Oracle® Access Manager
Integration Guide
10g (10.1.4.0.1)
B25347-01

June 2006
Explains how to set up Oracle Access Manager to run with third-party products such as WebLogic SSPI, Siebel 7, and IBM Websphere.
Contents

Preface .. xiii
 Audience ... xiii
 Documentation Accessibility .. xiii
 Related Documents ... xiv
 Conventions ... xv

What’s New in Oracle Access Manager? ... xvii
 Product and Component Name Changes ... xvii
 Supported Integrations .. xix
 Updates to the OracleAS Single Sign-On Integration .. xix
 Updates to the Oracle Identity Federation Integration .. xix
 Updates to the Siebel 7 Integration ... xix
 Updates to the SAP Integration .. xx
 Updates to the RSA Securid Integration ... xx
 Updates to the WebLogic Integration .. xx
 Updates to the WebSphere Integration .. xx
 Updates to the Plumtree Integration .. xx

1 Introduction
 About Oracle Access Manager Integrations ... 1-1
 Integrations With Other Oracle Products ... 1-1
 Integrations with Third-Party Products ... 1-2

Part I Integration with Oracle Fusion Applications and Middleware

2 Integrating the Apache v1.3 and Oracle HTTP Server
 About the Integration of OHS and Oracle Access Manager ... 2-1

3 Integrating the Oracle Virtual Directory
 About the Integration of Oracle Virtual Directory and Oracle Access Manager 3-1

4 Integrating with Oracle Application Servers
 Integration Overview and Environment Preparation ... 4-1
 Supported Authentication Schemes for the Oracle Application Servers ... 4-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>OracleAS 10g Infrastructure</td>
<td>4-2</td>
</tr>
<tr>
<td>Integration Architecture</td>
<td>4-2</td>
</tr>
<tr>
<td>Supported Versions and Platforms</td>
<td>4-4</td>
</tr>
<tr>
<td>Preparing Your Environment</td>
<td>4-4</td>
</tr>
<tr>
<td>Single Sign-On with OracleAS 10g</td>
<td>4-5</td>
</tr>
<tr>
<td>Enabling Single-Sign On</td>
<td>4-6</td>
</tr>
<tr>
<td>Creating the Java Class for Integration</td>
<td>4-6</td>
</tr>
<tr>
<td>Integrating the Delegated Administration Service</td>
<td>4-7</td>
</tr>
<tr>
<td>Integrating the Portal</td>
<td>4-8</td>
</tr>
<tr>
<td>Enabling Single-Sign On for Forms</td>
<td>4-8</td>
</tr>
<tr>
<td>Integrating Reports Services</td>
<td>4-9</td>
</tr>
<tr>
<td>Synchronizing the OID and Oracle Access Manager LDAP Directory</td>
<td>4-9</td>
</tr>
<tr>
<td>Implementing Global Logout from OracleAS Single Sign-On and Access Server</td>
<td>4-9</td>
</tr>
<tr>
<td>Configuring Oracle Access Manager for Integration with OracleAS 10g</td>
<td>4-10</td>
</tr>
<tr>
<td>Protecting the Single-Sign On Login URL</td>
<td>4-11</td>
</tr>
<tr>
<td>Authorization Support for Applications Protected by OracleAS Single Sign-On</td>
<td>4-12</td>
</tr>
<tr>
<td>About Authorization of OracleAS Single Sign-On-Protected Applications</td>
<td>4-12</td>
</tr>
<tr>
<td>Configuring Authorization Support for OracleAS Single Sign-On-Protected Resources</td>
<td>4-13</td>
</tr>
<tr>
<td>Testing the Integration with OracleAS</td>
<td>4-14</td>
</tr>
<tr>
<td>OracleAS 10g Files</td>
<td>4-15</td>
</tr>
<tr>
<td>SSOOblixAuth.java</td>
<td>4-15</td>
</tr>
<tr>
<td>Logout.jsp</td>
<td>4-16</td>
</tr>
<tr>
<td>Troubleshooting the OracleAS 10g Integration</td>
<td>4-18</td>
</tr>
</tbody>
</table>

5 Federated Single Sign-On Using Oracle Identity Federation

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About Federated Single Sign-On</td>
<td>5-2</td>
</tr>
<tr>
<td>About Federated Authorization</td>
<td>5-2</td>
</tr>
<tr>
<td>Setting up the Federated Attribute Sharing Environment</td>
<td>5-4</td>
</tr>
<tr>
<td>Setting Parameters in the config.xml File</td>
<td>5-4</td>
</tr>
<tr>
<td>Configuring Basic Authentication</td>
<td>5-8</td>
</tr>
<tr>
<td>Configuring SSL and Client Certificate Authentication</td>
<td>5-8</td>
</tr>
<tr>
<td>Configure the Session Token Cache for Federated Attribute Sharing</td>
<td>5-9</td>
</tr>
<tr>
<td>Configuring the Authentication Scheme for Attribute Sharing</td>
<td>5-9</td>
</tr>
<tr>
<td>Configuring the Basic Components of the Authentication Scheme</td>
<td>5-10</td>
</tr>
<tr>
<td>Configuring Plug-ins and Steps for the Authentication Scheme</td>
<td>5-10</td>
</tr>
<tr>
<td>Configuring the Authorization Schemes and Policies for Attribute Sharing</td>
<td>5-12</td>
</tr>
<tr>
<td>Configuring Basic Characteristics of the Authorization Scheme</td>
<td>5-13</td>
</tr>
<tr>
<td>Configuring Rules and Policies for the Attribute Sharing Authorization Scheme</td>
<td>5-14</td>
</tr>
</tbody>
</table>

6 Integrating Siebel 7

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>About the Integration with Siebel 7</td>
<td>6-1</td>
</tr>
<tr>
<td>Siebel 7 Components</td>
<td>6-2</td>
</tr>
<tr>
<td>Integration Architecture</td>
<td>6-2</td>
</tr>
<tr>
<td>Supported Version and Platforms</td>
<td>6-4</td>
</tr>
<tr>
<td>Preparing Your Environment</td>
<td>6-4</td>
</tr>
<tr>
<td>Setting Up Oracle Access Manager Single Sign-on for Siebel Application Server</td>
<td>6-4</td>
</tr>
<tr>
<td>Setting Up Siebel 7 for integration with Oracle Access Manager</td>
<td>6-5</td>
</tr>
</tbody>
</table>
Integrating PeopleSoft

- About the Integration with PeopleSoft ... 7-1
- PeopleSoft Components ... 7-2
- PeopleSoft Integration Architecture ... 7-3
 - Single Sign-On Process ... 7-3
- Supported Version and Platforms .. 7-5
- Preparing Your Environment ... 7-5
- Setting Up Oracle Access Manager Single Sign-On for PeopleSoft .. 7-5
- Setting up PeopleSoft for Single Sign-On with Oracle Access Manager ... 7-8
- Configuring Single Signoff ... 7-11

Integrating Oracle eBusiness Suite

- About the Integration with Oracle eBusiness Suite 8-1

Part II Integration with Third-Party Applications

Integrating the Security Provider for WebLogic SSPI

- About the Security Provider .. 9-1
 - WebLogic and Oracle Access Manager Integration Points 9-2
- Integration Architecture ... 9-3
 - Authentication for Mixed Web and Non-Web Resources 9-4
 - Authentication for Web-Only Resources 9-6
 - Authentication for the Portal ... 9-7
- Supported Versions and Platforms .. 9-9
- Online Assistance ... 9-9
- Installing and Configuring the Security Provider 9-10
 - Preparing the Environment .. 9-10
 - Installing the Security Provider ... 9-10
 - Completing a Typical Installation .. 9-11
 - Completing Advanced Installation .. 9-12
 - Setting Up WebLogic Policies in Oracle Access Manager 9-14
 - Running the NetPoint Policy Deployer .. 9-18
 - Manually Configuring WebLogic Policies in Oracle Access Manager 9-21
 - Mapping WebLogic Resources to Oracle Access Manager Resources 9-27
 - NetPointResourceMap.conf File Format 9-28
 - Preparing the WebLogic Environment ... 9-30
 - Configuring the Identity Server ... 9-35
 - Configuring Multiple WebPass Instances 9-35
 - Configuring Single Sign-On for the Portal Server 9-36
10 Integrating with IBM WebSphere

About the Connector for WebSphere ... 10-1
WebSphere Components ... 10-3
Connector for WebSphere Components .. 10-4
Integration Architecture ... 10-5
Scenario 1: Use of NetPointWASRegistry 10-5
Scenario 2: Architecture for Single Sign-On 10-6
Mapping Users and Groups to Security Roles in WAS 10-7
Integration Scenario with the Oracle Access ManagerCMR 10-8
Supported Versions and Platforms .. 10-10
Preparing to Install the Connector .. 10-10
Preparing Your Environment ... 10-10
Configuring the Identity System for WAS Integration 10-11
Configuring WebPass Failover ... 10-12
Configuring the Identity Server ... 10-12
Configuring the Access System for WAS Integration 10-13
Configuring the AccessGate for WAS Integration 10-14
Configuring Resource Protection in the Access System 10-15
Defining a Resource Type for WebSphere 10-15
Defining an Authentication Scheme for WebSphere 10-16
Defining a Policy Domain for WebSphere 10-17
Defining a Policy Domain for the WebSphere v6.0 Administration Console 10-18
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installing the Connector for WebSphere</td>
<td>10-20</td>
</tr>
<tr>
<td>Launching the Installation</td>
<td>10-20</td>
</tr>
<tr>
<td>Defining the Installation Directory</td>
<td>10-21</td>
</tr>
<tr>
<td>Specifying Connector Details</td>
<td>10-21</td>
</tr>
<tr>
<td>Completing Details for the WebGate</td>
<td>10-22</td>
</tr>
<tr>
<td>Specifying AccessGate Details</td>
<td>10-23</td>
</tr>
<tr>
<td>Installing a Certificate</td>
<td>10-24</td>
</tr>
<tr>
<td>Configuring Multiple WebPass Instances for the Connector</td>
<td>10-24</td>
</tr>
<tr>
<td>Completing Connector Setup</td>
<td>10-25</td>
</tr>
<tr>
<td>Setting Up the Connector for WebSphere</td>
<td>10-25</td>
</tr>
<tr>
<td>Testing Environment Setup</td>
<td>10-27</td>
</tr>
<tr>
<td>Configuring WebSphere Application Server v5</td>
<td>10-28</td>
</tr>
<tr>
<td>Enabling the NetPointWASRegistry in WAS v5</td>
<td>10-28</td>
</tr>
<tr>
<td>Testing the NetPointWASRegistry for WebSphere v5</td>
<td>10-31</td>
</tr>
<tr>
<td>Configuring the TAI for WebSphere v5</td>
<td>10-31</td>
</tr>
<tr>
<td>Testing the TAI for WAS v5</td>
<td>10-35</td>
</tr>
<tr>
<td>Enabling Logging for TAI for WAS v5</td>
<td>10-37</td>
</tr>
<tr>
<td>Integrating with WebSphere Portal v5</td>
<td>10-38</td>
</tr>
<tr>
<td>About Integration with the CMR</td>
<td>10-41</td>
</tr>
<tr>
<td>Setting up the WebSphere Portal v5.0.2 for Oracle Access Manager</td>
<td>10-42</td>
</tr>
<tr>
<td>Setting Up WebSphere Portal v5.1 With Oracle Access Manager</td>
<td>10-46</td>
</tr>
<tr>
<td>Managing Users and Groups with Portal v5</td>
<td>10-52</td>
</tr>
<tr>
<td>Modifying User Profiles and Attributes</td>
<td>10-53</td>
</tr>
<tr>
<td>Password Management with Portal v5</td>
<td>10-53</td>
</tr>
<tr>
<td>Access Control for the WebSphere Portal v5</td>
<td>10-53</td>
</tr>
<tr>
<td>Configuring Single Sign-on Functions for the Portal v5</td>
<td>10-53</td>
</tr>
<tr>
<td>Configuring the WebSphere Application Server v6</td>
<td>10-55</td>
</tr>
<tr>
<td>Enabling the NetPointWASRegistry for WAS v6</td>
<td>10-55</td>
</tr>
<tr>
<td>Testing the NetPointWASRegistry for WebSphere v6</td>
<td>10-57</td>
</tr>
<tr>
<td>Configuring the TAI for WebSphere v6</td>
<td>10-57</td>
</tr>
<tr>
<td>Testing the TAI for WAS v6</td>
<td>10-59</td>
</tr>
<tr>
<td>Enabling Logging for TAI for WAS v6</td>
<td>10-60</td>
</tr>
<tr>
<td>Configuration Files</td>
<td>10-60</td>
</tr>
<tr>
<td>NetPointWASRegistry.properties</td>
<td>10-60</td>
</tr>
<tr>
<td>WebGate.properties</td>
<td>10-65</td>
</tr>
<tr>
<td>TrustedServers.properties</td>
<td>10-66</td>
</tr>
<tr>
<td>Implementation Notes for the TAI</td>
<td>10-66</td>
</tr>
<tr>
<td>Implementation Notes for Active Directory</td>
<td>10-67</td>
</tr>
<tr>
<td>Configuring the Connector for WebSphere for an Active Directory Forest</td>
<td>10-67</td>
</tr>
<tr>
<td>Set Active Directory Domain in NetPointWASRegistry.properties</td>
<td>10-68</td>
</tr>
<tr>
<td>Troubleshooting the Connector for WebSphere</td>
<td>10-69</td>
</tr>
<tr>
<td>Troubleshooting the Connector for Portal Server v5</td>
<td>10-78</td>
</tr>
<tr>
<td>Portal Server v5 Installation-Related Issues</td>
<td>10-78</td>
</tr>
<tr>
<td>Custom Security Integration Related Issues</td>
<td>10-80</td>
</tr>
</tbody>
</table>

11 Integrating Plumtree Corporate Portal

About the Integration with Plumtree Corporate Portal 11-1
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supported Versions and Platforms</td>
<td>11-4</td>
</tr>
<tr>
<td>Enabling Single Sign-on in PlumTree 5.0.4</td>
<td>11-4</td>
</tr>
<tr>
<td>Creating a Single Sign-On Authentication Source</td>
<td>11-4</td>
</tr>
<tr>
<td>Creating an LDAP Authentication Source</td>
<td>11-5</td>
</tr>
<tr>
<td>Editing Configuration Files to Support Single Sign-On</td>
<td>11-6</td>
</tr>
<tr>
<td>Synchronizing LDAP Data with Plumtree Database</td>
<td>11-6</td>
</tr>
<tr>
<td>Viewing Synchronized Information</td>
<td>11-7</td>
</tr>
<tr>
<td>Enabling Single Sign-On Logout</td>
<td>11-7</td>
</tr>
<tr>
<td>Setting Up the Access System to Protect Plumtree 5.0.4</td>
<td>11-8</td>
</tr>
<tr>
<td>Installing Oracle Access Manager Components</td>
<td>11-8</td>
</tr>
<tr>
<td>Creating a Policy Domain</td>
<td>11-9</td>
</tr>
<tr>
<td>Configuring the WebGate</td>
<td>11-9</td>
</tr>
<tr>
<td>Configuring WebGate for IIS</td>
<td>11-10</td>
</tr>
<tr>
<td>Integrating Other Features</td>
<td>11-10</td>
</tr>
<tr>
<td>Enabling Anonymous Users to View Portal Guest Pages</td>
<td>11-11</td>
</tr>
<tr>
<td>Using the Knowledge Directory</td>
<td>11-13</td>
</tr>
<tr>
<td>Setting Preferences in the Knowledge Directory</td>
<td>11-13</td>
</tr>
<tr>
<td>Creating Folders</td>
<td>11-13</td>
</tr>
<tr>
<td>Uploading Documents</td>
<td>11-14</td>
</tr>
<tr>
<td>Password Management</td>
<td>11-14</td>
</tr>
<tr>
<td>Self-Registration</td>
<td>11-14</td>
</tr>
<tr>
<td>12 Integrating mySAP Applications</td>
<td>12-1</td>
</tr>
<tr>
<td>About Integrating Oracle Access Manager with mySAP</td>
<td>12-2</td>
</tr>
<tr>
<td>SAP Components</td>
<td>12-2</td>
</tr>
<tr>
<td>SAP Internet Transaction Server</td>
<td>12-2</td>
</tr>
<tr>
<td>Pluggable Authentication Service</td>
<td>12-2</td>
</tr>
<tr>
<td>Integration Architecture</td>
<td>12-2</td>
</tr>
<tr>
<td>Supported Versions and Platforms</td>
<td>12-3</td>
</tr>
<tr>
<td>Preparing to Integrate Oracle Access Manager with SAP</td>
<td>12-4</td>
</tr>
<tr>
<td>Setting up Oracle Access Manager Single Sign-on for mySAP</td>
<td>12-4</td>
</tr>
<tr>
<td>Setting Up SAP for Integration with Oracle Access Manager</td>
<td>12-5</td>
</tr>
<tr>
<td>Setting Up Oracle Access Manager for Integration with SAP</td>
<td>12-7</td>
</tr>
<tr>
<td>Testing Integration Between Oracle Access Manager and SAP</td>
<td>12-7</td>
</tr>
<tr>
<td>Integrating the SAP Enterprise Portal 6.0</td>
<td>12-8</td>
</tr>
<tr>
<td>Architecture for the Integration with SAP Enterprise Portal 6.0 SP2</td>
<td>12-9</td>
</tr>
<tr>
<td>Supported Platforms for Integrating with SAP Enterprise Portal 6.0 SP2</td>
<td>12-10</td>
</tr>
<tr>
<td>SAP Enterprise Portal 6.0 Prerequisites</td>
<td>12-11</td>
</tr>
<tr>
<td>Oracle Access Manager Prerequisites</td>
<td>12-11</td>
</tr>
<tr>
<td>Configuring a Proxy to Access SAP Enterprise Portal 6.0</td>
<td>12-12</td>
</tr>
<tr>
<td>Configure Oracle Access Manager for SAP Enterprise Portal 6.0</td>
<td>12-12</td>
</tr>
<tr>
<td>Configure WebGate on the Proxy Server</td>
<td>12-14</td>
</tr>
<tr>
<td>Configure SAP Enterprise Portal 6.0 for External Authentication</td>
<td>12-14</td>
</tr>
<tr>
<td>Testing the Integration with SAP Enterprise Portal 6.0</td>
<td>12-15</td>
</tr>
<tr>
<td>Troubleshooting the Integration with SAP Enterprise Portal 6.0</td>
<td>12-16</td>
</tr>
</tbody>
</table>
Integrating the RSA SecurID Authentication Plug-In

About Oracle Access Manager and SecurID Authentication .. 13-1
Supported Versions and Platforms ... 13-2
RSA Components .. 13-2
Oracle Access Manager Components .. 13-3
Integration Summary .. 13-4

Support and Requirements .. 13-4
Supported Versions and Platforms ... 13-4
RSA ACE/Server Requirements ... 13-5
 Next Tokencode Mode Support ... 13-5
 New PIN Mode Support ... 13-5
Oracle SecurID Access Server and ACE/Agent Requirements ... 13-6
Access Server and ACE/Agent Requirements .. 13-7
WebGate Requirements .. 13-7
SecurID CGI Script .. 13-8

SecurID Authentication Scenarios .. 13-9
SecurID Authentication Sequence ... 13-9
Next Tokencode Sequence .. 13-10
New PIN Sequence .. 13-11

Integrating SecurID Authentication .. 13-12
Preparing Your Environment ... 13-13
Setting up the Access Server as an ACE/Agent ... 13-14
 Registering an ACE/Agent Host ... 13-14
 Setting up the ACE/Agent Host .. 13-15
Setting Up a SecurID WebGate ... 13-17
 Relocating Oracle SecurID Directories .. 13-18
 Setting up the SecurID CGI Script .. 13-19
 Configuring the CGI Directory .. 13-19
Creating a SecurID Authentication Scheme ... 13-20
 Background ... 13-21
 Defining an Authentication Scheme for SecurID .. 13-23
Protecting SecurID Resources .. 13-25
 Creating a Policy Domain ... 13-26
 Adding a Resource to Your Policy Domain .. 13-26
 Defining Rules for this Domain ... 13-27
Testing the Policy Domain ... 13-28
 Adding ACE/Server Users to Oracle Access Manager .. 13-29

Oracle Access Manager Authentication Plug-In Parameters ... 13-29
SecurID Plug-In Parameters ... 13-29
Credential Mapping Plug-In Parameters .. 13-32

Active Directory Forest Considerations .. 13-32
Prerequisites .. 13-32
 Integrating SecurID with an Active Directory Forest .. 13-33
 SecurID Forms for an Active Directory Forest ... 13-34
Troubleshooting .. 13-35
 ACE/Agent Issues ... 13-36
 ACE/Server Configuration File ... 13-36
14 Integrating Smart Card Authentication

About Smart Card Authentication ... 14-1
About Oracle Access Manager Components .. 14-2
Integration Architecture .. 14-3
Supported Versions and Platforms ... 14-4
Setting Up Smart Card Authentication ... 14-4
Preparing Active Directory .. 14-4
Preparing the CA and Enrolling for a Certificate .. 14-5
Preparing IIS Web Servers ... 14-6
Preparing Oracle Access Manager for Smart Card Authentication 14-6
Protecting Resources with Oracle Access Manager ... 14-6
Setting Up the IIS Manager .. 14-8
About Policy Domains for Smart Card Authentication .. 14-9
Client Certificate Authentication Schemes .. 14-9
Smart Card Challenge Method, Parameter, SSL .. 14-10
Plug-Ins for Smart Card Authentication ... 14-10
cert_decode Plug-In ... 14-11
credential_mapping Plug-In .. 14-11
Troubleshooting .. 14-11
Problem Requesting X.509 Certificates ... 14-11
Additional Resources ... 14-12
Active Directory Resources .. 14-12
Smart Card Resources ... 14-12
Oracle Access Manager Policy Domain Details .. 14-12

15 Integrating SharePoint Portal Server

About Oracle Access Manager and the SharePoint Portal Server 15-1
About Windows Impersonation ... 15-1
Supported Platforms and Requirements ... 15-2
Supported Versions and Platforms ... 15-2
Required Microsoft Components .. 15-2
Required Oracle Access Manager Components .. 15-3
Request Processing by the SPPS Integration ... 15-4
Integrating with SPPS ... 15-5
Installing Microsoft Components ... 15-5
Installing Oracle Access Manager Components .. 15-8
Defining Managed Paths in SharePoint ... 15-8
Setting Up Impersonation .. 15-9
Creating a Trusted User Accounts .. 15-10
Assigning Rights to the Trusted User .. 15-11
Binding the Trusted User to Your WebGate ... 15-12
Adding an Impersonation Action to a Policy Domain ... 15-12
Adding an Impersonation dll to IIS .. 15-14
Testing Impersonation ... 15-15
Creating an IIS Virtual Site Not Protected by SPPS ... 15-16
Testing Impersonation Using the Event Viewer .. 15-16
Testing Impersonation using a Web Page ... 15-17
Negative Testing for Impersonation ... 15-17
Completing the SPPS Integration .. 15-18
 Configuring IIS Security .. 15-18
 Configuring the Wildcard Extension .. 15-19
 Editing web.config ... 15-20
 Synchronizing User Profiles Between Directories .. 15-21
 Testing Your Integration .. 15-22
 Testing the SPPS Integration .. 15-22
 Testing Single Sign-On for the SPPS Integration .. 15-22

16 Integrating With ASP.NET

 About ASP.NET .. 16-1
 Security Principals and Security Identifiers (SIDs) .. 16-2
 IPrincipal.IsInRole Method Syntax .. 16-2
 Parameters .. 16-3
 Return value .. 16-3
 Supported Versions and Platforms ... 16-3
 Requirements .. 16-3
 About the Security Connector for ASP.NET .. 16-3
 Oracle Access Manager Components and Requirements ... 16-4
 The OblixHttpModule .. 16-4
 The OblixPrincipal Object ... 16-5
 Authorization with the Security Connector for ASP.NET .. 16-5
 Using the Security Connector for ASP.NET ... 16-5
 Setting Up Your Environment ... 16-6
 Setting Up the ASP.NET Application for the Security Connector .. 16-7
 Setting up the Oracle Access Manager Role Action .. 16-8
 Oracle Access Manager Role-Based Authorization .. 16-9

17 Integrating Authorization Manager Services

 About Oracle Access Manager and the AzMan Plug-In ... 17-1
 Supported Versions and Platforms .. 17-2
 Authorization with the AzMan Plug-In ... 17-3
 Oracle Access Manager Components and Requirements .. 17-5
 Oracle Access Manager Authorization Rules and Schemes ... 17-6
 About the Windows Authorization Manager .. 17-8
 Authorization Stores .. 17-9
This Integration Guide provides information about integrating Oracle Access Manager with third-party applications servers and portals.

Note: Oracle Access Manager was previously known as Oblix NetPoint.

This Preface covers the following topics:

- **Audience**
- **Documentation Accessibility**
- **Related Documents**
- **Conventions**

Audience

This guide is intended for administrators who are responsible for integrating their product with Oracle Access Manager.

This guide assumes that you are familiar with your LDAP directory and Web servers, Oracle Access Manager, and the product that you are integrating.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Access Manager Release 10g (10.1.4.0.1) documentation set:

- **Oracle Access Manager Introduction**—Provides an introduction to Oracle Access Manager, a road map to the manuals, and a glossary of terms.
- **Oracle Access Manager Release Notes**—Provides up-to-the-minute details about the latest release.
- **Oracle Access Manager Installation Guide**—Describes how to install and set up the Oracle Access Manager components.
- **Oracle Access Manager Upgrade Guide**—Explains how to upgrade earlier versions of Oracle Access Manager to the latest version.
- **Oracle Access Manager Identity and Common Administration Guide**—Explains how to configure Identity System applications to display information about users, groups, and organizations; how to assign permissions to users to view and modify the data that is displayed in the Identity System applications; and how to configure workflows that link together Identity application functions, for example, adding basic information about a user, providing additional information about the user, and approving the new user entry, into a chain of automatically performed steps. This book also describes administration functions that are common to the Identity and Access Systems, for example, directory profile configuration, password policy configuration, logging, and auditing.
- **Oracle Access Manager Access Administration Guide**—Describes how to protect resources by defining policy domains, authentication schemes, and authorization schemes; how to allow users to access multiple resources with a single login by configuring single- and multi-domain single sign-on; and how to design custom login forms. This book also describes how to set up and administer the Access System.
- **Oracle Access Manager Deployment Guide**—Provides information for people who plan and manage the environment in which Oracle Access Manager runs. This guide covers capacity planning, system tuning, failover, load balancing, caching, and migration planning.
- **Oracle Access Manager Customization Guide**—Explains how to change the appearance of Oracle Access Manager applications and how to control operation by making changes to operating systems, Web servers, directory servers, directory content, or by connecting CGI files or JavaScripts to Oracle Access Manager
screens. This guide also describes the Access Manager API and the authorization and authentication plug-in APIs.

- **Oracle Access Manager Developer Guide**—Explains how to access Identity System functionality programmatically using IdentityXML and WSDL, how to create custom WebGates (known as AccessGates), and how to develop plug-ins. This guide also provides information to be aware of when creating CGI files or JavaScripts for Oracle Access Manager.

- **Oracle Access Manager Integration Guide**—Explains how to set up Oracle Access Manager to run with third-party products such as BEA WebLogic, Siebel 7, and IBM Websphere.

- **Oracle Access Manager Schema Description**—Provides details about the schema.

- Also, read the Oracle Application Server Release Notes for the latest updates. The release notes are available with the platform-specific documentation. The most current version of the release notes is available on Oracle Technology Network (http://www.oracle.com/technology/documentation).

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What’s New in Oracle Access Manager?

This section introduces new features of Oracle Access Manager 10g (10.1.4.0.1) and provides pointers to additional information in this book. New features information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features and changes in Oracle Access Manager that are described in this book:

■ Product and Component Name Changes
■ Supported Integrations
■ Updates to the OracleAS Single Sign-On Integration
■ Updates to the Oracle Identity Federation Integration
■ Updates to the Siebel 7 Integration
■ Updates to the SAP Integration
■ Updates to the RSA Securid Integration
■ Updates to the WebLogic Integration
■ Updates to the WebSphere Integration
■ Updates to the Plumtree Integration

Note: For a comprehensive list of new features and functions in Oracle Access Manager 10g (10.1.4.0.1), and a description of where each is documented, see the chapter on What’s New in Oracle Access Manager in the Oracle Access Manager Introduction.

Product and Component Name Changes

The original product name, Oblix NetPoint, has changed to Oracle Access Manager. Most component names remain the same. However, there are several important changes that you should know about, as shown in the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Was</th>
<th>Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Oblix NetPoint</td>
<td>Oracle Access Manager</td>
</tr>
<tr>
<td></td>
<td>Oracle COREid</td>
<td></td>
</tr>
<tr>
<td>Product Name</td>
<td>Oblix SHAREid</td>
<td>Oracle Identity Federation</td>
</tr>
<tr>
<td></td>
<td>NetPoint SAML Services</td>
<td></td>
</tr>
</tbody>
</table>

xvii
<table>
<thead>
<tr>
<th>Item</th>
<th>Was</th>
<th>Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>OctetString Virtual Directory Engine (VDE)</td>
<td>Oracle Virtual Directory</td>
</tr>
<tr>
<td>Product Release</td>
<td>Oracle COREid 7.0.4</td>
<td>Also available as part of Oracle Application Server 10g Release 2 (10.1.2).</td>
</tr>
<tr>
<td>Directory Name</td>
<td>COREid Data Anywhere</td>
<td>Data Anywhere</td>
</tr>
<tr>
<td>Component Name</td>
<td>COREid Server</td>
<td>Identity Server</td>
</tr>
<tr>
<td>Component Name</td>
<td>Access Manager</td>
<td>Policy Manager</td>
</tr>
<tr>
<td>Console Name</td>
<td>COREid System Console</td>
<td>Identity System Console</td>
</tr>
<tr>
<td>Identity System Transport</td>
<td>NetPoint Identity Protocol</td>
<td>Oracle Identity Protocol</td>
</tr>
<tr>
<td>Administrator</td>
<td>NetPoint Administrator</td>
<td>Master Administrator</td>
</tr>
<tr>
<td>Directory Tree</td>
<td>Oblix tree</td>
<td>Configuration tree</td>
</tr>
<tr>
<td>Data</td>
<td>Oblix data</td>
<td>Configuration data</td>
</tr>
<tr>
<td>Software Developer Kit</td>
<td>Access Server SDK</td>
<td>Access Manager SDK</td>
</tr>
<tr>
<td>API</td>
<td>Access Server API</td>
<td>Access Manager API</td>
</tr>
<tr>
<td>API</td>
<td>Access Management API</td>
<td>Policy Manager API</td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>NetPoint Identity Domain</td>
<td>Identity Domain</td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>COREid Identity Domain</td>
<td></td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>NetPoint Access Manager</td>
<td>Access Domain</td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>COREid Access Manager</td>
<td></td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint None Authentication</td>
<td>Anonymous Authentication</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid None Authentication</td>
<td></td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint Basic Over LDAP</td>
<td>Oracle Access and Identity Basic Over LDAP</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid Basic Over LDAP</td>
<td></td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint Basic Over LDAP for AD Forest</td>
<td>Oracle Access and Identity for AD Forest</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid Basic Over LDAP for AD Forest</td>
<td></td>
</tr>
<tr>
<td>Access System Service</td>
<td>AM Service State</td>
<td>Policy Manager API Support Mode</td>
</tr>
</tbody>
</table>

All legacy references in the product or documentation should be understood to connote the new names.
Supported Integrations

The introduction describes supported integrations for 10g (10.1.4.0.1).

- An overview of supported integrations is provided for quick reference. All other chapters in this guide describe implementation details for a specific integration.

 See Also: Chapter 1, "Introduction" on page 1-1.

This guide now points to information on Oracle HTTP Server.

- Oracle HTTP Server (OHS) is a Web server extension that identifies Oracle Access Manager Web components that communicate with the OHS.

 See Also: Chapter 2, "Integrating the Apache v1.3 and Oracle HTTP Server" on page 2-1.

This guide now points to information on Oracle Virtual Directory.

- The Oracle Virtual Directory combines user data from multiple data sources to create an aggregated virtual directory.

 See Also: Chapter 3, "Integrating the Oracle Virtual Directory" on page 3-1.

Updates to the OracleAS Single Sign-On Integration

- You can configure single sign-on between the Access System and the OracleAS Single Sign-On server.

 An older version of this chapter previously existed in the Oracle Access Manager Developer Guide. It provides updated information on configuring single sign-on between Oracle Access Manager and Oracle Application Server 10g (OracleAS 10g). When you configure single sign-on you also provide identity management functionality across the Web-based applications running on Oracle Application Servers, for example, Oracle e-Business Suite, Oracle Forms, Portals, and other Access System-protected resources. Included in this new version is information about the OHS WebGate (Apache WebGate information has been removed).

 See Also: "Integrating with Oracle Application Servers" on page 4-1.

Updates to the Oracle Identity Federation Integration

- You can authorize users by querying external authentication systems.

 This is known as federated authorization. When the Access System at a Service Provider site receives a request from a user in a federated environment, it may need to get additional information about the user from the user’s Identity Provider. You can configure the Access System to query external Identity Providers for user authorization.

 See Also: "Federated Single Sign-On Using Oracle Identity Federation" on page 5-1.

Updates to the Siebel 7 Integration

- Information on configuration of this integration has been updated.
Updates to the SAP Integration

The SAP integration now supports SAP Enterprise Portal 6.0.

- The SAP Enterprise Portal 6.0 can now be protected by the Access System.

See Also: "Integrating the SAP Enterprise Portal 6.0" on page 12-8.

Updates to the RSA Securid Integration

Information has been updated for completeness.

See Also: Chapter 13, "Integrating the RSA SecurID Authentication Plug-In".

Updates to the WebLogic Integration

Information has been updated for completeness.

See Also: Chapter 9, "Integrating the Security Provider for WebLogic SSPI".

Updates to the WebSphere Integration

The integration with WebSphere Application Server (WAS) 4 is deprecated in this release. The information in this chapter for WAS 5 and 6 has been updated for accuracy and completeness.

See Also: Chapter 10, "Integrating with IBM WebSphere".

Updates to the Plumtree Integration

The previous integration with Plumtree Corporate Portal is supported in this release. Note, however, that the most recent version of Plumtree Corporate Portal is now known as BEA Aqualogic Interaction.

See Also: Chapter 11, "Integrating Plumtree Corporate Portal".

See Also: "Integrating Siebel 7" on page 6-1.
Introduction

This chapter provides an overview of the Oracle Access Manager integrations for 10g (10.1.4.0.1) described in this guide. For an introduction to Oracle Access Manager, see the Oracle Access Manager Introduction.

Note: Oracle Access Manager was previously known as Oblix NetPoint. However, you may see the name NetPoint in manuals and within the product itself when references are made to specific functions, paths, file names, and so on.

About Oracle Access Manager Integrations

Integrating Oracle Access Manager 10g (10.1.4.0.1) with other applications and portals requires some knowledge of both products. This guide provides the details you need to successfully set up Oracle Access Manager for specific applications and portals you may integrate with Oracle Access Manager.

Integrations With Other Oracle Products

The following integrations with other Oracle products are described in this guide:

- **Oracle HTTP Server (OHS):** OHS is a platform in the Oracle security framework that includes the integration of Oracle Access Manager and OracleAS Single Sign-On. See "Integrating the Apache v1.3 and Oracle HTTP Server" on page 2-1 for details.

- **Oracle Virtual Directory (OVD):** This product combines user data from multiple data sources to create an aggregated virtual directory. The virtual directory looks and behaves like any other LDAP directory, and the user does not know that the data has come from heterogeneous sources. See "Integrating the Oracle Virtual Directory" on page 3-1 for details.

- **OracleAS Single Sign-On:** Oracle Application Server Single Sign-On (also referred to as OracleAS Single Sign-On) enables you to use a single user name, password, and optionally a realm ID to log in to all features of the Oracle Application Server as well as to other Web applications. You can enable single sign-on between resources protected by Oracle Access Manager and OracleAS Single Sign-On. See "Integrating with Oracle Application Servers" on page 4-1 for details.

- **Oracle Identity Federation:** Users need to access content on different corporate Web sites. Corporate Web sites need to authenticate and authorize users from different domains that use different security products. The Oracle Identity Federation product addresses these problems. This document describes
integrating with Oracle Identity Federation to enable federated authorization. See "Federated Single Sign-On Using Oracle Identity Federation" on page 5-1 for details.

- **Siebel 7 e-Business Platform**: Siebel 7 is a Web-based suite that combines customer relationship management, partner relationship management and employee relationship management applications. See "Integrating Siebel 7" on page 6-1 for details.

- **PeopleSoft**: PeopleSoft is a Web-based eBusiness application suite that provides human resources, supply chain, CRM, analytics, portal, and other applications. See "Integrating PeopleSoft" on page 7-1 for details.

- **eBusiness Suite**: Oracle E-Business Suite is a comprehensive suite of business applications for the enterprise. See "Integrating Oracle eBusiness Suite" on page 8-1 for details.

Integrations with Third-Party Products

The following integrations with third-party products are discussed in this guide:

- **BEA WebLogic Security Service Provider Interface (SSPI)**: The Oracle Access Manager Security Provider for WebLogic ensures that only appropriate users and groups can access Oracle Access Manager-protected WebLogic resources to perform specific operations. The Security Provider also enables you to configure single sign-on between Oracle Access Manager and WebLogic resources. See "Integrating the Security Provider for WebLogic SSPI" on page 9-1 for details.

- **IBM WebSphere**: The Oracle Access Manager Connector for WebSphere provides identity management, access control, and single sign-on across J2EE resources and applications developed on the IBM WebSphere platform. See "Integrating with IBM WebSphere" on page 10-1 for details.

- **Plumtree Corporate Portal (now BEA Aqualogic Interaction)**: Oracle Access Manager provides identity management, access control, and single sign-on for the Plumtree Corporate Portal. This product is now named BEA Aqualogic Interaction, however, the certified integration is for Plumtree 5.0.4. See Integrating Plumtree Corporate Portal on page 9-1 for details.

- **mySAP**: Integrating Oracle Access Manager with mySAP enables the use of Oracle Access Manager functionality across all mySAP Web-based applications and other Oracle Access Manager-protected enterprise resources and applications. See "Integrating mySAP Applications" on page 12-1 for details.

- **RSA SecurID Authentication**: Oracle Access Manager supports RSA Security features and provides the SecurID authentication plug-in and components needed to integrate a native SecurID authentication scheme into Oracle Access Manager policy domains for Web single sign-on. See "Integrating the RSA SecurID Authentication Plug-In" on page 13-1 for details.

- **Microsoft Products**: Oracle Access Manager supports integration with the following Microsoft features and services:
- **Microsoft SharePoint Portal Server (SPS) 2003**: Oracle Access Manager provides authentication for SPS resources and services, URL level authorization, and single sign-on for seamless navigation between the portal and other protected resources. The SharePoint Portal Server will enforce application-specific authorization policies for capabilities within the SharePoint application and offers the option of controlling access to specific documents. See "Integrating SharePoint Portal Server" on page 15-1 for details.

- **Microsoft ASP.NET**: Oracle Access Manager supports the ASP.NET component of the Microsoft .NET Framework, which developers can use to build, deploy, and run Web applications and distributed applications. ASP.NET is a set of technologies in the Microsoft .NET Framework that enables the building of Web applications and XML Web services. The Security Connector for ASP.NET supports and enhances native .NET role-based security. See "Integrating With ASP.NET" on page 16-1 for details.

- **Authorization Manager**: Oracle Access Manager includes a custom authorization plug-in, the Oracle Access Manager AzMan Plug-in to use Authorization Manager services to make authorization decisions for Access Server clients, including WebGates and callers of the Access Manager API. See "Integrating Authorization Manager Services" on page 17-1 for details.
Part I
Integration with Oracle Fusion Applications and Middleware

This part provides all the information you need to successfully integrate Oracle Access Manager with Oracle Fusion applications and middleware.

Part I contains the following chapters:

- Chapter 4, "Integrating with Oracle Application Servers"
- Chapter 2, "Integrating the Apache v1.3 and Oracle HTTP Server"
- Chapter 5, "Federated Single Sign-On Using Oracle Identity Federation"
- Chapter 6, "Integrating Siebel 7"
Integrating the Apache v1.3 and Oracle HTTP Server

Oracle HTTP Server (OHS) is a Web server extension that identifies Oracle Access Manager Web components that communicate with the OHS. Oracle Access Manager’s WebPass, Policy Manager, and WebGate components can be installed on a standalone Oracle HTTP Server on Linux and Windows.

OHS is also an enabling technology for the integration of Oracle Access Manager’s single sign-on with OracleAS Single Sign-On.

About the Integration of OHS and Oracle Access Manager

Details of this integration are provided in other documents. For more information about using OHS as the host for the Web components of Oracle Access Manager, see the Oracle Access Manager Installation Guide.

For information about using OHS in the integration of Oracle Access Manager and OracleAS Single Sign-On, see "Integrating with Oracle Application Servers" on page 4-1.
Integrating the Oracle Virtual Directory

The Oracle Virtual Directory combines user data from multiple data sources to create an aggregated virtual directory.

From the point of view of Oracle Access Manager applications, the virtual directory looks and behaves just like any other LDAP directory, and the Oracle Access Manager user usually does not receive any obvious indications that the data retrieved by Oracle Access Manager has come from heterogeneous sources.

About the Integration of Oracle Virtual Directory and Oracle Access Manager

From the perspective of the target data store owners, the impact of Oracle Virtual Directory is minimal. The data store owners do not relinquish ownership of their data, Oracle Virtual Directory does not reformat the native data structures, and no permanent copies of the original data are maintained by Oracle Virtual Directory.

From the perspective of the administrator, Oracle Virtual Directory enables you to use multiple data sources for Oracle Access Manager. See the Oracle Access Manager Installation Guide for details.
This chapter describes integrating with OracleAS Single Sign-On for authentication and authorization purposes. When integrating Oracle Access Manager’s authorization functionality, either Oracle Access Manager or OracleAS Single Sign-On can act as the authentication engine.

This integration enables you to provide identity management functionality across Web-based applications that run on Oracle Application Servers, for example, Oracle E-Business Suite, Oracle Forms, Portals, and other Access System-protected resources.

This chapter covers the following topics:

- Integration Overview and Environment Preparation
- Single Sign-On with OracleAS 10g
- Authorization Support for Applications Protected by OracleAS Single Sign-On
- Testing the Integration with OracleAS
- OracleAS 10g Files
- Troubleshooting the OracleAS 10g Integration

Note: This chapter does not describe configuration of the Oracle Virtual Directory Server. See the Oracle Access Manager Installation Guide for details.

Integration Overview and Environment Preparation

This section discusses the following topics:

- Supported Authentication Schemes for the Oracle Application Servers
- OracleAS 10g Infrastructure
- Integration Architecture
- Supported Versions and Platforms
- Preparing Your Environment

Supported Authentication Schemes for the Oracle Application Servers

Oracle Access Manager provides authentication and single sign-on for OracleAS 10g. This enables you to use a single user name and password (and optionally a realm ID), to log in to all features of the Oracle Application Servers and other Web applications. The integration uses the following authentication schemes:
- Form based
- Basic
- Custom
- Integrated Windows Authentication
- Microsoft .Net Passport

OracleAS 10g Infrastructure

OracleAS 10g applications provide a similar infrastructure and a security framework for single sign-on for Oracle and other partner applications. The integration of Oracle Access Manager single sign-on with OracleAS 10g involves the following components.

OracleAS Single Sign-On Server: This enables Oracle applications to accept authentication from other applications. You can enable single sign-on between Access System-protected applications and applications protected within the OracleAS 10g single sign-on framework. You can use a single user name and password and optionally a realm ID to log in to all features of the Oracle Application server and other Web applications.

Oracle HTTP Server: This is the Web server interface for OracleAS 10g. Oracle HTTP Server is the integration point between Oracle Access Manager and OracleAS 10g. During the installation, a WebGate is installed as a module on Oracle HTTP Server. You must use the 10g (10.1.4.0.1) WebGate for Oracle HTTP Server.

Oracle Internet Directory (OID): The LDAP directory that serves as a user repository for OracleAS 10g applications. The OID can be synchronized with other connected directories.

Integration Architecture

Figure 4–1 illustrates the integration between Oracle Access Manager and Oracle Application Servers.
Process overview: Integration of Oracle Access Manager with Oracle Application Server

1. When a user attempts to access an Oracle Access Manager-protected application or Web resource, a WebGate intercepts the request.
2. WebGate requests the security policy from the Access Server to determine if the resource is protected.
3. When the resource is protected, WebGate prompts the user to authenticate.
4. The credentials entered by the user are validated against the directory for authentication.
5. When authentication is successful, an encrypted Oracle Access Manager single sign-on cookie is set on the user’s browser.
6. After successful authentication, the Access System determines if the user is authorized by applying policies that have been configured for the resource.
7. Upon successful authorization, the Access System executes the actions that have been defined in the security policy and sets an HTTP header variable that maps to the OracleAS 10g user ID.
8. The OracleAS Single Sign-On Server recognizes the Oracle Access Manager HeaderVar, authenticates the user, and sets the Oracle single sign-on Cookie.

Note: The OID must be synchronized with the Oracle Access Manager directory to ensure that user data is up-to-date. OID performs the synchronization.
Supported Versions and Platforms

To see the supported versions and platforms for this integration refer to Metalink, as follows.

To view information on Metalink
1. Go to the following URL:
 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Preparing Your Environment

The following task overview lists the requirements for preparing for configuring single sign-on.

Task overview: Preparing your Environment
1. Install OracleAS 10g.
2. Install the Oracle Infrastructure.
 OracleAS Infrastructure 10g includes:
 ■ Oracle Application Server Metadata Repository
 ■ OracleAS Single Sign-On Server
 ■ Oracle Internet Directory (a lightweight directory access protocol (LDAP))

 Note: The servers where the Oracle infrastructure and Oracle Access Manager are installed must have fully qualified domain names, for example, hostname.domain.net.

3. Install and set up Oracle Access Manager components.
 See the Oracle Access Manager Installation Guide for details. Install the following:
 ■ Identity Server
 ■ WebPass
 ■ Access Server (includes Policy Manager)

4. On the Oracle HTTP Server, install a WebGate for use with OracleAS 10g.
 See the Oracle Access Manager Installation Guide for details.
 Update the Web server configuration file:
 ■ **Automatic Web Server Updates:** Click Yes to automatically update your Web server configuration file (Oracle HTTP Server httpd.conf) during WebGate installation, as described in the Oracle Access Manager Installation Guide.
 ■ **Manual Web Server Updates:** Use one of the following methods:
Either: Locate the Oracle HTTP Server httpd.conf file after WebGate installation, add the WebGate entry at the end of the file, then run the following commands on an infrastructure terminal:

```
Opmnctl restartproc process-type=HTTP_Server
```

Or: Use the Oracle Enterprise Manager Console to:

- Launch the Oracle Enterprise Manager.
- Select the Oracle Application Server hosting the Oracle Infrastructure.
- Select the HTTP Server hosting the WebGate.
- Navigate to Advanced Server Properties.
- From the list of configured files, select httpd.conf for update.
- Include the WebGate entry at the end of the file.

5. Restart the Oracle HTTP Server after the Web Server configuration file update.

7. Configure the Web browser to allow cookies.

8. Proceed to "Single Sign-On with OracleAS 10g" on page 4-5.

Single Sign-On with OracleAS 10g

When integrating Oracle Access Manager with OracleAS 10g Application Server, each OracleAS application’s configuration is provided separately. This integration requires configuring OracleAS 10g for external authentication and configuring Oracle Access Manager logout.

You complete the following procedures to set up OracleAS 10g for the integration:

- Enabling Single-Sign On
- Integrating the Delegated Administration Service
- Integrating the Portal
- Enabling Single-Sign On for Forms
- Integrating Reports Services
- Synchronizing the OID and Oracle Access Manager LDAP Directory
- Implementing Global Logout from OracleAS Single Sign-On and Access Server

Task overview: Integrating Oracle Access Manager with OracleAS 10g

1. Set up your machines, as described in "Preparing Your Environment" on page 4-4.

2. Set up the OracleAS.

3. Set up Oracle Access Manager, as described in "Configuring Oracle Access Manager for Integration with OracleAS 10g" on page 4-10.

4. Test the integration, as described in "Testing the Integration with OracleAS" on page 4-14.
Enabling Single-Sign On

Enabling single-sign on for the integration between Oracle Access Manager and OracleAS 10g includes creating a java class and editing the policy.properties file, as discussed in the following paragraphs.

Creating the Java Class for Integration

The first step in enabling single sign-on for the integration involves coding a Java class, which will look for the Header variable from Oracle Access Manager.

Note: This example assumes you have installed and set up the Identity System and Access System, created a policy domain in the Access System, defined an authorization action that sets a Header Variable with the ID of the user, and configured global logout. See “Protecting the Single-Sign On Login URL” on page 4-11 and “Implementing Global Logout from OracleAS Single Sign-On and Access Server” on page 4-9 for details.

To code a JAVA class to look for a Oracle Access Manager HeaderVar

1. In the Access System, create rules to protect the following URIs:

 /sso/auth/
 /pls/orasso/orasso.wwsso_app_admin.ls_login

 See “Protecting the Single-Sign On Login URL” on page 4-11 for details.

2. Create a Java file for your package.

 For help, copy the source code from the Sample Files section #SSOOblixAuth.java in the following location:

 ORACLE_HOME/sso/lib

 Save the file as SSOOblixAuth.java. Before it is compiled, this package directive must be added to it:

 package oblix.security.ssoplugin;

3. Compile the file, including ORACLE_HOME/sso/lib/ipastoolkit.jar in the class path. The sample file SSOOblixAuth.java is compiled this way:

 ORACLE_HOME/jdk/bin/javac -classpath ORACLE_HOME/sso/lib/ipastoolkit.jar:ORACLE_HOME/lib/servlet.jar -d ORACLE_HOME/sso/plugin SSOOblixAuth.java

 Note that the colon separator (":") is appropriate for Linux. On Windows, use a semicolon (";") as the separator.

 This command creates SSOOblixAuth.class and places it in the directory ORACLE_HOME/sso/plugin/oblix/security/ssoplugin.

4. Next you need to register the Java class for integration by editing the policy.properties file in the following location:

 OracleAS_install_dir/sso/conf

 Where OracleAS_install_dir is the directory where OracleAS Single Sign-On infrastructure is installed.
5. In the OracleAS Single Sign-On policy.properties file, replace the simple authentication plug-in with the plug-in that you created in the previous steps. In this class, navigate to the line MediumSecurity_AuthPlugin:

```
MediumSecurity_AuthPlugin = oracle.security.sso.server.auth.SSOServerAuth
```

Comment out the existing line and add a new line to register your Java class, as follows:

```
MediumSecurity_AuthPlugin = oblix.security.ssoplugin.SSOOblixAuth
```

When editing policy.properties, take care not to insert blank space at the end of a line.

6. Save the file.

7. Restart the single sign-on middle tier, and restart the OC4J instance OC4J_SECURITY to have your changes to take effect:

```
ORACLE_HOME/opmn/bin/opmnctl restartproc
process-type=HTTP_Server
```

```
ORACLE_HOME/opmn/bin/opmnctl restartproc
process-type=OC4J_SECURITY
```

8. Test the integrated system

Integrating the Delegated Administration Service

The Delegated Administration Service (DAS) is part of the Oracle Identity Management, an integrated infrastructure that includes the following components:

- Oracle Internet Directory—An LDAP V3-compliant directory service
- Delegated Administration Service (DAS)—The Oracle Internet Directory component that provides trusted proxy-based administration of directory information by users and application administrators.
- Oracle Directory Integration Service—A component of the Oracle Internet Directory that permits synchronization between the Oracle Internet Directory and other directories and user repositories.
- Provisioning Integration Service—The Oracle Internet Directory component that provides automatic provisioning of services, as described in Oracle documentation.

The DAS is installed by default when you install the OracleAS 10g Infrastructure, and should integrate automatically. No additional steps are needed for a user to access DAS when Oracle Access Manager is integrated with single sign-on.

The DAS link is:

```
http://infra-machine-name:port/oiddas
```

Note: If you experience errors using Create/Edit user and Create/Edit groups portlets, move the DAS to the middle tier from the Infrastructure. For details, see "Integrating the Portal" on page 4-8.
Integrating the Portal

The Oracle Application Server Portal enables you to build, deploy, and maintain self-service, integrated Enterprise Information Portals (EIPs). A customized portal page can present information from different providers and can include both enterprise search and directory lookup fields.

A portal page consists of multiple portlets. Each portlet is a region of the portal page that provides dynamic access to a Web-based resource.

When Oracle Access Manager single sign-on is integrated with OracleAS 10g, users should be able to access the portal as follows:

http://midtier_home:port/pls/portal

Note: The Create/Edit user and Create/Edit groups portlets call the DAS from the portal. If you experience errors using Create/Edit user and Create/Edit groups portlets, you need to move the DAS to the middle tier from the Infrastructure.

Enabling Single-Sign On for Forms

The Oracle Application Server Forms Services is a middle-tier application framework that you use to deploy complex transactional forms applications to the internet.

When you integrate Oracle Access Manager with OracleAS 10g, you need to enable single sign-on for forms. Once single sign-on is enabled for forms, Oracle Access Manager handles authentication and you should not be challenged to enter the schema user ID and password either by the single sign-on login page or by the forms.

To enable single sign-on for forms

1. Locate the forms90.conf file located in the following directory:

 midtier_home/forms90/server

2. At the end of the forms90.conf file add the following lines.

   ```
   <IfModule mod_osso.c>
   <Location /forms90/f90servlet>
     require valid-user
     AuthType Basic
   </Location>
   </IfModule>
   ```

3. Restart OC4J_BL_FORMS and the forms server to have your changes take affect.

 Next you create a Resource Access Descriptor (RAD) for the OID users. A RAD can be created at a global level so all users can use the same RAD to access the resource. Alternatively, the RAD can be created for each user.

4. Create a Resource Access Descriptor (RAD) for the OID users to map the LDAP user to the Database schema.

 The next step can be done at the global level in the formsweb.cfg file (the default configuration), or at the application level to make individual applications single sign-on enabled.

5. Set the ssoMode to true to make the application single sign-on enabled using the Enterprise Manager to update the formsweb.cfg file.

 For example, to make an individual application single sign-on enabled:
Integrating Reports Services

The Oracle Application Server Reports Services allow you to deploy reports to the OracleAS 10g, as described in your Oracle documentation.

Reports are single sign-on-enabled out of the box and should work without further steps when you integrate Oracle Access Manager with OracleAS 10g.

To access the protected reports page

1. Point your browser to the following URL:

 http://machine:port/reports/rwservlet/showenv

2. Log in when challenged by WebGate.

3. Confirm that once authenticated you can view the Environment settings for Oracle Reports (an single sign-on-protected page).

For more information, see chapter 10 of the *Oracle Application Server Reports Services Publishing Reports to the Web 10g (9.0.4)*, Part No B13673-01.

Synchronizing the OID and Oracle Access Manager LDAP Directory

The next step in the configuration of OracleAS 10g for integration with Oracle Access Manager is to use the Oracle synchronization tool to synchronize user information between the Oracle OID and the LDAP directory server used by Oracle Access Manager.

For details about this synchronization tool and process, see your Oracle OID documentation.

Note: To test the integration without synchronizing the directories, you need to create an Oracle administrator (oracladmin) within Oracle Access Manager for login purposes.

Implementing Global Logout from OracleAS Single Sign-On and Access Server

By default, the WebGate logs a user out when it receives a URL containing "logout." See the section on logout from a single domain single sign-on session in the *Oracle Access Manager Access Administration Guide* for details. As a result, the default single sign-on logout page does not work with OracleAS Single Sign-On. The discussion "Logout.jsp" on page 4-16 provides a sample file you that need to configure logout.

To implement global logout from OracleAS Single Sign-On

1. Edit the following parameters in

 ORACLE_HOME/sso/conf/policy.properties. Substitute the paths to your logout page for the value shown in the following example:
#Deployment login page link
loginPageUrl = /sso/pages/login.jsp
logoutPageUrl = /sso/pages/logout.jsp

2. Restart the single sign-on server:

 $ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=HTTP_Server
 $ORACLE_HOME/opmn/bin/opmnctl restartproc process-type=OC4J_SECURITY

3. In the Access System, go to the page where you configure the single sign-on logout URL.

 From the Access System Console, click System Configuration, then click Server Settings, then click Configure SSO Logout URL.

4. On this page, configure the single sign-on logout URL to invoke the OracleAS Single Sign-On logout URL.

 Add a logout URL similar to the following:

 http://host:port/sso/logout

 Where host is the computer where the OracleAS Single Sign-On server is installed and port is the listen port for the server. When the user clicks the Logout link in Oracle Access Manager, the logout URL removes session cookies and redirects users to a logout page. See the appendix on configuring logout in the Oracle Access Manager Access Administration Guide for details.

5. Go to the page where you configure the WebGate logout URL from the Access System Console by clicking Access System Configuration, then click AccessGate Configuration, then select a WebGate.

6. On the page that shows the WebGate details, click Modify, then provide a new logout URL similar to the following:

 /access/oblix/lang/en-us/style2/oblixlogo.gif

 The URL can be any gif file or Web page. This page is embedded in logout.jsp. See "Logout.jsp" on page 4-16 for details.

7. Repeat the previous two steps for every WebGate-protected cookie domain.

8. Add a page that you want to display after the user is logged out.

9. Confirm that you can perform a global logout both from Oracle AS Single Sign-On Server and from the Access Server.

Configuring Oracle Access Manager for Integration with OracleAS 10g

After installing Oracle Access Manager and installing a WebGate on the OracleAS HTTP Server, you need to create Oracle Access Manager access control policies to protect OracleAS resources.

Task overview: Setting up Oracle Access Manager for integration with OracleAS 10g includes

1. Install and set up the Identity System and Access System, as outlined in "Preparing Your Environment" on page 4-4.

2. Navigate to the Identity System Console and create an Oracle Administrator (orcladmin) user to match the orcladmin user who already exists in the Oracle OID, as described in the Oracle Access Manager Identity and Common Administration Guide.

Protecting the Single-Sign On Login URL

You need to protect the following single sign-on login URL so that the WebGate challenges the user whenever the OracleAS Single Sign-On 10g is accessed:

/sso/auth/

The following activities are required to protect the single sign-on login URLs, or any other resources, using the Access System.

Each step in the following task list is a full procedure. For complete details, see the related chapters in this guide.

Task overview: Protecting resources with Oracle Access Manager

1. Define an authentication scheme using the Access System Console.
 For example:
 Access System Console, Access System Configuration, Authentication Management, Add

2. Create a policy domain using the Policy Manager.
 For example:
 Policy Manager, Create Policy Domain

3. Add a resource to your policy domain using the Policy Manager.
 For example:
 Policy Manager, Create Policy Domain, Resources

4. Define rules for your policy domain using the Policy Manager.
 For example:
 Policy Manager, Create Policy Domain, Default Rules

5. Define an Authorization action that sets a Header Variable with the ID of the user.
 For example:
 Policy Manager, Create Policy Domain, Default Rules, Authorization Expressions, Actions

 Authorization Success
 Return
 Type: HeaderVar
 Name: xxx_REMOTE_USER
 Return Attribute: loginAttribute

 where xxx is any prefix (used because "REMOTE_USER" is often an internal header for HTTP servers) and where loginAttribute is the attribute configured as the Login semantic type in the Identity System. This name must map to the login name of the user stored in the OracleAS single sign-on repository. Some people have used the "EMPLID" attribute, which will pass the Employee ID of logged in user.
Upon successful authorization, the value of `loginAttribute` is passed on to the OracleAS 10g server.

Note: To use a HeaderVar that is different from `XXX_REMOTE_USER`, you need to replace `XXX_REMOTE_USER` with the desired variable in two locations: Access System Console, Authorization Rule, Actions, and in the OracleAS Java class. See "Creating the Java Class for Integration" on page 4-6 for details.

6. In the Authorization rule, allow access to Anyone.

 For example:

 Policy Manager, Create Policy Domain, Authorization Rules, Name, Allow Access, Anyone

7. Enable the Authorization rule.

 For example:

 Policy Manager, Create Policy Domain, Authorization Rules, Name,

8. Enable the Policy Domain.

 For example:

 Policy Manager, My Policy Domains, Name, Modify, Enabled

 The single sign-on configuration is now complete.

9. Test your policy domain, as described in the section on using Access Tester in the Oracle Access Manager Access Administration Guide.

Authorization Support for Applications Protected by OracleAS Single Sign-On

By default, the WebGate component of Oracle Access Manager intercepts all URLs, and the Access System authenticates the users who invoked the URLs. However, if you want to use OracleAS Single Sign-On to provide the authentication functionality for application login, you can configure the OHS Web server to pass authentication requests to mod_osso. This enables OracleAS Single Sign-On to continue to authenticate the user. Additionally, you can configure OracleAS Single Sign-On to pass the user’s information to Oracle Access Manager for authorization.

This section describes how to implement Access System-based authorization for OracleAS Single Sign-On-protected HTTP resources.

The rest of this section discusses the following topics:

- **About Authorization of OracleAS Single Sign-On-Protected Applications**
- **Configuring Authorization Support for OracleAS Single Sign-On-Protected Resources**

About Authorization of OracleAS Single Sign-On-Protected Applications

In this type of integration, it is assumed that you have configured user authentication for various applications using OracleAS Single Sign-On. See the Oracle Application Server Single Sign-On Administrator’s Guide for details.
After OracleAS Single Sign-On authenticates a user, Oracle Access Manager applies an external authentication scheme that looks for a REMOTE_USER header variable and maps it to an Oracle Access Manager user. If Oracle Access Manager can authenticate the user, the Access System performs user authorization. During authorization, the WebGate checks for the REMOTE_USER header variable. If it is set, the WebGate performs authorization according to polices that are defined in the Access System.

Configuring Authorization Support for OracleAS Single Sign-On-Protected Resources

This section assumes that you have installed OracleAS Single Sign-On, configured the middle tier applications to use OracleAS Single Sign-On authentication, and installed the WebGate on the middle-tier OHS. See the information on configuring the middle tier in the *Oracle Application Server Single Sign-On Administrator’s Guide* and the section on "Preparing Your Environment" on page 4-4 in this chapter for details.

The following procedure describes configuring OracleAS Single Sign-On authentication with Oracle Access Manager authorization.

To configure authentication using OracleAS Single Sign-On and authorization using Oracle Access Manager

1. On the computer that hosts the OHS Web server, comment following lines in the WebGate section in the file `ORACLE_HOME/Apache/Apache/conf/httpd.conf`:

   ```
   <LocationMatch "/**">
   AuthType Oblix
   require valid-user
   </LocationMatch>
   ```

2. On Linux, locate the WebGate-specific section in the `httpd.conf` file. This section is enclosed by the following lines:

   ```
   #*** BEGIN WebGate Specific ****
   #*** END WebGate Specific ****
   ```

 Move this section before the line that contains the include statement for `mod_osso.conf`.

3. Restart the Web server for this WebGate.

 See the *Oracle Identity Management Application Developer’s Guide* for details. This is required to use OracleAS Single Sign-On authentication features, for example, Windows Native Authentication.

To define an external authentication scheme in Oracle Access Manager

1. From the Oracle Access Manager landing page, click Access System Console, click Authentication Management, and click Add.

2. Define an authentication scheme similar to the following on the General tab for the authentication scheme:

 Name: External auth scheme

 Challenge Method: Ext

 Challenge Parameter: creds:REMOTE_USER
3. On the Plug-ins tab for the authentication scheme, add a credential mapping plug-in that uses the REMOTE_USER header variable, for example:

```plaintext
obMappingBase="dc=us,dc=mycompany,dc=com",obMappingFilter="(&(&(oidclass=inetorgperson)(uid=%REMOTE_USER%))(|(!(obuseraccountcontrol=*))(obuseraccountcontrol=ACTIVATED)))"
```

When implementing this plug-in, substitute values for `obMappingBase` and the person object class that are appropriate for your environment.

To define the policies to protect the middle-tier application URLs

1. From the landing page for Oracle Access Manager, click Policy Manager.
2. Click Create Policy Domain.
3. Define policies to protect any middle-tier application URL.

 Configure the policies using the external authentication scheme that you configured in the previous procedure. See the *Oracle Access Manager Access Administration Guide* for details.

4. If a WebPass and Policy Manager are installed on the same Web server as the WebGate, configure OracleAS Single Sign-On to authenticate users who try to access the Identity and Access Systems.

 Add two static URL patterns to the OracleAS Single Sign-On http.conf file:

   ```plaintext
   <LocationMatch "/identity/oblix">
   AuthType Basic
   require valid-user
   </LocationMatch>

   <LocationMatch "/access/oblix">
   AuthType Basic
   require valid-user
   </LocationMatch>
   ```

 These rules enable OracleAS Single Sign-On to perform authentication for the Identity System and Policy Manager.

5. Also, if a WebPass and Policy Manager are installed on the same Web server as the WebGate, ensure that the external authentication scheme that you configured in the previous procedure is protecting the Identity and Access domains.

 See the *Oracle Access Manager Access Administration Guide* for details.

To configure logout for the integration

Testing the Integration with OracleAS

After you set up OracleAS and Oracle Access Manager for integration, test to ensure that the integration is successful.

To test Oracle Access Manager single sign-on for OracleAS

1. Enter the following URL in the browser:

   ```plaintext
   http://machinename:port/sso/
   ```
where `machinename` is the machine where the OracleAS Server is installed and `port` is the port number of the machine.

You should be presented with a login page. After you have successfully authenticated, the OracleAS Web resource page appears.

2. You can try to access various applications as the same user.

 If Oracle Access Manager single sign-on is successful, you will be allowed access to the page without being challenged for authentication.

3. You can also try to test different authorization rules in the Access System.

 For example, if there are time conditions set for login, you may try logging in at different times.

4. When you are ready to log out, click the Logout link.

 If Oracle Access Manager single sign-on is successful, you will be logged out of all Oracle Access Manager-protected resources.

OracleAS 10g Files

The following two sample files can be customized to meet your requirements:

- **SSOOblixAuth.java**
- **Logout.jsp**

SSOOblixAuth.java

```java
package oblix.security.sshoplus;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import oracle.security.sso.ias904.toolkit.IPASAuthInterface;
import oracle.security.sso.ias904.toolkit.IPASAuthException;
import oracle.security.sso.ias904.toolkit.IPASUserInfo;
import oracle.security.sso.ias904.toolkit.IPASInsufficientCredException;
import java.net.URL;
import java.util.*;

public class SSOOblixAuth implements IPASAuthInterface {
    private static String OBLIX_USER_HEADER = "XXX_REMOTE_USER";
    private static String CLASS_NAME = "SSOOblixAuth";

    public SSOOblixAuth() {
        System.out.println("Inside SSOOblixAuth constructor.....");
    }

    public IPASUserInfo authenticate(HttpServletRequest request) throws IPASAuthException, IPASInsufficientCredException {
        String OblixUserName = null;

        try {
            System.out.println("............Getting Header Variable............");
            OblixUserName = request.getHeader(OBLIX_USER_HEADER);

        } catch (IPASAuthException e) {
            // Handle exception
        } catch (IPASInsufficientCredException e) {
            // Handle exception
        }

        return new IPASUserInfo(new IPASUserInfo.ClassInfo(CLASS_NAME, new IPASUserInfo.CredentialInfo(OblixUserName, null, null, null, null)), new IPASUserInfo.PropertyInfo[] { null, null, null, null, null });
    }
}
```

Integrating with Oracle Application Servers 4-15
System.out.println("The Header name............"+OblixUserName);
}
catch (Exception e)
{
 throw new IPASInsufficientCredException("No Oblix Header");
}

if (OblixUserName == null)
 throw new IPASInsufficientCredException("No Oblix Header");

IPASUserInfo authUser = new IPASUserInfo(OblixUserName);
System.out.println("The IPASUserInfo Class............"+authUser);
return authUser;

}

public URL getUserCredentialPage(HttpServletRequest request,String msg) {

 System.out.println("Inside Get User Crediential PageShould not come here>......");

 URL errorURL=null;
 try
 {
 errorURL=new URL(new String(request.getRequestURL()));
 }
 catch(Exception ee){};
 return errorURL;
}

Logout.jsp

You can use the following sample file as discussed in "Implementing Global Logout from OracleAS Single Sign-On and Access Server" on page 4-9.

<!-- Copyright (c) 1999, 2003, Oracle. All rights reserved. -->
<%@page autoFlush="true" session="false"%>
<%=
 // Declare English Message Strings
 String msg1 = "Single Sign-Off";
 String msg2 = "Application Name";
 String msg3 = "Logout Status";
 String msg4 = "ERROR: The return URL value not found.";
 String msg5 = "ERROR: Logout URL for partner applications not found.";

 // Get the user language preference
 String userLocaleParam = null;
 java.util.Locale myLocale = null;
 // Get the user locale preference sent by the SSO server
 try
 {
 userLocaleParam = request.getParameterValues("locale")[0];
 }
 catch(Exception e)
 {
 userLocaleParam = null;
 }

if ((userLocaleParam == null) || userLocaleParam.equals(""))
{
 myLocale = request.getLocale();
}
else
{
 if(userLocaleParam.indexOf("-") > 0)
 {
 // SSO server sent the language and territory value (e.g. en-us)
 myLocale = new java.util.Locale(userLocaleParam.substring(0, 2),
 userLocaleParam.substring(3, 5));
 }
 else
 {
 // SSO server sent only the language value (e.g. en)
 myLocale = new java.util.Locale(userLocaleParam, "");
 }
}

// The following two lines will be used only for the Multilingual support with
// proper resource bundle class supplied
// java.util.ResourceBundle myMsgBundle
// = java.util.ResourceBundle.getBundle("MyMsgBundleClassName", myLocale); // Get the message string in the appropriate language using the message key.
// Use this string to display the message in this page.
// String mesg = myMsgBundle.getString("mesg_key");

<html>
<body bgcolor="#FFFFFF">
<h1><%=msg1%></h1>
<%}
String done_url = null;
int i = 0;
// Get the return URL value
try
{
 done_url = request.getParameterValues("p_done_url")[0];
}
catch(Exception e)
{
 done_url = "";
}
// Get the application name and logout URL for each partner application
try
{
 %>
 <%=msg2%> <%=msg3%>

// Substitute an actual host, domain, and port for myhost.us.mydomain.com:7777
// that points to the WebGate.
<%>
for(;;)
{
 i++;
 String app_name = request.getParameterValues("p_app_name"+i)[0];
 String url_name = request.getParameterValues("p_app_logout_url"+i)[0];
 %>
<%=app_name%>
Troubleshooting the OracleAS 10g Integration

The following are troubleshooting tips for the Oracle 10g integration.

Problem: With a form-based authentication scheme, while accessing OIDDAS/Form application/ externally deployed J2EE applications, the OracleAS single sign-on login page is displayed after the Oracle Access Manager Form login page.

Solution: This happens if mod_osso uses a POST based redirection method instead of GET to call the single sign-on server. The redirection method used is based on value of OssoRedirectByForm directive. To use GET method, this directive needs to be set to false. In Oracle 10g Application Server, this value is set to false by default.

To verify that this directive is set to false

1. Verify the value of OssoRedirectByForm directive.
2. Launch the Oracle Enterprise Manager.
3. Select the Oracle Application Server instance where the Oracle Infrastructure is installed.
4. Select the HTTP Server where WebGate is installed and navigate to Advanced Server Properties.
5. From the list of configured files, select the mod_osso.conf file.
6. Check if OssoRedirectByForm is set to false.

 By default the values is false.
7. If the default directive value is not used, set it to false as shown in the following example:

```
<IfModule mod_osso.c>
 OssoIpCheck off
 OssoIdleTimeout off
 OssoConfigFile
 /private1/iasinst/install_set1/904infra/Apache/Apache/conf/osso/osso.conf
 OssoRedirectByForm off
</IfModule>
```

8. Click Apply.

9. Restart the OracleAS HTTP Server.

Problem: How do I find ORASSO and Portal schema passwords?

Solution: Complete the following procedure.

To find these database schema passwords

1. Login to Oracle Directory Manager as the super user orcladmin.
2. Expand the tree on the left hand side, as follows:
 - Cn= OracleContext
 - Cn=Products
 - Cn=IAS
 - Cn=IAS Infrastructure Databases
 - OrcIReferenceName=<global database name>
 - OrclResourceName=ORASSO
3. Click the ORASSO entry and look for the value for attribute orclpasswordattribute (the Password for ORASSO schema).

Note: Similarly you can click the OrcIResourceName=PORTAL for the portal schema password.

Problem: How do I check the single sign-on logs?

Solution: You can view the single sign-on logs from Enterprise Manager (EM).

1. Log in to EM.
2. Click the Logs link at the bottom of the page.
 - A search screen appears.
3. From the Available Components list select Single Sign-on:orasso and move it to the Selected Components.
4. Perform the search to view the single sign-on logs.

Problem: How do I create a default RAD?

Solution: Complete the following steps to create a default RAD:

To create a default RAD

1. Access OIDDAS Console, Configuration, Preference, as usual.
2. Scroll to the bottom of the page to display Resource Access Information.
3. Click Create to create a new resource file.
4. Enter a Resource Name:
 For example, for a default configuration you can use:

 default

 Note: Resource name created over here should be the same as the configuration present in formsweb.cfg file.

5. Click Next, fill in the user ID and password and the connect string for the database, and click Submit.

 The user ID is a valid DB user. Database refers to the DB used. For example, if a schema named "Scott" is used and a Database "asdb", the test entries are:

 Username: scott
 Password: tiger
 Database: asdb

 Problem: How do I create a user-specific RAD?

 Solution: Complete the following steps to create a user-specific RAD:

 To create a user-specific RAD
 1. Access the OIDDAS console, as usual.
 2. Select the Directory tab found at the top right hand corner of the page.
 3. Click Create to create a new user.
 4. Select a user name, for example, ssotest with a password of ssotest1.

 You can choose to add all other details.
 5. Scroll to the bottom of the page to Resource Access Information.
 6. Click Create to create a new resource file.
 7. Enter a Resource Name, for example, ssotest_db.
 8. Click Next, fill in the user ID, password, and connect string for the database, then click Submit.

 The user ID here is a valid DB user. For testing purposes, the default Scott schema can be used. Database is the DB used, with a default value of asdb. For example, the test entries could be:

 Username: scott
 Password: tiger
 Database: asdb
Users need to access content on different corporate Web sites. Corporate Web sites need to authenticate and authorize users who are entering from different domains that use different security products. The Oracle Identity Federation product addresses these problems.

When a user tries to access a protected resource on a remote Web site, the Oracle Identity Federation product at the user’s site transfers information about the user to the remote site for use in authorizing the user’s request. For example:

- Users from an airline can access technical documentation in an airplane vendor’s documentation database.
- Customers of a wireless company can access a bill-paying application that is outsourced from the vendor to a third-party supplier.
- Employees of an organization can access a 401(k) application through an internal HR portal that connects to the benefits provider.

Users might click a link on their own company’s Web site to request access to content on a partner (Service Provider) Web site. The first time users request access, they are authenticated on their home (or Identity Provider) domain using information stored in their home site’s user data repository. The user’s home domain forwards the access request to the Service Provider site along with the credentials that the Service Provider site needs to authorize the request.

Oracle Access Manager can serve as the authentication engine for federated single sign-on using Oracle Identity Federation.

In addition to federated single sign-on, you can extract user attributes from the Oracle Access Manager user directory for federated authorization. This is useful when a Service Provider needs additional information to authorize users to access resources. For example, if you are a Service Provider and your authorization policies require specific user attributes that are not available on a user’s request, you may need to send a request to the identity Provider for additional user attributes that are needed for authorization. In Oracle Access Manager, you configure authentication and authorization plug-ins to query the user’s home site (the Identity Provider) for these attributes.

This chapter discusses the following topics:

- About Federated Single Sign-On
- About Federated Authorization
- Setting up the Federated Attribute Sharing Environment
About Federated Single Sign-On

Information about single sign-on between Oracle Access Manager and Oracle Identity Federation is provided in the Oracle Identity Federation Administrator's Guide. This guide is available from the Oracle Documentation page on the Oracle Technology Network. The URL is as follows:

http://www.oracle.com/technology/documentation

About Federated Authorization

When the Access System at a Service Provider site receives a request from a user in a federated environment, it may need to get additional information about the user from the user’s Identity Provider. For example, the user may authenticate to the Service Provider using SSL with an x.509 certificate, then attempt to access a resource that is protected by the Access System using an x.509-based authentication scheme. If the user is not defined in the Service Provider’s user repository, the Access System may need additional user attributes from the Identity Provider to be able to make an authorization decision.

If you have Oracle Identity Federation installed at your site, and you receive requests from other sites that have installed Oracle Identity Federation (or another product that implements the SAML Attribute Sharing Profile for x.509 Authentication-Based Systems), you can configure the Access System to perform federated authorization.

This section describes the components involved in authorization decisions based on federated requests for additional user attributes.

The following process overview describes a scenario where federated attribute sharing is used for authorization.

Process overview: Attribute sharing used for federated authorization

1. A user authenticates to your Service Provider domain using x.509 client certificate authentication.

 Client certificate authentication is required for this process.

2. The user requests a resource in your domain.

 Your domain is the Service Provider. A WebGate protects the requested resource.

3. The WebGate intercepts the request and directs it to the Access Server.

4. An attribute-sharing authentication plug-in determines that the user is not defined in the local Oracle Access Manager System.

5. An authentication step sets up the conditions for using an attribute-sharing authorization plug-in.

6. The attribute sharing authorization plug-in extracts user identity from the user’s x.509 certificate and forwards it to the local instance of Oracle Identity Federation.

7. The local Oracle Identity Federation engine constructs a SAML attribute request and forwards it to the SAML service (for example, Oracle Identity Federation) at the user’s home domain (the Identity Provider).
8. The SAML service at the Identity Provider extracts the user attributes from the request, verifies the user identity, and returns a response to the Service Provider instance of Oracle Identity Federation.

9. The response is forwarded to the Access Server to complete the authorization process.

Components of attribute sharing-based authorization are as follows:

- **A config.xml file**—A configuration file is read during Access Server start-up.

 This configuration file specifies user DN patterns and associated URLs that point to instances of Oracle Identity Federation at the Service Provider domain. The authentication and authorization plug-ins for attribute sharing use the DN patterns to determine if a user is local or remote. For remote users, the associated URLs indicate the instance of Oracle Identity Federation that should receive requests for additional information about the user.

 This file also provides authentication information that Access System sends requests to identify itself to the Oracle Identity Federation instance.

 You also configure logging and system-related settings in this file.

- **An authentication plug-in for attribute sharing**—This plug-in determines if a user is local, that is, if the user has an identity in the local Oracle Access Manager System.

 If the plug-in determines that the user is local, the authentication scheme associated with the plug-in creates a local Oracle Access Manager session for the user. If the plug-in determines that the user is remote, the scheme creates a placeholder session for the OblixAnonymous user.

- **An authorization plug-in for attribute sharing**—The attribute sharing authorization plug-in constructs a request for attributes that are required for authorizing the user. The plug-in sends the request to an instance of Oracle Identity Federation at the local domain. The configuration file that the Access Server reads at start-up time determines the URL where the request is sent.

 The Oracle Identity Federation instance at the local domain forwards a SAML request to the SAML service at the Identity Provider.

 The SAML service at the Identity Provider responds to the request, and the response is sent along the same route back to the Access System. If the Access System obtains the requested attributes, it provides access to resources and other authorization actions based on the rules configured in the authorization scheme.

Note: This chapter only describes configuration of attribute sharing authorization in the Access System. However, reciprocal configuration must be performed on the local Oracle Identity Federation server. For more information on Oracle Identity Federation, see the *Oracle Identity Federation Administrator’s Guide*, available from the Oracle Documentation page on the Oracle Technology Network. The URL is as follows:

http://www.oracle.com/technology/documentation
Setting up the Federated Attribute Sharing Environment

Setting up the environment includes configuring basic parameters to identify the attributes to be used in authorization, URLs for the Oracle Identity Federation, setting up secure communication channels, configuring logging, and other tasks.

The following sections provide information on these topics:
- Setting Parameters in the config.xml File
- Configuring Basic Authentication
- Configuring SSL and Client Certificate Authentication
- Configure the Session Token Cache for Federated Attribute Sharing

Setting Parameters in the config.xml File

The config.xml file contains settings for associating local Oracle Identity Federation instances with user's Identity Providers based on information in the user's DN entry. It also contains settings that control what information related to attribute sharing is written to a log, and other settings to control interaction with the Access System.

