Repository Creation Assistant**—Instead of creating a new Oracle Application Server Infrastructure instance, you can install the Oracle Application Server Metadata Repository in an existing Oracle database
using the OracleAS Metadata Repository Creation Assistant (MRCA, previously
called RepCA). The existing database may also have Oracle Internet Directory and
OracleAS Single Sign-On installed for Identity Management. Since there are no
other Oracle Application Server components in an OracleAS MRCA instance, the
Backup and Recovery Tool backs up only the existing database and not any other
local configuration files.

In Figure 17–3, the files that are backed up during an instance backup are shaded. This
type of backup involves saving the configuration information and metadata across
your entire Oracle Application Server environment at the same point in time. To avoid
an inconsistent backup, do not make any configuration changes until the backup
completes for all Oracle Application Server instances.

### 17.2.2 Oracle Application Server Component Backup Input Files

Each Oracle Application Server component has a backup input file which contains a
list of all the local configuration files that should be backed up for that component. In a
backup operation, if a component is installed and configured, the Backup and
Recovery Tool invokes the component’s backup input file to determine what files to
backup. A component backup input file has the file extension .inp and resides in the
Oracle_Home/backup_restore/config directory. The following is a list of all the
component backup input files that can reside in the directory:

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Backup Input File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Content Management SDK</td>
<td>config_cmsdk_files.inp</td>
</tr>
<tr>
<td>Delegated Administration Services</td>
<td>config_das_files.inp</td>
</tr>
<tr>
<td>Distributed Configuration Management Service</td>
<td>config_dcm_files.inp</td>
</tr>
<tr>
<td>Directory Integration Platform</td>
<td>config_dip_files.inp</td>
</tr>
<tr>
<td>OracleBI Discoverer</td>
<td>config_discoverer_files.inp</td>
</tr>
<tr>
<td>OracleAS Guard for Disaster Recovery</td>
<td>config_dsa_files.inp</td>
</tr>
<tr>
<td>Oracle Enterprise Manager</td>
<td>config_em_files.inp</td>
</tr>
<tr>
<td>List of files to be excluded during backup</td>
<td>config_exclude_files.inp</td>
</tr>
<tr>
<td>Oracle Forms</td>
<td>config_forms_files.inp</td>
</tr>
<tr>
<td>Oracle Application Server installation information</td>
<td>config_install_files.inp</td>
</tr>
</tbody>
</table>
Overview of the Backup Strategy

17.2.3 Recommended Backup Strategy

This section outlines the recommended strategy for performing backups. Using this strategy ensures that you will be able to perform the recovery procedures in this book.

- **Perform a complete image backup.**
  
  Immediately after you install Oracle Application Server, you should perform a complete image backup for each node in your Oracle Application Server environment. This backup contains everything you need in order to restore each node to its initial state. It serves as a baseline for all subsequent online backups.

- **Perform instance backups on a regular basis.**
  
  After every administrative change, or, if this is not possible, on a regular basis, perform an instance backup of your Oracle Application Server environment. This enables you to restore your environment to a consistent state as of the time of your most recent configuration and metadata backup. To avoid an inconsistent backup, do not make any configuration changes until backup completes for all Oracle Application Server instances.

**See Also:** Appendix G, "Examples of Administrative Changes" to learn more about administrative changes

---

**Table 17–1 (Cont.) Oracle Application Server Component Backup Input Files**

<table>
<thead>
<tr>
<th>Component Name</th>
<th>Backup Input File</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle BPEL Process Manager</td>
<td>config_ip_files.inp</td>
</tr>
<tr>
<td>Business Integration Application Adapters</td>
<td>config_IPadapters_files.inp</td>
</tr>
<tr>
<td>Business Integration B2B</td>
<td>config_IPb2b_files.inp</td>
</tr>
<tr>
<td>Business Integration Activities Monitor</td>
<td>config_IPbam_files.inp</td>
</tr>
<tr>
<td>Business Integration Process Manager</td>
<td>config_IPbpm_files.inp</td>
</tr>
<tr>
<td>Business Integration Interconnect</td>
<td>config_IPinterconnect_files.inp</td>
</tr>
<tr>
<td>Java Object Cache</td>
<td>config_javaobjcache_files.inp</td>
</tr>
<tr>
<td>Oracle Enterprise Manager Log Loader</td>
<td>config_logloader_files.inp</td>
</tr>
<tr>
<td>Extra miscellaneous files to be backed up</td>
<td>config_misc_files.inp</td>
</tr>
<tr>
<td>Oracle Containers for J2EE applications</td>
<td>config_oc4j_files.inp</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>config_oca_files.inp</td>
</tr>
<tr>
<td>OracleAS HTTP Server</td>
<td>config_ohs_files.inp</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>config_oid_files.inp</td>
</tr>
<tr>
<td>Oracle Process Management and Notification Server</td>
<td>config_opmn_files.inp</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>config_reports_files.inp</td>
</tr>
<tr>
<td>OracleAS Single Sign-ON</td>
<td>config_sso_files.inp</td>
</tr>
<tr>
<td>TopLink</td>
<td>config_toplink_files.inp</td>
</tr>
<tr>
<td>Oracle Ultra Search for OracleAS Infrastructure</td>
<td>config_ultrasearch_infra_files.inp</td>
</tr>
<tr>
<td>Oracle Ultra Search for OracleAS Mid-tier</td>
<td>config_ultrasearch_mid_files.inp</td>
</tr>
<tr>
<td>OracleAS Web Cache</td>
<td>config_webcache_files.inp</td>
</tr>
<tr>
<td>OracleAS Wireless</td>
<td>config_wireless_files.inp</td>
</tr>
</tbody>
</table>
After a major change, perform a new complete image backup.

If you make a major change to your Oracle Application Server environment, perform a new complete image backup. This backup will serve as the basis for subsequent online backups.

Perform a new complete image backup after:

- An operating system software upgrade
- An Oracle Application Server software upgrade or patch application

If you decide to back out an upgrade or patch, revert back to your last complete image backup. You can then apply any instance backups that occurred between the software upgrade or patch and the last complete image backup of your Oracle Application Server environment. Restoring an instance backup without restoring the last complete image backup might mix old configuration files with newly upgraded software that might not be compatible.

Perform instance backups on a regular basis.

After you establish a new complete image backup of your Oracle Application Server environment, continue to perform instance backups on a regular basis.

17.3 Overview of Recovery Strategies

There are two types of Oracle Application Server recovery strategies used in this book:

- Recovery Strategies for Data Loss, Host Failure, or Media Failure (Critical)
- Recovery Strategies for Process Crashes or System Outages (Non-Critical)

Recovery Strategies for Data Loss, Host Failure, or Media Failure (Critical)

These strategies enable you to recover from critical failures that involve actual data loss. Depending on the type of loss, they can involve recovering any combination of the following types of files:

- Oracle software files
- Configuration files
- Metadata Repository files
- Oracle system files

In all cases, these strategies involve making sure your state is consistent across all installations.

Recovery Strategies for Process Crashes or System Outages (Non-Critical)

These strategies involve restarting processes that have stopped or failed. They do not involve restoring data. They are included in this book for completeness.

17.4 What Is the Oracle Application Server Backup and Recovery Tool?

The Oracle Application Server Backup and Recovery Tool (OracleAS Backup and Recovery Tool) is an application. You can use the tool to backup and recover the following types of files:

- Configuration files in the middle-tier and Infrastructure Oracle home
- Identity Management/Metadata Repository files
The OracleAS Backup and Recovery Tool is installed by default whenever you install Oracle Application Server. The tool is installed in the `Oracle_Home/backup_restore` directory. For instructions on how to install the tool manually, see Section 18.1.1.

### 17.5 Assumptions and Restrictions

The following assumptions and restrictions apply to the backup and recovery procedures in this book:

- The Backup and Recovery Tool is not backward compatible with previous releases of the Backup and Recovery Tool. Archives, created using previous versions of the tool, are not recoverable by the current version of the tool.

- If you convert a database repository to a file-based repository, perform a full backup of the file-based repository and configuration files immediately after the conversion because the Backup and Recovery Tool cannot recover any database repository backups after the conversion.

- The following installation types are supported:
  - Infrastructure (Identity Management and Metadata Repository)
  - Infrastructure (Identity Management only)
  - Infrastructure (Metadata Repository only)
  - Cold Failover Cluster (Infrastructure)
  - Identity Management (Oracle Internet Directory + Single Sign-On)
  - Identity Management (Oracle Internet Directory)
  - Identity Management (Single Sign-On)
  - Identity Management High Availability
  - MRCA 10.1.0.x (Real Application Clusters Database)
  - MRCA 9.2.0.x

- **Alert:** When a Metadata Repository is created by running the Oracle Application Server Repository Creation Assistant on an existing database, the OracleAS Backup and Recovery Tool performs backup and restore on the entire database not only on the Metadata Repository.

- If you are using OracleAS Cold Failover Cluster or Disaster Recovery, refer to the High Availability Guide for special considerations.

- On Windows, if you want to store backups on a remote file system, you must create a local mapped drive and specify it as the backup storage directory. For example, if `Z:\ASbackups` is the mapped drive for backups, then configuration files and repository backups should have `Z:\ASbackups` as their backup directory.

### 17.6 Roadmap for Getting Started with Backup and Recovery

This section provides a roadmap for getting started with Oracle Application Server backup and recovery.

1. **Learn About Database Backup and Recovery.**

   The Oracle Application Server environment includes the Metadata Repository—an Oracle Database 10g database. Performing backup and recovery on Oracle
Application Server includes performing backup and recovery of a database. It is, therefore, important for application server administrators to understand database backup and recovery.

If you are not experienced with database backup and recovery, Oracle recommends you read "Oracle Backup and Recovery Basics," which is available in the Oracle Database 10g document library.

In particular, the following topics apply to Oracle Application Server backup and recovery:

- Using ARCHIVELOG mode
- Performing cold database backups
- Performing online database backups
- Using the RMAN backup and recovery utility

2. **Configure the OracleAS Backup and Recovery Tool.**
   
   Oracle recommends you configure the tool and familiarize yourself with its features.

3. **Implement the Backup Strategy.**
   
   Chapter 19, "Backup Strategy and Procedures" outlines the Oracle-recommended backup strategy and backup procedures. Following this backup strategy ensures that you will be able to perform the recovery procedures in this book.

4. **Recover as Necessary.**
   
   In the event of system failure or data loss, refer to Chapter 20, "Recovery Strategies and Procedures". It outlines different types of failures and describes the procedures you can follow to recover.
Oracle Application Server Backup and Recovery Tool

This chapter describes how to install, configure, and use the Oracle Application Server Backup and Recovery Tool.

It contains the following topics:

- How to Obtain the Oracle Application Server Backup and Recovery Tool
- Using Oracle Application Server Control to Configure the Backup and Recovery Tool
- How to Configure the OracleAS Backup and Recovery Tool Manually
- Running the Portal Validation/Cleanup Utility
- Customizing the Tool for Your Configuration Files
- OracleAS Backup and Recovery Tool Usage Summary

18.1 How to Obtain the Oracle Application Server Backup and Recovery Tool

The Oracle Application Server Backup and Recovery Tool is installed as part of an Oracle Application Server installation. The tool is located in the Oracle_Home/backup_restore directory. Table 18–1 lists the files that may reside in the backup_restore directory.

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>bkp_restore.pl</td>
<td>If you have installed TopLink or MRCA, run this Perl script.</td>
</tr>
<tr>
<td>bkp_restore.sh</td>
<td>A shell script used to run the Perl script on UNIX.</td>
</tr>
<tr>
<td>bkp_restore.bat</td>
<td>A batch command file used to run the Perl script on Windows.</td>
</tr>
<tr>
<td>config/config.inp</td>
<td>The main configuration file that contains parameters for customizing the tool for your environment. The orainst_loc_path field must be changed only if the instance is installed with the --invPtrLoc option installer command-line option. It must be changed to reflect the nonstandard location of oraInst.loc.</td>
</tr>
</tbody>
</table>
18.1.1 Manually Installing the OracleAS Backup and Recovery Tool

If you are running TopLink, in standalone mode, or MRCA, in an existing database, you must install the OracleAS Backup and Recovery Tool manually. Before you install the OracleAS Backup and Recovery Tool, review the following notes:

- You must install the tool on the same host as its corresponding installation. You can install the tool in the Oracle home of its corresponding installation, or you can install it into a directory outside of the Oracle home.

- The tool requires a Perl 5.6.1 interpreter, or later. You can obtain the interpreter from the Perl site: http://www.perl.org, or you can use the Perl interpreter that ships with Oracle Application Server:
  - On UNIX systems:
    
    
    ORACLE_HOME/perl/bin/perl
  
  - On Windows systems:
    
    ORACLE_HOME\perl\5.6.1\bin\MSWin32-x86\perl.exe

- The tool requires that J2SE Development Kit (JDK) be in the execution path. You can obtain the JDK at: http://java.sun.com/j2se.

To install the OracleAS Backup and Recovery Tool:

1. Log in as the user who installed Oracle Application Server.

2. Extract the backup_restore.jar from the MRUA + Utilities CD-ROM, which is located in the directory: CD_ROM/utilities/backup/backup.jar, for example:

   cd ORACLE_HOME
   jar xvf CD_ROM/utilities/backup/backup.jar

   If you install the Oracle Application Server Metadata Repository Upgrade Assistant, then the file backup_restore.jar is automatically extracted for you and put in directory ORACLE_HOME/utilities/backup

   Once you have obtained the backup_restore.jar, extract its contents into the Oracle home of the Toplink or MRCA installation. For example:

   cd ORACLE_HOME
   jar xvf utilities/backup/backup_restore.jar

3. On UNIX, make sure the bkp_restore.sh file has execute permission, for example:

   See Also: Oracle Application Server Installation Guide for information about installing the Oracle Application Server.

### Table 18–1 (Cont.) OracleAS Backup and Recovery Tool Files

<table>
<thead>
<tr>
<th>File</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>config/config_component_files.inp</td>
<td>Component configuration files—each contains a list of configuration files for a particular component. These specify which files to back up when performing a configuration file backup. See Section 17.2.2 for a list of component configuration files.</td>
</tr>
</tbody>
</table>

1 Paths are relative to the root of the OracleAS Backup and Recovery Tool directory.
chmod 755 ORACLE_HOME/backup_restore/bkp_restore.sh

4. Familiarize yourself with the OracleAS Backup and Recovery Tool files, which are described in the Table 18–1. Instructions for editing the configuration files are in subsequent steps.

18.2 Using Oracle Application Server Control to Configure the Backup and Recovery Tool

You can use Oracle Application Server Control to configure the Backup and Recovery Tool by performing the following steps:

1. Log into **Oracle Application Server Control**. The Application Server Control Console displays:

2. Click **BackupRecovery**. The Backup and Recovery screen displays:

3. If the Backup and Recovery Tool has not been configured, a warning screen displays stating that the tool is not configured. Click **Configure BackupRecovery Settings**. The Infrastructure configuration screen displays:
For the Infrastructure configuration screen, enter the following information for each field:

- **Log File Location**—Enter the directory where you want the log file for backup and recovery stored. You should allow for several megabytes of disk space.

- **Configuration Files Backup Location**—Enter the directory where you want the backups of configuration files stored. You should allow for several hundred megabytes of disk space.

- **Metadata Repository Database Backup Location**—Enter the directory where you want the backups of the metadata repository database stored. You should allow for several hundred gigabytes of disk space.

- **Metadata Repository Database SID**—This field is automatically filled in. Change it only in the case where the database SID has changed since installation.

4. Click OK. If any of the specified directories do not exist, a confirmation screen displays:

5. Click Yes to have the directories created, or click No to create the directories manually. Once a successful configuration completes, a confirmation screen displays a message stating that configuration was successful, or the screen displays a message stating that the configuration was unsuccessful.
18.3 How to Configure the OracleAS Backup and Recovery Tool Manually

This section describes how to configure the OracleAS Backup and Recovery Tool manually. You must follow these steps for each installation in your environment.

Note for Windows Users: Do not use a rich text editor, such as WordPad, when editing files in the Backup and Recovery Tool directory. It inserts a return character at the end of each line that may cause the tool to fail. Oracle recommends that you use a basic text formatter, such as Notepad, instead.

1. Prior to running the Backup and Recovery Tool, set ORACLE_HOME for your environment. If the instance is an Infrastructure installation, set ORACLE_SID to the Metadata Repository SID.

2. If the installation is an Infrastructure or Metadata Repository, ensure that the database and the listener are up.

3. The tool writes out log files and backup files, and you must specify the following directories to hold these. The default log file directory is ORACLE_HOME/backup_restore/logs. Edit config.inp to create the following directories:
   - **Log file directory**: This directory holds log files created by the tool. This directory should have several megabytes of space.
   - **Configuration file backup directory**: This directory holds configuration file backups. This directory should have several hundred megabytes of space.
   - **Database backup directory**: This directory holds datafile and control files backups of the Metadata Repository, as well as archived redo logs. This directory should have several gigabytes of space.

Recommendations for creating these directories are as follows:

   - Create your backup directories on a file system on a separate disk and, if possible, a separate disk controller, than where your Oracle Application Server Oracle home resides. This gives you the best chance of recovering data in the event of a hardware failure.
   - Make sure your backup directories are writable by the user that installed Oracle Application Server.

For example, to create a log file directory, configuration file backup directory, and database backup directory on /disk1:

On Unix:

```bash
mkdir -p /disk1/backups/log_files
mkdir -p /disk1/backups/config_files
mkdir -p /disk1/backups/db_files
cd /disk1/backups
chmod 755 log_files config_files db_files
chown OracleAS_user log_files config_files db_files
```

On Windows:

```bash
mkdir C:\backups\log_files
mkdir C:\backups\db_files
mkdir C:\backups\config_files
```
4. Edit `config.inp` and modify the parameters as described in Table 18–2. Notice that some of the instructions are different depending on whether this is a middle-tier or Infrastructure installation.

**Table 18–2 Parameters in config.inp**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>oracle_home</code></td>
<td>Do not insert a value for this. If you invoke the Backup and Recovery Tool through Oracle Application Server Control, it will pass the <code>oracle_home</code> value corresponding to the instance. If you are using the command-line interface, set <code>ORACLE_HOME</code> in the shell environment first.</td>
</tr>
<tr>
<td><code>log_path</code></td>
<td>Specify the full path of the log file directory. If the full path is not specified, the default log directory <code>ORACLE_HOME/backup_restore/logs</code> is automatically created when the <code>-m configure</code> command is executed. If a <code>log_path</code> is specified in the <code>config.inp</code> file, but the specified directory does not exist, the Backup and Recovery Tool automatically creates the specified log directory whether or not the <code>-f (force)</code> option is used in the <code>-m configure</code> command. However, the configuration file backup directory and the database backup directory are not automatically created unless the <code>-f</code> option is specified.</td>
</tr>
<tr>
<td><code>config_files_list</code></td>
<td>Do not insert a value for this; leave it as <code>config_files_list=DO_NOT_SET</code>.</td>
</tr>
<tr>
<td></td>
<td>This parameter will be updated with the appropriate list of configuration files for your installation when you run <code>bkp_restore.pl -m configure</code>.</td>
</tr>
<tr>
<td><code>config_backup_path</code></td>
<td>Specify the full path of the configuration file backup directory.</td>
</tr>
<tr>
<td><code>install_type</code></td>
<td>Do not insert a value for this; leave it as <code>install_type=DO_NOT_SET</code>.</td>
</tr>
<tr>
<td></td>
<td>This parameter is updated with the appropriate value for your installation when you run <code>bkp_restore.pl -m configure</code>.</td>
</tr>
<tr>
<td><code>dbid</code></td>
<td>Do not insert a value for this; leave it as <code>dbid=DO_NOT_SET</code>.</td>
</tr>
<tr>
<td></td>
<td>For Infrastructure installations, this value is updated when you run <code>bkp_restore.pl -m configure</code>. By default, the tool obtains the <code>dbid</code> from the Metadata Repository. Or, you can supply a <code>dbid</code> in special cases involving migrating a Metadata Repository from one host to another, such as for Disaster Recovery.</td>
</tr>
<tr>
<td></td>
<td>For middle-tier installations, this value is untouched.</td>
</tr>
</tbody>
</table>
How to Configure the OracleAS Backup and Recovery Tool Manually

Oracle Application Server Backup and Recovery Tool

Configure the tool by running it with the `-m configure` option, for example:

- For UNIX systems:
  ```
 ./bkp_restore.sh -m configure
  ```

- For Windows systems:
  ```
 bkp_restore.bat -m configure
  ```

- For TopLink or MRCA installations on UNIX or Windows, after specifying the correct version of perl.exe, run:
  ```
 bkp_restore.pl -m configure
  ```

This updates parameters in `config.inp` and, in the case of an Infrastructure, creates customized `.dat` files, which are used to backup, restore, and recover the Metadata Repository.

You are now ready to use the OracleAS Backup and Recovery Tool.

### Table 18–2 (Cont.) Parameters in config.inp

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>pfile</strong></td>
<td><strong>Infrastructure:</strong></td>
</tr>
<tr>
<td></td>
<td>If desired, specify an alternate pfile to use when starting up the database. Otherwise, leave the line commented out and the default spfile will be used:</td>
</tr>
<tr>
<td></td>
<td>- For UNIX systems:</td>
</tr>
<tr>
<td></td>
<td><code>ORACLE_HOME/dbs/spfileSID.ora</code></td>
</tr>
<tr>
<td></td>
<td>- For Windows systems</td>
</tr>
<tr>
<td></td>
<td><code>ORACLE_HOME/database/spfileSID.ora</code></td>
</tr>
<tr>
<td></td>
<td>Be sure to leave the pfile entry commented out if you want to use the default because blank values are not allowed in this file.</td>
</tr>
<tr>
<td></td>
<td>If the spfileorcl.ora file is not present at the default location, the following file will be used as pfile:</td>
</tr>
<tr>
<td></td>
<td>For UNIX:</td>
</tr>
<tr>
<td></td>
<td><code>ORACLE_HOME/dbs/initSID.ora</code></td>
</tr>
<tr>
<td></td>
<td>For Windows:</td>
</tr>
<tr>
<td></td>
<td><code>ORACLE_HOME/database/initSID.ora</code></td>
</tr>
<tr>
<td></td>
<td>If you want to use a different pfile, specify an alternate pfile name for starting up the database.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>database_backup_path</th>
<th><strong>Infrastructure:</strong> Specify the full path of the database backup directory.</th>
</tr>
</thead>
<tbody>
<tr>
<td>orainst_loc_path</td>
<td>This parameter is used for UNIX platforms only. If the default path is overridden during installation, specify the full path of the directory where the <code>oraInst.loc</code> file exits. Otherwise, leave the parameter with the default value.</td>
</tr>
<tr>
<td>infra_with_portal</td>
<td>Do not insert a value for this; leave it as <code>infra_with_portal=VALUE_NOT_SET</code>. This parameter indicates whether the instance is an Infrastructure installation with registered portal middle-tiers.</td>
</tr>
</tbody>
</table>
18.4 Running the Portal Validation/Cleanup Utility

If your Oracle Application Server installation has a Metadata Repository Database (MRDB) with a registered Portal middle tier, by default, the Portal Schema Validation/Cleanup Utility (SVU) runs during a backup of the MRDB. Running SVU provides a way to ensure the integrity of your data whenever you perform a backup of your database. If you do not want to run SVU, uncheck the Validate Portal Schema checkbox in the Oracle Application Server Control Backup screen. If you are using the command line, you can disable SVU by using the \(-z\) option:

For UNIX systems:
```
bpk_restore.sh -z -m backup_instance_cold
```

For Windows systems:
```
bkp_restore.bat -z -m backup_instance_cold
```

If you want to run SVU and your installation has Identity Management running in a different instance than the instance where the MRDB is installed, ensure that Oracle Internet Directory is running in the instance where Identity Management runs before performing a backup of the MRDB.

The Backup and Recovery tool runs SVU in "reporting" mode to flag data inconsistencies after performing a backup. Output from the SVU is saved in a file in the same directory as the backup log: \(\text{log\_path/YYY-MM-DD_HH-MM-SS\_portal\_validation.log}\). The \(\text{log\_path}\) is the value of the \(\text{log\_path}\) parameter in the \(\text{config.inp}\) file. You can clean up the inconsistencies by running the SVU in "cleanup" mode. After that, you can delete the SVU output files \(\ast\_portal\_validation.log\) to conserve space.

When you run the Backup and Recovery tool in configure or backup mode and you are not disabling SVU, it checks to see if the Oracle Application Server instance has a MRDB with a registered Portal middle tier. If it does and the infra_with_portal parameter is not set to \(\text{yes}\), the tool changes the value to \(\text{yes}\).

With the \text{portal\_validation} parameter set to \text{yes}, the Backup and Recovery tool runs SVU after the database backup is taken as a result of running the tool in one of the following modes:

- \text{backup\_cold}
- \text{backup\_cold\_incr}
- \text{backup\_online}
- \text{backup\_online\_incr}
- \text{backup\_instance\_cold}
- \text{backup\_instance\_online}
- \text{backup\_instance\_cold\_incr -l incr\_backup\_level}
- \text{backup\_instance\_online\_incr -l incr\_backup\_level}

18.5 Customizing the Tool for Your Configuration Files

As shipped, the OracleAS Backup and Recovery Tool backs up all of the Oracle Application Server configuration files that are necessary to reconstruct an Oracle Application Server installation. You can customize the tool to include any additional
files that you would like to back up regularly, or to exclude any configuration files you do not want to back up.

### 18.5.1 How the Tool Works When Backing Up Configuration Files

Before you customize the tool, you should understand how it works. When you use the tool to back up your configuration files, it:

1. Opens `config.inp` (unless another environment file was specified with the `-e` option) and retrieves `config_files_list`.
2. Attempts to open each file in `config_files_list` and exits with an error if it cannot open all of the files.
3. Examines the contents of `config_exclude_files.inp`. The tool will not attempt to back up the files listed in this file.
4. Walks through each file in `config_files_list` and examines the first entry in each file. This entry is the **key file**. The key file is used to determine if the component exists in this installation.
   - If the tool finds the key file, it knows the component is installed, and attempts to back up all of the entries in the file. It logs an error whenever it cannot find a key file. For all other files that the tool does not find, a warning is issued and the backup continues.
   - If the key file does not exist, the tool does not attempt to back up any entries in the configuration file. It logs an error to the log file and skips to the next configuration file.
5. The configuration files are stored in jar files located in the directory specified by the `config_backup_path` parameter in the `config.inp` file. Two jar files are created, one for DCM-managed components and one for all the other components. The jar files are paired by the timestamp incorporated in each jar file name, for example:
   
   - `config_bkp_2004-05-10_18-33-10.jar`
   - `dcm_archive_2004-05-10_18-33-10.jar`

### 18.5.2 How to Customize the Tool

Since the tool knows how to determine which configuration files exist in your installation, it is not necessary to customize the tool. However, you may want to customize the tool by:

- **Adding Files to a Backup**
  You may want to add your own local configuration files or any other files you would like to back up regularly, such as log files.

- **Excluding Files from a Backup**
  You may want to exclude files from being backed up.

#### Adding Files to a Backup

To add files, such as Oracle Application Server component specific log files, to a backup, add entries to the `config_misc_files.inp` file as follows:

- To specify a particular file:
  ```
 ${OH}/directorypath/file
  ```
To specify an entire directory:
${OH}/directorypath/

To use wildcards:
${OH}/directorypath/*.html

You can add as many entries as you like. The config_misc_files.inp file is always included in the config_files_list parameter in config.inp, so there is no need to edit config.inp.

In some cases Oracle Backup and Recovery Tool might not be aware of additional configuration or content files stored outside a typical directory structure. For example, in following cases you must edit config_misc_files.inp to ensure proper backup of the following configuration files:

- Virtual paths defined in the Oracle HTTP configuration file—httpd.conf. The web server configuration is pointing to a set of static files located in specific directory. These files should be considered a part of the runtime and metadata information.
- An application deployed to an OC4J container that uses files located outside the container directory. The Backup and Recovery Tool automatically backs up all the files located in the container directory. If your application uses any additional directories, you should consider them as part of configuration backups.
- Java Messaging Service (JMS) with the file-based persistence. The JMS runtime data (messages) are stored in physical files and should be a part of the backup process.

Note that you do not need to specify a key file in config_misc_files.inp.

Excluding Files from a Backup

You can exclude files from a backup in either of the following ways:

- You can simply remove the file entry from its config_component.inp file.
- If you have a situation where a config_component.inp file specifies an entire directory to back up, and you would like to exclude a specific file from that directory, you can add an entry for that file to config_exclude_files.inp. The tool will back up the entire directory except for the file you specify. You cannot specify directories or use wildcards in config_exclude_files.inp. Only single file entries are allowed.

Note that you do not need to specify a key file in config_exclude_files.inp.

18.6 OracleAS Backup and Recovery Tool Usage Summary

This section summarizes usage for the OracleAS Backup and Recovery Tool.

It contains the following topics:

- Prerequisites for Running the Tool
- Syntax
- Usage Examples
- Purging Backups and Moving Them to Tertiary Storage
18.6.1 Prerequisites for Running the Tool

Before running the OracleAS Backup and Recovery Tool:

■ Log in as the user that installed Oracle Application Server.
■ Make sure the `ORACLE_HOME` environment variable is set.
■ If you are performing a database backup, make sure the `ORACLE_SID` environment variable is set.
■ All remote database instances must be shutdown before performing any of the following operations on a RAC database:
  - `backup_cold`
  - `backup_cold_incr`
  - `backup_instance_cold`
  - `backup_instance_cold_incr`
  - `restore_repos`
  - `restore_instance`

18.6.2 Syntax

The following commands and syntax for the commands is provided for instances of MRCA, TopLink, and standalone J2EE. While they can also be used with other components, Oracle highly recommends that you use Oracle Application Server Control to manage and run the Backup and Recovery Tool.

The syntax for the Oracle Application Server Backup and Recovery Tool is:

On UNIX:

```
bkp_restore.sh [-defsv] -m mode [args]
```

On Windows:

```
bkp_restore.bat [-defsv] -m mode [args]
```

It accepts the following options:

- `-c` Restore control file as part of the database restore
- `-d` Print a trace without executing.
- `-e` Specify an environment file (default is `config.inp`).
- `-f` Force log file, database backup, and configuration file directories to be created if they are required by the current command and do not exist.
- `-n` Suppress prompts so the tool can run in batch mode.
- `-o` Loss of Host Automation (LOHA) operation
- `-s` Run in silent mode.
- `-v` Run in verbose mode.
- `-z` Suppress Portal Validation This option applies to Infrastructure installations only.

Use the `-m` option to specify which mode to run. Some modes take arguments. `Table 18–3` describes the OracleAS Backup and Recovery Tool modes and their arguments. All modes and arguments are case-sensitive.

Some of the modes in the following table are included for use with TopLink, MRCA, and custom database installations. The modes are:

- `backup_cold`
OracleAS Backup and Recovery Tool Usage Summary

- `backup_cold_incr -l incr_backup_level`
- `backup_online`
- `backup_online_incr -l incr_backup_level`
- `restore_repos`
- `flashback_repos`

Table 18–3  Oracle Application Server Backup and Recovery Tool Modes and Arguments

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup_cold</td>
<td>Performs a complete cold backup of the Metadata Repository. The command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>- Opens <code>config.inp</code> (or the alternate file specified with the <code>-e</code> option) and retrieves <code>log_path</code>.</td>
</tr>
<tr>
<td></td>
<td>- shuts down the database, starts it in mounted mode, but does not open it.</td>
</tr>
<tr>
<td></td>
<td>- Performs a backup of the datafiles and control files using RMAN. The commands are in <code>backup_cold.dat</code>.</td>
</tr>
<tr>
<td></td>
<td>- Stores the backup in the directory specified in <code>backup_cold.dat</code>. (This is usually set to the <code>database_backup_path</code> in <code>config.inp</code>.)</td>
</tr>
<tr>
<td></td>
<td>- Stores a log file in <code>log_path</code>.</td>
</tr>
<tr>
<td></td>
<td>- Opens the database.</td>
</tr>
<tr>
<td></td>
<td>For a DCM file-based Metadata Repository:</td>
</tr>
<tr>
<td></td>
<td>- Executes the <code>dcmctl exportrepository</code> command to perform a backup of the file-based repository.</td>
</tr>
<tr>
<td></td>
<td>- Stores the backup in the directory, specified by <code>config_backup_path</code> parameter in <code>config.inp</code>.</td>
</tr>
<tr>
<td>backup_cold_incr</td>
<td>Performs an incremental backup of the Metadata Repository.</td>
</tr>
<tr>
<td>-l incr_backup_level</td>
<td>Works the same as <code>backup_cold</code>, except:</td>
</tr>
<tr>
<td></td>
<td>- The <code>-l</code> option specifies the increment level (0 - 4).</td>
</tr>
<tr>
<td></td>
<td>- Uses the <code>backup_cold_incrlevel.dat</code> file.</td>
</tr>
</tbody>
</table>

If both a metadata repository and a file-based repository coexist in an application server instance, the `backup_cold` option backs up both of them as a set. This would be the case where a file-based repository exists in an Infrastructure install.

To check whether a particular Oracle Application Server instance hosts a file-based repository or a database repository, use the following command:

```
ORACLE_HOME/dcm/bin/dcmctl whichfarm
```

Repository Type: Database (host) => Hosts a database repository
Repository Type: Distributed File Based (host) => Hosts a file based repository

There are two types of incremental backups, cumulative and differential. The tool uses the default type, which is differential. For more information, refer to `Oracle Database Backup and Recovery Basics` in the Oracle Database 10g Documentation Library.
OracleAS Backup and Recovery Tool Usage Summary

**backup_config**
Performs a full configuration backup. The backup includes the configurations for DCM-managed components and non-DCM managed components. The command performs the following operations:

- Opens `config.inp` (or the alternate file specified with the `-e` option) and retrieves `config_files_list`, `config_backup_path`, and `log_path`.
- Creates an archive for configuration of DCM-managed components:
  
  ```
 dcmctl createarchive -archive archive_name
 dcmctl exportarchive -archive archive_name -f unique name in config_backup_path
 dcmctl removearchive -archive archive_name
  ```

- Attempts to open each file in `config_files_list`. Exits with an error if it cannot open all of the files.

- For each file in `config_files_list`, checks if the first entry (the key file) exists. If the key file does not exist, it is treated as a fatal error. Otherwise, backs up all files in the list. If any other files do not exist, logs an error and continues.

- Excludes files listed in `config_exclude_files.inp`.

- When finished, stores the backup in `config_backup_path/config_bkp_timestamp.jar` and `config_backup_path/dcm_archive_timestamp.jar` for DCM-managed components.

- If any errors are encountered, creates a log file in `log_path/config_bkp_timestamp`.

**Process Prerequisites:**

If the DCM repository type is a database, the following processes should be running:

- The Oracle Internet Directory process. The command `opmnctl startproc ias-component=OID` can be used to start this process. The Oracle Internet Directory process exists on Infrastructure (IM + MR) or IM installation. Before starting the Oracle Internet Directory process, the OPMN process must be up. The command `opmnctl start` can be used to bring it up.

- The database.

- The listener process.

To check whether a particular Oracle Application Server instance hosts a file-based repository or a database repository, use the following command:

```
ORACLE_HOME/dcm/bin/dcmctl whichfarm
```

Repository Type: Database (host) => Hosts a database repository

Repository Type: Distributed File Based (host) => Hosts a file based repository

**backup_config_incr**
Performs an incremental configuration file backup.

Works the same as `backup_config`, except:

- Backs up all configuration files that have changed since the last full or incremental configuration file backup.

For process prerequisites, refer to the `backup_config` option.
OracleAS Backup and Recovery Tool Usage Summary

Table 18–3 (Cont.) Oracle Application Server Backup and Recovery Tool Modes and Arguments

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>backup_instance_cold</td>
<td>Performs a complete cold backup of the Oracle Application Server instance. The command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>■ Stops all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Starts the OPMN administrative process.</td>
</tr>
<tr>
<td></td>
<td>■ Checks all of the OPMN managed processes to ensure that the processes are stopped. If not, tries to stop them one more time. If the processes still cannot be stopped, issues a fatal error.</td>
</tr>
<tr>
<td></td>
<td>■ Performs repository backup (database and file-based). For a database repository, shuts down the database for the duration of the backup.</td>
</tr>
<tr>
<td></td>
<td>■ Starts Oracle Internet Directory and DCM-daemon processes for database repositories.</td>
</tr>
<tr>
<td></td>
<td>■ Performs configuration backup.</td>
</tr>
<tr>
<td></td>
<td>■ Starts all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Checks to ensure that all OPMN processes are running. If not, issues a warning message.</td>
</tr>
<tr>
<td>backup_instance_coldincr -1 level number</td>
<td>Performs an incremental cold backup of the Oracle Application Server instance. The command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>■ Stops all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Starts the OPMN administrative process.</td>
</tr>
<tr>
<td></td>
<td>■ Checks all of the OPMN managed processes to ensure that the processes are stopped. If not, tries to stop them one more time. If the processes still cannot be stopped, issues a fatal error.</td>
</tr>
<tr>
<td></td>
<td>■ Performs repository backup (database or file-based). For a database repository, shuts down the database for the duration of the backup. The level option applies to database repositories only. Backup is performed to the specified level. The default level is 1.</td>
</tr>
<tr>
<td></td>
<td>■ Starts Oracle Internet Directory and DCM-daemon processes for database repositories.</td>
</tr>
<tr>
<td></td>
<td>■ Performs configuration backup.</td>
</tr>
<tr>
<td></td>
<td>■ Starts all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Checks to ensure that all OPMN processes are running. If not, issues a warning message.</td>
</tr>
<tr>
<td>backup_instance_online</td>
<td>Performs an online backup of the Oracle Application Server instance. The Metadata Repository database must have ARCHIVELOG mode enabled. The command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>■ Performs repository backup (database or file-based). For a database repository, the database remains up while being backed up.</td>
</tr>
<tr>
<td></td>
<td>■ Performs configuration backup.</td>
</tr>
<tr>
<td>backup_instance_onlineincr -1 level number</td>
<td>Performs an incremental online backup of the Oracle Application Server instance. The command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>■ Performs an incremental repository backup (database or file-based). For a database repository, the database remains up while being backed up. The level option applies to database repositories only. Backup is performed to the specified level. The default level is 1.</td>
</tr>
<tr>
<td></td>
<td>■ Performs incremental configuration backup.</td>
</tr>
</tbody>
</table>
**Table 18–3 (Cont.) Oracle Application Server Backup and Recovery Tool Modes and Arguments**

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
</table>
| `backup_online`           | Performs an online backup of the Metadata Repository. If you are running this command on an Infrastructure, ensure that the Metadata Repository is up before running this command. The Metadata Repository database must have ARCHIVELOG mode enabled. The command performs the following operations:  
  ■ Opens `config.inp` (or the alternate file specified with the `-e` option) and retrieves `log_path`.  
  ■ Assumes the database is open.  
  ■ Performs a backup of the datafiles and control files using RMAN. The commands are in `backup_online.dat`.  
  ■ Stores the backup in the directory specified in `backup_online.dat`. (This is usually set to the `database_backup_path` in `config.inp`.)  
  ■ Stores a log file in `log_path`.  
  ■ Leaves the database open.  
  For a DCM file-based Metadata Repository:  
  ■ Executes the `dcmctl exportrepository` command to perform a backup of the file-based repository.  
  ■ Stores the backup in the directory, specified by `config_backup_path` parameter in the `config.inp` file.  
  If both a metadata repository and a file-based repository coexist in an application server instance, the `backup_online` option backs both of them up as a set. This would be the case where a file-based repository exists in an infrastructure install.  
  To check whether a particular Oracle Application Server instance hosts a file-based repository or a database repository, use the following command:  
  `ORACLE_HOME/dcm/bin/dcmctl whichfarm`  
  ```
 Repository Type: Database (host) => Hosts a database repository
 Repository Type: Distributed File Based (host) => Hosts a file based repository
  ```
| `backup_online_incr`      | Performs an incremental online backup of the Metadata Repository.  
  `-l incr_backup_level`    | Works the same as `backup_online`, except:  
  ■ The `-l` option specifies the increment level (0 - 4).  
  ■ Uses the `backup_online_incrlevel.dat` file  
  There are two types of incremental backups, cumulative and differential. The tool uses the default type, which is differential. For more information, refer to Oracle Database Backup and Recovery Basics in the Oracle Database 10g Documentation Library.  
| `configure [-i dbid]`     | Configures the tool. When using this command on an Infrastructure, make sure the Metadata Repository is up before you run this command. The command performs the following operations:  
  ■ Updates `config_files_list` and `install_type` in `config.inp` with the appropriate information for your installation.  
  ■ If using this on an Infrastructure, updates the configuration file with the database id (`dbid`) and creates customized `.dat` files from the database backup `.tmpl` files. By default, it queries the Metadata Repository for the `dbid`. If you use the `-i` option, you can supply the `dbid` (this is used for migrating the Metadata Repository from one node to another, such as for Disaster Recovery). |
**configure_nodb**
Same as **configure** but does not perform the Infrastructure configuration.

