July 2006

This document describes how to set up and administer the Access System and how to protect resources by defining policy domains, authentication schemes, and authorization schemes. This book also describes configuring single- and multi-domain single sign-on and designing custom login forms.
Contents

Preface ... xv
 Audience .. xv
 Documentation Accessibility ... xv
 Related Documents ... xvi
 Conventions ... xvii

What’s New in Oracle Access Manager? .. xix
 Product and Component Name Changes ... xix
 WebGate Updates .. xxi
 URL Prefixes and Patterns .. xx
 Triggering Authentication Actions After the ObSSOCookie Is Set ... xx
 Form-based Authentication ... xx
 Disabling Authentication Schemes ... xxii
 Persistent Cookies in Authentication Schemes .. xxii
 Configuring Logout ... xxii
 Associating WebGates with Specific Virtual Hosts, Directories, and Files .. xxii
 Troubleshooting .. xxii

Part I Configuring the Access System

1 Overview of Access System Configuration and Administration
 About the Access System .. 1-1
 Access System Components ... 1-1
 Review of Access System Installation and Setup ... 1-2
 About Configuring Resources and Rules for Who Can Access Them .. 1-3
 About Configuring and Managing the Access System Components .. 1-4

2 Configuring Access Administrators and Server Settings
 Prerequisites .. 2-1
 Configuring Access Administrators .. 2-1
 Configuring Master Access Administrators .. 2-3
 Configuring Delegated Access Administrators ... 2-3
 Creating a Group of Delegated Access Administrators .. 2-4
 Modifying a Group of Delegated Administrators ... 2-5
3 Configuring WebGates and Access Servers

About Configuring the Access System .. 3-1
Prerequisites for Configuring AccessGates and Access Servers 3-2
Configuring Access Servers ... 3-2
 Viewing Access Server Configuration Details .. 3-3
 Access Server Configuration Parameters ... 3-4
 Adding an Access Server Instance ... 3-5
 Configuring a Directory Server Profile for the Access Server 3-9
 Modifying Access Server Details ... 3-9
 Deleting an Access Server .. 3-9
 Clustering Access Servers .. 3-10
 Managing Access Server Clusters ... 3-10
 Managing Access Servers from the Command Line 3-12
 Using the ConfigureAAAServer Tool .. 3-12
 Setting the Number of Queues from the Command Line 3-15
Configuring AccessGates .. 3-16
 Viewing AccessGates ... 3-17
 AccessGate Configuration Parameters ... 3-18
 Adding an AccessGate ... 3-23
 Configuring Logout for an Identity System Resource 3-27
 Configuring User-Defined Parameters .. 3-27
 Reducing Network Traffic Between Components 3-28
 Changing the WebGate Polling Frequency ... 3-29
 Modifying an AccessGate .. 3-29
 Deleting an AccessGate ... 3-32
Managing WebGates .. 3-33
 Synchronizing Clocks with the Access Server 3-33
 Modifying a WebGate .. 3-33
 Configuring IP Address Validation for WebGates 3-34
 Viewing WebGate Diagnostics ... 3-35
 Checking the Status of a WebGate .. 3-36
 Checking the Number of Connections ... 3-36
 Placing a WebGate Behind a Reverse Proxy 3-36
Associating AccessGates with Access Servers 3-37
 About Associating AccessGates with Clusters 3-38
 Associating an AccessGate ... 3-38
 Viewing AccessGates Associated with an Access Server 3-40
 Disassociating an AccessGate .. 3-41
Using Preferred Hosts or Host Identifiers .. 3-42
 Using Host Identifiers .. 3-43
 Viewing or Deleting Existing Host Identifiers 3-44
Part II Protecting Resources

4 Protecting Resources with Policy Domains

Prerequisites .. 4-1
 About the Policy Base ... 4-2
 About the Policy Domain Root ... 4-2

About Policy Domain Administration ... 4-3
 About Creating the First Policy Domain .. 4-3
 About Managing a Policy Domain .. 4-4
 Overview for Delegated Access Administrators Creating a Policy Domain 4-5

About Policy Domains and Their Policies .. 4-6
 Parts of a Policy Domain .. 4-6
 How the Policy Domain or Policy for a Resource Is Determined 4-8
 Preconfigured Policy Domains .. 4-9
 Who Creates Policy Domains? .. 4-9
 Examples of Policy Domain and Policies .. 4-9
 About Allocating Responsibility for a Policy Domain ... 4-11

Configuring Resource Types ... 4-11
 About Resource Types ... 4-12
 Resource Types Defined by the Access System ... 4-12
 Supported HTTP Operations .. 4-12
 Supported EJB Operation .. 4-13
 Supported Resource Types .. 4-13
 Defining a Resource Type .. 4-13

Configuring URLs for Resources .. 4-14
 About URL Prefixes ... 4-16
 About URL Patterns .. 4-17
 How URL Patterns are Used ... 4-19
 URL Pattern Matching Symbols .. 4-19
 Invalid Patterns ... 4-20
 Access System Patterns ... 4-20
Configuring User Authentication

About Authentication

- Background Reading ... 5-2
- Basics of Authentication .. 5-2

Authentication Schemes

- General Information ... 5-3
- Plug-Ins .. 5-3
- Steps ... 5-4
- Authentication Flows .. 5-4
6 Configuring User Authorization

About Authorization ... 6-1
 Background Reading .. 6-1
 Introduction to Authorization Rules and Expressions .. 6-2
 Guidelines for Classifying Users .. 6-3
Authorization Rules ... 6-4
 About Allow Access and Deny Access Conditions ... 6-5
 Reuse of Authorization Rules ... 6-5
 About the Contents of an Authorization Rule ... 6-6
 About Authorization Rule Evaluation ... 6-6
Working with Authorization Rules ... 6-6
 Displaying a List of Configured Authorization Rules .. 6-7
 Configuring Authorization Rules ... 6-7

5-44
5-45
5-46
5-47
5-48
5-49
5-49
5-50
5-51
5-51
5-52
5-53
5-54
5-54
5-54
5-55
5-55
5-56
5-58
5-60
5-61
5-61
5-62
5-62
5-62
5-63
5-63
5-63
5-64
5-65
5-66
7 Configuring Single Sign-On

Prerequisites .. 7-1

About Single Sign-On .. 7-1

 Different Types of Single Sign-On .. 7-2

Single Sign-On Cookies .. 7-2

 Security of the ObSSOCookie ... 7-3

 Configuring the ObSSOCookie .. 7-3

Single Domain Single Sign-On .. 7-4

 How Single Domain Single Sign-On Works ... 7-4

 Setting up Single Domain Single Sign-On ... 7-5

 Configuring the WebGates ... 7-6

 Reverse Proxy Single Sign-On .. 7-8

 Logout From a Single Domain Single Sign-On Session 7-8

Multi-Domain Single Sign-On .. 7-8

 Using Redirection to Enable Multi-Domain Single Sign-On 7-11

 Testing Multi-Domain Single Sign-On .. 7-12

 Logout from a Multi-Domain Single Sign-On Session ... 7-12

Application Single Sign-On ... 7-12

 Additional Information on Application Single Sign-On 7-13

 Logging Out From an Application Single Sign-On Session 7-14

Single Sign-On Between Identity and Access Systems 7-14

 Configuring Policy Domains for Single Sign-On ... 7-14

 Displaying the Employee Type in the Top Navigation Bar 7-18

 Troubleshooting SSO Between Identity and Access Systems 7-18

Single Sign-On for Lotus Domino .. 7-19

Enabling Impersonation in the Access System .. 7-19

Troubleshooting Single Sign-On .. 7-19
Part III Managing the Access System

8 Access System Configuration and Management

Prerequisites .. 8-1
About Access System Configuration and Management .. 8-1
 Access System Configuration .. 8-2
 System Management ... 8-2
Configuring User Access .. 8-2
 Revoking Users ... 8-3
 Flushing Users from the Cache ... 8-3
Creating a Shared Secret Key .. 8-4
 Changes to the Shared Secret Key .. 8-5
Flushing Password Policy Caches .. 8-5
Running Diagnostics ... 8-5
Managing User Access Privilege Reports .. 8-6
 Adding a Report ... 8-6
 Managing Reports .. 8-8
Managing Sync Records .. 8-8

9 Managing Access System Configuration Files

Prerequisites .. 9-1
Automatic Access System Cache Flush ... 9-1
Synchronization of Access System Components .. 9-2
 Synchronizing System Clocks .. 9-2
 Changing Default Configuration Cache Timeout .. 9-2
Reducing Overhead for Viewing Policy Domains ... 9-3
Customizing the Policy Manager User Interface ... 9-3
 Setting the Search page as the Default Page ... 9-3
 Customizing the Policy Manager Search Interface ... 9-4

Part IV Appendices

A Form-Based Authentication

About Form-Based Authentication .. A-1
 Challenge Parameters .. A-3
 Redirection ... A-4
 Plug-Ins Used with Form-Based Authentication .. A-4
 Session Cookie and Authentication Actions .. A-5
 Header Variables ... A-6
 Using an External Call for Data in an Authentication Request A-6
Considerations when Creating a Form .. A-7
 ObFormLoginCookie .. A-7
Configuring Form-Based Authentication .. A-7
 Configuring a Form-Based Authentication Scheme .. A-8
 About the Form Action ... A-9
B Enabling Impersonation with the Access System

About Windows Impersonation ... B-1
About Impersonation and the Access System .. B-2
Enabling Impersonation With a Header Variable ... B-3
 Requirements ... B-3
 Creating an Impersonator as a Trusted User ... B-4
 Assigning Rights to the Trusted User .. B-5
 Binding the Trusted User to Your WebGate .. B-6
 Adding an Impersonation Action to a Policy Domain B-7
 Adding an Impersonation DLL to IIS ... B-8
 Testing Impersonation... B-9
 Creating an IIS Virtual Site Not Protected by SPPS B-9
 Testing Impersonation Using the Event Viewer B-10
 Testing Impersonation using a Web Page ... B-11
Setting Up Impersonation with Integrations ... B-11
Enabling Impersonation with a User Name and Password B-11
Setting Up Impersonation for OWA .. B-12
 Creating a Trusted User Account for OWA ... B-13
 Assigning Rights to the OWA Trusted User ... B-13
 Binding the Trusted OWA User to Your WebGate B-14
 Adding an Impersonation Action to a Policy Domain B-14
 Adding an Impersonation DLL to IIS ... B-15
 Testing Impersonation for OWA ... B-16
 Creating an IIS Virtual Site Not Protected by SPPS B-16
 Testing Impersonation Using the Event Viewer B-16
 Testing Impersonation using a Web Page ... B-17
Windows Impersonation Background .. B-17
 Access Tokens .. B-18
 Security IDs ... B-18
 Access Control Lists and Entries ... B-18
 Wildcard Extension .. B-19
 The Kerberos Protocol ... B-19
 The S4U2Self Extension ... B-19

Forms that Reside on Servers Other Than a WebGate A-10
Notes for Microsoft IIS ... A-10
Including Users in the obMappingFilter .. A-11
 Including Only Active Users .. A-11
 Including Non-Active Users ... A-11
Form Examples .. A-12
 Form Scheme Examples .. A-12
 Basic Example .. A-12
 Annotated Example .. A-13
 Sample Pop-Up Forms ... A-15
 Sample Multi-Language Form ... A-18
Troubleshooting Form-Based Authentication ... A-25
The Oracle Access Manager Access Administration Guide provides information on setting up Access Administrators and Access Server settings, configuring and managing AccessGates, defining access controls and user access to applications and data, and configuring single sign-on. Its companion guide, the Oracle Access Manager Identity and Common Administration Guide describes the Identity System and functions that are common to both systems, such as configuring directory servers, password policies, setting up logging and auditing, and so on.

Note: Oracle Access Manager was previously known as Oblix NetPoint. All legacy references to Oblix and NetPoint, for example, in path names and schema objects, should be understood to refer to Oracle and COREid, respectively.

This Preface covers the following topics:

- **Audience**
- **Documentation Accessibility**
- **Related Documents**
- **Conventions**

Audience

This guide is intended for the Master Administrators who are assigned during installation and setup, as well as Master Access Administrators and Delegated Access Administrators. Administrators configure the rights and tasks available to other administrators and end users. A Master Administrator, the highest level administrator, is selected during Oracle Access Manager System setup. The Master Administrator delegates responsibilities to other administrators, as described in this book.

This document assumes that you are familiar with your LDAP directory and Web servers.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents
For more information, see the following documents in the Oracle Access Manager Release 10.1.4 documentation set:

- Oracle Access Manager Introduction—Provides an introduction to Oracle Access Manager, a road map to Oracle Access Manager manuals, and a glossary of terms.
- Oracle Application Server Release Notes—Read these for the latest Oracle Access Manager updates. The release notes are available with the platform-specific documentation. The most current version of the release notes is available on Oracle Technology Network at: http://www.oracle.com/technology/documentation.
- Oracle Access Manager Installation Guide—Explains how to install and configure the components.
- Oracle Access Manager Upgrade Guide—Explains how to upgrade earlier versions to the latest version.
- Oracle Access Manager Identity and Common Administration Guide—Explains how to configure Identity System applications to display information about users, groups, and organizations; how to assign permissions to users to view and modify the data that is displayed in the Identity System applications; and how to configure workflows that link together Identity application functions, for example, adding basic information about a user, providing additional information about the user, and approving the new user entry, into a chain of automatically performed steps. This book also describes administration functions that are common to the Identity and Access Systems, for example, directory profile configuration, password policy configuration, logging, and auditing.
- Oracle Access Manager Access Administration Guide—Describes how to protect resources by defining policy domains, authentication schemes, and authorization schemes; how to allow users to access multiple resources with a single login by
configuring single- and multi-domain single sign-on; and how to design custom login forms. This book also describes how to set up and administer the Access System.

- **Oracle Access Manager Deployment Guide**—Provides information for people who plan and manage the environment in which Oracle Access Manager runs. This guide covers capacity planning, system tuning, failover, load balancing, caching, and migration planning.

- **Oracle Access Manager Customization Guide**—Explains how to change the appearance of Oracle Access Manager applications and how to control Oracle Access Manager by making changes to operating systems, Web servers, directory servers, directory content, or by connecting CGI files or JavaScripts to Oracle Access Manager screens. This guide also describes the Access Manager API and the authorization and authentication plug-in APIs.

- **Oracle Access Manager Developer Guide**—Explains how to access Identity System functionality programmatically using IdentityXML and WSDL, how to create custom WebGates (known as AccessGates), and how to develop plug-ins. This guide also provides information to be aware of when creating CGI files or JavaScripts for Oracle Access Manager.

- **Oracle Access Manager Integration Guide**—Explains how to set up Oracle Access Manager to run with third-party products such as BEA WebLogic, the Plumtree portal, and IBM WebSphere.

- **Oracle Access Manager Schema Description**—Provides details about the Oracle Access Manager schema.

- Also, read the Oracle Application Server Release Notes for the latest updates. The release notes are available with the platform-specific documentation. The most current version of the release notes is available on Oracle Technology Network (http://www.oracle.com/technology/documentation).

Conventions

The following text conventions are used in this document:

<table>
<thead>
<tr>
<th>Convention</th>
<th>Meaning</th>
</tr>
</thead>
<tbody>
<tr>
<td>boldface</td>
<td>Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.</td>
</tr>
<tr>
<td>italic</td>
<td>Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.</td>
</tr>
<tr>
<td>monospace</td>
<td>Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.</td>
</tr>
</tbody>
</table>
What’s New in Oracle Access Manager?

This section describes new features of Oracle Access Manager 10g (10.1.4.0.1) and provides pointers to additional information within this book. Information from previous releases is also retained to help those users migrating to the current release.

The following sections describe the new features in Oracle Access Manager that are presented in this book:

- Product and Component Name Changes
- WebGate Updates
- URL Prefixes and Patterns
- Triggering Authentication Actions After the ObSSOCookie Is Set
- Form-based Authentication
- Disabling Authentication Schemes
- Persistent Cookies in Authentication Schemes
- Configuring Logout
- Associating WebGates with Specific Virtual Hosts, Directories, and Files
- Troubleshooting

Note: For a comprehensive list of new features and functions in Oracle Access Manager 10g (10.1.4.0.1), and a description of where each is documented, see the chapter on What’s New in Oracle Access Manager in the Oracle Access Manager Introduction.

Product and Component Name Changes

The original product name, Oblix NetPoint, has changed to Oracle Access Manager. Most component names remain the same. However, there are several important changes that you should know about, as shown in the following table:

<table>
<thead>
<tr>
<th>Item</th>
<th>Was</th>
<th>Is</th>
</tr>
</thead>
<tbody>
<tr>
<td>Product Name</td>
<td>Oblix NetPoint</td>
<td>Oracle Access Manager</td>
</tr>
<tr>
<td></td>
<td>Oracle COREid</td>
<td></td>
</tr>
<tr>
<td>Product Name</td>
<td>Oblix SHAREid</td>
<td>Oracle Identity Federation</td>
</tr>
<tr>
<td></td>
<td>NetPoint SAML Services</td>
<td></td>
</tr>
<tr>
<td>Item</td>
<td>Was</td>
<td>Is</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Product Name</td>
<td>OctetString Virtual Directory Engine (VDE)</td>
<td>Oracle Virtual Directory</td>
</tr>
<tr>
<td>Product Release</td>
<td>Oracle COREid 7.0.4</td>
<td>Also available as part of Oracle Application Server 10g Release 2 (10.1.2).</td>
</tr>
<tr>
<td>Directory Name</td>
<td>COREid Data Anywhere</td>
<td>Data Anywhere</td>
</tr>
<tr>
<td>Component Name</td>
<td>COREid Server</td>
<td>Identity Server</td>
</tr>
<tr>
<td>Component Name</td>
<td>Access Manager</td>
<td>Policy Manager</td>
</tr>
<tr>
<td>Console Name</td>
<td>COREid System Console</td>
<td>Identity System Console</td>
</tr>
<tr>
<td>Identity System Transport</td>
<td>NetPoint Identity Protocol</td>
<td>Oracle Identity Protocol</td>
</tr>
<tr>
<td>Security Protocol</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Administrator</td>
<td>NetPoint Administrator</td>
<td>Master Administrator</td>
</tr>
<tr>
<td></td>
<td>COREid Administrator</td>
<td></td>
</tr>
<tr>
<td>Directory Tree</td>
<td>Oblix tree</td>
<td>Configuration tree</td>
</tr>
<tr>
<td>Data</td>
<td>Oblix data</td>
<td>Configuration data</td>
</tr>
<tr>
<td>Software Developer Kit</td>
<td>Access Server SDK</td>
<td>Access Manager SDK</td>
</tr>
<tr>
<td>API</td>
<td>Access Server API</td>
<td>Access Manager API</td>
</tr>
<tr>
<td>API</td>
<td>Access API</td>
<td></td>
</tr>
<tr>
<td>API</td>
<td>Access Management API</td>
<td>Policy Manager API</td>
</tr>
<tr>
<td></td>
<td>Access Manager API</td>
<td></td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>NetPoint Identity Domain</td>
<td>Identity Domain</td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>COREid Identity Domain</td>
<td></td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>NetPoint Access Manager</td>
<td>Access Domain</td>
</tr>
<tr>
<td>Default Policy Domains</td>
<td>COREid Access Manager</td>
<td></td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint None Authentication</td>
<td>Anonymous Authentication</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid None Authentication</td>
<td></td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint Basic Over LDAP</td>
<td>Oracle Access and Identity</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid Basic Over LDAP</td>
<td>Basic Over LDAP</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>NetPoint Basic Over LDAP for AD Forest</td>
<td>Oracle Access and Identity</td>
</tr>
<tr>
<td>Default Authentication Schemes</td>
<td>COREid Basic Over LDAP for AD Forest</td>
<td>Basic Over LDAP</td>
</tr>
<tr>
<td>Access System Service</td>
<td>AM Service State</td>
<td>Policy Manager API Support Mode</td>
</tr>
</tbody>
</table>

All legacy references in the product or documentation should be understood to connote the new names.
WebGate Updates

- WebGates have been updated to use the same code as the Access System, and WebGate configuration parameters that once existed in WebGateStatic.lst have been moved to the Access System user interface.

 After installing the new WebGates, you can now configure such parameters as IPValidation and IPValidationExceptions from the Access System GUI. The WebGateStatic.lst file no longer exists.

 See Also: "Configuring AccessGates" on page 3-16, "Configuring User-Defined Parameters" on page 3-27.

- WebGates can work behind a reverse proxy.

 Information on setting up a WebGate behind a reverse proxy has been added to this book.

 See Also: "Placing a WebGate Behind a Reverse Proxy" on page 3-36.

URL Prefixes and Patterns

- The documentation on URL prefixes and patterns has been updated for clarity.

 See Also: "About URL Prefixes" on page 4-16, "About URL Patterns" on page 4-17.

- WebGates can work behind a reverse proxy.

 Information on setting up a WebGate behind a reverse proxy has been added to this book.

 See Also: "Placing a WebGate Behind a Reverse Proxy" on page 3-36.

Triggering Authentication Actions After the ObSSOCookie Is Set

- You can cause authentication actions to be executed after the ObSSOCookie is set.

 Typically, authentication actions are triggered after authentication has been processed and before the ObSSOCookie is set. However, in a complex environment, the ObSSOCookie may be set before a user is redirected to a page containing a resource. In this case, you can configure an authentication scheme to trigger these events.

 See Also: "Triggering Authentication Actions After the ObSSOCookie is Set" on page 5-60.

Form-based Authentication

- Globalization support impacts basic authentication and form-based authentication methods.

 See Also: "Basic and Client Certificates" on page 5-10, "Sample Login Form" on page A-14.
Information has been added about the differences between configuring a form on
the server where the WebGate resides and configuring it on a server other than the
one hosting the WebGate.

See Also: "Configuring a Form-Based Authentication Scheme" on
page A-8 and "Forms that Reside on Servers Other Than a
WebGate" on page A-10.

Disabling Authentication Schemes

- It is no longer necessary to disable an authentication scheme before you modify it.

See Also: Configuring User Authentication on page 5-1.

Persistent Cookies in Authentication Schemes

- You can configure an authentication scheme that allows the user to log in for a
 period of time rather than a single session.

See Also: "Configuring an Authentication Scheme That Persists
Over MultipleSessions" on page 5-17.

Configuring Logout

- You can configure the Oracle Access Manager single sign-on logout URL to point
to a logout.html file in the language of the user’s browser.

See Also: "Configuring a Single Sign-On Logout URL" on
page 2-6.

- A section has been added on creating custom single sign-on logout URLs and
 logout pages.

See Also: "Configuring Logout" on page C-1.

Associating WebGates with Specific Virtual Hosts, Directories, and Files

- You can configure the WebGate to only work with specific virtual hosts,
directories, and files.

See Also: "Associating a WebGate with Specific Virtual Hosts,
Directories, and Files” on page 3-46.

Troubleshooting

- Information on troubleshooting that was dispersed throughout this manual has
been consolidated in a separate appendix.

See Also: "Troubleshooting Oracle Access Manager” on page E-1.
Part I

Configuring the Access System

Before you begin assigning Access System administrators and managing other server settings, it is a good idea to familiarize yourself with the information here.

Part I contains the following chapters:

- Chapter 2, "Configuring Access Administrators and Server Settings"
- Chapter 3, "Configuring WebGates and Access Servers"
Overview of Access System Configuration and Administration

This chapter provides an overview for people who are new to Access System setup and administration.

This chapter assumes you have at least a little familiarity with the purpose of Oracle Access Manager and the Identity System. For references to these topics, see the "Preface" on page -xv.

This chapter discusses the following topics:

- About the Access System
- Access System Components
- Review of Access System Installation and Setup
- About Configuring Resources and Rules for Who Can Access Them
- About Configuring and Managing the Access System Components

About the Access System

The Access System provides centralized authentication, authorization, and auditing to enable single sign-on and secure access control across enterprise resources. You use the Access System to set up security policies that control access to resources. Resources include Web content, applications, services, and objects in applications, and similar types of data in non-Web (non-HTTP) resources.

The Access System stores information about configuration settings and access policies in a directory server that uses Oracle Access Manager-specific object classes. You can use the same directory to store the Access System configuration settings, access policy data, and the Identity System user data, or this data can be stored on separate directory servers.

Access System Components

The Access System consists of the following components:

Policy Manager

The Policy Manager is installed on a Web server in the same directory as the Identity System component WebPass. See the Oracle Access Manager Introduction manual for an illustration that shows the location of WebPass. The Policy Manager provides a login interface to the Access System. Master Access Administrators and Delegated Access Administrators use the Policy Manager to define resources to be protected, and to
group resources into policy domains. A policy domain consists of resource types to protect, rules for protection, policies for protection, and administrative rights.

The Policy Manager has a component called the Access System Console, that permits administrators to add, change, and remove Access Clients and Access Servers, configure authentication and authorization schemes, configure master audit settings, and configure host identifiers.

You do not need to configure the Policy Manager application user interface the way you do the Identity System applications.

Access Server

The Access Server is a standalone server, or several instances, that provide authentication, authorization, and auditing services. The Access Server validates credentials, authorizes users, and manages user sessions. The Access Server receives requests from an Access Client and queries authentication, authorization, and auditing rules in the directory server as follows:

- Authentication involves determining what authentication method is required for a resource, gathering credentials over HTTP, and returning an HTTP response that is based on the results of credential validation.
- Authorization involves granting access based on a policy and an identity established during authentication.

WebGate

The WebGate is an out-of-the-box Access Client for HTTP-based resources. WebGate is an NSAPI or ISAPI plug-in that intercepts HTTP requests for Web resources and forwards them to the Access Server.

The Access System supports single sign-on, enabling you to establish login policies that allow users to access multiple applications with a single login.

Review of Access System Installation and Setup

During installation and setup, the following Access System configuration tasks are completed:

- The Policy Manager application was installed and configured.
- A directory to store access policies was selected.
- Policy Manager was configured to communicate with the directory server that stores access policies.
- One or more authentication schemes may have been configured. Configuring authentication schemes during setup is optional.
- At least one Access Server and one AccessGate were installed and configured.
- The Access Server’s transport security communication mode was selected.

Table 1–1 provides a review of Access System installation and setup, which is described in detail in the *Oracle Access Manager Installation Guide*.

<table>
<thead>
<tr>
<th>To perform this task</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the Policy Manager</td>
<td>Oracle Access Manager Installation Guide</td>
</tr>
<tr>
<td>Set up the Policy Manager</td>
<td>Oracle Access Manager Installation Guide</td>
</tr>
</tbody>
</table>
Overview of Access System Configuration and Administration

About Configuring Resources and Rules for Who Can Access Them

The Access System enables you to control who is allowed to access data. You can create access policies that extend beyond the Identity System applications. For example, if you have an online benefits system, you can configure access policies that only permit employees to view portions of the benefits Web site that are relevant to them. Or you can configure access policies so that external customers are allowed to see your inventory Web pages but not other corporate information.

Table 1–2 provides an overview of configuring the Access System.

<table>
<thead>
<tr>
<th>To perform this task</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Install the Access Server</td>
<td>Oracle Access Manager Installation Guide</td>
</tr>
<tr>
<td>Install a WebGate</td>
<td>Oracle Access Manager Installation Guide</td>
</tr>
</tbody>
</table>

Table 1–2 Overview of Access System Policy-Related Configuration

<table>
<thead>
<tr>
<th>Perform this task</th>
<th>Description</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Enter host IDs</td>
<td>Map host name variations to a single Web server instance. This ensures that the Access System can process variations in information that it receives when users request resources.</td>
<td>"Using Host Identifiers" on page 3-43</td>
</tr>
<tr>
<td>Create a policy domain and define resources to protect</td>
<td>A resource is something you want to protect, such as a Web page, plus the actions applied to that item, for instance, an update. A policy domain is a logical set of resources identified by fully qualified path names or URLs that you want to protect, plus the rules for protection, policies for protection, and administrative rights.</td>
<td>"Protecting Resources with Policy Domains" on page 4-1</td>
</tr>
<tr>
<td>Create policies for URL patterns</td>
<td>Default rules apply blanket coverage for all of the URLs in a policy domain. You can, however, specify individual policies with their own authorization, authentication, and auditing rules for URL patterns and functions such as HTTP get, put, and so on.</td>
<td>"About Policy Domains and Their Policies" on page 4-6</td>
</tr>
<tr>
<td>Create an authentication scheme</td>
<td>Validate the identities of people who want to access your resources. Define the method of authentication (for instance, x.509 certificates), the plug-in used to map authentication credentials to a user's identity in the directory, and mapping to the user's DN in the directory.</td>
<td>"Configuring User Authentication" on page 5-1</td>
</tr>
<tr>
<td>Create an authorization scheme</td>
<td>Determine if people with valid credentials are permitted (authorized) to access particular resources, and possibly perform additional actions depending on the authorization rules.</td>
<td>"Configuring User Authorization" on page 6-1</td>
</tr>
<tr>
<td>Create a master audit rule</td>
<td>The Access System must have a Master Audit Rule to begin adding data to the audit log file. The audit log file records administrative events such as clearing data from caches.</td>
<td>"About the Master Audit Rule" on page 4-32.</td>
</tr>
<tr>
<td>Configure single sign-on</td>
<td>Single sign-on allows users to authenticate to multiple applications with one login.</td>
<td>"Configuring Single Sign-On" on page 7-1</td>
</tr>
</tbody>
</table>
You configure the Access System by defining people who can serve as administrators, adding system components such as Access Servers and AccessGates, and setting basic system parameters.

You also manage the Access System by adding more servers, by defining caching parameters, and by extending your access policies using custom plug-ins. Table 1–3 provides an overview of managing the Access System.

Table 1–3 Overview of Managing the Access System

<table>
<thead>
<tr>
<th>To perform this task</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Configure Access Administrators</td>
<td>“Configuring Access Administrators and Server Settings” on page 2-1</td>
</tr>
<tr>
<td>Configure server settings</td>
<td>“Configuring Access Administrators and Server Settings” on page 2-1</td>
</tr>
<tr>
<td>Configure AccessGates and Access Servers</td>
<td>“Configuring WebGates and Access Servers” on page 3-1</td>
</tr>
<tr>
<td>Add Access Servers</td>
<td>Oracle Access Manager Installation Guide. To ease this process, you may choose to add more Access Servers using silent installation or cloning, as described in the Oracle Access Manager Installation Guide.</td>
</tr>
<tr>
<td>Install Access Manager SDK</td>
<td>Oracle Access Manager Developer Guide</td>
</tr>
<tr>
<td>Add non-HTTP access clients</td>
<td>Oracle Access Manager Developer Guide</td>
</tr>
<tr>
<td>Manage caching</td>
<td>Oracle Access Manager Deployment Guide</td>
</tr>
</tbody>
</table>

Table 1–2 (Cont.) Overview of Access System Policy-Related Configuration

<table>
<thead>
<tr>
<th>Perform this task</th>
<th>Description</th>
<th>Read</th>
</tr>
</thead>
<tbody>
<tr>
<td>Create a shared secret</td>
<td>The shared secret is used to generate the key that encrypts cookies sent between the WebGate and the user’s browser.</td>
<td>"Creating a Shared Secret Key" on page 8-4</td>
</tr>
</tbody>
</table>

Note: Note that before you define your policy domains and policies you may want to have already defined a few Access Administrators and configured at least one Access Server and WebGate, as mentioned in Table 1–3.
Configuring Access Administrators and Server Settings

This chapter explains how to assign Access System administrators and manage other server settings. Included here are the following topics:

- Prerequisites
- Configuring Access Administrators
- Managing Server Settings

For more information about managing the Access System, see:

- Configuring WebGates and Access Servers on page 3-1

Prerequisites

Oracle Access Manager 10.1.4 should be installed and set up as described in the Oracle Access Manager Installation Guide. The Oracle Access Manager Introduction provides an overview of Oracle Access Manager not found in other manuals. Also, familiarize yourself with the Oracle Access Manager Identity and Common Administration Guide, which provides a brief review of Access System applications and installation and describes functions that are common to the Access and Identity Systems, including defining logging, auditing, and password policies.

Configuring Access Administrators

The Access System enables the protection of online resources by enforcing policy-based authentication and authorization rules. The Access System also enables Web single sign-on.

In addition to the Master Administrator, there are two types of administrators who can configure and manage the Access System:

- **Master Access Administrators**: These administrators have the right to perform any task in the Access System except the right to create other Master Access Administrators.

- **Delegated Access Administrators**: These administrators only have the right to perform tasks that a Master Access Administrator delegates to them.

Table 2–1 summarizes the privileges of these types of administrators. Master Access Administrators automatically have these privileges while Delegated Access Administrators must be explicitly granted these privileges.
The following sections describe how to configure these administrators and delegate administrative tasks. You complete these tasks using the Access System Console, System Configuration function.

Table 2–1 Table of Administrative Privileges

<table>
<thead>
<tr>
<th>Privilege</th>
<th>Description</th>
<th>Who Performs This Task</th>
</tr>
</thead>
<tbody>
<tr>
<td>Generate a shared secret</td>
<td>Create a cryptographic key that encrypts single sign-on cookies. See “Creating a Shared Secret Key” on page 8-4.</td>
<td>Master Access Administrator</td>
</tr>
<tr>
<td>Configure the Master Audit Rule</td>
<td>The Access System will not log any audit information to the audit log file until a Master Audit Rule exists. See “About the Master Audit Rule” on page 4-32. For more information about logging, see Oracle Access Manager Identity and Common Administration Guide.</td>
<td>Master Access Administrator</td>
</tr>
<tr>
<td>Flush the password policy cache</td>
<td>See “Flushing Password Policy Caches” on page 8-5.</td>
<td>Master Access Administrator</td>
</tr>
<tr>
<td>Manage AccessGates</td>
<td>View, create, and configure one or more instances of an AccessGate. See “Configuring AccessGates” on page 3-16.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage Access Server clusters</td>
<td>See “Managing Access Server Clusters” on page 3-10.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage Authentication Schemes</td>
<td>Authentication is the process of proving that a user is who he or she claims to be. See Chapter 5, “Configuring User Authentication” on page 5-1.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage Authorization Schemes</td>
<td>Authorization is the process of determining if a user has the right to access a requested resource. See Chapter 6, “Configuring User Authorization” on page 6-1.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage Host Identifiers</td>
<td>Identify the names by which users can identify a host. See “Using Preferred Hosts or Host Identifiers” on page 3-42.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage Resource Type definitions</td>
<td>Define the kind of resource to be protected, including its associated operations. See “Resource Types Defined by the Access System” on page 4-12.</td>
<td>Master and Delegated Administrator</td>
</tr>
<tr>
<td>Manage User Configuration</td>
<td>Create and modify a list of users who are prohibited from accessing any of your resources and flush these users from the cache. See “About Access System Configuration and Management” on page 8-1.</td>
<td>Master and Delegated Administrator</td>
</tr>
</tbody>
</table>

Note: Delegating administrative responsibilities for a policy domain is somewhat different from the delegation of other responsibilities. See “Delegating Policy Domain Administration” on page 4-43 for details.
Configuring Master Access Administrators

Only Master Administrators can create Master Access Administrators. A Master Access Administrator can perform any function in the Access System except for creating other Master Access Administrators, and can delegate administrative functions.

Note: You must be a Master Access Administrator to create a shared secret key that encrypts single sign-on cookies. You should generate a cryptographic key as soon as possible after installing Oracle Access Manager, otherwise a less secure default is used. See “Creating a Shared Secret Key” on page 8-4.

To add a Master Access Administrator

1. From the Access System Console, select System Configuration, then click the Administrators link in the left navigation pane.

 The Configure Administrators page lists current Master Access Administrators.

2. Click the Master Access Administrators link.

 The Modify Master Access Administrators page appears.

3. Click Select User.

 A page appears that contains search fields.

4. Use the search fields to select the people that you want.

 The search fields consist of attributes that you want to search, search criteria such as “contains,” and search strings or partial strings. Select the number of search results that you want to view at a time and click Go.

5. Click Done to return to the Modify Master Access Administrators page.

 The names of any new people you chose using the Selector are displayed in the Modify Master Access Administrators page.

6. Use the checkboxes to deselect any names that you need to remove from your list.

7. Review your selections to ensure that your list is complete.

8. Click Save to save the changes (or Cancel to exit without changing).

Configuring Delegated Access Administrators

When the responsibility for managing the Access System falls on a few people, you may want these people to appoint others to share the work. People currently responsible for resources generally know best to whom to delegate responsibility. The ability to delegate Access System administration to other people enables you to scale administration of your resources, empowering those closest to the resources and most knowledgeable about them to manage them.

A Master Access Administrator can create a group of users and assign administrative rights to the group. The Master Access Administrator can assign the same administrative rights to more than one group. For example, Group1 and Group2 can both be assigned the right to manage Access Servers.

The following functions can be delegated:

- Add, modify, delete AccessGate configurations.
Add, modify, delete Access Server configurations.

Add, modify, delete Access Server clusters.

Add, modify, delete authentication schemes.

Add, modify, delete authorization schemes.

Add, modify, delete host identifiers.

Add, modify, delete resource type definitions.

Modify the revoked user list.

To manage the revoked user list, a delegated administrator must have access to the searchbase containing the entry for the user and must have appropriate attribute read permissions.

You can add a user to more than one group. For example, if you create one group of Delegated Administrators to manage authentication schemes and authorization schemes, and another group to manage Access Servers and Access Server clusters, the same user can belong to both groups.

When an administrator performs certain tasks, Oracle Access Manager creates an informational log. See the Oracle Access Manager Identity and Common Administration Guide for details.

Policy domain administration can also be delegated. See "Delegating Policy Domain Administration" on page 4-43 for details.

Note: A delegated administrator can be assigned to a resource type before any host IDs are set. However, if the host IDs are defined at a later time, the delegated administrator will no longer be able to add resources to the policy domain. The Master Administrator will need to reassign the delegated administrator to a policy domain that has the associated host identifier to enable the delegated administrator to add resources to that domain.

Creating a Group of Delegated Access Administrators

The following procedure illustrates how to add Delegated Administrators to the Access System.

To create a group of Delegated Access Administrators

1. From the Access System Console, click System Configuration, then click the Administrators link in the left navigation pane.

The Configure Administrators page appears.

2. Under the title Groups of Delegated Administrators, click the Add button.

The Create a New Group of Delegated Administrators page appears. You can complete all information requested or create an empty group with no administrative rights or members.

3. Provide the information requested.

4. For example:

 Name: A name for this group

 Description: Optional description
Managing Server Settings

Administrative Rights: Select the rights you want to give to this group
5. Click the Select User button, beside the Members label, to display the Selector.
6. Use the Selector to add people to this group, then click Done when you are finished to return to the Create a new group of Delegated Administrators page.
7. Click Save to complete the process.

Modifying a Group of Delegated Administrators
The following procedure illustrates how to alter a group of Delegated Administrators in the Access System.

To modify a group of delegated administrators
1. From the Access System Console, click the System Configuration tab, then click the Administrators link in the left navigation pane.
2. Click the link for the group that you want to modify.
 The Modify Group of Delegated Administrators page appears.
3. Click Modify.
 The page changes to show editable fields for group name, description, and so on.
4. Make your changes and click Save.

Managing Server Settings
The Access System Console, System Configuration function, enables you to view and alter Access Server and directory server settings, configure an SSO Logout URL, and configure email addresses for user feedback. The following topics are covered:

■ Viewing Server Settings
■ Customizing Email Addresses
■ Configuring a Single Sign-On Logout URL
■ Configuring the Directory Server

Note: Only Master Administrators can alter these settings.

Viewing Server Settings
You use the Access System Console to view server settings for items such as email addresses, directory servers, and the SSO logout URL.

To view server settings
1. Launch the Access System Console.
2. Click System Configuration, then select Server Settings.
 The View Server Settings page appears.

Customizing Email Addresses
You use the Customize Email function to specify email addresses for user feedback.
The end user accesses email addresses by clicking the About link at the top of the page, then clicking Submit Admin Feedback or Submit Oracle Feedback.

To customize email

1. In the Access System Console, click System Configuration, then select Server Settings.

 The View Server Settings page appears.

2. Click Customize Email to display this page.

3. Type email addresses in the following fields:

<table>
<thead>
<tr>
<th>Address</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Email address for Bug Reports</td>
<td>This address must be changed to be sent to a person or alias in your organization. This person or department can either solve the problem or contact Oracle for help.</td>
</tr>
<tr>
<td>Email address for User Feedback</td>
<td>When a user submits an Oracle Feedback form, the data is sent to the address specified. The default is feedback@Oracle.com.</td>
</tr>
<tr>
<td>Webmaster’s Email address</td>
<td>When a user submits an Admin Feedback form, the data is sent to the address specified. The default is webmaster@company.com.</td>
</tr>
</tbody>
</table>

4. Click Save to save your changes (or Cancel to exit without saving).

5. Restart your Web server.

Configuring a Single Sign-On Logout URL

Single sign-on (SSO) is the ability to access multiple resources with a single login. The Access System performs single sign-on for users by setting an ObSSOCookie for each user or application that accesses a resource protected by the Access System. The ObSSOCookie enables users to access other resources protected by the Access System that have the same or a lower authentication level. See Chapter 7, “Configuring Single Sign-On” on page 7-1 for details.

You can configure a single sign-on logout URL and an associated logout page to remove the ObSSOCookie. This forces the user to re-authenticate the next time he or she accesses a resource protected with the Access System.
Oracle provides a logout.html page that is presented to users upon logout and that runs the function that removes session cookies. This form is located in:

```
PolicyManager_install_dir/access/oblix/lang/en-us/logout.html
```

For information on configuring this logout page or creating a custom one, see "Configuring Logout" on page C-1. This section only discusses the logout URL.

If you have multiple languages installed, you can configure the Oracle Access Manager single sign-on logout URL to point to a logout.html file in the language of the user’s browser. To do this, you provide the %lang% parameter in the single sign-on logout URL. Access Manager replaces %lang% with the browser’s language at runtime.

Note: If you use the Basic Over LDAP authentication scheme on some versions of Internet Explorer, you may experience unexpected results with the single sign-on logout URL. Internet Explorer caches user credentials when a Basic Over LDAP authentication scheme is used. For some versions of Internet Explorer, this means that users can continue to access resources after logging out. If you experience this problem with the single sign-on logout URL, Oracle recommends that you use a Form over LDAP authentication scheme.

To configure the SSO Logout URL

1. In the Access System Console, click System Configuration.
2. Click Server Settings in the left navigation pane.
3. Click the Configure SSO Logout URL link.

 The following page appears.

 ![Configure SSO Logout URL](image)

4. Choose the option you want:
 - If you use a third-party program for logging users out, select No SSO Logout URL.
 - If you want to have the Identity System and Access System automatically call this page when the user clicks Logout, select URL.

Managing Server Settings
Managing Server Settings

5. Click Save.

6. Flush the Access Server cache after changing the SSO Logout value.
 See "Automatic Access System Cache Flush" on page 9-1 for more information.

7. Flush the Identity Server cache after changing the SSO Logout value.
 For more information about managing Identity Server caches, see the Oracle Access Manager Identity and Common Administration Guide and the Oracle Access Manager Deployment Guide.

Configuring the Directory Server

You use the Directory Server Configuration page to modify various directory server settings using the Access System Console. This is similar to modifying Directory Server details using the Identity System Console, as discussed in the Oracle Access Manager Identity and Common Administration Guide. Directory server details available in the Access System Console include those for configuration data and policy data.

To configure the directory server

1. From the Access System Console, click System Configuration, then click Server Settings.
 The View Server Settings page appears.

2. Click the Directory Server link.
 The Directory Server Configuration page appears. Notice that the page is divided into two areas: one for configuration data and one for policy data. The configuration base and policy base on this page cannot be changed.

Note: You must manually create a link to this logout.html page from other resources that are protected by the Access System. Create the link on the pages that you want to contain the logout feature.
The configuration base identifies the location of all Oracle Access Manager-specific information. You cannot change this information. The Policy Base identifies the location in the DIT under which all Access System policy data is stored, which you cannot change.

Note: If you change the information in any field marked with an asterisk (*), you must repeat product setup as described in the Oracle Access Manager Identity and Common Administration Guide.

3. Specify configuration information for configuration data, as shown in the following table.

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine(*)</td>
<td>Name or IP address of the machine where the directory server managing the user data, configuration data, or policy data is installed</td>
</tr>
<tr>
<td>Port Number(*)</td>
<td>Port number of the machine on which the directory server managing the user data, configuration data, or policy data is running</td>
</tr>
<tr>
<td>Root DN(*)</td>
<td>Root DN of the directory server</td>
</tr>
<tr>
<td>Root Password(*)</td>
<td>Root password of the directory server</td>
</tr>
<tr>
<td>Directory Server Security Mode(*)</td>
<td>Security mode the directory server uses to protect its communications</td>
</tr>
</tbody>
</table>

4. Specify configuration information for Policy data, as shown in the previous table.
5. Click Save to save your changes (or Cancel to exit without saving).
WebGates, AccessGates, and Access Servers are key components when a user attempts to access a protected resource. An Access Server provides an authentication, authorization, and auditing engine. A WebGate intercepts HTTP requests for Web content and forward the requests to the Access Server. An AccessGate is a custom WebGate that can intercept requests for HTTP and non-HTTP resources.

This chapter explains how to define and manage AccessGate and Access Server instances.

This chapter includes the following topics:

- About Configuring the Access System
- Prerequisites for Configuring AccessGates and Access Servers
- Configuring Access Servers
- Configuring AccessGates
- Managing WebGates
- Associating AccessGates with Access Servers
- Using Preferred Hosts or Host Identifiers
- The Access Login Process

About Configuring the Access System

Controlling access to applications and content is the cornerstone of e-business infrastructure. You want to allow some users to use certain resources and deny access to others. You control access to your company’s resources through the Access System. The Access System provides base components, consisting of a server and plug-ins, that are the foundation upon which you define access controls.

The following sections discuss setting up the base components of the Access System. These components provide the underlying software that makes it possible to control user access to resources.

As discussed in *Oracle Access Manager Introduction* and this manual, the following are the primary components of the Access System:

- **Access Server**—A standalone server that provides authentication, authorization, and auditing services for AccessGates.

- **WebGate**—WebGate is an out-of-the-box plug-in that intercepts Web resource (HTTP) requests and forwards them to the Access Server for authentication and authorization.
Prerequisites for Configuring AccessGates and Access Servers

AccessGate—A custom WebGate that processes resource requests from users or applications. It intercepts user requests for resources and forwards them to the Access Server for authentication and authorization. Unlike a WebGate, you can define a custom AccessGate that intercepts requests for non-http resources.

You administer the Access System through a Web-based user interface that consists of the Policy Manager and the Access System Console.

Policy Manager—This is an Access System application that enables you to create and manage policy domains to protect resources, and to test policy enforcement.

Access System Console—This is an Access System application that provides functions for the following configuration and management tasks:

- System Configuration—Functions include configuring administrators and server settings. The View Server Settings page provides information on email, the single sign-on logout URL, and the directory server. See "Configuring Access Administrators and Server Settings" on page 2-1 for details.

- System Management—Enables you to identify Access Servers on which to run diagnostics, manage user access-privilege reports, and manage sync records. See "About Access System Configuration and Management" on page 8-1 for details.

- Access System Configuration—Includes the following functions (see also "Managing Access System Configuration Files" on page 9-1):
 - Defining Access Server clusters
 - Creating and configuring AccessGates
 - Configuring Access Servers
 - Configuring user authentication
 - Configuring user authorization
 - Configuring common information
 - Configuring preferred hosts and host identifiers

Prerequisites for Configuring AccessGates and Access Servers

Oracle Access Manager 10.1.4 should be installed and set up as described in the Oracle Access Manager Installation Guide. The Oracle Access Manager Introduction provides an overview of Oracle Access Manager not found in other manuals. Also, familiarize yourself with the Oracle Access Manager Identity and Common Administration Guide which introduces Access System applications, installation, configuration, administration, and common functions.

Important: You must have appropriate rights to complete activities in this chapter. See "Configuring Access Administrators" on page 2-1 for more information.

Configuring Access Servers

As described in the Oracle Access Manager Installation Guide, you must install at least one Access Server. It is recommended that you install at least two on different machines to ensure uninterrupted service to your users. Each Access Server must be
configured to communicate with one or more AccessGate instances, and to communicate with a directory server.

You must have appropriate rights to configure the Access System. See “Configuring Access Administrators” on page 2-1 for more information.

Task overview: Creating an Access Server

1. Create an Access Server instance in the Access System Console, as described in “Adding an Access Server Instance” on page 3-5.

2. Install the Access Server, as described in the Oracle Access Manager Installation Guide.

3. Configure the Access Server, as described in “Modifying Access Server Details” on page 3-9.

4. Synchronize the clocks on the Oracle Access Manager hosts.

 Access Servers record their activity in Greenwich Mean Time (GMT) because you could have servers operating in several time zones. Synchronizing clocks on Oracle Access Manager hosts is critical. See the Oracle Access Manager Installation Guide for details.

5. Ensure optimal performance by tuning the directory that the Access Server communicates with.

 See your directory vendor’s documentation for details. For Oracle Internet Directory, see the chapter on performance optimization in the Oracle Internet Directory Administrator’s Guide for details.

Using the Access System Console, Access System Configuration function, you can perform a number of key tasks including the following:

- Viewing Access Server Configuration Details
- Adding an Access Server Instance
- Modifying Access Server Details
- Deleting an Access Server
- Clustering Access Servers
- Managing Access Servers from the Command Line

Viewing Access Server Configuration Details

You can view all the configured Access Servers in the Access System Console.

To view Access Server configuration details

1. Launch the Access System Console.

2. Click Access System Configuration, then select Access Server Configuration. The existing Access Servers are listed on the configuration landing page.

3. Select an Access Server to view its configuration.

 The configuration details of the Access Server appear, as described next. For details about configuring these parameters, see ”Adding an Access Server Instance” on page 3-5.
Configuring Access Servers

Access Server Configuration Parameters
The Access Server configuration parameters appear on the Access System Console, Access Server Configuration page. Table 3–1 lists the configuration parameters:

Table 3–1 Access Server Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Name of the Access Server.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Name of the Web server that is hosting the Access Server.</td>
</tr>
<tr>
<td>Port</td>
<td>Port number the Access Server is listening to.</td>
</tr>
<tr>
<td>Debug</td>
<td>Indicates whether debugging is on or off. See "Adding an Access Server Instance" on page 3-5 for details.</td>
</tr>
<tr>
<td>Debug File Name</td>
<td>The name of this Access Server’s debug file.</td>
</tr>
<tr>
<td></td>
<td>The absolute path to the debug file is also indicated. If the file does not exist, it is created after you restart the Access Server.</td>
</tr>
<tr>
<td>Transport Security</td>
<td>Level of transport security to and from the Access Server.</td>
</tr>
<tr>
<td></td>
<td>Available options are:</td>
</tr>
<tr>
<td></td>
<td>Open—No transport security.</td>
</tr>
<tr>
<td></td>
<td>Simple—Encrypted transport security with prepackaged certificates.</td>
</tr>
<tr>
<td></td>
<td>Cert—Encrypted transport security.</td>
</tr>
<tr>
<td>Maximum Client Session Time (hours)</td>
<td>The duration, in hours, for a connection between AccessGate and an Access Server.</td>
</tr>
<tr>
<td>Number of Threads</td>
<td>Maximum number of service threads allowed on the Access Server. By default, the number of threads is set to 60. The number of threads may have implications for system performance. See the Oracle Access Manager Deployment Guide for details.</td>
</tr>
<tr>
<td>Policy Manager API Support Mode</td>
<td>Whether Policy Manager API Support Mode is enabled. Setting this to On enables the Policy Manager engine in the server. The Access Server starts servicing Policy Manager API requests from AccessGates for policy management. See "AccessGate Configuration Parameters" on page 3-18 for details.</td>
</tr>
<tr>
<td>Audit to Database</td>
<td>Writes audit information to a database. If you set the value to On, you must install a supported database and do additional configuration. See the Oracle Access Manager Identity and Common Administration Guide for details.</td>
</tr>
<tr>
<td>Audit to File</td>
<td>Writes audit information to a file.</td>
</tr>
<tr>
<td>Audit File Name</td>
<td>Path to this Access Server’s audit file.</td>
</tr>
<tr>
<td>Audit File Size</td>
<td>Maximum size of the audit file, in bytes.</td>
</tr>
<tr>
<td>Buffer Size</td>
<td>Size of the audit buffer, in bytes.</td>
</tr>
<tr>
<td>File Rotation Interval</td>
<td>Time, in seconds, that this audit file can exist.</td>
</tr>
<tr>
<td>Engine Configuration Refresh Period</td>
<td>Frequency, in seconds, of configuration updates to this server. Note: Changes you make to this parameter do not take effect until the previous Engine Configuration Refresh Period has expired.</td>
</tr>
<tr>
<td>URL Prefix Reload Period</td>
<td>Frequency, in seconds, with which new URLs are recognized by this Access Server.</td>
</tr>
<tr>
<td>Password Policy Reload Period</td>
<td>Frequency, in seconds, with which new password policies are recognized by this Access Server.</td>
</tr>
</tbody>
</table>
Adding an Access Server Instance

Before installing the Access Server, you must add a new instance in the Access System Console. At this time, you need only specify the Access Server name, hostname, port, and transport security mode. After installation, you can modify the configuration.

The following procedure describes how to add and configure the instance.

Note: You must add the Access Server instance to the Access System Console before installing the component.

To add an Access Server instance

1. From the Access System Console, select Access System Configuration, then click Access Server Configuration.

The Access Server Configuration page appears.

2. Click Add.

The Add a New Access Server page appears.

You must enter information in the Name, Hostname, and Port fields. All other fields are optional.

3. In the Name field, type a name for this server.

Type an alphanumeric string without spaces.

Note: You cannot give the same name to an AccessGate and an Access Server.
4. In the Hostname field, type the name or IP address of the computer hosting this server.

5. In the Port field, type the port number of the computer hosting this server.

6. In the Debug field:
 ■ Click On to capture all messages sent from each AccessGate and Policy Manager to this Access Server.
 The messages are stored in a Debug file if a Debug file is provided. Otherwise, the messages are printed out to stderr.
 ■ Click Off if you do not want to capture this information.
 Capturing messages confirms that communication is taking place between AccessGate instances and this Access Server.

7. In the Debug File Name field, type the path to this Access Server’s debug file.

8. In the Transport Security field, select a method for encrypting messages between this Access Server and the AccessGates it is configured to talk to.
 For AccessGates and Access Servers that are configured to communicate with each other, be sure to choose the same encryption method.
 Your choices are Open mode, Simple mode, or Cert mode.
 For a description of configuring transport security modes, see the Oracle Access Manager Identity and Common Administration Guide.

9. In the Maximum Client Session Time (hours) field, type the number of hours that a connection between an AccessGate and this Access Server can last.
 The default is 24 hours.
 The longer the session time, the more vulnerable your system is to attack.

10. In the Number of Threads field, type the number of threads this Access Server will start.
 The default entry is 100. The minimum is 1.

11. Beside Policy Manager API Support Mode, select the option for your environment.
 Setting the Policy Manager API Support Mode to "On" enables the Policy Manager engine in the server. The Access Server starts servicing Policy Manager API requests from AccessGates for policy management. See "AccessGate Configuration Parameters" on page 3-18 for details.

12. Choose the Auditing option you want for your environment:
 ■ Audit to Database (on/off)—Selecting On requires specific configuration in the Access System, plus installation of a supported database, as described in the Oracle Access Manager Identity and Common Administration Guide.
 ■ Audit to File (on/off)—Selecting On requires specification of the following additional items:
– Audit File Name—Type the path to this Access Server’s audit file. The file is stored on the computer hosting this Access Server. Each Access Server has its own audit file. The information captured for the file is determined by the Master Audit Rule. See "About the Master Audit Rule" on page 4-32 for details.

– Audit File Size (bytes)—Type a number representing the number of bytes this audit file can hold. If you change the default size, you need to restart the server after committing the change. When the maximum size is reached, the current file is closed and stamped with the date and time, and a new audit file with the original name is created.

13. In the Buffer Size (bytes) field, type a number representing the number of bytes that the audit file’s buffer can hold.

 The default is 512000. Using a buffer increases performance by reducing the number of times information is read to the audit file.

 • If you type a value in this field, audit information is stored in the buffer before it is written to the audit file. When the buffer reaches the size you specify, it transfers its contents into the audit file.

 • If you enter 0 in this field, audit information is written directly to the audit file.

14. In the File Rotation Interval (seconds) field, type a number representing the number of seconds that this audit file can exist.

 The default is 0. A setting of 0 means that the audit file never times out, and audit information continues to be added to the file.

 When the limit is reached, this file is rotated, which means it is closed, stamped with the date and time, and a new audit file with the original name is created.

15. In the Engine Configuration Refresh Period (seconds) field, type a value in seconds to indicate the frequency with which configuration changes to this server take place.

 The default is 14400. A setting of 14400 means the audit file name and related parameters are refreshed once every 4 hours. If set to 0, they are never refreshed. They are loaded when the server comes up and remain the same while the server is up.

 The changes are implemented with the frequency you indicate in this field. For example, if you type 600 seconds, configuration changes are implemented within 10 minutes.

 For more information, see "Modifying Access Server Details" on page 3-9.

 Note: Changes you make to this parameter do not take effect until the previous Engine Config Refresh Period has expired.

16. In the URL Prefix Reload Period (seconds) field, type a number representing the frequency with which new URLs are recognized by this Access Server.

 The default is 7200.

 For example, if you type 600 in this field (600 seconds = 10 minutes), URLs are reloaded from the directory server every 10 minutes. This is helpful in cases where a particular URL Prefix cache flush request did not reach an Access Server.
17. In the Password Policy Reload Period (seconds) field, type a number representing the number of seconds that specifies the reload interval for the password policies. The default is 7200.

18. In the Maximum Elements in User Cache field, type a number representing the number of authenticated users that can be saved in the Access Server's cache. The default is 10000. When the maximum is reached, the newest user activity is added to the cache, and the oldest is deleted.

19. In the User Cache Timeout (seconds) field, type a number representing the number of seconds that entries remain in the user cache until they are purged. The default is 1800 (30 minutes). Setting the timeout to 0 means that the cache element never expires.

 After the timeout on cached user entry has expired, the Access Server goes to the directory server to get user profile data needed during authentication actions and authorization actions.

20. In the Maximum Elements in Policy Cache field, type a number representing the number of items and activities associated with activities within policy domains, such as URLs mapped to specific rules, that can be cached. The default is 100000. When the maximum is reached, the newest user activity is added to the cache, and the oldest is deleted.

21. In the Policy Cache Timeout field, type a number representing the number of seconds that entries about policies can last before they are purged. The default is 7200 (two hours).

22. In the SNMP State field, click On to enable SNMP or click Off to disable SNMP.

23. In the SNMP Agent Registration Port field, enter the port number for the SNMP Agent.

24. Indicate if the Session Token Cache is Enabled or Disabled.

 If it is enabled, the Access Server stores the session token in the cache. For a description of the session token, see "Single Sign-On Cookies" on page 7-2.

25. Indicate the maximum number of elements that can be stored in the session token cache.

 You may need to tune this number periodically because this cache can become very large.

26. Click Save to save this new Access Server (or click Cancel to exit the page without saving).

27. Repeat the steps in this procedure for each Access Server that you want to install in your e-business infrastructure.

Now that you have created an Access Server instance, you can install this Access Server. When installing, use the Name, Hostname, and Port number information you typed in this page.

See the Oracle Access Manager Installation Guide for information on installing an Access Server.
Configuring a Directory Server Profile for the Access Server

A default directory profile is created for the Access Server during Access Server installation. For information on how to view or modify this profile, see information on directory profiles in the Oracle Access Manager Identity and Common Administration Guide.

If you install more than one Access Server instance, each server uses the same default directory server profile. If you modify a shared directory server profile for a particular Access Server instance, all of the other Access Server instances are affected. If you do not also change the profiles for these servers, you receive a warning whenever you:

- View the server configuration
- Restart the server
- Reconfigure the server

Modifying Access Server Details

Occasionally, you may need to change an Access Server’s configuration settings. You can modify an Access Server instance through the Access System Console. If you change any field marked with an asterisk, you must restart the Access Server.

Note: You cannot change an Access Server's name. To give an Access Server instance a new name, you must delete and uninstall the current instance, then create a new one.

To modify an Access Server

1. Launch the Access System Console.
2. Navigate to Access System Configuration, then click Access Server Configuration.

 The Access Server Configuration page appears. The name, host, and port of each configured Access Server are listed on this page.
3. Click the link of the Access Server you want to modify.

 The Modify Access Server page appears. For details about all parameters, see "Access Server Configuration Parameters" on page 3-4.
5. Enter new values (see "Adding an Access Server Instance" on page 3-5.)
6. Select Update Cache to immediately send your changes to this Access Server’s cache.
7. Click Save to save your changes (or click Cancel) and return to the previous page.

Deleting an Access Server

To remove an Access Server from your system, you must first delete its configured instance, then uninstall the Access Server.

When you delete an Access Server, all AccessGate instances that are configured to send requests to the server are automatically notified. Before deleting an Access Server, make sure that all AccessGate instances are configured to send requests to at least one other Access Server.
To delete an Access Server

1. Launch the Access System Console.
2. Click Access System Configuration, then click Access Server Configuration.
 The existing Access Servers are listed on the page.
3. Select the server you want to delete.
4. Click Delete.
 You are prompted to confirm your decision.
5. Click OK to delete the instance (or click Cancel to stop the deletion).

Clustering Access Servers

In large Oracle Access Manager implementations, there can be thousands of AccessGates. Whenever a new Access Server is added, the administrator must manually configure all the AccessGates to communicate with the Access Server. In addition, the administrator must also configure failover and load balancing for the new Access Server, as described in the Oracle Access Manager Deployment Guide.

Grouping Access Servers into clusters reduces the time needed to manage these tasks, because Oracle Access Manager automatically performs some of the configuration tasks. After you create a cluster, you add Access Servers to it and then associate one or more AccessGates with the cluster. Oracle Access Manager automatically configurations all the AccessGates associated with the cluster to communicate with all the Access Servers in the cluster.

Managing Access Server Clusters

If you are a Master Access Administrator or a Delegated Access Administrator with appropriate rights to manage Access Server clusters, you can:

- Add an Access Server to multiple clusters.
- Associate multiple AccessGates with a cluster.
- Associate multiple clusters with an AccessGate.

Oracle Access Manager dynamically configures failover and load balancing for all the servers in a cluster and ensures that requests are routed to those Access Servers with the lightest load. For details about configuring failover, see the Oracle Access Manager Deployment Guide.

Note: All Access Servers in a cluster and all AccessGates associated with the cluster must have the same transport security mode and Policy Manager API Support Mode.

To add an Access Server cluster

1. Launch the Access System Console.
2. In the Access System Configuration page, click Access Server Clusters.
 The existing Access Server clusters are listed on the page.
3. Click Add.
 The Create a New Cluster of Access Servers page appears.
4. Enter a unique name for the cluster.

5. Select a transport security mode for the cluster.
 Open mode is the default. You can select Open, Simple, or Cert. All Access Servers in a cluster must have the same transport security mode.

6. Specify the Policy Manager API Support Mode State.
 - On—Click the On button.
 - Off—By default, it is turned Off.

 Note: All Access Servers in a cluster must have the same Policy Manager API Support Mode.

7. Click Next to go to the next page (or click Cancel if you do not want to save the cluster).

8. On the next page, select the Access Server that you want to add to the cluster by clicking an Access Server in the list.
 The Access System only displays those servers that have the same security mode and Policy Manager API Support Mode as the one specified for the cluster.

9. Click the double right arrow (>>) button to add the Access Server to the cluster.
 To remove an Access Server from the cluster, select it in the Access Servers in Clusters box and click the double left arrow (<<) button.

10. Click Save to save your changes, or click Cancel if you do not want to save your changes.
 Click Back to return to the first page.

 Note: If you click Back and change the transport security mode or the Policy Manager API Support Mode, then click Next, you have to re-select Access Servers with the new security mode or Policy Manager API Support Mode.

To view or modify an Access Server cluster

1. Launch the Access System Console and click Access Server Clusters.
 The existing Access Server clusters are listed on the page.

2. Click a cluster to view its details.
 The Details for Access Server Cluster page appears. The details of Access Servers in the cluster are listed.

3. Click Modify to modify a cluster’s details.
 The Modify Cluster page appears.

4. You can add or delete Access Servers.
 - To add an Access Server to the cluster, select the server from the Available Access Servers list and click the >> button to add it to the cluster.
 - To remove an Access Server from the cluster, select the server in the Access Servers in Cluster box and click the << button to remove it from the cluster.
5. Click Save (or click Cancel if you do not want to save your changes).

Managing Access Servers from the Command Line

You can perform an automated installation of the Access Server using a file that contains installation parameters and values. This is called installing in silent mode. Silent mode permits installation without user intervention.

To install an Access Server in silent mode
1. At the command line, enter the following command:
 `configureAAAServer.exe install install_dir -S -f aaa_input.xml`

 where `aaa_input.xml` is a file that contains installation parameters and values.

 The Access System provides two sample input files named `aaa_input.xml` and `silent-mode-sample-AAA-Input.xml`. The files are located in:
 `AccessServer_install_dir\access\oblix\tools\configureAAAServer`

 where `AccessServer_install_dir` is the directory in which the Access Server is installed. For information on silent mode, installation, see the Oracle Access Manager Installation Guide.

Using the ConfigureAAAServer Tool

You can perform Access Server-related administration tasks through a command-line tool called configureAAAServer. This tool can be used in both Windows and Solaris installations.

Commands that you can use with configureAAAServer tool:
- install
- reconfig
- chpasswd
- remove

Windows Systems—Use the remove and install commands to remove or re-install an Access Server Service.

Non-Windows Systems—Use the `start_configureAAAServer` script to invoke the configureAAAServer tool. To see the options, you can run this tool without any options.

To access the configureAAAServer tool
1. Navigate to the folder where configureAAAServer is located.
 The default location is:
 `AccessServer_install_dir\access\oblix\tools\configureAAAServer`

 Note: On non-Windows systems, use `start_configureAAAServer`.

2. Use the configureAAAServer tool in a procedure, as needed.

To reconfigure an Access Server
1. Navigate to the folder where configureAAAServer is located.
For example:

\texttt{AccessServer_install_dir/access/oblix/tools/configureAAAServer}

2. Run the following executable:

\texttt{configureAAAServer reconfig AccessServer_install_dir}

3. Specify the following when prompted:

- The transport security mode in which you want Access Server to run
- The transport security mode in which the directory server is running
- The host machine on which the directory server resides
- The port number on which the directory server listens
- The bind DN of the directory server
- The password of the directory server
- The directory server to which you are connecting
- The location where configuration data is stored
- The configuration DN
- The policy base
- The Access Server ID

See "Configuring the Directory Server" on page 2-8 for information on directory server configurations.

4. Restart the Access Server.

\textbf{To modify common parameters}

1. Navigate to the folder where configureAAAServer is located.

The default location is:

\texttt{AccessServer_install_dir/access/oblix/tools/configureAAAServer}

where \texttt{AccessServer_install_dir} is the directory where the Access Server was installed.

2. Run the following executable:

\texttt{configureAAAServer reconfig AccessServer_install_dir}

You are then asked if you want to specify failover information for configuration or policy data.

3. Select Yes (Y).

4. Specify whether the data is stored in the configuration directory tree, or the policy tree.

The following options appear:

a. Add a failover server
b. Modify a failover server
c. Delete a failover server
d. Modify common parameters
e. Quit

5. Select Modify common parameters.

6. Specify values for the following common configuration parameters as needed:
 a. **Maximum Connections**—The maximum number of connections that an Access Server can establish with the associated directory servers for load balancing.
 b. **Sleep For (seconds)**—The frequency with which the Access Server checks its connections to the directory server. For example, if you set a value of 60 seconds, the Access Server checks its connections every 60 seconds from the time it comes up.
 c. **Failover Threshold**—The number representing the point when the Access Server opens a new connection to a directory server. For example, if you type 3 in this field, and the number of connections from the Access Server to the directory server falls to 2, a new connection is opened between the Access Server and the configured directory servers.
 d. **Maximum Session Time**—The maximum period of time that a session between an Access Server and a directory server is valid.