The config.xml file is located in the following directory:

```
Access_Server_install_dir/access/oblix/config/attributePlugin/
```

The following is a sample config.xml file:

```xml
<Config LogLevel="audit" WaitTime="30" SizeLimit="0" MaxConnections="5"
    InitialConnections="2" Authn="cert" Username="MyAccessServer"
    Password="MyPassword" KeyPassword="MyKeyPassword" CacheTimeout="30"
    MaxCachedUsers="1000" HeaderKeyLength="128" HeaderKeyRegen="86400"
    RequestFormat='values'>
    <Mapping Local="true">
        <DN>OU=Engg,O=MyCompany,L=MyCity,ST=California,C=US</DN>
    </Mapping>
    <Mapping URL="https://host1.us.company.com:8888/osfs/ar/soap">
        <DN>OU=Test,O=MyCompany,L=MyCity,ST=California,C=US</DN>
    </Mapping>
    <Mapping URL="https://host2.us.company.com:8777/osfs/ar/soap">
        <DN>C=US</DN>
    </Mapping>
    <Mapping URL="http://SP-HOST:SP-PORT/fed/ar/soap">
        <DN>O=Partner1,C=US</DN>
    </Mapping>
    <Mapping URL="http://SP-HOST:SP-PORT/fed/ar/soap" RequestFormat="all">
        <DN>O=Partner2,C=US</DN>
    </Mapping>
</Config>
```

This file contains the following attributes:
Table 5–1 Attributes in the config.xml File

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>LogLevel</td>
<td>Controls the amount of information that is logged to <code>AS_install_dir/oblix/logs/authz_attribute_plugin_log.txt</code>. The following are possible values for this parameter:</td>
</tr>
<tr>
<td></td>
<td>- none—Nothing is logged except errors (the default).</td>
</tr>
<tr>
<td></td>
<td>- audit—One line is logged for each authorization request, showing the access decision, the user’s certificate subject DN or local directory DN, and the HTTP operation and the local part of the requested URL.</td>
</tr>
<tr>
<td></td>
<td>- debug—Extensive information used in debugging problems.</td>
</tr>
<tr>
<td>HTTP connection parameters</td>
<td>The authorization plug-in uses these parameters. These parameters contain information that is sent from the Access System to the Oracle Identity Federation instance. You can configure the following HTTP connection parameters:</td>
</tr>
<tr>
<td>WaitTime</td>
<td>Time in seconds to wait for a response. Default: 30 seconds.</td>
</tr>
<tr>
<td>SizeLimit</td>
<td>Maximum size in bytes of HTTP messages sent and received. 0 means unlimited (the default).</td>
</tr>
<tr>
<td>MaxConnections</td>
<td>The maximum number of concurrent HTTP connections. Default: 5.</td>
</tr>
<tr>
<td>InitialConnections</td>
<td>Number of concurrent HTTP connections opened initially. Default: 2.</td>
</tr>
<tr>
<td>Authentication parameters</td>
<td>Authenticates the authorization plug-in to the Oracle Identity Federation instance. You can configure the following authentication parameters:</td>
</tr>
<tr>
<td>Authn</td>
<td>The authentication method. The following are possible values for this parameter:</td>
</tr>
<tr>
<td></td>
<td>- none—No authentication is used.</td>
</tr>
<tr>
<td></td>
<td>- basic—Use HTTP basic authentication with user name and password (the default).</td>
</tr>
<tr>
<td></td>
<td>- cert—Use SSL client certificate authentication using key.pem, cert.pem, and KeyPassword.</td>
</tr>
<tr>
<td>Username</td>
<td>The username for basic authentication.</td>
</tr>
<tr>
<td>Password</td>
<td>The password for basic authentication.</td>
</tr>
<tr>
<td>KeyPassword</td>
<td>The password for key.pem for SSL client certificate authentication.</td>
</tr>
<tr>
<td>Attribute value cache parameters</td>
<td>This cache is located in the authorization plug-in memory in the Access Server. You can set values for caching parameters:</td>
</tr>
<tr>
<td>CacheTimeout</td>
<td>The time in seconds that cached attributes values are held before requiring updated values. A value of 0 disables caching. Default: 3600 seconds (1 hour).</td>
</tr>
<tr>
<td>MaxCachedUsers</td>
<td>The maximum number of users whose attribute values can be cached. If the cache is full, entries with the oldest unexpired entries are reclaimed. Default: 1,000.</td>
</tr>
</tbody>
</table>
Encryption parameters

- **HeaderKeyLength**—The length (in bits) of a key that is generated for AES encryption of the SubjectDN header. This header is passed from the authentication plug-in to the authorization plug-in. Possible values for this parameter: 128, 192, or 256. Higher values provide stronger encryption but slower performance. A value of 0 disables encryption of the header. Oracle does not recommend setting a value of 0 due to potential impersonation attacks.

- **HeaderKeyRegen**—The interval (in seconds) for regenerating the key that encrypts the SubjectDN header. The default is 86400 (one day).

Attribute query properties

The RequestFormat parameter determines what attributes and values are returned on an attribute response. This parameter overrides authorization rules. For example, if an authorization rule specifies attributes and values, the RequestFormat parameter can omit the values from a request.

You can specify the RequestFormat parameter in the global CONFIG element or in a local MAPPING element in the config.xml file. For example, in the sample config.xml file shown above this table, Partner2 uses a local RequestFormat setting.

The RequestFormat parameter can be configured as follows:

- **RequestFormat**="values"—This setting enables a query for information about a user to contain attribute names and values. The names and values are taken from the authorization rule expression that you configured for federated attribute sharing. With this setting, the response from the Identity Provider only returns user attributes and values that match those in the query. This is the default setting. This setting minimizes the memory used for cached attribute values because the request contains only the values needed for authorization. This setting results in more frequent attribute requests.

- **RequestFormat**="names"—This setting permits a query to contain attribute names, but not the values that you configured in the authorization rule expression that you configured for federated attribute sharing. The response from the Identity Provider returns the user’s values for the named attributes, as long as the Identity Provider’s Responder policies permit access to the values. This setting uses more cache memory than the "values" setting, but less than the "all" setting. This setting does not disclose to the Identity Provider what attribute values are required for authorization. For security reasons, this setting may be preferable over the "values" setting.

- **RequestFormat**="all"—The setting omits attribute names and values from a query. The Identity Provider returns all user attributes and values, as long as the Identity Provider’s Responder policies permit access to the attributes and values. This setting minimizes the number of attribute requests to one per user, but it uses the most cache memory. Use this setting if the Attribute Responder policies are configured to only return attributes that the Service Provider may want. This setting does not disclose to the Identity Provider what attributes are required for authorization. For security reasons, this may be preferable to the "values" and "names" settings.

Table 5–1 (Cont.) Attributes in the config.xml File

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Encryption parameters</td>
<td></td>
</tr>
<tr>
<td>HeaderKeyLength</td>
<td>The length (in bits) of a key that is generated for AES encryption of the SubjectDN header. This header is passed from the authentication plug-in to the authorization plug-in. Possible values for this parameter: 128, 192, or 256. Higher values provide stronger encryption but slower performance. A value of 0 disables encryption of the header. Oracle does not recommend setting a value of 0 due to potential impersonation attacks.</td>
</tr>
<tr>
<td>HeaderKeyRegen</td>
<td>The interval (in seconds) for regenerating the key that encrypts the SubjectDN header. The default is 86400 (one day).</td>
</tr>
</tbody>
</table>
The following table provides examples of how subject DNs are evaluated according to the config.xml file. When Oracle Access Manager evaluates the Subject DN of a user, users who are deemed to be local are given local Oracle Access Manager credentials. All other users are referred to the attribute sharing authorization plug-in. Depending on the DNs of the remote users, a corresponding URL is used for sending a query to a local Oracle Identity Federation instance:

Table 5–2 Mappings of Subject DNs

<table>
<thead>
<tr>
<th>User Subject DN</th>
<th>Mapping</th>
</tr>
</thead>
<tbody>
<tr>
<td>E=user1k1@company.com,CN=John Smith,OU=Engg,O=MyCompany, L=MyCity,ST=California,C=US</td>
<td>local</td>
</tr>
<tr>
<td>E=user1k2@company.com, CN=Margaret Abel, OU=Test,O=MyCompany, L=MyCity, ST=California,C=US</td>
<td>https://host1.us.company.com:8888/fed/ar/soap</td>
</tr>
<tr>
<td>E=user1k3@othercompany.com, CN=Fred Jones, OU=Sales,O=OtherCompany, L=OtherCity,ST=Iowa,C=US</td>
<td>https://host2.us.company.com:8777/fed/ar/soap</td>
</tr>
<tr>
<td>E=user1k4@othercompany.com, CN=Mahitha Chandra,OU=Sales,O=OtherCompany, L=OtherCity,ST=TamilNadu,C=IN</td>
<td>https://host2.us.company.com:8777/fed/ar/soap</td>
</tr>
</tbody>
</table>

To configure the config.xml file:

1. Log in to the Access Server host as the user who installed the Access Server.
2. Create a file named config.xml in this directory.

3. Edit the attributes and elements of the config.xml file in the following directory:

 \texttt{AS_install_dir/access/oblix/config/attributePlugin}

4. Restart the Access Server.

Configuring Basic Authentication

If using basic authentication between the plug-in and Oracle Identity Federation, you need to add the following to the httpd.conf file of the Oracle HTTP Server for your Oracle Identity Federation instance. The following shows Basic authentication for a user named "Alice":

```xml
<LocationMatch \*/fed/ar/soap>
  Allow Override None
  AuthType Basic
  AuthName "Restricted Files"
  AuthUserFile /private/oifpassword
  Require user alice
  Order allow,deny
  Allow from all
</LocationMatch>
```

A user passwords file must also be created using the htpasswd utility. In the previous example, the AuthUserFile containing the users and their passwords points to the/private/oifpassword file, in which the user alice is defined. This example creates such a file by adding the user alice:

```
Apache/Apache/bin/htpasswd -c /private/oifpassword "alice"
```

Set the authn parameter to basic in "Setting Parameters in the config.xml File" on page 5-4, and set the other required authentication parameters.

Finally, restart the Access Server.

Configuring SSL and Client Certificate Authentication

To send and receive information over a secure channel, you can configure SSL and client certificate authentication. You would select the type of secure channel as follows:

- **HTTPS**—Configure HTTPS if you specified HTTPs in the config.xml file and have configured HTTPS between the authorization plug-in and at least one instance of Oracle Identity Federation. Configuring HTTPS involves pasting the CA certificate for each trusted Oracle Identity Federation instance into the cacerts.pem file for the plug-in.

- **Client certificate authentication**—Configure client certificate authentication if you configured SSL client certificate authentication between the authorization plug-in and at least one instance of Oracle Identity Federation. Configuring client certificate authentication involves generating a private key, requesting a new certificate, and pasting the certificate into cert.pem.

To set up HTTPS

1. Go to the wallet of the Oracle Identity Federation instance and export the CA certificate.

2. Open the exported file in a text editor and copy the contents, including the --------BEGIN CERTIFICATE-------- and --------END CERTIFICATE-------- statements.
3. In another text editor, open the following file:

 \texttt{AS_install_dir/oblix/config/attributePlugin/cacerts.pem}

4. Paste the information that you copied to the end of the cacerts.pem file.

5. Restart the Access Server.

To set up client certificate authentication

1. Generate the private key and certificate request using the openssl command provided with Oracle Access Manager:

 \texttt{cd AS_install_dir/oblix/tools/openssl}

 \texttt{openssl req -config openssl.cnf -newkey rsa:1024 -keyout ../config/attributePlugin/key.pem - out ../config/attributePlugin/req.pem}

2. Send the req.pem file produced in the previous step to your CA to get a certificate.

3. Copy the generated certificate to the following location:

 \texttt{AS_install_dir/oblix/config/attributePlugin/cert.pem}

4. Change the mode to "cert" in the following file:

 \texttt{AS_install_dir/oblix/config/attributePlugin/config.xml}

5. Set the authn parameter to cert in "Setting Parameters in the config.xml File" on page 5-4, and set the other required authentication parameters.

6. Restart the Access Server.

Configure the Session Token Cache for Federated Attribute Sharing

The federated attribute sharing feature requires that an authentication be performed on each request. The authentication creates a new session token that is not actually used by the attribute sharing feature. However, the session token can be cached in the Access Server.

If all of your users authenticate using the attribute sharing authentication scheme, you can disable the session token cache to minimize the amount of memory used by the Access Server. If some users authenticate using other authentication schemes, you should enable the session token cache. See the section on Access Server configuration parameters in the Oracle Access Manager Access System Administration Guide for details.

Set the maximum number of elements in the session token cache to balance Access Server memory usage and performance requirements. A large value for this cache increases memory usage. A small value for the cache reduces memory usage but can cause the cache to fill up quickly with unused tokens from the attribute sharing scheme, resulting in performance degradation because the cache is always full.

Configuring the Authentication Scheme for Attribute Sharing

The attribute sharing authentication scheme consists of the following:

- Basic characteristics, including a name and the X509Cert authentication method.
- An authentication step to handle a local user.

 If the user is local, Oracle Access Manager can provide the attributes required for authorization.
- An authentication step to handle a remote user.
This step sets an OblixAnonymous login for the user.

This section discusses the following topics:

- Configuring the Basic Components of the Authentication Scheme
- Configuring Plug-ins and Steps for the Authentication Scheme

Configuring the Basic Components of the Authentication Scheme

The basic components of the authentication scheme include defining the name of the scheme, its authentication level, and challenge method.

To configure the basic characteristics of the attribute sharing authentication scheme

1. Log in to the Access System Console as a Master Access Administrator.
2. Select the Access System Configuration tab.
3. Click Authentication Management in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
4. Click Add.
5. Define a new authentication scheme with the following parameters:
 - **Name**—OIF Attribute Sharing
 - **Description**—Performs an SSL client certificate authentication for OIF Attribute Sharing authorization.
 - **Level**—Set this value based on the requirements of the protected resources. The level should be higher than any password schemes.
 - **Challenge Method**—Select the X509Cert option.
 - **Challenge Parameter**—Enter the following in this field:
 ssoCookie:Expires=Tue, 1 Nov 2005 00:00:00 GMT
 This ensures that the authentication scheme is run on every access to protected resources. The challenge parameter forces the browser to discard the obSSOCookie, which forces a re-authentication.
 - **SSL Required**—Select Yes.
 - **Enabled**—Select No (set this to Yes after the plug-ins are configured).
6. Click Save.

Configuring Plug-ins and Steps for the Authentication Scheme

After defining the authentication scheme, you need to add plug-ins to the scheme. The plug-ins evaluate user credentials and create an appropriate Oracle Access Manager session for the user. You also need to configure the flow of plug-in evaluation.

To configure the plug-ins for the attribute sharing authentication scheme:

1. After completing the steps in "To configure the basic characteristics of the attribute sharing authentication scheme" on page 5-10, select the Plugins tab.
2. Click Modify.
3. Add the following plug-ins and parameters.
To enter built-in plug-ins, select the plug-in name from the list. To enter custom plug-ins, select Custom Plugin from the Plugin Name list and enter the plug-in name in the text box.

Table 5–3 Plug-in Descriptions

<table>
<thead>
<tr>
<th>Plugin Name</th>
<th>Type</th>
<th>Parameters</th>
</tr>
</thead>
</table>
| authz_attribute | custom | Leave this field blank. This plug-in extracts the Subject DN field from the certificate and determines if the user is local or remote.
Although this is a custom plug-in, the plug-in code is provided by Oracle. When an authentication scheme includes this plug-in in a step, the step calls a function in the plug-in library AS_install_dir/access/oblix/lib/authz_attribute.so or .dll. Note that this is the same library used by the authorization plug-in described later. Built-in plug-ins such as credential_mapping and decode_cert consist of code within the Access Server, and have no externally visible libraries. |
| cert_decode | built-in | Leave this field blank. This plug-in addresses client certificate (cert) authentication by validating the certificate. It does not use a data source. |
| credential_mapping | built-in | Add plug-in parameters using the following syntax. This plug-in assigns an OblixAnonymous login to a remote user. The user_ID attribute is the login attribute defined for Oracle Access Manager. You can use the credential_mapping parameters from the Anonymous authentication scheme if it is available.
Example:
obMappingBase = "o=Company,c=US",
obMappingFilter = "(uid=OblixAnonymous)" |
| credential_mapping | built-in | Add plug-in parameters using the following syntax. This plug-in determines if the user is active, and if so, creates a session for the user.
Example:
obMappingBase = "o=Company,c=US",
obMappingFilter = "(|(&(objectclass=person_object_class)(user_attribute=%certSubject.field%))((!(obuseraccountcontrol=*)))(obuseraccountcontrol=ACTIVATED)))" |

4. When all the plug-ins have been added, click Save.

To configure the steps for the attribute sharing authentication scheme

1. After completing the tasks in "To configure the plug-ins for the attribute sharing authentication scheme" on page 5-10, select the steps panel, click Add, and add the following steps:
Configuring the Authorization Schemes and Policies for Attribute Sharing

2. Select the Authentication Flow tab, click Modify, and set the following flow.

The authz_attribute plug-in returns Success if the user is remote and Failure if the user is local. Remote users are assigned the OblixAnonymous login and the attribute sharing authorization scheme is invoked. For local users, a session that applies to that user is assigned.

3. Return to the Steps tab and remove the Default step.

4. Return to the General tab and enable the authentication scheme.

Configuring the Authorization Schemes and Policies for Attribute Sharing

The attribute sharing authentication scheme determines whether a user is local or remote. If the user is local, the user is logged in to Oracle Access Manager, and an authorization scheme determines the user’s access permissions. If the user is found to be remote and more information is needed, an authorization plug-in sends a request to one or more local instances of Oracle Identity Federation.

The local instances of Oracle Identity Federation request verification of the remote user’s identity from the instance of Oracle Identity Federation at the Identity Provider site for the user. The local instances of Oracle Identity Federation also return the values to Oracle Access Manager and an access decision is made based on the user attributes that are returned. The returned attributes are specified in the ruleExpression in the authorization rule.

The authorization plug-in maintains a cache of previously retrieved user attributes. If the user attributes that are required for authorization are already stored in the cache, these are used instead of sending a request for the values to the Oracle Identity Federation instance. This reduces the number of attribute requests for subsequent authorizations that require the same attributes.

<table>
<thead>
<tr>
<th>Table 5–4 Step Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Name</td>
</tr>
<tr>
<td>SubjectDN</td>
</tr>
<tr>
<td>RemoteUser</td>
</tr>
<tr>
<td>LocalUser</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Table 5–5 Authentication Flow Configuration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Name</td>
</tr>
<tr>
<td>Default Step</td>
</tr>
<tr>
<td>SubjectDN</td>
</tr>
<tr>
<td>RemoteUser</td>
</tr>
<tr>
<td>LocalUser</td>
</tr>
</tbody>
</table>
An attribute sharing policy determines what resources are to be protected, the order of authorization rule evaluation, and the authentication and authorization schemes that apply to the protected resources.

This section discusses the following topics:

- Configuring Basic Characteristics of the Authorization Scheme
- Configuring Rules and Policies for the Attribute Sharing Authorization Scheme

Configuring Basic Characteristics of the Authorization Scheme

Basic characteristics of the authorization scheme include a name and a required parameter named `ruleExpression`, which is defined in "Configuring Rules and Policies for the Attribute Sharing Authorization Scheme" on page 5-14. In addition to creating a basic definition for the authorization rule, you need to indicate what resources this rule protects.

To configure basic characteristics of the attribute sharing authorization scheme:

1. Log in to the Access System Console as a Master Access Administrator.
2. Click the Access System Configuration tab.
3. Click Authorization Management in the left navigation pane.
4. Click Add. The Define a New Authorization Scheme page appears.
5. Enter the following:
 - **Name**—OIF Attribute Sharing (or any other appropriate name).
 - **Description**—Uses OIF to obtain attributes for remote users to evaluate the rule expression.
 - **Shared Library**—Enter the following: `oblix/lib/authz_attribute`
 - **Plugin is Managed Code**—Select No.
 - **Managed Code Name Space**—Leave this field blank.
 - **User Parameter**—Enter the following: `RA_SubjectDN`

 This value invokes an external query function to obtain the SubjectDN header that is set by the authz_attribute authentication plug-in. See the section on retrieving external data for an authorization request in the *Oracle Access Manager Access System Administration Guide* for details.
 - **Required Parameter**—Enter `ruleExpression` in the Name field. Leave the Value field blank. Each access policy authorization rule will supply the rule expression.
6. Click Save.

Note: In the following sections, the authorization rules evaluate individuals. This has been done to simplify the examples. It is likely that in practice these rules would select a set of users, for example `jobTitle = "Manager" & clearance = "Secret", or OU = "Server Development Team".`
To configure the protected resources in an attribute sharing access policy
1. Log in to the Policy Manager as a Master or Delegated Access Administrator.
2. Select Create Policy Domain.
3. Complete the General page, as follows:
 - **Name**—Provide a unique name, for example, OSFS Attribute Sharing Test.
 - **Description**—Provide an appropriate description.
4. Click Save.
5. Click the Resource tab and add one or more URL prefixes to protect.
 Example: /attribute-test

Configuring Rules and Policies for the Attribute Sharing Authorization Scheme
After defining the authentication scheme and protected resources for the scheme, you need to do the following:

- Define rules that determine who is authorized to access the protected resources.
 These rules contain expressions that parse user attributes and sets of attributes. The rules provide yes-or-no decisions based on the presence or absence of these attributes or sets of attributes in the user’s credentials.
 You can create different rules for local and remote users.
- Define the evaluation order of these rules in the authorization policy, and create a default rule to apply if none of the other rules can be used when performing an authorization.
- Associate the policy with the attribute sharing authentication scheme as well as the attribute sharing authorization scheme.

To configure an authorization rule for remote users in an attribute sharing access policy
1. After completing the steps in "To configure an authorization rule for remote users in an attribute sharing access policy" on page 5-14, click the Authorization Rules tab, then click Add.
 Each rule is represented as an expression.
2. Select Custom Authorization Scheme, click Add, and fill out the form as follows:
 - **Name**—Provide an appropriate name, for example, Remote User 1.
 - **Description**—Provide a description that will help others understand this rule.
 - **Authorization Scheme**—OIF Attribute Sharing.
3. Click the Plugin Parameters tab, click Modify, and define the rule expression.
 In the Name field, enter the following name: `ruleExpression`.
 In the Value field, provide a value that the Identity Provider is to search for. The value can be an expression. Use the minus ("-") and plus ("+") buttons to add expressions.
 White space is allowed around the equals sign ("="), bang equals ("!="), ampersand ("&"), and or operator (" "). Table 5–6 lists the available parameters.
 Examples of rule expressions:
To configure an authorization rule for local users in an attribute sharing access policy

1. After completing the steps in "To configure an authorization rule for local users in an attribute sharing access policy" on page 5-15, click the Authorization Rules tab.

2. To add an authorization rule for each set of local user attributes, click Add.

3. In the Authorization Scheme list, select Oracle Authorization Scheme, then click Add.

4. Complete the authorization rule form as follows:
 - **Name**—Provide an appropriate name, for example, User 1 Local.
 - **Description**—Provide a description that will help others understand the rule.
 - **Enabled**—Select Yes.
 - **Allow Takes Precedence**—Select No.

5. Save the form.

6. Select the Allow Access tab and click Add.

Add an LDAP filter for the local attributes.
You can use the Query Builder in the Identity System’s User Manager application to build the filter. (From the Identity System Console, click Configuration, then click Delegate Administration, then click Build Filter.) The following is an example of a filter:

ldap:///o=Company,c=US??sub?(&(givenname=Rohit)(sn=Valiveti))

7. Set any timing conditions or actions as required for the authorization rule.

8. Click the General tab and click Modify.

9. Select Yes in the Enabled list to enable the rule.

To configure a rule expression in an attribute sharing access policy

1. After completing the steps in "To configure an authorization rule for local users in an attribute sharing access policy" on page 5-15, select the Default Rules tab.

2. Add the default authentication rule as follows:
 - Name—An appropriate name, for instance, Default Rule
 - Description—A meaningful description.
 - Authentication Scheme—Select the OSFS Attribute Sharing authentication scheme.

3. Save the rule.

4. Select the Authorization Expression tab.

5. Select the remote authorization rule and click Add.

6. Select the local authorization rule, select OR, and add it. For example:

 Remote User 1 | Local User 2

7. Save the authorization rule.
This chapter describes the integration of Oracle Access Manager 10g (10.1.4.0.1) with the Siebel 7 e-business platform. Siebel 7 is a Web-based suite that combines customer relationship management, partner relationship management, and employee relationship management applications.

This chapter covers the following topics:

- About the Integration with Siebel 7
- Integration Architecture
- Supported Version and Platforms
- Preparing Your Environment
- Setting Up Oracle Access Manager Single Sign-on for Siebel Application Server

About the Integration with Siebel 7

The integration of Oracle Access Manager with Siebel 7 provides a secure Web-based infrastructure for identity management for all customer applications and processes. Oracle Access Manager integrates identity and access management across Siebel 7, enterprise resources, and other domains deployed on eBusiness networks. Oracle Access Manager provides the foundation for managing the identities of customers, partners, and employees across Internet applications. These user identities are combined with security policies for protected Web interaction.

This integration adds the following features to Siebel 7 implementations:

- **Oracle Access Manager authentication, authorization, and auditing** services for Siebel 7 applications.
- **Oracle Access Manager single sign-on (SSO)** for Siebel 7 applications and other Oracle Access Manager-protected resources within a single domain or across multiple domains.
- **Oracle Access Manager authentication schemes**, the following schemes provide single sign-on for Siebel 7 applications:
 - **Basic**: Users must enter a user name and password in a window supplied by the Web server.

 This method can be redirected to SSL.
 - **Form**: This method is similar to the basic challenge method, but users enter information in the custom HTML form.
You can choose the information users must provide in the form that you create.

- **X.509 Certificates**: X.509 digital certificates over SSL. A user’s browser must supply a certificate.

- **Integrated Windows Authentication (IWA)**: Users will not notice a difference between an Oracle Access Manager authentication and IWA when they log on to the desktop, open an Internet Explorer (IE) browser, request a Oracle Access Manager-protected Web resource, and complete single sign-on.

- **Microsoft .NET Passport**: .NET Passport is a component of the Microsoft .NET framework. The plug-in is a Web-based authentication service that provides single sign-on for Microsoft-protected Web resources.

- **Custom**: Additional forms of authentication can be incorporated through use of the Oracle Access Manager Authentication Plug-in API.

 - **Session timeout**: Oracle Access Manager enables you to set the length of time that a user session is valid.

 - **Ability to use the Identity System for identity management**: The Identity System provides identity management features such as portal inserts, delegated administration, workflows, and self-registration to applications such as Siebel 7. The self-registration feature for new users and customers provides flexibility in terms of how much access to provide to people upon self-registration. Identity System workflows enable a self-registration request to be routed to appropriate personnel before access is granted. Oracle Access Manager also provides self-service, allowing users to update their own identity profiles.

Siebel 7 Components

This integration involves the following Siebel 7 components.

- **Siebel Gateway Name Server**: The name server provides persistent backing of Siebel server configuration information, including definitions and assignments of component groups and component operational parameters as well as Siebel server connectivity.

- **Siebel Database Server**: The Siebel database server contains the data used by Siebel clients.

- **Siebel Server and Siebel Web Server Extension**: The Siebel Server along with the Siebel Web Server Extensions supports Siebel Enterprise Web Applications.

Integration Architecture

The preferred method of Web single sign-on with Siebel 7 is achieved by passing a header variable populated with an attribute value that is stored in the LDAP directory. Oracle Access Manager authentication rules permit passing the appropriate HTTP header variable to Siebel 7. The WebGate intercepts the user’s HTTP request and checks for a session cookie. If the cookie does not exist or it has expired, the user is challenged for credentials. Oracle Access Manager verifies the credentials, and if the user is authenticated, the WebGate redirects the user to the requested resource and passes the required header variable to the Siebel application. The Siebel application initiates a session which is kept at the Siebel Web Engine.
Figure 6–1 illustrates a scenario where the user authenticates to an Oracle Access Manager-protected resource and is granted access to a Siebel 7 application.

Figure 6–1 Oracle Access Manager Integration with Siebel 7

Process overview: Authentication with the integration

1. A user attempts to access content or an application on a server.
2. WebGate intercepts the request.
3. To determine if the resource is protected, WebGate checks the Access Server for a security policy.

 The security policy consists of an authentication scheme, authorization rules, and allowed operations based on authentication and authorization success or failure.

4. If the resource is protected, WebGate checks for the user’s session cookie.

 If a valid session exists, WebGate passes the header variable to the Siebel server. If a valid session does not exist, WebGate prompts the user for credentials.
5. If the credentials are successfully validated, Oracle Access Manager executes the actions that are defined in the security policy and sets an HTTP header variable that maps to the Siebel user ID.

6. WebGate redirects the user to the requested Siebel resource.

7. The Siebel application recognizes the Oracle Access Manager header variable, authenticates the user, and initiates a session.

 The header variable is stored in the Siebel Web Engine. The user can now access any resource that is protected by Oracle Access Manager, for example, a Siebel 7 Web application, without being prompted for credentials.

 If the user is not authorized, the user is denied access and redirected to another URL as determined by the organization's administrator.

Supported Version and Platforms

Any references to specific versions and platforms in this chapter are made for demonstration purposes.

To see the supported versions and platforms for this integration, refer to Metalink, as follows.

To view information on Metalink
1. Go to the following URL:
 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Preparing Your Environment

Complete the following steps to prepare your environment for the integration.

Task overview: Prepare your environment for integration
1. Install a supported directory server according to vendor instructions.
2. Install a supported Web server according to vendor instructions.
3. Configure the Web browser to allow cookies according to vendor instructions.

Setting Up Oracle Access Manager Single Sign-on for Siebel Application Server

Setting up Oracle Access Manager single sign-on for Siebel 7 requires the installation and configuration of several Siebel and Oracle Access Manager components.

1. Install and configure Siebel 7, as described in “Setting Up Siebel 7 for integration with Oracle Access Manager”.

 6-4 Oracle Access Manager Integration Guide
2. Install Oracle Access Manager and a WebGate, and configure access control policies to protect Siebel resources, as described in "Setting up Oracle Access Manager for Integration with Siebel 7" on page 6-8.

3. Test the integration, as described in "Testing Integration Between Oracle Access Manager and Siebel" on page 6-9.

Setting Up Siebel 7 for integration with Oracle Access Manager

Setting up Siebel 7 for integration involves the following steps.

To set up Siebel 7 for integration with Oracle Access Manager

1. Install the following Siebel components, as described in the Siebel documentation:
 a. Siebel Gateway Server
 b. Siebel Server
 c. Siebel Database Server
 d. Siebel Web Server Extension

2. Verify that Siebel eBusiness Applications and Web Server Extension are working properly.

3. Ensure that the Siebel client and the Siebel server are able to communicate with each other through TCP/IP, as described in the Siebel documentation.

4. Add at least three users to LDAP:
 - Test
 - The Siebel Anonymous User
 - The Siebel Application User

 In addition to your regular users, Siebel uses two user accounts from the directory: Anonymous User and Application User. You also need to create an attribute in regular user accounts for storing the Siebel database user information. See the information on creating users in the directory in the *Security Guide for Siebel eBusiness Applications* for details.

5. Add user records in the Siebel database that correspond to the registered users.

 You need a record in the Siebel database that corresponds to the test user that you created in the LDAP directory. You also must confirm that the seed data record exists for the Anonymous User for your Siebel customer or partner application. This database record must match the Anonymous User that you created in the LDAP directory. See the information on adding user records in the Siebel Database in the *Security Guide for Siebel eBusiness Applications* for details.

Table 6-1 on page 6-6 describes the parameters to set for the eapps.cfg file. This file contains configuration details for the Siebel Web Server Extension component. It is located in the \BIN directory where the Siebel Web Server Extension is installed (for example, C:\sea704\SWEApp). You can add these parameters to the [Default] section or to the Siebel-specific application, for example, [/esales_enu].

Oracle recommends that you add these parameters to the specific Siebel eBusiness application section.
The following is an example of a configured eapps.cfg file:

```
[/esales_enu]
SingleSignOn     = TRUE
TrustToken       = HELLO
UserSpec         = SSO_SIEBEL_USER
UserSpecSource   = Header
ConnectString    = siebel.TCPIP.None.None://sdchs24n336:3320/siebel/eSalesObjMgr_enu
StartCommand     = SWECmd=GotoView&SWEView=Home+Page+View+(eSales)
WebPublicRootDir = c:\19213\eappweb\public\enu
WebUpdatePassword = tieeKaYLjfUBgdi+g==
```

Table 6–1
<table>
<thead>
<tr>
<th>Parameter and value</th>
<th>Value</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>AnonUserName</td>
<td>GuestCST</td>
<td>The anonymous user is a Siebel user with very limited access. It enables a user to access a login page or a page that contains a login form. This user is defined in the Siebel database and must exist in the LDAP directory.</td>
</tr>
<tr>
<td>AnonPassword</td>
<td>Ldap</td>
<td>The LDAP password for the anonymous user.</td>
</tr>
<tr>
<td>SingleSignOn</td>
<td>TRUE</td>
<td>When this parameter is set to true, the Siebel Web Server Extension Engine (SWSE) operates in WebSSO mode.</td>
</tr>
<tr>
<td>TrustToken</td>
<td>HELLO</td>
<td>In a Web single sign-on environment, this token string is a shared secret between the SWSE and the security adapter. It is a measure to protect against spoofing attacks. This setting must be the same on both the SWSE and the security chapter.</td>
</tr>
</tbody>
</table>
| UserSpecSource | Header | In a Web single sign-on implementation, this parameter specifies the source from which the SWSE derives the user credentials, as follows:
| | | ■ Server—Use if the value is from the Web server name field
| | | ■ Header—Use if the variable is in the HTTP request header
| UserSpec | SSO_Siebel_ User | In a Web single sign-on implementation, this variable name specifies where the SWSE looks for a user’s user name in the source provided by UserSpecSource. |

The following is an example of a configured eapps.cfg file:

```
[/esales_enu]
SingleSignOn     = TRUE
TrustToken       = HELLO
UserSpec         = SSO_SIEBEL_USER
UserSpecSource   = Header
ConnectString    = siebel.TCPIP.None.None://sdchs24n336:3320/siebel/eSalesObjMgr_enu
StartCommand     = SWECmd=GotoView&SWEView=Home+Page+View+(eSales)
WebPublicRootDir = c:\19213\eappweb\public\enu
WebUpdatePassword = tieeKaYLjfUBgdi+g==
```

Table 6–2 describes the parameters that you specify in the Siebel Application Parameter File (for example, siebel.cfg).

Table 6–2
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>ApplicationUser</td>
<td>Cn=sadmin,cn=users,dc=us,dc=oracle,dc=com</td>
<td>DN of Siebel Application User</td>
</tr>
<tr>
<td>ApplicationPassword</td>
<td>Ldap</td>
<td>LDAP password</td>
</tr>
<tr>
<td>BaseDN</td>
<td>Cn=users,dc=us,dc=oracle,dc=com</td>
<td>LDAP directory base DN</td>
</tr>
<tr>
<td>CRC</td>
<td></td>
<td>CRC code</td>
</tr>
<tr>
<td>CredentialsAttribute</td>
<td>Mail</td>
<td>LDAP attribute used to store the user’s database credentials</td>
</tr>
</tbody>
</table>
To set the Siebel Server Configuration Parameters

1. Log in to a Siebel employee application, such as Siebel Call Center, and make one of the following choices from the application-level menu:

 - To set enterprise level parameters, choose View, select Site Map, then select Server Administration and then select Enterprise Configuration.
 - To set server level parameters, choose View, select Site Map, then select Server Administration and then select Servers.
 - To set component level parameters, choose View, select Site Map, then select Server Administration and then select Components.

If you are setting parameters at the server or component level:

 - To set enterprise-level parameters, click the Enterprise Parameters view tab.
 - To set server-level parameters, click the Server Parameters view tab.
 - To set component-level parameters, click the Component Parameters view tab.

Because application-level parameters override enterprise level settings, Oracle recommends that you set the Siebel parameters for SSO integration at the application level.

Table 6–2 (Cont.) Siebel Application Parameter File for the Web Server Extension

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SecAdptDllName</td>
<td>Sscfidap</td>
<td>Security Adapter DLL</td>
</tr>
<tr>
<td>HashAlgorithm</td>
<td>RSASHA1</td>
<td>Hash algorithm</td>
</tr>
<tr>
<td>HashDBPPwd</td>
<td>FALSE</td>
<td>Should the shared database password be hashed</td>
</tr>
<tr>
<td>HashUserPwd</td>
<td>FALSE</td>
<td>Should the user’s password be hashed by Siebel</td>
</tr>
<tr>
<td>Port</td>
<td>389</td>
<td>LDAP server port</td>
</tr>
<tr>
<td>PropagateChange</td>
<td>TRUE</td>
<td>Propagate user changes to an external repository</td>
</tr>
<tr>
<td>PasswordExpireWarning</td>
<td>30</td>
<td>Number of days before password expiry, when the user should be warned.</td>
</tr>
<tr>
<td>PasswordAttributeType</td>
<td>UserPassword</td>
<td>LDAP attribute used to store the user’s password</td>
</tr>
<tr>
<td>RolesAttributeType</td>
<td></td>
<td>LDAP attribute used to store the user’s responsibilities</td>
</tr>
<tr>
<td>ServerName</td>
<td>Ldap.us.oracle.com</td>
<td>LDAP Server Name</td>
</tr>
<tr>
<td>SharedCredentialsDN</td>
<td>Cn=sadmin,cn=users,dc=us,dc=oracle,dc=com</td>
<td>DN of LDAP user storing the DB credentials</td>
</tr>
<tr>
<td>SiebelUsernameAttributeType</td>
<td>Uid</td>
<td>LDAP attribute used to store the user’s user ID</td>
</tr>
<tr>
<td>SSLDatabase</td>
<td>C:\oblix-data\oid-key</td>
<td>Path of the SSL database certificate file (required if LDAPS is used)</td>
</tr>
<tr>
<td>SingleSignon</td>
<td>TRUE</td>
<td>Is single sign-on enabled</td>
</tr>
<tr>
<td>TrustToken</td>
<td>HELLO</td>
<td>Web single sign-on trust token</td>
</tr>
</tbody>
</table>
The following screen shot illustrates setting Siebel Server configuration parameters:

2. Select a parameter record, edit the Current Value field, and then click Save.
3. Restart the Siebel Server to allow the changes to take effect.

Setting up Oracle Access Manager for Integration with Siebel 7

Setting up Oracle Access Manager for integration with Siebel 7 involves the following steps.

To set up Oracle Access Manager for the integration

1. Install Oracle Access Manager and ensure that you have installed a WebGate on the Web server instance supporting the Siebel Web server extension, as described in *Oracle Access Manager Installation Guide*.

2. Synchronize the time on all servers where Siebel and Oracle Access Manager components are installed.

Each Siebel application has its own document directory. You can either protect each application individually or protect the higher-level directory under which the applications reside.

3. In the Policy Manager, create a policy domain to protect Siebel resources on Web servers where Siebel and the WebGate are installed, as described in the *Oracle Access Manager Access System Administration Guide*.

Oracle Access Manager sets header variables that are passed on to the Siebel eBusiness Application to allow access only to specified users.

4. In the Authorization Rule, choose Actions page of the policy domain protecting the Siebel resource, configure the action to map a Oracle Access Manager Header variable uid to the Siebel uid.
In the following example, the uid is mapped to the SSO_SIEBEL_USER HTTP header variable as follows:

Type: HeaderVar
Name: SSO_SIEBEL_USER
Attribute: uid

5. In the Authorization Rules, choose Allow Access page of the policy domain, select the Oracle Access Manager/Siebel users to whom you want to grant access to the resources that are protected by the policy domain.

Testing Integration Between Oracle Access Manager and Siebel

After configuring the integration of Oracle Access Manager with Siebel, you should test for successful Oracle Access Manager authentication and single sign-on with Siebel 7.

The following is a test for single sign-on between a non-Siebel, Oracle Access Manager-protected Web page and Siebel Web Server Extension.

To test Oracle Access Manager single sign-on

1. Create an Oracle Access Manager policy domain to protect a Siebel eBusiness application (for example, eMarketing) and require basic LDAP authentication for it.

2. Open a Web browser and enter the URL for the IIS Web server's main page (http://hostname).

The main page is displayed. User authentication should not be required.

3. Access the Siebel eBusiness application URL for the IIS Web server from the same browser used in step 2.

 Basic authentication should be required.

4. Access the Siebel eBusiness application URL for the IIS Web server from the same browser used in step 2.

 Access to the Siebel eBusiness application should be allowed. The user should not be challenged for credentials.

5. Close the browser and open a new browser session. Access the Siebel eBusiness application URL for the IIS Web server.

 Basic authentication should be required. After the user enters credentials, the Siebel eBusiness application should be displayed.

6. Access the demo document directory URL for the IIS Web server from the same browser user in step 5.

7. Repeat the previous steps for the Sun ONE Web server.

 The following is a test of the Oracle Access Manager session timeout.
To test Oracle Access Manager session timeout

1. Configure the Oracle Access Manager session timeout to be five (5) minutes and restart the Web servers.

2. Open a Web browser and the IIS Web server’s main page (http://hostname).
 The main page is displayed. User authentication should not be required.

3. Access the Siebel eBusiness Application URL for the IIS Web server from the same browser used in step 2.
 Basic authentication should be required. After the user enters credentials, the Siebel eBusiness application should be displayed.

4. Leave the browser window open and idle for more than five minutes.

5. Refresh the browser window using the Refresh button.
 Basic authentication should be required. After the user enters credentials, the Siebel eBusiness Application should be displayed.

6. Repeat step 2 to step 4 for the Sun ONE Web server.

Configuring Session Logout

You can configure an expiration period for a session by setting a session timeout value in both Siebel and Oracle Access Manager. The timeout values should be the same for both applications. If you configure a timeout value for Siebel that is shorter than the one you configure for Oracle Access Manager, users can re-establish their Siebel session after it times out without providing login credentials.

The rest of this section discusses the following topics:

- Configuring the Siebel Timeout
- Configuring the Oracle Access Manager Session Timeout
- Configuring the Siebel Logout Behavior

Configuring the Siebel Timeout

The following procedure describes configuring the timeout. For users to be asked to re-authenticate after the timeout limit is reached, you must also configure the same timeout value in Oracle Access Manager.

To configure the Siebel timeout

1. Open the eapps.cfg file.
 It is located in the \BIN directory where the Siebel Web Server Extension is installed (for example, C:\sea704\SWEApp).

2. Modify the value for the Set SessionTimeout parameter.

3. Restart the Web server.

Configuring the Oracle Access Manager Session Timeout

The following procedure describes configuring the timeout.

To configure the Oracle Access Manager session timeout

1. Log in to the Access System.
2. From the Access System Console, click Access System Configuration, then click AccessGate Configuration.

3. Search for the AccessGate that you want to configure.

4. Click the link for the AccessGate.

5. Click Modify.

6. Change the value of the Maximum user session time (seconds) field. This value should be the same as the one that you set for the Siebel application.

7. Change the value of the Idle session time (seconds) field. This value should be the same as the one that you set for the Siebel application.

Configuring the Siebel Logout Behavior

In a Web single sign-on deployment, the user authentication and user management features are the responsibility of Oracle Access Manager. The following features in Siebel 7 are not available in a Web single sign-on environment:

- User self-registration
- Delegated administration
- Login and logout
- Change password

You can configure logout functionality for Siebel 7 users by modifying the Siebel Logout link and redirecting the users to the Oracle Access Manager logout page. By doing this, the user is logged out of Oracle Access Manager and by extension from Siebel.

You configure logout functionality from the Identity System Console. See the Oracle Access Manager Identity and Common Administration Guide for details.

The following procedures describe configuring the logout behavior.

To prepare for configuration

1. Create a text file that contains the HTML required to redirect the user to the Oracle Access Manager logout page.

 The following is a URL example:
   ```html
   ```

 The following is a Javascript example:
   ```html
   <html>
   <head>
   <script language="Javascript">
   <!--
   //-->
   </script>
   </head>
   </html>
   ```

2. Copy the file as follows:
Configuring Session Logout

$siebelroot/siebsrvr/WEBTEMP\name.swt

Where name is the name of the file that you created in the previous step, for example, coreidlogout.swt.

3. Stop the Siebel server process.

To create a new project
1. In the Object Explorer window, click Project.
2. Select Edit.
3. Select New Record.
4. Enter the name of the file that contains the redirection information as the name for the new record.
 Do not include the ".swt" extension. In the previous procedure, this name was coreidlogout.
5. Select Locked.

To create a Web template
1. In the Object Explorer window, click Web Template.
2. Add a new record.
 Use the name of the file with the redirection information. Do not include the ".swt" extension.
 In a previous procedure, an example name of coreidlogout was provided.
3. Enter the Project parameter.
 As the name of this parameter, use the name of the file with the redirection information. Do not include the ".swt" extension.
 In a previous procedure, an example name of coreidlogout was provided.
4. Specify Web Page Template for the Type parameter.

To create a Web template file
1. Expand the Web Template tree.
2. Click Web Template File.
3. Add a record that is named using the name of the file with the redirection information.
 Do not include the ".swt" extension. In a previous procedure, an example name of coreidlogout was provided.
4. Enter the name of the file with the redirection information, including the ".swt" extension, as the Filename parameter.

To create a Web page for logout
1. In the Object Explorer window, click Web Page.
2. Add a record that is named using the name of the file with the redirection information.
Do not include the ".swt" extension. In a previous procedure, an example name of coreidlogout was provided.

3. Enter the name of the file with the redirection information as the Project parameter.

 Do not include the ".swt" extension. In a previous procedure, an example name of coreidlogout was provided.

4. Select the name of the file with the redirection information as the Web Template parameter.

 In a previous procedure, an example name of coreidlogout was provided.

To complete logout configuration

1. To lock the application project for each project where you want to modify the logout behavior, in the Object Explorer window, click Project.

2. Locate the appropriate project.

3. Select Locked.

4. In the Application window, select the Siebel module to be configured.

 Each module must be configured separately.

5. Scroll to the right and locate the Logoff Acknowledgement Web Page parameter.

 Make a note of this value before changing it.

6. Select the name of the file with the redirection information.

 In a previous procedure, an example name of coreidlogout was provided.

7. Compile the changes.

8. Restart the Siebel Server and the Web server.
PeopleSoft is a Web-based eBusiness application suite that provides human resources, supply chain, CRM, analytics, portal, and other applications. This chapter describes the integration of Oracle Access Manager’s single sign-on capabilities with PeopleSoft PeopleTools and applications.

This chapter covers the following topics:

- **About the Integration with PeopleSoft**
- **PeopleSoft Components**
- **PeopleSoft Integration Architecture**
- **Supported Version and Platforms**
- **Preparing Your Environment**
- **Setting Up Oracle Access Manager Single Sign-On for PeopleSoft**
- **Setting up PeopleSoft for Single Sign-On with Oracle Access Manager**
- **Configuring Single Signoff**

About the Integration with PeopleSoft

This integration provides a secure Internet infrastructure for identity management for PeopleSoft’s customer applications and processes. Oracle Access Manager provides identity and access management across PeopleSoft applications, enterprise resources, and other domains that are deployed on eBusiness networks. Oracle Access Manager provides the foundation for managing the identities of customers, partners, and employees across Internet applications. These user identities are protected by security policies for Web interaction.

This integration adds the following to PeopleSoft implementations:

- **Oracle Access Manager authentication, authorization, and auditing** services for Siebel 7 applications.
- **Oracle Access Manager single sign-on (SSO)** for PeopleSoft applications and other Oracle Access Manager-protected resources in a single domain or across domains.
- **Oracle Access Manager authentication schemes** that provide single sign-on for PeopleSoft applications:
 - **Basic**: Users enter a user name and password in a window supplied by the Web server.

 This method can be redirected to SSL.
- **Form**: Similar to the basic challenge method, users enter information in a custom HTML form.
 You choose the information that users must provide in the form.

- **X509 Certificates**: X.509 digital certificates over SSL.
 A user’s browser must supply a certificate.

- **Integrated Windows Authentication (IWA)**: Users will not notice a difference between an Oracle Access Manager authentication and IWA when they log on to the desktop, open an Internet Explorer (IE) browser, request a Oracle Access Manager-protected Web resource, and complete single sign-on.

- **Microsoft .NET Passport**: .NET Passport is a component of the Microsoft .NET framework.
 The .NET plug-in is a Web-based authentication service that provides single sign-on for Microsoft-protected Web resources.

- **Custom**: You can use other forms of authentication through the Oracle Access Manager Authentication Plug-in API.

 - **Session timeout**: Oracle Access Manager enables you to set the length of time that a user session is valid.

 - **Ability to use the Identity System for identity management**: The Identity System provides identity management features such as portal inserts, delegated administration, workflows, and self-registration to applications such as PeopleSoft.

 You can determine how much access to provide to people upon self-registration. Identity System workflows enable a self-registration request to be routed to appropriate personnel before access is granted.

 Oracle Access Manager also provides self-service, allowing users to update their own identity profiles.

PeopleSoft Components

This integration involves the following PeopleSoft components.

PeopleSoft Application Server: The application server is the core of PeopleSoft Pure Internet Architecture (PIA). An application server maintains the SQL connection to the database for browser requests and the PeopleTools development environment in Microsoft Windows. It runs business logic and issues SQL to the database server.

The application server consists of numerous PeopleSoft services and server processes. Just as different elements make up the physical environment in which an application server operates, for example, database servers and Web servers, a variety of elements operate on the application server, enabling it to respond effectively to multiple transaction requests and handle transaction processing, system scaling, browser requests, and so on.

PeopleSoft Database Server: The database server houses a database engine and the PeopleSoft application database. The database includes all the application’s object definitions, system tables, application tables, and data. The database server must run one of the PeopleSoft-supported RDBMS and operating system combinations.

Multiple application servers can connect to the database server. The database server simultaneously handles the application server connections, development environment connections, and batch programs running against it.
PeopleSoft Internet Architecture: PeopleSoft Pure Internet Architecture enables Internet application deployment through a browser, and enables you to take advantage of PeopleSoft intranet solutions, Internet solutions, and integration technologies.

PeopleSoft Pure Internet Architecture runs seamlessly in portals created and managed by PeopleSoft portal technology.

PeopleTools portal technology is built on top of PeopleSoft Pure Internet Architecture and enables you to easily access and administer multiple content providers, including PeopleSoft databases such as PeopleSoft CRM and HRMS, as well as non-PeopleSoft content. It enables you to combine content from these multiple sources and deliver the result to users in a unified, simple-to-use interface.

PeopleSoft Integration Architecture

PeopleSoft has a configurable authentication mechanism that allows it to authenticate a user against the following:

- Native tables
- LDAP
- Custom plug-ins, including the ability to read HTTP Headers

Single sign-on with PeopleSoft involves the following:

- Protecting PIA with a WebGate.
- Populating a header variable with an attribute value that is stored in the LDAP directory used by Oracle Access Manager.
- Writing PeopleCode to read the header variable and generate the PS_TOKEN.

 A cookie is generated by PIA every time a user successfully logs in. It is used to enable single sign-on with other PeopleSoft applications.
- Configuring PeopleSoft to invoke the PeopleCode as part of the authentication process, overriding the default authentication mechanism.

Single Sign-On Process

There are two ways to render PeopleSoft application pages for the user:

- Using a PIA application server that has an HTTP Server and a J2EE container (required for the PIA servlets and Java code to run), for example, Oracle Application Server 10g.
- Using a Java-enabled application server and setting up an HTTP server as a reverse proxy.

 For example, you can use WebLogic as the PIA application server and iPlanet as the HTTP Server.

In both cases, the WebGate must be installed on the HTTP Server and it must be configured to protect the PeopleSoft URLs. See your PeopleTools version-specific documentation for the URL format.

The user accesses a PeopleSoft application using the Web browser. The WebGate intercepts the user's HTTP request and checks for an obSSOCookie. If the cookie does not exist or it has expired, the user is challenged for credentials. Oracle Access Manager verifies the credentials, and if the user is authenticated, the WebGate redirects the user to the requested resource and passes the required header variable to
PeopleSoft. The header variable is read by PeopleSoft and used to generate the PS_TOKEN. Table 7–1 illustrates the integration environment and process flow:

Figure 7–1 PeopleSoft Single Sign-On Using Oracle Access Manager

1. A user attempts to access a PeopleSoft application.
2. A Webgate that is deployed on the PeopleSoft HTTP Server intercepts the request.
3. The Webgate checks the Access Server to determine if the resource (PeopleSoft URL) is protected.

 The security policy consists of an authentication scheme, authorization rules, and allowed operations based on authentication and authorization success or failure.
4. If a valid session does not exist and the resource is protected, WebGate prompts the user for credentials.
5. If the credentials are validated, Oracle Access Manager executes the actions defined in the security policy for the PeopleSoft resource and sets a HTTP Header variable that maps to the PeopleSoft user ID.
6. If a valid session cookie exists and if the user is authorized to access the resource, WebGate redirects the user to the requested PeopleSoft resource.
7. PeopleSoft receives the request for the PeopleSoft resource and executes the PeopleCode defined in its authentication configuration.
8. The PeopleCode reads the HTTP header variable and sets that value as the logged-in PeopleSoft user.
It then generates the PS_TOKEN, which contains the same information.

9. PeopleSoft generates the application pages, subject to further authorization verification within PeopleSoft.

Supported Version and Platforms

This chapter describes the integration of Oracle Access Manager 10g (10.1.4.0.1) with PeopleTools 8.47 and PeopleSoft Applications (HCM 8.9). However, any references to specific versions and platforms in this chapter are for demonstration purposes.

To see the supported versions and platforms for this integration, refer to Metalink, as follows.

To view information on Metalink

1. Go to the following URL:

 http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.

5. Choose Oracle Application Server and click Submit.

Preparing Your Environment

Before you can integrate Oracle Access Manager with PeopleSoft, complete the following steps to prepare your environment.

Task overview: Preparing for the PeopleSoft integration

1. Install a supported directory server, according to vendor instructions.

2. Install and configure Oracle Access Manager using the directory server from the previous step as the LDAP repository.

3. Ensure that the PeopleSoft application pages are delivered using an HTTP Server.

4. Configure the Web browser to allow cookies, according to vendor instructions.

5. Follow the instructions in "Setting Up Oracle Access Manager Single Sign-On for PeopleSoft" on page 7-5.

Setting Up Oracle Access Manager Single Sign-On for PeopleSoft

The following procedure describes setting up Oracle Access Manager single sign-on for PeopleSoft.

See also: For more information on creating policy domains, policies, and associated authentication and authorization schemes, see the *Oracle Access Manager Access System Administration Guide*.
To set up Oracle Access Manager for the PeopleSoft integration

1. Install and configure Oracle Access Manager on a supported platform, using a supported LDAP server.

 See the Oracle Access Manager Installation Guide for details.

2. Install a WebGate on the PeopleSoft HTTP Server.

 Do not install the WebGate on an application server that supports HTTP services, for example, WebLogic. If your PIA application server is WebSphere or WebLogic, install an HTTP server, for example, Apache, iPlanet, or Oracle HTTP Server.

 You also need to configure the PIA so that PeopleSoft application pages can be accessed and are rendered through the HTTP server.

3. Create a host identifier for the PeopleSoft HTTP Server.

 From the Access System landing page, select the Access System Console, click Access System Configuration, click Host Identifiers, and add information about the server.

4. Create a policy domain and policies to restrict access to PeopleSoft URLs.

 From the Access System landing page, select the Policy Manager, then click create Policy Domain, and define a policy domain and policies.

 The policy domain should protect all PeopleSoft URLs that users access. For example, if you use PeopleSoft Portal to consolidate access to various PeopleSoft applications, the policy must protect the portal and application URLs.

 URL prefix formats are specific to your PeopleSoft implementation. For example, the version 8.47 URLs have the format /PORTAL/ps, HRMS/ps, and so on.

 The following screen shot illustrates a PeopleSoft policy domain.

5. After saving the new policy domain, define an authorization rule that controls who has access to the PeopleSoft resources.

 If you are already viewing the new policy domain, click Authorization rules. Otherwise, click My Policy Domains, click the link for the policy domain, and click Authorization rules.

 The following is a screen shot of an Authorization Rules configuration page.
6. Define an authentication rule, for example, Oracle Access and Identity Basic Over LDAP, form authentication, and so on.

If you are already viewing the new policy domain, click Default Rules, then click Authentication Rule. Otherwise, click My Policy Domains, click the link for the policy domain, and click Default Rules, then click Authentication Rule.

The following is a screen shot of an Authentication Rule configuration page.

7. Define an authorization action that sets a custom HTTP header variable upon successful authorization.

If you are already viewing the new policy domain, click Authorization Rules, then click Actions. Otherwise, click My Policy Domains, click the link for the policy domain, click Authorization Rules, then click Actions.

The header variable should contain a value that maps to the PeopleSoft user ID.

The following is a screen shot of a saved authorization action.
8. Define an access policy and add the PeopleSoft resources to it.

If you are already viewing the new policy domain, click Policies, then click Add. Otherwise, click My Policy Domains, click the link for the policy domain, click Policies, then click Add.

The following is a screen shot of a saved policy.

Setting up PeopleSoft for Single Sign-On with Oracle Access Manager

The following procedure describes setting up PeopleSoft for integration with Oracle Access Manager.

To set up PeopleSoft for integration with Oracle Access Manager

1. Configure PeopleSoft to allow public access.

To do this, you modify the Web profile for the PeopleSoft environment that you are securing. In PeopleTools 8.47, the Web profile definition contains all the information that PIA needs to render the PeopleSoft pages.
To allow public (unprotected) access to PeopleSoft, PIA requires a PeopleSoft application user. PIA logs using this application user and renders the PeopleSoft pages. In the Web profile, provide a user ID and password of a PeopleSoft user. Ensure that this user has minimal applications privileges.

2. From the PeopleTools Application Designer, open the FUNCLIB_LDAP record.

3. Modify the PeopleCode for the LDAPAUTH field event, as follows.
In the getWWWAuthConfig() function, replace the value that is assigned to the &defaultUserId with the user ID that you defined in the Web profile.

```
Function getWWWAuthConfig()
   /* Begin - New code to support Oracle Access Manager */
   /* authentication */
   /* NOTE: replace v01475 with the default userid */
   &defaultUserId = "v01475";
   /* &defaultUserId = "";*/
   /* End - New code to support Oblix authentication */
End-Function;
```

4. Add a new function that will read the HTTP header variable that is set by Oracle Access Manager, as indicated in the following code sample.

```
Function Oracle_Access_Manager_Authentication()
   /* Note: Following file will written to the default path.*/
   /* Usually appserv/<instance name>/files */
   &logfile = Getfile("oamaccess.log","A");
   If &logfile.Isopen then
      &logfile.Writeline("INFO: Netpoint_Authentication_Profile started");
      &logfile.Writeline(String(%Datetime));
      &logfile.Writeline("authMethod: "&authMethod));
      End-If;
      If %PSAuthResult = True And
         &authMethod <> "LDAP" And
         &authMethod <> "COREID" And
         &authMethod <> "SSO" Then
         If &logfile.Isopen then
            &logfile.Writeline("INFO: AuthResult and AuthMethod ok.");
            End-If;
            getWWWAuthConfig();
            If &logfile.Isopen then
               &logfile.Writeline("INFO: After get wwwauthconfig.");
               &logfile.Writeline(&defaultUserId);
               End-If;
               If %SignonUserId = &defaultUserId Then
                  If &logfile.Isopen then
                     &logfile.Writeline("INFO: %SignonUserId = &defaultUserId ");
                     End-If;
                     &userID = %Request.GetHeader("PS_SSO_UID");
                     If &logfile.Isopen then
                        &logfile.Writeline("INFO: After getting HTTPheader");
                        &logfile.Writeline(&userId);
                        End-If;
                        If &userID <> "" Then
                           If &bConfigRead=False then
eatLDAPConfig();
                           If &logfile.Isopen then
                              &logfile.Writeline("INFO: After getLDAPConfig()");
                              &logfile.Writeline(&user ID);
                              End-If;
                              &GlobalUserID=&userID;
                             If &logfile.Isopen then
```
configured single signoff

Integrating PeopleSoft

5. Configure PeopleSoft to execute the function in the previous step when a user tries to access PeopleSoft pages.

To do this, modify the Signon PeopleCode function, enable the function in the previous step, and disable all other functions.

6. Restart the PeopleSoft Application Server and the PeopleSoft HTTP Server.

Configuring Single Signoff

The following procedure describes how to configure single signoff for PeopleSoft.

To configure single signoff for PeopleSoft

1. On the Web server where PIA is installed, locate and open signin.html.
2. Copy signin.html to a file named signout.html.
3. Open signout.html in an editor and add the following information to it:

```html
<HEAD>
<meta HTTP-EQUIV='Refresh' CONTENT='1; URL=http://<Peoplesoft Web Server>/<Virtual PATH not protected by Access Manager>/logout.html'>
</HEAD>
</HTML>
```
4. Place the file logout.html that is provided with your Oracle Access Manager installation in a virtual path that is not protected by a WebGate.

The following is the default path:

\textit{Policy_Manager_install_dir/access/oblix/lang/en-us/logout.html}

Where \textit{Policy_Manager_install_dir} is the directory where the Policy Manager is installed.

The file contains Javascript that deletes the obTEMC cookie. See the appendix on configuring logout in the \textit{Oracle Access Manager Access System Administration Guide} for details.

5. In your browser, in PIA, select PeopleTools, then select Web Profile, Web Profile Configuration, Look and Feel.

6. In the Signon/Logout Pages group box, change the value of the Logout Page field to signout.html.
Oracle E-Business Suite is a comprehensive suite of business applications for the enterprise. It includes applications such as the following:

- Customer relationship management, interaction center
- Financials, contracts, sales, service, order management, marketing, product lifecycle management
- Logistics, transportation management, maintenance, manufacturing
- Intelligence, learning management, customer data management, corporate performance
- Supply chain execution, supply chain management, supply chain planning, procurement
- Human resources

This chapter describes using Oracle Access Manager to manage user authentication and authorization when a user logs in to Oracle eBusiness Suite.

This chapter covers the following topics:

- About the Integration with Oracle eBusiness Suite

About the Integration with Oracle eBusiness Suite

This integration enables single sign-on between Oracle Access Manager and Oracle e-Business Suite applications. It requires the following components:

- Configuring single sign-on between OracleAS Single Sign-On and Oracle Access Manager
- Configuring single sign-on between OracleAS Single Sign-On and Oracle e-Business Suite applications

Note that OracleAS Single Sign-On requires Oracle Internet Directory (OID) as its identity store. You can also use OID with Oracle Access Manager. See the [Oracle Access Manager Installation Guide](#). However, you can configure OID for OracleAS Single Sign-On and use a different identity store for Oracle Access Manager. If different directories are used, you will need to ensure that the identities for Oracle e-Business Suite applications are kept in sync in the directories. There must be a unique identifier that can link a single user entry in both directories.

For information on integrating Oracle Access Manager and OracleAS Single Sign-On, see "Integrating with Oracle Application Servers" on page 4-1.
For information on integrating OracleAS Single Sign-On and the Oracle e-Business Suite, see Metalink article 261914.1 on Metalink, as follows.

To find an article on Metalink

1. Go to the following URL:

 https://metalink.oracle.com

2. Click the Knowledge tab.

3. In the Quick Find menu, select Knowledge Base and enter the article number in the associated entry field.
Part II
Integration with Third-Party Applications

This part provides all the information you need to successfully integrate Oracle Access Manager with several third-party applications.

Part II contains the following chapters:

- Chapter 9, "Integrating the Security Provider for WebLogic SSPI"
- Chapter 10, "Integrating with IBM WebSphere"
- Chapter 11, "Integrating Plumtree Corporate Portal"
- Chapter 12, "Integrating mySAP Applications"
- Chapter 13, "Integrating the RSA SecurID Authentication Plug-In"
- Chapter 14, "Integrating Smart Card Authentication"
- Chapter 15, "Integrating SharePoint Portal Server"
- Chapter 17, "Integrating With the Content Management Server"
Integrating the Security Provider for WebLogic SSPI

This chapter describes how to use Oracle Access Manager with BEA WebLogic running in a Security Service Provider Interface (SSPI) implementation. WebLogic provides an environment for creating, integrating, securing, and managing distributed Java applications. The Security Provider for WebLogic SSPI (Security Provider) ensures that only appropriate users and groups can access Oracle Access Manager-protected WebLogic resources to perform specific operations. The Security Provider also enables you to configure single sign-on between Oracle Access Manager and WebLogic resources.

This chapter covers the following topics:

- About the Security Provider
- Integration Architecture
- Supported Versions and Platforms
- Online Assistance
- Installing and Configuring the Security Provider
- Configuring Single Sign-On for the Portal Server
- Authorization Data from an External Source
- Audit Files
- Debug Log Files
- User Creation/Deletion and Group Creation
- Configuration Files
- Implementation Notes for Active Directory
- Tips
- References
- Troubleshooting the Security Provider for WebLogic
- Additional Resources

About the Security Provider

The Security Provider for WebLogic SSPI provides authentication, authorization, and single sign-on across J2EE applications that are deployed in the BEA WebLogic...
About the Security Provider

platform. The Security Provider enables WebLogic administrators to use Oracle Access Manager to control user access to business applications.

The Security Provider provides authentication to BEA WebLogic Portal resources and supports single sign-on between Oracle Access Manager and BEA WebLogic Portal Web applications. Apart from this, the Security Provider also offers user and group management functions.

Note: The integration with WebLogic supports only one policy domain. All WebLogic policies must reside in this single policy domain.

WebLogic and Oracle Access Manager Integration Points

The WebLogic security framework provides Security Service Provider Interfaces (SSPIs) to protect J2EE applications. The Security Provider takes advantage of these SSPIs, enabling you to use Oracle Access Manager to protect WebLogic resources via:

- User authentication
- User authorization
- Role mapping

The Security Provider consists of several individual providers, each of which enables a specific Oracle Access Manager function for WebLogic users:

Authenticator: This security provider uses Oracle Access Manager authentication services to authenticate users who access WebLogic applications. Users are authenticated based on their credentials, such as user name and password.

The security provider also offers user and group management functions. It enables the creation and deletion of users and groups from the BEA WebLogic Application Server. It also provides single sign-on between WebGates and portals.

Identity Asserter: Like the Authenticator, this security provider uses Oracle Access Manager authentication services to validate already-authenticated Oracle Access Manager users using the ObSSOCookie and to create a WebLogic-authenticated session.

Whether you use the Authenticator or the Identity Asserter depends on your deployment scenario. See "Integration Architecture" on page 9-3 for details.

Authorizer: This security provider uses Oracle Access Manager authorization services to authorize users who are accessing a protected resource. The authorization is based on Oracle Access Manager policies.

Role Mapper: This security provider returns security roles for a user. These roles are defined in Oracle Access Manager, and they are provided by Oracle Access Manager using return actions on a special authentication policy. This authentication policy contains a resource with a URL prefix of /Authen/Roles. Role Mapper maps these roles to predefined security roles in WebLogic.

Deployment Provider: This security provider monitors the applications that are deployed or undeployed on the WebLogic Server and writes information about these applications to either NetPointDeployPolicy.txt or NetPointUndeployPolicy.txt. The files store details about the resources, like resource type, Role names to which access is allowed and the like. Details will vary based on the type of the resource. The NetPointPolicyDeployer tool uses these files to create access policies in the Policy Manager.
A special authorization rule for administrators in Oracle Access Manager provides access to the WebLogic applications described in NetPointDeployPolicy.txt. This means that the policies created by the NetPointPolicyDeployer tool in the Policy Manager will have authorization rules in which only administrator have allow access rights.

Integration Architecture

With the Security Provider, you can use Oracle Access Manager to protect WebLogic resources, including Web applications, EJBs, JNDIs, and so on. You can configure single sign-on for Web applications, such that a user who has authenticated to WebLogic can access Oracle Access Manager-protected resources (including WebLogic and non-WebLogic resources) without re-authentication. You can also configure single sign-on such that a user who has authenticated to Oracle Access Manager can access WebLogic resources without re-authentication.

Note: With the WebLogic Portal Server, the Security Provider is used only to provide authentication to WebLogic resources. Role Mapping and Authorization are taken care by the Portal Server. Therefore, the Authorizer and Role Mapper must not be configured in NetPointRealm.

The following applies only to the WebLogic Application Server. For Portal Server authentication, see "Authentication for the Portal" on page 9-7.

You can use the integration with WebLogic in the following ways:

- To provide authentication for mixed Web and non-Web resources:

 This scenario assumes that the environment configuration does not use a proxy server running a WebGate. In this scenario, you protect resources in Oracle Access Manager using username and password authentication. This method can be used to protect both HTTP resources on the Web and to protect resources such as EJBs, JNDIs, and other types of applications. In this type of scenario, all J2EE Web application deployment descriptors must be configured to be BASIC or FORM. This method requires use of the Authenticator service provider.

 See "Authentication for Mixed Web and Non-Web Resources" on page 9-4 for details.

- To provide authentication for Web resources only using a proxy server with WebGate installed:

 In this scenario, you protect resources using a variety of authentication schemes, such as form, SecurID, and so on. For this type of authentication to work, all J2EE Web applications must have an authen-method deployment descriptor configured to CLIENT-CERT. This configuration uses the Identity Assertion security provider, where authentication is performed based on an external token (in this case, the ObSSOCookie). See "Authentication for Web-Only Resources" on page 9-6 for details.

 WebGate protects only Web resources (HTTP). When a user attempts access to a Web resource protected by WebGate:

 - WebGate queries the Access Server, which authenticates and authorizes access to the Web resource.
 - WebGate sets the ObSSOCookie in the HTTP header.
The Identity Asserter (authentication provider) reads the ObSSOCookie and sets the Subject. The Subject remains until the user session expires. Further authentication is not required to access any type of resource.

Non-Web applications must use the Authenticator service provider rather than the Identity Assertion security provider. When Web resource accesses include mixed resources such as JNDI internally, the Authorization Provider handles access decisions.

A WebGate is a Web server plug-in access client that intercepts HTTP requests for Web resources and forwards them to the Access Server for authentication and authorization. An AccessGate is a form of access client that processes requests for Web and non-Web resources (non-HTTP) from users or applications.

With this integration, whether you have Web resources, non-Web resources, or a mix of Web and non-Web resources the question of which component performs authentication is based on the type of deployment. For example:

- WebGate comes into play when you have a WebLogic proxy installed and resources deployed on the WebLogic Application Server are accessed through it.
- For non-Web resources, only the Authenticator is involved (the Identity Asserter is not used at all).
- When you have a mix of Web and non-Web resources, the resource is authenticated by either the Authenticator or the Identity Asserter based upon your deployment descriptor settings.

After the user is authenticated a session is created and the Subject is set in the request context. Subsequent access to non-Web resources will not require authentication until the user session expires. For more information on this scenario, see "Authentication for Mixed Web and Non-Web Resources" next.

Authentication for Mixed Web and Non-Web Resources

In this scenario, WebLogic resources, including both Web and non-Web applications, are protected using Oracle Access Manager authentication and authorization schemes. The J2EE Web applications have been configured with deployment descriptors for basic or form authentication. The Identity Asserter need not be configured. The ObSSOCookie is required to achieve the SSO functionality between Web resources. AccessGate generates the ObSSOCookie when the user is authenticated, and AccessGate handles all the communications between the Security Provider and the Access Server. AccessGate processes the ObSSOCookie and sets it in the HTTP header. The Security Provider then uses this cookie and authenticates and authorizes the user.
Process overview: User authentication, mixed resource types
1. A user attempts to access a Oracle Access Manager-protected WebLogic resource.
2. The WebLogic Server challenges the user for a username and password (not Oracle Access Manager) using a predefined WebLogic login form because the application’s deployment descriptor requires authentication from the container.
 You may use your own login form, which must be customized for WebLogic as described in "Adding Authentication Methods to web.xml" on page 9-37.
3. The WebLogic Server forwards the username and password to the Security Provider for authentication and authorization.
4. The Authentication Provider uses the AccessGate to communicate with the Access Server to verify the user’s identity.
5. If authentication is successful, the Role Mapping Provider uses the AccessGate to communicate with the Access Server to determine what Oracle Access Manager-defined roles are assigned to this user. These roles are mapped to security roles in WebLogic. In Oracle Access Manager, these roles are configured as a return action when getting an authorization policy for /Authen/Roles. The return actions can be configured in two ways:
 - Static: By entering constant values for name and return value.
 - Dynamic: By configuring a user profile attribute as the return value.
6. The Authorization Provider uses the AccessGate to ask the Access Server to verify that the user has permission to access the requested resource.
 The policies that protect resources are specified in the Policy Manager application in Oracle Access Manager. Policies that are defined in web.xml are not be honored when the Oracle Access Manager’s NetPoint Authorization Provider is in effect. This provider supports retrieving external data for authorization. See "Authorization Data from an External Source" on page 9-40 for details.
7. If authorization is successful, the WebLogic Server enables the user to access the requested resource. The ObSSOCookie is set so that when the user attempts to access additional Oracle Access Manager-protected non-WebLogic resources, reauthentication is not performed.

In this scenario, if the ObSSOCookie is already set and the user has logged in using form-based authentication, the user is logged in without being challenged. You can
configure this type of integration by providing additional logic as illustrated in the sample file WebLogic login.jsp. You provide the additional logic in a file called NetPointSSO.jsp, which is provided in the installation directory.

Note: When any WebLogic resource is requested, control goes to WebLogic Server and the login page of the application is launched. The Authenticator comes into play only after the login page is submitted. You need to modify JSP only if the ObSSOCookie is set already.

For details about the ObSSOCookie, see the Oracle Access Manager Access System Administration Guide.

Authentication for Web-Only Resources

In this scenario, all types of authentication schemes supported by Oracle Access Manager can be used, including those that require identity assertion (also called perimeter authentication), using the ObSSOCookie as the basis of the authentication. A proxy server running WebGate is installed to protect the WebLogic Server. The WebGate performs all of the authentications and authorizations. Identity assertion is used for authenticating Web applications in WebLogic.

This scenario only supports Web applications.

Figure 9–2 Security Provider Scenario for Client Cert Authentication

Process overview: User authentication, Web-only applications

1. A user attempts to access an Oracle Access Manager-protected Web application that is deployed on the WebLogic server.

 The application has an authen-method deployment descriptor configured to CLIENT-CERT.

2. WebGate intercepts the request and queries the Access Server to check if the resource is protected.

3. If the resource is protected, WebGate challenges the user for credentials based on the type of Oracle Access Manager authentication scheme configured for the resource.
4. The user presents credentials such as user name and password, or a certificate.

5. If the user authenticates successfully, WebGate generates an ObSSOCookie, appends this in an HTTP header; the Web server forwards this HTTP request to the WebLogic proxy plug-in which forwards the request to the WebLogic server. In this case, the HTTP response object is set in the header, not in the ObSSOCookie.

6. The WebLogic proxy plug-in passes the cookie in the HTTP header to the WebLogic Server.

7. The WebLogic Server's security service invokes the Identity Assertion Provider. The Identity Assertion Provider expects the ObSSOCookie as an external token for validating the user. The Asserter sets the cookie in the HTTP response object once it validates the token.

8. The Identity Assertion Provider extracts the ObSSOCookie information from the HTTP header, validates the ObSSOCookie, and retrieves the user identity from the Access Server using a return action defined in a special authentication scheme in Oracle Access Manager. A resource with the URL Prefix /Authen/Basic is protected by Oracle Access Manager and is used by the Security Provider SSPI connector internally to authenticate users.

9. The remaining steps are the same as for "Process overview: User authentication, mixed resource types" on page 9-5, step 5 - step 7.

Authentication for the Portal

Oracle Access Manager 10g (10.1.4.0.1) supports integration with the WebLogic Portal Server.

The following scenario assumes that the environment configuration does not use a proxy Server running a WebGate. In this scenario, the resource is not required to be a Oracle Access Manager-protected resource because the Security Provider does not participate in authorizing access to Portal Server resources.

The Security Provider internally authenticates the resource against the configured resource /Authen/Basic. The Portal application needs to be an application protected by WebLogic with username and password authentication.

As mentioned earlier, when a request is made for any of the resources deployed on WebLogic Server, control goes to WebLogic Server which in turn launches the login page for the application. In the case of the Portal Server, Oracle does not implement the Authorization Provider and therefore does not have access to the HTTP response object. As a result, Oracle Access Manager is not be able to set the ObSSOCookie once a user is authenticated. Instead the Security Provider uses its own login filter and you need to modify the JSPs. For more information, see "Process overview: User authentication for the Portal" on page 9-8.
Process overview: User authentication for the Portal

1. A user attempts to access a WebLogic resource that is protected by Oracle Access Manager.
2. The WebLogic Server challenges the user for username and password.
3. The WebLogic Server forwards the username and password to the Security Provider for authentication.
4. The Authentication Provider uses the AccessGate to communicate with the Access Server to verify the user’s identity.

 If authentication is successful, the Authentication Provider sets the subject correctly and passes control to WebLogic for Role Mapping and Authorization.
5. WebLogic displays the Portal application, on the basis of the authorization granted to the various portlets, etc. in the Portal Application.

Single sign-on: Single sign-on between Oracle Access Manager-protected non-WebLogic resources to WebLogic Resources and vice-versa can be achieved for Portal Web Applications that are authenticated using a login portlet.

To achieve this, additional logic must be added in form of NetpointPortalSSO.jsp to the login jsp used by the login portlet, and the POST action of the login form must be configured to invoke the Oracle Access Manager login filter class. For single sign-on setup details are given in section, see “Configuring Single Sign-On for the Portal Server” on page 9-36.

Process overview: Single sign-on between Oracle Access Manager-protected non-WebLogic resources to WebLogic resources

1. A user accesses Oracle Access Manager-protected non-WebLogic resources and the ObSSOCookie is set.
2. A user accesses a WebLogic resource.
3. The NetpointPortalSSO.jsp, which is included as a part of login jsp, intercepts the ObSSOCookie and authenticates using the ObSSOCookie.

 In this case login form present in login jsp is not displayed.
4. WebLogic authorizes the resources in the Portal Application.
Process overview: Single sign-on between WebLogic resources to Oracle Access Manager-protected non-WebLogic resources

1. A user tries to access a WebLogic resource.

2. The NetpointPortalSSO.jsp, which is included as a part of login jsp, checks for the ObSSOCookie.

 In this case, no cookie is set and the login form present in login jsp is displayed. Authentication occurs using the user login credentials supplied in login.jsp.

3. The user enters their credentials in the login form; the credentials get posted to a Login Filter (ObLoginFilter configured in web.xml).

4. The Login Filter (ObLoginFilter) authenticates the user with Access Manager SDK; if authentication is successful, the Login Filter sets the ObSSOCookie and redirects to the main resource.

 Authentication is not done using WebLogic authentication.

5. The control reaches to login jsp.

 With the ObSSOCookie set, the flow mentioned in "Process overview: Single sign-on between Oracle Access Manager-protected non-WebLogic resources to WebLogic resources" on page 9-8 is followed and WebLogic Portal is accessed.

6. The user accesses Oracle Access Manager-protected non-WebLogic resources with the ObSSOCookie set and no re-authentication performed.

Supported Versions and Platforms

Any references to specific versions and platforms in this chapter are made for demonstration purposes.

To see the supported versions and platforms for this integration refer to Metalink, as follows.

To view information on Metalink

1. Go to the following URL:

 http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.

5. Choose Oracle Application Server and click Submit.

Online Assistance

Information about installing and configuring the components required for integration of Oracle Access Manager and WebLogic is provided in the following sections of this chapter and in a readme file. For access to the readme, go to:

Security_Provider_install_dir

where Security_Provider_install_dir is the directory where the Security Provider for WebLogic SSPI is installed.
Installing and Configuring the Security Provider

The following sections provide the information needed to install and configure the Security Provider.

Tip: For information on upgrading this integration, see the *Oracle Access Manager Upgrade Guide*.

Preparing the Environment

Before you install Security Provider for WebLogic, you must complete the following tasks:

Task overview: Before installing the Security Provider for WebLogic

1. Install and set up the WebLogic Application/Portal Server as described in your vendor documentation.

 Note: Oracle Access Manager supports integration with the WebLogic Portal Server.

2. Be sure you are using JDK 1.4.

3. Install and set up Oracle Access Manager, as described in the *Oracle Access Manager Installation Guide*, then:

 In the Access System Console, add an AccessGate and associate it with the Access Server that you installed.

 Add and associate an AccessGate with an Access Server for the Security Provider. You may want to name the AccessGate accordingly; for example, WebLogicProvider.