Note: You should use **configure** for all Infrastructure installations. The **configure_nodb** applies to disaster recovery strategies described in Oracle Application Server High Availability Guide.

**help**
Prints a usage message.

**list_backups**
Lists the metadata repository and configuration backups taken for the instance.

**list_instance_backups**
Lists instance level backups taken for the instance.

**list_changed_config**
Lists any configuration files that have changed since the last full or incremental backup. This command checks the modification date of each file; it does not check the actual contents of the file. It writes the list of files to a log file and prints the name of the log file. Deleted files or deleted directories are not listed in **list_changed_config**. Only modified files or directories containing modified files are listed.

**node_backup -o image_backup -P directory for the image archive**
Creates an image archive of the original host. The image includes the original Oracle home, oratab, central inventory and so forth depending on the installation. On UNIX, this operation must be run as root.

**node_backup -o prepare**
Prepares the node for backup. Preparation includes discovering the operating system type, hostname/IP, user/group id, install type, the location of the central inventory, oracle home locations if there are multiple of them, Windows registry, Windows service database scanning to find all services created for Oracle homes. The information is placed in a file to be used in node restoration. This mode also creates a config backup and a cold database backup.

**node_restore -o inst_reconfigure -t config_bkp_timestamp**
Reconfigures the instance on the new host including IP changing, database restore, database tempfile setup, config backup restore and so forth depending in the installation type.

**node_restore -o inst_register**
Registers the instance with the oratab and the central inventory. It also sets up the daemon start and stop script and so forth by running root.sh, or on Windows, Windows services are created.

It must be run as root on UNIX systems.

**node_restore -o sys_init**
Restores Oracle Universal Installer related metadata such as oratab(Unix), Windows registries (Windows) and central invento. It should be run once only on the new host.

It must be run as root on UNIX systems.
Oracle AS Backup and Recovery Tool Usage Summary

Table 18–3 (Cont.) Oracle Application Server Backup and Recovery Tool Modes and Arguments

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>restore_config</td>
<td>Restores configuration files. The command performs the following operations:</td>
</tr>
<tr>
<td>[-t config_bkp_</td>
<td>■ Opens config.inp (or the alternate file specified with the -e option) and</td>
</tr>
<tr>
<td>timestamp]</td>
<td>retrieves config_backup_path and log_path.</td>
</tr>
<tr>
<td>[-n]</td>
<td>■ If the -t option is supplied and it is the timestamp from a full backup, it</td>
</tr>
<tr>
<td></td>
<td>restores that full backup.</td>
</tr>
<tr>
<td></td>
<td>■ If the -t option is supplied and it is the timestamp from an incremental</td>
</tr>
<tr>
<td></td>
<td>backup, it restores the full backup and all incremental backups up to and</td>
</tr>
<tr>
<td></td>
<td>including the specified incremental backup.</td>
</tr>
<tr>
<td></td>
<td>■ If the -t option is not supplied, displays a list of configuration file backups</td>
</tr>
<tr>
<td></td>
<td>in config_backup_path and exits. You can then rerun the command and</td>
</tr>
<tr>
<td></td>
<td>supply one of these files with the -t option.</td>
</tr>
<tr>
<td></td>
<td>■ Restores all files from the configuration file backup to the Oracle home,</td>
</tr>
<tr>
<td></td>
<td>preserving owner, group, permissions, and timestamp.</td>
</tr>
<tr>
<td></td>
<td>■ If any errors are encountered, creates a log file in log_path/config_</td>
</tr>
<tr>
<td></td>
<td>rst_timestamp.</td>
</tr>
<tr>
<td></td>
<td>■ Restore configuration for DCM-managed components</td>
</tr>
<tr>
<td></td>
<td>dcmctl importarchive -f location in config_backup_path that</td>
</tr>
<tr>
<td></td>
<td>contains dcm archive</td>
</tr>
<tr>
<td></td>
<td>dcmctl applyarchive -archive archive name [-cluster cluster_</td>
</tr>
<tr>
<td></td>
<td>name]</td>
</tr>
<tr>
<td></td>
<td>dcmctl removearchive -archive archive name</td>
</tr>
<tr>
<td></td>
<td>The -n option suppresses prompts so you can use the tool in batch mode.</td>
</tr>
<tr>
<td></td>
<td>For the process prerequisites, refer to the backup_config option.</td>
</tr>
<tr>
<td></td>
<td>Do not run restore_config on multiple nodes in a J2EE cluster in parallel.</td>
</tr>
<tr>
<td></td>
<td>Doing so will cause restore_config failures. Run restore_config on one</td>
</tr>
<tr>
<td></td>
<td>node at a time.</td>
</tr>
<tr>
<td>restore_db</td>
<td>This command is deprecated. Use restore_repos instead.</td>
</tr>
<tr>
<td>restore_instance</td>
<td>Restores an instance of Oracle Application Server. If the timestamp argument is</td>
</tr>
<tr>
<td>-t timestamp -c</td>
<td>not specified, then a list of backup timestamps is displayed to the user. The</td>
</tr>
<tr>
<td></td>
<td>command performs the following operations:</td>
</tr>
<tr>
<td></td>
<td>■ Stops all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Checks to verify that the OPMN processes have stopped. If OPMN</td>
</tr>
<tr>
<td></td>
<td>processes cannot be stopped (maybe an opmn.xml file is missing), a file</td>
</tr>
<tr>
<td></td>
<td>system restore is performed. Then tries to stop the OPMN processes again.</td>
</tr>
<tr>
<td></td>
<td>If the OPMN processes still cannot be stopped, issues a fatal error.</td>
</tr>
<tr>
<td></td>
<td>■ Starts the OPMN administration process.</td>
</tr>
<tr>
<td></td>
<td>■ Performs repository restore. The -c option is applicable for database</td>
</tr>
<tr>
<td></td>
<td>repositories only. If the -c option is specified, the control file is restored</td>
</tr>
<tr>
<td></td>
<td>also.</td>
</tr>
<tr>
<td></td>
<td>■ Starts Oracle Internet Directory and DCM-Daemon processes (applicable to</td>
</tr>
<tr>
<td></td>
<td>database repositories only).</td>
</tr>
<tr>
<td></td>
<td>■ Performs configuration restore.</td>
</tr>
<tr>
<td></td>
<td>■ Starts all OPMN managed processes.</td>
</tr>
<tr>
<td></td>
<td>■ Checks to ensure that all OPMN managed processes are up. If not, issues a</td>
</tr>
<tr>
<td></td>
<td>warning message.</td>
</tr>
</tbody>
</table>
RESTORE 

**Table 18-3 (Cont.) Oracle Application Server Backup and Recovery Tool Modes and Arguments**

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
</table>
| restore_repos [-u timestamp] [-c] [-n] | Restores and recovers the Metadata Repository and the DCM file-based repository from the available cold and online backups. To perform restore_repos, the Metadata Repository database must be started and open. The command performs the following operations:  
  - Opens config.inp (or the alternate file specified with the -e option) and retrieves log_path.  
  - Restores the control files and datafiles, and performs recovery using RMAN. The commands are in restore_repos.dat.  
  - Stores a log file in log_path.  
  - Leaves the database open.  
  By default, this command restores and recovers the database to its most recent state. You can use the -u option to restore and recover the database to its state at a particular point in time. The format for the timestamp is MM/DD/YYYY_HR24:MIN:SEC, for example:  
    - On UNIX: `bkp_restore.sh -m restore_repos -u 07/26/2003_13:45:06`  
  By default, this command does not restore the control file. You can use the -c option to restore the control file.  
  If you use the -u or -c option, be sure to do a full backup right away because all past backups are invalidated.  
  The -n option suppresses prompts so you can use the tool in batch mode.  
  Refer to Section 20.2.5, "Restoring and Recovering the Metadata Repository" for more information.  
  This command performs the following operations to restore a file-based repository:  
    - Checks for timestamp input. If not provided, lists the available backup timestamps corresponding to the file-based repository.  
    - Executes dcmctl importrepository -file location in config_backup_path that stores the repository backup  
    - If both the metadata repository and a file-based repository coexist in an application server instance, the restore_repos option restores both of them as a set. This would be the case where DCM uses a file-based repository in an infrastructure install.  

    - On UNIX: `bkp_restore.sh -m restore_repos -t 2004-05-10_18-33-12`  
    - On Windows: `bkp_restore.bat -m restore_repos -t 2004-05-10_18-33-12`
Flashback requires a database repository. Flashback is not supported on file-based repositories.

Flashback supports recovery of a Metadata Repository back to the point in time where resetlogs occur. Once resetlogs occur, Flashback cannot recover any change blocks that occurred before the resetlogs.

You do not need to perform a cold backup before running Flashback. Flashback does not require restoring previous backups in order to recover the database. This means the `flashback_repos` operation is faster than the `restore_repos` operation. Flashback can undo any logical data corruption or user error, such as deleting an Oracle Application Server schema or undeploying an application by mistake.

To perform Flashback, the database must be configured with a Flash Recovery Area, and ARCHIVELOG mode and Flashback must be enabled. Use the following SQL statements to configure and enable Flashback:

```
ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE = size SCOPE=BOTH SID='*';
ALTER SYSTEM SET DB_RECOVERY_FILE_DEST = directory_path SCOPE=BOTH SID='*';
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE FLASHBACK ON;
```

Refer to the Oracle Database Backup and Recovery Basics manual, Chapter 3, the section on "Setting up a Flash Recovery Area for RMAN" for more detail. Also, refer to Section 19.2.2, "Enabling ARCHIVELOG Mode" in this manual for information on enabling ARCHIVELOG mode.

Either the -u or -b option must be specified. The -u option returns the database to its state at the specified time. The -b option returns the database to its state prior to the specified time. The format for the timestamp is MM/DD/YYYY_HR24_MIN_SEC.

- On UNIX systems:
  ```
 bkp_restore.sh -m flashback_repos -u 07/26/2003_13:45:06
  ```

- On Windows systems:
  ```
 bkp_restore.bat -m flashback_repos -u 07/26/2003_13:45:06
  ```

The -n option suppresses prompts so the tool can be run in batch mode.

For more information on Flashback technology, refer to the Oracle Database Backup and Recovery Advanced User’s Guide.

After running `flashback_repos`, do a full backup immediately because all past backups are invalidated. See Section 20.2.5, "Restoring and Recovering the Metadata Repository" for more information.

---

### Table 18–3 (Cont.) Oracle Application Server Backup and Recovery Tool Modes and Arguments

<table>
<thead>
<tr>
<th>Mode and Arguments</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>flashback_repos</code></td>
<td>Rewinds the Metadata Repository to a specified time by using the before images of changed data blocks to back out changes made to the database since the specified time. To perform Flashback, the Metadata Repository database must be started and open. The command performs the following operations:</td>
</tr>
<tr>
<td><code>-u timestamp</code></td>
<td>Opens the <code>config.inp</code> file (or an alternate file specified with the <code>-e</code> option) and retrieves <code>log_path</code>.</td>
</tr>
<tr>
<td><code>-b timestamp</code></td>
<td>Recovers the database to or before a specified time by performing Flashback. The commands are located in: <code>flashback_repos_to.tmpl</code> <code>flashback_repos_before.tmpl</code></td>
</tr>
<tr>
<td><code>[-n]</code></td>
<td>Stores a log file in <code>log_path</code>.</td>
</tr>
<tr>
<td></td>
<td>Leaves the database open.</td>
</tr>
</tbody>
</table>

Flashback operates on the Metadata Repository database and requires a database repository. Flashback is not supported on file-based repositories.

Flashback supports recovery of a Metadata Repository back to the point in time where resetlogs occur. Once resetlogs occur, Flashback cannot recover any change blocks that occurred before the resetlogs.

You do not need to perform a cold backup before running Flashback. Flashback does not require restoring previous backups in order to recover the database. This means the `flashback_repos` operation is faster than the `restore_repos` operation. Flashback can undo any logical data corruption or user error, such as deleting an Oracle Application Server schema or undeploying an application by mistake.

To perform Flashback, the database must be configured with a Flash Recovery Area, and ARCHIVELOG mode and Flashback must be enabled. Use the following SQL statements to configure and enable Flashback:

```
ALTER SYSTEM SET DB_RECOVERY_FILE_DEST_SIZE = size SCOPE=BOTH SID='*';
ALTER SYSTEM SET DB_RECOVERY_FILE_DEST = directory_path SCOPE=BOTH SID='*';
ALTER DATABASE ARCHIVELOG;
ALTER DATABASE FLASHBACK ON;
```

Refer to the Oracle Database Backup and Recovery Basics manual, Chapter 3, the section on "Setting up a Flash Recovery Area for RMAN" for more detail. Also, refer to Section 19.2.2, "Enabling ARCHIVELOG Mode" in this manual for information on enabling ARCHIVELOG mode.

Either the -u or -b option must be specified. The -u option returns the database to its state at the specified time. The -b option returns the database to its state prior to the specified time. The format for the timestamp is MM/DD/YYYY_HR24_MIN_SEC.

- On UNIX systems:
  ```
 bkp_restore.sh -m flashback_repos -u 07/26/2003_13:45:06
  ```

- On Windows systems:
  ```
 bkp_restore.bat -m flashback_repos -u 07/26/2003_13:45:06
  ```

The -n option suppresses prompts so the tool can be run in batch mode.

For more information on Flashback technology, refer to the Oracle Database Backup and Recovery Advanced User’s Guide.

After running `flashback_repos`, do a full backup immediately because all past backups are invalidated. See Section 20.2.5, "Restoring and Recovering the Metadata Repository" for more information.
18.6.3 Usage Examples

This section contains usage examples for the OracleAS Backup and Recovery Tool. The Unix command is listed first and then the Windows command.

- Configure the tool using the default `config.inp` file:
  
  ```
 bkp_restore.sh -m configure
 bkp_restore.bat -m configure
  ```

- Configure the tool using a configuration file called `myconfig.inp`:
  
  ```
 bkp_restore.sh -m configure -e myconfig.inp
 bkp_restore.bat -m configure -e myconfig.inp
  ```

- Perform a full configuration file backup:
  
  ```
 bkp_restore.sh -v -m backup_config
 bkp_restore.bat -v -m backup_config
  ```

- Perform a full configuration file backup using an environment file called `myconfig.inp`:
  
  ```
 bkp_restore.sh -v -m backup_config -e myconfig.inp
 bkp_restore.bat -v -m backup_config -e myconfig.inp
  ```

- Perform an incremental configuration file backup:
  
  ```
 bkp_restore.sh -v -m backup_config_incr
 bkp_restore.bat -v -m backup_config_incr
  ```

- Restore configuration files:
  
  ```
 bkp_restore.sh -m restore_config -t 2004-09-21_06-12-45
 bkp_restore.bat -m restore_config -t 2004-09-21_06-12-45
  ```

- Perform a full cold backup of the Metadata Repository:
  
  ```
 bkp_restore.sh -m backup_cold
 bkp_restore.bat -m backup_cold
  ```

- Perform a level 2 incremental cold backup of the Metadata Repository:
  
  ```
 bkp_restore.sh -m backup_cold_incr -l 2
 bkp_restore.bat -m backup_cold_incr -l 2
  ```

- Perform an full online backup of the Metadata Repository:
  
  ```
 bkp_restore.sh -m backup_online
 bkp_restore.bat -m backup_online
  ```

- Perform a level 0 incremental online backup of the Metadata Repository:
  
  ```
 bkp_restore.sh -m backup_online_incr -l 0
 bkp_restore.bat -m backup_online_incr -l 0
  ```

- Restore the Metadata Repository to its most recent state:
  
  ```
 bkp_restore.sh -m restore_repos
 bkp_restore.bat -m restore_repos
  ```

- Restore the Metadata Repository to its state at a particular time:
  
  ```
 bkp_restore.sh -m restore_repos -u 07/26/2003_13:45:06
  ```
OracleAS Backup and Recovery Tool Usage Summary

- Flashback the Metadata Repository to its state at a particular point in time:
  
bkp_restore.sh -m flashback_repos -u 07/26/2003_13:45:06
  bkp_restore.bat -m flashback_repos -u 07/26/2003_13:45:06

- Restores the file based repository to its state at a particular time:
  
bkp_restore.sh -m restore_repos -t 2004-05-10_18:33:12
  bkp_restore.bat -m restore_repos -t 2004-05-10_18:33:12

- Perform a cold backup of an Oracle Application Server instance:
  
bkp_restore.sh -m backup_instance_cold
  bkp_restore.bat -m backup_instance_cold

- Perform an incremental cold backup of an Oracle Application Server instance:
  
bkp_restore.sh -m backup_instance_cold_incr -l level
  bkp_restore.bat -m backup_instance_cold_incr -l level

- Perform an online backup of an Oracle Application Server instance:
  
bkp_restore.sh -m backup_instance_online
  bkp_restore.bat -m backup_instance_online

- Perform an online incremental backup of an Oracle Application Server instance:
  
bkp_restore.sh -m backup_instance_online_incr -l level
  bkp_restore.bat -m backup_instance_online_incr -l level

- Restore an Oracle Application Server instance to its state at a particular time and include the control file in the restore:
  
bkp_restore.sh -m restore_instance -t 2004-09-21_06:12:45 -c
  bkp_restore.bat -m restore_instance -t 2004-09-21_06:12:45 -c

- Node backup preparation using Loss of Host Automation (LOHA):
  
bkp_restore.sh -m node_backup -o prepare
  bkp_restore.bat -m node_backup -o prepare

- Create an image backup of the original host using LOHA:
  
bkp_restore.sh -m node_backup -o image_backup -P directory for image archive
  bkp_restore.bat -m node_backup -o image_backup -P directory for image archive

- Restore Oracle Universal Installer related metadata on the new host using LOHA:
  
bkp_restore.sh -m node_restore -o sys_init
  bkp_restore.bat -m node_restore -o sys_init

- Register the instance on the new host using LOHA:
  
bkp_restore.sh -m node_restore -o inst_register
  bkp_restore.bat -m node_restore -o inst_register

- Configure the instance on the new host using LOHA:
  
bkp_restore.sh -m node_restore -o inst_reconfigure -t config_bkp_timestamp
  bkp_restore.bat -m node_restore -o inst_reconfigure -t config_bkp_timestamp
18.6.4 Purging Backups and Moving Them to Tertiary Storage

The Backup and Restore Tool saves records of successful backups in a catalog file (data/catalog.txt) in the backup_restore directory. Each backup is identified by a timestamp, which is also embedded in the filenames of jar files saved in the configuration file backup directory in the case of an instance or configuration only backup. If you delete all the .jar files corresponding to a timestamp or move them somewhere else, for example offline storage, although the catalog still contains a record of the timestamp, you will not see this record when you run -m list_backups, nor will you be able to restore using this timestamp as the -t value. This is the expected behavior.

In the case of a repository-only backup, a jar file is not created in the configuration backup directory. To delete obsolete database backups or move them to tape, you should use rman. When the backup files corresponding to a repository only backup are purged or moved to tertiary storage, the Backup and Restore Tool still lists the corresponding timestamp when you run -m list_backups although the database backup is not available for restore.
This chapter describes the Oracle Application Server backup strategy and procedures. It contains the following topics:

- Recommended Backup Strategy
- Backup Procedures
- Recovering a Loss of Host Automatically

### 19.1 Recommended Backup Strategy

This section describes the recommended backup strategy for Oracle Application Server. Using this strategy ensures that you can perform the recovery procedures described in this book.

The backup strategy is as follows:

- Task 1: Perform a Complete Cold Backup of Your Oracle Application Server Environment
- Task 2: Perform Instance Backups on a Regular Basis
- Task 3: Perform a New Complete Environment Backup After a Major Change
- Task 4: Perform Instance Backups on a Regular Basis (Return to Task 2)

The flow chart in Figure 19–1 provides an overview of how to decide which type of backup is appropriate for a given circumstance.
**Task 1: Perform a Complete Cold Backup of Your Oracle Application Server Environment**

The first backup you perform should be an image backup, which includes all of the files in your environment. Before you perform your first backup, make sure 
**ARCHIVELOG** mode is enabled in the Metadata Repository. You should also create a record of your environment.

1. **Enable ARCHIVELOG mode in the Metadata Repository.**
   
   By default, the Metadata Repository does not have **ARCHIVELOG** mode enabled. You should enable it immediately so your online redo logs are archived. You should enable **ARCHIVELOG** mode before you perform your first image backup. Otherwise, your backup control files will contain the **NOARCHIVELOG** mode setting. You cannot use the Backup and Recovery Tool in the **NOARCHIVELOG** mode.
   
   Refer to Section 19.2.2, "Enabling ARCHIVELOG Mode".

2. **Perform a complete Oracle Application Server environment backup.**
   
   This will serve as the baseline for all subsequent instance backups.
   
   Refer to Section 19.2.6, "Performing a Complete Oracle Application Server Environment Backup".

3. **Create a record of your Oracle Application Server environment.**
   
   In the event you need to reconstruct your environment, you can refer to this record.
   
   Refer to Section 19.2.3, "Creating a Record of Your Oracle Application Server Configuration".

**Task 2: Perform Instance Backups on a Regular Basis**

After every administrative change, or, if this is not possible, on a regular basis, perform an instance backup of your Oracle Application Server environment.

**See Also:** Appendix G, "Examples of Administrative Changes" to learn more about administrative changes
Backup Procedures

Refer to Section 19.2.4, “Performing an Instance Backup of Oracle Application Server Using Application Server Control Console” or Section 19.2.5, “Performing an Oracle Application Server Instance Backup from the Command Line”.

Task 3: Perform a New Complete Environment Backup After a Major Change
If you make a major change to your Oracle Application Server environment, you must perform a new image backup of your Oracle Application Server environment. This backup will serve as the basis for subsequent instance backups. You should also update the record of your environment with the new configuration information.

Perform a new image backup after:
- An operating system software upgrade
- An Oracle Application Server software upgrade or patch application

To do so:
1. Update the record of your Oracle Application Server environment.
   Refer to Section 19.2.3, "Creating a Record of Your Oracle Application Server Configuration”.
2. Perform a complete Oracle Application Server environment backup.
   Refer to Section 19.2.6, "Performing a Complete Oracle Application Server Environment Backup”.

Task 4: Perform Instance Backups on a Regular Basis (Return to Task 2)
After you establish a new complete Oracle Application Server environment backup, return to Task 2 and continue to perform instance backups on a regular basis.

Additional Tips:
- Create a backup of the JRE/JDK on your system. This is not an Oracle product, but it is utilized by Oracle Application Server and, if accidentally lost or corrupted, would need to be restored in order for Oracle Application Server to function. This issue only applies to HP-UX, HP Tru64, and IBM AIX systems.
- Ensure that your backups are valid by routinely verifying that they can be restored.

19.2 Backup Procedures
This section describes the backup procedures in detail. There is some data interdependency between the configuration files in your Oracle Application Server middle-tier installations, the Distributed Management Repository, the Identity Management metadata, and the Metadata Repository in the Infrastructure. To maintain configuration data consistency, you should take a backup of each of your Oracle Application Server instances (middle tier and Infrastructure) at the same time. While taking a backup of one Oracle Application Server instance, ensure that no configuration changes are made in any of the other instances.

This section contains the following topics:
- Enabling Block Change Tracking
- Enabling ARCHIVELOG Mode
- Creating a Record of Your Oracle Application Server Configuration
Performing an Instance Backup of Oracle Application Server Using Application Server Control Console

Performing an Oracle Application Server Instance Backup from the Command Line

Performing a Complete Oracle Application Server Environment Backup

19.2.1 Enabling Block Change Tracking
To increase performance on incremental database backups, enable block change tracking using the following command:

```
alter database enable block change tracking using file file_name;
```

If the `db_create_file_dest` parameter is set in the spfile or init.ora file of the database, the following command can be used:

```
alter database enable block change tracking;
```

Once you enable block change tracking, incremental database backup will use block change tracking.

For more information on block change tracking, refer to “Backup and Recovery Basics” in the Oracle Database 10g Release 1 (10.1) Documentation Library.

19.2.2 Enabling ARCHIVELOG Mode
By default, the Metadata Repository does not have ARCHIVELOG mode enabled. You must enable ARCHIVELOG mode, which enables the archiving of online redo logs. This will allow you to perform the recovery strategies in this book.

---

**See Also:** You can find more detailed information on the parameters in this section, and setting up archive logging in general, in “Oracle Database Administrator's Guide 10g Release 1 (10.1).”

---

To enable ARCHIVELOG mode:

1. Run the following SQL query to check if the `flashback_recovery_area` is setup:

   ```sql
 SQL> show parameters db_recovery
   ```

   If the `flashback_recovery_area` is set up, the query returns:

   ```
 Name Type Value
 --
 db_recovery_file_dest string /private2/AS1012Installs/AS1012Infra/
 flash_recovery_area string file
 db_recovery_file_dest_size big integer 2G
   ```

   If the `flashback_recovery_area` is set up, then the destination specified by the `db_recovery_file_dest` parameter is used as the archivelog destination, and you do not need to specify the destination directory for your archives in the following step.

2. Specify the destination directory for your archives by including the initialization parameter `LOG_ARCHIVE_DEST_n` in the initialization file. If spfile is used, then the following command can be issued:

   ```
 alter system set log_archive_dest_n="LOCATION=backup directory" scope=spfile;
   ```
In the `log_archive_dest_n` parameter, `n` is a number of 1 through 10.

If `pfile` is used, the following initialization file must be edited:

For UNIX systems:

```
INFRA_ORACLE_HOME/dbs/initSID.ora
```

For Windows systems:

```
INFRA_ORACLE_HOME\database\initSID.ora
```

Change the `LOG_ARCHIVE_DEST_n` parameter to:

`LOG_ARCHIVE_DEST_n="LOCATION=backup directory"`

The default filename format for archive logs is:

- For UNIX systems:
  
  `%t_%s_%r.dbf`

- For Windows systems:

  `ARC%S_%R.%T`

If you would like to use a different format, include the initialization parameter `LOG_ARCHIVE_FORMAT` in the initialization file, for example:

```
LOG_ARCHIVE_FORMAT = 'log%t_%r_%s.arc'
```

In the preceding example, `t` represents the thread number, `r` represents the reset log ID, and `s` represents the log sequence number.

3. Make sure that the `ORACLE_HOME` and `ORACLE_SID` (the default is `orcl`) environment variables are properly set.

4. Make sure that no one is using the database.

5. Perform a clean, normal shutdown of the database instance.

   ```
 INFRA_ORACLE_HOME/bin/sqlplus /nolog
 SQL> connect sys/password as sysdba
 SQL> shutdown
   ```

6. Start up the instance and mount, but do not open the database.

   ```
 SQL> startup mount;
   ```

7. Enable database `ARCHIVELOG` mode.

   ```
 SQL> alter database archive log;
   ```

8. Shut down and restart the database instance.

   ```
 SQL> shutdown
 SQL> startup
   ```

9. Verify the database is now in `ARCHIVELOG` mode.

   Execute the following command and verify that Database log mode is Archive Mode and Automatic archival is Enabled.

   ```
 SQL> archive log list;
 Database log mode Archive Mode
   ```
19.2.3 Creating a Record of Your Oracle Application Server Configuration

In the event you need to restore and recover your Oracle Application Server environment, it is important to have all the necessary information at your disposal. This is especially true in the event of a hardware loss that requires you to reconstruct all or part of your Oracle Application Server environment on a new disk or host.

You should maintain an up-to-date record of your Oracle Application Server environment that includes the information listed in this section. You should keep this information both in hardcopy and electronic form. The electronic form should be stored on a host or e-mail system that is completely separate from your Oracle Application Server environment.

Your Oracle Application Server hardware and software configuration record should include:

- The following information for each host in your environment:
  - Hostname
  - Virtual hostname (if any)
  - Domain name
  - IP address
  - Hardware platform
  - Operating system release level and patch information

- The following information for each Oracle Application Server installation in your environment:
  - Installation type (for example: Infrastructure)
  - Host on which the installation resides
  - User name, userid number, group name, groupid number, environment profile, and type of shell for the operating system user that owns the Oracle home (/etc/passwd and /etc/group entries)
  - Directory structure, mount points, and full path for ORACLE_HOME
  - Amount of disk space used by the installation
  - Port numbers used by the installation

**Note:** ORACLE_HOME/install/portlist.ini contains the port numbers assigned during installation. However, this file is not updated if you change port numbers after installation, so you need to keep track of those changes manually.

- The following information for the Metadata Repository:
  - Database version and patch level
  - Base language
19.2.4 Performing an Instance Backup of Oracle Application Server Using Application Server Control Console

You can use the Oracle Enterprise Manager 10g Application Server Control Console to manage backup and recovery of an Oracle Application Server instance. Once you have performed a complete Oracle Application Server environment backup, you should perform subsequent instance backups after every administrative change, or, if this is not possible, on a regular basis. Perform the following steps to take a backup:

1. From the Home page for an application server instance, click **Backup/Recovery** to display the Backup/Recovery page.

2. Click **Perform Backup**. Depending on the install type, the Infrastructure backup screen displays:

   ![Infrastructure Backup Screen]

   Select the type of backup you want performed by clicking the radio button next to the type of backup. After the backup completes, a confirmation screen displays the results of the backup:

   ![Backup Confirmation Screen]

3. Select the type of backup you want performed by clicking the radio button next to the type of backup. After the backup completes, a confirmation screen displays the results of the backup:

   ![Backup Confirmation Screen]

Character set

Global database name

SID
19.2.5 Performing an Oracle Application Server Instance Backup from the Command Line

This section describes how to perform various Oracle Application Server instance backups from the command line. An instance level backup backs up all the required components in an application server instance: configuration files, repositories (database or file-based) for the infrastructure.

Once you have performed a complete Oracle Application Server environment backup, you should perform subsequent instance backups after every administrative change, or, if this is not possible, on a regular basis.

Performing a Cold Backup of an Oracle Application Server Instance
Use the following command to perform a cold backup of an Oracle Application Server instance:

```
bkp_restore.sh -m backup_instance_cold
bkp_restore.bat -m backup_instance_cold
```

Performing an Incremental Cold Backup of an Oracle Application Server Instance
Use the following command to perform an incremental cold backup of an Oracle Application Server instance:

```
bkp_restore.sh -m backup_instance_cold_incr -l level
bkp_restore.bat -m backup_instance_cold_incr -l level
```

Performing an Online Backup of an Oracle Application Server Instance
Use the following command to perform an online backup of an Oracle Application Server instance:

```
bkp_restore.sh -m backup_instance_online
bkp_restore.bat -m backup_instance_online
```

Performing an Incremental Online Backup of an Oracle Application Server Instance
Use the following command to perform an incremental online backup of an Oracle Application Server instance:

```
bkp_restore.sh -m backup_instance_online_incr -l level
bkp_restore.bat -m backup_instance_online_incr -l level
```

19.2.6 Performing a Complete Oracle Application Server Environment Backup

This section describes how to perform a complete Oracle Application Server environment backup. A complete Oracle Application Server environment backup includes Identity Management metadata and Oracle Application Server Metadata Repository, which can be stored in the same database or different databases. You should backup the node after installation or after an upgrade. Perform the following tasks for each instance on the host:

Configuration Backup of the Node
Run the following command to create a backup of the node configuration:

On UNIX:

```
bkp_restore.sh -m configure
```
On Windows:

```
bkp_restore.bat -m configure
```

**Node Backup Preparation**

Run the following command to prepare a node for backup:

On UNIX:

```
bkp_restore.sh -m node_backup -o prepare
```

On Windows:

```
bkp_restore.bat -m node_backup -o prepare
```

**Creating an Image Backup of the Instance**

This task creates an archive of an instance that includes the Oracle home, oratab, central inventory, Windows registries and so forth. On UNIX, the command must be run from root. If you are performing a metadata repository or Infrastructure image backup, the database listener must be running. Run the following command to create an image backup of the instance:

On UNIX:

```
bkp_restore.sh -m node_backup -o image_backup -P archive path
```

On Windows:

```
bkp Restore.bat -m node_backup -o image_backup -P archive path
```

After the command completes, the backup is placed in the directory specified in `archive path`.

### 19.3 Recovering a Loss of Host Automatically

Oracle Application Server Backup and Recovery Tool provides an automated procedure to take a full backup of the instances on one host and restore them to a new host after loosing the original operating environment.

Loss of Host Automation (LOHA) automates the tasks necessary for the Oracle Application Server user to migrate Oracle Application Server instances from one host to another. The new host can be a different host running the same operating system or the same host after system re-imaging. LOHA provides a solution for a loss of host when you want to restore the original instances to a new environment without having to reinstall the instances and preserve the application data.

For metadata repositories and Infrastructure installations, only the target host name must be the same as the original host. For an Oracle Identity Management installation, full automation is supported if the new host name is the same as the original. For different host names, some manual work is required. LOHA does not support the Toplink standalone install type.

LOHA can move all the Oracle Application Server instances from one host to a new host provided that the new host does not have any other Oracle Application Server instances already running. You can restore a subset of the instances to the new host if the subset does not have any dependencies on the instances remaining on the old host. You cannot restore instances from multiple hosts to a single host.

LOHA can also be used to recover a corrupted instance on a host without affecting other instances on the same host.
This section contains the following topics:

- Preparing to Use Loss of Host Automation
- Enabling Loss of Host Automation
- Restoring a Node on a New Host
- Restoring a Host with Identity Management to a Host with a Different Name
- Recovering an Instance on the Same Host

19.3.1 Preparing to Use Loss of Host Automation

The Loss of Host Automation service is installed as part of the Backup and Recovery Tool. It is installed into the following directory:

On UNIX:

```
ORACLE_HOME/backup_restore/loha
```

On Windows:

```
ORACLE_HOME\backup_restore\loha
```

To use the Loss of Host Automation service, you must install and configure the Backup and Recovery Tool as described in Chapter 18. You must set ORACLE_HOME. If the installation is an Infrastructure, you must also set ORACLE_SID.

The Loss of Host service has the following prerequisites:

- The new host must have the same version of operating system and the same level of patches as required by Oracle Application Server.
- In the config.inp file, the orainst_loc_path field must be changed only if the instance is installed with the -invPtrLoc installer command line option. It must be changed to reflect the nonstandard location of oraInst.loc.
- For Windows platforms, Windows Support Files (WSF) must be installed. You can obtain WSF from the Oracle Application Server installation CD.
- For Windows platforms, the Microsoft service utility sc.exe must be installed on both the original host and the new host. According to Microsoft, it is part of the NT ResourceKit. For Windows XP, the utility is part of the installation. For Windows 2000 platforms, it must be installed. Ensure that it is in the execution path.
- On the new host, jar (Windows) or tar (Unix) must be available to unpack the node archive. If your system has its own tar program, use it instead of GNU tar.
- The user must have administrative privileges on the system such that system or root level tasks can be performed.
- There should not be any other Oracle products installed on the new host. For example, if there are some Oracle Application Server instances on this new host, they must be shutdown and uninstalled cleanly.
- The user/group ID on the new host must match that on the original host.
- Check port usage on the new host. Make sure there are not any processes using the same ports as any of the Oracle Application Server instances you are restoring. If any processes are using the same ports, reconfigure the processes to use different ports before restoring any Oracle Application Server instance.
For a host with Oracle Identity Management and the new host has a different name, see Section 19.3.4 for instructions on restoring the host.

19.3.2 Enabling Loss of Host Automation

The following tasks must be performed, for each instance on the original host, to enable the Loss of Host Automation service:

Configuration Backup of the Node
You should backup the node after installation or after an upgrade. Run the following command to create a backup of the node configuration:

On UNIX:
```
bpk_restore.sh -m configure
```

On Windows:
```
bkp_restore.bat -m configure
```

Node Backup Preparation
During node backup preparation, the Loss of Host Automation service determines the following information about the current host:

- Operating system
- Host name
- IP address
- User/group id
- Install type
- Central inventory location
- Oracle home locations
- Windows registry and all Windows services created for all Oracle homes

The service also creates an instance backup with this operation.

Run the following command to prepare a node for backup:

On UNIX:
```
bkp_restore.sh -m node_backup -o prepare
```

On Windows:
```
bkp_restore.bat -m node_backup -o prepare
```

Creating an Image Backup of the Original Host

This task creates an archive of an instance that includes the original Oracle home, oratab, central inventory, Windows registries and so forth. On UNIX, the command must be run from root. If you are performing a metadata repository or Infrastructure image backup, the database listener must be running. Run the following command to create an image backup of the original instance:

On UNIX:
```
bkp_restore.sh -m node_backup -o image_backup -P archive path
```

On Windows:
After unpacking the archive, ensure that the database `flashback_recovery_area` is the same as the original if it is located outside the `ORACLE_HOME` for the instance.

For an instance with a file-based repository, the dcm-daemon process should be running on the member nodes while restoring to the new host. After restoring the instance, for all member nodes edit the following line in `ORACLE_HOME/dcm/config/dcmCache.xml`:

```xml
<discoverer ip="host-name" discovery-port="repository-id" original="false" xmlns=""/>
```

In the preceding example, `host-name` is the name of the new host and `repository-id` is the id of the new host.

The following commands must be run in order:

1. Unpack the backup archive of the old node:
   
   On UNIX, login as root:
   ```
 cd /
 tar -xvpf archive_name
   ```
   
   On Windows:
   ```
 jar -xvf archive_name
   ```

2. The following command restores Oracle Universal Installer related metadata such as oratab (UNIX), Windows registries, and central inventory on the new host. If multiple instances are to be restored, this operation should be performed only for the first instance. The command must be run as root on UNIX.
   
   On UNIX:
   ```
 bkp_restore.sh -m node_restore -o sys_init
   ```
   
   On Windows:
   ```
 bkp_restore.bat -m node_restore -o sys_init
   ```

3. The following command registers the instance with oratab and the central inventory; it also sets up daemon start/stop script by running `root.sh` on UNIX, or, on Windows, Windows services are created. The command must be run as root on UNIX.
   
   On UNIX:
   ```
 bkp_restore.sh -m node_restore -o inst_register
   ```
   
   On Windows:
   ```
 bkp_restore.bat -m node_restore -o inst_register
   ```
4. This command reconfigures the instance on the new host. This includes IP changing, database restore, database tempfile setup, config backup restore and so forth depending on the install type. Prior to running the command, run opmnctl shutdown and emctl stop iasconsole to ensure that OPMN and Enterprise Manager processes are not using ports required by the reconfigure process. For Infrastructure and metadata repository installations on Windows, the flashback_recovery_area must be manually created before running the command. The command must be run as the owner of the instance. The path to the instance backups must be valid. If database RMAN logs error RMAN-06054 in the restore_repos log file, it should be treated as innocuous.