 For more information, see the Oracle Access Manager Deployment Guide.

7. Select Quit to exit.

You are prompted to commit the changes.

8. Select Y to commit your changes (or select N to cancel your changes).

To remove an Access Server service

1. Navigate to the folder where configureAAAserver is located.

 The default location is:

 `AccessServer_install_dir\access\oblix\tools\configureAAAServer`

 Note: On non-Windows systems, use start_configureAAAServer.

2. From the command line, run the following executable:

 `configureAAAServer remove AccessServer_install_dir serviceName`

 where `AccessServer_install_dir` is the directory in which the Access Server was installed and `serviceName` is the name of a service such as `AccessManager_AccessServer`.

 A message appears stating that the registry entries are being removed. This confirms that the Access Server has been removed.

 Note: The serviceName variable is applicable only for Microsoft Windows. The serviceName is the name you specify for the Access Server on the Access System Console.

To re-install an Access Server service

1. Navigate to the folder where configureAAAserver is located, for example:

 `AccessServer_install_dir\access\oblix\tools\configureAAAServer`
2. From the command line, run the following executable:

```
configureAAAServer install AccessServer_install_dir serviceName
```

where `AccessServer_install_dir` is the directory in which the Access Server was installed and `serviceName` is the name of a service such as `AccessManager_AccessServer`.

3. Specify the following:
 - Whether or not you want to reconfigure the Access Server
 - The transport security mode for the Access Server
 - The transport security mode for the Oracle Access Manager directory server
 - The host machine on which the directory server resides
 - The port number on which the Oracle Access Manager directory server resides
 - The bind DN of the directory server
 - The password of the directory server
 - The directory server to which you are connecting
 - The configuration DN
 - The location of the policy data
 - The policy base
 - The Access Server ID

4. Note the name of the Access Server service.

 A message appears stating that the Access Server has been successfully installed.

5. Start the Access Server from the Windows Control Panel services.

Setting the Number of Queues from the Command Line

Requests are queued as they are sent to an Access Server. A thread processes each request. For example, if you have two request queues and 60 threads, the Access Server spawns 120 threads.

You cannot specify the number of queues in the Access System Console. When you configure an Access Server, however, you specify the number of threads in the Number of Threads field. The default setting is 60.

Use a command line entry to specify the number of queues each Access Server can support. Keep the number of queues in balance with the number of threads. Typically, one queue is adequate for each WebGate.

A command is available with Solaris, Windows 2000, or Windows NT. On Solaris, you open a shell window to use this command. On Windows, use the Start Parameter field in the Services window to use this command.

Tip: Additional information on threads and queues is provided in the *Oracle Access Manager Deployment Guide*.

Note: On non-Windows systems, use `start_configureAAAServer`.
To set the number of queues on Solaris
1. Open a shell window.
2. At the command line, enter the following command:
   ```
   start_access_server -QN
   ```
 where N is the number of queues.

To set the number of queues on Windows 2000
1. Navigate to Start, Programs, Administrative Tools, Services, and then COREidAAAServerID.
 where ID is the name of the Access Server.
2. Right-click COREidAAAServerID and select Properties.
 The Properties window appears.
3. To specify the number of queues, in the General tab, enter
   ```
   -QN
   ```
 where N is the number of queues in the Start Parameter field.

To set the number of queues on Windows NT
1. Navigate to Start, Control Panel, Services, and then COREidAAAServerID.
 where ID is the name of the Access Server.
2. Right-click COREidAAAServerID and select Properties.
 The Properties window appears.
3. To specify the number of queues, in the General tab, enter
   ```
   -QN
   ```
 where N is the number of queues in the Start Parameter field.

Configuring AccessGates
At least one Access Server and one AccessGate must be configured and installed for the Access System to run. The AccessGate that you configure can be a WebGate, which is an out-of-the-box AccessGate for http resources. The Access Server must be installed before you install the AccessGate.

The rest of this section discusses the following topics:
- Viewing AccessGates
- AccessGate Configuration Parameters
- Adding an AccessGate
- Modifying an AccessGate
- Deleting an AccessGate

Task overview: Configuring an AccessGate
1. Create one or more AccessGate instances in the Access System Console, as described in "Adding an AccessGate" on page 3-23.
2. Associate each AccessGate instance with an Access Server, as described in "Associating AccessGates with Access Servers" on page 3-37.

3. Install an AccessGate for each instance that you created in the Access System Console, as described in the Oracle Access Manager Installation Guide.

4. Change the AccessGate settings as needed, as described in "Modifying a WebGate" on page 3-33.

Viewing AccessGates

You can view existing AccessGates in the Access System Console by searching for the AccessGate.

You use a Search page to search for an AccessGate by any of its attributes. Depending on the attribute you select, the search conditions and values vary. For example, if you select Security as your search attribute, Equals may be the condition that is displayed in the list, and the possible values would be one of the available security modes. The system then displays the existing AccessGates that have been configured with the specified security mode.

The search attributes, conditions, and values for an AccessGate are listed in Table 3–2.

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Condition</th>
<th>Input Type</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>Contains</td>
<td>Text box</td>
<td>Searches by AccessGate name.</td>
</tr>
<tr>
<td></td>
<td>Starts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ends with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Host Name</td>
<td>Contains</td>
<td>Text box</td>
<td>Searches for AccessGates that are installed on the specified host machine.</td>
</tr>
<tr>
<td></td>
<td>Starts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ends with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Description</td>
<td>Contains</td>
<td>Text box</td>
<td>Searches for AccessGates with a description field that contains a matching string.</td>
</tr>
<tr>
<td></td>
<td>Starts</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ends with</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Equals</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Policy Manager API Support Mode</td>
<td>Equals</td>
<td>Radio Button: On or Off</td>
<td>Searches for AccessGates based on whether the Policy Manager service has been started (On) or stopped (Off). Set the value to Off for 10.1.3 WebGates and a mixed environment that uses 10.1.3 WebGates and earlier WebGates.</td>
</tr>
<tr>
<td>State</td>
<td>Equals</td>
<td>Radio Button: Enabled and Disables</td>
<td>Searches for AccessGates that are enabled or disabled.</td>
</tr>
</tbody>
</table>

To view AccessGates

1. Launch the Access System Console and click Access System Configuration, and then click AccessGate Configuration.

The Search for AccessGates page appears.
The Search list contains a selection of attributes that can be searched, as described in Table 3–2.

The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

2. Select the search attribute and condition from the lists (or click the All button to find all AccessGates).

3. Click Go.

 The search results are displayed on the page.

4. Click an AccessGate’s name to view its details.

 The configuration details of the AccessGate appear.

To view the AccessGates associated with an Access Server

1. Launch the Access System Console and click Access System Configuration, then click Access Server Configuration.

2. Click the link for the desired Access Server.

 The Details for Access Server page appears.

3. Click the View Associated AccessGates button at the bottom of the Details for Access Server page.

 The AccessGates associated with server page appears.

4. Check Primary Server to view AccessGates for which the Access Server is configured as a primary server.

 Check Secondary Server to view AccessGates for which the Access Server is configured as a secondary server.

 Select All to list all the specified AccessGates, or enter a number to specify the number of search results you want displayed on the page.

5. Click Go to display the search results.

 The details of the AccessGates associated with the Access Server are displayed on the page.

6. If there are multiple pages, click Next to go to the next page, or click Previous to go back to the previous page.

7. Click Back to return to the Access Server page.

AccessGate Configuration Parameters

Table 3–3 summarizes the AccessGate configuration parameters:

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AccessGate Name</td>
<td>Name of the AccessGate.</td>
</tr>
<tr>
<td>Description</td>
<td>Additional information to identify this AccessGate.</td>
</tr>
<tr>
<td>State</td>
<td>Whether or the AccessGate is enabled or disabled.</td>
</tr>
<tr>
<td>Hostname</td>
<td>Name of the machine hosting the AccessGate.</td>
</tr>
</tbody>
</table>
Table 3–3 (Cont.) AccessGate Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Port</td>
<td>Optional, for information only. Identifies the Web server port protected by the AccessGate when deployed as a WebGate. This field should be empty for an AccessGate configuration that supports an application using the Access Manager SDK.</td>
</tr>
<tr>
<td>AccessGate Password</td>
<td>Optional, unique password for the AccessGate, created when you defined the AccessGate in the Access System Console. When the AccessGate connects to an Access Server, it uses the password to authenticate itself to the Access Server. This prevents unauthorized AccessGates from connecting to Access Servers and obtaining policy information.</td>
</tr>
<tr>
<td>Debug</td>
<td>Turns debugging on or off.</td>
</tr>
</tbody>
</table>
| Maximum User Session Time | Maximum amount of time in seconds that a user’s authentication session is valid, regardless of their activity. At the expiration of this session time, the user is re-challenged for authentication. This is a forced logout.
 Default = 3600
 A value of 0 disables this timeout setting. |
| Idle Session Time (seconds) | Amount of time in seconds that a user’s authentication session remains valid without accessing any AccessGate protected resources.
 Default = 3600
 A value of 0 disables this timeout setting. |
| Maximum Connections | Maximum number of connections this AccessGate can establish. This parameter is based on how many Access Server connections are defined to each individual Access Server. This number may be greater than the number allocated at any given time.
 Default = 1 |
| Transport Security | Level of transport security to and from the Access Server, can be set to:
 - Open—No transport security
 - Simple—SSL v3/TLS v1.0 secure transport using dynamically generated session keys
 - Cert—SSL v3/TLS v1.0 secure transport using server side x.509 certificates |
| IPValidation | IP address validation is specific to WebGates and is used to determine whether a client’s IP address is the same as the IP address stored in the ObSSO Cookie generated for single sign-on. See "Configuring IP Address Validation for WebGates" on page 3-34 for details. |
| IPValidationException | IPValidationException is specific to WebGates. This is a list of IP addresses that are excluded from IP address validation. It is often used for excluding IP addresses that are set by proxies. See "Configuring IP Address Validation for WebGates" on page 3-34 for details. |
| Maximum Client Session Time | Connection maintained to the Access Server by the AccessGate. If you are deploying a firewall (or another device) between the AccessGate and the Access Server, this value should be smaller than the timeout setting for the firewall.
 Default: 24 hours. |
Table 3–3 (Cont.) AccessGate Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Failover Threshold</td>
<td>Number representing the point when this AccessGate opens connections to Secondary Access Servers. If you type 30 in this field, and the number of connections to primary Access Servers falls to 29, this AccessGate opens connections to secondary Access Servers.</td>
</tr>
<tr>
<td>Access Server Timeout Threshold</td>
<td>Applicable only to WebGates. Number in seconds to wait for a response from the Access Server. If this parameter is set, it is used as an application TCP/IP timeout instead of the default TCP/IP timeout.</td>
</tr>
<tr>
<td></td>
<td>For example, suppose a WebGate is configured to talk to one primary Access Server and one secondary Access Server. If the network wire is pulled from the primary Access Server, the WebGate waits for the TCP/IP timeout to learn that there is no connection to the primary Access Server. The WebGate tries to reestablish the connections to available servers starting with the primary Access Server. Again, the WebGate waits for the TCP/IP timeout to determine if a connection can be established. If it cannot, the next server in the list is tried. If a connection can be established to another Access Server (either a primary or secondary), the requests are re-routed. However this can take longer than desired. Rather than rely on the default TCP/IP timeout, you can specify the Access Server Timeout Threshold in the Access System Console, Access System Configuration, AccessGate Configuration. The default value of -1 means the default network TCP/IP timeout is used. A typical value for this parameter is between 30 and 60 seconds. When finding new connections, WebGate checks the list of available servers in the order specified in its configuration. If there is only one primary Access Server and one secondary Access Server specified, and the connection to the primary Access Server times out, the WebGate still tries the primary Access Server first. As a result, the WebGate is unable to send requests to an Access Server for a period greater than twice the setting in the Access Server Timeout Threshold.</td>
</tr>
<tr>
<td>Sleep For (seconds)</td>
<td>Number in seconds that represents how often this AccessGate checks its connections to Access Servers. For example, if you set a value of 60 seconds for the Sleep For parameter, AccessGate checks its connections every 60 seconds from the time it comes up.</td>
</tr>
<tr>
<td>Maximum Elements in Cache</td>
<td>Number of elements maintained in the cache. Cache elements are the following:</td>
</tr>
<tr>
<td></td>
<td>• URLs—The URL cache maintains information about a URL, including if it is protected and the authentication scheme used if it is protected.</td>
</tr>
<tr>
<td></td>
<td>• Authentication schemes—This cache stores authentication scheme information for a specific authentication scheme ID.</td>
</tr>
<tr>
<td></td>
<td>The value of this setting refers to the maximum consolidated count for elements in both of these caches.</td>
</tr>
<tr>
<td></td>
<td>Default = 10000</td>
</tr>
<tr>
<td>Cache Timeout (seconds)*</td>
<td>Amount of time cached information remains in the AccessGate cache when neither used nor referenced.</td>
</tr>
<tr>
<td></td>
<td>Default = 1800</td>
</tr>
</tbody>
</table>
Table 3–3 (Cont.) AccessGate Configuration Parameters

<table>
<thead>
<tr>
<th>Field</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impersonation Username</td>
<td>The name of the trusted user that you created to be user for impersonations. The value should contain the domain name, for example, testdomain@user.net. You specify the trusted username here to bind it to this AccessGate (WebGate) so that the AccessGate can use it for impersonation. For information about impersonation and explanation of how to create a trusted user for impersonation, see "Enabling Impersonation with the Access System" on page B-1.</td>
</tr>
<tr>
<td>Impersonation Password</td>
<td>The password for the trusted user to be used for impersonation. You must enter this password twice; that is, you are asked to re-type it.</td>
</tr>
<tr>
<td>Policy Manager API</td>
<td>This parameter determines whether Policy Manager API Support Mode is enabled.</td>
</tr>
<tr>
<td>Support Mode</td>
<td>- It should be enabled only if the AccessGate is using the Policy Manager API.</td>
</tr>
<tr>
<td></td>
<td>The Policy Manager API is used for features such as Identity to Access Server Cache Flush and Self Registration Auto Login features. If these features are not being used, then the Policy Manager API Support Mode should not be enabled for AccessGates.</td>
</tr>
<tr>
<td></td>
<td>- It should not be enabled if the AccessGate is using only the Access Manager API (for example, ObResourceRequest, ObUserSession, ObAuthenticationScheme, ObConfig methods).</td>
</tr>
<tr>
<td></td>
<td>See Oracle Access Manager Developer Guide for a discussion of the ObResourceRequest, ObUserSession, ObAuthenticationScheme, ObConfig methods.</td>
</tr>
<tr>
<td>Primary HTTP Cookie</td>
<td>This parameter describes the Web server domain on which the AccessGate is deployed, for instance, .mycompany.com. You must configure the cookie domain to enable single sign-on among Web servers. Specifically, the Web servers for which you configure single sign-on must have the same Primary HTTP Cookie Domain value. The Access System uses this parameter to create the ObSSOCookie authentication cookie. This parameter defines which Web servers participate within the cookie domain and have the ability to receive and update the ObSSOCookie. The WebGate cookie domain parameter is not used to populate the ObSSOCookie; rather it defines which domain the ObSSOCookie is valid for, and which Web servers have the ability to accept and change the ObSSOCookie contents.</td>
</tr>
<tr>
<td>Domain</td>
<td></td>
</tr>
<tr>
<td>Preferred HTTP Host</td>
<td>Defines how the host name appears in all HTTP requests as they attempt to access the protected Web server. The host name in the HTTP request is translated into the value entered into this field regardless of the way it was defined in a user's HTTP request. See also, "Using Preferred Hosts or Host Identifiers" on page 3-42.</td>
</tr>
</tbody>
</table>

Configuring AccessGates

Configuring WebGates and Access Servers 3-21
DenyOnNotProtected

This setting applies only to WebGates. The default value for this parameter is false. In this case, there is no protection, and access is enabled. More importantly, access may be granted inadvertently. For example, if someone attempts to access a resource using the decimal value of an IP address in the URL, access may be granted unless the host identifier includes this representation of the address.

Setting DenyOnNotProtected to true is the most secure way to protect Web server content.

If you set DenyOnNotProtected to true, all requests for Web pages on the Web server protected by the WebGate are denied unless access is explicitly allowed by a policy. When this is set to true, you need to create an anonymous authentication method and allow access to content using an anonymous access policy. For information describing how to use the DenyOnNotProtected switch, see “Denying Access to All Resources by Default” on page 3-45.

CachePragmaHeader and CacheControlHeader

This setting applies only to WebGates. These settings control the browser’s cache. By default, CachePragmaHeader and CacheControlHeader are set to no-cache. This prevents WebGate from caching data at the Web server application and the user’s browser. However, this may prevent certain operations such as downloading PDF files or saving report files when the site is protected by a WebGate. You can set the Access Manager SDK caches that the WebGate uses to different levels. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html section 14.9 for details. All of the cache-response-directives are allowed. For example, you may need to set both cache values to public to allow PDF files to be downloaded.

LogOutUrls

This setting applies only to WebGates. The LogOutUrls parameter enables you to configure one or more specific URLs that log out a user. You can provide a portal logout URL for this parameter. For example, suppose that a finance portal is protected by a Webgate, and the portal logout page is finance_exit.html. If you add finance_exit.html as a LogOutUrls entry, users who are logged out of the finance portal are also logged out of Oracle Access Manager.

Oracle recommends that you provide the SSO Logout URL as one of the values for the LogOutUrls parameter. This will add consistency and enable a global logout value for multi-domain single sign-on implementations. See “Configuring Logout for an Identity System Resource” on page 3-27 for details.

Also, if you have configured a WebGate to protect a WebPass or Policy Manager, the LogOutUrls parameter must contain the SSO Logout URL values. This is required since the WebPass or Policy Manager logout button redirects the user to the SSO Logout URL.

User-Defined Parameters

These settings apply only to WebGates. As of Oracle Access Manager 10.1.4, the WebGateStatic.lst file is no longer present. Some of the parameters that were set in WebGateStatic.lst are now specific data entry fields in the AccessGate configuration page. Others have been made available as user-defined parameters on this page. See “Configuring User-Defined Parameters” on page 3-27 for details.
Adding an AccessGate

You must add an AccessGate instance in the Access System Console before installing the AccessGate. Required parameters before installation include the AccessGate name, hostname, and transport security mode. All other AccessGate parameters can be configured after installation, as described in the following sections.

See "AccessGate Configuration Parameters" on page 3-18 for details about all parameters. See the Oracle Access Manager Installation Guide for details about installing an AccessGate.

Note: Once you assign and save an AccessGate name, you cannot change the name. To rename an AccessGate, you must delete and uninstall the instance, then create a new AccessGate.

To create an AccessGate instance

1. Launch the Access System Console and click Access System Configuration.

2. Click Add New AccessGate in the left navigation pane.

 The Add New AccessGate page appears.

3. Fill in the form as follows:

 - **AccessGate Name**: Type the name of this AccessGate instance. Type an alphanumeric string without spaces. Note that an AccessGate and an Access Server cannot have the same name.
 - **Description**: Type a summary that will help you identify this AccessGate later on.
 - **Hostname**: Type the name or IP address of the server hosting this AccessGate.
 - **Port**: Type the Web server port protected by the AccessGate when deployed as a WebGate.

 This field is optional and is provided for informational purposes only. It is recommended that you enter the Web server port number for a WebGate. Other AccessGates may or may not use a port.

 This field must be empty when the AccessGate describes the configuration in support of an application using the Access Manager SDK.
 - **AccessGate Password**: Type an alphanumeric string to represent a password for this AccessGate.

 The AccessGate uses this password to identity itself to an Access Server. If you provide a password here, you must enter the same password when re-configuring the AccessGate and during AccessGate installation.

 Note: If this AccessGate is a WebGate, this password must be the same one specified when you installed the WebGate.

 - **Re-type AccessGate Password**: Re-type the password.

 If the entries in these two steps do not match, when you click Save, an error message appears, and you must repeat this process.

4. **Debug**: The Debug field is relevant only for WebGates.
In this field:

■ Click On to write debug messages between the AccessGate and Access Server to the standard out for most platforms. Note that on IIS this information is not written to the standard out because the IIS server runs as an NT service.
■ Click Off if you do not want to capture this information.

Important: Capturing debug messages records user passwords, a potential security problem, and causes the Access Server log file to grow rapidly. Debugging should only be turned on when diagnosing a problem.

5. **Maximum user session time**: Type the maximum amount of time, in seconds, that a user’s authentication session is valid, regardless of their activity. At the expiration of this session time, the user is re-challenged for authentication. This is a forced logout.

The default is 3600.

6. **Idle Session Time**: Type the amount of time in seconds that a user’s authentication session remains valid without accessing any AccessGate protected resources.

The default is 3600.

7. **Maximum Connections**: Type the maximum number of connections this AccessGate can establish with associated Access Servers. This number may be greater than the number allocated at any given time.

The default is 1.

8. **Transport Security**: Select a method for encrypting messages between this AccessGate and the Access Servers it is configured to talk to.

For AccessGates and Access Servers that are configured to communicate with each other, be sure to choose the same encryption method.

Your choices are:
- Open
- Simple
- Cert

For a description of configuring transport security modes, see the *Oracle Access Manager Identity and Common Administration Guide* or see the table of AccessGate configuration parameters in "AccessGate Configuration Parameters” on page 3-18.

Note: If you want to change an AccessGate mode from simple or cert to open, you must move the /oblix/config/simple directory (if in simple mode) or the /oblix/config/*.pem files (if in cert mode) to a new folder. Then you must run the configureAccessClient program.

9. **Supply IPValidation** for a WebGate to determine if a client IP address is the same as the IP address stored in the ObSSOCookie generated for single sign-on.

See "Configuring IP Address Validation for WebGates" on page 3-34 for details.

10. **Supply values for IPValidationException** if you want to supply IP addresses to exclude from IP address validation.
See "Configuring IP Address Validation for WebGates" on page 3-34 for details.

11. **Maximum Client Session Time**: Specify the connection maintained to the Access Server by the AccessGate.

 If you selected Open in the Transport Security field, this field is ignored.

 If the Maximum Client Session Time is 0, the AccessGate establishes a new connection to the Access Server for each request that it makes to the Access Server. There may be more than one AccessGate request for each user request to the AccessGate.

 The default is 24 hours. This value must be larger than the Sleep For parameter. Using the same session key for longer than 24 hours can make your system vulnerable to attack.

12. **Failover Threshold**: Type the number representing the point when this AccessGate opens connections to secondary Access Servers. If you type 30 in this field, and the number of connections to primary Access Servers falls to 29, this AccessGate opens connections to secondary Access Servers.

 You can type a number ranging from 1 to the total number of primary servers. If you do not type a value, the number of maximum connections is used.

 For details about configuring failover, see the *Oracle Access Manager Deployment Guide*.

13. **Access Server timeout threshold**: Applicable only to WebGates. Specify the time (in seconds) during which the AccessGate must wait for a response from the Access Server. If this parameter is set, it is used as an application TCP/IP timeout instead of the default TCP/IP timeout.

14. **Sleep For (seconds)**: Type a number (in seconds) that represents how often this AccessGate checks its connections to Access Servers.

 If a connection to an Access Server is broken, but the AccessGate finds that the Access Server is now up, it tries to reconnect to that server.

 The default is 60 seconds. The shorter the value, the quicker AccessGate can reestablish a connection to an Access Server that has come back up. But the overhead for checking connections is higher.

 An entry in this field does not affect failover to other servers, which is always immediate when needed.

15. Fill in caching details as follows:

 - **Maximum elements in cache**: Enter the maximum number of elements that can be maintained in the URL and authentication scheme caches. This number represents the grand total elements in both caches.

 The default is 10000.

 - **Cache timeout (seconds)**: Specify the time period during which cached information remains in the AccessGate cache when neither used nor referenced.

 The default is 1800.

16. Complete impersonation details, as follows:

 - **Impersonation username**: Specify the name of the trusted user that you created to be used for impersonations. The name should contain the domain name, for example, testdomain@user.net. You specify the user name here to bind it to this AccessGate.
- **Impersonation password**: Enter the password for the impersonation user name.

- **Re-type impersonation password**: Enter the password for the impersonation user name.

17. For **Policy Manager API Support Mode**, set the state to On or Off. See "AccessGate Configuration Parameters" on page 3-18 for details.

18. Continue completing the information as follows:

- **Primary HTTP Cookie Domain**: Type the AccessGate's domain name. For example,
 .yourcompany.com

Note: The dot (".") in the initial position of the domain name is required. See Chapter 7, "Configuring Single Sign-On" on page 7-1 for information on how the primary HTTP cookie domain is used.

- **Preferred HTTP Host**: Specify how the hostname appears in all HTTP requests as they attempt to access the protected Web server. The hostname within the HTTP request is translated into the value entered into this field regardless of the way it was defined in a user's HTTP request.

 You must enter one of the variations entered in the Host Identifiers feature to ensure that single sign-on works properly. For more information, see "Using Preferred Hosts or Host Identifiers" on page 3-42.

 Note: If you are configuring a WebGate, and your browser is Internet Explorer, do not use the number 80. Using 80 as a port number can lead to operational errors.

19. **DenyOnNotProtected**: This setting applies only to WebGates. Specify true to deny all access to resources on the Web server protected by WebGate unless access is allowed by a policy. A value of true requires that you set an anonymous authentication method and allow access to content using an anonymous access policy. See "Denying Access to All Resources by Default" on page 3-45 for details.

20. **CachePragmaHeader**: This setting applies only to WebGates. See "AccessGate Configuration Parameters" on page 3-18 for details.

21. **CacheControlHeader**: This setting applies only to WebGates. See "AccessGate Configuration Parameters" on page 3-18 for details.

22. **LogOutUrls**: This setting applies only to WebGates.

 To ensure that users log out completely from Identity and Access applications when they click Logout, set the value of this parameter to the value of the SSO logout URL. See "AccessGate Configuration Parameters" on page 3-18 and "Configuring Logout for an Identity System Resource" on page 3-27 for details.

23. **User-defined parameters**: This setting applies only to WebGates. To configure the AccessGate to work with particular browsers, proxies, and so on, there are user-defined parameters that you can set. See "Configuring User-Defined Parameters" on page 3-27 for details.
24. Click Save to save this new instance of AccessGate (or click Cancel to return to the previous page without saving).

Now that you have created an AccessGate instance, you can install and set up this instance. When installing, use the Name, Hostname, and Port number information you typed in this page. See the Oracle Access Manager Installation Guide for details.

Configuring Logout for an Identity System Resource

When the Identity System applications are protected by a WebGate, a logout button is not automatically configured for the Policy Manager and the Identity System Console. You must configure the logout button and logout URL, as explained in the following procedure.

To configure the logout button

1. As described in "Configuring a Single Sign-On Logout URL" on page 2-6, configure a URL that points to a logout page that you want to show to the user when they log out of the application.

 Note: Alternatively, you can specify the logout URL on the SSOLogoutURL parameter in the OblixBaseParams.lst file. This file is located in:

 `PolicyManager_install_dir/access/oblix/apps/common/bin/`

2. To ensure that the WebGate logs out the user from the Identity or Access application when they click Logout, be sure that the LogOutUrls parameter is set to the same value as the SSO Logout URL.

 See "Modifying an AccessGate" on page 3-29 for details.

Configuring User-Defined Parameters

In earlier versions of Oracle Access Manager, a file named WebGateStatic.lst to configure various settings for a WebGate. In version 10.1.3, the settings in this file have been moved to the AccessGate configuration page. Some of the settings are displayed as static parameters on this page (for example, DenyOnNotProtected). Several of these settings now appear as user-defined parameters on the configuration page.

The user-defined parameters address the following issues:

- Working with URLs that are encoded in UTF-8.
- Working with Microsoft Passport or Integrated Windows Authentication on IIS.
- Working with older Netscape Web servers.
- Setting the frequency with which the shared secret is updated.
- Preserving compatibility with NetPoint 5.x systems.
- Working with reverse proxies that use SSL between the client and a reverse proxy and non-SSL between the reverse proxy and the Web server.

To implement user-defined parameters, you must enter them in the AccessGate configuration page and contact Oracle for a patch for the WebGate.

The following are the user-defined parameters:
UrlInUTF8Format—In an environment that uses Oracle HTTP Server 2, this parameter
must be set to true to display latin-1 and other character sets.

UseIISBuiltinAuthentication—By default, this parameter value is false. Set
UseIISBuiltinAuthentication to true only if you are using Microsoft Passport or
Integrated Windows Authentication on this machine. It is used only for IIS, and is
ignored if the WebGate is installed for another type of Web server.

SlowFormLogin—In some versions of the Netscape Web server, form login over https
may not work as expected. In this case, the SlowFormLogin parameter eliminated the
problem. This parameter is not necessary with the latest version of the Netscape Web
server.

InactiveReconfigPeriods—The WebGate has an update thread that reads the shared
secret from the Access Server every 1 minute when the WebGate is active. The Access
Server server returns the shared secret in its own cache (the AAA cache). By default,
this value is updated every 10 minutes. For example, the Access Server reads the
shared secret from the directory at an interval of 10 minutes and this cached value is
returned to WebGate. You can change this setting. See “Changing the WebGate Polling
Frequency” on page 3-29 for details.

In the idle state the WebGate reads the shared secret from the Access Server using the
InactiveReconfigPeriod value. If this value is not set, the WebGate polls the Access
Server for the shared secret value at an interval of 1 minute even though the updated
shared secret value will be returned only after 10 minutes.

WaitForFailover—Used only for compatibility with NetPoint 5.x systems, this
parameter has been replaced by Access Server TimeOut Threshold on the AccessGate
configuration page (click Access System Console, Access System Configuration, then
AccessGate Configuration).

Both the WaitForFailover parameter, and its replacement the Access Server Timeout
Threshold parameter, control the TCP/IP timeout between the WebGate and the Access
Servers it communicates with. The default value is ”-1,” which means the network
default TCP/IP timeout value is used.

Be sure that both the WaitForFailover parameter and the Access Server Timeout
Threshold configured on this page use the same value.

GetProxySSLStateHeader—This parameter is used when the WebGate is located
behind a reverse proxy, SSL is configured between the client and the reverse proxy,
and non-SSL is configured between the reverse proxy and the Web server. It ensures
that URLs are stored as https rather than http. This parameter ensures that URLs are
stored in https format by setting a custom header variable named
GetProxySSLStateHeader with a value of ssl in an SSL-enabled proxy server. If the
header variable is not set, the SSL state is decided by the SSL state of the current Web
server.

Reducing Network Traffic Between Components
The WebGate-to-Access Server configuration polling reduces the traffic between both
the WebGate and Access Server and the Access Server and the LDAP directory server.

Process overview: WebGate-to-Access Server configuration polling
1. When the WebGate is inactive for 60 seconds, it reduces the frequency of polling
for its configuration information.

The polling frequency is determined by the parameter InactiveReconfigPeriod,
which is a user-defined parameter that is set in the AccessGate configuration page.
See “Configuring User-Defined Parameters” on page 3-27 for details. The value for
InactiveReconfigPeriod is specified in minutes. Within ten seconds of resuming activity, the WebGate performs reconfiguration polling once a minute.

2. At startup, the WebGate checks the bootstrap configuration to see if any important parameters have changed.

 This makes the re-initialization process unnecessary in most cases and reduces the transient Access Server load.

3. WebGate and Access client configurations are cached in the Access Server.

 The default cache timeout is 59 seconds. This should cause no modifications to the system behavior on non-Apache Access clients. The Apache Web server with WebGate avoids unnecessary hits to the directory server. The caching parameters can be set in the oblix/apps/common/bin/globalparams.xml file. The parameter clientConfigCacheMaxElems sets the maximum size of the cache (default 9999). The parameter clientConfigCacheTimeout determines the maximum lifetime of any element in the cache (default 59 seconds).

There are two ways to reduce off-time network traffic between both the WebGate and Access Server and the Access Server and the LDAP directory server:

- Changing WebGate polling frequency for configuration information.
- Changing the default configuration cache timeout for WebGate and Access client configurations that are cached in the Access Server.

Changing the WebGate Polling Frequency

One way to reduce off-time network traffic between both the WebGate and Access Server and between the Access Server and the LDAP directory server is to change the WebGate polling frequency for configuration information.

To change the configuration polling frequency

1. Add the InactiveReconfigPeriod parameter to the configuration page for this WebGate.

2. Specify the value for InactiveReconfigPeriod in minutes.

 The default is 1 minute. When the WebGate is inactive for more than 60 seconds (for example, when no authentication requests are being processed), it reduces the frequency of polling for its configuration information. Within ten seconds of resuming activity, the WebGate resumes reconfiguration polling once every minute.

 If set to -2, Webgate never polls.

 If set to a value greater than 0 it polls at the specified interval.

 If set to -1 and Webgate is inactive and has been for 1 minute, then Webgate does not poll. WebGate resumes reconfiguration polling when it returns to an active state.

Modifying an AccessGate

Occasionally you may need to modify an AccessGate’s parameters. You can modify an AccessGate through the Access System Console or through a command line tool named configureAccessGate. Typically, you use the command line tool to change the transport security mode. This tool can be used in both Windows and Solaris installations.
To modify an AccessGate through the Access System Console

1. Launch the Access System Console and click **Access System Configuration**, and then click **AccessGate Configuration**.

 The Search for AccessGates page appears.

2. Select the search attribute and condition from the lists, or select All to find all AccessGates.

 The Search list is a selection list of attributes that can be searched, as described in Table 3–2. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

3. Click Go.

 The search results are displayed on the page.

4. Click the name of the AccessGate you want to modify.

 The AccessGate Details page appears.

5. Click Modify.

 The Modify AccessGate page appears. You can enter new information on this page.

 You cannot change an AccessGate’s name. To rename an AccessGate, you must delete it from the Access System Console and then uninstall it. You then create a new AccessGate.

6. Type new values as needed.

7. Click Save to save your changes (or click Cancel to exit the page without saving).

To modify an AccessGate through the command line

1. Go to:

   ```bash
   AccessGate_install_dir\access\oblix\tools\configureAccessGate
   ```

 where `AccessGate_install_dir` is the directory where AccessGate is installed.

2. From the configAccessGate directory, run the following command:

   ```bash
   configureAccessGate -i AccessGate_install_dir -t AccessGate
   ```

3. Specify parameters using the commands listed in Table 3–4.

 Table 3–4 configureAccessGate and configureWebGate Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Operation</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>-i install_dir</code></td>
<td>Specifies the installation directory for the AccessGate or WebGate.</td>
</tr>
<tr>
<td>`-t <AccessGate</td>
<td>WebGate>`</td>
</tr>
<tr>
<td>`-w <AccessGate</td>
<td>WebGate_ID>`</td>
</tr>
<tr>
<td>`-m <open</td>
<td>simple</td>
</tr>
<tr>
<td>`-c <request</td>
<td>install>`</td>
</tr>
</tbody>
</table>
To reconfigure transport security mode through the command line

1. To reconfigure an AccessGate transport security mode, run the following command:

 configureAccessGate -i AccessGate_install_dir -t <AccessGate|WebGate> -R

 For example:

 configureAccessGate -i C:\COREid\WebComponent\access -t AccessGate -R

2. The system prompts you to for a transport security mode:

<table>
<thead>
<tr>
<th>If you select Open...</th>
<th>If you select Simple...</th>
<th>If you select Cert...</th>
</tr>
</thead>
<tbody>
<tr>
<td>The transport security mode is reconfigured to run in Open mode</td>
<td>1. Supply the AccessGate password. If you specified a password during installation or reconfiguration of the AccessGate, enter it. If you did not, press Enter to skip the prompt.</td>
<td>1. Supply the AccessGate password. If you specified a password during installation or reconfiguration of the AccessGate, enter it. If you did not, press Enter to skip the prompt.</td>
</tr>
<tr>
<td></td>
<td>2. Supply the Global Access Protocol Pass Phrase. After you enter it, the system generates and installs the certificate.</td>
<td>2. Supply the Global Access Protocol Pass Phrase. After you enter it, the system generates and installs the certificate.</td>
</tr>
</tbody>
</table>

Note: The Global Pass Phrase must always be the same for all AccessGates, WebGates, and Access Servers within an Access System installation.

For Cert mode: The system prompts you to specify whether you want to request a certificate or install a certificate.
If you specify a certificate request, the system prompts you for the following organization information:

- **Country name**
- **State or Province**
- **Locality**
- **Organization name**
- **Organizational unit**
- **Common Name**: For example, HostName.DomainName.com
- **Email address**

After you enter the information, a certificate request is generated and placed in the `Component_install_dir/access/oblix/config/aaa_req.pem` file.

Where `Component_install_dir` is the directory in which the Access System component is installed.

You must have this certificate request signed by the Certificate Authority.

The system prompts you for the full paths to the location of the Certificate Key file, the Certificate file, and the Certificate Chain file. After you specify the paths, the transport security mode is reconfigured.

To change the transport security mode password

1. From the command line, run the following command:

   ```bash
   configureAccessGate -i AccessGate_install_dir -t AccessGate -k
   ```

2. Enter the following information:
 - The old password
 - The new password
 - Reconfirm the new password

 The password is changed.

Deleting an AccessGate

If you delete an AccessGate, the applications and content on the hosts with which it was connected are not be protected by the Access System. Be sure this is what you want to do before deleting an AccessGate.

To delete an AccessGate

1. Uninstall the AccessGate from the host.

2. Launch the Access System Console and click **Access System Configuration**, and then click **AccessGate Configuration**.

 The Search for AccessGates page appears.

3. Select the search attribute and condition from the lists, or select All to find all AccessGates.

 The Look For list is a selection list of attributes that can be searched, as described in Table 3–2. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.
4. Click Go.
 The search results are displayed on the page.
5. Check the AccessGate that you want to delete and click Delete.
 You are prompted to confirm your decision.
6. Click OK to delete the AccessGate (or click Cancel to stop the deletion).

Managing WebGates

A WebGate is an out-of-the-box Access Client for HTTP-based resources. A WebGate is an NSAPI or ISAPI plug-in that intercepts HTTP requests for Web resources and forwards them to the Access Server.

The process of configuring a WebGate is the same as configuring an AccessGate. See “Adding an AccessGate” on page 3-23. The following topics provide additional information:
- Synchronizing Clocks with the Access Server
- Modifying a WebGate
- Configuring IP Address Validation for WebGates
- Viewing WebGate Diagnostics
- Checking the Status of a WebGate
- Placing a WebGate Behind a Reverse Proxy

Synchronizing Clocks with the Access Server

All Access Servers and their corresponding WebGates must be time-synchronized. Each secure request includes a timestamp.

For successful operation:
- Ensure all machines are synchronized within 60 seconds.
- Ensure each machine running a WebGate is not running ahead of the Access Servers with which it is associated.

Modifying a WebGate

Occasionally you may need to modify a WebGate's parameters. You can modify a WebGate through the Access System Console or through a command line tool named configureWebGate. Typically, you use the command line tool to change the transport security mode. This tool can be used in both Windows and Solaris installations.

To modify a WebGate through the command line

1. To modify a WebGate, navigate to the directory:
   ```
   WebGate_install_dir\access\oblix\tools\configureWebGate
   ```
 where `WebGate_install_dir` is the directory in which WebGate is installed.

2. From the configureWebGate directory, run the following command:
   ```
   configureWebGate -i WebGate_install_dir -t WebGate
   ```
 Specify parameters using the commands listed in Table 3–4.
Example of using `configureWebGate`
The following is an example of configuring a WebGate using the `configureWebGate` tool on Microsoft Windows:

```
C:\COREid\webcomponent\access\oblix\tools\configureWebGate> configureWebGate -i c:\COREid\webcomponent\access -t WebGate -w andium_AG -m cert -c install -S -P milpid -h andium -p 5160 -a andium_AS -r 99malibu -Z 5
```

Configuring IP Address Validation for WebGates

IP address validation is specific to WebGates and is used to determine whether a client's IP address is the same as the IP address stored in the ObSSOCookie generated for single sign-on.

You can turn on and off IP address checking (validation) for the end user. The IPValidation parameter determines whether or not the client's IP address is compared with the one stored in the ObSSOCookie. If IPValidation is true, the IP address stored in the ObSSOCookie must match the client's IP address; otherwise, the cookie is rejected and the user is reauthenticated.

The default IPValidation setting is true. WebGate uses the IP address in the ObSSOCookie for single sign-on. This can cause problems with certain Web applications. For example, Web applications managed by a proxy server typically change the user's IP address, substituting the IP address of the proxy. This prevents single sign-on using the ObSSOCookie. To configure single sign-on between WebGate and an access client that does not have the client IP address at authentication, the IP validation has to be explicitly turned off. To do this, you set IP Validation to false. When the IP Validation parameter is set to false, the browser or client IP address is not used as a part of the ObSSOCookie.

You can add as many IP addresses as needed. These addresses are the actual IP addresses of the client, not the IP addresses that are stored in the obSSOCookie. If a cookie arrives from one of the exception IP addresses, the Access System ignores the address stored in the ObSSOCookie cookie for validation. For example, the IP addresses in the IP Validation Exceptions parameter can be used when the IP address in the cookie is for a reverse proxy.

Note: The IP Validation Exceptions parameter lists IP addresses that are exceptions to this process. If IPValidation is true, the IP address is compared to the IP Validation Exceptions list. If the address is found on the exceptions list, it does not need to match the IP address stored in the cookie.

To configure the IPValidation parameter setting

1. From the Access System Console, click the tab for Access System Configuration.
2. Click AccessGate Configuration in the left navigation pane.
3. Find an AccessGate and click its link.
4. In the details page for this AccessGate, click Modify.
5. To turn off validation, in the IPValidation field, select the Off option.
6. To turn on validation, in the IPValidation field select the On option and in the IPValidationExceptions field enter any IP addresses that you want to exclude from validation.
Use standard notation, for example, 10.20.30.123 for the addresses. Press the plus or minus buttons to add or delete IP addresses.

Viewing WebGate Diagnostics

A WebGate Diagnostic URL is available to display information regarding an Access Server connected to a WebGate. It also displays associated directory server information.

Diagnostic URL links are as shown in Table 3–5:

<table>
<thead>
<tr>
<th>Platform</th>
<th>URL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Domino</td>
<td>http://WebGate_machine:portnumber/access/oblix/apps/webgate/bin/webgate.cgi?progid=1</td>
</tr>
<tr>
<td>IIS</td>
<td>http://WebGate_machine:portnumber/access/oblix/apps/webgate/bin/webgate.dll?progid=1</td>
</tr>
<tr>
<td>Netscape and Apache</td>
<td>http://WebGate_machine:portnumber/access/oblix/apps/webgate/bin/webgate.cgi?progid=1</td>
</tr>
</tbody>
</table>

Where `WebGate_machine` is the machine in which the WebGate was installed and `portnumber` is the port number of the machine.

Note: For IIS6, in order to use the Diagnostic URL feature, you must enable the direct access of webgate.dll through the IIS Lockdown tool.

When you access this URL, your browser displays the information shown in Table 3–6:

<table>
<thead>
<tr>
<th>Topic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Access Server</td>
<td>Hostname of the Access Server, its port number, and the number of connections with this WebGate</td>
</tr>
<tr>
<td>State</td>
<td>Status of the Access Server, either Up or Down</td>
</tr>
<tr>
<td>Created</td>
<td>Date and time this Access Server was installed</td>
</tr>
<tr>
<td>Install_Dir</td>
<td>Installation directory of this Access Server</td>
</tr>
<tr>
<td>Num Of Threads</td>
<td>Maximum number of threads allowed on the Access Server</td>
</tr>
<tr>
<td>Directory</td>
<td>Type of information stored in this directory instance, User, Policy, or Oblix</td>
</tr>
<tr>
<td>Host:Port</td>
<td>Hostname and port number of this directory instance</td>
</tr>
<tr>
<td>State</td>
<td>Operational status of the directory server, Up or Down</td>
</tr>
<tr>
<td>Priority</td>
<td>Priority of this Access Server to this WebGate, primary or secondary</td>
</tr>
<tr>
<td>Mode</td>
<td>Directory server connection mode, Open or SSL</td>
</tr>
<tr>
<td>Size Limit</td>
<td>Maximum entries the LDAP server returns for a search</td>
</tr>
<tr>
<td>Time Limit</td>
<td>How long an LDAP operation in the LDAP server runs</td>
</tr>
<tr>
<td>Login DN</td>
<td>Root DN of the directory server instance</td>
</tr>
<tr>
<td>Created</td>
<td>Date and time this directory server instance was created</td>
</tr>
</tbody>
</table>
Checking the Status of a WebGate

Depending on the type of Web server you use, you can issue a URL to check the status of a WebGate from any browser.

To check the status of a WebGate

Issue one of the following URLs in the browser:

On IIS:

http://servername:port/access/oblix/apps/webgate/bin/webgate.dll? progid=1

On iPlanet and Apache:

http://servername:port/access/oblix/apps/webgate/bin/webgate.cgi? progid=1

On Domino:

http://servername:port/access/oblix/apps/webgate/bin/nwebgate.dll? progid=1

Checking the Number of Connections

If you modify the configuration of a WebGate or an AccessGate, the change takes effect in less than a minute. For example, if you add a new primary server and increase the number of connections to the Access Server by one, this happens without a restart of the server.

The old connections between the Access Server and the WebGate (or AccessGate) are discarded after a few minutes, when any pending requests are finished. If you issue a netstat command before the old connections are discarded, you might find double the number of connections since the server was started. However, this number quickly drops to the number of configured connections, usually in a few minutes. Every time that connection information is modified, the number of connections detected on a netstat command doubles for a few minutes, then drops back to the configured number.

Placing a WebGate Behind a Reverse Proxy

You can use WebGates with reverse proxies.

The following are benefits of a reverse proxy:

- All Web content can be protected from a single logical component as long as all requests go through the proxy.

 This is true even for platforms that are not supported by Oracle Access Manager. If you have different types of Web servers (for example, iPlanet, Apache, and so on) on different platforms (for example, Windows XP, Linux, and so on), all content on these servers can be protected. A reverse proxy can be a workaround for unsupported Web servers, eliminating the need to write custom AccessGates for unsupported Web servers and on platforms that do not have WebGate support, for example, MacOS.

- A reverse proxy offers architecture flexibility.

 Reverse proxies can allow deployments to expose an application that is available on the intranet to the extranet. Or applications that are available on the extranet can be exposed to the intranet. This can be done without any changes to the application that is already deployed.
You only need to install a separate WebGate on the reverse proxy, rather than on every Web server.

This allows for a single management point and can help with manageability of the system. You can manage the security of all of the Web servers through the reverse proxy without establishing a footprint on the other Web Servers.

The main pitfall of using a proxy is the extra work involved in setup. If you deploy the WebGate on a Web server that is behind a reverse proxy, the following are configuration requirements:

■ Ensure that any Web server that uses the reverse proxy for authentication only accepts requests from the reverse proxies.

This will also require that WebGates deployed on this Web server be configured to not enforce IP validation for requests from the reverse proxy server that front-ends the WebGate. This is done by configuring the known IP addresses of the reverse proxy server or servers in the IP Validation list. Note that while you can achieve the same effect by turning IP validation off for the WebGate, this is not a recommended approach due to security risks.

Ensuring that the Web server only accepts requests from reverse proxies is typically done by adding an ACL statement in the server. This prevents users from bypassing the reverse proxy and directly accessing restricted content.

■ Update the virtual hosts that are configured in the Policy Manager so that the Access System intercepts requests that are sent to the reverse proxy.

■ Prevent people from circumventing the proxy by entering URLs that point directly to the back-end system.

You can prevent this problem through the use of Web Server Access Control Lists or firewall filters.

■ Since all user requests are processed by the proxy, you must deploy enough proxy servers to enable the system to handle the load.

■ Redirect all existing URLs to the host name and port number of the reverse proxy server.

This often requires configuring the reverse proxy to perform content inspection and rewriting to prevent any absolute HTML links, for instance, to prevent broken link. This is achievable with most reverse proxies, and this is something you can configure independently of the Access System.

■ It is a best practice that URL links exposed to the front-ended applications rely on only relative URLs (../../sub-path/resource) rather than absolute URLs (http://hostname.domain:[port]/path/resource).

Absolute URLs can break links on the end user’s browser when deployed behind a reverse proxy.

Associating AccessGates with Access Servers

You can associate an AccessGate with either individual Access Servers or with Access Server Clusters. For each AccessGate, you must select at least one Access Server or Access Server cluster with which it can communicate. The Access Server or the Access Server cluster must already be configured and installed.
You can view associated AccessGates in the Access Server details page or the Access Server Cluster details page. You can also view associated Access Servers and Access Server clusters in the AccessGate's details page. If there are any errors in the configuration between an AccessGate and an Access Server or an Access Server cluster, the error is displayed on the page.

For example, the security mode for an AccessGate could be different from the security mode of an associated Access Server or Access Server cluster. In such cases, the error is displayed on the page.

The rest of this section discusses the following topics:

- About Associating AccessGates with Clusters
- Associating an AccessGate
- Viewing AccessGates Associated with an Access Server
- Disassociating an AccessGate

About Associating AccessGates with Clusters

When you associate an AccessGate with an Access Server cluster, the AccessGate automatically communicates with all the Access Servers in the cluster. When you disassociate an AccessGate from a cluster, the connections between the AccessGate and the Access Servers in the cluster are automatically deleted.

When you add an Access Server to a cluster, all the AccessGates associated with the cluster automatically communicate with the new Access Server. When you delete an Access Server from the cluster, the connection between the AccessGate and the Access Server is automatically deleted.

Load balancing is automatically configured, based on the number of connections that you specified when you configured the AccessGate and the number of Access Servers in the cluster. For details about configuring load balancing, see the Oracle Access Manager Deployment Guide.

Failover is automatically configured when you associate an AccessGate with an Access Server cluster that you define as a primary or a backup cluster. For details about configuring failover, see the Oracle Access Manager Deployment Guide.

Associating an AccessGate

Use the following procedures to associate an AccessGate with an Access Server or cluster.

Task overview: Associating an AccessGate with an Access Server or cluster includes

1. Associating the individual components, as described in "To associate an AccessGate with an Access Server" on page 3-39
2. Configuring the communication between the components, as described in "To configure an Access Server to communicate with this AccessGate" on page 3-39
3. Associating the AccessGate with a cluster, as described in "To associate an AccessGate with an Access Server cluster" on page 3-40
To associate an AccessGate with an Access Server
1. Launch the Access System Console and click **Access System Configuration**, then click **AccessGate Configuration**.

 The Search for AccessGates page appears.

2. Select the search attribute and condition from the lists, or select **All** to find all AccessGates.

 The Look For list is a selection list of attributes that can be searched, as described in **Table 3-2. AccessGate Search Attributes, Conditions, and Values**. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

3. Click **Go**.

 The search results are displayed on the page.

 The AccessGate Details page appears.

 If the AccessGate is not associated with any Access Server, do the following:

 a. Click **Associate Access Servers**

 The Associate Access Servers with AccessGate page appears.

 b. Select Individual Servers to associate the AccessGate with an Access Server.

 c. Click **Next**

 The page lists all primary and secondary Access Servers configured to communicate with the AccessGate.

To configure an Access Server to communicate with this AccessGate
1. From the Access System Console, click the Access System Configuration tab, then click **AccessGate Configuration** in the left navigation pane.

 Note: Remember that you must configure and install an Access Server before it can receive requests from an AccessGate.

2. Enter search criteria for an AccessGate, or click **All** in the search bar and click **Go**.

3. Click the link for an AccessGate that you want to modify.

4. Click **List Access Servers**.

5. Click **Add**.

6. From the list, select an Access Server.

7. In the Select priority field, choose Primary or Secondary to specify whether the Access Server is a primary server or a secondary server.

8. Enter the maximum number of connections this AccessGate can establish to this Access Server.

 The default is 1.

9. Click **Add** to complete the configuration of this server, or click **Back** to return to the previous page.
To associate an AccessGate with an Access Server cluster

1. Launch the Access System Console and click Access System Configuration, and then click AccessGate Configuration.

 The Search for AccessGates page appears.

2. Select the search attribute and condition from the lists, or select All to find all AccessGates.

 The Search list is a selection list of attributes that can be searched, as described in Table 3–2 on page 3-17. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

3. Click Go.

 The search results are displayed on the page.

4. Click the link for the AccessGate that you want to associate with an Access Server cluster.

 The AccessGate Details page appears.

 - If the AccessGate is not associated with any clusters, do the following:
 - Click List Access Servers to see a list of configured Access Servers.
 The page lists all primary and secondary (backup) Access Server clusters configured to communicate with the AccessGate.
 - Click List Clusters to associate the AccessGate with clusters.
 The page lists all primary and backup clusters configured to communicate with the AccessGate.

5. Click Add to associate a Access Server cluster with the AccessGate.

 The Add a new Access Server Cluster to the AccessGate page appears.

 Note: You must configure an Access Server Cluster before it can receive requests from an AccessGate.

6. Select an Access Server cluster from the list.

7. In the Select Cluster Type field, choose Primary or Backup to specify whether the Access Server cluster is a primary cluster or a backup cluster.

 The AccessGate opens connections to the Access Servers in the primary cluster. If the AccessGate cannot open the specified number of connections, it opens connections with the Access Servers in the backup cluster.

 For details about configuring failover and load balancing, see the Oracle Access Manager Deployment Guide.

8. Click Save to save your changes (or click Cancel if you do not want to save your changes).

Viewing AccessGates Associated with an Access Server

You can view AccessGates that are associated with a particular Access Server.
To view AccessGates associated with a cluster

1. Launch the Access System Console and click **Access System Configuration**, and then click **AccessGate Configuration**.

The Search for AccessGate page appears.

2. Select the search attribute and condition from the lists, or select All to find all AccessGates.

The Search list is a selection list of attributes that can be searched, as described in Table 3–2 on page 3-17. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

3. Click Go.

The search results are displayed on the page.

4. Click the link for an AccessGate.

5. Click List Clusters.

6. Click an Access Server cluster to view its details.

The Details for Access Server Cluster page appears.

The Associated AccessGates page appears.

8. Select a Primary Cluster to view AccessGates for which the cluster is configured as a primary cluster.

Select a Backup Cluster to view AccessGates for which the cluster is configured as a secondary cluster.

Select All to list all the specified AccessGates or enter a number to specify the number of search results you want displayed on the page.

9. Click Go to display the search results.

The details of the AccessGates associated with the Cluster are displayed on the page.

If there are multiple pages, click Next to go to the next page or click Previous to go back to the previous page.

10. Click Back to return to the previous page.

Disassociating an AccessGate

Use the following procedures to disassociate an AccessGate from an Access Server or cluster.

To disassociate an AccessGate from an Access Server or an Access Server cluster

1. Launch the Access System Console and click **Access System Configuration**, and then click **AccessGate Configuration**.

The Search for AccessGates page appears.

2. Select the search attribute and condition from the lists, or select All to find all AccessGates.
The Look For list is a selection list of attributes that can be searched, as described in Table 3–2 on page 3-17. The remaining fields allow you to specify search criteria that are appropriate for the selected attribute.

3. Click Go.
 The search results are displayed on the page.

4. Click the AccessGate that you want to disassociate from an Access Server or an Access Server cluster.
 The AccessGate Details page appears.

5. Click List Access Servers or List Clusters.
 The Access Servers or Access Server clusters associated with the AccessGate are listed on the page.

6. Choose whether to disassociate a server cluster or a server.
 - To disassociate an Access Server cluster, select the cluster and click the Delete button.
 - To disassociate an Access Server, select the Access Server and click the Delete button.

 The connection is deleted.

Using Preferred Hosts or Host Identifiers

Web server hosts can be identified in various ways, such as a machine name or an IP address. Here are some examples of how the same host can be addressed:

- site.com
- site.com:80
- www.site.com
- www.site.com:80
- 216.200.159.58
- 111.111.11.1:80
- 3232236564 (decimal addressing)

The Access System offers two methods for identifying Web servers that are hosting protected resources:

- Preferred Host
- Host Identifiers

These features apply only to WebGates, not to custom AccessGates.

A third feature, DenyOnNotProtected, can be used to deny access to all resources that are not protected by a WebGate unless access is explicitly allowed by a rule or policy.

Note: Setting DenyOnNotProtected to true is the most secure way to protect Web server content. For more information about DenyOnNotProtected, see "Denying Access to All Resources by Default" on page 3-45.

See the following topics for more information:
Using Preferred Hosts or Host Identifiers

Configuring WebGates and Access Servers
3-43

Using Host Identifiers

As described in the previous section, a host can be known by multiple names. Use the Host Identifiers feature to enter the official name for the host, and every other name by which the host can be addressed by users. A request sent to any address on the list is mapped to the official host name, and applicable rules and policies are implemented.

In your Host Identifiers list:

- Each host name must be unique.
- Each host name:port number pair must be unique.
- Each host name:port number pair must belong to only one host identifier.
- Each host name:port number pair must match the end user’s entry exactly.

With decimal addressing it may not be practical to define all possible URL combinations for the same site.

Using the following formula to calculate possible decimal addresses for the original address 01.02.03.04, where each 0 is an 8 bit octet, you will find many ways to represent the original IP address:

Formula:
01*256^3+02*256^2+03*256+04

The following URL values are all for the same site:
http://%61%73%74%65%72%69%78
http://%31%39%32%2E%31%36%38%2E%34%2E%32%30/
http://%33%32%33%32%33%36%35%36%34

For more information, you may want to look at the site http://www.karenware.com/powertools/ptlookup.asp.

Note: The Access System does not add a default port number if the end user does not provide one.

See “To add a Host Identifier” on page 3-44 for the steps to create a host identifiers list.

Host identifiers can be used with virtual Web hosting. However, a disadvantage is if users type an address that is not listed, users could be allowed access to resources that you want to protect.

You can specify either a Preferred Host or a Host Identifier:

Preferred Host Advantage: An advantage of using a Preferred Host instead of Host Identifiers is that you do not need to enter every possible name by which a host can be addressed.

Preferred Host Disadvantage: A disadvantage is that Preferred Host cannot be used with virtual Web hosting.

Following discussions include:
Using Preferred Hosts or Host Identifiers

- Viewing or Deleting Existing Host Identifiers
- Adding a Host Identifier
- Including Authenticating Hosts

Viewing or Deleting Existing Host Identifiers
The Host Identifier details page displays the name, description, and hostname variations.

To view or delete existing Host Identifiers
1. Launch the Access System Console and click Access System Configuration.
 The Access System Configuration page appears.
2. In the left navigation pane, click Host Identifiers.
 The List all Host Identifiers page appears. The existing host identifiers are listed on the page.
3. To view a host identifier, select its name on the list.
4. To delete a host identifier, select its name on the list and click Delete.

Adding a Host Identifier
If you attempt to add a hostname variation that already exists for a different host identifier, a message alerting you of the duplication is displayed. You can choose to save or cancel your changes.

To add a Host Identifier
1. Launch the Access System Console and click the Access System Configuration tab.
 The Access System Configuration page appears.
2. In the left navigation pane, click Host Identifiers.
 The List all Host Identifiers page appears.
3. Click Add to add a new host identifier.
4. In the Name field, type the name of the host.
5. In the Description field, type a short description.
 Completing this field is optional.
6. In the Hostname variations field, type all possible variations for identifying this host.
7. Click Save.

Note: When you configure an AccessGate, you must enter one of these variations in the Preferred HTTP Host field to ensure that single sign-on works properly.

Including Authenticating Hosts
If you redirect an authentication challenge to be processed by another host, you must add the name of that host to the Hostname Identifiers list. The hostname that you enter in the Challenge Redirect field must be available in the Hostname Identifiers list.
when adding or modifying an authentication scheme. For example, if a user is redirected to an SSL-enabled server for authentication, that server must be included.

When adding URL prefixes to a policy domain, the Delegated Access Administrator must specify a server hosting the URL prefix. When a user attempts to access a URL that is protected by the policy domain, the user is redirected to the server specified in the Challenge Redirect field for authentication.

Preferred Host and Virtual Servers

Use the Preferred Host feature to specify a host name using all possible methods by which the host can be addressed. Requests for resources that match values in the Preferred Host feature are redirected to the Access Server for policy evaluation. The Preferred Host feature prevents security holes that can be inadvertently created if a host’s identifier is not included in the Host Identifiers list.

Note: The browser does not re-direct to the preferred host.

You enter the Preferred Host name in the Preferred HTTP Host field when you configure an AccessGate. See "Adding an AccessGate" on page 3-23 for details. The name you enter in this field must be one of the names entered in the Host Identifiers feature. See "Using Host Identifiers" on page 3-43 for details.

Preferred Host Advantage: An advantage of using a Preferred Host instead of Host Identifiers is that you do not need to enter every possible name by which a host can be addressed.

Preferred Host Disadvantage: A disadvantage is that Preferred Host cannot be used with virtual Web hosting.

The virtual Web hosting feature of many Web servers enables you to support multiple domain names and/or IP addresses that each resolve to their unique subdirectories on a single virtual server.

For example, you can host abc.com and def.com on the same virtual server, each with its own domain name and unique site content. You can have name-based or IP-based virtual hosting.

When a client makes a connection, the IP address to which the client connects is looked up in the internal IP hash table. If the lookup is successful, then the doc root of that IP is served.

Once host IDs are used in the Access System, you must list every possible way to address a host in the host IDs list, or the missing addresses (hostname/alias) can be used to gain non-protected access. The preferred host feature uses host ID lists to prevent the inadvertent creation of security holes.

Configuring a preferred host forces WebGate to pass the preferred host string to the Access Server for policy evaluation instead of the host typed into the browser by the user. No matter what is typed into the browser, the Access Server always sees the preferred host.

Denying Access to All Resources by Default

Access System default behavior is to allow access when a resource is not protected by a rule or policy. This is accomplished using one Boolean flag, DenyOnNotProtected, located in the AccessGate configuration page. The default setting is false, which means that access is allowed to resources not protected by a rule or policy.
When set to true, the DenyOnNotProtected parameter lets you establish the opposite behavior. When set to true, DenyOnNotProtected denies access to all resources to which access is not explicitly allowed by a rule or policy. This can limit the number of times the WebGate queries the Access Server, and can improve performance for large or busy policy domains.

Because different Web servers and Access Clients have different requirements, DenyOnNotProtected is implemented through WebGate. DenyOnNotProtected cannot be used with other types of AccessGates.

Important: DenyOnNotProtected overrides Host Identifiers and Preferred Host. Leaving DenyOnNotProtected set to false can cause security holes in large installations with multiple Host Identifiers, virtual hosts, and other complex configurations.

To deny access to all unprotected resources

1. From the Access System Console, click the tab for Access System Configuration.
2. Click AccessGate Configuration in the left navigation pane.
3. Find an AccessGate and click its link.
4. In the details page for this AccessGate, click Modify.
5. Change the DenyOnNotProtected setting to true to deny access to all unprotected resources.
6. Restart the WebGate to enable the change to take effect immediately.
7. If you have set DenyOnNotProtected to true, you must also protect Login.html with the Anonymous authentication scheme; otherwise, the page will not display when you access its associated resource.

Example of Using DenyOnNotProtected

Suppose you have a machine with IP addresses A and B associated with it, both on port 80, and using the same configuration file. For Netscape and iPlanet, this would be the obj.conf files. Both of these virtual servers are protected by the same AccessGate or WebGate.

The goal is to protect all content on both virtual servers without using a Preferred Host. To meet this goal, you may set up a host ID for all variations of A, and then protect some content on A by defining policies for specific URLs. You need not set a Preferred Host for either AccessGate A or B. You may also set the value of DenyOnNotProtected to true for the WebGate protecting the AccessGate, so by default all content is protected on A and B.

With this setup, when a user tries to access a URL on A, the policies are evaluated first and if no corresponding Access Policy is found, content is denied only for A.

Associating a WebGate with Specific Virtual Hosts, Directories, and Files

When using an Apache reverse proxy for single sign-on, in the Apache httpd.config file, you specify the Web sites to run on the Apache server. The settings can be global across all Web sites or local to a Web site. You can restrict the Oracle Access Manager loading references in the httpd.config file to be associated with a specified site, with virtual hosts, specific directories or even files.
To associate the WebGate with specific targets, you move the following directives the http.conf file:

AuthType Oblix
require valid-user

You can put these directives in a block that tells Apache to use WebGate for every request. You can also move the directives to a block that limits when the WebGate is called. The following is an example of putting the LocationMatch directive after a VirtualHost directive:

DocumentRoot /usr/local/apache/htdocs/myserver
ServerName myserver.example.net
AuthType Oblix
require valid-user

After you move the LocationMatch block to the VirtualHost directive, the WebGate will only work for that virtual host. You can add the LocationMatch block to as many virtual hosts as you want. The following examples shows how you could protect one virtual server:

ServerAdmin webmaster@example.net
DocumentRoot "Z:/Apps/Apache/htdocs/MYsrv"
ServerName apps.example.com
ProxyRequests On
SSLEngine on
SSLCertificateFile Z:/Apps/sslcert_myapps_ptcweb32/intermediateca.cer
SSLCertificateFile Z:/Apps/sslcert_myapps_ptcweb32/sslcert_myapps_ptcweb32.cer
SSLCertificateKeyFile Z:/Apps/sslcert_myapps_ptcweb32/sslcert_myapps_ptcweb32.key
ErrorLog logs/proxysite1_log
CustomLog logs/proxysite1_log common
ProxyPass / https://apps.example.com/
ProxyPassReverse / https://apps.example.com/
ProxyPass /bkcentral https://apps.example.com/bkcentral
ProxyPassReverse /bkcentral https://apps.example.com/bkcentral
ProxyPass /NR https://apps.example.com/NR
ProxyPassReverse /NR https://apps.example.com/NR

AuthType Oblix
require valid-user

#*** BEGIN Oracle Access Manager WebGate Specific ****

LoadModule obWebgateModule Z:/apps/Oracle/WebComponent/access/oblix/apps/webgate/bin/webgate.dll
WebGateInstallDir Z:/apps/Oracle/WebComponent/access
WebGateMode PEER

SetHandler obwebgateerr

SSLMutex sem
SSLRandomSeed startup builtin
SSLSessionCache none

SSLogFile logs/SSL.log
SSLLLogLevel info
You can later change "info" to "warn" if everything is OK
The Access Login Process

When a user or an application, such as a JSP or Java application, attempts to access an Identity System application or an Access System-protected Web resource, the login process is set in motion. This process varies depending on factors such as:

- **Is the Resource Protected or Unprotected?** If the resource is protected, what is the type of authentication scheme used?

 If the resource is protected by a WebGate, the Access System challenges the user as specified by the challenge method configured in the authentication scheme.

 If the resource is an unprotected Identity application such as the User Manager, the Identity System uses its own login form to challenge the user for credentials.

- **Is the User Really Who the Person Claims to Be?**

 To ensure that the user is really who the person claims to be, WebGate challenges the user for credentials. If the credentials match, the WebGate authenticates the user, generates the ObSSOCookie, and sets it in the user’s browser.

 For information on the ObSSOCookie, see "Cookies Generated During Login" on page 3-52.

- **Has the Access System’s Single Sign-On (SSO) Been Set Up?**

 The Access System’s SSO capability enables users to access more than one protected URL or application with a single login. If SSO has been implemented in a single domain, the user needs to authenticate only once to access multiple resources protected by an authentication scheme which has the same level or a lower level of security. The ObSSOCookie is passed from the user’s browser to any WebGates configured for the domain.

 When Access System SSO is implemented in a multi-domain environment, an authentication is honored by all the hosts in two or more domains.

 See "Configuring Single Sign-On" on page 7-1 for more information on configuring SSO for single- and multi-domain environments.

- **Is the user allowed to access the content? If so, what actions can the person perform?**

 WebGate queries the Access Server to determine whether the user is authorized to access the resource. Access Server checks whether the user is authorized to access the resource. If the user is authorized, the Access Server checks for a policy that specifies the actions that the user is allowed perform.

 The Access Server sends the information to WebGate, which then returns the requested resource to the user.

 Figure 3–1 illustrates the Access System’s authentication process.
Figure 3–1 The Access System’s Authentication Process

Figure 3–2 The Access System’s Authorization Process
The Access Login Process

Login Processes

This section describes different scenarios where a user attempts to access an Access System-protected resource.