 Note: If you are going to use the deployment tool discussed in "Running the NetPoint Policy Deployer" on page 9-18, you must turn on the Access Management Service for the AccessGate, as well as all Access Servers associated with the AccessGate.

4. Create a user in the Identity System who is a WebLogic administrator and give this person delegated administrative rights. See the chapter on policy domains in the *Oracle Access Manager Access System Administration Guide* for details.

5. Install Security Provider as described in "Installing the Security Provider" on page 9-10.

Installing the Security Provider

The installation procedure depends on the platform on which you are installing Oracle Access Manager. The following example occurs on a Windows system. However, installation is the same after you launch the installation package for your platform.

To install the Security Provider for WebLogic

1. Locate and launch the Security Provider installation package. For example:

 Oracle_Access_Manager10_1_4_0_1_Win32_BEAWL_SSPI

 The install wizard launches and the Welcome screen appears.
If the AccessGate fails during installation, you can run the tool configureAccessGate after installation, which is located in:

```
Security_Provider_install_dir\oblix\tools\configureaccessgate
```

where `Security_Provider_install_dir` is the directory where the Security Provider for WebLogic SSPI is installed. See the Oracle Access Manager Access System Administration Guide for information on AccessGates and the configureAccessGate tool.

2. On the Welcome screen, click Next.

3. Confirm that you are logged in as a user with administrative rights, then click Next.

4. Select an installation directory and click Next.

5. View the confirmation screen and click Next.

 A set of files are installed. When the installer has completed, you are prompted as to whether you want a Typical or Advanced installation.

6. Select Typical or Advanced and click Next.

7. Continue with the procedure that is appropriate for your environment:
 - "Completing a Typical Installation" on page 9-11.
 - "Completing Advanced Installation" on page 9-12.

Completing a Typical Installation

Typical installations supply default values for the Security Provider configuration.

A typical installation prompts you for a transport security mode. The transport security mode that you select for the Security Provider must match the transport security mode for the Access Server. Information on the prompts for installing in simple and certificate mode are available in the Oracle Access Manager Installation Guide. The prompts for configuring the transport security mode for the Security Provider are similar to those presented when installing any other Oracle Access Manager component.

To finish a typical installation

1. **Complete the WebPass details, as follows:**
 a. Enter the hostname where webpass is installed.
 b. Enter the webpass port number.
 c. Indicate whether the webpass is protected by a webgate.

 You complete step 2 when the WebPass is protected by a WebGate. Otherwise, proceed to step 3. If you have chosen to use WebGate to protect WebPass, the assumption is that you are protecting the Oracle Access Manager applications with policy domains. Therefore, it is also assumed that single sign-on between these components has been configured correctly.

2. **WebPass Protected by WebGate:** Complete the following steps.
 a. Enter the cookie domain for the WebGate (for example, .domain.com). The ObSSOCookie is then recognized by all servers within this domain.
 b. Enter the cookie path (/).

3. Complete directory-specific information, as follows:
a. Specify whether WebPass requires an HTTPS connection.
 This is the SSL for secure connection when WebPass runs on HTTPS.

b. Specify the user attribute.
 This attribute must be the same as the attribute configured for the Login
 semantic type in the Identity Server or a unique attribute in the user’s profile
 such as uid.

c. Specify the user search attribute.
 This attribute must be the same as the attribute configured for the DN Prefix
 semantic type for the person object class in the Identity System. The person
 object class type must a structural object class. The administrator of your
 directory server sets this search attribute. The user attribute and the user
 search attribute cannot be the same.

d. Specify the group search attribute.
 This attribute must be the same as the attribute configured for the DN Prefix
 semantic type for the group object class in the Identity System. The group
 object class a structural object class. The administrator of your directory server
 sets the group search attribute.

4. Select a transport security mode:
 - **Open**: If you select open mode, all data is in plain text.
 - **Simple**: If you select simple mode, you are prompted to supply a global pass
 phrase. As in Cert mode, you secure the private key with a Privacy Enhanced
 Mail (PEM) pass phrase. Before an AccessGate or Access Server can use a
 private key, it must have the correct PEM pass phrase. The PEM pass phrase is
 stored in a encrypted file called password.lst. For Simple mode, the PEM pass
 phrase is the same for each WebGate and Access Server instance.
 - **Cert**: If you select cert mode, you are prompted to supply a global pass phrase.
 You are then asked if you wish to request a certificate or install a certificate.

5. Supply information regarding the AccessGate and Access Server that you have
 installed.

6. Review the readme that appears.
 The information in this readme is covered in this chapter also.

7. Confirm the installation.

8. Continue with "Setting Up WebLogic Policies in Oracle Access Manager" on
 page 9-14.

Completing Advanced Installation

Advanced installation permits you to override the default configuration. All the
configuration options that you can set in an advanced installation are provided in the
sample configuration file described in "NetPointProvidersConfig.properties" on
page 9-44. This gives you the opportunity to customize your installation, which can be
useful if you have configured several versions of the Security Provider authentication
and authorization schemes.
To finish an advanced installation

1. Complete the screen subtitled "Oracle Security Provider" to use a special policy to authenticate users in WebLogic. Specify the following:
 - **Resource Type**: This is the name of a resource type used by the Security Provider to authenticate users.
 See "To configure the WebLogic resource types" on page 9-15 for details.
 - **Resource Name**: This is the URL prefix for the resource used by the Security Provider to authenticate users.
 See "To add resources to the domain in Oracle Access Manager" on page 9-22 for details.
 - **Resource Name used for Anonymous Access**: This is the URL prefix for the resource used when allowing anonymous access to certain resources.
 See "To add resources to the domain in Oracle Access Manager" on page 9-22 for details.
 - **Resource operation**: This is the operation specified on the resource type definition.
 The operation is performed to authenticate users.
 - **Login Parameter for credential_mapping Plug-in of Authentication Scheme**: See "To create authentication schemes for WebLogic" on page 9-16 for details.
 - **Password Parameter User for password_validation Plug-in of Authentication Scheme**: See "To create authentication schemes for WebLogic" on page 9-16 for details.
 - **Action Type**: Action is configured to get the login ID from the ObSSOCookie. This is the action configured on the authorization rule.
 See "To add authorization and authentication rules to the domain" on page 9-23 for details.
 - **Action Name**: Action is configured to get the login ID from the ObSSOCookie.
 See "To add authorization and authentication rules to the domain" on page 9-23 for details.
 - **Dummy Username**: For Form Login with SSO when there is No WebGate on Proxy HTTP Server.
 This is used if you are protecting both Web and non-Web resources and you are using form login. If the login.jsp is modified to include NetPointSSO.jsp, and the user has already logged in to an Oracle Access Manager-protected resource, the user has received a token. The next time the user tries to access a protected resource, Oracle Access Manager uses the dummy user name as the user name and the token is used as the password. The default is obdummyuser. Oracle recommends that you use the default name.

Note: Do not attempt an advanced installation unless you are familiar with creating policy domains and policies in Oracle Access Manager and have run though at least one typical installation of the Security Provider.
Installing and Configuring the Security Provider

1. WebLogic resource types used for web applications (comma separated):
 These are the resource types that WebLogic uses for Web applications.
 See "Mapping WebLogic Resources to Oracle Access Manager Resources" on page 9-27 for details.

2. Complete the screen subtitled "Oracle Security Provider" to use a special policy to get roles for a user.
 Specify the following configuration to set up this policy:
 - TTL (time to live) of elements in roles cache: This is the amount of time the action is preserved in the cache.
 - Time to delete expired elements of cache (in seconds): This is the time interval for freeing the memory used for expired elements in the cache.
 - Resource type: This is the name of a resource type used by the Security Provider to get roles. See "To configure the WebLogic resource types" on page 9-15 for details.
 - Resource name: This is the URL prefix for the resource used by the Security Provider to get roles. See "To add resources to the domain in Oracle Access Manager" on page 9-22 for details.
 - Resource operation: This is the operation specified on the resource type definition. The operation is performed to authenticate users.
 - Action Type in authorization rule to get roles: This is the action configured on the authorization rule to get user roles. See "To add authorization and authentication rules to the domain" on page 9-23 for details.

3. Complete the screen, "Configuration for Oracle Security Provider for WebLogic":
 - Default access to resources not protected by Oracle Access Manager (deny, allow, abstain): Allow grants access, deny forbids it. Abstain means that if there are multiple security providers, WebLogic goes to the next security provider to decide what to do.
 - Map the authorization result ABSTAIN to (allow, deny): A result of abstain can be automatically reset to allow or deny.
 - Set debugging: Debug logs are written to the WebLogic log file.

4. Finish the installation by completing the steps described in "Completing a Typical Installation" on page 9-11.

Setting Up WebLogic Policies in Oracle Access Manager

After installing Oracle Access Manager and WebLogic, you need to define Oracle Access Manager policy domains that provide a method for protecting WebLogic applications. The basics of defining a policy domain are:

- Creating resource types: This enables Oracle Access Manager to identify the kinds of WebLogic resources that it should protect and the operations (such as GET) associated with the resource.
- Creating authentication schemes: This enables Oracle Access Manager to verify user identities.
- Creating authorization schemes: This enables Oracle Access Manager to grant users access to the resources that you have defined.
Installing and Configuring the Security Provider

Creating a policy domain: This creates a container for your WebLogic-related policies.

Creating policies: These are directives for protecting specific WebLogic resources. Policies are an amalgam of resource type definitions, URLs identifying the resource locations, and the authentication and authorization schemes to apply when users access the resources.

The first step in setting up a policy domain is to define your resources and authentication schemes. These tasks are discussed in the following sections, which assume a basic knowledge of Oracle Access Manager. The Oracle Access Manager Access System Administration Guide provides details on tasks described in the following sections.

Note: The resource type `wl_svr` described in this document is available if you want to protect access to starting and stopping the WebLogic server. To do this, you can define a policy (as described in "To create policies for the domain" on page 9-25) that uses this resource type. You can find the information you need for this policy in the `isAccessAllowed` entries in the debug logs that contain the string `<svr>`. Note that you must create this policy manually. The deployment tool provided with the Oracle Access Manager Security Provider does not create this policy for you. Also, the resource type `wl_ejb` is used when you deploy EJB applications. You can create policies that use this type of resource manually, or you can use the deployer tool to create these policies.

To configure the WebLogic resource types

1. From the Access System Console, click the Access System Configuration tab, then click Common Information Configuration, Resource Type Definitions.

 The List All Resource Types page appears.

2. From the List All Resource Types page, click Add.

 The Define a new Resource Type page appears.

3. Define and save the first resource type:
 - **Name:** `wl_url`
 - **Display name:** `wl_url`
 - **Resource matching:** case insensitive
 - **Resource operation:** GET
 - **Resource operation (second):** POST

4. Define and save the second resource type:
 - **Name:** `wl_svr`
 - **Display name:** `wl_svr`
 - **Resource matching:** case insensitive
 - **Resource operation:** BOOT
 - **Resource operation (second):** DEFAULT

5. Define and save the third resource type:
Third resource:
Name: wl_adm
Display name: wl_adm
Resource matching: case insensitive
Resource operation: DEFAULT

6. Define and save the fourth resource type:
 Name: wl_ejb
 Display name: wl_ejb
 Resource matching: case insensitive
 Resource operation: EXECUTE

7. Define and save the fifth resource type:
 Name: wl_authen
 Display name: wl_authen
 Resource matching: case insensitive
 Resource operation: LOGIN

8. Define and save the sixth resource type:
 Name: http
 Display name: http
 Resource matching: case insensitive
 Resource operation: GET
 Resource operation: POST
 Resource operation: PUT
 Resource operation: HEAD
 Resource operation: DELETE
 Resource operation: TRACE
 Resource operation: OPTIONS
 Resource operation: CONNECT
 Resource operation: OTHER

To create authentication schemes for WebLogic
1. From the Access System Console, click Access System Configuration,
 Authentication Management, Add.

2. Create the first authentication scheme to be used by the Security Provider to
 authenticate users, as follows (which uses the Oracle Access and Identity
 authentication scheme as a template).
 a. Configure the General tab:
 Name: Oracle WebLogic Access and Identity authentication scheme
 Description: Used to authenticate users who access WebLogic resources.
 Level: 1
Challenge Method: Basic

Challenge Parameter: realm:Oracle Access and Identity

SSL Required: No

Challenge Redirect: (Leave blank)

Enabled: (Leave as is)

Note: The realm: string on the challenge parameter is required. The text after this parameter can be configured. Also, in the Name field, the 'I' in WebLogic must be lowercase to match the name in a NetPointWeblogicTools.properties file that is part of the integration solution. In general, the name of this authentication scheme should be identical (with case sensitivity) to the ObWLAuthenticationScheme.Name parameter in the NetPointWeblogicTools.properties file.

b. Save the information on the General tab by clicking Save.

c. Click the Plugins tab, and use the credential_mapping and validate_password plugins from the existing Oracle Access Manager authentication schemes. In the credential_mapping plug-in, be sure the mapping base and mapping filter use objects that are specific to your environment. Examples:

```plaintext
credential_mapping
  obMappingBase="o=company,c=us",obMappingFilter="(&(objectclass=inetorgperson)(uid=%userid%))
  (|(!(obuseraccountcontrol=*)))
  (obuseraccountcontrol=ACTIVATED))"
validate_password obCredentialPassword="password"
```

where place-holders such as o=company,c=us, and inetorgperson are replaced with values that are valid for your organization.

After you create at least one plug-in, default steps and a default authentication flow are created automatically.

d. After creating a plug-in, you can enable the authentication scheme by clicking the General tab, Modify, selecting the Enable option, and clicking Save.

3. Create the second authentication scheme for un-protecting certain resources, such as gif images in WebLogic resources using the following details and the Anonymous authentication scheme as a template:

General tab:

Name: Oracle WebLogic Anonymous Authentication

Description: Used to un-protect gifs, and so on.

Level: 0

Challenge Method: Anonymous

Parameter: (Leave blank)

SSL Required: No

Challenge Redirect: (Leave blank)

Enabled: Yes
Installing and Configuring the Security Provider

Note: In the Name field, the 'T' in WebLogic must be lowercase to match the name in a NetPointWeblogicTools.properties file that is part of the integration solution. In general, the name of this authentication scheme should be identical (including case sensitivity) to the ObWLNoneAuthenticationScheme.Name parameter in the NetPointWeblogicTools.properties file.

Plugins tab:

Use the credential_mapping plug-in from the pre-configured Anonymous authentication schemes. In the credential_mapping plug-in, be sure the mapping base and mapping filter use objects that are specific to your environment. Use OblixAnonymous as the mapping filter. Example:

```plaintext
credential_mapping obMappingBase="o=company,c=us",obMappingFilter="(uid=OblixAnonymous)"
```

where place-holders such as o=company,c=us, and uid should be replaced with values appropriate for your environment.

4. Restart the Access Server.

You are now ready to create the following policies:

- **Basic Authentication Policy:** This policy is used internally to authenticate users by evaluating the user name and login. The policy protects resources with a URL prefix of /Authen/Basic.

- **Role-based Authentication Policy:** This policy gets user roles. This policy protects resources with a URL prefix of /Authen/Role.

- **Anonymous Authentication Policy:** This policy provides anonymous access to gifs, and other resources. This policy protects resources with a URL prefix of /Authen/Anonymous.

- **Anonymous Authentication Policy (second):** This policy enables anonymous access for users. This policy protects resources with a URL prefix of /Authen/Anonymous.

- **WebLogic Administrator Policy:** This policy enables access to the WebLogic administration console.

The Oracle-provided Policy Deployer (known as the NetPoint Policy Deployer) can automate this process, or you can create these policies manually.

5. Continue with one of the following discussions:

- "Running the NetPoint Policy Deployer" on page 9-18

- "Manually Configuring WebLogic Policies in Oracle Access Manager" on page 9-21

Running the NetPoint Policy Deployer

After you have created your resource types and authentication schemes, you can run the NetPoint Policy Deployer. This tool enables you to:

- Create the policy domain and policies during initial setup of the Security Provider for WebLogic.
This policy domain uses the resource type `wl_authen` created in "To configure the WebLogic resource types" on page 9-15.

- Create and delete policy domains and policies that protect WebLogic applications.

You need to run this tool at least once for initial setup. Afterwards, you can either manually create policies for applications deployed in WebLogic, or you can run this tool to automatically create them. Refer to the following procedures:

- To prepare for running the Policy Deployer Tool
- To run the Policy Deployer Tool for the first time
- To run the Policy Deployer after the first time

Note: If you do not want to use the Policy Deployer tool, you must manually configure WebLogic policies as described in "Manually Configuring WebLogic Policies in Oracle Access Manager" on page 9-21.

To prepare for running the Policy Deployer Tool

1. Add the following to CLASSPATH:
 - `Security_Provider_install_dir/oblix/tools/npWLTools`
 - `Security_Provider_install_dir/oblix/tools/npWLTools/npWLTools.jar`
 - `Security_Provider_install_dir/oblix/lib/jobaccess.jar`

2. Add the following:

   ```
   Security_Provider_install_dir/oblix/lib
   ```

 On Windows, you add this to the PATH. On Solaris, you add this to LD_LIBRARY_PATH. On HP-UX, you add this to SHLIB_PATH.

3. Ensure that the following configuration files are copied from `Security_Provider_install_dir` to the WebLogic domain directory:
 - `NetPointProvidersConfig.properties`

 See "NetPointProvidersConfig.properties" on page 9-44 for details.
 - `NetPointResourceMap.conf`

 See "Mapping WebLogic Resources to Oracle Access Manager Resources" on page 9-27 for details on configuring this file.

To run the Policy Deployer Tool for the first time

1. Review the following configuration file:

   ```
   Security_Provider_install_dir/oblix/tools/npWLTools/
   NetPointWeblogicTools.properties
   ```

 Where `Security_Provider_install_dir` is the directory where the Security Provider for WebLogic SSPI is installed.

 Be sure that `ObWLTools.setupInitialNetPointSSPIPolicies` is set to true (the default).

2. If you are running the WebLogic Web applications in Identity Assertion mode, configure the following parameters in the `NetPointWeblogicTools.properties` configuration file:
3. From the command line, enter the following:

 java com.oblix.weblogic.tools.NetPointPolicyDeployer userid password

 where userid and password belong to the login ID of the Master Oracle Access Manager Administrator. For all the policies that this tool creates, it initially grants access to this userID only. Use JDK 1.4 to ensure that this command works as expected.

4. Go to the Policy Manager and check if the policies are created.

 See "To create a policy domain in Oracle Access Manager" on page 9-22 for details on the policy domains and how they should be configured.

5. After running the tool, go to the Access System Console and provide the proper access to the policies that have been created.

 Note: Setting up security policies in Oracle Access Manager is only required for protection of resources deployed on the BEA WebLogic Application Server. The Security Provider only supports authentication for portals. If you are using the Security Provider in the portal domain, then only the policies required for authentication need to be created. These are created when you run the Policy Deployer for the first time with the ObWLTools.SetupInitialNetPointSSPIPolicies parameter set to true and the ObWLTools.DeployPolicy and ObWLTools.UnDeployPolicy parameters set to false in the NetPointWeblogicTools.properties file. Therefore, for the portal domain, you can ignore the procedure "To run the Policy Deployer Tool for the first time" on page 9-19.

6. Ensure that the policy domain that was just created is enabled in Oracle Access Manager.

7. In the Policy Manager, click My Policy Domains, then click the WebLogic policy domain.

 The status of the policy domain should be enabled.

8. If the status of the policy domain is not enabled, click Modify and enable it.

To run the Policy Deployer after the first time

1. Open the following configuration file:

 Security_Provider_install_dir/oblix/tools/npWLTools/

 NetPointWeblogicTools.properties

 where Security_Provider_install_dir is the directory where the Security Provider for WebLogic SSPI is installed.

2. Be sure that NetPointDeployPolicy.txt and NetPointUndeployPolicy.txt are in the WebLogic domain directory.

 NetPointDeployPolicy.txt is created when applications are deployed from the WebLogic server. NetPointUndeployPolicy.txt is created when applications are
undeployed from the WebLogic server. The Security Provider writes security policy data into this file when J2EE applications are deployed or undeployed. The Policy Deployer reads this file to create policies.

3. Set the following:
 - ObWLTools.SetupInitialNetPointSSPIPolicies=false
 - ObWLTools.DeployPolicy=true
 - ObWLTools.UnDeployPolicy=true

Note: If the tool completes successfully but there are no policies in the Oracle Access Manager Policy Manager, look in the NetPointDeployPolicy.txt file and the NetPointUnDeployPolicy.txt files to see if the following settings exist for the same resource:

ObWLTool.DeployPolicy=true, ObWLTool.UnDeployPolicy=true

This can cause the policies for the same resource to be created and deleted from the Oracle Access Manager Policy Manager.

If this occurs, set ObWLTool.DeployPolicy=true and ObWLTool.UnDeployPolicy=false while creating policies using the NetPointPolicyDeployer tool.

4. Follow step 2 - step 5 of "To run the Policy Deployer Tool for the first time" on page 9-19.

Manually Configuring WebLogic Policies in Oracle Access Manager

If you do not wish to use the Policy Deployer tool described in "Running the NetPoint Policy Deployer" on page 9-18, you can configure the policies manually in Oracle Access Manager.

Task overview: Manually configuring WebLogic Policies in Oracle Access Manager

1. Create a WebLogic policy domain, as described in "To create a policy domain in Oracle Access Manager" on page 9-22.

2. Add resources to the domain, as described in "To add resources to the domain in Oracle Access Manager" on page 9-22.

 Multiple resources can be defined for each resource type configured in "To configure the WebLogic resource types" on page 9-15. Resources provide URL prefixes under which various policies can be defined.

3. Add authorization and authentication rules to the domain, as described in "To add authorization and authentication rules to the domain" on page 9-23.

4. Define policies within the domain, as described in "To create policies for the domain" on page 9-25.

 The URL prefix in the resource and the URL pattern in the policy together form the definition of the data to be protected by the policy.
To create a policy domain in Oracle Access Manager

1. Log in to the Access System.
2. From the Policy Manager, click Create Policy Domain.
3. Define the following policy domain:
 - **Name**: SecuProvForWebLogic
 - **Description**: Policy domain for WebLogic resources.
4. Save this policy domain.

To add resources to the domain in Oracle Access Manager

1. From the Policy Manager, click My Policy domains and select the new policy domain.
2. Click the Resources tab for the policy domain.
3. Click add, then configure, and save the resource for user authentication:
 - **Resource type**: wl_authen
 - **URL prefix**: /Authen/Basic
 - **Description**: Resource used by the Security Provider to authenticate users.
 The resource type was defined in "To configure the WebLogic resource types" on page 9-15.
4. Click add, then configure, and save the resource for anonymous access:
 - **Resource type**: wl_authen
 - **URL prefix**: /Authen/Anonymous
 - **Description**: Resource used for anonymous authentication, where a session is created for anonymous users.
5. Click add, then configure, and save the resource for returning user roles:
 - **Resource type**: wl_authen
 - **URL prefix**: /Authen/Roles
 - **Description**: Resource used when the policy is configured to return roles that are mapped to security roles in WebLogic.
6. Click add, then configure, and save the resource for protecting the WebLogic administration console:
 - **Resource type**: wl_url
 - **URL prefix**: /console
 - **Description**: Optional. Protects the WebLogic administration console.
7. Click add, and save the resource for server administration:
 - **Resource type**: wl_svr
 - **URL prefix**: /servername
 - **Description**: Optional. Restricts access for users who perform server administration tasks, such as starting and stopping the server.
To add authorization and authentication rules to the domain

1. In the Policy Manager, add the resources that you defined in "To configure the WebLogic resource types" on page 9-15 to this policy domain. For example:

 Policy Manager, My Policy domains, policy_domain

 Next, you add authorization rules.

2. Click the Authorization Rules tab, click Add, and create the rule for administrators:

 General tab:

 Name: Authz rule for admin

 Description: Authorization rule for an administrator. This rule provides administrator access to WebLogic applications.

 Enabled: Yes

 Actions tab: Leave blank.

 Allow Access tab:

 People: Add users who are allowed to be WebLogic administrators.

3. Click Add, and create the rule for anonymous access:

 General tab:

 Name: Authz rule for anyone

 Description: Provides anonymous access to resources

 Enabled: Yes

 Actions tab: Leave blank.

 Allow Access tab:

 Role: Anyone

4. Click Add, and create the general rule for access:

 General tab:

 Name: Authz Rule for Authen

 Description: Returns the user ID from the ObSSOCookie using the return action configured on the Actions tab.

 Enabled: Yes

 Actions tab:

 Redirect to: Leave blank On Authorization Success

 Return Type: WL_REALM
Name: uid

Return Attribute: login ID attribute where this is the attribute in your directory for the user login ID.

On Authorization Failure Return: Leave blank

Allow Access tab:

Role: Anyone.

5. Click Add, and create the rule for returning the user WebLogic role:

General tab:

Name: Authz rule for role

Description: Returns the user's role. These roles are hard-coded on the return actions, and they match administrative roles in WebLogic.

Enabled: Yes

Actions tab:

Redirect to: Leave blank

On Authorization Success Return:

Type: WL_REALM

Name: role1

Return Value: Admin

Type: WL_REALM

Name: role2

Return Value: Operator

Type: WL_REALM

Name: role3

Return Value: Monitor

Type: WL_REALM

Name: role4

Return Value: Deployer

On Authorization Failure Return: Leave blank

Allow Access tab:

People: People who are allowed to be the WebLogic administrator.

Note: The WebLogic administration console requires the administrator to have certain roles. These are hard-coded on the return actions of Authz rule for role, defined in this step. As an alternative, you can allow access to everyone rather than just the administrator, and control access by using a return attribute such as a user profile attribute or a special attribute called obMyGroups that returns all the groups that a user belongs to.
6. Create a default authorization rule that allows anonymous access, as follows:
 b. Select the rule for anonymous access that you created in the previous step.
 This is the rule called Authz rule for anyone.
 c. Click Save.
 If no policy is evaluated, the default rule provides anonymous access to
everyone. This can be changed to meet the requirements of your environment.

7. Create a default rule that authenticates users for access to all resources that do not
fall under a specific policy, as follows:
 a. Click the Default Rules tab, Authentication Rule, Add.
 The General page appears.
 b. On this page, add the following default rule (or configure another one, if
 needed for your environment):
 Name: Oracle WebLogic Anonymous Authentication.
 Authentication scheme: Use the authentication scheme you created in "To
 create authentication schemes for WebLogic" on page 9-16.

To create policies for the domain
1. Create policies for this domain from the Policy Manager. For example:
 Policy Manager, policy_domain, Policies tab
2. Add the basic policy for this policy domain:
 General tab:
 Name: Basic authentication policy
 Description: Authentication using basic LDAP username and password.
 Resource type: wl_authen
 Resource operation: LOGIN
 Resource: /Authen/Basic

 Authentication Rule tab:
 Name: Basic authentication rule
 Authentication Scheme: Select the basic authentication scheme Oracle WebLogic
 Access and Identity that you created in "To create authentication schemes for
 WebLogic" on page 9-16.

 Authorization Rule tab: Add the rule Authz Rule for Authen that you created in
 "To add authorization and authentication rules to the domain" on page 9-23.

Note: If you are using identity assertion as the authentication
mechanism that protects Web applications, see the notes in "Preparing
the WebLogic Environment" on page 9-30 after configuring your
authentication policies.
3. Add the anonymous access policy for this policy domain:

 Policies, General tab:
 - **Name:** Anonymous authentication policy
 - **Description:** Authenticates anonymous users.
 - **Resource type:** wl_authen
 - **Resource operation:** LOGIN
 - **Resource:** /Authen/Anonymous

 Authentication Rule tab:
 - **Name:** Anonymous authentication rule
 - **Authentication Scheme:** Select the anonymous authentication scheme Oracle WebLogic Anonymous Authentication that you created in "To create authentication schemes for WebLogic" on page 9-16.

 Authorization Rule tab: Add the rule Authz rule for anyone that you created in "To add authorization and authentication rules to the domain" on page 9-23.

4. Add the user role policy for this policy domain:

 General tab:
 - **Name:** Role-based authentication policy
 - **Description:** Authenticates users and gets their WebLogic roles
 - **Resource type:** wl_authen
 - **Resource operation:** LOGIN
 - **Resource:** /Authen/Roles

 Authentication Rule tab:
 - **Name:** Role authentication rule
 - **Authentication Scheme:** Select the Oracle WebLogic Access and Identity rule that you created in See "To create authentication schemes for WebLogic" on page 9-16.

 Authorization Rule tab: Add the Authz rule for role that you created in "To add authorization and authentication rules to the domain" on page 9-23.

5. Add the "unprotect" policy for this policy domain:

 General tab:
 - **Name:** Unprotect policy for gifs and other files
 - **Description:** Allow anonymous access to gif files
 - **Resource type:** wl_url
 - **Resource operation:** GET,POST
 - **Resource:** all (if there are no resources defined, this defaults to all)
 - **URL pattern:** /.../*.gif

 Authentication Rule tab:
Name: WebLogic Domain Anonymous authentication rule

Authentication Scheme: Select the Oracle WebLogic anonymous authentication rule that you created in "To create authentication schemes for WebLogic" on page 9-16.

Authorization Rule tab: Add the Authz rule for anyone that you created in "To add authorization and authentication rules to the domain" on page 9-23.

6. Add the WebLogic administration console policy for this policy domain:

 General tab:

 Name: Policy for WebLogic admin console

 Description: Allow administrator access to the WebLogic admin console

 Resource type: wl_url

 Resource operation: GET

 Resource: /console

 Authentication Rule tab:

 Name: WebLogic Domain default authentication rule

 Authentication Scheme: Select the Oracle WebLogic Access and Identity rule that you created in "To create authentication schemes for WebLogic" on page 9-16.

 Authorization Rules tab: Add the Authz rule for admin that you created in "To add authorization and authentication rules to the domain" on page 9-23.

 For additional information, see the *Oracle Access Manager Access System Administration Guide*.

Mapping WebLogic Resources to Oracle Access Manager Resources

The NetPointResourceMap.conf file contains mappings of WebLogic resources to Oracle Access Manager resources. These mappings allow both products to recognize each other’s resource definitions. Oracle Access Manager recognizes only URLs, whereas each WebLogic resource has different set of elements associated with it. By mapping these resource elements to URLs and operations, all types of resources can be protected through Oracle Access Manager.

Note: The NetPointResourceMap.conf file is used only for the BEA Application Server integration, not for BEA Portal Server integration

After defining your Oracle Access Manager resources, policy domain, and so on, you need to be sure that the WebLogic resources that you want to protect will correspond to the resources that you defined in Oracle Access Manager.

To map WebLogic resources to Oracle Access Manager resources

1. Locate the NetPointResourceMap.conf file in the directory where the Security Provider is installed.
Installing and Configuring the Security Provider

2.

Review the format of this file in "NetPointResourceMap.conf File Format" on
page 9-28.

3.

Edit the file using information on Oracle Access Manager resource type definitions

4.

Continue with "Preparing the WebLogic Environment" on page 9-30.

NetPointResourceMap.conf File Format
Resources that have mapping entries in this file are the only ones protected. Resources
that do not have a mapping entry in this file are allowed access by default.
The format of entries in the NetPointResourceMap.conf file is as follows:
Weblogic Resource Type:Oracle Access Manager Resource Type:
enabled|disabled:URL prefix:URL pattern:Operation
where:
■
■

■

■

Weblogic Resource Type: The WebLogic resource type. For example: <url>.
Oracle Access Manager Resource Type: The Oracle Access Manager resource type
that is mapped to the WebLogic resource type. For example: wl_url.
enabled|disabled: If enabled, all resources of the specified WebLogic resource type
are protected by Oracle Access Manager. If disabled:
–

All users can access the resource if the status is disabled, allow.

–

No users can access the resource if the status is disabled, deny.

URL prefix: The WebLogic elements that form a Oracle Access Manager URL
prefix under which all resources are protected. This URL prefix is specified in a
Oracle Access Manager policy. Each element in the URL prefix is a type of
resource. For example, the following URL prefix can be used for EJBs:
application/module/ejb
where application and module are a specific WebLogic application and module.

■

URL pattern: The WebLogic elements that form a more granular Oracle Access
Manager URL pattern than is specified by a URL prefix. This pattern is specified in
an Oracle Access Manager policy. For example, to control access to users based on
a particular method, you would specify:
methodInterface/method

■

Operation: This maps to a WebLogic resource element such as HTTPMETHOD. If
you specify a value in angle brackets ("<>"), the policy returns the matching string.
If you omit the brackets, the policy returns the value associated with the
parameter.

This example lists the content of the NetPointResourcemap.conf file
###
This file maps Weblogic resources to Oracle Access Manager resources.
Oracle Access Manager only understands urls whereas each Weblogic resource has
different set of elements associated with it. By mapping these resources to
urls & operations all kinds of resources can be protected via
Oracle Access Manager.
#
The format of entries is as follows.
Weblogic Resource Type:Oracle Resource Type: enabled/disabled:
URL prefix:URL pattern:Operation
For example <url> : wl_url : enabled : contextPath : uri : httpMethod
9-28 Oracle Access Manager Integration Guide


If the resource is configured disabled, the default action can be configured.
For example disabled,allow
#
If the operation doesn't come from Weblogic resource field, and is fixed then
it can be configured by putting the value between <> . For example <execute>
If the value for operation is not specified then it defaults to "<default>"
#
Leading & trailing white spaces in the fields and blank lines are allowed.
Comments can be put by starting the line with

COMMONLY used resources

- **HTTP resource. Available keys:** application, contextPath, uri, httpMethod, transportType
 - `<url>:wl_url:enabled:contextPath:uri:httpMethod`

- **ejb - EJB resource. Available keys:** application, module, ejb, method, methodInterface, signature

- **Web resource. Available keys:** application, uri, webResource, httpMethod, transportType
 - `<web>::disabled,deny:uri:webResource:httpMethod`

- **Server resource. Available keys:** server, action
 - `<svr>:wl_svr:enabled:server::action`

- **Admin resource. Available keys:** category, realm, action
 - `<adm>:wl_adm:enabled:category::action`

LESS used resources

- **JDBC resource. Available keys:** resourceType, resource, action
 - `<jdbc>:wl jdbc:enabled:resourceType:resource:action`

- **JMS resource. Available keys:** destinationType, resource, action
 - `<jms>:wl_jms:enabled:destinationType:resource:action`

- **JNDI resource. Available keys:** path, action
 - `<jndi>:wl_jndi:enabled:path::action`

Note: JNDI, JDBC, JMS resource protection is disabled by default. These can be enabled in NetPointResourceMap.conf.

The tool can be used to create policies automatically only for Web and ejb resources. It cannot be used for JNDI, JDBC, JMS, and other types of resources. These need to be created by hand in the Access System Console. To find the URL pattern and operation used for the policy, set the log level to debug for the WebLogic SSPI package and look into the logs for the string "Entering OblixDatabase.isProtected for". For example:
Entering OblixDatabase.isProtected for resource Type=wl_jndi, isEnabled=true, URL=/weblogic/jms/MessageDrivenBeanConnectionFactory, operation=lookup

For this example, a resource type wl_jndi needs to be first created in Access System Console with a resource operation of "lookup". Then policy needs to be created for the url /weblogic/jms/MessageDrivenBeanConnectionFactory (or parts of it such as /weblogic/jms) in the weblogic policy domain. For more information about protecting resources, see the Oracle Access Manager Access System Administration Guide.

Preparing the WebLogic Environment

The following procedure describes how to configure the WebLogic environment so that the Security Provider is recognized by the WebLogic Server.

To prepare the environment

1. Copy the mbean jar file from one of the following locations:

 From

 install_dir/oblix/lib/mbeantypes

 to

 WebLogic_Home/server/lib/mbeantypes

 Note: If you are using WebLogic 8.1, copy w8NetPointSecurityProviders.jar. If you are using WebLogic 7.0 SP2 and later, copy w7NetPointSecurityProviders.jar.

2. Copy the following files from your Security_Provider_install_dir to your WebLogic domain folder:

 NetPointProvidersConfig.properties

 NetPointResourceMap.conf: only for the Application Server domain

3. Ensure that the following Admin credentials are set in clear text in the NetPointProvidersConfig.properties file:

 OB_AdminUserName=admin

 OB_AdminUserCreds=password

 If the NetPointProvidersConfig.properties file has a clear text password, the SSPI reads in the password, encrypts it, and rewrites the properties file with the encrypted password.

 Note: NetPointProvidersConfig.properties file formatting is lost when Oracle Access Manager rewrites the file with the encrypted password. You may want to save a copy of the NetPointProvidersConfig.properties file. Also, ensure that all parameters are correctly filled as mentioned in "NetPointProvidersConfig.properties" on page 9-44.

You complete the next step if the SSPI talks to a WebPass that is protected by a WebGate. Otherwise, skip to step 5.
4. **WebPass Protected by WebGate:** Complete the following activities when the Oracle Access Manager SSPI talks to a WebPass protected by a WebGate:

 a. In the NetPointProvidersConfig.properties file, ensure that OB/WebPassIsProtected is set to true. The OB_CookiePath and OB_CookieDomain parameters are configured correctly.

 b. From the Access System Console, click Access System Configuration, click AccessGate Configuration in the left navigation pane, click the link for the WebGate that protects the WebPass, and in the IPValidation field select the Off option.

 In Oracle Access Manager 10.1.4, the WebGateStatic.lst file no longer exists. The options in this file have moved to the Access System Console. See *Oracle Access Manager Access System Administration Guide* for details.

 ![Note](Image)

 If you want to set IPValidation to True, configure the IPValidationExceptions parameter to contain the IP address.

 ![Note](Image)

 Ensure that the security level in this authentication scheme is the same level or a lower level than the one specified in the WebLogic authentication scheme.

 Next, you need to determine if the machine hosting WebPass is running SSL. If it is, complete step 5. Otherwise, skip to step 6.

5. **WebPass Host SSL-Enabled:** Determine if the machine hosting WebPass is running SSL, and if so, complete the following steps:

 a. Open the NetPointProvidersConfig.properties file and set OB/WebPassSSLEnabled = True.

 b. Obtain the CA certificate from the certificate authority to which the Web server hosting the WebPass or WebGate running in SSL mode has registered, and place it in ca.cer file.

 c. Use the keytool in JAVA_HOME\bin or JAVA_HOME\jre\bin to add the following ca certificate to cacerts keystore present in:

   ```
   JAVA_HOME\jre\lib\security folder for weblogic jdk
   keytool -import -alias ca -file ca.cer -keystore JAVA_HOME\jre\bin\security\cacerts
   ```

6. Add the following environment variables in the WebLogic Server startup script before the command that starts the server:

 Add the following to the CLASSPATH:

   ```
   /install_dir/oblix/lib/wlNetPoint.jar
   /install_dir/oblix/lib/bcprov-jdk14-125.jar
   /install_dir/oblix/lib/xerces.jar
   /install_dir/oblix/lib/jobaccess.jar
   ```

7. Add the following environment variables in the WebLogic Server startup script before the command that starts the server:

 Windows: Add the following to PATH:
Solaris and Linux: Add the following to LD_LIBRARY_PATH:

```
install_dir/oblix/lib
```

HP-UX: Add the following to SHLIB_PATH:

```
install_dir/oblix/lib
```

Portal Domain: The CLASSPATH and PATH variables should be added just after the SAVE_JAVA_OPTIONS environment variable in the startWebLogic.cmd script (On Unix, it is the startWebLogic.sh script).

8. On Linux, set the LD_ASSUME_KERNEL environment variable to 2.4.19, as follows:

```
LD_ASSUME_KERNEL=2.4.19
export LD_ASSUME_KERNEL
```

9. Remove the boot.properties file from the WebLogic domain directory.

This will cause the startWebLogic script described in the next step to prompt for username and password.

10. In the WebLogic domain directory, edit the appropriate startup script:

Windows: The script is startWeblogic.cmd

Unix: The script is startWeblogic.sh

Ensure the following paths are set in the script:

```
/install_dir/oblix/lib/wlNetPoint.jar
/install_dir/oblix/lib/bcprov-jdk14-125.jar
/install_dir/oblix/lib/xerces.jar
/install_dir/oblix/lib/jobaccess.jar
```

11. In the WebLogic domain directory, start the WebLogic Server using the appropriate startup script:

Windows: This command is startWeblogic.cmd

Unix: This command is startWeblogic.sh

Using the WebLogic 8.1 Domain Configuration Wizard, you can create instances of a new WebLogic 8.1 domain, for example, mydomain, and a new WebLogic 8.1 server, for example, myserver. You can also create instances of a new WebLogic 8.1.3 Portal domain, for example, portalDomain, and a new WebLogic 8.1.3 portal server, for example, portalServer.

12. Set up a Realm that uses Oracle Access Manager security providers, as follows:

a. Open a new console window and set the Weblogic environment by executing setEnv.cmd.

Unix: Source the setEnv.sh script present in the server domain directory.

Portal Domain: Use the setDomainEnv.cmd script (on Unix it is the setDomainEnv.sh script).

b. Run the following script and ensure that it has the correct username, password, and URL values:

Windows: `install_dir/setupNetPointRealm.cmd`
Unix: \textit{install_dir/}setupNetPointRealm.sh

\textbf{Portal Domain:} Run the script with parameter "portal".

\textbf{WLS 7.0:} The script does not work and NetPointRealm must be set manually.

c. Log in to the WebLogic Admin Console, navigate to Domain, Security, Realms and:
 * Verify that NetPointRealm is set as the default.
 * Verify that the security providers are set properly in NetPointRealm.

d. \textbf{Script Fails:} If the script fails, you must manually add the Oracle Access Manager security realm (NetPointRealm):
 * Go to Domain, Security, Realms and select "Configure a new Realm".
 * For the option "Check Roles and Policies for", ensure that "All Web Applications and EJBs" is selected.
 * Navigate to Providers, Authentication, and configure a new Authenticator and Identity Asserter.
 * \textit{Identity Asserter:} Select the Token Type ObSSOCookie and in the Details tab, uncheck "Base64Decoding Required".
 * \textit{Portal Domain:} Set the control flag of Authenticator to OPTIONAL and also configure a Default Authenticator.
 * Navigate to Providers, Authorization and configure a new Authorizer (for the portal domain, only configure a Default Authorizer).
 * Navigate to Providers, Role Mapping and configure a new Role mapper (for the portal domain, only configure a Default Role mapper).
 * Navigate to Providers, Credential Mapping and configure a new Default Credential mapper.
 * Navigate to Domain, Security and select this realm as the default realm.

You complete step 12 only when configuring a Portal Server domain. Otherwise, skip to step 13.

13. \textbf{Portal Server Domain:} Complete the following steps to configure a Portal Server domain:

a. Restart the server using the same WebLogic credentials that were used earlier.

b. In the WebLogic Server Console, navigate to Domain, Security, Realms, NetPointRealm, Providers, Authentication, and:
 * Remove the Default Authenticator.
 * Change the control flag for Authenticator to REQUIRED.

c. Using the Group Manager, create a group in Oracle Access Manager that maps to the Admin role in the BEA WebLogic Server and contains all the administrators for the BEA Portal.
 For example:
 \texttt{BEA_Administrators}

d. Create a user (portaladmin) and add it to the BEA_Administrators group; later you login as this user (portaladmin) when restarting the server.
e. In the WebLogic Server Console Admin Console, navigate to Security, Realms, NetPointRealm and:
 * Click Groups to display all Oracle Access Manager groups.
 * Search for the BEA Admin group that was created in this step. You can use a wild card in the search.
 * Copy the group name.

f. Click Global Roles, Admin role, Conditions tab and:
 * Add a Role Condition where the caller is a member of the group.
 * Paste in the group name you copied.

g. Change the role condition from "and" to "or", then click Apply.

h. Repeat this procedure for the PortalSystemAdministrator role.

Note: Other BEA roles can be mapped to Oracle Access Manager groups/users. When you restart the WebLogic Server, it is important that you are logged in as a user in the Oracle Access Manager group associated with the BEA Admin role.

14. Restart the WebLogic Server.

The next time you log in to the WebLogic console, provide Master Oracle Access Manager Administrator credentials. You will be authenticated using NetPointRealm.

15. If you are using identity assertion as the authentication mechanism that protects Web applications:

 a. Install a WebGate on the proxy Web server. See "Authentication for Web-Only Resources" on page 9-6 for an illustration of this type of installation.

 b. Configure the Oracle Access Manager policies that protect the Web applications to use HTTP as the resource type instead of wl_url.

Note: There is one exception to the resource type configuration. The WebLogic administration console always uses form login. The /console policy must use the resource type wl_url.

16. If anything other than an Oracle Access Manager form-based authentication scheme protects the policies configured with the HTTP resource type, configure a challenge redirect parameter to redirect the user to another Web server that has WebGate installed.

 Note: If you do not complete this step, the user will have to refresh the browser to access the desired page because the ObSSOCookie set by the WebGate in the HTTP request has not yet been sent to the WebLogic server.

17. Continue with the following procedures, as needed:

 ■ "Configuring the Identity Server" on page 9-35.
Configuring the Identity Server

Next, you complete the following procedure to configure the Identity Server.

To configure the Identity Server

1. **Open the oblixappparams.xml file and set the searchstringMinimumLength to zero:**
   ```xml
   <NameValPair ParamName="searchstringMinimumLength" Value="0"/>
   ``
   where `IdentityServer_install_dir` is the directory where you installed Identity Server.

2. **Open the groupservcenterparams.xml file and set the groupMemberSearchStringMinimumLength to zero:**
   ```xml
 <NameValPair ParamName="groupMemberSearchStringMinimumLength" Value="0"/>
 ``

3. **Restart the Identity Server.**
 The next step must be completed after Identity System setup.

4. **From the Identity System Console, create an administrator with the required View and Delegated Administration rights.**

 Note: This administrator should be the one used for "OB_AdminUserName" parameter in the NetPointProvidersConfig.properties. For more information about configuring administrators, see the Oracle Access Manager Identity and Common Administration Guide.

Configuring Multiple WebPass Instances

Oracle Access Manager uses failover to maximize performance and provide uninterrupted service to end users. Failover redirects requests when a server fails. You may want to configure multiple WebPass instances for the failover purposes.

This section assumes that you have already installed more than one instance of WebPass for the Security Provider. See the Oracle Access Manager Deployment Guide for more information on failover.

To configure multiple WebPass instances

1. **Open the NetPointProvidersConfig.properties file in the WebLogic domain directory.**

2. **Enter the WebPass fully-qualified hostname with the domain name and port number using a comma-separated list.**
 For example:
   ```none
   # WebPass webserver host name and port number
   ```
OB_WebPassHost=foo.domain.com,bar.doman.com OB_WebPassPort=81,80

In this example, the valid WebPass host:port combinations are:

- foo.domain.com:81
- bar.domain.com:80

Configuring Single Sign-On for the Portal Server

Oracle Access Manager supports integration with the WebLogic Portal Server.

To enable single sign-on between Portal Web Applications and Oracle Access Manager protected resources, the Portal Web Application must be set up for ObSSOCookie handling. The prerequisite to support single sign-on for the Portal Web Application is that it should be using a form-based login portlet for authentication. The "sampleportal" Web Application module a part of "portalApp" Web Application, which is shipped with Weblogic Portal 8.1.3 and is considered as an example.

Following is an outline of the procedures you need to complete to set up single sign-on for the Portal Web Application module.

Task overview: Configuring single sign-on for the Portal Server

1. Edit the web.xml file, as described in "Configuring web.xml to Add Filter-related Nodes" on page 9-36.

2. Configure the login jsp, as described in "Configuring the login jsp used by the Login Portlet" on page 9-38.

3. Copy the login filter class, as described in "Copying ObLoginFilter.class in the WEB_INF/classes" on page 9-39.

4. Finish setup, as described in "Completing Setup" on page 9-39.

Configuring web.xml to Add Filter-related Nodes

You need to include filter-related nodes at the start of other filter nodes.

Note: The mapping mentioned in the filter and the POST action URL set in the form should be the same. The only difference is that the action URL will include the context root too and the Oblogin_validate.jsp name will be present.

To add filter-related nodes

1. Locate the Portal Application’s Web module’s WEB-INF/web.xml.

2. Add the following filter related nodes at the start of other filter nodes:

   ```
   <!-- Login Servlet Filter, required for single sign-on between Portal and Netpoint -->
   <filter>
     <filter-name>OblixLoginFilter</filter-name>
     <filter-class>ObLoginFilter</filter-class>
   </filter>
   ```

3. Add the following filter mapping node at the start of other filter mapping nodes:
Adding Authentication Methods to web.xml

You may configure different authentication methods in the web.xml (deployment descriptor) of a Web application. The following information explains how you specify the authentication schemes in the <auth-method> tag under <login-config>. The following authentication schemes may be configured:

- Form
- Basic
- CLIENT_CERT

To add form-based authentication to web.xml

1. Add the following to the web.xml file:

```xml
<login-config>
  <auth-method>FORM</auth-method>
  <form-login-config>
    <form-login-page>/login.jsp</form-login-page> <!-- location of the jsp page that will accept user credentials
    <form-error-page>/fail_login.html</form-error-page>  <!-- location of the page to which request must be redirected upon unsuccessful login
  </form-login-config>
</login-config>
```

2. Ensure that the login form contains fields for entering username and password, which must be named j_username and j_password, respectively.

3. Ensure that the form posts j_username and j_password values to j_security_check logical name:

 The following example shows how the form should be coded into an HTML page:
   ```html
   <form method="POST" action="/j_security_check">
   <input type="text" name="j_username">
   <input type="password" name="j_password">
   </form>
   ```

To add basic authentication to web.xml

1. Add the following lines to web.xml:

   ```xml
   <login-config>
     <auth-method>BASIC</auth-method>
     <realm-name> Your_realm_name </realm-name>
   </login-config>
   ```

 where the <auth-method> tag specifies the authentication method (in this case, BASIC), and the <realm-name> tag contains the text that should appear on the dialog box requesting credentials.

2. Save web.xml.
Configuring the login jsp used by the Login Portlet

You need to configure the following in the login jsp used by the login portlet.

To configure the login jsp for the Login Portlets

1. Include following at the start of the login jsp page.
   ```
   <%@ page import="com.bea.portlet.PostbackURL,
      com.bea.netuix.servlets.controls.content.JspContentContext" %>
   <% // Set this url as per your setting %>
   <%@include file="/portlets/NetPointPortalSSO.jsp" %>
   <%
   // Included to get the Base URL for redirection after Authentication.
   JspContentContext jspContentContext =
   JspContentContext.getJspContentContext(request);
   PostbackURL url = jspContentContext.getBaseUrl(request, response, "");
   %>
   
   2. Set the form's action url as following:
      ```
 <form method="post" action="/sampleportal/portlets/login_validate/Oblogin_validate.jsp" type="POST">
 </form>
      ```
      
      Note: The action URL needs to start with the context root included.

3. Set the user input fields used in login jsp to get the username and password to username and password, respectively.

4. Include a new variable in the login input form:
   ```
 <tr>
 <td align="left"> <input type="hidden" name="targeturl" value=<%= url %> >
 </td>
 </tr>
   ```

5. If your form provides logout functionality, set the logout url to Oblogout.jsp. Else in your logout logic include following code to kill the ObSSOCookie
   ```
 <%@ page import="com.oblix.weblogic.configuration.NPConfiguration"%>
 <%@ page import="com.oblix.weblogic.logging.ObDebug"%>
 <%
 // begin block to kill ObSSOCookie
 // Check if the user has ObSSOCookie
 ObDebug.getInstance().debug("Inside logout.jsp");
 Cookie[] cookies = request.getCookies();
 if (cookies != null){
 String obSSOCookie = null;
 for (int i = 0; i < cookies.length; i++) {
 if (cookies[i].getName().equals("ObSSOCookie")) {
 obSSOCookie = cookies[i].getValue();
 }
 }
 if (obSSOCookie != null && !obSSOCookie.equals("loggedout") && !
 obSSOCookie.equals("loggedout")){
 Cookie killedSSOCookie = new Cookie("ObSSOCookie", 'loggedout');
 String cookieDomain = NPConfiguration.getCookieDomain();
 if(cookieDomain != null && cookieDomain.length() > 0)
 killedSSOCookie.setDomain(cookieDomain);
 }
 }
   ```
killedSSOCookie.setPath("/");
response.addCookie(killedSSOCookie);
ObDebug.getInstance().debug("Logout jsp - ObSSOCookie set to loggedout with domain [" + cookieDomain + "]");
}
break;
}
// end block to kill ObSSOCookie

Copied ObLoginFilter.class in the WEB-INF/classes

The ObLoginFilter.class expects that the name of input fields used in login form are "username" and "password". However, other names can be used.

To use other names
1. Modify the file provided.
2. Compile the file and include it under the WEB-INF/classes folder.

Completing Setup

Use the following procedure to complete the setup process for this implementation.

In the sampleportal example under the PortalApp application that is shipped as an example with Weblogic 8.1 SP3 we had created a login_validate folder under the portlets folder under the context root and copied Oblogout.jsp and NetpointPortalSSO.jsp just under the portlets folder.

Note: These files are included in the installation directory under:
oblix/examples/src/webapp/portalApp/sampleportal

Except for Oblogout.jsp, Oblogin_validate.jsp and NetPointPortalSSO.jsp other jsp files need to be configured for each application.

To complete setup
1. Copy Oblogout.jsp under context root of the application.
2. Copy NetpointPortalSSO.jsp under context root of the application.
3. Under context root of your application module, create a folder "login_validate" and copy the Oblogin_validate.jsp.

   This file's contents is displayed only when the filter is not invoked.

Testing Single Sign-On for the Portal Server

You can test the examples provided in the following directory:

Security_Provider_install_dir/examples
 Authorization Data from an External Source

These samples allow you to test single sign-on for Web applications and EJBs either using or not using identity assertion for authentication.

There are readmes in the example directories. These readmes provide instructions for testing different types of resources.

For the Portal Server: The examples\webapp\portalApp\sampleportal does not contain a full sample that can be deployed.

To test single sign-on for the Portal Server

1. Configure the WebLogic_install_dir\samples\domains\portal domain to use the Oracle Access Manager Security Provider.

2. Locate the deployed sampleportal example:

   WebLogic_install_dir\samples\portal\portalApp\sampleportal

3. Copy / replace the following files:

   From:

   Security_Provider_install_dir\examples\src\webapp\portalApp\sampleportal

   To:

   WebLogic_install_dir\samples\portal\portalApp\sampleportal as follows:

   login.jsp   > \portlets\login.jsp
   NetPointPortalSSO.jsp   > \portlets\NetPointPortalSSO.jsp
   Oblogout.jsp   > \portlets\Oblogout.jsp
   web.xml   > \WEB-INF\web.xml
   ObLoginFilter.class   > \WEB-INF\classes\ObLoginFilter.class
   Oblogin_validate.jsp   > \portlets\login_validate\Oblogin_validate.jsp

4. Either restart the Portal Server or redeploy the PortalApp example.

Authorization Data from an External Source

You can configure the Security Provider for WebLogic to perform an authorization in which the authorization scheme uses external data that resides in the HTTP servlet request for Web applications to determine if a user is allowed access. For example, the authorization scheme can determine that a request must come from a particular IP address, such as the user's home or work machine. The access decision can be based on other factors such as rules. For example, you can allow access only if the user belongs to the Engineering role.

See the Oracle Access Manager Access System Administration Guide and the Oracle Access Manager Developer Guide for details on authorization schemes that use external data.

Information from a user's role and the ContextHandler is sent to the Access Server based on the configuration of a custom authorization scheme. The ContextHandler is an object that WebLogic passes to the SSPI. The Access Server passes this information to a custom authorization plug-in that makes the authorization decision. It supports three formats for the user parameter field in the authorization scheme definition:

- **RA_roles**: Roles that the user belongs to appear as a comma-separated string.
- **RA_http.method**: This executes the method on an HttpServletRequest object and returns a string value. For example, RA_http.getRemoteAddr() gets the IP address of the machine where the user sent the request.
- **RA_http.session.method**: This executes the method on an HttpSession object and returns string values. For example, RA_http.session.getAttribute(myattribute) gets
the value of the session attribute named myattribute and returns it as a string. For example, if you want to provide a coupon to a user who has $1,000 of purchases in a shopping cart, you can detect the spending level on a session attribute.

Context-sensitive authorization can be done for EJBs based on the method parameter values apart from the roles. This is done using the reverse action functionality provided by the Access Server. A custom authorization scheme is required for this purpose. You can demonstrate this for a stateless EJB using the following procedure, which limits access to the buy method for the BEAS stock only.

**To implement an example**

1. Copy the shared library req_context, as follows:
   
   **From:** install_dir/examples/src/webapp/contextAuthz
   
   **To:** Access Server host, AccessServer_install_dir/oblix/lib

2. Navigate to the Access System Console, Access System Configuration, Authorization Management, then click the Add button.

3. In the Shared Library field, enter the path to the req_context.
   
   For example:
   
   c:\OracleAccessManager\access\oblix\lib\req_context

4. In the User Parameter field, add RA_ejb.Parameter1.

5. In the Required Parameter field, add the following name value pair:
   
   paramName_1  ejb.Parameter1
   
   paramValue_1  BEAS

6. Saving the scheme, then restart the Access Server.

7. Create an authorization definition using this authorization scheme in the domain used for SSPI.

8. Modify the policy for the EJB buy method by setting the authorization rule to the authorization definition that you created in the previous step.

9. Run the EJB client.

You should get the following output, where the buy of BEAS shares goes successful but the buy of MSFT shares fail due to access control.

```
run:
[java]
[java] Beginning statelessSession.Client...
[java] user: admin
[java] Creating a trader
[java] Buying 100 shares of BEAS.
[java] Buying 200 shares of MSFT.
[java] There was an exception while creating and using the Trader.
[java] This indicates that there was a problem communicating with the server: java.rmi.AccessException:
[EJB:010160]Security Violation: User: 'admin' has insufficient permission to access EJB: type=<ejb>, application=appdir ejb20_basic_statelessSession_ear, module=ejb20_basic_statelessSession.jar, ejb=statelessSession, method=buy, methodInterface=Remote, signature={java.lang.String,int}.
[java]
[java] End statelessSession.Client...
```
A custom plug-in similar to this can be written in C to implement the business logic according to your needs.

There is an example of context-specific authorization provided with the security Web application sample in the installation directory. Details for how to configure the authorization scheme is provided in the readme.

**Audit Files**

To enable auditing, you need to add an auditing provider in the WebLogic security realm. There is a default provider installed when you install WebLogic.

The default auditing provider writes the audit records to the following file:

`WebLogic_domain_directory/server/DefaultAuditRecorder.log`

where `WebLogic_domain_directory` is the name of the WebLogic domain and `server` is the server name.

WebLogic audits all authentication and authorization successes and failures. The Security Provider for WebLogic audits the reason for any failures. The failure logs appear before the WebLogic failure log.

**Debug Log Files**

WebLogic writes debug logs to the following files:

`WebLogic_domain_directory/server/server.log`

where `WebLogic_domain_directory` is the name of the WebLogic domain and `server` is the server name.

You can configure the log level from the WebLogic administration console. For debugging, set the configuration parameter `ObDebugMode=true` in the `NetPointProvidersConfig.properties` file. See "NetPointProvidersConfig.properties" on page 9-44 for details. The change is takes effect after 60 seconds. Debug logs are written to the `server.log` file. You can also configure debug logs to print to stdout from the WebLogic administration console.

For more information about a log from the catalog, use WebLogic's `CatInfo` utility. Set the WebLogic environment by running the `setdomainEnv.cmd` (or `.sh` for Unix), and then run:

```java
java weblogic.i18ntools.CatInfo -id message ID
```

This command also lists the cause action details for the log message.

**User Creation/Deletion and Group Creation**

The SSPI uses workflows defined in the Identity System to create users and groups and delete users. The data available to be passed in a workflow request is limited by the SSPI interface of WebLogic, as follows:

- **Create User**: The Userid, Password, and Description parameters are available to the SSPI while making a Create User request.
- **Delete User**: The only attribute that is available while deleting a user is Userid.
Create Group: The parameters available while creating a group are Name and Description.

It is possible to define a workflow that uses values for these attributes. It is also possible to send constant values for more attributes as shown, in the following sample workflow definition in Table 9–1.

Table 9–1 Workflow Fields and Values

<table>
<thead>
<tr>
<th>Workflow Field</th>
<th>Sample Workflow Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workflow Name</td>
<td>Name generated by the Oracle Access Manager BEA SSPI Create User Workflow.</td>
</tr>
<tr>
<td>Workflow Type</td>
<td>Create User</td>
</tr>
<tr>
<td>Workflow DN</td>
<td>obworkflowid=wfqs20020806T0907402920, obcontainerId=workflowDefinitions, OU=Oblix, OU=Company, DC=qalab-vduong, DC=oblix, DC=com</td>
</tr>
<tr>
<td>Workflow Status</td>
<td>Enabled</td>
</tr>
<tr>
<td>Description</td>
<td>Workflow generated for COREidBEASSPI</td>
</tr>
<tr>
<td>Target</td>
<td>Company; OU=Company, DC=qalab-vduong, DC=oblix, DC=com</td>
</tr>
<tr>
<td>Workflow Domain</td>
<td>OU=Company, DC=qalab-vduong, DC=oblix, DC=com</td>
</tr>
<tr>
<td>Workflow Steps</td>
<td>Step 1:</td>
</tr>
<tr>
<td></td>
<td>Name: Initiate</td>
</tr>
<tr>
<td></td>
<td>Attribute Name: LoginID (Required)</td>
</tr>
<tr>
<td></td>
<td>Attribute Name: Password (Required)</td>
</tr>
<tr>
<td></td>
<td>Attribute Name: Name (Required)</td>
</tr>
<tr>
<td></td>
<td>Participant: admin</td>
</tr>
<tr>
<td></td>
<td>Step 2:</td>
</tr>
<tr>
<td></td>
<td>Name: Enable</td>
</tr>
<tr>
<td></td>
<td>Entry Condition:</td>
</tr>
<tr>
<td></td>
<td>1. true;false</td>
</tr>
</tbody>
</table>

Following are the corresponding parameters from the NetPointProvidersConfig.properties file:

```properties
OBWebPass.CreateUserWorkflowID=wfqs20020806T0907402920,
obcontainerId=workflowDefinitions, OU=Oblix, OU=Company, DC=qalab-vduong, DC=oblix, DC=com
OBWebPass.CreateUserWorkflowDomain=OU=Company, DC=qalab-vduong, DC=oblix, DC=com
OBWebPass.CreateUserWorkflowNumOfFields=3
OBWebPass.CreateUserWorkflowAttrName_1=cn
OBWebPass.CreateUserWorkflowAttrValue_1=Name of UID
OBWebPass.CreateUserWorkflowAttrName_2=uid
OBWebPass.CreateUserWorkflowAttrValue_2=UID
OBWebPass.CreateUserWorkflowAttrName_3=userPassword
OBWebPass.CreateUserWorkflowAttrValue_3=$PASSWD$
```

Integrating the Security Provider for WebLogic SSPI   9-43
OBWebPass.CreatUserWorkFlowComment=Added user $UID$ from WebLogic portal server.

If the workflow is modified to use different attributes, the preceding sample lines in the NetPointProvidersConfig.properties file need to change. If workflow is modified to use another attribute, the DS attribute name must be specified in this file.

For example, if you change the first attribute from cn Name to cn Mail (that is obmail in DS) then do the following:

```
OBWebPass.CreatUserWorkFlowAttrName_1=obmail
OBWebPass.CreatUserWorkFlowAttrValue_1= UID@company.com
```

Similarly, if this is a new parameter being added to the workflow, you need to increase the number of fields and add two new lines for attribute:

Increase the number of fields as indicated in the following:

```
OBWebPass.CreatUserWorkFlowNumOfFields=4
```

Add two new lines, as indicated in the following:

```
OBWebPass.CreatUserWorkFlowAttrName_4=obmail
OBWebPass.CreatUserWorkFlowAttrValue_4=UID@company.com
```

The same approach is to be followed during group creation and user deletion. For group deletion, determination of the workflow to be used is made by Oracle Access Manager. The delete group operation requires only the Group DN, which is obtained from the Portal Admin interface at runtime.

---

**Configuration Files**

The following configuration files are required for the integration of Oracle Access Manager and WebLogic:

- **NetPointProvidersConfig.properties**
- **NetPointWeblogicTools.properties**

**NetPointProvidersConfig.properties**

The NetPointProvidersConfig.properties file describes all common configuration items. There are also items written by the installer when you select the Typical/Advanced install of the Security Provider for WebLogic. A sample file containing all of the parameters in the

A sample file containing all of the parameters in the SampleNetPointProvidersConfig.properties is located in:

```
Security_Provider_install_dir/examples
```

where `Security_Provider_install_dir` is the directory where the Security Provider for WebLogic is installed. Table 9–2 describes these parameters.

**Table 9–2 NetPointProvidersConfig.properties**

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObDebugMode</td>
<td>Specifies whether Oracle Access Manager debugging information is recorded in the WebLogic log files. Default=false</td>
</tr>
</tbody>
</table>
### Table 9–2  (Cont.) $NetPointProvidersConfig.properties$

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>ObRoles.Cache.TTL</td>
<td>Specifies the length of time for which security roles are cached.</td>
</tr>
<tr>
<td></td>
<td>Default=60 seconds</td>
</tr>
<tr>
<td>ObRoles.Cache.CleanupSchedule</td>
<td>Specifies when expired items in the Roles cache are flushed. This is to reclaim memory.</td>
</tr>
<tr>
<td></td>
<td>Default=60 seconds</td>
</tr>
<tr>
<td>ObAuthorization.ActionOn UnprotectedResource</td>
<td>Specifies default access to resources not protected by Oracle Access Manager.</td>
</tr>
<tr>
<td></td>
<td>Default=allow</td>
</tr>
<tr>
<td>Ob_InstallDir</td>
<td>Specifies the installation directory for the Oracle Access Manager Security Provider.</td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceTypeName</td>
<td>The Security Provider uses a special policy to authenticate users in WebLogic. The resource type specified on this parameter is used in this special authentication policy. This resource type contains a resource with a URL prefix of /Authen/Basic. Value: Name of the resource type.</td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceName</td>
<td>The Security Provider uses a special policy to authenticate users in WebLogic. The resource specified on this parameter is used in this special authentication policy. This resource contains a URL prefix of /Authen/Basic. Value: Name of the resource.</td>
</tr>
<tr>
<td>ObAuthentication.Anonymous. ResourceName</td>
<td>The name of the resource used in the policy for anonymous authentication.</td>
</tr>
<tr>
<td>OB_AuthnSchemeOperation</td>
<td>The operations specified on the resource for this policy. Example: LOGIN</td>
</tr>
<tr>
<td>ObAuthentication&gt;LoginIdParam</td>
<td>The userID challenge parameter that is used in the authentication scheme for the policy. This value is the same as the userID challenge parameter specified in the credential_mapping plug-in. Example: userid</td>
</tr>
<tr>
<td>ObAuthentication.passwordParam</td>
<td>The password challenge parameter that is used in the authentication scheme for the policy. This value is the same as the password challenge parameter specified in the validate_password plug-in. Example: password</td>
</tr>
<tr>
<td>OB_AuthzActionType</td>
<td>The authorization action that retrieves the user's login ID from the ObSSOCookie. Example: WL_REALM</td>
</tr>
<tr>
<td>OB_AuthzActionName</td>
<td>The action that retrieves the user's login ID from the ObSSOCookie. Example: uid</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description and Value</td>
</tr>
<tr>
<td>-----------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>ObFormAuthenticationSSO.Dummy UserName</td>
<td>This dummy user name is used with a form login when single sign-on is configured. In this scenario, there is no WebGate on the proxy HTTP server. See &quot;Completing Advanced Installation&quot; on page 9-12 for details.</td>
</tr>
<tr>
<td>ObWebAppResourceTypes</td>
<td>WebLogic resource types that are used for Web applications.</td>
</tr>
<tr>
<td>ObRoles.ResourceType</td>
<td>This parameter specifies the resource type defined for the policy that retrieves the user’s role information.</td>
</tr>
<tr>
<td></td>
<td>Example: wl_authen</td>
</tr>
<tr>
<td>ObRoles.ResourceName</td>
<td>This parameter specifies the URL prefix of the resource (not the resource type) defined for the policy that retrieves the user’s role information.</td>
</tr>
<tr>
<td></td>
<td>Example: /Authen/Roles</td>
</tr>
<tr>
<td>ObRoles.ResourceOperation</td>
<td>The operation specified on the resource in this policy.</td>
</tr>
<tr>
<td></td>
<td>Example: LOGIN</td>
</tr>
<tr>
<td>ObRoles.ActionType</td>
<td>The action specified on the authorization rule for the policy that obtains the user’s role.</td>
</tr>
<tr>
<td></td>
<td>Example: WL_REALM</td>
</tr>
<tr>
<td>ObAuthorization.AbstainMapsTo</td>
<td>If you do not want to use the Abstain result of an isAuthorized call, you can map the result to allow or deny. See &quot;Completing Advanced Installation&quot; on page 9-12 for details.</td>
</tr>
<tr>
<td>ObAuthorization.OnDenyRedirectToUrl</td>
<td>If access to a resource is denied, then you can redirect the user to this page. This is optional.</td>
</tr>
<tr>
<td>OB_LogLevel</td>
<td>The logging level that is recorded in the log file. Values are none, info, and debug. This is optional.</td>
</tr>
<tr>
<td>OB_LogFileName</td>
<td>The file name for log messages. Default = install_dir/log. This is optional.</td>
</tr>
<tr>
<td>OB_LogMilliseconds</td>
<td>The data/time format of log messages in the file specified with OB_LogFileName. When true, log messages are time formatted in milliseconds. Default =true. This is optional.</td>
</tr>
<tr>
<td>OB_WebPassHost</td>
<td>The WebPass server host machine name. The host name must be fully qualified; for example, OB_WebPassHost=hostname.acme.com.</td>
</tr>
<tr>
<td></td>
<td>To configure multiple WebPass instances for failover purposes, separate the names with a comma. For example:</td>
</tr>
<tr>
<td></td>
<td>OB_WebPassHost=foo.domain.com, bar.domain.com</td>
</tr>
<tr>
<td></td>
<td>Note that the host name corresponds to the port number in the specified order. See the example in the Ob_WebPassPort description section. This is optional.</td>
</tr>
</tbody>
</table>
### Table 9–2 (Cont.) NetPointProvidersConfig.properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_WebPassPort</td>
<td>The port number of the host machine. To configure multiple WebPass instances, separate the port numbers with a comma, for example: OB_WebPassPort=80, 81. Note that the host name corresponds to the port number in the specified order. In the example provided in the previous paragraph, the hostname:port number pairing is as follows: foo.domain.com:80 bar.domain.com:81 For failover to work, all other variables such as user name, credentials and webgate protection must be the same. This is Mandatory.</td>
</tr>
<tr>
<td>OB_WebPassIsProtected</td>
<td>Values are true and false. If WebPass is protected, set value=true. This is mandatory.</td>
</tr>
<tr>
<td>OB_AdminUserName</td>
<td>Oracle Access Manager requires the Admin username and password to make IdentityXML calls to the WebPass. This is mandatory.</td>
</tr>
<tr>
<td>OB_AdminUserCreds</td>
<td>Oracle Access Manager requires the Admin username and password to make IdentityXML calls to the WebPass. Without the password the Security Provider will not work. Note: You need to enter a clear-text password, which the program will encrypt and rewrite to the properties file after the first run. This is mandatory.</td>
</tr>
<tr>
<td>OB_CookieDomain</td>
<td>The cookie domain specified in the WebGate installer configuration. Needed if WebPass is protected. For example, .xyz.com. This is mandatory.</td>
</tr>
<tr>
<td>OB_CookiePath</td>
<td>The cookie path specified in the WebGate configuration. Needed if WebPass is protected. Default = /. This is mandatory.</td>
</tr>
<tr>
<td>OB_WebPassSSLEnabled</td>
<td>Specifies whether WebPass needs HTTPS connection. Values are true and false. Default = false. This is Mandatory.</td>
</tr>
<tr>
<td>OB_UserAttr</td>
<td>The unique user identification (for example, uid). This is mandatory.</td>
</tr>
<tr>
<td>OB_UserSearchAttr</td>
<td>The DN prefix for users from LDAP (for example, cn). This is mandatory.</td>
</tr>
<tr>
<td>OB_GroupSearchAttr</td>
<td>The DN prefix for groups from LDAP (for example, cn). This is mandatory.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description and Value</td>
</tr>
<tr>
<td>-----------</td>
<td>-----------------------</td>
</tr>
<tr>
<td>OB_WebPassADDomain</td>
<td>Optional. The domain of the Admin user. To be used in case of Active Directory Forest with multiple domains. For example, OB/WebPassADDomain=ou=company,dc=qalab,dc=acme,dc=com. The ADDomain must be the same as the default defined in the Identity System. This is optional.</td>
</tr>
<tr>
<td>OB_WebPassXPIRecordsReturned</td>
<td>Optional. The number of records to return for getUsers or getGroups. Default = return all. This is optional.</td>
</tr>
<tr>
<td>OB_UserGroupsCache_enabled</td>
<td>Enables caching of list groups of which the user is a member. Values are true and false. Maintains a cache of all the groups a logged in user belongs to. This is optional.</td>
</tr>
<tr>
<td>OB_UserGroupsCache_timeout</td>
<td>The timeout for cache of the list of groups for a user. The timeout is per user. This value should not be very high. If the user’s group membership changes the new membership will only take affect at cache timeout. For example, a value of 3600 equates to 1 hour. This is optional.</td>
</tr>
<tr>
<td>OB_GroupMembersCache_enabled</td>
<td>Enables caching of list of groups and list of members in each group. Values are true and false. Stores members for each groups (not a frequently used cache). This is optional.</td>
</tr>
<tr>
<td>OB_GroupMembersCache_timeout</td>
<td>Specifies the timeout for cache of list of groups and the list of members in each group. This is optional.</td>
</tr>
<tr>
<td>OB_UserAttributesCache_enabled</td>
<td>Enables Caching of User Attributes. Values are true and false. This is optional.</td>
</tr>
<tr>
<td>OB_UserAttributesCache_timeout</td>
<td>The timeout for the cache of user attributes. Timeout is for the whole cache. This is optional.</td>
</tr>
<tr>
<td>OB_UserAttributesCacheElement_timeout</td>
<td>The timeout for the cached user attributes. The Timeout is per user. This is Optional.</td>
</tr>
<tr>
<td>OB_GroupAttributesCache_enabled</td>
<td>Enables Caching of Group Attributes. Values are true and false. This is optional.</td>
</tr>
<tr>
<td>OB_GroupAttributesCache_timeout</td>
<td>The timeout for the cache of group attributes. Timeout is for the whole cache. This is optional.</td>
</tr>
<tr>
<td>OB_GroupAttributesCacheElement_timeout</td>
<td>The timeout for the cached group attributes. The Timeout is per group. This is optional.</td>
</tr>
<tr>
<td>Parameter</td>
<td>Description and Value</td>
</tr>
<tr>
<td>----------------------------</td>
<td>-------------------------------------------------------------------------------------------------------------------------------------------------------</td>
</tr>
<tr>
<td>OB_Keystore</td>
<td>Specifies the keystore file used by the Security Provider for WebLogic SSPI when it makes SSL connections to HTTPS WebPass. The keystore contains the requestor's public and private key pairs, X.509 certificate, and certificates for Certificate Authorities trusted to certify responder servers. The keystore is managed using the JDK keytool. For example: <code>install_dir/oblix/config/jssecacerts</code>. This is optional.</td>
</tr>
<tr>
<td>OB_KeystorePassword</td>
<td>The password for the keystore. This is optional.</td>
</tr>
<tr>
<td>OB_UserTabId</td>
<td>For future use. Do not change the default. Default = Employees</td>
</tr>
<tr>
<td>OB_GroupTabId</td>
<td>For future use. Do not change the default. Default = Groups</td>
</tr>
<tr>
<td>OB_NestedGroupsEnabled</td>
<td>Values are true and false. The default is true. To improve GroupSrvCenter performance when nested groups are not used, set the value to false.</td>
</tr>
<tr>
<td></td>
<td>- Nested groups will not be included in the search; the uniquemember attribute will not be requested in a group search when OB_NestedGroupsEnabled=false.</td>
</tr>
<tr>
<td></td>
<td>- A value of true retrieves the uniquemember attribute in the group search, uses this for nested group computation, then removes it before the group is recorded. This is optional.</td>
</tr>
<tr>
<td>OB_DynamicGroupsEnabled</td>
<td>Values are true and false. To improve GroupSrvCenter performance when you are not using dynamic groups, set the value to false. Dynamic groups will not be included in the search. This is optional.</td>
</tr>
<tr>
<td>OB_UserPasswordAttr</td>
<td>User Password Attribute. Example: userpassword. This is mandatory.</td>
</tr>
<tr>
<td>OB_UserDescriptionAttr</td>
<td>User Description Attribute. Example: description. This is mandatory.</td>
</tr>
<tr>
<td>OBWebPass.CreatUserWorkFlowID</td>
<td>WorkflowID for create user workflow. This is mandatory if user creation is supported.</td>
</tr>
<tr>
<td>OBWebPass.CreatUserWorkFlowDomain</td>
<td>WorkflowDomain for create user workflow. This is mandatory if user creation is supported.</td>
</tr>
<tr>
<td>OBWebPass.CreatUserWorkFlowNumOfFields</td>
<td>Number of attributes present in the create user workflow. This is mandatory if user creation is supported.</td>
</tr>
</tbody>
</table>
Table 9–2 (Cont.) NetPointProvidersConfig.properties

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>OBWebPass.CreatUserWorkFlowAttrName_[number]</td>
<td>Name/Value pair for an attribute during user creation.</td>
</tr>
<tr>
<td>OBWebPass.CreatUserWorkFlowAttrValue_[number]</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comment while creating a user.</td>
</tr>
<tr>
<td>OBWebPass.DeactivateUserWorkFlowID</td>
<td>WorkflowID for delete user workflow. This is mandatory if user deletion is supported.</td>
</tr>
<tr>
<td>OBWebPass.DelUserWorkflowNumOfFields</td>
<td>Number of attributes present in the delete user workflow. This is mandatory if user deletion is supported.</td>
</tr>
<tr>
<td>OBWebPass.DelUserWorkflowName_[number]</td>
<td>Name/Value pair for an attribute during user deletion.</td>
</tr>
<tr>
<td>OBWebPass.DelUserWorkflowAttrValue_[number]</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comment while deleting a user.</td>
</tr>
<tr>
<td>OB_GroupIDAttr</td>
<td>Group Name Attribute. Example: cn. This is mandatory.</td>
</tr>
<tr>
<td>OB_GroupDescriptionAttr</td>
<td>Group Description Attribute. Example: description. This is mandatory.</td>
</tr>
<tr>
<td>OB_GroupUniqueMemberAttr</td>
<td>Group Uniquemember Attribute. Example: uniquemember. This is mandatory.</td>
</tr>
<tr>
<td>OBWebPass.CreatGroupWorkflowID</td>
<td>WorkflowID for create group workflow. This is mandatory if group creation is supported.</td>
</tr>
<tr>
<td>OBWebPass.CreatGroupWorkflowDomain</td>
<td>WorkflowDomain for create group workflow. This is mandatory if group creation is supported.</td>
</tr>
<tr>
<td>OBWebPass.CreatGroupWorkflowNumOfFields</td>
<td>Number of attributes present in the create group workflow. This is mandatory if group creation is supported.</td>
</tr>
<tr>
<td>OBWebPass.CreatGroupWorkflowAttrName_[number]</td>
<td>Name/Value pair for an attribute during group creation.</td>
</tr>
<tr>
<td>OBWebPass.CreatGroupWorkflowAttrValue_[number]</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td>Comment while creating a group.</td>
</tr>
</tbody>
</table>

**NetPointWeblogicTools.properties**

Table 9–3 describes the NetPointWeblogicTools.properties file located in:

```
SecurityProvider_install_dir/oblix/tools/npWLTools
```

where `SecurityProvider_install_dir` is the directory where the Security Provider for WebLogic is installed.

This file contains information on the WebLogic policy domain.
### Table 9–3  SampleNetPointWebLogicTools.properties Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description and Value</th>
</tr>
</thead>
</table>
| ObWLTools.Debug | Creates a debug file.  
Default = true |
Default = NetPointWeblogicTools.log |
| ObPolicyDomain.Name | The WebLogic domain name created by the Policy Deployer.  
Default = SecuProvForWeblogic |
| ObPolicyDomain.Description | Description of the WebLogic Domain. |
| ObPolicyDomain.LoginAttribute | The return attribute in the action of an authentication policy that retrieves the user's login ID from the ObSSOCookie. The return attribute is necessary for Oracle Access Manager single sign-on.  
Default = uid |
| ObWLTools.SetupInitialNetpointSSPolicyPolicies | Sets up the initial Oracle Access Manager policies for WebLogic such as /Authen/Bank. Use the default value when you first run the Oracle Access Manager Policy Deployer tool. When you run the tool subsequently, change value to false.  
Default = true |
| ObWLTools.DeployPolicy | If set to true, the tool reads the NetPointDeployPolicy.txt file and creates the policies in Oracle Access Manager. |
| ObWLTools.UnDeployPolicy | Deletes policies.  
Default = false |
| ObWLSDomain.Dir | The local directory where the WebLogic domain is located.  
Default = c:/bea/user_projects/mydomain |
| ObWLAuthenticationScheme.Name | The authentication scheme used for WebLogic. This should be created manually before running the tool.  
Default = Oracle WebLogic Access and Identity |
| ObWLNoneAuthenticationScheme.Name | The Anonymous authentication scheme used for WebLogic. This should be created manually before running the tool.  
Default = Oracle WebLogic Anonymous Authentication |
| ObWLWebResource.usingIdentityAssertion | Whether identity assertion is used to protect Web applications.  
Default=false. |
| ObWLWebResource.proxyPrefix | The string trimmed from the beginning of the URL that the user originally specifies, before the request is forwarded to the WebLogic Server. For example, if the URL  
http://myWeb.server.com/weblogic/foo is requested, the URL forwarded to the WebLogic Server is:  
http://myWeb.server.com:7001/foo  
The part of the request that is trimmed is what you specify on the ObWLWebResource.proxyPrefix parameter. |
Implementation Notes for Active Directory

The following are issues to consider when implementing the Security Provider for WebLogic SSPI on Active Directory.

- Configuring Security Provider for WebLogic
- Setting a Domain in NetPointProvidersConfig.properties

Configuring Security Provider for WebLogic

The steps to configure Security Provider for WebLogic SSPI for an Active Directory Forest follow.

To configure the Security Provider for an Active Directory forest

1. In the Access System Console, create a new Access and Identity authentication scheme for a domain in the Active Directory Forest.
   
   The base credentials that you specify in the Plugin(s) field must be the same as the search base that you specified in the directory server profile. See "Supported Versions and Platforms" on page 9-9.
   
   You need to complete step 2 only if you did not create an administrator during pre-installation setup. Otherwise, skip to step 3.

2. Create a WebLogic administrator in Oracle Access Manager with View and Delegated Administration rights and ensure that the administrator’s login identification is unique.

3. Specify the WebLogic administrator as the administrator for the Active Directory forest domain.

   This domain must be the same as the one for which you created the authentication scheme in step 1. To do this, specify values for the OB_WebPassADDomain parameter in the NetPointProvidersConfig.properties file as described in "NetPointProvidersConfig.properties" on page 9-44.

   You can search for users in the parent domain but you cannot search for users in sibling or children domains.

---

**Note:** You do not need to create an administrator for every domain in an Active Directory Forest.

Setting a Domain in NetPointProvidersConfig.properties

If you are running Active Directory using multiple domains, you must manually edit the NetPointProvidersConfig.properties file to include a value for the OBWebPassADDomain parameter. For example:

```
OBWebPassADDomain=dc=xyz, dc=acme, dc=com
```

The domain must be the same as the domain defined for the default directory server in the Identity System.

See the Oracle Access Manager Identity and Common Administration Guide for more information.
To Prepare the BEA WebLogic Server 8.1.x

1. Ensure that your BEA WebLogic server 8.1.3 installation includes Java 1.4, which is required for this integration.

2. On an HP-UX 11i machine, ensure that the following Java-related patches are installed:

<table>
<thead>
<tr>
<th>Patch numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHCO_26060</td>
</tr>
<tr>
<td>PHCO_29633</td>
</tr>
<tr>
<td>PHKL_23226</td>
</tr>
<tr>
<td>PHKL_27207</td>
</tr>
<tr>
<td>PHKL_29434</td>
</tr>
<tr>
<td>PHNE_29473</td>
</tr>
<tr>
<td>PHSS_26974</td>
</tr>
<tr>
<td>PHSS_29744</td>
</tr>
<tr>
<td>PHSS_30500</td>
</tr>
</tbody>
</table>

Detailed information about these patches is available at the following web site:
http://www.hp.com/products1/unix/java/patches

3. After installing the BEA SSPI package for HP-UX 11.11, you must set up NetPointRealm in the WebLogic domain by running a script, which, by default, does not have execute permission. Therefore, you must manually assign permission on HP-UX 11.11, then run the setupNetPointRealm.sh script.

4. The NetPointIdentityAsserter provider authenticates the user through the ObSSOCookie. To facilitate this, you must set up a proxy server such as Apache with a WebGate installed on it along with a WebLogic module loader.

When the WebGate successfully authenticates the user, it generates an ObSSOCookie. Using the WebLogic module loader, Apache redirects the request to the WebLogic server with the ObSSOCookie set, at which point the NetPointIdentityAsserter is invoked.

However, the WebLogic module loader for Apache 1.3.x is not shipped with BEA WebLogic Server 8.1.3. To test this functionality, you need a proxy server on a platform, such as Solaris. This functionality of the Oracle Access Manager SSPI has been tested against a proxy server on Solaris. It involves the following steps:

a. Set up a proxy server (Apache, for example) on a platform other than WebLogic (Solaris, for example).

b. Install a WebGate along with a WebLogic module loader on this proxy server.

c. Test user authentication and redirection to the WebLogic server.

About Parameter Names in the NetPointProvidersConfig.properties file

You can manage Oracle Access Manager users and groups through the WebLogic Server Console.

If you are migrating or patching the Security Provider for WebLogic SSPI from Oracle Access Manager v7.0.2 (or an earlier version) to Oracle Access Manager 10g (10.1.4.0.1), take care to ensure that all the parameters in
NetPointProvidersConfig.properties file are set up as specified in "NetPointProvidersConfig.properties" on page 9-44. Also, read the section "Preparing the WebLogic Environment" on page 9-30.

**Setting up Cookies and Header Attributes in SSPI**

The procedures for setting cookies and header attributes for SSPI are similar to those for a WebGate.

The cookie and header name and values are specified as return actions for policies defined in NetPoint. SSPI recognizes WL_COOKIE and WL_HeaderVar as return types for cookies and header attributes respectively.

Note that attributes and not actual headers are set in the http request. The attributes set in the request can be extracted by the target application using the HttpServletRequest.getAttribute() method. To ensure that these attributes can be extracted, make sure that the target application has access to the J2EE interface HttpServletRequest.

**Tips**

The following list is organized alphabetically according to the title in bold and are useful to understand. See also "WebLogic Portal Admin Console Changes" on page 9-56.

- **changeUserPassword Method**: The old password will not be checked as all IDXML calls are made with admin credentials. In any case, the changePassword method is not called by the Portal Admin Console. The Portal Admin Console uses resetPassword method, which has been implemented.

- **Character Restrictions for User Names**: The WebLogic Server Console imposes certain restrictions on characters allowed in user names. While all users are displayed correctly in the Console, user creation/user to role mapping must bind with these restrictions.

- **Escape Mechanism for BEA WebLogic Server Role Mapping Provider**: The BEA WebLogic Server Role Mapping provider is used for defining roles in weblogic. Using the Role Mapping provider, users/groups can be assigned to roles. See "References" on page 9-57 for more details about WebLogic Security Roles.

This role mapper cannot handle various special characters in user and group names, even though LDAP permits these characters. To overcome this limitation, the Security Provider implements an escape mechanism that enables you to map any Oracle Access Manager group to WebLogic roles. Use Table 9–4 as a reference to read Oracle Access Manager groups in WebLogic Server/Portal Console.

<table>
<thead>
<tr>
<th>Special Character</th>
<th>Escaped to Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>:</td>
<td>:A</td>
</tr>
<tr>
<td>(space)</td>
<td>:B</td>
</tr>
<tr>
<td>, (comma)</td>
<td>:C</td>
</tr>
<tr>
<td>-</td>
<td>:D</td>
</tr>
<tr>
<td>=</td>
<td>:E</td>
</tr>
<tr>
<td>?</td>
<td>:F</td>
</tr>
<tr>
<td>&gt;</td>
<td>:G</td>
</tr>
</tbody>
</table>
Group Description: Group description will not be available for display immediately after creating a group.

Group Members: Only immediate members of the group can be removed from the group. Only User members will be listed as members of group. This holds for nested groups too.

Group With Latin Characters: In the WebLogic Server Console, when trying to assign a group with "Latin Characters" as a parent group of another user/group, the operation fails because this interface in the console does not handle "Latin Characters".

Group Within a Group: In the WebLogic Portal Console, if you try to create a group inside another group, and the new group is created, it is not added to the parent group. You can add the created group to the desired group using the "Add group to Group" interface in the Console.

User/Group Workflows: In create user/group workflows only one value for each attribute (parameter) should be specified in the configuration file.

User/Group Display: Unique userid (uid) will be used for all display operations for users. Group DN will be used for all display operations for groups.

Wild Card Searches: These searches are supported for users and groups; the match is not case sensitive:
- *: returns all user/groups
- Foo*: returns all users/groups whose name starts with Foo
- *Foo: returns all users/groups whose name ends with Foo
- *Foo*: returns all users/groups whose name contains Foo
- FooBar: only returns a user/group named "FooBar"

### Table 9–4 (Cont.) Read Oracle Access Manager Groups in WebLogic Server/Portal

<table>
<thead>
<tr>
<th>Special Character</th>
<th>Escaped to Sequence</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>:H</td>
</tr>
<tr>
<td>' (single inverted comma)</td>
<td>:I</td>
</tr>
<tr>
<td>&quot; (double inverted comma)</td>
<td>:J</td>
</tr>
<tr>
<td>*</td>
<td>:K</td>
</tr>
<tr>
<td>&lt;</td>
<td>:L</td>
</tr>
<tr>
<td>&amp;</td>
<td>:M</td>
</tr>
<tr>
<td>~</td>
<td>:N</td>
</tr>
<tr>
<td>(</td>
<td>:O</td>
</tr>
<tr>
<td>)</td>
<td>:P</td>
</tr>
<tr>
<td>{</td>
<td>:Q</td>
</tr>
<tr>
<td>}</td>
<td>:R</td>
</tr>
<tr>
<td>\t</td>
<td>:S</td>
</tr>
<tr>
<td>%</td>
<td>:T</td>
</tr>
<tr>
<td>;</td>
<td>:U</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>$</td>
<td>:W</td>
</tr>
</tbody>
</table>
WebLogic Portal Admin Console Changes

The following WebLogic Portal Admin Console changes have occurred.

**Building a Group Hierarchy Tree for the Oracle Access Manager Authentication Provider:** When trying to search for groups in the WebLogic Portal Admin Console, a message may be displayed saying:

The Authentication Provider, Oracle Access Manager Authenticator, has not been configured for GUI tree mode

In this case, only one group can be searched at a time. You can use the following procedure to list all the groups in the Admin Console.

**To enable the listing of all groups in the Admin Console**

1. From the WebLogic Administration Portal main menu, select Service Administration.
2. In the left pane, select Authentication Hierarchy Service.
3. In the right pane, Provider to Add to Build List field, enter the name of Oracle Access Manager authentication provider exactly (including case sensitivity):

   For example:
   
   NetPointAuthenticator

   **Note:** You can find the name of Oracle Access Manager Authentication provider by selecting the Security Provider’s tool and expanding the Authentication Providers node.

4. Click Update & Build Tree.

   Now, group hierarchies will be displayed for all operations where groups are involved.

**Delegated Administration:** In order for delegated administration roles to take effect, the PortalSystemDelegator role needs to be associated with the Oracle Access Manager group that was associated with the Admin role in the WebLogic Server Console during product setup.

**Configuring Multiple Policy Domains for Different WebLogic Servers**

Using the SSPI, you can configure and apply a different Oracle Access Manager policy domain to each of several WebLogic servers.

SSPI maintains the following two configuration files in the WebLogic server domain directory:

NetPointProvidersConfig.properties  
NetPointResourceMap.conf
The parameters in these two files facilitate setup of different policy domains on different WebLogic servers. Thus, all the weblogic servers in an organization need not use the same policy domain.

The SSPI integration with BEA Application Server performs three main tasks: Authentication, Role Mapping, and Authorization.

For authentication, SSPI uses the OB_AuthnSchemeResourceName parameter in NetPointProvidersConfig.properties. You define a policy in Oracle Access Manager to protect the resource specified by this parameter. Specifying different names for this authentication parameter facilitates different authentication policies for different policy domains. By default, this parameter is /Authen/Basic.

The same principle applies to the policy defined for anonymous authentication through ObAuthentication.Anonymous.ResourceName. The default value for this parameter is /Authen/Anonymous.

Also, different role mapping policies can be defined in different policy domains through the role mapping parameter ObRoles.ResourceName, which resides in NetPointProvidersConfig.properties. By default, this parameter is /Authen/Roles.

For authorization, NetPointResourceMap.conf contains information about mapping WebLogic resources to Oracle Access Manager resources. For example, a WebLogic resource of type url maps to a Oracle Access Manager resource of type wl_url. To make different WebLogic servers refer to resource protection policies defined in different domains, specify different resource mappings for your various WebLogic servers.

For example, one WebLogic server can map url to wl_wrl for HTTP resources and protect resources of type wl_url in its policy domain. A second weblogic server can map url to weblogic_wrl for HTTP resources and protect resources of type weblogic_url in its policy domain.

---

**Note:** For a given WebLogic server, the authentication and role mapping policies are picked up from a single policy domain, whereas for authorization, the policies used to protect resources are picked up from any domain that has a policy defined for the resource type being accessed.

---

**References**

The following alphabetical list includes links to WebLogic documents that discuss concepts such as WebLogic security, resources, and roles.

- **Security Introduction:**
  

- **Security Framework Whitepaper:**
  

- **Terminology for the Newly Introduced Concepts:**
  

- **Types of WebLogic Resources:**
  

- **WebLogic Security Roles:**
  
Troubleshooting the Security Provider for WebLogic

Problem: I get the following error when starting the WebLogic Server:

<May 23, 2003 1:44:07 AM PDT> <Error> <OblixSecurityProviders> <700021>
Authentication failed for user [admin]. Reason - Unprotected resource LOGIN
Authen:/Authen/Basic used in an ObAuthenticationScheme or ObUserSession
constructor.>

Solution: The authentication policy may be disabled or absent. See “Setting Up WebLogic Policies in Oracle Access Manager” on page 9-14 for setup information.

Problem: I created a policy to protect web application (for example, /security) with an authorization rule to allow access to some users. But, in reality everyone is allowed access.

Solution: Ensure the following:

■ Enable the policy.
■ Do not use host identifiers.
■ Use the Access Tester to ensure that the policy is being evaluated for this resource and the user who is allowed to access the resource.

Note that the default behavior of Access Server is to allow access if the resource is not protected. This default behavior can be changed by modifying the “denyOnProtect” flag in the Access Server configuration.

Problem: I want to use the methods of the principal ObWLSUser object in an EJB.

Solution: You can use all the methods exposed by the Principal object, but not methods like “isAuthorized” that are present only in ObWLSUser object. This is because they make JNI calls to Access Manager SDK, which is not present on the client side except when the EJB is being run from another WebLogic Server using Oracle Providers. If you really want to execute methods like “isAuthorized” on the client side, then you must install the Access Manager SDK and call ObConfig.Init() before making any calls. A suggested solution is to get the session token from the ObWLSUser object and then use Access Manager SDK methods to execute methods such as isAuthorized.

Problem: The server does not start up. The log has the following entry

###<May 29, 2003 2:07:48 PM PDT> <OFF> <Unknown> <vjain> <examplesServer> <main>
<<WLS Kernel>> <> <000000> <Message text not found - Can't locate bundle for class>

Solution: Security Provider’s message resources are bundled in wlNetpoint.jar. Make sure that wlNetpoint.jar is present in the classpath. Refer to “Preparing the Environment” on page 9-10 for details on setting up the required environment variables.

Problem: I get the following error:

<May 29, 2003 2:36:40 PM PDT> <Error> <OblixSecurityProviders> <700053> <Exception encountered when isProtected() called for the resource - Type=wl_svr, isEnabled=true, URL=/examplesServer, operation=default. Reason - The requested resource could not be mapped to a policy domain in the Policy database. Check if the corresponding directory service is up.>

Solution: The wl_svr resource type is probably enabled in NetpointResourceMap.txt but the resource type is not yet created in the Access System.

Problem: The installer does not write the complete file and the code expects some default values.
**Solution:** This problem occurs when some of the values are not specified in the properties file. Use the file in `install_dir\weblogic8\examples` and modify it for your environment.

For example, if an action is not specified for authen to get name later:

```java
,Roles:{Regular=Regular} ,Resource:type=url, application=security,
contextPath=/admin/edit.jsp, httpMethod=GET
,ContextHandler:HttpServletRequest ,ContextHandler:HttpServletResponse
<OblixResource got from cache>
OblixDatabase.isProtected for resource Type=wl_url, isEnabled=true,
URL=\security/admin/edit.jsp, operation=GET>
resource protected? true>
OblixDatabase.isAccessAllowed returned PERMIT>
authenticated principal of type ObWLSUser>
token>

Solution: Set values for the following parameters as shown in the
NetPointProvidersConfig.properties file:

`ObAuthenticationScheme.AuthorizationRule.ActionType=WL_REALM`

`ObAuthenticationScheme.AuthorizationRule.ActionName=uid`

Problem: I get the following stack.

```java
<Jun 9, 2003 7:43:04 PM PDT> <Debug> <OblixSecurityProviders> <000000> <userName=
[weblogic_system]>
<Jun 9, 2003 7:43:04 PM PDT> <Debug> <OblixSecurityProviders> <000000> <Entering
OblixDatabase.login() for user weblogic_system>
<Jun 9, 2003 7:43:04 PM PDT> <Debug> <OblixSecurityProviders> <000000> 
<Authentication failed for [weblogic_system] with message Unprotected resource
LOGIN Authen:/Authen/Basic8 used in an ObAuthenticationScheme or ObUserSession
constructor.
com.oblix.access.ObAccessException: Unprotected resource LOGIN
Authen:/Authen/Basic8 used in an ObAuthenticationScheme or ObUserSession
constructor.
at com.oblix.access.ObUserSession.initCppSideAuthenticate(Native Method)
at com.oblix.access.ObUserSession.<init>(ObUserSession.java:222)
at com.oblix.weblogic.internal.OblixDatabase.login (OblixDatabase.java:185)

**Solution:** Check the resource, operation and policy and authorization rules. Some
resource is not protected.

**Problem:** I get the following stack.

```java
at com.oblix.weblogic.security.providers.authentication.
OblixLoginModuleImpl.login(OblixLoginModuleImpl.java:161)
at weblogic.security.service.DelegateLoginModuleImpl.login
(DelegateLoginModuleImpl.java:71)
at sun.reflect.NativeMethodAccessorImpl.invoke0(Native Method)
```
at sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke
(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke (Method.java:324)
at javax.security.auth.login>LoginContext.invoke (LoginContext.java:675)
at javax.security.auth.login>LoginContext.access$000 (LoginContext.java:129)
at javax.security.auth.login>LoginContext$4.run (LoginContext.java:610)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.login>LoginContext.invokeModule (LoginContext.java:607)
at javax.security.auth.login.LoginContext.login (LoginContext.java:534)
at weblogic.security.service.PrincipalAuthenticator.authInternal
(PrincipalAuthenticator.java:329)
at weblogic.security.service.PrincipalAuthenticator.authenticate
(PrincipalAuthenticator.java:282)
at weblogic.security.service.SecurityServiceManager.doBootAuthorization
(SecurityServiceManager.java:913)
at weblogic.security.service.SecurityServiceManager.initialize
(SecurityServiceManager.java:1036)
at weblogic.t3.srvr.T3Srvr.initializeHere(T3Srvr.java:783)
at weblogic.t3.srvr.T3Srvr.initialize(T3Srvr.java:627)
at weblogic.t3.srvr.T3Srvr.run(T3Srvr.java:337)
at weblogic.Server.main(Server.java:32)

> Jun 9, 2003 7:43:04 PM PDT <Error> <OblixSecurityProviders> <700021>
<Authentication failed for user [weblogic_system]. Reason - Unprotected resource
LOGIN Authen:/Authen/Basic8 used in an ObAuthenticationScheme or ObUserSession
constructor.>

> Jun 9, 2003 7:43:04 PM PDT <Debug> <OblixSecurityProviders> <000000>
<ObUserSession ctor from username, password failed
com.oblix.access.ObAccessException: Unprotected resource LOGIN
Authen:/Authen/Basic8 used in an ObAuthenticationScheme or ObUserSession
constructor.

at com.oblix.access.ObUserSession.initCppSideAuthenticate(Native Method)
at com.oblix.access.ObUserSession.<init>(ObUserSession.java:222)
at com.oblix.weblogic.internal.OblixDatabase.login (OblixDatabase.java:185)
at com.oblix.weblogic.security.providers.authentication.OblixLoginModuleImpl.
login(OblixLoginModuleImpl.java:161)
at weblogic.security.service.DelegateLoginModuleImpl.login
(DelegateLoginModuleImpl.java:71)
at sun.reflect.NativeMethodAccessorImpl.invoke0 (Native Method)
at sun.reflect.NativeMethodAccessorImpl.invoke (NativeMethodAccessorImpl.java:39)
at sun.reflect.DelegatingMethodAccessorImpl.invoke
(DelegatingMethodAccessorImpl.java:25)
at java.lang.reflect.Method.invoke (Method.java:324)
at javax.security.auth.login.LoginContext.invoke (LoginContext.java:675)
at javax.security.auth.login>LoginContext.access$000 (LoginContext.java:129)
at javax.security.auth.login>LoginContext$4.run (LoginContext.java:610)
at java.security.AccessController.doPrivileged(Native Method)
at javax.security.auth.login>LoginContext.invokeModule (LoginContext.java:607)
at javax.security.auth.login.LoginContext.login (LoginContext.java:534)
at weblogic.security.service.PrincipalAuthenticator.authInternal
(PrincipalAuthenticator.java:329)
at weblogic.security.service.PrincipalAuthenticator.authenticate
(PrincipalAuthenticator.java:282)
at weblogic.security.service.SecurityServiceManager.doBootAuthorization
(SecurityServiceManager.java:913)
at weblogic.security.service.SecurityServiceManager.initialize
(SecurityServiceManager.java:1036)
at weblogic.t3.srvr.T3Srvr.initializeHere(T3Srvr.java:783)
at weblogic.t3.srvr.T3Srvr.initialize(T3Srvr.java:627)
Troubleshooting the Security Provider for WebLogic

Integrating the Security Provider for WebLogic SSPI

9-61

at weblogic.t3srvr.T3Srvr.run(T3Srvr.java:337)
at weblogic.Server.main(Server.java:32)

> 

Jun 9, 2003 7:43:04 PM PDT <Debug> <OblixSecurityProviders> <000000> <Entering OblixLoginModuleImpl.abort>
Jun 9, 2003 7:43:04 PM PDT <Critical> <Security> <BEA-090402> <Authentication denied: Boot identity not valid; The user name and/or password from the boot identity file (boot.properties) is not valid. The boot identity may have been changed since the boot identity file was created. Please edit and update the boot identity file with the proper values of username and password. The first time the updated boot identity file is used to start the server, these new values are encrypted.>

******************************************************************
The WebLogic Server did not start up properly.
Reason: weblogic.security.SecurityInitializationException: Authentication denied: Boot identity not valid; The user name and/or password from the boot identity file (boot.properties) is not valid. The boot identity may have been changed since the boot identity file was created. Please edit and update the boot identity file with the proper values of username and password. The first time the updated boot identity file is used to start the server, these new values are encrypted.
******************************************************************

Solution: You are probably missing the Oracle Access Manager configuration file in the WLS Domain directory.

Problem: I get the following stack.

Jun 9, 2003 6:11:41 PM PDT <Info> <Configuration Management> <BEA-150016> <This server is being started as the administration server.>
WebLogic XMLX Module 8.1 Thu Mar 20 23:06:05 PST 2003 246620>
Jun 9, 2003 6:11:43 PM PDT <Notice> <Management> <BEA-140005> <Loading domain configuration from configuration repository at /export/home/bea81/user_projects/mydomain/../config.xml.>
Jun 9, 2003 6:11:57 PM PDT <Info> <Logging> <000000> <FileLogger Opened at ./myserver/myserver.log>
Jun 9, 2003 6:12:03 PM PDT <Error> <Unknown> <000000> <Unable to access undefined message, id=700025>

The WebLogic Server did not start up properly.
java.lang.ExceptionInInitializerError
at sun.reflect.NativeConstructorAccessorImpl.newInstance0(Native Method)
at sun.reflect.NativeConstructorAccessorImpl.newInstance(NativeConstructorAccessorImpl.java:39)
at sun.reflect.DelegatingConstructorAccessorImpl.newInstance(DelegatingConstructorAccessorImpl.java:27)
at java.lang.reflect.Constructor.newInstance(Constructor.java:274)
at java.lang.Class.newInstance0(Class.java:306)
at java.lang.Class.newInstance(Class.java:259)
at weblogic.security.service.SecurityServiceManager. createSecurityProvider (SecurityServiceManager.java:1686)
at weblogic.security.service.RoleManager.Initialize (RoleManager.java:147)
at weblogic.security.service.RoleManager.<init> (RoleManager.java:93)
at weblogic.security.service.SecurityServiceManager.doRole (SecurityServiceManager.java:1417)
at weblogic.security.service.SecurityServiceManager. initializeRealm

Integrating the Security Provider for WebLogic SSPI 9-61
Additional Resources

(SecurityServiceManager.java:1271)
at weblogic.security.service.SecurityServiceManager.loadRealm
(SecurityServiceManager.java:1216)
at weblogic.security.service.SecurityServiceManager. initializeRealms
(SecurityServiceManager.java:1338)
at weblogic.security.service.SecurityServiceManager.initialize
(SecurityServiceManager.java:1018)
at weblogic.t3.srvr.T3Srvr.initializeHere(T3Srvr.java:783)
at weblogic.t3.srvr.T3Srvr.initialize(T3Srvr.java:627)
at weblogic.t3.srvr.T3Srvr.run(T3Srvr.java:337)
at weblogic.Server.main(Server.java:32)

Caused by: com.oblix.weblogic.configuration.ConfigurationException: Unable to
access undefined message, id=700025
at com.oblix.weblogic.configuration.OblixConfiguration. loadProperties
(OblixConfiguration.java:106)
at com.oblix.weblogic.configuration.OblixConfiguration.<init>
(OblixConfiguration.java:61)
at com.oblix.weblogic.configuration.OblixConfiguration.getInstance
(OblixConfiguration.java:55)
at com.oblix.weblogic.internal.OblixDatabase.<init> (OblixDatabase.java:47)
at com.oblix.weblogic.internal.OblixDatabase.getInstance (OblixDatabase.java:39)
at com.oblix.weblogic.security.providers.roles.
OblixRoleMapperProviderImpl.<clinit> (OblixRoleMapperProviderImpl.java:51)
... 18 more

******************************************************************

Solution: The Oblix Jar file is not correctly packaged.

Additional Resources

The following URLs are provided for background:

- **Security framework whitepaper:**

- **Types of WebLogic Resources:**
  http://e-docs.bea.com/wls/docs81/secwlres/types.html

- **Roles:**
  http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

- **Web application security deployment descriptors:**
  http://e-docs.bea.com/wls/docs81/security/thin_client.html#1045984

- **EJB security deployment descriptors:**
  http://e-docs.bea.com/wls/docs81/security.ejb_client.html#1033936

- **Descriptions of terms and concepts:**
  http://e-docs.bea.com/wls/docs81/secintro/terms.html
The Oracle Access Manager Connector for WebSphere enables you to integrate applications running on IBM’s WebSphere Application Server with the Access System’s authentication and authorization services. The connector also makes users and groups managed by Oracle Access Manager available for authentication and authorization within WebSphere.

This chapter describes how prepare your environment, then install, set up, and test the Oracle Access Manager Connector for WebSphere, and configure your WebSphere Application Server for Oracle Access Manager.

This chapter covers the following topics:

- About the Connector for WebSphere
- Integration Architecture
- Integration Scenario with the Oracle Access ManagerCMR
- Supported Versions and Platforms
- Preparing to Install the Connector
- Installing the Connector for WebSphere
- Completing Connector Setup
- Configuring WebSphere Application Server v5
- Integrating with WebSphere Portal v5
- Configuring the WebSphere Application Server v6
- Configuration Files
- Implementation Notes for the TAI
- Implementation Notes for Active Directory
- Troubleshooting the Connector for WebSphere

### About the Connector for WebSphere

The Oracle Access Manager Connector for WebSphere enables WebSphere Application Server administrators to integrate applications running on WebSphere with Access System authentication and authorization services.

Using the Connector for WebSphere, users who try to access Access System-protected WebSphere resources are challenged and authenticated by the Access System. The connector also makes Identity System-managed users and groups available for authentication and authorization.
Advantages of using the Connector for WebSphere include:

- Providing information about Identity System-managed users and groups to the WebSphere Security Server for authentication and authorization.
- Using the Access System to authenticate users who access WebSphere resources such as JSPs, EJBs, and Servlets.
  
  You can use Access System authentication schemes to provide single sign-on for Web and non-Web enabled applications.
- Authorizing users who access WebSphere resources.
  
  Oracle Access Manager supports WebSphere’s security role-based authorization. The WebSphere’s role-based authorization grants access to a protected resource based on a role (such as Manager) for a user or group. Oracle Access Manager integrates WebSphere Server security roles with the Access System’s policy-based authorization.
- Protecting WebSphere Server resources such as administration tools, events, servlets, passwords, JDBC connection pools, JMS destinations, and JNDI contexts.
  
  You can use WebSphere’s role-based access policies to control access to WebSphere resources.
- Enabling single sign-on between an Access System-protected resource and a WebSphere Server resource that is protected with WebSphere Security constraints.

The following is an overview of the integration.

**Task overview: Integrating with the WebSphere Application Server**

1. Prepare your environment, as described in "Preparing Your Environment" on page 10-10.

2. Install the Connector, as described in "Installing the Connector for WebSphere" on page 10-20.

3. Set up and test the Connector, as described in "Completing Connector Setup" on page 10-25.

4. Configure your WebSphere Application Server, as described in "Configuring WebSphere Application Server v5" on page 10-28.

5. Integrate with the WebSphere Portal Server, if this is part of your environment, as described in "Integrating with WebSphere Portal v5" on page 10-38.

As you complete activities in this chapter, you will see the following path name formats:

**Identity_install_dir**: The directory where you installed the Identity Server. In your installation, for example, this may be C:\OracleAccessManager. During installation the \identity subdirectory is added to the specified destination making the full path to the directory where you installed the Identity Server Identity_install_dir\identity.

**WebGate_install_dir**: The directory where you installed the Access System WebGate. In your installation, for example, this may be C:\OracleAccessManager\WebComponent. During installation the \access subdirectory is added to the specified destination making the full path to the directory where you installed the WebGate WebGate_install_dir\access.

**CWS_install_dir**: The directory where the Connector for WebSphere was installed. In your installation, for example, this may be C:\OracleAccessManager\NetPointWASRegistry.
**WAS_install_dir**: The directory where the WebSphere Application Server is installed. In your installation, for example, this may be C:\IBM\WebSphere\AppServer.

**WPS_install_dir**: The directory where the WebSphere Portal Server is installed. In your installation, for example, this may be C:\IBM\WebSphere\PortalServer. This directory is used for the Portal logs such as, WPS_install_dir/log/appserver-out.log.

When you see one of the notations shown in the previous paragraphs, substitute the appropriate path name for your environment as you complete the step.

The rest of this section discusses the following topics:
- WebSphere Components
- Connector for WebSphere Components

### WebSphere Components

For complete support information, see "Supported Versions and Platforms" on page 10-10. The following WebSphere components are used in the integration between WebSphere and Oracle Access Manager:

**WebSphere Application Server (WAS)**: The WebSphere Application Server (WAS) enables secure, high volume transactions and Web services.
- WAS 5.0/5.1 is J2EE 1.3 compliant
- WAS 6 is J2EE 1.4 compliant

**Note**: Both implement authorization using the EJB1.1 specification for security roles. A security role is a set of permissions for access to Web resources and specific EJB methods.

**WebSphere Portal Server (WPS)**: The WebSphere Portal Server provides single sign-on for portlets based on the Java Authentication and Authorization Services (JAAS). The single sign-on implementation enables portlet developers to extract:
- A user’s username and password, and distinguished name (DN)
- The DNs of any groups that the user belong to
- The WebSphere Application Server CORBA Credential
- The LTPA token

Any combination of these objects can be used to provide single sign-on to the portlet’s back end. For example, the username and password may be used to create a Basic Authentication HTTP header. Or the LTPA Token may be used to provide single sign-on to another WebSphere Application Server in the same security domain.

**Web Trust Association Interceptor (TAI)**: The TAI is used for third-party proxy authentications. The WebSphere Application Server uses the TAI to enforce the trust policy between WebSphere and third-party security providers for single sign-on. The TAI enables the Access System to authenticate users who try to access resources on the WebSphere Application Server.

**Application Assembly Tool (AAT)**: The AAT is used to build security-aware applications. You use the AAT to define WebSphere roles and bind them to Identity System users and groups.
**Connector for WebSphere Components**

The Connector for WebSphere uses the Trust Association Interceptor (TAI), the Identity System, the Access System, and the following components:

**NetPointWASRegistry:** This is the Connector for WebSphere. The NetPointWASRegistry is a user data store implementation of the WebSphere CustomRegistry in Oracle Access Manager. The NetPointWASRegistry serves as a plug-in to the WebSphere Application Server (WAS).

The WebSphere CustomRegistry is also known as a custom user registry (CUR). The CustomRegistry defines the methods that the WAS uses to perform security operations for applications configured to use them. For example, the WebSphere CustomRegistry may be used to identify attributes such as username and password, and to combine user information from diverse data sources.

The NetPointWASRegistry consists of the Access Manager SDK and Identity XML. The NetPointWASRegistry establishes a native connection between the WAS and Oracle Access Manager, enabling WebSphere administrators to use policy-based security features to control user access to business applications.

**IdentityXML:** The Connector for WebSphere uses IdentityXML calls to get user and group information from the Identity Server. Typically, you use IdentityXML to integrate the Identity System with external software systems and to perform Identity System functions programmatically rather than using the Identity System GUI.

**Access Manager SDK:** The Access Manager Software Developer’s Kit (SDK) enables you to create an interface that can be built into WebSphere and to create an AccessGate that communicates with the Access Server for authentication purposes. The SDK is installed automatically when you install the Connector for WebSphere. The SDK is used by the TAI.

**Custom Member Repository (CMR):** The CMR is an extension of the Oracle Access Manager component called NetPointWASRegistry (a custom user registry). It resides on the WebSphere Portal Server. The WebSphere Portal Server uses WebSphere Application Server security for authentication when logging in to the Portal. The WebSphere Portal Server enables users to customize and personalize their experience and uses a component called Member Services to manage information about users, user accounts, user profile attributes, and group memberships.

The CMR is an instance of a Member Services component. The CMR connects the WebSphere Portal Server to the Identity System users and groups. The CMR implements the IBM WebSphere MemberRepository interface, and is used to assign and determine access control to the portlets. The CMR stores user.baseattributes and group.baseattributes. It supports only read operations, not create or modify or delete operations.

The WebSphere Portal Server will use the CMR to make IdentityXML queries like getAttributes for a user for personalization, getGroupMemberships, search users by attribute, and similar functions.

---

**Note:** The Connector for WebSphere does not support getGroupMemberships. As a result, in the case of Nested Groups, if you check for inner group membership the parent group details will not be displayed.

---

For more information, see the “Supported Versions and Platforms” on page 10-10.
Integration Architecture

The integration between WebSphere and Oracle Access Manager can vary depending on if you use only the NetPointWASRegistry or if you also use the Access System’s single sign-on. For details, see:

- "Scenario 1: Use of NetPointWASRegistry" on page 10-5.

For additional information, see "Mapping Users and Groups to Security Roles in WAS" on page 10-7. See also "Integration Scenario with the Oracle Access ManagerCMR" on page 10-8.

Scenario 1: Use of NetPointWASRegistry

The NetPointWASRegistry obtains Identity System-managed user and group information and performs authentication based on that information.

Figure 10–1 illustrates an implementation of the Connector for WebSphere using the NetPointWASRegistry.

Figure 10–1 Integrating the WebSphere Application Server with the NetPointWASRegistry

In this scenario, use of a WebGate is optional. The WebGate is needed only for single sign-on or to protect the WebPass.

Note: In this scenario, The WAS and both the Web servers must belong to the same domain.

Process overview: Login using WAS with the NetPointWASRegistry

1. A user tries to access a WebSphere resource through a browser.
2. The WAS forwards the user's request to the Connector for WebSphere.
3. The Connector for WebSphere checks with the Access Server and authenticates the user.

4. If single sign-on is enabled in the WAS, an LTPA token is generated.

5. The Connector for WebSphere queries the Identity Server via WebPass for a list of groups to which the user belongs.
   The Identity Server checks the directory and returns the information to the Connector for WebSphere.

6. The Connector for WebSphere returns this information to the WAS.

7. The WAS checks the deployment descriptor for a user-security or group-security role mapping.
   If the user or group belongs to a security role that is allowed to access the resource, the WAS enables the user to access the resource.

Scenario 2: Architecture for Single Sign-On

The Access System’s single sign-on feature enables authenticated users to access protected resources without having to re-authenticate. To use the Access System’s single sign-on, you must enable the TAI and install an AccessGate plug-in on the Web server servicing WAS.

Figure 10–2 illustrates WAS using Access System single sign-on.

**Figure 10–2** Single sign-on with the WebSphere Application Server

---

**Note:** In this scenario, a WebGate is required for single sign-on.
Process overview: Login using the WAS with Access System single sign-on

1. The user attempts to access a WebSphere resource that is protected by the Access System.

2. WebGate (or AccessGate) intercepts the request and prompts for a username and password, using the Basic challenge method.

3. WebGate passes the user’s credentials to the Access Server.
   - The Access Server checks the user data store (the directory) and authenticates the user. WebGate sets an ObSSOCookie in the request.

4. The Web server forwards the user request to the WAS.
   - The Oracle Access Manager TAI gets the request and confirms that the user has been authenticated.

5. WAS recognizes that the Access System has authenticated the user and creates an LTPA token.
   - The remaining steps in this process are the same as steps 5-7 in Scenario 1. The WAS and both Web servers must belong to the same domain.

6. The Connector for WebSphere queries the Identity Server via WebPass for a list of groups to which the user belongs.
   - The Identity Server checks the directory and returns the information to the Connector for WebSphere.

7. The Connector for WebSphere returns this information to the WAS.

8. If you are using the Oracle Access Manager CMR, the Portal Server is invoked, as described in "Integration Scenario with the Oracle Access Manager CMR" on page 10-8.
   - If you are not using the CMR, the WAS checks the deployment descriptor for a user-security or group-security role mapping. If the user or group belongs to a security role that is allowed to access the resource, the WAS allows the user to access the resource.

Mapping Users and Groups to Security Roles in WAS

WebSphere security is consistent with J2EE role-based security specifications. Roles are specified in the deployment descriptors for an application. When the application is installed, these roles are bound to Oracle Access Manager users or groups. You can change the binding information for roles in an application through the WebSphere Administrative Console.

Oracle Access Manager manages users and groups. WebSphere manages roles with the help of the AAT or via the Administration Console. The following illustration shows Oracle Access Manager mappings of Identity System users to Identity System groups and Identity System users and groups to WebSphere roles. It also shows WebSphere mappings of methods to roles.
In the WAS 5 Administrative Console, the role of "Admin" is special. Any user added to the role "Admin" in the Identity System must be in a group called "Admin" or "Administrator". Otherwise, this user may not be able to login to the Administrative Console. Other roles, like "monitor" have no restrictions. Therefore, any Oracle Access Manager user added to these roles in the WAS 5 Administrative Console, can log in to the WAS 5 Administrative Console.

Integration Scenario with the Oracle Access Manager

During login, the user is authenticated as depicted in "Integration Architecture" on page 10-5. Without the CMR, the WebSphere Portal Server must communicate directly with the LDAP directory server to obtain user, group, and personalization information. With the CMR, communication between the WebSphere Portal Server and the directory server can be eliminated. The CMR performs read operations through the NetPointWASRegistry with the directory server.

Figure 10–3 shows the interaction between the WebSphere Portal Server, CMR, and LDAP directory server during the login authorization process. This follows processes described in "Integration Architecture" on page 10-5.
Process overview: Authorization with the CMR

1. After authentication, a user requests access to a portlet through the WebSphere Portal Server.

2. The Portal Server forwards the request to the Oracle Access Manager CMR.

3. The CMR forwards the request to the NetPointWASRegistry.

4. The NetPointWASRegistry sends an IdentityXML call to the Identity Server or uses the Access Manager SDK to contact the Access Server through WebPass or WebGate, depending upon the required method.

For instance, the Access Manager SDK uses the checkPassword method while IdentityXML uses all other methods:

- findByAttribute to search users by attribute
- get
- getGroupMemberIdentifiers
- getMemberAttributes
- getMemberships
- IsAttributeSupported
- searchMembers

5. The Identity Server (or Access Server) communicates with the LDAP directory server.
6. The directory server returns information.

## Supported Versions and Platforms

The Connector for WebSphere includes the Oracle Access Manager Custom Member Repository (CMR) for the WebSphere Portal Server. The Connector for WebSphere supports the WebSphere Application Server v5.0 and 5.1 with the CMR.

Any references to versions and platforms in this chapter are for demonstration purposes.

To see the supported versions and platforms for this integration, refer to Metalink as follows.

### To view information on Metalink

1. Go to the following URL:
   - [http://metalink.oracle.com](http://metalink.oracle.com)
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

## Preparing to Install the Connector

Before you can install and configure the Connector for WebSphere, you must complete the following tasks.

### Task overview: Preparing to install the Connector for WebSphere

1. Install IBM and Oracle Access Manager components, as described in "Preparing Your Environment" on page 10-10.
2. Configure the Identity Server after installation, as described in "Configuring the Identity System for WAS Integration" on page 10-11.
5. Define a policy domain for the Websphere Administration Console, as described in "Defining a Policy Domain for the WebSphere v6.0 Administration Console" on page 10-18.

## Preparing Your Environment

Preparing your environment includes installing the appropriate IBM applications and Oracle Access Manager.

### To prepare your environment for integration

1. Ensure that your environment meets the requirements under "Supported Versions and Platforms" on page 10-10.
2. Install and configure the following IBM applications and components using the IBM documentation for these products:
   a. IBM WebSphere Application Server
   b. Application Assembly Tool (AAT)
   c. WebSphere Portal Server.

   The Oracle Access Manager CMR requires the WebSphere Portal Server. References to specific versions are for demonstration purposes. See "Supported Versions and Platforms" on page 10-10 for details.

3. WebSphere Portal Server v5: See "Supported Versions and Platforms" on page 10-10 then follow instructions from IBM as you complete one of the following steps to ensure you have an up-to-date version that includes Fix Pack PQ93461:

   - Install a new WebSphere Portal 5.0.2 instance using the installation program provided for v5.0.2.
   - Upgrade an existing installation of WebSphere Portal 5.0 to v5.0.2.
   - Install a new WebSphere 5.1 Portal instance using the installation program provided for v5.1.
   - Upgrade an existing installation of WebSphere Portal 5.0 or 5.0.2 to 5.1

4. Install and setup Oracle Access Manager components, as described in the Oracle Access Manager Installation Guide:
   a. Identity Server
   b. WebPass
   c. Policy Manager
   d. Access Server
   e. WebGate
   f. AccessGate

5. Configure the WAS integration, as follows:


### Configuring the Identity System for WAS Integration

The Identity Server and WebPass are the two main components of the Identity System. WebPass is an Access System plug-in for Web servers. When a user requests access to a Web server resource, the WebPass redirects the request to a Identity Server, which then checks the user’s identity through the directory server.
After you install the Identity Server and a WebPass, you must set up the Identity System, as explained in the Oracle Access Manager Installation Guide. After setup, you configure the Identity System for integration as follows.

**Task overview: Configuring the Identity System for WAS integration**

1. Prepare for WebPass failover, if desired, as described in "Configuring WebPass Failover" on page 10-12.

2. Setup the Identity Server for WAS, as described in "Configuring the Identity Server" on page 10-12.

**Configuring WebPass Failover**

Oracle Access Manager uses failover to maximize performance and provide uninterrupted service to end users. Failover redirects requests in the event that a server fails. You must install a WebPass plug-in on each Web server. You may want to install multiple instances of WebPass. Later you may configure these for failover.

For more information, see "Configuring Multiple WebPass Instances for the Connector" on page 10-24.

**Configuring the Identity Server**

The Identity Server is the Oracle Access Manager component that provides user and group information to the WAS. You must configure the Identity Server to be compatible with search methods that may be used with the WAS.

You will configure the account for the NetPointWASRegistry Admin user. The administrator’s login will be used to make IdentityXML calls to the Identity Server. The NetPointWASRegistry Admin user does not need to be the Master Administrator. For example, the NetPointWASRegistry Admin user may be the Master Identity Administrator. However, if you prefer to limit the rights, the administrator you assign must possess at least the following rights:

- View access on the class attribute of the user class.
- View access on the class attribute of the Group class.
- The appropriate searchbase for the user and group class.
- GRANT+READ right on the class attribute of the user class.
- GRANT+READ right on the class attribute of the Group class.
- View access on those attributes listed in the call. For example: login ID, group member, group dynamic filter, and so on.

**To configure the Identity Server after installation**

1. Open the oblixappparams.xml file and set the searchstringMinimumLength to zero:

   ```xml
 <NameValPair ParamName="searchstringMinimumLength" Value="0"/>
   ```

   where **Identity_install_dir** is the directory where you installed the Identity Server.

2. Open the groupservcenterparams.xml file and set the groupMemberSearchStringMinimumLength to zero:

   ```xml
 <NameValPair ParamName="groupMemberSearchStringMinimumLength" Value="0"/>
   ```

   where **Identity_install_dir** is the directory where you installed the Identity Server.
3. Restart the Identity Server.
   The next step must be completed after Identity System setup.
4. From the Identity System Console, click the User Manager tab, then click the Configuration sub-tab.
5. Click the Delegated Administration link and provide an administrator with the required View and Delegated Administration rights, as follows.

   **Caution:** Do not check the Delegate Right box beside Grant Read Right.

6. Restart WAS and the WAS Admin Console to have the change take effect.
   For more information about configuring administrators, see the Oracle Access Manager Identity and Common Administration Guide.

### Configuring the Access System for WAS Integration

The Access System has three main components: the Policy Manager, the Access Server, and the WebGate. Installation and configuration considerations for Access System components in a WAS integration are discussed here.
**Policy Manager**: The first component you install is the Policy Manager. You use the Policy Manager to create and manage policy domains to protect resources, and to test policy enforcement. The Access System Console is a part of the Policy Manager. The Access System Console is used for system configuration and system management tasks such as configuring administrators, managing logs, and configuring instances of AccessGates and Access Servers.

**Access Server**: You also must install at least one Access Server. However, it is recommended that you install at least two Access Servers on two different machines to ensure uninterrupted service to your users.

Each Access Server can be configured to communicate with one or more WebGate instances, and to communicate with a directory server. Access Servers record their activity in Greenwich Mean Time (GMT) because you could have servers operating in several time zones.

**WebGate**: The WebGate component is optional. You will need it if you want to support single sign-on and if you want to protect the WebPass.

**AccessGate**: An AccessGate is a an Access System component that processes Web and non-Web resource requests from users or applications. The Connector for WebSphere uses an AccessGate to communicate with the Access Server.

---

**Note**: For more information, see "Configuring the AccessGate for WAS Integration" on page 10-14 and the *Oracle Access Manager Access System Administration Guide*.

---

**Configuring the AccessGate for WAS Integration**

Before installing the Connector for WebSphere, you must install and configure an AccessGate. WebSphere intercepts user requests and passes them on to the Connector for WebSphere. The Connector uses the AccessGate to make calls to the Access Server for authentication and authorization of the requests.

**To configure the AccessGate for the NetPointWASRegistry**

1. Navigate to the AccessGate Configuration page:
   - From the Access System Console, click Access System Configuration, then click AccessGate Configuration.

2. Click the Add button to display the Add a new AccessGate page.

3. Complete the following information:
   - **AccessGate Name**: Unique, descriptive name for this AccessGate. Use an alphanumeric string, and do not include spaces in the name.
   - **Hostname**: Name of the machine where the AccessGate will be installed.
   - **Port**: You do not need to specify a port. An AccessGate, unlike a WebGate does not require a port number. See the *Oracle Access Manager Access System Administration Guide* for details.
   - **AccessGate Password and Re-type AccessGate Password**: Unique password to verify and identify the component regardless of the transport security mode. This should differ for each AccessGate instance.
   - **Access Management Service**: This service only needs to be enabled if the Access Server that you are associating with this AccessGate has Access Management Service set to On.
Preparing to Install the Connector

Integrating with IBM WebSphere

1. **Transport Security**: Level of transport security to and from the Access Server. The default value is Open. The transport security mode of the AccessGate must match the transport security mode of the Access Server.

See the *Oracle Access Manager Access System Administration Guide* for details on transport security.

4. Click Save.

The Details for the AccessGate page appears.

5. Click the List Access Servers (or List Clusters) button to associate this AccessGate with the appropriate Access Server.

6. Click the Add button to add a new Access Server to associate with this AccessGate.

7. Select an Access Server from the list, and define the configuration for this Access Server.

8. Review the page that is returned.

For more information about AccessGates, see the *Oracle Access Manager Access System Administration Guide*.

Configuring Resource Protection in the Access System

The following procedures must be completed to configure the Access System to protect resources for WebSphere.

**Task overview: Configuring resource protection in the Access System**

1. Identify a resource type, as described in "Defining a Resource Type for WebSphere" on page 10-15.

2. Create an authentication scheme, as described in "Defining an Authentication Scheme for WebSphere" on page 10-16.

3. Create a policy domain in the Access System, as described in "Defining a Policy Domain for WebSphere" on page 10-17.

4. For WebSphere Application Server v6.0, create a policy domain in the Access System, as described in "Defining a Policy Domain for the WebSphere v6.0 Administration Console" on page 10-18.

**Defining a Resource Type for WebSphere**

Define a resource type for WebSphere, as described in the following procedure. See the *Oracle Access Manager Access System Administration Guide* for details on defining resource types.

In the following procedure you must provide the resource type values exactly as specified. If you need to specify a different resource name, you must change the resource name in the following locations:

- **CWS_install_dir\oblix\config\NetPointWASRegistry.properties**
  where *CWS_install_dir* is the directory where the Connector for WebSphere was installed.

- **WAS_install_dir\properties\webgate.properties**
  where *WAS_install_dir* is the directory where the WebSphere Application Server is installed.
By default, these configuration files assume you entered the values specified in the following procedure.

To define a resource type for WebSphere
1. From the Access System Console, click Access System Configuration, then click Common Information Configuration.
2. Click Resource Type Definitions.
The Details for Resource Type page appears.
3. Define and save the resource type as follows:
   - Resource Name: Authen
   - Display Name: WebSphere Authentication Scheme
   - Resource Matching: Case Insensitive
   - Resource Operation: LOGIN.
4. Restart the Access Server to make this new resource available.

Defining an Authentication Scheme for WebSphere
You need to define an authentication scheme for WebSphere. The authentication scheme provides a method to be used when determining whether a user is allowed to access an Access System-protected WebSphere resource.

To define an authentication scheme for WebSphere
1. From the Access System Console, click Access System Configuration, then click Authentication Management.
2. Define and save the authentication scheme as follows.
   - Name: WebSphere Basic Over LDAP
   - Description: Used to protect WebSphere-related URLs
   - Level: Enter a number for security level that is lower than or equal to the level specified in the authentication scheme protecting the WebSphere and Portal Server URLs. For details, see "Configuring the TAI for WebSphere v5" on page 10-31 or "Configuring the TAI for WebSphere v6" on page 10-57.
   - Challenge Method: Basic
   - Challenge Parameter: Set the challenge parameter for the user credentials that you want to map.
   - SSL required: No
   - Challenge Redirect: Enter information in this field if you are going to redirect the end user’s request to another server for the authentication process. The most common use of this field is to redirect from a non-SSL server to an SSL server. Redirection is transparent to the end user.
   - Plug-ins: Select Access System plug-ins to create a customized challenge scheme. For example, the Oracle Access and Identity challenge scheme requires the validate_password and credential_mapping plug-ins.

Note: See the Oracle Access Manager Access System Administration Guide for more information on authentication schemes.
Now you need to create a policy domain for the WebSphere Application Server, as described next.

---

**Note:** See the *Oracle Access Manager Access System Administration Guide* for details on policy domains.

---

**Defining a Policy Domain for WebSphere**

You need to use the Access System to create a policy domain for WebSphere. This policy domain identifies the authentication scheme that WebSphere will use to protect the resource type that you configured in "Defining a Resource Type for WebSphere" on page 10-15. You also define an action in the Access System. This action creates a user attribute for the WebSphere Application Server. When a user is authenticated to WebSphere, the user ID defined on the action is sent to the WebSphere Application Server.

**To create a policy domain for WebSphere**

1. From the Policy Manager, click Create Policy Domains.

2. Click the General tab and enter and save the information for your organization. For example:
   - **Name:** WebSphere
   - **Description:** Policy Domain Used for WebSphere
   - **Enabled:** Yes
   - **Update Cache**

3. Click the Resources tab, then enter and save the following information for your organization. For example:
   - **Resource Type:** WebSphere Authentication Scheme
     - This is the resource you defined earlier. If you changed the name of the WebSphere resource type, ensure that you specify it here.
   - **URL Prefix:** /Authen/Basic
   - **Description:** NetPointWASRegistry uses this resource for authenticating users in the Access System. Do not delete this resource.

4. Click the Default Rules tab, Authentication Rules, Add to create and save a default authentication rule using the WebSphere Basic Authentication Scheme that you defined earlier.
   - **Name:** WebSphere
   - **Description:** Default authentication rule using the WebSphere Basic Authentication Scheme.
   - **Authentication Scheme:** Basic Over LDAP type
     - You must create a Basic Over LDAP authentication scheme. The Access Manager SDK uses only this type of authentication scheme. You can create a new authentication scheme with a different name for WebSphere, but the authentication scheme type must be Basic Over LDAP.

5. Click the Authorization Rules tab, then create and save an authorization rule to allow access to WebSphere resources. For example:
   - **a.** Click General, then enter and save:
Preparing to Install the Connector

* Name: Allow Everyone.
* Description: Allow access to WebSphere resources.
* Enabled: Yes
* Allow takes Precedence: Yes

By default, nobody is allowed. Changing the default to Allow Everyone enables the Access Server to check a user’s identification for authentication.

b. Click Actions (Authorization Success), then enter and save:
   * Return Type: WAS_REGISTRY
   * Name: uid
     This is a hard-coded value. Use this exact string.
   * Return Attribute: login attribute.
     This attribute must be the same as the attribute configured for the login semantic type in the Identity Server or a unique attribute in the user’s profile, such as uid.

c. Click Allow Access, then enter and save:
   * Role: Anyone

6. Click OK to create the new policy domain.

You can now install the Connector for WebSphere.

Defining a Policy Domain for the WebSphere v6.0 Administration Console

For WebSphere 6.0, you must use the Access System to create a policy domain for the WebSphere administration Console. This domain protects the console URLs in the ibm/console and /admin folders, and it is required when TAI is enabled for the WebSphere AppServer. The domain helps set the TAI cookie required by the TAI component, and it also redirects the access URL to the application server Administration Console (port 9060). Under these conditions, you must also set an Authorization Success URL.

To create a policy domain for the WebSphere Administration Console

1. Navigate to Policy Manager, Create Policy Domains, General.
2. Enter and save the following information for your organization.
   For example:
   - Name: Protect WebSphere Admin Console
   - Description: Policy Domain Used for the WebSphere Administration Console URL
3. Click the Resources tab, then enter and save the following information for your organization.
   For example:
   - Resource Type: http
   - Host Identifier: The host identifier defined for the machine hosting the Web server.
   - URL Prefix: /admin and ibm/console
Preparing to Install the Connector

Integrating with IBM WebSphere

4. Click the Authorization Rules tab, then create and save an authorization rule to allow access to WebSphere Admin Console resources

For example:

a. Click General, then enter and save:
   * Name: Allow Administrator.
   * Description: Allow access to WebSphere Admin Console resources.
   * Enabled: Yes
   * Allow takes Precedence: Yes

   By default, nobody is allowed. Changing the default to only Administrator User enables the Access Server to check a user's identification for authentication.

b. Click Actions (Authorization Success), then enter and save the following:
   * Redirect to: http://hostname:9060/ibm/console

   If the Client Cert Authentication Scheme is to be used, set the associated variables as:
   * Redirect to: https://hostname:9043/ibm/console

   Where hostname is the fully qualified domain name of the machine hosting the WebSphere AppServer.

c. Click Allow Access
   * Select the User who has Administrative rights, then click Save.

5. To create a default authentication rule using the desired authentication scheme, (Basic Over LDAP, Form-based, Client Cert), navigate to Default Rules, then click Authentication Rules, then click Add. Enter and save the following values:

   Name: WebSphere Default Scheme

   Description: Default authentication rule for Admin Console.

   Authentication Scheme:

   Create this scheme as a Basic Over LDAP, Form-based, or Client Cert authentication scheme.

6. To create an authorization expression using the "Allow Administrator" authorization rule created previously, navigate to Default Rules, Authorization Expression, Add, then click Select Authorization Rule - "Allow Administrator".

   Next, click Add and Save

7. Install the Connector for WebSphere.

8. After you install and set up the connector and have also enabled TAI, enable the policy by completing the following steps:

   a. Navigate to General, Modify.

   b. Set Enable to YES, then click Save.

   At this point, you can access the WebSphere Administration Console through either of the following URLs:

   http://WebServerFQDN:port/admin
http://WebServerFQDN:port/ibm/console

Where WebServerFQDN is the fully qualified domain name of the machine hosting Web server and port is the port number used by the Web server.

Installing the Connector for WebSphere

After completing the prerequisites described in the previous sections, you are ready to install the Connector for WebSphere, as follows.

---

**Caution:** If you plan to include the WebSphere Portal Server in your integration, you must install and configure the portal before you install the Connector for WebSphere. See "Preparing Your Environment" on page 10-10.

---

**Tip:** For information on upgrading this integration, see the Oracle Access Manager Upgrade Guide.

Task overview: Installing the Connector

1. Run the installer, as described in "Launching the Installation" on page 10-20.
2. Create an installation directory, as described in "Defining the Installation Directory" on page 10-21.
3. Configure the Connector, as described in "Specifying Connector Details" on page 10-21.
4. Configure the WebGate, as described in "Completing Details for the WebGate" on page 10-22.
5. Configure the AccessGate, as described in "Specifying AccessGate Details" on page 10-23.
6. Install a certificate, as described in "Installing a Certificate" on page 10-24.

Launching the Installation

The initial installation and setup procedure differs depending on the platform on which you are installing Oracle Access Manager.

**To launch installation**

1. Insert the installation CD.
   The DemoShield launches.
2. Launch the program according to your platform:
   **Windows**: Navigate to Install Oracle Access Manager, Access System, Connector for WebSphere.
   **Unix**: Complete these steps:
   - Navigate to /Software/Solaris/AccessSystem/Connector for WebSphere.
   - Execute /COREidx.x_EN_sparc-s2_Connector_for_WebSphere.
   The install wizard launches.
**Defining the Installation Directory**

In this sequence, you will accept the terms of the license agreement and identify the installation directory for the Connector for WebSphere.

You need to specify the installation directory for the Connector for WebSphere on the machine where you installed WAS.

**To define the installation directory**

1. Click Next to dismiss the Welcome Screen.
2. Read and accept the terms of the license agreement, then click Next to continue.
3. Respond to the next question based upon your platform. For example:
   - **Windows**: Click Next if you are logged in with administrator rights (otherwise click Cancel, log in as a user with administrator privileges, then restart the installation).
   - **Unix**: Specify the username and group, then click Next.
     Typically, the defaults are "nobody".

   You are asked to specify the installation directory for the Identity Server. When you do this and click Next, the installation will begin and you will not be able to return to restate the name.

4. Accept the default directory by clicking Next (or change the destination, then click Next).
   
   For example:
   
   \Netpoint

   You are informed that the connector is being installed, which may take several seconds.

   The Configuration for Oracle Access Manager Connector for WebSphere screen appears.

**Specifying Connector Details**

You need to configure the WebPass for the Connector for WebSphere. For failover purposes, you can configure multiple WebPass instances during installation or through the NetPointWASRegistry.properties file.

To configure multiple WebPass instances during installation, when you enter the WebPass hostname and port number be sure to use a comma as a separator. The hostname must be fully qualified with the domain name. For example:

**Hostname**: foo.domain.com, bar.domain.com

**Port Number**: 80, 81

Where the valid WebPass host:port combinations are:

- foo.domain.com:80
- bar.domain.com:81

For details about configuring multiple WebPass instances through the properties file, see "NetPointWASRegistry.properties" on page 10-60.
To specify Connector for WebSphere details

1. Enter the information requested:
   - **Hostname of WebPass**: The fully qualified name of the machine on which WebPass is installed.
   - **Port Number of WebPass**: The port number for WebPass.
   - **Is the Identity System (WebPass) protected by WebGate**: Specify whether the Identity System (WebPass) is protected by a WebGate.

2. Click Next.
   If the Identity System WebPass is protected by a WebGate, the WebGate configuration screen appears.

Completing Details for the WebGate

The following procedure describes how to provide WebGate configuration details.

---

**Note:** If you have chosen to use WebGate to protect WebPass, the assumption is that you are protecting the Identity System applications with policy domains. It is also assumed that single sign-on between these components has been configured correctly.

---

To complete WebGate configuration details

1. Enter the cookie domain for the WebGate (for example, .domain.com).
   The ObSSOCookie is then recognized by all servers within this domain.

2. Enter the cookie path (/).

3. Click Next.

   This is the SSL for secure connection when WebPass runs on HTTPS.

5. Specify the user attribute.
   This attribute must be the same as the attribute configured for the Login semantic type in the Identity Server or a unique attribute in the user’s profile such as uid.

6. Specify the user search attribute.
   The user attribute and the user search attribute cannot be the same.
   This attribute must be the same as the attribute configured for the DN Prefix semantic type for the person object class in the Identity Server. The person object class type must be a structural object class. The administrator of your directory server sets this search attribute.

7. Specify the group search attribute.
   This attribute must be the same as the attribute configured for the DN Prefix semantic type for the group object class in the Identity Server. The group object class must be a structural object class. The administrator of your directory server sets the group search attribute.

8. You can select Yes to specify that you want the Connector for WebSphere’s jar files to be copied from the Connector for WebSphere installation directory to the following directory:
WAS_install_dir /lib

where WAS_install_dir is the directory where you installed WAS.

If you select No, copy the jobaccess.jar and NetPointWASRegistry.jar files manually to the WAS_install_dir/lib after installation. Or, add the location of these jar files to the WebSphere runtime classpath.

9. Click Next.

The WebSphere Classes Directory screen appears.

Specifying AccessGate Details

As described in the following procedure, you specify the transport security mode for the AccessGate and other AccessGate details. See the Oracle Access Manager Access System Administration Guide for details on AccessGates.

To specify AccessGate details

1. Select the same transport security mode that is specified for the Access Server

   The pages that you see next vary depending on the transport security mode that you selected. See the Oracle Access Manager Installation Guide for details.

2. Click Next.

3. Enter the following information for the AccessGate:

   ■ **AccessGate ID**: Enter the name you specified earlier when adding an AccessGate in the Access System Console.
   ■ **Access Server ID**: Enter the name of the Access Server you associated with this AccessGate.
   ■ **Password for AccessGate**: Enter the AccessGate password you specified earlier when adding an AccessGate in the Access System Console, if applicable.

   You can specify any Access Server that is associated with this AccessGate.
   ■ **Hostname where Access Server is installed**: Enter the fully qualified hostname for the Access Server you associated with this AccessGate; for example, stontium.oblix.com.
   ■ **Port Number Access Server Listens To**: Enter the port of the Access Server you associated with this AccessGate.
   ■ **Global NetPoint Access Protocol Pass Phrase**: Enter a pass phrase for all Oracle Access Manager components such as Access Server and WebGate.

   This field appears only if you specify Simple Mode or Cert Mode.
   ■ **Global NetPoint Access Protocol Pass Phrase Confirmation**: Reenter the pass phrase to confirm it.

4. Click Next.

   A new AccessGate Configuration screen appears only if you specify Simple Mode or Cert Mode.

   ■ If you need a certificate for transport security, select Request for Certificate.

   The Access System sends out a request for a certificate.
   ■ If you already have a certificate, select Install Certificate to install it.
5. Click Next.
If you selected Install Certificate, the AccessGate Configuration screen reappears.

Installing a Certificate
You must provide the paths to the certificate, chain, and key files.

Note: If the Installation fails unexpectedly or you need to change these settings later, you can run the configureAccessGate tool located in `CWS_install_dir\oblix\tools\configureAccessGate`, where `CWS_install_dir` is the directory where the Connector for WebSphere is installed.

To supply the paths to the certificate files
1. Enter the full paths to the certificate, chain, and key files.
   The certificate consists of these files. If necessary, click Browse to navigate to the location of these files.
2. Click Next to display the summary screen and then click Finish.
   The installation is complete.
   Next, if necessary, configure multiple WebPass instances for Connector for WebSphere.

Configuring Multiple WebPass Instances for the Connector
Oracle Access Manager uses failover to maximize performance and provide uninterrupted service to end users. Failover redirects requests when a server fails. You may want to configure multiple WebPass instances for failover purposes.

This section assumes that you have already installed more than one instance of WebPass. See the Oracle Access Manager Deployment Guide for more information on failover.

To configure multiple WebPass instances for the Connector for WebSphere
1. Open the NetPoint WASRegistry.properties file:
   `CWS_install_dir\oblix\config\NetPointWASRegistry.properties`
   where `CWS_install_dir` is the directory where you installed the Connector for WebSphere.
2. Enter the fully qualified host name with the domain name and port number for the WebPass using a comma-separated list as follows:
   ```
 # IdentitySystem WebPass webservice host name and port number
 OB_WebPassHost=foo.domain.com,bar.domain.com
 OB_WebPassPort=81,80
   ```
   In this example, the valid WebPass `host:port` combinations are:
   - foo.domain.com:81
   - bar.domain.com:80
3. Complete Connector setup as described next.
Completing Connector Setup

After installing the Connector for WebSphere, you must provide information about the Oracle Access Manager components that it communicates with, including the WebPass and Access Server.

Task overview: Completing Connector Setup

1. Complete your setup of the Connector, as described in "Setting Up the Connector for WebSphere" on page 10-25.

2. Test the Connector environment, as described in "Testing Environment Setup" on page 10-27.

Setting Up the Connector for WebSphere

In the following procedure, you ensure that the jar files added during installation appear in the proper location, or you add their location to the WebSphere classpath. You also ensure the environment variable path is correct. This is required because at run time, NetPointWASRegistry looks for the obaccess.dll file (Windows) or the libobaccess.so file (UNIX) that is located in the Oracle Access Manager installation directory.

To set up the Connector for WebSphere

1. Ensure that the following jar files that you added during installation exist in the directory WAS_install_dir/lib or add the location of these jar files to the WebSphere classpath:
   - NetPointWASRegistry.jar
   - jobaccess.jar

2. Add CWS_install_dir\oblix\lib to the environment variable path, as follows:
   Solaris: In the setupCmdLine.sh file, add as follows:
   ```bash
 CWS_install_dir\oblix\lib to $LD_LIBRARY_PATH
   ```
   where CWS_install_dir is the directory where you installed the Connector for WebSphere.

   **Note:** The NetPointWASRegistry may fail to install if it cannot find the Access Manager SDK. You may need to add the following environment variables to the setupCmdLine.sh: OBACKACCESS_INSTALL_DIR=CWS_install_dir.

   AIX: In setupCmdLine.sh file, add as follows:
   ```bash
 CWS_install_dir\oblix\lib to $LIBPATH
   ```
   Restart the WebSphere Administration Server.

   Windows 2000: The installer automatically adds the information. However, you can:
   a. Manually add CWS_install_dir\oblix\lib to the PATH System variable.
   b. Reboot the machine.
   c. Start the WebSphere Administration Server.
3. Check the configuration to ensure that WebGate is protecting the WebPass.

From the Access System Console, click Access System Configuration, click AccessGate Configuration in the left navigation pane, click the link for the WebGate that protects the WebPass, and in the IPValidation field select the Off option.

As of Oracle Access Manager 10.1.4, the WebGateStatic.lst file no longer exists. The options in this file have moved to the Access System Console. See Oracle Access Manager Access System Administration Guide for details.

4. Restart the Web server.

5. Verify the information in the NetPointWASRegistry.properties file located CWS_install_dir \oblix\config.

where CWS_install_dir is the directory where your Connector for WebSphere is installed. The file is populated with information that was specified during installation. For more information, see "NetPointWASRegistry.properties" on page 10-60.

6. Determine if the machine hosting WebPass is running SSL, and if so, complete the following steps:
   a. Open the NetPointWASRegistry.properties file and set OB_ WebPassSSLEnabled = True.
   b. Obtain the Web server and CA certificates of the Web server hosting WebPass or WebGate running in SSL mode and place them respectively in the server.cer file and the ca.cer file.
   c. Use keytool in JAVA_HOME\bin or JAVA_HOME\jre\bin to add the following ca and server certificates to jssecacert keystore:
      * keytool -import -alias ca -file ca.cer -keystore jssecacert
      * keytool -import -alias server -file server.cer -keystore jssecacert
   d. Depending on the Java version that you are using, copy this file to the security directory located in JAVA_HOME\lib\security, or in JAVA_HOME\jre\lib\security.

The Connector for WebSphere uses WebPass to make IdentityXML calls. You can specify only one WebPass at a time for the Connector for WebSphere. Typically, this will be on the same Web server that hosts the Policy Manager. If you have more than one WebPass, and want the Connector for WebSphere configured for a different WebPass, you can change the host machine and port in NetPointWASRegistry.properties file after installation.

If you edit the NetPointWASRegistry.properties file, you must restart the WebSphere Administration Server.

---

**Note:** If WebPass is protected by a WebGate, ensure that the security level in this authentication scheme is the same level or a lower level than the one specified in the WebSphere authentication scheme discussed in "Defining an Authentication Scheme for WebSphere" on page 10-16.
Testing Environment Setup

Before you enable the NetPointWASRegistry, you need to run the registryTester program to ensure that the NetPointWASRegistry is registered and can successfully connect to the Identity System.

The following procedure applies to all WAS versions.

---

**Note:** On Linux systems, ensure that the LD_ASSUME_KERNEL environment variable is set to 2.4.1.0, as follows:

```bash
LD_ASSUME_KERNEL=2.4.19
export LD_ASSUME_KERNEL
```

---

**To run the registryTester program**

1. Edit the file registerTester.bat (Windows) or registryTester.sh (UNIX) in the CWS_install_dir/unsupported directory.

   where CWS_install_dir is the directory where you installed the Connector for WebSphere.

2. Modify these two variables as follows:
   - **INSTALL_DIR**: Specify the path to the Connector for WebSphere.
   - **WAS_INSTALL_DIR**: Specify the path to the WAS.

3. Specify the correct classpath and comment out the unused classpath for your installation:
   - **WebSphere 5.0 with Connector 7.0**: Keep WebSphere classpath for v5.0; comment out irrelevant WebSphere classpaths.
   - **WebSphere 5.0.2**: Keep WebSphere classpath for v5.0.2; comment out irrelevant WebSphere classpaths.
   - **WebSphere 5.1 with Connector 7.0.2**: Keep the WebSphere classpath for v5.1; comment out irrelevant WebSphere classpaths.
   - **WebSphere 6.0 with Connector 7.0.4**: Keep the WebSphere classpath for v5.1; comment out irrelevant WebSphere classpaths.

4. If you do not have a JAVA_HOME environment variable defined, set the JAVA_HOME parameter value as follows in the registryTester.bat or registryTester.sh file:

   **Windows**: `%JAVA_HOME% = WAS_install_dir \java`
   **UNIX**: `$JAVA_HOME$ = WAS_install_dir /java`

   where WAS_install_dir is the directory where you installed WebSphere.

5. **WebSphere 5.x only**: Update the registryTester.sh (.bat on Windows) as follows:

   ```bash
 set CLASSPATH=.:${CLASSPATH}:${INSTALL_DIR}/oblix/lib/NetPointWASRegistry.jar
 ${INSTALL_DIR}/oblix/lib/jobaccess.jar
 ${WAS_INSTALL_DIR}/lib/xerces.jar
 ${WAS_INSTALL_DIR}/lib/j2ee.jar
 ${WAS_INSTALL_DIR}/lib/wssec.jar
 ${WAS_INSTALL_DIR}/java/jre/lib/ext/ibmjsse.jar
   ```

   **Note:** You may check the registryTester.bat for details.
6. From the command line, run registryTester:
   - NT/W2K: registryTester.bat
   - UNIX: registryTester.sh

7. Supply an Oracle Access Manager user ID and password when prompted.

8. Verify the result:
   - If the program completes successfully, it connects to the Identity Server and returns a list of groups to which the user belongs.
   - If the registryTester program fails to connect with the Access Server or the Identity Server, check the parameter values in the NetPointWASRegistry.properties file and correct them as needed.

Configuring WebSphere Application Server v5

The following sections describe the integration of Oracle Access Manager with the WebSphere Application Server v5.0 or 5.1.

Before you begin, see "Supported Versions and Platforms" on page 10-10 for complete details about version support.

Task overview: Integrating with WAS v5

1. Enable the registry, as described in "Enabling the NetPointWASRegistry in WAS v5" on page 10-28.

2. Test the configuration, as described in "Testing the NetPointWASRegistry for WebSphere v5" on page 10-31.

3. Configure the TAI, as described in "Configuring the TAI for WebSphere v5" on page 10-31.

Enabling the NetPointWASRegistry in WAS v5

Once you have installed the products and tested them to be sure they are communicating, you can enable the NetPointWASRegistry. Enabling the registry causes Oracle Access Manager to be used as the authentication source for the WebSphere Application Server.

The NetPointWASRegistry works with the User Registry in WebSphere 5.

---

**Note:** In the following procedure, any Identity System user who is added to the role "Admin" must be in a group called "Admin" or "Administrator". Otherwise, this user may not be able to login to WebSphere Administrative Console. Other roles, like "monitor" have no restrictions. Any Identity System user added to these roles in the WAS 5 Administrative Console can log in to the WAS 5 Administrative Console.

---

**To enable the NetPointWASRegistry in WAS 5**

1. On Linux systems, ensure that the LD_ASSUME_KERNEL environment variable is set to 2.4.19 in the following location:

   `WAS_install_dir/bin/setupCmdLine.sh`

   Use the following command to set the environment variable:
LD_ASSUME_KERNEL=2.4.19
export LD_ASSUME_KERNEL

2. Ensure that WebGate protecting the WebPass has IPValidation set to Off.
   From the Access System Console, click Access System Configuration, click
   AccessGate Configuration in the left navigation pane, click the link for the
   WebGate that protects the WebPass, and in the IPValidation field select the Off
   option.

3. Create a backup copy of security.xml.
   In the following step, you will modify the configuration. You need to create a
   backup copy of security.xml before making a change to the configuration. If there
   are errors in the new configuration, you can always restore the previous version of
   the security.xml file.

4. Copy the security.xml file located in the following directory:
   `WAS_install_dir/config/cells/serverName`

5. Start the WebSphere Admin Service.

6. Log in as the Identity Administrator into the WebSphere Administrative Console.

7. Navigate to Security, User Registries, Custom Properties and enter the following:
   - Identity Administrator user ID
   - Server User Password
   - CustomRegistry Classname
   - Identity System Admin ID
   - User’s password
   - Oracle Access Manager Classname: com.oblix.registry.NetPointWASRegistry

8. Under Additional Properties in the Configuration tab, click Custom Properties,
   click New, and enter the following:
   - Name: NetPointWASRegistry.properties
   - Value: C:\CWS_install_dir\oblix\config\NetPointWASRegistry.properties.
- **Description:** Property file for Oracle Access Manager User Registry.
- Select the Required checkbox, click OK, and save your changes.

9. In the navigation pane on the left, click Authentication Mechanism, LTPA.

10. In the Configuration tab, specify a password.

11. Click OK.

12. Navigate back to LTPA (in the navigation pane on the left, click Authentication Mechanism, LTPA) and do the following:

   - Click Single Signon (SSO).
   - Click the Enabled box.
   - Enter the domain name. For example, .oracle.com.
   - Click OK.

13. In the navigation pane on the left, click Security, Global Security and change the following:
a. Set the Active Authentication Mechanism to LTPA.

b. Set the Active User Registry to Custom.

c. Click OK.

d. Click the Enabled box.

e. Click Apply to test the configuration.

   If the information is correct, a message confirming the changes is displayed at the top. Correct any errors that are displayed.

f. Click Save.

g. Click Logout and close the browser window.

h. Stop the WebSphere Application Service.

   If you get a message stating that the Service could not be stopped, switch to the Task Manager and ensure that there are no java processes running.

14. Start the WebSphere Admin Service.

Testing the NetPointWASRegistry for WebSphere v5

Next, verify the NetPointWASRegistry is configured correctly.

**To test the NetPointWASRegistry configuration**

1. Access the Snoop Servlet sample running on the default server at

   http://hostname:port/snoop

   or

   http://hostname:web_server_plug-in_port/snoop

2. When challenged by WebSphere, enter a username and password that is valid in Oracle Access Manager.

   By default, any authenticated user should be allowed access.

3. Launch the WebSphere Administrative Console and login as the user specified in Security, User Registries, Custom Properties.

   If the configuration is correct, you will be able to login successfully.

4. Set access control for the WebSphere Administrative Console by specifying the users and groups and the roles to which they belong.

   See WebSphere 5 documentation for more information.

5. Note the .xml files that are modified to support Admin Console access and click Save.

After you have installed Connector for WebSphere, you must configure the NetPointWASRegistry and TAI. The NetPointWASRegistry is used for authentication and the TAI enables single sign-on using Oracle Access Manager.

Configuring the TAI for WebSphere v5

You configure the TAI to enable single sign-on between Oracle Access Manager and WAS, as well as between Oracle Access Manager and the WebSphere Portal Server. For WebSphere 5.0 or 5.1, you must install webgate.properties, add the TAI, and then add custom properties.
To install and configure TAI for WAS 5

1. Copy the configuration file named webgate.properties (see Table 10–2 for parameters):

   From: CWS_install_dir / oblix / config
   To: WAS_install_dir / properties folder in the WebSphere installation properties directory.

   where CWS_install_dir is the directory where the Connector for WebSphere is installed, and WAS_install_dir is the directory where the WebSphere Application Server is installed.

   This file contains configuration information that WebSphere will use to connect to the AccessGate.

2. In the WebSphere installation properties directory, modify the parameter values of the webgate.properties file (See Table 10–2) as follows:

   OB_InstallDir = CWS_install_dir

   where CWS_install_dir is the directory where the Connector for WebSphere is installed. For example:

   C:\COREid\NetPointWASRegistry

   If WebGate is installed on a proxy server that is used as a front end server to direct all user requests to Web servers that interface with WebSphere Application Servers, then specify the following parameter values:

   - OB_IsProxyEnabled=true
   - OB_hostnames = serverName
     where serverName is the name of the proxy server.
   - OB_ports = portNumber
     where portNumber is the port number of the proxy server.

   **Note:** If you used a resource other than Authen, you must specify the resource name in the webgate.properties file.

3. Launch the WebSphere Administrative Console.
4. In the navigation pane on the left, click Authentication Mechanisms, LTPA.
6. In the Name field, enter Oracle TAI Interceptor.
7. In the Interceptor classname field, enter `com.oblix.tai.was5.WebGateTrustAssociationInterceptor`.

8. Click OK.

9. Add the following three properties:
   
a. **Name**: `com.ibm.websphere.security.trustassociation.types`
   
   * **Value**: webgate
   
   * **Description**: TAI property
   
   * Select the Required checkbox.
   
   * Click OK.

b. **Name**: `com.ibm.websphere.security.trustassociation.webgate.config`

   * **Value**: webgate
   
   * **Description**: Name of the TAI properties file located in `{WAS_install_dir}/properties` directory.
   
   * Select the Required checkbox.
   
   * Click OK.

c. **Name**: `com.ibm.websphere.security.trustassociation.webgate.interceptor`

   * **Value**: `com.oblix.tai.was5.WebGateTrustAssociationInterceptor`
   
   * **Description**: TAI class for WebSphere 5
   
   * Select the Required checkbox.
   
   * Click OK.
10. Click Interceptors at the top of the page and then click Save.

11. Navigate to:

```
WAS_install_dir/config/cells/serverName_dir
```

where `serverName_dir` is the directory where the server is installed.

12. Make a backup copy of the security.xml file.

13. In the WebSphere Administrative Console, navigate to LTPA, Trust Association, Interceptors.

14. Select the WebSeal Interceptor and click Delete.

15. Click Trust Association and click the Enabled check box.

16. Click Apply and then click Save.

17. Logout of the WebSphere Administrative Console and close the browser.

18. Shut down the WebSphere Admin Server.

   If you get an error message, go to Task Manager and ensure that the java process is not running.

19. Restart the WebSphere Admin Service.

   If the Service does not start, verify that the properties are set correctly in the security.xml file and that the `webgate.properties` file is in the correct location.

20. Create an Access System policy to protect WebSphere resources

   In the Policy Manager, define a policy for the resource that you want to protect.

   Other authorization rules can also be added at this point. The policy that you use to protect the URL can use basic, form, cert, or other authentication schemes that the Access System supports.

   Ensure that the security level in this authentication scheme is `equal` or `greater` than the one specified in the WebSphere authentication scheme discussed in "Preparing Your Environment" on page 10-10.

   See the Oracle Access Manager Access System Administration Guide for more information on defining policies.

21. Verify that the TAI is working as detailed in the following section.
Testing the TAI for WAS v5

After you have configured TAI, restart WAS and test for successful authentication and single sign-on between WebSphere and Oracle Access Manager.

To conduct these tests, you use the Snoop servlet that WebSphere provides. The Snoop servlet has security constraints that only allow access to authenticated users. When WebSphere security is not enabled, access to the Snoop is unrestricted. When WebSphere security and TAI are enabled, users attempting to access Snoop will be challenged by the Access System. If TAI is not enabled, users attempting to access Snoop will be challenged by WebSphere.

To test Access System single sign-on for WAS, you must build and configure a new WebSphere secure application. Then, test Access System authentication and single sign-on for the secured application.

During installation, a secure application is built that you can use for testing and stored in the following location:

```
CWS_install_dir/examples/securityapp/SimpleSessionSecure.ear
```

where CWS is the directory where you installed the Connector.

---

**Note:** If you wish, you can build your own secure application. The following procedure describes how to build an application for WAS 5.x.

---

To build a WebSphere secure application

1. Build a secure application named SimpleSessionSecure according to the instructions available at the following URL:

   [http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/060704_security.html](http://www-3.ibm.com/software/webservers/appserv/doc/v40/ae/infocenter/was/060704_security.html)

2. Save the SimpleSessionSecure.ear file in the appropriate location; for example, in c:\temp.

3. Verify that the WAS Administration Server is running.

To install the SimpleSessionSecure application

1. Launch the WebSphere Administrative Console located in WAS_install_dir\bin\adminclient.

   where WAS_install_dir is the directory where the WebSphere Application Server is installed.

2. In the WebSphere Console tree view, right-click WebSphere Administrative Domain, Enterprise Applications.

3. From the resulting menu, click Install Enterprise Application to launch the Install Enterprise Application wizard.

   The Specifying the Application or Module panel appears.

4. Verify the following settings:

   - The Browse for file on node field is set to your current node.
   - The Install Application option is selected.

5. Click Browse to locate and select the SimpleSessionSecure.ear file.
6. Verify that its name is now displayed in the Path field and specify SimpleSessionSecure as the Application name.

7. Click Next, then click Yes when prompted whether to deny access to unprotected methods.

8. In the Mapping Users to Roles panel, verify that the Goodguys role is mapped to valid Identity System Users.

9. Click Select; verify that Identity System Users are listed in the Selected Users/Groups area of the resulting Select Users/Groups dialog, then click OK to close the dialog after verification.

10. Click Next.

11. On the Mapping EJB RunAs Roles to Users panel, click Next.

12. In the Binding Enterprise Beans to JNDI Names panel, verify that the JNDI Name is set to gs/hello, and then click Next.

13. In the Mapping EJB References to Enterprise Beans panel, verify that the JNDI Name is set to gs/hello, and then click Next.

14. Click Next in the next three panels, until the Selecting Virtual Hosts for Web Modules panel appears.

15. In the Selecting Virtual Hosts for Web Modules panel, ensure that the Virtual Host is set to default_host, then click Next.

16. In the Selecting Application Server panel, ensure that the EJB11 and SimpleSessionWar modules reside on Application Server named Default Server and then click Next.

17. In the Completing the Application Installation Wizard panel, click Finish.

18. When prompted to regenerate code, click No.

19. Look for the message confirming successful installation of the application

   It may be a minute before it is displayed. You can now view the SimpleSessionSecure application in the WebSphere Administrative Console tree view.

20. After you build the SimpleSessionSecure application, regenerate the plug-in configuration to enable the Web server to locate the WebSphere application.

   **To regenerate the plug-in configuration**

   1. In the console tree view, right-click WebSphere Administrative Domain, Nodes, hostname.

      Where hostname is the name of the machine where WebSphere is installed.

   2. From the resulting menu, select Regen Webserver Plugin.

   3. In the Event Message panel, a message appears stating that the plug-in regeneration has been completed.

   4. Stop the WebSphere Administrative Server and start it again:

      To stop the administrative server, under Nodes in the WebSphere Administrative Console, right-click hostname and select Restart from the resulting menu. The console will close.

   5. Open the WebSphere Administrative Console again after the administrative server starts.
This time, you will be asked to log in, because security is enabled.


Where *hostname* is the fully qualified name of the machine where WebSphere is installed; for example, xyz.domain.com.

7. Ensure that the Module Visibility setting of the Default Server is set to Compatibility.

8. If you want to change the visibility setting, click Apply.

To test Access System authentication and single sign-on

1. Access the SimpleSessionSecure application at the following URL:

   $\text{http://hostname/gettingstart3/SimpleSession?msg=Hi}$

   where *hostname* is the fully qualified name of the machine where WebSphere is installed; for example, xyz.domain.com.

2. Log in as an Oracle Access Manager user.

   - **TAI Not Enabled**: If you have not enabled the TAI, you will be challenged by WebSphere and your credentials are passed on to the Access System. After the Access System authenticates you, you will be allowed to access SimpleSessionSecure.

   - **TAI Enabled**: If you have enabled TAI, you will be challenged and authenticated by the Access System. Because single sign-on between the Access System and WAS is enabled, you are allowed to access SimpleSessionSecure and other Access System-protected resources (URLs) without being challenged by WebSphere.

To test single sign-on for Access System-protected WebSphere resources

1. On the Web server you use to access the WAS, navigate to the document root and create a directory named test.

2. In the test directory, create a file named index.html.

3. In the Access System, create and enable policies to protect /servlet and /test directories.

4. Access the Snoop servlet at the following URL:

   $\text{http://hostname.domain.com:9080/servlet/snoop}$

   where *hostname* is the fully qualified name of the machine where WebSphere is installed; for example, xyz.domain.com.

   You will be challenged for authentication. After you are authenticated, you will be allowed to access the Snoop servlet.

5. Access the /test URL.

   You must be allowed to access the URL and view the index.html file without being challenged.

Enabling Logging for TAI for WAS v5

You can enable logging for the TAI from the WebSphere Administrative Console. The procedure to enable logging varies depending on the WAS version that you use.
To enable logging for TAI for WAS 5
1. Launch the WebSphere Administrative Console.
2. Navigate to Troubleshooting, Logs and Trace
3. Select your Server.
4. Select Diagnostic Trace.
5. Modify the Trace specification.
6. Select the Components tab.
7. Enable debug logging for com.oblix.tai.was5.WebGateTrustAssociationInterceptor.
8. Integrate Oracle Access Manager with the WAS Portal v5, if desired.

Integrating with WebSphere Portal v5
A portal provides a single point of access to enterprise data and applications, presenting a unified and personalized view of that information to employees, customers, and business partners.

The WebSphere Portal Server runs on top of the WAS and uses the WAS security infrastructure to enforce access control. Integrating Oracle Access Manager with the WebSphere Portal provides the following Oracle Access Manager functionality for the portal:

- User and group management
- Password management
- SSO to the portal
- Unified logout between Oracle Access Manager, WAS, and the WebSphere Portal

The WebSphere Portal V5 uses the following component to manage user and group information.

Member Manager: Member Manager presents a Java object view of Users and Groups to WebSphere Portal, including all portlets installed on WebSphere Portal. Member Manager (as accessed through PUMA) is the abstraction interface that WebSphere Portal V5.0 uses to access user and group information. This includes the user accounts, which tell Portal that the user exists, any user groups within which the user might be a member, and attributes about the users.

The following figure shows the architecture of the Member Manager.
See the WebSphere Portal v5 documentation for more information on the portal and related components.

**Oracle Access Manager Custom Member Repository**: The Custom Member Repository (CMR) is available with the Connector for WebSphere, as described in "Supported Versions and Platforms" on page 10-10. The CMR is an instance of a Member Manager component that connects the WebSphere Portal Server to the Identity System users and groups.

The CMR is a custom user data store that implements the IBM WebSphere MemberRepository interface. As shown in Figure 10–4, the CMR stores user and group base attributes in user data store. The CMR is used by the WebSphere Portal Server to make queries like getAttributes for a user for personalization, getGroupMemberships, search users by attribute, and similar functions. User profile information is in the Portal database and authentication information is available through the Administration Console and LDAP.

*Figure 10–4  Member Manager, WebSphere Portal Database, and the CMR*
The CMR supports only read operations, not create, modify, or delete operations. The CMR is an extension of the custom user registry (CUR) and requires the Portal Server.

The configuration files used to control WebSphere Portal Member Manager come into play with the CMR are explained in the following paragraphs. These files are usually created during the portal installation:

**wmm.xml**: Top level Member Manager configuration. Lists and configures the various MemberRepository implementations used by Member Manager. Most other Member Manager configuration files are pointed to from this file. The CMR details should be configured in this file.

**PumaService.properties**: This is the configuration file for the PUMA API, which in WebSphere Portal V5.0.x is a mapping layer between WebSphere Portal and Member Manager. This is not a Member Manager configuration file, but because PUMA is part of the “user stack” in Portal, this configuration file is important.

This file includes a comma-separated list of attribute names that will be passed to Member Manager requests and several multi-valued properties. This file may need to be configured for the user attributes for personalization. All user.base.attributes and group.base.attributes values will be searchable in the CMR. For example:

```
user.base.attributes=cn,uid,logonId,logonPasswordVerify,logonPassword ...
group.base.attributes=cn,uniqueOwnerIdentifier,membergroups,
groupmembers,memberGroupName,memberGroupType,distinguishedName
```

All other attributes go to the Portal database.

During startup, only the attributes identified in the user.minimum.attributes parameter are retrieved. For example:

```
user.minimum.attributes=cn,genUserid,cn,givenName,sn,mail
```

**Note**: All attributes in the user.minimum.attributes list must have correct attribute access control set in the User Manager and Group Manager for the Administrator, and all need to be in one of the User Manager configuration panels. For example, if the Portal Server needs the givenName attribute, one of the Identity System panels needs FirstName. In the Identity System, the givenName attribute is mapped to Display Name, FirstName.

To see the LDAP to Oracle Access Manager mapping, you can select the desired attribute and view the corresponding Display Name in the Identity System Console, User Manager Configuration, Configure Tab, Link, Modify Attributes page.

See the Oracle Access Manager Identity and Common Administration Guide for details.

**wpconfig.properties**: This is WebSphere Portal configuration file. The portal user/group administrator details needs to be set in this file. This file is present in WPS_install_dir/config folder. Where WPS_install_dir is the Portal Server home directory.
VaultService.properties: This file is located in WPS_install_dir
/shared/app/config/services folder. This configuration file is used to specify Vault
Adapter Implementations. You have to set correct system admin credential DN in this
file.

About Integration with the CMR

During login, the user is authenticated as depicted in "Scenario 1: Use of
NetPointWASRegistry" on page 10-5.

Without the Oracle Access Manager CMR, the WebSphere Portal Server must
communicate directly with the LDAP directory server to obtain user, group, and
personalization information. With the CMR, communication between the WebSphere
Portal Server and the directory server can be eliminated. The CMR performs read
operations through the NetPointWASRegistry with the directory server.

Figure 10–5 shows the interaction between the WebSphere Portal Server, CMR, and
LDAP directory server during the login authorization process. This follows processes
described in "Scenario 1: Use of NetPointWASRegistry" on page 10-5.

Figure 10–5  WebSphere Portal Server and the Custom Member Repository

Process overview: Authorization with the CMR

For instance, the Access Manager SDK uses the checkPassword method while
IdentityXML uses all other methods:
1. After authentication, a user requests access to a portlet through the WebSphere Portal Server.

2. The Portal Server forwards the request to the CMR.

3. The CMR forwards the request to the NetPointWASRegistry.

4. The NetPointWASRegistry sends an IdentityXML call to the Identity Server or uses the Access Manager SDK to contact the Access Server through WebPass or WebGate, depending upon the required method.
   - findByAttribute to search users by attribute
   - getMember
   - getGroupMemberIdentifiers
   - getMembers
   - search etc.

5. The Identity Server (or Access Server) communicates with the LDAP directory server.

6. The directory server returns information.

**Setting up the WebSphere Portal v5.0.2 for Oracle Access Manager**

Integrating the WebSphere Portal v5 with Oracle Access Manager involves a series of installation and configuration tasks.

**To integrate the WebSphere Portal with Oracle Access Manager**

1. Complete tasks in "Preparing to Install the Connector" on page 10-10:
   a. Install the WebSphere Application Server with appropriate Fix Pack as described in the WebSphere documentation to correct the following issues.
      For example:
      **Issue:** Access permissions to portlets do not work if the user dn contains intermediate spaces after a comma, for example:
      
      Cn=PortalUser, o=company, c=us
      
      IBM has released a Fix PQ93461 for this Portal User access permission problem.
      **Action:** This fix pack needs to be applied. Verify the Portal Server History Log to ensure that all required fixes have been installed. Refer to the Portal Infocenter document for details.
   b. Install the WebSphere Portal with WebSphere Application Server security disabled.
      
      **Note:** Both the Global and Java 2 security should be disabled while installing the Portal Server.

      See the IBM WebSphere Portal Infocenter document for details.
   c. Install and configure Oracle Access Manager, as discussed in "Preparing to Install the Connector" on page 10-10.
2. Install the Connector for WebSphere and configure the NetpointWASRegistry and TAI components, as described in "Installing the Connector for WebSphere" on page 10-20.

3. Complete Connector setup and testing, as discussed in "Completing Connector Setup" on page 10-25.

4. In the WebSphere Administration Console, change security to custom registry.
   
   This specifies the NetPointWASRegistry, which establishes a connection between the WAS and Oracle Access Manager. The WAS uses the NetPointWASRegistry to authenticate and authorize portal users with the Access System’s security policies.

5. Ensure that the following Admin credentials are set in clear text in the NetPointWASRegistry.properties file:

   ```
 OB_AdminUserName=admin
 OB_AdminUserCreds=password
   ```

   Where the `OB_AdminUserName` value is the user ID of the Portal Server administrator who is a Master Administrator or a Master Identity Administrator.

   This is required for the CMR. The Admin credentials should be set in clear text. The NetPointWASRegistry reads the password, encrypts it, and rewrites the properties file with the encrypted password. The encryptor can be executed by running the registryTester program, as well as from WebSphere. To assist you with adding these parameters, see the NetPointWASRegistryProperties.sample file, which includes comments. See also, “NetPointWASRegistry.properties” on page 10-60.

   **Note:** The formatting of NetPointWASRegistry.properties is lost when the Connector for WebSphere rewrites the file with the encrypted password. You may want to save a copy of the NetPointWASRegistry.properties.

6. Restart the WAS Server.

7. Ensure that the WebSphere Application server and Portal Server is stopped.

8. Make a back-up copy of the following file:

   ```
 WPS_install_dir/config/wpconfig.properties file
   ```

   Where `WPS_install_dir` is the directory where WebSphere Portal Server is installed.

9. Edit the wpconfig.properties file and add the following:

   ```
 PortalAdminId (Example: PortalAdminId=DN of wpsadministrator)
 PortalAdminIdShort (Example: PortalAdminIdShort=wpsadmin)
 PortalAdminPwd (Example: PortalAdminPwd=wpsadminpassword)
 WasUserid (Example: WasUserid=wasadmin)
 WasPassword (Example: WasPassword=wasadminpassword)
 PortalAdminGroupId (Example: PortalAdminGroupId=DN of PortalAdminGroupId)
 PortalAdminGroupIdShort (Example: PortalAdminGroupIdShort=PortalAdminGroupId)
   ```

10. Restart the WebSphere Application server.

11. **Optional:** Turn PUMA traces on in Portal, which can be done by entering the following in the log.properties file.

    For example:

    ```
 WPS_install_dir\shared\app\config\log.properties
    ```
traceString=com.ibm.wps.services.puma.*=all=enabled:com.ibm.wps.puma.*=all=enabled:com.ibm.wps.command.puma.*=all=enable

12. Backup the following file:

\texttt{WPS\_install\_dir/shared/app/wmm/wmm.xml} file

13. Edit the file to make the changes for CMR configuration as follows (and the lookaside flag should be set to "false").

Note that the file named customRepositoryAttributes.xml is a dummy file and is not part of the WebSphere or Oracle Access Manager configuration.

\begin{verbatim}
<supportedMemberTypes>

  <supportedMemberType name="Person"
   rdnAttrTypes="uid"
   defaultParentMember="o=company,c=us"
   defaultProfileRepository="CNR"/>
   <!-- o=company,c=us is Root DN. please enter the DN in your environment. -->

  <supportedMemberType name="Group"
   rdnAttrTypes="cn"
   defaultParentMember="o=company,c=us"
   defaultProfileRepository="CNR"/>
   <!-- Name of the CMR information tag -->

</supportedMemberTypes>

<profileRepository name="NetpointCustomRepository" UUID="CNR"
   description="This is Oracle WMM custom MemberRepository implementation."
   vendor="Oracle"
   adapterClassName="com.oblix.registry.NetPointMemberRepositoryImpl_v5"
   specVersion="1.0" adapterVersion="2.0"
   configurationFile="customRepositoryAttributes.xml"
   wmmGenerateExtId="false" supportGetPersonByAccountName="false"
   supportDynamicAttributes="false" profileRepositoryForGroups="CNR"
   enableTrace="true"
   PumaService.properties="WPSInstallDir/shared/app/config/services/PumaService.properties"
   NetPointWASRegistry.properties="NetpointWASConnInstallDir\oblix\config\NetPointWASRegister.properties">

  <!-- 1. com.oblix.registry.NetPointMemberRepositoryImpl_v5 is name of the CMR implementation class
  2. Mention path of the PUMA service against PumaService.properties parameter.
  3. NetPointWASRegistry.properties - Path of the Oracle Access Manager WAS registry configuration file.
  For Unix this path should be mentioned as "NetpointWASConnInstallDir/oblix/config/NetPointWASRegister.properties"
  4. customRepositoryAttributes.xml is a dummy file.
  -->

  <readMemberType>

    <memberType name="Person" /> <memberType name="Group" />
    <!-- Only read access to portal is provided by COREid Connector CMR-->
  </readMemberType>

  <createMemberType>
    <!-- <memberType name="Person" /> <memberType name="Group" /> -->
    <!-- Uncomment out - can't create in the sample -->
  </createMemberType>
\end{verbatim}
14. In the PumaService.properties file, ensure that the following filters are correct for your environment and edit the values if needed.

For example:

```
WPS_install_dir\shared\app\config\services\PumaService.properties
user.base.attributes=cn,uid,cn,logonId,logonPasswordVerify,logonPassword ...
group.base.attributes=cn,uniqueOwnerIdentifier,membergroups,groupmembers,memberGroupName,memberGroupType,distinguishedName...
```

Ensure that the user.minimum.attributes values include all attributes for the user that the CMR will retrieve from the Oracle Access Manager back-end application and send to the WAS portal server. For example:

```
user.minimum.attributes=cn,genUserid,cn,givenName,sn,mail...
```

Ensure that you specify the uniquemember attribute to retrieve group members:

```
group.minimum.attributes=cn,uniquemember...
```

15. In the PumaService.properties file, ensure that all user.minimum.attributes have the correct attribute access control for the Administrator and all are in one of the Identity System panels, as described in the Oracle Access Manager Identity and Common Administration Guide.

From the Identity System Console menu click User Manager Configuration, click the Configure Tab, click the tab link, click View Object Profile, then click Configure Panels.

16. Configure WebSphere Portal security by executing the following command.

Note that some WPSCConfig steps may overwrite all of the files that you modified prior to this step, so it is necessary to back up all of these files.

```
WPS_install_dir/config/WPSCConfig.bat action-secure-portal-ldap
```

17. Stop WebSphere Portal Server.

18. Make sure all the configuration file changes done before running WPSCConfig.bat are in place.

20. Make sure the systemcred.dn is valid in the following file:

\WPS_install_dir\shared\app\config\services\VaultService.properties file

For example:

systemcred.dn=cn=PortalAdmin,o=company,c=us

---

**Note:** This is always the fully qualified unquiet of wpsadmin.

---

21. Configure WebSphere Portal credentials by executing the following command


\WPS_install_dir\config\WPSConfig.bat

action-create-deployment-credentials

where host is the fully qualified server name and port is the port number configured for the Portal Server.

23. Log in to the Portal as the Oracle Access Manager admin user.

Login should be successful and the Admin user should able to search for users and groups in the Oracle Access Manager repository.

---

**Setting Up WebSphere Portal v5.1 With Oracle Access Manager**

Integrating the WebSphere Portal v5.1 for Oracle Access Manager involves a series of installation and configuration tasks.

---

**To integrate the WebSphere Portal with Oracle Access Manager**

1. Complete the tasks in "Preparing to Install the Connector" on page 10-10:
   
   a. Install the WebSphere Application Server with appropriate Fix Pack as described in the WebSphere documentation to correct the following issues.

   For example:

   **Issue:** Access permission is not working for any user dn containing intermediate spaces after the comma separators, as in the following: cn=PortalUser, o=company, c=us.

   Consult IBM Fix PQ93461 for details about this Portal User access permission problem.

   **Action:** This IBM fix pack needs to be applied. Please verify the Portal Server History Log to ensure that all required fixes have been installed. Refer to the Portal Infocenter documentation for additional details.

   b. Install the WebSphere Portal with WebSphere Application Server security disabled.

   **Note:** Both the Global and Java 2 security should be disabled while installing the Portal Server.

   See the IBM WebSphere Portal Infocenter documentation for details on installation.
c. Apply Fixes PQ99439 and PK02868_510. This is required for custom user registry configuration of WebSphere Portal 5.1. (If these fixes are not applied, task enable-security-wmmur-custom will fail.)

d. Apply the latest available "Member Manager cumulative fix for WebSphere Portal version 5.1." This includes a fix for the group membership feature. This cumulative fix is located at the following Web site:

http://www-1.ibm.com/support/docview.wss?rs=0&uid=swg24009153

e. Install and configure Oracle Access Manager, as covered in "Preparing to Install the Connector" on page 10-10.

2. Install the Connector for WebSphere and configure the NetpointWASRegistry and TAI components, as described in "Installing the Connector for WebSphere" on page 10-20.

3. Complete Connector setup and testing, as covered in "Completing Connector Setup" on page 10-25.

4. In the WebSphere Administration Console, change security to custom registry. This specifies the NetPointWASRegistry, which establishes a connection between the WAS and Oracle Access Manager. The WAS uses the NetPointWASRegistry to authenticate and authorize portal users through Access System security policies.

5. Ensure that the following Admin credentials are set in clear text in the NetPointWASRegistry.properties file:

```ini
OB_AdminUserName=admin
OB_AdminUserCreds=password
```

Where the `OB_AdminUserName` value is the user ID of the Portal Server administrator who is a Master Identity Administrator or Oracle Access Manager Administrator. This is required for the CMR. The Admin credentials should be set in clear text. The NetPointWASRegistry reads the password, encrypts it, and rewrites the properties file with the encrypted password. The encryptor can be executed by running the registryTester program, as well as from WebSphere. To assist you with adding these parameters, see the NetPointWASRegistryProperties.sample file, which includes comments. For additional details, consult, "NetPointWASRegistry.properties" on page 10-60.

---

**Note:** NetPointWASRegistry.properties file formatting is lost when the Connector for WebSphere rewrites the file with the encrypted password. Therefore, you may want to save a copy of the NetPointWASRegistry.properties.

---

6. Restart the WAS Server.

7. Ensure that both the WebSphere Application server and Portal Server are stopped.

8. Make a back-up copy of the following file:

```bash
WPS_install_dir/config/wpconfig.properties
```

Where `WPS_install_dir` is the directory where WebSphere Portal Server is installed.

9. Edit the wpconfig.properties file and add the following:

```ini
PortalAdminId (Example: PortalAdminId= DN of wpsadministrator)
PortalAdminIdShort (Example: PortalAdminId= wpsadministrator)
```

---
PortalAdminPwd (Example: PortalAdminPwd=wpsadminpassword)
WasUserId (Example: WasUserId=wpsadministrator)
WasPassword (Example: WasPassword=wpsadminpassword)
PortalAdminGroupId (Example: PortalAdminGroupId= DN of PortalAdminGroupId)
PortalAdminGroupIdShort (Example: PortalAdminGroupIdShort= PortalAdminGroupId)
LTPAPassword (Example: LTPAPassword= Password configured for LTPA in the
AppServer Configuration)
WmmSystemId (Example: WmmSystemId= Set this value to same as that of
PortalAdminIdShort)
WmmSystemIdPassword (Example: WmmSystemIdPassword= Set this value to same as
that of PortalAdminPwd)
LDAPSuffix (Example: LDAPSuffix=o=company,c=us LDAP suffix of Oracle Access
Manager installation)
LDAPUserSuffix (Example: LDAPUserSuffix=ou=users Keep this blank if user-nodes
are directly under LDAPSuffix)
LDAPGroupSuffix (Example: LDAPGroupSuffix=ou=groups Keep this blank if
group-nodes are directly under LDAPSuffix)
LdapUserPrefix (Example: LdapUserPrefix=cn)
LdapGroupPrefix (Example: LdapGroupPrefix=cn)

PortalAdminId (Example: PortalAdminId= DN of wpsadministrator )
PortalAdminIdShort (Example: PortalAdminId= wpsadministrator )
PortalAdminPwd (Example: PortalAdminPwd=wpsadminpassword )
WasUserId (Example: WasUserId=wpsadministrator )
WasPassword (Example: WasPassword=wpsadminpassword )
PortalAdminGroupId (Example: PortalAdminGroupId= DN of PortalAdminGroupId )
PortalAdminGroupIdShort (Example: PortalAdminGroupIdShort= PortalAdminGroupId )
LTPAPassword (Example: LTPAPassword= Password configured for LTPA in the
AppServer Configuration)
WmmSystemId (Example: WmmSystemId= Set this value to same as that of
PortalAdminIdShort)
WmmSystemIdPassword (Example: WmmSystemIdPassword= Set this value to same as
that of PortalAdminPwd)
LDAPSuffix (Example: LDAPSuffix=o=company,c=us LDAP suffix of Oracle Access
Manager installation)
LDAPUserSuffix (Example: LDAPUserSuffix=ou=users Keep this blank if user-nodes
are directly under LDAPSuffix)
LDAPGroupSuffix (Example: LDAPGroupSuffix=ou=groups Keep this blank if
group-nodes are directly under LDAPSuffix)
LdapUserPrefix (Example: LdapUserPrefix=cn)
LdapGroupPrefix (Example: LdapGroupPrefix=cn)

PortalAdminId (Example: PortalAdminId= DN of wpsadministrator )
PortalAdminIdShort (Example: PortalAdminId= wpsadministrator )
PortalAdminPwd (Example: PortalAdminPwd=wpsadminpassword )
WasUserId (Example: WasUserId=wpsadministrator )
WasPassword (Example: WasPassword=wpsadminpassword )
PortalAdminGroupId (Example: PortalAdminGroupId= DN of PortalAdminGroupId )
PortalAdminGroupIdShort (Example: PortalAdminGroupIdShort= PortalAdminGroupId )
LTPAPassword (Example: LTPAPassword= Password configured for LTPA in the
AppServer Configuration)
WmmSystemId (Example: WmmSystemId= Set this value to same as that of
PortalAdminIdShort)
WmmSystemIdPassword (Example: WmmSystemIdPassword= Set this value to same as
that of PortalAdminPwd)
LDAPSuffix (Example: LDAPSuffix=o=company,c=us LDAP suffix of Oracle Access
Manager installation)
LDAPUserSuffix (Example: LDAPUserSuffix=ou=users Keep this blank if user-nodes
are directly under LDAPSuffix)
LDAPGroupSuffix (Example: LDAPGroupSuffix=ou=groups Keep this blank if
group-nodes are directly under LDAPSuffix)
LdapUserPrefix (Example: LdapUserPrefix=cn )
LdapGroupPrefix (Example: LdapGroupPrefix=cn )

10. Restart the WebSphere Application server.

11. Optional: Turn on PUMA traces in Portal, which can be done by entering the following in the log.properties file, which typical resides at

```java
WPS_install_dir\shared\app\config\log.properties
traceString=com.ibm.wps.services.puma.*=all=enabled:com.ibm.wps.puma.*=all=enabled:com.ibm.wps.command.puma.*=all=enabled
```

12. Back up the following files:

```bash
WPS_install_dir/wmm/wmm.xml
WPS_install_dir/wmm/wmm_DB.xml
```

13. Make a copy of wmm.xml and save it under the name wmm_custom.xml in the same folder as wmm.xml (WPS_install_dir/wmm/wmm_custom.xml).

Edit wmm_custom.xml, changing your CMR configuration as follows, and verify that the lookaside flag is set to false.

```xml
<supportedMemberTypes>

 <supportedMemberType name="Person"
 rdnAttrTypes="uid"
 defaultParentMember="o=company,c=us"
 defaultProfileRepository="CNR"/>
 <!-- o=company,c=us is Root DN. please enter the DN in your environment. -->

 <supportedMemberType name="Group"
 rdnAttrTypes="cn"
 defaultParentMember="o=company,c=us"
 defaultProfileRepository="CNR"/>
 <!-- Name of the CMR information tag -->
 </supportedMemberTypes>

<profileRepository name="NetpointCustomRepository" UUID="CNR"
 description="This is Oracle WMM custom MemberRepository implementation."
 vendor="Oracle"
 adapterClassName="com.oblix.registry.NetPointMemberRepositoryImpl_v51"
 specVersion="1.0" adapterVersion="2.0"
 configurationFile="customRepositoryAttributes.xml"
 wmmGenerateExtId="false" supportGetPersonByAccountName="false"
 supportDynamicAttributes="false" profileRepositoryForGroups="CNR"
 enableTrace="true "
 PumaService.properties="WPSInstallDir\shared\app\config\services\PumaService.properties"
 NetPointWASRegistry.properties="NetpointWASConnInstallDir\oblix\config\NetPointWASRegistry.properties">
 <!-- 1. com.oblix.registry.NetPointMemberRepositoryImpl_v51 is name of the CMR implementation class
 2. Mention path of the PUMA service against PumaService.properties paramter.
 3. NetPointWASRegistry.properties - Path of the Oracle Access Manager WAS registry configuration file.
 For Unix this path should be mentioned as
 *NetpointWASConnInstallDir\oblix\config\NetPointWASRegistry.properties
 4. CustomRepositoryAttributes.xml is a dummy file.
 -->
<readMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</readMemberType>

<!-- Only read access to portal is provided by COREid Connector CMR-->

<createMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</createMemberType>

<!-- Commented out - can't create in the sample -->

<updateMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</updateMemberType>

<!-- Commented out - can't update in the sample -->

<deleteMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</deleteMemberType>

<!-- Commented out - can't delete in the sample -->

<renameMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</renameMemberType>

<!-- Commented out - can't rename in the sample -->

<moveMemberType>
 <memberType name="Person" /> <memberType name="Group" />
</moveMemberType>

<!-- Commented out - can't move in the sample -->

<nodeMaps>
 <nodeMap node="o=company,c=us" pluginNode="o=company,c=us" />
</nodeMaps>

<!-- Root DN configured in your environment -->

14. Overwrite the following files with new contents of wmm_custom.xml:

 WPS_install_dir/wmm/wmm.xml

 WPS_install_dir/wmm/wmm_DB.xml

15. Ensure that the following filters are correct for your environment in the following file:

 WPS_install_dir\shared\app\config\services\PumaService.properties

In this file, ensure that the user.minimum.attributes include all attributes for the user that the CMR will retrieve from Oracle Access Manager and send to the WAS portal server.

In the required attributes list in user.base.attributes, enter all attributes that are required for searching in the WAS portal server for users with these attribute values.

Make sure that group.minimum.attributes has assigned uniqueMember and class attribute configured for Group object class. (In the following sample file it is "cn").

The user.password.attribute should be set to name of the password attribute.

Ensure that directory is set to CUSTOM.

Edit the values, as needed.

#SAMPLE PumaService.properties file. Please make changes according to your environment
In the following sample file. User object class attribute is uid and Group object class attribute is cn.

Please set these values according to your environment.

user.fbadefault.filter=uid
user.template.attribute=uid
user.password.attribute=userPassword
user.minimum.attributes=uid,cn
user.base.attributes=uid,cn,givenName,sn,preferredLanguage
user.sync.remove.attributes=passwordCreation,RDN,lastSession,selfAddress,packageSuppression,createdTimestamp,policyAccountId,registrationUpdate,uniqueUserIdentifier,memberId,ancestors,addressId,truncatedUniqueIdentifier,profileType,registration,primary,approvalState,lastOrder,publishPhone2,publishPhone1,salt,addressBookId,uniqueParentIdentifier,parentMemberId,registrationCancel,passwordExpired,previousLastSession,displayName,addressType,shortName,preferredLanguageId,userId,timeout,registerType,uniqueIdentifier,passwordInvalid,nickname,type,membergroups,income,age,organizationUnitId,demographicField6,children,household,status,passwordRetries,uniqueNumericIdentifier,cn
group.fbadefault.filter=cn
group.template.attribute=cn
group.minimum.attributes=cn,uniqueMember
group.base.attributes=cn,uniqueMember
group.sync.remove.attributes=uniqueOwnerIdentifier,membergroups,groupmembers,memberGroupName,memberGroupType,distinguishedName,cn,uniqueNumericIdentifier,uniqueMemberIdentifier
directory=CUSTOM
ejbName=ejb/MemberServiceHome

16. Ensure that all user.minimum.attributes have the correct attribute access controls for the Administrator.

Also ensure that all user.minimum.attributes are in one of the Identity System panels, as described in the Oracle Access Manager Identity and Common Administration Guide.

To access these panels, from the Identity System Console, click User Manager Configuration, click Tabs, click the link for the tab, click View Object Profile, then click Configure Panels.

17. Modify the file WPS_install_dir/wmm/wmmWASAdmin.xml as follows:

```xml
<?xml version="1.0" encoding="UTF-8"?>
<wmmWASAdmins>
  <admin logonId="PortalAdmin" logonPassword="oblixoblix" uniqueUserId="cn=Portal Admin,o=company,c=us"/>
</wmmWASAdmins>
```

logonId, logonPassword and uniqueUserId correspond to the new values of PortalAdminIdShort, PortalAdminId, and PortalAdminPwd respectively in wpconfig.properties.

Set the value of wmmnode to your LDAPRoot as follows:

```xml
<node wmmnode="o=company,c=us"/>
```

19. Modify WPS_install_dir/wmm/wmmAttributes.xml so that it contains only supported attributes.
The \texttt{wmmAttributes.xml} file contains definitions of all the supported attributes. Each attribute definition might have two properties named \texttt{applicableMemberTypes} and \texttt{requiredMemberTypes}. Values of these properties should be supported member types. For example, if \texttt{wmm_custom.xml} has only two \texttt{supportedMemberTypes} (Person and Group), then other types such as \texttt{organizationalUnit} or \texttt{organization} should not be \texttt{applicableMemberTypes} or \texttt{requiredMemberTypes} for any of the attributes in \texttt{wmmAttributes.xml}.

20. Modify \texttt{WPS_install_dir/shared/app/config/services/VaultService.properties}.
 Set the value of \texttt{systemcred.dn} to the DN of \texttt{wpsadministrator}.
 Example:
 \begin{verbatim}
 systemcred.dn=cn=Portal Admin,o=company,c=us
 \end{verbatim}

21. Backup all configuration files, stop the portal server, then configure WebSphere Portal security by executing the following command:
 \begin{verbatim}
 WPS_install_dir/config/WPSConfig.bat enable-security-wmmur-custom
 \end{verbatim}

22. Verify that all of the configuration files are in place.
 You can compare the values with the backup copies that you created in the previous step.
 The contents of \texttt{wmm.xml} should match the contents of \texttt{wmm_custom.xml}.

23. Restart the portal server.

24. Access the following Web page:
 \begin{verbatim}
 http://host:port/wps/portal
 \end{verbatim}
 where \texttt{host} is the fully qualified server name and \texttt{port} is the port number configured for the Portal Server.

25. Log in to the Portal as the Oracle Access Manager admin user. The Login should succeed, and Admin user should able to search for other Oracle Access Manager Repository users and groups.

Managing Users and Groups with Portal v5

Portal Administrators can use the Identity System to perform user and group management tasks such as adding or deleting users and groups, modifying user profiles and attributes.

To use the Identity System user and group management functionality, ensure that you do not create users and groups in the WebSphere Portal. Instead, create and modify users and groups in the Identity System.

You can add and delete static groups and user membership in groups through the Identity System. The information that you update in the Identity System is immediately reflected in the WebSphere Portal.

\textbf{Note: } To recognize group membership, the Identity System requires the dynamic group to be expanded.
After you create users and groups in the Identity System, you can search for them in the WebSphere Portal.

See the *Oracle Access Manager Identity and Common Administration Guide* for more information on managing users and groups.

Modifying User Profiles and Attributes

When users modify their profile through the Identity System, the modifications are immediately visible in the WebSphere Portal. This ensures that the most current user information is used when portal developers personalize user pages.

You can map additional attributes to a user's profile if necessary. See the WebSphere Portal documentation for information on mapping attributes.

Password Management with Portal v5

Because the portal uses Access System SSO, users are subject to the Oracle Access Manager password policies during authentication.

Important: To implement the password management feature, turn off the portal's password management functionality.

The Oracle Access Manager password management functionality includes defining password policies, resetting passwords, expiration notification, and challenge phrases for lost passwords.

See the *Oracle Access Manager Identity and Common Administration Guide* for more information on password policies.

Access Control for the WebSphere Portal v5

Portal administrators use the portal's access control functionality to grant access to portlets. From the WebSphere Portal, administrators can search for Oracle Access Manager-managed users and groups to whom they want to grant portal administration privileges as well as portlet access control.

Configuring Single Sign-on Functions for the Portal v5

Configuring SSO between the Access System and the WebSphere portal enables the WebSphere portal to utilize the ObSSOCookie and enable Connector for WebSphere to authenticate Oracle Access Manager users.

Configuring SSO logout for the WebSphere Portal Server ensures that when a user logs out of a Access System-protected WebSphere resource, both the LTPA token and the ObSSOCookie are killed. The user will not be able to access any other WebSphere resource or other Access System-protected resources without authenticating again.

- If you have configured the TAI for single sign-on between Oracle Access Manager and WebSphere, you must configure single sign-on logout for the WebSphere Portal Server.
- If you have not configured the TAI for single sign-on, users can use the portal's logout button to log out of all Access System-protected resources.
To configure single sign-on for the WebSphere Portal v5

1. Install the WebGate plug-in for the Web server that you selected when you installed the WebSphere Portal.

2. In the Policy Manager, define the URL that you want to protect.

 A WebGate prompts for authentication when users attempt to log in to this URL. Be sure to protect / if you want the WebGate to prompt for authentication when the user gets to the root of the WebSphere Portal. You can also add other authorization rules, if needed.

 Note: To protect resources, Oracle recommends that you use a form-based authentication scheme. However, if you use the basic authentication scheme, set the Challenge Redirect field to another WebGate to ensure that the ObSSOCookie gets set. See the Oracle Access Manager Access System Administration Guide for more information on authentication schemes.

To configure single sign-on logout

1. Create an Access System policy with a Form Over LDAP type of authentication scheme to protect the portal URL, as described in the Oracle Access Manager Access System Administration Guide.

2. Create a custom logout page using HTML, JSP, or CGI protocol.

 The default logout page for Oracle Access Manager, logout.html, is located in:
   ```
   WebGate_install_dir\access\oblix\apps\common\bin
   ``
   Where `WebGate_install_dir` is the directory where the WebGate is installed.

3. Save the logout page in the document root of the Web server on which the WebGate that protects WebSphere is installed.

   For example:
   ```
 http://foobar/myportal/logout.html
 ``

 Note: Ensure that the name of the logout page contains the string "logout".

4. Protect the logout page with an Access System policy, as described in the Oracle Access Manager Access System Administration Guide.

5. Locate and open the following file:

   ```
   WPS_install_dir\shared\app\config\services\ConfigServices.properties
   ``
   Where `WPS_install_dir` is the directory where WebSphere Portal Server is installed.

6. Add the following two parameters in ConfigServices.properties file:

   ```
 redirect.logout = true
 redirect.logout.url = The path to the logout page
 ``

 For example:
   ```
   http://foobar/myportal/logout.html
   ```

7. Restart the WebSphere Portal Server and Application Server.
Configuring the WebSphere Application Server v6

The following sections describe how you integrate Oracle Access Manager with the WebSphere Application Server v6:

- Enabling the NetPointWASRegistry for WAS v6
- Testing the NetPointWASRegistry for WebSphere v6
- Configuring the TAI for WebSphere v6
- Testing the TAI for WAS v6
- Enabling Logging for TAI for WAS v6

To see the supported versions and platforms for this integration, refer to Metalink as follows.

To view information on Metalink

1. Go to the following URL:

 http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.

5. Choose Oracle Application Server and click Submit.

Enabling the NetPointWASRegistry for WAS v6

After you have installed WAS v6 and the Connector for Websphere, then tested them to be sure they are communicating, you can enable the NetPointWASRegistry, which interoperates with the User Registry in WebSphere 6. This enables Oracle Access Manager to act as the authentication source for the WebSphere Application Server.

Note: In the following procedure, any Oracle Access Manager user who is added to the role "Admin" must belong to the group called "Admin" or "Administrator." Otherwise, this user may not be able to log in to WebSphere Administrative Console. Other roles, such as "monitor" have no restrictions. Any Oracle Access Manager user added to these roles through the WAS 6 Administrative Console can log in to the WAS 6 Administrative Console.

To enable the NetPointWASRegistry in WAS 6

1. Ensure that WebGate protecting the WebPass has IPValidation set to Off.

 From the Access System Console, click Access System Configuration, click AccessGate Configuration in the left navigation pane, click the link for the WebGate that protects the WebPass, and in the IPValidation field select the Off option.

2. Make a backup copy of the `security.xml` file located in the following directory:

 `WPS_install_dir/profiles/default/config/cells/serverNodeName`

 Create a backup copy of security.xml whenever you make a change to the configuration. If you make errors in the new configuration, you can restore from backup.
3. Start the WebSphere Admin Service.

4. Log in to the WebSphere Administration Console as the Identity Administrator.

 The Administrative Console for WAS 6 is accessible through the following URL:

 http://hostname.domain.com:9060/ibm/console

 Where *hostname* is the fully qualified name of the machine where WebSphere is installed; for example, *xyz.domain.com*.

5. Navigate to Security, Global Security, Custom and enter values for the following variables:
 - Server user ID
 - Server User Password
 - CustomRegistry Classname
 - Oracle Access Manager Admin ID
 - User password
 - **Oracle Access Manager Classname**: com.oblix.registry.NetPointWASRegistry

 Enter values for the following parameters:
 - **Name**: NetPointWASRegistry.properties
 - **Value**: /opt/netpoint/oblix/config/NetPointWASRegistry.properties
 - **Description**: Property file for User Registry

7. Click Apply.

8. Navigate to Global Security, Authentication Mechanisms, LTPA.

9. In the Configuration tab, specify a password, then click OK.

10. Click Single Signon (SSO).

 - Click the Enabled box.
 - Enter the domain name (for example, oracle.com), then click Apply.

11. In the left navigation pane, click Security, click Global Security, then complete the following steps:

 a. Set the Active Authentication Mechanism to LTPA.
 b. Set the Active User Registry to Custom User Registry, then click OK.
 c. Click the Enable Global Security box.
 d. Click Apply to test the configuration.

 If the information is valid, a message confirming the changes displays at the top. Otherwise, correct any errors that are reported.
 e. Click Save.
 f. Click Logout and close the browser window.
 g. Stop the WebSphere Application Service. If a message announces that Service could not be stopped, switch to the Task Manager and ensure that no Java processes are currently running.

12. Start the WebSphere Administration Service.
Testing the NetPointWASRegistry for WebSphere v6

After you have enabled the NetPointWASRegistry, you need to verify that it is configured correctly.

To test the NetPointWASRegistry configuration
1. Access the Snoop Servlet sample running on the default server at the following URL:
 \[http://hostname:9080/snoop \]
 Where \(hostname \) is the fully qualified name of the machine where WebSphere is installed.

 Alternatively, you can use the following URL:
 \[http://hostname:web_server_plug-in_port/snoop \]
 Where \(hostname \) is the fully qualified domain name of the machine on which WebServer is installed.

2. When challenged by WebSphere, enter a username and password that is valid in Oracle Access Manager.
 By default, any authenticated user should be allowed access.

3. Launch the WebSphere Administrative Console and login as the user specified in Security, Global security, Custom.
 If the configuration is valid, the login will succeed.

4. Set access control for the WebSphere Administrative Console by specifying the users and groups and the roles to which they belong.
 See WebSphere 6 documentation for details.

5. Write down the names of the .xml files that you have modified to support Admin Console access, then click Save.

After you have installed Connector for WebSphere, you must configure the NetPointWASRegistry and TAI. The NetPointWASRegistry handles authentication, and the TAI facilitates Access System single sign-on.

Configuring the TAI for WebSphere v6

You configure the TAI to enable single sign-on between Oracle Access Manager and WAS. For WebSphere 6.0 you must install `webgate.properties`, add the TAI, and then add `custom.properties`.

To install and configure TAI for WAS 6
1. Copy the configuration file `webgate.properties` from the following directory:
 \[CWS_install_dir/oblix/config \]
 where \(CWS_install_dir \) is the directory where the Connector for WebSphere is installed, to the WebSphere installation properties directory, which resides in the following location:
 \[WAS_install_dir/properties \]
 where \(WAS_install_dir \) is the directory where the WebSphere Application Server is installed.
Webgate.properties contains configuration information that WebSphere will use to connect to the AccessGate.

2. In the WebSphere installation properties directory, modify the parameter values in the webgate.properties file as follows:

 OB_InstallDir = CWS_install_dir

 where CWS_install_dir is the directory where the Connector for WebSphere is installed.

 If the associated WebGate is installed on a proxy server used as a front end server to direct all user requests to Web servers that interface with WebSphere Application Servers, then specify the following parameter values:
 - OB_IsProxyEnabled=true
 - OB_hostnames = serverName
 where serverName is the name of the proxy server.
 - OB_ports = portNumber
 where portNumber is the port number of the proxy server.

 Note: If you used a resource other than Authen, you must specify the resourcename in the webgate.properties file.

3. Launch the WebSphere Administrative Console.

5. In the Name field, enter Oblix TAI Interceptor.

6. In the Interceptor classname field, enter com.oblix.tai.was5.WebGateTrustAssociationInterceptor, then click OK.

7. Make the following changes:
 a. **Name:** com.ibm.websphere.security.trustassociation.types
 * **Value:** webgate
 * **Description:** TAI property
 Select the Required checkbox, then click OK.
 b. **Name:** com.ibm.websphere.security.trustassociation.webgate.config
 * **Value:** webgate
 * **Description:** Name of the TAI properties file located in WAS_install_dir/properties directory.
 Select the Required checkbox, then click OK.
 c. **Name:** com.ibm.websphere.security.trustassociation.webgate.interceptor
 * **Value:** com.oblix.tai.was5.WebGateTrustAssociationInterceptor
Description: TAI class for WebSphere 6

Select the Required checkbox, then click OK.

8. Click Interceptors at the top of the page and then click Save.

9. Navigate to the following:

   ```
   WAS_install_dir/profiles/default/config/cells/serverNodeName
   ```

10. Make a backup copy of the `security.xml` file.

11. In the WebSphere Administrative Console, navigate to LTPA, Trust Association, Interceptors.

12. Select the WebSeal Interceptor, then click Delete.

13. Click Trust Association, then click the Enable Trust Association check box.

14. Click Apply, then click Save.

15. Logout of the WebSphere Administrative Console, then close the browser.

 If you get an error message, go to Task Manager and ensure that no Java process is running.

17. Restart the WebSphere Admin Service.

 If the Service does not start, verify that the properties are set correctly in the `security.xml` file and that the `webgate.properties` file is in the correct location.

18. Create an Access System policy to protect WebSphere resources as described in "To install and configure TAI for WAS 5" on page 10-32.

 To facilitate access the Administration Console after you have enabled TAI, you need to enable the Policy created in "Defining a Policy Domain for WebSphere" on page 10-17. You also need to enable the policy created in "Defining a Policy Domain for the WebSphere v6.0 Administration Console" on page 10-18.

19. Verify that the TAI is working, as detailed in the following section.

Testing the TAI for WAS v6

The following procedure describes testing the TAI for WAS 6.

To test the TAI

After you have configured TAI, test for successful authentication and single sign-on between WebSphere and Oracle Access Manager.

To conduct these tests, use the Snoop servlet that WebSphere provides. The Snoop servlet has security constraints that only allow access to authenticated users.

When WebSphere security is not enabled, access to the Snoop is unrestricted.

When WebSphere security and TAI are enabled, users attempting to access Snoop will be challenged by the Access System. If TAI is not enabled, users attempting to access Snoop will be challenged by WebSphere as well.

To test single sign-on for Access System-protected WebSphere resources

1. On the Web server you use to access the WAS, navigate to the document root and create a directory named test.
2. In the test directory, create a file named index.html.

3. In the Access System, create and enable policies to protect the /snoop and /test directories.

4. Access the Snoop servlet through the following URL:

 http://hostname.domain.com:80/snoop

 where hostname is the fully qualified name of the machine where the Web server is installed.

 You will be challenged for authentication. After you are authenticated, you will be allowed to access the Snoop servlet.

5. Access the /test URL.

 Verify that you can access the URL and view the index.html file without being challenged.

Enabling Logging for TAI for WAS v6

You can enable logging for TAI from the WebSphere Administrative Console.

To enable logging for TAI for WAS 6

1. Launch the WebSphere Administrative Console.
2. Navigate to Troubleshooting, Logs and Trace
3. Select your Server.
4. Select Change Log Level Details.
5. Select Components.
6. Enable debug logging for

 com.oblix.tai.was5.WebGateTrustAssociationInterceptor

Configuration Files

The following configuration files are used when integrating Connector for WebSphere with WAS:

- NetPointWASRegistry.properties
- WebGate.properties
- TrustedServers.properties

NetPointWASRegistry.properties

Table 10–1 describes the parameters of NetPointWASRegistry.properties file located in

CWS_install_dir/oblix/config. This file contains data that was specified during NetPointWASRegistry installation, as well as some default parameter values for logging. For example:

```plaintext
# Logging level {none, info or debug};
OB_LogLevel=debug
OB_LogFileName=C:/CWS_install_dir/log
```

The Oracle Access Manager Connector for WebSphere caches data that it receives from the Access or Identity Server. For subsequent requests from WebSphere servers, user and group data is retrieved from the connector cache. The caches are updated on a
scheduled basis. Each user, group, or user profile attribute entry in the connector cache is associated with a Time To Live (TTL) parameter that is defined in the NetPointWASRegistry.properties file. When a request is issued after the timeout limit is reached, the cache miss handler is invoked and fresh data is retrieved from the Identity and Access servers. The default timeout for all cache parameters in the NetpointWASRegistry.properties file is 3600 seconds. This value can be set as needed. There is no dynamic cache updating between Identity and Access Servers and the connector. To reflect user, group, or user profile attribute changes immediately, set the cache timeout value to 0. A value of 0 disables the connector cache.

Note: Webpass to GroupSrvCenter performance has been improved with the addition of configuration options to improve IdentityXML calls in the Identity System. For example, when no nested groups are used and are turned off, you may use a new option so that getGroups will not generate a request for nested groups.

Tip: See also Table 10–1.

Table 10–1 Parameters in NetPointWASRegistry.properties

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Optional/Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>Installation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_InstallDir</td>
<td>The directory where NetPointWASRegistry is installed.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Logging</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_LogLevel</td>
<td>The logging level that is recorded in the log file. Values are none, info, and debug.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_LogFileName</td>
<td>The file name for Custom User Registry (NetPointWASRegistry) log messages. Default = CWS_install_dir/log \n\nNote: Log messages for the CMR are directed to the WPS_install_dir/log/appserver-out.log file.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_LogMilliSeconds</td>
<td>The data/time format of log messages in the file specified with OB_LogFileName. When true, log messages are time formatted in milliseconds. Default = true</td>
<td>Optional</td>
</tr>
</tbody>
</table>

WebPass
Table 10–1 (Cont.) Parameters in NetPointWASRegistry.properties

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Optional/ Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_WebPassHost</td>
<td>The WebPass server host machine name. The host name must be fully qualified; for example, OB_WebPassHost=hostname.acme.com. To configure multiple WebPass instances for failover purposes, separate the names with a comma. For example: OB_WebPassHost=foo.domain.com, bar.domain.com. Note that the host name corresponds to the port number in the specified order. See the example in the Ob_WebPassPort description in this table.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_WebPassPort</td>
<td>The port number of the host machine. To configure multiple WebPass instances, separate the port numbers with a comma. For example: OB_WebPassPort=80, 81. Note that the host name corresponds to the port number in the specified order. In this example, the hostname:port number pairing is as follows: foo.domain.com:80 bar.domain.com:81. For failover to work, all other variables such as user name, credentials and webgate protection must be the same.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_WebPassIsProtected</td>
<td>Values are true and false. If WebPass is protected, set value=true.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AdminUserName</td>
<td>The Identity System requires the Admin username and password to make IdentityXML calls to the WebPass. For details about administrator rights, see “Configuring the Identity Server” on page 10-12.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AdminUserCreds</td>
<td>The Identity System requires the Admin username and password to make IdentityXML calls to the WebPass. Without the password the connector will not work. Note: You need to enter a clear-text password, which the program will encrypt and rewrite to the properties file after the first run.</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_CookieDomain</td>
<td>The cookie domain specified in the WebGate installer configuration. Needed if WebPass is protected. For example, .xyz.com.</td>
<td>Mandatory</td>
</tr>
</tbody>
</table>

Cookie

OB_CookieDomain

The cookie domain specified in the WebGate installer configuration. Needed if WebPass is protected.

For example, .xyz.com
<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Optional/Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_CookiePath</td>
<td>The cookie path specified in the WebGate configuration. Needed if WebPass is protected. Default = /</td>
<td>Mandatory</td>
</tr>
<tr>
<td>WebPass SSL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_WebPassSSLEnabled</td>
<td>Specifies whether WebPass needs HTTPS connection. Values are true and false. Default = false</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Login and Search Attributes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_UserAttr</td>
<td>The unique user identification (for example, uid).</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_UserSearchAttr</td>
<td>The DN prefix for users from LDAP (for example, cn).</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_GroupSearchAttr</td>
<td>The DN prefix for groups from LDAP (for example, cn).</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Active Directory Forest</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_WebPassADDomain</td>
<td>Optional. The domain of the Admin user. To be used in case of Active Directory Forest with multiple domains. For example, OB_WebPassADDomain=ou=company,dc=qalab,dc=acme,dc=com The ADDomain must be the same as the default defined in the Identity Server.</td>
<td>Optional</td>
</tr>
<tr>
<td>Records Returned</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_WebPassXPIRecordsReturned</td>
<td>Optional. The number of records to return for getUsers or getGroups. This is used only in the WebSphere Portal. Default = return all</td>
<td>Optional</td>
</tr>
<tr>
<td>Authentication</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceTypeName</td>
<td>Authen</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AuthnSchemeOperation</td>
<td>LOGIN</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceName</td>
<td>/Authen/Basic</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AuthzActionType</td>
<td>WAS_Registry</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_AuthzActionName</td>
<td>uid</td>
<td>Mandatory</td>
</tr>
<tr>
<td>Cache</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OB_AllUserCache_enabled</td>
<td>Enables caching of all users. Values are true and false.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_AllUserCache_timeout</td>
<td>Timeout for cache of list of all users.</td>
<td>Optional</td>
</tr>
</tbody>
</table>
Table 10–1 (Cont.) Parameters in NetPointWASRegistry.properties

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Optional/ Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_UserAttributesCache_enabled</td>
<td>Enables Caching of user attributes. Values are true and false.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_UserAttributesCache_timeout</td>
<td>The timeout for the cache of user attributes. Timeout is for the whole cache.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_UserAttributesCacheElement_timeout</td>
<td>The timeout for the cached user attributes. The Timeout is per user.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_GroupAttributesCache_enabled</td>
<td>Enables Caching of group attributes. Values are true and false.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_GroupAttributesCache_timeout</td>
<td>The timeout for the cache of group attributes. Timeout is for the whole cache.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_GroupAttributesCacheElement_timeout</td>
<td>The timeout for the cached group attributes. The Timeout is per group.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_AllGroupCache_enabled</td>
<td>Enables caching of list of all groups. Values are true and false. Used only for all groups, and mostly used by the Admin Console.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_AllGroupCache_timeout</td>
<td>The timeout for cache of the list of all groups.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_UserGroupsCache_enabled</td>
<td>Enables caching of list groups of which the user is a member. Values are true and false. Maintains a cache of all the groups a logged in user belongs to.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_UserGroupsCache_timeout</td>
<td>The timeout for cache of the list of groups for a user. The timeout is per user. This value should not be very high--if the user's group membership changes the new membership will only take affect at cache timeout. For example, a value of 3600 equates to 1 hour.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_GroupMembersCache_enabled</td>
<td>Enables caching of list of groups and list of members in each group. Values are true and false. Stores members for each groups (not a frequently used cache).</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_GroupMembersCache_timeout</td>
<td>Specifies the timeout for cache of list of groups and the list of members in each group.</td>
<td>Optional</td>
</tr>
</tbody>
</table>

Keystore
Table 10–1 (Cont.) Parameters in NetPointWASRegistry.properties

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Description</th>
<th>Optional/Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_Keystore</td>
<td>Specifies the keystore file used by the registry when it makes SSL connections to HTTPS WebPass. The keystore contains the requestor’s public and private key pairs, X.509 certificate, and certificates for Certificate Authorities trusted to certify responder servers. The keystore is managed using the JDK keytool. For example: CWS_install_dir/oblix/config/jssecacerts</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_KeystorePassword</td>
<td>Optional. The password for the keystore.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_UserTabId</td>
<td>For future use. Do not change the default. Default = Employees</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_GroupTabId</td>
<td>For future use. Do not change the default. Default = Groups</td>
<td>Mandatory</td>
</tr>
<tr>
<td>OB_NestedGroupsEnabled</td>
<td>Values are true and false. The default is true. To improve GroupSrvCenter performance when nested groups are not used, set the value to false.</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>■ Nested groups will not be included in the search; the uniquemember attribute will not be requested in a group search when OB_NestedGroupsEnabled=false.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>■ A value of true retrieves the uniquemember attribute in the group search, uses this for nested group computation, then removes it before the group is recorded.</td>
<td></td>
</tr>
<tr>
<td>OB_DynamicGroupsEnabled</td>
<td>Values are true and false. To improve GroupSrvCenter performance when you are not using dynamic groups, set the value to false. Dynamic groups will not be included in the search.</td>
<td>Optional</td>
</tr>
<tr>
<td>OB_DnIsUniqueIdentifier=</td>
<td>Values are true and false. The default is false.</td>
<td>Optional</td>
</tr>
<tr>
<td></td>
<td>Set the value to true to enable the Connector for WebSphere to work in a multi-domain directory server with a non-unique login ID in the different domains.</td>
<td></td>
</tr>
</tbody>
</table>

WebGate.properties

Table 10–2 describes the parameters of the webgate.properties file. This file is located in CWS_install_dir/oblix/config with a copy in WAS_install_dir\properties.
Table 10–2 Parameters in `webgate.properties`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>OB_InstallDir</td>
<td>The directory where the NetPointWASRegistry is installed. Default = CWS_install_dir</td>
</tr>
<tr>
<td>OB_ISPROXYENABLED</td>
<td>Not required unless you use a proxy server. The default value is false. If you use a proxy server, the value must be changed to true.</td>
</tr>
<tr>
<td>OB_hostnames</td>
<td>Not required unless you use a proxy server. The name of the host machine. This is only used for proxy servers.</td>
</tr>
<tr>
<td>Ob_loginID</td>
<td>Not required.</td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceTypeName</td>
<td>Authen</td>
</tr>
<tr>
<td>OB_AuthnSchemeOperation</td>
<td>LOGIN</td>
</tr>
<tr>
<td>OB_AuthnSchemeResourceName</td>
<td>/Authen/Basic</td>
</tr>
<tr>
<td>OB_AuthzActionType</td>
<td>uid</td>
</tr>
<tr>
<td>OB_DnIsUniqueIdentifier</td>
<td>Not required unless you want to enable the Connector for WebSphere to work in a multi-domain directory server with a non-unique login ID in the different domains. See also, Non-Unique Login ID in Different Domains in "NetPointWASRegistry.properties" on page 10-60.</td>
</tr>
</tbody>
</table>

TrustedServers.properties

Table 10–3 describes the parameters of the trustedservers.properties configuration file.

Table 10–3 Parameters in `TrustedServers.properties`

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>com.ibm.websphere.security.trustassociation.enabled</td>
<td>true</td>
</tr>
<tr>
<td>com.ibm.websphere.security.trustassociation.types</td>
<td>webgate</td>
</tr>
<tr>
<td>com.ibm.websphere.security.trustassociation.webgate.interceptor</td>
<td>com.oblix.tai.WebGateTrustAssociationInterceptor</td>
</tr>
<tr>
<td>com.ibm.websphere.security.trustassociation.webgate.config</td>
<td>webgate</td>
</tr>
</tbody>
</table>

Implementation Notes for the TAI

The following implementation is optional to enable the Connector for WebSphere to work in a multi-domain directory server with a non-unique login ID in the different domains.

To accomplish this optional implementation, you use two parameters in the NetPointWASRegistry.properties file:

```plaintext
OB_DnIsUniqueIdentifier=
```
The default is false. Be sure to set OB_DnIsUniqueIdentifier to true if the DN is being used.

To enable the Connector for WebSphere to work in a multi-domain directory server with a non-unique login ID in the different domains, you also need the following parameter in the webgate.properties file:

OB_DnIsUniqueIdentifier=false

This optional parameter is used when the TAI module is configured to pass on the users DN instead of the userAttr or LoginID. The default is false. If the OB_DnIsUniqueIdentifier parameter is set to true, the DN is used to communicate between the TAI and Registry. Be sure to set the OB_DnIsUniqueIdentifier to true if the DN is being used.

The optional implementation described in the previous paragraphs works with the following caveats:

- Using TAI or WebGate as the only means of authentication should not be an issue since it is likely to be a requirement for multi-domain authentication. No users can go directly to WAS applications.

Note: An exception is when logging into the Identity System Administration Console.

- A unique ID is used for the WAS_ADMIN Account across all domains.
- This solution causes a loss of functionality regarding mapping individual users to roles.

On WAS 5, role mapping can be done only through Identity System groups.

Implementation Notes for Active Directory

The following sections discuss issues to consider when implementing the Connector for WebSphere on Active Directory:

- Configuring the Connector for WebSphere for an Active Directory Forest
- Set Active Directory Domain in NetPointWASRegistry.properties

Configuring the Connector for WebSphere for an Active Directory Forest

The steps to configure the Connector for WebSphere for an Active Directory Forest follow.

To configure the Connector for an Active Directory forest

1. In the Access System Console, create a new Basic Over LDAP authentication scheme for a domain in the Active Directory Forest.

 The base credentials that you specify in the Plugin(s) field must be the same as the search base that you specified in the directory server profile.
If you already created an administrator during pre-installation setup, you do not need to complete step 2. See "Preparing to Install the Connector" on page 10-10 for more information.

2. Create a WebSphere administrator in Oracle Access Manager with View and Delegated Administration rights.

 Ensure that the administrator's login identification is unique.

3. Specify the WebSphere administrator as the administrator for the Active Directory forest domain.

 This domain must be the same as the one for which you created the authentication scheme in Step 1. To do this, specify values for the OB_WebPassADDomain parameter in the NetPointWASRegistry.properties file as described in Table 10–1.

 You can search for users in the parent domain but you cannot search for users in sibling or children domains.

 Note: You do not need to create an administrator for every domain in an Active Directory Forest.

Set Active Directory Domain in NetPointWASRegistry.properties

If you are running Active Directory using multiple domains, you must manually edit the NetPointWASRegistry.properties file to include a value for the OBWebPassADDomain parameter.

For example, OBWebPassADDomain=dc=xyz, dc=acme, dc=com

The domain must be the same as the domain defined for the default directory server in Oracle Access Manager.

See the Oracle Access Manager Identity and Common Administration Guide for more information.
#OB_UserAttr should be the Login Attribute example LoginID which is uid or genuserid.

Troubleshooting the Connector for WebSphere

The following is a list of the most frequently asked questions on the Connector for WebSphere. See also, "Troubleshooting the Connector for Portal Server v5" on page 10-78.

Problem
I am trying to conduct a search of users or groups using WAS role mapping. I am supplying a search string but I am getting an error message.

Solution
WAS role mapping requires wildcards in all search strings. Put an asterisk (*) at the beginning and the end of your search string, for example, a search of "*user123*" returns all user IDs that have "user123" as a substring.

Problem
I am locked out of WAS 5 Admin Console or the WebSphere 5 Server does not start after making a configuration change. What should I do?

Solution
Restore the previous WAS 5.0 security.xml file located in WAS_install_dir/config/cells/serverName directory. This assumes you have made a backup of an older, working copy.

Problem
On Solaris, when setting up the SSL connector for the Connector for WebSphere, why does the keytool command give a "Signature not available" error?

Solution
This is a jdk 1.2.x problem. Use the NT version or any other jdk1.3.x version to create the cert db (jssecacerts) and then use it with WebSphere on Solaris.

Problem
Why do I get "All the jars are not in classpath: NoClassDefException"?

Solution
Make sure that the NetPointWASRegistry.jar and jobaccess.jar are in the classpath.

Problem
Why do I get an SSLPeerUnverifiedException - peer not authenticated exception?

Solution
The jvm being used is different from the jvm that has imported the certificates of ca and server. The jvm and keytools used must be from the same installation. If one keytool is used to add certificates and java is invoked from the other installation directory, then the jvm will not be able to use the certificates and will produce this exception.
Troubleshooting the Connector for WebSphere

Problem
Why do I get "ObConfig.NO_CONFIG_FILE"?

Solution
This error means that the Access Manager SDK client configuration file is not found.
Check the Install_Dir parameter in the NetPointWASRegistry.properties file and ensure that the following points to the NetPointWASRegistry installation directory. For example:

```bash
# Installation directory of NetPointWASRegistry
OB_InstallDir=/CWS_install_dir/oblix/config/
```

Problem
Why do I get an UnsatisfiedLinkError?

Solution
You probably do not have the Access Manager SDK lib in the PATH or LD_LIBRARY_PATH depending on the platform.

For example:

- **On NT**: set the PATH as follows:
  ```bash
  set PATH=%PATH%;c:\CWS_install_dir\oblix\lib
  ```

- **On Solaris**: set LD_LIBRARY_PATH as follows:
  ```bash
  setenv LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/CWS_install_dir/oblix/lib
  export LD_LIBRARY_PATH
  ```
 This can be either done at system level or at start-up.

- **For AIX**: set LIBPATH as follows:
  ```bash
  setenv LD_LIBRARY_PATH=$LIBPATH:/CWS_install_dir/oblix/lib
  export LIBPATH
  ```
 You may also get the following error if you do not have the Access Manager SDK lib:
  ```java
  "com.ibm.ejs.exception.InvalidUserRegistryConfigException: Custom [OSName]: com.oblix.registry.NetPointWASRegistry"
  ```

Problem
Why do I get NoClassDefFound error for com.oblix.access.ObAccessException?

Solution
Make sure that the jobaccess.jar file is in WebSphere's classpath.

Problem
Why do I not see the ObSSOCookie being set?

Solution
Make sure that you are using fully qualified domain names to access the WebSphere Server and the Web server that is running WebGate.

For example, use:
```bash
http://foobar.oblix.com:9080
```
Not:
http://foobar:9080

Check the Cookie domain for the following:

- Ensure that the Primary Cookie Domain set in the WebGate Configuration in Policy Manager.
- In the NetPointWASRegistry.properties file, ensure the values for these parameters are set as follows: OB_CookieDomain=.oblix.com, OB_CookiePath=/

Problem
I see the ObSSOCookie, but why is WebPass rejecting it?

Solution
Take the following steps:

- Ensure that the time on the machine on which WebGate and Webpass are installed is synchronized with the time on the WebSphere Server.
- Make sure that in the authentication schemes for WebGate, Webpass and the WebSphere Server resources have the same security level.

Problem
Why is WebGate rejecting the ObSSOCookie?

Solution
Ensure that the IPValidation parameter is set to Off.

From the Access System Console, click Access System Configuration, click AccessGate Configuration in the left navigation pane, click the link for the WebGate that protects the WebPass, and in the IPValidation field select the Off option.

Problem
Why do IdentityXML calls fail with an unauthorized exception?

Solution
Check the NetPointWASRegistry.properties file to ensure that the WebPass host name is fully qualified.

For example:

```
OB_WebPassHost=foobar.oblix.com
```

```
OB_WebPassPort=80
```

Problem
Why do I get a "server specific error 10" while restarting the WebSphere Administrative Server.

Solution
Ensure all Java process are killed before re-starting the WebSphere Administration Server.

Problem
I see the following exception:
Exception in thread "main" com.ibm.websphere.security.
CustomRegistryException: admin at
com.oblix.registry.NetPointWASRegistry.getUserDisplayName(NetPointWASRegistry.java:622) at
com.oblix.tools.registryTester.main(registryTester.java:69)

Solution
There can be many reasons for this exception. In the NetPointWASRegistry file, turn
on the debug flag and check the debug log path as follows.
OB_LogLevel=debug
OB_LogFileName=/oblix/NetPointWASRegistry/log

Problem
I get the following error in the Oracle Access Manager log file:
Mon Jan 06 14:57:21 PST 2003: Error making SOAP request
at com.oblix.registry.NetPointWASRegistry.getUserDisplayName(NetPointWASRegistry.java:607)
at com.oblix.tools.registryTester.main(registryTester.java,Compiled Code).

Solution
Ensure that the IPValidation parameter is set to Off.
From the Access System Console, click Access System Configuration, click AccessGate
Configuration in the left navigation pane, click the link for the WebGate that protects
the WebPass, and in the IPValidation field select the Off option.

Problem
I get the following error in the Oracle Access Manager log file:
Mon Jan 20 15:37:24 GMT-06:00 2003: Error making SOAP request java.io.IOException:
Server returned HTTP response code: 401 for URL:
http://foobar.oblix.com:80/identity/oblix/apps/userservcenter/bin/
at com.oblix.soapclient.OblixSoapClient.doRequest(OblixSoapClient.java:285)

Solution
Be sure that the IPValidation parameter for the WebGate is set to Off.
From the Access System Console, click Access System Configuration, click AccessGate
Configuration in the left navigation pane, click the link for the WebGate that protects
the WebPass, and in the IPValidation field select the Off option.

Problem
I get the following exception:
"com.ibm.ejs.exception.InvalidUserRegistryConfigException: User [username] not authenticated"?
Solution
Make sure the OB_UserAttr, OB_UserSearchAttr and OB_GroupSearchAttr are set correctly in NetPointWASRegistry.properties.

OB_UserAttr=samaccountname

OB_UserSearchAttr=cn

OB_GroupSearchAttr=cn

Problem
I get the following error in the Oracle Access Manager log file:

Troubleshooting the Connector for WebSphere

Solution
Make sure the Identity Server is up and running.

Problem
Why does the Portal Server allow logins with old passwords even though it honors passwords updated through Oracle Access Manager?

Solution
Because the Portal Server installation sets the Security Cache Timeout to 600 seconds, old passwords will be stored in cache for that amount of time. This parameter is present in the WebSphere Application Server Administrative Console - Security Center and under the General tab.

Problem
A deactivated Oracle Access Manager user can still access WebSphere resources.

Solution
To avoid this, ensure that all authentication schemes that WebSphere uses have the following lines added:

```
(|(! (obuseraccountcontrol=*))(obuseraccountcontrol=ACTIVATED))
```

Problem
Why does the WebSphere Portal Server not come up, resulting in security exceptions?

Solution
Ensure that the LPTA Token domain is set up correctly.

Problem
Single sign-on is not working when a URL resource is protected with a Basic Over LDAP authentication scheme, even though TAI is enabled.
Solution
Verify the you followed the steps described in "Configuring the TAI for WebSphere v5" on page 10-31, and that you have set the challenge re-direct field in the Basic Over LDAP authentication scheme.

Problem
The following error appears in the Event Viewer of the WebSphere Administrative Console:

```
CNTR0020E: Non-application exception occurred while processing method
isAllLevelNone on bean BeanId(admin#repository.jar#PmiService,
null):javax.transaction.TransactionRolledbackException: CORBA TRANSACTIONROLLEDBACK 0 No; nested exception is:
org.omg.CORBA.TRANSACTION_ROLLEDBACK: minor code: 0 completed: No
org.omg.CORBA.TRANSACTION_ROLLEDBACK: minor code: 0 completed: No
at com.ibm.ejs.jts.jts.JBrokerSupport$RI.client_unmarshalled_request
(JBrokerSupport.java:405)
at com.ibm.CORBA.iiop.RIs.iterateClientRequestPreRIs(RIs.java (Compiled Code))
at com.ibm.CORBA.iiop.ClientRequestImpl.reInvoke (ClientRequestImpl.java:851)
at com.ibm.CORBA.iiop.ClientDelegate.invoke (ClientDelegate.java:894)
at org.omg.CORBA.portable.ObjectImpl._invoke (ObjectImpl.java:258)
at com.ibm.ejs.sm.agent._AdminAgent_Stub.invokeActiveObject (_AdminAgent_Stub.java:39)
```

Solution
This may occur if the WebSphere Application Server startup time is long. There can be multiple reasons for this problem, including a startup servlet (load-on-startup = true) which requires long time performing the init() method for the servlet.

If the Ping Initial Timeout is set to a value lower than the amount of time needed for the App Server to start, the Ping Initial Timeout alarm expires before the App Server could come up fully and send the "serverIsAlive" message. As a result, the administration server tries to kill and restart the Application Server process. In this situation, the state of the clone is recorded as Running.

The PMI client indicates that the clone is up and running and tries to invoke the "isAllLevelNone" method on the clone. Because the clone does not exist, it fails with an error message.

To correct this, set the Ping Initial Timeout to a larger number to allow the Application Server to start completely.

Problem
After enabling security and configuring LDAP as the Authentication Mechanism, the administration server restarts, the following errors show in the trace file:

```
```

Integrating with IBM WebSphere 10-75
Troubleshooting the Connector for WebSphere

Solution
Sometimes the key and password get out of sync. Create a new key for WebSphere’s use.

To create a new key, do as follows:
1. From the Security Center (4.0x) or the Global Security Wizard (3.5x) under the Authentication Tab, click Generate Keys.
2. At the prompt, enter a password for the new key.

Problem
A user’s attempt to log in to the WebSphere Administrative Console results in the following error:

ADGU2009E: Security Error: Either username/password is wrong or this user is not authorized to connect to admin server.

Solution
Only the following users can log in to the WebSphere Administrative Console when security is enabled:
- User defined in the security ID of the custom registry/LDAP.
- Users defined in Administrative roles.

Problem
I get a Not Authorized error when I try to access a WAS resource or a WebSphere Portal resource.

Solution
You get this error because the ObSSOCookie is not being sent. Refresh the page to send the ObSSOCookie.

It is recommended that you use a form-based authentication scheme to avoid this problem. If you use the basic authentication scheme, set the Challenge Redirect field to another WebGate to ensure that the ObSSOCookie gets sent.

Problem
If TAI is failing with a stack trace:

... 1493ff35 JaasLoginHelp E SECJ4001E: Login failed for testeisintuser/Default Realm

You get this error because the ObSSOCookie is not being sent.

Solution
Do the following:
1. Refresh the page to send the ObSSOCookie.
2. Enable further security debugging for the following classes:
Troubleshooting the Connector for WebSphere Integrating with IBM WebSphere

com.ibm.ws.security.*
com.ibm.websphere.security.*
SASRas

3. To view detailed information on the runtime behavior of security, enable trace on the following components and review the output:

This trace statement collects the trace for the security runtime:
com.ibm.ws.console.security.*=all=enabled.

This trace statement collects the trace for the security center GUI.
SASRas=all=enabled.

This trace statement collects the trace for SAS (low-level authentication logic):

The logs should give better debugging messages, and ideas on what exactly is failing.

Problem
Error in the TAI logs:
Error no action found

Solution
Ensure that the Authentication Scheme level for the Authentication scheme protecting the WebSphere Policy (Authen/Basic) is less than or equal to the Authentication scheme level protecting the WebSphere resource.

Ensure that the WAS_REGISTRY action is set properly (see "Defining a Policy Domain for WebSphere" on page 10-17). Ensure that there is an Authorization Expression set and that upon Authorization success the WAS_REGISTRY action is set.

Problem
WAS Registrytester.bat may fail:
System variables may be picking up an older version of obaccess.dll based on the path.

Solution
Check your system variables to ensure these are correctly set. For example, $PATH and $CLASSPATH must be correctly set.

Problem
Unable to search users in the WebSphere Portal Admin page.

Solution
Do the following:
1. Log in as wpsadmin and go to Portal Administration, Security, Access Control List.
2. Click Get groups and users. Search for users using the wildcard character "*" and select wpsadmin and add it to the list, then click OK.
3. Select user groups in the Select the objects for the permissions for the user wpsadmin, then click Go.

4. Give Manage permissions for the group All authenticated users for user wpsadmin, then click Save.

5. Go to Users and Groups, Manage Users, then search for users using the wildcard character "*." to display all the users.

6. To view groups, repeat steps a, b, and c, then give Manage permissions for each group that needs to be viewed for wpsadmin and click Save.

Problem
IBM WebSphere Portal Server gives an error "No Portlets to display"

Solution
Do the following:
1. Log in to WebSphere Administrative Console. Navigate to WebSphere Portal application.
2. Click the JVM settings tab and add the following to the System Properties: "HttpSession.RecurseThroughProxy", value = "true"
3. Restart the WebSphere Portal application.

Troubleshooting the Connector for Portal Server v5
The following Portal Server v5 issues are covered:
- Portal Server v5 Installation-Related Issues
- Custom Security Integration Related Issues

Portal Server v5 Installation-Related Issues
There are several Portal Server installation-related issues that you may encounter. See the following problem and solution descriptions.

Problem
Both the WebSphere AppServer and Portal Server installed successfully but not able to access Portal Server page i.e. wps/portal.

Solution
Check for the fix packs needs to be applied on Application Server for the respective Portal Server version integration. The order to apply fix packs is important.

For Example, In case of Application Server 5.0 and Portal Server 5.0, the Fix Pack 1 needs to be applied on WebSphere Application server. The order of applying patch would be,
- Wasfp1
- Pmepfp1
- Fixes
- Manualfixes

You can check $WAS_install_dir/properties/version/history folder to confirm the list of fixes applied on Application server.
For more information on this, see the WebSphere Portal infocenter document available on the IBM WebSphere site.

Problem
On login to the Portal Server (wps/portal), the following error message displayed:
There has been an application error! Please contact to your system administrator to report this error.

Solution
Ensure the required fix pack has been applied on the Application Server. See the first problem in this section. Also, ensure the Java 2 security is disabled in the WebSphere Application server.