On UNIX:

\[\text{bkp\_restore.sh} -m \text{node\_restore} -o \text{inst\_reconfigure} -t \text{config\_bkp\_timestamp}\]

On Windows:

\[\text{bkp\_restore.bat} -m \text{node\_restore} -o \text{inst\_reconfigure} -t \text{config\_bkp\_timestamp}\]

Without a timestamp argument, this command shows all the available instance backups. For a successful completion of this operation, ensure that all the other required services are running if they do not belong to this instance. Those required services can include Oracle Identity Management, Oracle Application Server Metadata Repository and Infrastructure. If these services must be restored, they must be done in the proper order.

LOHA will not detect port conflicts on the new host. It is recommended that you do not run other applications using the same TCP ports that are to be used by the restored instance. Any port conflict will cause this operation to fail.

19.3.4 Restoring a Host with Identity Management to a Host with a Different Name

To restore a host with Identity Management to a new host with a different name, perform the following procedures:

1. Perform the steps in Section 19.3.1, "Preparing to Use Loss of Host Automation".
2. Perform the steps in Section 19.3.2, "Enabling Loss of Host Automation".
3. Perform steps 1 through 3 in Section 19.3.3, "Restoring a Node on a New Host".
4. Create a backup copy of the configtool.xml.tmpl file. The file directory is \texttt{ORACLE\_HOME/chgip/config/}. Save the backup copy to another directory. Edit the original configtool.xml.tmpl file and remove the following lines pertaining to the updateConfig parameter:

\[
\begin{align*}
\text{<ConfigTool Name="DCM" Desc='Distributed Configuration Manager''}\n\text{InstallType="Core">}
\text{<Command>}%ORACLE\_HOME%\textbackslash dcm\textbackslash bin\textbackslash dcmctl.bat</Command>}
\text{<Parameter Name="" Value="updateConfig"/>}
\text{</ConfigTool>}
\end{align*}
\]

\[
\begin{align*}
\text{<ConfigTool Name="DCM" Desc='Distributed Configuration Manager''}\n\text{InstallType="Portals">}
\text{<Command>}%ORACLE\_HOME%\textbackslash dcm\textbackslash bin\textbackslash dcmctl.bat</Command>}
\text{<Parameter Name="" Value="updateConfig"/>}
\text{</ConfigTool>}
\end{align*}
\]

\[
\begin{align*}
\text{<ConfigTool Name="DCM" Desc='Distributed Configuration Manager''}\n\text{InstallType="BIServices">}
\text{<Command>}%ORACLE\_HOME%\textbackslash dcm\textbackslash bin\textbackslash dcmctl.bat</Command>}
\end{align*}
\]

Backup Strategy and Procedures 19-13
<Parameter Name="" Value="updateConfig"/>
</ConfigTool>

<ConfigTool Name="DCM" Desc="Distributed Configuration Manager"
InstallType="Infrastructure_ID">
  <Command>%ORACLE_HOME%\dcm\bin\dcmctl.bat</Command>
  <Parameter Name="" Value="updateConfig"/>
</ConfigTool>

<ConfigTool Name="DCM" Desc="Distributed Configuration Manager"
InstallType="Infrastructure">
  <Command>%ORACLE_HOME%\dcm\bin\dcmctl.bat</Command>
  <Parameter Name="" Value="updateConfig"/>
</ConfigTool>

<ConfigTool Name="DCM" Desc="Distributed Configuration Manager"
InstallType="OCS">
  <Command>%ORACLE_HOME%\dcm\bin\dcmctl.bat</Command>
  <Parameter Name="" Value="updateConfig"/>
</ConfigTool>

Save the file, and then run the chgiphost script:

On UNIX:

ORACLE_HOME/chgip/scripts/chgiphost.sh -mid

On Windows:

ORACLE_HOME/chgip/scripts/chgiphost.bat -mid

5. Use the following commands to restore DCM-managed components:

- On UNIX:
  
  bkp_restore.sh -m restore_config -F dcm-resyncforce

- On Windows:
  
  bkp_restore.bat -m restore_config -F dcm-resyncforce

6. Perform the following steps to start the middle-tier instance.

a. Start OPMN and OPMN-managed processes:

   ORACLE_HOME/opmn/bin/opmnctl startall

b. Start the Application Server Control Console:

   ORACLE_HOME/bin/emctl start iasconsole

7. The chgiphost script must be run with the updateConfig parameter in ORACLE_HOME/chgip/config/configtool.xml.tmpl file. Use the original version of configtool.xml.tmpl file. Replace the modified version of this file (from step 4) with the backed-up copy.

Run the chgiphost script to update the host information for DCM-managed components:

chgiphost.sh -mid
19.3.5 Recovering an Instance on the Same Host

When an instance of Oracle Application Server requires an image restore to correct a problem, you can use LOHA to recover the instance. Perform the following steps to recover the instance:

1. Completely shut down the instance.

2. Perform step 1 of Section 19.3.3, "Restoring a Node on a New Host" to unpack the latest image backup of the instance.

3. Perform steps 3 and 4 of Section 19.3.3, "Restoring a Node on a New Host" to register and configure the instance.

If the instance has any dependencies on other instances of Oracle Application Server, the other instances must be running.
This chapter describes Oracle Application Server recovery strategies and procedures for different types of failures and outages.

It contains the following topics:

- Recovery Strategies
- Recovery Procedures

20.1 Recovery Strategies

This section describes Oracle Application Server recovery strategies for different types of failures and outages. It contains the following topics:

- Recovery Strategies for Data Loss, Host Failure, or Media Failure (Critical)
- Recovery Strategies for Process Failures and System Outages (Non-Critical)

20.1.1 Recovery Strategies for Data Loss, Host Failure, or Media Failure (Critical)

This section describes recovery strategies for outages that involve actual data loss or corruption, host failure, or media failure where the host or disk cannot be restarted and are permanently lost. This type of failure requires some type of data restoration before the Oracle Application Server environment (middle tier, Infrastructure, or both) can be restarted and continue with normal processing.

The strategies in this section use point-in-time recovery of the middle tier and Infrastructure. This means that, no matter where the loss occurred, the Infrastructure and the middle tier are always restored together so they are in sync as they were at the time of the last backup. Notice that in an Oracle Application Server environment recovery, the Infrastructure is always restored before the middle tier.

Assumptions

The following assumptions apply to the recovery strategies in this section:

- ARCHIVELOG mode was enabled for all Metadata Repository backups.
- Complete recovery of the database can be performed, that is, no redo log files have been lost.
- No administrative changes were made since the last backup. If administrative changes were made since the last backup, they will need to be reapplied after recovery is complete.
Recovery Strategies

See Also: Appendix G, "Examples of Administrative Changes" to learn more about administrative changes

Determining Which Strategy to Use
Recovery strategies are listed in Table 20–1

Use this table if you experience data loss, host failure, or media failure in an Infrastructure installation. Find the type of loss and follow the recommended procedure. The procedures apply to Infrastructures that are installed into a single Oracle home, as well as Infrastructures with Identity Management in one Oracle home and a Metadata Repository in another Oracle home or host.

If the loss occurred in both the Infrastructure and middle tier, follow the Infrastructure recovery strategy first, then the middle tier.

Table 20–1 Recovery Strategies for Data Loss, Host Failure, and Media Failure in Infrastructures

<table>
<thead>
<tr>
<th>Type of Loss</th>
<th>Recovery Strategies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Loss of host</td>
<td>You can restore to a new host that has the same hostname.</td>
</tr>
<tr>
<td></td>
<td>Follow the procedure in Section 20.2.3, &quot;Restoring an Infrastructure to a New Host&quot;.</td>
</tr>
<tr>
<td>Oracle software/binary loss or corruption</td>
<td>If any Oracle binaries have been lost or corrupted, you must recover the entire Infrastructure.</td>
</tr>
<tr>
<td></td>
<td>Follow the procedure in Section 20.2.2, &quot;Restoring an Infrastructure to the Same Host&quot;.</td>
</tr>
<tr>
<td>Database or data failure of the Metadata Repository (datafile loss, control file loss, media failure, disk corruption)</td>
<td>If the Metadata Repository is corrupted due to data loss or media failure, you can restore and recover it.</td>
</tr>
<tr>
<td></td>
<td>Follow the procedure in Section 20.2.5, &quot;Restoring and Recovering the Metadata Repository&quot;.</td>
</tr>
<tr>
<td>Deletion or corruption of configuration files</td>
<td>If you lose any configuration files in the Infrastructure Oracle home, you can restore them.</td>
</tr>
<tr>
<td></td>
<td>Follow the procedure in Section 20.2.6, &quot;Restoring Infrastructure Configuration Files&quot;.</td>
</tr>
<tr>
<td>Deletion or corruption of configuration files and data failure of the Metadata Repository</td>
<td>If you lose configuration files and the Metadata Repository is corrupted, you can restore and recover both.</td>
</tr>
<tr>
<td></td>
<td>Follow these procedures:</td>
</tr>
<tr>
<td></td>
<td>1. Section 20.2.6, &quot;Restoring Infrastructure Configuration Files&quot;</td>
</tr>
<tr>
<td></td>
<td>2. Section 20.2.5, &quot;Restoring and Recovering the Metadata Repository&quot;</td>
</tr>
</tbody>
</table>

20.1.2 Recovery Strategies for Process Failures and System Outages (Non-Critical)
This section describes recovery strategies for process failures and system outages. These types of outages do not involve any data loss, and therefore do not require any files to be recovered. In some cases, failure may be transparent and no manual intervention is required to recover the failed component. However, in some cases, manual intervention is required to restart a process or component. While these strategies do not strictly fit into the category of backup and recovery, they are included in this book for completeness.

Determining Which Strategy to Use
Recovery strategies for process failures and system outages are listed in Table 20–2.

Use this table if you experience a failure or outage in an Infrastructure. Find the type of outage and follow the recommended procedure. The procedures apply to
Infrastructures that are installed into a single Oracle home, as well as Infrastructures with Identity Management in one Oracle home and a Metadata Repository in another Oracle home or host.

<table>
<thead>
<tr>
<th>Type of Outage</th>
<th>How to Check Status and Restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host failure— no data loss</td>
<td>To restart: 1. Restart the host. 2. Start the Infrastructure. Refer to Section 3.2.1.</td>
</tr>
<tr>
<td>Metadata Repository instance failure (loss of the contents of a buffer cache or data residing in memory)</td>
<td>To check status: 1. Try connecting to the database using SQL*Plus. 2. Check the state as follows: <code>SQL&gt; select status from v$instance;</code>. To restart: <code>sqlplus /nolog SQL&gt; connect sys/password as sysdba SQL&gt; startup SQL&gt; quit</code></td>
</tr>
<tr>
<td>Metadata Repository listener failure</td>
<td>To check status: <code>lsnrctl status</code>. To restart: <code>lsnrctl start</code></td>
</tr>
<tr>
<td>Oracle Internet Directory server process (oidldapd) failure</td>
<td>To check status: <code>ldapcheck</code>. To restart: <code>opmnctl startproc ias-component=OID</code></td>
</tr>
<tr>
<td>Oracle Internet Directory monitor process (oidmon) failure</td>
<td>To check status: <code>ldapcheck</code>. To restart: <code>opmnctl startproc ias-component=OID</code></td>
</tr>
<tr>
<td>Application Server Control Console failure</td>
<td>To check status: <code>emctl status iasconsole</code>. To restart: <code>emctl start iasconsole</code></td>
</tr>
<tr>
<td>Oracle HTTP Server process failure</td>
<td>To check status: <code>opmnctl status</code>. To restart: <code>opmnctl startproc ias-component=HTTP_Server</code></td>
</tr>
<tr>
<td>OC4J instance failure</td>
<td>To check status: <code>opmnctl status</code>. To restart: <code>opmnctl startproc process-type=OC4J_instance_name</code></td>
</tr>
</tbody>
</table>
20.2 Recovery Procedures

This section contains the procedures for performing different types of recovery. It contains the following topics:

- Using Application Server Control Console to Recover an Oracle Application Server Instance
- Restoring an Infrastructure to the Same Host
- Restoring an Infrastructure to a New Host
- Restoring an Identity Management Instance to a New Host
- Restoring and Recovering the Metadata Repository
- Restoring Infrastructure Configuration Files
- Restoring an Oracle Application Server Instance

20.2.1 Using Application Server Control Console to Recover an Oracle Application Server Instance

You can use the Oracle Enterprise Manager 10g Application Server Control Console to manage backup and recovery of an Oracle Application Server instance. Use the following procedure to recover an Oracle Application Server instance:

Before performing a restore operation (restore_instance or restore_config) on an instance in a cluster, all OC4J processes across the cluster must be stopped. Use the following command to stop the processes:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster stopproc ias-component=OC4J
```

Some OC4J components (such as Wireless) do not have ias-component=OC4J. For these components use the uniqueid value to stop the OC4J process. To determine which components have a uniqueid, use the following command:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster status -fmt %typ%uid%prt -noheaders
```

The following is an example of the output from the command:

- CUSTOM | N/A | DSA
- LOGLDR | N/A | logloaderd
- DCMDaemon | 1444413512 | dcm-daemon
- WebCache | 1500577871 | WebCache
- WebCache-admin | 1500577872 | WebCacheAdmin

Table 20-2 (Cont.) Recovery Strategies for Process Failures and System Outages in Infrastructures

<table>
<thead>
<tr>
<th>Type of Outage</th>
<th>How to Check Status and Restart</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delegated Administration Service instance failure</td>
<td>To check status: opmnctl status To restart: opmnctl startproc ias-component=OC4J process-type=OC4J_SECURITY</td>
</tr>
<tr>
<td>OPMN daemon failure</td>
<td>To check status: opmnctl status To restart: opmnctl start</td>
</tr>
</tbody>
</table>
Stop all the OC4J processes, for which the second column (uid) value is not "N/A", with the following command:

```
ORACLE_HOME/opmn\bin\opmnctl @cluster stopproc uniqueid=1500577865
```

```
opmnctl: stopping open managed processes...
```

1. From the Home page for an application server instance, click Backup/Recovery to display the Backup/Recovery page.

2. Click Perform Recovery. The Infrastructure recovery screen displays:

   ![Infrastructure recovery screen](image)

   3. For the Infrastructure recovery screen, you can click the Recover Control Files check box to recover the control files for the instance. Click OK to perform the restore.

   After the restore operation is complete, use the following command to restart the OC4J processes across the cluster:

   ```
 ORACLE_HOME/opmn/bin/opmnctl @cluster startproc ias-component=OC4J
   ```

   For components that use uniqueid, you can restart their process by using the appropriate ias-component value or by using the following command:

   ```
opmnctl startall
   ```

### 20.2.2 Restoring an Infrastructure to the Same Host

This section describes how to restore an Infrastructure to the same host. You can use this procedure when you have lost some or all of your Oracle binaries.

Refer to Section 19.3.5, "Recovering an Instance on the Same Host" to restore the image backup of the Infrastructure Oracle home from your complete Oracle Application Server environment backup.

**Note:** If your Infrastructure is split and has Identity Management in one Oracle home, and the Metadata Repository in another Oracle home, perform this step on both Oracle homes.
**20.2.3 Restoring an Infrastructure to a New Host**

Refer to Section 19.3.3, "Restoring a Node on a New Host" to perform the following types of restores:

- Restore an Infrastructure to the same host after the operating system has been reinstalled. The hostname must remain the same on the host.
- Restore an Infrastructure to a new host that has the same hostname as the original host.

**Note:** If your Infrastructure is split and has Identity Management in one Oracle home, and the Metadata Repository in another Oracle home, perform the procedures on both Oracle homes as described in Section 20.2.4, "Restoring an Identity Management Instance to a New Host" and Section 20.2.5.2, "Restoring and Recovering the Metadata Repository to a New Host".

**20.2.4 Restoring an Identity Management Instance to a New Host**

Refer to Section 19.3, "Recovering a Loss of Host Automatically" to perform the following types of restores:

- Restore Identity Management to the same host after the operating system has been reinstalled. The hostname must remain the same on the host.
- Restore Identity Management to a new host that has the same or different hostname as the original host.

**20.2.5 Restoring and Recovering the Metadata Repository**

The section describes how to restore and recover the Metadata Repository. You can use this when there has been corruption only to the Metadata Repository, and not to any other files in the Oracle home.

Restore and recover the Metadata Repository from your latest backup using your own procedure or the OracleAS Backup and Recovery Tool. Restart all Infrastructure processes after restoring a Metadata Repository.

The following sections describe Oracle recommended procedures for using the OracleAS Backup and Recovery Tool to restore and recover the Metadata Repository:

- Restoring and Recovering the Metadata Repository to the Same Host
- Restoring and Recovering the Metadata Repository to a New Host
20.2.5.1 Restoring and Recovering the Metadata Repository to the Same Host

This section covers several circumstances under which you may need to restore and recover the Metadata Repository to the same host:

- **Corrupted or Lost Datafile**
- **Corrupted or Lost Control File**
- **Point-in-Time Recovery and Flashback Recovery**

**Corrupted or Lost Datafile**

If a datafile is corrupted or lost, you can use the following command to restore from the latest backup and perform a full recovery:

For UNIX:
```
bkp_restore.sh -m restore_repos
```

For Windows:
```
bkp_restore.bat -m restore_repos
```

**Corrupted or Lost Control File**

If a control file is corrupted or lost, you can use the following command to restore a control file backup, restore the datafiles, and perform a full recovery:

For UNIX:
```
bkp_restore.sh -m restore_repos -c
```

For Windows:
```
bkp_restore.bat -m restore_repos -c
```

When you use the `-c` option, it restores the control file. This causes entries for tempfile in locally-managed temporary tablespaces to be removed. You must add a new tempfile to the TEMP tablespace, or Oracle will display error ORA-25153: Temporary Tablespace is Empty.

To add a tempfile to the TEMP tablespace:
```
SQL> alter tablespace "TEMP" add tempfile 'ORACLE_HOME/oradata/GDB/temp01.dbf' size 5120K autoextend on next 8k maxsize unlimited;
```

`GDB` is the first part of the global database name.

Note that when you restore a control file, the tool performs an "alter database open resetlogs." This invalidates all backups and archivelogs. You should immediately perform a complete cold backup of the Metadata Repository, which will serve as the new baseline for your subsequent partial online backups.

**Point-in-Time Recovery and Flashback Recovery**

If you lost configuration files in your middle-tier or Infrastructure installation and restored those, you may want to restore or flashback the database to the same point-in-time as the configuration file backup. You can do this using one of the following commands:

For UNIX:
```
bkp_restore.sh -m restore_repos -u timestamp

bkp_restore.sh flashback_repos -u timestamp
```
For Windows:

```
bkp_restore.bat -m restore_repos -u timestamp
```

```
bkp_restore.bat flashback_repos -u timestamp
```

Flashback recovery to a point-in-time can undo any logical data corruption or user error. Flashback cannot undo physical data corruption due to media failure. Using the `restore_repos` command, you can recover and restore the database to a point-in-time for both logical and physical data corruption. However, Flashback is faster at recovering logical data corruption because it does not require restoring backups.

You can specify any time between the time of your first backup and the current time, as long as none of the online redo logs were compromised. If any online redo logs are missing or corrupted, the latest time that can be specified is the time at which the last backup was made.

Note that when you do point-in-time recovery, the tool performs an "alter database open resetlogs." This invalidates all backups and archivelogs. You should immediately perform a complete cold backup of the Metadata Repository, which will serve as the new baseline for your subsequent partial online backups.

The Backup and Recovery Tool supports point-in-time recovery through resetlogs in all Oracle databases: Infrastructure with Identity Management and Metadata Repository, RepCA, and generic Oracle databases (for example, OCS Infostore). The following is an example of a point-in-time recovery through resetlogs:

At time T1, a backup of the database is taken. Changes are made to the database. At time T2, a new backup is taken. More changes are made to the database. At time T3, another backup is taken. More changes are made. At time T4, the user restores and recovers the database to T3. Since this is a point-in-time recovery, the Backup and Recovery Tool opens the database with resetlogs to start a new log sequence after the recovery. At time T5, the user restores and recovers the database to T2 through the resetlogs created at T4.

Multiple backward point-in-time recoveries are supported for backups taken using `backup_instance_cold`, `backup_instance_online`, and `backup_instance_incr`. To perform multiple backward point-in-time recoveries using `backup_cold`, `backup_online`, and `backup_incr`, you must follow the backup operation immediately with `backup_config`.

### 20.2.5.2 Restoring and Recovering the Metadata Repository to a New Host

When you restore the Metadata Repository to a new host (with the same hostname), the new host will not have the online redo logs that existed on the original host. Therefore, you cannot perform a full recovery; RMAN would give an error stating that it cannot find a certain log file (the online redo log file). Instead, you should do a point-in-time recovery using a time sometime between the first and most recent backup. You can do this by specifying the proper timestamp for the LOHA reconfigure operation. Use the procedure at Section 19.3.3, "Restoring a Node on a New Host" to restore the Metadata Repository.

During the LOHA reconfigure process, if the RMAN command returns an error and the log shows that the datafiles were restored and recovered, then LOHA will issue an "alter database open resetlogs" and the database will be opened in a consistent state. If no datafiles were restored and recovered, it is most likely that an early timestamp was specified. You should retry the command with a later timestamp.
LOHA uses the -c option during the restore process which means that the control file is restored from backup. This causes entries for tempfiles in locally managed temporary tablespaces to be removed and a new TEMP tablespace to be added automatically. Restoring the control file means that an "alter database open resetlogs" is always performed, which invalidates all backups and archivelogs. You should immediately perform a complete cold backup of the Metadata Repository, which will serve as the new baseline for your subsequent partial online backups.

20.2.6 Restoring Infrastructure Configuration Files

This section describes how to restore the configuration files in an Infrastructure Oracle home. You can use this procedure when configuration files have been lost or corrupted.

It contains the following tasks:

- **Task 1: Stop the Infrastructure**
- **Task 2: Restore Infrastructure Configuration Files**
- **Task 3: Apply Recent Administrative Changes**
- **Task 4: Start the Infrastructure**

**Task 1: Stop the Infrastructure**

Refer to Section 3.2.2 for instructions.

**Task 2: Restore Infrastructure Configuration Files**

If your Infrastructure is split and has Identity Management in one Oracle home, and the Metadata Repository in another Oracle home, perform this task on both Oracle homes.

Restore all configuration files from your most recent backup. You can perform this task using your own procedure or the OracleAS Backup and Recovery Tool. For example, to do this using the tool:

- On UNIX systems:

  bkp_restore.sh -m restore_config -t timestamp

- On Windows systems:

  bkp_restore.bat -m restore_config -t timestamp

**See Also:** Chapter 18, "Oracle Application Server Backup and Recovery Tool" for more information.

**Task 3: Apply Recent Administrative Changes**

If you made any administrative changes since the last time you did an online backup, reapply them now.

**See Also:** Appendix G, "Examples of Administrative Changes" to learn more about administrative changes.

**Task 4: Start the Infrastructure**

Refer to Section 3.2.1 for instructions.
20.2.7 Restoring a File-Based Repository to a New Host

This section describes how to restore a DCM file-based repository to a new host. This section contains the following tasks:

- **Task 1: Restore Image Backup, System Files, and Instance Reconfiguration**
- **Task 2: Inform the Original Host That It Is No Longer a Repository Host (If Required)**

**Task 1: Restore Image Backup, System Files, and Instance Reconfiguration**

If the DCM repository is a database, start the OPMN and Oracle Internet Directory processes on the corresponding infrastructure instance.

- Use the following command to start the OPMN process:
  
  ```
 opmnctl start
  ```

- Use the following command to start the Oracle Internet Directory process:
  
  ```
 opmnctl startproc ias-component=OID
  ```

Use the following command to check if the DCM repository is a database or a file-based repository:

```
ORACLE_HOME/dcm/bin/dcmctl whichfarm
```

The preceding command returns one of the following messages:

- Repository Type: Database => uses a database repository
- Repository Type: Distributed File Based => uses a file based repository

Perform the steps in Section 19.3.3, "Restoring a Node on a New Host" to restore the image backup, system files, and instance reconfiguration.

**Task 2: Inform the Original Host That It Is No Longer a Repository Host (If Required)**

Now that the file-based repository is restored to the new host, the original host may need to be informed that it is no longer a repository host. If the new host was already a part of the farm and is not a replacement for the original host, and the original host is still part of the farm, execute the following command on the original host:

```
dcmctl repositoryrelocated
```

20.2.8 Restoring an Oracle Application Server Instance

Use the following command to restore an Oracle Application Server instance to a particular point in time:

```
bkp_restore.sh -m restore_instance -t 2004-09-21_06-12-45 -c
```

```
bkp_restore.bat -m restore_instance -t 2004-09-21_06-12-45 -c
```

Before performing a restore operation (restore_instance or restore_config) on an instance in a cluster, all OC4J processes across the cluster must be stopped. Use the following command to stop the processes:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster stopproc ias-component=OC4J
```
Some OC4J components (such as Wireless) do not have `ias-component=OC4J`. For these components use the `uniqueid` value to stop the OC4J process. To determine which components have a `uniqueid`, use the following command:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster status -fmt %typ%uid%prt -noheaders
```

The following is an example of the output from the command:

<table>
<thead>
<tr>
<th>CUSTOM</th>
<th>N/A</th>
<th>DSA</th>
</tr>
</thead>
<tbody>
<tr>
<td>LOGLDR</td>
<td>N/A</td>
<td>logloaderd</td>
</tr>
<tr>
<td>DCMDaemon</td>
<td>1444413512</td>
<td>dcm-daemon</td>
</tr>
<tr>
<td>WebCache</td>
<td>1500577871</td>
<td>WebCache</td>
</tr>
<tr>
<td>WebCache-admin</td>
<td>1500577872</td>
<td>WebCacheAdmin</td>
</tr>
<tr>
<td>OHS</td>
<td>1500577870</td>
<td>HTTP_Server</td>
</tr>
<tr>
<td>performance</td>
<td>1500577873</td>
<td>performance_server</td>
</tr>
<tr>
<td>messaging</td>
<td>1500577874</td>
<td>messaging_server</td>
</tr>
<tr>
<td>OC4J</td>
<td>1500577865</td>
<td>OC4J_Wireless</td>
</tr>
</tbody>
</table>

Stop all the OC4J processes, for which the second column (`uid`) value is not "N/A", with the following command:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster stopproc uniqueid=1500577865
```

```
opmnctl: stopping opmn managed processes...
```

After the restore operation is complete, use the following command to restart the OC4J processes across the cluster:

```
ORACLE_HOME/opmn/bin/opmnctl @cluster startproc ias-component=OC4J
```

For components that use `uniqueid`, you can restart their process by using the appropriate `ias-component` value or by using the following command:

```
opmnctl startall
```
This chapter describes common problems that you might encounter when using the Backup and Recovery Tool, and explains how to solve them. It contains the following topic:

- Problems and Solutions

21.1 Problems and Solutions

This section describes common problems and solutions. It contains the following topics:

- Receiving restore_config Operation Fails Error
- Receiving Missing Files Messages During restore_config Operation
- File-Based Repository Restoration Fails
- Cannot Run a Cold Backup on Identity Management or J2EE Instance
- Failure Due to Loss or Corruption of OPMN.XML File
- A restore_config Operation Fails
- Backup Operation Fails on a DCM File-Based Repository
- Timeout Occurs While Trying to Stop Processes Using opmnctl stopall
- Using the Backup and Recovery Tool to Perform a Recovery Fails Due to an Unknown Log Sequence Number
- Enterprise Manager Cannot Access Restored Nodes on New Hosts
- Restore of OracleAS Portal Fails After Deleting OC4J Instance
- Cold Backups Do Not Shut Down All Databases in RAC Environment
- A restore_instance Fails at restore_repos Stage
- Changing ORACLE_HOME May Cause Backup or Recovery Failure
- Restore Operation Changes Farm Topology Leaving an Instance in Inconsistent State
- Post-deployment Changes to Configuration Files Are Lost After Restoring DCM-Managed Components
21.1.1 Receiving restore_config Operation Fails Error

A restore_config operation fails.

Problem
A restore_config operation fails with the following error:

```
C:\OracleAS\IM_1128\dcm\bin\dcmctl.bat applyarchiveto -archive
2004-11-29_11-23-18 -script
ADMIN-906025
Base Exception:
The exception, 100999, occurred at Oracle Application Server instance
"im_1128.stajx14.us.oracle.com"
"See base exception for details. See base exception for details."
```

Resolution:
Resolve the indicated problem at the Oracle Application Server instance where
it occurred then resync the instance.

```
java.lang.Exception: Could not delete file
C:\OracleAS\IM_1128\j2ee\OC4J_SECURITY\application-deployments\wirelessso\jazn-data.xml. Please check file permissions.
at oracle.security.jazn.smi.JAZNPlugin.commit(Unknown Source)
at oracle.ias.sysmgmt.repository.DcmPlugin.commit(Unknown Source)
```

Solution
If you see an error similar to "Could not delete file jazn-data.xml", execute
the following steps:

- Stop all the OC4J processes using the following command:
  ```
 ORACLE_HOME/opmn/bin/opmncnt stopproc ias-component=OC4J
  ```
- Rerun the restore_config operation.

21.1.2 Receiving Missing Files Messages During restore_config Operation

A restore_config operation generates missing file messages.

Problem
During a restore_config operation, you receive messages indicating that files are
missing, for example:

```
Could not copy file C:\Product\OracleAS\Devkit_1129\testdir/ to
C:\Product\OracleAS\Devkit_1129\backup_restore\cfg_bkp/2004-12-01_03-26-22.
```

Solution
During a restore_config operation, a temporary configuration backup is taken so
that, if the restore fails, the temporary backup can be restored returning the instance to
the same state as before the restore.

If some files are deleted (including files/directories specified in config_misc_files.inp)
before a restore operation, then, during the temporary backup, messages are displayed
indicating that certain files are missing. These error/warning messages should be
ignored since the missing files are restored as part of the restore_config operation.

21.1.3 File-Based Repository Restoration Fails

A file-based repository restoration fails.
Problems and Solutions

Troubleshooting the Backup and Recovery Tool

21.3 Problem
File-based repository restoration fails with the error indicating that the dcm daemons across the farm could not be restarted.

C:\fbfhost\backup_restore>bkp_restore.bat -m restore_repos -t 2004-12-07_13-49-13

C:\fbfhost\backup_restore>echo off

Stopping dcm-daemon across the farm ...  
Importing file based repository ...  
Restarting dcm-daemon across the farm ...  

Problem running command (Returned 150)

The file based repository has been restored.

But, dcm daemons across farm could not be restarted.

Please take the appropriate action.
See c:\logs/2004-12-07_13-50-18_restore_repos.log for more info

Solution
At this point, the file-based repository has been restored successfully. Now, perform the following steps on the repository host:

1. Stop the dcm-daemon process on the file based repository host:

   \ORACLE_HOME\opmn\bin\opmnctl stopproc ias-component=dcm-daemon

2. Start the dcm-daemon processes across farm:

   \ORACLE_HOME\opmn\bin\opmnctl @farm startproc ias-component=dcm-daemon

21.4 Cannot Run a Cold Backup on Identity Management or J2EE Instance

You cannot run a cold backup on Identity Management or a J2EE instance.

Problem
When backup_cold is attempted on Identity Management or a J2EE instance, the following error message displays:

C:\Product\OracleAS\SSO_1203\backup_restore>bkp_restore.bat -v -m backup_cold

C:\Product\OracleAS\SSO_1203\backup_restore>echo off

Running command:
C:\Product\OracleAS\SSO_1203\dcm\bin\dcmctl.bat whichfarm -v -script >>
C:\Product\OracleAS\SSO_1203\backups\log_path/2004-12-09_03-56-55_whichfarm.log
C:\Product\OracleAS\SSO_1203\backup_restore/config/config.inp: Invalid 'database backup_path' specified
VALUE_NOT_SET - No such file or directory
Consider using '-f' to force creation of this path
Failure: backup_cold failed

Solution
The backup_cold operation should be used only on the repository hosts—Metadata Repository instance or any instance hosting a file-based repository.

21.5 Failure Due to Loss or Corruption of OPMN.XML File

The loss or corruption of the opmn.xml file is causing a failure.
Problem
The loss or corruption of the opmn.xml file caused the following error:

ADMN-906025
Base Exception:
The exception, 100999, occurred at Oracle Application Server instance "J2EE_1123.stada07.us.oracle.com"

Solution
Perform the following steps to restore the opmn.xml file:

1. Execute the following command:
   
   bkp_restore.bat -m restore_config -t timestamp

2. If that command fails, stop the OC4J processes.

3. Re-execute the following command

   bkp_restore.bat -m restore_config -t timestamp

21.1.6 A restore_config Operation Fails

A restore_config operation fails or the ORACLE_HOME/j2ee/OC4J_SECURITY directory is deleted.

Problem:
The ORACLE_HOME/j2ee/OC4J_SECURITY directory is accidently deleted or a restore_config operation fails with the following error:

ADMN-906025
Base Exception:
The exception, 806212, occurred at Oracle Application Server instance "OID.stada07.us.oracle.com"

OMN Request: /start?mode=sync&process-type=OC4J_SECURITY

OMN Response: HTTP/1.1 204 No Content
Content-Length: 724
Content-Type: text/html
Response: 0 of 1 processes started.

<?xml version='1.0' encoding='US-ASCII'?>
<response>
  <opmn id="stada07:6200" http-status="204" http-response="0 of 1 processes started."/>
  <ias-instance id="OID.stada07.us.oracle.com">
    <ias-component id="OC4J">
      <process-type id="OC4J_SECURITY">
        <process-set id="default_island">
          <process id="511967353" pid="956" status="Init" index="1"
          log="C:\Product\OracleAS\OID\opmn\logs\OC4J-OC4J_SECURITY-default_island-1"
            operation="request" result="failure">
              <msg code="-21" text="failed to start a managed process after the maximum retry limit">

Solution:
To resolve this problem, run the following command:

- On UNIX systems:
Troubleshooting the Backup and Recovery Tool

21.1.7 Backup Operation Fails on a DCM File-Based Repository

The backup of a DCM file-based repository fails.

Problem:
The backup of a DCM file-based repository fails because of missing or corrupted files in the repository.

Solution:
If *.bom files are missing, use `restore_config` to restore the repository and then backup the repository.
For all other files, use `restore_repos` to restore the repository, and then run any of the backup options to backup the repository.

21.1.8 Timeout Occurs While Trying to Stop Processes Using opmnctl stopall

During `backup_instance_cold`, `backup_instance_cold_incr`, and `restore_instance` operations, a timeout may occur while trying to stop processes using the `opmnctl stopall` command.

Problem:
During some operations involving the backup or restore of a server instance, a timeout may occur while trying to stop processes using the `opmnctl stopall` command. This can occur because of heavy machine load or a process taking a long time to shut down. Under these conditions, you may receive an error message similar to the following:

Oracle Application Server instance backup failed.
Stopping all opmn managed processes ...

Failure : backup_instance_cold_incr failed

Unable to stop opmn managed processes !!!

Solution:
Running `opmnctl stopall` a second time should resolve this problem.

21.1.9 Using the Backup and Recovery Tool to Perform a Recovery Fails Due to an Unknown Log Sequence Number

When performing a recovery using the Backup and Recovery Tool, the RMAN recovery fails due to an unknown log sequence number. Use the following command to correct the problem:

```
sqlplus> alter database open resetlogs;
```

21.1.10 Enterprise Manager Cannot Access Restored Nodes on New Hosts

After using Loss of Host Automation to restore the nodes to new hosts, Enterprise Manager cannot access the nodes.
Problem
The scenario is that all nodes on a farm were lost. After using Loss of Host Automation to restore the nodes to new hosts, Enterprise Manager cannot access the nodes. The cause of this problem is that the dcmCache.xml files are not updated between restores of the individual nodes.

Solution
After restoring the first node, save a copy of dcmCache.xml from the second node. After restoring the second node, copy the saved copy of dcmCache.xml to the second node. Restart all processes on both nodes.

21.1.11 Restore of OracleAS Portal Fails After Deleting OC4J Instance
A restore of an OracleAS Portal instance fails after deleting an OC4J instance that was part of the backup being restored.

Problem
After a successful backup of an Infrastructure and OracleAS Portal with an OC4J instance, a restore of the Infrastructure succeeds, but the restore of OracleAS Portal fails. The OC4J instance was deleted before the restore.

Solution
Before running a restore on OracleAS Portal, run the following command:

dcmctl resyncInstance -force

21.1.12 Cold Backups Do Not Shut Down All Databases in RAC Environment
If the Oracle Application Server Metadata Repository is installed in an existing Oracle database (MRDB), which is configured as a Real Application Cluster (RAC), then before performing a Full Cold Backup using Enterprise Manager or executing backup_instance_cold or backup_cold in command-line mode, you must shut down all the instances in the cluster database. You can use Enterprise Manager to shutdown the entire cluster database, run srvctl stop database to stop all the started instances or run SQL*PLUS to shut down each started instance.

21.1.13 A restore_instance Fails at restore_repos Stage
Running restore_instance fails when trying to restore the database (restore_repos).

Problem
Restoring an instance fails with the following error:

unable to find archive log
archive log thread=1 sequence=3
released channel: dev1
RMAN-00571: ===========================================================
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===========================================================
RMAN-03002: failure of recover command at <time>
RMAN-06054: media recovery requesting unknown log: thread <> seq <> lows cn <>

Solution
Perform the following steps to resolve the problem:
1. Complete database recovery by running the following command:
   ```bash
 sqlplus > alter database open resetlogs;
   ```

2. Configuration recovery:
   ```bash
 perform opmnctl startall
   ```

3. Configuration restore:
   On UNIX:
   ```bash
 bkp_restore.sh -m restore_config -t timestamp
   ```
   On Windows:
   ```bash
 bkp_restore.bat -m restore_config -t timestamp
   ```

### 21.1.14 Changing ORACLE_HOME May Cause Backup or Recovery Failure

Changing ORACLE_HOME from the ORACLE_HOME used to start the database may result in an error while performing backup or recovery operations.

**Problem**

Changing ORACLE_HOME to a different directory from the directory used to start the database may result in errors when trying to perform backup or recovery. For example, if you started the database with ORACLE_HOME set to home/foo and later try to connect to private/foo, you will not be able to connect to the original instance.

**Solution**

To verify where ORACLE_HOME resides, run the following command:
```bash
/usr/ucb/ps -auxww | grep pmon
```

If the value returned for ORACLE_HOME is different from the environment ORACLE_HOME, restart the database with the ORACLE_HOME set for the environment.

### 21.1.15 Restore Operation Changes Farm Topology Leaving an Instance in Inconsistent State

A restore operation on one instance can change the farm topology leaving another instance on the farm in an inconsistent state.

**Problem**

The scenario: install core1 as a file-based repository host and take a cold backup. Install core2 and join it to core1 as a file-based repository client. Restore the file-based repository for core1. This will corrupt core2 as it was joined to core1 after the cold backup. Core2 points to core1 as the file-based repository host, but there is no record of core2 in core1 after the restore.

**Solution**

Before restoring the file-based host (core1), run `dcmctl leavefarm` on core2. After restoring the repository, run `dcmctl joinfarm` on core2.

Alternatively, restore core2 with a backup taken prior to joining it to the core1 file-based repository.
21.1.16 Post-deployment Changes to Configuration Files Are Lost After Restoring DCM-Managed Components

Post-deployment changes to configuration files are lost after restoring DCM-managed component configurations.

Problem

After deploying Oracle Application Server, changes made to configuration files, such as web.xml (1 for each application), are lost after the Backup and Recovery Tool restores DCM-managed component configurations.

Solution

After the restore operation completes, the web.xml files can be copied from the configuration backup using the following manual procedure:

1. Find the config_backup_path value from ORACLE_HOME/backup_restore/config/config.inp file.

2. Change the current directory to the config_backup_path directory:
   ```
 cd config_backup_path
   ```

3. Locate the config backup jar file containing the web.xml files with the changes.

4. Copy the config backup jar file to a temporary location:
   ```
 cp config_bkp_yyyy-mm-dd_hh-mm-ss.jar /tmp
   ```

5. Unjar the config backup jar file at temporary location:
   ```
 cd /tmp
 jar xvf config_bkp_yyyy-mm-dd_hh-mm-ss.jar
   ```

6. Find the web.xml files in config backup directory:
   ```
 cd config_bkp_yyyy-mm-dd_hh-mm-ss
   ```
   On UNIX:
   ```
 find . -name web.xml -print
 ./j2ee/home/applications/dms/WEB-INF/web.xml
 ./j2ee/home/applications/BC4J/webapp/WEB-INF/web.xml
 ./j2ee/home/default-web-app/WEB-INF/web.xml
   ```

7. Restore the web.xml files into the ORACLE_HOME:
   ```
 cp j2ee/home/applications/dms/WEB-INF/web.xml
 ORACLE_HOME/j2ee/home/applications/dms/WEB-INF/web.xml
 cp j2ee/home/applications/BC4J/webapp/WEB-INF/web.xml
 ORACLE_HOME/j2ee/home/applications/BC4J/WEB-INF/web.xml
 cp j2ee/home/default-web-app/WEB-INF/web.xml
 ORACLE_HOME/j2ee/home/default-web-app/WEB-INF/web.xml
   ```

   Alternatively, you can combine steps 6 and 7 in a script. This can be done in a UNIX shell script as follows:
   ```
 CSH> foreach (i) `find . -name web.xml -print`
 CSH> cp $i $ORACLE_HOME/$i
 CSH> end
   ```
This part contains the following appendixes and a glossary:

- Appendix A, "Managing and Configuring Application Server Control"
- Appendix B, "Oracle Application Server Command-Line Tools"
- Appendix C, "URLs for Components"
- Appendix D, "Oracle Application Server Port Numbers"
- Appendix E, "Metadata Repository Schemas"
- Appendix F, "printlogs Tool Syntax and Usage"
- Appendix G, "Examples of Administrative Changes"
- Appendix H, "Supplementary Procedures for Configuring LDAP-Based Replicas"
- Appendix I, "Viewing Oracle Application Server Release Numbers"
- Appendix J, "Troubleshooting Oracle Application Server"
- Glossary
When you install Oracle Application Server, the installation procedure automatically starts Oracle Enterprise Manager 10g Application Server Control and its related processes. You can then immediately start using the Application Server Control Console to manage the application server components.

You can also control and configure the Application Server Control. For example, you can start and stop the Application Server Control, change the Application Server Control Console password, and configure security for the Application Server Control.

This appendix covers how to manage and configure the Application Server Control. It contains the following topics:

- Starting and Stopping the Application Server Control
- Understanding Application Server Control Console Processes on UNIX
- Changing the ias_admin Password
- Configuring Security for Application Server Control Console
- Using the EM_OC4J_OPTS Environment Variable to Set Additional Application Server Control Options
- Enabling ODL for the Application Server Control Log File
- Enabling Enterprise Manager Accessibility Mode

### A.1 Starting and Stopping the Application Server Control Console on UNIX

On a UNIX system, you must start the Application Server Control manually after each system restart, or create a script to automatically start it during system start. To start or
stop the Application Server Control on a UNIX system, use the `emctl` command shown in Table A–1.

The `emctl` command is available in the `ORACLE_HOME/bin` directory after you install Oracle Application Server.

<table>
<thead>
<tr>
<th>Table A–1  Starting and Stopping the Application Server Control Console</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Action</strong></td>
</tr>
<tr>
<td>Start the Application Server Control Console in the Oracle home</td>
</tr>
<tr>
<td>Stop the Application Server Control Console in the Oracle home</td>
</tr>
<tr>
<td>Verify the status of the Application Server Control Console</td>
</tr>
</tbody>
</table>

A.1.2 Starting and Stopping the Application Server Control Console on Windows

To start or stop the Application Server Control on Windows systems, use one of the following methods:

- From the Windows **Start** menu, navigate to the Oracle Enterprise Manager menu item for the Oracle home and select **Start AS Console** or **Stop AS Console**.

  For example, to start the Application Server Control on Windows 2000, select **Start > Programs > Oracle - Oracle_Home Enterprise Manager > Start AS Console**.

- From the Windows Services control panel:
  1. Open the Services control panel.
     For example, on Windows 2000, select **Start > Settings > Control Panel > Administrative Tools** and then double-click the Services icon.
  2. Locate the Application Server Control in the list of services.
     The name of the service is consists of “Oracle,” followed by the name of the home directory you specified during the installation, followed by the word “ASControl.” For example, if you specified AS10g as the Oracle home, the Service name would be:
     `OracleAS10gASControl`
  3. After you locate the service, you can use the Services control panel to start or stop the Application Server Control service.
     By default, the Application Server Control service is configured to start automatically when the system starts.

A.1.3 Verifying That the Application Server Control Is Running

You can verify the Application Server Control is started by pointing your browser to the Application Server Control Console URL:

```
http://hostname.domain:port
```

For example:

```
http://hostname.domain:1156
```

There are two ways to locate the Application Server Control Console port number:
• Review the contents of the portlist.ini file, which is located in the following directory in the Oracle Application Server Oracle home:

(UNIX) ORACLE_HOME/install/portlist.ini
(Windows) ORACLE_HOME\install\portlist.ini

• Enter the following command:

(UNIX) ORACLE_HOME/bin/emctl status iasconsole
(Windows) ORACLE_HOME\bin\emctl status iasconsole

See Also: Section 2.3.1, "Displaying the Application Server Control Console"

A.2 Understanding Application Server Control Console Processes on UNIX

When you start the Application Server Control, Enterprise Manager starts three distinct processes on your UNIX system. To identify these processes, you can do the following:

1. Locate and view the contents of the following file in the application server home directory:

   ORACLE_HOME/bin/emctl.pid

   This file contains the process ID for the Application Server Control. For example:

   cat emctl.pid
   5874

2. Use the following operating system command to list information about the process, including the parent process ID:

   ps -ef | grep process_id_from_the_emctl.pid_file

   For example:

   ps -ef | grep 5874
   pjones 5874 7983 0 14:40:44 pts/13 1:08 /disk03/oracle/app1/jdk/bin/java -Xmx256m -DORACLE_HOME=/private/90

3. Note the number that appears immediately after the process ID; this is the process ID for the Application Server Control parent process.

4. Use the following operating system command to list all the processes associated with the Application Server Control Console:

   ps -ef | grep parent_process_id

Sample output from this command is shown in Example A–1. Descriptions of each process shown in the example are provided in Table A–2.

Example A–1 Viewing Application Server Control Console Processes

ps -ef | grep 7983
pjones 5874 7983 0 14:40:44 pts/10 14:42 /disk03/oracle/app1/bin/emagent
pjones 7983 1 0 14:40:41 pts/10 0:27 /disk03/oracle/app1/perl/bin/perl
pjones 5874 7983 0 14:40:44 pts/10 2:05 /disk03/oracle/app1/jdk/bin/java -Xmx256m -DORACLE_HOME=/private/90
A.3 Changing the ias_admin Password

The ias_admin password is required to use the Application Server Control Console. The following sections describe how you can change the ias_admin user password:

- Changing the Password Using the Application Server Control Console
- Changing the Password Using the emctl Command-Line Tool

---

**Caution:** If you use Infrastructure Services, you must adhere to the Oracle Internet Directory password policy when setting the ias_admin password. This is because, even though the ias_admin password is not stored in Oracle Internet Directory, it may be used to set component passwords within Oracle Internet Directory. The default password policy is a minimum of five characters, with at least one numeric character.

For more information, see the Oracle Internet Directory Administrator’s Guide.

---

### A.3.1 Changing the Password Using the Application Server Control Console

To change the ias_admin user password using the Application Server Control Console:

1. Navigate to the Application Server home page and select Preferences in the top right corner of the page.
   
   Application Server Control Console displays the Change Password page.

2. Enter the current ias_admin password, the new password, and the new password again for confirmation.
   
   The new password must be between 5 and 30 characters, it must begin with an alphabetic character, and it must contain at least one number.

3. Click OK to reset the ias_admin password for the current application server instance.
   
   The next time you log in, you must use the new password.

---

### A.3.2 Changing the Password Using the emctl Command-Line Tool

To change the ias_admin user password using a command-line tool:

---

**Table A–2 Summary of Application Server Control Console Processes**

<table>
<thead>
<tr>
<th>Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>emagent</td>
<td>This is the first process shown in Example A–1. This process is for the Oracle Management Agent, which is a local version of the Management Agent designed specifically for monitoring Oracle Application Server components.</td>
</tr>
<tr>
<td>perl</td>
<td>This is the second process shown in Example A–1. This process is for the Management Watchdog Process, which monitors the Management Agent and the Application Server Control to make sure both processes are running and available at all times.</td>
</tr>
<tr>
<td>java</td>
<td>This is the third process shown in Example A–1. This process is for the Application Server Control itself.</td>
</tr>
</tbody>
</table>
1. Enter the following command in the Oracle home of your Oracle Application Server installation:

(UNIX) `ORACLE_HOME/bin/emctl set password old_password new_password`

(Windows) `ORACLE_HOME\bin\emctl set password old_password new_password`

For example:

(UNIX) `ORACLE_HOME/bin/emctl set password m5b8r5 b8s0d9`

(Windows) `ORACLE_HOME/bin\emctl set password m5b8r5 b8s0d9`

2. Restart the Application Server Control.

See Also: Section A.1, "Starting and Stopping the Application Server Control"

A.4 Configuring Security for Application Server Control Console

The Application Server Control Console relies on several underlying technologies, including a version of the Management Agent that is designed to provide monitoring data to the Application Server Control Console.

By default, you access the Application Server Control Console through your Web browser using the non-secure, HTTP, protocol. In addition, communications between the local Management Agent and the Application Server Control Console are transferred over insecure connections.

To secure the communications between the Management Agent and the Application Server Control Console, and to provide HTTPS browser access to the Application Server Control Console, Enterprise Manager provides the `emctl secure iasconsole` command-line utility.

The `emctl secure iasconsole` utility enables HTTPS and public key infrastructure (PKI) components, including signed digital certificates, for communications between the Application Server Control Console and the local Management Agent.

See Also: Oracle Application Server Security Guide

To configure security for the Application Server Control Console:

1. Stop the Application Server Control Console by entering the following command:

(UNIX) `ORACLE_HOME/bin/emctl stop iasconsole`

(Windows) `net stop SERVICE_NAME`

See Also: Section A.1, "Starting and Stopping the Application Server Control"

2. Enter the following command:

(UNIX) `ORACLE_HOME/bin/emctl secure iasconsole`

(Windows) `ORACLE_HOME\bin\emctl secure iasconsole`
Enterprise Manager secures the Application Server Control Console. Sample output of the emctl secure iasconsole command is shown in Example A-2.

3. Start the Application Server Control Console by entering the following command:

   (UNIX) ORACLE_HOME/bin/emctl start iasconsole
   (Windows) net start SERVICE_NAME

4. Test the security of the Application Server Control Console by entering the following URL in your Web browser:

   https://hostname.domain:port/

   For example:

   https://mgmthost1.myco:1156/

5. If you are using OracleAS Portal, update the Portal Service Monitoring link in OracleAS Portal so you can continue to access the Application Server Control Console directly from OracleAS Portal.

   See Also: "Updating Oracle Enterprise Manager Link in OracleAS Portal" in the Oracle Application Server Portal Configuration Guide

Example A–2 Sample Output from the emctl secure iasconsole Command

   ./emctl stop iasconsole
   Oracle Enterprise Manager 10g Application Server Control Release 10.1.4.0.1
   Copyright (c) 1996, 2006 Oracle Corporation. All rights reserved.
   http://appserv1.acme.com:1811/emd/console/aboutApplication
   Stopping Oracle Enterprise Manager 10g Application Server Control ... ...
   Stopped.

   ./emctl secure iasconsole
   Oracle Enterprise Manager 10g Application Server Control Release 10.1.4.0.1
   Copyright (c) 1996, 2006 Oracle Corporation. All rights reserved.
   http://appserv1.acme.com:1811/emd/console/aboutApplication
   Generating Standalone Console Root Key (this takes a minute)... Done.
   Fetching Standalone Console Root Certificate... Done.
   Generating Standalone Console Agent Key... Done.
   Storing Standalone Console Agent Key... Done.
   Generating Oracle Wallet for the Standalone Console Agent... Done.
   Configuring Agent for HTTPS... Done.
   EMD_URL set in /dsk02/oracle/appserv1/sysman/config/emd.properties
   Generating Standalone Console Java Keystore... Done.
   Configuring the website ... Done.
   Updating targets.xml ... Done.

A.5 Using the EM_OC4J_OPTS Environment Variable to Set Additional Application Server Control Options

The following topics describe how you can use the EM_OC4J_OPTS environment variable to configure some additional Application Server Control options:

- Summary of Options You Can Set with the EM_OC4J_OPTS Environment Variable
- Setting the EM_OC4J_OPTS Environment Variable
A.5.1 Summary of Options You Can Set with the EM_OC4J_OPTS Environment Variable

You can use the EM_OC4J_OPTS environment variable to set the following options, which can affect the performance of the Application Server Control Console pages:

- By default, Application Server Control retrieves metric data as it is requested. In other words, each time you display a page that contains performance metrics, Application Server Control retrieves the data in real time by running a series of tasks that often involve connections to other software components. Depending upon the type of metric and the type of component, these operations can affect how quickly the page is displayed.

To retrieve cached metrics (metrics which are collected and stored in memory by the Oracle Management Agent) define the environment variable EM_OC4J_OPTS to the following:

-Doracle.sysman.refreshFlag=true

Setting this option to TRUE can improve the performance of specific pages in the Application Server Control Console; however, the data displayed on those pages may not be as recent as it would be when this option is set to FALSE.

- By default, the Application Server Control Console displays a progress page when operations take time to complete. To disable the processing page so that the Application Server Control Console waits for start, stop, and other such actions without displaying a progress page, define the environment variable EM_OC4J_OPTS to the following before starting the Application Server Control Console:

-Doracle.sysman.eml.util.iAS.waitForCompletion=true

- By default, when Application Server Control attempts to retrieve performance data, it waits two (2) seconds before displaying the requested page. If the data has not been retrieved within 2 seconds, some metric values do not appear on the page when it is rendered in the Web browser. To display the data after the page has been rendered, click the Refresh Data icon near the timestamps on the page.

To increase the timeout for status and host-related metrics such as Memory and CPU usage on the Application Server home page, define the environment variable EM_OC4J_OPTS to the following before starting the Application Server Control Console:

-Doracle.sysman.ias.ApplicationServerObject.timeout=true

When this option is set to TRUE, certain Application Server Control Console pages may take longer to display, but you will experience fewer metric collection errors.

Note that this setting affects only components that are not managed by Oracle Process Manager and Notification Server (OPMN).

See Also: Oracle Process Manager and Notification Server Administrator’s Guide for a complete list of the Oracle Application Server components that are managed by OPMN.

A.5.2 Setting the EM_OC4J_OPTS Environment Variable

On UNIX systems, set the EM_OC4J_OPTS environment variable as follows:

setenv EM_OC4J_OPTS "-Doracle.sysman.eml.util.iAS.waitForCompletion=true"
To set multiple configuration options with the EM_OC4J_OPTS variable, separate the options with a space and enclose the entire value of the variable within quotation marks. For example:

```
setenv EM_OC4J_OPTS '-Doracle.sysman.eml.util.iAS.waitForCompletion=true
-Doracle.sysman.ias.ApplicationServerObject.timeout=true'
```

On Windows systems, use the System Properties control panel to define EM_OC4J_OPTS as a system variable.

### A.6 Enabling ODL for the Application Server Control Log File

By default, the log file generated for Application Server Control is saved in text format. However, you can configure Application Server Control so its log file will be saved using the Oracle Diagnostic Logging (ODL) format.

When you enable ODL for the Application Server Control log files, the logging and diagnostic information is saved in XML format and the contents of the log files are loaded automatically into the Log Repository. You can then use the Log Repository to search for diagnostic information generated by the Application Server Control.

**See Also:** Chapter 5, "Managing Log Files"

By default, Application Server Control logs information and errors to the following log file in the application server home directory:

(UNIX) `ORACLE_HOME/sysman/log/emias.log`

(Windows) `ORACLE_HOME\sysman\log\emias.log`

After you perform the following procedure, Application Server Control will instead log information and error messages to the following file, which formats the data according to the ODL standard:

(UNIX) `ORACLE_HOME/sysman/log/log.xml`

(Windows) `ORACLE_HOME\sysman\log\log.xml`

As soon as Application Server Control creates the `log.xml` file and you start the Log Loader, the Log Loader begins loading the logging data into the Oracle Application Server Log Repository on the Log Loader’s next run.

Refer to the following sections for more information:

- Configuring the Application Server Control Logging Properties to Enable ODL
- About the Application Server Control ODL Logging Properties
- Configuring Logging Properties When ODL Is Not Enabled

### A.6.1 Configuring the Application Server Control Logging Properties to Enable ODL

To configure the Application Server Control to support ODL:

1. Use a text editor to edit the following file in the Oracle Application Server home directory:

   (UNIX) `ORACLE_HOME/sysman/config/emiasconsolelogging.properties`

   (Windows) `ORACLE_HOME\sysman\config\emiasconsolelogging.properties`

2. Follow the instructions in the file to replace the default properties with those that are commented by default.
Example A–3 shows the properties in the `emiasconsolelogging.properties` file that enable ODL for the Application Server Control log file.

3. Save and close the `emiasconsolelogging.properties` file.

4. Restart Application Server Control.

**Example A–3  ODL Logging Properties for the Application Server Control Console**