Process overview: Access when an Identity System application is not protected by WebGate

1. A user attempts to access an Identity System application that is not protected by a WebGate.

2. The Identity System challenges the user for credentials such as user name and password.

3. If the user authenticates successfully, the Identity application generates the ObTEMC and the ObTEMP cookies.
 See “Cookies Generated During Login” on page 3-52 for information on cookies.

4. The Identity System then allows the user to access the Identity application. The user can perform specific actions in accordance with how the application is configured.

Process overview: Access when the resource is protected by WebGate

1. A user attempts to access a resource that is protected by a WebGate.

 When the user attempts to access a Web resource or an application, WebGate intercepts the request and queries the Access Manager SDK caches to determine if the requested resource and the associated operations are protected.

2. If information on the requested resource is not in the cache, WebGate makes a request to the Access Server for the security policy to determine if the resource is protected by the Access System.

3. If the resource is an unprotected Identity System resource, WebGate forwards the request to the server storing the resource, and the Identity System application authenticates the user as in “Process overview: Access when an Identity System application is not protected by WebGate” on page 3-50.

 If the resource is protected, WebGate looks for the ObSSOCookie to determine whether the user has already been authenticated.

4. If the user is not authenticated, the server challenges the user for credentials. The challenge method varies depending on the authentication scheme used.

 If a form-based authentication scheme is used, WebGate generates the ObFormLoginCookie. See “Cookies Generated During Login” on page 3-52 for details.

5. If the user authenticates successfully, WebGate generates the ObSSOCookie and sets it for inclusion in the next response to the user’s browser.

 Depending on the actions specified for authentication success and authentication failure, the user may be redirected to a specific URL, or user information may be passed on to other applications through a header variable or a cookie value.

6. WebGate then queries the Access Server for information on authorization for the resource.

7. The Access Server queries and evaluates the appropriate authorization policies stored in the directory server, and passes on the information to WebGate.
For SSO to an Identity System application, the authorization policy must set an action to set the HTTP_OBLIX_UID header to the user identity for the Identity System application. If this header is not set, the application authenticates the user as in "Process overview: Access when an Identity System application is not protected by WebGate" on page 3-50.

8. If the user is authorized, access to the requested content is allowed, and the HTTP_OBLIX_UID header is set.

Depending on the authorization actions specified for authorization success and authorization failure, the user can be redirected to a specific URL, or user information can be passed on other applications through a header variable or a cookie value.

9. The Identity System application reads the HTTP_OBLIX_UID header variable to get the identity. The Identity System application determines the user's access rights from the identity.

Process overview: Identity resource protected by WebGate

1. A client application, such as a .jsp or a Java application, attempts to access a URL to a Identity resource that is protected by WebGate.

 The client application uses Access Manager API to interface with the Access System’s Authentication and Authorization services. The application supplies the client's user credentials to the Access Manager API.

2. The Access Server queries and evaluates the appropriate authentication rule.

3. The Access Manager API authenticates the user and creates a session token.

4. The Web application sets the ObSSOCookie with the session token for the domain containing the client application and sends the cookie along with the request to the client application.

5. The WebGate queries the Access Server for information on authorization for the client user.

6. The Access Server queries and evaluates the appropriate authorization policies stored in the directory server, and passes on the information to WebGate.

 For SSO to an Identity System application, the authorization policy must set an action to set the HTTP_OBLIX_UID header. The header must set the user identity to be used by the Identity System application. If this header is not set, the application authenticates the client application itself, as in "Process overview: Access when an Identity System application is not protected by WebGate" on page 3-50.

7. If the client application is authorized, access to the requested content is allowed and the HTTP_OBLIX_UID header is set.

 Depending on the authorization actions specified for authorization success and authorization failure, the user may be redirected to a specific URL, or user information may be passed on other applications through a header variable or a cookie value.

Note: If the client application is authorized, it is allowed to access the resource.
Cookies Generated During Login

Depending on the scenario, the Access System generates one or more cookies. Cookies contain information such as the user DN, the client's IP address, and the cookie expiry time.

- ObSSOCookie
- ObFormLoginCookie
- ObTEMC cookie
- ObTEMP cookie
- ObPERM cookie

ObSSOCookie

The ObSSOCookie is an encrypted single sign-on cookie that is generated by the Access Server when a user authenticates successfully. The ObSSOCookie is a session-based cookie that stores user identity information. You can cache the information, if necessary.

See "Configuring Single Sign-On" on page 7-1 for more information on the ObSSOCookie.

ObFormLoginCookie

The ObFormLoginCookie is generated when a form-based authentication scheme is used to protect a Web resource. WebGate uses the ObFormLoginCookie to direct the user back to the requested resource after successful authentication.

The ObFormLoginCookie maintains the original request information. By default, this cookie is set when the browser is first redirected to the form. The ObFormLoginCookie contains the following information for the original request:

- The requested URL
- The requested operation
- An authentication scheme
- The host to return to URL

See "About Form-Based Authentication" on page A-1 for more information.

ObTEMC cookie

The ObTEMC cookie, an encrypted session-based cookie, is generated by the Identity application when a user authenticates successfully. The ObTEMC cookie contains the following information:

- User distinguished name (DN) and the original DN. Original DN information is stored only if the Identity Substitute Rights feature is used. For details about adding substitute administrators and substitution rights, see the Oracle Access Manager Identity and Common Administration Guide.
- A flag specifying whether the user is a Master Administrator, an Identity Administrator, or an Access Administrator.
- If single sign-on (SSO) has been implemented, the SSO Login ID.
- The time stamp.
Every time a user performs an action, the time stamp is updated in the cookie to reflect the last time the session was used. If SSO has been implemented, however, the time stamp is ignored.

- The IP address of the client machine.

ObTEMP cookie
The ObTEMP cookie is a session-based cookie that is generated by the Identity application when a user authenticates successfully. The ObTEMP cookie contains the following application information:

- Login name
- User type
- Number of search-generated results (selector info)
- Uncommitted changes in various configuration applets

ObPERM cookie
The ObPERM cookie is a permanent cookie that is stored on the client machine. Between user sessions, the ObPERM cookie stores the following application information:

- Application style
- Custom view search results
Part II
Protecting Resources

Protecting resources includes configuring Oracle Access Manager policy domains as well as user authentication and authorization, and single sign-on.

Part II contains the following chapters:

- Chapter 4, "Protecting Resources with Policy Domains"
- Chapter 5, "Configuring User Authentication"
- Chapter 6, "Configuring User Authorization"
- Chapter 7, "Configuring Single Sign-On"
Protecting Resources with Policy Domains

The Access System enables you to control who can access resources such as Web content and traditional applications by defining policy domains. Policy domains are usually one or more URL prefixes that identify resources on the Web, along with authentication and authorization rules that determine who can access the resources, and at what time. Additionally, a policy domain can protect non-Web based resources.

You can also create policies within a policy domain to define finer-grained protection for resources, for example, to protect a specific Web page or set of pages. For each policy domain and policy, you can define audit rules to monitor and record events, including system events, successful and failed user authentications, and successful and failed authorization of users who request access to protected resources.

This chapter explains how to create policy domains and policies. It also explains auditing and how to configure it. This chapter discusses the following topics:

- Prerequisites
- About Policy Domain Administration
- About Policy Domains and Their Policies
- Configuring Resource Types
- Configuring URLs for Resources
- About Schemes
- About Plug-Ins
- About Rules and Expressions
- Creating and Managing Policy Domains
- About the Master Audit Rule
- Configuring Policies
- Auditing User Activity for a Policy Domain
- Using Access Tester
- Delegating Policy Domain Administration

Prerequisites

Oracle Access Manager should be installed and running properly, as described in the Oracle Access Manager Installation Guide.

Be sure to read the following:
Prerequisites

- Chapter 3, "Configuring WebGates and Access Servers" on page 3-1, which describes how to configure AccessGates and Access Servers, something you must do before the policy domains you create can take effect.

- Chapter 5, "Configuring User Authentication" on page 5-1, for information describing authentication and how to configure and manage it.

- Chapter 6, "Configuring User Authorization" on page 6-1, for information describing authorization and how to configure and manage it.

In addition, the Master Administrator must complete the tasks described in the following task overview before any policy domains can be created.

Task overview: Prerequisite tasks for a Master Administrator

1. Define the policy base during Policy Manager setup, as described in "About the Policy Base" on page 4-2.

 To review the policy base from the Access System Console, System Configuration, View Server Settings page, look for the Policy Data Configuration section to obtain machine name, port, root DN, directory server security, and policy base.

2. Define the policy domain root during Policy Manager setup, as described in "About the Policy Domain Root" on page 4-2.

3. Create the Master Access Administrator who has the authority to create policy domains, resource types, access control templates called schemes, and to assign other administrators the role of Delegated Administrator of a policy domain:

 - Master Access Administrators can be created after installation, as described in "Configuring Master Access Administrators" on page 2-3.

 - Master Access Administrators can delegate their authority, as described in "Delegating Policy Domain Administration" on page 4-43.

About the Policy Base

The Access System must maintain information about the policy domains that you create. Policy data includes the rules that govern access to resources.

During Policy Manager installation, the Master Administrator specifies where to store policy data. During Policy Manager setup, a policy base is also created. The policy base is the location in the LDAP directory that is the beginning point—the base—that contains object classes for policy domains and their policies.

All information regarding the definition of a policy domain is stored in relation to the policy base. The definition of a policy domain—its rules and the identification of its resources—is stored at the same level under the policy base.

The policy base must be defined before performing any tasks pertaining to policy domains or policies. See the Oracle Access Manager Installation Guide for details.

About the Policy Domain Root

During Policy Manager setup, the Master Administrator is asked to specify a policy domain root. This is the first URL prefix for a policy domain under which all resources are protected. The default policy domain root must be broad to provide a wide scope that encompasses all of your resources. The default root is /.

For details about URLs, see "Configuring URLs for Resources" on page 4-14. For information describing how the policy domain root was created during Policy Manager setup, see the Oracle Access Manager Installation Guide.
About Policy Domain Administration

To protect resources, you create **policy domains**. A policy domain consists of:

- The resources you want to protect

 You can protect Web-based and non Web-based resources, including Web pages, site domains (collections of Web resources), servers, files, applications, and other executable programs.

 To include resources in a policy domain, you specify a URL that includes the resource at some level. You can specify the URL of a single resource—such as a large-scale application—to protect it, or you can protect entire directories of folders, files, and executables under a URL.

- Authentication, authorization, and auditing rules

- An authorization expression

- Policies to protect subsets of resources within the policy domain

 A policy consists of a set of resources, authentication, authorization, auditing rules, and an authorization expression.

- The rights given to various administrators to create and modify the policy domain

The rest of this section discusses the following topics:

- **About Creating the First Policy Domain**
- **About Managing a Policy Domain**
- **Overview for Delegated Access Administrators Creating a Policy Domain**

Note: Before you can protect a resource, the Master Administrator must define the policy domain root and policy base, as described in "Prerequisites" on page 4-1, and define a Master Access Administrator as described in "Configuring Master Access Administrators" on page 2-3.

About Creating the First Policy Domain

A Master Access Administrator must create the first policy domain after the policy domain root is defined. He or she can then create policy domains for URLs beneath the first one and delegate administration of those policy domains to other administrators.

For details about the policy domain root, see "About the Policy Domain Root" on page 4-2.

Task overview: Creating the first policy domain

1. Define the resource types for any resources to be included in the domain whose types are not already defined by default.

 See "Configuring Resource Types" on page 4-11 for details.

2. Create the Master Audit Rule.

 See "About the Master Audit Rule" on page 4-32 for details.

3. Create the Authentication Scheme for the policy domain.

 See "Authentication Schemes" on page 5-3 and "Authentication Rules" on page 5-46 for details.
4. Create the Authorization Scheme for the policy domain. Refer to either of the following sections:
 - “Configuring Authorization Rules” on page 6-7, which includes information about using an Access System-provided authorization scheme
 - “Authorization Schemes for Custom Plug-Ins” on page 6-44
5. Configure the URLs for the resources of the first policy domain.
 See “Configuring Resource Types” on page 4-11 for details.
6. Create the Authentication Rule for the policy domain.
 See “Authentication Rules” on page 5-46 for details.
7. Create actions for the Authentication Rule.
 See “Authentication Actions” on page 5-51 for details.
8. Create one or more Authorization Rules.
 See “Authorization Rules” on page 6-4 for details.
 See “Setting Actions for Authorization Rules” on page 6-40 for details.
10. Create an authorization expression for the policy domain containing one or more authorization rules.
 See “Authorization Expressions” on page 6-14 for details.
11. Create the audit rule for the policy domain.
 See “Creating an Audit Rule for a Policy Domain” on page 4-39 for details.
12. Test the policy domain.
 See “Using Access Tester” on page 4-41 for details.
13. Delegate management of the domain to a Delegated Access Administrator.
 See “Delegating Policy Domain Administration” on page 4-43 for details.

About Managing a Policy Domain

As a Delegated Access Administrator, you can manage a policy domain for which you have been granted administrative rights.

The tasks you can perform to administer a policy domain for which you have administrative rights are listed in the following task overview. You can perform these tasks as needed; none is required.

Task overview: Managing a policy domain

1. Replace the existing authentication rule for the policy domain or its policies.
 To do this, you must first delete the policy domain's or the policy's existing authentication rule.
 To create an authentication rule, you select an authentication scheme created by a Master Access Administrator, and configure the rule's actions. See “Authentication Rules” on page 5-46.
2. Replace the existing authorization expression for the policy domain or its policies.
To do this, you must first delete the content of the policy domain’s or the policy’s existing authorization expression.

To create an authorization expression for the policy domain or any of its policies, you combine one or more authorization rules created at the policy domain level. See "Authorization Expressions" on page 6-14.

3. Create audit rules derived from the Master Audit Rule.
 See "Creating an Audit Rule for a Policy Domain" on page 4-39 and "Defining an Audit Rule for a Policy" on page 4-40.

4. Test the policy domain after making changes to it.
 See "Using Access Tester" on page 4-41.

Overview for Delegated Access Administrators Creating a Policy Domain

As a Delegated Access Administrator with a particular set of privileges, you can create policy domains. See Table 4–4 for details. The following task overview summarizes the procedures for creating a policy domain.

Task overview: Creating a policy domain

1. Configure the URLs for the resources of the policy domain.
 See "Configuring URLs for Resources" on page 4-14 for details.

2. Create the authentication rule for the policy domain.
 See "Authentication Rules" on page 5-46 for details.
 You include in the rule an authentication scheme created by a Master Access Administrator.

3. Create actions for the authentication rule.
 See "Authentication Actions" on page 5-51 for details.

4. Create one or more authorization rules for the policy domain.
 See "Authorization Rules" on page 6-4 for details.

5. Define actions to be taken for the authorization rule, if the rule fails or if it succeeds.

6. Create the authorization expression for the policy domain containing one or more authorization rules.
 See "Authorization Expressions" on page 6-14 for details.

7. Create actions to be taken for the authorization expression, depending on the evaluation of the expression: success, failure, or inconclusive.
 See "About Actions For Rules and Expressions" on page 6-36 for details.

8. Create the audit rule for the policy domain.
 See "Creating an Audit Rule for a Policy Domain" on page 4-39 for details.

9. Test the policy domain.
 See "Using Access Tester" on page 4-41 for details.

10. Configure policies for the policy domain, if any.
See "Configuring Policies" on page 4-36 for details.

Note: Note that you can configure a policy domain resource URL that is already covered by a resource definition in another policy domain for which you have administrative rights. For details, see "How the Policy Domain or Policy for a Resource Is Determined" on page 4-8.

About Policy Domains and Their Policies

Policy domains are logical structures defined for resources that you want to protect in the same way. To provide different and more specific coverage to a subset of resources in a domain, a policy domain can contain policies.

Users request access to resources protected by a policy domain, and their requests are assessed according to the domain’s authentication rule and its authorization expression.

There are a number of ways users can attempt to access a resource protected by a policy domain, for example, by entering the URL for a resource in a browser, by running an application, or by calling some other external business logic.

The rest of this section discusses the following topics:

- Parts of a Policy Domain
- How the Policy Domain or Policy for a Resource Is Determined
- Preconfigured Policy Domains
- Who Creates Policy Domains?
- Examples of Policy Domain and Policies
- About Allocating Responsibility for a Policy Domain

Parts of a Policy Domain

A policy domain consists of the following parts:

- URLs that define paths covering resources protected by the domain’s authentication rule and authorization expression

 A policy domain can include multiple URLs that are independent of one another. Resources under one URL might reside on a different host from resources under another URL in the same policy domain. The policy domain’s default rules apply to the resources it contains, unless the resource is protected by a specific policy.

- The host identifier

 You identify all resources that you add to a policy domain by the host where the resources reside and their URLs. A host can be known by multiple names. To ensure that it recognizes the URL for a resource, the Access System must know the various ways used to refer to that resource’s host machine.

 The Host Identifiers feature enables you to enter the official name for the host and every other name by which the host can be addressed by users. A request sent to any address on the list is mapped to the official host name. For details about the host identifier, see Chapter 3, "Configuring WebGates and Access Servers" on page 3-1.
It is possible to use the Host Identifiers feature to set up a host context for adding resources to the same policy domain on different machines. For details describing what a host context is and why you may want to use one, see "Using Host Identifiers and Host Contexts" on page 4-29.

- Rules and expressions for protection

Rules for authentication determine how the identity of a user attempting to access a resource is to be proven. Authentication rules contain authentication schemes. Authorization rules determine whether the user has the right to access the resource. Authorization rules contain authorization schemes and are contained in authorization expressions. An authorization expression can contain one or more authorization rules. Auditing rules determine the information to be recorded in the audit log for operations pertaining to the policy domain or policy (audit). Auditing rules are derived from a Master Audit Rule. For details, see the following information:

- For details about authentication rules and authentication schemes, see Chapter 5, "Configuring User Authentication" on page 5-1.
- For details about authorization schemes, authorization rules, and authorization expressions, see Chapter 6, "Configuring User Authorization" on page 6-1.
- For details about auditing rules and the Master Audit Rule, see "About Rules and Expressions" on page 4-22 and "About the Master Audit Rule" on page 4-32.

- Policies for URL patterns and the operations allowed for the type of resource to which the pattern applies

Policies for resources within a policy domain allow you to create finer-grained ways to protect specific resources in the domain. You can specify a URL pattern or an explicit URL to identify resources. Different types of resources have their own operations. You can specify the operations—also known as request methods—that are allowed for resources of a type. Requests for resources whose URLs match the pattern are further processed against the rules of the policy.

For details about policies, see "Configuring Policies" on page 4-36.

Figure 4–1 provides a conceptual view of the parts of a policy domain. In this figure, only Web-based resources are shown. However, Access System policy domains can also protect resources other than Web-based ones.
A policy domain can contain different types of resources, such as:

- An entire external Web site
- Specific pages in a Web site
- Partner portals
- A parts order application
- Invoice applications
- A benefits enrollment application on Web servers of an enterprise in many countries

For details describing resource types, see "Configuring Resource Types" on page 4-11.

How the Policy Domain or Policy for a Resource Is Determined

A resource may fit the definition of more than one policy domain. It may fall within a broad policy domain such as /mydomain. It may also fall within a more specific policy domain such as /mydomain/myresources. The Access Server checks all policy domain definitions to find the policy domain with the most specific URL prefix that matches the resource. The policy domain that a resource belongs to is always the more specific one for the resource's URL.

Unlike the way that the Access Server checks policy domains, the Access Server checks policies in the order that you specified when you configured them. It uses the first matching policy regardless of how many more policies there are. When searching a policy, a URL that was not checked may be the closest match to a requested resource. In this case, the policy may not be checked because a previous policy provided a match. For an intended policy to be used and for processing efficiency, consider the order that you assign to policies.
Preconfigured Policy Domains

You can configure policy domains to protect Identity System and Policy Manager resources (URLs). If the policy domains were created during installation, you must configure a WebGate and Access Server for them, and then enable or disable them together. The policy domains created during installation are:

- **Identity Domain**: Protects Oracle Access Manager Identity URLs.
- **Access Domain**: Protects Oracle Access Manager Policy Manager URLs.

See the *Oracle Access Manager Installation Guide* for information about configuration of authentication schemes and policies during the installation process.

Who Creates Policy Domains?

You can distribute policy domain creation and administration across various administrators who are responsible for management of resources.

You can centralize policy creation while decentralizing management and enforcement of it. For example, you may want a Master Access Administrator to create several policy domains and delegate administration of them to various Delegated Access Administrators. The Delegated Access Administrators can manage the domains and create policy domains for resources whose URLs are more specific than those of the domain.

Examples

- A Web Master who maintains a corporate Web site is assigned the position of Delegated Access Administrator for the policy domain for a resource. The policy domain includes other resources the Web Master also manages.

- A Delegated Access Administrator may manage a particular resource, such as a powerful, feature-rich application used internationally throughout an enterprise. One such resource might be Arete Airline’s passenger check-in verification system. Instances of the application may run on many servers.

 Because a related, smaller application called Upgrade requires the same protection and is managed by the same administrator, both applications could belong to the same policy domain. Additionally, all instances of each application could be protected by the same policy domain.

Delegation of management of policy domains enables you to scale administration of your resources empowering those closest to the resources and most knowledgeable about them to manage them. For details about Master Access Administrators, Delegated Access Administrators, and their rights and responsibilities, see "Delegating Policy Domain Administration" on page 4-43.

Examples of Policy Domain and Policies

Organizations use policy domains and policies for different purposes and in different ways. An organization’s design for use of policy domains and policies is unique to it.

Here are some example scenarios that entail use policy of domains:

Policy Domain for Human Resources and Marketing: A policy domain protects human resources information made public to employees and a branch of the marketing Web site. Both sets of resources require the same kind of protection.

The following two URLs define the policy domain’s logical structure:

/AreteAirlines/marketing/reports/
About Policy Domains and Their Policies

/AreteAirlines/HR/

If resources of either organization in the policy domain require protection rules that are more specific than the policy domain’s default rules, policies can be defined to protect those resources. For example:

- The default Authorization rule for /AreteAirlines/HR/ grants all users weekday access only.

 A policy could be defined to remove weekend access restrictions from a set of human resource files for human resources managers who tend to work on weekends.

- The same policy domain includes resources in a private directory that should be viewed only by regular employees, for example, analysts’ reports.

 The private directory is subordinate to the reports directory. Resources in the private directory are protected by the default rules of the policy domain unless a policy is used to provide them different protection. A policy that restricts access to the resources in the private directory exists; it stipulates that only regular full-time employees may see the reports in the following private directory:

 /AreteAirlines/marketing/reports/private/

- The policy domain’s URLs encompass a resource that is an application called badgit. The application enables HR employees to register employees of the organization for access badges. The main application processes the request and obtains information from a backend application. A policy is used to protect only this application. The policy applies to the following specific URL:

 /AreteAirlines/HR/badges/badgit.exe

Policy Domain for a University: A university provides information to its students, but not to outsiders. The URL for the policy domain protecting the resources is:

/GlobalUniv/

Two policy domains with more specific URLs are created to include resources otherwise covered by the /GlobalUniv/ policy domain.

- One of these policy domains includes the URL /GlobalUniv/physics/.

- The other policy domain includes the URL /GlobalUniv/philosophy/.

The policy domain /GlobalUniv/physics/ allows all students of the university to access the policy domain’s resources.

- All students: physics students, philosophy students, and any others—can access resources in the /GlobalUniv/physics/feynman/diagrams/ directory because the default rules of the /GlobalUniv/physics/ policy domain apply, and there are no specific policies applied to these resources.

- A policy is created to allow only those students who meet the authorization criteria of the policy protecting the testResults.html page to see it. The students who took a quiz may be able to view the following Web page:

 /GlobalUniv/physics/feynman/diagrams/testResults.html

The college presents a suite of applications animating the world of black holes. The applications are available to all students, not just physics students. The URL for one of these Enterprise JavaBean (EJB) applications is

/GlobalUniv/physics/wheeler/blackHoles/explore/styx.ejb.
Because the application is in a directory called wheeler, which is subordinate to the physics directory, a policy must be used to remove access to the wheeler directory, uncovering the resources for all science students.

About Allocating Responsibility for a Policy Domain

You can assign to various users administrative roles and give them the privileges and responsibilities for managing policy domains for resources of the same or a different type on the same or a different host. It is a good idea to define policy domains along the lines of the resources they protect and who manages them. Who can access them is secondary, and is expressed through the access control rules of a policy domain. How you design and implement policy domains is determined by the requirements of your organization.

Here are some examples of reasons why decentralizing management of resources may be useful:

- You want to provide your employees with faster and better service for your online applications. For example, improved service helps to make applications more readily available initially and more easily recoverable if a failure of the host system occurs.
- You may want to keep your informational Web sites for employees operational and current with as little disturbance as possible.

Configuring Resource Types

A resource type describes the kind of resource to be protected, including its associated operations. Operations associated with a resource are tied to its type.

Before you can add resources to a policy domain, you must define their types and the operations associated with them that you want to protect.

The Access System defines some default resource types. If you want to protect types of resources different from the default ones, you must define their types. Only the Master Access Administrator can create resource types. Resource types are created from the Access System Console.

By giving you the ability to define more resource types than the default ones provided, the Access System enables you to protect more than just Web-based resources.

The rest of this section discusses the following topics:

- About Resource Types
- Resource Types Defined by the Access System
- Supported HTTP Operations
- Supported EJB Operation
- Supported Resource Types
- Defining a Resource Type

Note: You can configure custom AccessGates to protect non-Web resources. See *Oracle Access Manager Developer Guide* for details.
About Resource Types

The Access Manager expects resources to be directory or file level resources, for example:

http://server.domain.com:port/this/path/to/the/app?param1=x¶m2=y

Any URL that contains query strings is escaped and the entire URL is considered a directory or named resource. In the previous example, the string `app?param1=X¶m2=Y` is escaped and treated differently from other types of URL. For example, suppose a user requests the following resource:

http://server.domain.com:port/this/path/to/the/app?param2=y¶m1=x

In theory, this is the same resource as the previous one. However, the policy domain evaluation performed by the Access System will miss this resource, and as a result will fail to protect it. Similarly, if the user requests the following URL, the Access System will miss this resource, and as a result will fail to protect it:

http://server.domain.com:port/this/path/to/the/app?param1=x¶m2=y¶m3=z

In these cases, the resource should be defined at the policy domain level at the URL path level, for example:

http://server.domain.com:port/this/path/to/the/app

You can add one or more policies under the policy domain to handle the more specific URL. A policy can contain a query string pattern of `*param1=X¶m2=Y*` or separate query string value pairs.

Resource Types Defined by the Access System

By default, the Access System defines resource types for Enterprise Java Beans (EJB) and HTTP (HTTPS) resources. The HTTP resource type definition is required, whether or not you protect resources of this type. You cannot delete the HTTP resource type or modify its operations. The EJB resource type is not required. You can delete it if you do not plan to protect EJB resources. You must define the type for any other types of resources that you want to protect.

Supported HTTP Operations

The Access System supports the following HTTP operations:

- **CONNECT**: Handshakes with a URL
- **DELETE**: Deletes information from the URL, or deletes the URL itself
- **GET**: Retrieves information from the URL
- **HEAD**: Obtains information about the resource without making changes to the URL
- **OPTIONS**: Obtains information about HTTP methods available to and from the URL
- **OTHER**: Non-standard, custom operation
- **POST**: Copies information to the URL
- **PUT**: Replaces a file or document in the URL
- **TRACE**: Views information about what the URL is receiving
Supported EJB Operation

The Access System supports the EJB EXECUTE operation, which executes a bean. You can add other EJB operations.

Supported Resource Types

A policy domain can protect these types of resources and their operations:

- **EJB Resources**
 - EXECUTE
- **HTTP Resources**
 - GET, POST, PUT, TRACE, HEAD, CONNECT, OPTIONS, and others
 - You can define policies to protect a specific operation.
- **RDBMS Resources**
 - ADD, DELETE, and UPDATE
- **Servlet resource types**

Table 4–1 shows examples of HTTP resources, Java 2 Enterprise Edition (J2EE) resources, and other online application resources identified by their URLs.

<table>
<thead>
<tr>
<th>Resource Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>HTTP Resources</td>
<td></td>
</tr>
<tr>
<td>Directories</td>
<td>/mydirectory</td>
</tr>
<tr>
<td>Pages</td>
<td>/mydirectory/index.html</td>
</tr>
<tr>
<td>Web applications</td>
<td>/applications/myexe.exe</td>
</tr>
<tr>
<td>Query strings</td>
<td>www.wmm.com/sales/result/pricelist1,2,0-a-00,000.htm?st.dl.search.qs.results</td>
</tr>
<tr>
<td>J2EE Application Server</td>
<td></td>
</tr>
<tr>
<td>Java Server Pages JSPs</td>
<td></td>
</tr>
<tr>
<td>Servlets</td>
<td></td>
</tr>
<tr>
<td>Enterprise Java Beans</td>
<td></td>
</tr>
<tr>
<td>Other Resources</td>
<td></td>
</tr>
<tr>
<td>Standalone programs</td>
<td></td>
</tr>
<tr>
<td>Java, C, C++ application programs</td>
<td></td>
</tr>
<tr>
<td>ERP applications</td>
<td></td>
</tr>
<tr>
<td>CRM applications</td>
<td></td>
</tr>
</tbody>
</table>

Defining a Resource Type

To define a resource type, use the Define a New Resource Type page.

To define a resource type

1. From the landing page for the Access System, click the Access System Console link.
If you are working with the Policy Manager, click the link for the Access System Console at the top of the page.

2. From the Access System Console, click the Access System Configuration tab, then click the Common Information Configuration link in the left navigation pane.

3. Click the Resource Type Definitions sub-tab.

The List All Resource Types page appears.

4. On the List All Resource Types page, click Add.

The Define a new Resource Type page appears.

5. In the Resource Name field, enter a unique name for the new resource type.

6. In the Display Name field, enter the name of the resource type.

7. In the Resource Matching field, specify whether the resource type can be read as case sensitive or case insensitive.

8. In the Resource Operation field, specify the operations this resource type can perform.

 You can define custom operations, but not for HTTP resource types.

 To add or delete fields as necessary, click the plus (+) and minus (–) icons.

9. Click Save to save your changes (or click Cancel to exit the page without saving).

Configuring URLs for Resources

To use the Access System to protect your resources—for example, your business applications and content—you must create a policy domain whose URL prefixes and URL patterns identify the resources.

URL Prefixes: You use URL prefixes to define the policy domain content. For policies, you use URL patterns to identify resources protected by the policy.

You can create URL prefixes that define a broad scope of content, for example:

/
/sales
In this example of a policy domain, the resources to be protected exist on three different hosts. All resources under the URL prefixes are protected by the default rules of the policy domain:

Policies: You can create policies for resources within a policy domain. For example, resources for two other groups reside under / . They are engineering and marketing.

- Because no policy is defined for /engineering, its resources are still protected by the default rules of the policy domain. Default rules also apply to marketing.
- After the administrator creates a policy for resources under /engineering, the engineering resources are protected by the rules specified by the policy and not the default rules of the policy domain.

URL Patterns: You can create policies with granular URL patterns. Here is an example of a URL pattern:

/.../update.html

This URL pattern matches these resources:

/humanresources/benefits/update.html
/corporate/news/update.html
/update.html

Figure 4-2 illustrates how URL prefixes and URL patterns are used to define the resources for policy domains and their policies.
About URL Prefixes

The URL prefix is the starting point for resources in a policy domain. A URL prefix defines the beginning boundary of a policy domain, that is, its first resource. A URL prefix maps to a directory on the file system of one of your application servers or Web servers.

All resources under the URL prefix are protected by the default rules of the policy domain unless more specific rules are applied to them through policies. You can assign one or more URL prefixes to a policy domain, but each URL prefix can belong to one policy domain only.

The trade-off in creating many granular policy domains to protect your resources is that you achieve greater security at the cost of increased overhead. The cost is incurred because the Access Server must evaluate all policy domains to find the one that is most specific to the resource. Use of policies affords you the same benefit without the overhead.

The following is a screen shot of a page where you define a primary URL prefix for a resource, as described in “To add resources to a policy domain” on page 4-29. This screen shot shows a policy domain that protects the Identity System:
Process overview: How a URL prefix is used

1. An end user requests a resource by specifying the URL for the resource in a browser.

 For example, a user enters the following URL in her browser to request access to a data page displaying information about a specific corporate partner:

 www.AreteAirlines.com/Partners/mycorp.html

 If the user's own Web site is set up accordingly, the user may select a link which represents the resource (and the URL for it).

2. The Access System locates the requested resource.

 The Access Server assesses all of the policy domains to ascertain the one having the URL prefix most specific to the incoming URL for the resource. (The Access Server determines if the resource is covered by a policy within the domain, whose rules would then apply.)

3. If no policy applies, the Access System uses the rules of the policy domain to determine whether to allow or deny the user access to the HTML page.

A policy domain can protect content other than Web-based content, although the policy domain in Figure 4–2 covers Web-based resources.

You can specify individual policies for resources of a given type whose URLs match a URL pattern. You can also specify the kinds of operations that can be performed on the resources.

About URL Patterns

A URL pattern is an Access System-supported mechanism for identifying different resources of a certain type that are protected by a single policy. A URL pattern can be a directory, query string pattern, or query string variable. If it is an explicit fully qualified URL, then it refers to a single resource.

An example of a URL pattern that covers many resources is a URL for all HTML pages (*.html) of a department’s Web site. In this case, the policy may remove restrictions imposed by the policy domain’s default rules. An example of a URL pattern for a specific file is an explicit fully qualified path (URL) of a single instance of an application. Resource operations are the functions available for each configured type of resource. For example, HTTP has GET, POST, PUT and other operations.

The following is a screen shot of a page where you configure a URL pattern for a fine-grained policy, as described in “Adding a Policy” on page 4-37. In particular, the following screen shot shows a policy that protects the Lost Password Management application in the Identity System. This policy is configured for the Identity domain:
When appended to the URL prefix of /identity, the URL pattern shown in the previous screen shot forms a pattern that protects resources located in the following URL path:

/identity/oblix/apps/lost_pwd_mgmt/*

The following screen shot illustrates the result of defining multiple URL patterns for a policy domain. In particular, the screen shot shows a list of policies and their URL patterns in the Identity domain. These URL patterns protect various applications and data directories in the Identity System.

<table>
<thead>
<tr>
<th>Name</th>
<th>URL Pattern</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Last Password Management</td>
<td>oblix/apps/lost_pwd_mgmt/*</td>
<td></td>
</tr>
<tr>
<td>Workflow Self Registration GET</td>
<td>oblix/apps/owc/bin/owccenter.cpi</td>
<td></td>
</tr>
<tr>
<td>Workflow Self Registration POST</td>
<td>oblix/apps/owc/bin/owccenter.cgi</td>
<td></td>
</tr>
<tr>
<td>Common Java Scripts etc.</td>
<td>oblix/lang/.../*</td>
<td></td>
</tr>
</tbody>
</table>
How URL Patterns are Used

URLs for policies specify the fine-grained portion of a resource's namespace. To fully identify the URL, the host identifier and URL prefix for the policy domain are concatenated with the policy's URL pattern.

Process overview: How URL patterns are used
1. A user specifies the URL for a requested resource.
2. Based on the policy domain's host and URL prefix information, the Access Server creates a fully qualified URL that includes the URL pattern.
3. The Access Server compares the incoming URL for the requested resource to the fully qualified URL constructed from the policy domain information and the policy's URL pattern.
 - If there is a match, the policy's various rules are evaluated to determine whether the requester should be allowed or denied access to the resource.
 - If requester is allowed access, the resource is served to the user.

Figure 4–1 shows the structure of a policy domain called Partners that includes the following URL pattern:

/Ace/.../*

To get the fully qualified name of the URL pattern for the policy, the policy domain's URL prefix, /Partners, is prepended. The name of the host where the resources of the policy domain reside is specified before the URL prefix, resulting in the following URL:

myhost/Partner/Ace/.../*

For information on configuring a policy and its URL patterns, see "To add a policy" on page 4-37.

URL Pattern Matching Symbols

The Access System expresses URL patterns through a type of filtering called globbing. This filtering method combines different Unix shell (sh, csh or tcsh) support for patterns in file names with Access System-provided patterns such as "..." (three periods), which let you span multiple directories.

Table 4–2 shows the supported patterns.

<table>
<thead>
<tr>
<th>Pattern</th>
<th>Description</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>?</td>
<td>Matches any one character other than /</td>
<td>a?b matches aab and azb but not a/b.</td>
</tr>
<tr>
<td>*</td>
<td>Matches any sequence of zero or more characters. Does not match /</td>
<td>a*b matches ab, azb, and azzzzzzb but not a/b.</td>
</tr>
</tbody>
</table>
Invalid Patterns

Patterns with the following attributes are invalid:

- A `[' without a closing `]`
- A `']` without a closing `['`
- Unescaped `[' inside `{}`
- Unescaped `']` inside `[]`

Access System Patterns

A policy can contain one or more of the following types of patterns. If multiple patterns are specified in one policy, they all must match to the incoming URL. If they do not, the policy does not apply to the URL.

This example uses the following incoming URL:
The policy includes the following URL patterns:

- **Pattern for the absolute path of the URL**

 This pattern is the part of the URL that does not include the scheme (http) and host/domain (www.myserver.com), and that appears before a ? character. In this example, the absolute path is: /oblix/sales/index.html.

- **Pattern for name value pairs in the URL**

 A set of these pairs may be configured as a pattern. The pairs apply to query data that appears after the ? character in the URL—if the operation is GET. If the operation is POST, query data appears after the POST data. For a pair, name specifies a name value, not a pattern. The value element of the pair is configured as a pattern. For example:

<table>
<thead>
<tr>
<th>Name</th>
<th>Pattern</th>
</tr>
</thead>
<tbody>
<tr>
<td>user</td>
<td>*Smith</td>
</tr>
<tr>
<td>dept</td>
<td>sales</td>
</tr>
</tbody>
</table>

If multiple name-value pairs are specified, they all must match the incoming URL. Therefore, the following URL does not match the pattern:

The important difference between this pattern and the next one is that there is no priority to these name-value pairs. The following URL satisfies the pattern:

Note the reverse order of "dept" and "user". This is important and useful because it is commonly difficult to control the order of name-value pairs in the GET/POST query data.

- **Pattern on the entire query string:**

 This is useful if you want to enforce an order on the query string. For example, a pattern:

 user=*Smith*sales*

 matches the query string

 user=J.Smith&dept=sales

About Schemes

Schemes allow the Master Access Administrator to define methods that are used to authenticate users and to verify a user’s right to access a resource. Schemes are reusable templates. You create schemes in the Access System Configuration area of the Access System Console.

An *authentication scheme* contains one or more steps, each of which can include one or more plug-ins. A policy domain must have at least one authentication rule and therefore one authentication scheme.
An authorization scheme is included in an authorization rule. You can use the default authorization scheme, or you can provide a custom one. A policy domain must have an authorization expression containing at least one authorization rule.

After you define a scheme, Delegated Access Administrators for different policy domains can use the same scheme in rules for their domains or in rules for policies within their domains.

You can define all of the schemes you and your Delegated Access Administrators will need for policy domains and policies at one time. Or, you can define schemes as they are required.

About Plug-Ins

Plug-ins are dynamically loaded shared libraries executed to perform authentication and authorization processes. They are contained in schemes, and they are used to request and process the information necessary to authenticate a user or authorize a user to access a resource.

Plug-ins perform specific tasks. For example:

- **For Authentication Schemes**: Authentication schemes contain one or more steps. The steps of an authentication scheme contain its plug-ins. The Access System provides default plug-ins, or you can provide custom ones. For example, every chained authentication scheme must have a plug-in that maps information obtained from the user—user credentials—to user profile information.

 Also, every authentication scheme includes a challenge method plug-in and a password verification plug-in. The Access System provides plug-ins for these purposes, too. If you do not use the plug-in provided for this purpose, you must replace it with one that provides the same functionality.

 If you want to replace the provided plug-ins with custom ones, you must design your plug-ins to perform required tasks, to accept and pass required parameters, and to return defined function codes. For details, see "Plug-Ins for Authentication" on page 5-17.

- **For Authorization Schemes**: For authorization rules, you can use the default authorization scheme provided by the Access System, or you can use a custom one. If you want to use a custom authorization scheme, you must provide your own plug-ins for it. For details, see "Configuring User Authorization" on page 6-1.

You can create plug-ins for the following supported platforms:

- **MS Windows**: A dynamic link library (.dll) is used to implement shared libraries.

- **UNIX**: A shared library (.so) is used to implement shared libraries.

For information describing how to create custom plug-ins, see the Oracle Access Manager Developer Guide.

About Rules and Expressions

Rules contain schemes that define how the resources of a policy domain are to be protected, including:

- How authentication of the user is to be performed.

- Whether a user has the right to access a domain resource and any conditions defining access rights. Authorization rules are included in authorization
expressions. A policy domain must contain one—and only one—authorization expression.

- Events to be audited pertaining to the policy domain or policy.

You include one or a combination of authorization rules to form an authorization expression. Rules can include actions to be executed depending on the result of the evaluation of user information against the specifications of the rule.

A policy domain can include policies, which can contain their own rules and authorization expressions. Therefore, a policy domain can contain two levels of rules:

- Those that apply by default to all resources of the policy domain.
- Those that are part of a policy and apply to specific resources within the domain.

These policy rules override the default rules of the policy domain for the resources they protect.

Authorization expressions include authorization rules and the operators used to combine them. You combine rules within expressions to create from simple to complex means of specifying who is allowed or denied access to the protected resources.

Authorization rules are reusable within a policy domain. You can use the same rule in an authorization expression more than once. Also, you can use the same rule in the expression for the policy domain and in expressions for any of its policies.

Table 4–3 defines the four types of rules for a policy domain or a policy.

<table>
<thead>
<tr>
<th>Table 4–3 Types of Rules</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule</td>
</tr>
<tr>
<td>Authentication Rule</td>
</tr>
<tr>
<td>Authorization Rule</td>
</tr>
<tr>
<td>Authorization Expression</td>
</tr>
</tbody>
</table>
About Rules and Expressions

Table 4-3 (Cont.) Types of Rules

<table>
<thead>
<tr>
<th>Rule</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Audit Rule</td>
<td>Captures attributes and information about specific events pertaining to the policy domain.</td>
</tr>
<tr>
<td></td>
<td>■ It modifies and overrides events and information specified in the Master Audit Rule.</td>
</tr>
<tr>
<td></td>
<td>■ If no specific audit rules are applied, the Master Audit Rule is enforced by default.</td>
</tr>
</tbody>
</table>

Note: Authentication rules are applied before authorization rules because a user’s identity must be proven before he or she is granted access to a resource.

Figure 4–3 illustrates a policy domain containing a default set of rules and a default authorization expression applied to the domain’s resources. For the resources defined by the policy, the default rules and expression are overridden by those of the policy.

Figure 4–3 Rules and Authorization Expression for a Policy Domain and Policy

<table>
<thead>
<tr>
<th>Web Content</th>
<th>Access Manager</th>
</tr>
</thead>
<tbody>
<tr>
<td>Web Server (www.wwm.com)</td>
<td>Policy Domain: Partners</td>
</tr>
<tr>
<td>Docs</td>
<td>URL prefix: /Partners</td>
</tr>
<tr>
<td>Partners</td>
<td>Authorization Rules: Allow Group1 Allow Group2</td>
</tr>
<tr>
<td>HolyOake</td>
<td>Default Rules:</td>
</tr>
<tr>
<td>Ace</td>
<td>Authentication Rule: Basic</td>
</tr>
<tr>
<td>index.html</td>
<td>Authorization Expressions: Allow Group 1 + 2</td>
</tr>
<tr>
<td>Cgi-bin</td>
<td>Audit Rule: authz_failure</td>
</tr>
<tr>
<td>index.html</td>
<td>Policies:</td>
</tr>
<tr>
<td></td>
<td>Authentication Rule:</td>
</tr>
<tr>
<td></td>
<td>Authorization Expressions:</td>
</tr>
<tr>
<td></td>
<td>Audit Rule:</td>
</tr>
<tr>
<td></td>
<td>Administrators: Guy Admin</td>
</tr>
</tbody>
</table>

Lessening or Increasing Controls with Rules

By default, the Access System allows access to a resource that is not explicitly protected by a policy domain rule or a policy. You can begin to create policy domains from this condition—all resources unprotected. You can take the opposite position and reverse the default state so that all resources are protected at the outset.
Beginning with All Resources Unprotected
If you begin to create policy domains from a position in which all resources are unprotected, you must apply access controls to those resources. You can do this at a broad level by creating policy domains with default rules which are more or less restrictive:

- If you use restrictive default rules to impose tight controls across all resources of a domain, you can use policies to remove or change restrictions for subgroups of resources.
- If you use lenient default rules as a starting point, you can use policies to provide tighter, specific controls on subgroups of resources within a domain.

Beginning with All Resources Protected
To start from a state in which all resources are protected, you set the parameter DenyOnNotProtected. If this switch is set to true, DenyOnNotProtected denies access to all resources not explicitly allowed by a policy domain's rules or policies.

If all resources are protected, you must create policy domains and policies to remove protection from those resources you want to make available to various users. In this sense, you are uncovering resources to a greater or lesser degree to make them available.

You can do this at a broad level by providing default rules for a policy domain:

- If you use lenient default rules to lessen controls across all resources of a policy domain, you can use policies to apply particular restrictions for subgroups of resources.
- If you use tighter default rules as a starting point—perhaps rules that are stringent but less so than the current default state of complete denial of access—then you can use policies to lessen access control for subgroups of resources in various ways.

Note: If DenyOnNotProtected is set to false, this switch allows access to all resources not explicitly denied by a policy domain’s rules or policies.

For information describing how to use the DenyOnNotProtected switch, see Chapter 3, "Configuring WebGates and Access Servers" on page 3-1.

Creating and Managing Policy Domains

This section describes how to create policy domains, enable or disable them, and manage their resources. It addresses the following set of tasks:

- Creating a Policy Domain
- Modifying a Policy Domain
- Deleting a Policy Domain
- Enabling and Disabling Policy Domains
- Searching for Policy Domains and Policies
- Viewing General Information about Policy Domains
- Adding Resources to Policy Domains
Creating and Managing Policy Domains

- Modifying a Resource's Description
- Deleting a Resource

Creating a Policy Domain

Both Master Access Administrators and Delegated Access Administrators can create policy domains. Master Access Administrators can create policy domains at any level. Delegated Access Administrators can create policy domains that are subordinate to any policy domains delegated to them for administration.

You use the Policy Manager to create policy domains, add resources to a domain, and protect the resources, using authentication rules and authorization rules and expressions.

Note: By default, a policy domain is not enabled by default. Do not enable a domain until you have added resources to it. Be aware that if you enable a policy domain that does not contain resources, the domain cannot be used.

To create a policy domain

1. From the landing page for the Access System, click the Policy Manager link. If you are working with the Access System Console, click the link for the Policy Manager at the top of the page.
2. From the Policy Manager, click Create Policy Domain in the left navigation pane. The Create Policy Domain page appears, as illustrated in the following.

 ![Create Policy Domain Page](image)

3. In the Name field, enter a short alphanumeric string identifying the domain. You can use spaces in this field.
4. In the Description field, type a brief description of this policy domain. The Name and Description appear in pages showing lists of policy domains. A description is optional.
5. Click Save.
 - To view currently defined information about your policy domain, click View as Page.
 - To return to the General page, click the name of your domain at the upper left part of the View as Page page.
6. When you are ready to enable a new policy domain, click Modify in the General page, select Yes in the Enabled field in the next page, then click Save.

 The General page reappears.

7. To add a resource to this policy domain, see “Configuring Resource Types” on page 4-11, “Configuring URLs for Resources” on page 4-14, and “To add resources to a policy domain” on page 4-29.

8. If you need to add a new resource type to this policy domain, add the new resource type in the Access System Console, then return to the Policy Manager.

 See “Defining a Resource Type” on page 4-13 for details.

Modifying a Policy Domain

You can modify a policy domain after creating it. Modifying a policy domain includes changing any aspect of it—adding or removing resources, and modifying, removing, or adding rules.

Be sure to disable the policy domain before you modify it. See "Enabling and Disabling Policy Domains" on page 4-27 for details about enabling and disabling policy domains.

To modify a policy domain

1. From the Policy Manager, click My Policy Domains in the left navigation pane.

 The My Policy domains page appears, displaying a list of policy domains.

2. Select the check box before the name of the policy domain you want to modify and click the domain's name.

3. On the general page, click Modify at the bottom of the page.

4. Change any values you want to modify, and click Save.

Deleting a Policy Domain

You can delete a policy domain entirely without first removing its resources and rules. Before you delete a domain, disable it. See "Enabling and Disabling Policy Domains" on page 4-27 for details.

To delete a policy domain

1. From the Policy Manager, select My Policy Domains.

 The My policy domains page appears, displaying a list of policy domains.

2. Select the check box before the name of the policy domain you want to delete.

3. Click Delete at the bottom of the page.

Enabling and Disabling Policy Domains

You must enable a policy domain before you can use it. You must disable a policy domain before you can modify its configuration.

The Access System provides two default policy domains that protect /identity and /access URLs. Both of these default policy domains must be enabled for the Access System to operate correctly. Only disable the default domains to modify them. Re-enable them after you have finished modifying them.
Creating and Managing Policy Domains

Important: Disable a domain before modifying its rules or policies.

To enable a policy domain
1. From the Policy Manager, select My Policy Domains.
2. In the My Policy Domains page, select the check box next to the domain you want to enable.
3. Click Enable.
 Yes appears in the Enabled column.

To disable a policy domain
1. From the Policy Manager, select My Policy Domains.
2. In the My Policy Domains page, select the check box next to the domain you want to disable.
3. Click Disable.
 No appears in the Enabled column.

Searching for Policy Domains and Policies

You can search for and display existing policy domains and policies. Master Access Administrators can search for and see all policy domains and policies. Delegated Access Administrators can see only the policy domains for which they have been delegated administrative rights. For their policy domains, they can also see the policies which they have defined along with those defined by a Master Access Administrator.

You use the Search function to search for policy domains and policies.

To search for existing policy domains or policies
1. From the Policy Manager, click Search in the left navigation pane.
 The Search window appears.
2. In the Search list at the top left of the page, select either Policy Domain Name or Policy.
3. Select an entry from the list of search criteria in the middle, then type a text string in the right column.
 To find all entries that match the selected search criterion, leave the right column blank.
4. Click Go.
 The results display on your page.

Viewing General Information about Policy Domains

You can display a list of policy domains and view configured information for an individual domain. The My Policy Domains page displays a list of domains for which you have administrative rights. Master Access Administrators can see information about all policy domains. Delegated Access Administrators can see only the policy domains for which they have been delegated management.
To view policy domains and configuration information
1. From the Policy Manager, click My Policy Domains in the left navigation pane.
2. Click the domain's link to view a domain's configuration settings.
 The General page displays the name and description of the policy domain and whether or not it is enabled. You can click other tabs to view configured information.

Adding Resources to Policy Domains
The Access System defines some resource types by default. A Master Access Administrator can define others. After a resource type is defined, both Master Access Administrators and Delegated Access Administrators can add resources of that type to policy domains they administer. When a Delegated Access Administrator is granted administrative rights for a policy domain, that administrator can add resources to the domain.

Using Host Identifiers and Host Contexts

When you add a resource to a policy domain, you select the host identifier for the machine hosting the resource. If the Master Access Administrator has configured host identifiers for machines, you can select the appropriate one from the list labeled Host Identifiers on the Resource (add) page.

You can use the Host Identifiers feature to create a host context. A host context consists of multiple hosts identified in relation to a single name, a host context name. Instead of adding to a host identifier name the various ways to reference one host, the Master Access Administrator can add corresponding information for multiple hosts to create a context in which all of these hosts share.

A host context is useful if you want to add to a policy domain resources that have the same URL paths on different machines. You want to protect all of these resources in the same way in the same policy domain. In this case, the only variable that distinguishes one set of resources from another is identification of its host machine. Use of a host context provides an efficient way to add the resources for all hosts to the policy domain at once. From the Host Identifiers list, you select the host context name. The rest of the information you enter is the same for all of the sets of resources, so you need only specify it once.

You use the Resources tab page to add resources to a policy domain after you create the domain.

To add resources to a policy domain
1. From the Policy Manager, click My Policy Domains in the left navigation pane, then click the policy domain link.
2. Click the Resources tab.
 If resources have been added to this domain, they are listed on this page, otherwise the message appears, "There Are No Resources Defined."
3. Click the Add button.
 The Resources page appears, as illustrated in the following.
4. In the Resource Type field, select an entry.

The Access System provides two default resource types, HTTP and EJB. Others may be available if your administrator defined them through the System Console.

Note: HTTP covers both HTTP and HTTPS resources.

If host identifiers were created for individual servers, the Host Identifiers field appears. If no Host Identifiers were defined, this field does not appear on this page.

5. If a Host Identifiers field appears, select a Host Identifier for the resource.

The Host Identifier enables the Access System to distinguish between otherwise identical URL prefixes for resources that might exist on multiple hosts.

6. Select an existing URL prefix to be the basis for the new URL.

You can see the URL prefixes for existing resources only if you are a Master Access Administrator or if you are a Delegated Access Administrator with rights to view or manage the URL prefix.

7. You can optionally enter a more specific URL prefix string.

Enter the URL prefix for the resource using an acceptable format. To add a specific resource, enter the remainder of the URL for that resource in the field, for example:

- Directory (/marketing/…/)
- Directory with wildcards (subfolder/*.html)
- Specific file (marketing/subfolder/marketing.html)

8. In the next field, enter the name of a region to be appended to the URL prefix.

For example, if the prefix you selected in the previous step was /your_company, you might enter /sales in this field.

Note: You need to add the / in front of your entry unless you specified / as the policy root during setup.
You can later reuse the same prefix but add a different appended region, for example:

/your_company/marketing

After the newly defined region is saved, it appears in the URL Prefix field.

Note: By default, The Access System reads URL prefixes and regions as case-insensitive. To change to case-sensitive, the Access Administrator should use the resource matching feature in the Common Information Configuration/Resource Type Definition function within the Access System Console. If you change this setting, you must restart the Access Servers and AccessGates.

9. In the Description field, enter a description of the protected region (whether a policy domain or a policy).
 Completing this field is optional.

10. Determine when you want Access Server caches to be updated:

 - **Immediately:** Select Update Cache to update all Access Server caches immediately with information about this new prefix.

 - **Later:** If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

11. Click Save.
 The Resource page appears again and displays the name of the new resource.

12. Click OK to confirm your change.

13. Repeat these steps to add more resources to this policy domain.

Modifying a Resource's Description

Only the Master Access Administrator can modify a resource’s description.

You can modify only the Description field of a resource. If you want to change the resource itself, you must delete it and create a new one.

To change a resource description

1. From the Policy Manager, select My Policy Domains.

2. In the My Policy Domains page, click a policy domain’s link.
 The policy domain’s General page appears.

3. Click the Resources tab.
 The Resource page appears with a list of resource types included in this policy domain.

4. Click a resource’s link.
 The next page shows the type and prefix of the resource.

5. Click Modify.
 A new page appears.

6. Change the Description as needed.
7. Click Save.

Deleting a Resource

Only the Master Access Administrator can delete resources.

To delete a resource

1. From the Policy Manager, click My Policy Domains, and select a policy domain’s link.
 The General page displays the Name, Description, and Enabled status of the domain.
2. Click Resources.
 The Resource page appears.
3. Select the check box for the resource you want to delete and click Delete.
 A message asks you to confirm your decision.
4. Select or deselect the Update Cache field.
5. Click OK to delete the prefix (or click Cancel to exit the page without saving).

About the Master Audit Rule

The Access System enables you to capture and record user activities for protected resources, including user identity information and information about various authentication and authorization activities. You use auditing information to monitor activity for a specific policy domain.

The Access System provides a Master Audit Rule that can be configured by a Master Access Administrator. Delegated Access Administrators can use the Master Audit Rule to create their own audit rules for policy domains and policies. The Access System does not log any audit information to the audit log file until the Master Administrator or Master Access Administrator creates a Master Audit Rule.

The Master Audit Rule contains the following information:

- User identity attributes you want to audit (cn, uid, and so forth)
- Events to audit (authentication success, failure, and so forth)
- Selection of a date format
- Format and event mapping for audit log

Master Administrators and Master Access Administrators use the Access System Console to configure a Master Audit Rule, using the Add the Master Audit Rule page.

The rest of this section discusses the following topics:

- Configuring the Master Audit Rule
- Modifying the Master Audit Rule
- Deleting the Master Audit Rule

Note: Making most parameters unchangeable enforces common auditing parameters across all Access Servers.
Configuring the Master Audit Rule

The following procedure describes configuring the Master Audit rule for a server. A Master Access Administrator configures this rule.

To configure a server's Master Audit rule

1. From the Access System Console, click the Access System Configuration tab, then click Common Information Configuration in the left navigation pane.
2. Click the Master Audit Rule sub-tab.
3. Click the Add button on the No Master Audit Rule found page to create the master audit rule.

The Add the Master Audit Rule page appears, as illustrated in the following.

4. In the Profile Attributes field, enter the identity profile attributes you want to capture.
 These attributes are written to the log file when the event happens. In most cases, cn is the best choice.
 Click the plus (+) and minus (–) icons to add or remove attribute fields.
 The Master Access Administrator can add attributes to this field, but cannot delete the ones you select.

5. In the Audit Events field, select the events you want to capture.
 Master Access Administrators and Delegated Access Administrators can add or delete events when configuring policy domains.
6. In the Audit Event Mapping field, enter the strings logged for each event. For example, Authentication Success maps to AUTHENT_SUCCESS.

7. In the Audit Date Type field, select the format in which dates are logged.

8. In the Audit Escape Character field, type a character that separates fields and ensures that logged information appears correctly in reports. If no escape character is specified, audit records will not be escaped.

9. In the Audit Record Format field, enter data types associated with authentication and authorization activities.

 Note: Supported data types for output to a file are shown in the following list. You may want to output to a database (using audit-2-db, for example). In this case, the format string for audit output must be replaced, as described in the auditing information in the *Oracle Access Manager Identity and Common Administration Guide*.

 - **ob_ip:** Corresponds to the IP address of the machine making the request.
 - **ob_datetime:** Corresponds to date and time. The date is logged in the format specified in the master audit policy. The time is logged as hh:mm:ss. The time is always the GMT time on the host that received the request, followed by the host's offset from GMT.
 - **ob_serverid:** Corresponds to the ID of the Access Server that is auditing this information.
 - **ob_url:** Request URL.
 - **ob_operation:** HTTP operation, such as GET, PUT, POST, or others.
 - **ob_event:** A string corresponding to the event that occurred. The event can be one of the following: Authentication Success, Authentication Failure, Authorization Success, or Authorization Failure.
 - **ob_userid:** Contains the user's distinguished name, if the user was successfully authenticated.

 If the user is authenticated and has an entry in the directory, in addition to the distinguished name, the log may contain other information that the authentication module of the Access Server is configured to audit. If the user does not exist in the directory, the only information that can be audited is the user name. If the user exists in the directory but enters an incorrect password, there is no way to confirm the user's identity. As a result, this information is not audited. Passwords are never written to the audit log for users who do not log in as Anonymous.
 - **ob_wgid:** ID of the AccessGate that received the request.
 - **ob_date:** Corresponds to date only. It does not include the time of the event unless the date format is ISO.
 - **ob_time:** Corresponds to the GMT time at which the event occurred on the host. Time is always logged as hh:mm:ss+-<offset from GMT on host>.
 - **ob_time_no_offset:** Corresponds to the GMT time on the AccessGate, but no GMT offset is logged. Time is logged as hh:mm:ss. Master Access Administrators and Delegated Access Administrators cannot change these settings.
About the Master Audit Rule

- **ob_reason**: Returns information for authentication success, authentication failure, authorization success, and authorization failure events. The overall reason is either ALLOW (for success) or DENY (for failure). However, in the case of DENY, any of the following reasons, which are given by the minor status code, can be the cause for denial of access. Also, a code indicating that there is no reason may be provided when the event is authentication success or authorization success.

These reasons are returned to clarify the cause of denial, and they are represented by the following integers:

- 40: An invalid password was provided as input to the authentication process.
- 68: The overall result of evaluation of the authorization expression was inconclusive.
- 2: No reason is provided. This code is returned for authentication success and authorization success events.

10. Determine when you want Access Server caches to be updated.

- **Immediately**: Select Update Cache to update all Access Server caches immediately with this auditing information.
- **Later**: If you do not select Update Cache, the Access Server caches are updated when they time out and read the new auditing information from the directory server.

11. Click Save to implement your changes (or Cancel to leave this page without saving).

Modifying the Master Audit Rule

Master Administrators and Master Access Administrators use the Access System Console to modify a Master Audit Rule. You use the Modify the Master Audit Rule page to change the configuration of the Master Audit Rule.

To modify the Master Audit Rule

1. From the Access System Console, click the Access System Configuration tab, then click Common Information Configuration in the left navigation pane.
2. Click the Master Audit Rule tab.
3. Click the Modify button on the Master Audit Rule page.
 The Modify the Master Audit Rule page appears.
4. Change the parameters as necessary.
5. Click Save.

Deleting the Master Audit Rule

Master and Master Access Administrators can delete the existing Master Audit Rule from the Master Audit Rule page.

To delete the Master Audit Rule

1. From the Access System Console, select Access System Configuration, Common Information Configuration, Master Audit Rule
2. In the Master Audit Rule page, click Delete.
 You are prompted to confirm your decision.
3. Click OK to delete the rule (or Cancel to exit without saving).

Configuring Policies

Policies enable you to differentiate how subsets of resources in a domain are protected. You can use policies to establish more or less stringent protection for a subgroup of resources of a policy domain.

A policy can include:

- One or more resources.
- Allowed operations (request methods) for a resource type.
- URL patterns for a specific file, directory, query string pattern, or query string variable.

 See “About URL Prefixes” on page 4-16 for details.
- Authentication and auditing rules, and authorization rules and expressions different from the default ones.

If a resource is not covered by a policy, the default rules of the domain apply.

The following example of a policy domain includes two policies. Boggle Games, Inc. provides human resources information to three categories of personnel: regular employees, part-time employees, and contracted employees. The policy domain includes one URL: `/mycompany/HR`. Other details of the policies are:

- The company shares some information with all groups of users. All users know how and where to obtain a building access badge.

 Badge information resources reside in a subordinate badge directory, `/mycompany/HR/badges`.

 However, because resources in the badges directory are not protected with a policy, they fall under the protection of the policy domain's default rules.

- The company shares some information only with regular employees; regular employees can view information about holiday, vacation, and stock benefits.

 A policy is used to protect the resources for employee benefits, which reside in directories subordinate to `/mycompany/HR`.

- The company shares some information only with managers; managers can view lists of preferred vendors who provide contract personnel to Boggle Games, Inc.

The rest of this section discusses the following topics:

- **Policies with Overlapping Patterns**
- **Adding a Policy**
- **Modifying a Policy**
- **Setting the Order in which Policies Are Checked**
- **Deleting a Policy**
- **Deploying a Policy into Production**
Policies with Overlapping Patterns

If you have multiple policies with overlapping patterns, the order of the policies within the policy domain becomes important. In this case, you should order the policies from the most granular to the least granular.

Adding a Policy

You use the Policies tab page to add a policy to resources of a policy domain. Note that this section assumes that you have created a policy domain, as explained in “To create a policy domain” on page 4-26, and added a resource to the policy domain, as explained in “To add resources to a policy domain” on page 4-29.

Note: On some directory servers, adding a very large number of policies and resources may cause a size limit error. In lab conditions, this maximum has only been reached when multiple thousands of resources have been added to the policies.

To add a policy

1. From the Policy Manager, click My Policy Domains in the left navigation pane.
2. Click the policy domain that you want to add the policy to.
3. Select the Policies sub-tab and click Add.
 The policy configuration page appears.
4. Fill in information for the policy.
5. Click Save.

Modifying a Policy
You use the Policies page to modify a policy.

To modify a policy
1. From the Policy Manager, click My Policy Domains in the left navigation pane.
2. Click the link for the policy domain whose policy you want to modify.
3. Select the Policies tab, select the policy, and click Modify.
4. On the Policies tab modification page, change the policy information.
5. Click Save.

Setting the Order in which Policies Are Checked
If you create two or more policies, you can specify the order in which the Access Server checks them. By default, a new policy is checked last.

To set the order of policies within a domain
1. From the Policy Manager, select My Policy Domains, and click the link for the policy domain.
2. Select the Policies tab.
3. Click Order.
4. Select the name of the policy you want to move within the current order.
 Click the Up and Down arrows to relocate the policy.
 Repeat this process for each of the policies whose order you want to change.
5. Determine when you want Access Server caches to be updated.
 ■ **Immediately**: Select Update Cache to update all Access Server caches immediately with this auditing information.
 ■ **Later**: If you do not select Update Cache, the Access Server caches are updated when they time out and read the new auditing information from the directory server.
6. When you are satisfied with the order of the list of policies, click Save.

Deleting a Policy
You delete a policy directly from the list of policies for the policy domain it belongs to.

To delete a policy
1. From the Policy Manager tab, select My Policy Domains, click a link for a policy domain, then select the Policies tab.
2. Select the check box before the name of the policy you want to delete.
3. Click Delete.
Deploying a Policy into Production

After you have tested a policy domain that you administer, and you are satisfied that resource protection is enacted as planned, you can deploy the domain for production use. To deploy a policy domain, you enable it.

You must also enable a policy domain to test it. See "Using Access Tester" on page 4-41 for information describing how to test a policy domain.

Auditing User Activity for a Policy Domain

Auditing is the process of collecting information about users' activities in relation to the resources of a policy domain or its policies. The Access System automatically audits administrative events, such as clearing information from caches. Audit policies set in the Master Audit Rule and audit rules derived from it determine what is tracked.

You can configure audit policies for:

- Authentication and authorization success or failure
- Resource access
- Policy modification

You can customize audit output to include user profile attributes. You can use audit trails for reporting, history, or any purpose you see fit. For example, you can collect the cn and other attributes of user profiles to maintain detailed information about policy domain usage. This information can be searched and used to generate reports.

The rest of this section discusses the following topics:

- Creating an Audit Rule for a Policy Domain
- Modifying an Audit Rule for a Policy Domain
- Defining an Audit Rule for a Policy
- Modifying an Audit Rule for a Policy
- About the Audit Log File

Creating an Audit Rule for a Policy Domain

You can create audit rules for a policy domain. A policy domain's audit rule serves as the default rule for all resources of the domain unless you define an audit rule for any of the domain's policies.

You must derive this rule from a Master Audit Rule created by a Master Access Administrator. For details about creating a Master Audit Rule, see "About the Master Audit Rule" on page 4-32.

To create an audit rule for a policy domain

1. From the Access System Console, select Policy Manager, My Policy Domains, and click a link for a policy domain.
 The selected policy domain appears, with the General tab selected.
2. Click the Default Rules tab.
 The Default Rules tab, when selected, displays sub-tabs for Authentication Rule, Authorization Expression, and Audit Rule.
3. Click Audit Rule sub-tab.
A page appears either showing the audit rule defined for the policy domain or reporting that there is no rule defined. If the page states that there is no Master Audit Rule defined, a Master Access Administrator must create one before you can define an audit rule for the policy domain.

4. Click Add to start the audit rule.
 The Audit Rule page appears. If the Master Audit Rule exists, its values are shown as defaults.

5. Select the events to be audited and the audit profile attributes.

6. Click Save.

Modifying an Audit Rule for a Policy Domain

For a policy domain, you can modify existing audit rules, which are derived from the Master Audit Rule.

To modify an audit rule for a policy domain

1. From the Access System Console, select Policy Manager, My Policy Domains, and click a link for a policy domain.
 The General page for the selected policy domain appears.

2. Select Default Rules, Audit Rule.
 The General page appears.

3. Click Default Rules, Audit Rule tab.
 The Audit Rule page appears.

4. Select the audit rule to be modified.
 A page with the rule's information appears.

5. Click Modify.
 The rule's page with editable text fields appears.

6. Modify the information and click Save.

Defining an Audit Rule for a Policy

If you define an audit rule for a policy, it overrides the default one defined for the policy domain. Before you can define a policy’s audit rule, a Master Access Administrator must create a Master Audit Rule.