To disable Java 2 security
1. Login into WebSphere Application Server Console, Security, Global Security.
2. Disable the check box for the Enforce Java 2 Security option.
3. Save the changes, then restart both the WebSphere Application Server and Portal Server.

Note: It is recommended that you install Portal Server with disabling Global Security in WebSphere Application server.

Problem
On successful login to the Portal Server, the Portal Admin is not able to view the Administration link to manage the Portal Server. This link is displayed on the top-right side of the page.

The Administration portlet is not deployed on the system.

Solution
Do the following:
1. Run WPSconfig.{bat | sh} portlets script to deploy the same.
 This script is available in $WPS_install_dir/config folder. For more information check the wpsconfig.xml file.
2. Restart the Portal Server and login using admin credentials.
 The Portal Admin user will able to see the "Administration” link and he can setup the Portal Server Application.

Note: The same script will also deploy some sample portlet applications come along with Portal Server installation. Also, WPS_install_dir is the directory where the Portal Server is installed.

Problem
On successful login to the Portal Server, Portal Admin is not able to view a portlet page. The error message appears as:
There is no content available. Please check if there is content defined for the markup of your client device.
This message comes because portal page is not created in the Portal Server.

Solution
A page has to be created in the Portal Server so you can add portlets on this page.

To add a page, you need page addition/modification privileges and a portlet needs to be installed that adds a new page or edits a page.

See issue 3 to check whether the required portlet has been deployed on the system.

Problem
When searching users from the Portal Server "user search" interface you may get empty records as a search result. This problem occurs when user names stored in the directory server are in Latin ISO-8859-1 style.

Solution
Ensure that you unset the following environment variables.

```bash
unset LC_COLLATE LC_CTYPE LC_MESSAGES LC_MONETARY LC_NUMERIC LC_TIME
```

Custom Security Integration Related Issues
The following issues are related to custom security integration.

Problem
Portal Server configuration has been done for a custom member repository (WAS Connector) but the user is still not able to log in into the Portal Server using Custom Data Store user id, that is, the user is present in Oracle Access Manager.

Solution
Check `$WPS_install_dir\shared\app\wmm\ wmm.xml` file. Confirm that ProfileRepository tag has been configured correctly for Custom Member Repository implementation.

Sometimes WPSconfig script execution modifies wmm.xml file and LDAP settings replace custom member repository settings.

Note: Oracle recommends that you always keep backup of wmm.xml file configured for Custom Member Repository.

Problem
Portal Admin is able to search for the user present in Custom Data Store but on assigning him a portlet access permission, that user is not able to view the portlet after successful login.

This problem occurs when user DN present in the Custom Data Store contains intermediate spaces.

For Example, `cn=Portal User, o=company, c=us`.

WebSphere Portal does normalization of DN before matching it with the allowed user DN present in its internal cloudscape database. As string entries do not match, access permissions to the user fails.
Solution
To overcome this problem, apply Fix Pack PQ93461 provided by IBM.

Problem
How can I retrieve only the first 10 entries (or the number of entries I want to retrieve) on a search for an Identity system user or group through the Portal Server.

Solution
The parameter of number of records to retrieve is configurable in NetpointWASRegistry.properties file.
The name of parameter is OB_WebPassXPIRecordsReturned.
If this parameter is not defined or set to zero then it will retrieve all the users or groups present in the Oracle Access Manager Repository.

Problem
Portal Admin user is not able to install a portlet.
This problem is related to invalid deployment credentials in Portal Server.

Solution
Verify that WPSCfg.bat/sh action-create-deployment-credentials script has been executed or not.
This script execution creates required Credential Vaults in portal server.
Before execution of this script, verify wpsconfig.properties file. Check values of all the configuration parameters mentioned in the Oracle Access Manager Installation Guide.
Also verify that $WPS_install_dir\shared\app\config\services\VaultService.properties contains correct systemcred.dn value. This should be Portal Admin User DN.
After successful execution verify that the credentials vaults has been created for the Portal Server.
You can check the same from Portal Server Login, Administration, Access, Credential Vault, Manage System Vault Slots.

Problem
How can I get the debug logs of the Oracle Access Manager WAS Registry and CMR?

Solution
For WAS Registry logs, set the following parameters of NetpointWasRegistry.properties file:
OB_LogLevel=debug
OB_LogFileName=log file complete path
For enabling CMR logs and Portal Server logs set the following parameters in $WPS_install_dir\shared\app\config\log.properties file.
traceString=*=all=enabled
com.ibm.wps.services.puma.*=all=enabled:
com.ibm.wps.puma.*=all=enabled:
com.ibm.wps.command.puma.*=all=enabled:
Problem
How can I stop/start WebSphere Application Server and Portal Server?

Solution
To start and stop Application Server use
- Run the startServer command, as follows:

 `$WAS_install_dir/bin/startServer name_of_app_server`

 (Default name is server1)
- Run the stopServer command, as follows:

 `$WAS_install_dir/bin/stopServer name_of_app_server -username WAS_Admin_userid -password WAS_Admin_Pwd`

To start and stop Portal Server use
- Run the startServer command, as follows:

 `$WAS_install_dir/bin/startServer name_of_portal_server`

 (Default name is WebSphere_Portal)
- Run the stopServer command, as follows.

 `$WAS_install_dir/bin/stopServer name_of_portal_server -username PortalAdmin -password PortalAdminPwd`

Problem
Portal Admin is not able to search the users present in the Oracle Access Manager Repository but these users are able to log in into the Portal Server.

Solution
Solution: Check the user.fbdefault.filter parameter in the PumaService.properties file. This parameter should contain the attribute name, which is passed to the custom CMR implementation. The WAS Connector uses this attribute to ensure the Portal Admin user is a valid user.

Check the trace.log file for exception details.

Problem
While starting the Portal Server, the CMR gets invalid Portal Administrator credentials.

Solution
Run the Wpconfig. {bat/sh} action-secure-portal-ldap script from the `$WPS_install_dir/config` folder.
Problem
Why am I unable to install a portlet using the administrator ID with Oracle Access Manager security enabled?

Solution
Solution: Complete the following steps to ensure that the proper credentials are being used.

1. Verify that the correct values for WasUserid and WasPassword are present in the following file:
 wpconfig.properties

 WasUserid must be the administrative user id and not the administrative DN. As necessary, use any plain-text editor to open wpconfig.properties and correct the values for WasUserid and WasPassword. Save and close wpconfig.properties.

2. Confirm that you have executed the following command:
 wpconfig.bat\sh action-create-deployment-credentials

 If you discover that you have not run the command, execute it, then proceed with portlet installation.

 If you discover that you previously ran the script using incorrect values for WasUserid or WasPassword, correct the invalid values by executing the following two commands:
 wpconfig.bat\sh action-remove-deployment-credentials
 wpconfig.bat\sh action-create-deployment-credentials

3. Verify that the administrator id is defined correctly by navigating to Portal Administration, Access, Credential Vaults, Manage system vault slots, deployment.user.Vault.

Problem
For WebSphere 6.0, no users are returned when a search is conducted through the WebSphere Application Server Administration Console.

Typically, the Oracle Access Manager log will contain an error message that begins with the following:

Error making SOAP request . . .

Solution
Make sure that $LANG and all $LC_.* variables are set to en-US. You can check the current values of these variables through the "locale" command on SLES 9.

Problem
The Client Cert Authentication feature for the WebSphere Application Server 6.0 is unable to access the Snoop applet on the https port of the Web server.

Solution
Ensure that the SSL port used by the Web server has been added to the "default_host" virtual host configuration on the Application Server. If it does not exist, perform the following steps:

1. Launch the WebSphere Administration Console.
2. Navigate to Environment, Virtual Hosts, default_host, host aliases.

3. Add the hostname * Port: 443 (This is the SSL port used by the Web server).

4. Save your changes.

5. Regenerate the plugin by completing the following steps:
 a. Navigate to Servers, Web servers.
 b. Select the Web server for which you will create the plugin.
 c. Select Generate Plugin.
 You can view the generated plugin by navigating to: WebServerName, plugin properties, View, PluginFileName.
 d. Restart the Web server.

6. To verify that the SSL port is operational, complete the following steps:
 a. Disable the Access System policy protecting the test resource.
 b. Attempt to access the test resource using WebSphere Authentication exclusively.
 Use the following URL:

 https://WebServerHostMachineName:sslPortNumber/snoop
 c. If this succeeds, re-enable the Access System policy.
Integrating Plumtree Corporate Portal

This chapter provides an overview of integrating Oracle Access Manager with Plumtree Corporate Portal. Note that this product is now called BEA Aqualogic Interaction, however, the currently certified integration is with the Plumtree Corporate Portal product.

This chapter covers the following topics:

- About the Integration with Plumtree Corporate Portal
- Supported Versions and Platforms
- Enabling Single Sign-on in PlumTree 5.0.4
- Setting Up the Access System to Protect Plumtree 5.0.4
- Integrating Other Features

About the Integration with Plumtree Corporate Portal

The integration between Oracle Access Manager and Plumtree Corporate Portal provides companies with a Web enterprise solution for building customized, secure business portals with integrated, identity-based Web access management.

In the integrated solution, Plumtree Corporate Portal acts as a gateway to an enterprise intranet or extranet, providing users centralized access to a broad variety of applications and content hosted by the enterprise.

Oracle Access Manager provides a robust identity management and access security system to accurately track and manage the identities of Plumtree Corporate Portal’s employees, customers, and partners. Oracle Access Manager also provides a common enterprise security and user identity infrastructure that controls access to Plumtree Corporate Portal as well as to other enterprise applications and resources.

The integration supports single sign-on (SSO) between the applications within the portal framework and the enterprise Web applications that are secured by the Access System.

This integration offers these major benefits:

- **Single Sign-On**: The Access System’s single sign-on services offer authorized users a secure connection with minimal authentication challenges to the resources that they need. Users need to log in only once to gain access to all resources that they need at a given level of authentication. The access provided by Access System’s single sign-on services improves user efficiency, productivity, and user satisfaction.
About the Integration with Plumtree Corporate Portal

- **Delegated Administration**: Oracle Access Manager offers delegated administration capabilities that complement those of Plumtree Corporate Portal. Oracle Access Manager’s delegated administration distributes responsibilities for managing identity and security policy information. Users can update some of their information; managers, suppliers, and partners can set up, change, and delete user identity information.

- **User and Group Management**: Oracle Access Manager manages an LDAP directory server that contains user identity information. Plumtree Corporate Portal synchronizes its own user database with the LDAP directory. This eliminates the need to create and manage separate identity profiles for each application. Oracle Access Manager also provides strong group management capabilities, including support for static, dynamic, nested, and hybrid groups. The Identity System manages the group information that the Plumtree Corporate Portal application uses to personalize the portal. Group affiliation is immediately reflected in the portal without manual changes.

- **Centralized Security Management**: Oracle Access Manager provides a common security management platform for all applications within an enterprise. This facilitates the maintenance of consistent security policies across an entire enterprise.

- **User Personalization**: Oracle Access Manager enables you to personalize portal content based on any user attribute, such as job title.

This integration does not change the users’ experience in Plumtree Corporate Portal. Users can continue to access the portal guest pages without logging into Plumtree Corporate Portal. When a user attempts to log in, the Access System intercepts the request and uses an authentication scheme to determine whether the user is authorized to access the portal. Those who are not authorized are denied access to Plumtree Corporate Portal.

Figure 11–1 illustrates how Oracle Access Manager components protect the Plumtree Corporate Portal.
The following summarizes the integration.

Task overview: Integrating with Plumtree

1. Enabling single sign-on for the Plumtree Corporate portal as described in "Enabling Single Sign-on in PlumTree 5.0.4" on page 11-4.

 In the Plumtree installation, you set up single sign-on and LDAP authentication sources, edit configuration files to support single sign-on, and then synchronize data from the Oracle Access Manager LDAP directory with the data in the Plumtree database.

2. Setting up the Access System to protect the Plumtree Corporate portal as described in "Setting Up the Access System to Protect Plumtree 5.0.4" on page 11-8.

 In the Access System, you create policies that specify the content that you want to protect. Policies are created in the Policy Manager.
3. (Optional.) Allow anonymous users to view the portal guest pages and creating a banner for the portal as described in "Integrating Other Features" on page 11-10.

4. (Optional.) Personalize user pages, and embed Identity System identity management functions as described in "Integrating Other Features" on page 11-10.

Supported Versions and Platforms

To see the supported versions and platforms for this integration, refer to Metalink as follows.

To view information on Metalink
1. Go to the following URL: http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Enabling Single Sign-on in PlumTree 5.0.4

This section describes the following tasks for enabling single sign-on on the Plumtree portal:

- Creating a Single Sign-On Authentication Source
- Creating an LDAP Authentication Source
- Editing Configuration Files to Support Single Sign-On
- Synchronizing LDAP Data with Plumtree Database
- Enabling Single Sign-On Logout

Creating a Single Sign-On Authentication Source

Authentication is the process of users proving their identity to a server. After users present their credentials to the server, authentication plug-ins process those credentials. To enable the Access System to authenticate users and groups on Plumtree, you must create a single sign-on authentication source so that the Access System can authenticate users and groups in the Plumtree portal. To do this, you must first create a single sign-on password to use when you configure the single sign-on authentication source.

To create a single sign-on password
1. Launch the Plumtree Administrator Control Panel application and navigate to Start, select Settings, select Control Panel, then click Plumtree Administrator. The Plumtree Administrator dialog box appears.
2. Click Single Sign-On.
3. Enter an SSO secret key.
4. Click OK to close the Plumtree Administrator dialog box.

To create a single sign-on authentication source on Plumtree
1. Log in to Plumtree as the administrator. Click Administration. The Administration Menu appears.
2. Click Authentication Folder. In the Create Object drop down box select Authentication Source-SSO. The Authentication Source Wizard appears.
3. Enter the single sign-on password.
4. Click Validate Options to confirm that this password matches the secret key you entered in the Plumtree Administrator Control Panel.
5. On the Properties and Names page, enter a name and description for the new authentication source. Describe the source carefully, as this description appears in a list during Authentication Source setup.
6. Specify the properties for the Authentication Source.

Creating an LDAP Authentication Source

To update the Plumtree database with the current user and group information, you must synchronize users and groups in the Plumtree database with information in the LDAP directory. To do this, you must first create an LDAP Authentication Source to import users and groups data from the LDAP directory into your Plumtree portal. To create an LDAP authentication source on Plumtree.

1. Log in to Plumtree as the administrator and click Administration. The Administration Menu appears.
2. Click Authentication Folder. In the Create Object drop down box, select Authentication Source-SSO. The Authentication Source Wizard appears.
3. In the Authentication Source Category box, type the prefix used to distinguish the users and groups imported from this domain. For example, if you enter myDomain, each user name and each group name will be prefixed by the string myDomain. Thus, myUser becomes myDomain\myUser and myGroup becomes myDomain\myGroup.

You can set the category to any value you want, but after you create this authentication source, you cannot change this value.
4. Templates can populate configuration options with common default values. To use an existing template to populate the values in this editor, choose one from the Template list.
5. Add values under LDAP Settings to facilitate portal access to the LDAP server from which you are importing users. Consult online help for instructions.
6. To confirm the domain you entered, click Validate Options.

After the portal has attempted to find the domain, it displays a message stating whether it connected successfully or not.

- If the validation fails, check for errors in your settings.
If the validation succeeds, go to the **Synchronization** page.

7. Select the single sign-on authentication source you created earlier from the list labelled **Select an Authentication Partner**. Select Full Synchronization.

8. On the **Schedule** page, select **Create a Job/Add a Job for this Authentication Source**. Consult online help for instruction on creating or adding a job.

9. Add appropriate properties on the Properties and Names page.

Editing Configuration Files to Support Single Sign-On

By default, the portal expects Oracle Access Manager to forward the user name header named uid. If you configure Oracle Access Manager to forward a user name header with a different name, you must configure your single sign-on implementation as BasicSSO service. For details about BasicSSO service, see the PlumTree Administration Guide.

Configure elements under the `<Authentication>` parent element in the **PTConfig.xml**, as detailed in **Table 11–1**.

Table 11–1 Parameters In Ptconfig.xml

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>SSOVendor</td>
<td>For Oracle Access Manager the SSOVendor value is 3.</td>
</tr>
<tr>
<td>DefaultAuthSourcePrefix</td>
<td>Use the same value you specified for Authentication Source Category when you configured your authentication source.</td>
</tr>
<tr>
<td>CookiePath</td>
<td>" /" (Specify a different setting only if your single sign-on authentication server requires a different convention.)</td>
</tr>
<tr>
<td>CookieDomain</td>
<td>Specify the fully qualified domain name to which you want the cookie forwarded. For example, if you specify .company.com, the cookie enables access to all domains that end in .company.com. If you specify .sub.company.com, the cookie enables access only to domains that end in .sub.company.com. The string must start with a period (.) and include a minimum of two periods.</td>
</tr>
<tr>
<td>SSOCookieIsSecure</td>
<td>0 or 1. 0 (the default) specifies that the connection to the remote server does not require SSL for the cookie to be forwarded. 1 specifies SSL is required.</td>
</tr>
</tbody>
</table>

The following example enables integration with an Oracle Access Manager authentication server:

```
<SSOVendor value="3"/>
<DefaultAuthSourcePrefix value="HQ"/>
<CookiePath value="/"/>
<CookieDomain value=".company.com"/>
<SSOCookieIsSecure value="0"/>
```

Synchronizing LDAP Data with Plumtree Database

Data synchronization ensures the updating of information on group memberships and users, which is crucial for portal access and personalization. You can synchronize data manually or automatically at specific time intervals. To synchronize manually, you schedule a job and run it once for immediate synchronization. For periodic synchronization, you schedule a job to run at specified time intervals.

After you run a job, you can view its status to see if it ran successfully. When a job has run successfully, you can view the replicated LDAP data in the Plumtree database.
You must fully synchronize at least once to enable single sign-on between Plumtree and Oracle Access Manager.

To automatically synchronize data
1. On the Plumtree portal host, navigate to Control Panel, then Services, and verify that the Plumtree Job Dispatcher service has started.
2. Log in to Plumtree as the administrator, then click Administration.
3. In the Administration Menu, navigate to the Administration folder, click Jobs, then select the job you earlier created / added for the LDAP Authentication Source. The main settings page appears.
4. Specify the time period when the synchronization job is to be run.
5. The Edit Job User page also provides options for checking the job log and history through the Job History tab. It also lets you check security-related options.

To manually synchronize data
1. On the Plumtree portal host, navigate to Control Panel, then select Services, and verify that the Plumtree Job Dispatcher service has started.
2. Log in to Plumtree as the administrator, then click Administration.
3. In the Administration Menu, click the Administration folder, select Jobs, then select the job you earlier created / added for the LDAP Authentication Source. The main settings page appears.
4. Select Run Once - Now option in the settings. This job runs once, starting immediately.

Viewing Synchronized Information
After synchronization has been completed, you should be able to see all the users and groups from the LDAP data source replicated in the Plumtree database.

To view the updated Plumtree database
1. In the portal, click Administration.
2. In the Administration Menu, click your administration folder.
3. Expand the Users tab. The user names will be prefixed with the LDAP source name.

For example:

LDAPUsers\Accounting Managers

In a Group folder, you can also view the members of the groups.

Enabling Single Sign-On Logout
When a user clicks the PlumTree Log Off button in an Access System-protected PlumTree session, users are logged out from PlumTree, but the ObSSOCookie generated for the users is not killed. Hence, the Oracle Access Manager session for that
particular user remains active. Users need to customize the PlumTree logout functionality to facilitate logout from PlumTree as well as Oracle Access Manager.

Consult "Customizing the Portal UI: Using Plumtree Event Interfaces (PEIs)" section in "Enterprise Web Development Documentation" on the PlumTree Web site for information on modifying the PlumTree UI. Users need to implement the "OnBeforeLogout" interface as:

```csharp
public virtual Redirect OnBeforeLogout(Object _oUserSession, ApplicationData _appData)
{
    PTDebug.Trace(Component.Portal_UI_Infrastructure, TraceType.Error, "Before logout event");
    String myCookie = _appData.GetCookie("ObSSOCookie");
    if (myCookie != null)
    {
        Redirect myredirect = new Redirect();
        myredirect.SetLinkToExternalURL("http://<AccessManager_Server_Name:port>/access/oblix/lang/en-us/logout.html");
        return myredirect;
    }
    return null;
}
```

Setting Up the Access System to Protect Plumtree 5.0.4

Typically, users click the Login button to log in to the Plumtree Corporate Portal. Once they are authenticated, they can view their personalized pages. To log out of the portal, users click the Logout button. In an alternate configuration, you might want all users to see a guest portal, then authenticate users only when they log in to the portal. (If you have enabled user access to the guest pages, then any user can go to the main portal page and view those guest pages without ever logging into the portal).

When a user attempts to login, the Access System authentication policy challenges the user. Once the Access System authenticates the user, it checks to see if the user is authorized. If the user is authorized, an ObSSOCookie and a header variable are sent to enable single sign-on into Plumtree. The user is then logged in to Plumtree.

You can configure the Plumtree Corporate Portal so that when users log out, they are automatically logged out of both Plumtree and Oracle Access Manager. To set up the Access System’s single sign-on service for Plumtree, after you have installed the Access System, you must create policies in the Policy Manager that specify the content you want to protect.

Setting up the Access System to protect Plumtree consists of the following tasks:

- Installing Oracle Access Manager Components
- Creating a Policy Domain
- Configuring the WebGate
- Configuring WebGate for IIS

Installing Oracle Access Manager Components

To integrate with Plumtree, you must install the following applications:

- Identity Server
To enable the Access System to protect the portal, install a WebGate on the Plumtree Corporate Portal Web server.

Note: You can install the Identity server, WebPass, and Access System on the same server. However, Oracle recommends that you do not install the Identity Server and WebPass on the server where Plumtree has been installed. For more information on installing and configuring Oracle Access Manager, see the Oracle Access Manager Installation Guide.

Creating a Policy Domain

To create the policy domain, follow the procedure in "Creating a Policy Domain" on page 11-9.

For more information on policy domains, see the Oracle Access Manager Access System Administration Guide.

To create the policy domain
1. Install Oracle Access Manager, which includes the following components: Identity Server, WebPass, Access Server, and Policy Manager.
2. Launch the Access System, as follows:
 http://Access_Server_install_dir:port/access/oblix
3. Click the link for the Policy Manager application.
4. In the Policy Manager, create a policy domain.
 In the Resources tab for this policy domain, select a backslash ("/") as the URL prefix and type the path to the SSO servlet in the adjacent text box.
 For example: portal/SSOServlet or portal/sso/ssologin.aspx
5. Click the Authorization Rules tab for this policy domain and enter basic information for the new authorization rule.
 Click the Actions sub-tab for the authorization rule and add the following action:
 - In the Type field, enter a descriptive name, for example, headerVar.
 - In the Name field, enter a descriptive name, for example, UID.
 - In the Return field, enter the name of an attribute that is used by the authentication source to map to the user name in the user directory.
 For example, iPlanet LDAP uses the uid attribute by default. Other LDAP directories, including Active Directory, use cn by default.

Configuring the WebGate

Configure your WebGate following the procedure appropriate for your portal deployment in the Oracle Access Manager Installation Guide.
Integrating Other Features

- WebGate for Apache
- WebGate for IIS

Use the version of the WebGate that matches the version of your Oracle Access Manager.

To see the supported versions and platforms for this integration, refer to Metalink as follows.

To view information on Metalink
1. Go to the following URL:

 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

To set up the WebGate for Apache
1. On the host computer for the Portal Server, install the version of Apache required by the WebGate.

 Note: The version of Apache provided by Plumtree and described in the Installation Guide for Plumtree Corporate Portal cannot be used with the WebGate. You must download the required Apache version from the Apache Web site.

2. On the host computer for the Portal Server, install the WebGate for Apache. For details, see the Oracle Access Manager Installation Guide.
3. On the Web application server to which the portal application is deployed, modify the Web application server setting to turn off URL rewrites. For details, refer to your Web application server documentation or Plumtree Knowledge Base article DA_239501, "Configuring Web Application Servers to not Rewrite URLs."

Configuring WebGate for IIS

Install the version of the WebGate that matches your Oracle Access Manager.

To set up WebGate for IIS, run the WebGate for IIS installer on the host computer for the Portal Server.

Integrating Other Features

Oracle Access Manager offers several other features that you can integrate with Plumtree such as allowing guest users to view portal pages, personalizing user pages, and embedding other identity management functions into your portal. You can also set up single sign-on to other portals, and manage passwords and self-registration.

The following tasks are discussed in this section:

- Enabling Anonymous Users to View Portal Guest Pages
- Using the Knowledge Directory
Enabling Anonymous Users to View Portal Guest Pages

You can allow anonymous users to access guest pages without logging into the portal. To do this, you must create a policy domain in the Access System that uses the Anonymous authentication scheme for the Oracle Access Manager Anonymous user. The Anonymous authentication scheme is a default that is supplied with the Access System.

This allows users to go to the main portal page and view guest pages without being challenged by the Access System.

You then lock the NetPointAnonymous account to allow anonymous users to view the guest pages without logging into the Plumtree portal. When a user goes to the main portal page but does not log in, the Access System logs in the user as NetPointAnonymous and creates an ObSSOCookie for this anonymous user. The ObSSOCookie is sent to the Plumtree portal but the portal treats the user as a guest because the account is locked. Thus, the user can view guest pages.

To create a policy domain for guest access

1. Launch the Policy Manager and click Create Policy Domain.
2. In the General tab, enter a name and description for the new policy domain.
3. In the Resources tab, select HTTP as the resource type.
4. To use a host identifier, create a host identifier in the Access System Console.
 You must add a fully qualified host name as one of the host name variations; for example, plum1.oracle.com.
 See the Oracle Access Manager Access System Administration Guide for more information.
5. Select the portal URL prefix from the list or create a new one. For example, /portal.
6. In the Default Rules tab, click Authentication Rule and from the Authentication Scheme list, select Anonymous Authentication.
 This enables a user to view guest pages without logging in to Plumtree.
7. In the Policies tab, enter the following information:
 - Name: Enter a name for the policy.
 - Description: Enter a description of the policy.
 - Resource Type: Select HTTP.
 - Resource Operations: Select GET.
 - Host ID: Enter the ID of the portal host.
 - Resource: Select /portal.
 - URL pattern: Enter admin/loginoblix.asp.
 - Host identifiers: Enter the host identity.
 - Query String: Enter a query string.
 - Query String Variable: Enter User ID as the name and 2 as the value.
Note: The Netscape Web server is case-sensitive. Do not change the case of the query string variable name.

8. Click **Save** to save the policy.

9. In the **Policies** tab, click the name of your policy. The policy details page appears.

10. Click **Authentication Rule** and create an authentication rule.

You can use any authentication scheme such as Basic over LDAP or any custom authentication scheme.

11. In the **Authorization Rules** tab, select **Actions**, and add a header variable that you specified in the file oblix.asp.

 To facilitate single sign-on, you must specify this header variable to direct Plumtree to look for this header variable as described in "Editing Configuration Files to Support Single Sign-On" on page 11-6.

12. In the **Return Attribute** field, enter the **Login ID** attribute and click **Save**.

13. Enable the policy domain.

14. On the Plumtree Portal, lockout the user as described in the section "To lock the NetPointAnonymous account" on page 11-12.

To lock the NetPointAnonymous account

1. On Plumtree, log in as the administrator to the portal.

2. Click **Users** and click the folder that matches the authentication source category you created as your LDAP authentication source.

3. Click the user for the Anonymous authentication scheme.

 It will have the prefix of the name you gave to the LDAP authentication source.

4. In the user page, select **Lock this User** so it cannot be used for login.

 The NetPointAnonymous user becomes the equivalent of the Plumtree guest user.
Integrating Other Features

Using the Knowledge Directory

The PlumTree 5.0.4 Knowledge Directory is a portal area that users browse to discover document records containing links to documents that have been uploaded by users or crawlers. Users can add Identity System links and Access System-protected resources links to the knowledge directory. Whenever a user tries to access links in the knowledge directory, the ObSSOCookie for that user, if it exists, is passed to the resource for user authentication, thus facilitating single sign-on.

The knowledge directory information is organized into subfolders in a manner similar to file storage volumes and shares. The default portal installation includes a Knowledge Directory root folder with one sub-folder named Unclassified Documents. Before you create additional subfolders, you must define your Knowledge Directory taxonomy, as described in the Deployment Guide for the Plumtree Enterprise Web.

This section discusses the following topics:

- Setting Preferences in the Knowledge Directory
- Creating Folders
- Uploading Documents

Setting Preferences in the Knowledge Directory

You specify how the Knowledge Directory displays documents and folders, including whether to generate the display of contents from a Search Server search or a database query, by setting Knowledge Directory preferences.

To set Knowledge Directory preferences

1. Click Administration.
2. In the Select Utility list, click Knowledge Directory Preferences.
3. Specify preferences according to the instructions provided through online help.
4. Click Finish.

Creating Folders

To create a Knowledge Directory folder, complete the following procedure.

To create a Knowledge Directory folder

1. Navigate to Directory, then click Edit Directory.
2. Navigate to the folder into which you want to place a new subfolder.
3. Launch the Folder Editor.
4. Specify a name and description, then click OK.
5. Select the **Edit Details** icon, then complete the settings according to the instructions supplied in the online help.

Uploading Documents
To upload documents to the Knowledge Directory folder, complete the following procedure.

To upload a document
1. Browse to the folder where you want to upload the document.
2. From the **Submit a Document** list, choose **Simple Submit** or choose a data source.
3. Complete the submission forms as described in the online help.

Use filters to control what content goes into which folder. A filter sets conditions to sort documents into associated folders in the Knowledge Directory. Please see PlumTree documentation for more details.

Password Management
The password policies that you set on the Access System are always enforced because Oracle Access Manager manages passwords and the Access System evaluates the policies when a user logs in to the portal.

Users who are not logged in to the Plumtree portal must have access to the Lost Password feature in Oracle Access Manager. This enables users who have lost their passwords to set a new one. See the *Oracle Access Manager Identity and Common Administration Guide* for details.

To enable password management, you must create appropriate policies in the Access System. You also need to use the knowledge directory to upload a document that contains a link to the Lost Password Management feature in Oracle Access Manager. See "Using the Knowledge Directory" on page 11-13 for details.

Note: Oracle recommends that you back up configuration files before you modify them.

Self-Registration
You need to enable, manage, and configure self registration. To enable self-registration, the appropriate self-registration workflow must be created in the User Manager. See the *Oracle Access Manager Identity and Common Administration Guide* for details. This workflow is used in the self-registration portal insert.

To manage self-registration, you need to use knowledge directory to upload a document that invokes the Identity System self-registration feature. See "Using the Knowledge Directory" on page 11-13 for details. The Plumtree database must then be synchronized to be updated with the newly created user.
This chapter describes the integration of Oracle Access Manager with mySAP.com e-business platform.

This chapter covers the following topics:

- About Integrating Oracle Access Manager with mySAP
- SAP Components
- Supported Versions and Platforms
- Preparing to Integrate Oracle Access Manager with SAP
- Setting up Oracle Access Manager Single Sign-on for mySAP
- Integrating the SAP Enterprise Portal 6.0

About Integrating Oracle Access Manager with mySAP

Integrating Oracle Access Manager with mySAP enables the use of Oracle Access Manager functionality across all mySAP Web-based applications and other Oracle Access Manager-protected enterprise resources and applications.

Integrating Oracle Access Manager with mySAP provides the following Oracle Access Manager features to mySAP implementations:

- Access System single sign-on (SSO) for mySAP applications and other Access System-protected resources.
- Authentication, authorization, and auditing services for mySAP applications.
- The following Access System authentication schemes to provide single sign-on for mySAP applications:
 - Form
 - Basic
 - Custom
 - X509 Certificates
 - Integrated Windows Authentication
 - Microsoft .Net Passport
- Ability to use the Identity System for identity management.

The Identity System provides identity management features such as portal inserts, delegated administration, workflows, and self-registration to applications such as mySAP.
SAP Components

The integration of Access System single sign-on with mySAP involves the SAP components described in the following sections.

SAP Internet Transaction Server

SAP Internet Transaction Server (ITS) is a mySAP.com component that provides a Web front-end and allows access to data from the SAP R/3 applications. SAP R/3 provides Enterprise Resource Planning (ERP) functionality for the mySAP.com e-business platform.

SAP ITS consists of two major components: AGate and WGate.

The AGate is responsible for session management including mapping of SAP R/3 screens or function modules to HTML. AGate manages Web sessions including timeout handling and SAP R/3 connection pooling. Based on SAP R/3 information, it generates HTML documents that are forwarded to WGate.

The WGate passes requests to AGate and receives HTML pages back from AGate. The WGate supports various HTTP server interfaces such as Apache, Netscape Server Application Programming Interface (NSAPI), and Internet Server Application Programming Interface (ISAPI).

Pluggable Authentication Service

The Pluggable Authentication Service (PAS) is a part of the Internet Transaction Server that is used for single sign-on between SAP and third-party security providers. PAS enables Oracle Access Manager to authenticate users who attempt to access SAP.com resources.

Integration Architecture

The following figure illustrates the integration between Oracle Access Manager and SAP ITS and the SAP Enterprise Portal. The process overview that follows describes a scenario where the user first authenticates to a resource that is protected by the Access System. The user is then granted access to an SAP resource.
Process overview: Integration with SAP ITS

1. A user attempts to access content or an application on a company’s server.

2. The WebGate intercepts the request and queries the Access Server for the security policy that determines if the resource is protected.

 The security policy consists of an authentication scheme, authorization rules, and allowed operations. Based on the authentication and authorization success or failure, specified actions are performed.

3. If the resource is protected, the WebGate prompts the user for authentication credentials.

 The credentials that the WebGate requests depend on the authentication scheme configured in the Access System, for example, Basic over LDAP or Form-based authentication.

4. If the credentials are validated, the Access System authenticates the user and sets an encrypted ObSSOCookie in the user’s browser.

5. After authenticating, the authorization rules defined in the Access System are applied based on the security policy.

 Specific actions are performed based on the authorization rules. If the user is authorized, access to the requested content is allowed.

 If the user is not authenticated or authorized, he or she is denied access and redirected to another URL, as determined by the administrator.

6. The user enters the URL for the Oracle Access Manager-specific ITS PAS service.

 For integration with mySAP, an ITS-specific HTTP header variable is created and filled with unique Oracle Access Manager-SAP R/3-mapped user ID information.

7. The Oracle Access Manager-specific ITS service uses the sapextauth module to extract the HTTP header variable and identify the Oracle Access Manager-SAP R/3-mapped user ID.

8. Optionally, the SAP Workplace Server maps the external Oracle Access Manager user ID to the SAP System ID.

 It is recommended that Oracle Access Manager extract the correct SAP user ID from the LDAP directory that is used for the initial authenticated user. In this case, no lockup table is required in the SAP system.

9. If mapping is successful, the AccessGate issue the user an SAP Logon Ticket and redirects the user to either the Workplace service or any other ITS service. Future ITS URLs will use issued SAP Logon Tickets for passing logon information to the SAP R/3 system.

Supported Versions and Platforms

Oracle Access Manager supports the following versions of SAP Server and the SAP Enterprise Portal:

<table>
<thead>
<tr>
<th>SAP</th>
<th>SAP Portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP R3 v4.6D</td>
<td>v 6.0 SP2</td>
</tr>
<tr>
<td>SAP ITS v6.10 and v6.20</td>
<td></td>
</tr>
</tbody>
</table>
Preparing to Integrate Oracle Access Manager with SAP

Before you can integrate Oracle Access Manager with SAP, you must complete the following tasks.

To prepare for the integration with SAP
1. Install the following SAP applications:
 - SAP ITS v 6.10 with Patch Level 11, Compilation 4 with Patch Level 340 or later (refer to SAPNet Note: 494984).
 - An SAP ITS component configured to talk to the R3 System through Secure NetWork Communications (SNC).
 SNC is required to generate SSO2 security tickets.
 - sapntauth library (refer to SAPNet Note: 493107).
 Refer to SAP documentation for information on installing SAP applications and components.
2. Install the following Oracle Access Manager components:
 - Identity Server
 - WebPass
 - Access Server
 - Policy Manager
 - WebGate
 See the Oracle Access Manager Installation Guide for information on installation.
3. For each Web server instance that has ITS installed, install and configure a WebGate.
4. Ensure that mySAP and Oracle Access Manager components are able to communicate with each other through TCP/IP.
5. Ensure that the servers on which SAP ITS and Oracle Access Manager components are installed have a fully qualified domain name.
 For example, integrate-1.oblix.net.
6. Synchronize the time on all servers where SAP and Oracle Access Manager components are installed.
7. Ensure that the users exist in the Oracle Access Manager LDAP directory as well as on the SAP R3 system database.
 The user ID in Oracle Access Manager and SAP must be same or be mapped to each other. Any attribute in a user’s profile can be configured as the SAP ID and passed directly to SAP. Alternatively, SAP can be configured to map the SAP ID to any user attribute that it receives from Oracle Access Manager.
8. Configure the Web browser to allow cookies.

Setting up Oracle Access Manager Single Sign-on for mySAP

Setting up Oracle Access Manager single sign-on for mySAP requires the installation and configuration of several SAP and Oracle Access Manager components.
Task overview: Setting Up Oracle Access Manager single sign-on for mySAP

1. Set up SAP, including the following items, as described in "Setting Up SAP for Integration with Oracle Access Manager" on page 12-5:
 - Install the SAP GUI.
 - Install and configure Web server instances for SAP ITS.
 - Install SAP ITS.
 - Test connections between ITS and SAP R/3.
 - Install and configure SAP SNC.
 - Configure SAP PAS for Access System header variables.

 Note: For instructions on installing SAP components, refer to your SAP documentation.

2. Set up the Access System, including the following items, as described in "Setting Up Oracle Access Manager for Integration with SAP" on page 12-7.
 - Install a WebGate
 - Create access control policies in the Access System to protect SAP resources

Setting Up SAP for Integration with Oracle Access Manager

The following procedures describe setting up SAP for the integration.

To set up SAP for integration with Oracle Access Manager

1. Install the SAP Graphic User Interface (GUI) on the client machine.

 This is the Web interface for SAP R/3 applications. It dynamically converts SAP transaction screens to HTML pages.

2. Install and configure two Web server instances; one instance for administrative (ADM) purposes and the second instance as an interface to SAP R/3 applications.

 After you have configured the instances, test the connection from ITS to SAP R/3 for both instances.

To test the ADM instance installation

1. Open a Web browser and enter the URL to log in to the ADM instance; for example:

 http://host:port/scripts/wgate/admin/!

 or

 http://host:port/scripts/wgate/adminremote/!

 where host is a fully qualified name of the host machine such as xyz.domain.com, and port is the port number of the host machine.
To test SAP R/3 instance installation

1. Open a Web browser and enter the following URL to access the GUI of the SAP R/3 instance:

 http://host:port/scripts/wgate/webgui/

 Where host is a fully qualified name of the host machine such as xyz.domain.com and port is the port number of the host machine.

 The mySAP.com login screen appears.

2. Install and configure SAP Secure Network Communication (SNC).

 SAP SNC provides secure connectivity from the AGate to the SAP R/3 applications. SNC is recommended because Oracle Access Manager provides an authenticated user ID to SAP.

 If the WGate is installed on a different server than the AGate, it is recommended that you configure SAP SNC between the two servers.

To set up SAP PAS for integration with Oracle Access Manager

1. Configure the SAP PAS system to use Header Variables for SSO:

 Configure WGate to pass the Access System header variables to AGate. To do this, use the parameter PassHeader located in the wgate.conf file.

 For example:

 Ex. PassHeader HTTP_SAPUID

 Refer to the SAP documentation for the location of the wgate.conf file.

2. Define the information that PAS requires to use the Access System as an external authentication provider.

 To do this, you must configure the PAS Service for Oracle Access Manager in the Oblix.srvc file located in

 SAP_install_dir\ITS\2.0\ITSInstanceName\templates

 Where SAP_install_dir is the directory where you installed SAP, and

 ITSInstanceName is the name of the ITS instance that you configured.

3. Create and configure PAS templates to handle login, error, and redirect actions that may occur when using the Access System’s authentication service.

 Save these templates in the SAP_install_dir\ITS\2.0\ITSInstanceName\templates directory.

 Create the directory structure and files as follows:

 <Name of Service>
 <Name of Theme>

 login.html
 extautherror.html
 redirect.html

 Name of Service is the name of the service file; for example, oblix.srvc.

 Name of Theme is the name of the theme parameter in the oblix.srvc file.
Setting Up Oracle Access Manager for Integration with SAP

The following procedures describe setting up Oracle Access Manager for this integration.

To set up Oracle Access Manager for integration with SAP

1. Install a WebGate on the Web server instance supporting the ITS connection to the SAP R/3 system.

 See the Oracle Access Manager Installation Guide for information on installing a WebGate.

2. In the Access System, create a policy domain to protect SAP resources under /scripts/wgate.

 To do this, create a policy domain that protects the Web servers where SAP ITS and WebGate are installed. The Access System sets header variables that are passed on to the Oracle Access Manager-specific ITS service, allowing access only to specified users.

 See the Oracle Access Manager Access System Administration Guide for information on creating policy domains.

3. In the Authentication Rule, Actions page of the policy domain, configure the action to set an Access System header variable uid to the SAP uid.

 The following example maps uid to the SAPUID:

   ```
   HeaderVar HTTP_SAPUID uid
   ```

4. In the Authorization Rules, Allow Access page of the policy domain, select the Oracle Access Manager/SAP users to whom you want to grant access to the resources that are protected by the policy domain.

 The single sign-on configuration is now complete.

Testing Integration Between Oracle Access Manager and SAP

After you have integrated Oracle Access Manager with SAP, test for successful Access System authentication and single sign-on with mySAP.

The following procedures test the following scenarios:

- A valid login to an SAP R/3 application with a user ID that is authorized both in the Access System and in SAP.
- A valid login to an SAP R/3 application with a user ID that is authorized in the Access System but is unauthorized in SAP.
- A valid login to the Identity System and an SAP R/3 application with a user ID that is authorized in both the Access System and SAP.
- A valid login to the Identity System and an SAP R/3 application with a user ID that is authorized in the Access System but is unauthorized in SAP.

If Access System authentication was set up correctly, as an authorized user in both Oracle Access Manager and SAP, you will be allowed to access the Identity System as well as any SAP R/3 application. If you are an authorized user only in Oracle Access Manager, you will be allowed to access only the Identity System but not a SAP R/3 application.

If single sign-on has been set up correctly in the Access System, as an authorized user in both Oracle Access Manager and SAP you will need to authenticate to Oracle.
Access Manager only once. After successful authentication, you will be able to access the Identity System and multiple SAP R/3 applications without authenticating again.

To test Access System authentication

1. Access any SAP R/3 application.

 If integration was successful, the Access System will challenge you for your credentials.

2. Log in with an authorized Oracle Access Manager/SAP user ID.

 You will be allowed to access the R/3 application.

3. Attempt to log in to a SAP R/3 application with a user ID that is authorized in Oracle Access Manager but is unauthorized in SAP.

 Login will fail with message stating that your password is invalid.

 Note: The message is incorrect. The message should state that your user ID is invalid.

To test Oracle Access Manager single sign-on

1. Access any SAP R/3 application.

 If the integration was successful, the Access System will challenge you for credentials.

2. Log in with an authorized Oracle Access Manager/SAP user ID.

 You will be allowed to access the R/3 application.

3. Attempt to log in to the Identity System.

 If single sign-on is successful, you will be able to log in to the Identity System without being challenged by the Access System.

4. Attempt to log in to the Identity System and a SAP R/3 application with a user ID that is authorized in Oracle Access Manager but is unauthorized in SAP.

 You will be able to log in to the Identity System but not into SAP. SAP will display a message stating that your password is invalid.

Integrating the SAP Enterprise Portal 6.0

A portal provides a single point of access to enterprise data and applications, presenting a unified and personalized view of information to employees, customers, and business partners.

The SAP Enterprise Portal, which runs on top of SAP R/3, provides unified information from enterprise applications, data warehouses, unstructured document collections, and the Internet.

Integrating Oracle Access Manager with the SAP Portal provides the following Oracle Access Manager functionality:

- Ability to use the Identity System to manage users and groups.

 Oracle Access Manager and SAP Enterprise Portal share the same LDAP directory. When a new user or group is created in the Identity System, the SAP user repository is updated with the new data.
Access System single sign-on for SAP Enterprise Portal and other Access System-protected resources.

The Access System authenticates and authorizes users who attempt to access the SAP Portal. After successful authentication and authorization, users can access any Access System-protected resource or application without being prompted again for credentials.

This section discusses the following topics:
- Architecture for the Integration with SAP Enterprise Portal 6.0 SP2
- Supported Platforms for Integrating with SAP Enterprise Portal 6.0 SP2
- SAP Enterprise Portal 6.0 Prerequisites
- Oracle Access Manager Prerequisites
- Configuring a Proxy to Access SAP Enterprise Portal 6.0
- Configure Oracle Access Manager for SAP Enterprise Portal 6.0
- Configure WebGate on the Proxy Server
- Configure SAP Enterprise Portal 6.0 for External Authentication
- Testing the Integration with SAP Enterprise Portal 6.0
- Troubleshooting the Integration with SAP Enterprise Portal 6.0

Architecture for the Integration with SAP Enterprise Portal 6.0 SP2

The following diagram illustrates this integration:

Process overview: Integration with SAP ITS and SAP Enterprise Portal 6.0 SP2
1. A user attempts to access content via the SAP Enterprise Portal.
For example, the user may enter the following URL to access an HR application through a proxy server:

https://host:port/irj

2. The WebGate intercepts the request and queries the Access Server for the security policy that determines if the resource is protected.

The security policy consists of an authentication scheme, authorization rules, and allowed operations. Based on the authentication and authorization success or failure, specified actions are performed.

The Access System security policy for the SAP /irj login URL is applicable to all resources accessed via the https://host:port/irj URL.

Note that the SAP Enterprise Portal has its own authorization system that can be configured to set user access to iViews.

3. If the resource is protected, the WebGate prompts the user for authentication credentials.

The credentials that the WebGate requests depend on the authentication scheme configured in the Access System, for example, Basic over LDAP or Form-based authentication.

4. If the credentials are validated, the Access System authenticates the user and sets an encrypted ObSSOCookie in the user’s browser.

5. After authenticating, the authorization rules defined in the Access System are applied based on the security policy.

Specific actions are performed based on the authorization rules. If the user is authorized, access to the SAP Portal login (the requested content) is allowed. For SAP Enterprise Portal header variable integration, the Access Server sets the authenticated user ID in a header variable.

If the user is not authenticated or authorized, he or she is denied access and redirected to another URL, as determined by the administrator. For example, the user may be redirected to an “invalid credentials” page.

6. For the integration with SAP Enterprise Portal, the proxy Web server redirects the request to the SAP Enterprise Portal internal Web server that contains the header variable details.

7. SAP Enterprise Portal uses the header variable value to check the mapping of the user ID against the configured back-end, for example, SAP R/3.

Both the Oracle Access Manager and SAP Enterprise Portal back-ends must contain the same user ID value.

8. Upon successful mapping, SAP Enterprise Portal allows the user to access the requested resource.

SAP Enterprise Portal sends a response to the proxy, and the proxy redirects to the client browser.

9. All interaction with the SAP Enterprise Portal takes place through the proxy server.

Supported Platforms for Integrating with SAP Enterprise Portal 6.0 SP2

The following tables list the supported platforms.
Integrating the SAP Enterprise Portal 6.0

Integrating mySAP Applications 12-11

SAP Enterprise Portal 6.0 Prerequisites

Complete the following tasks before integrating Oracle Access Manager with the SAP Enterprise Portal 6.0.

Task overview: Integration prerequisites for SAP Portal 6.0 integration:
1. Confirm the installation of SAP Enterprise Portal 6.0 SP2 and its components and applications:
 - Ensure SAP J2EE Engine version 6.2 patch level 26 or higher is installed, according to the instructions in the SAP note 616501.
 - Apply SAP Enterprise Portal 6.0 patch level 4 or higher. This is required for the SAP logout URL redirection functionality.
 - Confirm that SAP Enterprise Portal is functional and able to access the applications.
2. Ensure that the Identity System and Access System are installed and running.
3. Ensure that the Oracle Access Manager and the SAP Enterprise Portal back-ends contain the same user ID information.
 This is essential for this integration.

Oracle Access Manager Prerequisites

Complete the following tasks before integrating Oracle Access Manager with the SAP Enterprise Portal 6.0.

Task overview: Integration prerequisites for Oracle Access Manager integration:
1. Configure a proxy server to access SAP Enterprise Portal 6.0.
2. Configure Oracle Access Manager for the SAP Enterprise Portal 6.0.

Table 12–1 Integration with Oracle Access Manager 6.x

<table>
<thead>
<tr>
<th>SAP Enterprise Portal</th>
<th>Oracle Access Manager Identity Server</th>
<th>SAP Enterprise Portal Proxy</th>
<th>Oracle Access Manager Access Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Enterprise Portal 6.0 SP2 patch 4 or higher on Windows</td>
<td>6.5.x</td>
<td>Apache 1.3.x on AIX</td>
<td>6.1.1.x WebGate (SSL or non-SSL)</td>
</tr>
<tr>
<td>SAP Enterprise Portal 6.0 SP2 patch 4 or higher on Windows</td>
<td>6.5.x</td>
<td>Apache 2.0.x on Windows</td>
<td>6.5.2 WebGate</td>
</tr>
</tbody>
</table>

Table 12–2 Integration with Oracle Access Manager 7.x

<table>
<thead>
<tr>
<th>SAP Enterprise Portal</th>
<th>Oracle Access Manager Identity Server</th>
<th>SAP Enterprise Portal Proxy</th>
<th>Oracle Access Manager Access Server</th>
</tr>
</thead>
<tbody>
<tr>
<td>SAP Enterprise Portal 6.0 SP2 patch 4 or higher on Windows</td>
<td>7.0.4</td>
<td>Apache 1.3.x on AIX</td>
<td>7.0.4 WebGate (SSL or non-SSL)</td>
</tr>
<tr>
<td>SAP Enterprise Portal 6.0 SP2 patch 4 or higher on Windows</td>
<td>7.0.4</td>
<td>Apache 2.0.x on Windows</td>
<td>7.0.4 WebGate</td>
</tr>
</tbody>
</table>
3. Configure a WebGate on the proxy server.

Configuring a Proxy to Access SAP Enterprise Portal 6.0

The following procedure describes how to configure a proxy to access SAP Enterprise Portal 6.0.

To configure Apache Web server 1.3.x or 2.0.1
1. Set up the Apache proxy in non-SSL mode or SSL mode, as described in the Apache documentation.
 If https communication is used with the SAP Enterprise Portal 6.0, use SSL mode.
2. To enable the proxy to the SAP Enterprise Portal 6.0, enter the following in httpd.conf:

   ```
   ProxyRequests Off
   ProxyPass /irj http://sap_host:port/irj
   ProxyPassReverse /irj http://sap_host:port/irj
   ProxyPreserveHost On
   ```
 Where `sap_host` is the name of the machine hosting the SAP Enterprise Portal 6.0 instance and `port` is the listen port for the SAP Enterprise Portal 6.0 instance. This set of directives specifies that all of the requests to this Web server of the form http://`apache_host`:`port`/irj or https://`apache_host`:`port`/irj are redirected to http://`sap_host`:`port`/irj.
3. Restart the proxy Web server.
4. Access the following URL:

 Non-SSL—http://`apache_host`:`port`/irj
 SSL—https://`apache_host`:`port`/irj
 This request should be redirected to the SAP Enterprise Portal 6.0 login.
5. Log in using the SAP Enterprise Portal 6.0 administrator login ID.
 The administrator should be able to perform the available administrative functions.
6. Log in as a non-administrative user.
 This user should be able to perform non-administrative functions.

Configure Oracle Access Manager for SAP Enterprise Portal 6.0

The following procedure describes configuration of the security policy in Oracle Access Manager to protect logins to SAP Enterprise Portal 6.0. For more information on configuring policy domains, see Oracle Access Manager Access System Administration Guide.

To configure Oracle Access Manager for SAP Enterprise Portal 6.0
1. Log in to the Access System Console as a Master Access Administrator.
2. Click the Access System Configuration tab.
3. Click Add New AccessGate in the left navigation pane.
4. Configure a WebGate that you will install on the proxy server, as follows:
AccessGate name—Enter any meaningful name, for example, SAP_AG. Use an alphanumeric string, and do not include spaces in the name.

Host name—Enter the name of the Apache proxy machine.

Access Management Service—Click the option to enable this service.

5. Click Save, then click List Access Servers at the bottom of the page to associate this WebGate with a defined Access Server.

6. Click Host Identifiers in the left navigation pane and configure the host identifiers using the fully qualified proxy machine name and port for the Apache proxy.

7. Click the link for the Policy Manager at the top of the page.

8. Click Create Policy Domain in the left navigation pane and create a new policy named SAP EP Security Policy.

9. Click the Resources tab, click Add, and define the resources for the policy as follows:

 Name—SAP EP Security Policy
 Type—http
 Host identifiers—Enter the proxy host URL prefix: /irj.
 Description—SAP EP Login URL

10. Click the authorization rules tab, then click Add, and define the authorization rules for the policy as follows:

 Name—SAP Authorization Rule
 Enabled—Yes
 Allow takes precedence—Yes

11. Click Save, then click the Allow Access tab, then click Add and add a valid user or group list.

12. Click Save, then click the Actions tab, and configure the following actions:

 Authorization Success Returns—Configure a Type of HeaderVar, a Name of OB_USER, and a Return Attribute of uid.

 Authorization Failure—Configure an appropriate failure action. For example, you can configure a redirect to a proxy URL page that displays an "Invalid login credentials" message.

13. Click the Default Rules tab, click the Authentication Rule sub-tab, click Add, and define the default authentication rule as follows:

 Name—SAP Authentication Rule

 Authentication Scheme—Select either Basic over LDAP or Form based authentication. Oracle recommends that you use a form-based authentication scheme. If you use the basic authentication scheme, also set the Challenge Redirect field to another WebGate to ensure that the ObSSOCookie is set.

14. In the Default Rules tab, click the Authorization expression sub-tab, click Add, and create an authorization expression that uses the SAP Authorization Rule.

15. If you configured a form-based authentication scheme, ensure that a login.html page is configured in the proxy server document root.

 This form will be used to get the user credentials. See the Oracle Access Manager Access System Administration Guide for details.
Integrating the SAP Enterprise Portal 6.0

16. Also, if you configured a form-based authentication scheme, ensure that a logout.html page is present on the proxy Web server document root.
You can create a custom logout page using HTML, JSP, or a CGI protocol.
The default logout page, named logout.html, is in the following location:
WebGate_install_dir\access\oblix\apps\common\bin
Where WebGate_install_dir is the directory where the WebGate will be installed.
Ensure that the name of the logout page contains the string "logout."

17. Ensure that the user ID that is returned by the OB_USER header variable exists in the user management data sources for SAP Enterprise 6.0.

Configure WebGate on the Proxy Server
Install a WebGate on the Web server instance that supports the proxy connection to the SAP Enterprise Portal 6.0 instance. See the Oracle Access Manager Installation Guide for details.

Configure SAP Enterprise Portal 6.0 for External Authentication
The following steps describe enabling external authentication in SAP Enterprise Portal 6.0 using the OB_USER header variable.
For more information on configuring authentication schemes for SAP Enterprise Portal, see the SAP Enterprise Portal 6.0 SP2 Enterprise Postal Security Guide.

To configure SAP Enterprise Portal 6.0 for external authentication
1. To enable logout from a single sign-on session in both SAP Enterprise Portal 6.0 and Oracle Access Manager, configure a logout URL in SAP Enterprise Portal 6.0 from the administration interface.
The URL for the administration interface is as follows:
http://sap_host:port/irj/
Where sap_host is the name of the machine hosting the SAP Enterprise Portal 6.0 and port is the listen port for the portal.

2. From the administration interface, click System Administration, then System Configuration, then UM Configuration, then Direct Editing.

3. Add the following lines to the end of the configuration file:
ume.logoff.redirect.url=http(s)://proxy_host:port/logout.html
ume.logoff.redirect.silent=false
Where http(s) is either http or https, proxy_host is the name of the proxy Web server and port is the listen port for the proxy.

4. Save the changes and log out.

5. Stop the SAP J2EE dispatcher and server.

6. Browse to the following directory:
SAP_J2EE_engine_install_dir\ume

7. Back up the file authschemes.xml.bak to another directory.

8. Rename authschemes.xml.bak to authschemes.xml.
9. Open authschemes.xml in an editor and change the reference of the default authentication scheme to the authentication scheme header as follows:

```xml
<authscheme-refs>
  <authscheme-ref name="default">
    <authscheme>header</authscheme>
  </authscheme-ref>
</authscheme-refs>
```

10. In the authentication scheme header of authschemes.xml, specify the name of the HTTP header variable where the Access System provides the user ID.

As described in "Configure Oracle Access Manager for SAP Enterprise Portal 6.0" on page 12-12, this is the OB_USER header variable. You configure this header variable as follows:

```xml
<authscheme name="header">
  <loginmodule>
    <loginModuleName>
      com.sap.security.core.logon.imp.HeaderVariableLoginModule
    </loginModuleName>
    <controlFlag>REQUISITE</controlFlag>
    <options>Header=OB_USER</options>
  </loginmodule>
  <priority>5</priority>
  <frontEndType>2</frontEndType>
  <frontEndTarget>com.sap.portal.runtime.logon.header</frontEndTarget>
</authscheme>
```

The control flag value REQUISITE means the login module must succeed. If login succeeds, authentication continues through the list of login modules. If it fails, control immediately returns to the application and authentication does not continue through the list of login modules.

11. Restart the portal server and J2EE engine.

The modified authschemes.xml file will be loaded into the Portal Content Directory (PCD). SAP Enterprise Portal 6.0 will rename it as authschemes.xml.bak.

Testing the Integration with SAP Enterprise Portal 6.0

The following are recommended tests for the integration.

To test the integration

1. Enter the appropriate URL for your proxy in a browser:

 `http(s)://proxy_host:port/irj`

 Oracle Access Manager should prompt for user credentials depending on the authentication scheme (form-based or Basic over LDAP).

2. Enter valid user credentials at the prompt.

 These credentials should belong to a user in Oracle Access Manager who is authorized to access /irj. This user ID must also be present in the SAP Enterprise Portal 6.0 User Management System.

 The user should be logged into the SAP Enterprise Portal 6.0 having supplied the login credentials to Oracle Access Manager.

3. If the user have administrative privileges in SAP Enterprise Portal 6.0, ensure that the usual administrative functions are available for this user.
For example, search for other SAP Enterprise Portal users through the user Management System.

4. Log off from the SAP Enterprise Portal.

You should be redirected to the logout.html page that you configured. Both the SAP Enterprise Portal and the Oracle Access Manager sessions should end.

5. Access SAP Enterprise Portal login again in the same browser.

Oracle Access Manager should prompt for login credentials again.

6. Access the SAP Enterprise Portal login page without using the proxy by entering the following in a browser:

 https://sap_host:port/irj

You should receive the following error:

 Cannot logon user defined in header variable!

Troubleshooting the Integration with SAP Enterprise Portal 6.0

The following information is intended to help you troubleshoot issues with this integration.

Problem—The browser has problems displaying the SAP administration interface through the proxy server. You may receive an "object not found" error and related javascript errors.

Solution—See the following SAP document for supported browsers, "SAP NetWeaver ’04 SR1 PAM: Browsers for end users and admin functionality." SAP has recommended Internet Explorer 6, and it supports almost all proxy operations. In the case of Internet Explorer, the Microsoft Security patch can sometimes affect the display of the user interface. See SAP Note 785308 for details.
Integrating the RSA SecurID Authentication Plug-In

Oracle provides components that interface with RSA Security products to provide native RSA SecurID® authentication for Oracle Access Manager-protected resources. This chapter introduces SecurID authentication and the components, requirements, and processes needed to successfully integrate SecurID authentication with Oracle Access Manager 10g (10.1.4.0.1).

- About Oracle Access Manager and SecurID Authentication
- Support and Requirements
- SecurID Authentication Scenarios
- Integrating SecurID Authentication
- Oracle Access Manager Authentication Plug-In Parameters
- Active Directory Forest Considerations
- Troubleshooting

About Oracle Access Manager and SecurID Authentication

Oracle Access Manager integrates with RSA components to provide SecurID authentication.

RSA SecurID authentication is based on two factors: something the user knows and something the user has.

- **Something the User Knows**: This is a secret personal identification number (PIN), similar in concept to a personal bank code PIN. In this case, the PIN may be system generated or personally chosen and registered with the RSA ACE/Server®, which has been renamed to the Authentication Manager.

- **Something the User Has**: This is the current code generated by a hand held device known as a token. Oracle Access Manager supports all RSA SecurID tokens including RSA SecurID Standard Card, Key Fob, PINPAD Card, and a software-based security token (SoftID) that resides on a user’s computer.

The random unpredictable code generated by the token is known as a tokencode. Together, the user’s PIN and the SecurID tokencode become the user’s Passcode.

The following components are needed for the integration:

- Supported Versions and Platforms
- RSA Components
Oracle Access Manager Components

See also, "Integration Summary" on page 13-4.

Supported Versions and Platforms

To see the supported versions and platforms for this integration, refer to Metalink as follows.

To view information on Metalink
1. Go to the following URL:

 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

RSA Components

During the SecurID authentication process, users must submit their username and passcode using an HTML form. The RSA ACE/Server authenticates the identity of each user through a computer that is registered with the ACE/Server as a client (ACE/Agent). In this case, one Oracle Access Manager SecurID Access Server must be registered and set up as an ACE/Agent. See "Oracle SecurID Access Server and ACE/Agent Requirements" on page 13-6 for more information.

The RSA ACE/Server compares the tokencode it has generated with the tokencode the user has entered. Tokencodes change at a specified interval, typically 60 seconds. Time synchronization ensures that the tokencode displayed on a user's token is the same code the ACE/Server software has generated for that moment. Authentication is successful when the tokencodes match.

Two-factor authentication provides stronger legal evidence of who performed the task. When properly implemented, the ACE/Server tracks all login requests and operations to reliably identify the user who is responsible for each logged action. For example, see the administration documentation for RSA 5.1 for details about RSA audit trail reports, the automated log database feature, and monitoring activity in real time.

Oracle Access Manager enables integration of SecurID authentication by providing the following:

- The HTML forms required for SecurID authentication operations
- The CGI script required to authenticate users with the RSA ACE/Server
- The SecurID authentication plug-in, authn_securid, required for the Oracle Access Manager SecurID authentication scheme

Oracle Access Manager uses and supports the following RSA security features:

- Two-factor SecurID authentication
About Oracle Access Manager and SecurID Authentication

- RSA BSAFE® SSL-C and BSAFE® Crypto-C
- RC6 encryption for cookies passed between a WebGate and the user's browser
- Optional RSA Keon® Certificate Server and X.509v3 digital certificates (RSA’s Keon public key infrastructure (PKI))

Note: Oracle Access Manager supports, but does not require, certificate publishing. SecurID may be used as an authentication scheme for both Oracle Access Manager and Keon Web Passport. However, separate authentications must be completed for each product. See the appropriate implementation guide for RSA Keon Certificate Authority for your LDAP directory server.

Oracle Access Manager Components

The Identity System provides the applications you need to manage users, groups, organizations, identity-based workflows, and delegated administration.

- **All ACE/Server users must be added to the Identity System.**
- **Delegated Identity Administrators can create a workflow definition to add ACE/Server users to the Oracle Access Manager directory.** See the Oracle Access Manager Identity and Common Administration Guide for more information.

The Access System provides policy-based authentication, authorization, auditing, and Web single sign-on. Access System components for SecurID authentication include the Policy Manager, Access System Console, Access Server, and WebGate(s), described in the following list.

- **The Policy Manager:** The Policy Manager provides the applications for policy management, designation of resources (Web and non-Web) and policy testing. Master Access Administrators define policy domains and Delegated Access Administrators define the resources to be protected by a policy domain.
- **The Access System Console:** Master Oracle Access Manager Administrators and Master Access Administrators use the Access System Console to define authentication schemes, including the SecurID authentication scheme required for this integration, and authorization rules that allow or deny access to resources. The Access system, host identifiers, and master audit settings are also configured in the Access System Console.
- **The Access Server:** The Access Server receives requests from a WebGate and queries authentication, authorization, and auditing rules stored in the directory server used by Oracle Access Manager. The Access Server returns the authentication scheme, user credentials, and authorization to the requesting WebGate.

The Access Server installation includes the SecurID authentication plug-in, which is a shared library that makes outbound calls to verify the user's authentication credentials against those on the RSA ACE/Server. To accomplish this, one Access Server must be set up as an ACE/Agent. See "Oracle SecurID Access Server and ACE/Agent Requirements" on page 13-6.

- **WebGate:** WebGate intercepts and forwards HTTP requests for Web resources to the Access Server for authentication and authorization. The WebGate also starts the user's session, creates session cookies, and passes these to the user’s browser.

The WebGate installation includes the SecurID forms and the CGI script needed to authenticate users with the ACE/Server and to support two special modes of...
operation. See "Next Tokencode Mode Support" on page 13-5 and "New PIN Mode Support" on page 13-6 for more information.

Integration Summary

Oracle Access Manager 10g (10.1.4.0.1) integrates with SecurID ACE Server 5.0 and supports SDI encryption mode. This version is used for demonstration purposes only. Table 13–1 summarizes Oracle Access Manager SecurID integration features.

Table 13–1 SecurID Integration Summary

<table>
<thead>
<tr>
<th>Feature</th>
<th>Support for the feature</th>
</tr>
</thead>
<tbody>
<tr>
<td>Authentication method</td>
<td>Native SecurID authentication</td>
</tr>
<tr>
<td>New PIN Support</td>
<td>All</td>
</tr>
<tr>
<td>Next tokencode support</td>
<td>Yes</td>
</tr>
<tr>
<td>Secondary server support</td>
<td>Yes</td>
</tr>
<tr>
<td>Location of node secret on Windows client</td>
<td>%windir%\system32</td>
</tr>
<tr>
<td>Location of node secret on Unix client</td>
<td>ACE/Agent installation directory</td>
</tr>
<tr>
<td>ACE/Agent installation directory</td>
<td>Net OS Agent and Unix Agent</td>
</tr>
<tr>
<td>SecurID user specification</td>
<td>Designated users</td>
</tr>
<tr>
<td>SecurID protection of administrators</td>
<td>Yes</td>
</tr>
<tr>
<td>Identity System features and functions</td>
<td>All</td>
</tr>
<tr>
<td>Access System features and functions</td>
<td>All</td>
</tr>
</tbody>
</table>

Support and Requirements

Requirements for SecurID authentication are discussed in the following topics.

- RSA ACE/Server Requirements
- Oracle SecurID Access Server and ACE/Agent Requirements
- Access Server and ACE/Agent Requirements
- WebGate Requirements

Note: Oracle Access Manager does not support multiple ACE realms. The ACE Agent uses an automatic response time load balancing algorithm to determine where to send an authentication request. Such requests go to either a primary Ace Server or a replica. The automatic algorithm can be overridden by creating a manual load balancing configuration file, sdopts.rec. However manually weighting an ACE server as a server of last resort does not preclude the Agent from communicating with it. As such, a true failover setup cannot be achieved with this method. For more information, see your ACE server documentation.

Supported Versions and Platforms

To see the supported versions and platforms for this integration, refer to Metalink, as follows.
To view information on Metalink
1. Go to the following URL:
 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

RSA ACE/Server Requirements
The RSA ACE/Server software provides SecurID identification and authentication of users in the ACE/Server data directory. Data from ACE/Server user records in the directory are validated with the ACE/Server's token records. The ACE/Server's native LDAP support is separate from, yet compatible with, Oracle Access Manager.

Oracle Access Manager 10g (10.1.4.0.1) has successfully completed all certification criteria and is certified as described under the Certify tab on https://metalink.oracle.com.

RSA ACE/Server Installation and Configuration Requirements
The following installation and configuration must be completed before you begin SecurID integration with Oracle Access Manager.

RSA ACE/Server installation and configuration guidelines
- The SecurID ACE/Server software must be installed on a supported platform.
- The system time must be correct to prevent the server and client from being out of sync.
- The SecurID tokens or key fobs must be installed, SecurID users must be created on the ACE/Server, and tokens must be assigned.
- Each user name must be mappable through an LDAP filter to a Distinguished Name in the directory.
- A user who authenticates through a RADIUS server must have a profile in the ACE/Server database that provides a list of requirements the user must meet before the ACE/Server challenges the RADIUS user for a passcode.
- An ACE/Server slave and/or replicated ACE/Server can provide failover if the primary ACE/Server is down.

Setting up your RSA ACE/Server, SecurID tokens, and users is outside the scope of this manual. See the installation and administration documentation for the supported RSA ACE/Server for details and troubleshooting tips.

As discussed earlier, Oracle Access Manager supports all RSA SecurID tokens and SecurID authentication. The following modes are also supported.
- Next Tokencode Mode Support
- New PIN Mode Support

Next Tokencode Mode Support
During authentication, the ACE/Server may direct the user to provide the next tokencode that appears on their SecurID token to prove that they have the assigned
token. This operation is known as Next Tokencode mode, which may be triggered by one of the following situations:

- An incorrect Passcode was provided repeatedly during login.

 When a user attempts authentication with incorrect Passcodes four consecutive times, the ACE/Server turns on Next Tokencode mode, as noted in the ACE/Server’s Activity Report. The next time the user successfully authenticates with their correct Passcode, they are challenged for the next tokencode that appears on their SecurID token.

- The ACE/Server requires confirmation of, or synchronization with, the token.

 Even with a correct Passcode, the ACE/Server administrator may set the Next Tokencode mode On to force the user to confirm that they have the SecurID token or to synchronize the token with the ACE/Server.

 When Next Tokencode mode is On, the Next Tokencode challenge form is presented to the user immediately following a successful login. See "Next Tokencode Sequence" on page 13-10 for details.

New PIN Mode Support

The token may be in New PIN mode the first time the user logs in or the ACE/Server administrator may enable New PIN mode. New PIN mode requires the user to complete a sequence of forms to define, or have the system generate, a new PIN number. Table 13–2 provides a description of the New PIN forms and their functions.

<table>
<thead>
<tr>
<th>New PIN Function</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>New PIN Query form</td>
<td>Tells the user a new PIN is required. Provides instructions and fields to fill in.</td>
</tr>
<tr>
<td>New PIN Confirmation form</td>
<td>Confirms the system-generated PIN for login. Redirects to the resource within 30 seconds</td>
</tr>
<tr>
<td>(system-generated PINs)</td>
<td></td>
</tr>
<tr>
<td>New PIN form</td>
<td>Asks for a username, Passcode, and new PIN.</td>
</tr>
<tr>
<td>(user-generated PINs)</td>
<td></td>
</tr>
</tbody>
</table>

Each PIN may be:

- Four to eight alphanumeric or numeric characters
- All the same length or of varying lengths
- Defined by the user or by generated the system

See "New PIN Sequence" on page 13-11 for details.

Oracle SecurID Access Server and ACE/Agent Requirements

All SecurID authentication requests must be directed to a single Access Server (also known as the Oracle SecurID Access Server). The RSA ACE/Agent v5.x, formerly known as the ACE/Client, is an RSA Security program that must be installed on all installed Access Servers. However, only one Access Server may be registered as an RSA ACE/Agent to perform the authentication dialog with the RSA ACE/Server.

Access Server-compatible Web servers installed on the Operating Systems shown in "Access Server and ACE/Agent Requirements" on page 13-7 will support RSA ACE/Agent software v5.x.
Access Server and ACE/Agent Requirements

The RSA ACE/Agent software is included with the Access Server on Unix systems and must be installed manually on Windows-based Access Servers.

Oracle SecurID Access Server guidelines

- All Access Servers in the installation must have the RSA ACE/Agent software installed.
- One Access Server must be registered as an ACE/Agent Host on the ACE/Server and must have the RSA ACE/Agent software installed to:
 - Enable the Access Server to be recognized as an ACE/Server client
 - Manage authentication requests from the client to the ACE/Server
 - Enforce two-factor authentication and block unauthorized access
 - Provide automatic load balancing by detecting replica ACE/Server response times and routing authentication requests accordingly

See "Setting up the Access Server as an ACE/Agent" on page 13-14 for details.

- The Access Server on Windows systems must have a certificate from the same CA root as the ACE/Server. This is not needed on Unix systems.
- The system time on the client must be correct to prevent the server and client from being out of sync.
- At least one Access Server and one WebGate must be paired for SecurID authentication.

The Oracle SecurID Access Server may have multiple WebGates that communicate with it; however, all of these WebGates must be configured to communicate with the one Oracle SecurID Access Server only.

Important: Failover is not supported for Oracle SecurID Access Servers. Only one Access Server can complete SecurID authentication.

Each Access Server installation includes the SecurID authentication plug-in, authn_securid, located in the following directory. For example, on a Windows system:

```
\AccessServer_install_dir\access\oblix\lib\authn_securid
```

This plug-in is required in the SecurID authentication scheme. See "Creating a SecurID Authentication Scheme" on page 13-20 for details about using the plug-in. See also "Oracle Access Manager Authentication Plug-In Parameters" on page 13-29.

WebGate Requirements

Each WebGate Web server used for SecurID authentication must support and pass header variables to CGI scripts, as follows:

- Each WebGate that communicates with the Oracle SecurID Access Server must be configured to communicate with this Access Server only.
- Only Oracle-provided WebGates are allowed for SecurID authentication. Do not use any other type of AccessGate.
- Lotus Domino Web servers do not pass header variables to CGIs and cannot be used for SecurID authentication.
Older WebGates may coexist with 10g (10.1.4.0.1) Access Servers. However, encryption schemes differ:

- Use RC4 as the encryption scheme if you have Oracle Access Manager Release 5.x WebGates co-existing in the same system with 10g (10.1.4.0.1) WebGates.
- Use RC6 as the encryption scheme if you have Oracle Access Manager Release 6.x WebGates co-existing in the same system with 10g (10.1.4.0.1) WebGates.
- Use the AES encryption scheme if you have only Oracle Access Manager Release 7.0 WebGates co-existing in the same system with 10g (10.1.4.0.1) WebGates.

The Perl plug-in or programming language, v5.005_03, is required on the each WebGate host that communicates with the Oracle SecurID Access Server that validates credentials with the ACE/Server. See the Certify tab on https://metalink.oracle.com for the latest support information.

A pointer to the location of Perl is required in the Oracle-provided SecurID CGI script on each WebGate involved in SecurID authentication (SecurID WebGate). See "Setting Up a SecurID WebGate" on page 13-17 for details.

Included with each WebGate installation are the Oracle-provided SecurID authentication forms in the following directories:

WebGate_install_dir\access\oblix\lang\langTag\securid-forms

WebGate_install_dir\access\oblix\lang\langTag\securid-forms-adforest

The following forms are required to validate a user's SecurID credentials and to support New PIN and New Tokencode modes.

- securid-accept-new-pin.html is not used today
- securid-enter-new-pin.html
- securid-new-pin.html
- securid-new-pin-query.html
- securid-next-tokencode.html
- securid-std-login.html

With the exception of a domain name list for the Active Directory Forest that appears on certain forms, the forms in the two directories are the same. See "SecurID Authentication Scenarios" on page 13-9 to see the forms.

Also included in the WebGate installation is the SecurID CGI script.

SecurID CGI Script

Each WebGate installation includes a SecurID CGI script in the following directory:

WebGate_install_dir\access\oblix\lang\langTag\securid-cgi

During SecurID authentication operations, the WebGate uses the CGI script to present the appropriate SecurID form to the user based on information received from the Oracle SecurID Access Server and the ACE/Agent that communicates with the ACE/Server.

See "SecurID Authentication Sequence" on page 13-9 for information on the standard SecurID login form.

See "New PIN Mode Support" on page 13-6 and "New PIN Sequence" for more information about this mode of operation.
SecurID Authentication Scenarios

The following scenarios illustrate the three modes of operation:

- SecurID Authentication Sequence
- Next Tokencode Sequence
- New PIN Sequence

SecurID Authentication Sequence

When a user attempts to access a resource protected by the SecurID authentication scheme, the following process occurs. Figure 13–1 illustrates the sequence and is followed by a detailed description.

Figure 13–1 SecurID Authentication Sequence

Process overview: When the user requests a resource

1. The WebGate intercepts the resource request and queries the Access Server to determine if and how the resource is protected, and if the user is authenticated.
2. The Access Server queries the directory for the authentication scheme, and receives authentication information from the directory.

3. The Access Server responds to the WebGate, which presents a form challenging the user for a two-part SecurID Passcode.

 See "Active Directory Forest Considerations" on page 13-32 to see the forms that include a domain for the Active Directory Forest.

4. The user submits credentials to the WebGate.

5. The WebGate presents the credentials to the Oracle SecurID Access Server.

6. The ACE/Agent on the Oracle SecurID Access Server performs the authentication dialog and sends an LDAP bind to the ACE/Server.

7. The ACE/Server database matches the SecurID passcode to the user ID and returns a success response to the ACE/Server, which matches the user’s PIN.

8. The ACE/Server returns the response to its Agent, the Access Server. When the user’s credentials are valid, SecurID authentication is successful.

9. The Oracle SecurID Access Server provides the response to the WebGate. A session is started for the user, so the same authentication method is not required for other Web servers in the domain. The WebGate then queries the Access Server for resource authorization:

 ■ Under certain conditions a New Tokencode mode may be initiated. See "Next Tokencode Sequence" on page 13-10.

 ■ Under certain conditions a New Pin mode may be initiated. See "New PIN Sequence" on page 13-11.

10. The Access Server queries the directory server used by Oracle Access Manager for authorization information which allows or denies access based upon the authorization rule.

11. When access is granted, the Access Server passes authorization to the WebGate, which presents the resource to the user.

The Master Access Administrator generates a shared secret key to encrypt cookies.

As discussed earlier, two modes may be triggered during the authentication sequence that will alter the user’s experience. See "Active Directory Forest Considerations" on page 13-32 for the forms specific to this environment.

Next Tokencode Sequence

When Next Tokencode mode is On, the user must supply the next tokencode on their SecurID token.
Process overview: When Next_TOKENCODE is On
1. The WebGate CGI script presents a form to challenge the user for the next tokencode on the token following a successful login.
2. The user enters a username, waits 60 seconds, then enters the next tokencode on the SecurID token.
3. When the tokencode is correct, the Passcode the user originally entered is accepted and the user is authenticated.

See "Next_TOKENCODE Mode Support" on page 13-5 for details.

New PIN Sequence
When the user is required to have a new PIN, the WebGate prompts the user with specific forms.

The sequence is described, and forms are shown, in the following process overviews. See "New PIN Mode Support" on page 13-6 for details.

Process overview: When New_PIN mode is On
1. The WebGate SecurID CGI script presents the New_PIN Query form to the user, as follows.

![New PIN Query](image)

2. The user waits for the tokencode change, then completes the form and submits it to the WebGate.
3. The WebGate presents this to the Agent on the Oracle SecurID Access Server for submission to the ACE/Server.

The result is governed by the type of PIN the user requests. In either case, the New PIN process continues.

Process overview: When the user chooses to define a new PIN
1. WebGate presents the following form so the user can enter the PIN they want.
2. The user enters a username, then waits 60 seconds and enters the new tokencode and a new PIN to complete the form.

Important: The user enters the next tokencode, not the passcode.

3. The WebGate submits the information to the Agent on the Oracle SecurID Access Server, which is forwarded to the ACE/Server.

4. The ACE/Server registers the new PIN, which becomes part of the Pincode the user must supply during subsequent logins.

5. The requested resource is provided.

Process overview: When the user requests a system-generated PIN

1. The ACE/Server generates a new PIN and the WebGate presents the New PIN confirmation form to the user.

2. The user has 30 seconds to document the new PIN before the confirmation form is replaced with the following form, which prompts the user to accept the new PIN.

3. The requested resource is provided.

Integrating SecurID Authentication

Before starting the integration you must complete all prerequisites. After that, you are ready to begin integrating SecurID authentication. The following is provided as an example. Any references to specific versions and/or platforms should be validated against the latest support information available under the Certify tab at https://metalink.oracle.com.
Task overview: Integrating SecurID authentication
1. Set up your environment, as described in "Preparing Your Environment" on page 13-13.
2. Configure the Access Server, as described in "Setting up the Access Server as an ACE/Agent" on page 13-14.
3. Configure the WebGate, as described in "Setting Up a SecurID WebGate" on page 13-17.
4. Configure an authentication scheme, as described in "Creating a SecurID Authentication Scheme" on page 13-20.
5. Identify resources to be protected, as described in "Protecting SecurID Resources" on page 13-25.
6. Test the policy domain, as described in "Testing the Policy Domain" on page 13-28.
7. Add users, as described in "Adding ACE/Server Users to Oracle Access Manager" on page 13-29.