```
To support the ODL log appender, replace the lines above
with the following and restart EM. The resulting ODL log files
will be read by the Log Loader and written to the Log Repository.
#
log4j.appender.emiaslogAppender=oracle.core.ojdl.log4j.OracleAppender
log4j.appender.emiaslogAppender.ComponentId=EM
log4j.appender.emiaslogAppender.LogDirectory=/private/shiphomes/m21_infra/sysman/log
log4j.appender.emiaslogAppender.MaxSize=2000000
log4j.appender.emiaslogAppender.MaxSegmentSize=5000000
```

### A.6.2 About the Application Server Control ODL Logging Properties

Table A–3 describes the Oracle Diagnostic Logging (ODL) logging properties available in the `emiasconsolelogging.properties` file.

**Table A–3  ODL Properties in Application Server Control Console Logging Properties**

<table>
<thead>
<tr>
<th>Property</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>log4j.appender.emiaslogAppender.LogDirectory</td>
<td>Determines the directory where the log.xml file will be saved.</td>
</tr>
<tr>
<td>log4j.appender.emiaslogAppender.MaxSize</td>
<td>Determines the maximum amount of disk space to be used by the log.xml file and the logging rollover files.</td>
</tr>
<tr>
<td>log4j.appender.emiaslogAppender.MaxSegmentSize</td>
<td>Determines the maximum size of the log.xml file. When the log.xml file reaches this size, a rollover file is created.</td>
</tr>
</tbody>
</table>

When you enable ODL, the resulting log.xml file increases in size over time as information is written to the file. The file is designed to reach a maximum size, determined by the MaxSegmentSize property described in Table A–3. When the file reaches the predefined maximum size, Application Server Control renames (or rolls) the logging or trace information to a new file name and starts a new log or trace file. This process keeps the log file from growing too large.

To be sure you have access to important log information, Application Server Control will rollover the log.xml file until the log file and its rollover files consume a predefined, maximum amount of disk space, determined by the MaxSize property shown in Example A–3. When the log file and its rollover files reach this predefined target, Application Server Control deletes the oldest rollover file.

As a result, you will often see multiple log files in the log directory. The following example shows three Application Server Control rollover files and the current log file in the log directory:

`log.xml`
`log1.xml`
`log2.xml`
`log3.xml`
A.6.3 Configuring Logging Properties When ODL Is Not Enabled

If you do not enable ODL, you can still configure the logging properties for the Application Server Control by modifying the following configuration files:

- **emiasconsolelogging.properties**
  Modify the properties in this file to configure the amount of information saved to the `emias.log` file, which contains general logging information about the Application Server Control.

- **emagentlogging.properties**
  Modify the properties in this file to configure the amount of information saved to the `emagent.log` file, which contains logging information specific to the Management Agent.

For more information about the configuration settings in these files, see "Locating and Configuring Log Files" in Oracle Enterprise Manager Advanced Configuration.

A.7 Enabling Enterprise Manager Accessibility Mode

The following sections provide information on the benefits of running Enterprise Manager in accessibility mode, as well as instructions for enabling accessibility mode:

- **Making HTML Pages More Accessible**
- **Providing Textual Descriptions of Enterprise Manager Charts**
- **Modifying the uix-config.xml File to Enable Accessibility Mode**

A.7.1 Making HTML Pages More Accessible

Enterprise Manager takes advantage of user interface development technologies that improve the responsiveness of some user operations. For example, when you navigate to a new record set in a table, Enterprise Manager does not redisplay the entire HTML page.

However, this performance-improving technology is generally not supported by screen readers. When you enable accessibility mode, you disable this feature, and as a result, make the Enterprise Manager HTML pages more accessible for disabled users.

A.7.2 Providing Textual Descriptions of Enterprise Manager Charts

Throughout Enterprise Manager, charts are used to display performance data. For most users, these charts provide a valuable graphical view of the data that can reveal trends and help identify minimum and maximum values for performance metrics.

However, charts do not convey information in a manner that can be read by a screen reader. To remedy this problem, you can configure Enterprise Manager to provide a complete textual representation of each performance chart. When you enable accessibility mode, Enterprise Manager displays a small icon for each chart that can be used as a drill-down link to the textual representation.

Figure A–1 shows an example of the icon that appears below each chart after you enable accessibility mode.
A.7.3 Modifying the uix-config.xml File to Enable Accessibility Mode

1. Locate the uix-config.xml configuration file in the Oracle Application Server home directory:

   (UNIX) `ORACLE_HOME/sysman/webapps/emd/WEB-INF`
   (Windows) `ORACLE_HOME\sysman\webapps\emd\WEB-INF`

2. Open the uix-config.xml file using your favorite text editor and locate the following entry:

   ```xml
 <!-- An alternate configuration that disables accessibility features -->
 <default-configuration>
 <accessibility-mode>inaccessible</accessibility-mode>
 </default-configuration>
   ```

3. Change the value of the `accessibility-mode` property from `inaccessible` to `accessible`.

4. Save and close the file.

5. Restart the Application Server Control Console.
Table B–1 summarizes the command-line tools available in Oracle Application Server, with descriptions and pointers to more information.

<table>
<thead>
<tr>
<th>Command</th>
<th>Path from Oracle Home</th>
<th>Description</th>
</tr>
</thead>
</table>
| bulkdelete| UNIX: ldap/bin/bulkdelete  
Windows: ldap\bin\bulkdelete | Delete a subtree efficiently in Oracle Internet Directory.  
[See: Oracle Identity Management User Reference](#) |
| bulkload  | UNIX: ldap/bin/bulkload  
Windows: ldap\bin\bulkload | Create Oracle Internet Directory entries from data residing in or created by other applications.  
[See: Oracle Identity Management User Reference](#) |
| bulkmodify| UNIX: bin/bulkmodify  
Windows: bin\bulkmodify | Modify a large number of existing Oracle Internet Directory entries in an efficient way.  
[See: Oracle Identity Management User Reference](#) |
| catalog   | UNIX: ldap/bin/catalog  
Windows: ldap\bin\catalog | Add and delete catalog entries in Oracle Internet Directory.  
[See: Oracle Identity Management User Reference](#) |
| cmdeinst  | UNIX: oca/bin/cmdeinst  
Windows: oca\bin\cmdeinst | Deinstalls Oracle Application Server Certificate Authority.  
[See: Oracle Application Server Installation Guide](#) |
| dcmctl    | UNIX: dcm/bin/dcmctl  
Windows: dcm\bin\dcmctl.bat | Manage application server instances and OracleAS Clusters, deploy applications, manage the DCM repository.  
[See: Distributed Configuration Management Administrator’s Guide](#) |
| deconfig.pl | UNIX: bin/deconfig.pl  
Windows: bin\deconfig.pl | Removes entries in OracleAS Metadata Repository and Oracle Internet Directory for the Oracle Application Server instance that you want to deinstall.  
[See: Oracle Application Server Installation Guide](#) |
| dipassistant | UNIX: bin/dipassistant  
Windows: bin\dipassistant.bat | Assists in performing operations in the Oracle Directory Integration Platform.  
[See: Oracle Identity Management User Reference](#) |
| dmstool   | UNIX: bin/dmstool  
Windows: bin\dmstool.bat | View performance metrics and set reporting intervals.  
[See: Oracle Application Server Performance Guide](#) |
| emctl     | UNIX: bin/emctl  
Windows: bin\emctl.bat | Start, stop, and manage security for Oracle Enterprise Manager 10g.  
[See: Chapter 2, “Introduction to Administration Tools”](#) |
### Table B–1 (Cont.) Oracle Application Server Command-Line Tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Path from Oracle Home</th>
<th>Description</th>
</tr>
</thead>
</table>
| **hiqpurge** | UNIX: /bin/hiqpurge.sh  
Windows: \bin\hiqpurge.bat | Move the changes from the human intervention queue to the purge queue.  
**See:** Oracle Identity Management User Reference |
| **hiqretry** | UNIX: /bin/hiqretry.sh  
Windows: \bin\hiqretry.bat | Move the changes from the human intervention queue to the retry queue.  
**See:** Oracle Identity Management User Reference |
| iasua | UNIX: upgrade\iasua.sh  
Windows: \upgrade\iasua.bat | Oracle Application Server Upgrade Assistant.  
**See:** Oracle Application Server Upgrade and Compatibility Guide |
| **jazn.jar** | UNIX: j2ee\home\jazn.jar  
Windows: j2ee\home\jazn.jar | Manage both XML-based and LDAP-based JAAS data.  
**See:** Oracle Containers for J2EE Security Guide |
| **ldapadd** | UNIX: /bin/ldapadd  
Windows: /bin/ldapadd | Add entries, their object classes, attributes, and values to Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ldapaddmt** | UNIX: /bin/ldapaddmt  
Windows: /bin/ldapaddmt | Add entries, their object classes, attributes, and values to Oracle Internet Directory. Like ldapadd, except supports multiple threads for adding entries concurrently.  
**See:** Oracle Identity Management User Reference |
| **ldapbind** | UNIX: /bin/ldapbind  
Windows: /bin/ldapbind | Determine if you can authenticate a client to a server.  
**See:** Oracle Identity Management User Reference |
| **ldapcompare** | UNIX: /bin/ldapcompare  
Windows: /bin/ldapcompare | Match attribute values you specify in the command-line with the attribute values in the Oracle Internet Directory entry.  
**See:** Oracle Identity Management User Reference |
| **ldapdelete** | UNIX: /bin/ldapdelete  
Windows: /bin/ldapdelete | Remove entire entries from Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ldapmoddn** | UNIX: /bin/ldapmoddn  
Windows: /bin/ldapmoddn | Modify the DN or RDN of an Oracle Internet Directory entry.  
**See:** Oracle Identity Management User Reference |
| **ldapmodify** | UNIX: /bin/ldapmodify  
Windows: /bin/ldapmodify | Perform actions on attributes in Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ldapmodifymt** | UNIX: /bin/ldapmodifymt  
Windows: /bin/ldapmodifymt | Modify several Oracle Internet Directory entries concurrently.  
**See:** Oracle Identity Management User Reference |
| **ldapsearch** | UNIX: /bin/ldapsearch  
Windows: /bin/ldapsearch | Search and retrieve specific entries in Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ldifmigrator** | UNIX: /bin/ldifmigrator  
Windows: /bin/ldifmigrator.bat | Migrate data from application-specific repositories into Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ldifwrite** | UNIX: /bin/ldifwrite  
Windows: /bin/ldifwrite | Convert to LDIF all or part of the information residing in an Oracle Internet Directory.  
**See:** Oracle Identity Management User Reference |
| **ocactl** | UNIX: oca/bin/ocactl  
Windows: oca\bin\ocactl.bat | OracleAS Certificate Authority administration tool.  
**See:** Oracle Application Server Certificate Authority Administrator's Guide |
### Table B–1 (Cont.) Oracle Application Server Command-Line Tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Path from Oracle Home</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>oidctl</td>
<td>UNIX: bin/oidctl</td>
<td>Start and stop Oracle Internet Directory.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\oidctl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>oidmon</td>
<td>UNIX: bin/oidmon</td>
<td>Initiate, monitor, and terminate Oracle Internet Directory processes.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\oidmon</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>oidpasswd</td>
<td>UNIX: bin/oidpasswd</td>
<td>Change the Oracle Internet Directory database password.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\oidpasswd</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>oidprovtool</td>
<td>UNIX: bin/oidprovtool</td>
<td>Administer provisioning profile entries in Oracle Internet Directory.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\oidprovtool.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>oidreconcile</td>
<td>UNIX: bin/oidreconcile</td>
<td>Synchronize Oracle Internet Directory entries.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\oidreconcile</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>oidstats</td>
<td>UNIX: ldap/admin/oidstats.sh</td>
<td>Analyze the various database ods schema objects to estimate statistics.</td>
</tr>
<tr>
<td></td>
<td>Windows: ldap\admin/oidstats.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>ojspc</td>
<td>UNIX: bin/ojspc</td>
<td>JSP back precompiler.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\ojspc.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Containers for J2EE Support for JavaServer Pages Developer’s Guide</td>
<td></td>
</tr>
<tr>
<td>opmnctl</td>
<td>UNIX: opmn/bin/opmnctl.exe</td>
<td>Start, stop, and get status on OPMN-managed processes.</td>
</tr>
<tr>
<td></td>
<td>Windows: opmn\bin\opmnctl.exe</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Process Manager and Notification Server Administrator’s Guide</td>
<td></td>
</tr>
<tr>
<td>ossoca.jar</td>
<td>UNIX: sso/lib/ossoca.jar</td>
<td>Configure OracleAS Single Sign-On, including additional languages.</td>
</tr>
<tr>
<td></td>
<td>Windows: sso\lib\ossoca.jar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Application Server Single Sign-On Administrator’s Guide</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Application Server Globalization Guide</td>
<td></td>
</tr>
<tr>
<td>ossoreg.jar</td>
<td>UNIX: sso/lib/ossoreg.jar</td>
<td>Register mod_osso.</td>
</tr>
<tr>
<td></td>
<td>Windows: sso\lib\ossoreg.jar</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Application Server Single Sign-On Administrator’s Guide</td>
<td></td>
</tr>
<tr>
<td>printlogs</td>
<td>UNIX: diagnostics/bin/printlogs</td>
<td>Print the contents of diagnostic log files to standard output.</td>
</tr>
<tr>
<td></td>
<td>Windows: diagnostics\bin\printlogs.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Appendix F, “printlogs Tool Syntax and Usage”</td>
<td></td>
</tr>
<tr>
<td>remtool</td>
<td>UNIX: ldap/bin/remtool</td>
<td>Search for problems and seek to rectify them in the event of an Oracle Internet Directory replication failure.</td>
</tr>
<tr>
<td></td>
<td>Windows: ldap\bin\remtool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>resetiASpasswd</td>
<td>UNIX: bin/resetiASpasswd.sh</td>
<td>Reset the internal password that instances use to authenticate themselves with Oracle Internet Directory. Resets it to a randomly generated password.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\resetiASpasswd.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Application Server Security Guide</td>
<td></td>
</tr>
<tr>
<td>schemasync</td>
<td>UNIX: bin/schemasync</td>
<td>Synchronize schema elements—namely attributes and object classes—between an Oracle directory server and third-party LDAP directories.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\schemasync.bat</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Oracle Identity Management User Reference</td>
<td></td>
</tr>
<tr>
<td>SSLConfigTool</td>
<td>UNIX: bin/SSLConfigTool</td>
<td>Configure Secure Sockets Layer (SSL) for components of Oracle Application Server.</td>
</tr>
<tr>
<td></td>
<td>Windows: bin\SSLConfigTool</td>
<td></td>
</tr>
<tr>
<td></td>
<td>See: Chapter 12, “Using the SSL Configuration Tool”</td>
<td></td>
</tr>
</tbody>
</table>
Table B–1  (Cont.)  Oracle Application Server Command-Line Tools

<table>
<thead>
<tr>
<th>Command</th>
<th>Path from Oracle Home</th>
<th>Description</th>
</tr>
</thead>
</table>
| ssocfg     | UNIX: sso/bin/ssocfg.sh  
           Windows: sso\bin\ssocfg.bat | Update host, port, and protocol of OracleAS Single Sign-On URL.                                                                                     |
|            |                        | **See:** Oracle Application Server Single Sign-On Administrator’s Guide                                                                        |
| ssooconf.sql | UNIX: portal/admin/plsql/sso/ssooconf.sql  
           Windows: portal\admin\plsql\sso\ssooconf.sql | Point OracleAS Single Sign-On server to a different Oracle Internet Directory.                                                                           |
|            |                        | **See:** Oracle Application Server Single Sign-On Administrator’s Guide                                                                        |
| stopodiserver | UNIX: ldap/odi/admin/stopodiserver.sh  
           Windows: ldap\odi\admin\stopodiserver.bat | In a client-only installation where the Oracle Internet Directory Monitor and Oracle Internet Directory Control Utility are not available, start the Oracle Directory Integration Platform server without the oidctl tool. To stop the server, use the stopodiserver tool. |
|            |                        | **See:** Oracle Identity Management User Reference                                                                                                |
| uninstall.jar | UNIX: fed/bin/uninstall.jar  
           Windows: fed\bin\uninstall.jar | Deinstall Oracle Identity Federation.                                                                                                               |
|            |                        | **See:** Oracle Identity Federation Administrator’s Guide                                                                                       |
Table C–1 shows the URLs and login IDs to use to access components after installation. The URLs in the table are shown with the default ports. The components in your environment might use different ports. To determine the port numbers for components, you can look in the `ORACLE_HOME/install/portlist.ini` file.

### Table C–1  URLs for Components

<table>
<thead>
<tr>
<th>Component</th>
<th>URL (with Default Port Number)</th>
<th>Entry in portlist.ini</th>
<th>Login and Password</th>
</tr>
</thead>
<tbody>
<tr>
<td>Welcome Pages</td>
<td><a href="http://host:7777">http://host:7777</a></td>
<td>Oracle HTTP Server port or Web Cache Listen port</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Oracle HTTP Server</td>
<td><a href="http://host:7777">http://host:7777</a></td>
<td>Oracle HTTP Server Listen port</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>Oracle Enterprise Manager 10g Application Server Control</td>
<td>UNIX: <a href="http://host:1156">http://host:1156</a> Windows: <a href="http://host:18100">http://host:18100</a></td>
<td>Application Server Control port</td>
<td>ias_admin Use the ias_admin password you supplied during installation.</td>
</tr>
<tr>
<td>OracleAS Single Sign-On Administration Pages</td>
<td><a href="http://host:7777/pls/orasso">http://host:7777/pls/orasso</a></td>
<td>Oracle HTTP Server Listen port</td>
<td>orcladmin The default password is the same as the ias_admin password, which you specified during installation.</td>
</tr>
</tbody>
</table>
Table C–1 (Cont.) URLs for Components

<table>
<thead>
<tr>
<th>Component</th>
<th>URL (with Default Port Number)</th>
<th>Entry in portlist.ini</th>
<th>Login and Password</th>
</tr>
</thead>
</table>
| Oracle Delegated Administration Services | `http://host:7777/oiddas`            | Oracle HTTP Server Listen port | orcladmin  
The default password is the same as the ias_admin password, which you specified during installation. |
| Oracle Identity Federation Administration | `http://host:7777/fedadmin`         | Oracle HTTP Server Listen port | oif_admin   
Use the password you supplied during installation. |
| Oracle Identity Federation Monitoring  | `http://host:7777/fedmon`            | Oracle HTTP Server Listen port | oif_mon     
Use the password you supplied during installation. |
This appendix provides information about Oracle Application Server port numbers for this release.

It contains the following topics:

- **Port Numbers and How They Are Assigned**
  This section lists the allotted port range, the default port number, information about when the port number is assigned and where to find information about changing the port number.

- **Port Numbers (Sorted by Port Number)**
  This section provides a table that lists all allotted port ranges. It is useful for determining if a particular port number is used by Oracle Application Server.

- **Ports to Open in Firewalls**
  This section lists ports that must be opened if Oracle Application Server is installed behind a firewall.

### D.1 Port Numbers and How They Are Assigned

Most port numbers are assigned by Oracle Application Server during installation. Oracle Application Server chooses a free port from the allotted port range.

This section provides the following information for each Oracle Application Server service that uses a port:

- **Component or Service**: The name of the component or service and information about when the port number is assigned and where to find information about changing the port number, if it can be changed.

- **Allotted Port Range**: The set of port numbers Oracle Application Server attempts to use when assigning a port.

- **Default Port Number**: The first port number Oracle Application Server attempts to assign to a service. It is usually the lowest number in the allotted port range.

- **Protocol**: Protocol used.

The ports are sorted into the following categories:

- **Oracle HTTP Server, OC4J, and OPMN Ports**
- **Infrastructure Ports**
- **Oracle Enterprise Manager 10g Grid Control Ports**
D.1.1 Oracle HTTP Server, OC4J, and OPMN Ports

Table D–1 lists the ports for Oracle HTTP Server, OPMN, OC4J, and other miscellaneous services for an Identity Management installation. Unless otherwise noted in the Component or Service column of the table:

- The port number is assigned during installation.
- If the port number is assigned during installation, you can override the port number during installation by using the staticports.ini file.

For most ports, you can override the default port assignment during installation by specifying a port number in staticports.ini. You create a template called staticports.ini with the port numbers you would like to use, and launch Oracle Universal Installer with special options.

See Also: Oracle Application Server Installation Guide for information on how to use staticports.ini

- You can change the port number after installation.

### Table D–1 Oracle HTTP Server, OPMN, and OC4J Ports

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Oracle HTTP Server</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listen Port</td>
<td>7777 - 7877</td>
<td>7777</td>
<td>HTTP</td>
</tr>
<tr>
<td>See Section 4.3.3, &quot;Changing the HTTP Server Port on an Identity Management Installation&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Port</td>
<td>7777 - 7877</td>
<td>7777</td>
<td>HTTP</td>
</tr>
<tr>
<td>See Section 4.3.3, &quot;Changing the HTTP Server Port on an Identity Management Installation&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Listen (SSL) port</td>
<td>4443 - 4543, 8250 - 8350</td>
<td>4443</td>
<td>HTTPS</td>
</tr>
<tr>
<td>This port is not used unless you enable SSL after installation. Refer to Oracle HTTP Server Administrator's Guide.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Section 4.3.3, &quot;Changing the HTTP Server Port on an Identity Management Installation&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSL Port</td>
<td>443, 4443 - 4543, 8250 - 8350</td>
<td>4443</td>
<td>HTTPS</td>
</tr>
<tr>
<td>This port is not used unless you enable SSL after installation. Refer to Oracle HTTP Server Administrator's Guide.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Section 4.3.3, &quot;Changing the HTTP Server Port on an Identity Management Installation&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diagnostic</td>
<td>7200 - 7299</td>
<td>7200</td>
<td>TCP</td>
</tr>
<tr>
<td>See Section 4.3.5, &quot;Changing the Oracle HTTP Server Diagnostic Port&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OC4J</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>AJP</td>
<td>12501 - 12600</td>
<td>12501</td>
<td>TCP</td>
</tr>
<tr>
<td>You cannot override this port number during installation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Component or Service</td>
<td>Allotted Port Range</td>
<td>Default Port Number</td>
<td>Protocol</td>
</tr>
<tr>
<td>---------------------------------------</td>
<td>---------------------</td>
<td>---------------------</td>
<td>------------</td>
</tr>
<tr>
<td>JMS</td>
<td>12601 - 12700</td>
<td>12601</td>
<td>TCP</td>
</tr>
<tr>
<td>You cannot override this port number during installation. See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RMI</td>
<td>12401 - 12500</td>
<td>12401</td>
<td>TCP</td>
</tr>
<tr>
<td>You cannot override this port number during installation. See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIOP</td>
<td>13301 - 13400</td>
<td>13301</td>
<td>TCP</td>
</tr>
<tr>
<td>Port is assigned after installation, when you configure IIOP. Refer to Oracle Containers for J2EE Services Guide. See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIOPS1 (Server only)</td>
<td>13401 - 13500</td>
<td>13401</td>
<td>TCP</td>
</tr>
<tr>
<td>Port is assigned after installation, when you configure IIOPS1. See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IIOPS2 (Server and client)</td>
<td>13501 - 13600</td>
<td>13501</td>
<td>TCP</td>
</tr>
<tr>
<td>Port is assigned after installation, when you configure IIOPS2. See Section 4.3.2, &quot;Changing OC4J Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OPMN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS Local</td>
<td>6100 - 6199</td>
<td>6100</td>
<td>HTTP/TCP</td>
</tr>
<tr>
<td>See Section 4.3.9, &quot;Changing OPMN Ports (ONS Local, Request, and Remote)&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS Remote</td>
<td>6200 - 6299</td>
<td>6200</td>
<td>HTTP/TCP</td>
</tr>
<tr>
<td>See Section 4.3.9, &quot;Changing OPMN Ports (ONS Local, Request, and Remote)&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ONS Request</td>
<td>6003 - 6099</td>
<td>6003</td>
<td>HTTP/TCP</td>
</tr>
<tr>
<td>See Section 4.3.9, &quot;Changing OPMN Ports (ONS Local, Request, and Remote)&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Enterprise Manager</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server Control Console</td>
<td>1156, 1810 - 1829, 18100 - 18119</td>
<td>UNIX: 1156 Windows: 18100</td>
<td>HTTP</td>
</tr>
<tr>
<td>See Section 4.3.1, &quot;Changing Oracle Enterprise Manager Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server Control Console (SSL)</td>
<td>1156, 1810 - 1829, 18100 - 18119</td>
<td>UNIX: 1156 Windows: 18100</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Port is assigned after installation, when you configure the Application Server Control Console for SSL. Refer to Section A.4. See Section 4.3.1, &quot;Changing Oracle Enterprise Manager Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Application Server Control Console RMI</td>
<td>1850 - 1869, 18140 - 18159</td>
<td>1850</td>
<td>TCP</td>
</tr>
<tr>
<td>See Section 4.3.1, &quot;Changing Oracle Enterprise Manager Ports&quot; to change the port number.</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Port Numbers and How They Are Assigned

### D.1.2 Infrastructure Ports

An Infrastructure installation uses the ports listed in:

- **Table D–1, "Oracle HTTP Server, OPMN, and OC4J Ports"**
- **Table D–2, "Infrastructure Ports"**

Unless otherwise noted in the Component or Service column of the table:

- The port number is assigned during installation.
- If the port number is assigned during installation, you can override the port number during installation by using the `staticports.ini` file.

For most ports, you can override the default port assignment during installation by specifying a port number in `staticports.ini`. You create a template called `staticports.ini` with the port numbers you would like to use, and launch Oracle Universal Installer with special options.

#### See Also: *Oracle Application Server Installation Guide* for information on how to use `staticports.ini`

- You can change the port number after installation.

#### Table D–1 (Cont.) Oracle HTTP Server, OPMN, and OC4J Ports

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Management Agent</td>
<td>1157, 18120 - 18139</td>
<td>1157</td>
<td>TCP</td>
</tr>
</tbody>
</table>

**Miscellaneous Services**

See **Section 4.3.1, "Changing Oracle Enterprise Manager Ports"** to change the port number.

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>DCM Discovery</td>
<td>7100 - 7199</td>
<td>7100</td>
<td>TCP</td>
</tr>
</tbody>
</table>

See **Section 4.3.6, "Changing the DCM Discovery Port"** to change the port number.

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Java Object Cache</td>
<td>7000 - 7099</td>
<td>7000</td>
<td>TCP</td>
</tr>
</tbody>
</table>

See **Section 4.3.7, "Changing the Java Object Cache Port"** to change the port number.

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Log Loader</td>
<td>44000 - 44099</td>
<td>44000</td>
<td>TCP</td>
</tr>
</tbody>
</table>

See **Section 4.3.8, "Changing the Log Loader Port"** to change the port number.

<table>
<thead>
<tr>
<th>Component or Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port Tunneling</td>
<td>7501 - 7599</td>
<td>7501</td>
<td>TCP</td>
</tr>
</tbody>
</table>

Port is assigned after installation, when you configure Port Tunneling.

See **Section 4.3.10, "Changing the Port Tunneling Port"** to change the port number.
### Table D–2 Infrastructure Ports

<table>
<thead>
<tr>
<th>Component / Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Oracle Enterprise Manager</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Management Agent</td>
<td>1157, 18120 - 18139</td>
<td>1157</td>
<td>TCP</td>
</tr>
<tr>
<td>Section 4.3.1, &quot;Changing Oracle Enterprise Manager Ports&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Console HTTP</td>
<td>5500 - 5559</td>
<td>5500</td>
<td>HTTP</td>
</tr>
<tr>
<td>You cannot change this port, although you can override the port number during installation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>Oracle Internet Directory</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>389, 13060 - 13129</td>
<td>389</td>
<td>TCP</td>
</tr>
<tr>
<td>Section 4.3.11.2, &quot;Changing Oracle Internet Directory Ports&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Internet Directory (SSL)</td>
<td>636, 13130 - 13159, 13161 - 13199</td>
<td>636</td>
<td>TCP</td>
</tr>
<tr>
<td>Section 4.3.11.2, &quot;Changing Oracle Internet Directory Ports&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OracleAS Certificate Authority</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Server Authentication Virtual Host (SSL)</td>
<td>6600 - 6619</td>
<td>6600</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Section 4.3.11.3, &quot;Changing OracleAS Certificate Authority Ports&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mutual Authentication Virtual Host (SSL)</td>
<td>6600 - 6619</td>
<td>6601</td>
<td>HTTPS</td>
</tr>
<tr>
<td>Section 4.3.11.3, &quot;Changing OracleAS Certificate Authority Ports&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OracleAS Metadata Repository</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Net Listener</td>
<td>1521</td>
<td>1521</td>
<td>TCP</td>
</tr>
<tr>
<td>You cannot override this port number during installation.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Section 4.3.11.1, &quot;Changing the OracleAS Metadata Repository Net Listener Port&quot;</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>OracleAS Single Sign-On</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OracleAS Single Sign-On¹</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td><strong>Oracle Application Server Guard</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Application Server Guard</td>
<td>7890 - 7895</td>
<td>7890</td>
<td>TCP</td>
</tr>
<tr>
<td><strong>Oracle Identity Federation</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oracle Identity Federation¹</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

¹ This component does not have its own port. You can access it through the HTTP listener port.

### D.1.3 Oracle Enterprise Manager 10g Grid Control Ports

Table D–3 lists the ports used in an Oracle Enterprise Manager 10g Grid Control installation.

Unless otherwise noted in the Component or Service column of the table:
- The port number is assigned during installation.
- If the port number is assigned during installation, you can override the port number during installation by using the staticports.ini file.
For most ports, you can override the default port assignment during installation by specifying a port number in staticports.ini. You create a template called staticports.ini with the port numbers you would like to use, and launch Oracle Universal Installer with special options.

**See Also:** *Oracle Application Server Installation Guide* for information on how to use staticports.ini

- You can change the port number after installation.

### Table D–3 Oracle Enterprise Manager 10g Grid Control Ports

<table>
<thead>
<tr>
<th>Service</th>
<th>Allotted Port Range</th>
<th>Default Port Number</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grid Control Console¹</td>
<td>N/A</td>
<td>N/A</td>
<td>TCP</td>
</tr>
<tr>
<td>Oracle Management Agent</td>
<td>1830 - 1849</td>
<td>1830</td>
<td>TCP</td>
</tr>
</tbody>
</table>

You cannot override this port number during installation.

See *Oracle Enterprise Manager Advanced Configuration* to change the port number.

| Oracle Management Service (SSL and non-SSL) | 4889 - 4899 | 4889 | HTTP |

You cannot override this port number during installation.

See *Oracle Enterprise Manager Advanced Configuration* to change the port number.

¹ This service does not have its own port. You can access it through the HTTP listener port. Refer to setupinfo.txt in the install directory within the Grid Control Oracle home for the exact URL.

### D.2 Port Numbers (Sorted by Port Number)

Table D–4 lists Oracle Application Server ports numbers and services, sorted in ascending order by port number.

### Table D–4 Port Numbers (Sorted by Port Number)

<table>
<thead>
<tr>
<th>Port Number</th>
<th>Service</th>
</tr>
</thead>
<tbody>
<tr>
<td>389</td>
<td>Oracle Internet Directory (non-SSL)</td>
</tr>
<tr>
<td>443</td>
<td>Oracle HTTP Server Port (SSL) (Windows only)</td>
</tr>
<tr>
<td>636</td>
<td>Oracle Internet Directory Server (SSL)</td>
</tr>
<tr>
<td>1156</td>
<td>Application Server Control Console (non-SSL and SSL) (UNIX)</td>
</tr>
<tr>
<td>1157</td>
<td>Oracle Management Agent</td>
</tr>
<tr>
<td>1521</td>
<td>OracleAS Metadata Repository Oracle Net Listener</td>
</tr>
<tr>
<td>1810 - 1829</td>
<td>Application Server Control Console (non-SSL and SSL)</td>
</tr>
<tr>
<td>1830 - 1849</td>
<td>Oracle Management Agent</td>
</tr>
<tr>
<td>1850 - 1869</td>
<td>Application Server Control Console RMI</td>
</tr>
<tr>
<td>4443 - 4543</td>
<td>Oracle HTTP Server Listen (SSL) and Oracle HTTP Server Port (SSL)</td>
</tr>
<tr>
<td>4889 - 4899</td>
<td>Oracle Management Service (SSL and non-SSL)</td>
</tr>
<tr>
<td>5500 - 5559</td>
<td>Oracle Enterprise Manager Console HTTP</td>
</tr>
<tr>
<td>6003 - 6099</td>
<td>OPMN ONS Request</td>
</tr>
<tr>
<td>6100 - 6199</td>
<td>OPMN ONS Local</td>
</tr>
</tbody>
</table>
D.3 Ports to Open in Firewalls

If you plan to install Oracle Application Server behind a firewall, you need to open certain ports in the firewall during installation and runtime.

For a 10g (10.1.4.0.1) instance, you need access to Oracle Internet Directory, OracleAS Metadata Repository, Oracle Notification Server, and AJP ports. You need to open the following ports used by these components in the firewall:

- LDAP: port 389
- LDAP SSL: port 636
- SQL*Net2: port 1521
- The OPMN ONS remote port
- OC4J AJP port
A Metadata Repository is an Oracle database that is pre-seeded with additional schemas to support Oracle Application Server. This appendix provides information about those schemas.

It contains the following topics:

- Metadata Repository Schema Descriptions
- Metadata Repository Schemas, Tablespaces, and Default Datafiles

## E.1 Metadata Repository Schema Descriptions

This section lists the Metadata Repository schemas and describes their contents.

The schemas are divided into three categories:

- **Identity Management Schemas**
  These schemas are used by Identity Management components, such as OracleAS Single Sign-On and Oracle Internet Directory.

- **Product Metadata Schemas**
  These schemas are used by middle-tier application components, such as OracleAS Portal and OracleAS Wireless.

- **Management Schemas**
  These schemas are used for Oracle Application Server management.

There is one additional schema that does not fall into the previously listed categories: INTERNET_APPSERVER_REGISTRY. This schema contains release numbers for Metadata Repository schemas.

**See Also:** Section I.5, “Viewing Metadata Repository Release Numbers” for information on using the INTERNET_APPSERVER_REGISTRY schema to query release numbers

### E.1.1 Identity Management Schemas

Table E-1 lists the schemas used by Identity Management components, sorted alphabetically by component.
Table E–1  Identity Management Schemas

<table>
<thead>
<tr>
<th>Component</th>
<th>Schema</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>OCA</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>ORAOCA_PUBLIC</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_DS</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_PA</td>
<td>For internal use</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_PS</td>
<td>For internal use</td>
</tr>
</tbody>
</table>

Table E–2  Product Metadata Schemas

<table>
<thead>
<tr>
<th>Component</th>
<th>Schema</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oracle Ultra Search</td>
<td>WK_TEST</td>
<td>Oracle Ultra Search default instance schema—contains the document information and document index of the default Oracle Ultra Search instance</td>
</tr>
<tr>
<td>Oracle Ultra Search</td>
<td>WKPROXY</td>
<td>Oracle Ultra Search proxy database user—does not contain any data</td>
</tr>
<tr>
<td>Oracle Ultra Search</td>
<td>WKSYS</td>
<td>Oracle Ultra Search metadata repository—contains metadata information on data sources, crawler configuration, crawling schedules, trace logs, attribute mappings, authentication, and user privileges of Oracle Ultra Search instances</td>
</tr>
<tr>
<td>Oracle Workflow</td>
<td>OWF_MGR</td>
<td>Contains design-time and runtime workflow tables, queues, PL/SQL code, directory service database views and local tables, and metadata for workflow processes and business events</td>
</tr>
<tr>
<td>OracleAS Integration B2B</td>
<td>B2B</td>
<td>Contains the design and runtime repository. The design repository has modeling metadata and profile data for an integration. These describe the behavior of the integration and sequence of steps required to execute the business process. The modeling and profile metadata is the design of the integration prior to deployment and execution. Once the integration is deployed, the runtime repository contains the metadata required to execute the integration as well as the business process instance, event instances, role instances, and other data created during execution.</td>
</tr>
<tr>
<td>OracleAS Integration B2B</td>
<td>IP</td>
<td>N/A¹</td>
</tr>
<tr>
<td>Oracle BPEL Process Analytics</td>
<td>BAM</td>
<td>Contains instance and metadata database objects for Oracle BPEL Process Analytics.</td>
</tr>
<tr>
<td>Oracle BPEL Process Manager</td>
<td>ORABPEL</td>
<td>Contains instance and metadata database objects for Oracle BPEL Process Manager.</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>Contains Portal database objects and code. This schema also represents the proxy user account that <code>mod_plsql</code> uses to connect to the database through the credentials provided in the corresponding DAD.</td>
</tr>
</tbody>
</table>

E.1.2  Product Metadata Schemas

Table E–2 lists the schemas used by middle-tier application components, sorted alphabetically by component.
E.1.3 Management Schemas

Table E–3 lists the management schemas.

<table>
<thead>
<tr>
<th>Component</th>
<th>Schema</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Configuration Management (DCM)</td>
<td>DCM</td>
<td>Contains configuration information for OC4J and Oracle HTTP Server instances, application server instances, OracleAS Clusters, and farms</td>
</tr>
<tr>
<td>Oracle Enterprise Manager</td>
<td>OEM_REPOSITORY</td>
<td>Repository for Database Control</td>
</tr>
</tbody>
</table>

E.2 Metadata Repository Schemas, Tablespaces, and Default Datafiles

Table E–4 lists the tablespace and default datafile for each Metadata Repository schema. It is sorted alphabetically by component.
<table>
<thead>
<tr>
<th>Component</th>
<th>Schema</th>
<th>Tablespace</th>
<th>Default Datafile</th>
</tr>
</thead>
<tbody>
<tr>
<td>Distributed Configuration Management (DCM)</td>
<td>DCM</td>
<td>DCM</td>
<td>dcm.dbf</td>
</tr>
<tr>
<td>Metadata Repository Version</td>
<td>INTERNET_APPSERVER_REGISTRY</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>Oracle Enterprise Manager</td>
<td>OEM_REPOSITORY</td>
<td>SYS_AUX</td>
<td>sysaux01.dbf</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>OLTS_ATTRSTORE</td>
<td>attrds1_oid.dbf</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>OLTS_BATTRSTORE</td>
<td>battrels1_oid.dbf</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>OLTS_CT_STORE</td>
<td>gcats1_oid.dbf</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>OLTS_DEFAULT</td>
<td>gdefault1_oid.dbf</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>ODS</td>
<td>OLTS_SVRMGSTORE</td>
<td>svrmlg1_oid.dbf</td>
</tr>
<tr>
<td>Oracle Ultra Search</td>
<td>WK_TEST</td>
<td>SYSAUX</td>
<td>sysaux01.dbf</td>
</tr>
<tr>
<td>Oracle Ultra Search</td>
<td>WKPROXY</td>
<td>SYSAUX</td>
<td>sysaux01.dbf</td>
</tr>
<tr>
<td>Oracle Ultra Search</td>
<td>WKSYS</td>
<td>SYSAUX</td>
<td>sysaux01.dbf</td>
</tr>
<tr>
<td>Oracle Workflow</td>
<td>OWF_MGR</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>OCA</td>
<td>OCATS</td>
<td>oca.dbf</td>
</tr>
<tr>
<td>OracleAS Certificate Authority</td>
<td>ORAOCA_PUBLIC</td>
<td>OCATS</td>
<td>oca.dbf</td>
</tr>
<tr>
<td>OracleAS Integration B2B</td>
<td>B2B</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Oracle BPEL Process Analytics</td>
<td>BAM</td>
<td>BAM</td>
<td>bam.dbf</td>
</tr>
<tr>
<td>Oracle BPEL Process Manager</td>
<td>ORABPEL</td>
<td>ORABPEL</td>
<td>orabpel.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL</td>
<td>portal.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_DOC</td>
<td>ptldoc.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_IDX</td>
<td>ptlidx.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_LOG</td>
<td>ptllog.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_APP</td>
<td>portal.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_DEMO</td>
<td>portal.dbf</td>
</tr>
<tr>
<td>OracleAS Portal</td>
<td>PORTAL</td>
<td>PORTAL_PUBLIC</td>
<td>portal.dbf</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_DS</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_PA</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_PS</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS Single Sign-On</td>
<td>ORASSO_PUBLIC</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleAS UDDI Registry</td>
<td>UDDISYS</td>
<td>UDDISYS_TS</td>
<td>uddisys01.dbf</td>
</tr>
<tr>
<td>OracleAS Web Clipping</td>
<td>WCRSYS</td>
<td>WCRSYS_TS</td>
<td>wcrsys01.dbf</td>
</tr>
<tr>
<td>Component</td>
<td>Schema</td>
<td>Tablespace</td>
<td>Default Datafile</td>
</tr>
<tr>
<td>-------------------</td>
<td>------------</td>
<td>------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>OracleAS Wireless</td>
<td>WIRELESS</td>
<td>IAS_META</td>
<td>ias_meta01.dbf</td>
</tr>
<tr>
<td>OracleBI Discoverer</td>
<td>DISCOVERER5</td>
<td>DISCO_PTM5_META</td>
<td>discopltm1.dbf</td>
</tr>
<tr>
<td>OracleBI Discoverer</td>
<td>DISCOVERER5</td>
<td>DISCO_PTM5_CACHE</td>
<td>discopltm1</td>
</tr>
<tr>
<td>N/A</td>
<td>DSGATEWAY²</td>
<td>DSGATEWAY_TAB</td>
<td>oss_sys01.dbf</td>
</tr>
</tbody>
</table>

1 Beginning with Oracle Application Server 10g Release 2 (10.1.2), the IP schema does not contain any data. It has been replaced by the B2B schema and is provided only for backward compatibility.

2 Beginning with Oracle Application Server 10g Release 2 (10.1.2), the DSGATEWAY schema is not used. It is provided for backward compatibility.
This appendix describes the `printlogs` command-line tool, which prints the contents of Oracle Application Server diagnostic log files to standard output.

It contains the following topics:

- Introduction
- Basic Syntax
- Detailed Option Descriptions
- Log Record Fields
- Environment Variable for `printlogs`
- Examples

### F.1 Introduction

The `printlogs` command-line tool reads logs generated by Oracle Application Server components and prints the content of the logs to standard output in a common format. `printlogs` supports many options for reading and filtering log files, and formatting the output.

**See Also:** Chapter 5, "Managing Log Files" for more information on Oracle Application Server logging

### Location

The `printlogs` command-line tool is located in:

- For UNIX systems:
  
  `ORACLE_HOME/diagnostics/bin`

- For Windows systems:
  
  `ORACLE_HOME\diagnostics\bin`

### Notes

- To run `printlogs`, you must log in as a user who has permission to read all of the log files in your Oracle home, for example, the user who installed Oracle Application Server.

- By default, `printlogs` operates on the Oracle home in which it resides. You can override this with the `-home` option. Note that `printlogs` does not use the `ORACLE_HOME` environment variable.
printlogs options are not case-sensitive.

By default, printlogs uses the contents of the following directory to determine which log files to read, the location of log files, and additional configuration information about each log file:

(UNIX) ORACLE_HOME/diagnostics/config/registration
(Windows) ORACLE_HOME\diagnostics\config\registration

You can override this with the -repository, -registration, and -logs options.

See Also: Section 5.6.4, "Component Diagnostic Log File Registration" for more information

F.2 Basic Syntax

printlogs [input options] [filter options] [output options] [general options]

Input Options
[-home oracle_home_path] [-repository]
[-home oracle_home_path] [-registration registration_directory_path]
[filter options] [output options] [general options]
[-logs log_path [log_path ...]]

Filter Options
[-tail n] [-last n[s|m|h|d]] [-query expression]

expression:
simple_expression
-not simple_expression
simple_expression -and simple_expression
simple_expression -or simple_expression

simple_expression:
field_name op value
(expression)

op:
-eq | -eq_case | -contains | -contains_case |
-startswith | -startswith_case | -from | -to

field_name: An ODL log record field name. See Section F.4 for a list of field names.
value: A string or timestamp, depending on the operation (op)

Output Options
[-odl | -odl_complete | -text | -text_short | -text_full]
[-orderBy orderByFieldList]
[-count [groupByFieldList]]

General Options
[-help] [-f] [-sleep n] [-notailopt]
F.3 Detailed Option Descriptions

This section provides detailed descriptions of printlogs options:

- Input Options
- Filter Options
- Output Options
- General Options

F.3.1 Input Options

Table F–1 describes the input options you can use to specify the location of logs and log definitions. The default is the local Oracle home.

<table>
<thead>
<tr>
<th>Input Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-home oracle_home_path</td>
<td>Specify an alternate Oracle home directory from where to read logs and log definitions.</td>
</tr>
<tr>
<td>-repository</td>
<td>Specify that log records should be read from the common Log Repository instead of directly from each log. The Log Repository is updated by Log Loader. Log Loader must be running in order for the Repository to contain the contents of Oracle Application Server component logs.</td>
</tr>
<tr>
<td>-repos</td>
<td>Same as -repository</td>
</tr>
</tbody>
</table>
| -registration registration_directory_path | Specify an alternate registration directory that contains definitions of log files to be read by printlogs. The default registration directory is:  
(UNIX) ORACLE_HOME/diagnostics/config/registration  
(Windows) ORACLE_HOME\diagnostics\config\registration |
| -logs log_path [log_path ...] | Specify one or more logs to be read by printlogs. log_path is the full path to the log file, or the path relative to the current directory. The registration directory is used to find the definition of each log. If one of the specified logs is not defined in the registration directory, it is read by the default "UnformattedTextLogReader". The path list is terminated by the end of the argument list or by the first argument following the -logs option that starts with a hyphen (-). Therefore, a log path cannot start with a hyphen (-). If a path starts with hyphen (-), precede the path with: ./ (UNIX) or \ (Windows). For example, to print log file -error.log, use:  
(UNIX) printlogs -logs ./error.log  
(Windows) printlogs -logs \error.log |

F.3.2 Filter Options

Table F–2 describes the filter options you can use to define which log records printlogs should print. The default is to print all records generated in the last 10 minutes.
Table F–2 Filter Options

<table>
<thead>
<tr>
<th>Filter Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-tail n</td>
<td>Perform an operation similar to the UNIX “tail” command before reading a log. The n argument must be a positive number. The meaning of the n argument depends on the log type. For ODL logs, printlogs searches backward from the end of the log for n occurrences of the pattern “&lt;MESSAGE&gt;” and starts reading the log from that point. For other log types, it reads the last n lines of the log. Note that the use of the -tail option disables the use of a default value for the -last option. See the -last option for default value details.</td>
</tr>
<tr>
<td>-last n[s</td>
<td>m</td>
</tr>
<tr>
<td>-query expression</td>
<td>Apply expression to each log record to filter out undesirable records. See Table F–3 for a description of expression.</td>
</tr>
</tbody>
</table>

Table F–3 Query Expression Options

<table>
<thead>
<tr>
<th>Query Expression Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>()</td>
<td>Delimiters for complex sub-expressions. Parenthesis have special meaning to most UNIX command shells and you must use an escape character with them. This is not necessary on Windows.</td>
</tr>
<tr>
<td>-not</td>
<td>Logical negation</td>
</tr>
<tr>
<td>-and</td>
<td>Logical AND</td>
</tr>
<tr>
<td>-or</td>
<td>Logical OR</td>
</tr>
<tr>
<td>fieldname</td>
<td>An ODL log record field name. See Section F4 for a list of available field names.</td>
</tr>
<tr>
<td>-eq</td>
<td>Equality operation (case-insensitive). You can use this operation with all log record fields.</td>
</tr>
<tr>
<td>-eq_case</td>
<td>Same as -eq, except case-sensitive</td>
</tr>
<tr>
<td>-contains</td>
<td>Contains operation (case-insensitive). The result is true only if the log record field value contains the value operand string. You can use this operation only with &quot;string&quot; log record fields (all fields except TSTZ_ORIGINATING and TSTZ_NORMALIZED).</td>
</tr>
<tr>
<td>-contains_case</td>
<td>Same as -contains, except case-sensitive</td>
</tr>
<tr>
<td>-startswith</td>
<td>Starts with operation (case-insensitive). The result is true only if the log record field value starts with the value operand string. You can use this operation only with &quot;string&quot; log record fields (all fields except TSTZ_ORIGINATING and TSTZ_NORMALIZED).</td>
</tr>
</tbody>
</table>
F.3.3 Output Options

Table F–4 describes the output options you can use to specify an output format. The default format is `-text_short`.

<table>
<thead>
<tr>
<th>Output Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-odl</code></td>
<td>Specify that the output should be in ODL format. This option outputs an ODL document without the enclosing LOG tags. The generated output is not a complete XML document.</td>
</tr>
<tr>
<td><code>-odl_complete</code></td>
<td>Specify that the output should be in ODL format and that a complete XML document should be generated</td>
</tr>
<tr>
<td><code>-text_short</code></td>
<td>Specify that the output should be in a short text format including only the following fields: TSTZ_ORIGINATING, COMPONENT_ID, MSG_TYPE, MODULE_ID, EXEC_CONTEXT_ID, MSG_TEXT, and SUPPL_DETAIL. This is the default output format.</td>
</tr>
<tr>
<td><code>-text</code></td>
<td>Same as <code>-text_short</code></td>
</tr>
</tbody>
</table>
Log Record Fields

Table F–4 (Cont.) Output Options

<table>
<thead>
<tr>
<th>Output Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-text_full</td>
<td>Specify that the output should be in full text format, including all message fields.</td>
</tr>
<tr>
<td>-orderBy orderByFieldList</td>
<td>Sort the result in the specified order. The orderByFieldList argument is a list of log record field names separated by spaces. The field names can have an optional suffix of :asc or :desc to specify ascending or descending order. The default sort order is ascending. printlogs sorts the result in memory. If the result is large, it could run out of memory. In this case, you must provide additional filtering options to reduce the number of records in the result.</td>
</tr>
<tr>
<td>-count [groupByFieldList]</td>
<td>Report only the record count. The groupByFieldList argument is an optional list of log record field names separated by spaces. If you supply this argument, printlogs reports the record count for each supplied field.</td>
</tr>
</tbody>
</table>

F.3.4 General Options

Table F–5 describes the general options you can use to obtain help, cause printlogs to loop, and disable optimization.

Table F–5 General Options

<table>
<thead>
<tr>
<th>General Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>-help</td>
<td>Print detailed help.</td>
</tr>
<tr>
<td>-f</td>
<td>Follow. When you use this option, printlogs will not return after printing the result. Instead, it will go on an infinite loop where it sleeps for a number of seconds (specified with the -sleep n option), and then checks each log again and prints any new records that satisfy the query predicate.</td>
</tr>
<tr>
<td>-sleep n</td>
<td>Set the sleep time, in seconds, for the -f option. The default value is 20 seconds.</td>
</tr>
<tr>
<td>-notailopt</td>
<td>Disable the &quot;tail optimization&quot; that is usually performed with the -last option.</td>
</tr>
</tbody>
</table>

F.4 Log Record Fields

The printlogs command automatically translates the contents of any log file that it reads to the Oracle Diagnostic Logging (ODL) format. The ODL log record fields can be used to create a query expression, or to specify a group-by or order-by field list. Each field must be referred to by its name, as described in Table F–6. Some of these fields are designated for future use, and currently are not used in any diagnostic messages generated by an Oracle Application Server.

Table F–6 Log Record Fields

<table>
<thead>
<tr>
<th>Log Record Field Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMPONENT_ID</td>
<td>The component that originated the message</td>
</tr>
<tr>
<td>DETAIL_PATH</td>
<td>A URL for additional information about the message</td>
</tr>
<tr>
<td>DOWNSTREAM_COMPONENT_ID</td>
<td>The component that the originating component is working with on the downstream (server) side</td>
</tr>
<tr>
<td>EID_SEQ</td>
<td>The sequence number that is associated with the error instance</td>
</tr>
<tr>
<td>EID.UNIQUE_ID</td>
<td>A global unique identifier of an error instance associated with the message. This identifier can be used to correlate error messages from different components.</td>
</tr>
<tr>
<td>EXEC_CONTEXT_ID.SEQ</td>
<td>The sequence number that is associated with the execution context</td>
</tr>
</tbody>
</table>
You can use an environment variable to pass information to `printlogs`. Table F–7 describes the environment variable in detail.

<table>
<thead>
<tr>
<th>Environment Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ORACLE_PRINTLOGS_JVM_ARGS</td>
<td>Provide additional arguments to the JVM that runs <code>printlogs</code>. It is usually not necessary to provide additional JVM arguments, but this environment variable can be used in some situations, such as to set memory size, or provide additional properties to <code>printlogs</code>.</td>
</tr>
</tbody>
</table>
F.6 Examples

- To print records from all known logs in the last 10 minutes:
  ```
 printlogs
  ```

- To print records from all known logs in the last 10 minutes and follow:
  ```
 printlogs -f
  ```
  After reaching the end of all log files, `printlogs` will go into an infinite loop where it sleeps for 20 seconds, then reads and prints any new records that are added to the log files.

- To print records from all known logs in the specified Oracle home in the last 2 days, in ODL format:
  ```
 printlogs -home /private/orahome2 -last 7d -odl
  ```

- To print records that are timestamped between 14:00 and 14:05 hours:
  ```
 printlogs -last 100d -query TSTZ_ORIGINATING -from 2003-07-15T14:00:00-07:00 -and TSTZ_ORIGINATING -to 2003-07-15T14:05:00-07:00
  ```
  In this example, assume that the specified time interval is more than 10 minutes before the current time. By default, `printlogs` searches logs generated in the last 10 minutes. Therefore, you need to use the `-last` option to increase the overall search length to include the timestamp interval. To save the trouble of calculating the amount of time to the timestamp interval, you can specify a very large value, such as `-last 100d`.

- To print records from OC4J logs that contain the word "exception" and are for the local Oracle home:
  ```
 printlogs -last 1d -query (COMPONENT_ID -eq OC4J -and MODULE_ID -startswith home) -and MSG_TEXT -contains exception
  ```
  Note: On the Windows platform the parentheses should not be escaped.

- To print records in the last 10 minutes, sorted in ascending order by component ID, and in descending order by time:
  ```
 printlogs -orderBy COMPONENT_ID TSTZ_ORIGINATING:desc
  ```

- To print the number of records from all known logs in the last 10 minutes, grouping by component and message type:
  ```
 printlogs -count COMPONENT_ID MESSAGE_TYPE
  ```

- To print a specific log file, for example the OC4J~OC4J_SECURITY~default_island~1 log file, which includes entries for Oracle Delegated Administration Services:
  ```
 printlogs -logs ORACLE_HOME/opmn/logs/OC4J~OC4J_SECURITY~default_island~1
  ```

- To print records in the last hour from daemon_logs and dcmctl_logs:
  ```
 cd ORACLE_HOME/dcm/logs
 printlogs -last 1h -logs daemon_logs dcmctl_logs
  ```
  Note that this example uses log file names relative to the current directory.
This appendix provides examples of administrative changes that can be performed on an Oracle Application Server environment. It is a companion to Part V, "Backup and Recovery" in this book, and to the Disaster Recovery section in Oracle Application Server High Availability Guide.

It contains the following topics:

- How to Use This Appendix
- Examples of Administrative Changes (by Component)

### G.1 How to Use This Appendix

Some administrative operations cause configuration changes to your Oracle Application Server environment. These are called administrative changes, and include deploying and undeploying applications, changing the topology, changing ports, creating and deleting users, and changing passwords. As an administrator, you should be aware when administrative changes occur, because you may need to back up your environment or perform some synchronization procedures.

This appendix provides examples of administrative changes, listed by component. You can use this as a guide for performing the following procedures:

- Backup and recovery

  Oracle recommends you perform a backup after each administrative change to your environment. You can use this appendix to determine the types of administrative changes that require you to back up your environment.

  **See Also:** Part V, "Backup and Recovery"

- Disaster Recovery Synchronization between the primary and standby sites

  When you implement Disaster Recovery, you must update standby sites when you make an administrative change to your environment. You can use this appendix to determine the types of administrative changes that require you to update your standby sites.

  **See Also:** Oracle Application Server High Availability Guide

### G.2 Examples of Administrative Changes (by Component)

Table G–1 provides examples of administrative changes, by component. Consult your component documentation to learn more about these operations.
## Table G–1  Examples of Administrative Changes

<table>
<thead>
<tr>
<th>Component</th>
<th>Examples of Administrative Changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Delegated Administration Services</td>
<td>Manual edits to Oracle Delegated Administration Services configuration files, such as <code>das.properties</code></td>
</tr>
<tr>
<td>Directory Integration Platform</td>
<td>Directory Integration Platform administrative and configuration operations, such as running the <code>odisrvreg</code> or <code>remtool</code> utilities (password management)</td>
</tr>
<tr>
<td>Distributed Configuration Management (DCM)</td>
<td>DCM administrative and configuration operations performed using the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>Manual edits to DCM configuration files</td>
</tr>
<tr>
<td></td>
<td>DCM administrative and configuration operations using <code>dcmctl</code>, such as <code>configrepositoryssl</code>, <code>joincluster</code>, <code>joinfarm</code>, <code>leavecluster</code>, <code>leavefarm</code>, <code>repositoryrelocated</code>, <code>resetDCMcacheport</code>, <code>resethostnameinformation</code>, <code>restoreinstance</code>, and <code>set</code> operations</td>
</tr>
<tr>
<td></td>
<td>DCM administrative and configuration operations performed using the <code>dcmctl</code> utility, such as deploying and undeploying applications and making configuration changes</td>
</tr>
<tr>
<td>Dynamic Monitoring Service (DMS)</td>
<td>DMS administrative and configuration operations performed using the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>Manual edits to DMS configuration files, such as <code>dms.conf</code></td>
</tr>
<tr>
<td>Log Loader</td>
<td>Log Loader administrative and configuration operations performed using the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>Manual edits to Log Loader configuration files, such as <code>logloader.properties</code>, <code>logloader.xml</code>, and files in <code>ORACLE_HOME/diagnostics/config/registration</code></td>
</tr>
<tr>
<td>Oracle Containers for J2EE (OC4J)</td>
<td>OC4J administrative and configuration operations performed using the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>Manual edits to OC4J configuration files</td>
</tr>
<tr>
<td></td>
<td>OC4J administrative and configuration operations using the <code>dcmctl</code> utility, such as deploying and undeploying applications, and creating OC4J instances</td>
</tr>
<tr>
<td>Oracle Application Server Java Authentication and Authorization Service (JAAS) Provider (JAZN)</td>
<td>JAZN administrative and configuration operations performed using the Application Server Control Console</td>
</tr>
<tr>
<td></td>
<td>JAZN administrative and configuration operations performed using the <code>admintool</code> utility, such as adding and removing users, and changing roles, permissions, privileges, and passwords</td>
</tr>
<tr>
<td>Oracle Enterprise Manager 10g</td>
<td>Application server-wide or component-specific administrative and configuration operations performed using the Application Server Control Console, such as changing the <code>ias_admin</code> password, changing port numbers, deploying and undeploying applications, and operations that result in configuration file changes</td>
</tr>
<tr>
<td>Oracle HTTP Server</td>
<td>Oracle HTTP Server administrative and configuration operations performed using the Application Server Control Console, such as modifying the number of VMs and creating virtual hosts</td>
</tr>
<tr>
<td></td>
<td>Manual edits to Oracle HTTP Server configuration files</td>
</tr>
<tr>
<td></td>
<td>Oracle HTTP Server administrative and configuration operations using the <code>dcmctl</code> utility</td>
</tr>
<tr>
<td>Oracle Internet Directory</td>
<td>Oracle Internet Directory administrative and configuration operations, such as running the <code>oidpasswd</code> or <code>remtool</code> utilities (password management), and installing and removing components</td>
</tr>
</tbody>
</table>
### Table G–1 (Cont.) Examples of Administrative Changes

<table>
<thead>
<tr>
<th>Component</th>
<th>Examples of Administrative Changes</th>
</tr>
</thead>
</table>
| Oracle Process Manager and Notification Server (OPMN) | OPMN administrative and configuration operations performed using the Application Server Control Console  
Manual edits to OPMN configuration files, such as `opmn.xml`  
OPMN administrative and configuration operations using the `dcmct1` utility |
| OracleAS Certificate Authority (OCA) | OCA administrative and configuration operations using the `ocactl` utility with the following options: `setpasswd`, `generatewallet`, `convertwallet`, `importwallet`, `revokecert`, `renewcert`, `updateconnection`, and `changesecurity`  
Using the administrative interface to enroll the OCA Web administrator |
| OracleAS Single Sign-On | OracleAS Single Sign-On administrative and configuration operations performed using the Application Server Control Console, such as changing the `ORASSO` schema password  
Configuration changes such as adding or removing an OracleAS Single Sign-On middle-tier instance, changing OracleAS Single Sign-On to use SSL, and performing Windows Native Authentication configuration changes |
This appendix contains auxiliary procedures that are referred to in Chapter 9 and Chapter 10.

It contains the following topics:

- About LDAP-Based Replicas
- Installing and Setting Up an LDAP-Based Replica

H.1 About LDAP-Based Replicas

This section describes how to install and configure an LDAP-based replica. It contains the following topics:

- What Is an LDAP-Based Replica?
- How Is the LDAP-Based Replica Used for Changing Infrastructure Services?

H.1.1 What Is an LDAP-Based Replica?

Oracle Internet Directory replication is the process of copying and maintaining the same data (or naming context) on multiple directory servers. Simply put, replication is a means of having two identical directories that contain the same information. One directory is called the master (or supplier). This directory contains the master copy of the naming context. The other directory is called the replica (or consumer). The master supplies replication updates to the replica, which keeps the master and replica in sync.

There are different types of replicas. This procedure uses an LDAP-based replica, which means the protocol for transferring data between the master and the replica is LDAP.

See Also: Oracle Internet Directory Administrator’s Guide for more information on directory replication and LDAP-based replicas

For the purposes of this procedure, the master and replica directories are part of a larger environment that includes the Identity Management installations that contain the directories, and the Metadata Repositories that support them. This is called the LDAP-based Replica Environment, and it contains the following:

Master—The Identity Management installation containing the Oracle Internet Directory that holds the master copy of the naming context. It supplies replication updates to the replica.
**Master Repository**—The Metadata Repository that the master uses to store its Identity Management schemas.

**Replica**—The Identity Management installation containing the replicated Oracle Internet Directory.

**Replica Repository**—The Metadata Repository that the replica uses to store its Identity Management schemas.

Figure H–1 illustrates the LDAP-based replica environment.

![Figure H–1  LDAP-Based Replica Environment](image)

**H.1.2 How Is the LDAP-Based Replica Used for Changing Infrastructure Services?**

Typically, an LDAP-based replica is used to provide high availability and improved performance for directory users. For the purposes of changing Infrastructure services, the LDAP-based Replica is used as follows:

- For Section 9.4, “Moving Identity Management to a New Host”, the LDAP-based replica is created as a way of moving Identity Management from one host to another. The Master is the original Identity Management installation, and the Replica is the new Identity Management installation. In this case, replication is used to create an identical copy of the original Identity Management on a new host. You can then change your middle tiers from the old Identity Management (Master) to the new Identity Management (Replica) and discard the Master.

- For Chapter 10, the replica is used to create a test-to-production environment. The Master is the production Identity Management, and the Replica is the test Identity Management. When you are ready to merge your test environment into your production environment, you can migrate data from your test Identity Management (Replica) to your production Identity Management (Master) and change your middle tiers from the test Identity Management to the production Identity Management. You can then discard the test Identity Management or continue to use it for testing.
H.2 Installing and Setting Up an LDAP-Based Replica

This section describes how to install and set up an LDAP-based replica environment.

H.2.1 Things to Know Before You Start

You should be aware of these important items before you start the procedure:

- This procedure uses a single Infrastructure Oracle home that contains Identity Management and the Metadata Repository. However, you can split the Infrastructure installation so that Identity Management is in one Oracle home and the Metadata Repository is in another Oracle home. You can also distribute the Identity Management components (OracleAS Single Sign-On, Oracle Internet Directory, Delegated Administration Services, Oracle Directory Integration Platform) across different hosts. If you do this, perform the operations on each component in their respective Oracle homes.

- The replica always uses port 389 for the non-SSL Oracle Internet Directory port, and 636 for the SSL Oracle Internet Directory port, regardless of what is reported by Oracle Universal Installer, or printed in ORACLE_HOME/install/portlist.ini. Make sure no other processes are using ports 389 and 636 on the replica host before you start the procedure.

- Make sure you use the ldapsearch and ldapmodify commands that are in ORACLE_HOME/bin. (Some operating systems ship their own version of these commands—do not use those.)

- These procedures use the remtool and oidpasswd commands. The messages returned by these commands are in UTF-8 encoding and are unreadable in most non-English environments. To work around this, set the NLS_LANG environment variable to american_america.character_set before running these commands. Most character sets (for example, US7ASCII) will work.

  **See Also:** Oracle Application Server Globalization Guide

- Make sure the ORACLE_HOME and ORACLE_SID environment variables are set. This applies to all platforms.

H.2.2 Procedure

This section contains the procedure for setting up an LDAP-based replica. It contains the following tasks:

- **Task 1: Obtain the Master and Master Repository**
- **Task 2: Install Middle-Tier Instances (Optional)**
- **Task 3: Install and Configure the Replica**

**Task 1: Obtain the Master and Master Repository**

Most likely, you already have your Master and Master Repository.

- If you are following the procedure in Section 9.4, the Master and Master Repository are the installations you would like to move to a new host, and the LDAP-based replica will be the relocated installations.

- If you are following the procedure in Chapter 10, the Master and Master Repository are your production environment, and the replica will be your test environment.
If you are starting from scratch, you can install a Master and Master Repository as follows:

1. Install Oracle Application Server using Oracle Universal Installer.
2. Choose the Infrastructure Installation.
4. Choose to configure the following components: Oracle Internet Directory, OracleAS Single Sign-On, Delegated Administration Services, and Oracle Directory Integration Platform.

**Task 2: Install Middle-Tier Instances (Optional)**
Most likely, you already have middle-tier instances using the Master for Identity Management services. This is fine, and, if desired, you can install and configure additional instances to use the Master now, or at the end of this procedure after you have configured the Replica, or both.

These middle-tier instances can use the Master Repository for their product metadata, or they can use a different repository.

**Task 3: Install and Configure the Replica**
You can install and configure the Replica using Oracle Universal Installer. Be sure to install the Replica on a different host than the Master.

**See Also:** Oracle Application Server Installation Guide for information on installing an Oracle Internet Directory replica

When the installation has finished, replication is configured and all components running. You can return to the main procedure from where you started (either Section 9.4 or Chapter 10).
Viewing Oracle Application Server Release Numbers

This appendix describes how to view Oracle Application Server release numbers. It contains the following topics:

- Release Number Format
- Viewing Oracle Application Server Installation Release Numbers
- Viewing Component Release Numbers
- Viewing Oracle Internet Directory Release Numbers
- Viewing Metadata Repository Release Numbers
- Using the OPatch Utility

**Note:** Oracle recommends you keep a log of all interim patches applied to your Oracle Application Server installations.

### 1.1 Release Number Format

To understand the release level nomenclature used by Oracle, examine the example of an Oracle release number shown in Figure I–1.

**Figure I–1  Example of an Oracle Release Number**

In Figure I–1, each digit is labeled:

- Major Oracle Platform Number
  
  This is the most general identifier. It represents a major new edition (or version) of an application, such as Oracle database server or Oracle Application Server, and indicates that the release contains significant new functionality.

- Database Maintenance Release Number

10.1.4.0.1
This digit represents a maintenance release level. Some new features may also be included.

- Application Server Release Number
  This digit reflects the release level of Oracle Application Server.

- Component-Specific Release Number
  This digit identifies a release level specific to a component. Different components can have different numbers in this position depending upon, for example, component patch sets or interim releases.

- Platform-Specific Release Number
  This digit identifies a platform-specific release.

## I.2 Viewing Oracle Application Server Installation Release Numbers

All Oracle Application Server installations have a release number. This number is updated when you apply a patch set release or upgrade the installation.

You can view the release number of an Oracle Application Server installation using Oracle Universal Installer, as follows:

1. Launch Oracle Universal Installer:
   - (UNIX) `ORACLE_HOME/oui/bin/runInstaller.sh`
   - (Windows) `ORACLE_HOME\oui\bin\runInstaller.bat`

2. Click **Installed Products** to open the Inventory Page.

3. In the Inventory Page, expand **Oracle Homes**. You will see entries for all installations on your host.

4. Expand the Oracle home entry for the installation you are interested in.

5. You will see an entry with the release number for your original installation, followed by entries for any patch sets that have been applied.

## I.3 Viewing Component Release Numbers

All Oracle Application Server components have a release number and many contain services that have release numbers. These numbers **may** be updated when you apply a patch set release or upgrade the installation.

You can view the release number of components and their services in the following ways:

- **On the Filesystem**

- **Using Oracle Universal Installer**

**On the Filesystem**

You can view component release numbers as follows on UNIX:

```
cd ORACLE_HOME/inventory
ls -d Components/*//*/```

Using Oracle Universal Installer

If you installed Oracle Application Server using Oracle Universal Installer, you can view component release numbers as follows:
1. Launch Oracle Universal Installer:
 (UNIX) `ORACLE_HOME/oui/bin/runInstaller.sh`
 (Windows) `ORACLE_HOME\oui\bin\runInstaller.bat`

2. Click **Installed Products** to open the Inventory Page.

3. In the Inventory Page, expand **Oracle Homes**. You will see entries for all installations on your host.

4. Expand the Oracle home entry for the installation you are interested in.

5. You will see an entry with the release number for your original installation, followed by entries for any patch sets that have been applied.

6. Expand the initial entry to view the component release numbers at installation time. If you have subsequent patch set entries, expand them to see the component release numbers updated for each patch set.

I.4 Viewing Oracle Internet Directory Release Numbers

Oracle Internet Directory has a server release number, which is the version of the binaries. It also has schema and context versions. All of these numbers correspond to the Oracle Application Server installation release number through the third digit. These numbers may be updated when you apply a patch set release or upgrade the installation.

Viewing the Oracle Internet Directory Server Release Number

The Oracle Internet Directory server release number is the version of the binaries. You can view the Oracle Internet Directory server release number as follows:

1. Make sure the **ORACLE_HOME** environment variable is set.

2. Run the following command:
 (UNIX) `ORACLE_HOME/bin/oidldapd -version`
 (Windows) `ORACLE_HOME\bin\oidldapd -version`

Viewing the Oracle Internet Directory Schema and Context Versions

You can view the Oracle Internet Directory schema and context versions in this file:

(UNIX) `ORACLE_HOME/ldap/schema/versions.txt`
(Windows) `ORACLE_HOME\ldap\schema\versions.txt`

The contents of this file are kept up-to-date, however, you can also query the schema and context release from Oracle Internet Directory, just to be sure.

To view the schema version:

1. Make sure the **ORACLE_HOME** environment variable is set.

2. Run the following command:
   ```bash
   ldapsearch -h oid_host -p oid_port -D "cn=orcladmin" -w orcladmin_password -b "cn=base,cn=oracleschemaversion" -s base "objectclass="*" orclproductversion
   ```

 The output will be in this form:
   ```
   cn=BASE,cn=OracleSchemaVersion
   orclproductversion=90600
   ```
To view the context version:

1. Make sure the \texttt{ORACLE_HOME} environment variable is set.

2. Run the following command:

 \texttt{ldapsearch -h oid_host -p oid_port -D "cn=orcladmin" -w orcladmin_password -b "cn=oraclecontext" -s base "objectclass=*" orclversion}

 The output will be in this form:

 \texttt{cn=oraclecontext}
 \texttt{orclversion=90600}

\section*{1.5 Viewing Metadata Repository Release Numbers}

Metadata Repositories have the following release numbers:

- Database release number

 This is the Oracle Database 10g database release number.

- Metadata Repository Container release number

 This is the release number for the Metadata Repository. The number is equal to the Oracle Application Server installation release number.

- Schema release numbers

 The Oracle Application Server schemas in the Metadata Repository have release numbers. These numbers do not necessarily correspond to Oracle Application Server release numbers or database release numbers.

\subsection*{Viewing the Database Release Number}

The Metadata Repository is an Oracle Database 10g database that has a release number. This number is updated when you apply a patch set release or upgrade the database.

You can view the Metadata Repository release number using SQL*Plus as follows (you can be connected to the database as any user to issue these commands):

\begin{verbatim}
SQL> COL PRODUCT FORMAT A40
SQL> COL VERSION FORMAT A15
SQL> COL STATUS FORMAT A15
SQL> SELECT * FROM PRODUCT_COMPONENT_VERSION;
\end{verbatim}

\begin{tabular}{l|l|l}
 \textbf{PRODUCT} & \textbf{VERSION} & \textbf{STATUS} \\
 \hline
 NLSRTL & 10.1.0.5.0 & Production \\
 Oracle Database 10g Enterprise Edition & 10.1.5.0.0 & Prod \\
 PL/SQL & 10.1.5.0.0 & Production \\
 TNS for 32-bit Windows: & 10.1.5.0.0 & Production \\
\end{tabular}

\subsection*{Viewing Metadata Repository Container and Schema Release Numbers}

You can view the Metadata Repository Container release number, as well as schema release numbers, using SQL*Plus as follows (you must log in as a user with SYSDBA privileges):

\begin{verbatim}
SQL> COL COMPONENT_NAME FORMAT A35
SQL> COL ID FORMAT A15
SQL> COL VERSION FORMAT A15
\end{verbatim}
Using the OPatch Utility

I.6 Using the OPatch Utility

The OPatch utility is a tool that allows the application and rollback of interim patches to Oracle products, such as Oracle Application Server. For the latest information about the OPatch utility, and to check for updates, refer to Oracle MetaLink at http://www.oracle.com/support/metalink/index.html

I.6.1 Requirements

The OPatch utility has the following requirements:

- Perl environment, included with Oracle Application Server or downloaded with a patch set.
- The Oracle home environment variable (ORACLE_HOME) must point to a valid Oracle home directory and match the value used during installation of the Oracle home directory.
- If the -invPtrLoc command-line argument was used during installation, then it must be used when using the OPatch utility. Oracle recommends the use of the default central inventory for a platform.
- The jar, java, ar, cp, and make commands must be available in the PATH statement. The commands are not available for all platforms.
- The library path must be set correctly for Oracle Real Application Clusters environments. Refer to the FAQ document in the opatch/doc directory for additional information.

See Also: For the latest information about the OPatch utility, and to check for updates, refer to OracleMetaLink at http://www.oracle.com/support/metalink/index.html
I.6.2 Running the OPatch Utility

The OPatch utility is located in the ORACLE_HOME/OPatch directory. It is run with options and command-line arguments. The following command shows the syntax for the OPatch utility:

```
path_to_opatch/opatch option -command_line_arguments
```

In the preceding command, the following variables are used:

- **command_line_arguments**: The command-line arguments for the option. Values are described in the following sections.
- **option**: The OPatch option. Values are described in the following table:

<table>
<thead>
<tr>
<th>Option</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apply</td>
<td>Installs an interim patch. Refer to Section I.6.2.1 for more information.</td>
</tr>
<tr>
<td>lsinventory</td>
<td>Lists what is currently installed on the system. Refer to Section I.6.2.2 for more information.</td>
</tr>
<tr>
<td>query</td>
<td>Queries a given patch for specific details. Refer to Section I.6.2.3 for more information.</td>
</tr>
<tr>
<td>rollback</td>
<td>Removes an interim patch. Refer to Section I.6.2.4 for more information.</td>
</tr>
<tr>
<td>version</td>
<td>Prints the current version of the patch tool. Refer to Section I.6.2.5 for more information.</td>
</tr>
</tbody>
</table>

To view additional information for any option, use the following command:

```
path_to_OPatch/opatch option -help
```

If using Perl, then use the following command:

```
perl opatch.pl option -help
```

I.6.2.1 apply Option

The apply option applies an interim patch to a specified Oracle home. The ORACLE_HOME environment variable must be set to the Oracle home to be patched. The following syntax is used for this option:

```
path_to_opatch/opatch apply [patch_location] [-delay (value)] [-force] \ 
[-invPtrLoc (path)] [-jdk (location)] [-jre (location)] [-local] \ 
[-minimize_downtime] [-no_bug_superset] [-no_inventory] \ 
[-oh (Oracle home location)] \ 
[-post (options to be passed into post) [-opatch_post_end]]\ 
[-pre (options to be passed into pre) [-opatch_pre_end]] \ 
[-retry (value)] [-silent] [-verbose]
```

The following table lists the command-line arguments available for use with the apply option:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>delay</td>
<td>Specifies how many seconds to wait before attempting to lock the inventory in the case of a previous failure.</td>
</tr>
<tr>
<td>force</td>
<td>Removes conflicting patches from the system. If a conflict exists which prevents the patch from being applied, then the <code>force</code> command-line argument can be used to apply the patch.</td>
</tr>
</tbody>
</table>
Using the OPatch Utility

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>invPtrLoc</td>
<td>Specifies the location of the oraInst.loc file. This command-line argument is needed when the -invPtrLoc argument was used during installation. Oracle recommends the use of the default central inventory for a platform.</td>
</tr>
<tr>
<td>jdk</td>
<td>Specifies the location of a particular JDK (jar) to use instead of the default location under the Oracle home directory.</td>
</tr>
<tr>
<td>jre</td>
<td>Specifies the location of a particular JRE (Java) to use instead of the default location under the Oracle home directory.</td>
</tr>
<tr>
<td>local</td>
<td>Specifies that the OPatch utility patch the local node and update the inventory of the local node. It does not propagate the patch or inventory update to other nodes. This command-line argument can be used on Oracle Real Application Clusters environments and non-clustered environments. If an entire cluster is shutdown before patching, then this argument can be used for non-rolling patches.</td>
</tr>
<tr>
<td>minimize_downtime</td>
<td>Specifies the order of nodes to be patched by the OPatch utility. This command-line argument only applies to Oracle Real Application Clusters environments. It cannot be used with the -local command-line argument or a rolling patch.</td>
</tr>
<tr>
<td>no_bug_superset</td>
<td>Specifies to error out if the current patch bugs-to-fix is a superset or the same as an installed patch bugs-fixed in the Oracle home directory.</td>
</tr>
<tr>
<td>no_inventory</td>
<td>Bypasses the inventory for reading and updates. This command-line argument cannot be used with the -local command-line argument. This command-line argument puts the installation into an unsupported state.</td>
</tr>
<tr>
<td>oh</td>
<td>Specifies the Oracle home directory to use instead of the default.</td>
</tr>
<tr>
<td>opatch_post_end</td>
<td>Marks the end of the post options. This command-line argument is used with the post command-line argument. If this argument is not used, then everything after post is passed into post.</td>
</tr>
<tr>
<td>opatch_pre_end</td>
<td>Marks the end of the pre options. This command-line argument is used with the pre command-line argument. If this argument is not used, then everything after pre is passed into pre.</td>
</tr>
<tr>
<td>post</td>
<td>Specifies the parameters to be passed inside the post script besides the standard parameters.</td>
</tr>
<tr>
<td>pre</td>
<td>Specifies the parameters to be passed inside the pre script besides the standard parameters.</td>
</tr>
<tr>
<td>retry</td>
<td>Specifies how many times the OPatch utility should try when there is an inventory lock failure.</td>
</tr>
<tr>
<td>patch_location</td>
<td>Specifies the directory of the interim patch. This should be a directory with the same name as the patch.</td>
</tr>
<tr>
<td>silent</td>
<td>Suppresses user interaction, and defaults any answers to "yes."</td>
</tr>
<tr>
<td>verbose</td>
<td>Prints output to the screen as well as to the log file.</td>
</tr>
</tbody>
</table>

Note: If a patch consists of SQL changes, then they are only staged. Follow the instructions included with the patch to apply the patch manually on the affected instances. For some products, such as OracleAS Portal, the SQL application may be implemented as a post-staging action by the tool. These patches cannot be rolled back.
I.6.2.2 lsinventory Option

The lsinventory option reports what has been installed on the system for a particular Oracle home directory, or for all installations. The following syntax is used for this option:

```
path_to_opatch/opatch lsinventory [-all] [-detail] [-invPtrLoc (path)] \ 
[-jre (location)] [-oh (Oracle home location)]
```

The following table lists the command-line arguments available for use with the lsinventory option:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Reports the name and installation directory for each found Oracle home directory.</td>
</tr>
<tr>
<td>detail</td>
<td>Reports the installed products and other details. This command-line argument cannot be used with the -all command-line argument.</td>
</tr>
<tr>
<td>invPtrLoc</td>
<td>Specifies the location of the oraInst.loc file. This command-line argument is needed when the invPtrLoc command-line argument was used during installation. Oracle recommends the use of the default central inventory for a platform.</td>
</tr>
<tr>
<td>jre</td>
<td>Specifies the location of a particular JRE (Java) to use instead of the default location under the Oracle home directory.</td>
</tr>
<tr>
<td>oh</td>
<td>Specifies the Oracle home directory to use instead of the default directory.</td>
</tr>
</tbody>
</table>

The following is a sample output of opatch lsinventory -detail:

```
ORACLE_HOME LOCATION
---------- --------
Home1 /private/phi_local/OraHome1
   There is no Interim Patch
Home2 /private/phi_local/OraHome2
   There is no Interim Patch
Home3 /private/phi_local/OraHome6
   Installed Patch List:
   =====================
   1) Patch 20 applied on Mon Jul 11 15:53:51 PDT 2005
      [ Base Bug(s): 21 ]
   2) Patch 80 applied on Fri Jul 01 16:15:52 PDT 2005
      [ Base Bug(s): 80 81 ]
```

I.6.2.3 query Option

The query option queries a specific patch for specific details. It provides information about the patch and the system being patched. The following syntax is used for this option:

```
path_to_opatch/opatch query [-all] [-get_base_bug] [-get_component] \ 
[-get_date] [-get_os] [-get_system_change] [-is_rolling]
```

The following table lists the command-line arguments available for use with the query option:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>all</td>
<td>Retrieves all information about a patch. This is equivalent to setting all command-line arguments.</td>
</tr>
</tbody>
</table>
I-6.2.4 rollback Option

The rollback option removes a specific interim patch from the appropriate Oracle home directory. The following syntax is used for this option:

```bash
path_to_opatch/opatch rollback -id patch_id -ph (patch directory) \
[-delay] (value) [-invPtrLoc (path)] [-jdk (location)] [-jre (location)]\ 
[-local] [-oh (Oracle home location)] \
[-post (options to be passed into post) [-opatch_post_end]] \
[-pre (options to be passed into pre) [-opatch_pre_end]] [-retry (value)] \
[-silent] [-verbose]
```

The following table lists the command-line arguments available for use with the rollback option:

<table>
<thead>
<tr>
<th>Argument</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>get_base_bug</td>
<td>Describes the base bugs fixed by a patch.</td>
</tr>
<tr>
<td>get_component</td>
<td>Describes the Oracle components, optional or required, for a patch.</td>
</tr>
<tr>
<td>get_date</td>
<td>Provides the build date of a patch.</td>
</tr>
<tr>
<td>get_os</td>
<td>Provides the operating system description supported by a patch.</td>
</tr>
<tr>
<td>get_system_change</td>
<td>Describes the changes that will be made to the system by a patch. This command-line argument is not available.</td>
</tr>
<tr>
<td>is_rolling</td>
<td>Specifies if the patch is a rolling patch for Oracle Real Application Clusters. The set of patches need not be applied to the whole cluster at the same time. The patches can be applied to a select set of nodes at a time.</td>
</tr>
<tr>
<td>delay</td>
<td>Specifies how many seconds the OPatch utility should wait before attempting to lock inventory again, if the -retry command-line argument is used with the apply option.</td>
</tr>
<tr>
<td>id</td>
<td>Indicates the patch to be rolled back. Use the -lsinventory option to display all patch identifiers. To successfully rollback a patch, the patch identifier must be supplied.</td>
</tr>
<tr>
<td>invPtrLoc</td>
<td>Specifies the location of the oraInst.loc file. This command-line argument is needed when the -invPtrLoc command-line argument was used during installation. Oracle recommends the use of the default central inventory for a platform.</td>
</tr>
<tr>
<td>jdk</td>
<td>Specifies the location of a particular JDK (jar) to use instead of the default location under the Oracle home directory.</td>
</tr>
<tr>
<td>jre</td>
<td>Specifies the location of a particular JRE (Java) to use instead of the default location under the Oracle home directory.</td>
</tr>
<tr>
<td>local</td>
<td>Specifies that the OPatch utility patch the local node and update the inventory of the local node. It does not propagate the patch or inventory update to other nodes. This command-line argument can be used on Oracle Real Application Clusters environments and non-clustered environments. If an entire cluster is shutdown before patching, then this argument can be used for non-rolling patches.</td>
</tr>
<tr>
<td>oh</td>
<td>Specifies the Oracle home directory to use instead of the default directory.</td>
</tr>
<tr>
<td>opatch_post_end</td>
<td>Marks the end of the post options. This command-line argument is used with the post command-line argument. If this argument is not used, then everything after post is passed into post.</td>
</tr>
</tbody>
</table>
I-6.2.5 version Option

The version option shows the current version number of the OPatch utility. The following syntax is used for this option:

```
path_to_opatch/opatch version
```
This appendix provides information on how to troubleshoot problems that you might encounter when using Oracle Application Server. It contains the following topics:

- Diagnosing Oracle Application Server Problems
- Common Problems and Solutions
- Troubleshooting Application Server Control
- Need More Help?

See Also:

- Chapter 16, "Troubleshooting SSL" for information about troubleshooting SSL.
- Chapter 21, "Troubleshooting the Backup and Recovery Tool" for specific information about troubleshooting the Backup and Recovery Tool

J.1 Diagnosing Oracle Application Server Problems

Oracle Application Server components generate log files containing messages that record all types of events, including startup and shutdown information, errors, warning messages, access information on HTTP requests, and additional information. The log files can be used to identify and diagnose problems. See Chapter 5, "Managing Log Files" for more information about log files.

J.2 Common Problems and Solutions

This section describes common problems and solutions. It contains the following topics:

- Oracle Application Server Infrastructure Instance Will Not Start
- Cannot Reset Administrator (ias_admin) Password
- Cannot Restore Backup to a Different Host
- Application Performance Impacted by Garbage Collection Pauses
- Application Server Returns Connection Refused Errors
- Oracle HTTP Server Unable to Start Due to Port Conflict
- Machine Overloaded by Number of HTTPD Processes
- Oracle Application Server Process Does Not Start
• OPMN Start Up Consumes CPU Processing Capability
• OPMN Cannot Start
• DCM Daemon Cannot Start
• DCM Unable to Connect to the Directory
• DCM Cannot Access the Infrastructure Database
• Oracle Internet Directory Server Does Not Start
• Poor LDAP Search Performance
• Authentication Failed
• Logging into OracleAS Single Sign-On Takes a Long Time
• Standby Site Not Synchronized
• Failure to Bring Up Standby Instances After Failover or Switchover
• Previously Working Application Using ADF Business Components Throws JDBC Errors

J.2.1 Oracle Application Server Infrastructure Instance Will Not Start

The Oracle Application Server Infrastructure will not start.

Problem
Some common symptoms and likely causes of this problem are:

• `opmnctl` startall/stopall is in a hung state. This may indicate that the listener or database is down.
• OPMN startup fails or is in an unstable state and `opmnctl` startall/stopall is in a hung state. This may indicate that the machine has run out of memory.
• You are receiving a missing component error. This usually indicates that entries are missing in the opmn.xml file or someone has incorrectly edited the file.
• Oracle Internet Dependency failed. This occurs when the correct order of starting and stopping is not followed.

Solutions
The following list provides solutions to problems in the same order as the symptoms listed earlier:

• Ensure that the database and listener are running.
• Ensure that the machine’s memory meets the memory requirements listed in the Oracle Application Server Installation Guide.
• Check the opmn.xml file to see if the missing component is correctly entered in the file.
• The correct order in which to start Infrastructure components is:
 1. Oracle Database Server Net Listener
 2. Metadata Repository
 3. Identity Management
 4. Application Server Control Console
J.2.2 Cannot Reset Administrator (ias_admin) Password

For information on resetting the ias_admin password, see Section J.3.1.1.

J.2.3 Cannot Restore Backup to a Different Host

For information on restoring a backup to a different host, see Section 20.2.3.

J.2.4 Application Performance Impacted by Garbage Collection Pauses

Application performance slows or application is unresponsive.

See the section "Application Performance Impacted by Garbage Collection Pauses" in the Oracle Application Server Containers for J2EE User’s Guide for information about the causes and solutions to this problem.

J.2.5 Application Server Returns Connection Refused Errors

In load conditions (for example, when the number of users concurrently connecting to the application server increases significantly in a short time), the server may respond with the following error message:

IOException in sending request - Connection refused

Problem

If the number of simultaneous users is increasing, the server may be utilizing the maximum Oracle HTTP Server child processes allowable to service requests.

Solution

You may need to increase the MaxClients directive for the Oracle HTTP Server. The MaxClients directive specifies a limit on the number of clients who can simultaneously connect.

Use one of the following methods to determine if this is the case:

- Search the Oracle HTTP Server error log file for the following message:

 server reached MaxClients setting, consider raising the MaxClients setting...

 By default, the error log file is located in:

 (UNIX) ORACLE_HOME/Apache/Apache/logs/error_log
 (Windows) ORACLE_HOME\Apache\Apache\logs\error_log

- Interactively monitor child process activity using the metrics in the Application Server Control Console. In particular, view the following in the HTTP_Server Home page:

 – In the Status section, Active Connections, which shows the number of clients currently executing HTTP requests.
 – In the Response and Load section, Active Requests, which shows the total number of active requests currently being processed.
Look at the information provided by mod_status. The mod_status module provides an HTML page that shows the current server statistics. Check to see if all the processes are busy. (By default, Mod_status is enabled for localhost access only.) For more information on mod_status, see:

http://httpd.apache.org/docs/mod/mod_status.html

In addition, consider increasing the maximum queue length for pending connections (the ListenBackLog directive) and consider the impact of persistent connections (the KeepAlive directive).

For more information about the Oracle HTTP Server directives and how to change their values, see the Oracle HTTP Server Administrator’s Guide. For more information about tuning Oracle HTTP Server processes, see the Oracle Application Server Performance Guide.

J.2.6 Oracle HTTP Server Unable to Start Due to Port Conflict

You can get the following error if Oracle HTTP Server is unable to start due to port conflict:

[crit] (98) Address already in use: make_sock: could not bind to port 7778

See the section "Oracle HTTP Server Unable to Start Due to Port Conflict" in the Troubleshooting Oracle HTTP Server appendix of the Oracle HTTP Server Administrator’s Guide for information about the cause and solution to this problem.

J.2.7 Machine Overloaded by Number of HTTPD Processes

When there are too many httpd processes running on a machine, the response time plummets.

See the section "Machine Overloaded by Number of HTTPD Processes" in the Troubleshooting Oracle HTTP Server appendix of the Oracle HTTP Server Administrator’s Guide for information about the cause and solution to this problem.

J.2.8 Oracle Application Server Process Does Not Start

You are not able to start an Oracle Application Server process using OPMN.

J.2.9 OPMN Start Up Consumes CPU Processing Capability

On some computers, when OPMN starts up, it consumes large amounts of CPU processing capability.

See Section A.1.15, "OPMN Start Up Consumes CPU Processing Capability” in the Oracle Process Manager and Notification Server Administrator’s Guide for information about the causes and solutions to this problem.

J.2.10 OPMN Cannot Start

OPMN cannot start. This may be caused by a corrupt opmn.xml file.

See Section B.1.1, "OPMN Cannot Start" in the Distributed Configuration Management Administrator’s Guide for information about the causes and solutions to this problem.
J.2.11 DCM Daemon Cannot Start

The DCM daemon does not start.

See Section B.1.2, "DCM Daemon Cannot Start" in the Distributed Configuration Management Administrator’s Guide for information about the causes and solutions to this problem.

J.2.12 DCM Unable to Connect to the Directory

DCM returns ADMN-100999 and the base exception is "Unable to connect to Directory."

See Section B.1.8, "Unable to Connect to the Directory" in the Distributed Configuration Management Administrator’s Guide for information about the causes and solutions to this problem.

J.2.13 DCM Cannot Access the Infrastructure Database

DCM returns ADMN-202026 and the base exception is "Unable to connect to Directory."

See Section B.1.9, "Cannot Access the Infrastructure Database" in the Distributed Configuration Management Administrator’s Guide for information about the causes and solutions to this problem.

J.2.14 Oracle Internet Directory Server Does Not Start

Either oidctl or opmnctl fails to start an Oracle Internet Directory server instance.

See Section J.1.11.1, "Oracle Internet Directory Server Does Not Start" in the Oracle Internet Directory Administrator’s Guide for information about the causes and solutions to this problem.

J.2.15 Poor LDAP Search Performance

LDAP search performance is poor.

See Section J.1.5.1, "Poor LDAP Performance" in the Oracle Internet Directory Administrator’s Guide for information about the causes and solutions to this problem.

J.2.16 Authentication Failed

Users may see an Authentication Failed error after logging in to OracleAS Single Sign-On.

J.2.17 Logging into OracleAS Single Sign-On Takes a Long Time

Logging into OracleAS Single Sign-On might take a long time depending on your configuration.

J.2.18 Standby Site Not Synchronized

In the OracleAS Disaster Recovery standby site, you may find that the site's OracleAS Metadata Repository is not synchronized with the OracleAS Metadata Repository in the primary site.

See Section A.3.1, "Standby Site Not Synchronized" in the Oracle Application Server High Availability Guide for information about the causes and solutions to this problem.

J.2.19 Failure to Bring Up Standby Instances After Failover or Switchover

Standby instances are not started after a failover or switchover operation.

See Section A.3.2, "Failure to Bring Up Standby Instances After Failover or Switchover" in the Oracle Application Server High Availability Guide for information about the causes and solutions to this problem.

J.2.20 Previously Working Application Using ADF Business Components Throws JDBC Errors

An application that previously successfully retrieved data suddenly starts throwing JDBC errors such as Connection Reset By Peer, Connection Closed, or Socket Reset By Peer.

J.3 Troubleshooting Application Server Control

This section describes problems that you might encounter when using Application Server Control and explains how to solve them. It contains the following topics:

- Application Server Control General Problems and Solutions
- OC4J Management Problems and Solutions

See Also: Chapter 21 for information about any troubleshooting backup and recovery operations performed within the Application Server Control Console

J.3.1 Application Server Control General Problems and Solutions

This section describes problems and solutions. It contains the following topics:

- Resetting the Administrator (ias_admin) Password
- Unavailable Metric and Chart Data in the Application Server Control Console
- Application Server Status Is Down When Server Components Are Up
- Errors When Starting Application Server Control
- Problems Connecting to an Application Server Instance from Farm or Cluster Page
- Application Server Home Page Indicates That the Farm Is Unavailable
- Error Connecting to the Directory Server
- Browser Displays "SMISession has been invalidated" Error
- Memory Errors Generated by the Oracle Management Agent
J.3.1.1 Resetting the Administrator (ias_admin) Password

To manage an instance of Oracle Application Server, you must log in to the Application Server Control Console using the current Administrator (ias_admin) password.

Problem
If you forget or do not know the ias_admin password, then you cannot monitor or administer the application server or its components with the Application Server Control Console.

Solution
Reset the ias_admin password using the following procedure while you are logged in as the user who installed the Oracle Application Server instance:

1. Stop the Application Server Control.
 - On UNIX systems, enter the following command in the Oracle home of the application server instance:
     ```bash
     ORACLE_HOME/bin/emctl stop iasconsole
     ```
 - On Windows systems, use the Services control panel to stop the Application Server Control service.

2. Locate and open the following file in a text editor:
   ```bash
   ORACLE_HOME/sysman/j2ee/config/jazn-data.xml
   ```

3. Locate the line that defines the credentials property for the ias_admin user.
 The following example shows the section of jazn-data.xml with the encrypted credentials entry in boldface type:
   ```xml
   <realm>
   <name>enterprise-manager</name>
   <users>
   <user>
   <name>ias_admin</name>
   <credentials>{903}buG0lUsQqTq0nQjdaKQRECL1kbs192mP</credentials>
   </user>
   </users>
   </realm>
   ```

4. Replace the existing encrypted password with the new password.
 Be sure to prefix the password with an exclamation point (!). For example:
   ```xml
   <credentials>!mynewpassword123</credentials>
   ```
The password for the ias_admin user should conform to following guidelines:

- The minimum length is five alphanumeric characters.
- At least one of the characters must be a number.
- Passwords must be shorter than 30 characters.
- Passwords can contain only alphanumeric characters from your database character set, the underscore (_), the dollar sign ($), and the number sign (#).
- Passwords must begin with an alphabetic character. It cannot begin with a number, the underscore (_), the dollar sign ($), or the number sign (#).

See Also: "The ias_admin User and Restrictions on its Password" in the Oracle Application Server Installation Guide

5. Start the Application Server Control.

After the restart, the Application Server Control will use your new Administrator (ias_admin) password, which will be stored in encrypted format within the jazn-data.xml file.

See Also: Section A.1.1, "Starting and Stopping the Application Server Control Console on UNIX"

J.3.1.2 Unavailable Metric and Chart Data in the Application Server Control Console

The performance metrics for a particular component show up as "Unavailable" in the Application Server Control Console.

Similarly, instead of a chart, one of the following messages (or a similar message) appears on the component Home page:

- The underlying data for the CPU usage graph is not yet available
- The underlying data for the Memory usage graph is not yet available

This problem often occurs immediately after the component is started.

Problem

Some metric data must be collected multiple times before the data can be displayed in the Application Server Control Console.

Solution

Verify that the component is up and running. If the component is down, restart the component.

If the component is up and running, wait at least five minutes to allow the necessary metrics to initialize, and then click the Refresh Data icon to refresh the data on the page.

J.3.1.3 Application Server Status Is Down When Server Components Are Up

From the Oracle Application Server Home page, you can quickly review the status of individual application server components, as well as the status of the overall application server instance itself.
Problem
Sometimes the Application Server Control Console indicates that the application server instance is down when components of the application server are up and running.

Solution
An Oracle Application Server instance is considered down when any one of its enabled components is down. For example, if one of your OC4J instances is down, the application server is considered down, even if the other components, such as Oracle HTTP Server, are up and running.

You can fix this problem by disabling components that are not in use. When a component is disabled, its status does not affect the status of the Application Server target. You can always enable the component at a later time.

To disable a component, click **Enable/Disable Components** on the Application Server Home page. Use the resulting page to determine which components you want to enable or disable for this application server instance.

See Also: "Disabling and Enabling Components” in the Enterprise Manager online help

J.3.1.4 Errors When Starting Application Server Control
Before you can perform application server administrative tasks with Enterprise Manager, you must start Application Server Control.

Problem
When you attempt to start Application Server Control—or when the Enterprise Manager configuration assistant in the installation procedure attempts to start Application Server Control—an error occurs and the necessary processes are not started.

Solution
Problems starting Application Server Control are often caused by port conflicts on the host computer. In other words, a specific port number that the Application Server Control requires is in use by another application on the machine.

The first step in troubleshooting port conflicts is to identify which ports are in conflict. Some of the more common port conflicts that affect the Application Server Control include:

- The port used in the Application Server Control Console URL
- The port used by the Oracle Management Agent
- The port used by OC4J Remove Method Invocation (RMI)

You can often identify a port conflict (or other startup problem) by reviewing the log files associated with these technologies or components. Table J–1 describes some of these component log files, which are installed in the `sysman/log` directory of the Oracle Application Server home directory.
After you identify a port conflict, you can modify the Application Server Control port number (if the port number can be reassigned).

See Also: Chapter 5, "Managing Log Files"

After you identify a port conflict, you can modify the Application Server Control port number (if the port number can be reassigned).

See Also: Section 4.3.1, "Changing Oracle Enterprise Manager Ports"

J.3.1.5 Problems Connecting to an Application Server Instance from Farm or Cluster Page

From the Oracle Application Server Farm home page, you can view a list of the individual application server instances and OracleAS Clusters that are part of the Farm. To navigate to the Application Server Home home page for an instance, click the name of the application server target on the Farm home page. Similarly, the Cluster page provides a list of the application server instances that belong to the selected OracleAS Clusters.

Problem

When you click the name of the application server instance on the Farm home page, you receive one of the following errors in your Web browser:

- In your Netscape browser:

 There was no response. The server could be down or is not responding.

- In your Internet Explorer browser:

 The page cannot be displayed.

Solution

This error is most often displayed when the Application Server Control for the instance you selected is not running. By default, each application server instance requires an Application Server Control and Management Agent to be running from its Oracle home.

To fix the problem, you must start the Application Server Control for the instance you want to manage:

1. Log on to the host where the application server instance resides.

 Be sure to log in as the user who installed the Oracle Application Server instance.

2. Start the Application Server Control.

 On UNIX systems, use the following command to start the Application Server Control:
Oracle_HOME/bin/emctl start iasconsole

On Windows systems, use the Services control panel to start the Application Server Control service.

See Also: Section A.1, "Starting and Stopping the Application Server Control"

J.3.1.6 Application Server Home Page Indicates That the Farm Is Unavailable

OracleAS Farm is a set of Oracle Application Server instances that share a common repository. If the instance you are managing is part of an OracleAS Farm, the Application Server Control Console URL displays the Farm page. The Farm page lists the application servers and OracleAS Clusters that are part of the Farm.