To define an audit rule for a policy

1. From the Access System Console, select Policy Manager, My Policy Domains, and click a link for a policy domain.
 The General page for the selected policy domain appears.

2. Click the Policies tab.

3. Select the policy for which you want to create an audit rule.

4. Click Audit Rule.
 A page appears either showing the audit rule defined for the policy domain or reporting that there is no rule defined. If the page states that there is no Master
Audit Rule, a Master Access Administrator must create one before you can define an audit rule for the policy.

5. Click Add to start an audit rule.

 The Audit Rule page appears. Values for the Master Audit Rule, if one exists, are shown as defaults.

6. Select the events to be audited and the audit profile attributes.

7. Click Save.

Modifying an Audit Rule for a Policy

You can modify the audit rules for the policies of a policy domain. These rules are derived from the Master Audit Rule created by a Master Access Administrator.

To modify an audit rule for a policy

1. From the Access System Console, select Policy Manager, My Policy Domains, and click a link for a policy domain.

 The General page for the selected policy domain appears.

2. Click the Policies tab.

3. Select the policy for which you want to create an audit rule.

4. Click Audit Rule.

 The Audit Rule page appears.

5. Select one of the audit rules.

 A page with the rule's information appears.

6. Click Modify.

 A page with the rule's information in editable text fields appears.

7. Modify the information, and click Save.

About the Audit Log File

An audit rule causes event-based data to be written to the audit log file. There is one audit log for each Access Server. You can configure the size of the audit log file and the rotation interval for each server. Depending on events recorded, the audit log may contain some duplicate audit entries.

Note: To audit to a database, by using audit-2-db for example, the format string used for audit output must be replaced, as documented in the Oracle Access Manager Identity and Common Administration Guide. Also, you need to have a supported database installed and specific configuration in the Access System.

Using Access Tester

Use the Access Tester to verify that the authentication and authorization rules and authorization expressions you created for a policy domain produce the results you expect. You should test the policy domain before you make it available for production. After you select various parameters for your rules and compare the results to what you expect, you may need to make adjustments to your rules.
To run Access Tester

1. From the Policy Manager, click the Access Tester link in the left navigation pane.

2. In the URL field of the Access Tester page, type the full path to the application or content you want to check.

 The path (with the addition of an http:// or https:// prefix) should bring up a landing page when entered in a browser.

3. In the Resource Type field, select an entry from the list.

 You can only select a type that has been defined in the Access System Console.

4. In the Resource Operation field, select the request methods you want to test for this URL.

 If you select none of these, they **all** are tested.

5. If you want to know if a particular computer can access the resource (URL), type the computer's IP address into the From this IP Address field.

 You must enter a complete IP address. Wildcards are not allowed in this field.

6. In the Date/Time of access list, do one of the following:

 - Click the button beside “any” to test this resource without timing restrictions.
 - Click the button beside "specific date and time" and fill in the following Date and Time fields.

7. In the Check access for the following user(s) field, do one of the following:

 - Click the button beside "all users."

 If you select all users, the Access Tester processes the authentication and authorization information for all users. If there are a great many user entries in your database, this could take a considerable amount of time.

 - Click the button beside "selected users," then click the Select User button to display the Sector page where you can select specific users.

 Note: Do **not** select groups. Access Tester can only test access control for individual users, not groups. Also, it will not resolve groups to the individual level.

8. In the Show Administrators field, select the number of end users you want to display at one time.

9. From the list, select the button beside the option that describes the appropriate user access:

 - show only users who are allowed
Delegating Policy Domain Administration

When a Master Access Administrators creates a policy domain, he or she assumes the role of default Delegated Access Administrator. This default Delegated Access Administrator has all management rights within that domain, and can delegate administration of that domain to others who then become Delegated Access Administrators.

There are three levels of rights for Delegated Access Administrators:

- **Delegate**: Delegates grant or basic rights to other users.
- **Grant**: Delegates basic rights to other users.
- **Basic**: Performs delegated tasks, but cannot delegate this right to others.

Only Delegated Access Administrators who have rights to a specific domain—or the Master Access Administrator—can view a policy domain.

Delegated Access Administrators can manage policy domains that are delegated to them. They can also create policy domains for resources that fall under the URL prefixes of the policy domains that are delegated to them.

Table 4–4 summarizes the rights of the different types of administrator:

<table>
<thead>
<tr>
<th>Type of Administrator</th>
<th>Policy Domain Rights</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master Administrator</td>
<td>Creates Master Access Administrators.</td>
</tr>
<tr>
<td></td>
<td>Creates the policy root.</td>
</tr>
<tr>
<td></td>
<td>Creates the policy base.</td>
</tr>
<tr>
<td>Master Access Administrator</td>
<td>Creates the first policy domain and adds resources to it.</td>
</tr>
<tr>
<td></td>
<td>Defines resource types.</td>
</tr>
<tr>
<td></td>
<td>Creates, deletes, and manages authentication and authorization schemes.</td>
</tr>
<tr>
<td></td>
<td>Creates the Master Audit Rule.</td>
</tr>
<tr>
<td></td>
<td>Delegates management of policy domains to Delegated Access Administrators.</td>
</tr>
<tr>
<td></td>
<td>Retains all rights delegated to other users.</td>
</tr>
</tbody>
</table>
Table 4-4 (Cont.) Types of administrators and their rights

<table>
<thead>
<tr>
<th>Type of Administrator</th>
<th>Policy Domain Rights</th>
</tr>
</thead>
</table>
| Delegated Access Administrator with delegate rights | For that policy domain only, a Delegated Access Administrator with delegate rights can:
- View the domain.
- Create authentication and authorization rules.
- Create an authorization expression for the policy domain and for any policies it contains.
- Create audit rules based on the Master Audit Rule.
- Define Delegated Access Administrators with grant or basic rights.
- Enable or disable the policy domain.
- Test the policy domain.

Important: The Delegated Access Administrator cannot redefine the attributes of the Master Audit Rule. |
| Delegated Access Administrator with grant rights | Created by a Master Access Administrator or a Delegated Access Administrator with delegate rights.
For that policy domain only, a Delegated Access Administrator with grant rights can:
- View the domain.
- Create and delete authorization rules.
- Create or modify an authorization expression for the policy domain and for any policies it contains.
- Create audit rules based on the Master Audit Rule, or change the events to be audited, removing existing events or including other ones.
- Create and delete policies for resources in the policy domain.
- Define Delegated Access Administrators with grant or basic rights.
- Enable or disable the policy domain.
- Test the policy domain. |
| Delegated Access Administrator with basic rights | Created by a Master Access Administrator or a Delegated Access Administrator with delegate or grant rights.
A Delegated Access Administrator with basic rights cannot create or delete policy domains. For the specified policy domain, this administrator can:
- View the domain.
- Create or delete authentication and authorization rules.
- Create or modify an authorization expression for the policy domain or any of its policies.
- Create audit rules based on the Master Audit Rule.
- Redefine the events to be audited, removing existing events or including other events.
- Add new attributes to the Master Audit Rule. However, this administrator cannot redefine existing attributes.
- Create and delete policies for resources.
- Enable or disable the domain.
- Using Access Tester, verify access to the resources protected by the policy domain. |
Configuring Policy Domain Administrators

Both Master Access Administrators and Delegated Access Administrators can administer policy domains. For details about creating Master Access Administrators, see “Configuring Access Administrators” on page 2-1. To create and view Delegated Access Administrators for a policy domain and to modify delegated rights, see the following paragraphs.

To view Delegated Access Administrators for a policy domain
1. From the Policy Manager, select My Policy Domains and click the policy domain.
2. Select the Delegated Access Admins tab.
3. On the Delegated Access Admins page, in the Show Administrators with field, select the Delegate Rights, Grant Rights, or Basic Rights radio button.
 The page is refreshed to display the current users and groups with the selected administrative right for this policy domain. If no users have this right, you receive the message "There are no Delegated Access Admins with this right."
4. Click the administrator link to display the profile for the user or group.

To delegate rights for a policy domain
1. From the Policy Manager, select My Policy Domains and click the policy domain.
2. Select Delegated Access Admins.
3. Click the radio button for the kind of right that you want to grant.
4. Click the Modify button at the bottom of the Delegated Access Admin page.
5. Click Select User.
6. Use the Search process to display a list of users to select from, and click Done.
7. Click Save.

To modify policy domain rights
1. From the Policy Manager, select My Policy Domains.
2. Click the policy domain.
4. Click Modify.
5. Modify the field values for the rights you want to change.
6. Click Save.
Configuring User Authentication

The Access System enables you to protect your resources with policy domains, which contain rules that determine who can access them. Policy domains include authentication rules. Authentication is the process of proving that a user is who he or she claims to be. For the Access System, how authentication of users is to be performed is specified by the content of authentication schemes, which are included in authentication rules. Policy domains can include policies, which are used for specific resources to define finer-grained protection for those resources. Policies can also contain authentication rules.

Policy domains and policies also include authorization rules and expressions, and audit rules, which are described in other chapters of this guide. After you have created your policy domains by identifying their resources, you can define their schemes, rules, and expressions. You can create the authentication rules, authorization rules and expressions, and audit rules for a policy domain in any order.

This chapter explains authentication schemes and authentication rules. It also explains actions, which you can associate with the possible outcomes for authentication rules. The chapter explains how to create, use, and manage these schemes, rules, and actions.

This chapter contains the following topics:

- About Authentication
- Authentication Schemes
- Defining and Managing Authentication Schemes
- Plug-Ins for Authentication
- Adding and Managing Plug-Ins
- About Chained Authentication Configuration
- Configuring and Managing Steps
- About Authentication Flows
- Authentication Rules
- Authentication Actions
- Auditing Authentication Events
- Plug-Ins to Authenticate Users on External Security Systems

About Authentication

You can use the Access System to define authentication schemes and authentication rules to establish ways in which to authenticate users requesting access to the
resources of your policy domains. To authenticate a user, you obtain and process information about the user to verify that the user is who he or she claims to be.

Background Reading

Before you read this chapter, read the following:

- Chapter 3, "Configuring WebGates and Access Servers" on page 3-1.
 This chapter describes how to configure AccessGates and Access Servers, which you must do before the policy domains you create can take effect.

- Chapter 4, "Protecting Resources with Policy Domains" on page 4-1.
 This chapter describes policy domains, policies, resources, and the Master Audit Rule.

- Chapter 6, "Configuring User Authorization" on page 6-1.
 This chapter describes creating authorization schemes, rules, and expressions.

Basics of Authentication

To configure authentication, you create the following components:

- **Authentication Schemes**: An authentication scheme includes the method used to challenge the user for credentials. It also includes one or more steps consisting of one or more plug-ins used to perform different parts of the authentication process.

- **Authentication Plug-Ins**: The Access System provides default plug-ins that implement certain methods used to challenge the user for credentials. The Access System also provides a credential mapping plug-in to map credentials obtained from a user requesting access to a resource to a user profile in the LDAP directory. You can use these plug-ins alone, you can replace them with custom ones, or you can use them in combination with custom ones.

- **Authentication Rules**: Authentication rules include authentication schemes. For each policy domain, you provide one default authentication rule. You can also create one authentication rule for each of a policy domain’s policies.

You can use the Access System to obtain user information to authenticate users under the following conditions:

- If you store all of your user information in one branch of a single directory.

- If you store all of your user information in more than one directory (using the same schema)

- If you have divided storage of your user profile information logically across different branches of your directory, each with its own search base.

Searching a Single Directory: You can use authentication to search a single location (a single search base of a single directory). For example, an organization may want to limit to a single directory the search for user information required for authentication. If the information is not found in that directory, the user cannot be authenticated and the search terminates.

Searching Two Directories of the Same Type: You can use chained authentication to search two or more directories of the same type managed by the same Oracle Access Manager system.

- **Searching Two Directories Consecutively**: An organization may use two directories of the same type to store information about its employees. The
organization may want each directory to be searched until information about a user is found. If the information is found in the first directory, the organization may want to terminate the search process. If the information is not found in the first directory, the organization may want to continue the process and search the next directory. Alternatively, the organization may want to end the search if the user information is not found in the first directory, depending on the user’s status.

- Searching One Directory or Another Based on Conditions: The same organization may want to create another chained authentication scheme used to search one or another directory. The scheme may specify that one directory is to be searched if the user is an employee and that another directory is to be searched if the user is a vendor. For each condition, if the user information is not found in the first directory, the scheme specifies that a third directory is to be searched before the authentication process is terminated.

Searching Different Branches of the Same Directory: You can use chained authentication to search different branches of the same directory for user profile information. An organization may store some user profiles in one branch, some in another, and some in yet another. The third branch of the directory may contain legacy data. The organization may search the third branch for a user profile only if the information for the user cannot be found in the other two branches. For this purpose, the organization can configure an authentication scheme whose steps contain plug-ins to begin from the first search base, map the user’s credentials to a user profile, and, if it is found, process the credentials, then terminate the search. If the user profile is not found in the first branch, the scheme’s steps can direct the search to the next search base, and so on, until the user profile is found, or not.

Authentication Schemes

An authentication scheme specifies how authentication is to be performed for users requesting access to a resource protected by the authentication rule that contains the scheme. A simple authentication scheme can contain a single step. For chained authentication, an authentication scheme contains multiple steps linked together to produce different behaviors depending on certain conditions.

Authentication schemes include four main components:

- General Information
- Plug-Ins
- Steps
- Authentication Flows
- Default Authentication Schemes

General Information

To describe an authentication scheme, you configure its general information. This information includes data such as the method to be used to challenge the user for credentials authenticating his or her identity and the security level the scheme provides. For details, see “Defining and Managing Authentication Schemes” on page 5-4.

Plug-Ins

The plug-ins you add to an authentication scheme are fundamental to it. You can use plug-ins provided by the Access System and custom plug-ins. Only the plug-ins you
add to a scheme can be used for any of its steps. For details, see "Plug-Ins for Authentication" on page 5-17.

Steps

An authentication scheme can include one or more steps, each of which must include at least one plug-in. A step provides a way to create a discrete group of plug-ins executed in order of their position in the step. To connect the steps of a chained authentication scheme, you specify the step to be executed next, depending on the outcome of the present step. A different step may be executed next if the present step fails or if it succeeds. You can repeat a step in an authentication scheme. You can stop the authentication process after a step. For details, see "About Authentication Steps" on page 5-32.

Authentication Flows

Authentication flows are the possible execution paths through the steps of an authentication scheme. For a single-step scheme, the authentication flow consists of execution of the plug-ins of the step. For details, see “About Authentication Flows” on page 5-40.

Default Authentication Schemes

During Policy Manager setup, the following authentication schemes are configured automatically:

- **Oracle Access and Identity**: Used to protect Oracle Access Manager-related resources (URLs) for most directory types.
- **Oracle Access and Identity for AD Forest**: This is only set up if you installed the Oracle Access Manager system in an Active Directory configuration; used to protect Oracle Access Manager-related resources (URLs) for Active Directory.
- **Anonymous**: Used to unprotect specific Oracle Access Manager URLs. The Anonymous authentication method allows users to access Oracle Access Manager-specific URLs that you do not want to protect with the Access System, for example, Web pages for self registration and lost password management.

During setup you may also have configured two authentication schemes based on configuration information in your user directory:

- **Basic Over LDAP**: This built-in Web server challenge mechanism requires the user to enter their login ID and password.

 The credentials supplied are compared to the user’s profile in the LDAP directory server.
- **Client Certificate**: This is a certificate-based user identification method.

 To use this method, a certificate must be installed on your browser and the Web server must be SSL-enabled.

Defining and Managing Authentication Schemes

Every authentication scheme must contain a challenge method and a way to map the credentials provided by the user to the corresponding user profile stored in the directory. Creating an authentication scheme includes defining how the scheme challenges the user for credentials, maps the information, verifies it, and so forth. For
example, a scheme's challenge method may require users to provide passwords or it
may require users to provide certificates attesting to their identity.

An authentication scheme can also contain plug-ins that do additional processing,
such as search multiple directories based on conditions and perform tasks based on
the outcome of other processes. After you create an authentication scheme, you can
add plug-ins to the scheme and then configure the scheme's steps and their execution
order.

Only Master Access Administrators can create authentication schemes. See
"Delegating Policy Domain Administration" on page 4-43.

Task overview: Defining and managing authentication schemes

1. Review a list of existing authentication schemes to ensure that the one you want to
create is not already defined. See "Listing Authentication Schemes" on page 5-6.

2. The following is a summary of tasks for defining a new authentication scheme:
 a. Provide general information about the scheme to define it, which includes
 specifying the scheme's challenge method (General page). See "Defining and
 Managing Authentication Schemes" on page 5-4.
 b. Add to the scheme the plug-ins and their parameters to be used for any of the
 scheme's steps (Plugin page). See "Adding and Managing Plug-Ins" on
 page 5-27.
 Among the plug-ins you add are ones to perform required tasks—such as
 mapping a user's credentials to a user profile—and optional ones to perform
 tasks specific to your environment. You can select from among the plug-ins
 provided by the Access System and any custom ones you have created.
 c. Create one or more steps for the scheme, and name each step (Steps page). See
 "Configuring and Managing Steps" on page 5-36.
 d. Add plug-ins to the named step (Steps page).
 You add plug-ins to a named step when you create the step. You select
 plug-ins for a step from among those you added to the scheme.
 e. Define the authentication flows—the flows of control through the scheme's
 steps (Authentication Flows page). See "About Authentication Flows" on
 page 5-40.
 f. Test the authentication flow and verify it to ensure it does not contain any
 loops called cycles, which could cause endless, repeated execution of the same
 plug-ins (Authentication Flows page).
 g. If an authentication flow contains cycles, correct the flow (Authentication
 Flow page).

3. Enable or disable the scheme, as described in "Enabling and Disabling
 Authentication Schemes" on page 5-14.

4. Modify the scheme as needed. See "Modifying an Authentication Scheme" on
 page 5-15.

5. View the scheme, as described in "Viewing an Authentication Scheme
 Configuration" on page 5-16.

6. Remove obsolete authentication schemes. See "Deleting a Authentication Scheme"
on page 5-16.
7. Set up a scheme when using multiple searchbases (also known as disjoint domains or realms). See "Configuring an Authentication Scheme when Using Multiple Searchbases" on page 5-13.

The rest of this section discusses the following topics:

- Listing Authentication Schemes
- Defining a New Authentication Scheme
- Modifying an Authentication Scheme
- Viewing an Authentication Scheme Configuration
- Deleting a Authentication Scheme
- Configuring an Authentication Scheme when Using Multiple Searchbases
- Enabling and Disabling Authentication Schemes
- Modifying an Authentication Scheme
- Viewing an Authentication Scheme Configuration
- Deleting a Authentication Scheme
- Securing the ObSSOCookie in an Authentication Scheme
- Configuring an Authentication Scheme That Persists Over Multiple Sessions

Listing Authentication Schemes

Before you create an authentication scheme, list the existing ones to ensure that the one you want to create is not already defined. When you list authentication schemes, the list shows any new authentication schemes and any authentication schemes created for versions of Oracle Access Manager prior to version 6.5. Pre-existing schemes are converted to authentication schemes containing a single default step.

Note: Once you modify a pre-existing scheme, it cannot be used for systems prior to version 6.5.

To view a list of authentication schemes

- From the Access System Console, click Access System Configuration, then click Authentication Management.
- View the Authentication Management: List All Authentication Schemes page that appears.
 This page displays a message stating there are no authentication schemes configured, if that is the case.

Defining a New Authentication Scheme

An authentication scheme is defined and identified by information you specify using the General tab’s Define an Authentication Scheme page. Before you define an authentication scheme, you need to determine the following:

- A name for the scheme and a brief description of what it does.

An authentication scheme must have a name that is unique among all authentication schemes you create. Delegated Access Administrators who create authentication rules containing the scheme, will select a scheme from among
existing schemes. Providing a brief description of each scheme makes it easier for
them to do so.

- The security level of the authentication scheme.

 The security level of the scheme reflects the kind of challenge method and degree
 of security used to protect transport of credentials from the user. The security level
 is expressed as an integer.

 The security level of a scheme also affects the single sign-on user capability. After
 an end user is authenticated for a resource at a specified level, the user is
 automatically authenticated for other resources within the same policy domain or
 in different policy domains, if the resources have the same or a lower security level
 as the original resource. For details about how to change the level, see "Changing
 the Security Level of an Authentication Scheme" on page 5-19.

- The type of challenge and its parameters to be used to obtain the user’s credentials

 The challenge method specifies how authentication is to be performed and the
 information required to authenticate the user. Each authentication scheme can
 have only one challenge method. Authentication is successful if the user
 credentials obtained in response to a challenge match only one DN in the
 directory—not more than one or none.

 Usually a challenge parameter provides WebGate with additional information to
 perform an authentication, often used to prompt the user for information.
 Challenge parameters are entered in name:value format.

 Whether users must be authenticated using a server enabled for Secure Sockets
 Layer (SSL).

 For information about single sign-on, see Chapter 7, "Configuring Single Sign-On" on page 7-1.

- The URL of a server specified as the Challenge Redirect, if you want user requests to be redirected to another server for processing.

 Authentication schemes may require redirection of the request to another URL to
 properly carry out the authentication. For example, redirection is used when an
 authentication request for a resource is made over HTTP but the authentication
 scheme requires the authentication to be made over HTTPS (secure HTTP).
 WebGate sends the redirect to the user’s browser telling it to request a URL
 defined by the authentication scheme. After authentication is completed, WebGate
 redirects the browser back to the original requested resource.

 Also, redirection is required to perform multi-domain single sign-on (SSO). For
 information describing how challenge redirects are used for multi-domain single
 sign-on, see "Multi-Domain Single Sign-On" on page 7-8.

- Whether the scheme should be enabled.

 This page includes a radio button that you can set to enable or an authentication
 scheme. For details about enabling and disabling a scheme, see "Enabling and
 Disabling Authentication Schemes" on page 5-14.

- Whether the Access Server’s cache should be updated automatically with new
 information and changes you make to the scheme

 This page includes a checkbox that you can select to specify that the cache should
 be updated.
To create an authentication scheme

1. From the landing page from the Access System, click the Access System Console link.

 If you are working with the Policy Manager, click the Access System Console link at the top of the page.

2. From the Access System Console, click the Access System Configuration tab, then click the Authentication Management link in the left navigation pane.

3. On the List All Authentication Schemes page, click Add.
 The Define a new authentication scheme page appears with the General tab selected, as illustrated in the following screen shot.

4. In the Name field, specify a name for the authentication scheme.
 Each authentication scheme must have a unique name.

5. In the Description field, provide a brief description of the scheme.
 For instance, you might explain the purpose of the scheme and its behavior.

6. In the Level field, enter an integer corresponding to the level of security of the scheme.

7. In the Challenge Method field, click the radio button for the authentication scheme challenge method you want to use (each authentication scheme can have only one challenge method see "About Challenge Methods" on page 5-10:
 - None
 - Basic
 - X.509
 - Form
 - Ext

8. If you selected Form, Basic, or Ext for the challenge method, specify a Challenge Parameter.
 - For the basic Challenge Method, type a short text string to be used as a hint to help end users remember their user names and passwords for the requested resource.
Defining and Managing Authentication Schemes

Here is an example of the text string for an LDAP directory:

realm: LDAP username + password

- If you selected the Form challenge method, you are required to provide the following parameters in the Challenge Parameter fields.

<table>
<thead>
<tr>
<th>Challenge Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form:</td>
<td>Indicates where the HTML form is located relative to the host's document directory. For example, form:/login.html.</td>
</tr>
<tr>
<td>creds:</td>
<td>Lists all fields used for login in the HTML form. The parameter creds is a space-separated list. For example: creds: login password. Note: You can specify the creds parameter for the other types of challenge method.</td>
</tr>
<tr>
<td>action:</td>
<td>The URL that the HTML form is posting to.</td>
</tr>
<tr>
<td>passthrough:</td>
<td>This parameter value determines whether the WebGate redirects the browser back to the original requested resource or passes the login credentials on to another program. The Access System assumes that the URL given for the form in the authentication scheme is on the same machine as WebGate. Possible values are yes or no: Accept the default value of no if you want WebGate to redirect the browser back to the original requester resource. Specify yes if you want to pass the login credentials through to a post-processing program. Note: The passthrough parameter is optional.</td>
</tr>
</tbody>
</table>

9. Determine whether you want the end user authenticated through an SSL-enabled server.

If you click Yes, the request is routed to the HTTPS server you specify in the Challenge Redirect field.

10. In the Challenge Redirect field, enter the URL of another server to which you want to redirect this request if authentication does not take place on the original server.

Use the host URL of the designated primary authentication server. For example:

https://www.yourcompany.com

11. Select the radio button to enable or disable the authentication scheme.

12. Click Save (or Cancel):

- If you click Save, the Details for an Authentication Scheme display page appears. This page displays the information you entered for the new authentication scheme.

- If you click Cancel, the configuration is not saved and the page listing all authentication schemes is displayed again.
About Challenge Methods

You must include a challenge method in every authentication scheme you define. For your authentication schemes, you can use a predefined challenge method, provided by the Access System, or a custom one.

The Access System supports the following five challenge methods:

- **Anonymous**: Users are not prompted to provide any credential information. This method allows access to Identity System-specific resources (URLs) that you do not want to protect with the Access System, for example, Self Registration.

- **Basic**: Users must enter a user name and password in a window supplied by the Web server. This method can be redirected to SSL. See "Basic and Client Certificates" on page 5-10 for details.

- **Client Cert (X509Cert)**: X.509 digital certificates over SSL. A user’s browser must supply a certificate. See "Basic and Client Certificates" on page 5-10 for details.

- **Form**: This method is similar to the basic challenge method, but users enter information in the custom HTML form. You can choose the information users must provide in the form that you create. For details about form-based authentication for redirecting users to another site, see "Form-Based Authentication" on page A-1.

- **Ext**: An external challenge method (outside Oracle Access Manager) is used. Enables you to use your own authentication challenge method.

If you use Ext, you must provide the challenge parameter: creds. This parameter is a space-separated list of server variables set by the external challenge method. See the Oracle Access Manager Customization Guide for more information.

Basic and Client Certificates

Oracle Access Manager supports client certificate authentication using public key encryption cryptography and X.509 certificates. The client certificate challenge method uses the Secure Sockets Layer version 3 (SSLv3) certificate authentication protocol built into browsers and Web servers. Authenticating users with a client certificate requires the client to establish an SSL connection with a Web server that has been configured to process client certificates.

For both Basic and X.509, you can configure an AccessGate to handle unauthenticated requests received over a non-SSL connection.

Note: Basic authentication fails with non-ASCII login credentials. Non-ASCII user credentials are supported in only form-based authentication, as described in "Form-Based Authentication" on page A-1.

For the client certificate challenge method, you configure the AccessGate to redirect the user’s browser to another server to establish an SSL connection, as mentioned previously. After the AccessGate authenticates the certificate, it redirects the user’s browser back to the original URL.

Schemes Configured During Installation

If the Master Administrator selected a challenge method during installation of the Access System, the Access System configures authentication schemes automatically. The following authentication schemes provided by the Access System include a single step.
Defining and Managing Authentication Schemes

Configuring User Authentication

Basic: The user must type the user name and password in a window supplied by the server.

The user name and password are verified against the user’s User Profile in the LDAP directory.

Note: If you are using the Access System-provided schemes, you must be sure the obMappingFilter of the plug-in parameter is set correctly for your directory and environment. For details, see Table 5–2.

Client Certificate: The user must supply a digital certificate to the policy domain to complete authentication.

Oracle Access Manager supports X.509 certificates. The user’s organization can determine how to obtain a certificate.

Anonymous: This method is used to unprotect specific Identity System URLs.

Users are not prompted to provide any credential information. This method allows access to Identity System-specific resources (URLs) that you do not want to protect with the Access System, for example, Self Registration and Lost Password Management.

This authentication scheme maps the credential_mapping to Anonymous User.

Oracle Access and Identity: Protects Oracle Access Manager-related resources (URLs).

When configuring challenge parameters for this type of scheme, you can only use ASCII characters.

Oracle Access and Identity for AD Forest—Protects Oracle Access Manager-related resources (URLs) for AD Forest.

This authentication scheme is only present if you configured your system to work with Active Directory.

See the Oracle Access Manager Installation Guide for information about configuration of these schemes during the installation process.

Modifying an Authentication Scheme

You can modify the content of an existing authentication scheme. Also, as you create an authentication scheme, you can modify any part of it.

In pre-10.4.1 versions of Oracle Access Manager, before you modified a scheme, you needed to ensure that it was not included in the authentication rules of any active policy domains, and you needed to disable the scheme. These actions are now unnecessary.

Existing authentication schemes are compatible with prior releases of Oracle Access Manager. However, if you modify an older authentication scheme, it will run on version 6.5 and later Access Servers but not on earlier versions of the Access Server.

The following procedure describes how to modify an existing scheme.

To modify the contents of an authentication scheme

1. Ensure that the scheme is not included in the authentication rules of any active policy domains.
See "Enabling and Disabling Authentication Schemes" on page 5-14 for details.

2. Go to the landing page for the Access System and click the Access System Console link.
 If you are working with the Policy Manager, click the link for the Access System Console at the top of the page.

3. From the Access System Console, click the Access System Configuration tab.

4. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.

5. Click the name of the authentication scheme you want to modify.
 The Details for Authentication Scheme page appears. From this page, you can select other tabs, such as Plugins, Steps, Authentication Flow.

6. Click Modify.
 The Modifying Authentication Scheme page appears, as illustrated in the following screen shot. You can modify the scheme's general information from this page.

If you are modifying the Oracle Access and Identity authentication scheme, you must enter ASCII characters in the Challenge Parameter field.

7. To modify other parts of the scheme
 ■ Select the tab for that part.
 ■ Click Modify on the page which appears.
 ■ Follow the configuration process for that page.

8. Click Save.

9. If needed, enable the scheme.
 Authentication schemes must be enabled to be available for use in a rule. If a disabled scheme is used in action domains or policies, the resource is not protected.
Viewing an Authentication Scheme Configuration

After you create authentication schemes, you can view their contents.

To view the configuration for an authentication scheme
1. From the landing page for the Access System, click the Access System Console link.
 If you are working with the Policy Manager, click the Access System Console link at the top of the page.
2. From the Access System Console, click the Access System Configuration tab.
3. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
4. Click the name of the authentication scheme you want to see.
 The Details for an Authentication Scheme page appears.

Deleting a Authentication Scheme

An authentication scheme cannot be deleted if it is in use by a policy.

To delete an authentication scheme
1. Launch the Access System, select Access System Console, then Access System Configuration.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Select the check box for the authentication scheme that you want to delete.
 To delete more than one scheme, select the check box for each scheme.
4. Click Delete.

Configuring an Authentication Scheme when Using Multiple Searchbases

If you have multiple searchbases in your directory—also called disjoint domains or multiple realms, depending on your directory type—you need to configure an authentication scheme that enables searches for users with identical user IDs who reside in the separate searchbases (the disjoint domains).

For additional information on multiple directory searchbases (or disjoint domains, or realms), see the Oracle Access Manager Identity and Common Administration Guide.

To configure an authentication scheme for multiple searchbases (also known as disjoint domains or realms)
1. On Active Directory, add the plug-in for Oracle Access and Identity AD Forest to your authentication scheme.
 See “Adding a Plug-In to an Authentication Scheme” on page 5-28 for details.
 For other platforms, create a custom authentication scheme similar to the following:

```plaintext
obMappingBase="%domain%", obMappingFilter="(& (& (objectclass=objectclassname)(loginattribute=%userid%))&&! (obuseraccountcontrol=""))(obuseraccountcontrol=ACTIVATED))", obdomain="domain"
```
where \textit{objectclassname} is the name of the Person object class, for example gensiteorgperson and \textit{loginattribute} is the name of the login attribute for the Person object class, for example, genuserid. The \%domain\% and \%userid\% elements extract the user’s domain and user ID.

For example:

\begin{verbatim}
credential_mapping
obMappingBase="%domain%",obMappingFilter="(&(&
(objectclass=gensiteorgperson)(genuserid=%userid%))(|(!
(obuseraccountcontrol=*)))(obuseraccountcontrol=ACTIVATED)))",obdomain="domain"
\end{verbatim}

2. Modify this plug-in:
 - Change the object class to your user object class.
 - Change the genuserid to your login attribute configured on your user object class.

3. In the authentication action that you define upon successful authentication using this scheme, you need to set the following values:
 - \textbf{Type:} \texttt{HEADERVAR}
 - \textbf{Name:} HTTP_OBLIX_UID
 - \textbf{Return Attribute:} obuniqueid

 See "Setting Authentication Actions" on page 5-56 for details.

4. In addition, you need to make the following configuration file changes:
 - Change the value of \texttt{whichAttrIsLogin} to \texttt{ObUniqueID} in:
 \texttt{PolicyManager_install_dir/access/oblix/apps/common/bin/globalparams.xml}
 - Change the value of \texttt{whichAttrIsLogin} to \texttt{ObUniqueID}.

5. Make the same change in the following file:
 \texttt{IdentityServer_install_dir/identity/oblix/apps/common/bin/globalparams.xml}

\textbf{Enabling and Disabling Authentication Schemes}

The Define an Authentication Scheme page of the General tab includes a radio button which you can set to enable or disable an authentication scheme.

When you create an authentication scheme, the scheme is disabled until you enable it. It is good practice to enable an authentication scheme only after you complete its configuration.

Before you disable a scheme, determine if the scheme is used in authentication rules of any active policy domains. If a scheme is disabled:
Defining and Managing Authentication Schemes

- It is not available for use in authentication rules.
- Resources previously protected by the scheme are no longer available to users requesting access to them.

The following error message is reported when an attempt is made to access resources protected by an authentication rule containing a disabled authentication scheme:

```
The authentication scheme SchemeID is invalid or has been disabled
```

After you modify an authentication scheme and enable the scheme, Delegated Access Administrators can use it again in authentication rules for their policy domains or policies.

To enable or disable an authentication scheme

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.

 The Authentication Management: List All Authentication Schemes page appears.
3. In the List All Authentication Schemes page, click the scheme you want to enable or disable.

 The Details for Authentication Scheme page appears.
4. Click Modify.

 The Modifying Authentication Scheme page appears, as follows:

```
5. Select the appropriate radio button to enable or disable the authentication scheme.
6. Click Save.
```

Modifying an Authentication Scheme

You can modify the content of an existing authentication scheme.

To modify a new authentication scheme as you define it, select the tab and modify the information on its pages.

Authentication schemes must be enabled to be available for use in a rule. If a disabled scheme is used in action domains or policies, the resource is not protected.
To modify the content of an authentication scheme
1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme you want to modify.
 The Details for an Authentication Scheme page appears. From this page, you can select other tabs, such as Plugins, Steps, Authentication Flow.
4. Click Modify.
 The Modifying Authentication Scheme page appears. You can modify the scheme’s general information from this page.
 To modify other parts of the scheme:
 - Select the tab for that part.
 - Click Modify on the page which appears.
 - Follow the configuration process for that page.
5. Click Save.

Viewing an Authentication Scheme Configuration
After you create authentication schemes, you can view their contents.

To view the configuration for an authentication scheme
1. Launch the Access System, select Access System Console, then Access System Configuration.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme you want to see.
 The Details for an Authentication Scheme page appears.

Deleting a Authentication Scheme
An authentication scheme cannot be deleted if it is being used by a policy. Remove it from the policy before deleting it.

To delete an authentication scheme
1. Launch the Access System, select Access System Console, then Access System Configuration.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Select the check box for the authentication scheme that you want to delete.
To delete more than one scheme, select the check box for each scheme.

4. Click Delete.

Securing the ObSSOCookie in an Authentication Scheme

The Access System implements single sign-on through an encrypted cookie called the ObSSOCookie. See "Configuring Single Sign-On" on page 7-1 for details.

You can specify a challenge parameter that ensures the ObSSOCookie is only sent over an SSL connection and prevents the cookie from being sent back to a non-secure Web server.

To secure the ObSSOCookie

1. Create an authentication scheme. See "Defining and Managing Authentication Schemes" on page 5-4 for details.

2. In the Challenge Parameter field, add another field and specify the following:

 ssoCookie:secure

 Note: The Challenge Parameter is case-sensitive. Be sure to enter an uppercase C in ssoCookie.

3. In the SSL Required field, click Yes to ensure the end user is authenticated through an SSL-enabled server.

Configuring an Authentication Scheme That Persists Over Multiple Sessions

You can configure an authentication scheme that allows the user to log in for a period of time rather than a single session. To do this, you adding the challenge parameter ssoCookie:max-age in the authentication scheme. This creates a persistent cookie in some browsers, rather than one that lasts for a single session. In version 10.1.4, the persistent cookie functionality works with the Mozilla browser.

To define a persistent cookie in the authentication scheme

1. Define an authentication scheme, as described in "Defining a New Authentication Scheme" on page 5-6.

2. In the challenge parameter for this scheme, add the following:

 ssoCookie:max-age=time-in seconds

 Where *time-in-seconds* represents the time interval when the cookie expires. For example, a setting of ssoCookie:max-age=2592000 sets the cookie to expire in 30 days (2592000 seconds).

Plug-Ins for Authentication

An authentication plug-in is an executable shared library which participates in the user authentication process. Plug-ins are the engines of an authentication scheme. They implement challenge methods, map user credentials to user profile entries in a directory, process user credentials, perform custom tasks related to the authentication process, and so on.
The steps of an authentication scheme include one or more plug-ins. Before you can add plug-ins to a step, you must add them to the authentication scheme. You must add to the authentication scheme all of the plug-ins to be used for any of its steps.

Authentication schemes contain the following two types of plug-ins:

- Access System-Provided Plug-Ins
- Custom plug-ins

The rest of this section discusses the following topics:

- About Access System-Provided Plug-Ins
- About Custom Plug-Ins
- Return Codes for Plug-Ins
- About Reuse of Plug-Ins
- Reusing Plug-Ins across Authentication Schemes
- Changing the Security Level of an Authentication Scheme
- Access System Plug-Ins for Authentication Challenge Methods
- Credential Mapping Plug-In
- Filtering Inactive Users
- Validate Password Plug-In
- Certificate Decode Plug-In
- Caching Validated Passwords to Increase Performance

About Access System-Provided Plug-Ins

The Access System provides plug-ins to implement the challenge methods it supports by default. These plug-ins include a credential mapping plug-in. Every authentication scheme must include a credential mapping plug-in that maps user credentials to a user profile in the directory. You can use the Access System-provided plug-in for this purpose, or you can replace it with a custom one that implements the same behavior. See "Access System Plug-Ins for Authentication Challenge Methods" on page 5-20 for details about these plug-ins and their parameters.

You include plug-ins in a step. If execution of a plug-in provided by the Access System fails, the step that contains the plug-in fails. For details about steps and plug-ins, see "About Authentication Steps" on page 5-32.

About Custom Plug-Ins

In addition to replacing Access System-provided plug-ins with custom ones, you can create custom plug-ins to serve other purposes related to your authentication process. If you use more than one directory to store user profile information, you can create custom plug-ins to be used to search each directory. Also, if you store user profile information for one department in one branch of a directory and user profile information for another department in another branch of the same directory, you may want to search the branches consecutively depending on certain conditions. You can create custom plug-ins for this purpose.
If execution of a custom plug-in fails, the outcome depends on the step to be executed next as determined by the authentication flow of the authentication scheme and the return code returned by the plug-in.

For information describing how to create plug-ins to be used for authentication, see the chapter on the authentication plug-in API in the *Oracle Access Manager Developer Guide*.

For information about authentication flows, see “About Authentication Flows” on page 5-40.

Return Codes for Plug-Ins

If you create a custom plug-in, the Access Server expects your custom plug-in to return one of the following four status codes:

- ObAnPluginStatusContinue
- ObAnPluginStatusAllowed
- ObAnPluginStatusDenied
- ObAnPluginStatusAbort

About Reuse of Plug-Ins

For details explaining what these return codes means and how the Access Server interprets them and responds to them, see the chapter on the authentication plug-in API in the *Oracle Access Manager Developer Guide*.

Reusing Plug-Ins across Authentication Schemes

When you add a plug-in to an authentication scheme, the Access Server transparently assigns that plug-in an identifier. The Access System manages these numbers internally. You cannot change them or delete them.

Because the Access System uses identifiers to keep track of plug-ins, the execution order of plug-ins is not dependent on their position exclusively, and a single plug-in can be reused in the following ways:

- It can be used in combination with other plug-ins to form a step.
- It can be used more than once within a step. A step can contain multiple instances of the plug-in with different parameters.
- It can be used for different steps of the same authentication scheme.

Reusing Plug-Ins across Authentication Schemes

You can use the plug-ins you create for any number of authentication schemes, but for each authentication scheme, you must rename the plug-in so that its name is unique across authentication schemes.

Changing the Security Level of an Authentication Scheme

You can write a custom plug-in to change the security level of an authentication scheme. In some cases, you may want to increase the security level of an authentication scheme depending on certain conditions. You may want the security level of an authentication scheme to depend on the application the user logged in from. For example, if Active Directory and a reverse proxy are among the sources your
users can log in from, you may want to set one authentication security level to be used for users who log in from Active Directory and another security level to be used for users who log in from the reverse proxy.

Your code could determine the source from which the user logged in, and it could set the authentication scheme security level accordingly. It could check the current value of the ObAuthentSchemeLevel variable maintained by the Access Server in the credential list for the scheme. Your plug-in could change the security level, setting the variable value to a security level that depends on the requirements you have established for login from the application. To set the security level, you modify the value of ObAuthentSchemeLevel variable. If you do not change this value, the Access Server uses the security level already set for the authentication scheme through the user interface.

You can use the following code in your plug-in to open the credentials list file, check the ObAuthentSchemeLevel variable value, and set it to the security level you want to use for an application.

```c
schemeLevel = pFnBlock->GetCredFn(pInfo->Creds, "ObAuthentSchemeLevel");
if (schemeLevel != NULL) {
    schemeLevelAsInt = atoi(schemeLevel);
    schemeLevelAsInt += 10
    iota(schemeLevelAsInt, buff, 10);
    pFnBlock->SetCredFn(pInfo->Creds, "ObAuthentSchemeLevel", buff);
}
```

Access System Plug-Ins for Authentication Challenge Methods

Table 5–1 shows the predefined challenge methods and the plug-ins that support them. For each challenge method that contains more than one plug-in, the order in which the plug-ins are executed is identified.

You can use these plug-ins in their defined order (as shown in the table) within one or more steps of your authentication scheme; you can use any of them with other plug-ins of your own that provide the required functionality of the plug-ins they replace; or you can provide all of your own custom plug-ins to implement the required ones for the authentication schemes.

<table>
<thead>
<tr>
<th>Challenge Method</th>
<th>Plug-Ins and Order of Execution</th>
</tr>
</thead>
<tbody>
<tr>
<td>None</td>
<td>credential_mapping</td>
</tr>
<tr>
<td>Basic</td>
<td>1. credential_mapping</td>
</tr>
<tr>
<td></td>
<td>2. validate_password</td>
</tr>
<tr>
<td>Client Certificate</td>
<td>1. cert_decode</td>
</tr>
<tr>
<td></td>
<td>2. credential_mapping</td>
</tr>
<tr>
<td></td>
<td>The following plug-in is optional:</td>
</tr>
<tr>
<td></td>
<td>3. selection_filter</td>
</tr>
<tr>
<td>Form</td>
<td>1. credential_mapping</td>
</tr>
<tr>
<td></td>
<td>2. validate_password</td>
</tr>
</tbody>
</table>
Here is a description of the plug-ins provided by the Access System in support of the challenge methods it defines.

- **credential_mapping**: This plug-in maps the user's userID to a valid distinguished name (DN) in the directory. You can configure the attribute to which the userID is mapped. The most common attribute it is mapped to is uid. However, it is possible for a customer to map the userID to a profile attribute other than uid by changing the obMappingFilter parameter.

 A credential mapping plug-in is required for every authentication scheme. You can use the credential_mapping plug-in provided by the Access System for an LDAP directory server for this purpose, or you can provide your own plug-in. See "Credential Mapping Plug-In" on page 5-21 for details.

- **validate_password**: This plug-in is used to validate the user's password against the LDAP data source. It addresses the Form and Basic challenge methods. See "Validate Password Plug-In" on page 5-23 for details.

- **selection_filter**: This plug-in further validates the authentication credentials with some criteria. It addresses credentials provided by the user and does not use backend data sources. It addresses all of the challenge methods.

- **cert_decode**: The plug-in validates the certificate and does not use a data source. It addresses the Client Certificate (Cert) challenge method. See "Certificate Decode Plug-In" on page 5-24 for details.

- **NT/Win2000**: This plug-in addresses Form and Basic challenge methods for Microsoft Windows 2000 systems. See "Windows NT/2000 Plug-In" on page 5-66 for details.

- **SecurID**: This plug-in addresses the Form challenge method for SecurID.

For each of the Access System-provided plug-ins described in this section, a table is provided which includes information about the plug-in, its parameters, and how it is used.

The following explanations apply to these tables:

1. Parameters for all plug-ins are case-sensitive. You must enter them exactly as they are shown in the tables.

2. Parameters not labeled as mandatory in the tables are optional.

Credential Mapping Plug-In

Your authentication scheme must provide the functionality implemented by the credential mapping plug-in. It must map the user's credentials to information in the LDAP directory server. If you do not use the Access System-provided credential_mapping plug-in, you must create a custom plug-in that performs the same task. Table 5-2 gives the parameters you use for the credential mapping plug-in.

There are two parameters important to credential mapping that you must support if you provide your own plug-ins. Both are required:

Note: Oracle recommends that all authentication schemes use the credential_mapping plug-in even if you select None as the challenge method. However, this is not a requirement. See "Credential Mapping Plug-In" on page 5-21 for required parameters.
Plug-Ins for Authentication

- obMappingBase: The search base against which the search for user credentials begins
- ObMappingFilter: The search criteria for the filter

Both parameters are used to map to the user’s credentials to a Distinguished Name (DN) in the directory.

Table 5–2 Credential Mapping Parameters

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>credential_mapping</td>
</tr>
<tr>
<td>Purpose</td>
<td>Maps user-provided information to a valid DN in the directory</td>
</tr>
<tr>
<td>Result</td>
<td>If one DN (not zero and not more than one) matches the specified criteria, authentication continues. The obMappingBase and obMappingFilter parameters are added to the list of credentials and the internal uid is set to the DN. The plug-in fails if zero or more than one DN is returned.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obMappingBase</td>
<td>Base DN in the LDAP search.</td>
</tr>
<tr>
<td>obMappingFilter</td>
<td>Filter in the LDAP search:</td>
</tr>
<tr>
<td></td>
<td>- This parameter is mandatory.</td>
</tr>
<tr>
<td></td>
<td>- The value specified for this parameter is used to filter for categories of end users.</td>
</tr>
<tr>
<td>obdomain</td>
<td>Used only to authenticate a user against an Active Directory Forest when the challenge method is basic.</td>
</tr>
<tr>
<td>EnableCredentialCache</td>
<td>Turns the credential mapping cache on or off in the credential_mapping plug-in. By default, the credential mapping cache is turned off. Oracle recommends that you accept the default for the credential mapping cache.</td>
</tr>
</tbody>
</table>

Filtering Inactive Users

You can add the obuseraccountcontrol parameter to the obMappingFilter parameter used for the credential mapping plug-in. This makes it possible to filter two categories of users:

Users who have been added to your directory server, but who have not been activated in the Identity System.

Users who have been deactivated from the Identity System, but who are still in your directory server.

Here is an example of an obuseraccountcontrol term to filter out the two categories of users:

```bash
(|(!{obuseraccountcontrol=*}))
( {obuseraccountcontrol=ACTIVATED})
```
If obuseraccountcontrol is ACTIVATED, or there is no value, then inactive users are filtered out. The obuseraccountcontrol parameter must be used with the obMappingFilter parameter. It cannot be specified without obMappingFilter.

Validate Password Plug-In

The validate_password plug-in validates the user's password against the specified directory server for the authentication scheme. For validate_password, the Access Server uses the same directory server against which it performed the credential_mapping plug-in with a successful outcome.

Here is an example of settings for the validate_password plug-in:

```plaintext
validate_password
obCredentialPassword="password", obAnonUser="cn=anonymous, o=Company, c=US"
```

Table 5–3 describes the validate password plug-in.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name</td>
<td>validate_password</td>
</tr>
<tr>
<td>Purpose</td>
<td>Validates the user-provided password against the user's password in the directory.</td>
</tr>
<tr>
<td>Result</td>
<td>If the user-entered password matches the password in that user's directory entry, authentication continues. If not, the plug-in fails.</td>
</tr>
</tbody>
</table>

Table 5–4 describes the parameters for the Validate Password plug-in.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>obCredentialPassword</td>
<td>Specifies the name of the password field.</td>
</tr>
<tr>
<td></td>
<td>This parameter is mandatory, and it must be listed first.</td>
</tr>
<tr>
<td>obAnonUser</td>
<td>Specifies a DN that is authenticated with any password.</td>
</tr>
<tr>
<td></td>
<td>This DN must map to a user profile, preferably with restricted access.</td>
</tr>
<tr>
<td></td>
<td>There may be multiple obAnonUser parameters for a single plug-in.</td>
</tr>
<tr>
<td></td>
<td>Examples: guest, anonymous.</td>
</tr>
<tr>
<td>obCredValidationByAs</td>
<td>When set to true, the Access Server validates passwords using its cache. A user's initial attempt is validated by the directory server.</td>
</tr>
<tr>
<td></td>
<td>The Access Server caches an MD5 hash of the password and checks the password when subsequent requests are made. If the given and cached password match, the password is considered valid.</td>
</tr>
<tr>
<td>obPwdHashTTL</td>
<td>This setting controls the interval during which the Access Server validates passwords by comparing them with a cached password. After the interval, the Access Server returns to the directory server to validate each password.</td>
</tr>
<tr>
<td></td>
<td>The default value is 1800 seconds (30 minutes).</td>
</tr>
</tbody>
</table>
Certificate Decode Plug-In

The certificate decode plug-in extracts the components of the certificate subject's and issuer's Distinguished Name (DN). For each component, the plug-in inserts a credential with a certSubject or certIssuer prefix. For instance, if your certificates have a subject name such as givenName=somename, the plug-in adds the credential certSubject.givenName=somename to the credential list.

Table 5–5 describes the certificate decode plug-in.

<table>
<thead>
<tr>
<th>Name</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>cert_decode</td>
<td>Decodes the certificate and extracts the elements of the certificate's subject and issuer DN. This plug-in can be used with the X.509 Cert challenge method.</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Result</td>
<td>If the decoding is successful, the elements of the certificate's subject and issuer DN are added to the list of credentials. If not, authentication fails.</td>
</tr>
<tr>
<td>Parameters</td>
<td>None</td>
</tr>
</tbody>
</table>

If your certificate is stored in the browser, you can view the certificate details.

The following table lists the OIDs of the attributes that are supported by the Access Server with the corresponding suffix used to retrieve the attribute.

<table>
<thead>
<tr>
<th>OID</th>
<th>Component lookup name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4.5.3</td>
<td>CN</td>
</tr>
<tr>
<td>2.5.4.4</td>
<td>SN</td>
</tr>
<tr>
<td>2.5.4.5</td>
<td>Serial Number</td>
</tr>
<tr>
<td>2.5.4.6</td>
<td>C</td>
</tr>
<tr>
<td>2.5.4.7</td>
<td>L</td>
</tr>
<tr>
<td>2.5.4.8</td>
<td>ST</td>
</tr>
<tr>
<td>2.5.4.9</td>
<td>Street Address</td>
</tr>
<tr>
<td>2.5.4.10</td>
<td>O</td>
</tr>
<tr>
<td>2.5.4.11</td>
<td>OU</td>
</tr>
</tbody>
</table>
Table 5-6 (Cont.) OIDs Supported by the Access Server

<table>
<thead>
<tr>
<th>OID</th>
<th>Component lookup name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.4.12</td>
<td>Title</td>
</tr>
<tr>
<td>2.5.4.13</td>
<td>Description</td>
</tr>
<tr>
<td>2.5.4.14</td>
<td>Search Guide</td>
</tr>
<tr>
<td>2.5.4.15</td>
<td>Business Category</td>
</tr>
<tr>
<td>2.5.4.16</td>
<td>Postal Address</td>
</tr>
<tr>
<td>2.5.4.17</td>
<td>Postal Code</td>
</tr>
<tr>
<td>2.5.4.18</td>
<td>Post Office Box</td>
</tr>
<tr>
<td>2.5.4.19</td>
<td>Physical Delivery Office Name</td>
</tr>
<tr>
<td>2.5.4.20</td>
<td>Telephone Number</td>
</tr>
<tr>
<td>2.5.4.21</td>
<td>Telex Number</td>
</tr>
<tr>
<td>2.5.4.22</td>
<td>Telex Terminal Identifier</td>
</tr>
<tr>
<td>2.5.4.23</td>
<td>Facsimile Telephone Number</td>
</tr>
<tr>
<td>2.5.4.24</td>
<td>x121 Address</td>
</tr>
<tr>
<td>2.5.4.25</td>
<td>International ISDN Number</td>
</tr>
<tr>
<td>2.5.4.26</td>
<td>Registered Address</td>
</tr>
<tr>
<td>2.5.4.27</td>
<td>Destination Indicator</td>
</tr>
<tr>
<td>2.5.4.28</td>
<td>Preferred Delivery Method</td>
</tr>
<tr>
<td>2.5.4.29</td>
<td>Presentation Address</td>
</tr>
<tr>
<td>2.5.4.30</td>
<td>Supported Application Context</td>
</tr>
<tr>
<td>2.5.4.31</td>
<td>Member</td>
</tr>
<tr>
<td>2.5.4.32</td>
<td>Owner</td>
</tr>
<tr>
<td>2.5.4.33</td>
<td>Role Occupant</td>
</tr>
<tr>
<td>2.5.4.34</td>
<td>See Also</td>
</tr>
<tr>
<td>2.5.4.35</td>
<td>User Password</td>
</tr>
<tr>
<td>2.5.4.36</td>
<td>User Certificate</td>
</tr>
<tr>
<td>2.5.4.37</td>
<td>CA Certificate</td>
</tr>
<tr>
<td>2.5.4.38</td>
<td>Authority Revocation List</td>
</tr>
<tr>
<td>2.5.4.39</td>
<td>Certificate Revocation List</td>
</tr>
<tr>
<td>2.5.4.40</td>
<td>Cross Certificate Pair</td>
</tr>
<tr>
<td>2.5.4.41</td>
<td>Name</td>
</tr>
<tr>
<td>2.5.4.42</td>
<td>Given Name</td>
</tr>
<tr>
<td>2.5.4.43</td>
<td>Initials</td>
</tr>
<tr>
<td>2.5.4.44</td>
<td>Generation Qualifier</td>
</tr>
<tr>
<td>2.5.4.45</td>
<td>Unique Identifier</td>
</tr>
<tr>
<td>2.5.4.46</td>
<td>DN Qualifier</td>
</tr>
<tr>
<td>2.5.4.47</td>
<td>Enhanced Search Code</td>
</tr>
<tr>
<td>2.5.4.48</td>
<td>Protocol Information</td>
</tr>
</tbody>
</table>
Notice that most of the names are space separated. The following is an excerpt of code used to retrieve these values from an authentication plug-in:

```c
sn = pFnBlock->GetCredFn(pInfo->Creds, "cerSubject.Serial Number");
```

To view the certificate details
- 1. Open up an IE browser.
- 2. In Tools menu click Internet Options.
- 3. Click the Content Tab.
- 4. Click the Certificates button.
- 5. Double-click your certificate.
- 6. Click the Details tab.
- 7. Click the Subject line.

Caching Validated Passwords to Increase Performance

By default, the directory server validates user passwords. To increase performance, you can use the Access Server to validate passwords after the first time they are validated by the directory server.

For this purpose, you must:
- Include the validate_password plug-in in an authentication scheme
- Set the plug-in’s `obCredValidationByAS` parameter to true

When the `obCredValidationByAS` parameter is set to true, the Access Server caches an MD5 hash of a user’s password after it is validated by the directory server.

The next time the user attempts to access a resource within the same policy domain, the user’s password is compared with the cached password. If the two match, the given password is validated and the user is granted access to the requested resource.

Another parameter, `obPwdHashTTL`, controls the length of time the Access Server validates passwords. The default is 1800 seconds (30 minutes). You can change this value. When the specified length of time elapses, the password validation function returns to the directory server.
Here is an example of settings for these parameters that allow the Access Server to validate passwords for 100 seconds:

```
validate_password obCredentialPassword="password", obCredValidationByAS=true, obAnonUser='cn=anonymous, o=Company, c=US', obPwdHashTTL="100"
```

Adding and Managing Plug-Ins

The steps of an authentication scheme include one or more plug-ins. Before you can add plug-ins to a step, you must add to the authentication scheme all of the plug-ins to be used for any of its steps.

For information about defining plug-ins, see "Plug-Ins for Authentication" on page 5-17.

The first time you add plug-ins to an authentication scheme, the Access System creates a default step that includes all of them. If you are using an authentication scheme from a release prior to the version 6.5 Access System, the Access Server creates a default step for the authentication scheme containing all of its plug-ins.

The rest of this section discusses the following topics:

- Viewing Plug-Ins for an Authentication Scheme
- Adding a Plug-In to an Authentication Scheme
- Deleting Plug-Ins from an Authentication Scheme

Viewing Plug-Ins for an Authentication Scheme

You can list an authentication scheme's plug-ins at any time. For example, you may want to list the plug-ins to see ones already added to that scheme before you add others. The plug-ins list displays the names and parameters of the plug-ins already added to the authentication scheme. The list may include any Access System-provided and custom plug-ins previously added to the scheme.

Note: It is possible to have more than one credential_mapping plug-in in a scheme.

To view the list of plug-ins for an authentication scheme

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.

 The List All Authentication Schemes page appears.
3. In the List All Authentication Schemes page, click the scheme for which you want to display a list of plug-ins.
4. Select the Plugins tab.

 The plug-ins for an Authentication Scheme page appears, as illustrated in the following screen shot.
Adding a Plug-In to an Authentication Scheme

When you add a plug-in to an authentication scheme, you specify the name of the plug-in and its parameters. You can add the same plug-in more than once to an authentication scheme if each instance of the plug-in has different parameters. Each instance of a plug-in with unique parameters appears as a separate plug-in in the list.

Use the following task to add a plug-in to an authentication scheme, whether you are adding it to a new scheme or an existing one.

To add plug-ins to an authentication scheme

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Click the link for an authentication scheme.
 The Details for an Authentication Scheme page appears.
4. Click Modify.
 The Details for Authentication Scheme page appears.
5. Select the Plugins tab to display the plug-ins for this authentication scheme.

6. Click Modify

The Plugins for Authentication Scheme page appears, as illustrated in the following screen shot.

7. Click Add.

The Plugins for Authentication Scheme page appears, as illustrated in the following screen shot. This page includes a list and a text box for selecting and defining the plug-in to be added. You either select a Access System-provided plug-in or enter the name of the custom plug-in in the Plugin Name box.

A credential mapping plug-in is required for every authentication scheme. You can select the Access System-provided plug-in, or you can select a custom one that implements the same behavior. You either select a plug-in from the right-most Plugin Name text box or enter the name of a custom plug-in in the text box.

For details describing the credential_mapping plug-in, including requirements your custom plug-in must meet if you provide a replacement, see “Credential Mapping Plug-In” on page 5-21. Each parameter can have multiple values.

To add more plug-ins, click the Add button after you finish adding the previous one. Repeat this step for each plug-in that you want to add.

8. Click Save to save the plug-ins you configured (or click Cancel to exit the page without saving the plug-ins).

Note that the authentication schemes that use the plug-ins must be enabled to be available for use in a rule. If a disabled scheme is used in action domains or policies, the resource is not protected.

Deleting Plug-Ins from an Authentication Scheme

You can remove a plug-in from an authentication scheme, but you must first remove the plug-in from any steps of the scheme that include it.

To delete plug-ins from an authentication scheme
1. From the Access System Console, click the Access System Configuration tab.

2. Click the Authentication Management link in the left navigation pane.

The Authentication Management: List All Authentication Schemes page appears.
3. Select the name of the authentication scheme whose plug-in you want to delete. The Define an Authentication Scheme page appears.

4. Click Modify.

5. Select the Plugins tab to display the plug-ins for this authentication scheme.

6. Click Modify.

 The Plugins for Authentication Scheme page appears.

7. Select the plug-in that you want to delete by checking the box before the name of the plug-in. To delete more than one plug-in, select each of them.

8. Click the Delete button at the bottom of the list to delete the selected plug-ins from the authentication scheme.

9. Click Save.

About Chained Authentication Configuration

When a user requests access to a resource protected by an authentication rule, the rule’s authentication scheme determines the way in which authentication is to be performed. For chained authentication schemes, this process includes obtaining user credentials and mapping those credentials to a user profile. A chained authentication scheme can be designed to do this and more. For example, instead of limiting the search for a user profile to one directory, a chained authentication scheme can support attempts to map the credentials to a user profile in one directory, another directory, or yet another directory consecutively, until the information is found. It can also include additional processes indirectly related to the authentication process.

Process overview: A simple chained authentication scheme

Step 1: Plug-ins for Directory A map user credentials to one directory server and verify those credentials. If either plug-in of Directory A fails, the step specifies that Step 2 is to be executed.

Step 2: Plug-ins for Directory B map user credentials to another directory server and verify the credentials.

Step 3: If either plug-in of Directory B fails, this step specifies that the plug-ins for Issue Message and Quit are to be executed.

The rest of this section discusses the following topics:

- About Creating an Authentication Rule Using Chained Authentication
- About Authentication Steps
- About Single-Step Authentication Schemes
- Why Separate Plug-Ins Into Steps?

About Creating an Authentication Rule Using Chained Authentication

Here is an overview of the process you use to set up chained authentication for a policy domain. This process assumes that the policy domain exists and that the plug-ins to be used have already been defined.

You use the Access System Console for all of the following steps except the last one—creating an authentication rule. To create an authentication rule for a policy domain, you use the Policy Manager.
Task overview: Defining and using a chained authentication scheme

1. Define a chained authentication scheme, as described in "Defining and Managing Authentication Schemes" on page 5-4.

 Before you can create an authentication scheme containing one or more steps, you must first define the scheme. This process includes specifying the challenge method to be used.

2. Add to the chained authentication scheme all of the plug-ins to be used for its steps, as described in "Adding and Managing Plug-Ins" on page 5-27.

 For example:
 a. Select a plug-in to be added from among the ones the Access System provides by default, or specify existing custom plug-ins.
 b. Specify the parameters for each plug-in as you add it to the scheme. You can add more than one instance of a plug-in to a scheme, each with its own set of parameters.
 c. Repeat this process for as many plug-ins as you want to add to the scheme.

 Note: When you add plug-ins to an authentication scheme, the Policy Manager creates a default step and adds them to it.

3. Add the steps of the authentication scheme, as described in "Configuring and Managing Steps" on page 5-36.

 Before you create a step, consider its purpose within the authentication scheme and in relation to other steps of the scheme.

 Planning for the steps of a scheme and the scheme's flows are interdependent processes. You can use steps to isolate plug-ins into groups. You can then connect those groups of plug-ins—that is, connect their steps—in different ways, creating different authentication flows.

 Here is how to add a step to an authentication scheme:
 a. Give the step a meaningful name. Well-chosen names are helpful if you rearrange the steps of a scheme.
 b. Add plug-ins to the step.
 c. Arrange the plug-ins in the order in which you want them executed.

 Take into account how the result of a plug-in affects the result of a step for:
 - The Access System
 If any Access System-provided plug-in fails, the step fails.
 - Custom plug-ins
 For details, see "Return Codes for Plug-Ins" on page 5-19.

 Add as many steps as are necessary to complete the authentication process for your environment.

4. Create the authentication flows of the chained authentication scheme, as described in "About Authentication Flows" on page 5-40.

 Plan the authentication flows of a scheme. Before you configure a scheme's authentication flows, take the time to plot the actions you want to occur for each step.
Here is how to create a scheme's authentication flows:

a. Determine which step you want to be executed first. Mark it the initiating step.

b. Configure the links for the step:
 ■ Determine the next step to be executed if the plug-ins of a step cause the step to fail.
 ■ Determine the next step to be executed if the plug-ins of a step cause the step to succeed.

5. Verify the flows of the chained authentication scheme, as described in "About Authentication Flows" on page 5-40.
 Test the way you configured the flows—that is, the connections between the steps creating flows—to ensure that there are no cycles.

6. Correct the flows of the chained authentication scheme, if necessary, as described in "About Authentication Flows" on page 5-40.

7. Enable the authentication scheme after you are satisfied with its configuration, as described in "Enabling and Disabling Authentication Schemes" on page 5-14.

8. Create an authentication rule which includes the chained authentication scheme for the policy domain, as described in "Authentication Rules" on page 5-46.

9. Specify actions for the authentication rule to be taken if authentication fails or if it succeeds based on the rule. For details, see "Authentication Actions" on page 5-51.

About Authentication Steps

An authentication scheme includes one or more steps whose execution order is determined dynamically. Execution of the steps of an authentication scheme begins with the one chosen as the starting, or initiating, one. From the starting step and for each succeeding step, the step to be executed next is determined by the result of the preceding step.

Each step of an authentication scheme contains one or more plug-ins. Plug-ins within a step are executed in the order in which you position them.

At any time, you can change

■ The connections between the steps of an authentication scheme.
■ The order of a step’s plug-ins.

Within a step, if any Access System-provided plug-in fails, the Access Server treats the step as if it failed and stops execution of the step at that point.

For information describing how the Access Server responds to a step containing a custom plug-in based on the execution result of that plug-in, see "Return Codes for Plug-Ins" on page 5-19.

Figure 5–1 illustrates a prototype for a sample authentication scheme.
Table 5–7 summarizes the step components.

<table>
<thead>
<tr>
<th>Component</th>
<th>Summary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step Name</td>
<td>A step is a discrete entity. Each step must have a unique name.</td>
</tr>
<tr>
<td>Plug-Ins for a Step</td>
<td>A plug-in provides an authentication scheme's functionality. A step can contain one or more plug-ins, but it must contain at least one.</td>
</tr>
<tr>
<td></td>
<td>The parameters a plug-in can take are specified when the plug-in is added to the scheme, not when it is added to a step.</td>
</tr>
<tr>
<td>Number of Steps</td>
<td>An authentication scheme can contain any number of steps, but it must contain at least one.</td>
</tr>
<tr>
<td>Connections Between Steps</td>
<td>Steps are connected to form one or more flows of an authentication chain. Because steps are discrete, they can be combined in any order.</td>
</tr>
<tr>
<td></td>
<td>Connections between steps are established by defining possible authentication flows—or flows of execution—through the authentication chain. See "About Authentication Flows" on page 5-40 for details.</td>
</tr>
<tr>
<td>Execution of Steps</td>
<td>Steps are executed in the order in which they occur in a flow of the authentication chain.</td>
</tr>
<tr>
<td></td>
<td>The plug-ins of steps are executed in the order in which they are positioned in a step’s list of plug-ins. The order of plug-ins in a</td>
</tr>
<tr>
<td></td>
<td>list can be changed.</td>
</tr>
<tr>
<td></td>
<td>Execution of one step’s plug-ins is followed by execution of those of the next step in the authentication flow.</td>
</tr>
</tbody>
</table>

About Single-Step Authentication Schemes

Many authentication schemes are simple enough to require only a single step. In such a case, the step must contain all of the plug-ins required to transact the purpose of the
scheme. Because it is the only step in the authentication scheme, the authentication scheme’s flow consists of execution of the step’s plug-ins.

You can use the Policy Manager’s authentication feature to create a single step that provides all of the functionality you may require to obtain user credentials, map them to an entry in the directory server, authenticate the user, and so forth.

It is easy to create and manage an authentication scheme with a single step, and it makes good sense to include all plug-ins in a single step in many cases. For example, a single-step authentication scheme is useful if a group of plug-ins are meant to be executed consecutively and, in the event of failure, you do not care which plug-in causes the step to fail.

Why Separate Plug-Ins Into Steps?

You may want to separate plug-ins into steps because the plug-ins form a set meant to be executed together. Also, combining the plug-ins in a step enables you to use that step in a scheme more than once. You may want to configure it as the next step to be executed for one step if that step fails, and as the next step to be executed for another step if that step succeeds.