Preparing Your Environment
Each of the following steps identifies a process that must be completed before you begin integrating SecurID authentication in Oracle Access Manager.

To prepare your environment for SecurID integration
1. Ensure that your RSA ACE/Server installation includes the latest patches and is running properly.
 See "RSA ACE/Server Requirements" on page 13-5 for details. See the installation instructions for RSA ACE/Server 5.1 for details and troubleshooting.
2. Confirm that RSA SecurID user authentication has been properly integrated with your RSA ACE/Server, and add users.
 See the installation and configuration instructions for RSA SecurID for details and troubleshooting.
3. Ensure that Oracle Access Manager is set up and properly running, including the latest patches. Components include:
 - Identity Server and WebPass
 - Policy Manager and Access System Console
 - Access Server and WebGate(s)
4. Install the Perl plug-in or programming language, v5.005_03, on each WebGate that will communicate with the Oracle SecurID Access Server.

Note: The following steps must be completed only when your Oracle Access Manager installation includes an Active Directory Forest. The Oracle-provided SecurID forms for the Active Directory Forest include placeholders named Domain 1, Domain 2 and Domain 3. These must be changed to valid domain names that accurately reflect your Active Directory Forest installation.
To prepare an Active Directory Forest

1. Set up and ensure that Oracle Access Manager works with your Active Directory Forest.

 See the Oracle Access Manager Installation Guide for details about installing and deploying with Active Directory.

2. Edit the forms to display domain names for your Active Directory Forest. For example:

 \WebGate_install_dir\access\oblix\lang\langTag\securid-forms-adforest
 ■ securid-std-login.html
 ■ securid-nexsttokencode.html
 ■ securid-enter-new-pin.html

Setting up the Access Server as an ACE/Agent

As discussed earlier, this task enables the Oracle SecurID Access Server to authenticate locally known users with the ACE/Server. The first time a user tries to authenticate through the registered Access Server, a node secret (password between the agent and the ACE/Server) is sent to the Agent in encrypted form and used to encrypt future communications.

Note: Only one Access Server may communicate with the ACE/Server. However, all Access Servers require the ACE/Agent software.

Task overview: Setting up the Access Server as an ACE/Agent

1. Register the host, as described in "Registering an ACE/Agent Host" on page 13-14.
2. Set up the host, as described in "Setting up the ACE/Agent Host" on page 13-15.

The following information focuses on successful SecurID integration with Oracle Access Manager. Providing complete details about ACE/Agents is outside the scope of this manual. See the administration guide for RSA ACE/Server 5.1 for details about ACE/Agents.

Registering an ACE/Agent Host

Before you install an ACE/Agent on the Oracle SecurID Access Server, you must add the server name, IP address, Agent and encryption types to the ACE/Server database. The Oracle SecurID Access Server must be designated as "open to all locally known users" and Agent Host auto registration should be enabled.

To register an Access Server as an ACE/Agent Host

1. Record the name and IP address of the one Access Server that will communicate with the ACE/Server for SecurID authentication.

2. Launch the ACE/Server database administration tool on the ACE/Server:
 ■ On Unix: sdadmin
 ■ On Windows: From the Start menu click Programs, from the Programs menu click ACE/Server Database Administration Host

3. Add your Agent Host name, IP address, Agent type, and encryption type.
For example:

Name: host_name
Network address: 192.168.1.140
Agent type: Unix Agent or Net OS Agent
Encryption Type: DES

4. Ensure that the Access Server is designated as Open to All Locally Known Users.
5. Ensure that Sent Node Secret is disabled.
6. From the System menu, select Edit System Parameters.
7. Enable the Allow Agent Host Auto-Registration parameter, then confirm changing the system parameters.

Note: Other parameters do not apply to the Access Server Agent.

The ACE/Server's sdconf.rec file contains settings for all configurable ACE/Server system parameters and Agent Host settings. By default, this file resides in the following directory.

/ace/data/sdconf.rec

You will need a copy of this file on the Oracle SecurID Access Server that communicates with the ACE/Server.

You are ready to set up the Oracle SecurID Access Server as an ACE/Agent Host.

Setting up the ACE/Agent Host

The steps in this procedure vary depending upon the platform you are using. See one of the following:

- **On Unix Machines**
- **On Windows Machines**

Path names in the following examples may not reflect the actual path names in your environment.

See "Oracle SecurID Access Server and ACE/Agent Requirements" on page 13-6 for additional information.

On Unix Machines On a Unix host, you must copy information from the ACE/Server to the Access Server. Then it is a good idea to verify the ACE/Agent installation on the Access Server, although this verification may be skipped.

To prepare a Unix-based Oracle SecurID Access Server

1. Locate and copy appropriate lines from the ACE/Server %systemroot%/drivers/etc/system to the Access Server /etc/system, for example:

 Name: host_name
 Network address: 192.168.1.140
 Agent type: Unix Agent or Net OS Agent
 Encryption Type: DES
Integrating SecurID Authentication

Table 13–3 ACE/Server %systemroot%/drivers/etc/system to Access Server

<table>
<thead>
<tr>
<th>ACE/Server added to NIS</th>
<th>ACE/Server not added to NIS</th>
</tr>
</thead>
<tbody>
<tr>
<td>securid ...</td>
<td>set shmsys:shminfo_shmmni=100</td>
</tr>
<tr>
<td>securidprop ...</td>
<td>set shmsys:shminfo_shmseg=16</td>
</tr>
<tr>
<td>adlog ...</td>
<td>set shmsys:shminfo_shmmmax=16777216</td>
</tr>
<tr>
<td>sdsvr ...</td>
<td>set semsys:seminfo_semmni=64</td>
</tr>
<tr>
<td>sdadmin ...</td>
<td>set semsys:seminfo_semmseg=50</td>
</tr>
<tr>
<td>sdreport ...</td>
<td>set semsys:seminfo_semmns=100</td>
</tr>
<tr>
<td>sxauthd ...</td>
<td>set semsys:seminfo_semmnu=100</td>
</tr>
<tr>
<td>tacacs ...</td>
<td></td>
</tr>
<tr>
<td>radius ...</td>
<td></td>
</tr>
<tr>
<td>radacct ...</td>
<td></td>
</tr>
</tbody>
</table>

2. Copy or FTP the sdconf.rec file from the ACE/Server to the Access Server. For example:

From ACE/Server: /ace/data/sdconf.rec
To Access Server:

/AccessServer_install_dir/access/oblix/config/securid/sdconf.rec

To verify the ACE/Agent installation on the Unix-based host (optional)

1. Locate and start the Agent installation program on the Access Server.

./sdsetup -agent [-p path]

2. Review configuration information and the Agent Host address field to confirm that you entered the correct hostname in the Access Server /etc/hosts file.

The first time the client is used for authentication, the node secret will be copied into a file named securid in the VAR_ACE directory on the client. Typically this is stored in the default path /OracleAccessManager/access/oblix/config/securid.

3. Ensure the VAR_ACE environment variable is set properly.

If it is not set properly, the node secret will not be copied the first time the client is used for authentication.

See the Unix installation instructions for the RSA ACE/Agent for additional information and troubleshooting tips.

On Windows Machines

On the Windows-based Oracle Access Manager SecurID Access Server registered as an ACE/Agent host, you must create a root certificate to define the encryption protocol between the Agent and the ACE/Server and copy the sdconf.rec file to the Access Server before you install the ACE/Agent software on the Access Server. Complete the following procedures:

- Complete the steps in "To prepare a Windows-based Oracle SecurID Access Server" on page 13-17 for the Oracle SecurID Access Server registered as an ACE/Agent host.
- Complete the steps in "To install the ACE/Agent on each Windows-based Access Server" on page 13-17 on every Access Server.
To prepare a Windows-based Oracle SecurID Access Server

1. Install the ACE/Agent Certificate Agent utility on the Access Server using the ACE/Server CD.

3. Create a root certificate for the machine and make a note of where this is stored.

 New_Root
 Certificate and keys

 Host name: host_name

 Organization: Name

 Country: US

 A certificate file is created for this host and, by default, is stored in the following directory path.
 \Program Files\SDTI\ACE Agent Certificate\host_name.crt.

To install the ACE/Agent on each Windows-based Access Server

1. Copy or FTP the sdconf.rec file from the ACE/Server to the Access server.
 For example:
 From: D:\ace\data\sdconf.rec
 To: C:\%systemroot%\system32\sdconf.rec

 You are ready to install the ACE/Agent software on the Access Server. A Windows client requires ACE/Agent .dlls in the \WINNT\system32 directory. The minimum Agent installation is all you need to obtain the appropriate files: aceclnt.dll and sdmsg.dll.

2. Run agent.exe from the ACE/Server CD and select Common shared files and User documentation.

3. Specify the path to the root certificate you created earlier:
 \Program Files\SDTI\ACE Agent Certificate\host_name.crt

4. Give the path to the sdconf.rec file that you copied to this machine:
 \%systemroot\%\system32\sdconf.rec

5. Repeat step 2 for the ACE/Server to the Access server through step 4 on each Access Server in your installation to include the aceclnt.dll and sdmsg.dll required for authn_securid plug-in initialization.

When you have the Access Server set up as an ACE/Agent you are ready to set up the SecurID WebGate(s).

Setting Up a SecurID WebGate

Before you can use SecurID authentication, you must set up the SecurID WebGate Web server to successfully locate and use the Oracle-provided SecurID forms and the CGI script.
Task overview: Setting up a SecurID WebGate

1. Relocate the directories, as described in "Relocating Oracle SecurID Directories" on page 13-18.

2. Set up the cgi script, as described in "Setting up the SecurID CGI Script" on page 13-19.

3. Configure the cgi directory, as described in "Configuring the CGI Directory" on page 13-19.

Note: You must repeat the three procedures in this task on each WebGate used for SecurID authentication and ensure that each WebGate communicates with only the one Oracle SecurID Access Server.

Relocating Oracle SecurID Directories

Successful SecurID authentication requires that the three Oracle-provided securid directories installed with the WebGate are located in a directory that is configured as the Web server's document directory. This can be:

- The primary document root

or

- A virtual document root

Unless the WebGate was installed under the Web server's document root, you must relocate a copy of the Oracle-provided securid directories.

To relocate the Oracle-provided SecurID directories

1. Locate the three securid directories on your WebGate host. For example, on a Windows system:

 \WebGate_install_dir\access\oblix\lang\langTag\securid-cgi
 \WebGate_install_dir\access\oblix\lang\langTag\securid-forms
 \WebGate_install_dir\access\oblix\lang\langTag\securid-forms-adforest

Note: If the three SecurID directories are in the Web server's primary document or a virtual document root directory, skip to "Setting up the SecurID CGI Script" on page 13-19. Otherwise, complete step 2.

2. Copy the three securid subdirectories under a Web server document directory.

For example:

 \iPlanet\WS6sp4\docs\OracleAccessManager\securid-cgi
 \iPlanet\WS6sp4\docs\OracleAccessManager\securid-forms
 \iPlanet\WS6sp4\docs\OracleAccessManager\securid-forms-adforest

Later, when you create a SecurID authentication scheme, you may need to adjust your scheme challenge and authn_secure plug-in parameters accordingly. See "Creating a SecurID Authentication Scheme" on page 13-20.
Setting up the SecurID CGI Script
To operate properly, the Oracle-provided SecurID CGI script must point to the correct location of Perl v5.005_03 on the WebGate.

As shown in the following paragraphs, the three SecurID directories were copied from their original installation directory to the Web server’s document root using the previous steps.

To define the path to Perl
1. Open the Oracle-provided securid.pl script.
 For example:
 \iPlanet\WS6sp4\docs\OracleAccessManager\securid-cgi\securid.pl
2. Ensure that the first line points to the correct location of Perl on this WebGate.
 For example:
 #!/usr/bin/perl -w

Next, you will set up the CGI directory on the WebGate Web server.

Configuring the CGI Directory
The Oracle-provided SecurID CGI directory must be configured as a CGI directory on the Web server. This process will vary depending on your Web server platform:

- **On IIS Web servers**: You need only ensure that the Oracle-provided script is an executable.
- **On iPlanet Enterprise Web servers**: You need only configure the CGI directory as a Web server CGI directory.
 - **On Unix**: Specify a Programs/CGI directory
 - **On Windows**: Specify a Shell/CGI Directory
- **On Apache Web servers**: You must modify the httpd.conf file as follows:
 - Add the Oracle-provided CGI script to the AddHandler section, or uncomment it.
 - Add ExecCGI to a Directory container that applies to the directory where the Oracle-provided script is located.
 - Add PassEnv lines outside all Directory and VirtualHost containers.

See the documentation that accompanies your specific Web server for more information.

To configure the CGI script on IIS Web servers
1. Locate the securid.pl file.
2. Make the securid.pl file an executable.
 See the Microsoft IIS Web Server Administration documentation for details about converting the script to an executable.

To configure a CGI directory on the iPlanet Enterprise Server
1. Log in as the Web Server Administrator, then select your server name and click Manage.
2. Select the Virtual Server Class tab, click the Manage button, and then click the Programs tab.

3. Select the CGI directory for your platform. For example:
 - Unix: Programs/CGI Directory
 - Windows: ShellCGI Directory

4. Add the URL prefix and the full path to the CGI directory, as shown in the following Windows example:
 - URL prefix: OracleAccessManager|securid-cgi
 - CGI directory: C:\iPlanet\WS6sp4\docs\OracleAccessManager\securid-cgi

See the documentation for the iPlanet Web Server Administration Server for more information.

To configure Apache Web servers for the SecurID CGI script
1. Locate the httpd.conf file and add the following information to the AddHandler section, or uncomment the line if it is already there.

 AddHandler cgi-script .pl

 Note: Be sure to include the space in AddHandler cgi-script .pl; otherwise, the Web server won't start.

2. Find a <Directory> container that applies to the directory where you have stored the securid.pl file, and add "ExecCGI" to the end of the line that reads

 "Options Indexes FollowSymLinks MultiViews," as follows:

 Options Indexes FollowSymLinks MultiViews ExecCGI

3. Add the following lines outside all <Directory> and <VirtualHost> containers.

 PassEnv HTTP_COOKIE
 PassEnv HTTP_REDIRECTURL
 PassEnv HTTP_FULLFORMDIR
 PassEnv HTTP_HTTPTYPE
 PassEnv HTTP_NEWPINRETURN

 See the Apache Web Server documentation for additional details.

Next you will create a SecurID authentication scheme that uses the Oracle-provided SecurID plug-in.

Creating a SecurID Authentication Scheme

This section provides the following topics.

- **Background**
- **Defining an Authentication Scheme for SecurID**

Even if you are familiar with Oracle Access Manager authentication plug-ins, you may want to focus on specific SecurID requirements presented earlier.

Some information offered in the following examples should be replaced with the appropriate information for your environment.
Background

The Access System protects resources according to policy domains. Each policy domain identifies the resources to be protected and must include one and only one authentication rule. That rule, which is considered the default authentication rule, must contain an authentication scheme which specifies the challenge method used to obtain credentials from the user. Each authentication scheme can include one or more plug-ins to perform additional processing. For Smart Card authentication, you must use the Client Certificate authentication scheme.

A policy domain can include policies to protect resources within the domain in a different or more specific way. Each of these policies can have its own authentication rule, but one is not required. If an authentication rule is not configured for a policy, the default authentication rule for the policy domain applies.

Until the Master Access Administrator delegates administration rights to a policy domain, he or she is the only person who can access that policy domain.

The following form is used to define the authentication scheme. This is available in the Access System Console, Access System Configuration Authentication Management function.

An authentication scheme name is required. The description is optional. The security level definition is the same for all authentication schemes. For more information about authentication schemes, see the Oracle Access Manager Access System Administration Guide.

The following discussions provide additional details for SecurID:

- **SecurID Challenge Method**
- **SecurID Challenge Parameters**
- **SecurID Authentication Scheme Plug-Ins**

SecurID Challenge Method

Each authentication scheme requires a challenge method to obtain user credentials for authentication. Only one challenge method is allowed per authentication scheme.

SecurID requires the form-based challenge method, which means that the user must complete an HTML form during the authentication process. Form-based authentication schemes can pass authorization actions in header variables but cannot pass authentication actions in header variables.
The Basic challenge method does not support SecurID Pincodes, Next Tokencode Mode, nor New PIN Mode.

See the Oracle Access Manager Access System Administration Guide for more information about authentication scheme challenge methods.

Note: Do not protect a challenge form or any of its components, such as .gifs and links.

SecurID Challenge Parameters

SecurID requires four challenge parameters to identify what will occur when a user logs in. The four challenge parameters are action, passthrough, creds, and form.

- **action:** You can use the action parameter to present a form to authenticate the user after receiving an initial request for a resource. For SecurID authentication, the form action is initiated by the Oracle-provided CGI script.

 Default location of the SecurID CGI script: `WebGate_install_dir\access\oblix\lang\langTag\securid-cgi\securid.pl`

 Relocated to: `iPlanet\WS6sp4\docs\OracleAccessManager\securid-cgi\securid.pl`

- **passthrough:** Passthrough is set to No by default. For SecurID authentication, set passthrough to Yes to pass the login credentials to a post-processing program.

- **creds:** The creds parameter identifies all fields used for login in the HTML forms, in a space-separated list. The parameters needed for SecurID authentication must correspond to fields in the SecurID authentication HTML forms and SecurID plug-in parameters. For example:

  ```plaintext
  login username password passcode choice
  choice_label_such_as_system-generated newpin
  PIN_entered_by_the_user newpin2 PIN_re-entered_by_the_user
  ```

 The creds challenge parameter for the user ID should match the user ID specified in the credential_mapping plug-in that is required with SecurID authentication. For example:

 Challenge Parameter: creds:login

 credential_mapping plug-in parameter: obMappingFilter="/(userid=%login%))"

- **form:** The form parameter indicates where the standard login HTML form is located relative to the Web server's document directory.

 For example, when the full path is:

 `iPlanet\WS6sp4\docs\OracleAccessManager\securid\securid-forms\securid-std-login.html`

 The form parameter is: `securid-forms\securid-std-login.html`

SecurID Authentication Scheme Plug-Ins

Two plug-ins are required in the SecurID authentication scheme, authn_securid and credential_mapping. Each plug-in defines how information will be looked up in the
directory server. Again, the following examples illustrate concepts and may not portray your environment.

The authn_securid plug-in authenticates the user’s SecurID credentials against their credentials on the ACE/Server. The two mandatory parameters include fullformdir and machine.

- **fullformdir**: This parameter identifies the full and complete path from the Web server root to the authentication form directory. For example:

 fullformdir=C:\iPlanet\WS6sp4\docs\OracleAccessManager\securid-forms

 fullformdir=C:\Webserver_root\OracleAccessManager\securid-forms-adforest

- **machine**: This parameter identifies the fully qualified machine name, including the domain name and port of the WebGate Web server instance that will communicate with the Oracle SecurID Access Server.

 machine=host_name.domain.com:port

The credential_mapping plug-in maps the user-provided information to a valid Distinguished Name (DN) in the directory used by Oracle Access Manager. Ensure that the user ID you specify matches the creds parameter you specified in the challenge parameter.

obMappingBase="o=company,c=us"

obMappingFilter="(&(objectclass=...orgperson)(...userid=%login%)"

A number of parameters are available with each plug-in. See "Oracle Access Manager Authentication Plug-In Parameters" on page 13-29 for more information. With these considerations in mind, you are ready to define the SecurID authentication scheme.

Defining an Authentication Scheme for SecurID

Only a Master Access Administrator may create authentication schemes. The following steps walk you through the process you must complete to define a SecurID authentication scheme. Differences for an Active Directory Forest are noted where appropriate. See also "Active Directory Forest Considerations" on page 13-32.

In the following example, the action URL points to the new location of the securid-cgi directory as discussed in "Relocating Oracle SecurID Directories" on page 13-18. Path names may differ in your environment.

To define the SecurID authentication scheme

1. From the Access System Console, click Access System Configuration, from Access System Configuration menu click Authentication Management

2. Click the Add button at the bottom of the panel.

3. Enter a name, optional description, and security level for your SecurID authentication scheme.

 For example:

 Name: SecurID Authentication

 Description: This scheme requires a user to enter a SecurID username (login) and passcode. This scheme also handles Next Tokenmode mode and New PIN mode.

 Level: An integer between 1 and 5 defines the security level.
4. Select Form as the challenge method and enter challenge parameters for this authentication scheme.

For example:

Challenge Method: Form

Challenge Parameters:

- **action:** `\OracleAccessManager\securid-cgi\securid.pl`
- **passsthrough:** `yes`
- **creds:** login password choice newpin newpin2
- **form excluding Active Directory Forests:**

 `form:\iPlanet\WS6sp4\docs\OracleAccessManager\securid-forms\securid-std-login.html`

- **form for Active Directory Forests only:**

 `form:\Webserver_root\OracleAccessManager\securid-forms-adforest\securid-std-login.html`

Next, you will create a customized challenge scheme using the authn_securid and credential_mapping plug-ins.

The authn_securid plug-in should be the first. Be sure that the machine parameter includes the fully qualified domain name and port or the host identifier or one of its aliases as specified in the Access System Console. See "SecurID Plug-In Parameters" on page 13-29 and "Credential Mapping Plug-In Parameters" on page 13-32 for details.

5. Select No beside SSL Required.

If you have more than one WebGate/Access Server pair, redirect to a WebGate that communicates with the dedicated Oracle SecurID Access Server. Use the fully qualified machine name. Syntax:

`http://host_name.domain.com:port/`

Note: When you have only one WebGate/Access Server pair, leave the Challenge Redirect field blank and skip to step 8.

6. Enter a challenge redirect, as needed for your environment.

7. Save.

8. Click the Plug-Ins tab, the Modify button, then select Custom Plugins from the drop down list and specify parameters.

For example:

- **Plug-in Name:** authn_securid

 Plug-in Name Parameters (excluding Active Directory):

 `fullformdir="c:\iPlanet\WS6sp4\docs\OracleAccessManager\securid-forms"`, `machine="host_name.domain.com:port"`

 Plug-in Name Parameters for Active Directory:
9. Select the credential_mapping plug-in from the drop down list and specify parameters.

For example:

- **Plug-in Name**: credential_mapping

 Plug-in Name Parameters (excluding Active Directory):

 `obMappingBase=\"o=company,c=us\", obMappingFilter=\"(&(objectclass=...orgperson) (...userid=%login%))\"`

 Plug-in Name Parameters for Active Directory:

 `obMappingBase=\"%domain%\", obMappingFilter=\"(?objectclass=user) (samaccountname=%login%)\"`

10. Check Update Cache to have this take effect immediately, then click Save.

11. Restart the Access Server to load the plug-ins.

You have finished creating a SecurID authentication scheme that will appear in the Authentication Scheme list when you assign rules to a policy domain. See the Oracle Access Manager Access System Administration Guide.

Protecting SecurID Resources

Before you can use the SecurID authentication scheme in a policy domain, you must protect the Oracle-provided SecurID CGI script specified in the action URL of your SecurID authentication scheme. Once protected, you may use the scheme in new policy domains to protect other resources with SecurID authentication.

Important: Before you use this scheme, the form’s action URL must be protected by a Oracle Access Manager policy domain and the action challenge parameter of the form scheme must match the form action URL.

Task overview: Protecting Securid Resources

1. Create a policy domain, as described in "Creating a Policy Domain" on page 13-26.

2. Add resources to the policy domain, as described in "Adding a Resource to Your Policy Domain" on page 13-26.

3. Define rules for the domain, as described in "Defining Rules for this Domain" on page 13-27.
Creating a Policy Domain
The key to creating an effective policy domain is to group the content that you want to manage in the same way. Each policy domain is defined using the Policy Manager and each policy domain includes a definition of:

- Resources to protect
- Schemes, rules, and optional policies (exceptions) for protection
- Administrative rights, optional

For example, you need one policy domain to protect the SecurID authentication script and action URL for the Scheme. This cannot be protected by the SecurID authentication scheme. You will want another policy domain to protect resources using the SecurID authentication scheme.

The following procedure shows how to create a policy domain to protect the SecurID CGI script. Following each sequence is a brief example of a second policy domain that will use the SecurID authentication scheme to protect other resources. The information provided is a sample to illustrate concepts.

The following procedure requires specific policy domain management rights. See the Oracle Access Manager Access System Administration Guide for details.

To create a policy domain to protect the SecurID script
1. Launch the Access System Console:
 http://host_name.domain.com:port/access
2. Select the Policy Manager.
 The My Policy Domains page appears with functions on the left and current policy domains on the right.
3. Click Create Policy Domain on the left.
 The General tab is highlighted and the Name field is active.
4. Enter a name and an optional description for the new policy, then save it.
 For example:
 Name: SecurID-script
 Description: Oracle-provided

 Note: The policy domain cannot be enabled until you add a resource type.

Adding a Resource to Your Policy Domain
Only a Master Access or Master Oracle Access Manager Administrator may add resources to a policy domain. When Oracle Access Manager is initially installed, no resources are defined. Your environment may include resources.

A resource may be either static or dynamic content.

- Static content includes HTML pages, .gifs, .pdfs
- Dynamic content includes scripts, applications, EJBs

For this integration, you will add the securid-cgi as a resource for the policy domain to protect the Oracle-provided SecurID script.
The administrator who created the first policy domain set the existing root URL used as a base for the policy domain. You may append a different region to the same prefix to define a new URL prefix that is available to other policy domains.

Again, sample specifications to protect a resource with the SecurID authentication scheme are included with the following procedures. However, you cannot use the SecurID authentication scheme until you protect the SecurID script.

To add a resource to your policy domain

1. From the Policy Manager policy domain page, click the Resources tab then click the Add button and add a resource.

 For example:

 - **Resource Type:** http
 - **URL Prefix (and region):** / OracleAccessManager/securid-cgi
 - **Description:** Optional

2. Ensure that Update Cache is enabled, then save.

3. Click the Save button and review the information you supplied.

Defining Rules for this Domain

All Administrators may create an authentication expression for a policy domain or policy. An existing authentication scheme must be specified as the building block.

As discussed earlier, you must protect the SecurID authentication script specified in the action URL of the authentication scheme before you can use the scheme.

When completing the following steps, skip to step 2 if the Default Rules tab is available.

To define who has access

1. From the landing page for the Access System, select the Policy Manager application, click My Policy Domains, and from My Policy Domains select Securid-script.

2. Click the Default Rules tab, then click the Add button.

3. Enter the details and confirm that you are using the Oracle Access and Identity authentication scheme.

 For example:

 - **Name:** Securid Authentication
 - **Description:** Optional
 - **Authentication Scheme:** Oracle Access and Identity

4. Ensure that Update Cache is enabled, click the Save button, then review the information summary.

 When protecting the SecurID CGI script, you do not want to deny access to anyone. When protecting the SecurID CGI script, allowing everyone enables the Access Server to check each user's credentials with the ACE/Server. By default, nobody is authorized. Allowing access should take precedence.

5. Click the Authorization Rules tab, choose Oracle Authorization Scheme from the drop down list, then save.

 For example:
Authorization Scheme: Oracle Authorization Scheme

6. Enter a name, an optional description, enable this scheme, ensure that Allow takes precedence, then save.

 For example:

 Name: SecurID allow_all
 Description: Optional
 Enabled: Yes
 Allow takes Precedence: Yes

 In every case, including SecurID CGI script protection, you must specify the Role of those being granted access to this policy domain. For your environment, you may want to grant access only to specific users or groups.

7. Click the Allow Access tab, click the Add button, fill in the form, and save.

 For example, to grant access to anyone from the root directory down:

 Role: Anyone
 Rule: ldap:///
 Update Cache

 Though not required to protect the SecurID CGI script, you may apply one or more policies to fine-tune access control for the protected resources and apply auditing rules to record access requests and resource use. For these activities, you must have authorization granted by an Access Administrator.

8. Click the General tab and enable the policy domain.

 The policy domain is active and the resource is protected. In this case, the SecurID CGI script is protected by the Oracle Access and Identity authentication scheme and ready to use in policy domains that protect your resources.

9. Repeat "Protecting SecurID Resources" on page 13-25 to protect your own resources using the SecurID authentication scheme.

 See the Oracle Access Manager Access System Administration Guide for details about policy domains.

Testing the Policy Domain

The best way to help you identify and resolve any problems that might arise is to test the policy domain and check various log files to ensure that everything is working properly. See the appropriate manuals for your systems for details.

To enable logging and testing

1. Enable logging on your Web servers to help track any anomalies during operation.
2. Enable logging your Oracle SecurID Access Server.
3. Enable logging on your SecurID WebGate or WebGates.
4. Enable logging on your RSA ACE/Server to report activity in real time or to create an activity log, as usual.
5. Test your policy domains and Web single sign-on, as usual, to ensure that all are working as expected.
Adding ACE/Server Users to Oracle Access Manager

You must add ACE/Server users to the directory used by Oracle Access Manager to enable access to the protected resource after the user is authenticated.

One way to do this is to use the Identity System User Manager application to create a workflow definition. Creating a workflow for this purpose is no different than creating a workflow to add other users, as long as you include the following attributes as a minimum.

- Name
- Last Name
- Login
- Password

See the Oracle Access Manager Identity and Common Administration Guide for details about creating a workflow definition.

Oracle Access Manager Authentication Plug-In Parameters

SecurID authentication requires the SecurID plug-in and the Credential Mapping plug-in. Each plug-in provides a number of parameters to direct how information is looked up in the directory server.

This section discusses the following topics:

- SecurID Plug-In Parameters
- Credential Mapping Plug-In Parameters

SecurID Plug-In Parameters

The parameters in Table 13–4 apply to the authn_securid plug-in when defining the SecurID authentication scheme in Oracle. You may customize the parameter name according to the rules specified in the comments in Table 13–4 These parameters are case sensitive.

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>httpType</td>
<td>http://</td>
<td>Optional</td>
<td>If the webgate doing the SecurID authentication is in SSL, the value should be changed to https:// by passing additional parameter httpType="https://"</td>
</tr>
</tbody>
</table>
Table 13–4 (Cont.) Authn_Securid Plug-In Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
</table>
| fullformdir | <none> | Mandatory| This is the full path to the SecurID forms used for authentication, from the Web root to the directory that contains the forms. The value requires a trailing slash. For example:
 fullformdir="C:/iPlanet/WS6sp4/docs/OracleAccessManager/securid-forms/"
 or, for Active Directory
 fullformdir="C:\Webserver_root/OracleAccessManager/securid-forms-adforest/"
 By default, the forms directories are installed as follows and should be moved to the Web server’s document directory:
 \OracleAccessManager\webcomponent\access\oblix\lang\langTag\securidxxx |
| machine | <none> | Mandatory| This is the fully qualified domain name and port number of the Web server instance that will communicate with the Oracle SecurID Access Server. For example:
 machine="machine.domain.com:port"
 - This name must match the host identifier specified in the Access System Console or one of its aliases.
 - If you are redirecting all SecurID authentications, this should be the Web server name that you are redirecting to. |
Table 13–4 (Cont.) authn_securid Plug-In Parameters

<table>
<thead>
<tr>
<th>Parameter Name</th>
<th>Default Value</th>
<th>Status</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>formdir</td>
<td>access/oblix/securid-forms</td>
<td>Optional</td>
<td>This is the relative path to the SecurID forms and requires a trailing slash. Note: If you customize this value, you must also change it in the Challenge Parameter, form, and SecurID plug-in parameter, fullformdir. In other words, if you place the SecurID forms anywhere other than: webserver_docroot/access/oblix/securid-forms you must pass the formdir parameter to the authn_securid plug-in with the value appropriately changed. The new value should be the location of the forms relative to the doc_root. Also, the value should not include a trailing slash. Also, if the securid cgi script is not accessible at webserver_docroot/access/oblix/securid-cgi/securid.pl, you must edit the various SecurID html forms to point to the correct location. You need to change the following text in each form to point to the correct location of the script. action="/access/oblix/securid-cgi/securid.pl"</td>
</tr>
<tr>
<td>username</td>
<td>login</td>
<td>Optional</td>
<td>If you are using the sample forms, set this value to: login. If you customize this value, you must also change it in the Challenge Parameter, creds and also in the credential_mapping obMappingFilter.</td>
</tr>
<tr>
<td>passcode</td>
<td>password</td>
<td>Optional</td>
<td>If you are using the sample forms, set this value to: password. If you customize this value, you must also change it in the Challenge Parameter, creds.</td>
</tr>
<tr>
<td>choiceLabel</td>
<td>choice</td>
<td>Optional</td>
<td>This is the name of the field in the HTML form corresponding to the user’s choice of how a PIN is generated. If you customize this value, you must also change it in the Challenge Parameter, creds.</td>
</tr>
<tr>
<td>newpinLabel</td>
<td>newpin</td>
<td>Optional</td>
<td>This is the name of the field in the HTML form corresponding to the new PIN entered by the user. If you customize this value, you must also change it in the Challenge Parameter, creds.</td>
</tr>
<tr>
<td>newpinLabel2</td>
<td>newpin2</td>
<td>Optional</td>
<td>This is the name of the field in the HTML form corresponding to the new PIN that is re-entered by the user. If you customize this value, you must also change it in the Challenge Parameter, creds.</td>
</tr>
</tbody>
</table>
Credential Mapping Plug-In Parameters

This plug-in maps the user ID to a valid distinguished name (DN) in the directory used by Oracle Access Manager. You can configure the attribute to which the user ID is mapped to find the DN. The most common attribute that is mapped to is uid. However, it is possible to map the user ID to a profile attribute other than uid by changing the obMappingFilter parameter. See Table 13–5. These parameters are case-sensitive.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Usage Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obMappingBase</td>
<td></td>
<td>Defines the Base DN in the LDAP search. If omitted or empty, the directory base is used.</td>
</tr>
<tr>
<td>obMappingFilter</td>
<td>Mandatory</td>
<td>Defines the Filter in the LDAP search. This parameter enables use of the obMappingFilter term to filter for categories of end users.</td>
</tr>
<tr>
<td>obdomain</td>
<td>Needed with Active Directory Forests</td>
<td>Authenticates a user against an Active Directory Forest when the challenge method is Basic.</td>
</tr>
<tr>
<td>EnableCredentialCache</td>
<td></td>
<td>Turns off the credential mapping cache in the credential_mapping plug-in. You may want to turn off the cache if the same user ID may be mapped to different DNs. See the Oracle Access Manager Developer Guide for more information.</td>
</tr>
</tbody>
</table>

Table 13–6 obMappingFilter Subordinate Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
</table>
| obuseraccountcontrol | When this parameter is activated, or if there is no value, two categories of end users are filtered out:
 - Those who have been added but not yet activated in the directory.
 - Those who have been deactivated but remain in the directory. |
| obEnableCredentialCache | Turns off the credential mapping cache in the plug-in to deactivate the user the next time they authenticate. |

Active Directory Forest Considerations

The following information can be found throughout discussions in this chapter. They are repeated here for quick reference.

This section discusses the following topics:

- **Prerequisites**
- **Integrating SecurID with an Active Directory Forest**

Prerequisites

Before integrating SecurID authentication with an Active Directory Forest, you must complete the tasks in the following task overview.
Task overview: To prepare your environment

2. Set up and ensure that Oracle Access Manager works with an Active Directory Forest.

3. Edit the following forms to replace the placeholder domain names with actual domain names for your Active Directory Forest installation. For example, `\WebGate_install_dir\access\oblix\lang\langTag\securid-forms-adforest`.
 - `securid-std-login.html`
 - `securid-nexttokencode.html`
 - `securid-enter-new-pin.html`

Integrating SecurID with an Active Directory Forest

Any differences for an Active Directory Forest are included for quick reference and are embedded in discussions elsewhere in this chapter.

In the following example, the action URL points to the securid-cgi directory as shown in "Relocating Oracle SecurID Directories" on page 13-18. Path names may differ in your environment. Bold indicates the items that are different for an Active Directory Forest.

Note: This section assumes you have completed the following tasks:

- "Setting up the Access Server as an ACE/Agent" on page 13-14
- "Setting Up a SecurID WebGate" on page 13-17

To integrate SecurID authentication

1. Follow the instructions in "Creating a SecurID Authentication Scheme" on page 13-20 with the following changes for the Active Directory Forest.

 Changes for Active Directory Forest Challenge parameters:
 - **form**: `\Webserver_root\OracleAccessManager\securid-forms-adforest\securid-std-login.html`

 Changes for Active Directory Forest plug-ins and parameters:
 - **Plug-in**: `authn_securid`
 - **Parameters**: `fullformdir="c:\Webserver_root\OracleAccessManager\securid-forms-adforest",machine="host_name.domain.com:port"`
 - **Plug-in**: `credential_mapping`
 - **Parameters**: `obMappingBase="%domain%", obMappingFilter="(?objectclass=user) (samaccountname=%login%)"`

2. Select Update Cache, then Save to complete your SecurID authentication scheme.

3. Restart the Access Server to load the plug-in.
4. Complete the tasks described in the following sections:
 - Protecting SecurID Resources
 - Testing the Policy Domain.
 - Adding ACE/Server Users to Oracle Access Manager

SecurID Forms for an Active Directory Forest
As you can see on the following Oracle-provided forms, the only difference between standard forms for SecurID authentication and the forms provided for SecurID authentication with an Active Directory Forest is the inclusion of the Domain name on the Login form, Next Tokencode form, and New PIN Entry form.

The form in Figure 13–2 includes the Domain list. See "SecurID Authentication Scenarios" for the standard forms.

Figure 13–2 Standard SecurID Login Form for Active Directory Forest

![Standard SecurID Login Form for Active Directory Forest](image1)

The form in Figure 13–3, "Next Tokencode Form for Active Directory Forest" includes the Domain list. See “Next Tokencode Sequence” on page 13-10 for the standard form and a description of the sequence of events that occurs in this mode.

Figure 13–3 Next Tokencode Form for Active Directory Forest

![Next Tokencode Form for Active Directory Forest](image2)

See "New PIN Sequence" on page 13-11 for the standard forms for the New PIN sequences and a description of the events that occur with this sequence. As shown in Figure 13–4, "New PIN Query", the New PIN Query form is slightly different.
User-Defined PIN Form
If the PIN was defined by the user, they are challenged by the form and asked to enter their:
- Username
- Tokencode (shown in the form as Passcode)
- New PIN
- Active Directory Domain

The form in Figure 13–5 includes a Domain list.

Troubleshooting
Following is a brief list of some of the things to check if SecurID authentication is not working as expected.
- ACE/Agent Issues
- ACE/Server Configuration File
- "CGI Directory on SecurID WebGates"
Troubleshooting

- Environment Variable on Unix Systems
- Form-Based Authentication
- Access Server Log
- Web Server Logs
- RSA ACE/Server Logs
- Permissions
- SecurID Plug-In Parameters with Modified HTML Fields

ACE/Agent Issues

If an "unable to resolve" or "Error: gethostbyname failed" message appear in the CLIENT ADDRESS field when configuration data is displayed, you probably entered the client hostname incorrectly in the /etc/hosts file. In this case, you must edit the host entry to solve the problem.

If the authn_securid plug-in fails to initialize in an environment with multiple Windows-based Access Servers, verify the status of each Access Server as discussed in the following procedure.

To verify the status of each Windows-based Access Server

1. Confirm that each Windows-based Access Server in your environment has the RSA ACE/Agent software installed.

 See "Setting up the Access Server as an ACE/Agent" on page 13-14 for details.

2. Confirm that only one Access Server is registered with the RSA ACE/Server as the Oracle SecurID Access Server.

 See "Registering an ACE/Agent Host" on page 13-14 and "Setting up the ACE/Agent Host" on page 13-15 for details.

ACE/Server Configuration File

The RSA ACE/Server sdconf.rec file is required on the Oracle SecurID Access Server before you can install the RSA ACE/Agent on the Access Server.

This RSA ACE/Server file contains all configurable items for the RSA ACE/Server, including Agent Host specifications.

You must copy this file to the Access Server that will validate user credentials with the ACE/Server before you add the ACE/Agent to the Access server. See "Setting up the Access Server as an ACE/Agent" on page 13-14 for details.

CGI Directory on SecurID WebGates

Ensure that the securid-cgi directory is set up properly on the WebGate.

Task overview: Testing the securid-cgi directory

1. Unprotect a different CGI in the same directory.

2. Access the unprotected CGI to be sure you set up the CGI directory properly.

 See "Setting Up a SecurID WebGate" on page 13-17 for details.
Environment Variable on Unix Systems

When setting up your Oracle SecurID Access Server as an ACE/Agent host, ensure the VAR_ACE environment variable is properly set on your Unix system. See "Setting up the Access Server as an ACE/Agent" on page 13-14 for more information.

Form-Based Authentication

Ensure that form-based authentication is set up properly, as described in the Oracle Access Manager Access System Administration Guide.

If this the first time the authn_securid plug-in has been configured, you must restart the Access Server to load the plug-in.

Access Server Log

If an authentication plug-in returns an error, it is logged in the Access Server log. You configure this in the Access System Console.

To set up the Access Server log
1. From the Access System Console, select Access System Configuration > Access Server Configuration
2. Select the server name from the List of All Access Servers, then click Modify.
3. Set Debug On and enter a file name.
4. Restart the Access Server.

Web Server Logs

These can provide many clues as to what is going wrong. Be sure the enable logging on your Web server.

See the documentation for your Web server for details.

RSA ACE/Server Logs

If communication has been established between the Access Server and ACE/Server, the sdadmin tool provides access to logs under the Report menu. Both Activity and Exception reports may give you helpful information.

To verify the ACE/Server log configuration
1. Confirm that you have added the user and assigned a token using the ACE/Server Administrator tool, sdadmin.
2. Verify that you have copied the sdconf.rec file to the Access Server before installing the ACE/Agent.

See "Setting up the Access Server as an ACE/Agent" on page 13-14 for details.
3. Locate the following file in the Web server’s document root directory to ensure that the shared secret was downloaded on the first connection between the Oracle SecurID Access Server and the ACE/Server. For example:

\iPlanet\WS6sp4\doc\OracleAccessManager\securid
Permissions

Permissions can sometimes cause problems.

Note: Do protect the securid.pl script on the WebGate(s). Do not protect the SecurID forms or their directories.

Confirm that the following permissions are appropriate:

- On the SecurID CGI script, securid.pl
- On the SecurID HTML forms
- On all files
- On the page you are trying to reach

SecurID Plug-In Parameters with Modified HTML Fields

If you have modified the HTML field names in the HTML forms, make sure you have modified the SecurID plug-in parameters to match.
Integrating Smart Card Authentication

Oracle Access Manager 10g (10.1.4.0.1) supports Smart Card authentication with Active Directory and IIS Web servers in homogeneous Windows® environments. The following discussions explain how to implement Smart Card authentication:

- About Smart Card Authentication
- About Oracle Access Manager Components
- Integration Architecture
- Supported Versions and Platforms
- Setting Up Smart Card Authentication
- About Policy Domains for Smart Card Authentication
- Client Certificate Authentication Schemes
- Troubleshooting

About Smart Card Authentication

Smart Card provides a stronger form of authentication than a username and password alone because it is based on something the user knows and something the user has.

- **Something the User Knows:** This is the user’s secret personal identification number (PIN), similar in concept to a personal bank code PIN.

- **Something the User Has:** This is the cryptographically-based identification and proof-of-possession generated by the Smart Card device that you insert into the Smart Card reader attached to a computer.

Smart Card authentication can be used with Oracle Access Manager to protect resources. After setting up your environment, Smart Card authentication is triggered when you:

- Insert your ActivCard containing a public key certificate previously issued by the Enterprise Certification Authority (CA) into the reader attached to your computer.

- Request access to a resource protected by the Oracle Access Manager Client Certificate authentication scheme before inserting your ActivCard into the reader.

The first method displays a window prompting you for your PIN, rather than requesting a username, password, and domain. The second method displays a window prompting you to insert the ActivCard and provide your PIN.
About Oracle Access Manager Components

The Identity System provides the applications you need to manage users, groups, organizations, identity-based workflows, and delegated administration.

The Access System provides policy-based authentication, authorization, auditing, and Web single sign-on. All Access System components are involved with Smart Card authentication, as discussed next:

- **The Policy Manager**: The Policy Manager provides the applications for policy management, resource designation (Web and non-Web) and policy testing. Master Access Administrators define policy domains and Delegated Access Administrators define the resources to be protected by a policy domain.

 When you set up the Policy Manager after installation, you are asked if you want to automatically configure the Client Certificate authentication scheme. This scheme is required for Smart Card authentication. Typically, a certificate must be installed on your browser and the Web server must have SSL enabled. For Smart Card authentication, however, the certificate resides on the card.

 If the Client Certificate authentication scheme was configured automatically during setup, it may be used without further modification.

- **The Access System Console**: Master Administrators and Master Access Administrators use the Access System Console to define and enable authentication schemes that allow or deny access to resources.

 You can use the Access System Console to verify and/or modify the Client Certificate authentication scheme. However, if the Client Certificate authentication scheme was configured automatically during setup, it may be used without further modification.

- **The Access Server**: The Access Server receives requests from a WebGate and queries authentication, authorization, and auditing rules stored in the directory server. The Access Server returns the authentication scheme, user credentials, and authorization to the requesting WebGate.

 The Access Server installation includes the cert_decode and credential_mapping authentication plug-ins required with the Client Certificate scheme for Smart Card authentication.

- **The WebGate(s)**: WebGates intercept and forward HTTP requests for Web resources to the Access Server for authentication and authorization. The WebGate also starts the user's session, then creates session cookies and passes these to the user's browser.

 The cert_authn.dll required for Smart Card authentication is provided with the WebGate installation in WebGate_install_dir\access\oblix\apps\webgate\bin. The WebGate used for Smart Card authentication must be installed with an IIS 5.0 Web server with SSL enabled.

Note: When you initialize a Smart Card, you are asked to supply a PIN. If the PIN is incorrectly entered three times, the card locks. To restore a locked certificate, either use the unlock code provided during Smart Card initialization or re-initialize the card.
Integration Architecture

The following process occurs during Smart Card authentication with Oracle Access Manager. Figure 14–1 illustrates the sequence and is followed by a process overview.

Figure 14–1 ActivCard Authentication Sequence

Process overview: Smart Card authentication

1. The browser prompts the user for the Smart Card and the WebGate intercepts the user’s resource request and queries the Access Server to determine if and how the resource is protected, and if the user is authenticated.

2. The Access Server queries the Active Directory server for authentication information and receives information from the directory.

3. The Access Server responds to the WebGate, which prompts the browser to challenge the user to either insert their ActivCard and/or enter their PIN.

4. The user submits their credentials, which the browser passes to the WebGate and the WebGate presents to the Access Server, at which point one or more authentication plug-ins are used.

 The cert_decode and credential_mapping plug-ins are required with the Client Certificate authentication scheme.

5. The Access Server performs the authentication dialog with the Active Directory, which maps the certificate information stored in the Smart Card to the user certificate in the directory and returns a success response to the Access Server.

6. When the user’s credentials are valid, the Access Server provides the response to the WebGate, which starts a session for the user.

8. The Access Server queries Active Directory for authorization information that allows or denies access based upon the policy domain’s authentication and authorization rules.

9. When access is granted, the Access Server passes authorization to the WebGate, which presents the resource to the user.

Supported Versions and Platforms

Oracle Access Manager 10g (10.1.4.0.1) supports Smart Card authentication in the environments shown on Metalink. Refer to Metalink, as follows.

To view information on Metalink

1. Go to the following URL:

 http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.

5. Choose Oracle Application Server and click Submit.

Setting Up Smart Card Authentication

Several procedures must be completed to set up Smart Card authentication with Oracle Access Manager 10g (10.1.4.0.1).

Task overview: Setting up Smart Card Authentication

1. Confirm your environment meets requirements in “Supported Versions and Platforms” on page 14-4.

2. Set up Active Directory, as described in "Preparing Active Directory" on page 14-4.

3. Set up a certificate, as described in "Preparing the CA and Enrolling for a Certificate" on page 14-5.

4. Set up the IIS Web Servers, as described in "Preparing IIS Web Servers" on page 14-6.

5. Set up Oracle Access Manager, as described in "Preparing Oracle Access Manager for Smart Card Authentication" on page 14-6.

6. Configure your protected resources, as described in "Protecting Resources with Oracle Access Manager" on page 14-6.

7. Set up IIS Manager, as described in “Setting Up the IIS Manager” on page 14-8.

Preparing Active Directory

The following sections discuss preparing Active Directory.
Tip: For more information about this procedure, see the Active Directory manual.

For details about setting up your Active Directory to operate with Oracle Access Manager, see the Oracle Access Manager Installation Guide and Oracle Access Manager Identity and Common Administration Guide.

To prepare Active Directory
1. Ensure that you have a domain controller and Active Directory installed and properly running.
2. Ensure that you have a Domain Name System (DNS) server installed and properly running.

Note: You must install a Microsoft certification server with Active Directory, as discussed next.

Preparing the CA and Enrolling for a Certificate

The following sections discuss preparing the CA and enrolling for a certificate.

Tip: For more information about the following tasks, see the ActivCard documentation, Configuring Smart Card logon with ActivCard CSP for Windows 2000.

To prepare a certification authority
1. Confirm that you have met all setup requirements for certification authorities (CAs), install ActivCard Gold utilities, and set up the CA.

 If you want the user's certificate installed on the ActivCard only, rather than on both the machine and the ActivCard, you need at least two installations of the ActivCard Gold utilities because you need an administrator's certificate to digitally sign a user's certificate.

2. Establish the certificate types that an enterprise certification authority can use.
3. Prepare a certification authority to issue Smart Card certificates.

To complete Smart Card certificate enrollment
1. Prepare a Smart Card certificate enrollment station on a computer that you will use to set up smart cards and install a ActivCard USB reader v2.0.

 If you want the user's certificate installed on the ActivCard only, rather than on both the machine and the ActivCard, you need multiple ActivCard USB Readers and at least two ActivCard Gold.

2. Connect a Smart Card reader.
3. Enroll for a Smart Card Logon or Smart Card User certificate, initialize the card, and digitally sign the request.

 For more information about downloading certificates onto ActivCards, see the ActivCard Gold User Guide.

4. Log on with an ActivCard, as described in Configuring Smart Card logon with ActivCard CSP for Windows 2000.
5. Set policies for Smart Card removal behavior.
Preparing IIS Web Servers
The following sections describe preparing IIS Web Servers.

Tip: For more information about the following tasks, see the ActivCard documentation, *Configuring Smart Card logon with ActivCard CSP for Windows 2000*.

To prepare the IIS Web server for certification authentication
1. Deploy a certificate and the CA that issued the certificate within IIS on the Web server that hosts the WebGate.
2. Enable SSL to protect communication on port 443 on the Web server that hosts the WebGate.
3. Enable client certificate authentication within IIS.
4. Download a 1024-bit-length Web server certificate from your Microsoft certificate server.

Note: Do not use a 512-bit-length certificate.

Preparing Oracle Access Manager for Smart Card Authentication
The following sections describe preparing Oracle Access Manager for Smart Card authentication.

Tip: For more information, see the *Oracle Access Manager Installation Guide*.

To prepare Oracle Access Manager for Smart Card authentication
1. Ensure that Oracle Access Manager is properly installed and running with Active Directory, including the latest patches, for example:
 - Identity Server and WebPass
 - Policy Manager and Access System Console
 - Access Server and WebGates
2. Confirm that SSL is enabled on the IIS Web server hosting the WebGate.

Protecting Resources with Oracle Access Manager
You need to modify the Client Certificate authentication scheme and add it to a policy domain to protect resources for Smart Card authentication.

Steps are provided in this procedure. For additional information, see the *Oracle Access Manager Access System Administration Guide*.

To configure the authentication scheme for Smart Card
2. Create or modify the Client Certificate authentication scheme to use the X509Cert challenge method, as shown in the example in Figure 14–2.
3. Click the Plug-Ins tab and ensure that the cert_decode and credential_mapping plug-ins contain appropriate parameters and values for Smart Card authentication, as shown in the example in Figure 14–3.

For more information, see “Client Certificate Authentication Schemes” on page 14-9.

This scheme will appear in the Authentication Scheme list when you add authentication rules to the policy domain.

Next, you create a policy domain in the Policy Manager. Steps are provided here and additional information is available in "About Policy Domains for Smart Card Authentication" on page 14-9.

To protect resources

1. Navigate to the landing page for Access System administration:
Setting Up Smart Card Authentication

2. Select the Policy Manager application, and click Create Policy Domain in the left navigation pane.

 For example:

 Name—Your Choice.
 Description—Optional

 Note: Do not enable the policy domain until all specifications are completed.

3. Click Save.

4. Click the Resources tab, then click Add and add a resource.

 For example:

 Resource Type—Your Choice
 URL Prefix—Your Choice
 Description—Optional

5. Click Save.

6. Click Authorization rules, and configure those that apply to your policy domain and resource, then confirm or add plug-in parameters, as usual.

7. Click the Default Rules tab, click the Add button, enter the details for the authentication rule and confirm that you are using the modified Client Certificate authentication scheme.

 For example:

 Name—Your choice
 Description—Optional
 Authentication Scheme—Client Certificate

8. Add an access policy, as needed.

 Delegating Administration is done as usual. There are no special requirements. For more information, see the *Oracle Access Manager Identity and Common Administration Guide*.

9. Click the General tab and enable the policy domain, as usual.

Setting Up the IIS Manager

Next you must configure the Oracle Access Manager cert_authn.dll to "accept cookies", in the Internet Services Manager.

To configure the cert_authn.dll

1. Navigate to the Internet Services Manager: Start, Programs, Administrative Tools, Internet Services Manager.

2. Expand the host, double click the Default Web Site (or another Web site if you are not using the default), then navigate to and double-click the cert_authn.dll.

 For example:

4. In the Client Certificate Authentication subpanel, enable Accept Certificates.

5. Click OK in the Secure Communications window, and click OK in the cert_authn.dll Properties window.

About Policy Domains for Smart Card Authentication

The key to creating an effective policy domain is to group the content that you want to manage in the same way. In this case, you will group resources that require Smart Card authentication under one policy domain.

Each policy domain includes a definition of the authentication scheme, rules, optional policies, administrative rights, and resources to protect. Only one authentication rule is allowed per policy domain or policy. Only one authentication scheme is allowed per rule to enforce authentication. The default rule applies unless you set overriding policies (exceptions) for specific resources (URL patterns).

Authentication Scheme: An existing authentication scheme must be specified as the building block for a rule. The Client Certificate authentication scheme is required for Smart Card authentication. For more information, see "Client Certificate Authentication Schemes" on page 14-9.

Administrative Rights: Administrative rights for the policy domain are optional. Until the Master Access Administrator delegates administration rights to a policy domain, he or she is the only person who can access it. All Administrators may create an authentication rule for a policy domain or a policy (exception). Only a Master Access Administrator or a Master Administrator may add resources to a policy domain.

Resources: Resources may be either static content such as HTML pages, .gifs, and .pdfs, or dynamic content such as scripts, applications, and EJBs.

For more information about policy domains, see the Oracle Access Manager Access System Administration Guide.

Client Certificate Authentication Schemes

Oracle Access Manager automatically configures the default Client Certificate authentication scheme if the Master Administrator selected this option during Access System installation. This scheme may be set up and/or modified after installation.

The Client Certificate scheme indicates that the user must supply a digital certificate to the policy domain to complete authentication. Oracle Access Manager supports client certificate authentication.
certificate authentication using public key encryption cryptography and X.509 certificates.

Your organization can determine how to obtain a certificate; there are no Oracle Access Manager requirements for this.

When you use the Oracle-provided schemes and plug-ins, you must be sure the obMappingFilter of the plug-in parameter is set correctly for your directory and environment. For additional information, see:

- "Smart Card Challenge Method, Parameter, SSL" on page 14-10
- "Plug-Ins for Smart Card Authentication" on page 14-10

Smart Card Challenge Method, Parameter, SSL

Each authentication scheme requires a challenge method to obtain user credentials for authentication. Only one challenge method is allowed per authentication scheme. Smart Card authentication has no Challenge Redirect requirement; however, the following is required:

- Smart Card authentication requires the X509Cert Challenge Method and X509 Challenge Parameter, which support public key encryption cryptography and X.509 certificates.
- Smart Card authentication requires an SSL connection.

The X509Cert challenge method uses the Secure Sockets Layer (SSL) version 3 certificate authentication protocol (SSLv3) certificate authentication protocol built into browsers and Web servers. Authenticating users with a client certificate requires the client to establish an SSL connection with a Web server that has been configured to process client certificates.

Note: Smart Card authentication has no Challenge Redirect requirement.

Plug-Ins for Smart Card Authentication

Two plug-ins supplied with Oracle Access Manager are required with the Client Certificate authentication scheme for Smart Card authentication. The order of execution in the Client Certificate authentication scheme for Smart Card logon is as follows.

<table>
<thead>
<tr>
<th>Authentication Scheme</th>
<th>Plug-Ins and Order of Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Client Certificate</td>
<td>1. cert_decode</td>
</tr>
<tr>
<td></td>
<td>2. credential_mapping</td>
</tr>
</tbody>
</table>

Each plug-in defines how information will be looked up in the directory server. A number of parameters are available depending upon the plug-in. For more information, see "cert_decode Plug-In" on page 14-11 and "credential_mapping Plug-In" on page 14-11.

If your certificate is stored in the browser, you can view the certificate details. For more information, including the OIDs of the attributes that are supported by the Access
Troubleshooting

Integrating Smart Card Authentication

Server with the corresponding suffix used to retrieve the attribute, see the Oracle Access Manager Access System Administration Guide.

cert_decode Plug-In
The cert_decode plug-in can be used with the X509Cert challenge method and must be included in the Client Certificate authentication scheme for Smart Card authentication.

The cert_decode plug-in has no parameters and does not use a data source. This should be the first plug-in in the Client Certificate authentication scheme for Smart Card authentication.

cert_decode decodes the certificate and extracts the components of the certificate subject's and issuer's Distinguished Name. For each component, the plug-in inserts a credential with a certSubject or certIssuer prefix. For instance, if your certificates have a subject name such as givenName=somename, the plug-in will add the credential certSubject.givenName=somename to the credential list.

If decoding is successful, the elements of the certificate's subject and issuer DN are added to the list of credentials. If not, authentication fails.

credential_mapping Plug-In
The credential_mapping plug-in can be used with the X509Cert challenge method and must be included in the Client Certificate authentication scheme for Smart Card authentication.

The credential_mapping plug-in should be second in the Client Certificate authentication scheme for Smart Card authentication. This plug-in maps the user-provided information to a valid Distinguished Name (DN) in the directory using the following parameters:

obMappingBase="ou=company,dc=yourdc,dc=yourdc,dc=com"
obMappingFilter="(&(objectclass=user=)(mail=%certSubject.E%))"

You can configure the attribute to which the user ID is mapped to find the DN by changing the obMappingFilter parameter as shown in the previous paragraph, where:

dc=the Active Directory Domain Controller
mail=%certSubject.E%=maps the email in the Active Directory to the email in the certificate

With these concepts in mind, complete the steps under "Protecting Resources with Oracle Access Manager" on page 14-6.

Troubleshooting

This section discusses the following troubleshooting tips for Smart Card authentication:

- Problem Requesting X.509 Certificates
- Additional Resources

Problem Requesting X.509 Certificates

Oracle Access Manager requires X.509 certificates from Microsoft's Certification Server on Windows 2000 to be downloaded to the Smart Card. In this case, you need the ActivCard Gold for authentication.
Problem
You request a certificate for Smart Card from the following Web page:
http://hostname/cersrv/certces.asp
You see the message "Downloading ActiveX Controls..." yet never complete the
process.

Solution
1. Visit the following Web page:
2. Obtain security patch Q323172 for certificate downloads with IIS.

Additional Resources
There are several sources of information that you may find useful when setting up
Smart Card authentication for Oracle Access Manager 10g (10.1.4.0.1).

Active Directory Resources
For more information about setting up Active Directory, see:
- Microsoft Active Directory documentation
- Oracle Access Manager Installation Guide chapter on installing on Active Directory
- Oracle Access Manager Identity and Common Administration Guide for details on
deploying with Active Directory

Smart Card Resources
For more information about setting up ActivCard utilities and the Smart Card, see the
documentation that accompanies your ActivCard product packages, including:
- ActivCard Gold User Guide
- ActivCard: Configuring Smart Card logon with ActivCard CSP for Windows 2000
- ActivCard Trouble Shooting Guide
For general information about smart cards, see:
- Microsoft Step-by-Step Guide to Installing and Using a Smart Card Reader
- Microsoft Step-by-Step Guide to Mapping Certificates to User Accounts

Oracle Access Manager Policy Domain Details
For more information about setting up protecting resources with Oracle Access
Manager policy domains, see the Oracle Access Manager Access System Administration
Guide.
This chapter explains how to integrate with the Microsoft SharePoint Portal Server (SPPS) 2003. It covers the following topics:

- About Oracle Access Manager and the SharePoint Portal Server
- Supported Platforms and Requirements
- Request Processing by the SPPS Integration
- Integrating with SPPS
- Setting Up Impersonation
- Completing the SPPS Integration

About Oracle Access Manager and the SharePoint Portal Server

Oracle Access Manager provides a full range of identity management and security functions, including: Web-based single sign-on (SSO), user self-service and self-registration, user provisioning, reporting and auditing, policy management, dynamic groups, and delegated administration. Oracle Access Manager integrates with all leading directory servers, application servers, Web servers, and enterprise applications.

SharePoint Portal Server (SPPS) is a secure, scalable, enterprise portal server that builds on Windows Server 2003 Microsoft Internet Information Services (IIS) and Windows SharePoint Services (WSS). SPPS can aggregate SharePoint sites, information, and applications into a single, easy-to-use portal. In addition to WSS functionality, SPPS incorporates additional features such as News and Topics as well as personal and public views for My Site, and so on.

Once Oracle Access Manager has been integrated with SPPS, the Access System handles user authentication through an ISAPI filter for IIS and an ISAPI wild card extension, which enables single sign-on between Oracle Access Manager and SPPS. WSS handles resource request authorization for all SPPS resources.

Such integration enables authenticated users to enjoy SSO access not just to SPPS resources, but also Oracle Access Manager-protected resources, which can reside on the full range of Oracle Access Manager-supported platforms (such as Windows, Solaris, or Linux,) or application servers (such as WebLogic or WebSphere).

About Windows Impersonation

Oracle Access Manager/SPPS integration utilizes the Windows impersonation feature, which enables a trusted user in the Windows server domain to assume the identity of
any user requesting an SPPS target resource. This trusted impersonator maintains the
identity context of the user while accessing the resource on behalf of the user.
Impersonation is transparent to the user; access appears to take place directly, as if the
SPPS resource were a resource within the Access System domain.

Supported Platforms and Requirements

Successful integration with SPPS requires both Oracle Access Manager and Microsoft
components, which must be installed and configured to support impersonation as well
as integration.

This section contains the following topics:

- Supported Versions and Platforms
- Required Microsoft Components
- Required Oracle Access Manager Components

Supported Versions and Platforms

Any references to specific versions and platforms in this chapter are for demonstration
purposes.

To see the supported versions and platforms for this integration, refer to Metalink, as
follows.

To view information on Metalink
1. Go to the following URL:

 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Required Microsoft Components

Any references to specific versions and platforms in this chapter are made for
demonstration purposes. For the latest support information, see the Certify tab at

Table 15–1 lists the Microsoft components required to integrate with SPPS.

<table>
<thead>
<tr>
<th>Component/Feature</th>
<th>Requirement/Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating System</td>
<td>Windows Server for the SPPS host.</td>
</tr>
<tr>
<td></td>
<td>Note: Any of the five editions is acceptable.</td>
</tr>
<tr>
<td></td>
<td>Also: The Active Directory Domain Controller must reside on a Windows Server 2003 machine, although that machine doesn’t have to be the one hosting SPPS.</td>
</tr>
</tbody>
</table>
Supported Platforms and Requirements

Integrating SharePoint Portal Server

Required Oracle Access Manager Components

The components in Table 15–2 are required to integrate with SPPS.

Table 15–2 Component Requirements

<table>
<thead>
<tr>
<th>Item</th>
<th>Requirement/Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebGate</td>
<td>The ISAPI version WebGate that ships with Oracle Access Manager must reside on the same machine as SPPS. Within the context of the SPPS integration, this WebGate is an ISAPI filter that intercepts HTTP requests for Web resources and works with the Access Server to authenticate the user who made the request. If authentication is successful, the WebGate creates an ObSSOCookie and sends it to the user’s browser, thus facilitating single sign-on. The WebGate also sets impersonate as a HeaderVar action for this user session.</td>
</tr>
</tbody>
</table>
Oracle Access Manager uses the Windows impersonation feature to facilitate user access to SPPS resources.

Process overview: Request processing with the SPPS integration

1. The user requests access to an SPPS resource.
2. The WebGate ISAPI filter protecting SPPS intercepts the request, determines whether the target resource is protected, and if it is, challenges the user for authentication credentials.
3. If the user supplies credentials and the Access Server validates them, the WebGate sets an ObSSOCookie in the user's browser, thus enabling single sign-on.

The WebGate also sets an HTTP header variable called "impersonate", whose value is set to the authenticated user's LDAP uid (or samaccountname, if the user account exists in Active Directory, or userPrincipalName, if the user account exists in a multi-domain Active Directory forest).
Integrating with SPPS

When such a header variable exists, the wildcard extension obtains a Kerberos ticket for the user. This Service for User to Self (S4U2Self) impersonation token enables the designated trusted user to assume the identity of the requesting user and obtain access to the target resource through IIS and SPPS.

Integrating with SPPS

Any references to specific versions and platforms in this chapter are made for demonstration purposes. For complete support information, see the Certify tab at https://metalink.oracle.com.

There are several phases to integrate with the SharePoint Portal Server.

Task overview: Integrating with SPPS

1. Install the Microsoft components, as described in "Installing Microsoft Components" on page 15-5.
2. Install Oracle Access Manager, as described in "Installing Oracle Access Manager Components" on page 15-8.
3. Set up impersonation, as described in "Setting Up Impersonation" on page 15-9.
4. Complete the integration, as described in "Completing the SPPS Integration" on page 15-18.

Installing Microsoft Components

Except where noted, all Microsoft SPPS-related components must be installed on the same host machine, including the following software:

- Windows Server 2003
- Microsoft IIS v6 Web Server
- SPPS (and underlying WSS)

The following Microsoft components can be installed on machines other than the one hosting the main SPPS installation:

- Active Directory (see Table 15–1 on page 15-2 for installation location details).
- SQL Server must be installed on a machine in the Active Directory domain only if the Active Directory Domain Controller is installed on the same machine as SPPS. See Table 15–1 on page 15-2 for installation location details.
- Additional SPPS front end servers.
- One or more back end servers containing SPPS resources such as Web pages, documents, or applications.

Note: At this point, IIS considers the user to be anonymous, since the impersonation has not yet been set.
The following task overview includes references to documentation that provides procedures and steps you need to complete when installing the Microsoft components for this integration.

Task overview: Installing Microsoft Components
1. Install Windows Server 2003 on the machine that will host your SPPS installation, as described in the appropriate Microsoft documentation.
2. Install IIS on the machine that will host your SPPS installation, as described in the appropriate Microsoft documentation.
3. Install Active Directory, as described in the appropriate Microsoft documentation and the *Oracle Access Manager Installation Guide*; also, see Table 15–1 for installation location considerations.
4. If SPPS and Active Directory Domain Controller reside on the same machine, you must also install Microsoft SQL Server on that machine as well, as described in Table 15–1.
5. Install SharePoint Services and SharePoint Portal Server on the root virtual server (which uses port 80, by default) of your IIS installation or on some other IIS virtual server.
6. Create and set up your portal.
7. After you install SPPS, stop and test the installation to ensure it operates correctly before you integrate with Oracle Access Manager.

Task Overview: Creating and setting up a portal
1. Create a portal.
2. Upload a test document.
3. Create audiences.
4. Edit audiences (if necessary).
5. Compile audiences.

To create a portal
1. In the Portal Site and Virtual Server Configuration section of the SharePoint Portal Server Central Administration page for server on which you wish to create a portal, click Create a portal site.
2. In the Portal Creation Options section, click Create a portal.
3. In the Site Name section, in the Name box, type a name for the portal site. This name will appear at the top of most pages for the portal site.
4. In the Virtual server list within the Site URL section, click the existing virtual server on the server that will host the portal site.
5. In the URL box, type the URL through which users connect to the portal site. By default, this URL is http://server_name/. If you choose a virtual server that has a
port number other than 80, the port number appears as part of the URL, that is, http://server_name:port_number/.

Note: Make sure to specify the load-balanced URL, not the local server URL.

6. In the Account name box of the Owner section, type the account name of the portal site owner in the format `Domain\user_name`. The portal site owner manages content and user access.

7. In the E-mail address box, type the e-mail address for the portal site owner, then click OK.

8. On the Create Portal Confirmation for `server_name` page, click OK to begin creating the portal site.

9. The Operation Status page displays as the portal is created. Following successful portal site creation, the Operation Successful page appears. At this point, you can begin detailed configuration of the portal site.

To upload a document to the portal

1. Using your Web browser, navigate to the home page for the portal.

2. Select Upload Document from the Actions list.

3. On the Upload Document page, click Browse, navigate to the document you wish to add, then click Open.

 To add multiple documents simultaneously, click Upload Multiple Files.

 To replace a file of the same name within the library, select the checkbox titled "Overwrite existing file(s)?"

4. Click Save, then click Close.

To create audiences

1. Audiences, which are based on jobs or tasks within an organization, match specified users to target content while preventing all other users from viewing that content. On the Managing Audiences page for the site you wish to configure, click Create audience.

2. On the Create Audience page, type a name and description for the audience.

3. Click either "Satisfy all rules" or "Satisfy any of the rules," then click OK.

4. After the Add Audience Rule page appears, add whatever rules you wish to govern access to the site content. (You can also add rules through the View Audience Properties page.) For details, consult the Microsoft SPPS documentation on Adding and Editing Audience Rules.

5. Compile the audience so that the content is targeted to that audience. See "To compile audiences" on page 15-8.

To edit audiences

1. On the View Audience Properties page for the site you are configuring, click View Audience Properties, then click Edit audience.

2. On the Edit Audience page, change the name or description of the audience, as necessary.

Note: Make sure to specify the load-balanced URL, not the local server URL.
3. Click either “Satisfy all rules” or “Satisfy any of the rules,” then click OK.

4. When the View Audience Properties page reappears, Add, Delete, or Edit the audience rules, as necessary.

5. Review the statistics for the audience, checking the number of current members and the most recent time of compilation. When you are satisfied with all the settings for the audience and the rules associated with that audience, compile the audience so that your changes take effect. See “To compile audiences” on page 15-8.

To compile audiences

1. Any changes you make to an audience or the rules associated with them do not take effect until you compile the audience. Navigate to the Manage Audiences page and check the compilation status and most recent compilation time for the audience you wish to compile. (You can also view the number of incomplete audiences on this page).

2. Either start a compilation or set a compilation schedule.

Installing Oracle Access Manager Components

The ISAPI Webgate for SPPS must be installed on the same machine as SPPS. The rest of your installation can reside on the same machine or any other machine.

If you choose to install on a different machine (which can be a Solaris, Linux, or Windows machine), it can be set up for Active Directory (if the host machine runs Windows Server 2003) or some other directory service, such as NetScape Directory Server (if the machine runs Solaris or Linux, for example).

If both Oracle Access Manager and SPPS are set up for different instances of Active Directory, both instances must belong to the same Active Directory domain.

To install Oracle Access Manager components for SPPS integration

1. On either the same machine that hosts SPPS (or on a different machine), install an Identity Server and a WebPass, then set up the Identity System as described in the Oracle Access Manager Installation Guide and see Table 15–2 for WebPass installation considerations.

2. On either the same machine that hosts SPPS (or a different machine), install Policy Manager and one or more instances of the Access Server, as described in the Oracle Access Manager Installation Guide and Table 15–2.

3. On the machine hosting the SPPS instance you are trying to integrate, install an ISAPI WebGate.

 The IISImpersonationExtension.dll will be installed as part of the package in the following directory:

 `WebGate_install_dir/access\Oblix\apps\webgate\bin`

 Where `WebGate_install_dir` is the directory where you installed the WebGate.

4. If you installed Policy Manager or WebPass on the same IIS virtual server as SPPS, complete activities in “Defining Managed Paths in SharePoint” on page 15-8.

Defining Managed Paths in SharePoint

You complete the following procedure only if the Policy Manager or WebPass resides on the same IIS virtual server as SPPS and listens to the same port as that IIS virtual
For instance, the default virtual IIS server uses port 80, as do many Policy Manager and WebPass installations; therefore, you need to change the port used by one application or exclude the path used by the Oracle Access Manager component through the Define Managed Paths feature in SharePoint.

To define managed paths in SharePoint
1. Select Start, Administrative Tools, SharePoint Central Administration.
2. In the Virtual Server Configuration section, click Configure virtual server settings.
3. In the Virtual Server list, click Default Web Site or the name of the virtual server on which both SPPS and the Oracle Access Manager components are installed.
4. In the Virtual Server Management section, select Define Managed Paths.
5. In the Add a Path section, type the path to Policy Manager or WebPass, then click the button marked Excluded path.
6. Click OK to add the path to the list of excluded paths.

Figure 15–1 Defining Managed Paths in SharePoint

Setting up impersonation, whether for SPPS integration or for use by some other application, is described in the following sections:
Task overview: Setting up impersonation

1. Create a trusted user account for only impersonation in the Active Directory connected to SPPS, as described in "Creating a Trusted User Accounts" on page 15-10.

2. Give the trusted user the special right to act as part of the operating system., as described in "Assigning Rights to the Trusted User" on page 15-11.

3. Bind the trusted user to the WebGate by supplying the authentication credentials for the trusted user, as described in "Binding the Trusted User to Your WebGate" on page 15-12.

4. Add a header variable named impersonate to Authorization Success Action in the policy domain for impersonation, as described in "Adding an Impersonation Action to a Policy Domain" on page 15-12.

5. Configure IIS by adding the IISImpersonationExtension.dll to your IIS configuration, as described in "Adding an Impersonation dll to IIS" on page 15-14.

6. Test impersonation, as described in "Testing Impersonation" on page 15-15.

Creating a Trusted User Accounts

This special user should not be used for anything other than impersonation.

To create a trusted user account

2. In the Active Directory Users and Computers window, right-click Users on the tree in the left pane, then select New, User.

3. In the First name field of the pane entitled New Object - User, enter an easy-to-remember name such as SPPSImpersonator.

4. Copy this same string to the User logon name field, then click Next.

5. In succeeding panels, you will be asked to choose a password and then retype it to confirm.

Note: Oracle recommends that you chose a very complex password, because your trusted user is being given very powerful permissions. Also, be sure to check the box marked Password Never Expires. Since the impersonation extension should be the only entity that ever sees the trusted user account, it would be very difficult for an outside agency to discover that the password has expired.
Assigning Rights to the Trusted User

You need to give the trusted user the right to act as part of the operating system.

To give appropriate rights to the trusted user
2. On the tree in the left pane, click the plus icon (+) next to Local Policies.
3. Click User Rights Assignment on the tree in the left pane.
4. Double-click "Act as part of the operating system" in the right pane.
5. Click Add User or Group.
6. In the Add User or Group panel, type the User logon name of the trusted user (SPPSImpersonator in our example) in the User and group names text entry box, then click OK to register the change.
Setting Up Impersonation

Binding the Trusted User to Your WebGate

You need to bind the trusted user to the WebGate by supplying the authentication credentials for the trusted user, as follows.

To bind your trusted user to your WebGate

1. Point your browser to your Access System Console. For example:

   ```
   http://hostname.domain.com:port/access/oblix
   ```

 where `hostname` is the DNS name of the machine hosting your Policy Manager, `domain` is the name of the server domain to which the machine belongs, and `port` is the number of the port to which Policy Manager listens.

3. Select the name of the Webgate you want to modify.

 The Details for AccessGate page appears with a summary of the configuration information for this WebGate. At the bottom of this Web page are fields for Impersonation Username and Impersonation Password.

4. Click the Modify button at the bottom of the Details for AccessGate page.

5. After the Modify AccessGate page appears, scroll to the bottom and enter the username and password for the trusted user account you created through the task on page 15-10.

 For example:

<table>
<thead>
<tr>
<th>Impersonation username</th>
<th>SPPSImpersonator</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impersonation password</td>
<td>~~~~~~~~~~~~~~~~</td>
</tr>
<tr>
<td>Re-type impersonation password</td>
<td>~~~~~~~~~~~~~~~</td>
</tr>
</tbody>
</table>

6. Click the Save button to commit the changes and return to the Details page.

 A bind has been created for the WebGate and the trusted user. The WebGate is now ready to provide impersonation on demand. The demand is created by an Authorization Success Action in a policy domain created for impersonation.

Adding an Impersonation Action to a Policy Domain

You must create or configure a policy domain to protect your SharePoint resources. You do this by adding an Authorization Success Action with a return type of "headerVar," the "name" parameter set to "Impersonate," and the "return attribute" parameter set to "samaccountname" for a single-domain Active Directory installation or "userPrincipalName" for a multi-domain Active Directory forest.

You must also choose an easy-to-remember name for the domain, such as Impersonation Policy Domain.

For details on creating a policy domain, see the Oracle Access Manager Access System Administration Guide.

To add an impersonation action to your policy domain

1. Navigate to the Access System Console and log in, for example:

   ```
   http://hostname.domain.com:port/access/oblix
   ```
2. Navigate to the Authorization Definitions page of the policy domain you want to change:

Policy Manager, My Policy Domains, PolicyName, Authorization Rules

Where PolicyName refers to the policy domain you created specifically for impersonation (ImpersonationPolicyDomain in our example).

Currently defined authorization rules are listed. If none are listed, click the Add button and complete the form to create one.

3. Click the link to the rule to which you want to add the impersonation action to expand the description.

4. Click the Actions tab, directly under the Authorization Rules tab.

The Authorization Success page appears, with a separate section for Authorization Success and Authorization Failure. If no actions are identified, you must add them. If actions are provided, you can modify them.

You need to add a header variable named "impersonate" to the Authorization Success Action in the policy domain for impersonation.

5. On the Authorization Success page, click the Add or Modify button.

6. In the Authorization Success area, fill in the Return details.

For example:

Type: HeaderVar
Name: IMPERSONATE
Return attribute: uid or samaccountname (Active Directory username, the Windows domain user for the desired folder)

Where "HeaderVar" is the return Type, "IMPERSONATE" is Name of the header variable for impersonation, and the Return value of uid or samaccountname is based on the directory being used.

7. Save the rule, which is used for the second WebGate request (for authorization).

The following is a sample screen shot.

Adding an Impersonation dll to IIS

You are ready to configure IIS by adding the IISImpersonationExtension.dll to your IIS configuration. See "To add the impersonation dll to your IIS configuration" on page 15-14 for details.

If you have multiple Web sites, where some are integrated with SPPS while others are not, you may want to enable impersonation for the Web sites that are not integrated with the SharePoint Portal Server. To do this, you must install Impersonation.dll at any level of the Web site tree and add a wildcard extension for Web sites. See "To add a wildcard extension for Web sites" on page 15-15 for details.

To add the impersonation dll to your IIS configuration

1. Select Start, Administrative Tools, Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Click Web Service Extensions on the tree in the left pane.
4. Double-click Oblix WebGate in the right panel to open the Properties panel.
5. Click the Required Files tab.
6. Click Add.
7. In the Path to file text box, type the full path to IISImpersonationExtension.dll. By default, the path is:

 WebGate_install_dir/access\oblix\apps\webgate\bin\
 IISImpersonationExtension.dll

 Where WebGate_install_dir is the directory of your WebGate installation.

 Note: If any spaces exist in the path (for example, C:\Program Files\Oracle\...) surround the entire string with double quotes (" ").

8. Click OK.
9. Click the General tab on the Web Services Extension Properties panel, then verify that the box "Do not check the file location" is not checked.
10. Verify that the Allow button to the left of the Oblix WebGate icon is greyed out, as indicated in the following screen shot, which indicates that the dll is allowed to run as a Web service extension.

 Note: If Allow is not greyed out, click it so that it becomes greyed out. When Allow is greyed out, this indicates that the highlighted file is permitted to run on the IIS virtual server.
To add a wildcard extension for Web sites

1. If Oracle Access Manager is not integrated with SharePoint Portal Server, configure a wildcard extension for Web sites by navigating as follows:

 Click Start, then click Administrative Tools, then click Internet Information Services (IIS) Manager.