Problem

Sometimes the Application Server Control Console URL does not display the Farm page. Instead, Enterprise Manager displays the Application Server Home page. In the General section of the page, the Farm field indicates that the Farm is "Unavailable." Alternatively, the Farm field indicates that the "Infrastructure database is unavailable."

Solution

In most cases you can solve this problem by making sure that the OracleAS Metadata Repository database or Farm repository database is up and running. You can verify the status of the database by using one of two methods:

- Display the Oracle Enterprise Manager Database Control Console for the Infrastructure Oracle home. The Database Control Console provides you with a Web-based user interface for monitoring and administering the Infrastructure database. From the Database Control Console, you can obtain the status of the database.

 See Also: Section 2.5, "Managing the OracleAS Metadata Repository Database with Database Control"

- Use SQL*Plus to connect to the database and verify that it is up and running.

If the database is down, start the database and then navigate to the Application Server Control Console URL.

If the OracleAS Metadata Repository database is up and running, make sure the Oracle Internet Directory component of your OracleAS Identity Management installation is also available. Display the Application Server Control Console for the OracleAS Identity Management installation and check to be sure the Oracle Internet Directory component is up and running.

If both the OracleAS Metadata Repository database and Oracle Internet Directory are up and running, the problem may be related to port conflicts, which can affect the Oracle Process Manager and Notification Server (OPMN). Check the OPMN log files to identify the potential port conflict.

 See Also: Chapter 5, "Managing Log Files"

If you identify a port conflict, modify the port number (if the port number can be reassigned).

 See Also: Chapter 4, "Managing Ports"
J.3.1.7 Error Connecting to the Directory Server
If your application server instance is part of an OracleAS Farm, some components of your application server instance may require access to the Identity Management components. Specifically, they may need access to Oracle Internet Directory.

Problem
When you log in to the Application Server Control Console, the following error message appears:

Unable to Connect to Directory Server:javax.naming.CommunicationException

Solution
This problem is caused when the Oracle Internet Directory component is down or unavailable. Verify that Oracle Internet Directory is up and running and start it if necessary.

For example, log in to the Identity Management host and enter the following command in the Infrastructure Oracle home to start the Oracle Internet Directory:

```
opmnctl startproc ias-component=OID
```

See Also: Oracle Process Manager and Notification Server Administrator’s Guide for more information about starting and stopping OPMN components, such as Oracle Internet Directory

J.3.1.8 Browser Displays "SMISession has been invalidated" Error
Using Application Server Control, you can manage Oracle Application Server from a browser. As a result, you can manage your application server instances remotely as long as you have access to the network. In addition, multiple administrators can manage your application server instances.

Problem
In some cases, you may see the following error message displayed in your browser window:

The SMISession has been invalidated. Resolution: Please close the current SMISession, start another one and reapply the actions

Solution
To resolve this issue, click the Refresh Data icon located to the right of the time stamp, or close and reopen the browser to start a new session. This error can be the result of multiple users performing conflicting configuration actions on a single Enterprise Manager Application Server Control at the same time.

J.3.1.9 Memory Errors Generated by the Oracle Management Agent
Oracle Application Server includes a version of the Oracle Management Agent that gathers monitoring data for the Application Server Control Console.

Problem
The Management Agent generates “out of memory” errors while collecting application server metrics.
Solution

Use the following procedure to increase the amount of memory available to the Management Agent Java Virtual Machine (JVM). The default value is 64 MB:

1. Use a text editor to open the following configuration file in the application server Oracle home:
 (UNIX) $ORACLE_HOME/sysman/config/emd.properties
 (Windows) %ORACLE_HOME%\sysman\config\emd.properties

2. Locate the following entry in the emd.properties file:
 agentJavaDefines=-Doracle.dms.refresh.wait.time=1000

3. Add the following qualifier to the agentJavaDefines property to increase the available memory to 128 MB:
 -Xmx128M

4. Restart the Application Server Control.

See Also: Section A.1.1, "Starting and Stopping the Application Server Control Console on UNIX"

J.3.1.10 Administration Tasks Performed Using the Command Line Are Not Reflected in Application Server Control Console

Application Server Control is the preferred management tool for most of your Oracle Application Server management tasks. However, you can still accomplish your management tasks using various command-line tools.

Problem

If you use command-line tools to make administration or configuration changes to an Oracle Application Server instance (for example, if you use the dmctl applyarchive command), the changes are not reflected in the Application Server Control Console until after the Application Server Control cache is cleared.

Solution

To clear the cache, click the Refresh Data icon, which is located to the right of the time stamp, or close and reopen the browser to start a new session.

J.3.1.11 SSL Timeout Issues with Microsoft Internet Explorer Browsers

You can use the emctl secure iasconsole command to configure the Application Server Control so it uses HTTPS secure communications.

See Also: Section A.4, "Configuring Security for Application Server Control Console"

However, after you configure security for the Application Server Control, you may get intermittent problems when using Microsoft Internet Explorer 6.0 or a later release.

Problem

Microsoft Internet Explorer has known issues with trying to reuse SSL connections after they have timed out. Due to this limitation, users connecting to Application Server Control using Internet Explorer, may see intermittent errors. Some examples of the errors include the following:
500 Internal Server Error when deploying a J2EE application

Error: Processing already completed after responding to a confirmation message

The graphics in the HTML version of Topology Viewer do not appear

Solution
To work around these SSL timeout errors, you can upgrade all browsers to use the correct Microsoft patches. For information about the Internet Explorer problem, its workarounds, and links to updates to Internet Explorer 6.0 and later, see the following:

J.3.1.12 Session Has Expired Message When Using Multiple Browser Windows
Browser displays a message saying that the session has expired.

Problem
Opening multiple browser windows to view different Application Server Control Consoles on the same host may cause the browser to post a session has expired message if you switch between the browser windows. For example, you are viewing one Application Server Control Console located at:

http://mgmthost1.acme.com:1156/

You then open another browser to view an Application Server Control Console located at:

http://mgmthost1.acme.com:18100

As you switch between the two browser windows, you might receive a session expired message. This condition can occur with either Netscape Navigator or Internet Explorer.

Solution
To avoid this problem, start a new browser instance from the desktop and close any new windows opened from the original browser session. If you are using Netscape 7, you will need to create a new Netscape Profile for any additional browser windows.

J.3.1.13 Topology Viewer Applet Not Loading
You can specify whether you want to use the HTML Only version of the Topology Viewer or the Java applet version. To use the Java applet version, you must have the correct Java Plug-in support and proxy settings.

Problem 1
The Java applet version of the Topology version requires Java Plug-in release 1.4 or later. Typically, your browser will prompt you to download the required version of Java Plug-in. However, in some browsers, you may not be prompted to download the plug-in, or you may be directed to an invalid URL. Without the correct plug-in support, the Topology Viewer applet does not load.
Solution 1
You must manually download and install the plug-in from:
http://java.sun.com/products/plugin/

Problem 2
If the Topology Viewer applet does not load, then look in the Java Plug-in Console for errors. Typically, the cause of these errors is the Java Plug-in could not access the proxy server.

You can start the Java Plug-in Console in one of three ways:
- Windows system tray
 Right-click the **Java Console** icon from the system tray, and select **Open Console**.
- Microsoft Internet Explorer
 From the **Tools** menu, select **Sun Java Console**.
- Netscape
 From the **Tools** menu, select **Web Development > Java Console**.

Solution 2
Configure the proxy settings to automatically detect settings and disable the use of the automatic configuration script. The details of this configuration varies from browser to browser.

See Also:
- http://java.sun.com/j2se/1.4.2/docs/guide/plugin/develop
er_guide/faq/troubleshooting.html for further information about troubleshooting the Java Plug-in technology

J.3.1.14 No Propagation Between Grid Control and Application Server Control When Creating a New OC4J Instance
You can use Grid Control to discover Oracle Application Server instances.

Problem
If Grid Control release 10.1.0.2 or 10.1.0.3 is used to discover a release 9.0.4, 10.1.2, or 10.1.4 Oracle Application Server instance, configuration changes, such as enabling or disabling components and creating or deleting OC4J instances in the Oracle Application Server instance will not be propagated to the central Management Agent and the Grid Control Console.

Solution
In order to propagate these changes to the Grid Control Console, remove the Oracle Application Server and its components from Grid Control with the following steps. When you remove the components from Grid Control, any collected data in the Management Repository will be deleted.

1. Click the **Targets** tab, and then **All Targets** subtab.
2. Select the Application Server instance, and click **Remove**.

3. Select the BC4J component for the Application Server instance, and click **Remove**.

4. Ensure that all targets have been deleted:
 a. Click the **Management System** tab.
 b. In the Management Services and Repository Overview page, in the **General** section, click the link **Deleted Targets**.

Once the targets are deleted, perform the following steps in the Application Server Control:

1. Navigate to the Application Server Home page for the Oracle Application Server instance.

2. From the Application Server Home page, click the **Infrastructure** tab.

3. In the Grid Control Management section, click **Configure**.

4. In the Configure Grid Control page, select the appropriate Management Service, and then click **OK**.

The Oracle Application Server and its components will now appear in the Grid Control Console. You can now enable or disable components and create or delete OC4J instances in the Oracle Application Server.

J.3.1.15 Problems Viewing Metrics When Configured for Secure Sockets Layer (SSL)

When you use Application Server Control Console to monitor targets, such as an instance of OracleAS Portal, running in an environment configured for SSL, some performance metrics may not display.

To correct this problem you must allow the Application Server Control to recognize the Certificate Authority that was used by the Web site you are monitoring to support HTTPS. You must add the certificate of that Certificate Authority to the list of Certificate Authorities recognized by the Application Server Control.

See Also: Section 14.3.7, "Configuring SSL for Oracle Enterprise Manager 10g"

J.3.1.16 Problems Displaying the Date Selection Window When Searching the Log Repository

Problem

If you are searching the Log Repository for log entries that occurred during a specific time frame, you might have problems displaying the pop-up date selection window.

Solution

This problem can be caused by customizations that you made to Microsoft Internet Explorer browser. For example, if you installed third-party pop-up blocking software, the browser may not be able to display the date selection window.

To work around this problem, deinstall or disable the browser customizations. Alternatively, enter the date directly into the date field, using the following date format: **MM/DD/YY**.

See Also: "Searching the Log Repository" in the Application Server Control Console online help
J.3.2 OC4J Management Problems and Solutions

The following sections describe problems and issues when using Application Server
Control to manage an OC4J instance and the J2EE applications you deploy:

- Problems Using the OC4J Security Page
- Lookup Error When Deploying an OC4J Application
- Redeploying WAR Applications with Application Server Control
- Deployment Performance in Internet Explorer and Netscape Navigator 7.0
- Problems Deploying Large OC4J Applications
- Troubleshooting OC4J Out of Memory Errors

J.3.2.1 Problems Using the OC4J Security Page

You use the OC4J Security page in the Application Server Control Console to configure
various security settings for your deployed J2EE applications.

Problem 1
After making changes on the OC4J Security page, the changes do not seem to affect the
deployed application.

Solution 1
After you make changes on the OC4J Security page, you must restart the OC4J
instance in order for the changes to take effect. For example, if you add the user admin
user and the administrators group as described in Section J.3.2.2, you must restart
the OC4J instance to complete the procedure.

Problem 2
OC4J security employs a user manager to authenticate and authorize users and groups
that attempt to access a J2EE application. One of the user managers that can be used to
designate the users and groups for an application is the JAZN user manager.

With Application Server Control, you can specify that the JAZN user manager be
associated with an application. Using the Deploy Application: User Manager page of
the Application Server Control Console, you can specify that the application use either
a JAZN XML configuration or a JAZN LDAP configuration.

When you use Application Server Control Console to specify an XML-based JAZN
configuration, the following line is entered into the orion-application.xml file:

<jazn provider="XML" location="/jazn-data.xml" />

When you use Application Server Control Console to specify an LDAP-based JAZN
configuration, the following line is entered in the orion-application.xml file:

<jazn provider="LDAP" default-realm="sample_subrealm" />

Some applications may prefer to specify a JAZN configuration by providing a path to
a jazn.xml file, but Enterprise Manager does NOT support this type of JAZN
configuration. This type of JAZN configuration would be specified as follows in the
orion-application.xml file:

<jazn config="jazn.xml" />

If you manually specify this type of JAZN configuration in the
orion-application.xml file, you will either be unable to use the Application
Server Control Console OC4J Security page or you will experience problems even after apparently using the page successfully.

Solution 2
Do not manually configure JAZN by providing a path to the jazn.xml file.

For more information about user managers specifying users and groups for a J2EE application, see *Oracle Containers for J2EE Security Guide*.

J.3.2.2 Lookup Error When Deploying an OC4J Application

From the Application Server Control Console, you can deploy J2EE applications to Oracle Containers for J2EE (OC4J).

Problem
When you are attempting to deploy an OC4J application using the Application Server Control Console, you may receive the following error:

```
Deployment failed: Nested exception
Root Cause: Lookup error: javax.naming.NoPermissionException: Not allowed to look up java:comp/ServerAdministrator, check the namespace-access tag setting in orion-application.xml for details;
```

Solution
This error may appear if the user manager for the OC4J default application does not include the user admin and the group administrators.

To view or define the users and groups for the default application user manager:

1. Navigate to the OC4J home page for the OC4J instance you used to deploy your application.
2. Click Applications to display the list of application deployed in the selected OC4J instance.
3. Click the Default Application Name, which appears at the top of the Applications page.
 Enterprise Manager displays the OC4J Application home page for the default application.
4. Scroll to the bottom of the page and click Security.
 Enterprise Manager displays the Security page, which lists the Groups and Users.

J.3.2.3 Redeploying WAR Applications with Application Server Control

On the OC4J Applications Page in the Application Server Control Console, you can deploy EAR files (applications with a file type of .ear) and deploy WAR files (web applications with a file type of .war).

To deploy a WAR file using the Application Server Control Console, click Deploy War file on the OC4J Applications Page.

The first time you deploy a WAR file, Enterprise Manager launches a deployment tool that automatically wraps the WAR application into a J2EE application (.ear file) before deploying it. The .ear file that Enterprise Manager creates to deploy your WAR file contains an application.xml file that describes the application modules. The .ear file is given an application name that you supply when you step through the deployment tool. After the WAR application is deployed, the name of the new application (.ear file) appears in the Deployed Applications table.
Problem
After you have deployed a WAR file using the Application Server Control Console, it cannot be redeployed by selecting the application (_.ear file) on the OC4J Applications Page and clicking Redeploy.

Solution
To redeploy a WAR file using Application Server Control Console, you must undeploy the application first, then deploy it again by following these steps:

1. In the Deployed Applications table on the OC4J Applications Page, select the application (_.ear file) in which the WAR file was wrapped and deployed.
2. Click Undeploy.
3. Click Deploy War file. In the deployment tool, specify the same application name as you specified the first time for the application (_.ear file) in which the WAR file was wrapped and deployed.

After the WAR application is deployed, the name of the web application (_.ear file) appears in the Deployed Applications table.

J.3.2.4 Deployment Performance in Internet Explorer and Netscape Navigator 7.0

Problem
If you attempt to deploy an OC4J application while using Microsoft Internet Explorer or Netscape 7.0, the file upload may take an extremely long time (for example, 10 minutes for a 45 MB .ear file as compared to 15 seconds with Netscape 7.1).

Solution
If you are using Netscape Navigator, upgrade to Netscape 7.1.

If you are using Internet Explorer, refer to the following Microsoft knowledge base article, which addresses this problem:

http://support.microsoft.com/default.aspx?scid=kb;en-us;329781

J.3.2.5 Problems Deploying Large OC4J Applications

Problem
When attempting to deploy a large application (greater than 50 MB EAR or WAR file), the default configuration of the Distributed Configuration Management (DCM) Daemon is insufficient. Attempting to deploy such a large application results in an "Out Of Memory" error.

Solution
Use the Application Server Control Console to increase the memory for the DCM Daemon component:

1. Navigate to the Application Server home page in the Application Server Control Console.
2. Click Process Management to edit the opmn.xml file.
3. Locate the java-parameters <data> tag in the DCM Daemon configuration section of the file:

 <ias-component id="dcm-daemon" status="enabled" id-matching="true">
 <process-type id="dcm-daemon" module-id="DCMDaemon">
4. Replace the string `-Xmx256m` with the string `-Xmx512m`.

 For example:

 `<data id="java-parameters" value="-Xmx512m`

 This new value increases the memory assigned to the DCM Daemon from 256 MB to 512 MB.

5. Click **Apply** to save your changes.

6. Open a terminal window (UNIX) or a DOS Command window (Windows) use the following commands to reload the OPMN configuration file, restart DCM, and restart the Application Server Control.

 On UNIX systems:

 `ORACLE_HOME/opmn/bin/opmnctl reload`
 `ORACLE_HOME/opmn/bin/opmnctl restart ias-component="dcm-daemon"`
 `ORACLE_HOME/bin/emctl restart iasconsole`

 On Windows systems:

 `ORACLE_HOME\opmn\bin\opmnctl reload`
 `ORACLE_HOME\opmn\bin\opmnctl restart ias-component="dcm-daemon"`
 `ORACLE_HOME\bin\emctl restart iasconsole`

7. Try deploying the application again.

J.3.2.6 Troubleshooting OC4J Out of Memory Errors

Problem

Depending upon the size and number of applications you deploy to your OC4J instance, you might experience "out of memory" errors.

Solution

Adjust the Java Virtual Machine (JVM) heap size for your OC4J processes.

See Also:

- "Setting the JVM Heap Size for OC4J Processes" in the chapter "Optimizing J2EE Applications In OC4J" in the Oracle Application Server Performance Guide
- "Administering OC4J Server Properties" in the Application Server Control Console online help
J.4 Need More Help?

You can find more solutions on OracleMetaLink, http://metalink.oracle.com. If you do not find a solution for your problem, log a service request.

See Also: Oracle Application Server Release Notes, available on the Oracle Technology Network:

http://www.oracle.com/technology/documentation/index.html
access control
The ability of a system to grant or limit access to specific data for specific clients or groups of clients.

Access Control Lists (ACLs)
The group of access directives that you define. The directives grant levels of access to specific data for specific clients, or groups of clients, or both.

Advanced Encryption Standard
Advanced Encryption Standard (AES) is a cryptographic algorithm that has been approved by the National Institute of Standards and Technology as a replacement for DES. The AES standard is available in Federal Information Processing Standards Publication 197. The AES algorithm is a symmetric block cipher that can process data blocks of 128 bits, using cipher keys with lengths of 128, 192, and 256 bits.

AES
See Advanced Encryption Standard

attribute
An item of information that describes some aspect of an entry in an LDAP directory. An entry comprises a set of attributes, each of which belongs to an object class. Moreover, each attribute has both a type, which describes the kind of information in the attribute, and a value, which contains the actual data.

authentication
The process of verifying the identity of a user, device, or other entity in a computer system, often as a prerequisite to granting access to resources in a system. A recipient of an authenticated message can be certain of the message’s origin (its sender). Authentication is presumed to preclude the possibility that another party has impersonated the sender.

authentication method
A security method that verifies the identity of a user, client, or server in distributed environments. Network authentication methods can also provide the benefit of single sign-on (SSO) for users. The following authentication methods are supported in Oracle Application Server:

- Kerberos
- Secure Sockets Layer (SSL)
- Windows native authentication
authorization
Authorization is the evaluation of security constraints to send a message or make a request. Authorization uses specific criteria to determine whether the request should be permitted. The criteria are authentication and restriction.

auto login wallet
An Oracle Wallet Manager feature that enables PKI- or password-based access to services without providing credentials at the time of access. This auto login access stays in effect until the auto login feature is disabled for that wallet. File system permissions provide the necessary security for auto login wallets. When auto login is enabled for a wallet, it is only available to the operating system user who created that wallet. Sometimes these are called "SSO wallets" because they provide single sign-on capability.

base
The root of a subtree search in an LDAP-compliant directory.

CA
See certificate authority

certificate
An ITU X.509 Version 3 standard data structure that securely binds an identity to a public key.

A certificate is created when an entity’s public key is signed by a trusted identity, a certificate authority. The certificate ensures that the entity’s information is correct and that the public key actually belongs to that entity.

A certificate contains the entity’s name, identifying information, and public key. It is also likely to contain a serial number, expiration date, and information about the rights, uses, and privileges associated with the certificate. Finally, it contains information about the certificate authority that issued it.

certificate authority
A trusted third party that certifies that other entities—users, databases, administrators, clients, servers—are who they say they are. When it certifies a user, the certificate authority first seeks verification that the user is not on the certificate revocation list (CRL), then verifies the user’s identity and grants a certificate, signing it with the certificate authority’s private key. The certificate authority has its own certificate and public key which it publishes. Servers and clients use these to verify signatures the certificate authority has made. A certificate authority might be an external company that offers certificate services, or an internal organization such as a corporate MIS department.

certificate chain
An ordered list of certificates containing an end-user or subscriber certificate and its certificate authority certificates.

certificate request
A request, which consists of three parts: certification request information, a signature algorithm identifier, and a digital signature on the certification request information. The certification request information consists of the subject’s distinguished name, public key, and an optional set of attributes. The attributes may provide additional information about the subject identity, such as postal address, or a challenge password by which the subject entity may later request certificate revocation. See PKCS #10
certificate revocation lists

(CRLs) Signed data structures that contain a list of revoked certificates. The authenticity and integrity of the CRL is provided by a digital signature appended to it. Usually, the CRL signer is the same entity that signed the issued certificate.

Cipher Block Chaining (CBC)

An encryption method that protects against block replay attacks by making the encryption of a cipher block dependent on all blocks that precede it; it is designed to make unauthorized decryption incrementally more difficult. Oracle Advanced Security employs outer cipher block chaining because it is more secure than inner cipher block chaining, with no material performance penalty.

cipher suite

A set of authentication, encryption, and data integrity algorithms used for exchanging messages between network nodes. During an SSL handshake, for example, the two nodes negotiate to see which cipher suite they will use when transmitting messages back and forth.

cipher suite name

Cipher suites describe the kind of cryptographics protection that is used by connections in a particular session.

ciphertext

Message text that has been encrypted.

cleartext

Unencrypted plain text.

client

A user, software application (such as a browser), or computer that requests the services, data, or processing of another application or computer (the server). A client relies on a service.

cluster

A collection of application server instances with identical configuration and application deployment. Clusters enforce homogeneity between member instances so that a cluster of application server instances can appear and function as a single instance. With appropriate front-end load balancing, any instance in an application server cluster can serve client requests. This simplifies configuration and deployment across multiple instances and enables fault tolerance among clustered instances.

confidentiality

A function of cryptography. Confidentiality guarantees that only the intended recipient of a message can view the message (decrypt the ciphertext).

connect descriptor

A specially formatted description of the destination for a network connection. A connect descriptor contains destination service and network route information. The destination service is indicated by using its service name for Oracle databases. The network route provides, at a minimum, the location of the listener through use of a network address. See connect identifier.
connect identifier
A **connect descriptor** or a name that maps to a connect descriptor. A connect identifier can be a **net service name**, database **service name**, or **net service alias**. Users initiate a connect request by passing a username and password along with a connect identifier in a connect string for the service to which they wish to connect:

```
CONNECT username/password@connect_identifier
```

connect string
Information the user passes to a **service** to connect, such as username, password and **net service name**. For example:

```
CONNECT username/password@net_service_name
```

credentials
A username, password, or certificate used to gain access to Oracle Database, Oracle Application Server 10g, or the Oracle Identity Management infrastructure.

CRL
See **certificate revocation lists**

CRL Distribution Point
(CRL DP) An optional extension specified by the X.509 version 3 certificate standard, which indicates the location of the Partitioned CRL where revocation information for a certificate is stored. Typically, the value in this extension is in the form of a URL. CRL DPs allow revocation information within a single **certificate authority** domain to be posted in multiple CRLs. CRL DPs subdivide revocation information into more manageable pieces to avoid proliferating voluminous CRLs, thereby providing performance benefits. For example, a CRL DP is specified in the certificate and can point to a file on a Web server from which that certificate's revocation information can be downloaded.

CRL DP
See **CRL Distribution Point**.

cryptography
The practice of encoding and decoding data, resulting in secure messages.

data dictionary
A set of read-only tables that provide information about a database.

Data Encryption Standard (DES)
The U.S. data encryption standard.

database alias
See **net service name**.

decryption
The process of converting the contents of an encrypted message (ciphertext) back into its original readable format (plaintext).

DES
See **Data Encryption Standard (DES)**
Diffie-Hellman key negotiation algorithm

A method that lets two parties communicating over an insecure channel to agree upon a random number known only to them. Though the parties exchange information over the insecure channel during execution of the Diffie-Hellman key negotiation algorithm, it is computationally infeasible for an attacker to deduce the random number they agree upon by analyzing their network communications. Oracle Advanced Security uses the Diffie-Hellman key negotiation algorithm to generate session keys.

digital signature

A digital signature is created when a public key algorithm is used to sign the sender’s message with the sender’s private key. The digital signature assures that the document is authentic, has not been forged by another entity, has not been altered, and cannot be repudiated by the sender.

directory naming

A naming method that resolves a database service, net service name, or net service alias to a connect descriptor stored in a central directory server.

directory naming context

A subtree which is of significance within a directory server. It is usually the top of some organizational subtree. Some directories only permit one such context which is fixed; others permit none to many to be configured by the directory administrator.

distinguished name (DN)

The unique name of an LDAP-based directory entry. A distinguished name comprises all of the individual names of the parent entries back to the root.

domain

Any tree or subtree within the Domain Name System (DNS) namespace. Domain most commonly refers to a group of computers whose host names share a common suffix, the domain name.

Domain Name System (DNS)

A system for naming computers and network services that is organized into a hierarchy of domains. DNS is used in TCP/IP networks to locate computers through user-friendly names. DNS resolves a friendly name into an IP address, which is understood by computers.

encrypted text

Text that has been encrypted, using an encryption algorithm; the output stream of an encryption process. On its face, it is not readable or decipherable, without first being subject to decryption. Also called ciphertext. Encrypted text ultimately originates as plaintext.

encryption

The process of disguising a message rendering it unreadable to any but the intended recipient.

entry

In the context of a directory service, an entry is the building block of a directory. An entry is a collection of information about an object in the directory. Each entry is composed of a set of attributes that describe one particular trait of the object.
example, if a directory entry describes a person, that entry can have attributes such as first name, last name, telephone number, or e-mail address.

external authentication
Verification of a user identity by a third party authentication service, such as Kerberos.

farm
A collection of clusters and instances that share the same Oracle Application Server Infrastructure. A farm can be file-based or database based. The repository for a file-based farm exists within the middle-tier instance Oracle home. The repository for a database-based farm exists within OracleAS Metadata Repository.

Federal Information Processing Standard (FIPS)
A U.S. government standard that defines security requirements for cryptographic modules—employed within a security system protecting unclassified information within computer and telecommunication systems. Published by the National Institute of Standards and Technology (NIST).

FIPS
See Federal Information Processing Standard (FIPS).

grid computing
A computing architecture that coordinates large numbers of servers and storage to act as a single large computer. Oracle Grid Computing creates a flexible, on-demand computing resource for all enterprise computing needs. Applications running on the Oracle 10g grid computing infrastructure can take advantage of common infrastructure services for failover, software provisioning, and management. Oracle Grid Computing analyzes demand for resources and adjusts supply accordingly.

HTTP
Hypertext Transfer Protocol. The underlying format used by the Web to format and transmit messages and determine what actions Web servers and browsers should take in response to various commands. HTTP is the protocol used between Oracle Application Server and clients.

HTTP server
A server that receives HTTP requests from remote browsers, converts the requested URL to a filename, and returns the file to the requester.

HTTPS
Secure Hypertext Transfer Protocol. A protocol that uses the Secure Sockets Layer (SSL) as a sublayer under the regular HTTP application layer to encrypt and decrypt user page requests as well as the pages that are returned by the origin server.

identity
The combination of the public key and any other public information for an entity. The public information may include user identification data such as an e-mail address. A user certified as being the entity it claims to be.

identity management
The creation, management, and use of online, or digital, entities. Identity management involves securely managing the full life cycle of a digital identity from creation (provisioning of digital identities) to maintenance (enforcing organizational policies regarding access to electronic resources), and, finally, to termination.
identity management realm
A subtree in Oracle Internet Directory, including not only an Oracle Context, but also additional subtrees for users and groups, each of which are protected with access control lists.

IIOP
Internet inter-ORB protocol. An Internet transport protocol used by CORBA objects to communicate with each other. In the context of Oracle Application Server, IIOP is used by ECO/Java and EJB objects. IIOP is also used between Oracle Application Server components.

instance
The set of processes required to run the configured components within an application server installation. There can be only one application server instance for each application server installation. The terms installation and instance are sometimes used interchangeably; however, it is important to remember that an installation is the set of files installed into an Oracle home and an instance is a set of processes associated with those files.

integrity
The guarantee that the contents of the message received were not altered from the contents of the original message sent.

Java Database Connectivity (JDBC)
An industry-standard Java interface for connecting to a relational database from a Java program, defined by Sun Microsystems.

JDBC
See Java Database Connectivity (JDBC).

Kerberos
A network authentication service developed under Massachusetts Institute of Technology’s Project Athena that strengthens security in distributed environments. Kerberos is a trusted third-party authentication system that relies on shared secrets and assumes that the third party is secure. It provides single sign-on (SSO) capabilities and database link authentication (MIT Kerberos only) for users, provides centralized password storage, and enhances PC security.

key
When encrypting data, a key is a value which determines the ciphertext that a given algorithm will produce from given plaintext. When decrypting data, a key is a value required to correctly decrypt a ciphertext. A ciphertext is decrypted correctly only if the correct key is supplied.

With a symmetric encryption algorithm, the same key is used for both encryption and decryption of the same data. With an asymmetric encryption algorithm (also called a public-key encryption algorithm or public-key cryptosystem), different keys are used for encryption and decryption of the same data.

key pair
A public key and its associated private key. See public and private key pair.

LDAP
ldap.ora file
A file created by Oracle Net Configuration Assistant that contains the following directory server access information:
- Type of directory server
- Location of the directory server
- Default identity management realm or Oracle Context (including ports) that the client or server will use

Lightweight Directory Access Protocol (LDAP)
A standard, extensible directory access protocol. It is a common language that LDAP clients and servers use to communicate. The framework of design conventions supporting industry-standard directory products, such as the Oracle Internet Directory.

listener
A process that resides on the server whose responsibility is to listen for incoming client connection requests and manage the traffic to the server. A listener can be an HTTP server that handles incoming requests and routes them to the dispatcher.

Every time a client requests a network session with a server, a listener receives the actual request. If the client information matches the listener information, then the listener grants a connection to the server.

listener.ora file
A configuration file for the Oracle Database listener that identifies the listener name, protocol addresses on which it is accepting connection requests, and services for which the listener is listening.

The `listener.ora` file typically resides in `ORACLE_HOME/network/admin` on UNIX platforms and `ORACLE_HOME\network\admin` on Windows.

man-in-the-middle
A security attack characterized by the third-party, surreptitious interception of a message, wherein the third party, the *man-in-the-middle*, decrypts the message, re-encrypts it (with or without alteration of the original message), and re-transmits it to the originally-intended recipient—all without the knowledge of the legitimate sender and receiver. This type of security attack works only in the absence of authentication.

message digest
Representation of text as a string of single digits. It is created using a formula called a one-way hash function, which is an algorithm that turns a message into a single string of digits. One-way means that it is almost impossible to derive the original message from the string of digits. The calculated message digest can be compared with the message digest that is decrypted with a **public key** to verify that the message has not been tampered with.

naming method
The resolution method used by a client application to resolve a **connect identifier** to a **connect descriptor** when attempting to connect to a service.
National Institute of Standards and Technology (NIST)
An agency within the U.S. Department of Commerce responsible for the development of security standards related to the design, acquisition, and implementation of cryptographic-based security systems within computer and telecommunication systems, operated by a Federal agency or by a contractor of a Federal agency or other organization that processes information on behalf of the Federal Government to accomplish a Federal function.

net service alias
An alternative name for a directory naming object in a directory server. A directory server stores net service aliases for any defined net service name or database service. A net service alias entry does not have connect descriptor information. Instead, it only references the location of the object for which it is an alias. When a client requests a directory lookup of a net service alias, the directory determines that the entry is a net service alias and completes the lookup as if it was actually the entry it is referencing.

net service name
The name used by clients to identify a database server. A net service name is mapped to a port number and protocol. Also known as a connect string, or database alias.

network authentication service
A means for authenticating clients to servers, servers to servers, and users to both clients and servers in distributed environments. A network authentication service is a repository for storing information about users and the services on different servers to which they have access, as well as information about clients and servers on the network. An authentication server can be a physically separate machine, or it can be a facility co-located on another server within the system. To ensure availability, some authentication services may be replicated to avoid a single point of failure.

network listener
A listener on a server that listens for connection requests for one or more databases on one or more protocols. See listener.

NIST
See National Institute of Standards and Technology (NIST).

non-repudiation
Incontestable proof of the origin, delivery, submission, or transmission of a message.

obfuscation
A process by which information is scrambled into a non-readable form, such that it is extremely difficult to de-scramble if the algorithm used for scrambling is not known.

object class
A named group of attributes. When you want to assign attributes to an entry, you do so by assigning to that entry the object classes that hold those attributes. All objects associated with the same object class share the same attributes.

Oracle Context
An entry in an LDAP-compliant internet directory called cn=OracleContext, under which all Oracle software relevant information is kept, including entries for checksumming security.
There can be one or more Oracle Contexts in a directory. An Oracle Context is usually located in an identity management realm.

Oracle Net Services
An Oracle product that enables two or more computers that run the Oracle server or Oracle tools to exchange data through a third-party network. Oracle Net Services support distributed processing and distributed database capability. Oracle Net Services is an open system because it is independent of the communication protocol, and users can interface Oracle Net to many network environments.

Oracle PKI certificate usages
Defines the purpose of the key contained in an certificate. Oracle PKI certificate usages are based on the key usages defined in the X.509 Version 3 standard.

PCMCIA cards
Small credit card-sized computing devices that comply with the Personal Computer Memory Card International Association (PCMCIA) standard. These devices, also called PC cards, are used for adding memory, modems, or as hardware security modules. PCMCIA cards that are used as hardware security modules securely store the private key component of a public and private key pair and some also perform the cryptographic operations as well.

peer identity
SSL connect sessions are between a particular client and a particular server. The identity of the peer may have been established as part of session setup. Peers are identified by X.509 certificate chains.

PEM
The Internet Privacy-Enhanced Mail protocols standard, adopted by the Internet Architecture Board to provide secure electronic mail over the Internet. The PEM protocols provide for encryption, authentication, message integrity, and key management. PEM is an inclusive standard, intended to be compatible with a wide range of key-management approaches, including both symmetric and public-key methods to encrypt data-encrypting keys. The specifications for PEM come from four Internet Engineering Task Force (IETF) documents: RFCs 1421, 1422, 1423, and 1424.

PKCS #10
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that describes a syntax for certification requests. A certification request, also referred to as a certificate request, consists of a distinguished name, a public key, and optionally a set of attributes, collectively signed by the entity requesting certification.

PKCS #11
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that defines an application programming interface (API), called Cryptoki, to hardware devices which hold cryptographic information and perform cryptographic operations. See also PCMCIA cards.

PKCS #12
An RSA Security, Inc., Public-Key Cryptography Standards (PKCS) specification that describes a transfer syntax for storing and transferring personal authentication credentials—typically in a format called a wallet.
PKI
See public key infrastructure (PKI).

plaintext
Message text that has not been encrypted.

private key
In public-key cryptography, this key is the secret key. It is primarily used for decryption but is also used for encryption with digital signatures. See public and private key pair.

proxy authentication
A process typically employed in an environment with a middle tier such as a firewall, wherein the end user authenticates to the middle tier, which then authenticates to the directory on the user's behalf—as its proxy. The middle tier logs into the directory as a proxy user. A proxy user can switch identities and, once logged into the directory, switch to the end user's identity. It can perform operations on the end user's behalf, using the authorization appropriate to that particular end user.

public and private key pair
A set of two numbers used for encryption and decryption, where one is called the private key and the other is called the public key. Public keys are typically made widely available, while private keys are held by their respective owners. Though mathematically related, it is generally viewed as computationally infeasible to derive the private key from the public key. Public and private keys are used only with asymmetric encryption algorithms, also called public-key encryption algorithms, or public-key cryptosystems. Data encrypted with either a public key or a private key from a key pair can be decrypted with its associated key from the key pair. However, data encrypted with a public key cannot be decrypted with the same public key, and data enwrapped with a private key cannot be decrypted with the same private key.

public key
In public-key cryptography, this key is made public to all. It is primarily used for encryption but can be used for verifying signatures. See public and private key pair.

public key encryption
The process where the sender of a message encrypts the message with the public key of the recipient. Upon delivery, the message is decrypted by the recipient using its private key.

public key infrastructure (PKI)
Information security technology utilizing the principles of public key cryptography. Public key cryptography involves encrypting and decrypting information using a shared public and private key pair. It provides for secure, private communications within a public network.

realm
1. Short for identity management realm. 2. A Kerberos object. A set of clients and servers operating under a single key distribution center/ticket-granting service (KDC/TGS). Services in different realms that share the same name are unique.
realm Oracle Context
An Oracle Context that is part of an identity management realm in Oracle Internet Directory.

registry
A Windows repository that stores configuration information for a computer.

remote computer
A computer on a network other than the local computer.

restriction
A security scheme that restricts access to files provided by the server to client machines within certain groups of IP addresses or DNS domains.

root key certificate
See trusted certificate.

schema
1. Database schema: A named collection of objects, such as tables, views, clusters, procedures, packages, attributes, object classes, and their corresponding matching rules, which are associated with a particular user. 2. LDAP directory schema: The collection of attributes, object classes, and their corresponding matching rules.

Secure Sockets Layer (SSL)
An industry standard protocol designed by Netscape Communications Corporation for securing network connections. SSL provides authentication, encryption, and data integrity using public key infrastructure (PKI).

server
There are two types of servers relevant to this product. One is Oracle Application Server, which is a collection of middleware services and tools that provide a scalable, robust, secure, and extensible platform for distributed, object-oriented applications. Oracle Application Server supports access to applications from both Web clients (browsers) using HTTP and Common Object Request Broker Architecture (CORBA) clients, which use the CORBA and the Internet Inter-ORB (IIOP) protocols. The other is Oracle Database Server, which is a relational database server dedicated to performing data management duties on behalf of clients using any number of possible interfaces.

service
1. A network resource used by clients; for example, Oracle Application Server or Oracle database server.

2. An executable process installed in the Windows registry and administered by Windows. Once a service is created and started, it can run even when no user is logged on to the computer.

service name
A logical representation of a database, which is the way a database is presented to clients. A database can be presented as multiple services and a service can be implemented as multiple database instances. The service name is a string that is the global database name, that is, a name comprising the database name and domain name, entered during installation or database creation.
session key
A key shared by at least two parties (usually a client and a server) that is used for data encryption for the duration of a single communication session. Session keys are typically used to encrypt network traffic; a client and a server can negotiate a session key at the beginning of a session, and that key is used to encrypt all network traffic between the parties for that session. If the client and server communicate again in a new session, they negotiate a new session key.

single key-pair wallet
A PKCS #12-format wallet that contains a single user certificate and its associated private key. The public key is imbedded in the certificate.

single sign-on (SSO)
The ability of a user to authenticate once, combined with strong authentication occurring transparently in subsequent connections to other databases or applications. Single sign-on lets a user access multiple accounts and applications with a single password, entered during a single connection. Single password, single authentication.

smart card
A plastic card (like a credit card) with an embedded integrated circuit for storing information, including such information as user names and passwords, and also for performing computations associated with authentication exchanges. A smart card is read by a hardware device at any client or server.

A smartcard can generate random numbers which can be used as one-time use passwords. In this case, smartcards are synchronized with a service on the server so that the server expects the same password generated by the smart card.

sniffer
Device used to surreptitiously listen to or capture private data traffic from a network.