You may also find it necessary to separate plug-ins into discrete steps even if two plug-ins form a couple logically. For example, you may want to take this approach if you must know which of two plug-ins caused the authentication process to fail.

There are many cases for which you may want to separate closely related plug-ins into discrete steps. Use of the password management feature offers an example of one case. An organization uses password management to control user access. Based on the number of attempts specified in the password policy, it gives a user a certain number of opportunities to enter the correct password. If authentication fails, the administrator must know why. The administrator must be able to distinguish between the following two events:

- Whether authentication fails because there is no entry for the user in the directories checked.
- Whether authentication fails because the user entered the wrong password each time for the three allowed attempts.

For example, an organization uses two different parts of its directory to store user profile information for its human resources department and for its marketing department. The organization wants to be able to search across both branches of the directory for user profile information to authenticate users. The organization wants the search to begin with the search base for the human resources information and if the user profile information is not found there, continue with the search base for the marketing department.

- **Search Base A**
 - Includes entries for all human resources department members.
 - Examples:
 - cn=Maurice Breton
 - cn=Alice Smith
- **Search Base B**
 - Includes entries for all marketing department members.
 - Example:
The organization defines the following chained authentication steps:

- **Step 1:** Credential mapping
 - Success: Execute Step 2
 - Failure: Execute Step 3
- **Step 2:** Validate password
 - Success: Execute Step 4
 - Failure: Stop

The validate password plug-in gives the user three attempts to enter a valid password, which is based on a setting in the password policy, before it fails Step 2.

- **Step 3:** Custom plug-in to check Search Base B
 - Success: Execute Step 2.
 - Failure: Stop
- **Step 4:** Custom plug-in to do some additional processing
 - Success: Stop, return result.
 - Failure: Stop, return result

Sonal Kalra requests access to a resource protected by this authentication scheme. She enters her user name. Here is the process that occurs:

 - There is no entry.
 - Evaluation of Step 1: failure. On failure, go to Step 3.
2. The Access Server searches Search Base B for an entry for Sonal Kalra
 - An entry with `cn=Sonal Kalra` is found.
3. Sonal Kalra is prompted for her password
 - She enters the wrong password the first time. Step 2: validate password prompts her for her password three times before returning a failure.
 - At the second prompt, she enters the correct password.
4. Some additional processing is done, which completes successfully (Step 4: On success: Stop, return result).

If Sonal Kalra entered the wrong password for each of the three attempts, Step 2: validate password, would return a result of failure, and the authentication process would stop. The Delegated Access Administrator would know why the authentication process failed—not because no user entry was found for Sonal Kalra, but because she entered the wrong password three times.

About the Default Step

The first time you add plug-ins to an authentication scheme, the Policy Manager defines a default step that contains all of the plug-ins. You can modify the default step.
if you want to use it, or you can delete it after you add one or more additional steps to
the scheme. An authentication scheme must include at least one step.

Configuring and Managing Steps

After you define an authentication scheme and add plug-ins to it, you can configure its
steps. You can modify the steps of an authentication scheme at any time, but you must
first ensure that the scheme is not used by any active policy domains. You can add
plug-ins to a step or remove them from one, or you can delete the step.

The rest of this section discusses the following topics:

- Viewing the Steps of an Authentication Scheme
- Viewing the Configuration Details for a Step
- Adding a Step to an Authentication Scheme
- Modifying a Step
- Deleting a Step

Viewing the Steps of an Authentication Scheme

You can view a list of the currently configured steps of an authentication scheme.

To view the steps of an authentication scheme

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme whose steps you want to see on the
 Authentication Management: List All Authentication Schemes page.
 The Details for Authentication Scheme page appears. By default, the General page
 is displayed.
4. Select the Steps tab.
 The Steps for Authentication Scheme page appears, as illustrated in the following
 screen shot. This page displays the names of all the steps configured for the
 scheme. Each step's name is a link, which you can click to display details about the
 step.
If you are creating an authentication scheme and have not yet added any steps to it, or if the scheme contains only a single step, this page shows only a step called Default Step. See "About the Default Step" on page 5-35 for details.

Viewing the Configuration Details for a Step

You can view the details of the current configuration of a step for an authentication scheme any time after it is created.

To view the details for a step

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme containing the step whose configuration details you want to see.
 The Details for Authentication Scheme page appears. By default, the General page is displayed.
4. Select the Steps tab.
 The Steps for Authentication Scheme page appears. This page displays the names of all the steps configured for the scheme.
5. Click the name of the step whose configuration you want to see.
 The Steps for Authentication Scheme page appears again, as illustrated in the following screen shot, this time showing the details for the selected step.
Adding a Step to an Authentication Scheme

To add a step to a scheme, you name the step and add to it the plug-ins that provide the step’s functions. For steps with more than one plug-in, the order in which you position the plug-ins in the step determines their execution order. The highest order plug-in—the one at the top of the list—is executed first.

When you add a plug-in to a step, it is placed at the bottom of the list of active plug-ins. You can rearrange the order of plug-ins in a step.

To add a step to an authentication scheme
1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.

The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme on the Authentication Management: List All Authentication Schemes page.

The Details for Authentication Scheme page appears. By default, the General page is displayed.
4. Select the Steps tab.

The Steps for Authentication Scheme page appears.

 If you are creating an authentication scheme and have not yet added any steps to it, this page shows only a step called Default Step. See "About the Default Step" on page 5-35 for details.
5. Click Add.

The Modify an Authentication Step page appears, as illustrated in the following screen shot. Note that although this page is titled Modify, it is used to add a step as well as to modify the content of an existing one.
6. Enter a unique name for the step in the Step Name text box.

7. From the list of available plug-ins, select the plug-in to be added to the step and click Add.

 The name of the plug-in appears in the Active Plugins scroll box.

 Repeat this step for as many plug-ins as you want to include in the step.

8. To reposition plug-ins within the step, select the plug-in in the list of active plug-ins, and click the appropriate arrow key to move the plug-in up or down in the list.

9. Click Save.

Modifying a Step

You can modify existing authentication steps. For example, you may want to upgrade a step’s plug-ins, replacing one with another, or you may want to add new plug-ins to a step to extend or change its function. You may also want to remove plug-ins which are no longer used.

To add, remove, or re-order plug-ins in an existing step

1. From the Access System Console, click the Access System Configuration tab.

2. Click the Authentication Management link in the left navigation pane.

 The Authentication Management: List All Authentication Schemes page appears.

3. Click the name of the authentication scheme whose step you want to change.

 The Details for Authentication Scheme page for that scheme appears.

4. Select the Steps tab.

 The Steps for Authentication Scheme page appears.

5. Click the name of the step that you want to modify.

 The Steps for Authentication Scheme page appears, showing the plug-ins and parameters for the step.
Click Modify.
The Modify an Authentication Step page appears.

7. Change the plug-ins in the step in any of the following ways:
 - To add a plug-in to the Active Plugins list, select the plug-in from the Available Plugins list and click Add.
 - To remove a plug-in from the active list, select the plug-in from the Active Plugins list, and click Delete.
 - To change the order of plug-ins in the Active Plugins list, select the plug-in you want to move. Use the arrow keys to move the plug-in up or down in the list.

8. Click Save to save the step after you are satisfied with the changes.

Deleting a Step

You can delete one or more steps from a scheme. An authentication scheme must have at least one step.

To delete a step from an authentication scheme

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.

 The Authentication Management: List All Authentication Schemes page appears.
3. Click the name of the authentication scheme whose step you want to delete.

 The Details for an Authentication Scheme page for that scheme appears.
4. Select the Steps tab.

 The Steps for Authentication Scheme page appears.
5. Select the step that you want to delete.

 Select the check box for each step that you want to delete, if you want to delete more than one.
6. Click Delete.

About Authentication Flows

An authentication flow is a path of execution through steps of an authentication scheme, or, for single-step authentication schemes, through their plug-ins.
Either of the following kinds of authentication schemes has an authentication flow:

- **A single-step authentication scheme**

 The authentication flow of an authentication scheme containing a single step consists of the flow of execution through that step's plug-ins in the order in which they appear in the step. For a description of single-step schemes, see “About Single-Step Authentication Schemes” on page 5-33.

- **A chained authentication scheme**

 The authentication flows of a chained authentication scheme consist of the execution of the plug-ins of one step after another in a flow. A chained authentication scheme can have one flow or many flows. The execution order of the authentication scheme’s steps can vary to create different possible authentication flows, depending on the outcome of each step in a flow.

 For each step of an authentication scheme, you configure the next step to be executed based on the result of the current one. If the current step fails, the step you configured for that step’s failure result is executed next. If the current step succeeds, the step you configured for that step’s success result is executed next. The plug-ins of any of the steps of an authentication flow are executed in the order in which they appear in the step.

 You use the following means to configure the steps of an authentication scheme to produce various possible flows:

 - Mark a step as the initiating step of the chained authentication scheme.

 All possible flows of a chained authentication scheme begin with the same step. Each authentication scheme can have only one step designated as the initiating step.

 - Specify the next step to be executed if the present step fails or if it succeeds.

 This mechanism enables you to configure different flows of a chain, each of which is determined by the result of the current step.

 - Use the Stop terminator.

 Any step of a chain may be followed by the Stop terminator. You can specify that execution is to stop if a step fails or if it succeeds. For either case, you set the failure condition or the success condition of the step to Stop. You can terminate execution after a step absolutely by setting both conditions of the step’s result to Stop.

 You may want execution to terminate under more than one condition for the flows of a chained authentication scheme, depending on the possible flows. Stop indicates that a flow has ended and no other steps of the authentication chain are executed.

The rest of this section discusses the following topics:

- Authentication Flows Example
- Viewing the Flows of an Authentication Scheme
- Configuring and Modifying the Flows of an Authentication Chain
- Verifying and Correcting Cycles in an Authentication Flow
Authentication Flows Example

An administrator for a company wants to organize the plug-ins used for authentication into steps so that she can more easily control the order in which they are executed. The administrator wants the result of execution of one plug-in to determine the next plug-in to be executed. If the plug-ins were to be executed in order, it would not be necessary to separate them into steps. The company uses the four plug-ins identified in Table 5–8 for its authentication process.

<table>
<thead>
<tr>
<th>Table 5–8</th>
<th>Plug-Ins for Authentication Flow Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plug-In</td>
<td>Use</td>
</tr>
<tr>
<td>Plug-in 1:</td>
<td>Access System-provided credential mapping plug-in</td>
</tr>
<tr>
<td>credential_mapping</td>
<td></td>
</tr>
<tr>
<td>Plug-in 2:</td>
<td>Access System-provided password validation plug-in</td>
</tr>
<tr>
<td>validate_password</td>
<td></td>
</tr>
<tr>
<td>Plugin 3:</td>
<td>do_what_I_want: A</td>
</tr>
<tr>
<td>custom_pluginA</td>
<td></td>
</tr>
<tr>
<td>Plugin 4:</td>
<td>do_what_I_want: B</td>
</tr>
<tr>
<td>custom_pluginB</td>
<td></td>
</tr>
</tbody>
</table>

The administrator has determined that she wants to combine her authentication plug-ins into steps that allow her to define the following authentication flows:

- If plug-in 1 is successful (credentials mapped to user entry)
 - Execute plug-in 2 (validate the user’s password)
- If plug-ins 1 and 2 are successful (user’s credentials map and user’s password is valid)
 - Execute plug-in 4 (do_what_I_want:B)
- If plug-in 1 or 2 fails (either the user’s credentials cannot be mapped to an entry or the user’s password is invalid)
 - Execute plug-in 3 (do_what_I_want:A)
- If plug-in 3 succeeds (do_what_I_want: B),
 - Execute plug-in 4 (do_what_I_want:B)

The administrator creates the three steps identified in Table 5–9.

<table>
<thead>
<tr>
<th>Table 5–9</th>
<th>Steps for Authentication Flow Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step</td>
<td>Plug-Ins Used</td>
</tr>
<tr>
<td>Step 1</td>
<td>Plug-in 1 and Plug-in 2</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 2</td>
<td>Plug-in 3</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Step 3</td>
<td>Plug-in 4</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

She combines the plug-ins in Table 5–8 with the steps in Table 5–9 to create the desired authentication flows. Table 5–10 shows the steps of the authentication scheme and which step is executed next if the step succeeds or if it fails.
Table 5–10 Outcome of Steps for Authentication Flow Example

<table>
<thead>
<tr>
<th>Step</th>
<th>On success</th>
<th>On failure, executes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Step 1</td>
<td>Step 3</td>
<td>Step 2</td>
</tr>
<tr>
<td>Step 2</td>
<td>Step 3</td>
<td>Stop</td>
</tr>
<tr>
<td>Step 3</td>
<td>Stop</td>
<td>Stop</td>
</tr>
</tbody>
</table>

Flow A: on success, Step 3
Flow B: on success, Step 2
Flow C: on success, Step 3

Figure 5–2 Illustration of Authentication Flow in Table 5–10

Viewing the Flows of an Authentication Scheme

At any time after you configure the authentication flows for an authentication scheme, you can look at the configuration by selecting the Authentication Flow tab. The Flow of the Authentication Scheme page shows the current configuration.

After you add a step to an authentication scheme, by default the Policy Manager assigns the Stop terminator to the On Success Next Step and On Failure Next Step result conditions of each step. The Flow of the Authentication Scheme page shows this default configuration until you modify it.

To view the configuration of an authentication flow

1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Select the name of the authentication scheme whose authentication flows you want to view.
 The Details for Authentication Scheme page for the authentication scheme appears.
4. Select the Authentication Flow tab.
 The Flow of the Authentication Scheme page appears.
Configuring and Modifying the Flows of an Authentication Chain

After you add steps to an authentication scheme, you can configure the possible flows of execution through the steps. You use the Flow of the Authentication Scheme page to configure the On Success Next Step and On Failure Next Step result conditions for each step.

At any time, you can use the same page to modify the flows of the authentication scheme. You can change the links between steps in a chain to correct cycles or to redirect flows.

To configure the flows of an authentication scheme
1. From the Access System Console, click the Access System Configuration tab.
2. Click the Authentication Management link in the left navigation pane.
 The Authentication Management: List All Authentication Schemes page appears.
3. Select the name of the authentication scheme whose authentication flows you want to configure.
 The Details for Authentication Scheme page for the authentication scheme appears.
4. Select the Authentication Flow tab.
 The Flow of the Authentication Scheme page appears. For existing steps, this page shows the connections between steps of the chain. If there is only one step for the scheme, it appears here.
5. Click Modify.
 The Flow of the Authentication Scheme page with modifiable entries appears. The page shows the names of the scheme’s steps. For each step, the page includes lists from which to choose the next step to be executed if the current one succeeds or if it fails.
6. Choose the step to be used as the initiating step by selecting the radio button for the step in the Initiating Step column.
 Only one step can be configured as the Initiating step.
7. For each step in the Step Name column, complete the following:
 a. In the list under the On Success Next Step column, select the next step to be executed if the present one succeeds.
 b. In the list under the On Failure Next Step, select the next step to be executed if the present one fails.
 If you want execution to terminate after a step is completed, select the Stop terminator. You can use Stop for success of a step or for failure of a step.
 Both selection lists show the names of all steps configured for the chained authentication scheme.
8. After you are satisfied with the configuration, click Verify Flow to determine if it contains cycles.
 See “Verifying and Correcting Cycles in an Authentication Flow” on page 5-45 for details.
9. Click Save after you have determined that there are no cycles in the flows.
Verifying and Correcting Cycles in an Authentication Flow

Because the flows of an authentication chain can be complex, it is possible for a chain to include cycles.

After you define how the steps of a scheme are connected, you can click the Verify Flows button to check the configuration for cycles before you save it.

The Verify Flows button appears when you click the Authentication flow sub-tab, then click Modify, as illustrated in the following screen shot.

If the authentication flow’s configuration contains cycles, the Policy Manager identifies the offending flow on the All Flows in the Chained Authentication Scheme page. You cannot save the configuration until you correct the cycles. If you attempt to save an authentication flow’s configuration without having verified it first, the Policy Manager automatically checks the configuration to ensure that none of its lows contain cycles.

Although the Policy Manager verifies the authentication flows to check for cycles, it is good practice to plot the flows of a complex authentication scheme well before you configure them. To correct flows containing cycles after they are reported on the All Flows in the Chained Authentication Scheme page, you use the Flow of the Authentication Scheme page.

The All Flows in the Chained Authentication Scheme page shows all of the configured flows, depicting them in the following way:

1. Flows without cycles are shown in black.
2. Flows with cycles are shown in red.

To correct an authentication flow containing a cycle

1. From the Access System Console, click Access System Configuration tab, then click Authentication Management, in the left navigation pane.
2. Click the link for the multi-step authentication scheme.
3. Click the Authentication Flow sub-tab.
4. Click Modify.
5. Click Verify Flow.

6. If there is an error in the flow of the steps, the reported flow and its offending step in the flows display of the All Flows in the Chained Authentication Scheme page, as illustrated in the example of a flow with cycles in the following screen shot.

If the verification process reports more than one flow containing cycles, note and correct all of them.

7. Click Back on the All Flows in the Chained Authentication Scheme page, which reports the offending flow.

The Flow of the Authentication Scheme page appears.

8. Correct the problem within the flow that contains the cycle.

"Configuring and Modifying the Flows of an Authentication Chain" on page 5-44 describes the process to use to create authentication flows. Follow this process to modify the connections between the offending steps.

9. Click Verify Flow.

If the verification results show more flows with cycles, continue to correct the flow.

10. After all problems causing the cycle are resolved, click Save.

Authentication Rules

Each policy domain must include a single default authentication rule, and each policy in a domain can include an authentication rule specific to the policy. If a policy does not include an authentication rule, it inherits protection by the default authentication rule established for the entire policy domain. Figure 5–3 illustrates conceptually the set of default rules for a policy domain, among which is an authentication rule. In this example, no policies have been created yet for the policy domain.
An authentication rule includes an authentication scheme that specifies the kind of authentication required to verify a user's identity, the directory server to be checked for user information, and so on. See "Authentication Schemes" on page 5-3 for details.

Whenever a user requests access to a resource protected by an authentication rule, the user must authenticate using the challenge method specified by the rule's scheme.

Delegated Access Administrators can create authentication rules for the policy domains and their policies for which they have administrative rights.

The rest of this section discusses the following topics:
- Creating an Authentication Rule for a Policy Domain
- Modifying an Authentication Rule for a Policy Domain
- Deleting a Policy Domain's Authentication Rule
- Creating an Authentication Rule for a Policy
- Modifying an Authentication Rule for a Policy
- Deleting an Authentication Rule for a Policy

Creating an Authentication Rule for a Policy Domain

For each policy domain, you must define a single default authentication rule.

To create a default authentication rule for a policy domain
1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.
2. Click My Policy Domains in the left navigation pane.
 A list of policy domains appears.
3. Click the link for the policy domain that you want to view.
 The General page for the selected policy domain appears.
4. For the selected policy domain, select the Default Rules page.
 If there is an authentication rule already configured for the policy domain, the Authentication Rule page appears showing the definition of the rule.

There can be only one default authentication rule for a policy domain. If there is an existing default authentication rule, you must delete it before you can add a new
one. For details, see "Deleting a Policy Domain's Authentication Rule" on page 5-49.

5. Click the Add button on the Authentication Rule page.
 The General page for the Authentication Rule appears.

6. Enter a Name for the default authentication rule.

7. Enter a Description for the default authentication rule.

8. Select an authentication scheme.
 The list shows enabled authentication schemes created by the Master Access Administrator. To add new schemes, see "Defining and Managing Authentication Schemes" on page 5-4. Authentication schemes that are disabled do not appear in the list.

9. Click Save.

Modifying an Authentication Rule for a Policy Domain

You can modify the authentication rule for any policy domain for which you have administrative rights, including any policy domain that you have created.

To modify a policy domain's authentication rule

1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.

2. Click My Policy Domains in the left navigation pane.
 A list of policy domains appears.

3. Click the link for the policy domain that you want to view.
 The General page for the selected policy domain appears.

4. Click Default Rules.
 The General page for the Authentication Rule tab appears. It shows the current configuration for the rule.

5. Click Modify.
 The General page, whose fields you can modify, appears.

6. Change the Name, Description, and Authentication Rule as necessary.
7. Click Save to save your changes or click Cancel to exit the page without saving.

Deleting a Policy Domain’s Authentication Rule

Because a policy domain can have only one authentication rule, you must delete the existing rule before you can add a new one.

To delete a policy domain’s authentication rule
1. From the landing page for the Access System, select the Policy Manager link.

 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.
2. Click My Policy Domains in the left navigation pane.

 A list of policy domains appears.
3. Click the link for the policy domain that you want to view.

 The General page for the selected policy domain appears.
4. Click Default Roles

 The General page for the Authentication Rule tab appears showing the currently configured rule.
5. Click Delete.

 Answer Yes to the prompt, to confirm the deletion.

Creating an Authentication Rule for a Policy

For any policy domain, you can create special policies for groups of resources within the domain. All resources of a policy domain are protected by its default authentication rule unless the resource is covered by a policy containing a different authentication rule. You define an authentication rule for a policy just as you would for a policy domain, but you define the rule in association with the policy.

If an authentication rule exists for the policy and you want to replace it, you must delete the rule before you can create a new one. See "Deleting an Authentication Rule for a Policy" on page 5-51 for details.

To create an authentication rule for a policy
1. From the landing page for the Access System, select the Policy Manager link.

 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.
2. Click My Policy Domains in the left navigation pane.
3. Click the link for a policy domain.

 The General page for the selected policy domain appears.
4. Click the Policies tab.

 The Policies page appears listing all of the existing policies, if any.
5. Click the link for the Policy for which you want to add an authentication rule.

 The General page showing the configuration for the policy appears.
6. Click the Authentication Rule sub-tab for the policy.
7. Click Add.

The General page for defining an authentication rule appears.

8. Enter a Name for the default authentication rule.
9. Enter a Description for the default authentication rule.
10. Select an authentication scheme.

The list shows the authentication schemes created by the Master Access Administrator. To add new schemes, if required, see "Defining and Managing Authentication Schemes" on page 5-4.

11. Click Save.

Modifying an Authentication Rule for a Policy

You can modify the authentication rule for a policy within a policy domain for which you are granted administrative rights and for a policy within a policy domain that you have created.

To modify a policy's authentication rule

1. From the landing page for the Access System, select the Policy Manager link.

 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.

2. Click My Policy Domains in the left navigation pane.

3. Select the policy domain whose authentication rule you want to modify.

 The General page for the selected policy domain appears.

4. Select the Policies tab to display a page listing all existing policies.

5. From the list of policy names, select the Policy whose authentication rule you want to modify.

 The Policies General page appears showing the configuration for the policy.

6. Select the Authentication Rule tab.

 The Authentication Rule General page appears, listing the definition of the authentication rule, as illustrated in the following screen shot.
7. Click Modify.
 The Authentication Rule General page form appears enabling you to edit the information using text boxes and a list.

8. Modify the definition of the policy's authentication rule as necessary, changing its name, description, or the authentication scheme it includes.

9. Click Save.

Deleting an Authentication Rule for a Policy
You can delete the authentication rule for a policy within a policy domain if you are granted administrative rights, and for a policy within a policy domain that you have created.

To delete a policy's authentication rule
1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.

2. Click My Policy Domains in the left navigation pane.
 The General page for the selected policy domain appears.

3. For the selected policy domain, select the Policies tab.
 The Policies page appears listing all of the existing policies.

4. Select the Policy whose authentication rule you want to delete.
 The General page showing the configuration for the policy appears.

5. Select Authentication Rule.
 The General page showing the definition of the authentication rule appears.

6. Click Delete.
 Answer Yes to the confirmation prompt.

Authentication Actions
You can configure an authentication rule that returns actions to be taken depending on the outcome of the rule. You can also specify actions to be taken depending on whether authentication succeeds or fails.
Actions allow you to pass user profile information for the user requesting the resource to other applications or to redirect the user's browser to another site. The use of actions is optional.

Actions are used in the following ways:

- If an allow result is returned, the actions of the rule that determined the allow result are taken.
- If a deny result is returned, the actions of the rule that determined the deny result are taken.

The rest of this section discusses the following topics:

- About Kinds of Actions
- About the Use of HTTP Header Variables and Cookies
- Passing Information Using Actions
- Actions and Header Variables
- Using Actions for Redirection
- Custom Actions
- Setting Authentication Actions
- Defining Actions for a Policy’s Authentication Rule

Triggering Authentication Actions After the ObSSOCookie is Set

Note: When configuring actions for an Active Directory forest using ADSI, be sure the administrative account is set to AD Domain/administrator in the Windows Directory Security: Authentication and Access Control manager.

About Kinds of Actions

Actions allow you to:

- Redirect the user's browser to another URL.

 You can redirect URLs from the Access Server to an AccessGate or a WebGate.

- Pass information about the user to downstream applications in the same policy domain or a different one.

 Using HTTP header variables or cookies, you can use actions to pass the following kinds of information:

 - User profile information
 - A user's DN
 - Static text strings

See "About the Use of HTTP Header Variables and Cookies" on page 5-53 for details about using header variables to pass information to downstream applications.

Note: Redirection and use of header variables are mutually exclusive.

About the Use of HTTP Header Variables and Cookies

Consider the 4K size limit of the HTTP header when you use HTTP header variables and cookies to pass information to downstream applications. This HTTP header size limit includes all cookies, server variables, and environment variables—that is, all of the content of the HTTP header. There is no constraint on the number of individual elements an HTTP header can contain if the content does not exceed the 4K limit. Therefore, when assessing the amount of available space in the HTTP header, take into account the byte size of the data used by the applications. For example, if the Identity System and other applications combined used 1K in the HTTP header, you would have 3K for your data.

Passing Information Using Actions

You can use actions for many purposes. The following table provides some examples of how to use actions.

<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personalizing the end user’s interaction with the receiving application</td>
<td>You can use an authentication action to send the user’s name to a downstream application. The application could use the name to greet the user with a personalized message when the user logs in.</td>
</tr>
</tbody>
</table>
| Passing information in a header variable | You can use a header variable: bullied
 ■ To pass membership information
 ■ To pass information about a user for purposes of single sign-on
 For single sign-on to work, the target application must be able to use the variable. |
| Redirecting users to a specific URL upon failure or success of the attempt to authenticate | You can use redirection to send the user to another location. For example, you can redirect a user to your portal page following authentication through your custom form. |

Important: Redirection and use of header variables are mutually exclusive.

Note: Header variables can be redirected only to Web servers known to or protected by the Access System. Header variables are not redirected outside of Oracle Access Manager.
How Caching Header Variables Affects their Availability

If a header variable's value is changed, the new value is not available until the Access Server cache is refreshed.

There are two cache timeout parameters that affect header variables:

- **User Cache Timeout**: When an attribute in the header variable is obtained from the directory, it is placed in the user cache. If the value of this attribute changes and there is no user cache flush request for that user, the Access Server does not know about this change until the user cache timeout occurs. At this point, the Access Server retrieves the data again from the directory.

- **Policy Cache Timeout**: For policy data, if a user changes the return attribute in an action, and this change does not reach the Access Server (for instance, if a cache flush failed), the Access Server does not know about this action until the policy cache timeout limit is reached.

Ways Different Web servers Handle Header Variables

Web servers process header variables differently. This variability affects how you must implement header variables in your applications.

Here are some examples:

- **Netscape/iPlanet Web servers** precede Access System variables with the string, HTTP:
 - If you define a variable called HTTP_CN, Netscape/iPlanet produces a variable called HTTP_HTTP_CN.
 - When you write an application that needs to read a header variable, the application must look for a variable called HTTP_HTTP_CN and not HTTP_CN.

- **Microsoft IIS** expects header variables to be defined with a dash, not an underscore. You would enter HTTP–CN, not HTTP_CN.
 The receiving application must read the variable as if it had an underscore. It looks for HTTP_CN, not HTTP–CN.

- **The Lotus Domino Web server** cannot pass Access System header variables.
 For information about how to use header variables for various servers, refer to your Web server's documentation.

Using Actions for Redirection

You can use actions to redirect a user from the target page to a different one. You can use form-based authentication to send users to another page when authentication succeeds, rather than to the originally requested URL. This is a popular use of redirection.

For example, a user might request www.dirac.com/spin/index.htm. You could create a custom form to be used to challenge the user. After the user is authenticated based on information they enter in the custom form, you might redirect the user to your main portal page. You could redirect the user's browser instead of sending the user to the resource requested initially. To do so, you enter the portal page URL in the redirect field when you configure the action.
You may want to redirect a user upon authentication failure if you want them to see a more informative Web page than the standard HTTP-404-Page Not Found.

Using Form-Based Authentication Instead of a Plug-In

Instead of implementing a plug-in to prompt your users for two levels of authentication information, you may want to use two consecutive form-based authentication screens.

You can design two HTML forms, each of which has text fields for users to enter credentials. You define credential mapping for each login form. You present the user consecutively with the two HTML form-based screens. When the user clicks on the form’s submit button, the form data is intercepted and processed by WebGate before it is posted to the Web server. The WebGate searches the directory for profiles with attributes matching the form credentials.

For example, Arete Airlines provides employees with personal flight benefits accrued over time. The IT department of the airline has implemented a form-based authentication system to present two consecutive HTML form-based screens to the user. Each form requests a different kind of information for user authentication, and each form has its own security level:

- **First screen**: Prompts the user for Employment Area and Organization Number. This form-based authentication method may have a low security level, such as 1, because many people know the information.
- **Second screen**: Prompts for the user’s Personal Information Number (PIN). This form-based authentication method may have a high security level, such as 3, because the information is private, identifying the user exclusively.

Process overview: Form-based authentication from the user’s perspective

1. The user clicks a link on the company human resources site for employee flight benefits.
2. The application presents the user with the first form-based HTML page, prompting the user for department information.
 - If authentication succeeds for the first screen input, the user is presented with the second form-based HTML page.
 - If the user's PIN is authenticated, the user is granted access to the resource.

For more information about form-based authentication, see "Form-Based Authentication" on page A-1.

Custom Actions

If you want to customize the action taken in response to an authentication result, you can create your own actions.

To implement custom actions, you create a plug-in to be called in response to the authentication result.

Note: If you redirect a user upon authentication success or failure, the Access System does not pass the header variables. Oracle considers passing header variables on redirection a security risk.
You can design your external code to execute any number of actions. Some examples are:

- Accessing a relational database using required parameters
- Passing the user name of the user who has successfully been authorized for a resource
- Adding optional parameters that define a user's access

Setting Authentication Actions

You use the Actions page of the authentication rule page to create authentication actions. Actions are optional. You can specify them for authentication failure, authentication success, or both.

You can redirect header variables only to Web servers known or protected by the Access System. Header variables are not redirected outside of Oracle Access Manager.

For example, you could enter HTTP_HELLO in the Name field and cn in the Return Attribute field. In this case, the Access System sends a value to the Web server in the HTTP header called HTTP_HELLO, including the user's common name for the cn attribute. An application could then examine this HTTP header variable. It could then display the value using application code to personalize an interface to include the user's name.

If the attribute contains multiple entries, such as phone numbers, the Access System returns them as a single string in colon-separated format. End users must parse the individual values themselves.

Enter obmygroups:ldap_url to return only specific groups a user is a member of. For example, enter obmygroups:ldap:///o=company,c=us??sub?(group_type=role) to return all of the groups in the DN that the user is a member of and that have the group_type set to role. To return all of the groups a user is a member of, enter obmygroups in the Return Attribute field.

To set authentication actions for a policy domain

1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.
2. Click My Policy Domains in the left navigation pane.
 The General page for the selected policy domain appears.
3. Click the Default Rules tab.
 The Authentication Rule sub-tab appears with the General panel selected. This page also has an Actions panel.
4. Click the Actions panel.
5. If no actions have been created, click Add.
 If actions have been created, click Modify.
 The Actions page for the authentication rule appears, as illustrated in the following screen shot.
6. Specify the actions to be taken in response to successful authentication of the user in the Authentication Success text boxes. For details, see the next procedure.

7. Specify in the Authentication Failure text boxes the actions to be taken if authentication of the user fails. For details, see the next procedure.

8. Determine when you want Access Server caches to be updated.
 - Select Update Cache if you want all Access Server caches to be updated immediately with information about this new prefix.
 - If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

9. Click Save to save your input and return to the previous page (or click Cancel to return to the previous page without saving).

To complete the authentication actions for a policy domain

1. In the Redirection URL fields for both Authentication Success and Authentication Failure, type the complete path to a URL where the end user’s browser is sent after the request is received.

 Header variables can be redirected only to Web servers known to or protected by the Access System. Header variables are not redirected outside of Oracle Access Manager.

 Examples:
 - For authentication success, use the following URL to redirect the end user to a portal index page.
http://mycompany.com/authnsuccess.htm

- For authentication failure, use the following URL to redirect the end user's request to an error page or a self-registration script.

 http://mycompany.com/authnfail.htm

2. In the Return Type field, specify the method the Access System uses to send the value to the AccessGate. The method you specify must be recognized by your AccessGate.

An AccessGate can use these two types of methods:

- headervar
- cookie

If you are using a client written with the Access Server API, you can pass any alphanumeric string as the type and the client can interpret it.

For details about HTTP header variables, see "About the Use of HTTP Header Variables and Cookies" on page 5-53 and "Actions and Header Variables" on page 5-53.

Note: If you leave the Type field blank, and then click + to add another field (or click Save), the Access System uses headervar as the default.

3. In the Name field, enter a variable name that defines your return value or return attributes, such as REMOTE-USER to return the UID.

Your applications must be configured in advance to accept the variables you enter in these fields.

4. In the Return Value field, enter the value that must be assigned to the associated Name variable when the user is authenticated.

5. In the Return Attribute field, enter the LDAP attributes included in the response from the requesting user's Profile.

Click the + or – icons to add or remove fields as needed.

Note: If the returned value contains a special character (such as \ or ;), these characters are escaped with a backslash (\). The obUniqueid special attribute returns the DN.

6. After you define the actions, return to "To complete the authentication actions for a policy domain" on page 5-57 to complete configuration of actions for the policy domain.

Defining Actions for a Policy's Authentication Rule

For every policy, you can define actions for that policy's authentication rule to be taken in response to successful authentication of a user or failure to authenticate a user.

Actions are optional. You can specify them for authentication failure and authentication success, or both.
To set authentication actions for a policy

1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.

2. Click My Policy Domains in the left navigation pane.

3. From My policy Domains select the link for the policy domain where you want to set authentication actions.
 The General page for the selected policy domain appears.

4. For the selected policy domain, select the Policies tab.
 The Policies tab lists all of the existing policies.

5. Select the policy for which you want to define authentication rule actions.
 The policy page appears, showing the General panel for the policy. There are several other panels on this page, including Authentication Rule, Authorization Expression, and Audit Rule.

6. Select the Authentication Rule panel.
 The Authentication Rule page appears, with a General panel selected. The page also contains an Actions panel.
 If you are defining the rule, see "About Creating an Authentication Rule Using Chained Authentication" on page 5-30.

7. Click the Actions panel.

8. Click Add.
 An entry form for defining the authentication rule’s actions appears.
9. Specify in the Authentication Success and Authentication Failure text boxes the actions to be taken in response to successful authentication of the user.

For details, see "To define actions for a policy" on page 5-60.

10. Determine when you want Access Server caches to be updated.

 - Select Update Cache if you want all Access Server caches to be updated immediately with information about this new prefix.
 - If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

11. Click Save.

To define actions for a policy

1. In the Redirection URL fields, type the complete path to a URL where the end user's browser is to be sent after the request is received.

 Examples:
 - For authentication success, use this field to redirect the end user to a portal index page.
 http://mycompany.com/authnsuccess.htm
 - For authentication failure, use this field to redirect the end user's request to an error page or a self-registration script.
 http://mycompany.com/authnfail.htm

2. In the Return Type field, specify the method the Access System uses to send the value to the AccessGate. The method you specify must be recognized by your AccessGate.

 An AccessGate can use these two types of methods:
 - headervar
 - cookie

 If you are using a client written with the Access Server API, you can pass any alphanumeric string as the type and the client can interpret it.

Triggering Authentication Actions After the ObSSOCookie is Set

After a user successfully authenticates, but before the user is served a requested resource, the Access System performs any authentication actions that were defined in the authentication rule that protects the requested resource. Authentication actions may include passing attributes to the protected application to customize the user's experience, perform redirections, and so on. In addition to performing authentication actions, a cookie known as ObSSOCookie is set for the user. The ObSSOCookie allows the user to access the resource repeatedly without re-authenticating. See "Configuring Single Sign-On" on page 7-1 for details.

Under some circumstances, the ObSSOCookie may be set before the authentication actions have been triggered. For example, suppose the user requests a resource that is protected by a form-based authentication scheme that redirects the user to a form with several options for logging in. When the user selects a login method on the form, he or she is again redirected, this time to a form containing a certificate-based authentication scheme. In this scenario, when the user authenticates and is redirected to the requested resource, the ObSSOCookie will have already been set and any authentication actions that exist for the target resource are bypassed.
The Access System provides a key named ObTriggerAuthentication (OTA) that triggers authentication success actions for a target resource after the ObSSOCookie has been set. To make use of this trigger, you configure parameter named OTA in an authentication scheme and define corresponding authorization success actions for each domain where you want the OTA scheme to work.

About the OTA Authentication Scheme
To trigger the authentication actions that are defined for a target resource, you usually pass information such as a header variable. The presence of the ObSSOCookie usually indicates that authentication actions have already been performed and should be bypassed. The OTA:true parameter in an authentication scheme acts as a trigger for authentication actions. When an authentication scheme contains the OTA:true parameter, the scheme sets a value of OTA=true in the ObSSOCookie. When the user is redirected back to the requested resource, the value of OTA=true in the ObSSOCookie forces execution of the authentication actions.

To configure the OTA authentication scheme, you must also define a cookie named NoExecuteOTA in the policy domain that protects the resource. The NoExecuteOTA cookie ensures that only specific policy domains can make use of the OTA:true trigger. If you implement single- or multi-domain single sign-on, the NoExecuteOTA cookie ensures that authentication actions are only triggered for designated policy domains, even when the ObSSOCookie contains the OTA parameter. This prevents the OTA parameter from working for targets with authentication actions that are not supposed to be triggered when the ObSSOCookie is present.

The NoExecuteOTA cookie set to true along with OTA set to true in a policy domain means that the authentication actions will not be performed for the resource protected by the policy domain.

The NoExecuteOTA cookie set to false along with OTA key set to true means that the authentication actions will be performed for the resource and the OBSSOCookie will be reset.

By default NoExecuteOTA is set to false.

Configuring the OTA Authentication Scheme and Authorization Action
The following procedures describe how to configure this scheme and actions associated with the scheme.

To create an OTA authentication scheme
1. From the Access System Console, click Access System Configuration.
2. Click Authentication Management in the left navigation pane.
3. Click the link for an authentication scheme for which you want to add the OTA:true parameter.
 The Details for Authentication Scheme page appears, with the General tab selected.
4. Click Modify.
5. In the Challenge Parameter field, add OTA:true.
 If necessary, click the plus symbol ("+") to add a new field for entering this parameter.
6. Click Save.
To create an associated authorization action
1. From the landing page for the Access System, select the Policy Manager link.
 If you are working in the Access System Console, click the link for the Policy Manager at the top of the page.
2. Click My Policy Domains in the left navigation pane.
 The General page for the selected policy domain appears.
3. Click the link for the policy domain for which you want to add the NoExecuteOTA cookie.
4. Click the Authorization Rules tab for this policy domain.
5. Provide a name for this authorization rule and click Save.
6. Click the Actions tab.
7. Click Add.
8. In the Return field, add the following:
 The type is cookie.
 The Name is NoExecuteOTA.
 The Return Value is true.

Auditing Authentication Events
An audit rule causes event-based data to be written to the audit log file. As a Master Access Administrator, you must create a Master Audit Rule in the Access System Console. As a Delegated Access Administrator, you can derive audit rules from the Master Audit Rule for your policy domains and policies, but you cannot create an alternative Master Audit Rule.

There is one audit log for an Access Server. You can configure the size of the audit log file and the rotation interval for a server. Depending on events, the audit log may contain some duplicate audit entries.

Note: You may direct audit details to a database, as described in the Oracle Access Manager Identity and Common Administration Guide.

Information Logged on Success or Failure
Different information is written to the audit log depending on the outcome of events. A log entry for authentication of a user differs depending on whether the user's identity was established.

Authentication failure can occur if there is no entry in the directory for a user or if a user's credentials are invalid. For example, if there is an entry for the user in the directory, but the user entered an incorrect password (authentication failure), the value for the cn attribute is logged based on the DN in the directory. However, because the entry for the user cannot be confirmed as the correct one, attributes such as givenname are not retrieved from the directory.

About Creating a Master Audit Rule and Derived Rules
You can define audit rules for a policy domain and its policies. Any audit rules you define must be derived from a Master Audit Rule. A Master Audit Rule must be
Plug-Ins to Authenticate Users on External Security Systems

Plug-Ins to Authenticate Users on External Security Systems

The Access System offers plug-ins that allow you to authenticate users whose information is stored on a Security Bridge server, on Windows NT/2000, or on a SecurID Server. These plug-ins are installed automatically when you install the Access System.

This section describes the plug-ins for Security Bridge and Windows NT/2000. For information about the SecureID plug-in, see the Oracle Access Manager Developer Guide.

The rest of this section discusses the following topics:

- Security Bridge Plug-In
- Creating an Authentication Scheme for Security Bridge
- Authentication Rule for Security Bridge
- Windows NT/2000 Plug-In

Security Bridge Plug-In

Configuration Prerequisites

Before you can configure the Access System to use Security Bridge, you must install and configure the following:

- Security Bridge LDAP Server
- One of the following OS/390-based repositories:
 - RACF
 - CA-ACF2
 - CA-TopSecret
- The Access System, including at least one Access Server and one WebGate

The authn_securitybridge.dll (for Windows) or authn_securitybridge.so (for Unix) was installed under the AccessServer_install_dir/access/oblix/lib directory.
For more information about installing the Security Bridge server and repositories, refer to the Security Bridge documentation.

Creating an Authentication Scheme for Security Bridge

To authenticate Security Bridge users, you must create an authentication scheme that specifies the Security Bridge plug-in. Table 5–12 for the complete set of Security Bridge plug-in parameters.

To create an authentication scheme with a Security Bridge plug-in

1. Launch the Access System and select Access System Console, from Access System Console select Access System Configuration, from Access System Configuration select Authentication Management

2. Click Add.
 The Define an Authentication Scheme page appears.

3. In the Name field, type a name for this scheme, for example, Security Bridge Authentication

4. In the Description field, type a brief description of the scheme, for example, "This authentication scheme requires a user to enter a Security Bridge login and password."

5. In the Level field, type an integer representing the level of security that this authentication scheme provides, for example, Level: 3

6. In the Challenge Method field, select Form.

7. In the Challenge Parameter field you must add two parameters, form and creds.
 - **form**: The path to the securitybridge sb-login.html file relative to the Web server's document root.
 For example:

 form:/securitybridgeforms/sb-login.html
 - **creds**: A space-separated list of credentials to be passed from the forms to the Access Server.
 For example:

 creds: login password newpassword

8. In the SSL Required field, leave No selected.

9. Leave Challenge Redirect blank if there is only one WebGate/Access Server pair. Otherwise, you must redirect to a WebGate that communicates with the Security Bridge authentication Access Server.

10. To add the plug-ins and create the steps and flows for the authentication scheme, see "Adding a Plug-In to an Authentication Scheme" on page 5-28 and "Adding a Step to an Authentication Scheme" on page 5-38.

These are the plug-ins you must define for the scheme:

- Plugin Name: authn_securitybridge
- Plugin Parameters:
 - username="uid=%login%, ou=people, o=test.com",
 - passcode="password",
 - newpasscode="newpassword",
 - ldaphostname="os39029.datadist.com"
Plug-Ins to Authenticate Users on External Security Systems

ldapport="390",
machine="machineName",
formdir="formDirName",
securitymode="open",
certfile="c:\Program Files\Netscape\Users\machineName\cert8.db"

where:

machineName is the machine on which WebGate is located.

formDirName is the directory on WebGate where the Security Bridge forms are located. The default directory is named securitybridgeforms.

Plugin Name: credential_mapping
Plugin Parameter: obMappingBase="o=Company,c=US",
obMappingFilter="(?(objectclass/inetOrgPerson)(uid=%login%))"

Table 5–12 summarizes available Security Bridge plug-in parameters.

Table 5–12 Security Bridge Plug-In Parameters

<table>
<thead>
<tr>
<th>Name</th>
<th>Default</th>
<th>Mandatory or Optional</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>username</td>
<td>uid=%login%, ou=people, o=test.com</td>
<td>Mandatory</td>
<td>For attributes other than uid—for example cn—use this parameter specification.</td>
</tr>
<tr>
<td></td>
<td>attribute=%login%, host=myhost, o=mycompany, c=usa</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>password</td>
<td>password</td>
<td>Mandatory</td>
<td>Used during password change.</td>
</tr>
<tr>
<td>newpassword</td>
<td><none></td>
<td>Optional</td>
<td></td>
</tr>
<tr>
<td>ldaphostname</td>
<td>os39029.datadist.com</td>
<td>Mandatory</td>
<td>IP address of the LDAP server run by Security Bridge to be used for authentication.</td>
</tr>
<tr>
<td>ldapport</td>
<td>390</td>
<td>Mandatory</td>
<td>Port number for the server in the previous field.</td>
</tr>
<tr>
<td>machine</td>
<td><none></td>
<td>Mandatory</td>
<td>Web server computer name.</td>
</tr>
<tr>
<td>formdir</td>
<td><none></td>
<td>Mandatory</td>
<td>Path relative to the Web server document root.</td>
</tr>
<tr>
<td>securitymode</td>
<td>open or SSL</td>
<td>Mandatory</td>
<td></td>
</tr>
<tr>
<td>certfile</td>
<td><none></td>
<td>Optional</td>
<td>Location of the cert8.db file that holds all the certificates needed for SSL connections for the LDAP server run by Security Bridge.</td>
</tr>
</tbody>
</table>

Authentication Rule for Security Bridge

Now that you have created an authentication scheme that specifies a Security Bridge plug-in, you can implement the scheme in Access System deployments.

To create an authentication rule for Security Bridge
1. Follow the procedures in this chapter for creating an authentication rule.
2. Select Modify, and select the Security Bridge authentication scheme from the Challenge Method list.
After Security Bridge and an Access System authentication plug-in have been installed and configured, the authentication process is as follows.

Process overview: Authentication for Security Bridge and the Access System

1. WebGate intercepts a request to access a resource and determines if the resource is protected.
 - If the resource is protected, WebGate then determines if the user is authenticated.
 - If the user is not authenticated, WebGate issues a form-based challenge and the user supplies the requested login credentials.
2. WebGate then forwards the authentication request to an Access Server.
4. The Security Bridge LDAP Server evaluates the user's credentials stored in the OS/390 repository.
 - If the credentials are valid, the request is approved. If not, the request is denied.

Figure 5–4, "Authentication with a Security Bridge Plug-In" illustrates this process.

Windows NT/2000 Plug-In

Table 5–13 describes the Windows NT and Windows 2000 plug-in used to authenticate against a Windows domain.

<table>
<thead>
<tr>
<th>Name</th>
<th>authn_windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purpose</td>
<td>Authenticates user name and password against a Windows NT or Windows 2000 domain.</td>
</tr>
<tr>
<td>Result</td>
<td>■ If authn_windows returns success, authentication continues.</td>
</tr>
<tr>
<td></td>
<td>■ If not, authentication fails.</td>
</tr>
</tbody>
</table>
Parameters

- ntusername—Name of the field containing the user name. This parameter is mandatory.
- ntpwd—Name of the field containing the password. This parameter is mandatory.
- ntdomain—Name of the field containing the domain.

Table 5–13 (Cont.) Windows NT/2000 Plug-in

<table>
<thead>
<tr>
<th>Name</th>
<th>authn_windows</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The Access System enables you to protect your resources with policy domains and policies that specify who is authorized to use the resources and who is not allowed to use them, and under what conditions.

This chapter explains authorization and how to configure authorization rules and authorization expressions to meet the requirements for your policy domains and their policies. A policy domain must include an authorization expression among the set of default rules that specify how its resources are protected. Authorization rules are combined to create authorization expressions.

This chapter discusses the following topics:

- About Authorization
- Authorization Rules
- Working with Authorization Rules
- Authorization Expressions
- Working with Authorization Expressions
- Authorization Actions
- Working with Authorization Actions
- Authorization Schemes for Custom Plug-Ins
- Working with Authorization Schemes
- Auditing Authorization Events
- Retrieving External Data for an Authorization Request

About Authorization

Authorization is the process of determining whether a user has the right to access a requested resource. To protect resources, you define authorization rules which contain conditions. Authorization rules are contained within authorization expressions. A policy domain and a policy can each contain only one authorization expression.

Background Reading

In addition to authorization rules, policy domains and policies also include authentication rules and audit rules, which are described in other chapters of this guide. After you have created your policy domains, you can define their rules and expressions. You can create the authentication rules, authorization rules and
expressions, and audit rules for a policy domain in any order. Before you read this chapter, read the following chapters:

- **Chapter 3, “Configuring WebGates and Access Servers”** on page 3-1 describes the configuration of AccessGates and Access Servers, which you must do before the policy domains you create can take effect.
- **Chapter 4, “Protecting Resources with Policy Domains”** on page 4-1 describes how to create and test policy domains and policies, how to define resource types, and how to define audit rules.
- **Chapter 5, “Configuring User Authentication”** on page 5-1 describes how to create and use authentication schemes and rules.

Introduction to Authorization Rules and Expressions

An authorization rule can contain:

- A condition that specifies who is authorized to access a protected resource. This condition is referred to as the Allow Access condition of the rule.
- A condition that specifies explicitly who is denied access to the protected resource. This condition is referred to as the Deny Access condition of the rule.
- Both Allow Access and Deny Access conditions.

If Allow Access or Deny Access conditions or both are specified and they do not apply to a user, the user is not qualified by the rule. If a user is unqualified by a rule, by default the user is denied access to the requested resource.

To specify who is authorized to use the resource or explicitly denied access, the rule can:

- Identify the users by their user name, role, or an LDAP filter whose criteria the user must satisfy.
- Stipulate the computers from which users can access the resources.
- Set the period of time during which the rule applies.

Additionally, you can set actions to be taken if the rule is evaluated to allow qualifying users access to the resource. You can also set actions to be taken if the rule is evaluated to deny qualifying users access to the resource.

Resources of a policy domain are protected by an authorization expression containing one or more authorization rules.

Authorization expressions include:

- Authorization rules that you select from among those that have been defined for the policy domain.
- Operators that you use to combine rules in various ways to provide the kind of authorization protection required for the policy domain.

An authorization expression may consist of a single rule or a group of rules combined to express more complex conditions. For example, you can create an expression which requires that a user meet the Allow Access conditions of two rules to be granted access to the resource. You use the Policy Manager interface to combine rules in expressions.

This chapter describes the Policy Manager authorization component, and it explains how it works. It also provides the procedures you use to protect your resources with authorization expressions.
Here is an overview of the steps you follow to create authorization expressions for your policy domains and their policies:

Task overview: Creating authorization expressions

1. Create your policy domain, as discussed in Chapter 4, "Protecting Resources with Policy Domains" on page 4-1.

2. Determine who is authorized to use the resources of the policy domain, and under what conditions, using the "Guidelines for Classifying Users" on page 6-3. See also "Authorization Rules" on page 6-4.

 You can give specific users access to the resources. You can also explicitly deny specific users access to the resources. It is not necessary for you to create rules that apply to all of your users—whether to allow them access or to expressly deny them access.

 Some users may not qualify for the conditions of a rule. They may qualify for other rules of the expression, or they may not qualify for the conditions of any rules. If a user does not qualify for the conditions of any of the rules of an expression, by default the user is denied access to the resource.

3. Create all of the authorization rules you need to protect the resources of the policy domain and any of its policies. See "Configuring Authorization Rules" on page 6-7 for details.

 You create all of these rules at the level of the policy domain. When you create a rule, you include an authorization scheme in it. If you do not plan to use the Authorization Scheme provided by the Access System, you must configure one or more custom ones. In this case, you must provide custom plug-ins. See "Authorization Schemes for Custom Plug-Ins" on page 6-44 for details.

4. Create the authorization expression for the policy domain, which can have only one authorization expression. See "Authorization Expressions" on page 6-14 for details.

5. Create an authorization expression for each of the policy domain's policies. See "Authorization Expressions" on page 6-14 for details.

Guidelines for Classifying Users

Observe the following guidelines when classifying users:

- Divide the users and groups of users into sets for whom different conditions apply—conditions such as when they can access the resources, the computers from which they must make their requests, and so on. See "About the Contents of an Authorization Rule" on page 6-6 for details.

 If some users fall into more than one category—for example, a user in the marketing group belongs to the Teleon project group, a user in the human resources group also belongs to the Teleon group—put the user in both categories. You can require that the user meet the conditions of two rules.
Authorization Rules

Note: You do not need to be concerned about users who are denied access to the resources of the policy domain under any conditions. They are denied access by default if none of the rules of an expression qualify them.

- For each category for which you want to create a separate rule, consider the kinds of actions you want to occur if the user is authorized to use the resource or if the user is not authorized to use it as a result of the rule. For example, for one case or the other, you may want the system to return user profile information and pass that information to a downstream application:
 - If the user is authorized to use the resource, you may want to pass the user’s cn (common name) to another application so that the application can present a customized greeting to the user.
 - If the user is not authorized to use the resource, you may also want to return information about the user to be used for security purposes. (For information about actions, see "Authorization Actions" on page 6-36.)

Do this analysis for users and groups: users for whom you want to grant authorization to use the policy domain’s resources; users and groups for whom you want to explicitly deny authorization to use the resources.

If you want to create policies for subsets of resources within a policy domain and protect them with different authorization rules, consider the same information for the policies: who can access the resources of the policy and under what condition; for whom, and under what conditions, you want explicitly to deny access to the resources.

Authorization Rules

An authorization rule specifies information that identifies who can access a resource it protects. It also specifies who is explicitly denied access to the resource. One or more authorization rules are included in an authorization expression for a policy domain or policy.

When a user requests access to a resource protected by an authorization rule included in an authorization expression, information about the user is checked against the rule. If the rule stipulates other kinds of information, such as period of time or time of day the rule applies, that, too, is checked. This process is referred to as evaluation of the rule.

The result of evaluation of an authorization rule—in conjunction with other authorization rules, if more than one is included in the authorization expression—determines whether a user is granted access to the requested resource.

At the policy domain level, you create all of the authorization rules to be used for a policy domain or any of its policies. You combine these rules to create authorization expressions. For details about authorization expressions, see "Authorization Expressions" on page 6-14.

This section describes authorization rules, and how to create and manage them. It includes the following topics:

- About Allow Access and Deny Access Conditions
- Reuse of Authorization Rules
- About the Contents of an Authorization Rule
- About Authorization Rule Evaluation
About Allow Access and Deny Access Conditions

An authorization rule specifies the following two types of primary conditions:

- A condition referred to as Allow Access that grants the user access to the resource.
- A condition referred to as Deny Access that denies the user access to it.

When a user is said to qualify for an authorization rule, it does not mean that the user is authorized to use the resource protected by the rule. A user is said to qualify for a rule if the user meets a condition of the rule:

- If the user meets the Allow Access condition, the user qualifies for the Allow Access part of the rule.
- If the user meets the Deny Access condition, the user qualifies for the Deny Access part of the rule.
- If the user satisfies neither the Allow Access nor the Deny Access conditions, the rule is said to be unqualified for that user. You can also think of this as the user not qualifying for the rule. If evaluation of a rule results in an unqualified user, the user is denied access to the resource based on that rule.

For authorization expressions that contain more than one rule, a user may qualify for none of the expression’s rules, one of the rules, or for the conditions of more than one rule. In any case, it is the result of evaluation of the expression—all of its rules and how they are combined—not any one rule, that determines whether a user is allowed or denied access to a resource.

Reuse of Authorization Rules

A policy domain can have only one authorization expression, which can include all of the authorization rules necessary to express the protection requirements for its resources. Each of the policies a policy domain contains can have its own authorization expression.

Any of the authorization rules you define for a policy domain can be used for the policy domain and for any of the policies it contains in the following ways:

- It can appear in more than one authorization expression.
- It can appear in a single authorization expression more than once.

For information about authorization expressions, see “Authorization Expressions” on page 6-14.
About the Contents of an Authorization Rule

An authorization rule contains the following information:

- **General Information**: An authorization rule has a name and a description, and it can be enabled or disabled. See "Configuring Authorization Rules" on page 6-7 for details.

- **Allow Access**: The Allow Access condition of an authorization rule specifies the end users and groups of users who are allowed access to a resource protected by the rule. See "Setting Allow Access" on page 6-9 for details.

- **Deny Access**: The Deny Access condition of an authorization rule specifies the end users and groups of users who are explicitly denied access to a resource protected by the rule. See "Setting Deny Access" on page 6-10 for details.

- **Timing Conditions**: An authorization rule can be configured to include a value that restricts access to a resource within a period of time, such as 9:00 a.m. to 5:00 p.m. on week days for one group of users and 10:00 a.m. to 4:00 p.m. for another group of users. See "Setting Timing Conditions" on page 6-11 for details.

- **Actions**: For either result of an authorization rule—whether its evaluation results in authorization success or authorization failure for a user requesting access to a protected resource—an associated set of actions can be specified to be taken in response to the result. For example, the Access System can return a header variable to be passed to a downstream application. The following list describes the kinds of actions you can specify:
 - Redirection of the user's browser to another URL.
 - Static values and user profile identity values passed in HTTP header variables or cookies.

About Authorization Rule Evaluation

When information about a user requesting access to a protected resource is checked against the conditions of an authorization rule, and the user qualifies for one of the conditions of the rule, that rule is evaluated to produce one of the following results:

- **Authorization Success**: In this case, the user succeeds in gaining access to the requested resource. This result is associated with the Allow Access condition of the rule.

- **Authorization Failure**: In this case, the user fails to gain access to the requested resource. This result is associated with the Deny Access condition of the rule.

Evaluation of a rule can produce neither result if the user requesting access to the protected resource is not mentioned in the Allow Access or the Deny Access conditions of the rule. In this case, the evaluation of the rule is said to be inconclusive, and the user is denied access to the rule.

Working with Authorization Rules

This discussion provides details about configuring and managing authorization rules:

- Displaying a List of Configured Authorization Rules
- Configuring Authorization Rules
Setting Allow Access
Setting Deny Access
Setting Timing Conditions
Viewing General Information About a Rule
Modifying an Authorization Rule
Deleting an Authorization Rule

Displaying a List of Configured Authorization Rules
You may find it useful to display a list of authorization rules before you define a new one.

To display a current list of authorization rules
1. From the landing page for the Access System, click the Policy Manager link.
 If you are working with the Access System Console, click the Policy Manager link at the top of the page.
2. Click My Policy Domains.
 The General page for the policy domain appears.
3. Select the policy domain that you want to view.
4. Select the Authorization Rules tab for the policy domain.
 The Authorization Rules page appears, as illustrated in the following screen shot, showing the list of authorization rules configured for the policy domain.

Configuring Authorization Rules
To configure an authorization rule, you define its general information, you set its Allow Access and Deny Access conditions, and you define actions for the rule, if any. This section describes how to configure general information for a rule.

You can specify general information about an authorization rule to identify the rule, to specify its authorization scheme, to enable or disable the rule, and so forth. Some of the information you can configure is optional.
You must specify an authorization scheme for every authorization rule you define. You can use the Authorization Scheme provided by the Access System or you can select a custom authorization scheme, if any are configured. See "Authorization Schemes for Custom Plug-Ins" on page 6-44 for details.

You create all of the authorization rules to be used for a policy domain or any of its policies at the policy domain level.

To define an authorization rule

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain that you want to see.

 A page appears listing existing authorization rules for the policy domain.

 Note: If you are creating a policy domain, you do not see any configured authorization rules.

4. Click Add.

 The General page for the authorization rule appears.

5. Specify a name for the authorization rule and, optionally, a brief description of it in the following text boxes:
 - **Name:** A name for this authorization rule.
 - **Description:** A brief description of this authorization rule.

 For example, for an authorization rule that includes a custom authorization scheme, you could explain the function the custom plug-in provides.

6. Select Yes from the Enabled list to enable the authorization rule or No to disable it.

 Select Yes if you want the authorization rule to be activated as soon as you click Save. Enabling an authorization rule makes it available for inclusion in an authorization expression. The rule is disabled by default.

 After an authorization rule is used in an authorization expression, you cannot disable it until it is removed from all of the expressions that use it.

7. For **Allow takes precedence**, select one of the following:
 - **Yes:** If you want the Allow Access condition to take precedence over the Deny Access condition.
 - **No:** If you want the Deny Access condition to take precedence over the Allow Access condition.

 If you configure Allow Access and Deny Access conditions for a rule, use this option to specify which condition of the rule should be honored if the user qualifies for both of a rule’s conditions.

8. Determine when you want Access Server caches to be updated.
 - **Immediately:** Select Update Cache to update all Access Server caches immediately with information about this new prefix.
 - **Later:** If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.
9. Click Save.
 The General page appears displaying the information you specified.

10. Select the authorization scheme to include in the authorization rule.
 If the Master Access Administrator has not created custom authorization schemes,
 the only scheme available is the Oracle Authorization Scheme.

11. Click Add.
 The General page for an authorization rule appears.

Setting Allow Access

The Allow Access part of an authorization rule defines users and groups who are
authorized to use the protected resource.

To set Allow access

1. From the landing page for the Access System, click the Policy Manager link.
 If you are working in the Access System Console, the link for the Policy Manager
 is at the top of the page.

2. Click My Policy Domains in the left navigation pane.

3. Select the policy domain that you want to see.

 A page appears listing the authorization rules for the policy domain.
 If you are creating a policy domain, you do not see any configured authorization
 rules.

5. Select the authorization rule whose Allow Access conditions you want to set.

6. Click the Allow Access tab.

7. Click Add if no conditions exist, click Modify if they exist.

8. Specify the users and groups who are allowed to access resources protected by this
 rule using the People, Role, Rule, and IP Address controls as indicated in the
 following list.

 Note: These options are alternatives. An end user or group specified
 in any of these fields is allowed access.

 a. **People:** Click Select User to select by user name
 - Use the Search facility to display configured users.
 - Click Add before the name of each user who is allowed to access resources
 protected by this rule.

 b. **Role:** Select No Role in the Role selection box to prevent users from being
 selected based on roles or select Anyone to allow anyone access to the
 protected resources.

 c. **Rule:** Enter an LDAP filter that specifies the users and groups who are
 allowed to access the protected resources using the plus and minus buttons to
 add new filters and delete existing ones.
d. **IP Address:** Enter the IP addresses of computers whose users are allowed access.

Except where noted, the Access System supports the following conventions for IP addresses in Access System and Policy Manager:

- An explicit address, such as 192.2.2.2.
- An address with a wildcard, but the wildcard must be the last entry, such as 192.2.2.*, 192.2.*, or 192.*

The Access System does not support the following items:

- An address in which a wildcard is not the final entry. For example, 192.128.*.2 is not supported.
- An entry of all wildcards, such as ***.*.*.*.

If you entered an IP address using a format that is not supported, the error message "Invalid IP address entered" appears.

For the IP Address fields, click the plus and minus buttons to add new IP addresses and delete existing ones.

9. Determine when you want Access Server caches to be updated.

- **Immediately:** Select Update Cache to update all Access Server caches immediately with information about this new prefix.
- **Later:** If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

10. Click Save.

Setting Deny Access

The Deny Access part of an authorization rule specifies the users and groups who are denied the right to use the resources protected by this rule.

To set Deny Access

1. Launch the Access System and select the Policy Manager.

2. From the Policy Manager, select My Policy Domains, then click on the policy domain that you want to see.

 If you are in the process of defining the rule and have configured the rule’s general information, you do not need to retrace this path.

 A page appears listing authorization rules for the policy domain.

 If you are creating a policy domain, you do not see any authorization rules.

4. Select the authorization rule for which you want to set Deny Access conditions.

 A set of panels for the authorization rule appears, with the General panel selected. Other panels for the rule are Timing Conditions, Allow Access, and Deny Access.

5. Click the Deny Access panel, then click Add if no authorization rules exist, or click Modify if they exist.

6. Specify the users and groups who are denied to access resources protected by this rule using the People, Role, Rule, and IP Address controls as indicated in the following list.
Configuring User Authorization

6-11

Working with Authorization Rules

Note: These options are alternatives. An end user or group specified in any of these fields is denied access:

a. **People:** Click Select User to select by user name.
 - Use the Search facility to display configured users.
 - Click Add before the name of each user who is denied to access resources protected by this rule.

b. **Role:** Select No Role in the Role selection box to prevent users from being selected based on roles or select Anyone to deny anyone access to the protected resources.

c. **Rule:** Enter an LDAP filter that specifies the users and groups who are denied to access the protected resources using the plus and minus buttons to add new filters and delete existing ones.

d. **IP Address:** Enter the IP addresses of computers whose users are denied access.

Except where noted, the Access System supports the following conventions for IP addresses in Access System and Policy Manager:
- An explicit address, such as 192.2.2.2.
- An address with a wildcard, but the wildcard must be the last entry, such as 192.2.2.*, 192.2.*, or 192.*.

The Access System does not support the following items:
- An address in which a wildcard is not the final entry. For example, 192.128.*.2 is not supported.
- An entry of all wildcards, such as ***.*.*.*

If you entered an IP address using a format that is not supported, the error message "Invalid IP address entered" appears.

For the IP Address fields, click the plus and minus buttons to add new IP addresses and delete existing ones.

7. Determine when you want Access Server caches to be updated.
 - **Immediately:** Select Update Cache to update all Access Server caches immediately with information about this new prefix.
 - **Later:** If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

8. Click Save.

Setting Timing Conditions

Use the Timing Conditions option to set the time periods when the authorization rule is in effect. For example, you may want the rule to remain in effect only during business hours, Monday through Friday. If you do not set a timing condition, by default the authorization rule is always in effect. Take into account that both of the rule’s conditions—its Allow Access and its Deny Access conditions—remain in effect for the specified time period.
To set a timing condition

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain that you want to see.

 A page appears listing the authorization rules for the policy domain.
 If you are creating a policy domain, you do not see any authorization rules.

4. Select the authorization rule for which you want to set timing conditions.
 The General panel for the authorization rule appears. Other panels for the authorization rule include Timing Conditions, Actions, Allow Access, and Deny Access.

5. Click the Timing Conditions panel.
 If any timing conditions exist, they are listed. Otherwise, this page reports that there are no timing conditions for the authorization rule.

6. Click Add to create a new timing condition if none have been defined, or click Modify if they exist.
 The Timing Conditions page appears.

7. Select either Greenwich Mean Time or Local time on Web server:
 - **Greenwich Mean Time**: A standard for universal time. If you use Greenwich Mean Time, this authorization rule is in force at the same time throughout the world.
 Use this option if you want this rule to be in force at the same time for your globally-dispersed workforce.

 - **Local time on Web server**: Indicates that users outside the server's time zone could be denied access.
 For example, if the server is located in New York, and the timing conditions do not allow access after 5 P.M., West Coast users would be denied access starting at 2:01 P.M.

 Note: If you want to restrict hours for users in various time zones, do not use this option. Instead, create a separate authorization rule that gives West Coast users access until 8 P.M. Eastern Time, and so forth.

8. Select a Start Date and End Date.

 Note: If you select the — option, for the Start Date, then this rule effectively does not have a Start Date. If you select the — option, for the End Date, then this Rule effectively does not have an End Date.

9. Select a Start Time and End Time:
 - You cannot choose only a Start Time or End Time. If you specify a Start Time, you must choose an End Time.
 By default, the Start Time and End Time fields are set to —, which means this rule does not have a Start Time and End Time. It is in effect 24 hours a day.
When choosing a Start Time and End Time, you must make a selection for all three fields (hours, minutes, seconds). If you do not, the Start Time and End Time are invalid.