2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.

3. Click Web Sites in the tree in the left pane.

4. Right-click the icon representing your Web site, then click Properties in the menu.

5. Click the Home Directory tab.

6. Click the Configuration button.

7. In the list box for Wildcard application maps, click the entry for IISImpersonationExtension.dll to highlight it, then click Edit.

8. Ensure that the box is unchecked.

Testing Impersonation

You can test Impersonation in the following ways:

- Outside the SPPS context or test SSO, as described in "Creating an IIS Virtual Site Not Protected by SPPS" on page 15-16
- Using the Event Viewer, as described in "Testing Impersonation Using the Event Viewer" on page 15-16
- Using a Web page, as described in "Testing Impersonation using a Web Page" on page 15-17
- Using negative testing as described in "Negative Testing for Impersonation" on page 15-17
Creating an IIS Virtual Site Not Protected by SPPS
To test the impersonation feature outside the SPPS context or to test SSO, you will need a target Web page on an IIS virtual Web site that is not protected by SPPS. You create such a virtual Web site by completing the following task.

To create an IIS virtual site not protected by SPPS
1. Select Start, Administrative Tools, Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Right-click Web Sites on the tree in the left pane, then navigate to New, Web Site on the menu.
4. Respond to the prompts by the Web site creation wizard.
5. After you create the virtual site, you must protect it with a policy domain, as described in the Oracle Access Manager Access System Administration Guide.

Testing Impersonation Using the Event Viewer
When you complete impersonation testing using the Windows 2003 Event Viewer, you must configure the event viewer before conducting the actual test.

To test impersonation through the Event Viewer
1. Select Start Menu, Event Viewer.
2. In the left pane, right-click Security, then click Properties.
3. Click the Filter tab on the Security property sheet.
4. Verify that all Event Types are checked, and the Event Source and Category lists are set to All, then click OK to dismiss the property sheet.

Your Event Viewer is now configured to display information about the HeaderVar associated with a resource request.

Figure 15–5 Verifying Event Viewer Settings
5. Create a new IIS virtual server (virtual site).
6. Place a target Web page anywhere in the tree on the virtual site.
7. Point your browser at the Web page.

If impersonation is working correctly, the Event Viewer will report the success of the access attempt.

Testing Impersonation using a Web Page

You can also test impersonation using a dynamic test page, such as an .asp page or a perl script, that can return and display information about the request.

To test impersonation through a Web page that displays server variables

1. Create an .asp page or perl script that will display the parameters AUTH_USER and IMPERSONATE, which can resemble the sample page presented in the following listing:

 Example 15–1 Sample .ASP Page Code

   ```
   <TABLE border=1>
   <TR>
   <TD>Variable</TD>
   <TD>&nbsp&nbsp</TD>
   <TD>Value</TD></TR>
   <%for each servervar in request.servervariables%>
   <TR>
   <TD><%=servervar%></TD>
   <TD>&nbsp&nbsp</TD>
   <TD><%=request.servervariables(servervar)%>&nbsp</TD>
   </TR>
   </TR>
   ```

2. Create an IIS virtual site, or use the one you created for the previous task.
3. Place an .asp page or perl script (such as the sample in the preceding listing) anywhere in the tree of the new virtual site.
4. Point your browser at the page, which should appear, with both AUTH_USER and IMPERSONATE set to the name of the user making the request.

Negative Testing for Impersonation

To conduct negative testing for impersonation, you need to unbind the trusted user from the WebGate, as explained in the following procedure.

To unbind the trusted user from your WebGate

1. Log in to the Access System Console at a URL similar to the following:

   ```
   http://hostname.domain.com:port/access/oblix
   ```

 Where `hostname` is the DNS name of the computer hosting your Access Manager, `domain` is the name of the server domain to which the machine belongs, and `port` is the number of the port to which Access Manager listens.

2. Select Access System Console, then click Access System Configuration, then click AccessGate Configuration.
3. Select the name of the Webgate that you want to modify.
Completing the SPPS Integration

The Details for AccessGate page appears with a summary of the configuration information for this WebGate. At the bottom of this Web page are fields for Impersonation Username and Impersonation Password.

4. Click the Modify button at the bottom of the Details for AccessGate page. The Modify AccessGate page appears.

5. Remove the credentials for the trusted user.

6. Click Save. You return to the Details page.

7. Restart the IIS server.

8. Point your browser at the sample .ASP code page that you created in "To test impersonation through a Web page that displays server variables" on page 15-17. An error message page should appear. Values for AUTH_USER and IMPERSONATE are necessary for impersonation credentials to be bound to a WebGate.

Completing the SPPS Integration

You need to complete several procedures to set up a Oracle Access Manager/SPPS integration.

Task overview: Setting up the SPPS integration

1. Set up IIS security, as described in "Configuring IIS Security" on page 15-18.

2. Configure the wildcard extension for each SPPS virtual server for which you wish to enable integration, as described in "Configuring the Wildcard Extension" on page 15-19.

3. Edit the web.config file, as described in "Editing web.config" on page 15-20.

4. Test the integration, as described in "Testing Your Integration" on page 15-22.

Configuring IIS Security

Be sure to configure IIS Security before you continue.

To configure IIS Security for the SPPS integration

1. Select Start, Administrative Tools, Internet Information Services (IIS) Manager.

2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.

3. Click Web Sites on the tree in the left pane.

4. Right-click the icon on the tree in the left pane that represents the SPPS server you are protecting with your WebGate, then select Properties from the menu.

5. In the property sheet for the SPPS server, click the Directory Security tab.

7. In the Authentication Methods panel, click the box labelled Enable anonymous access so that a check appears, then click OK to complete the task.
You are ready to configure the wildcard extension for each SPPS virtual server for which you wish to enable integration.

To configure the wildcard extension for SPPS virtual servers

1. Select Start, Administrative Tools, Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Click Web Sites on the tree in the left pane.
4. Right-click the icon representing your SPPS server, then click Properties on the menu.
5. Click the Home Directory tab.
6. Click the Configuration button.
7. In the list box for Wildcard application maps, click the entry for IISImpersonationExtension.dll to highlight it, then click Edit.

Figure 15–6 Configuring IIS Security

Note: Enable anonymous access does not enable anonymous users to access the SharePoint Portal. Rather, this setting configures IIS to relinquish access control to the Access System.
Completing the SPPS Integration

8. Ensure that the box is unchecked.

9. Verify that the file exists, then click OK three times to close the Add/Edit panel, the Application Configuration panel and the property sheet for your portal server.

Figure 15–7 Configuring the Wildcard Extension

Editing web.config

Add the following line to the web.config file.

```
<add key = "SPS-EnforceIISAnonymousSetting" value="false" />
```

To edit web.config for the SPPS integration
1. Open Windows Explorer and navigate to the document root of your IIS Web site.
2. Use any text editor to open the XML file web.config.
3. Locate the appSettings markers at the end of the file, or create them if they do not exist:

```
<Configuration>
  // [Various configuration settings]
  <appSettings>
    // [Insert "<add key . . . >" here.]
```
Completing the SPPS Integration

Integrating SharePoint Portal Server

4. Add the following line where indicated in the previous listing:

 <add key = "SPS-EnforceIISAnonymousSetting" value="false" />

5. Save web.config.

6. Restart IIS so that the new setting will take effect by completing the following steps:

a. Select Start Menu, Internet Information Services (IIS) Manager.

b. In the tree in the left pane, locate the name of the local computer hosting your SPPS installation and write it down; you will need the name of this computer to restart IIS.

c. Right-click the local computer icon and select Disconnect from the menu.

d. After the warning asks if you really want to disconnect, click Yes to confirm the action.

 The local computer icon disappears from the tree in the left pane, indicating that IIS has been shut down on that machine.

e. In the tree in the left pane, right-click the Internet Information Services icon and click Connect on the menu.

f. In the Connect to computer panel, type the name of the computer hosting your SPPS installation, then click OK to restart IIS.

Figure 15–8 Restarting IIS after Editing web.config

Synchronizing User Profiles Between Directories

You need to synchronize user profiles between the SharePoint Portal Server directory and the Oracle Access Manager directory:
Completing the SPPS Integration

- **Uploading user data**—If your Oracle Access Manager installation is configured for any directory server other than SharePoint Active Directory, you must load the user profiles that reside on the other directory server to SharePoint Active Directory.

- **Importing user profiles in SharePoint Portal Server**—After uploading the user profiles, you need to import the profiles from Active Directory to SharePoint Portal Server.

To configure importing user profiles in SharePoint Portal Server

1. Go to Site Settings.
2. Under User Profile, Audiences, and Personal Sites, click Manage Profile Database.
3. To configure user profile imports from Active Directory, click Configure Profile Import.

Testing Your Integration

After you complete the tasks to enable integration, you should test to verify that integration is working.

This section contains the following topics:

- Testing the SPPS Integration
- Testing Single Sign-On for the SPPS Integration

Testing the SPPS Integration

You want to verify that a user can access SPPS resources through Oracle Access Manager authentication and SPPS authorization.

To test your SPPS integration

1. Navigate to any SPPS Web page using your browser.

 The Access System challenges you for credentials.

2. Log in by supplying the necessary credentials, then verify that the page you requested is visible.

3. **Optional**: Check the Event Viewer to confirm that the access request was successful.

Testing Single Sign-On for the SPPS Integration

You should also test single sign-on by demonstrating that a user who has just supplied credentials and accessed an SPPS resource can (before the ObSSOCookie expires) access a non-SPPS resource without having to supply credentials a second time. For example, use a resource defined in the Policy Manager.

When single sign-on is working, you should be granted access to the page without having to supply credentials a second time.

To test single sign-on for your SPPS integration

1. Create and protect a new virtual site with a policy domain (or use one you have already created).
2. Place a Web page anywhere in the tree of this virtual site.
3. Using a browser, navigate to the page in the new virtual site.
If you have already passed authentication, you should be granted access to the page without having to supply credentials a second time.
Oracle Access Manager supports the ASP.NET component of the Microsoft .NET Framework, which developers can use to build, deploy, and run Web applications and distributed applications.

The Security Connector for ASP.NET supports and enhances native .NET role-based security. This chapter explains how to use the Security Connector for ASP.NET to instantiate a new OblixPrincipal object and populate it with roles (Oracle Access Manager authorization rules) and the native WindowsPrincipal object.

This chapter includes the following topics:

- About ASP.NET
- Security Principals and Security Identifiers (SIDs)
- IPrincipal.IsInRole Method Syntax
- About the Security Connector for ASP.NET
- Oracle Access Manager Components and Requirements
- The OblixHttpModule
- Authorization with the Security Connector for ASP.NET
- Using the Security Connector for ASP.NET
- Setting Up the ASP.NET Application for the Security Connector
- Oracle Access Manager Role-Based Authorization

About ASP.NET

ASP.NET is a set of technologies in the Microsoft .NET Framework that enables the building of Web applications and XML Web services using compilation and caching technologies available in the .NET Framework. Characteristics of ASP.NET pages:

- Run on a server and generate markup that is sent to a browser, for example, HTML, WML, or XML
- Use a compiled, event-driven programming model that enables the separation of application logic and the user interface
- Contain server-side logic, rather than client-side logic, written in Visual Basic .NET, C# .NET, or any .NET-compatible language

Developers can use the .NET Framework class library, which is an object-oriented collection of reusable types, to create ASP.NET applications. Web applications and XML Web services benefit from features of the common language runtime (CLR).
Security Principals and Security Identifiers (SIDs)

Both ASP.NET and Microsoft Internet Information Services (IIS) provide security models that allow you to authenticate users appropriately and obtain the correct security context within your application.

The user’s (or potentially an application’s or computer’s) identity is referred to as a security principal. The client must provide credentials to allow the server to verify the identity of the principal. After the identity is known, the application can authorize the principal to access protected resources.

Windows provides a WindowsPrincipal object that defines a user identity and the user’s role identity. The role identity is the role or roles defined in Windows for the user identity. Microsoft .NET technology provides an interface to create a Principal object using only Windows-specific roles. ASP.NET applications can call the Windows IPrincipal.IsInRole method to find out if the identity is in a specific role, for example, the admin role or users role.

Security within the ASP.NET Framework revolves around security identifiers (SIDs). SIDs are equal to Oracle Access Manager single sign-on tokens and represent a unique user within the Windows operating system. ASP.NET wraps each SID into a series of managed objects that allow a developer to impersonate that user.

The main object that wraps the SID is the Identity object (IIdentity). This object enables a developer to discover how that identity was established by calling methods to obtain the following:

- The authentication method
- The name of the identity
- The authentication status (authenticated or not)

For more information, consult the Microsoft ASP.NET documentation.

IPrincipal.IsInRole Method Syntax

A principal object represents the security context of the user on whose behalf the code is running, including that user’s identity (IIdentity) and any roles to which the user belongs. The .NET Framework class library IPrincipal interface defines the basic functionality of a principal object.

Note: All principal objects are required to implement the IPrincipal interface.

During the authorization process, the public IPrincipal.IsInRole method determines whether the current principal belongs to the specified role.

The following IPrincipal.IsInRole method syntax is based on .NET Framework version 1.1 and is intended only as an example:

[Visual Basic]
Function IsInRole(_
 ByVal role As String _
) As Boolean

[C#]
bool IsInRole(
 string role
);

[C++]
bool IsInRole(
 string* role
);

[JScript]
function IsInRole(
 role : String
) : Boolean;

Parameters

role
The name of the role for which to check membership.

Return value

true—Returns true if the current principal is a member of the specified role.
false—Returns false otherwise.

Supported Versions and Platforms

To see the supported versions and platforms for this integration, refer to Metalink, as follows.

To view information on Metalink
1. Go to the following URL:
 http://metalink.oracle.com
2. Click the Certify tab.
3. Click View Certifications by Product.
4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Requirements

This operates on all Windows platforms that support the .NET framework.

Older WebGates are compatible with more current Access Servers. However, older WebGates use a different encryption scheme for the shared secret, as discussed in the Oracle Access Manager Access Administration Guide.

For more information and the most current syntax, see the following Web site:
http://msdn.microsoft.com/developercenters/

About the Security Connector for ASP.NET

The Security Connector for ASP.NET:

- Provides a dynamically-loaded native library assembly to enhance ASP.NET behavior to take advantage of Oracle Access Manager features
- Extends pre-defined Microsoft roles to include dynamic groups and any attribute values defined in an Oracle Access Manager user’s profile
For example, Microsoft provides pre-defined roles within a Windows domain. However, Microsoft roles do not include the flexibility of Oracle Access Manager’s dynamic groups, timing, and other conditions that can alter a user’s access rights.

You can customize your ASP.NET application or Web service to use the Oracle Access Manager assembly during the authorization process. This converts Oracle Access Manager authorization actions into roles using a header variable that maps to roles that are meaningful to the .NET environment.

Note: Administrators must plan and coordinate the roles that will be used with the application developer or deployer. Oracle Access Manager does not know what the .NET roles are, and has no way to discover what the roles are. The Oracle Access Manager role and the .NET role are related only through an Oracle Access Manager role string. There is no referential integrity supplied or implied.

Oracle Access Manager Components and Requirements

The Security Connector for ASP.NET library assembly, OBPrincipalHTTPModule.dll, is installed with the WebGate in the same directory as the webgate.dll. For example:

```
\WebGate_install_dir\access\oblix\apps\webgate\bin\ObPrincipalHTTPModule.dll
```

Because more than one application may share the OBPrincipalHTTPModule assembly, it is included in the global assembly cache (GAC).

The new Oracle Access Manager library assembly runs as an ASP.NET HttpModule. Therefore, you must include details about this assembly in the Web.config file on the same machine and in the same directory as the ASP.NET application.

The OBPrincipalHTTPModule assembly includes a new OblixPrincipal object class and the OblixHttpModule. With this assembly, the ASP.NET application can define and pass an Oracle Access Manager role. Without this assembly, the application can pass only Windows roles.

The OblixHttpModule

The OblixHttpModule recognizes Oracle Access Manager roles, and the roles supported with the WindowsPrincipal object. In fact, Oracle Access Manager recognizes any principal object in the .NET framework class library.

The OblixHttpModule must be specified as an action type in the Oracle Access Manager authorization rule that protects the ASP.NET application. See "Setting up the Oracle Access Manager Role Action" on page 16-8 for details.

During authorization, the OblixHTTPModule:

- Instantiates the new OblixPrincipal object before control is given to the ASP.NET application using the WindowsPrincipal object (or any other type of principal object in the .NET framework class library) that was extracted from the request.
- Adds Oracle Access Manager role data (the authorization rule action) to the OblixPrincipal object.
- Associates the OblixPrincipal object with the ASP.NET HTTP request.
The OblixPrincipal Object

A role is the name of a membership category, for example, admin or user. The OblixPrincipal object represents the security context of the user on whose behalf the code is running. This includes the user’s identity (IIdentity) and any roles to which they belong as derived from the Windows IPrincipal interface. The IPrincipal.IsInRole method checks both Oracle Access Manager roles and the iPrincipal interface.

Authorization with the Security Connector for ASP.NET

The following high-level overview introduces authorization using the Security Connector for ASP.NET. For a more detailed example, see "Oracle Access Manager Role-Based Authorization" on page 16-9.

Process overview: Authorization with the Security Connector for ASP.NET

1. After the user is authenticated, the WebGate begins the authorization process with the Access Server, as usual.
2. The IIS Web server creates the WindowsPrincipal object based on Windows Impersonation.
3. The OblixHttpModule receives the request, instantiates a new OblixPrincipal object using the WindowsPrincipal object, and adds Oracle Access Manager role data based on the Oracle Access Manager authorization rule action.
4. The OblixPrincipal object initializes itself, then recognizes and stores Oracle Access Manager role data in memory.
5. The OblixHttpModule associates the OblixPrincipal object with the request and returns control to the IIS Web server.
6. The ASP application extracts the OblixPrincipal object for the request and calls the IPrincipal.IsInRole method.
7. The OblixPrincipal object calls the WindowsPrincipal object’s IsInRole method from the .NET framework class library to determine whether the current principal belongs to the specified .NET role, checks the Oracle Access Manager role, and returns the answer to the ASP.NET application.
8. The IPrincipal.IsInRole method returns true or false, depending on the current user’s identity and the Oracle Access Manager authorization rule. For a syntax example, see "IPrincipal.IsInRole Method Syntax" on page 16-2.

 If the answer is false, the Principal object looks in the Oracle Access Manager role list for the requested role and returns the answer to the ASP.NET application. If the answer is true, the ASP.NET application completes processing and access to the resource is granted.

Using the Security Connector for ASP.NET

The following task overview explains how to use the Security Connector for ASP.NET.
Task overview: Setting up the Security Connector for ASP.NET

1. Install a WebGate, as described in “Setting Up Your Environment” on page 16-6.
2. Set up the application, as described in “Setting Up the ASP.NET Application for the Security Connector” on page 16-7.
3. Configure the Oracle Access Manager role action, as described in “Setting up the Oracle Access Manager Role Action” on page 16-8.

For a process overview, see “Oracle Access Manager Role-Based Authorization” on page 16-9.

Setting Up Your Environment

Before you can use the Security Connector for ASP.NET, you must set up the WebGate on a machine hosting the IIS Web server and the .NET framework with ASP.NET.

You are given the option to include the .NET framework and ASP.NET during IIS Web server installation. This automatically configures the IIS metabase. The ASP.NET application security configuration and the IIS security configuration are independent. Each may be use separately or together.

IIS maintains security related configuration settings in the IIS metabase. ASP.NET maintains security (and other) configuration settings in XML configuration files. For more information, see your Microsoft documentation.

To set up your environment

1. Install the IIS Web server and the .NET Framework with ASP.NET.

 If you are using IIS v6.x, be sure to enable ASP.NET applications. The actions in the next step occur automatically if you install the .NET framework after installing the IIS Web server. If this reflects your installation, skip the next step.

2. Register ASP.NET and allow the ASP.NET Web Service Extension on the machine that will host the WebGate, if needed.

 For example, if you configure aspnet.regiis.exe, you would go to IIS, then local_host, then to Web Service Extensions, then to ASP.NET v1.1.4322, then to Properties, then to Allowed, as illustrated in the following screen shot:

3. Install the WebGate on a machine that hosts the IIS Web server, the .NET Framework, and ASP.NET.

 The WebGate installation will end before completion if the .NET framework is not included on the WebGate host. To share the ObPrincipalHTTPModule assembly among all applications, the assembly is installed as part of the global assembly cache.
Setting Up the ASP.NET Application for the Security Connector

When you create the ASP.NET application or Web service using Visual Studio.NET, a generic Web.config file is created automatically. You can modify this file to customize your application to use the ObPrincipalHTTPModule.dll assembly during authorization.

With impersonation enabled, ASP.NET applications can run with the identity of the client on whose behalf they are operating. ASP.NET will receive the token to impersonate from IIS.

Note: If you do not enable impersonation in the application and in Oracle Access Manager, Oracle Access Manager roles will not be returned, which encapsulate all roles. However, the permissions may not be all you need.

To set up the ASP.NET application

1. Use Visual Studio .NET to write your ASP.NET application or Web service, as described in the Microsoft documentation.

2. Include the following details in the Web.config file under `<System.Web>` to use the OblixHttpModule and OBPrincipalHTTPModule.dll.

 Be sure to include your own PublicKeyToken. For example:

   ```
   -->
   <httpModules>
   <add type="Oblix.Agents.OblixHttpModule,
   ObPrincipalHttpModule, Version=7.0.0.0, Culture=neutral,
   PublicKeyToken="xxxxxxxxnnnnxxxx" name="OblixHttpModule"/>
   </httpModules>
   <compilation
   defaultLanguage='c#'
   debug="true"
   />
   ```

 Note: The value of Culture= is case-sensitive; "neutral" must be lowercase.

3. Reference the ObPrincipalHttpModule assembly in your application.

 Right-click the project in Visual Studio, select Add Reference, click the Project tab, then browse for and select the global assembly cache.

 Note: You may also use the /r option if the application is built from the command line.
You can either reference the iPrincipal object in the application, as described in the following steps, or point to the ACLs in the Web.config file.

4. Add the iPrincipal references for the required .NET assemblies to the application (or see the sample web.config file).

 For example:

   ```csharp
   using System.Security.Principal;
   ```

5. Add a method to the application that calls the IPrincipal.IsInRole() function with the appropriate parameters for your application.

 For example, if the return value of the authorization rule action is Manager, the method would be the following.

   ```csharp
   Context.User.IsInRole("Manager"); // Context - HttpContext object associated with the page
   // user - Principal object
   ```

The application is now set up to use the Security Connector. Next you must set up the Oracle Access Manager role action.

Setting up the Oracle Access Manager Role Action

Actions can pass information about users to other applications in the same, or different, Oracle Access Manager policy domain. Authorization actions occur when a user requests access to a resource (that is, when the user requests the resource’s URL).

Before passing roles to the OblixHttpModule, you need to create a role action in the authorization rule for the policy domain that protects the ASP.NET application. This action relies on the OblixHttpModule. Aware Oracle Access Manager clients can use the role action to define roles separate from header variables.

The role is contained in a Principal object. You may have as many roles as you choose. Each role value will be added to the OblixPrincipal object. When calling the IPrincipal.IsInRole method from the .NET Framework class library with any of the Role values, true is returned.

To set up Oracle Access Manager Role Actions

1. Create a policy domain in the Policy Manager to protect the ASP.NET applications and include an impersonation action.
For more information on policy domain configuration and single sign-on configuration, see the Oracle Access Manager Access Administration Guide.

2. Select the authorization rule and click the Actions tab to define an action for this authorization rule to pass roles to the OblixHttpModule:

- **Type**: Specify OblixHttpModule. Only a type of OblixHttpModule will be forwarded to the ASP.NET HttpModule.

- **Name**: Supply a role or a name.

 You can have as many roles as you choose. Each role value is added to the OblixPrincipal object. When calling the IPrincipal.IsInRole method with any of these values, true is returned.

 Only one name may be set. Name exists in the event that IIS does not provide an Identity name, for example, None authentication in the Web.config file. If Windows authentication is set and the WebGate is configured for impersonation, this action is ignored.

- **Return Value**: This can be any static or dynamic value, like any other action.

3. Save the rule and restart the Access Server to have your changes take effect.

Your environment is set up, the ASP.Net application is complete, and the Oracle Access Manager policy domain protects the application with the new authorization rule.

Oracle Access Manager Role-Based Authorization

The following process occurs during authentication and role-based authorization with the Security Connector for ASP.NET. Figure 16–1 illustrates the sequence and is followed by a detailed description.
Process overview: Events during authentication and authorization

1. The Web server receives the user’s ASP URL request. The WebGate intercepts the request and communicates with the Access Server to determine:
 - If the resource is protected
 - How the resource is protected
 - If the user is authenticated
 - If user access is authorized

 Authentication is performed between the Access Server and directory server, as usual.

2. When the user is authenticated, the WebGate begins the authorization process with the Access Server and:
 a. Sets action headers for roles
 b. Performs Windows Impersonation
 c. Returns control to the IIS Web server

3. The IIS Web server creates the WindowsPrincipal object based on Windows Impersonation.

4. The OblixHttpModule:
 a. Receives the request
 b. Instantiates a new OblixPrincipal object using the WindowsPrincipal object that was extracted from the request
 c. Adds Oracle Access Manager role data (the authorization rule action)
5. The OblixPrincipal object initializes itself and stores Oracle Access Manager role data in memory.

6. The OblixHttpModule associates the OblixPrincipal object with the request and returns control to the IIS Web server.

7. The ASP application extracts the OblixPrincipal object for the request and calls the IPrincipal.IsInRole method. The OblixPrincipal object does the following:
 a. Calls the WindowsPrincipal object’s IsInRole method
 b. Checks the Oracle Access Manager role
 c. Returns the answer to the ASP.NET application
 If the answer is false, the Principal object looks in the Oracle Access Manager role list for the requested role and returns the answer to the ASP.NET application.

8. The ASP.NET application completes processing and access to the resource is granted.
Integrating Authorization Manager Services

Oracle Access Manager 10g (10.1.4.0.1) provides an authorization plug-in that uses the Microsoft Windows Server 2003 Authorization Manager (AzMan) services to make authorization decisions for Access Server clients, including WebGates and callers of the Access Manager API.

This chapter explains how to configure a Oracle Access Manager policy domain for the 10g (10.1.4.0.1) AzMan Plug-in, and includes the following topics:

- About Oracle Access Manager and the AzMan Plug-In
- Authorization with the AzMan Plug-In
- Oracle Access Manager Components and Requirements
- About the Windows Authorization Manager
- Examples
- Configuring the AzMan Plug-In
- Troubleshooting

About Oracle Access Manager and the AzMan Plug-In

Authorization is the process that determines what access a user is permitted to have, and what a user is permitted to do, after they have been authenticated. Oracle Access Manager extends its access policies through authorization plug-ins.

An Oracle Access Manager authorization plug-in is a component that consists of a set of functions that reside in a dynamically-loaded native library to change or enhance Oracle Access Manager behavior. The AzMan Plug-in enables Access System authorization rules to use the facilities of the Microsoft Authorization Manager on Windows Server 2003.

When using the AzMan Plug-in:

- WebGates can control access to Web content based on Authorization Manager policies.
- Applications using the Access Manager API can use Authorization Manager policies through the ObUserSession isAuthorized() call.
- WebGates and Access Manager API clients can be on any Oracle Access Manager-supported platform, which means that:
 a. If your environment is primarily Microsoft, you can use the Authorization Manager to define policy for Windows-based applications and Oracle Access
Manager can enforce those policies in the parts of the protected applications, such as ASP URLs, for instance.

In this case, you can define application roles in the Authorization Manager and Oracle Access Manager can use these roles when enforcing Web access control.

b. If your environment includes non-Windows applications, these applications can also use Authorization Manager policies.

Non-Windows applications can use the Access Manager SDK for the Authorization Plug-in API to get authorization decisions from the Authorization Manager through the AzMan Plug-in.

The AzMan Plug-in is executed by a Access Server during the evaluation of access policies. The Authorization Plug-in API enables the Access Server to use the plug-in to make outbound calls to external business logic. The external business logic determines whether a user is authorized to access a resource. The external business logic also determines whether to pass authorization actions during the evaluation of access policies.

The Authorization Plug-in API:

- Provides the interface that the AzMan Plug-in implements and the Access Server calls
- Provides the callback functions that the plug-in uses to retrieve additional data from the Access Server
- Defines data structures that pass information between the AzMan Plug-in and the Access Server

For example, the ObUserSession.isAuthorized() method in the Access Manager SDK for the Authorization Plug-in API can evaluate AzMan policies for a user and, optionally, for a set of parameters.

For more information, see the following discussions:

- "Authorization with the AzMan Plug-In" on page 17-3
- "Oracle Access Manager Authorization Rules and Schemes" on page 17-6
- "Oracle Access Manager Components and Requirements" on page 17-5
- "About the Windows Authorization Manager" on page 17-8.

Supported Versions and Platforms

Any references to specific versions and platforms in this chapter are for demonstration purposes.

To see the supported versions and platforms for this integration, refer to Metalink as follows.

To view information on Metalink

1. Go to the following URL:

 http://metalink.oracle.com

2. Click the Certify tab.

3. Click View Certifications by Product.

4. Select the Application Server option and click Submit.
5. Choose Oracle Application Server and click Submit.

Authorization with the AzMan Plug-In

The following figure introduces authorization with the AzMan Plug-in.

Process overview: WebGate operation with the AzMan Plug-in

1. The WebGate sends an ISAuthorized() request for the authenticated user and the URL to the Access Server.

2. The Access Server determines the URL is protected by a policy with an authorization rule that specifies an authorization scheme for the AzMan Plug-in. If the authorization scheme requires request context values (configured as RA_user parameters in the authorization scheme) that are not available in the IsAuthorized request, the Access Server returns a NeedMoreData response to the WebGate.

When the WebGate receives the NeedMoreData status, the WebGate:

a. Gets the request context data indicated in the status
b. Resends the IsAuthorized request with the data
c. Continues processing with the beginning of step 2

3. If this is the first time the plug-in has been invoked, the Access Server loads the authz_azman library and executes the ObAzPluginInit() function in the library, which:

a. Creates the authz_azman_log.txt file in the install_dir/oblix/engine directory
b. Reads the authz_azman_msg.lst file in the default language directory of the installation
c. Checks that the Authorization API version of the Access Server is compatible with the plug-in
d. Initializes the COM interface

4. The Access Server executes the ObAzPluginFn() function in the plug-in, which:

a. Gets its configuration parameters from the various plug-in data blocks

b. Searches the list of open application stores for a store matching the AzStore parameter

c. If no open store is found, the plug-in opens the store and puts it in the list

d. Creates an application object for the AzApplication parameter

e. Initializes a client context for the browser user

f. If an AzRole is specified, the plug-in sets the client context to the role

g. Converts the AzOperation parameter values to an array of IDs

h. If the AzRuleParameters is specified, the plug-in retrieves the corresponding parameter values from the plug-in data blocks and sets up arrays with the parameters and their values

i. Calls the AzMan AccessCheck() method for the client context, the scope (if specified), the operation ID array, and the rule parameter and value arrays (if present)

j. Interprets the result of the access check:

 - If the result is access allowed and AzContinueOnAllow=yes, the plug-in returns ObAzPluginStatusContinue, which instructs the Access Server to continue processing subsequent authorization rules (possibly invoking other plug-ins).
 - If the result is access allowed and AzContinueOnAllow=no, or is omitted, the plug-in returns ObAzPluginStatusAccessAllowed this causes the Access Server to immediately return allowed.
 - If the result is access denied, return ObAzPluginStatusAccessDenied, this causes the Access Server to immediately return denied.

5. The WebGate gets the IsAuthorized result from the Access Server and blocks or allows access to the requested URL.

Note: For more information, see "Example 3: Authorization Process Flow" on page 17-19.

Process overview: Access Manager API operation with the AzMan Plug-In

An application using the Access Manager API executes the ObUserSession IsAuthorized() method for an authenticated user, a resource, and optional set of parameters that may include Authorization Manager configuration parameters. The following process overview the operation of the Access Manager API and the Authorization Manager Plug-in.

1. The Access Manager API sends an IsAuthorized request with the authenticated user, resource, and parameters to the Access Server.

2. The Access Server determines the resource is protected by a policy with an authorization rule that specifies an authorization scheme for the AzMan plug-in.
3. If the authorization scheme requires request context values (configured as RA_user parameters) that are not available in the IsAuthorized request, the Access Server returns a NeedMoreData status to the Access Manager API.

 Note: This is not as likely to happen as with WebGate, since the application can include the required parameters in the isAuthorized() call.

4. If Access Manager API gets the NeedMoreData status, it gets the request context data indicated in the status from the resource (for example, a query string) and resends the IsAuthorized request with the data.

5. Processing then continues with step 2 in "Process overview: WebGate operation with the AzMan Plug-in" on page 17-3.

6. Steps 3 and 4 in this process are the same as in "Process overview: WebGate operation with the AzMan Plug-in" on page 17-3. The parameters from the isAuthorized() call are in the request context data block.

7. The Access Manager API client in the application gets the IsAuthorized result from the Access Server and returns the result through the isAuthorized() call. The application then takes appropriate action.

For more information, see "Using the AzMan Plug-In with the Access Manager API" on page 17-25.

Oracle Access Manager Components and Requirements

The plug-in is included during Access Server installation in the following library:

```
AccessServer_install_dir\access\oblix\lib\authz_azman.dll
```

The AzMan Plug-in must be installed on each application server you want to protect. This enables you to complete authorization for resources protected by Oracle Access Manager using policies and roles defined outside the Access System policies, within the Authorization Manager in Active Directory, through the Authorization Plug-in API. For more information about the Authorization Plug-in API, see Oracle Access Manager Developer Guide.

 Note: Oracle Access Manager does not provide or allow administration of Authorization Manager policies through the Policy Manager.

Oracle Access Manager provides the custom AzMan Plug-in but not a custom authorization scheme, because external programs and calls to external business logic are unique from business to business.

A Master Access Administrator uses the Access System Console to define a custom authorization scheme that includes the full path to the shared library for the AzMan Plug-in.

A Delegated Access Administrator uses the Policy Manager to define a policy domain using the custom authorization scheme and plug-in parameters for the AzMan Plug-in as a basis for the authorization rules or action in a policy domain, and to protect resources.

For more information, see "Configuring the AzMan Plug-In" on page 17-21.
Oracle Access Manager Authorization Rules and Schemes

This discussion explains authorization rules and schemes and AzMan Plug-in parameters for use with the Authorization Manager.

A Oracle Access Manager authorization rule allows or denies users the right to access the resources within the policy domain (or a subset of resources, if a policy applies). Authorization rules can be combined into expressions. For more information about chaining authorization rules, see the Oracle Access Manager Access System Administration Guide.

Note: You define and enable authorization rules through the Policy Manager. When using the AzMan Plug-in, you need to create a custom authorization scheme that consists of a name, a description, a shared library path for the installed plug-in (without a platform-specific extension such as .dll), and a set of required and optional parameters. The purpose of the authorization scheme parameters is shown in Table 17–1.

Table 17–1 Purpose of Authorization Scheme Parameters

<table>
<thead>
<tr>
<th>Scheme Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Parameters: User</td>
<td>User profile attribute values passed into the plug-in in the RequesterInfo data structure. For more information, see on page 17-7.</td>
</tr>
</tbody>
</table>
| User Parameters: Request Context | Request data (HTTP headers and cookies, Access Manager API parameters) passed into the plug-in in the RequestContext data structure.
- Introduced in NP 6.1.1 and defined as user parameters with the prefix RA_. If not available in the request, the access check will fail.
- For more information, see Table 17–3. |
| Required Parameters | Name-value pairs passed into the plug-in in the Context data structure. These must be specified in either the authorization scheme or the authorization rule. |
| Optional Parameters | Name-value pairs passed into the plug-in in the Context data structure. These may be specified in either the authorization scheme or the authorization rule or may be omitted. |

The AzMan Plug-in uses optional plug-in parameters to specify the input to the AccessCheck() method, IAzClientContext::AccessCheck(), discussed in "Using the AzMan Plug-In with the Access Manager API" on page 17-25. If a plug-in parameter is not specified, the plug-in will check the User Parameters, Request Context data (see Table 17–1) for the omitted values. In this case, callers of the Access Manager API can supply these parameters in the ObResourceRequest constructor or the ObUserSession isAuthorized() call. AccessCheck() can return a value indicating that access is allowed or denied. The plug-in can take a different action based on the AzContinueOnAllow configuration parameter in Table 17–2. For details about the Access Manager API, see the Oracle Access Manager Developer Guide.

The plug-in parameters shown in Table 17–2 are specific to the AzMan Plug-in. You use them to specify input to the Authorization Manager.
The rule parameters (specified with AzRuleParameters in Table 17–2) are values from either the user's profile (User Parameters) or the values from the request (Request Context parameters). Rule parameters are passed to the Authorization Manager for possible use within authorization rules/scripts.

Table 17–3 shows the user parameters for IAzClientContext.

Table 17–3 User Parameters

<table>
<thead>
<tr>
<th>User Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>samacctuser</td>
<td>Username to construct the IAzClientContext object.</td>
</tr>
</tbody>
</table>

Table 17–4 shows the parameters for collecting authorization data from an external application that are configured as RA_user parameters in the authorization scheme.

Table 17–4 Request Context Parameters

<table>
<thead>
<tr>
<th>Request Context Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AzRole</td>
<td>Value is used as the role in the access check.</td>
</tr>
</tbody>
</table>
Table 17–5 summarizes what occurs when the Access Server evaluates a policy or policy domain that contains an authorization rule with a custom authorization scheme.

Table 17–5 Summary of Evaluation

<table>
<thead>
<tr>
<th>The Access Server</th>
<th>The Plug-In</th>
</tr>
</thead>
<tbody>
<tr>
<td>Executes the plug-in</td>
<td>Extracts the parameter values from the passed data</td>
</tr>
<tr>
<td>Collects relevant parameter values for the plug-in and the target user, resource, and request.</td>
<td>Performs its designed tasks</td>
</tr>
<tr>
<td>Adds these values to the appropriate data structures and executes the main plug-in function</td>
<td>Returns a result with optional actions to the Access Server, which may include continue, allow, deny, or abort.</td>
</tr>
<tr>
<td>The Access Server interprets the result and either continues processing authorization rules or stops and returns its result to the access client.</td>
<td></td>
</tr>
</tbody>
</table>

For more information about authorization, see the *Oracle Access Manager Access System Administration Guide*. For details about the Authorization API, see the *Oracle Access Manager Developer Guide*.

About the Windows Authorization Manager

The Windows Server 2003 Authorization Manager is a role-based access control interface characterized by using collections of settings based on an object's role within an organization. The Authorization Manager provides a GUI tool to define access policy for applications and an API for applications to request access decisions using the policy. You can use role-based administration to manage users, computers, and other file-system and directory-service objects.

The Authorization Manager provides two modes of operation:

- **Developer Mode**: Enables you to create, deploy, and maintain applications with unrestricted access to all Authorization Manager features.

 You run Authorization Manager in developer mode only until the authorization store is created and configured. After you initially set up an application in developer mode, you can work in administrator mode.

- **Administrator Mode**: The default mode, enables you to deploy and maintain applications and have access to all Authorization Manager features. However, you cannot create new applications or define operations.
Before you can use administrator mode, you must provide an application that supports roles, includes all of the necessary operation and task definitions, includes its own authorization store, and is ready for use in the Authorization Manager.

Authorization Stores

An authorization policy store contains information about the security policy of an application or group of applications. The information includes the applications, operations, tasks, users, and groups of users associated with the store.

The authorization policy store must be located on a trusted system to afford administrators on that system access to the store. The Authorization Manager supports storing authorization policy either in the Active Directory directory service or in an XML file:

- **Active Directory objects** are identified by an LDAP DN in a URL.
 For example:
  ```
  msldap:// (for example, msldap://CN=MyAzStore, CN=Program Data, DC=authmanager, DC=com)
  ```

 or

- **XML files** are identified by a path in a URL.
 For example:
  ```
  msxml://C:\MyStore.xml
  ```

Note: Active Directory stores allow the delegation of administrative control. However, XML stores do not.

By default, the group "Domain Admins" is listed within the Security tab when you create the Active Directory authorization store. To run the Authorization Manager policy through Oracle Access Manager, the Access Server user (for example, Administrator) should also be listed in the Users and Groups list within the Security tab. However, similar settings are not required for the XML store.

For more information about Authorization Stores, see your Microsoft documentation.

Applications and Scopes

An application is a program that is designed to perform specific functions directly for the user or for another application.

An authorization store can contain policies for resources for multiple applications. Alternatively, an application’s resources and associated policies may be subdivided into scopes. For example, if you do not want to apply Authorization Manager groups, role assignments, role definitions, or task definitions to an entire application, you can create them at the scope level.

A scope can be one of the following:

- **Folder**
- **Active Directory container**
- **File-masked collection of files**, for example *.doc
URL

Any grouping of resources meaningful to the application

You can use scopes in Active Directory authorization stores to delegate control. For more information, see your Microsoft documentation.

Operations and Tasks

In the Authorization Manager, an operation is a small computer-level action or method of an application. Operations are grouped together as tasks. An operation is defined by:

- Name
- Description
- Operation number

Note: Operations can be defined at the application level but not the scope or store levels.

A task is a high-level action that users of an application need to complete. Tasks are composed of the lower-level operations required to perform the task. Users of an application request permission to complete tasks. A task is defined by:

- Name
- Description
- Set of other tasks and operations
- Authorization rule (optional)

For more information, see your Microsoft documentation.

Roles

A role is a set of permissions that a user must have to perform the application's tasks. A role is defined by:

- Name
- Description
- Set of tasks, operations, and other roles that are granted by the role
- Authorization rules that can test arbitrary conditions

Permissions are assigned or denied by the object's owner. The Authorization Manager is capable of implementing multiple configuration and permission changes at once and provides advantages over other management tools, such as the access control list (ACL) and Delegation of Control Wizard.

Authorization roles are based on a user's job function. You can use authorization roles to authorize access, delegate administrative privileges, or manage interaction with computer-based resources.

The Authorization Manager enables administrators to implement this role-based administration through applications. Applications using this role-based access are constructed to use logical roles that relate to the tasks performed by the application. The settings that authorize users for specific roles are made automatically through the
use of scripts, called authorization rules, that enable you to control the mapping between access control and the structure of your organization.

For more information, see your Microsoft documentation.

Groups

A group defines a set of principals (users and computers) to which roles can be assigned. A group can be defined using:

- Windows users and groups
- LDAP queries
- Other groups

A group specifies principals that are either:

- Explicitly included (members)
- Explicitly excluded (non-members)

Note: Circular group membership, for example, group A contains group B and group B contains group A, is detected and prohibited.

Groups can be defined at the store, application, and scope levels. Assigning a group to a role grants the role's permissions to the users defined in the group. A role definition can also contain authorization rules that can test arbitrary conditions.

For more information, see your Microsoft documentation.

Rules

In the Authorization Manager, authorization rules are either VBScript or JScript scripts that can be used in role and task definitions. An authorization rule can determine whether the role or task is allowed. With authorization rules, you can base authorization decisions on any conditions that a script can test, including privileges and permissions, time of day, billable expense limits, account balances, and other criteria.

A rule associated with an object can regulate which users gain access and in what manner. Named parameter values can be passed from the application to the Authorization Manager for use within the scripts.

You can write your scripts in a text editor (for example, Notepad), in an integrated development environment like Visual Studio .NET, or in another application of your choice.

For more information, see your Microsoft documentation.

Auditing

The Authorization Manager provides runtime auditing that records application-access checks using policies in an authorization store. The runtime audit log contains the relevant client contexts with the access checks. The Authorization Manager also provides authorization store-change auditing to record modifications to policies in authorization stores.

Runtime auditing can be applied at the authorization store and application levels for all stores, and at the scope level for Active Directory stores. Store-change auditing can
be applied at the store, application, and scope levels for Active Directory stores, but only to the store level for XML stores.

For more information, see your Microsoft documentation.

Authorization Manager (AzMan) API

An application program interface (API) includes the formal requests and means of communicating with other programs used by an application program. Windows Server 2003 provides Component Object Model Component Services (COM+) interfaces to manage and use Authorization Manager policies.

COM+ provides an infrastructure that enables clients and objects to work together. This binary standard enables interoperability between software components in a networked environment regardless of the language in which they were developed.

A COM client (software that uses and controls objects) does not know the internal workings of the objects (software that knows how to perform a specific task) the client is using. Clients and objects must communicate about and agree on the functionality that an object will supply to the client. This agreement is implemented in software by a COM interface.

For example, in the Authorization Manager API:

- The state of a particular user (client) is represented by an IAzClientContext interface.
- The object is created from one of the following:
 - IAzApplication::InitializeClientContextFromToken(): needs the user's token.
 - IAzApplication::InitializeClientContextFromName(): needs the user name and domain name.
 - IAzApplication::InitializeClientContextFromStringSid(): needs the string representation of the SID.
- The AccessCheck method of the IAzClientContext interface method invokes the Authorization Manager to determine if the user represented by the IAzClientContext object is allowed to perform a specified application operation.

For more information, see your Microsoft documentation.

Examples

Topics in this section walk you through an application created with the Authorization Manager and the configuration details for the AzMan Plug-in.

- Example 1: An Expense Application
- Example 2: Oracle Access Manager Configuration
- Example 3: Authorization Process Flow

Example 1: An Expense Application

In this example, a financial role is defined that includes the right to authorize expenditures and audit account transactions. The Authorization Manager enables you to implement this type of role-based administration through an application that you create.
You set up the authorization store, design your application using the Authorization Manager, define tasks, operations, roles, and make role assignments. Figure 17–1 shows the main Authorization Manager window and the hierarchy of the authorization store, MyAzStore.

Figure 17–1 Authorization Store Hierarchy in the Authorization Manager

In Figure 17–1 you can see the folders for Groups, Definitions, and Role Assignments for the application. Beneath the Definitions folder are the Role, Task, and Operation Definitions folders. In the right-hand panel, you can see the user assigned to the Expense Administrator role, user1k1.

The financial application, named "Expense", may have the operations shown in Table 17–6:

Table 17–6 Expense Application Operations

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetrieveForm</td>
</tr>
<tr>
<td>EnqueRequest</td>
</tr>
<tr>
<td>DequeRequest</td>
</tr>
<tr>
<td>UseFormControl</td>
</tr>
<tr>
<td>MarkFormApproved</td>
</tr>
<tr>
<td>SendApprovalNotify</td>
</tr>
</tbody>
</table>

The Expense application may include a task, "Submit Expense", which consists of the operations in Table 17–6 and another task, Approve Expense, as shown in Table 17–7

Table 17–7 Expense Application Submit Expense Task Definition

<table>
<thead>
<tr>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>RetrieveForm</td>
</tr>
<tr>
<td>EnqueRequest</td>
</tr>
<tr>
<td>UseFormControl</td>
</tr>
<tr>
<td>Approve Expense</td>
</tr>
</tbody>
</table>

Figure 17–2 shows the Submit Expense task, as it appears in the Authorization Manager.
The Expense application includes a role, Expense Administrator, that consists of the tasks in Table 17–8. A user who is assigned the Expense Administrator role is authorized to perform the operations (See Table 17–7) to complete the Submit Expense task, among others identified as follows.

Table 17–8 Tasks for the Expense Administrator Role

<table>
<thead>
<tr>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Expense</td>
</tr>
<tr>
<td>Approve Expense</td>
</tr>
<tr>
<td>Nested role Expense Admin</td>
</tr>
</tbody>
</table>

Figure 17–3 shows the Expense Administrator role-definition properties in the Authorization Manager. The Submit Expense task is identified; other tasks will be added.
Figure 17–3 Expense Administrator Role-Definition Properties

The Expense application may include a group of "Approvers", to which the Expense Administrator role can be assigned. Members of the Approvers group are given permission to perform the tasks in Table 17–9.

Table 17–9 Approvers Group Tasks

<table>
<thead>
<tr>
<th>Tasks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Submit Expense</td>
</tr>
<tr>
<td>Approve Expense tasks</td>
</tr>
<tr>
<td>Any tasks assigned to the nested Expense Admin role</td>
</tr>
</tbody>
</table>

An authorization rule for the Expense application is a script that tests the user’s expense amount (a parameter from the application) against the user’s expense limit, which could either be another application parameter or could be determined by the script itself. The rule for this Expense application is shown in Figure 17–4.
Example 2: Oracle Access Manager Configuration

Continuing with the Expense application example described and shown in "Example 1: An Expense Application" on page 17-12, the following information explores the Oracle Access Manager policy domain for this application. Included is a custom authorization scheme for the AzMan Plug-in.

The Expense application has been implemented to use Web forms to input the expense data. An XML file is used, rather than storing Authorization Manager policies in the Active Directory. Both methods are valid.

Authorization Scheme

Figure 17–5 shows a custom authorization scheme for the Expense application. Not all of the allowable AzMan Plug-in parameters are used. Your scheme may be different.
Figure 17–5 Oracle Access Manager Authorization Scheme

![Oracle Access Administration](image)

- **Details for Authorization Scheme**
 - **Name**: Expense Authorization
 - **Description**
 - **Shared Library**: \%NetPoint\access\%1\AccessManager\accessmanager
 - **Plugin is Managed Code**: No
 - **User Parameter**
 - R_Amount
 - R_A_name
 - **Required Parameter**
 - **Optional Parameter**
 - **Name**: AzLogLevel
 - **Value**: moderate
 - **Name**: AzApplication
 - **Value**: Expense
 - **Name**: AzRule Parameters
 - **Value**: AzStore
 - **Value**: xml:\C:\My\AccessStore.xml

Policy Domain

Figure 17–6 shows the Submit Expense policy domain, enabled in the Policy Manager.

Figure 17–6 Submit Expense Policy Domain in the Policy Manager

![Oracle Access Administration](image)

Resources

Within the policy domain, resources have been added and protected, as shown in *Figure 17–7* for /expense/submit.asp.
Authorization Rules

The policy domain authorization rule is as follows. Notice that it specifies the custom authorization scheme defined in the Access System Console earlier.

Name: Expense Authn

Description:

Authorization Scheme: Expense Authorization

There are no timing conditions for this specific authorization rule, though your rule may include these.

The plug-in parameters for this policy domain are shown next:

Profile attributes that are passed to the plug-In:

- samaccountname
- RA ExpenseAmount

Optional parameters and values:

- Name: AzLogLevel
 Value: medium
- Name: AzApplication
 Value: Expense
- Name: AzRule Parameters
 Value: No Value Specified
- Name: AzOperations
 Value: No Value Specified
- Name: AzStore
 Value: msxml

The authorization rule uses the custom Expense Authorization scheme and passes the User Parameters and AzStore and AzApplication parameters as specified in the scheme. The rule adds an AzOperations value for the EnqueRequest operation and an AzRuleParameters value for the expenseAmount variable.

There are no actions associated with this particular rule; however, your application may have specific actions.
Default Rules

The default authentication rule for the policy domain is as follows. There are no authorization expressions or audit rules for this policy domain. Your environment may be different.

- **Name:** Basic over LDAP
- **Description:**
 - **Authentication Scheme:** Basic over LDAP

Access Policy

Next you see the access policy for /expense/submit.asp:

- **Name:** AzMan Policy
- **Description:**
 - **Resource Type:** http
 - **Resource Operation(s):** GET, POST
 - **Resource URL Pattern:** /expense/submit.asp

There are no authentication rules, authorization expressions, or audit rules defined for this policy.

Delegated Access Administrators

Delegated Access Administrators are defined for this policy domain, but are not shown here.

The authorization flow using the example that was implemented in the previous paragraphs is described next.

Example 3: Authorization Process Flow

The following scenario walks you through the process flow for the Oracle Access Manager and AzMan plug-in authorization process. This process flow remains the same no matter where the Authorization Manager resides. In the following scenario:

- An Expense application was implemented to use Web forms to input expense data, as explained under "Example 1: An Expense Application" on page 17-12.
- An XML file is used for Authorization Manager policies, rather than storing these policies in the Active Directory. Both methods are valid, as described in "Authorization Stores" on page 17-9.
- The resource is protected by an Oracle Access Manager policy with an authorization rule based on a custom authorization scheme that passes parameters to the AzMan Plug-in, as described in "Using the AzMan Plug-In with the Access Manager API" on page 17-25.
Process overview: AzMan authorization after a user is authenticated

1. The user (user1k1) submits an expense form to /expense/submit.asp using the Authorization Manager Submit Expense task.

2. The WebGate intercepts the POST request to /expense/submit.asp and sends an ISAuthorized() request for user1k1, and the URL, to the Access Server.

3. The Access Server passes the parameter to the AzMan.dll, which applies the Submit Expense Policy, determines the expenseAmount variable is needed, and returns a NeedMoreData response to the WebGate.

4. The WebGate retrieves expenseAmount=100 from the POST data and re-sends the ISAuthorized() request with the data to the Access Server.

5. The Access Server:
 a. Applies the Submit Expense Policy again
 b. Executes the AzMan Plug-in for the Expense Authorization Scheme
 c. Passes the expenseAmount variable in the RequestContext data and the samaccountname for the user in the Requestor data

6. The AzMan Plug-in:
 a. Constructs an IAzAuthorizationStore object, which in this case is for msxml://C:\MyAzStore.xml
 b. Constructs an IAzApplication object for the Expense application
 c. Constructs an IAzClientContext object for user1k1
 d. Calls AccessCheck() for the client context with the following:

   ```vbs
   bstrObjectName = /expense/submit.asp
   varScopeNames = {}
   varOperations = {EnqueRequest}
   varParameterNames = {expenseAmount}
   varParameterValues = {100}
   varInterfaceNames = {}
   varInterfaceFlags = {}
   ```
Configuring the AzMan Plug-In

The following information is provided to guide you during the configuration needed to use the AzMan Plug-in. Some information is tailored for the Expense example discussed earlier. Your specifications may be different. Sample screens are presented in "Example 2: Oracle Access Manager Configuration" on page 17-16.

Task overview: Configuring the AzMan Plug-in

1. Prepare your environment, as described in "Preparing Your Environment" on page 17-21.
2. Configure authorization schemes, as described in "Creating an Authorization Scheme for the AzMan Plug-In" on page 17-22.
3. Protect resources, as described in "Protecting Resources" on page 17-23.
5. Use the AzMan plug-in, as described in "Using the AzMan Plug-In with the Access Manager API" on page 17-25.

For a process overview, see "Using the AzMan Plug-In with the Access Manager API" on page 17-25.

Preparing Your Environment

The following procedures must be completed before you begin.

Task overview: Preparing your environment

1. Install and set up Windows Server 2003 on the machine that will host the Access Server, as described in your Microsoft documentation.
2. Install and set up Oracle Access Manager, as described in the Oracle Access Manager Installation Guide.

 The AzMan Plug-in is included with the Access Server, as discussed under "Oracle Access Manager Components and Requirements" on page 17-5.
3. Set up the AzMan authorization store, azman.msc, as described in your Microsoft documentation.
4. Design your application using the Authorization Manager to specify operation, task, and role definitions and role assignments, as described in your Microsoft documentation.

Creating an Authorization Scheme for the AzMan Plug-In

The following steps presume that you have already defined an authentication scheme for this policy domain. The authorization scheme that you create can be included with any policy domain or policy and must include an authorization rule.

When you create a custom authorization scheme be sure to enter the full path to the shared authz_azman library (without the extension). You must also specify the user profile attribute values to be passed to the plug-in with the RequesterInfo data structure (the username is used to construct the IAzClientContext object). Also, specify the AzMan Plug-in parameters needed for your own application. For more information about policy domains and authorization rules, see the Oracle Access Manager Access System Administration Guide.

To create a custom authorization scheme

1. Navigate to the Access System Console:
 http://hostname:port/access/oblix

3. Click the Add button to begin a custom authorization scheme.

4. Enter the information for your custom authorization scheme.
 For example:
 Name: Name of this custom authorization scheme
 Description: Optional description.
 Shared Library: Full path to the authz_azman library (without the extension)
 c:\coreid\access\oblix\lib\authz_azman
 User Parameter: samaccountname
 RA_expenseAmount
 (The RA_expenseAmount is a reverse action user parameter that is needed only if the authorization rule expects parameters).

 Optional Parameters:
 zAzApplication Expense
 AzRuleParameters
 AzOperations
 AzStore msxml://C:\MyAzStore.xml

5. Save the scheme, as usual.

Note: By default, the group “Domain Admins” is listed within the Security tab when you create the Active Directory authorization store. The Access Server user (for example, Administrator) should also be listed in the Users and Groups list within the Security tab. Similar settings are not required for the XML store.
Protecting Resources

You need to create a policy domain and add resources to protect. For general information about policy domains, see the Oracle Access Manager Access System Administration Guide.

To create a policy domain and add a resource
1. Click the Policy Manager link or navigate to the Access System administration URL and select the Policy Manager application:
 http://hostname:port/access/oblix
2. Click Create Policy Domain in the left navigation pane and create a policy domain.
 For example:
 Name: Submit Expense
 Description: Optional

 Note: Do not enable the policy domain until you have finished all specifications for it, as described next.

3. Click Save.
4. Add a resource to protect with this policy domain: Policy Manager, My Policy Domains, link, Resources, Add
 For example:
 Resource Type: http
 URL Prefix: /expense
 Description: Optional
5. Click Save.

Defining Authorization Rules and Policies

You need to add the custom authorization scheme you created earlier to an authorization rule. The following steps presume that you have already defined your authentication rule for this policy domain.

To add the authorization scheme to the authorization rule
2. Click the Add button to display the Create Authorization Expression page.
3. Select Custom Authorization Scheme from the list, then click Add.
 For example:
 Authorization Scheme: Custom Authorization Scheme
 A new page appears where you enter details for this rule.
4. Enter the details for this authorization rule, and confirm that the authorization scheme you created earlier is selected in the Authorization Scheme list.
 For example:
Configuring the AzMan Plug-In

Name: Expense Authn
Description: Optional
Authorization Scheme: Expense Authorization

5. Save the rule, as usual.

6. Return and click Plug-in Parameters; confirm the profile attributes to be passed to the plug-in from the authorization scheme match those you specified in your custom authorization scheme.

 For example:
 Profile Attributes Passed to Plug-In: samaccountname
 RA_expenseAmount

<table>
<thead>
<tr>
<th>Optional Parameters</th>
<th>Name</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>AzLogLevel</td>
<td>medium</td>
<td></td>
</tr>
<tr>
<td>AzApplication</td>
<td>Expense</td>
<td></td>
</tr>
<tr>
<td>AzRuleParameters</td>
<td>No Value</td>
<td></td>
</tr>
<tr>
<td>AzOperations</td>
<td>No Value</td>
<td></td>
</tr>
<tr>
<td>AzStore</td>
<td>msxml</td>
<td></td>
</tr>
</tbody>
</table>

7. Modify and save, if needed.

8. Add timing considerations and actions, as needed for your application.

To add default rules and the authentication rule

1. Click the Default Rules link.

2. Click the Add button on the Default Rules page to add an authentication rule, which includes an authentication scheme.

3. Enter the details and save as usual.

 For example:
 Name: AzMan Basic Over LDAP
 Description: Optional
 Authentication Scheme: Basic Over LDAP

To add access policies

1. Click the Policies link to add an access policy for the application.

2. Click the Add button on the Policies page.

3. Fill in the requested information for your application and policy domain.

 For example:
 Name: SubExp Access Policy
 Description: Refines control of the resource
 Resource type: http
 Resource Operations: GET POST
 Resource: All
 URL Prefix: /expense
 URL Pattern: /expense/submit.asp

 This policy contains no query string or query string variables.

4. Save the policy, as usual.
Delegating Administration is done as usual. There are no special requirements for the application in this example. For more information, see the Oracle Access Manager Identity and Common Administration Guide.

5. Click the General tab and enable the policy domain, as usual.

You request the resource as usual and Oracle Access Manager will complete the authorization process as described under "Example 3: Authorization Process Flow" on page 17-19.

Using the AzMan Plug-In with the Access Manager API

The following example is provided as a guide if you want to use the Access Manager API with the AzMan Plug-in. For general information about the Access Manager API, see the Oracle Access Manager Developer Guide.

```
// Set up the Expense resource.
ObResourceRequest rr = new ObRequestRequest("http", "/expense/submit.asp", "POST");

// Authenticate DOMAIN\jsmith.
Hashtable creds = new Hashtable();
creds.put("username", "user1k1");
creds.put("password", "oblix");
ObUserSession user = new ObUserSession(rr, creds);

// Check if administrator is authorized to submit an expense form with expenseAmount=100.
// This uses the AzStore and AzApplication parameters defined by the Expense Authorization scheme and the AzOperations and AzRuleParameter expenseAmount defined by the Submit Expense Authorization Rule.
// Equivalent access_test_cplus command:
// user1k1 oblix GET http://dotnet/expense/submit.asp dotnet expenseAmount=100
Hashtable parameters = new Hashtable(); parameters.put("expenseAmount", "100"); if (user.isAuthorized(rr, parameters)) {
    // authorized
} else {
    // not authorized.
}

// Check if administrator is authorized to perform the UseFormControl operation in the Expense application. This uses the AzStore and AzApplication parameters defined by the Expense Authorization scheme but overrides the AzOperations parameter in the Submit Expense Authorization Rule.
// Equivalent access_test_cplus command:
// user1k1 oblix GET http://dotnet/expense/submit.asp dotnet expenseAmount=100&AzOperations=UseFormControl
parameters.put("AzOperations", "UseFormControl"); if (user.isAuthorized(rr, parameters)) {
    // authorized
} else {
    // not authorized.
```
// Check if the Expense Administrator role is authorized to perform the
// UseFormControl operation in the Expense application. Note that user1k1 must
// have this role.

// Equivalent access_test_cplus command:
// user1k1 oblix GET http://dotnet/expense/submit.asp dotnet
// expenseAmount=100&AzRole=Expense+Administrator&AzOperations=UseFormControl

// Note that access_test_cplus does not actually convert + to blank, but it
// should.

parameters.put("AzRole", 'Expense Administrator');
if (user.isAuthorized(rr, parameters)) {
 // authorized
} else {
 // not authorized.
}

Troubleshooting

An "Insufficient access right" error may appear in the log file when the Access Server
user (for example, Administrator) does not appear in the Security tab of the Active
Directory authorization store.

By default, the group "Domain Admins" is listed within the Security tab when you
create the Active Directory authorization store. To run the Authorization Manager
policy through Oracle Access Manager, the Access Server user (for example,
Administrator) should also be listed in the Users and Groups list in within the Security
tab. However, similar settings are not required for the XML store.
Index

A
AccessGate, 9-4
actions
in federated authorization, 5-3
Anonymous authentication scheme
use in federated authorization, 5-11
Apache, 0-xix, 2-1, 4-4
attribute sharing
plug-in, 5-2, 5-3
authentication scheme
for attribute sharing, 5-9
for federated single sign-on, 5-9
authorization
schemes for attribute sharing, 5-12
schemes, for federated single sign-on, 5-12
Authorization Manager Services
see AzMan
authorization plug-in
cache, 5-5, 5-12
AzMan
about the integration, 17-1
authentication rules and schemes for, 17-6
authorization process overview, 17-3
Oracle Access Manager requirements, 17-5

C
cache
authorization plug-in, 5-5, 5-12
session token, 5-9
config.xml, 5-3, 5-4

D
Delegated Administration Service (DAS), 4-7

F
federation
about, 5-2
form-based authentication
for Oracle AS SSO, 4-18
forms90.conf, 4-8

H
httpd.conf, 4-5

I
Identity Provider, 5-2
impersonation
attacks, 5-6

L
login
form-based, 4-8
login semantic type, 4-11
login URL, protecting, 4-11
OracleAS SSO login page, 4-18
logout
from OracleAS SSO and the Access Server, 4-9
logout URL, 4-9
logout.jsp for OracleAS SSO, 4-16

M
MediumSecurity_AuthPlugin, 4-7

O
OC4J_BI_FORMS, 4-8
OC4J_SECURITY, 4-7
OHS, 0-xix, 2-1, 4-4
OID
see Oracle Internet Directory
Oracle Application Server, 0-xix, 2-1, 4-4
Oracle Application Server Portal, 4-8
Oracle HTTP Server, 0-xix, 2-1, 4-4
Oracle HTTP Server (OHS), 4-2
Oracle Identity Federation, 5-3
Oracle Identity Manager
about, 8-1
integration
about, 8-1
Oracle Internet Directory, 4-2, 4-4, 4-7
Oracle SSO Server, 4-2
OracleAS 10g, 4-2
OracleAS Single Sign-On, 0-xix, 2-1, 4-4
Plug-ins
- attribute sharing, 5-2, 5-3

Plumtree
- about the integration, 11-1
- anonymous access, 11-11
- benefits of the integration, 11-1
- configuration file modifications for single sign-on, 11-6
- configuring anonymous access, 11-11
- creating a single sign-on authentication source, 11-4
- creating an LDAP authentication source, 11-5
- guest pages, 11-11
- integration architecture, 11-3
- Knowledge Directory, 11-13
- logout, 11-7
- password management, 11-14
- policy domain for, 11-9
- protecting with the Access System, 11-8
- self-registration, 11-14
- single sign-on logout, 11-7
- supported versions, 11-4
- synchronizing LDAP data, 11-6
- task overview of integration, 11-3
- WebGate configuration for, 11-9

Procedure
- AzMan
 - To add access policies, 17-24
 - To add default rules and the authentication rule, 17-24
 - To add the authorization scheme to the authorization rule, 17-23
 - To create a custom authorization scheme, 17-22
 - To create a policy domain and add a resource, 17-23

Oracle applications
- To access the protected reports page, 4-9
- To code a JAVA class to look for an Oracle Access Manager HeaderVar, 4-6
- To configure a rule expression in an attribute sharing access policy, 5-16
- To configure an authorization rule for local users in an attribute sharing access policy, 5-15
- To configure an authorization rule for remote users in an attribute sharing access policy, 5-14
- To configure basic characteristics of the attribute sharing authorization scheme, 5-13
- To configure the basic characteristics of the attribute sharing authentication scheme, 5-10
- To configure the config.xml file, 5-7
- To configure the plug-ins for the attribute sharing authentication scheme, 5-10

To configure the protected resources in an attribute sharing access policy, 5-14
To configure the steps for the attribute sharing authentication scheme, 5-11
To create a default RAD, 4-19
To create a user-specific RAD, 4-20
To enable single sign-on for forms, 4-8
To find these database schema passwords, 4-19
To implement global logout from OracleAS Single Sign-On, 4-9
To set up client certificate authentication, 5-9
To set up HTTPS, 5-8
To test Oracle Access Manager SSO for OracleAS, 4-14
To verify that this directive is set to false, 4-18

Plumtree
- To automatically synchronize data, 11-7
- To create a Knowledge Directory folder, 11-13
- To create a policy domain for guest access, 11-11
- To create a single sign-on authentication source on Plumtree, 11-5
- To create a single sign-on password, 11-4
- To create the policy domain, 11-9
- To lock the NetPointAnonymous account, 11-12
- To manually synchronize data, 11-7
- To set Knowledge Directory preferences, 11-13
- To set up the WebGate for Apache, 11-10
- To upload a document, 11-14
- To view the updated Plumtree database, 11-7

RSA
- RSA ACE/Server Platform Support, 13-5
- To add a resource to your policy domain, 13-27
- To configure a CGI directory on the iPlanet Enterprise Server, 13-19
- To configure Apache Web servers for the SecurID CGI script, 13-20
- To configure the CGI script on IIS Web servers, 13-19
- To create a policy domain to protect the SecurID script, 13-26
- To define the path to Perl, 13-19
- To define the SecurID authentication scheme, 13-23
- To define who has access, 13-27
- To enable logging and testing, 13-28
- To install the ACE/Agent on each Windows-based Access Server, 13-17
- To integrate SecurID authentication, 13-33
- To prepare a Unix-based Oracle SecurID Access Server, 13-15
- To prepare a Windows-based Oracle SecurID Access Server, 13-17
- To prepare an Active Directory Forest, 13-14
- To prepare your environment for SecurID
integration, 13-13
To register an Access Server as an ACE/Agent Host, 13-14
To relocate the Oracle-provided SecurID directories, 13-18
To set up the Access Server log, 13-37
To verify the ACE/Agent installation on the Unix-based host (optional), 13-16
To verify the ACE/Server log configuration, 13-37
To verify the status of each Windows-based Access Server, 13-36

SAP
To configure Oracle Access Manager for SAP Enterprise Portal 6.0, 12-12
To configure SAP Enterprise Portal 6.0 for external authentication, 12-14
To prepare for the integration with SAP, 12-4
To set up Oracle Access Manager for integration with SAP, 12-7
To set up SAP for integration with Oracle Access Manager, 12-5
To set up SAP PAS for integration with Oracle Access Manager, 12-6
To test Access System authentication, 12-8
To test Oracle Access Manager single sign-on, 12-8
To test SAP R/3 instance installation, 12-6
To test the ADM instance installation, 12-5
To test the integration, 12-15

SharePoint Portal
To add an impersonation action to your policy domain, 15-12
To add the impersonation dll to your IIS configuration, 15-14
To bind your trusted user to your WebGate, 15-12
To compile audiences, 15-8
To configure IIS Security for the SPPS integration, 15-18
To configure importing user profiles in SharePoint Portal Server, 15-22
To configure the wildcard extension for SPPS virtual servers, 15-19
To create a portal, 15-6
To create a trusted user account, 15-10
To create an IIS virtual site not protected by SPPS, 15-16
To create audiences, 15-7
To define managed paths in SharePoint, 15-9
To edit audiences, 15-7
To edit web.config for the SPPS integration, 15-20
To give appropriate rights to the trusted user, 15-11
To install Oracle Access Manager components for SPPS integration, 15-8
To test impersonation through a Web page that displays server variables, 15-17
To test impersonation through the Event Viewer, 15-16
To test SSO for your SPPS integration, 15-22
To test your SPPS integration, 15-22
To upload a document to the portal, 15-7

Siebel
To configure Apache Web server 1.3.x or 2.0.1, 12-12
To set the Siebel Name Server Configuration Parameters, 6-7
To set up Oracle Access Manager for the integration, 6-8
To setup Siebel 7 for integration with Oracle Access Manager, 6-5
To test Oracle Access Manager session timeout, 6-10
To test Oracle Access Manager single sign-on, 6-9

Smart Card
To complete Smart Card certificate enrollment, 14-5
To configure the authentication scheme for Smart Card, 14-6
To configure the cert_authn.dll, 14-8
To prepare a certification authority, 14-5
To prepare Active Directory, 14-5
To prepare Oracle Access Manager for Smart Card authentication, 14-6
To prepare the IIS Web server for certification authentication, 14-6
To protect resources, 14-7

WebLogic
To add authorization and authentication rules to the domain, 9-23
To add filter-related nodes, 9-36
To add resources to the domain in Oracle Access Manager, 9-22
To complete setup, 9-39
To configure multiple WebPass instances, 9-35
To configure the Identity Server, 9-35
To configure the login jsp for the Login Portlets, 9-38
To configure the Security Provider for an Active Directory forest, 9-52
To configure the WebLogic resource types, 9-15
To create a policy domain in Oracle Access Manager, 9-22
To create authentication schemes for WebLogic, 9-16
To create policies for the domain, 9-25
To enable the listing of all groups in the Admin Console, 9-56
To finish a typical installation, 9-11
To finish an advanced installation, 9-13
To implement an example, 9-41
To install the Security Provider for WebLogic, 9-10
To map WebLogic resources to Oracle Access Manager resources, 9-27
To map Weblogic resources to Oracle Access
troubleshooting, 12-16
WebGate configuration, 12-14
Enterprise Portal integration, 12-8
architecture, 12-9
supported platforms, 12-10
integration architecture, 12-2, 12-9
Internet Transaction Server (ITS), 12-2
mySAP
about, 12-1
Oracle Access Manager setup, 12-4, 12-7
Pluggable Authentication Service (PAS), 12-2
preparing for the integration, 12-4
setup for the integration, 12-5
supported platforms, 12-3
testing the integration, 12-7
Service Provider, 5-2
session token cache, 5-9
SharePoint Portal Server
about, 15-1
and single sign-on, 15-1
completing the integration, 15-18
creating a portal, 15-6
creating audiences, 15-7
IIS security, 15-18
impersonation
adding an impersonation action to a policy domain, 15-12
adding an impersonation DLL to IIS, 15-14
testing, 15-15
Microsoft components, 15-5
Oracle Access Manager components
installing, 15-8
Oracle Access manager components, 15-3
request processing overview, 15-4
supported platforms, 15-2
synchronizing user profiles, 15-21
task overview of impersonation setup, 15-9
task overview of the integration, 15-5
testing the integration, 15-22
trusted user
assigning rights, 15-11
binding to the WebGate, 15-12
trusted user accounts, 15-10
uploading a document, 15-7
user profile synchronization, 15-21
web.config, 15-20
wildcard extension, 15-19
Windows Impersonation, using with, 15-1
Siebel
about, 6-1
eapps.cfg parameters, 6-6
integration
about, 6-1
integration architecture, 6-2
diagram, 6-3
Oracle Access Manager setup, 6-8
preparing for the integration, 6-4
session timeout, 6-10
Siebel application parameter file, 6-6
single sign-on setup, 6-4
supported versions, 6-4, 7-5
testing the integration, 6-9
Siebel 7, 0-xix
Smart Card
about the integration, 14-1
authentication plug-ins, 14-10
cert_decode plug-in, 14-11
challenge method, 14-10
client certificate authentication schemes for, 14-9
credential_mapping plug-in, 14-11
IIS Manager setup, 14-8
integration architecture, 14-3
policy domains for, 14-9
preparing Active Directory, 14-4
preparing Oracle Access Manager, 14-6
preparing the CA, 14-5
preparing the Web servers, 14-6
protecting resources with Oracle Access Manager, 14-6
supported platforms, 14-4
task overview of setting up authentication, 14-4
troubleshooting, 14-11
SSOOblixAuth.class, 4-6

T

Task Overview
Creating and setting up a portal, 15-6
Task overview
Before installing the Security Provider for WebLogic, 9-10
Completing Connector Setup, 10-25
Configuring resource protection in the Access System, 10-15
Configuring single sign-on for the Portal Server, 9-36
Configuring the AzMan Plug-in, 17-21
Configuring the Identity System for WAS integration, 10-12
Installing Microsoft Components, 15-6
Installing the Connector, 10-20
Integrating Oracle Access Manager with OracleAS 10g, 4-5
Integrating SecurID authentication, 13-13
Integrating with Plumtree, 11-3
Integrating with SPPS, 15-5
Integrating with the WebSphere Application Server, 10-2
Integrating with WAS v5, 10-28
Integration prerequisites for Oracle Access Manager integration, 12-11
Integration prerequisites for SAP Portal 6.0 integration, 12-11
Manually configuring WebLogic Policies in Oracle Access Manager, 9-21
Prepare your environment for integration, 6-4
Preparing to install the Connector for
Index-6

<table>
<thead>
<tr>
<th>WebSphere</th>
<th>10-10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Preparing your Environment</td>
<td>4-4</td>
</tr>
<tr>
<td>Preparing your environment for AzMan</td>
<td>17-21</td>
</tr>
<tr>
<td>Protecting resources with Oracle Access Manager</td>
<td>4-11</td>
</tr>
<tr>
<td>Protecting Securid Resources</td>
<td>13-25</td>
</tr>
<tr>
<td>Setting up a SecurID WebGate</td>
<td>13-18</td>
</tr>
<tr>
<td>Setting up impersonation</td>
<td>15-10</td>
</tr>
<tr>
<td>Setting up Oracle Access Manager for integration with OracleAS 10g includes</td>
<td>4-10</td>
</tr>
<tr>
<td>Setting Up Oracle Access Manager single sign-on for mySAP</td>
<td>12-5</td>
</tr>
<tr>
<td>Setting up Smart Card Authentication</td>
<td>14-4</td>
</tr>
<tr>
<td>Setting up the Access Server as an ACE/Agent</td>
<td>13-14</td>
</tr>
<tr>
<td>Setting up the SPPS integration</td>
<td>15-18</td>
</tr>
<tr>
<td>Testing the securid-cgi directory</td>
<td>13-36</td>
</tr>
<tr>
<td>To prepare your environment</td>
<td>13-33</td>
</tr>
</tbody>
</table>

U

<table>
<thead>
<tr>
<th>URL</th>
<th>4-9</th>
</tr>
</thead>
<tbody>
<tr>
<td>logout URLs</td>
<td></td>
</tr>
</tbody>
</table>

V

| virtual directory | 3-1 |

W

<table>
<thead>
<tr>
<th>WebGate</th>
<th>9-4</th>
</tr>
</thead>
<tbody>
<tr>
<td>WebLogic</td>
<td></td>
</tr>
<tr>
<td>Active Directory notes</td>
<td>9-52</td>
</tr>
<tr>
<td>advanced installation</td>
<td>9-12</td>
</tr>
<tr>
<td>auditing</td>
<td>9-42</td>
</tr>
<tr>
<td>authentication for the Portal Server</td>
<td>9-7</td>
</tr>
<tr>
<td>authentication for Web-only resources</td>
<td>9-6</td>
</tr>
<tr>
<td>authentication schemes</td>
<td>9-16</td>
</tr>
<tr>
<td>authorization data from an external source</td>
<td>9-40</td>
</tr>
<tr>
<td>client certificate authentication overview</td>
<td>9-6</td>
</tr>
<tr>
<td>completing setup</td>
<td>9-39</td>
</tr>
<tr>
<td>configuration files for the integration</td>
<td>9-44</td>
</tr>
<tr>
<td>configuring policies manually</td>
<td>9-21</td>
</tr>
<tr>
<td>debug log</td>
<td>9-42</td>
</tr>
<tr>
<td>Identity Server preparation</td>
<td>9-35</td>
</tr>
<tr>
<td>integration architecture</td>
<td>9-3</td>
</tr>
<tr>
<td>integration points with Oracle Access Manager</td>
<td>9-2</td>
</tr>
<tr>
<td>J2EE applications</td>
<td>9-1</td>
</tr>
<tr>
<td>login.jsp configuration</td>
<td>9-38</td>
</tr>
<tr>
<td>mapping WebLogic resources to Oracle Access Manager resources</td>
<td>9-27</td>
</tr>
<tr>
<td>mixed Web and non-Web resources</td>
<td>9-4</td>
</tr>
<tr>
<td>NetPointProvidersConfig.properties</td>
<td>9-44</td>
</tr>
<tr>
<td>NetPointWeblogicTools.properties</td>
<td>9-50</td>
</tr>
<tr>
<td>ObLoginFilter.class</td>
<td>9-39</td>
</tr>
<tr>
<td>policies in Oracle Access Manager</td>
<td>9-14</td>
</tr>
<tr>
<td>Portal Admin Console changes</td>
<td>9-56</td>
</tr>
<tr>
<td>preparing the environment</td>
<td>9-10, 9-30</td>
</tr>
<tr>
<td>references</td>
<td>9-57</td>
</tr>
<tr>
<td>resource type definitions</td>
<td>9-15</td>
</tr>
<tr>
<td>running the Policy Deployer</td>
<td>9-18</td>
</tr>
<tr>
<td>Security Provider</td>
<td></td>
</tr>
<tr>
<td>about</td>
<td>9-1</td>
</tr>
<tr>
<td>installing</td>
<td>9-10</td>
</tr>
<tr>
<td>single sign-on configuration for the Portal Server</td>
<td>9-36</td>
</tr>
<tr>
<td>single sign-on testing for the Portal Server</td>
<td>9-39</td>
</tr>
<tr>
<td>supported platforms</td>
<td>9-9</td>
</tr>
<tr>
<td>user and group creation and deletion</td>
<td>9-42</td>
</tr>
<tr>
<td>user authentication for the portal server</td>
<td>9-8</td>
</tr>
<tr>
<td>user authentication process overview</td>
<td>9-5</td>
</tr>
<tr>
<td>user authentication, Web-only, process for</td>
<td>9-6</td>
</tr>
<tr>
<td>WebPass configuration</td>
<td>9-35</td>
</tr>
<tr>
<td>web.xml</td>
<td>9-37</td>
</tr>
<tr>
<td>web.xml configuration</td>
<td>9-36</td>
</tr>
</tbody>
</table>

WebSphere

Application Assembly Tool (AAT)	10-3
components	10-3
Connector for WebSphere, about	10-1
Custom Member Repository (CMR)	10-4
EJB	10-2
integration architecture	10-5
integration process overview	10-2
JSP	10-2
NetPointWASRegistry	10-4
servlets	10-2
Web Trust Association Interceptor (TAI)	10-3