SSL
See Secure Sockets Layer (SSL).

SSO
See single sign-on (SSO).

system identifier (SID)
A unique name for an Oracle instance. To switch between Oracle databases, users must specify the desired SID. The SID is included in the CONNECT DATA part of the connect descriptor in a tnsnames.ora file, and in the definition of the network listener in a listener.ora file.

tnsnames.ora
A file that contains connect descriptors; each connect descriptor is mapped to a net service name. The file may be maintained centrally or locally, for use by all or individual clients. This file typically resides in the following locations depending on your platform:

- (UNIX) ORACLE_HOME/network/admin
- (Windows) ORACLE_HOME\network\admin
token card
A device for providing improved ease-of-use for users through several different mechanisms. Some token cards offer one-time passwords that are synchronized with an authentication service. The server can verify the password provided by the token card at any given time by contacting the authentication service. Other token cards operate on a challenge-response basis. In this case, the server offers a challenge (a number) which the user types into the token card. The token card then provides another number (cryptographically-derived from the challenge), which the user then offers to the server.

trusted certificate
A trusted certificate, sometimes called a root key certificate, is a third party identity that is qualified with a level of trust. The trusted certificate is used when an identity is being validated as the entity it claims to be. Typically, the certificate authorities you trust are called trusted certificates. If there are several levels of trusted certificates, a trusted certificate at a lower level in the certificate chain does not need to have all its higher level certificates reverified.

trusted certificate authority
See certificate authority.

trust point
See trusted certificate.

user search base
The node in the LDAP directory under which the user resides.

wallet
A wallet is a data structure used to store and manage security credentials for an individual entity. A Wallet Resource Locator (WRL) provides all the necessary information to locate the wallet.

wallet obfuscation
An obfuscation used to store and access an Oracle wallet without querying the user for a password prior to access (supports single sign-on (SSO)).

Wallet Resource Locator
(WRL) A locator that provides all necessary information to locate a wallet. It is a path to an operating system directory that contains a wallet.

Windows native authentication
An authentication method that enables a client single login access to a Windows server and a database running on that server.

WRL
See Wallet Resource Locator.

X.509
An industry-standard specification for digital certificates.
accessibility mode
 enbling for Application Server Control, A-10
administration tools, 2-1 to 2-23
administrative changes, G-1
administrative tasks
 troubleshooting, J-13
allotted port range, D-1
anonymous authentication, 7-15
 disabling, 7-15
 enabling, 7-17
anonymous binds, 7-15
 disabling, 7-15
 enabling, 7-17
ANONYMOUS schema
 status after installation, 6-4
Application Server Control
 See Oracle Enterprise Manager Application Server
 Control
Application Server Control Console
 See Oracle Enterprise Manager Application Server
 Control Console
Application Server home page, 2-5, 2-9
application.xml file
 troubleshooting, J-18
archive logging, 19-4
ARCHIVELOG mode, 19-4
authentication
 failure, J-5
 SSL and, 11-2

B
B2B
 See OracleAS Integration B2B
B2B schema
 changing password, 6-9
 description, E-2
 status after installation, 6-4
B2B_DT tablespace, E-4
B2B_IDX tablespace, E-4
B2B_LDB tablespace, E-4
B2B_RT tablespace, E-4
backup and recovery, 17-1 to 17-9, 19-1 to 19-15,
 20-1 to 20-11
adding files, 18-9
backup strategy, 17-3, 17-7, 19-1
block change tracking, 19-4
cold, 19-2
complete, 19-2, 19-8
creating record of environment, 19-6
getting started, 17-8
instance, 19-7, 19-8, 20-4, 20-10
online, 19-2
overview, 17-1
restrictions, 17-8
tool, 18-1
troubleshooting, 21-1
types of backup, 17-3
types of files, 17-2
BAM schema
 description, E-2
 status after installation, 6-4
binds
 anonymous, 7-15
 bkp_restore.pl, 18-1
browser certificates, using with Oracle Wallet
 Manager, 13-16
browsers
 troubleshooting, J-10, J-13, J-14, J-19
bulkdelete command, B-1
bulkload command, B-1
bulkmodify command, B-1

catalog command, B-1
Certificate Authority
 See OracleAS Certificate Authority
certificate authority, 11-2
certificate requests
 adding, 13-13
 exporting, 13-18
 removing, 13-17
certificate revocation lists, 13-24
deleting, 13-27
listing, 13-26
managing with orapki, 13-23
renaming, 13-25
uploading, 13-26
to LDAP directory, 13-25
validation and, 13-23
viewing, 13-26
certificate validation, 13-20
certificates, 11-4
browser, using with Oracle Wallet
Manager, 13-16
certificates, 11-6
browser, using with Oracle Wallet
Manager, 13-16
client, 11-6
browser, using with Oracle Wallet
Manager, 13-16
client, 11-6
generating, 11-5
managing, 13-12
mapping, 13-34
PKCS #11, 13-2
PKCS #12, 13-2, 13-3
PKCS #7, 13-4, 13-5
trusted exporting, 13-19
importing, 13-18
managing, 13-18
removing, 13-19
user exporting, 13-17
importing, 13-14
managing, 13-13
removing, 13-17
changing Infrastructure Services, 9-1
changing ports, 4-1 to 4-30
character sets
changing for Oracle Metadata Repository, 6-10
LDAP-based replicas and, H-3
OracleAS Portal and, 6-11
chgiphost command, 8-2, 8-5, 8-17
customizing, 8-24
errors, 8-26
instance name and, 8-3
setting log level, 8-24
client certificates, 11-6
cmdeinst command, B-1
cold backup, 19-2
command-line tools, B-1
complete backup
Oracle Application Server environment, 19-8
components
configuring after installation, 7-1
deconfiguring, 7-7
disabling, 3-7
enabling, 3-7
home pages, 2-11
obtaining status, 3-6, J-8
starting and stopping, 3-6, 3-7
URLs for, C-1
configuring components after installation, 7-1
configuring Identity Management, 7-9
configuring instances
to use existing database, 7-11
to use OracleAS Metadata Repository, 7-10
configuring mod_osso, 7-3
configuring Oracle Delegated Administration Service, 7-3
configuring Oracle Directory Integration Platform, 7-6
configuring OracleAS Single Sign-On, 7-2
connection errors, J-3
CRLAdmins directory administrative group, 13-31
CRLs
See certificate revocation lists
cryptography
private key, 11-2
public key, 11-2, 13-1
CTXSYS schema
status after installation, 6-4
D
dads.conf file, 4-25
DAS
See Oracle Delegated Administration Service
data loss
recovery strategies, 20-1, 20-2
Database Control
See Oracle Enterprise Manager Database Control
datafiles
OracleAS Metadata Repository
relocating, 6-11
renaming, 6-11
DBSNMP schema
status after installation, 6-4
DCM
See Distributed Configuration Management (DCM)
DCM schema
changing password, 6-8, 6-9
description, E-3
status after installation, 6-4
DCM tablespace, E-4
dcmCache.xml file
ports and, 4-17
dcmct1 command, 2-3, 7-7, B-1
updating configuration, 4-7
decfg.pl command, B-1
deconfiguring components, 7-7
default port number, D-1
Delegated Administration Service
See Oracle Delegated Administration Service, 7-3
deleting OC4J instances, 7-7
DHCP address
changing, 8-27
moving off-network, 8-27
moving to, 8-27
diagnosing component problems, 5-11
diagnostic message repository
creating, 5-21
deleting, 5-22
file-based repository, 5-22
removing old messages, 5-22
diagnostics, 5-1
connection errors, J-3
messages, 5-10
repository for, 5-21
printing log files, B-3, F-1
searching for messages, 5-6
troubleshooting, J-1
understanding messages, 5-13
viewing messages, 5-14
DIP
See Oracle Directory Integration Platform
DIP schema
status after installation, 6-4
diapassistant command, B-1
enabling components, 3-7
DIP schema
status after installation, 6-4
diapassistant command, B-1
disabling components, 3-7
DISCO_PTM5_CACHE tablespace, E-5
DISCO_PTM5_META tablespace, E-5
Discoverer
See Oracle BI Discoverer
DISCOVERER5 schema
description, E-3
status after installation, 6-4
DISPLAY environment variable, 1-1
Distributed Configuration Management (DCM), 2-6
cmd line interface, 2-3
datafile, E-4
log files, 5-2
message correlation, 5-11
ports, D-4
changing, 4-17
schema, E-3
starting, 3-4
stopping, 3-5
tablespace, E-4
troubleshooting, J-5
dms.conf file, 4-17
dmstool command, B-1
dms.trantrace.ecidenabled property, 5-20
DMSYS schema
status after installation, 6-4
domain name
changing, 8-1
Identity Management, 8-3
Oracle Identity Federation, 8-15
OracleAS Certificate Authority, 8-21
DSA, 1-7
starting and stopping, 3-10
DSGATEWAY schema
description, E-3
status after installation, 6-4
DSGATEWAY_TAB tablespace, E-5
Dynamic Monitoring Service (DMS), 2-6
enabling components, 3-7
encryption, 11-1
environment variables
IAS_CONFIG_LOC, 12-25
NLS_LANG, H-3
ORACLE_PRINTLOGS_JVM_ARGS, F-7
setting, 1-1
setting Application Server Control options, A-6
error messages
log files and, J-9
log loader, 5-13
See also diagnostics
Execution Context ID (ECID), 5-10
EXFSYS schema
status after installation, 6-4
existing database
using after installation, 7-11
F
failover
Identity Management and, 9-6, 9-13
farms
changing, 9-2
home page, 2-5
managing, 2-2
first-fault component isolation, 5-10
G
garbage collection
troubleshooting, J-3
Grid Control
See Oracle Enterprise Manager Grid Control
Grid Control Console
See Oracle Enterprise Manager Grid Control Console
H
high availability environments
OracleAS Metadata Repository and, 6-3
starting and stopping, 3-10
troubleshooting, J-6
hiqpurge command, B-2
hiqretry command, B-2
home OC4J instance
deleting, 7-7
home pages, 2-2
Application Server, 2-5, 2-9
components, 2-5, 2-11
Oracle Enterprise Manager, 2-5
OracleAS Farm, 2-5, 2-8
host failure
recovery strategies, 20-1, 20-2
hostname
changing, 8-1
after Windows 2000 upgrade, 8-25
Identity Management, 8-3
Oracle Identity Federation, 8-15
OracleAS Certificate Authority, 8-21
Index-3
HTTPD processes
 troubleshooting and, J-4
httpd.conf file
 port directive and, 4-6

I
ias_admin password, 2-8
 changing, A-4
 guidelines, J-8
 resetting, J-7
 troubleshooting, J-3, J-7
IAS_META tablespace, E-4, E-5
IAS_VERSIONS view, I-5
IASCONFIG_LOC environment variable
 SSL Configuration Tool and, 12-25
ias.properties file
 global database name and, 9-25
 OID port and, 4-28
 SSL and, 9-4
iaspt.conf file
 port tunneling and, 4-20
iasua command, B-2
Identity Management
 See Oracle Identity Management
IMMEDIATE option for OracleAS Metadata
 Repository shutdown, 3-13
Infrastructure
 See OracleAS Infrastructure
init$SID.ora file
 OracleAS Metadata Repository and, 6-3
instance backup
 Oracle Application Server, 19-7
 Oracle Application Server environment, 19-8
instance recovery
 Oracle Application Server, 20-4, 20-10
Internet Explorer
 certificates
 using with Oracle Wallet Manager, 13-16
 troubleshooting, J-13
INTERNET_APPSERVER_REGISTRY schema, E-1
 status after installation, 6-4
INTERNET_APPSERVER_REGISTRY user, I-5
IP address
 changing, 8-1
 Identity Management, 8-3
 Oracle Identity Federation, 8-15
to DHCP, 8-27
 moving off-network, 8-27
 moving to static address, 8-26
IP schema
 changing password, 6-8
 description, E-2
 status after installation, 6-4
IPC Listener
 KEY value, 4-26

J
J2EE
 Infrastructure Services and, 7-8
 troubleshooting, J-17, J-18
Java Object Cache
 ports, D-4
 changing, 4-18
java process, A-4
javacache.xml file
 ports and, 4-18
JAZN configuration
 troubleshooting, J-17
jazn-data.xml file
 troubleshooting, J-7, J-17
jazn.jar command-line tool, B-2
jazn.xml file
 troubleshooting, J-18

K
key file, 18-9

L
LD_LIBRARY_PATH environment variable, 1-2
LD_LIBRARY_PATH_64 environment variable, 1-2
LDAP Directory
 downloading wallet from, 13-9
 uploading wallets, 13-9
LDAP search performance
 troubleshooting, J-5
ldapadd command, B-2
ldapaddmt command, B-2
 SSL and, 9-6
LDAP-based replicas, H-1
 installing, H-3
 moving to new host, 9-6
 ports, H-3
ldapcompare command, B-2
ldapdelete command, B-2
ldapmoddn command, B-2
ldapmodify command, B-2, H-3
 SSL and, 9-6
ldap.ora file
 directory SSL port for no authentication, 13-26
 ports and, 4-28
ldapsearch command, B-2, H-3
 SSL and, 9-6
 viewing schema passwords with, 6-7
ldifmigrator command, B-2
ldifwrite command, B-2
LIBPATH environment variable, 1-2
listener, net
 changing ports, 4-21
 starting, 3-2
log files, 5-1 to 5-23
 component IDs, 5-18
 limitations, 5-23
 listing, 5-4
 names, 5-3
 naming, 5-1
 printing, B-3, F-1
registration, 5-18
searching, 5-5, 5-9
size, 5-3
troubleshooting and, J-9
viewing messages, 5-14
log loader, 5-3
enabling, 5-12
file format conversion, 5-17
limitations, 5-23
log files, 5-2
ports, D-4
changing, 4-18
reconfiguring, 5-22
setting properties, 5-12
starting and stopping, 3-9, 5-11
using, 5-11
log repository, 5-3
searching for messages, 5-6
viewing entries, 5-9
logging, 5-1 to 5-23
configuring options, 5-3
logloader.xml file, 5-13

M
Management Repository, 2-19
management schemas, E-1, E-3
managing clusters, 2-2
managing databases
with Grid Control, 2-18
managing Oracle Application Server, 2-1
with Application Server Control, 2-12
with command-line interfaces, 2-3
with Grid Control, 2-18
mathematics accelerators, 11-8
MaxClients directive
connections and, J-3
MDDATA schema
status after installation, 6-4
MDSYS schema
status after installation, 6-4
media failure
recovery strategies, 20-1, 20-2
memory errors
Oracle Management Agent, J-12
troubleshooting, J-19
message correlation, 5-10
Metadata Repository
See OracleAS Metadata Repository
metrics
displaying, 2-15
monitoring, 2-4, 2-22
with command-line tool, B-1
MGMT_VIEW schema
status after installation, 6-4
Microsoft Internet Explorer certificates
using with Oracle Wallet Manager, 13-16
middle-tier instances
changing to SSL mode, 9-5
starting, 3-4
stopping, 3-5
mod_osso
configuring for Delegated Administration
Services, 7-9
port numbers and, 4-9
registration tool, B-3
mod_osso.conf file
ports and, 4-10
monitoring, 5-1
application server components, 2-15
performance metrics, 2-4, 2-22, B-1
resource usage, 2-14
with Application Server Control, 2-12
multiple installations on one host, 1-3

N
Net Listener
changing ports, 4-21
starting, 3-2
Netscape certificates
using with Oracle Wallet Manager, 13-16
network configurations
changing, 8-1
NLS_LANG environment variable
LDAP-based replicas and, H-3

O
OC4J
See Oracle Containers for J2EE (OC4J)
OC4J_FED OC4J instance, 1-8
deleting, 7-7
OC4J_Security OC4J instance, 1-8
configuring SSL, 14-4
deleting, 7-7
OCA
See OracleAS Certificate Authority
oca OC4J instance, 1-8
OCA schema
changing password, 6-8
description, E-2
status after installation, 6-4
ocactl command, 4-24, B-2
OCATS tablespace, E-4
ocm_apache.conf file
ports and, 4-29
ODL
See Oracle Diagnostic Logging (ODL)
ODL Archives, 5-16
ODL log, 5-16
ODS schema
changing password, 6-8
description, E-2
status after installation, 6-5
OEM_REPOSITORY schema
description, E-3
status after installation, 6-5
off-network, 8-26
moving on-network

Index-5
DHCP address, 8-27
static IP address, 8-26

OID
See Oracle Internet Directory
oidctl command, B-3
oidmon command, B-3
oidpassword command, B-3
oidreconcil command, B-3
oidstats command, B-3

OLAPSYS schema
status after installation, 6-5
OLTS_ATTRSTORE tablespace, E-4
OLTS_BATTRSTORE tablespace, E-4
OLTS_CT_STORE tablespace, E-4
OLTS_DEFAULT tablespace, E-4
OLTS_SVRMGSTORE tablespace, E-4

on-network, 8-26
moving off-network
 DHCP address, 8-27
 IP address, 8-27

OPatch utility, I-5
 options, I-6
 requirements, I-5
 running, I-6
opmnctl command, 1-6, 2-3, B-3
 obtaining status, 1-6
 starting components, 1-6, 3-3, 3-6
 stopping components, 3-4, 3-6
 troubleshooting, J-2
opmn.xml file
 ports and, 3-10, 4-19
 troubleshooting, J-2, J-19
ORA-28885 error, 13-35
ORABPEL schema
description, E-2
status after installation, 6-5
Oracle Access Manager
 changing ports and, 4-16
Oracle Application Development Framework
 log files, 5-2
 troubleshooting, J-6
Oracle Application Server environment
 managing, 2-1, 2-3
 starting, 3-8
 starting and stopping, 3-8
 stopping, 3-8
 troubleshooting, J-4
Oracle Application Server Upgrade Assistant, B-2
Oracle Application Server Welcome Page, 1-3, 2-7
Oracle Applications wallet location, 13-11
Oracle BPEL Process Analytics
 schema, E-2
Oracle BPEL Process Manager schema, E-2
 status after installation, 6-5
Oracle Business Intelligence
 SSL protocols and, 15-5
Oracle Certificate Authority
 cmdeinst command, B-1
Oracle Containers for J2EE (OC4J)
 configuring for ECIDs, 5-20
 deleting OC4J instances, 7-7
 deploying large applications, 7-7
 dms.transtrace.ecidenabled property, 5-20
 getting started, 1-8
 instances, 1-8
 log files, 5-2
 message correlation, 5-11
 ODL messages, 5-20
 port conflicts, 3-10
 ports, D-2
 changing, 4-4
 resolving errors when starting, 3-10
 RMI port
 changing, 4-3
 troubleshooting, J-3, J-17, J-18, J-19
 security page, J-17
Oracle Delegated Administration Service
 checking status, 20-4
 configuring after installation, 7-3
 restarting, 20-4
 updating, 4-11
Oracle Delegated Administration Services
 changing domain name, 8-3
 changing hostname, 8-3
 configuring SSL, 14-4
 getting started, 1-9
 log files, 5-2
 printlogs and, F-8
 URL for, C-2
Oracle Diagnostic Logging (ODL), 5-1
 configuring components for, 5-19
 enabling, A-8
 file naming, 5-16
 message format, 5-15
 message header fields, 5-16
Oracle Directory Integration Platform
 changing domain name, 8-3
 changing hostname, 8-3
 command-line tool for, B-1
 configuring after installation, 7-6
 configuring SSL, 14-4
 getting started, 1-9
 starting, B-4
Oracle Directory Manager
 changing schema passwords with, 6-9
 viewing schema passwords with, 6-7
Oracle Enterprise Manager
 configuring SSL, 14-5
 datafiles, E-4
 log files, 5-2
 managing security, B-1
 ports, D-3, D-5
 changing, 4-2
 schema, E-3
 tablespaces, E-4
Oracle Enterprise Manager Application Server Control, 2-1
 enabling accessibility mode, A-10
 enabling ODL logging, A-8
home pages, 2-8
 Application Server, 2-9
 components, 2-11
overview, 2-4
password, changing, A-4
processes, A-3
security, A-5
starting, A-1
stopping, A-1
troubleshooting, J-6, J-9
URL for, C-1
using, 2-2
Oracle Enterprise Manager Application Server
 Control Console
 configuring SSL, 14-5
 displaying, 2-7
 enabling and disabling components, 3-7
 password, 2-8
 ports, changing, 4-3
 starting, 3-3
 starting and stopping components, 3-7
 stopping, 3-3
 URL for, 2-7
Oracle Enterprise Manager Database Control, 2-1
 displaying, 2-17
 managing OracleAS Metadata Repository, 2-17
 password, 2-18
 using, 2-3
Oracle Enterprise Manager Grid Control, 2-1
 components of, 2-19
 installing components, 2-19
 monitoring with, 2-22
 password, 2-20
 troubleshooting configuration propagation from
 Application Server Control, J-15
 using, 2-2, 2-18
Oracle Enterprise Manager Grid Control Console
 using, 2-20
Oracle Enterprise Manager Web site
 stopping, A-1
Oracle HTTP Server
 configuring for ODL, 5-19
 getting started, 1-7
 log files, 5-2
 message correlation, 5-11
 ports, D-2
 changing, 4-5, 4-13
 changing diagnostic, 4-17
 less than 1024, 4-8
 starting, 3-4
 stopping, 3-5
 troubleshooting, J-4
 URL for, C-1
Oracle Identity Federation
 changing hostname
 of Identity Management, 8-12
 changing hostname, domain name, IP
 address, 8-15
 changing HTTP ports, 4-13
 changing HTTP server port
 on Identity Management installation, 4-10
 changing Identity Management, 9-7, 9-12
deinstallation command, B-4
 getting started, 1-9
 ports, D-5
 starting, 3-5
 stopping, 3-6
 URL for administration, C-2
 URL for monitoring, C-2
Oracle Identity Management
 accessing, 1-8
 configuring after installation, 7-9
 failover, 9-6, 9-13
 moving to a new host, 9-6
 schemas, E-1
 starting, 3-2
 stopping, 3-3
Oracle Internet Directory
 adding entries, B-2
 administering provisioning entries, B-3
 anonymous binds, 7-15
 disabling, 7-15
 enabling, 7-17
 associating with middle tier, 7-13
 authenticating client, B-2
 catalog entries, B-1
 changing domain name, 8-3
 changing hostname, 8-3
 changing modes, 9-3
 changing password, B-3
 changing schema passwords, 6-9
 changing to SSL mode, 9-3
 comparing attribute values, B-2
 configuring after installation, 7-9
 configuring SSL, 14-4
 converting to LDIF, B-2
 creating entries in, B-1
 datafiles, E-4
 deleting entries, B-2
 deleting subtree in, B-1
 Diffie-Hellman SSL port, 13-26
 estimating statistics, B-3
 log files, 5-2
 migrating, 10-13, 10-24
 migrating data, B-2
 mod_osso and, 7-5
 modifying entries, B-1, B-2
 monitoring, B-3
 ports, D-5
 changing, 4-26
 updating, 4-23
 registering metadata repository, 9-32
 release numbers, 1-3
 replication tool, B-3
 schema, E-2
 searching entries, B-2
 setting passwords, B-3
 starting and stopping, B-3
 synchronizing entries, B-3
 synchronizing schemas, B-3
tablespaces, E-4
troubleshooting, J-5, J-12
version numbers, I-3
Oracle Internet Directory Manager
getting started, 1-9
Oracle Internet Directory Replication Server
configuring SSL, 14-4
Oracle Management Agent, 2-6, 2-19
ports, D-6
changing, 4-2
troubleshooting, J-12
Oracle Management Service, 2-19
ports, D-6
Oracle Management Watchdog Process, 2-6
Oracle Process Manager and Notification Server (OPMN), 2-6
command-line interface, 1-6, 2-3, B-3
getting started, 1-6
log files, 5-2
ports, D-3
changing, 4-19
troubleshooting, J-4
Oracle Ultra Search
changing metadata repository, 9-18, 9-21, 9-28, 9-31
character sets and, 6-10
datafile, E-4
schemas, E-2	
tablespace, E-4
Oracle Universal Installer
log files, 5-2
Oracle Wallet Manager, 11-5
changing passwords, 13-11
closing wallets, 13-8
creating wallets, 13-6
deleting wallets, 13-11
downloading wallets, 13-9
enabling auto-login, 13-12
exporting wallets, 13-8
managing certificates, 13-12
opening wallets, 13-8
starting, 13-4
uploading wallets, 13-9
Oracle Workflow
datafile, E-4
schema, E-2

tablespace, E-4
ORACLE_HOME environment variable, 1-2, 3-2
ORACLE_PRINTLOGS_JVM_ARGS environment variable, F-7
ORACLE_STD environment variable, 1-2, 3-2
OracleAS Backup and Recovery Tool, 17-7, 18-1 to 18-21
configuring, 18-5
customizing, 18-8
installing, 18-2
prerequisites, 18-11
usage, 18-10
OracleAS Certificate Authority administration interface, 1-9
command-line tool, B-2
configuring SSL, 14-5
creating certificates, 11-5
datafiles, E-4
log files, 5-2
ports, D-5
changing, 4-29
updating, 4-11, 4-24
schemas, E-2	
tablespaces, E-4
URL for administration, C-1
URL for end-user interface, C-1
OracleAS Cluster home page
collection problems, J-10
managing, 2-2
managing with command line, B-1
starting, 3-8
OracleAS Farm, 2-8
home page, 2-5, 2-8
collection problems, J-10
managing, 2-2
troubleshooting, J-11
OracleAS Guard
ports, D-5
server, 1-7
OracleAS Infrastructure
changing, 9-1
configuration files
restoring, 20-9
configuring after installation, 7-8
LDAP-based replica and, H-2
ports, D-4
changing, 4-21
restoring, 20-5, 20-6
starting, 3-2
stopping, 3-3
troubleshooting, J-2
using after installation, 7-8
OracleAS Integration B2B
datafiles, E-4
schema, E-2
tables, E-4
OracleAS Metadata Repository
changing, 9-13, 9-27
changing character sets, 6-10
changing schema passwords, 6-8
database features and, 6-2
datafile, E-4
definition, 6-1
enabling archive logging, 19-4
immediate shutdown, 3-13
locking accounts, 6-4
managing, 2-3, 6-1
managing with Database Control, 18-21
ports, D-5
changing, 4-21
registering with Oracle Internet Directory, 9-26
release numbers, 1-4
relocating datafiles, 6-11
restoring, 20-6
schemas, E-1 to E-5
deleting, 6-3
passwords, 6-3, 6-6
starting, 3-2
stopping, 3-3
tablespace, E-4
tuning, 6-3
unlocking accounts, 6-4
using after installation, 7-10, 7-11
version numbers, I-4
OracleAS Metadata Repository Creation Assistant, 9-26
OracleAS Portal
changing metadata repository, 9-18, 9-28
character sets and, 6-11
datafiles, E-4
schemas, E-2
tablespaces, E-4
OracleAS Single Sign-On
administration pages, 1-9
changing domain name, 8-3
changing hostname, 8-3
changing Oracle Internet Directory, B-4
changing port, 4-5
configuring after installation, 7-2
configuring languages, B-3
configuring SSL, 14-4
datafile, E-4
log files, 5-2
ports, D-5
ports, updating, 4-8, 4-24
schemas, E-2

tablespace, E-4
troubleshooting, J-5
updating URL, B-4
URL for Administration pages, C-1
OracleAS TopLink
backup and recovery tool and, 18-2
OracleAS UDDI Registry
datafile, E-4
schema, E-3
tablespace, E-4
OracleAS Web Cache
Infrastructure Services and, 7-8
starting, 3-4
stopping, 3-5
OracleAS Web Clipping
datafile, E-4
schema, E-3
tablespace, E-4
OracleAS Wireless
datafile, E-5
schema, E-3
tablespace, E-5
OracleBI Discoverer
datafiles, E-5
schema, E-3
tablespaces, E-5
ORAoca_PUBLIC schema
description, E-2
status after installation, 6-5
orapki utility, 13-20, 13-25
adding certificate requests, 13-22, 13-31
adding certificates, 13-31
adding root certificates, 13-22
adding trusted certificates, 13-22
adding user certificates, 13-23
commands, 13-28
creating auto login wallets with, 13-22
creating signed certificates, 13-21, 13-28
creating wallets with, 13-22, 13-32
deleting certificate revocation lists, 13-29
displaying certificate revocation lists, 13-29
displaying certificates, 13-28
displaying help, 13-21
exporting certificate requests, 13-23
exporting certificates, 13-23, 13-32
listing certificate revocation lists, 13-30
managing certificate revocation lists, 13-23
managing wallets with, 13-21
overview, 13-20
syntax, 13-20
uploading certificate revocation lists, 13-30
viewing certificates, 13-21, 13-32
viewing wallets with, 13-22
ORASSO schema
changing password, 6-8
description, E-2
status after installation, 6-5
ORASSO_DS schema
changing password, 6-8
description, E-2
status after installation, 6-5
ORASSO_PA schema
changing password, 6-8
description, E-2
status after installation, 6-5
ORASSO_PS schema
changing password, 6-8
description, E-2
status after installation, 6-5
ORASSO_PUBLIC schema
changing password, 6-8
description, E-2
status after installation, 6-5
_ORDPLUGINS schema
status after installation, 6-5
_ORDSYS schema
status after installation, 6-5
orion-application.xml file
troubleshooting, J-17
ossoca.jar command-line tool, B-3
ossoreg.jar command-line tool, B-3
OUTLN schema
status after installation, 6-5
OWF_MGR schema
changing password, 6-9
description, E-2
Index-9
passwords
Application Server Control Console, 2-8
 changing, A-4
 changing in Oracle Internet Directory, 6-9
Database Control, 2-18
Grid Control, 2-20
ias_admin, 2-8
 changing, A-4
OracleAS Metadata Repository, 6-6
 changing, 6-8
patches
 applying and rolling back, 1-5
PATH environment variable, 1-2
performance
troubleshooting, J-3
performance metrics
displaying, 2-15
 monitoring, 2-4, 2-22
 with command-line tool, B-1
perl process, A-4
PKCS #10 certificate request, 13-13
PKCS #11 format certificates, 13-2
PKCS #11 wallets, 13-7
PKCS #12 format certificates, 13-2, 13-3
PKCS #12 wallets, 13-6
PKCS #7 certificate chain, 13-14
 difference from X.509 certificate, 13-14
PKCS #7 format certificates, 13-4, 13-5
PKI wallet encoding standards, 13-9
port numbers, D-1 to D-7
 changing, 4-1 to 4-30
 checking, 1-5
 conflicts, 3-10, J-9
DCM Discovery, D-4
Infrastructure, D-4
Java Object Cache, D-4
LDAP-based replicas and
log loader, D-4
Oracle Containers for J2EE (OC4J), D-2
Oracle Enterprise Manager, D-3, D-5
Oracle HTTP Server, D-2
Oracle HTTP Server diagnostic, D-2
Oracle Identity Federation, D-5
Oracle Internet Directory, 7-5, D-5
SSL port, 7-5
Oracle Process Manager and Notification Server
 (OPMN), D-3
OracleAS Certificate Authority, D-5
OracleAS Guard, D-5
OracleAS Metadata Repository, D-5
OracleAS Single Sign-On, D-5
port tunneling, D-4
viewing, 4-2
See also ports
port tunneling
log files, 5-2

ports, D-4
 changing, 4-20
SSL and, 14-5, 15-3
Portal
See OracleAS Portal
PORTAL schema
description, E-2
status after installation, 6-5
PORTAL tablespace, E-4
PORTAL_APP schema
description, E-3
status after installation, 6-5
PORTAL_DEMO schema
description, E-3
status after installation, 6-5
PORTAL_DOC tablespace, E-4
PORTAL_IDX tablespace, E-4
PORTAL_PUBLIC schema
description, E-3
status after installation, 6-5
portlist.ini file, 1-5
R

recovery, 20-1
- procedures, 20-4
- strategies, 20-1
- troubleshooting, 21-1
registration
- log files, 5-18
regular expressions
- log files and, 5-9
release numbers, I-1 to I-5
- application server, I-2
- component, I-2
- format, I-1
- Oracle Internet Directory, I-3
- OracleAS Metadata Repository, I-4
- viewing, I-2 to I-5
removing OC4J instances, 7-7
remtool command, B-3
replication, H-1
- moving Identity Management, 9-6
resetIASpasswd command, B-3
resource usage
- monitoring, 2-14

S

schema passwords
- changing for OracleAS Metadata Repository, 6-8
- changing in Oracle Internet Directory, 6-9
- viewing for OracleAS Metadata Repository, 6-6
schemas
- for OracleAS Metadata Repository, 6-4, E-1
- deleting, 6-3
- management, E-1, E-3
- Oracle Identity Management, E-1
- product metadata, E-1, E-2
schemasync command, B-3
SCOTT schema
- changing password, 6-9
- status after installation, 6-5
screen readers, A-10
Secure Sockets Layer
See SSL
security, 11-1
- configuring for Application Server Control, A-5
- enabling SSL, 1-9
- SSL, 14-1
- and hardware security, 11-7
- wallets, 13-1
Services control panel
- start and stop the Management Agent, A-2
session errors
- browsers and, J-14
setupinfo.txt file, 2-7
SHLIB_PATH environment variable, 1-2
SHUTDOWN IMMEDIATE, 3-13
SI_INFORMTN_SCHEMA schema
- status after installation, 6-5
Single Sign-On
See OracleAS Single Sign-On

SMIsession error message, J-12
SSL, 11-1
- changing middle-tier instance to, 9-5
- changing Oracle Internet Directory to, 9-3
communication paths
- in Infrastructure, 14-1
- in middle-tier, 15-1
- configuring, 11-6, 15-3
- in Infrastructure, 14-3
- default configuration, 11-7
- enabling, 1-9
- enabling in Infrastructure, 14-1
- enabling in middle tier, 15-1
- overview, 11-1
- partial configuration, 11-7
- requirements, 11-4
- troubleshooting, J-13
SSL Configuration Tool, 12-1
- command line interface, 12-4
- overview, 12-1
- supported release, 12-1
- troubleshooting, 12-23
- understanding SSL termination, 12-2
- usage examples for common topologies, 12-8
SSL protocol, 11-3
SSL wallet location, 13-7, 13-11
ssl.conf file
- port directive and, 4-7
SSLConfigTool script, 15-3, B-3
SSO
See OracleAS Single Sign-On
SSO wallets, 13-12
ssocfg command, B-4
ssooconf.sql command, B-4
starting
- Application Server Control, A-1
- Application Server Control Console, 3-3
- components, 1-6, 3-6
- DCM, 3-4
- log loader, 3-9
- middle-tier instances, 3-4
- Net Listener, 3-2
- Oracle HTTP Server, 3-4
- Oracle Identity Federation, 3-5
- Oracle Identity Management, 3-2
- OracleAS Cluster, 3-8
- OracleAS Infrastructure, 3-2
- OracleAS Metadata Repository, 3-2
- OracleAS Web Cache, 3-4
- starting and stopping, 3-1 to 3-14
static IP address
- moving off-network, 8-27
- moving to, 8-26
staticports.ini file, D-2, D-4, D-5
status
- of components, 1-6, 3-6, J-8
stopodiserver command, B-4
stopping
- Application Server Control, A-1
- Application Server Control Console, 3-3
components, 3-6
DCM, 3-5
log loader, 3-9
Oracle Application Server environment, 3-8
Oracle HTTP Server, 3-5
Oracle Identity Federation, 3-6
Oracle Identity Management, 3-3
OracleAS Infrastructure, 3-3
OracleAS Metadata Repository, 3-3
OracleAS Web Cache, 3-5
stopping and starting, 3-1 to 3-14
SYS schema
 changing password, 6-9
 status after installation, 6-5
SYSAUX tablespace, E-4
SYSMAN schema
 status after installation, 6-5
system outages
 recovery strategies, 20-2
SYSTEM schema
 changing password, 6-9
 status after installation, 6-5

T
 tablespaces
 for schemas, E-1
targets.xml file
 ports and, 4-8, 4-25
TEMP environment variable, 1-2
test to production
 with a 10.1.2 middle tier, 10-2 to 10-17
 with a 10.1.3 middle tier, 10-17 to 10-28
 with an Oracle Identity Federation instance, 10-1
TMP environment variable, 1-2
topologies
 displaying, 2-13
Topology Viewer, 2-13
 troubleshooting, J-14
troubleshooting, J-1 to J-21
 administrative tasks, J-13
 Application Server Control, J-6, J-9
 backup and recovery, 21-1
 browsers and, J-14, J-19
 connection errors, J-3
DCM, J-5
garbage collection, J-3
HTTPD processes, J-4
ias_admin password, J-3, J-7
infrastructure, J-2
Internet Explorer and, J-13
J2EE, J-17
OC4J, J-3, J-17, J-19
 security page, J-17
OPMN, J-4
Oracle Application Development Framework, J-6
Oracle Application Server processes, J-4
Oracle HTTP Server, J-4
Oracle Internet Directory, J-5, J-12
Oracle Management Agent, J-12
OracleAS Cluster connection problems, J-10
OracleAS Farm, J-11
 connection problems, J-10
OracleAS Single Sign-On, J-5
 performance, J-3
 port conflicts, J-9
 propagation between Grid Control and
 Application Server Control, J-15
SMISession, J-12
standby instances and, J-6
status of components, J-8
Topology Viewer and, J-6
WAR applications, J-14
trusted certificates
 exporting, 13-19
 importing, 13-18
 removing, 13-19

U
UDDI Registry
 See OracleAS UDDI Registry
UDDISYS schema
 description, E-3
 status after installation, 6-5
UDDISYS_TS tablespace, E-4
uix-config.xml command, A-11
Ultra Search
 See Oracle Ultra Search
underlying technologies, 2-5
uninstall.jar command, B-4
URLs for components, C-1

V
variables
 environment
 IASCONFIG_LOC, 12-25
 NLS_LANG, H-3
 ORACLE_PRINTLOGS_JVM_ARGS, F-7
 setting, 1-1
 setting Application Server Control
 options, A-6
version numbers, I-1 to I-5
 application server, I-2
 component, I-2
 format, I-1
 Oracle Internet Directory, I-3
 OracleAS Metadata Repository, I-4
 viewing, I-2 to I-5
virtual hosts
 SSL and, 15-4, 16-1

W
wallets, 11-5, 13-1 to 13-35
 auto login, 13-12
 closing, 13-8
 components supporting, 11-6
 creating, 13-4, 13-6
 for hardware security module, 13-7
deleting, 13-11
 downloading, 13-9
 exporting, 13-8
 managing, 13-1, 13-5
 managing certificates, 13-12
 managing trusted certificates, 13-18
 managing with orapki, 13-21
 opening, 13-8
 Oracle Applications wallet location, 13-11
 passwords
 changing, 13-11
 guidelines for, 13-6
 PKI encoding standards, 13-9
 saving, 13-10
 in system default, 13-10
 to new location, 13-10
 SSL wallet location, 13-7, 13-11
 SSO wallets, 13-12
 storing multiple certificates, 13-33
 uploading, 13-9
 WAR applications
 redeploying, J-18
 WCRSYS schema
 description, E-3
 status after installation, 6-5
 WCRSYS_TS tablespace, E-4
 Web Clipping
 See OracleAS Web Clipping
 Welcome Page, 1-3, 2-7
 URL for, C-1
 Wireless
 See OracleAS Wireless
 WIRELESS schema
 description, E-3
 status after installation, 6-5
 WK_TEST schema
 description, E-2
 status after installation, 6-5
 WKPROXY schema
 description, E-2
 status after installation, 6-6
 WKSYS schema
 description, E-2
 status after installation, 6-6
 WMSYS schema
 status after installation, 6-6
 Workflow
 See Oracle Workflow

X
X.509 certificates, 13-33
 difference from PKCS #7 certificate chain, 13-14
 extension types, 13-34
 XDB schema
 status after installation, 6-6