10. Select the Months of the Year, Days of the Month, and Days of the Week for which this rule is valid.

Note: To select a single item (for example, a month) click to select it. To select more than one, hold down the Shift key as you select additional items in the same list. If you select the — option, this rule is in effect everyday.

11. Select Update Cache if you want all AccessGate and Access Servers caches to be updated *immediately* with information about these timing conditions.

12. Click Save.

Viewing General Information About a Rule

You may want to view general information about an authorization rule before you decide to modify the rule or use the rule in an authorization expression.

To view the general information for an authorization rule

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain that you want to see.

 A page appears listing the authorization rules for the policy domain.

4. Select the authorization rule whose general information configuration you want to see.

 The General information panel for the authorization rule appears, showing the name, description, enabled status, and Allow Takes Precedence value for the rule. Other panels for the rule include Timing Conditions, Actions, Allow Access, and Deny Access.

Modifying an Authorization Rule

You can modify the authorization rules for a policy domain at any time. However, it is good practice to disable a rule before you modify it.

To modify an authorization rule

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain that you want to see.

 A page appears listing the authorization rules for the policy domain.

4. Select the authorization rule that you want to modify.

5. Click Modify.

 The General page with editable text boxes appears.
6. Verify that the Enabled status box is blank to ensure the rule is disabled before modifying information.

7. Modify the general information as required, and any of the following:
 - **Timing Conditions:** Click the tab, and follow the instructions for defining them.
 - **Actions:** Click the Actions tab and follow the instructions for defining actions in "Authorization Expressions" on page 6-14.
 - **Allow Access or Deny Access:** Click the appropriate link, and follow the instructions for defining the rules.

8. Click Save.

Deleting an Authorization Rule

You cannot delete an authorization rule that is used in an authorization expression for the policy domain or any of its policies.

To delete an authorization rule

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain that you want to see.

 A page appears listing the authorization rules for the policy domain.

4. Select the check box for each rule that you want to delete.

5. Click Delete.

Authorization Expressions

In some cases, a single authorization rule is all that is required to protect the resources of a policy domain or a policy. You can configure the rule to identify who is allowed access to the resources it protects, who is denied access to them, and under what conditions these controls apply—when they apply and from which computer, for example. An authorization rule does not need to cover all users in its Allow Access and Deny Access conditions. Users who do not qualify for any of the conditions of the rule and who request access to a resource protected by the rule are, by default, denied access to the resource.

For other cases, it may be necessary to configure many authorization rules to protect resources with complex restrictions imposed on different users. For example, you may want to define a policy that includes many authorization rules, a part of any one of which a user must meet to qualify for access to a protected resource (or to qualify for denial of access to it). You may also want the same policy domain to specify more than one condition a user must meet. For example, you may require that the user meet two conditions—such as belonging to one group and using a computer assigned a specific IP address—to be granted access to the resource. To define the complete authorization conditions required for the resources you want to protect, you form an authorization expression. The Policy Manager provides an interface that makes it easy for you to form authorization expressions. You must create a default authorization expression for the policy domain, but you can also create an authorization expression for a policy within the domain.
This section describes authorization expressions, and how to create and manage them.
It includes the following topics:

- About the Contents of an Authorization Expression
- About Authorization Expression Evaluation

About the Contents of an Authorization Expression

In an authorization expression, you define authorization requirements for a set of
resources. An authorization expression can apply to resources for the entire policy
domain or for one of its policies.

An authorization expression includes:

- One or more authorization rules
- The operators used to combine the rules

You can define only one authorization expression for a policy domain. This becomes
the default authorization expression for the policy domain. You can define one
authorization expression for each policy in the domain. An authorization expression
contains any of the authorization rules defined at the policy domain level.

Figure 6–1 illustrates the default authorization expression for a policy domain. For the
default protected URL, the authentication rule, authorization expression, and audit
rule together form the defaults for the policy domain.

Figure 6–1 Authorization Expression

An authorization expression is always evaluated from left to right. The rules of an
expression can be grouped using operators, and how they are grouped has a bearing
on the outcome of the overall evaluation of the expression.

You can use two operators to combine the rules of an expression: AND and OR. You
combine authorization rules to create authorization expressions that can include the
following types of conditions:

- **A Compound Condition**: Specifies more than one condition for which a user must
 qualify, either to be granted access to the requested resource or explicitly denied
 access to it, depending on the rest of the expression. You use the AND operator for
 this purpose. See “Authorization Rules Used in Example Scenarios” on page 6-18.

- **A Complex Condition**: Specifies two or more alternative conditions any of which
 a user must meet, either to be allowed access to the requested resource or denied
 access to it, depending on the condition and its relationship to the rest of the rules
 of the expression. You use the OR operator for this purpose. See “Authorization
 Rules Used in Example Scenarios” on page 6-18.
See "About Evaluation of the Rules of an Expression" on page 6-16 for details explaining how grouping of the rules of an expression using AND and OR is interpreted.

About Authorization Expression Evaluation

Evaluation of an authorization expression can result in the following three conditions:

- **Authorization Success:** In this case, the user succeeds in gaining access to the requested resource. This result is associated with the Allow Access condition of the expression.
- **Authorization Failure:** In this case, the user fails to gain access to the requested resource. This result is associated with the Deny Access condition of the expression.
- **Authorization Inconclusive:** In this case, the rules of the expression produce conflicting results, and the user is denied access to the resource.

Status Codes for an Inconclusive Result

An expression can return a result of Inconclusive, in which case the Access System returns a major status code of Deny and a minor status code of Inconclusive. The major status code of Deny is returned for Inconclusive results to maintain compatibility with previous releases of the system. The minor status code of Inconclusive is available to Oracle Access Manager systems to allow those systems to distinguish between true Deny results and Deny results returned because of an Inconclusive state.

An authorization expression result of Deny differs from an authorization expression result of Inconclusive even though the user is denied access to the resource in both cases. An application written to run with Oracle Access Manager can interpret the two status codes for an Inconclusive result and use the additional information for other purposes. For example, the application can then invoke other authorization engines instead of denying the user access to the resource.

About Evaluation of the Rules of an Expression

An authorization expression can contain a mix of compound conditions and complex conditions which determine whether a user can access a resource protected by the expression. When a user requests access to a protected resource, the user's information is checked against the rules of the expression.

The interplay between user information assessed against the rules of an expression, the position of the rules in the expression, and the way in which the rules are combined in the expression allows for a wide degree of variety. An authorization expression is exercised to different extents depending on these variables—that is, some of its rules might not be evaluated.

Precedence and Position: The Access Server processes the rules of an expression in the following way:

- **Precedence of Operators:** The AND operator takes precedence over the OR operator in regard to how rules of an expression are combined.

 That is, if an expression contains three or more rules combined in some way with the AND operator and the OR operator, the Access Server always associates the rules on either side of the AND operator with it first, and then it combines the rules using the OR operator.
For example, given the following authorization expression,

\[R_1 \text{ OR } R_2 \text{ AND } R_3 \]

internally the Access Server creates the following grouping by default:

\[R_1 \text{ OR } (R_2 \text{ AND } R_3) \]

The Access Server goes through the entire expression making these groupings based on AND taking precedence over OR before it evaluates the user’s information against the rules.

For details about operators, see "Authorization Rules Used in Example Scenarios" on page 6-18.

Note: You can override the default way in which operators are interpreted by using parenthesis to enforce new groupings. See "About the Use of Parenthesis" on page 6-26 for details.

- **Position of Rules in an Expression:** The Access Server evaluates an expression from left to right.

 You do not assign to an authorization rule its priority among other rules. It would not be possible to reuse authorization rules if you assigned to each of them an evaluation priority. Rather, you position rules in an expression from left to right—which is the order in which they are evaluated—and you use operators to combine them. For details about operators, see "Authorization Rules Used in Example Scenarios" on page 6-18.

- **Use of Parenthesis to Override Default Precedence:** You can use parenthesis to override the default way in which the Access Server groups the rules of an expression. The Access Server continues to evaluate the rules of an expression from left to right, but it assesses the rules within the couplings and groups you create through use of parenthesis. See "About the Use of Parenthesis" on page 6-26.

About the Definitive Result of an Authorization Expression: The Access Server evaluates the rules of an expression until it can produce a definitive result. Evaluation of an authorization expression may produce a definitive Allow Access result, a Deny Access result, or an Inconclusive result.

For example, a user qualifies for the Allow Access condition of Rule 1, the Deny Access condition of Rule 2, and the Deny Access condition of Rule 3 of the following expression.

\[(\text{Rule 1 AND Rule 2}) \text{ OR Rule 3}\]

In this case, evaluation of Rule 3 produces a definitive result of the expression, and the user is denied access to the resource. Neither Rule 1 nor Rule 2 has any bearing on the outcome of the expression because they produce conflicting results as part of an AND condition. Because Rule 3 is part of an OR condition, it stands on its own. If the user satisfies the rule’s Allow Access or Deny Access condition, then Rule 3 defines the outcome of the expression.

For Rule 2 to be responsible for the definitive result, the user must qualify for either both the Allow Access conditions or both the Deny Access conditions of Rule 1 and Rule 2. In this case, Rule 3 would not be evaluated because evaluation of Rule 1 and Rule 2 would produce a definitive result. Therefore, evaluation of Rule 3 would be unnecessary.
Authorization Rules Used in Example Scenarios

Table 6–1 contains examples of authorization rules that, if defined at the policy domain level, could be used in authorization expressions for the domain and any of its policies. The example authorization rules in Table 6–1 show only one condition of a rule—either its Allow Access condition or its Deny Access condition—not the full authorization rule.

An authorization rule need not specify both an Allow Access condition and a Deny Access condition, or either one alone. It can specify either condition, both conditions, or none. Table 6–1 identifies example authorization rules which are used in example scenarios throughout the rest of this chapter.

Table 6–1 Example Authorization Rules and Their Conditions

<table>
<thead>
<tr>
<th>Authorization Rule</th>
<th>Condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rule 1</td>
<td>Allow anyone from the marketing department group access to the requested resource.</td>
</tr>
<tr>
<td>Rule 2</td>
<td>Allow anyone using a computer with the IP address 192.168.2.123 access to the requested resource.</td>
</tr>
<tr>
<td>Rule 3</td>
<td>Allow anyone from the human resources department group access to the requested resource.</td>
</tr>
<tr>
<td>Rule 4</td>
<td>Allow anyone from the Teleon project group access to the requested resource.</td>
</tr>
<tr>
<td>Rule 5</td>
<td>Deny anyone from the consultants group access to the requested resource.</td>
</tr>
<tr>
<td>Rule 6</td>
<td>Deny anyone from the Saber project group access to the requested resource.</td>
</tr>
<tr>
<td>Rule 7</td>
<td>Deny anyone using a computer with the IP address 192.168.5.123 access to the requested resource.</td>
</tr>
<tr>
<td>Rule 8</td>
<td>Allow anyone from the managers group access to the protected resource.</td>
</tr>
<tr>
<td>Rule 9</td>
<td>Allow anyone from the administrative assistants group access to the protected resource.</td>
</tr>
</tbody>
</table>

About the AND Operator

You use the AND operator to form a compound condition which combines authorization rules. Any number of rules can be combined using the AND operator to implement the full scope of conditions a user must meet to satisfy the authorization requirement. However, a user must satisfy the same kind of condition—either Allow Access or Deny Access—of all of the rules of the AND compound condition for the AND clause to produce a definitive result.

An authorization expression can contain more than one coupling or grouping of rules combined using AND. For example, it may contain several AND clauses, one connected to another by an OR operator.

Note: A user may qualify for both the Allow Access condition and the Deny Access condition of the same rule. In this case, whichever condition is configured to take precedence is the one that is honored. You configure this setting in the Allow takes precedence field.
Examples of Compound Conditions

The following scenarios use the example authorization rules in Table 6–1 to illustrate compound conditions.

For some of these examples, the Policy Manager Authorization Expressions page you use to create the expression is shown. Here is where to find information explaining how to use these pages to create authorization expressions:

- For the steps to follow to create an authorization expression, see "Creating Authorization Expressions" on page 6-28.
- For information explaining how to use the Authorization Expression interface portion of the Policy Manager to create expressions, see "Modifying an Authorization Expression as You Create It" on page 6-31. These instructions apply both to creating an expression and modifying an existing one.

A Compound Condition Whose Two Authorization Rules Specify Allow Access Conditions: To be allowed access to a resource protected by the following authorization expression, a user must belong to the marketing department group and the IP address of the user’s computer must be 192.168.2.123.

Rule 1 AND Rule 2

A Compound Condition Whose Three Authorization Rules Specify Allow Access Conditions: To be allowed access to a resource protected by the following authorization expression, a user must belong to the marketing department and the executive team, or must be accessing the resource from IP address 192.168.2.123.

Rule 1 AND Rule 2 AND Rule 4

Here is what the expression would look like if you configured it using the Expression panel of the Authorization Expression sub-tab.
A Compound Condition Whose Two Authorization Rules Specify Deny Access Conditions: To be explicitly denied access to a resource protected by the following authorization expression, a user must belong to the Consultants group and belong to the Saber project group.

Rule 5 AND Rule 6

About the OR Operator

An authorization expression can include a complex condition containing two or more alternative authorization rules. Authorization rules forming a complex condition are combined using the OR operator. Each of the authorization rules specified by a complex OR condition stands on its own. Unlike compound conditions using the AND operator, the user need qualify for the condition of only one of the authorization rules connected by OR operators.

An authorization expression can contain as many authorization rules connected using the OR operator as are required to express the authorization policy for the resources it protects. You can use the OR operator to connect authorization rules all of which have Deny Access conditions, all of which have Allow Access conditions, or which specify a mix of Deny Access and Allow Access conditions. You can connect single rules to single rules using OR, and you can connect a single rule to a clause containing rules combined using AND.

Examples of Complex Conditions

The following scenarios use the example authorization rules in Table 6–1.
A Complex Condition Whose Two Rules Specify Allow Access Conditions: To be allowed access to a requested resource protected by the following rule, a user must either be a member of the marketing department group or the human resources department group.

Rule 1 OR Rule 3

Complex Condition Whose Three Authorization Rules Specify Deny Access Conditions: To be explicitly denied access to a requested resource, a user must belong to the Consultants group, or belong to the project XYZ group, or use a computer with the IP address 192.168.5.123.

Rule 5 OR Rule 6 OR Rule 7

Here is what the expression would look like if you configured it using the Authorization Expression's Expression page.

A Complex Condition with Rules that Specify a Mix of Allow Access and Deny Access Conditions: To be allowed access to a requested resource protected by the following expression, a user must either be a member of the marketing department group or the executive team. To be explicitly denied access to a requested resource, a user must belong to the Consultants group or be a member of the XYZ project group.

Rule 1 OR Rule 2 OR Rule 5 OR Rule 6

Here is what the expression would look like if you configured it using the Expression panel on the Authorization Expression tab.
Compound Complex Expression Scenarios

The following scenarios use the example authorization rules in Table 6–1 to illustrate authorization expressions that contain both compound and complex expressions.

A Complex Condition Authorization Expression with Three Rules: A Delegated Access Administrator forms the following expression:

Rule 2 OR Rule 4 AND Rule 1

Here is what the expression would look like if you configured it using the Authorization Expression's Expression page.
Jane requests access to a resource protected by this authorization expression. The Access Server evaluates the expression to determine if Jane meets either of the following conditions that would allow her access to the resource:

- The IP address of Jane’s computer is 192.168.2.123 and she belongs to the executive group (Rule 4 AND Rule 1)
- Jane is a member of the marking department group (Rule 2)

If parenthesis were used to make explicit the grouping of rules according to how the Access Server evaluates the authorization expression, the expression would look like this:

((Rule 2 AND Rule 4) AND (Rule 7 OR Rule 8))

An expression is evaluated from left to right until a definitive result is produced. Jane meets the condition of Rule 1, which is followed by the OR operator, so she is granted access to the resource.

A Complex Condition Expression with Four Rules: A Delegated Access Administrator forms the following expression:

((Rule 2 AND Rule 4) AND (Rule 7 OR Rule 8))

Here is what the expression would look like if you created it using the Authorization Expression’s Expression page.
Maurice is allowed access to a resource protected by this authorization expression because he satisfies the following conditions:

- He is a member of the marketing department and the IP address of his computer is 192.168.2.123. (Rule 2 AND Rule 4)
- He is also a manager and belongs to the Managers group. (Rule 8)

The IP address of Maurice’s computer is not 192.168.5.123 (Rule 7). However, he is not denied access for this reason because the authorization expression dictates that he meet either Rule 7 or Rule 8, but not both.

A Complex Condition Expression with Six Rules: A Delegated Access Administrator forms the following expression:

Rule 2 OR Rule 4 OR Rule 1 AND Rule 9 OR Rule 5 AND Rule 6

Here is what the expression would look like if you used the Authorization Expression’s Expression page to configure it. Notice that the Authorization Expression List box does not show the last rule. To see the last rule, you would have to scroll down. However, the Text Format box wraps the text to show the complete expression.
If parenthesis were used to make explicit the grouping of rules, the expression would look like this:

Rule 2 OR Rule 4 OR (Rule 1 AND Rule 9) OR (Rule 5 AND Rule 6)

Following the order of precedence of AND over OR in regard to how rules are grouped and left-to-right processing of the rules, a user must qualify for one of the following conditions to gain access to the requested resource:

- The first single rule of the complex condition (Rule 2)
 A user who belongs to the marketing department group is allowed access to the resource.

- The second single rule of the complex condition (Rule 4)
 A user whose computer has the IP address 192.168.2.123 is allowed access to the resource.

- The first compound condition (Rule 1 AND Rule 9)
 A user who belongs to the executive team and who belongs to the ABC project group is allowed access.

- The second compound condition (Rule 5 AND Rule 6)
 A user who belongs to the Consultants group and the XYZ project group is denied access to the resource.

In its evaluation, the Access Server progresses through the expression until it evaluates a rule that produces the definitive result of the expression. If the Access Server completes evaluation of the expression and the user does not qualify for any of its
conditions, the result of the evaluation is Inconclusive. In such a case, because no rules apply to the user, no actions associated with rules are taken. However, the actions configured for the Inconclusive result of the expression are taken. For information about actions, see "Authorization Actions" on page 6-36. For information about status codes returned for inconclusive results, see "Status Codes for an Inconclusive Result" on page 6-16.

About the Use of Parenthesis

By default, two rules on either side of an AND operator compose the compound AND condition. Rules on either side of an OR operator are alternatives. When no parenthesis are used to enforce grouping of rules, the AND operator takes precedence over the OR operator.

For example, if no parenthesis were used in the following expression to override the default way in which the rules of the following expression would be evaluated:

\[R1 \text{ OR } R2 \text{ AND } R3 \text{ OR } R4 \text{ AND } R5 \]

the expression would be interpreted in the following way:

\[R1 \text{ OR } (R2 \text{ AND } R3) \text{ OR } (R4 \text{ AND } R5) \]

You can use parenthesis to override the normal grouping of the rules of an expression, for example, to give precedence to the OR condition over the AND condition.

The following example uses the same expression. In this instance of the expression, parenthesis are used to override the default grouping:

\[(R1 \text{ OR } R2) \text{ AND } (R3 \text{ OR } R4) \text{ AND } R5 \]

Working with Authorization Expressions

The following discussions provide procedures for working with authorization expressions:

- Viewing Authorization Expressions
- Creating Authorization Expressions
- Modifying an Authorization Expression as You Create It
- Deleting an Authorization Expression

Viewing Authorization Expressions

A policy domain can have only one authorization expression. Each of its policies can also have an authorization expression. If an expression has already been defined for either, you can look at its definition at any time.

If an authorization expression exists for the policy domain or for a policy, the Expression page displays the entire authorization expression. If the authorization expression is long, the text is wrapped onto the next line, and so on, to display all of the expression.

An authorization expression includes the content of the expression—its rules and operators—and the configuration for the expression itself.
To view an authorization expression for a policy domain

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain whose authorization expression you want to see.

4. Select the Authorization Expression tab.

The Authorization Expression page appears, as illustrated in the following screen shot. This page shows the name of the expression and its value configured for the policy domain. It also has three panels: Expression, Duplicate Actions, and Actions.

To look at values configured for the expression:

- Click Duplicate Actions.

 If a duplicate actions policy has been configured for the authorization expression, this section defines how duplicate actions are handled for the policy domain protected by the authorization expression. A policy domain can include one or more policies.

 See "About Duplicate Actions" on page 6-42 for details.

- Click Actions.

 This section defines the actions configured for this authorization expression.

5. Click Modify to look at the content of the expression.

The configuration for an expression appears on the page used to create the expression or modify it.

To see the actions configured for each rule of an expression, you must check the rule's configuration. See "Authorization Rules" on page 6-4.

Viewing the Authorization Expression for a Policy

Each policy has its own authorization expression. You can view it from within the definition of the policy.

An authorization expression includes the content of the expression—its rules and operators—and the configuration for the expression itself.

To view an authorization expression for a policy

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain containing the policy whose authorization expression you want to see.

4. Select the policy whose authorization expression you want to see.

5. Click Authorization Expression.

The Authorization Expression page appears, as illustrated in the following screenshot. This page shows the name of the expression, Lost Password Management None Authorization rule.

6. Click Modify to look at the content of the expression.

The configuration for the expression appears on the page used to create it or modify it.

Note: To see the actions configured for each rule of an expression, you must check the rule’s configuration. See “Authorization Rules” on page 6-4.

7. **Optional:** Look at values configured for the expression:
 - Click Duplicate Actions to display the section that defines how duplicate actions are handled for the resources protected by this policy. The setting for the policies authorization expression Duplicate Actions overrides that of the policy domain. See “About Duplicate Actions” on page 6-42 for details.

 The authorization expression for a policy may contain its own duplicate actions setting. In this case, the policy domain’s duplicate actions setting overrides the one set for the policy domain.
 - Click Actions to display the section that defines the actions configured for this authorization expression.

Creating Authorization Expressions

The authorization expression for a policy domain applies to all resources of the domain unless those resources are protected by a policy containing an expression.

To create an authorization expression for a policy domain

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain for which you want to create an authorization expression.

4. Select the Authorization Expression tab.

 The Authorization Expression page appears. If there is no defined authorization expression, a message appears, “There is no Authorization Expression defined.”

 Note: If an authorization expression exists, you can only modify its content. To replace it, you must modify all parts of it.

5. Click Add.

 The Authorization Expression page you use to create the expression appears, as illustrated in the following screen shot.

 ![Authorization Expression Page](image)

 You use the Authorization Expression page to create an authorization expression.

6. Using the following steps, select the authorization rules for the authorization expression and the operators you want to use to combine those rules.

 Note: If you want to include the first rule in a parenthetical phrase, click the open parenthesis button before you add the first rule to the expression.
a. From the Select Authorization Rule list, select the first rule to be added to the expression, and click Add.

b. If the authorization expression includes more than one rule, select the operator to be used to combine the first two rules.
 - For the AND operator, click the And button beside Select Separator.
 - For the OR operator, click the Or button beside Select Separator.
 - To begin a parenthetical phrase, click the open parenthesis button.
 - To close a parenthetical phrase, click the close parenthesis button.

7. Continue to add rules to the authorization expression, and combine them with other rules until you have completed forming the expression to fit your authorization requirements.

8. Click Save to save the expression.

 The Duplicate Action Headers page appears, as illustrated in the following screen shot.

10. Click Modify to select the duplicate actions policy. The Duplicate Actions page appears, as illustrated in the following screen shot.
11. Click Select the checkbox and the radio button for the type of Duplicate Actions handling you want.

The duplicate actions policy you set at the authorization expression level overrides that set at the Access System Console level.

12. Determine when you want Access Server caches to be updated.

- **Immediately:** Select Update Cache to update all Access Server caches immediately with information about this new prefix.
- **Later:** If you do not select Update Cache, the Access Server caches are updated when they time out and read new information from the directory server.

You cannot save an authorization expression that contains syntax errors. When you click Save, the Access Server checks the authorization expression to ensure that it is well-formed. If an authorization expression contains a syntax error—for example, an error occurs if you include an AND or OR operator at the end of the expression—you must correct the error and then save the expression.

13. Click Save.

After you save the authorization expression, the Authorization Expression view page appears showing the full expression. For details explaining how to use the features of the Authorization Expression page to create an expression, see "Modifying an Authorization Expression as You Create It" on page 6-31.

Creating an Authorization Expression for a Policy

The steps you use to create an authorization expression for a policy are the same as those for a policy. For details, see "Creating Authorization Expressions" on page 6-28. Start with the step that follows step 5, "Click Add."

To create an authorization expression for a policy

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.

2. Select the policy domain containing the policy for which you want to create an authorization expression.

3. Select the Policies page.

4. Select the name of the policy for which you want to create an authorization expression.

5. Select the Authorization Expression tab.

 The Authorization Expression page appears displaying the message "No authorization expression is defined for this policy."

6. Click Add.

7. The Authorization Expression with an active list box, text entry box, and scrolling lists appears.

Modifying an Authorization Expression as You Create It

As you create an authorization expression, you may want to change the way you have combined the rules of the expression. You may change the form of an expression as you create it, for example, to express a different authorization policy or to correct errors.
If the authorization expression contains many components—rules and operators—a scroll bar is displayed at the right side of the authorization expression list box so that you can scroll to bring items into view.

You can modify an authorization expression in either of the following two ways:

- You can modify an authorization expression within the Authorization Expression list box.
- You can modify an authorization expression within the Authorization Expression in Text Format box.

Changes you make to an authorization expression in one box are reflected in the other box in the following ways:

- As you form the authorization expression by adding rules and operators to the Authorization Expression list box, the Authorization Expression in Text Format box is automatically updated to reflect the additions and modifications.
- After you make changes to an expression in the Authorization Expression in Text Format box, you must click the Update button for those changes to be reflected in the Authorization Expression list box.

The way some operators are expressed in the Authorization Expression list box differs from how they are expressed in the Authorization Expression in Text Format box. The following table shows the differences.

<table>
<thead>
<tr>
<th>Operator in List Box</th>
<th>Operator in Text Format Box</th>
</tr>
</thead>
<tbody>
<tr>
<td>AND</td>
<td>&</td>
</tr>
<tr>
<td>OR</td>
<td></td>
</tr>
<tr>
<td>(</td>
<td>(</td>
</tr>
<tr>
<td>)</td>
<td>)</td>
</tr>
</tbody>
</table>

You use buttons to enter operators in the Authorization Expression List box. You use keys to enter operators in the Authorization Expression in Text Format text box.

Using the Authorization Expression List Box

The Authorization Expression list box displays the authorization rules and the operators that you use to combine them as you select and add rules and operators to form the expression.

Note: As you create an authorization expression using the Authorization Expression list box, the expression content is reflected in the Authorization Expression in Text Format editable text box.

To manipulate the content of an expression in the Authorization Expression list box, you use the following buttons:

- **Modify:** Replaces one rule of an authorization expression with another rule selected from the Select Authorization Rule list.

 To replace one operator with another, you swap the two operators directly by selecting one operator and clicking the button for the replacement operator.
■ **Delete**: Deletes any selected item—a rule, an operator, or an open or close parenthesis—from the Select Authorization Rule list.

■ **Delete All**: Clears the entire content of the authorization expression.

To replace one authorization rule with another
1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain whose authorization expression you want to modify.
4. Select the Authorization Expression tab.
 The Authorization Expression view page appears showing the existing authorization expression.
5. Click Modify.
 The Authorization Expression with an active selection list, text entry box, and scrolling list box appears.
6. Select the rule to be replaced in the Authorization Expression list.
7. Select the replacement rule in the Select Authorization Rule list.
8. Click the Modify button.
 The old rule in the Authorization Expression list is replaced by the new rule.

To replace one operator with another
1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain whose authorization expression you want to modify.
4. Select the Authorization Expression tab.
 The Authorization Expression view page appears showing the existing authorization expression.
5. Click Modify.
 The Authorization Expression page with an active selection list, text entry box, and scrolling list box appears.
6. Select the operator to be replaced in the Authorization Expression list.
7. Click the button for the replacement operator.
 - To replace the OR operator with the AND operator, select OR in the expression, and click the And button.
 - To replace the AND operator in the expression, select it and click the Or button.
 The old operator is replaced by the new one in the Authorization Expression list.

To delete an item
1. Navigate to the Authorization Expression list.
2. Select the item to be deleted in the Authorization Expression list.
3. Click the Delete button.

To delete the entire content of an expression

1. Navigate to the Authorization Expression list.
2. Click the Delete All button.

Using the Authorization Expression in Text Format Box

As you form the authorization expression by adding rules and operators to the Authorization Expression list, the Authorization Expression in Text box is updated to reflect the additions and modifications.

You can modify the textual content of an authorization expression directly using the Authorization Expression in Text box.

Entering New Text: To modify the text, you use keyboard or keypad keys and symbols to enter new text or to overtype existing text. (In addition to typing the text, the main difference is that you enter symbols to represent operators.) See Table 6–2 on page 6-32 for the symbols to use for operators.

Deleting Text: To delete text from the authorization expression, you use any of the standard approaches you take to handle text in a flat text file.

Updating the Authorization Expression List: To update the list with the changes you made in the Authorization Expression in Text Format text box, click the Update button directly beneath the text box.

Modifying an Existing Authorization Expression

If an authorization expression exists for the policy domain or for a policy, the Authorization Expression view page displays the entire expression. If the authorization expression is long, the text is wrapped onto the next line, and so on, to display all of the expression.

You can modify an authorization expression after it has been used to protect the policy domain or the policy for which it was created.

When modifying an authorization expression, you follow the same procedures you use to create an expression. This section describes how to navigate to the Authorization Expression page you use to modify an expression for a policy domain and for a policy.

To display the page for modifying the authorization expression for a policy domain

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain for which you want to create an authorization expression.
4. Select the Authorization Expression tab.
 The Authorization Expression view page appears showing the existing authorization expression.
5. Click Modify.
 The Authorization Expression page with an active selection list and two text entry boxes appears.
For the remainder of this process, see the steps of the following procedures for creating and modifying an authorization expression:

- "Creating an Authorization Expression for a Policy” on page 6-31
- "Modifying an Authorization Expression as You Create It” on page 6-31

To display the Authorization Expression page for a policy to modify the expression

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain containing the policy for which you want to create an authorization expression.
3. Select the Policies tab.
4. Select the name of the policy whose authorization expression you want to modify.
5. Select the Authorization Expression tab.
 The Authorization Expression view page appears showing the existing authorization expression.
6. Click Modify.
 The Authorization Expression with an active list box, text entry box, and scrolling list box appears.

For the remainder of this process, see the steps of the following procedures for creating and modifying an authorization expression:

- "Creating an Authorization Expression for a Policy” on page 6-31
- "Modifying an Authorization Expression as You Create It” on page 6-31

Deleting an Authorization Expression

Before you can create a new authorization expression for a policy domain or for one of its policies, you must delete the existing one.

To delete the authorization expression for a policy domain

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain whose authorization expression you want to delete.
4. Select the Authorization Expression tab.
 The Authorization Expression view page appears showing the existing authorization expression.
5. Click Modify.
 The Authorization Expression edit page appears showing the content of the existing authorization expression.
6. Click the Delete All button beneath the Authorization Expression text box.
Authorization Actions

To delete the authorization expression for a policy

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain containing the policy whose authorization expression you want to delete.
3. Select the Policies tab.
4. Select the name of the policy whose authorization expression you want to delete.
5. Select Default Rules.

 The Authorization Expression view page appears showing the existing authorization expression.
7. Click Modify.

 The Authorization Expression edit page appears showing the content of the existing authorization expression.
8. Click the Delete All button beneath the Authorization Expression list box.

Authorization Actions

For every authorization rule, you can configure both a set of actions to be taken if a user is granted access to the requested resource as a result of evaluation of the rule and a set of actions to be taken if a user is denied access to the resource. You can also configure sets of actions to be taken depending on the result of the authorization expression itself.

For both entities—rules and expressions—the definitive result of evaluation of the expression determines which actions are taken. Not all rules of an authorization expression contribute to the definitive result of the expression. The only actions taken are for the rules that led up to the definitive result of the expression. For explanation of the definitive result, see "About Evaluation of the Rules of an Expression" on page 6-16.

This section includes the following topics pertaining to actions:

- About Actions For Rules and Expressions
- About Kinds of Actions
- About the Use of HTTP Header Variables and Cookies
- About Passing Information Using Actions
- Which Actions Are Returned?
- About Complementary Actions
- About the Evaluation Order of Authorization Actions

About Actions For Rules and Expressions

In addition to being able to define to whom the Allow Access part and the Deny Access part of a rule applies when you configure the rule, you can also specify separate sets of actions for each result of the rule.

You can configure actions for the following results of evaluation of rules and expressions:
Authorization Actions

- **Authorization Success**: For both rules and expressions
- **Authorization Failure**: For both rules and expressions
- **Authorization Inconclusive**: For expressions only

This result occurs when evaluation of the rules of the expression for which the user qualifies produce conflicting results, or the user does not qualify for any rules of the expression.

Additional information about these conditions is provided in the following sections:

- For a description of the results of rules of an expression, see "About Authorization Rule Evaluation" on page 6-6.
- For a description of the results of expressions, see "About Authorization Expression Evaluation" on page 6-16.

About Kinds of Actions

Actions allow you to:

- Redirect the user’s browser to another URL.

 You can redirect URLs from the Access Server to an AccessGate or a WebGate.

- Pass information about the user to downstream applications in the same policy domain or a different one.

 Using HTTP header variables or cookies, you can use actions to pass the following kinds of information:

 - User profile
 - User’s DN
 - Static text strings

 See "About the Use of HTTP Header Variables and Cookies" on page 6-37 for details about using header variables to pass information to downstream applications.

About the Use of HTTP Header Variables and Cookies

Consider the 4K size limit of the HTTP header when you use HTTP header variables and cookies to pass information to downstream applications. This HTTP header size limit includes all cookies, server variables, environment variables—that is, all of the content of the HTTP header. There is no constraint on the number of individual elements an HTTP header can contain, as long as the content does not exceed the 4K limit. When assessing the amount of available space in the HTTP header, take into account the byte size of the data used by the Access System and other applications. For example, if the Access System and other applications combined use 1K in the HTTP header, you would have 3K for your data.

How Caching Header Variables Affects their Availability

If a header variable’s value is dynamic, the value is not available until the Access Server cache is refreshed.

The refresh frequency is set in the Policy Cache Timeout field in the Access Server Configuration/Name of Access Server screen. If you plan to use header variables with dynamic values, ask your Master Administrator about the refresh frequency.
How Web Servers Handle Header Variables

Web servers process header variables differently. This variability affects how you must implement header variables in your applications.

Here are some examples:

- Netscape/iPlanet Web servers precede Oracle Access Manager variables with the string, HTTP:
 - If you define a variable called HTTP_CN, Netscape/iPlanet produces a variable called HTTP_HTTP_CN.
 - When you write an application that needs to read a header variable, the application must look for a variable called HTTP_HTTP_CN and not HTTP_CN.

- Microsoft IIS expects header variables to be defined with a dash, not an underscore. You would enter HTTP–CN, not HTTP_CN.
 The receiving application must read the variable as if it had an underscore. It looks for HTTP_CN, not HTTP–CN.

- The Lotus Domino Web server cannot pass Oracle Access Manager header variables.

For information about how to use header variables for various servers, refer to your Web server’s documentation.

About Passing Information Using Actions

Actions can pass information about users to other applications in the same or a different policy domain. Table 6-3 provides examples of how to use actions.

<table>
<thead>
<tr>
<th>Task</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>Personalizing the end-user's interaction with the receiving</td>
<td>You can use an action to send the user’s name to a downstream application. The application could use the name to greet the user with a personalized message when the user logs in.</td>
</tr>
<tr>
<td>application</td>
<td></td>
</tr>
<tr>
<td>Passing information in a header variable</td>
<td>You can use a header variable:</td>
</tr>
<tr>
<td></td>
<td>• To pass membership information</td>
</tr>
<tr>
<td></td>
<td>• To pass information about a user for purposes of single sign-on</td>
</tr>
<tr>
<td></td>
<td>For SSO to work, the target application must be able to use the variable.</td>
</tr>
<tr>
<td>Redirecting users to a specific URL upon failure or</td>
<td>You can use redirection to send the user to another location.</td>
</tr>
<tr>
<td>success of the attempt to authorize</td>
<td>For example, you can redirect the user to your portal page following authorization</td>
</tr>
</tbody>
</table>

Which Actions Are Returned?

Different actions are returned, depending on the result of the authorization expression and the rule or rules that were decisive in producing the definitive result. The Access Server returns the actions for the results of the definitive rules—the final definitive rule and those of the rules that led up to it. It determines the actions to return based on the following considerations:
If the result of an authorization expression is Deny Access, the Authorization Failure actions for all of the definitive rules are returned.

For example, for the following compound complex authorization expression, the user qualifies for the Deny Access conditions of Rule 5, Rule 6, and Rule 7. The Authorization Failure actions are returned for all of these rules, but no actions for Rule 3 are returned.

\[(R5 \text{ AND } R6) \text{ AND } (R3 \text{ OR } R7)\]

If the result of the authorization expression is Allow Access, the Authorization Success actions for the definitive rules are returned.

For example, for the following compound complex authorization expression, the user qualifies for the Allow Access conditions of Rule 1, Rule 2, and Rule 4. The Access Server returns the Authorization Success actions for Rule 1, Rule 2, and Rule 4, which are the definitive rules.

\[(R1 \text{ AND } R2) \text{ AND } (R4 \text{ OR } R3)\]

Because Rule 4 is the final definitive rule, the Access Server stops evaluating the expression after it. It does not evaluate Rule 3 because it has no effect on the outcome.

About Complementary Actions

You can combine the actions resulting from evaluation of two or more rules to produce a desired result. For example, the Authorization Success actions for Rule 1 and Rule 2 in the following expression are combined to present a personalized greeting to the user for authorized users.

\[\text{Rule 1 AND Rule 2 OR Rule 3}\]

Here is how the actions for the rules are specified:

- For Rule 1, the Authorization Success action directs the Access Server to return the user's cn in the HTTP_CN header variable.
- For Rule 2, the Authorization Success action directs the Access Server to return the text 'Hello' in the header variable HTTP_GREETING.

For example, Sonal qualifies for both rules of the compound condition of the expression. She is a member of the marketing department group and the IP address of her computer is 192.168.2.123. Because she was successfully authorized as a result of evaluation of the expression, Sonal is presented with a personalized greeting when she logs into the downstream application, the resource she requested.

About the Evaluation Order of Authorization Actions

When you set actions in the default authorization policy and in specific policies for a policy domain, the action that is applied to a user depends on what policy is enforced. For example, suppose that you define three policies in a policy domain:

- Policy 1
- Policy 2
- Policy 3

Each policy is checked in order, from top to bottom. If the third policy listed in the domain is the one that is enforced, the actions (for example, header variables) are
Working with Authorization Actions

Following discussions provide procedures to work with authorization actions:

- Setting Actions for Authorization Rules
- Setting Actions for Authorization Expressions
- About Duplicate Actions
- Setting the System Default Duplicate Actions Behavior
- Setting the Duplicate Actions Behavior for an Expression
- Creating Custom Authorization Actions

Setting Actions for Authorization Rules

Use the Actions feature to define an authorization rule's actions for responding to authorization success and authorization failure results. An action returns a specific value, such as the value of an attribute.

Actions you specify correspond with access conditions in the following way:

- Authorization success actions apply to Allow Access conditions.
- Authorization failure actions apply to Deny Access conditions.

To create an action for an authorization rule

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain containing the authorization rule whose actions you want to set.
 A page appears listing the authorization rules for the policy domain.

 Note: If you are just now creating a policy domain, you do not see any authorization rules.

4. Select the authorization rule for which you want to set actions.
5. Click Actions.
6. Click Add.
7. For each of the following conditions, configure the actions to be taken—the RedirectURL and the user information to be returned:
 - Authorization Success
 - Authorization Failure
8. Click Save.
Configuring an Authorization Action When Using Disjoint Domains

If you have disjoint domains, you need to configure an authorization scheme that enables searches for users with identical user IDs who reside in disjoint domains.

To configure an authentication scheme for disjoint domains

1. In the action that you define upon success, you need to set the following values:
 - **Type**: HEADERVER
 - **Name**: HTTP_OBLIX_UID
 - **Return Attribute**: obuniqueid

 Note: This must be done for both the default identity and access policy domains.

2. In addition you need to make the following configuration file changes:
 - In the following file:

 PolicyManager_install_dir/access/oblix/apps/common/bin/globalparams.xml

 change the value of whichAttrIsLogin to ObUniqueID
 - Make the same change in the following file:

 IdentityServer_install_dir/identity/oblix/apps/common/bin/globalparams.xm

Setting Actions for Authorization Expressions

You can define actions for three kinds of results of evaluation of an authorization expression: authorization success, authorization failure, and inconclusive results of the expression evaluation.

To create an action for an authorization expression

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain that the authorization expression whose actions you want to set belongs to.
4. Select the Authorization Expression tab.
5. Click Actions.
6. Click Add.
7. For each of the following conditions, configure the actions to be taken depending on the result of evaluation of the expression (that is, the RedirectURL to use and the user information to return):
 - Authorization Success
 - Authorization Failure
 - Authorization Inconclusive
8. Click Save.
About Actions for Inconclusive Results

An inconclusive result can be returned for an authorization expression under the following two conditions:

- The user qualified for conflicting Allow Access and Deny Access rules.
- The user did not qualify for any rules of the expression.

For information about the status codes the Access Server returns when an expression is evaluated to a result of inconclusive, see "Status Codes for an Inconclusive Result" on page 6-16.

About Duplicate Actions

Because an authorization rule can be reused within an authorization expression, it is possible that evaluation of each instance of the authorization rule producing the same result can cause the Access Server to return the same action more than once.

It is also possible that different rules of an expression could return the same actions. Conflict can occur when, as a result of evaluation of the expression, two or more rules contributing to the definitive result produce the same actions. (See "About Evaluation of the Rules of an Expression" on page 6-16 for an explanation of the definitive result.)

For example, if the action of one rule is to set the HTTP_GREETING variable text string, and the action of another rule is to set the variable to a different value, a conflict occurs if the actions of both rules are returned. Because HTTP_GREETING can be set to only one text string, the Access Server must determine which one to use.

For all cases except RedirectURLs, you can set an option that determines how the Access Server should handle duplicate actions.

WARNING: For RedirectURL, the Access Server always returns the last URL it encounters. You cannot override this behavior.

How Duplicate Actions Are Handled

How the Access Server handles duplicate actions is defined by a system default setting, which you can configure. However, you can override the system default behavior for the individual authorization expressions of policy domains and policies. Here are the three behaviors from which you can choose:

- Duplicate—If you choose this option, the Access Server appends each new value it encounters to the information it returns to the application requesting authorization for the user. (The Access Server does not check for duplicate information.) Select this option if the application expects to receive information for all instances of the action. In this case, the application must process the values of all duplicate actions returned to it. Use of this option may incur performance issues.

- Ignore Duplicate—If you choose this option, the Access Server removes all duplicate actions, and only the first instance of the action is returned to the application requesting authorization for the user. Each time an action value is added, the Access Server checks existing values to determine if the new action duplicates an existing one. If the Access Server finds one, it does not add the new value to those it returns to the application. In this case, any information inherent to the value of the repeated action is lost.

Because the Access Server must check for duplicate actions, use of this option may incur performance costs.
Override—If you choose this option, only the value of the last instance of the action is returned. Each new value overwrites the previous one, and previous values are lost. Do not select this option if the application requesting the authorization expects the results of all duplicate actions. This option is the most efficient one.

Duplicate Actions and WebGate Restrictions

The ability to process duplicate actions applies to AccessGates only. The Access Server sends to the WebGate the actions as specified by the duplicate actions policy—whether Duplicate, Ignore Duplicate, or Override. However, the WebGate supports only a single value for a header variable. Although it receives the duplicate actions, the WebGate overrides duplicates so that the last value set for the header variable is used. Values set for the same header variable by previous actions are lost.

Setting the System Default Duplicate Actions Behavior

You can specify a system default setting for how the Access Server should handle duplicate actions, if any occur. By default, the system setting applies to handling of duplicate actions resulting from evaluation of all authorization expressions under control of the Access Server. However, you can override it for an individual authorization expression.

To set the system default duplicate actions behavior for the Access Server

1. Launch the Access System, select the Access System Console, and select Access System Configuration.
2. Select Common Information Configuration.
3. Click Duplicate Actions.
4. Select the radio button to set the duplicate action behavior: Duplicate, Ignore, or Override.
5. Click Save.
6. Restart the server for the duplicate actions policy change to take effect.

Setting the Duplicate Actions Behavior for an Expression

For each authorization expression, you can specify how you want the Access Server to handle duplicate actions if any occur as result of evaluation of the expression. By setting the authorization expression’s Duplicate Actions value, you override the system default Duplicate Actions behavior.

To set the behavior for handling duplicate actions for an expression

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain that the authorization expression belongs to.
 - A page appears listing the default rules and the authorization expression for the policy domain.
4. Select the Authorization Expression tab.
5. Click Duplicate Actions.
The Duplicate Action Headers page appears.

6. Select the radio button for the duplicate actions behavior for the expression: Duplicate, Ignore, or Override.

Creating Custom Authorization Actions

You can specify customized actions to be performed following successful authorization of a user or failure to authorize the user. Implementing a custom action requires an authorization plug-in. When defining a customized action:

- Authorization success actions apply to Allow Access conditions.
- Authorization failure actions apply to Deny Access conditions.

Refer to the Oracle Access Manager Developer Guide for details on creating a plug-in. For information about actions, see "Authorization Actions" on page 6-36.

To implement a custom action

1. Launch the Access System, select the Policy Manager, and select My Policy Domains.
2. Select the policy domain that the authorization rule belongs to.
 A page appears listing the authorization rules for the policy domain.
 If you are creating a policy domain, you do not see any configured authorization rules.
4. Select the authorization rule for which you want to set custom actions.
5. Click Custom Actions.
 You are not able to select Custom Actions unless at least one authorization plug-in has been defined.
6. Click Add.
7. Enter the information for the custom action to be taken following successful authorization of a user or failure to authorize the user.
8. Click Save.

Note: You can define multiple custom actions for Authorization Success or Authorization Failure.

Authorization Schemes for Custom Plug-Ins

You can create authorization schemes for custom plug-ins that perform authorization tasks. You must be a Master Access Administrator to create and manage authorization schemes. After you create an authorization scheme, a Delegated Access Administrator can include the scheme in an authorization rule.

About Authorization Schemes and Custom Plug-Ins

The Access System provides a default authorization scheme called Oracle Authorization Scheme that you can use for any authorization rules you create. However, you can create custom authorization schemes that include custom plug-ins used to perform different or additional tasks from those of the default scheme. After
you create a custom authorization scheme, Delegated Access Administrators can include the plug-in in an authorization rule.

The Access System supports writing authorization plug-ins in C and any language supported by the Microsoft .NET framework, including C, C++, and Visual Basic. For details about managed code for authorization plug-ins, see the Oracle Access Manager Developer Guide.

About Authorization Plug-Ins
A custom authorization plug-in is a shared library (.dll or .so) that the Access Server uses to make outbound calls to external business logic for determining user authorization privileges and actions.

You can write a custom plug-in for any purpose. For example, you may want to look up a user's bank balance from a mainframe application to determine authorization privileges.

In some cases, the plug-in may pass authorization actions in addition to other parameters. The types of information a custom plug-in can pass are the same as those you can configure for an authorization rule. They are:

- User profile attributes
- Configuration parameters, required or optional
- Context-specific information, such as HTTP header information

Task overview: Providing customized authorization plug-ins
1. Write the custom authorization plug-in.
 See the Oracle Access Manager Developer Guide for details.

 An Oracle Access Manager developer at your organization writes the custom authorization plug-in using the authorization plug-in application programming interface (API). The authorization plug-in API enables the Access Server to call external business logic to determine if a user is authorized to access a resource.

 The scheme specifies information about the custom plug-in such as the location of the plug-in and the parameters it takes.

3. A Delegated Access Administrator with management rights for the policy domain can include the authorization scheme in an authorization rule. The authorization rule can then be included in one or more authorization expressions for a policy domain or any of its policies.

Note: A custom plug-in for authorization must be installed on each application server you want to protect.

Working with Authorization Schemes
This section includes the following sections which describe how to create and configure an authorization scheme for custom plug-ins.

- Specifying Authorization Plug-In Paths and Parameters
- Viewing Authorization Schemes
Specifying Authorization Plug-In Paths and Parameters

To create an authorization scheme, you use the Authorization Management feature in the Access System Configuration component of the Access System Console. When you create a scheme, you enter information to be passed to the shared library in the User Parameter, Required Parameter, and Optional Parameter fields. You also specify one or more custom plug-ins in an authorization scheme.

When you specify a shared library for your plug-in, you can enter a complete path or a relative path to the plug-in. A relative path is evaluated with regard to the Access Server's installation directory.

For example:

```
lib/myplug_in
```

is evaluated as

```
AccesServer_install_dir/access/oblixaccess/oblix/lib/my_plug_in
```

For information on how to create shared libraries, see the Oracle Access Manager Developer Guide.

User Parameters
User parameters are user attributes that are passed to the shared library when the authorization scheme is invoked.

By default, the user's DN (distinguished name) and IP address are passed to the shared library. You cannot change this setting. However, you can select other attributes to help identify the user requesting the protected resource.

Required Parameters
All parameters are name-value pairs. Required parameters for a plug-in are configured by the Master Access Administrator. Parameters can be passed at the authorization scheme level or at the rule level.

If you pass the parameter name-value pair at the authorization scheme level, it cannot be overridden at the rule level.

When a Delegated Access Administrator configures an authorization rule using the plug-in, he or she must provide values in the rule for each required parameter not supplied at the scheme level. The parameters are then passed to the plug-in at runtime.

If you do not pass a required parameter name-value pair at the scheme level, you must provide it at the rule level.

Optional Parameters for Authorization Plug-Ins
Optional parameters help to define more fully the behavior of a plug-in. Optional parameters for a plug-in are configured by the Master Access Administrator. When a Delegated Access Administrator configures an authorization rule that uses the plug-in, he or she can choose to provide a name-value pair for each of these parameters. If optional parameters are specified, they are passed to the plug-in at runtime.
For example, suppose a user allowed to access a bank account wants to withdraw more money than exists in the account. The optional parameters may specify that this account does not include overdraft protection and it may deny the user’s request.

Viewing Authorization Schemes

You may want to view the contents and definition of existing authorization schemes before you create new ones.

To view configured authorization schemes

1. Launch the Access System and select Access System Console, select Access System Configuration, and then select Authorization Management.

 The Authorization Management: List all authorization schemes screen appears.

2. Click the link for the scheme you want to view.

 The Details for Authorization Scheme page appears with the scheme’s settings.

Adding an Authorization Scheme

If the existing authorization scheme does not meet your requirements, you may want to create a new one. In this case, as described in the previous sections, custom plug-ins must be available for the new scheme. Only a Master Access Administrator can create authorization schemes.

To create an authorization scheme

1. Launch the Access System and select Access System Console, select Access System Configuration, then select Authorization Management.

 The Authorization Management: List all authorization schemes page appears.

2. Click Add.

 The Define a new authorization scheme page appears.

3. In the Name field, type the name of the authorization scheme.

4. In the Description field, type a brief description of the scheme.

5. For the Plugin is managed code entry, if you are developing the plug-in using managed code, select Yes.

6. In the Managed Code Name Space field, enter the name space if you are using managed code. (If not, leave this field blank.)

7. In the Shared Library field, type the full path to the plug-in file or a path relative to the Access Server’s installation directory without specifying the file extension.

8. In the User Parameter field, type the LDAP attributes to be passed to the plug-in.

 To pass context-specific data such as HTTP header variables to the plug-in, see “Retrieving External Data for an Authorization Request” on page 6-49.

9. In the Required Parameter field, type the name and value of parameters the policy domain authorization rule must send to the plug-in.

 If you specify the value for a parameter here, end users cannot change the value.

10. In the Optional Parameter field, type the name and value of parameters the policy domain authorization rules may send to the plug-in.

 If you specify the value for a parameter here, end users cannot change the value.
For the User Parameter, Required Parameter, and Optional Parameter fields, click the plus (+) or minus (-) symbols to add or delete fields.

11. Click Save.

Modifying an Authorization Scheme

A Master Access Administrator is the only one who can modify an authorization scheme.

To modify an authorization scheme
1. Launch the Access System select Access System Console, select Access System Configuration, then select Authorization Management.

 The Authorization Management: List all authorization schemes page appears.

2. Click the link for the scheme you want to modify.

 The Details for Authorization Scheme screen appears.

3. Click Modify.

 The Modify Authorization Scheme screen appears.

4. Modify the parameters as necessary.

5. Click Save.

Deleting an Authorization Scheme

A Master Access Administrator is the only one who can delete an authorization scheme.

To delete an authorization scheme
1. Launch the Access System and select Access System Console, select Access System Configuration, then select Authorization Management.

 The Authorization Management: List all authorization schemes page appears.

2. Select the scheme you want to delete.

3. Click Delete.

4. Click OK to confirm your decision.

Auditing Authorization Events

An audit rule causes event-based data to be written to the audit log file. As a Master Access Administrator, you must create a Master Audit Rule in the Access System Console. As a Delegated Access Administrator, you can derive audit rules from the Master Audit Rule for your policy domains and policies, but you cannot create an alternative Master Audit Rule.

There is one audit log for each Access Server. You can configure the size of the audit log file and the rotation interval for a server. Depending on events, the audit log may contain some duplicate audit entries.

Information Logged on Success or Failure

Different information is written to the audit log depending on whether the user was authorized to use the requested resource.
For authorization failure, if information for a user does not exist in the directory, the Access Server denies the user access to a resource. In this case, the cn attribute is written in the log entry. No other attributes are written, because none are available. Because there is not an entry for the user, attributes such as givenname have no meaning. In this case, the user requesting access to a resource had not previously been authenticated.

About Creating a Master Audit Rule and Derived Rules

You can define audit rules for a policy domain and its policies. Any audit rules you define must be derived from a Master Audit Rule. A Master Audit Rule must be created by a Master Access Administrator. Delegated Access Administrators can derive access rules from the Master Audit Rule, but they cannot create them.

For details explaining how to create and define these audit rules for policy domains and their policies, see the following sections in the policy domain chapter:

- "Auditing User Activity for a Policy Domain" on page 4-39
- "About Creating a Master Audit Rule and Derived Rules" on page 6-49
- "Creating an Audit Rule for a Policy Domain" on page 39
- "Defining an Audit Rule for a Policy" on page 4-40

Retrieving External Data for an Authorization Request

An authorization scheme can obtain data from an external source. This data is passed to a custom authorization plug-in. By obtaining external data (usually in the form of information about the user) authorization decisions can be made dynamically, based on user input. For example, if a user goes to a form to purchase an item for $1000, this $1000 amount can be dynamically evaluated against a limit—perhaps stored in a database—to determine if the purchase is authorized.

Oracle Access Manager obtains the external data using a "reverse action" in an authorization request. A reverse action refers to the process for obtaining data. Usually, when you use Oracle Access Manager, the data flows from the Access Server to the AccessGate or WebGate. In contrast, a reverse action sends data from the AccessGate or WebGate to the Access Server.

The reverse action feature can be used with WebGates and with custom AccessGates. For both cases, you must write a custom authorization plug-in. See the source code example that can be the basis for this plug-in:

```
Access_Server_install_dir\oblix\sdk\authorization\samples\req_context.c
```

Note that when you configure the authorization scheme, you must supply a path and a name for the shared library that is created when the code is compiled. If you have Access Servers on different platforms that access this library, the path and the name must be identical on both servers.

See the *Oracle Access Manager Developer Guide* for details. In particular, refer to the information on the isAuthorized call for the ObUserSession class.

When writing a custom AccessGate that correctly handles a reverse action, error processing for this plug-in is as follows. If an isAuthorized call fails to pass required data to the authorization plug-in, the Access Manager SDK returns ObUser_ERR_NEED_MORE_DATA. In this case, the AccessGate can use the getAuthorizationParameters call in the ObResourceRequest structure to discover what
data is required, gather the data, and reissue the isAuthorized call. The access_test_cplus program in the Access Manager SDK installation directory contains examples of these calls.

To retrieve external data for an authorization request
1. Create an authorization scheme as described in "Authorization Schemes for Custom Plug-Ins" on page 6-44.
2. In the User Parameter field, enter the following:

 RA_source$name

 or

 RA_name

 where source is one of the following:

 - server
 - header
 - post
 - query
 - cookie

 For information about the User parameter, see "User Parameters" on page 6-46.

 If you omit the value for source, sources are searched in the order shown in the list. Note that the Web server source (the server parameter) takes precedence over other sources. This prevents the request data, which is under control of the user, from overriding Web server data. For example, a remote_user cookie sent from a user does not override a remote_user variable sent by the Web server. The WebGate automatically extracts the requested data from the HTTP request.

 If the custom client or AccessGate is created using the Access Manager SDK, it is up to the application program calling the Access Manager API to collect this data.

3. Create a custom authorization plug-in to process the external data sent by the WebGate or custom AccessGate and to return an authorization decision and optionally, action data.

 Note that in the authorization scheme that you defined in this procedure, the RA prefix for the user parameter instructs the Access Server to go to the plug-in to make the external request.

Example: Configuring a WebGate to Use Authorization Data from and External Source

Most browsers accept a number of standard headers in the HTTP requests that they send to servers. In this example, an authorization scheme uses the accept-language header, tells the WebGate to obtain the value of the header that is sent from the user’s browser, and authorizes users if the browser language is set to en-us.

In the following example, the distributed example authorization plug-in named req_context compares the value in an incoming header against another value.

The req_context authorization plug-in is a general purpose plug-in to check external data, for example, HTTP headers retrieved by an authorization action that looks for external data. The plug-in compares the external data to specified values, either fixed values or user attribute values. A type parameter of “fixed” means that the data specified by the Name parameter is to be checked against the actual string in the Value
parameter. A Type parameter of "attribute" means that the named external data is to be checked against the value of the user attribute specified in the Value parameter. In this example, a fixed value is used, however, the target value could be an attribute.

For example, the req_context plugin parameters for one authorization rule that allows only American English browsers could be specified as follows:

Name: RA_accept-language
Type: fixed
Value: en-US

In this example, the value of the accept-language header is to be checked against the absolute (or fixed) value "en-us".

An authorization rule to allow only French browsers could specify the following:

Name: RA_accept-language
Type: fixed
Value: fr

You could use the req_context plug-in to check if the user’s browser language matches a language configured for the user in an "expected-language" attribute in the user’s directory entry, as follows:

Name: RA_accept-language
Type: attribute
Value: expected-language

As an alternative method for finding a fixed value, you also could write a special purpose plug-in that only checks for "en-us", in which case the only required parameter would be the user attribute "RA_accept-language".

Note: Note that if you try to test the scheme shown in the following procedure, retrieval of the accept-language header may be case-sensitive on some browsers.

To configure a sample scheme to obtain external authorization data

1. In the Access System Console, create an authorization scheme named Browser Language:

 ![Authorization Management: List all Authorization Schemes](image)

 Once you have defined the Browser Language authorization scheme, it appears in the list of schemes in the Authorization Management page. The details of the authorization scheme are as follows:
Note that the shared library is based on the sample code in the following plug-in:

```
oblix\sdk\authorization\samples\req_context.c
```

See “To retrieve external data for an authorization request” on page 6-50 for details. Note also that this scheme makes use of the RA_accept_language user parameter. In the required parameters for this scheme, the name accept-language is provided, with a type of fixed and no value.

2. In the Policy Manager, define a new policy domain.

The authorization rule in this policy domain looks for the language setting of the user’s browser and authorizes the user if the browser language value is en-us, as follows:

Name: Browser language

Resource: http (/protected)

Authorization Rule Name: Browser Language English

Authorization Rule General: The authorization scheme (that was defined in the Access System Console) is Browser Language

Authorization Rule Plug-in Parameters: The profile attribute that is passed is RA_accept-language, and the value is en-us

The plug-in parameters for this policy domain appear as follows:

Name: accept-language

Type: fixed

Value: en-us
Configuring User Authorization
The Access System’s single sign-on capability enables users to access more than one protected URL or application with a single login. Before reading this chapter you should be acquainted with the terms and concepts covered in Chapter 4, “Protecting Resources with Policy Domains” on page 4-1.

This chapter covers the following topics:

- Prerequisites
- About Single Sign-On
- Single Sign-On Cookies
- Single Domain Single Sign-On
- Multi-Domain Single Sign-On
- Application Single Sign-On
- Single Sign-On Between Identity and Access Systems
- Single Sign-On for Lotus Domino
- Enabling Impersonation in the Access System
- Troubleshooting Single Sign-On

Prerequisites

Before attempting to configure single sign-on, you need to have a working Identity and Access System. This includes installing and configuring your directory server, the Identity System, the Policy Manager and Access Server, and at least one WebGate or Access Gate. For complete details, see the Oracle Access Manager Installation Guide.

About Single Sign-On

Single sign-on gives users the ability to access more than one protected resource (Web pages and applications) with one authentication. The Access System enables you to protect Web sites and applications by defining what resources you want to protect and providing rules for accessing the resource. The rules are for:

- **Authentication:** Authentication is the process of proving that a user is who he or she claims to be. To authenticate a user, a WebGate presents the user’s browser with a request for authentication credentials in the form of a challenge. The challenge is referred to as a challenge method or authentication method.
Authorization: Authorization is the process of determining if a user has a right to access a requested resource. A user may want to see data or run an application program protected by a policy. The requested resource may belong to a policy domain, or it may be covered within that domain by a specific policy that is different from the global one.

For more information on protecting access to a single resource, see Chapter 4, "Protecting Resources with Policy Domains" on page 4-1.

Different Types of Single Sign-On

Single sign-on can be implemented in a variety of ways:

- **Single domain**: For example, you can set up single sign-on for a set of URLs within the domain mycompany.com.
- **Multi-domain**: For example, you can set up single sign-on for a set of URLs that reside within the domains mycompany.com and yourcompany.com.
- **Applications and third-party products**: For example, you can set up single sign-on between Oracle Access Manager and a IBM WebSphere Application Server.

The first two implementations use encrypted cookies, as explained in "Single Sign-On Cookies" on page 7-2. For these implementations to work, end users must enable their browsers to receive cookies. For single sign-on with third-party products, see the Oracle Access Manager Integration Guide.

Single Sign-On Cookies

The Access System implements single-domain and multi-domain single sign-on through an encrypted cookie called the ObSSOCookie. The WebGate sends the ObSSOCookie to the user’s browser upon successful authentication. This cookie can then act as an authentication mechanism for other protected resources that require the same or a lower level of authentication.

When the user requests access to a browser or another resource, the request flows to the Access Server. The user is logged in, and the ObSSOCookie is set. The Access Server generates a session token with a URL that contains the ObSSOCookie. Single sign-on works when the cookie is used for subsequent authorizations in lieu of prompting the user to supply authorization credentials.

When the cookie is generated, part of the cookie is used as an encrypted session token. The encrypted session token contains the following information:

- The distinguished name (DN) of the authenticated user.
- The level of the authentication scheme that authenticated the user.

 See "Authentication Schemes" on page 5-3 for details.
- The IP address of the client to which the cookie was issued.
- The time the cookie was originally issued.
- The time the cookie was last updated.

If the user has not been idle, the cookie is updated at a fixed interval to prevent the session from timing out. The update interval is one-fourth of the length of the idle session timeout parameter. See "Viewing AccessGates" on page 3-17 for details.

Unencrypted ObSSOCookie data includes:
Cookie expiry time.

- The domain in which the cookie is valid.
- An optional flag that determines if the cookie can only be sent using SSL.

Security of the ObSSOCookie

The ObSSOCookie is a secure mechanism for user authentication. When the Access System generates the cookie, an MD-5 hash is taken of the session token. When the ObSSOCookie is used to authenticate a user, the MD-5 hash is compared with the original cookie contents to be sure no one has tampered with the cookie. MD-5 is a one-way hash, so it cannot be unencrypted. The Access Server does the comparison by hashing the session token again and comparing the output with the hash of the token already present in the cookie. If the two hashes do not match, the cookie is corrupt. The system relies on the fact that if someone tampers with the session token, the hashes will not match.

The single sign-on cookie does not contain user credentials such as user name and password.

Configuring the ObSSOCookie

Configuring the ObSSOCookie is a one-time activity conducted by a Master Administrator or Master Access Administrator. The cookie is encrypted using a configurable encryption key known as a shared secret.

- For shared secret keys used in installations of version 5.x, the RC4 encryption scheme was recommended.
- For shared secret keys used in installations of version 6.x, the RC6 encryption scheme was recommended.
- AES is a new encryption scheme introduced in version 7.0.

In version 7.0 and higher, shared secrets use this encryption scheme as the default. Oracle Access Manager 10.1.4 does grandfather the ObSSOCookie only if the shared secret is regenerated and not for changes in the configuration of the cipher to be used. Oracle Access Manager always tries to use the newer shared secret when decrypting the ObSSOCookie. If this is not successful, it uses the older shared secret. If this fails, the Access System queries the Access Server to see if a new shared secret was generated. If none of the keys is successful, the user is prompted to re-authenticate.

The shared secret encryption algorithm is an Oracle Access Manager-wide setting. It affects all encrypted cookies, not just the ObSSOCookie.

For single sign-on to work with older WebGates that have not been upgraded to Version 6, you must continue to use the RC4 encryption algorithm until all of the WebGates are upgraded. Similarly, version 6 WebGates requires RC6 for the older WebGates to be compatible with the new WebGates, and for single sign-on to work. See the Oracle Access Manager Upgrade Guide for more information about ensuring backward compatibility between new Access Servers and older WebGates.

Note: Oracle recommends that administrators use AES as the encryption algorithm. It is a much stronger algorithm than RC4 or RC6. RC6 encryption is deprecated in Oracle Access Manager 10.1.4, and its support will be dropped in future releases.
To configure the ObSSOCookie

1. Generate a key to encrypt the ObSSOCookie from the Access System Console.
 See “Creating a Shared Secret Key” on page 8-4 for details.

2. Decide if you want the ObSSOCookie to be sent only using SSL.
 See "Securing the ObSSOCookie in an Authentication Scheme" on page 5-17 for details.

Single Domain Single Sign-On

The simplest form of single sign-on occurs within a single domain. For example, suppose within the domain mycompany.com you are hosting several restricted Web sites on several hosts. You can set up single sign-on so that users with the right privileges can access all or a subset of these restricted areas after just one authentication.

In order for single domain single sign-on to work, you need a fully functional Oracle Access Manager system, including at least two WebGates, as described in the following sections.

The rest of this section discusses the following topics:
- How Single Domain Single Sign-On Works
- Setting up Single Domain Single Sign-On
- Reverse Proxy Single Sign-On
- Logout From a Single Domain Single Sign-On Session

How Single Domain Single Sign-On Works

In single domain single sign-on, the ObSSOCookie is associated with a particular domain, for instance, domain1.com. The user authenticates to a WebGate that protects a server, for example, foo1.domain1.com and the ObSSOCookie is set. Then the user requests a resource on another server in that domain—for example, foo2.domain1.com. For the second request, the same ObSSOCookie can be used and the user does not have to re-authenticate even though he or she has requested information on separate servers in that domain.

Single domain single sign-on works by passing the ObSSOCookie among the WebGates configured for the domain. For example, suppose a user requests index.html on Host1 through a Web browser protected by WebGate1. The process overview in Figure 7–1 illustrates the events as WebGate1 on Host1 asks the user for a user name and password. If the Access Server accepts the user’s authentication, the Access Server gives WebGate1 permission to give the user access to index.html. Then WebGate1 gives the user access to index.html along with the ObSSOCookie.

If this user now wants to access Host2, the user’s Web browser sends a request to WebGate2 for a page from Host2 along with the ObSSOCookie. If the two WebGates have the same cookie domain, WebGate2 can look at the ObSSOCookie and determine if the user is authenticated. The user does not have to re-authenticate.
In Figure 7–1, the process flow is as follows:

1. The user requests page1.html on host1.domain1.com.
2. The WebGate that protects this server presents an authentication challenge.
3. The user presents credentials that the WebGate passes to the Access Server.
4. The Access Server authenticates the user and passes the ObSSOCookie.
5. WebGate shows page1.html to the user.
6. The user requests page2.html on host2.domain1.com.
 This server is protected by another WebGate and single-domain single sign-on is configured between this WebGate and the first one. The ObSSOCookie is included in the request.
7. The WebGate passes the ObSSOCookie to the Access Server, which validates the cookie and serves page2.html.

Setting up Single Domain Single Sign-On

The following is a summary of configuring a single domain for single sign-on.

Task overview: Enabling single domain single sign-on

1. Install a directory server and Web server according to the vendor’s instructions.
2. Install and set up a working Oracle Access Manager system, as explained in the Oracle Access Manager Installation Guide.
 a. Install and set up the Identity System.
 b. Install and set up the Access System.
3. Set up a WebGate, as described in the procedure "To configure the WebGate" on page 7-6.
4. Configure access controls to a resource protected by this WebGate, as described in the “Task overview: Defining authentication and authorization schemes for single sign-on” on page 7-7.

5. Set up a second WebGate, as described in the procedure “To configure a second WebGate for single sign-on” on page 7-7.

6. Configure access controls to another resource protected by the second WebGate, again using the “Task overview: Defining authentication and authorization schemes for single sign-on” on page 7-7.

7. Specify the same primary cookie domain for the two WebGates.

Configuring the WebGates

This discussion assumes that you have completed WebGate installation as part of your Access System installation and setup. For more information, see “Prerequisites” on page 7-1.

To configure the WebGate

1. From the Access System Console, click Access System Configuration, then click AccessGate Configuration.

2. Configure the WebGate as explained in "Adding an AccessGate” on page 3-23, and be sure to:
 a. Add a domain name for the Primary HTTP Cookie Domain.

 For example:

 host1.mycompany.com

 Note: The more general the domain name, the more inclusive your single sign-on implementation will be. For example, if you specify b.com as your primary cookie domain, users will be able to perform single sign-on for resources on b.com and on a.b.com. However, if you specify a.b.com as your primary cookie domain, users will have to re-authenticate when they request resources on b.com.

 b. Set a value for user session timeout to define how long the ObSSOCookie lasts. Use the two Access Server parameters for setting this timeout:

 Maximum User Session Time: Specifies the number of seconds that a user’s connection to a resource can last before the user must re-authenticate.

 Idle Session Time: Specifies the number of seconds that a cookie can remain valid without user activity. The shorter the session, the more frequently users must re-authenticate. Shorter sessions are more secure because they leave less time for an unauthorized user to access an unattended browser or an intercepted cookie to be re-used in a replay attack.

 For more information about these parameters, see Chapter 3, "Configuring WebGates and Access Servers” on page 3-1.

3. Configure multiple ways for a user to specify the fully qualified domain name, if desired.

 For SSO to work, users must enter a fully qualified domain name. You can create alternative ways to specify the domain name, as described in "Using Host
Identifiers and Host Contexts” on page 4-29. If a preferred host is not specified, all known variations of IP addresses and URLs must be listed in the Host Identifier. This is the only way to prevent users from typing an IP address to bypass authentication and authorization.

4. Configure access controls to another resources protected by the second WebGate, as outlined in the following task overview.

Task overview: Defining authentication and authorization schemes for single sign-on

1. Create an authentication scheme for the domain and a level for the scheme, as described in "Creating an Authentication Scheme for Security Bridge” on page 5-64.

 If you use different authentication schemes on the two WebGates, users can go from a higher authentication scheme to a lower one, but not from a lower one to a higher one.

 For example, if a user is granted access to a resource that has a Basic Over LDAP authentication scheme defined as having a level of 2, the user can access other resources that have schemes with the same or a lower level. However, if the user tries to access a resource with a more stringent authentication challenge, such as a scheme called Client Certificate with a level of 5, they must re-authenticate.

2. Create an authorization scheme, as described "Adding an Authorization Scheme” on page 6-47.

3. Take stock of your authorization schemes and consider the following:

 Users who use single sign-on may pass the authentication tests but may fail the authorization tests when attempting to access a second or third resource. Each resource in the domain may have a unique authorization scheme.

4. Configure a second WebGate for single sign-on, as described in the next procedure.

To configure a second WebGate for single sign-on

1. Configure a second WebGate for a set of resources in the same domain.

 Give the second WebGate a domain configuration identical to the first WebGate, and be sure that it communicates with an Access Server in the same installation as the first WebGate. See "Configuring AccessGates" on page 3-16 and "Associating AccessGates with Access Servers” on page 3-37 for details.

 For example, set up a WebGate for:

 host2.mycompany.com

2. From the Access System Console, click Access System Configuration, then click AccessGate Configuration.

3. Click the link for the first WebGate.

4. Click Modify.

5. In the Primary HTTP Cookie Domain field, enter the domain using a .domain.domain format.

 For example:

 oracle.com
6. Click Save.
7. Click Back.
8. Select the second WebGate, click Modify, and enter the same domain.

Note: The primary HTTP cookie domains must be *identical* for the two WebGates.

9. Save your work.

When two WebGates are set up, single sign-on should work between them. You must install a WebGate on each Web server that you want to protect.

Reverse Proxy Single Sign-On

If you are going to use a reverse proxy in a single sign-on configuration, be sure either to set the ipvalidation parameter to false or to add the proxy IP address to the IPValidationExceptions list in the AccessGate configuration. You need to do this because the reverse proxy hides the client's IP address. See "Configuring IP Address Validation for WebGates" on page 3-34 for details.

In some situations the Apache Reverse Proxy does not pass the ObSSOCookie to BEA WebLogic after a successful authentication. To avoid this issue, use Form Based authentication instead of Basic Over LDAP when using Apache Reverse Proxy with BEA WebLogic.

Logout From a Single Domain Single Sign-On Session

By default, the WebGate logs a user out when it receives a URL containing "logout." (including the "."), with the exceptions of logout.gif and logout.jpg. For example, logout.html or logout.pl. When the WebGate receives a URL with this string, the value of the ObSSOCookie is set to "logout."

WebGate also treats any designated URL as a signal to log the user out of the single sign-on domain. The logout URL is configured in the AccessGate configuration page. See "AccessGate Configuration Parameters" on page 3-18 for details. If the configuration is not specified, then the default behavior is used.

For example, you can configure the following logout URLs:

```
/access/oblix/lang/%lang%/logout.html
/logout.htm
```

In the first example URL, %lang% represents the directory for a specific language pack.

You can specify multiple logout URLs. See "AccessGate Configuration Parameters" on page 3-18 for details. For each browser request, the list of configured logout URLs is scanned to determine whether the user will be logged out of the single sign-on domain. On Unix machines, the logout URLs are case sensitive.

The number of logout URLs affects the performance of the WebGate.

Multi-Domain Single Sign-On

Multi-domain single sign-on allows a user authentication to be honored by all the hosts in two or more domains. The main objective in multi-domain single sign-on is to
provide the user with an ObSSOCookie from each domain. Cookies cannot be sent across multiple domains. To achieve single sign-on across multiple domains, the Access System requires that you specify a primary domain for authentication. This primary domain acts as a central hub for all authentications. Regardless of what domain users try to authenticate to, each WebGate redirects them to the primary domain expressed as a single URL.

Multi-domain single sign-on is implemented, and works, in much the same way as single domain single sign-on. For more information, see "Single Domain Single Sign-On" on page 7-4 and note the following differences:

- For single domain single sign-on, you configure WebGates in one domain. However for multi-domain single sign-on, you configure WebGates on each authentication server in each domain and designate one of the authentication servers to be the primary authentication server.

- For single domain single sign-on, the WebGate provides the user with an ObSSOCookie from one domain, and that cookie is valid for each protected resource in the domain. However, for multi-domain single sign-on, a series of redirects provides the user with a different ObSSOCookie from a designated WebGate in each domain.

- For multi-domain single sign-on to work, WebGates in all domains must have access to the complete set of authentication schemes. This means that the Access Servers in your environment must use the same policy directory. If necessary, this directory can be replicated.

- Multi-domain single sign-on works only with WebGates, not AccessGates. For example, the applications discussed in "Application Single Sign-On" on page 7-12 have their own single sign-on methods. To integrate a scheme for AccessGate-based single sign-on with a scheme for WebGate-based multi-domain single sign-on, you need to configure a proxy to act as a front end for these AccessGates.

Note: You cannot use preferred hosts with multi-domain single sign-on. An alternative is to use Challenge Redirection in your authentication schemes with form-based authentication. The challenge parameter passthrough:no enables you to redirect for authentication while delivering the user’s request to the target host and URL.

Figure 7-2 illustrates the process of providing the user with an ObSSOCookie from more than one domain. An explanation of the diagram follows.
Figure 7–2 Multi-Domain Single Sign-On

Process overview: Multi-domain single sign-on

1. The user initiates a request for a Web page from a browser.

 For instance, the request could be for host1.domain1.com/page1.html.

2. WebGate1 on host1.domain1.com sends the authentication request back through the user's browser in search of the primary authentication server.

 In this example, you have designated host2.domain2.com to be the primary authentication server.

3. The request for authentication is sent from the user's browser to the primary authentication server.

 This request flows to the Access Server. The user logs in and the ObSSOCookie is set for domain2.com. The Access Server also generates a session token with a URL that contains the ObSSOCookie.

4. The session token and ObSSOCookie are returned to the user's browser.

5. The session token and ObSSOCookie are sent to host1.domain1.com.

6. The WebGate on host1.domain1.com sets the ObSSOCookie for its own domain (domain1.com) and satisfies the user's original request for the resource host1.domain1.com/page1.html.

7. If the user later sends a request to host3.domain3.com, a similar set of redirections takes place to set the cookie for that domain.

 Since the ObSSOCookie for the primary domain has been set, the user would not have to log in to domain3.

As mentioned earlier, implementing multi-domain single sign-on is similar to implementing single domain single sign-on.
Task overview: Implementing multi-domain single sign-on

1. Use the "Task overview: Enabling single domain single sign-on" on page 7-5 as a guide and be sure to implement the differences described in "Multi-Domain Single Sign-On" on page 7-8.

2. Implement redirection as described in "Using Redirection to Enable Multi-Domain Single Sign-On" on page 7-11.

3. Test your implementation, as described in "Testing Multi-Domain Single Sign-On" on page 7-12.

4. Configure logout, as described in "Logout from a Multi-Domain Single Sign-On Session" on page 7-12.

The rest of this section discusses the following topics:

- Using Redirection to Enable Multi-Domain Single Sign-On
- Testing Multi-Domain Single Sign-On
- Logout from a Multi-Domain Single Sign-On Session

Using Redirection to Enable Multi-Domain Single Sign-On

For each WebGate in a multi-domain SSO configuration, you need to define an authentication scheme with redirection rules. For instance, suppose you have three authentication servers, each in a separate domain:

- host1.domain1.com
- host2.domain2.com—your primary authentication server
- host3.domain3.com

Each WebGate can only set the ObSSOCookie for its own domain. As a result, you need to create redirection rules so that when a user logs in, they are redirected to the primary authentication server. In this example, the primary authentication server is host2.domain2.com.

Note: A redirection rule is needed even for the primary authentication server.

For more information, see the next procedure.

To configure redirection

1. From the Access Server Console, click Access Server Configuration, then click Authentication Management.

2. Click a link for an authentication scheme.

3. In the Challenge Redirect field, enter the primary authentication server for your multi-domain single sign-on scheme.

4. Repeat these steps for WebGates in each domain in your multi-domain SSO scheme, and for all authentication schemes that are protecting resources in these domains.

This procedure redirects the servers across domains to the primary authentication server.
Next, you need to be sure that the ObSSOCookie can be passed among WebGates within a particular domain.

5. Within each individual domain, ensure that each WebGate is configured to use the same primary HTTP cookie domain. See "Configuring the WebGates" on page 7-6.

Note: If you do not specify a primary cookie domain within a single domain, the multi-domain ObSSOCookie will not be usable by other WebGates within an individual domain.

Testing Multi-Domain Single Sign-On

To test a multi-domain single sign-on configuration, set your browser to notify you when you receive cookies. If single sign-on is working, you should receive notification of session cookies from each domain you have configured.

Logout from a Multi-Domain Single Sign-On Session

When you log out of an application, the Access System only removes the ObSSOCookie for the current domain. For example, if you are logged into domain1, domain2, and domain3, and you log out from domain1, only the ObSSOCookie for domain1 is removed.

The timeout of the cookie is always determined by the machine that performs the authentication. For example, suppose www.a.com sets a cookie expiration of one hour, and www.b.com sets a cookie expiration of 30 minutes. A user goes to www.b.com and is redirected to www.a.com for authentication. After 30 minutes the www.b.com cookie expires and the user is redirected to www.a.com. The cookie for www.a.com is still valid, so the user is not prompted to re-authenticate. The domain www.b.com sets a new cookie with a fresh timeout value. For details about idle session timeout and maximum user session timeout, see "AccessGate Configuration Parameters" on page 3-18.

You can set the www.a.com timeout value to be less than that of any other domain. This guarantees that authentication happens any time one of the other domain's cookies expires. The drawback is that if you set www.a.com expiration to be too short, single sign-on may not happen because www.a.com's cookie can expire before the user’s next attempt at single sign-on. You need to determine the balance between single sign-on functionality and expiration policy.

WARNING: If you configure multi-domain single sign-on for your users, be sure to tell them to close all browser windows or to explicitly log out of each domain to which they are still logged in.

Application Single Sign-On

The Access System enables you to create a web of trust in which a user's credentials are verified once and are provided to each application the user runs. Using these credentials, the application does not need to re-authenticate the user with its own mechanism. Application single sign-on allows users who have been authenticated by the Access System to access applications without being re-authenticated.
There are two ways to send a user's credentials:

- **Using Cookies**: A specific value is set on the browser's cookie that the application must extract to identify a user.

- **Using Header Variables**: An attribute name-value pair is appended to the URL that calls the application.

With both forms of single sign-on, additional programming is required.

Header variables can be redirected only to Web servers known or protected by the Access System. Header variables passed as authentication actions are not persistent during a user session. See "Authentication Actions" on page 5-51 for information about authentication actions.

For example, when a user authenticates, they may be redirected to a portal index page:

http://mycompany.com/authnsuccess.htm

For authentication failure, an authentication action may redirect the user to an error page or a self-registration script:

http://mycompany.com/authnfail.htm

The rest of this section discusses the following topics:

- **Additional Information on Application Single Sign-On**
- **Logging Out From an Application Single Sign-On Session**

Additional Information on Application Single Sign-On

For more information on application single sign-on, see the following topics in the Oracle Access Manager Integration Guide:

- **Integration with Oracle Identity Federation**: Enables federated authentication and authorization. The Oracle Access Manager Integration Guide discusses federated authorization. Federated authentication and authorization are discussed in Oracle Secure Federation Services Administration Guide.

- **Integration with OracleAS**: Enables Oracle Access Manager single sign-on and identity management across applications that run on Oracle AS, such as Oracle eBusiness Suite.

- **Integration with RSA SecurID**: SecurID is a two-factor authentication product from RSA Security. The Access System provides a plug-in and other components to provide native SecurID authentication.

- **Integration with mySAP**: Enables Oracle Access Manager single sign-on for mySAP applications and other Oracle Access Manager-protected enterprise resources and applications. It also enables you to configure Oracle Access Manager authentication schemes for mySAP applications.

- **Integration with the Plumtree Corporate Portal**: Provides companies with a Web enterprise solution for building customized, secure business portals with integrated, identity-based Web access management. In this solution, the Plumtree Corporate Portal acts as a gateway to an enterprise intranet or extranet, providing users centralized access to applications and content hosted by the enterprise.

- **Connector for WebSphere**: Enables applications running on IBM WebSphere to be integrated with Oracle Access Manager access control and identity management features. The Connector for WebSphere enables J2EE resources and applications on WebSphere to use the Access System for authentication, authorization, auditing, and
single sign-on. It also provides the Identity System for identity management features such as delegated administration, dynamic groups, and workflows.

Security Provider for WebLogic SSPI—This implements single sign-on across J2EE applications that are deployed in the BEA WebLogic platform. The Security Provider enables WebLogic administrators to use Oracle Access Manager to control access to business applications. The Security Provider provides authentication to BEA WebLogic Portal resources and supports single sign-on between Oracle Access Manager and the BEA WebLogic Portal Web applications. The Security Provider also offers user and group management functions.

Logging Out From an Application Single Sign-On Session

The Access System sets the ObSSOCookie for each user or application that accesses a resource protected by the Access System. The ObSSOCookie enables users to access other resources protected by the Access System that have the same or a lower authentication level. If you have configured a logout form and a logout URL as described in "Configuring a Single Sign-On Logout URL" on page 2-6, calling the SSO Logout URL removes the ObSSOCookie. This requires the user to re-authenticate the next time they access a resource protected by the Access System.

See "Configuring a Single Sign-On Logout URL" on page 2-6 for details.

Note: The logout.html form also contains javascript for removing the ObTemCookie set for the Identity System. It does not however, remove any cookies set by third-party applications. To ensure that users must re-authenticate, you may need to customize the single sign-on logout.html form to remove these cookies.

Single Sign-On Between Identity and Access Systems

You can protect the Identity System with the Access System just as you would any other resource.

When installing the Access System, you can indicate that you want to protect the Identity System applications with the Access System. This automatically creates two policy domains:

- A policy domain protecting the Access System applications starting with /access
- A policy domain protecting the Identity System applications starting with /identity

See the *Oracle Access Manager Installation Guide* for more information.

The rest of this section discusses the following topics:

- Configuring Policy Domains for Single Sign-On
- Displaying the Employee Type in the Top Navigation Bar
- Troubleshooting SSO Between Identity and Access Systems

Configuring Policy Domains for Single Sign-On

The Access System installation provides the option to configure policy domains automatically to protect Identity System applications, you can manually configure these policy domains at any time using the following guidelines.
To create a policy domain that protects the Identity System applications

1. From the Policy Manager, create a new policy domain as described in Chapter 4, "Protecting Resources with Policy Domains" on page 4-1.

2. From the Resources tab, enter http as the resource type and enter /identity as the URL prefix.

3. From the Default Rules tab, create an authentication rule that protects the Identity applications using the challenge method of choice.

 The Oracle Access and Identity authentication scheme includes the ability not to allow deactivated users access to the Identity System.

4. From the Default Rules tab, create an authorization rule that controls user access.

 Use the following as a guideline for configuring the authorization rule.

5. Next create the policies that allow access to key Identity System functionality such as Lost Password Management and Self Registration.

 The following four screens show a summary of the policies.

 Note: For each policy, configure the Anonymous Authentication scheme and configure users who are allowed or denied access.
To create a policy domain that protects the Access System applications

1. From the Policy Manager, create a new Policy Domain.

2. From the Resources tab, enter http as the resource type and enter /access as the URL prefix.

3. From the Default Rules tab, create an authentication rule that protects the Access System applications using the Challenge Method of choice.

4. From the Default Rules tab, create an authorization rule that allows/denies access to the appropriate users.

5. Add the same action as shown in step 4 from the previous section, "To create a policy domain that protects the Identity System applications" on page 7-15.

6. Create the policies that allow access to common Oracle Access Manager javascripts, gifs, and so on.

7. Configure the Anonymous authentication scheme and configure users who are allowed or denied access.

Displaying the Employee Type in the Top Navigation Bar

If single sign-on is enabled on the Identity System for connecting with another system (such as the Access System), you can use actions to define the user type in the header variables. The Access System picks up this user type and displays it if there is a correct corresponding value in the obnavigation.xml file. If no user type is set, the Access System uses the default defined in the obnavigation.xml file.

Troubleshooting SSO Between Identity and Access Systems

For information on troubleshooting, see Troubleshooting Oracle Access Manager on page E-1.
Single Sign-On for Lotus Domino

By setting the remote_user header to the name of the authorized user using standard actions, you can create Domino impersonation that is similar to Windows impersonation on IIS.

Domino uses its own user store. To provide single sign-on between the Access System and Domino, the Access System passes a header variable, remote_user, that contains the name of the user as it is contained in the Domino user store. The Access System looks up the user in the Domino user store, using both the long and short name stored there, and uses the preferred name defined by the Domino instance in the remote_user header.

Note: On Lotus Domino v6, be sure that the Anonymous authentication radio button on the server/ports/internet ports/web page tab is disabled.

To configure single sign-on using a Lotus Domino Web server

1. Create an authorization rule, as described in Chapter 6, "Configuring User Authorization" on page 6-1.
2. In the General screen displaying the authorization rule, click Actions.
 The Actions page appears.
3. Click Add.
4. Under Authorization Success:
 a. Type headervar in the first Type field.
 b. Type remote_user in the Name field.
 c. In the Return Value field, type the name of any attribute that identifies the user.
5. Click Save to save your changes (or click Cancel to exit the page without saving).

Enabling Impersonation in the Access System

In a Windows environment, all processes and threads execute in a security context. Impersonation is the ability of a thread to execute in a security context that is different from that of the process that owns the thread.

When running in a client’s security context, a service becomes the client to an extent. One of the service’s threads uses an access token (a protected object that represents the client’s credentials) to obtain access to objects for the client.

The primary purpose of impersonation is to trigger access checks against a client’s identity. The Access System overrides impersonation enabled with IIS. For details about enabling impersonation, see Appendix B, "Enabling Impersonation with the Access System" on page B-1.

Troubleshooting Single Sign-On

For information on troubleshooting, see Troubleshooting Oracle Access Manager on page E-1.
Part III
Managing the Access System

Managing the Access System includes flushing password policy caches, as well as running diagnostics, and managing user access privilege reports and sync reports from within the Access System Console. Additionally, you can perform some tasks outside the Access System Console using Access System configuration files.

Part III contains the following chapters:

- Chapter 8, "Access System Configuration and Management"
- Chapter 9, "Managing Access System Configuration Files"
This chapter discusses several additional Access System configuration and management functions available within the Access System Console. Topics include:

- Prerequisites
- About Access System Configuration and Management
- Configuring User Access
- Creating a Shared Secret Key
- Flushing Password Policy Caches
- Running Diagnostics
- Managing User Access Privilege Reports
- Managing Sync Records

For more information about managing the Access System, see:

- Chapter 2, "Configuring Access Administrators and Server Settings" on page 2-1
- Chapter 9, "Managing Access System Configuration Files" on page 9-1

Prerequisites

Oracle Access Manager should be installed and set up, as described in the Oracle Access Manager Installation Guide. Read the Oracle Access Manager Introduction, which provides an overview of Oracle Access Manager not found in other manuals. Also, familiarize yourself with the Oracle Access Manager Identity and Common Administration Guide, which provides a brief review of Access System applications and installation; introduces Access System configuration and administration; and includes common functions, configuration, and administration.

About Access System Configuration and Management

Earlier chapters in this manual describe configuring administrators and viewing server settings through the Access System Console, System Configuration functions. That information is not repeated here.

The rest of this section discusses the following topics:

- Access System Configuration
- System Management
Access System Configuration

Numerous functions are available in the Access System Console, Access System Configuration tab, as shown in the following list. Unless indicated, other chapters in this manual describe Access System Configuration functions:

- Authentication Management: Configure Authentication Rules.
- User Access Configuration: List revoked users, flush the user cache, as described in this chapter under “Configuring User Access” on page 8-2.
- Common Information Configuration: Generate a cryptographic key to encrypt cookies (covered here), configure a master auditing rule, manage resource type definitions, flush the Password Policy Cache (covered here), handle duplicate action headers. For more information on items covered here, see:
 - “Creating a Shared Secret Key” on page 8-4.
 - “Flushing Password Policy Caches” on page 8-5.
- Host Identifiers: Configure host identifiers.

System Management

There are a number of options available in the Access System Console to perform system management operations, which are described in this chapter:

- Diagnostics: Show Access Server details, including connection information, as described in "Running Diagnostics" on page 8-5.
- Manage Reports: Create, view, modify, and execute User Access Privilege Reports, as described in "Managing User Access Privilege Reports" on page 8-6.
- Manage Sync Records: Archive or purge Sync Records, as described in "Managing Sync Records" on page 8-8.

For information about diagnostics, auditing, reports, and logging, see the Oracle Access Manager Identity and Common Administration Guide.

Configuring User Access

You use the User Access Configuration function available through the Access System Console, Access System Configuration tab, to manage revoked users and flush user data from the cache. This section covers the following topics:

- Revoking Users
- Flushing Users from the Cache
Note: You must be a Master Access Administrator or a Delegated Access Administrator with appropriate permissions to configure user access.

For more information on caches, see "Automatic Access System Cache Flush" on page 9-1. See also the Oracle Access Manager Deployment Guide.

Revoking Users

You can create and modify a list of users who are prohibited from accessing any of your resources. This list supersedes any other policies controlling user access to your resources. Once a user has been revoked, if the user tries to refresh the browser, or go to another protected resource, they are denied access. If a revoked user tries to log in, he or she is presented with the following error:

The user corresponding to the credentials credentials used in the login has been revoked.

To create the revoked user list
1. In the Access System Console, click Access System Configuration, then click User Access Configuration.
 The User Access Configuration screen appears.
2. Click Revoked Users.
 The Modify User Revocation List screen appears, displaying the names of revoked users. If no revoked users exist, the Configure User Revocation List screen appears. If any exist, their names appear beneath the Revoked Users link.
3. Click Select User, then use the Selector feature (Select User button) to add or remove revoked users.
 See the Oracle Access Manager Identity and Common Administration Guide for instructions on using the Selector.
4. Click Save to save your changes (or click Cancel to exit without saving.

Flushing Users from the Cache

This feature lets you delete information about certain users from the AccessGate and Access Server caches. For example, you might want to flush a user's information after that user's rights to view or modify an attribute have changed.

To flush user information from the cache
1. With any screen within the User Access Configuration feature displayed, click the Flush User Cache tab.
 For example:
 Access System Console, select Access System Configuration, select User Access Configuration, then click Flush User Cache
 The Flush all cached information for specified users screen appears.
2. Use the Selector feature (Select User button) to create a list of users whose information is flushed from all caches.
Creating a Shared Secret Key

You use the Shared Secret function available through the Access System Configuration, Common Information Configuration tab, to generate a key that encrypts single sign-on cookies sent from an AccessGate to a browser.

Note: You must be a Master Access Administrator to create a shared secret key. You should generate a cryptographic key as soon as possible after installing Oracle Access Manager, otherwise a less secure default is used.

AES is a new encryption scheme introduced in Oracle Access Manager 7.0. If you have a new installation of Oracle Access Manager 10.1.4, AES is the default encryption scheme. RC6 encryption is deprecated in Oracle Access Manager 10.1.4, and its support will be removed in future releases.

If you have upgraded to Oracle Access Manager 10.1.4 from an older version, the older encryption scheme will be retained. Older WebGates may co-exist with newer WebGates as described in the:

- Use RC4 as the encryption scheme if you have version 5.x and version 7.x WebGates co-existing together.
- Use RC6 as the encryption scheme if you have version 6.x and version 7.x WebGates co-existing together.

You should use AES encryption only when all the WebGates and Access Servers are upgraded to Oracle Access Manager version 7.0 and higher.

Note: If the shared secret is generated more frequently than the session timeout, then the user may have a cookie that was encrypted using a shared secret that is more than two generations old. In this case, the cookie is rejected and the user is forced to re-authenticate.

To generate a cryptographic key

1. In the Access System Console, click Access System Configuration, click Common Information Configuration.

 The Common Information Configuration screen appears.

2. Click the Shared Secret tab at the top of the screen.

 The Generate shared secret screen appears.

3. Click Modify.
The Generate shared secret page now includes various ciphers from which to choose.

4. Select the appropriate cipher option for the shared secret (Oracle recommends using the AES cipher).

5. Click Generate Secret only once.

Oracle Access Manager generates a new cryptographic key and distributes it to each Access Server on your system. The new key replaces the existing key without disrupting service to end users. Re-authentication only happens when the session times out. This process is called grandfathering. Clicking Generate Secret multiple times can put the shared secret key in Identity out of sync with the key in the Policy Manager.

A message informs you the operation was successful.

Changes to the Shared Secret Key

If you change the shared secret during a user session, the user does not need to re-authenticate. If a cookie is being decrypted with the old shared secret and the cookie is refreshed, it is encrypted with the new shared secret.

If the shared secret is changed more frequently than one-fourth the setting of the idle session timeout parameter, users may have to re-authenticate during a session. Otherwise, user are not required to re-authenticate during a session if the shared secret is changed.

flushing Password Policy Caches

You use Flush Password Policy Cache function, available through the Access System Configuration, select Common Information Configuration tab, to flush all password policies from the Access Server cache. flushing the password policy cache removes existing password policies and adds newly configured policies.

Note: You must be a Master Access Administrator to flush password policy caches. You can also automatically update this cache. For more information about updates to the Access Server cache, see the Oracle Access Manager Identity and Common Administration Guide.

To flush all redirect URLs

1. Click Access System Console, select Access System Configuration, select Common Information Configuration, then click Flush Password Policy Cache.

2. In the next screen, select the name of the policy you want to flush from the cache.

3. Click Flush Cache, and click OK to confirm your decision.

4. Click Flush Redirect URL, if you have configured redirect URLs, and click OK.

Running Diagnostics

You use the Diagnostics on Access System Console, System Management page to run diagnostics on all the Access Servers in your Oracle Access Manager system or selected servers.
To run diagnostics for Access Servers
1. From the Access System Console, select System Management, then click Diagnostics.
 You are asked to select the Access Servers on which you would like to run diagnostics
2. Select the option you want:
 ■ All Access Servers: Select All Access Servers, then click the Go button.
 ■ Specific Access: Servers Hold down the Control key, then click the names of the servers whose details you want, then click the Go button.

Managing User Access Privilege Reports
You use the Manage Reports function on the Access System Console, System Management page to manage user access privilege reports.
Each Access Server can collect audit information about the resource requests it handles. The list of existing reports is visible from the Manage Reports page. In addition, you can perform the following operations:

■ Adding a Report
■ Managing Reports

For more information on auditing and reports, see the Oracle Access Manager Identity and Common Administration Guide.

Adding a Report
You can create user access privilege reports that verify whether specific users have access to specific resources at specific times. Explanations to help you complete these fields appear in the following procedure.

To add a user access privilege report
1. From the Access System Console, select System Management, then click Manage Reports.
2. On the Manage User Access Privilege Reports page, click the Add button.
3. Complete the information as follows:
 Report Name: Choose a self-explanatory name for the audit report.
 Description: If you wish, you may describe the report.
 Access Server: Name of the Access Server that will collect the information for the report.
 Results Storage: Indicate whether the audit data should go to a disk file or a database.
 ■ Store in File: Check the box beside this option, then specify the fully-qualified path and file name in the Name of File field.
 ■ Store in Database: See the Oracle Access Manager Identity and Common Administration Guide for specific Oracle Access Manager configuration details and the Oracle Access Manager Installation Guide for information on database support.
List of Resources: Click the Add button beside this option to display the Add Resource Rule page, as shown in the following screen shot.

4. On the Add Resource Rule page, complete the rule by specifying the following, then click Save to return to the Add New Report page:
 - **URL**: The URL of a target resource you want to add to the report.
 - **Resource Type**: Supported choices are HTTP and EJB.
 - **Resource Operation**: Check boxes appear beside operations you can include in the report. Oracle Access Manager will determine which are permitted against the specified resources for the specified users at the specified time.

5. On the Add New Report page, continue specifying the following information:
 - **From this IP Address**: Optional. The IP address of the machine hosting the client browser whose access you want to test. This parameter is optional.
 - **Date/Time of Access**: Select a button to determine when a specific resource will be available to the users specified by the current report:
 - Any: Oracle Access Manager will determine if there is at least some point in time when the resource is available.
 - Specific date and time: Indicates you want to identify a specific point in time so that Oracle Access Manager can determine if access is permitted at that particular moment.
 - **Check Access for the following users**: Specify whether to check the access for all users in the directory or only those you designate:
 - selected users: Enables you to use the Selector page to locate and add specific users. Choose selected users, click the Select User button, specify your search criteria, then add specific users.
 - all users: Indicates you want to check the access of all users in the directory.

6. Click Save on the Add Reports page to save the specifications for the report and display the name you specified as a link on the Manage User Access Privilege Reports page.

Note: You may add multiple resources to a report. Access information on each resource will be returned in the report.
Managing Reports

From the Manage User Access Privilege Reports page (Access System Console, select System Management, then click Manage Reports), you can perform a number of operations:

- **Add**: Create a new report as described in "Adding a Report" on page 8-6.
- **Delete**: Check the box beside the report name on the Manage User Access Privilege Reports page, then click the Delete button to remove the report. Confirm that you want to delete the report when asked.

Note: To delete or execute multiple reports simultaneously, check all the boxes on which to operate, then click the appropriate button.

- **Execute**: Check the box beside the report name on the Manage User Access Privilege Reports page, then click the Execute button. Confirm that you want to execute the report when asked.
- **Refresh**: Update the list of reports on the Manage User Access Privilege Reports page by clicking the Refresh button.
- **Modify**: Click a link on the Manage User Access Privilege Reports page to display the Manage Existing Report page, then change the parameters for the existing static audit report. See "Adding a Report" on page 8-6 for details about each option.

Managing Sync Records

The Policy Manager creates synchronization records, which are stored on the directory server. Over time, these records accumulate. You can manage the space these records consume on the directory server by periodically archiving or purging all the records prior to a specified date.

The archive file is typically named nnn.ldif, where nnn is a string of numbers representing both the moment at which the file was created and the cut-off time for archiving or purging records. All records created prior to the cut-off time will be archived or purged.

By default, the archived file is stored in:

```
PolicyManager_install_dir\access\oblix\data\common
```

where `PolicyManager_install_dir` represents the directory where you installed the Policy Manager.

To archive sync records

1. From the Access System Console, click System Management, then click Manage Sync Records.
2. On the Manage Sync Records page, use the drop down lists to specify the Date of sync records generated.
3. Click the Archive Sync Records button.
4. When asked if you really want to archive the records, click OK to execute the action (or Cancel to revoke the operation).
5. Record the location when you are presented with a message like the following:
Successfully archived 210 sync records generated before the selected date to file
/export/home/COREid1014/webcomponent/access/cblix/data/common/syncrecords109099
8000.20040729.040844.ldif.

To purge sync records
1. From the Access System Console, click System Management, then click Manage Sync Records.
2. On the Manage Sync Records page, use the drop down lists to specify the Date of sync records generated.
3. Click the Purge Sync Records button.
4. When asked if you really want to purge the records, click OK to execute the action (or Cancel to revoke the operation).

For more information about reports, see the Oracle Access Manager Identity and Common Administration Guide.
Managing Access System Configuration Files

Some Access System administration tasks are performed outside the Access System Console. This chapter contains the following topics:

- Prerequisites
- Automatic Access System Cache Flush
- Synchronization of Access System Components
- Reducing Overhead for Viewing Policy Domains
- Customizing the Policy Manager User Interface

For more information about managing the Access System, see:

- "About Access System Configuration and Management" on page 8-1
- "Configuring Access Administrators" on page 2-1

Prerequisites

Oracle Access Manager should be installed and set up as described in the Oracle Access Manager Installation Guide. Read the Oracle Access Manager Introduction manual, which provides an overview of Oracle Access Manager not found in other manuals. Also, familiarize yourself with the chapters in this manual that explain Access System configuration and administration. Finally, the Oracle Access Manager Identity and Common Administration Guide describes functions that are common to the Identity and Access Systems.

Automatic Access System Cache Flush

The Identity System and the Access System use different user and group caches. You can implement automatic cache flushing for the Access System to ensure that the Access Server's cache is replaced with the latest information.

For more information about flushing the Access Server caches, see:

- "Flushing Users from the Cache" on page 8-3
- "Flushing Password Policy Caches" on page 8-5
- The Oracle Access Manager Deployment Guide provides more information about Oracle Access Manager caches.
Synchronization of Access System Components

You can synchronize two aspects of the Access System:

- **System Clocks**: This is required.
- **Component Configurations**: You have the option of copying some or all configuration information from one Access System component to another.

For information on synchronizing the configuration of two Access System components, see the *Oracle Access Manager Installation Guide*.

Synchronizing System Clocks

The clocks of all computers hosting Oracle Access Manager components must be synchronized. Without synchronization, users may not be able to log in to the components or log in to the System Console.

The two possible scenarios are:

- WebPass and Policy Manager are installed on one machine, and Identity Server is installed on another machine.
- WebPass is installed on a machine without Policy Manager, and is configured to route requests to two or more Identity Servers.

To implement synchronization

1. Specify a value for the loginslack parameter, located in each of these files:

   ```
   PolicyManager_install_dir/access/oblix/apps/common/bin/oblixbaseparams.lst
   Identity_install_dir/identity/oblix/apps/common/bin/oblixbaseparams.xml
   ```

 where `PolicyManager_install_dir` is the directory in which the Policy Manager is installed and `Identity_install_dir` is the directory in which Identity Server is installed.

2. The value that you set specifies the acceptable maximum time difference, in seconds, between the two clocks.

 For the first scenario, you must set the value for the loginslack parameter in both files to the same number. For the second scenario, you must set the value for the parameter in each identity server installation directory to the same number.

Changing Default Configuration Cache Timeout

A second way to reduce off-time network traffic between both the WebGate and Access Server and between the Access Server and the LDAP directory server is to change the default configuration cache timeout for WebGate and Access client configurations that are cached in the Access Server.

To change the default configuration cache timeout

1. Navigate to the `globalparams.xml` file located in:

   ```
   WebGate_install_dir/access/oblix/apps/common/bin/globalparams.xml
   ```

 where `WebGate_install_dir` is the directory where WebGate is installed.

2. Add the following parameters and specify their values:

   ```
   clientConfigCacheMaxElems
   ```
Reducing Overhead for Viewing Policy Domains

You can reduce overhead on the My Policy Domains page by turning off the display of the Resource Type and URL Prefix columns on that page. Note that these columns may contain useful information, so the gain in performance is a tradeoff.

To turn off the display of Resource Type and URL Prefix columns

1. Locate the `PolicyManager_install_dir/access/oblix/apps/common/bin/global params.xml` file.
 where `PolicyManager_install_dir` is the directory where Policy Manager is installed.
2. Set the value of the parameter `limitAMPolicyDomainResourceDisplay` to true.
 By default, the value of this parameter is false. The Resource Type and URL Prefix columns are displayed by default. For more information on Policy Domains, see "About Policy Domains and Their Policies" on page 4-6.

Customizing the Policy Manager User Interface

When you invoke the Policy Manager, the My Policy Domains page is displayed. This page lists all of your policy domains. If you are interested in a certain policy domain, you can scroll through the list to find it. If you are responsible for a large number of policy domains, the list will be long. An easier and faster way to find the desired policy domain would be to search for it by name.

Rather than displaying the My Policy Domains page as the first page you see in the Policy Manager, you may set the Search page as the default. In addition, you may customize the Search page. Topics in this section explain:

- Setting the Search page as the Default Page
- Customizing the Policy Manager Search Interface

For additional information on customizing these items, see the Oracle Access Manager Customization Guide.

Setting the Search page as the Default Page

With the Access System, you can change the first page displayed by the Policy Manager from the My Policy Domains page to the Search page. The Master Administrator responsible for the Web server can change the default by modifying the configuration base parameter list file, oblixbaseparams.lst. Changes made to this file occur at the Access Server level. If you change the default, it affects all users of the Policy Manager.

To set Search as the default page

1. Open the following file in an editor:
Customizing the Policy Manager User Interface

1. Locate and open the following file in a text editor:

 \texttt{PolicyManager_install_dir/access/oblix/apps/common/bin\ oblixbaseparams.lst}

 where \texttt{PolicyManager_install_dir} is the directory where Policy Manager is installed.

2. Locate the following section in the file:

 \texttt{policyservcenter_application_info:}

3. Change the entry as follows:

 \textbf{From:}

 \texttt{PROGRAM:../../policyservcenter/bin/policyservcenter.cgi}

 \textbf{To:}

 \texttt{PROGRAM:../../policyservcenter/bin/policyservcenter.cgi?program=navbar&selected_prog=searchframepage}

4. Save the file and close it.

5. Restart the Web server.

Customizing the Policy Manager Search Interface

When you perform a search in the Policy Manager, the default number of results shown is 8. This means that 8 results are displayed just beneath the search bar. You may want to change the default value. You may also want to limit the type of searches by altering what appears in the Policy Manager Search page list, which by default includes the following values:

- That Contains
- Contains in Order
- That Begins with
- That Ends with

For more information, see the following procedures:

- To change the default number of search results
- To change search parameters

To change the default number of search results

1. Locate and open the following file in a text editor:

 \texttt{PolicyManager_install_dir/access/oblix/apps/common/bin\ oblixbaseparams.lst}

 \texttt{defaultDisplayResultVal}

2. Change the default value of \texttt{defaultDisplayResultVal} to a number other than 8.

3. Save the file, and restart the Web server.

To change search parameters

1. Locate and open in a text editor the policyservcenparams.lst file:

 \texttt{PolicyManager_install_dir/access/oblix/config\ policyservcenparams.lst}

2. Locate the following \texttt{ObEnhanceSearchList} parameter and values:

 \texttt{\ObEnhanceSearchList:
BEGIN:vNameList
OOS:MOOS
OSM:MOOSM}
3. Comment out or delete the values from this list of values.
4. Save the file and restart the Web server.
Information presented in this part explores how to trigger form-based authentication and automatically log users out of one or more applications by configuring a logout URL that removes session cookies and redirects users to a logout page. In addition, you can enable impersonation in the Access System that overrides impersonation enabled with IIS.

Part IV contains the following appendices:

- Appendix A, "Form-Based Authentication"
- Appendix B, "Enabling Impersonation with the Access System"
- Appendix C, "Configuring Logout"
Authentication involves determining what authentication method is required for a resource, gathering credentials over HTTP, and returning an HTTP response that is based on the results of credential validation.

Form-based authentication enables you to create customized Web forms that process user logins using the Access System’s authentication and authorization mechanisms. These forms are HTML pages that allow you to present login information in different languages, to display user interface elements that comply with your company’s presentation standards, and to add functions to the login page: for example, for lost password management.

This chapter covers the following topics:

- About Form-Based Authentication
- Considerations when Creating a Form
- Configuring Form-Based Authentication
- Form Examples
- Troubleshooting Form-Based Authentication

About Form-Based Authentication

The Access System challenges the user with a form that was configured in an authentication scheme under the following conditions:

- If a Web resource is protected using a policy with an authentication scheme that requires a form and there is no valid session cookie (ObSSOCookie).
- If the valid session cookie exists, but it is from a lower authentication level (regardless of the challenge method).

The authentication challenge is an HTML form with one or more text input fields for user credentials. In a typical form-based authentication, text boxes are provided for the user name and password. Users enter their credentials in these fields. The most common credential choices are user name and password, but any user attributes can be used, for example, user name, password, and domain. A Submit button posts the content of the form. When the user clicks the Submit button, the form data is posted to the Web server. WebGate intercepts and processes the form data. Upon validation of the user credentials collected in the form, the user is authenticated.

You may want to use form-based authentication for reasons such as the following:
Using form-based login and a standardized logout (see "Configuring Logout" on page C-1 for details) means that the user experience for login and logout features will be consistent across browsers.

You can apply your organization's look and feel in the authentication process. For example, a custom form can include a company logo and a welcome message instead of the standard user name and password window used in Basic authentication.

You can gather additional information at the time of login.

You can provide additional functionality with the login procedure, such as a link to a page for lost password management. See the information on lost password management in Oracle Access Manager Identity and Common Administration Guide for details.

The following is a summary of configuring form-based authentication. For more details on this process, see "Configuring Form-Based Authentication" on page A-7.

Task overview: Configuring form-based authentication

1. Create an HTML form where the user's credentials, such as user name and password, can be submitted, using information in "Considerations when Creating a Form" on page A-7.

2. Place the form in an unprotected directory, or in a directory protected by an Anonymous authentication scheme, on your Web server with a WebGate. The same login form and its associated authentication scheme can be used by multiple policy domains.

3. Set up an authentication scheme to use form-based authentication and define the path to the login form. See "Considerations when Creating a Form" on page A-7 for details.

4. Call the form action using HTTP GET or POST. See "About the Form Action" on page A-9 for details.

5. Protect the target URL in the action of the login form with a policy. See Chapter 5, "Configuring User Authentication" on page 5-1 for details.

7. Specify the plug-ins.

Note: The forms that you create for form-based authentication only collects user credentials. Authentication and authorization are handled by other functions. See Chapter 4, "Protecting Resources with Policy Domains" on page 4-1 for details.

Note: Do not protect the form or any of its components (such as GIFs and links) with an authentication method, or use an Anonymous authentication scheme.
See "Plug-Ins Used with Form-Based Authentication" on page A-4 for details.

The rest of this section discusses the following topics:

- Challenge Parameters
- Redirection
- Plug-Ins Used with Form-Based Authentication
- Session Cookie and Authentication Actions
- Header Variables
- Using an External Call for Data in an Authentication Request

Challenge Parameters

When you select the Form challenge method, you are required to provide the following three parameters in the Challenge Parameter fields.

<table>
<thead>
<tr>
<th>Challenge Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>form:</td>
<td>Indicates where the HTML form is located relative to the host's document directory. For example: form:/login.html</td>
</tr>
<tr>
<td>creds:</td>
<td>Lists all fields used for login in the HTML form. Creds: is a space-separated list. For example: creds:login password Note: You can specify the creds parameter for the other types of challenge methods.</td>
</tr>
<tr>
<td>action</td>
<td>The URL that the HTML form is posting to.</td>
</tr>
</tbody>
</table>

Note: During form-based authentication with a custom plug-in, the original resource name is not available to the plug-in in the pre-defined names in the Challenge Parameter creds list. For example, in the Authentication Plug-in API the ObAnPluginInfo struct contains the Creds data type where the Access Server provides four pre-defined names within this list: Resource, Operation, RequesterDN, and RequesterIP.

When using form-based authentication, the Resource returned by the API is the resource that the login form POSTs to (not the actual resource of the original URL).

A fourth parameter, passthrough, is optional.
Enter `passthrough:yes` if you want to pass the login credentials to a post-processing system. For example, you enter `passthrough:yes` if you want to pass the login credentials through to a post-processing program for SSO to another application that does not accept header variables.

If you accept the default passthrough mode but want to redirect users to a page other than the originally requested resource, in the policy domain rule specify a redirection to another page upon authentication success. If redirection to the login form occurs as described in "Redirection" on page A-4, and passthrough mode is not set for the form authentication scheme, WebGate redirects the browser back to the originally requested resource. You can use the `ObRequestedUrl` header variable to redirect.

Redirection

If the login form is the page that user requests, redirection is not needed. However, users can attempt to go around a login form, for example, by bookmarking pages. In these cases, WebGate redirects the request to the login form. After authentication success, WebGate redirects the user back to the requested resource.

A cookie named `obFormLoginCookie` maintains the original request information. By default, this cookie is set when the browser is first redirected to the form. Information in this cookie includes:

- The requested URL
- The requested operation
- An authentication scheme
- The URL of the host to return to

Without this cookie, WebGate would be unable to send the originally requested resource upon authentication.

When the user authenticates, the `ObSSOCookie` is also set. For more information on the `ObSSOCookie`, see "Single Sign-On Cookies" on page 7-2.

Plug-Ins Used with Form-Based Authentication

You need several plug-ins to work with your form authentication scheme. The order of the plug-ins is also important.

<table>
<thead>
<tr>
<th>Challenge Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td><code>passthrough:</code></td>
<td>This parameter value determines whether the WebGate redirects the browser back to the original requested resource or passes the login credentials on to another program.</td>
</tr>
<tr>
<td></td>
<td>The Access System assumes that the URL given for the form in the authentication scheme is on the same machine as WebGate. Possible values are yes or no:</td>
</tr>
<tr>
<td></td>
<td>Accept the default value of no if you want WebGate to redirect the browser back to the original requester resource. This omits a form challenge parameter. Specify yes if you want to pass the login credentials through to a post-processing program.</td>
</tr>
</tbody>
</table>
Credential Mapping Authentication Plug-In
Credential mapping is defined for each login form. The credential_mapping plug-in performs the task of mapping the user-supplied credentials to a unique DN in the directory server. WebGate searches the directory for profiles with attributes matching the form credentials. It handles the password credential consistently with basic authentication.

Logically, password validation can only happen after the user is identified. Therefore, the credential_mapping plug-in needs to be used before validate_password and must be the first plug-in specified in your form-based authentication scheme.

Validate Password Authentication Plug-Ins
Form authentication uses the same validate_password plug-in that is used in basic authentication. You can configure the name of the password field.

More Possible Custom Authentication Plug-Ins
As with basic authentication, custom authentication plug-ins can be used to check the user name and password using other login services and user repositories. In fact, the same processing functions could be used for both basic and form user name/password authentication. Custom authentication plug-ins can also process other user credential data.

Note: During form based authentication with a custom plug-in, the original resource name is not available to the plug-in in the pre-defined names within the Challenge Parameter creds list. For example, in the Authentication Plug-in API the ObAnPluginInfo struct contains the Creds data type where the Access Server provides four pre-defined names within this list: Resource, Operation, RequesterDN, and RequesterIP.

When using form-based authentication, the Resource returned by the API is the resource that the login form POSTs to (not the actual resource of the original URL).

For more information about plug-ins, see "Configuring a Form-Based Authentication Scheme" on page A-8.

Session Cookie and Authentication Actions
If WebGate intercepts the form login, it can build the session cookie and carry out the authentication actions.

Note: If a form authentication scheme on IIS is configured with the passthrough option, and the target of the login form requires the data posted by the form, the WebGate extension method (where the WebGate DLL is the action of the form) cannot be used. The WebGate filter method (where the action of the form is a protected URL that is not the WebGate DLL) must be used instead, and the postgate DLL must be installed and enabled. See the Oracle Access Manager Installation Guide for details.
Header Variables

Form-based authentication schemes can pass authorization actions in header variables. However, they cannot pass authentication actions in header variables.

Using an External Call for Data in an Authentication Request

An authentication scheme can collect context-specific information before submitting the request to the Access Server. Context-specific information can be in the form of an external call for information. This information can be of the following types:

- server: variables set by other Web server plug-ins
- header: HTTP header variables
- post: posted data
- query: query string data
- cookie: HTTP cookie

To retrieve external data for an authentication request

1. Create an authentication scheme as described in "Defining a New Authentication Scheme" on page 5-6.

2. In the Challenge Parameter field, specify the following:

 creds:source$name

 or

 creds:name

 where source is one of the following:

 - server
 - header
 - post
 - query
 - cookie

If you omit the source, sources are searched in the order shown in the list.

Note: The Web server source (the server parameter) takes precedence over other sources. This prevents the request data, which is under control of the user, from overriding Web server data. For example, a remote_user cookie sent from a user will not override a remote_user variable set by the Web server.

If the client is a WebGate, as opposed to the Access Manager SDK, the WebGate will extract the requested data. If the client is the Access Manager SDK, it is up to the calling program to collect this data.

For a plug-in to make use of the creds parameter, you specify what is passed in the obMap credentials parameter of the ObUserSession object. See the Oracle Access Manager Developer Guide for details.
Considerations when Creating a Form

You need to create a custom form that you want users to see when they access a protected resource. The form can be as complex as you want it to be. Within the form, you must at least provide fields for a user to submit a login and password.

Note: Do not protect the form or any of its components (such as GIFs and links) with an authentication method, or use an Anonymous authentication scheme.

Key areas to consider when you are designing a form are:

- The ObFormLoginCookie as described in "ObFormLoginCookie" on page A-7.
- Form actions, as described in "About the Form Action" on page A-9.
- Form actions and WebGate.dll, as described in "Notes for Microsoft IIS" on page A-10.
- Character set encoding for the login form must be set to UTF-8, as shown and described in "Sample Login Form" on page A-14.

ObFormLoginCookie

As previously mentioned, WebGate sets the ObFormLoginCookie when the browser is first redirected to the form. This can become a problem in the following situations:

- If your login form has a link for Password Management that is protected by an Anonymous authentication scheme, the user is redirected back to the login form instead of going to the lost password link.
- After the login has been completed, WebGate marks the ObFormLogin Cookie "done" and will not allow the user to use the form login again within the same browser instance. This causes a problem for the oblogout functionality. When a user tries to log out, and then log back in, WebGate bypasses the form login processing.

You can avoid these situations by entering an action challenge parameter when you configure your form authentication scheme. See "Protecting Resources with Policy Domains" on page 4-1 for details.

Configuring Form-Based Authentication

The following procedures describe how to configure a form and an authentication scheme for the form.

Task overview: Creating a form for authentication

1. Create a custom form that you want users to see when accessing a protected resource, using considerations described in "Considerations when Creating a Form" on page A-7.

Note: Do not protect the form or any of its components (such as GIFs and links) with an authentication method, or use an Anonymous authentication scheme.
2. Place the form in an unprotected directory, or in a directory protected by an Anonymous authentication scheme, on your Web server with WebGate. The same login form and its associated authentication scheme can be used by multiple policy domains.

3. Configure a form-based authentication scheme, as described in “Configuring Form-Based Authentication” on page A-7.

The rest of this section discusses the following topics:

- Configuring a Form-Based Authentication Scheme
- Notes for Microsoft IIS
- Including Users in the obMappingFilter

Configuring a Form-Based Authentication Scheme

When you create an authentication scheme you include the name, an optional description, and the level of the authentication scheme. Parameters and options are described within the following procedure. For more information about authentication schemes, see Chapter 5, "Configuring User Authentication" on page 5-1.

Note: When a form resides on the same server as a WebGate, the relative form URL given for the form in the authentication scheme is on the same machine as WebGate. As a result, you do not include the https:// (or http://) host:port portion of the URL in the authentication scheme. However, when the form resides on a remote server, the host and port are required in the authentication scheme.

To configure a form-based authentication scheme

1. In the Access System Console, click Access System Configuration, select Authentication Management, then click Add.

 The Define a New Authentication scheme screen appears.

2. Enter the following for the authentication scheme:

 - A name.
 - A description.
 - The level of the authentication scheme: The level of the scheme is a number that corresponds to the relative security level for this scheme. Higher levels are considered more secure.

3. Select Form as the Challenge Method, as described in "About Challenge Methods" on page 5-10.

4. In the Challenge Parameter field, enter the following:

 form:relative_form_URL
 creds:credential_names
 action:Action_URL
 passthrough:[yes] (Optional)

 - The Access System assumes the relative form URL given for the form in the authentication scheme is on the same machine as WebGate.

 Do not include the http://server host:port portion of the URL if the authentication scheme is on the same machine as the WebGate.
For example:
form:/login.html

- Credential names are a space-separated list of expected credential names from the form.
 For example:
creds:login password

- The Action URL sets the ObFormLoginCookie to be returned only when the form posts the login credentials.
 For example:
 action:/access/dummy.cgi

For more information, see "About the Form Action" on page A-9.

- The default passthrough mode is no. Accept the default if you want the Access System to automatically redirect users to their original requested resource.

5. Specify whether or not you want the user to authenticate using SSL.

 You can also use Challenge Redirect to redirect the users to a central location storing all forms.

6. If you answered yes to SSL, specify the Challenge Redirect URL for your secure server.

7. Enter the following two required plug-ins:

<table>
<thead>
<tr>
<th>Order</th>
<th>Plug-in Name</th>
<th>Plug-in Parameters</th>
</tr>
</thead>
</table>
 | 1 | credential_mapping| obMappingBase="o=company,c=us" (the base DN in the LDAP search).
 | obMappingFilter="[(Identity Login Attribute=%form input field for login%)]" |
 | 2 | validate_password | ObCredentialPassword="[form input field for password]" |

WARNING: The directory login attribute is an attribute defined in the Identity System using a semantic login type, as discussed in the Oracle Access Manager Identity and Common Administration Guide. Also, you cannot have spaces in the filter. The Policy Manager does not validate the string that you provide as the credential_mapping filter, so it is possible to enter an erroneous filter. No error occurs while saving; however, the filter will fail and the plug-in will return "Authentication Failed" each time it is run.

For information about users and the obMappingFilter, see "Including Users in the obMappingFilter" on page A-11.

8. Click Save.

About the Form Action

The form action does not process the credentials for authentication. This is the job of the Access System plug-ins that you configure for the form-based authentication scheme. In the form element of a login form, the action attribute is a URL to which form data is posted when the user submits the form.
For example, in the following form the action URL is /access/dummy and the method is post:

```html
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</head>
<form name="myloginform" action="/access/dummy" method="post">
UserID <input type="text" name="userid" size="20" value="user1k1">
Password <input type="password" name="password" size="20" value="oblix">
<input type="submit" name="submit" value="Login">
</form>
</html>
```

The action URL is configured so WebGate sets the ObFormLoginCookie for the action URL path, and this cookie is only returned on the form post. When a user submits credentials, the form action is called using the HTTP GET or POST method. The form action does not process the user's credentials for authentication. That is the job of the plug-ins configured for the form-based authentication scheme.

The form action can be a call to a URL that does not do anything. When the form posts to an action URL, WebGate intercepts the post because of the ObFormLoginCookie. WebGate processes the credentials in the post data, authenticates the user, and redirects the user to the originally requested URL as indicated by the ObFormLoginCookie. Since the action URL is never reached, it does not actually have to exist. All that is required is that a policy protect the action URL. In the previous example of a form, the action URL /access/dummy is protected by a policy domain that protects all URLs subordinate to /access. However, /access/dummy, as the name implies, does not exist.

The form action can also be a call to a script that does post-authentication processing. For example, you may have a script that does post-processing on credentials to achieve single sign-on for an application that does not accept header variables. When the form action is a script, the authentication scheme must be configured with the passthrough:yes challenge parameter. This tells WebGate that the action URL is a script that must be executed after the form login. In this case, WebGate does not redirect the user to the originally requested URL. WebGate allows the Web server to continue processing the action URL. WebGate passes the originally requested URL in the ObRequestedURL header variable to the action URL script, and the script can redirect to the original URL if desired.

Note: The form action URL must reside in a policy domain protected by the Access System.

Forms that Reside on Servers Other Than a WebGate

When the form resides on the same server as a WebGate, the submit action assumes that the local host is being used. However, if the form is on a different server from the WebGate, the submit action in the form must return the data to the Web server where the WebGate resides.

Notes for Microsoft IIS

Because of the IIS architecture, the WebGate ISAPI plug-in checks all incoming requests for post-processing data. You must do one of the following:

- Either set your form action to call the webgate.dll, for instance:
action="/access/oblix/apps/webgate/bin/webgate.dll"

Note: With version 6.5, a new directory structure was instituted to accommodate localization. Before version 6.5, the form action contained a different path to webgate.dll.

- Or ensure the WebGate filter post-processing is turned on by setting the following Registry entry:

```
HKEY_LOCAL_MACHINE\SOFTWARE\Oblix\Oblix
COREid\version\WebGate\postdata="yes"
```

where version is the version number of the installed product.

Including Users in the obMappingFilter

This topic describes:

- **Including Only Active Users**
- **Including Non-Active Users**

Including Only Active Users

You may want to include only activated users in your obMappingFilter so that only activated users can login. To do this, you must filter users whose `obuseraccountcontrol=ACTIVATED`.

To include only active users in the obMappingFilter

1. Follow the procedure "To configure a form-based authentication scheme" on page A-8.
2. In the mapping filter, specify only active users. An example:

```
obMappingFilter="(&(objectclass=wwmOrgPerson) (uid=%loginid%) ( | ( !
(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"
```

Note: This example uses the Oracle sample data (wwmOrgPerson). Change this object class to your site-specific object class. The `uid=%loginid%` assumes the form has a field called loginid and that this value is also included in the creds field.

Including Non-Active Users

You may want to include non-active users in your obMappingFilter so that deactivated users cannot login. To do this, you filter users with a status of `obuseraccountcontrol=PENDING-ACTIVATION` or `PENDING DEACTIVATED`.

To include only non-active users in the obMappingFilter

1. Follow the procedure "To configure a form-based authentication scheme" on page A-8.
2. In the mapping filter, specify the inactive users. For example:

```
obMappingFilter="(&(objectclass=wwmOrgPerson) (uid=%userid%) (!(!((obuseraccountcontrol=
PENDING-ACTIVATION) (obuseraccountcontrol=DEACTIVATED)))))"
```
Form Examples

The following sections contain examples of forms that can be used for form-based authentication:

- Form Scheme Examples
- Sample Pop-Up Forms
- Sample Multi-Language Form

Form Scheme Examples

The following are examples of HTML forms and corresponding authentication schemes.

Basic Example

The following is a very simple login form:

```html
<html>
<head>
<meta http-equiv="Content-Type" content="text/html;charset=utf-8" >
</head>
<h1>My Login Form</h1>
<form name="loginform" action="/oblix/login.cgi" method="post">
Login ID: <input type="text" name="login" size="20" value="">
<p>
Submit:<input type="submit" name="submit" value="OK"> 
</p>
Password:<input type="password" name="password" value="">
</form>
</html>
```

Note: This example uses the Oracle sample object class wwwOrgPerson. You must change this object class to your site-specific object class. The uid=%loginid% assumes the form has a field called loginid and that this value is also included in the creds field.
Annotated Example

The following is another sample login form. It shows the minimum requirements for a form login authentication scheme. A production login form can be enhanced for aesthetics and branding. An example of an authentication scheme using this form is as follows:

Name: Sample Form Login

Description: Uses SampleLoginForm.html

Level: 1

Challenge Method: Form

Challenge Parameters:
- form: /loginforms/SampleLoginForm.html
- creds: -userid password
- action: /access/oblix/apps/webgate/bin/webgate.dll
SSL Required: no
Challenge Redirect: (none)
Enabled: yes
Plug-ins:

credential_mapping
obMappingBase="o=Company,c=US",
obMappingFilters="&(&(&(objectclass=gensiteorgperson)
(uid=%userid%))(!(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED)))"
validate_password obCredentialPassword="password"

For Active Directory, use "user" for the object class and "samaccountname" for the
login. For example:

credential_mapping for Active Directory
obMappingBase="ou=Hokaido,dc=perry,dc=oblix,dc=com",
obMappingFilters="&(&(&objectclass=user){samaccountname=%login%})
(!(obuseraccountcontrol=*)) (obuseraccountcontrol=ACTIVATED))"

The login form must be either unprotected or protected by an authentication scheme
with a challenge method of None. This ensures that the user is not re-challenged when
redirected to the login form. For the sample scheme, you can configure a policy
domain that protects the form using the Anonymous authentication scheme. This sets
a temporary ObSSOCookie when the login form is displayed. The ObSSOCookie is
rewritten after a successful login.

In the sample scheme, the userID is the uid attribute from the user’s directory profile.
The credential_mapping plug-in searches the user directory from the base
o=Company,c=US. The credential_mapping plug-in searches for the gensiteorgperson
object that contains a uid matching the submitted userID. The additional information
in the ObMappingFilter determines whether the user is activated. The
validate_password plug-in performs a BIND to the directory, using the submitted
password and the user profile DN retrieved when the credential_mapping plug-in
searches the directory.

The action is the WebGate local URL. This URL must be protected using any
authentication scheme. For example, you might use the Policy Manager policy domain
that was optionally created during setup of the Policy Manager.

In the case of IIS, the WebGate action is executed as an ISAPI extension, which allows
it to safely obtain the post data containing the credentials. In the case of other Web
servers, WebGate intercepts the post request (because the action URL is protected) and
extracts the post data for authentication. WebGate sets the ObFormLoginCookie using
the action challenge parameter as its path. This ensures that the ObFormLoginCookie
is returned only on the post request from the form submission. The
ObFormLoginCookie contains information about the originally requested resource.
After a successful authentication, WebGate uses this information to redirect the user’s
browser to the originally requested resource. In the redirection, WebGate sets the
ObSSOCookie with the user identity, authentication scheme level, session start and
refresh time, and browser IP address.

Sample Login Form
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>Oracle Access Manager Sample Login Form</title>
<meta http-equiv=Content-Type content="text/html; charset=windows-utf-8">
10g (10.1.4.0.1) WebGates receive only UTF-8 encoded input data. As a result, form-based authentication supports non-ASCII login credentials (username/password). When you use form-based authentication with 10g Release 3 (10.1.4) WebGates, you must ensure that character set encoding for the login form is set to UTF-8.

To set the login form encoding to UTF-8 for 10g (10.1.4.0.1)

1. Add the following META tag to the HEAD tag of the login form HTML page.

   ```html
   <META http-equiv="Content-Type" content="text/html;charset=utf-8">
   ```

2. If you upgrade an earlier WebGate to 10g (10.1.4.0.1), you must also update the login form HTML page after upgrading.

Sample Pop-Up Forms

The following JSP and ASP code samples create a pop-up login form. This prevents any issues that can arise when a login form is included as a frame within a frameset. The JSP code must be used with a Web server that has a JSP servlet engine. The ASP code must be used with IIS or another Web server with an ASP engine.

When you use one of these login pop-up examples, you need to configure an authentication scheme using one of the following challenge parameters:

- `form:login/login.asp` (assuming the ASP form is stored under the /login folder)
- or
- `form:login/login.jsp` (for the JSP form)

JSP Code Sample

```jsp
<%@ page import="java.util.*" %>
<% int launchStatus = -1; String URLVal = ""; String HTTPStart = "http://"; String QueryStr = request.getQueryString(); String ServerName = request.getServerName(); String PathName = request.getServletPath(); if (QueryStr != null) {
    if (QueryStr.indexOf("launchForm") == -1) {
        launchStatus = -1;
    }
```
else
{
 launchStatus = 0;
}
URLVal = HTTPStart.concat(ServerName);
URLVal = URLVal.concat(PathName);
URLVal = URLVal.concat('?');
URLVal = URLVal.concat(QueryStr);
URLVal = URLVal.concat('&launchForm=TRUE');
}
else
{
 URLVal = HTTPStart.concat(ServerName);
 URLVal = URLVal.concat(PathName);
 URLVal = URLVal.concat('?launchForm=TRUE');
}

if ((launchStatus != 0))
{
 <%>
 <HTML>
 <HEAD>
 <SCRIPT Language="Javascript">
 function openLoginForm()
 {
 newUrl = "<%= URLVal %>";
 child = window.open(newUrl, 'loginFormWindow',
"toolbar=no, directories=no, menubar=no, status=no, scrollbar=no, resizable=yes, width=670, height=400");
 if (child.opener == null)
 {
 child.opener = window;
 }
 window.name = 'loginOpener';
 if (navigator.appName == "NetScape") {
 child.focus();
 }
 }
 </SCRIPT>
 </HEAD>
 <BODY bgcolor="#ffffff" onload="openLoginForm(); return true;">
 <center>
 <p>
 <hr>
 <p>

 Please enter your login credentials

 <p>
 <hr>
 <p>
 </center>
 </BODY>
 </HTML>
 <%} else %>
Form-Based Authentication

ASP Code Sample

```asp
<% dim launchForm = Request("launchForm")
if launchForm <> "True" then
  'This is the plain/blank HTML page
%>
<HTML>
  <HEAD>
    <SCRIPT Language="Javascript">
      function openLoginForm()
      {
        // now open the new window with newUrl
        newUrl = "<%=request.servervariables("URL") & "?launchForm=True"%>"
        child = window.open(newUrl, "loginFormWindow",
          *toolbar=no,directories=no,menubar=no,status=yes,scrollbar=yes,resizable=yes,width=670,height=400*);
        if (child.opener == null)
          {
            child.opener = window;
          }

      }
    </SCRIPT>
  </HEAD>
  <body>
    <center>
      <h1>User Login</h1>
      <form name="frmlogin" action="/FormProtect/login.cgi" method="post"
        target="loginOpener">
        <hr>
        <b>User ID</b> <input type="text" name="txtUserID">
        <br>
        <b>Password</b> <input type="password" name="pwdPassword">
        <br>
        <input type="button" title="Login" onclick="javascript:openLoginForm();
          'value=Submit"/>
      </form>
    </center>
  </body>
</HTML>
```
if (navigator.appName == "NetScape")
{
 child.focus();
}
</SCRIPT>
</HEAD>
<BODY bgcolor="#ffffff" onload="openLoginForm(); return true;">
<center>
<p>
</p>
<p>
</p>
<p>

Please enter your login credentials

</p>
<p>
</p>
</center>
</BODY>
</HTML>

<% else %>

<HTML>
<SCRIPT language="JavaScript">
function setAction()
{
 document.forms[0].target=self.opener.name;
 document.forms[0].submit();
 window.close();
}
</SCRIPT>
<BODY>
<CENTER>
<H1>User Login</H1>

<form name="frmlogin" action="/FormProtect/login.cgi" method="post" target="loginOpener">
 <HR>
 User ID <input type="text" name="txtUserID">

 Password <input type="password" name="pwdPassword">

 <input type="button" title="Login" onclick="javascript:setAction();" value=Submit>
 <HR>
</CENTER>
</FORM>
</BODY>
</HTML>
<% end if %>

Sample Multi-Language Form

Non-ASCII user credentials are supported in only form-based authentication.
The following ASP code sample is a multi-language form that supports both Spanish and English.

Multi-Language Form

```asp
<% Option explicit
    dim strLanguage, strNewLanguage, intPointer
    dim bolLoginToCOREid
    bolLoginToCOREid = Request('LoginToCOREid')
    if bolLoginToCOREid = true or bolLoginToCOREid = "true" then
        bolLoginToCOREid = true
    else
        bolLoginToCOREid = false
    end if

    strLanguage = Request.Cookies("PrefLang")
    'Response.Write "lenguaje:" & strLanguage
    if strLanguage = "" or strLanguage = "EN" then
        strLanguage = "EN"
        strNewLanguage = "SP"
        intPointer = 0
    else
        strLanguage = "SP"
        strNewLanguage = "EN"
        intPointer = 1
    end if

    dim strUser(1), strPassword(1), strEnter(1), strPreferences(1), strCancel(1)
    dim
    strLanguageDescription(1), strForgot(1), strDescription(1), strMsgUandP(1), strMsgU(1)
    dim strUserType(1), strCOREidUser(1), strCOREidAdmin(1)

    strUser(0) = 'User:'
    strUser(1) = 'Usuario:'
    strPassword(0) = 'Password:'
    strPassword(1) = 'Contraseña:'
    strEnter(0) = 'Enter'
    strEnter(1) = 'Proceder'
    strPreferences(0) = 'Preferences'
    strPreferences(1) = 'Preferencias'
    strCancel(0) = 'Cancel-Portada'
    strCancel(1) = 'Cancelar-Portada'
    strLanguageDescription(0) = 'Espanol'
    strLanguageDescription(1) = 'English'
    strForgot(0) = 'Forgot your password?'
    strForgot(1) = '¿Olvidó su contraseña?'
    strMsgUandP(0) = 'Please enter your user name and password.'
    strMsgUandP(1) = 'Por favor teclee su usuario y contraseña.'
    strMsgU(0) = 'Please enter your user name.'
    strMsgU(1) = 'Por favor teclee su usuario.'
    strUserType(0) = 'User Type:'
    strUserType(1) = 'Tipo de Usuario:'
    strCOREidUser(0) = 'Oracle Access Manager User'
    strCOREidUser(1) = 'Usuario Oracle Access Manager'
    strCOREidAdmin(0) = 'Oracle Access Manager Admin'
    strCOREidAdmin(1) = 'Administrador Oracle Access Manager'

    strDescription(0) = 'Click "Preferences" to see and modify some of your attributes.' & _
```
Da un clic en "Español" para cambiar esta página de idioma.

Click "Forgot your password?" if you don't remember your password and you need to change it.

you will be prompted to answer your challenge phrase.

strDescription(1)="Da un clic en "Preferencias"
' para ver y modificar algunos de tus atributos." & _
"Click on "English" to change the language of this page." & _
"Do a click on "¿Olvidó su contraseña?"
' si no recuerdas tu clave y deseas cambiarla, " & _
"será necesario contestar tu frase personal."

dim identityProgram
dim userDN
dim finalURL

identityProgram="/identity/oblix/apps/userservcenter/bin/userservcenter.cgi?program=modify&tab_id=Employees"
userDN = Request.ServerVariables("HTTP_USERDN")
finalURL = identityProgram &
"&uid=" & userDN

dim obTemp
dim ObSSO
dim ObLogin
ObSSO = "ObSSOCookie=loggedout; path=/; domain=.oblix.com"
Response.Cookies('ObFormLoginCookie') = "done 1"
Response.Cookies('ObFormLoginCookie').Expires = Date() - 1

obtemp = "ObTEMP=%23comp_cookie=false%23; path=/"

<!--DOCTYPE HTML PUBLIC '-//W3C//DTD HTML 4.0 Transitional//EN'>
<!-- saved from url=(0018)http://10.26.3.90/ -->

<HTML><HEAD>
<TITLE>Login</TITLE>
<meta http-equiv="pragma" content="no-cache">
@if bolLoginToCOREid then%

<meta http-equiv="Set-Cookie" content='"%ObLogin%"' />

@end if%

<META http-equiv=Content-Type content="text/html; charset=windows-utf-8">

<SCRIPT LANGUAGE=javascript>

//Functions for keydown

nextfield = "login";
netscape = "";
ver = navigator.appVersion; len = ver.length;
for(iln = 0; iln < len; iln++) if (ver.charAt(iln) == "(") break;
netscape = (ver.charAt(iln+1).toUpperCase() != "C");

function keyDown(DnEvents) {
 k = (netscape) ? DnEvents.which : window.event.keyCode;
 if (k == 13) {
 if (nextfield == 'done')

 setAction();

}
else{
 eval('document.loginform.' + nextfield + '.focus()');
 return;
}
}
document.onkeydown = keyDown;
if (netscape) document.captureEvents(Event.KEYDOWN|Event.KEYUP);

//\Functions for keydown

document.expireDate = new Date
document.expireDate.setFullYear(document.expireDate.getFullYear()+7)
var URLs = new Array(2);
URLs[0] = "/identity/oblix/apps/userservcenter/bin/
 userservcenter.cgi?usertype=delegatedIdentityAdminBIZ";
URLs[1] = "/identity/oblix/apps/admin/bin/
 front_page_admin.cgi?usertype=systemAdmin";

function setCookie (name, value, expires) {
 document.cookie = name + "=" + escape (value) + "; expires=" + expireDate.toGMTString() + "; path="/;
}
function delCookie (name) {
 var expireNow = new Date();
document.cookie = name + "=" + "; expires=Thu, 01-Jan-70 00:00:01 GMT" + "; path="/;
}

function changeLanguage(){
 setCookie("cemexPrefLang","<%=strNewLanguage%>");
document.location.reload(true);
}

// Delete the cookie
function deletecookie(){
 if (document.cookie != "") {
 thisCookie = document.cookie.split(" ");
 expireDate = new Date
 expireDate.setDate(expireDate.getDate()-1)
 for (i=0; i<thisCookie.length; i++) {
 cookieName = thisCookie[i].split("=")[1]
 document.cookie = "cookieName="+cookieName + ";expires=" +
 expireDate.toGMTString();
 }
 }
}

function killObCokies(){
 // Kill Any Cookies...
 document.cookie = "<%=obSSO%>"
document.cookie = "<%=obLogin%>"

 //document.cookie = "ObTEMP=: path="/;
 //delCookie("ObSSOCookie");
 //delCookie("ObFormLoginCookie");
 //delCookie("ObTEMP");
}

function mySubmit() {
}
if (!((loginform.login.value.length > 0) &&
 (loginform.password.value.length > 0))) {
 alert("<%=strMsgUandP(intPointer)%>");
 return;
}
// Kill Any Cookies...
killObCokies();
//document.cookie = "ObSSOCookie=loggedout; path=/;
domain=.cemexnetlab.com"
document.location.reload(true);
document.cookie = "<%=obTemp%>";

myWindowHandle = window.open
 ('about:blank','myWindowName', 'scrollbars=yes,width=600,height=500');
loginform.action="/identityredirect/redirctor.asp"
 // loginform.action="/identity/oblix/apps/userservcenter/bin/
 userservcenter.cgi?program=modify&usertype=endUser"
loginform.target="myWindowName";
loginform.submit();
}

function setAction() {
 if (!((loginform.login.value.length > 0) &&
 (loginform.password.value.length > 0))) {
 alert("<%=strMsgUandP(intPointer)%>");
 document.loginform.login.focus();
 return;
 }
 killObCokies(); // Kill Any Cookies...
 document.cookie = "<%=obTemp%>";

 <%if bolLoginToCOREid then%>
 loginform.action = eval
 ("URLs["+loginform.selectName.options[loginform.selectName.selectedIndex].value
 +"]");
 <%else%>
 loginform.action="/access/oblix/apps/webgate/bin/webgate.dll";
 <%end if%>
 loginform.target="";
 loginform.submit();
}

function lost() {
 if (!((loginform.login.value.length > 0)) {
 alert("<%=strMsgU(intPointer)%>");
 return;
 }
 // Kill Any Cookies...
 killObCokies();

 myWindowHandle = window.open
 ('about:blank','myWindowName', 'scrollbars=yes,width=600,height=500');
 loginform.action="/identity/oblix/apps/lost_pwd_mgmt/bin/
 lost_pwd_mgmt.cgi";
 loginform.target="myWindowName";
 loginform.submit();
}
<BODY leftMargin=0 topMargin=0 scrolling="no">
<%if bolLoginToCOREid then%>
 <form name="loginform" action="/identity/oblix/apps/userservcenter/bin/userservcenter.cgi?usertype=delegatedIdentityAdminBIZ" method="post">
<%else%>
 <form name="loginform" action="/access/oblix/apps/webgate/bin/webgate.dll" method="post">
<%end if%

<input type='hidden' name='ObLoginDomain' value='dc=oblix,dc=com'>

<TABLE cellSpacing=0 cellPadding=0 width=763 align=center border=0>
 <TBODY>
 <TR vAlign=top>
 <TD width="39%" colSpan=2>
 <TABLE cellSpacing=0 cellPadding=0 width="100%" border=0>
 <TBODY>
 <TR>
 <TD vAlign=top width="99%" bgColor=#cc0033>
 <TABLE cellSpacing=0 cellPadding=0 width="100%" border=0>
 <TBODY>
 <TR>
 <TD align=left>Login</TD>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE cellSpacing=0 cellPadding=0 width=255 border=0>
 <TBODY>
 <TR>
 <TD align=middle colSpan=3>
 <TABLE width="90%" border=0>
 <TBODY>
 <TR>
 <TD align=right width="50%"><%=strUser(intPointer)%> </TD>
 <TD align=left width="50%">
 <<input type="text" name="login" size="16" onFocus="nextfield='password';" value='"">
 </TD>
 </TR>
 <TR>
 <TD align=right width="50%"><%=strPassword(intPointer)%> </TD>
 <TD align=left width="50%">
 <input type="password" name="password" onFocus="nextfield='done';" value='" size="16">
 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD>
 <TABLE cellSpacing=0 cellPadding=0 width=255 border=0>
 <TBODY>
 <TR>
 <TD align=middle colSpan=3>
 <TABLE width="90%" border=0>
 <TBODY>
 <TR>
 <TD align=right width="50%"><%=strUser(intPointer)%> </TD>
 <TD align=left width="50%">
 <input type="text" name="login" size="16" onFocus="nextfield='password';" value='"">
 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 </TBODY>
 </TABLE>
 </TD>
 </TR>
 <TR>
 <TD align=right width="50%"><%=strPassword(intPointer)%> </TD>
 <TD align=left width="50%">
 <input type="password" name="password" onFocus="nextfield='done';" value='" size="16">
 </TD>
 </TR>
 </TBODY>
</TABLE>
</form>
</%if bolLoginToCOREid then%>
</BODY>
<table>
<thead>
<tr>
<th>Column 1</th>
<th>Column 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
</tr>
</tbody>
</table>

```html
<% if bolLoginToCOREid then %>
  <TR>
    <TD align="right" width="50%">
      <%= strUserType(intPointer) %>&nbsp;
    </TD>
    <TD align="left" width="50%">
      <select name="selectName">
        <option selected value="0"><%= strCOREidUser(intPointer) %></option>
        <option value="1"><%= strCOREidAdmin(intPointer) %></option>
      </select>
    </TD>
  </TR>
<% end if %>
```

```html
<TD colSpan="2">
  <A href="javascript:setAction();"><%= strEnter(intPointer) %></A>
  &nbsp;&nbsp;
  <A href="javascript:mySubmit();"><%= strPreferences(intPointer) %></A>
  &nbsp;&nbsp;
  <A href="javascript:loginform.reset();"><%= strCancel(intPointer) %></A>
  &nbsp;&nbsp;
</TD>
```

```html
<% strLanguageDescription(intPointer) %>
```

```html
<% strForgot(intPointer) %>
```

```html
</FORM>
</DIV>
```

```html
<SCRIPT LANGUAGE=javascript>
!--
```
Troubleshooting Form-Based Authentication

For information on troubleshooting, see "Troubleshooting Oracle Access Manager" on page E-1.
Enabling Impersonation with the Access System

In a Windows environment, all processes and threads execute in a security context. Impersonation is the ability of a thread to execute in a security context that is different from that of the process that owns the thread. The primary purpose of impersonation is to trigger access checks against a client's identity. For details about enabling impersonation in the Access System, which overrides impersonation enabled with IIS, see the following discussions:

- About Windows Impersonation
- About Impersonation and the Access System
- Enabling Impersonation With a Header Variable
- Setting Up Impersonation with Integrations
- Enabling Impersonation with a User Name and Password
- Setting Up Impersonation for OWA
- Windows Impersonation Background

Note: The Oracle Access Manager Integration Guide provides a detailed example of how to integrate with the SharePoint Portal Server as well as the extra measures you may have to take to get impersonation running in different contexts.

About Windows Impersonation

When running in a client's security context, a service becomes the client to an extent. One of the service's threads uses an access token (a protected object that represents the client's credentials) to obtain access to objects the client can access.

The client's access token is known as an impersonation token. The impersonation token identifies the client, the client's groups, and the client's privileges. The information in the token is used during access checks when the thread requests access to resources on the client's behalf. When the server is impersonating the client, any operations performed by the server are performed using the client's credentials.

Impersonation ensures that the server can do exactly what the client can do. This means that access to resources may be either restricted or expanded, depending on what the client has permission to do. Impersonation requires the participation of both the client and the server. The client must indicate its willingness to let the server use its identity, and the server must explicitly assume the client's identity programmatically.
Impersonation does not allow the server to access remote resources on behalf of the client.

When impersonation concludes, the thread uses the primary token to operate using the service's own security context rather than the client's. The primary token describes the security context of the user account associated with the process (the person who started the application).

Services run under their own accounts and act as users in their own right. For example, system services that are installed with the operating system run under the Local System account. You can configure other services to run under the Local System account, or separate accounts on the local system or in Active Directory.

The IIS Web server provides impersonation capabilities. However, the Access System overrides IIS authentication, authorization, and impersonation functions. For more information, see:

- "About Impersonation and the Access System" on page B-2
- "Windows Impersonation Background" on page B-17

SSO for Authenticated Oracle Access Manager Users into Exchange/Outlook Web Access (OWA): This is also supported using the Windows Impersonation feature. OWA provides Web access to Exchange mail services and may be configured on either of the following:

- An IIS Web server that does not reside on the same server as the Exchange server, which is also known as a front-end server
- An IIS Web server running on the Exchange server, which is also known as the back-end server

In a front-end server configuration, the front-end OWA server authenticates the user, determines the back-end Exchange server that hosts the user's mailbox, then proxies the request to the appropriate back-end Exchange server. No additional credential information is passed. No delegation is performed. Setting up Impersonation on the back-end Exchange server ensures that the Exchange server does not need to request credentials before granting access.

For more information, see "Setting Up Impersonation for OWA" on page B-12.

About Impersonation and the Access System

You can enable support for Windows impersonation to provide additional access control to protected applications. To ensure success, you need to bind a trusted user to a WebGate and the application must be protected by a policy domain that includes an impersonation action in the authorization rule. Authentication will occur as usual. However, during the authorization process, the protected application will create an impersonation token.

Table B–1 identifies Access System support for Windows impersonation.

Table B–1 Support for Windows Impersonation

<table>
<thead>
<tr>
<th>Access System Version 6.5 and Higher Supports</th>
<th>Previous Versions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microsoft Kerberos Service-for-User-to-Self (S4U2Self) extension</td>
<td>User name and password required. LOGON_USER, LOGON_PASSWORD (in authorization rule, action)</td>
</tr>
</tbody>
</table>
Enabling Impersonation with a Header Variable

Enabling impersonation with a header variable involves the following procedures.

Task overview: Enabling impersonation with a header variable includes
1. Reviewing all Requirements
2. Creating an Impersonator as a Trusted User
3. Assigning Rights to the Trusted User
4. Binding the Trusted User to Your WebGate
5. Adding an Impersonation Action to a Policy Domain
6. Adding an Impersonation DLL to IIS
7. Testing Impersonation

Note: The example in this chapter illustrates setting up the impersonation feature for the Access System to Microsoft SharePoint Portal Server integration. The principles are the same regardless of your application.

See also "Setting Up Impersonation for OWA" on page B-12.

Requirements
You need to prepare the environment and confirm that it is operating properly before implementing impersonation with the Access System.

Table B–1 (Cont.) Support for Windows Impersonation

<table>
<thead>
<tr>
<th>Access System Version 6.5 and Higher Supports</th>
<th>Previous Versions Supported</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Impersonate HeaderVar action type is as an authorization rule action in the Access System</td>
<td>User name (LOGON_USER) used in proper header variables.</td>
</tr>
<tr>
<td>No password needed</td>
<td>Password (LOGON_PASSWORD) stored in a directory in clear text or in a separate database, not set as a header variable.</td>
</tr>
<tr>
<td>REMOTE_USER may be set to any value (in Authorization Rule, Action (type HTTP).)</td>
<td>No change</td>
</tr>
</tbody>
</table>

For more information, see "The Kerberos Protocol" on page B-19 and "The S4U2Self Extension" on page B-19. Also, see the following:

- "Enabling Impersonation With a Header Variable" on page B-3 provides prerequisites and details about implementing impersonation using header variables.
- "Enabling Impersonation with a User Name and Password" on page B-11 explains how to implement impersonation using features available before version 6.5.
Table B–2 identifies the platform requirements for version 6.5 and later when you choose to enable impersonation using a header variable.

<table>
<thead>
<tr>
<th>Item</th>
<th>Platform</th>
</tr>
</thead>
</table>
| WebGate (and Impersonation dll) | Microsoft IIS 6.x and Windows Server 2003
 Note: Other Access System components have no specific requirements. |
| Impersonation dll | WebGate_install_dir\access\oblix\apps\webgate\bin
 | Must be installed as an IIS wildcard extension.
 | May be installed at any level of the Web site tree.
 | For details, see "Wildcard Extension" on page B-19. |
| Kerberos Key Distribution Center (KDC) and Active Directory | Windows Server 2003 |
| Client and Server machines | Both must be in the same Windows Server 2003 domain with a trust relationship.
 | A bidirectional trust path is required because the service, acting on the client's behalf, must request tickets from the client's domain. |
| Security context | Must have Act as operating system privileges.
 | Note: IWAM_Machine is not recommended because it is the account used by the Microsoft Transaction Server (MTS) and various IIS entities to provide programmatic and transactional functions. |
| Mutual authentication is required | Mutual authentication is supported remotely. |

Creating an Impersonator as a Trusted User

Whether you enable impersonation using a HeaderVar or user profile attribute, the return value must be a trusted user in the Active Directory. This special user should not be used for anything other than impersonation.

If your environment includes Exchange Outlook Web Access, see also "Setting Up Impersonation for OWA" on page B-12.

To create a trusted user account

1. On the Windows 2003 machine hosting your SPPS installation, select Start; Programs; Manage Your Server; Domain Controller (Active Directory); Manage Users and Computers in Active Directory.
2. In the Active Directory Users and Computers window, right-click Users on the tree in the left pane, then select New; User.
3. In the First name field of the pane entitled New Object - User, enter an easy-to-remember name such as SPPSImpersonator.
4. Copy this same string to the User logon name field, then click Next.
5. In succeeding panels, you are asked to choose a password and then retype it to confirm.
Enabling Impersonation With a Header Variable

Assigning Rights to the Trusted User

You need to give the trusted user the right to act as part of the operating system.

If your environment includes Exchange Outlook Web Access, see also "Setting Up Impersonation for OWA" on page B-12.

To give appropriate rights to the trusted user

1. From the desktop, click the Start menu, then click Control Panel, and open Administrative Tools.
2. Select Domain Controller Security Policy or Local Security Policy (depending on if the computer is a domain controller).

 You must modify the group policy object that applies to the computer where the WebGate is installed.
3. On the tree in the left pane, click the plus icon (+) next to Local Policies.
4. Click User Rights Assignment on the tree in the left pane.
5. Double-click "Act as part of the operating system" in the right pane.
6. Click Add User or Group.
7. In the Add User or Group panel, type the User logon name of the trusted user (SPPSImpersonator in our example) in the User and group names text entry box, then click OK to register the change.

Note: Oracle recommends that you choose a very complex password, because your trusted user is being given very powerful permissions. Also, be sure to check the box marked Password Never Expires. Since the impersonation extension should be the only entity that ever sees the trusted user account, it would be very difficult for an outside agency to discover that the password has expired.

Figure B–1 Setting up a Trusted User Account for Windows Impersonation
Enabling Impersonation With a Header Variable

Figure B–2 Configuring Rights for the Trusted User in Windows Impersonation

To configure Active Directory settings for the trusted user

1. In Active Directory, assign the truster user (in this example, SPPSImpersonator) the Allowed to Authenticate permission for all user objects that the account will impersonate.

2. If the option Do Not Require Kerberos Preauthentication is set on any user account that the SPPSImpersonate account will be impersonating, remove this option from the account.

3. Assign the following Property Right to the trusted user account (in this example, SPPSImpersonate): Read Remote Access Information.

Binding the Trusted User to Your WebGate

You need to bind the trusted user to the WebGate by supplying the authentication credentials for the trusted user, as described in the following paragraphs.

If your environment includes Exchange Outlook Web Access, see also "Setting Up Impersonation for OWA" on page B-12.

To bind your trusted user to your WebGate

■ Point your browser to your Access System Console.

For example:

http://hostname.domain.com:port/access/oblix

where hostname is the DNS name of the machine hosting your Policy Manager, domain is the name of the server domain to which the machine belongs, and port is the number of the port to which Policy Manager listens.

■ From the Access System Console, click Access System Configuration, then click AccessGate Configuration.

■ Select the name of the WebGate you want to modify.

The Details for AccessGate page appears with a summary of the configuration information for this WebGate. At the bottom of this Web page are fields for Impersonation Username and Impersonation Password.

■ Click the Modify button at the bottom of the page.
In the Modify AccessGate page, scroll to the bottom and enter the user name and password for the trusted user account you created through the task in "Assigning Rights to the Trusted User" on page B-5.

For example:

| Impersonation username |
|------------------------|---
| Impersonation password |
| Re-type impersonation password |

Click the Save button to commit the changes and return to the Details page.

A bind has been created for the WebGate and the trusted user. The WebGate is now ready to provide impersonation on demand. The demand is created by an Authorization Success Action in a policy domain created for impersonation.

Adding an Impersonation Action to a Policy Domain

You must create or configure a policy domain to protect your SharePoint resources. You do this by adding an Authorization Success Action with a return type of headerVar, the name parameter set to the name of the trusted user (SPPSImpersonator in our example), and the return attribute parameter set to samaccountname for a single-domain Active Directory installation or userPrincipalName for a multi-domain Active Directory forest.

You must also choose an easy-to-remember name for the domain, such as ImpersonationPolicyDomain.

For details on creating a policy domain, see "Protecting Resources with Policy Domains" on page 4-1.

If your environment includes Exchange Outlook Web Access, see also "Setting Up Impersonation for OWA" on page B-12.

To add an impersonation action to your policy domain

1. Point your browser to the Access System Console. For example:

 http://hostname.domain.com:port/access/oblix

 where hostname is the DNS name of the machine hosting your Policy Manager, domain is the name of the server domain to which the machine belongs, and port is the number of the port to which Policy Manager listens.

2. Navigate to the Authorization Definitions page of the policy domain you want to change:

 In the Policy Manager, click My Policy Domains, then click PolicyName, then click Authorization Rules

 where PolicyName refers to the policy domain you created specifically for impersonation (ImpersonationPolicyDomain in our example).

 Note: Currently defined authorization rules are listed. If none are listed, click the Add button and complete the form to create one.

3. Click the link to the rule to which you want to add the impersonation action. The description will expand.
4. Click the Actions link, which appears directly under the Authorization Rules tab. The Authorization Success page appears. If no actions are identified, you must add them. If actions are provided, you can modify them.

You need to add a header variable named impersonate to Authorization Success Action in the policy domain for impersonation.

5. On the Authorization Success page appears, click Add or Modify.

6. Complete the form using headerVar as the Return Type, the User log on name of the trusted user you have bound to the WebGate, and the appropriate return value for your environment. For example:

 Type: HeaderVar
 Name: IMPERSONATE
 Return value: uid or samAccountName (Active Directory username, the Windows domain user for the desired folder)

Your completed form may look something like the following:

7. Save the rule.

 This rule is used for the second WebGate request (for authorization).

Adding an Impersonation DLL to IIS

You are ready to configure IIS by adding the IISImpersonationExtension.dll to your IIS configuration.

To add the impersonation DLL to your IIS configuration

1. Select Start; Administrative Tools; Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Click Web Service Extensions on the tree in the left pane.
4. Double-click WebGate in the right panel to open the Properties panel.
5. Click the Required Files tab.
6. Click Add.
7. In the Path to file text box, type the full path to IISImpersonationExtension.dll.

 By default, the path is:

 `WebGate_install_dir\access\oblix\apps\webgate\bin\IISImpersonation\Extension.dll`
where WebGate_install_dir is the root directory of your WebGate installation.

Note: If any spaces exist in the path (for example, C:\Program Files\Oracle...) surround the entire string with double quotes (" ").

8. Click OK.

9. Click the General tab on the Web Services Extension Properties panel, then verify that the box beside "Do not check the file location" is not checked.

10. Verify that the Allow button to the left of the WebGate icon is greyed out, which indicates that the dll is allowed to run as a Web service extension.

Note: If Allow is not greyed out, click it so that it becomes greyed out.

Figure B–3 Configuring IIS Security Settings

Testing Impersonation

You can test Impersonation in the following two ways:

- **Testing Impersonation Using the Event Viewer**
- **Testing Impersonation using a Web Page**

Creating an IIS Virtual Site Not Protected by SPPS

To test the impersonation feature outside the SPPS context or to test SSO, you will need a target Web page on an IIS virtual Web site that is not protected by SPPS. You create such a virtual Web site by completing the following task.

To create an IIS virtual site not protected by SPPS

1. Click the Start menu, then click Administrative Tools, then click Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Right-click Web Sites on the tree in the left pane, then navigate to New > Web Site on the menu.
4. Respond to the prompts by the Web site creation wizard.
5. After you create the virtual site, you must protect it with a policy domain, as described elsewhere in this guide.

Testing Impersonation Using the Event Viewer

When you complete impersonation testing using the Windows 2003 Event Viewer, you must configure the event viewer before conducting the actual test.

To test impersonation through the Event Viewer

1. Select Start Menu; Event Viewer.
2. In the left pane, right-click Security, then click Properties.
3. Click the Filter tab on the Security property sheet.
4. Verify that all Event Types are checked, and the Event Source and Category lists are set to All, then click OK to dismiss the property sheet.

Your Event Viewer is now configured to display information about the headerVar associated with a resource request.

Figure B–4 Verifying Event Viewer Settings

5. Create a new IIS virtual server (virtual site).
6. Place a target Web page anywhere in the tree on the virtual site.
7. Point your browser at the Web page

 If impersonation is working correctly, the Event Viewer will report the success of the access attempt.
Testing Impersonation using a Web Page
You can also test impersonation using a dynamic test page, such as an .asp page or a perl script, that can return and display information about the request.

To test impersonation through a Web page that displays server variables
1. Create an .asp page or perl script that will display the parameters AUTH_USER and IMPERSONATE. It can resemble the sample page presented in the following listing:

 Example B–1 Sample .ASP Page Code
   ```html
   <TABLE border=1>
   <TR>
   <TD>Variable</TD>
   <TD>&nbsp&nbsp</TD>
   <TD>Value</TD></TR>
   <%for each servervar in request.servervariables%>
   <TR>
   <TD><%=servervar%></TD>
   <TD>&nbsp&nbsp</TD>
   <TD><%=request.servervariables(servervar)%>&nbsp</TD>
   </TR>
   <%end%>
   </TABLE>
   ```

2. Create an IIS virtual site, or use the one you created for the previous task.
3. Place an .asp page or perl script (such as the sample in the preceding listing) anywhere in the tree of the new virtual site.
4. Point your browser at the page. The page should display, with both AUTH_USER and IMPERSONATE set to the name of the user making the request.

Setting Up Impersonation with Integrations
The *Oracle Access Manager Integration Guide* provides a detailed example of how to integrate the Access System with the SharePoint Portal Server (SPPS) and the extra measures you may have to take to get impersonation running in different contexts:

- Configuring IIS Security
- Configuring the Wildcard Extension
- Editing web.config (this is not needed with the integration between the Access System and the Microsoft Content Management Server)

Enabling Impersonation with a User Name and Password
The method to enable impersonation before version 6.5 remains valid and may also be used with version 6.5 and later, as described in the following paragraphs.

The Access System provides an API that tells IIS which user to impersonate. To use this API, you must provide the user name and password to IIS. The user name is used in the proper header variables. This causes IIS to change the owner of the thread for downstream applications such as Outlook Web Access.

To have IIS log in as the user, you set the following two success actions in the authorization policy:

- **LOGON_USER**: The NT user name of the user you want to impersonate
- **LOGON_PASSWORD**: The NT password of the user.
The LOGON_PASSWORD is not set as a header variable. This prevents downstream applications from learning the password. This variable is only used to impersonate the user. The following are methods for providing the Windows NT or Active Directory (AD) password:

- Store the NT or AD password in clear text in the directory, then configure the Access System security policy to set the proper header variable with the password value.
- Store the password in a separate database. This requires an authorization plug-in to be written to access the password and set the appropriate header variable. The authorization plug-in supplies the action with the password. The store would have to be kept synchronized using the Identity System’s PPP mechanisms.
- Create a static header variable that impersonates the user for a particular role (for instance, manager) that provides the proper security settings. This provides a more granular option if you do not require the actual individual to be impersonated.

The Access System supports additional IIS header variables for integration with Microsoft environments and Windows Impersonation, as shown in Table B–3.

<table>
<thead>
<tr>
<th>Table B–3</th>
<th>Support for Additional IIS Header Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>REMOTE_USER</td>
<td>AUTH_USER</td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
</tr>
</tbody>
</table>

These are special case headers that show downstream applications that the user is logged in. If you set the REMOTE_USER header by creating a REMOTE_USER http header action, the Access System will set the AUTH_USER and AUTH_PASSWORD headers. You set REMOTE_USER in the same place as LOGON_USER and LOGON_Password, as a success action in the authorization policy. Setting this action accomplishes the following for each of the variables:

- The REMOTE_USER will contain the static or attribute value
- The AUTH_USER will have the same value
- The AUTH_PASSWORD header will always contain HiddenByOblixNetpoint so the password remains hidden
- The AUTH_TYPE header will contain Basic

For more information:

- See "Windows Impersonation Background" on page B-17 for an introduction to access tokens, security IDs, access control lists, wildcard extensions, and Kerberos.
- See the Microsoft documentation for details about single sign-on integration through Windows Impersonation.

Setting Up Impersonation for OWA

In a distributed Exchange/OWA SSO environment, each server needs the Access System to impersonate the current user. When you enable Impersonation, you need to include additional HTTP Headers in "Authorization Success" for your impersonation policy domain:

The following solution has been tested in both standalone and distributed OWA environments.
Setting Up Impersonation for OWA

Task overview: Setting up impersonation for OWA
1. Install Oracle Access Manager, including a WebGate on the OWA front-end server and on all Exchange back-end servers, as described in the Oracle Access Manager Installation Guide.

2. Disable IP Checking for the WebGates on the back-end server using the AccessGate (because the request comes from the front-end server, not from the user’s browser).

3. Create a trusted user account for only impersonation in the Active Directory, as described in "Creating a Trusted User Account for OWA" on page B-13.

4. Give the trusted user the special right to act as part of the operating system, as described in "Assigning Rights to the OWA Trusted User" on page B-13.

5. Bind the trusted user to the WebGate by supplying the authentication credentials for the trusted user, as described in "Binding the Trusted OWA User to Your WebGate" on page B-14.

6. Add a header variable named impersonate to Authorization Success Action in the policy domain for impersonation, as described in "Adding an Impersonation Action to a Policy Domain" on page B-14.

7. Configure IIS by adding IISImpersonationExtension.dll to your IIS configuration, as described in "Adding an Impersonation dll to IIS" on page B-15.

8. Test Impersonation, as described in "Testing Impersonation for OWA" on page B-16.

Creating a Trusted User Account for OWA
This special user should not be used for anything other than impersonation.
Oracle recommends that you chose a very complex password, because your trusted user is being given very powerful permissions. Also, be sure to check the box marked Password Never Expires. Since the impersonation extension should be the only entity that ever sees the trusted user account, it would be very difficult for an outside agency to discover that the password has expired.

To create a trusted user account for OWA
1. On the Windows 2003 machine, select Start; Programs; Manage Your Server; Domain Controller (Active Directory); Manage Users and Computers in Active Directory.

2. In the Active Directory Users and Computers window, right-click Users on the tree in the left pane, then select New; User.

3. In the First name field of the pane entitled New Object - User, enter an easy-to-remember name such as OWAImpersonator.

4. Copy this same string to the User logon name field, then click Next.

5. In succeeding panels, you will be asked to choose a password and then retype it to confirm.

Assigning Rights to the OWA Trusted User
You need to give the trusted user the right to act as part of the operating system.
To give appropriate rights to the trusted user
1. Select Control Panel; Administrative Tools; Domain Controller Security Policy.
2. On the tree in the left pane, click the plus icon (+) next to Local Policies.
3. Click User Rights Assignment on the tree in the left pane.
4. Double-click "Act as part of the operating system" in the right pane.
5. Click Add User or Group.
6. In the Add User or Group panel, type the User logon name of the trusted user (OWAImpersonator in our example) in the User and group names text entry box, then click OK to register the change.
7. Proceed to “Binding the Trusted OWA User to Your WebGate” on page B-14.

Binding the Trusted OWA User to Your WebGate
You need to bind the trusted user to the WebGate by supplying the authentication credentials for the trusted user, as described in the following procedure.

To bind your trusted OWA user to your WebGate
1. Point your browser to your Access System Console. For example:
 http://hostname.domain.com:port/access/oblix
 where hostname is the DNS name of the machine hosting your Policy Manager; domain is the name of the server domain to which the machine belongs; and port is the number of the port to which Policy Manager listens.
3. Select the name of the Webgate you want to modify.
 The Details for AccessGate page appears with a summary of the configuration information for this WebGate. At the bottom of this Web page are fields for Impersonation Username and Impersonation Password.
4. Click the Modify button at the bottom of the Details for AccessGate page.
 The Modify AccessGate page appears.
5. Scroll to the bottom and enter the user name and password for the trusted user account you created (OWAImpersonator).
6. Click the Save button to commit the changes and return to the Details page.
 A bind has been created for the WebGate and the trusted user. The WebGate is now ready to provide impersonation on demand. The demand is created by an Authorization Success Action in a policy domain created for impersonation.
7. Proceed to “Adding an Impersonation Action to a Policy Domain” on page B-14.

Adding an Impersonation Action to a Policy Domain
You must create or configure a policy domain to protect your OWA resources. This policy must set several HTTP Header variables.

Note: You should choose an easy-to-remember name for the domain, such as ImpersonationPolicyDomain.
To add an impersonation action to your policy domain

1. Navigate to the Access System Console and log in. For example:

 http://hostname.domain.com:port/access/oblix

 where hostname is the DNS name of the machine hosting your WebPass and Policy Manager; domain is the name of the server domain to which the machine belongs; and port is the number of the port to which Policy Manager listens.

2. Navigate to the Authorization Definitions page of the policy domain you want to change:

 Policy Manager; My Policy Domains; PolicyName; Authorization Rules

 where PolicyName refers to the policy domain you created specifically for impersonation (ImpersonationPolicyDomain in this example).

3. Currently defined authorization rules are listed. If none are listed, click the Add button and complete the form to create one.

4. Click the link to the rule to which you want to add the impersonation action to expand the description.

5. Click the Actions tab, directly under the Authorization Rules tab.

 The Authorization Success page appears, with a separate section for Authorization Success and Authorization Failure. If no actions are identified, you must add them. If actions are provided, you can modify them.

 You need to add header variables named "impersonate", "auth_type", "remote_user", and "npusername" to the Authorization Success Action in the policy domain for impersonation.

6. On the Authorization Success page, click the Add or Modify button.

7. In the Authorization Success area, fill in the Return details.

 Type: HeaderVar
 Name: IMPERSONATE
 Return value: uid (or samaccountname)

 Type: HeaderVar
 Name: AUTH_TYPE
 Return value: NTLM

 Type: HeaderVar
 Name: REMOTE_USER
 Return value: uid (or samaccountname)

 Type: HeaderVar
 Name: NPUSERNAME
 Return value: uid (or samaccountname)

8. Save the rule, which is used for the second WebGate request for authorization.

Adding an Impersonation dll to IIS

You are ready to configure IIS by adding the IISImpersonationExtension.dll to your IIS configuration.
To add the impersonation dll to your IIS configuration

1. Select Start; Administrative Tools; Internet Information Services (IIS) Manager.
2. Click the plus icon (+) to the left of the local computer icon on the tree in the left pane.
3. Click Web Service Extensions on the tree in the left pane.
4. Double-click WebGate in the right panel to open the Properties panel.
5. Click the Required Files tab.
6. Click Add.
7. In the Path to file text box, type the full path to IISImpersonationExtension.dll. An example:

 WebGate_install_dir\access\oblix\apps\webgate\bin\IISImpersonation\Extension.dll

 where WebGate_install_dir is the directory of your WebGate installation.

8. Click OK.
9. Click the General tab on the Web Services Extension Properties panel, then verify that the box "Do not check the file location" is not checked.
10. Verify that the Allow button to the left of the WebGate icon is greyed out, which indicates that the dll is allowed to run as a Web service extension.

 Note: If Allow is not greyed out, click it so that it becomes greyed out.

Testing Impersonation for OWA

The following options are provided to test the Impersonation configuration for OWA.

- Testing Impersonation Using the Event Viewer
- Testing Impersonation using a Web Page

Testing Impersonation Using the Event Viewer

To test impersonation through the Event Viewer

1. Select Start Menu; Event Viewer.
2. In the left pane, right-click Security, then click Properties.
3. Click the Filter tab on the Security property sheet.
4. Verify that all Event Types are checked, and the Event Source and Category lists are set to All, then click OK to dismiss the property sheet.
5. Your Event Viewer is now configured to display information about the headerVar associated with a resource request.

6. Create a new IIS virtual server (virtual site).

7. Place a target Web page anywhere in the tree on the virtual site.

8. Point your browser at the Web page.

 If impersonation is working correctly, the Event Viewer will report the success of the access attempt.

Testing Impersonation using a Web Page

You can also test impersonation using a dynamic test page, such as an .asp that can return and display information about the request.

To test impersonation through a Web page

1. Create an .asp page or perl script that will display the parameters AUTH_USER and IMPERSONATE, which can resemble the sample page presented in the following listing:

   ```html
   <TABLE border=1>
   <TR>
   <TD>Variable</TD>
   <TD>&nbsp&nbsp</TD>
   <TD>Value</TD></TR>
   <%for each servervar in request.servervariables%>
   <TR>
   <TD><%=servervar%></TD>
   <TD>&nbsp&nbsp</TD>
   <TD><%=request.servervariables(servervar)%>&nbsp</TD>
   </TR>
   <%/for %>
   </TABLE>
   
   2. Create an IIS virtual site, or use the one you created for the previous task.
   
   3. Place an .asp page or perl script (such as the sample in the preceding listing) anywhere in the tree of the new virtual site.
   
   4. Point your browser at the page, which should appear, with both AUTH_USER and IMPERSONATE set to the name of the user making the request.

**Windows Impersonation Background**

The information here provides a simple overview of several Windows impersonation concepts. Topics include:

- Access Tokens
- Security IDs
- Access Control Lists and Entries
- **Wildcard Extension**
- The Kerberos Protocol
- The S4U2Self Extension

For more information, see your Microsoft documentation.
Access Tokens

The access token describes the security context of a process or thread and includes the identity and privileges of the user account associated with the process or thread. The access token is created when authentication is successful. For example:

- The logon process returns a security ID (SID) for the user and a list of SIDs for the user’s security groups.
- The Local Security Authority (LSA) creates an access token that includes:
  - The SIDs returned by the logon process
  - A list of privileges assigned to the user and to the user’s security groups by local security policy

A copy of the access token is attached to every process and thread that is executed on the user’s behalf. When a thread interacts with a securable object, or tries to perform a system task that requires privileges, the operating system checks the access token associated with the thread to determine its level of authorization.

Security IDs

A security ID (SID) is a unique value of variable length used to identify a security principal or security group. SIDs are equal to Access System single sign-on tokens and represent a unique user within the Windows operating system.

The SID that identifies a particular account or group is generated by the system at the time the account or group is created. As mentioned previously, the SID for a local account or group is generated by the Local Security Authority (LSA) and stored with other account information in a secure area of the registry. The SID for a domain account or group is generated by the domain security authority and stored as an attribute of the User or Group object in Active Directory.

SIDs are unique within the scope of the account or group they identify. The SID for every local account and group is unique on the computer on which it was created. No two accounts or groups on the same machine can have the same SID. The SID for every domain account and group is unique within an enterprise. The SID for an account or group created in a domain never matches the SID for any other account or group created in the same domain.

One or more SIDs are included:

- In access tokens, where one SID identifies the user represented by the token and additional SIDs identify the security groups to which the user belongs.
- In security descriptors, where one SID in an object’s security descriptor identifies the object’s owner and another SID identifies the owner’s primary group.
- In access control entries (ACEs), the SID identifies the user or group for whom access is allowed, denied, or audited.

Access Control Lists and Entries

An access control list (ACL) contains an ordered list of access control entries (ACEs) that define the policies used to control access to resources, such as directories and applications protected by the Access System.

All ACLs are based on your logon identity. An object’s security descriptor can contain two ACLs:
A discretionary access control list (DACL) that identifies the users and groups who are allowed or denied access

A system access control list (SACL) that controls how access is audited

Each ACE includes:

- The type of the ACE (generic vs. object specific)
- Child-object inheritance attributes
- Access rights
- A SID that identifies a user or group

**Wildcard Extension**

The Web server normally runs in a security context called "IWAM_xxx". This security context does not have rights to impersonate another user. The Access System designates a special user that does have the right to impersonate another user by configuring it using the impersonation username/password on the AccessGate configuration page. That designated user must have "act as operating system" rights, as explained elsewhere.

The wildcard extension for the impersonation DLL behaves like a filter, which means that the wildcard extension is enabled for each request to the Web server. The DLL executes after WebGate, after all filters, and before any downstream applications.

**The Kerberos Protocol**

The Kerberos protocol defines how clients interact with a network authentication service. The client obtains a ticket from the Kerberos Key Distribution Center (KDC). The Kerberos ticket represents the client's network credentials. The ticket is presented to a server when the connection is established.

The Kerberos protocol handles all domain lookups in all trusted domains. As the client’s identity, this protocol uses:

- The Active Directory domain name
- User name
- Password

The initial ticket that is obtained from the KDC when the user logs on is based on an encrypted hash of the user’s password. This initial ticket is cached.

When the user tries to connect to a server, the Kerberos protocol checks the ticket cache for a valid ticket for that server. If one is not available, the initial ticket for the user is sent to the KDC along with a request for a ticket for the specified server. That session ticket is added to the cache and can be used to connect to the same server until the ticket expires.

**The S4U2Self Extension**

Windows Server 2003 domain controllers accept a new type of Kerberos request, the Service-for-User-to-Self (S4U2Self) extension. This extension enables the service to request a ticket from the client to itself, presenting its own credentials instead of the client’s.
Configuring Logout

If you are using form-based authentication, you can automatically log users out of one or more applications by configuring a logout URL that removes session cookies and redirects users to a logout page. You can customize the default logout page, for example, to add a meta tag to redirect to another page after a few seconds.

Note that you must configure a logout link and URL for the Identity System applications and the Policy Manager as well as for any other protected resource. See “Configuring Logout for an Identity System Resource” on page 3-27 for details.

The following methods are available for configuring logout:

- **Provide one Oracle Access Manager-provided logout function:** You can configure a single sign-on logout URL and logout page that removes the user’s session cookies. See Configuring a Single Sign-On Logout URL on page 2-6 for details.

- **Multiple logout functions:** You can configure different logout URLs and pages for different purposes based on the Oracle Access Manager-provided default.

- **Third-party program for logging out users:** You can define your own logout functionality.

**Note:** If you have multi-domain single sign-on configured, note that the logout URL only logs users out from applications in one domain. To ensure that logout occurs across domains, you may need to consider setting an absolute session timeout value. See “Logout From a Single Domain Single Sign-On Session” on page 7-8 for details.

How Logout Works

The WebGate logs a user out when it receives a URL containing "logout." (including the "."), with the exceptions of logout.gif and logout.jpg, for example, logout.html or logout.pl. When the WebGate receives a URL with this string, the value of the ObSSOCookie is set to "logout."

The Access System sets an obSSOCookie for each user or application that accesses a resource protected by a WebGate. The obSSOCookie enables users to access resources that are protected by the Access System that have the same or a lower authentication level. Removing the ObSSOCookie causes the WebGate to log the user out and requires the user to re-authenticate the next time he or she requests a resource that is protected by the Access System.

Oracle provides a logout.html page. This form is located in:
The logout.html form also contains javascript for removing the ObTemC cookie set for the Identity System. However, this page does not by default contain the code to remove the ObSSOCookie. Calling the single sign-on logout URL usually, but does not always remove the ObSSOCookie, so you should manually add this code to logout.html.

The logout.html form also does not remove any cookies set by third-party applications. To ensure that users must re-authenticate, you may need to customize the single sign-on logout.html file to remove these cookies.

You can customize this page or create one or more new custom logout pages.

**Configuring and Customizing the Logout URL and Page**

You can configure one single sign-on logout URL and page that apply to all users and resources. Or, you can create different logout functions for different applications.

**Task overview: Configuring and customizing logout**

1. Modify the default logout.html or create a new logout page.
   
   Include the string "logout." (including the ".") in the file name, with the exceptions of logout.gif and logout.jpg, for example, logout.html or logout.pl.
   
   This page must contain Javascript code to remove session cookies and an onLoad event to run the code in the body tag, for example:
   
   `<body onLoad="delOblixCookie";>`

2. Place the page in the same relative path on all appropriate Web servers.
   
   For example, if the SSO Logout URL is /public/logout/logout.html, this file must be known to the Web server that contains any page with the logout link.

3. Protect the logout page with a policy that uses an Anonymous authentication scheme to ensure that anyone can access it.
   
   This is true for the SSO Logout URL and custom URLs. For example, if your SSO Logout URL is /public/logout/logout.html, ensure that this resource is protected at /public, /public/logout or '/public/logout/logout.html.

4. Ensure that the logout URL is recognized by Oracle Access Manager.
   
   If you configured multiple logout pages, add them to the logoutURLs parameter for the WebGate. See "AccessGate Configuration Parameters" on page 3-18 for details.

5. Configure the SSO Logout URL.
   
   See Configuring a Single Sign-On Logout URL on page 2-6 for details. You should also add the SSO Logout URL to the list of URLs in the logoutURLs parameter.

6. Add a link with the appropriate logout URL on all Web pages where this URL is needed.
Oracle Access Manager Parameter Files

Oracle Access Manager provides a simple means for users to modify the way it operates, by changing the content of specified parameter files, also called catalog files. This appendix describes the file format, provides a list of the files, and describes values within them that you can change to customize Oracle Access Manager system operation.

File Categories

All of the parameter files are located relative to the Identity System installation directory, which could be, for example:

on Windows NT:

```
c:\COREid\identity\oblix
```

on Unix:

```
/var/COREid/identity/oblix
```

The parameter files can be viewed as belonging to one of several categories, distinguished by the type of parameters they contain:

- Parameters that affect the administrative applications: User Manager Admin; Group Manager Admin; Organization Manager Admin.
- Parameters that affect the user applications: User Manager; Group Manager; Organization Manager; Asynch Mailer; Password Management; Query Builder; Selector.
- Parameters whose effect is common across many applications: the user applications, the administrative applications and the Comm Server (a binary streaming data module).
- Parameters that affect Oracle Access Manager interaction with the directory database (DB), further subcategorized as follows: user, group, organization, application, configuration, workflow, and LDAP referential integrity.
- Parameters that affect Oracle Access Manager multitier architecture (for example, the WebPass Web application, or the Identity Server engine).

For More Information on the Parameter Files

See the Oracle Access Manager Customization Guide for details.
This appendix explains typical problems that you could encounter while running or installing Oracle Access Manager. It contains these sections:

- Problems and Solutions
- Need More Help?

Problems and Solutions

This section describes common Oracle Access Manager error messages, problems and solutions. It contains the following topics:

- Search Halts When Using Active Directory or .Net
- The Access Server Is Not Sending Audit Data to the Database
- Single Sign-On Between Identity and Access Systems
- Other Single Sign-On Problems
- The Login Form Appears Repeatedly
- Other Form-Based Authentication Issues

Search Halts When Using Active Directory or .Net

When conducting a search, after the Search icon is selected an error page appears stating, "The following messages were produced by the product. Please contact your webmaster to fix the problem." The limitAMPolicyDomainResourceDisplay parameter is set to true in the Policy Manager globalparams.xml file.

Problem

The number of policy domains exceeds the current limit of 350. 400 policy domains were created in the Access System, each with 10 resources and 10 policies.

Solution

Do not exceed 350 policy domains with Active Directory.

The Access Server Is Not Sending Audit Data to the Database

The auditing feature for the Access Server is not working when auditing to a database. However, file-based auditing is working.
Problem
This problem can occur for various reasons when creating an RDBMS profile, as described in “Managing RDBMS Profiles” on page 7-35.

You may discover the problem after doing the following:

1. Create a new database instance and create an oblix_audit_events table in it, as specified in the chapter on auditing in the Oracle Access Manager Administration Guide.

2. Create an RDBMS profile in System Console, as specified in the chapter on auditing in the Oracle Access Manager Administration Guide.

3. In the Access System Console, click Access System Configuration, then click Access Server Configuration, then click the link for the Access Server that you want to modify.

4. Click Modify and ensure that you have turned on auditing to database and to a file.

5. In the Access System Console, click Access System Configuration, then click Common Information Configuration, then click Master Audit Rule.

   Select the authentication success, authentication failure, authorization success and authorization failure events in the master audit rule.

6. Log in to Oracle Access Manager through a WebGate and check whether authentication and authorization success and failure events are being logged.

   For example, you can check if a message, “The database audit writer was unable to perform the write,” is logged in the Access Server’s oblog.log file at the ERROR level.

   You can also run the following command in either the SQL Server’s Query Analyzer window or Oracle’s iSQL*Plus window:

   
   ```sql
 select * from oblix_audit_events
   ```

   This command displays a list of existing audit records in oblix_audit_events table. If the list does not contain the new authentication and authorization events, it means that auditing to the database has failed.

Solution
The problem often occurs because of an incorrect value for the SQLDBType parameter in the following file:

```
Access_Server_install_dir/identity/apps/common/bin/globalparams.xml
```

Where `Access_Server_install_dir` is the location where the Access Server was installed. Set the value for the SQLDBType parameter as follows:

- For an ODBC connection type, set the value to `Oracle`.
- For an OCI connection type, set the value to `Oracle_OCI`.
- For SQL Server database, set the value to `SQLServer`.

Single Sign-On Between Identity and Access Systems
After logging in to one system (for example, the Access System) you may receive an error message similar to the following when you try to access the other system (for example, the Identity System):
The Identity Server logged you in but the Access System (Policy Manager or System Console) logged you out.

**Problem**

This may be due to one or more of the following problems:

- Identity and Access Servers are running on different machines, and the clocks are set to a different time.
- You have protected the Identity System in a policy domain, but not the Access System, or visa versa.
- The loginslack parameter in the oblixbaseparams.xml file is not configured correctly.

**Solution**

Apply one or more of the following solutions:

- Synchronize the Identity and Access Servers system clocks.
- Ensure that policy domains have been created for both the Identity System and the Access System.
  
  See “Protecting Resources with Policy Domains” on page 4-1 for details.
- Open the following file and edit the value for the loginslack parameter:

  \[PolicyManager_install_dir/access/oblix/apps/common/bin/oblixbaseparams.xml\]

  The loginslack parameter controls the time difference that is tolerated between the Policy Manager host computer and the Identity host computer. This parameter affects the WebPass, which controls single sign-on between the Policy Manager and the Identity System. It does not affect single sign-on provided by WebGate. This parameter is useful only if the WebGate is not protecting the Policy Manager or WebPass, and WebGate is not being used for single sign-on. In this type of scenario, the Policy Manager and WebPass use a cookie for login and single sign-on that is different from the ObSSOCookie. This cookie has time stamp.

  The default value is 60 seconds.

**Other Single Sign-On Problems**

Users can experience problems with single sign-on, including:

- Unexpected session timeout.
- Single sign-on failure (login prompts always are presented).
- Authentication fails.
- Users are authenticated initially, but their authorization fails when they access a resource on a second host.
- After authenticating to a protected Web site, single sign-on does not work when accessing a second site that has the same authentication level.

**Problem**

The following may be causes for one or more problems:

- Unexpected session timeout: the session timeout parameters are not configured correctly, or the system clocks on the hosts are not synchronized.
- Single sign-on failure: The cookie definition may contain the wrong domain name, or the WebGates may not have the same primary HTTP cookie domain or shared secret.

- The user’s authentication fails: The user’s identity or domain name does not match the authentication rules specified for the domain, or the authentication schemes to enable multi-domain single sign-on do not specify Challenge Redirect.

- Users authorization fails when they access a resource on a second host: The authentication scheme configured for the second host be higher scheme than the one on the first host, or the shared secret may have been corrupted.

Solution
One or more of the following solutions may fix the problem:

- Timeout problem:
  Increase the value of the session timeout parameters Maximum User Session Time and Idle Session Time. See AccessGate Configuration Parameters on page 3-18 for details.
  Synchronize the system clocks on each host involved in single sign-on.
  If the system clocks on the hosts are not synchronized, the cookie may be in the future or in the past and the session timeout rule may be triggered even though in reality there is no timeout issue

- Single sign-on failure:
  Check the definitions for the ObSSOCookie. The cookie definition may contain the wrong domain name.
  Be sure that both WebGates have the same primary HTTP cookie domain.
  Be sure the two WebGates are in the same installation, so that they are using the same shared secret.

- The user’s authentication fails.
  Be sure this user’s identity matches the authentication rules specified for the domain.
  Also be sure the user supplied a fully qualified domain name. You can configure multiple ways for a user to specify the fully qualified domain name. See "Using Host Identifiers and Host Contexts" on page 4-29 for details.
  Finally, verify that, on the authentication schemes to enable multi-domain single sign-on, Challenge Redirect is set.

- Users are authenticated initially, but their authorization fails when they access a resource on a second host.
  The authentication rule configured for the second host could deny the requester access to the resource. A user can go from a higher scheme to a lower scheme, but not from a lower one to a higher one. For example, if a user is authenticated to access a resource that requires a Basic Over LDAP authentication scheme, that user can access other resources having the same or a less stringent scheme. However, if the same user tries to access a resource with a more stringent authentication challenge, such as Client Certificate, the user must re-authenticate.

- Single sign-on does not work when accessing a second site that has the same authentication level.
The shared secret may have been corrupted. Regenerate the shared secret and restart the Web servers and Access Servers.

**The Login Form Appears Repeatedly**

The login form repeatedly reappears after the user enters credentials.

**Problem**
The login form may continue to pop up due to the configuration of the parameters for login credentials, the configuration of the authentication plug-ins, and the configuration of the authentication scheme.

**Solution**
One of the following solutions can be applied to this problem.

Make sure the credentials in the creds challenge parameter for the form scheme match the input fields in the form.

Make sure the authentication plug-ins for the form scheme are correct.

If you are using IIS and the form action is not the webgate.dll, make sure the WebGate filter post processing is enabled by the Registry entry

```
HKEY_LOCAL_MACHINE\SOFTWARE\Oblix\Oblix COREid\version\WebGate\postdata="yes"
```

where `version` is the version number of the installed Oracle Access Manager product.

To make sure that the authentication scheme is set properly, you can attempt to access a resource protected with that authentication scheme, adding the credentials as query string parameters. This simulates a form whose method is GET without actually using the form.

For example, suppose the authentication scheme uses the following creds challenge parameter:

```
creds:login password
```

In this example, if the protected URL is `http://server/protected/page.html`, you could launch a browser instance and type the following:

```
```

If `jsmith` and `MyPwd` are valid credentials, after you press Enter the page is displayed instead of the login form if the authentication scheme is working correctly but something is wrong in the form’s HTML code or in the registry (in the case of IIS servers).

To verify whether a user has a valid session, you can type the following in the browser’s location:

```
javascript:alert(document.cookie)
```

The window that pops up should contain the current cookies associated with the browser, including the ObSSOCookie. This can also help determine if the cookie domain or invalid logout situations are affecting the login process.

**Other Form-Based Authentication Issues**

After submitting a login form, you receive an error or the login form stops responding.
**Problem**
After you submit the login form, one or more of the following messages appears:

- 500 Internal Server Error
- You receive a new login challenge (for example, a basic login dialog box)

If the form stops responding, the redirection action may be misconfigured.

**Solution**
If you receive an error message, ensure that the form’s action URL is protected by a policy domain, and ensure that the action challenge parameter of the form scheme matches the form action URL.

---

**Note:** Because of the way Access System updates the Access Manager SDK caches that the WebGate uses, a corrected authentication scheme is not available until after that WebGate has made another request to the Access Server. Consequently, a form login problem may occur one more time after the correction.

---

If the form stops responding after successful authentication, be sure that the redirection action does not send the user back to the same login form.

**Need More Help?**
You can find more solutions on Oracle MetaLink, [https://metalink.oracle.com](https://metalink.oracle.com). If you do not find a solution for your problem, log a service request.
access
see also access control, 3-45
denying access to all resources by default, 3-45
DenyOnNotProtected flag, 3-45
access control
see also authentication schemes
see also authorization schemes
see also policy domains
and Windows Impersonation, B-2
for single sign-on, 7-7
increasing or decreasing, 4-24
removing for a group, 4-25
Access Control Lists and Entries, B-18
access control templates
see authentication schemes
see authorization schemes
see policy domains
Access Domain, 4-9
formerly named NetPoint or COREid Access
Manager Domain, xx
Access Management API
now named Policy Manager API, xx
Access Manager
now named Policy Manager, xx
Access Manager API
effect on Policy Manager API Support Mode, 3-21
formerly named Access Server API, xx
processing of resource requests, 3-51
use in authorization requests, 6-50
Access Manager SDK, 3-23, 3-50, A-6, E-6
affect on AccessGate configuration
parameters, 3-22
authorization clients that use, 6-50
cache, E-6
effect on AccessGate configuration
parameters, 3-19
formerly named Access Server SDK, xx
Access Server, 1-2
Access Server service, 3-14
adding, 3-5
associating with AccessGates, 3-37
audit log, 4-41
Audit to Database, 3-4
auditing parameters, 3-4
cache, 3-5, 3-29, 5-7, 5-57, 5-60, 6-8, 6-31
cache configuration parameters, 3-5
cache flush, 2-8
cache timeout, 3-5
cache, updating, 4-31, 4-35, 6-11
cluster
about, 3-10
adding, 3-10
managing, 3-10
modifying, 3-11
reason for configuring, 3-10
viewing, 3-11
who configures, 2-2
command line configuration, 3-12
configuration parameters, 3-4
configuration, prerequisites for, 3-2
configureAAAServer tool, 3-12
configuring, 2-5, 3-1, 3-2
configuring to communicate with
AccessGate, 3-39
debug file, 3-4
definition, 1-2
definition of, 3-1
deleting, 3-9
diagnostics, 8-2
directory server profile for, 3-9
disassociating from an AccessGate, 3-41
duplicate action handling, 6-42
evaluation of policy domains, 4-16
give it checks policies, 4-8
give it processes expressions, 6-16
give it selects policy domains, 4-17
installing, 3-2
instance, adding, 3-5
managing from the command line, 3-12
Maximum Client Session Time, 3-4
modifying, 3-9
naming, 3-23
number of connections with AccessGate, 3-36
Number of Threads, 3-4
Password Policy Reload Period, 3-4
policy cache Policy Manager API Support Mode, 3-4
cache Policy Manager API Support Mode field, 3-4
polling between it and directory, 3-29
Index-2

polling between it and WebGate, 3-29
queues, setting the number of, 3-16
re-configuring, 3-12
re-installing Access Server service, 3-14
removing Access Server service, 3-14
requests to, 3-15
role in matching URLs with resources, 4-8
session token cache parameters, 3-5
silent installation, 3-12
SNMP Agent Registration Port, 3-5
threads, 3-15
transport security mode, 3-4
URL Prefix Reload Period, 3-4
viewing, 3-9
viewing details, 3-3
who configures, 2-2
Access Server API
now named Access Manager API, xx
Access Server SDK
now named Access Manager SDK, xx
Access Server Timeout Threshold field, 3-20, 3-25
Access System
Access Server, 1-2
authorization, 1-1
cache flush, automatic, 9-1
components, 1-1
configuration of, 1-3
configuration, about, 1-1
configuration, prerequisites for, 2-1
Identity Server logged you in but the Access System logged you out error, E-3
installation overview, 1-2
management overview, 1-4
Policy Manager, 1-1
setup, 1-2
synchronizing clocks, 9-2
synchronizing components, 9-2
WebGate, 1-2
Access Tester, 4-41
Access Tokens, B-18
AccessGate, 3-9
adding, 3-23
Audit to Database, 3-4
Audit to File field, 3-4
Buffer Size, 3-4
cache, 3-20
configuration parameters, 3-18
configuration, prerequisites for, 3-2
configure in the console before installing, 3-23
configureAccessGate tool, 3-30
configuring, 3-16
creating, xvii
Debug File Name, 3-4
Debug parameter, 3-4
definition, 3-2
deleagating administration of, 2-3
deleting, 3-32
disassociating from an Access Server or cluster, 3-41
Engine Configuration Refresh Period, 3-4
Hostname, 3-4
installing, 3-23
modifying through command line, 3-30
Name, 3-4
out-of-box Access Client, 3-33
Policy Manager API Support Mode, 3-4
Port, 3-4
Session Token Cache field, 3-5
SNMP, enabling, 3-5
Transport Security, 3-4
transport security mode for, 3-31
User Cache Timeout, 3-5
user-defined parameters, 3-27
viewing, 3-17
viewing associated Access Server, 3-18
WebGate, 3-33
who manages, 2-2
AccessGate Name field, 3-18, 3-23
AccessGate Password field, 3-19, 3-23
AccessGates
associating with Access Servers, 3-37
actions, A-7
and header variables, 5-53, 7-13
and redirection, 5-54
authentication, 5-51
authentication actions and session cookies, A-5
authentication actions, setting, 5-56
combining from two or more rules, 6-39
configuring for AD, 5-52
custom authorization actions, 6-44
determining which ones are returned from an authorization expression, 6-38
duplicate action defaults, 6-43
duplicate actions, 6-27, 6-42
evaluation order, 6-39
for authorization expressions, 6-41
for authorization success or failure, 6-4, 6-6
for inconclusive results, 6-42
for redirection, 5-54
form action, A-9
form action URLs, A-10
in a policy authentication rule, 5-58
in authorization expression rules, 6-28
in authorization plug-ins, 6-45
in authorization rules, 6-36, 6-40
in disjoint domains, 6-41
passing header variables, A-6
passing information using actions, 5-53
redirection, 6-6
to pass information, 6-38
triggering after ObSSOCookie is set, xxi, 5-60
triggering after setting the session cookie, 5-60
types of actions, 5-52
used to define the user type, 7-18
Active Directory
and impersonation, B-13
authentication scheme for, 5-4, 5-11
configuring a trusted user for impersonation, B-6
configuring actions when using AD, 5-52
configuring impersonation for services, B-2
credential mapping parameter for, 5-22
example of changing the security level when using, 5-19
form-based authentication and AD, A-14
multiple searchbases using AD, 5-13
return attributes to set for impersonation, B-7
AD forest
authentication scheme for, 5-11
administration
about, 1-1
administrators
Access Administrators, 2-1
configuring, 2-1
Delegated Access Administrator, 2-1
Delegated Access Administrator, configuring, 2-3
Delegated Access Administrators, configuring a group of, 2-4
Master Access Administrator, 2-1
Master Access Administrator, configuring, 2-3
Master Administrator, 2-1
policy domain administrators, 4-43
privileges for each type, 2-2
AES encryption, 7-3, 8-4
allow access, 6-9
AM Service State
now named Policy Manager API Support Mode, xx
Anonymous authentication scheme
and form-based authentication, A-2, A-7
definition, 5-11
formerly named NetPoint or COREid None, xx
anonymous login, 3-46
audit
Master Audit Rule, 4-32
rule, 4-24
Audit Event Mapping field, 4-34
Audit Events field, 4-33
Audit File Name field, 3-4
Audit File Size field, 3-4
Audit Record Format field, 4-34
audit rule
definition, 4-24
Audit to Database field, 3-4, 3-6
Audit to File, 3-4, 3-6
AUTH_PASSWORD, B-12
AUTH_TYPE, B-12, B-15
AUTH_USER, B-12
authentication, xvi, 1-1
auditing, 4-39
plug-ins, A-5
process overview, 3-49
rule, 4-23
actions for, 5-51
creating in the Policy Manager, 5-47
definition, 4-23
deleting, 5-49
modifying, 5-48
rules, in a policy, 4-36
scheme
default schemes, xx
WebGate, role in, 3-1
who configures, 4-43
authentication scheme, 5-4
about, 5-1, 5-3
about steps in, 5-32
actions, 5-59
actions, triggering, 5-60
Anonymous, 3-46
anonymous login, 3-46
caching, 3-20
chained, 5-3, 5-30
challenge methods, 5-8, 5-20
Basic, 5-8
Ext, 5-8
Form, 5-8
None, 5-8
X.509, 5-8
challenge redirects, 3-45
credential mapping, 5-21
default, 5-4
defining, 5-4
deleting, 5-13
deleting plug-ins, 5-29
disabling, 5-14
disabling before deleting, xxii
enabling, 5-14
external call for data in, A-6
flows, 5-4
flows, about, 5-40
flows, creating, 5-44
flows, viewing, 5-43
for Security Bridge, 5-64
form plug-ins, 5-20
form-based, 3-50, 5-55
form-based authentication, 3-52
general information, 5-3
modifying, 5-11
multiple searchbases, 5-13
multi-step, 5-30
persistent cookies in, xxii
plug-ins, 4-22, 5-3, 5-18
plug-ins, adding, 5-27
plug-ins, reusing, 5-19
redirecting to a challenge page, 5-7
redirection in, 5-7
rules, 4-5
securing the ObsSOCookie in, 5-17
security levels, 5-7, 5-19
single sign-on, 3-48
single-step, about, 5-33
steps, 5-4
steps, adding, 5-38
steps, deleting, 5-40
steps, viewing, 5-36
steps, viewing details, 5-37
time-based, xxii, 5-17
validate password, 5-23
viewing, 5-6, 5-13
who can create, 2-4
authorization, xvi, 1-1, 4-22, 6-38, A-1
about, 6-1
actions, 6-36
actions associated with authentication, 5-62
actions, about, 6-36
actions, creating for a rule, 6-40
actions, custom, 6-44
actions, duplicate, 6-42
actions, for an authorization rule, 6-40
actions, for inconclusive results, 6-42
actions, in disjoint domains, 6-41
actions, in form-based authentication, A-6
allow access, 6-9
allow conditions, 6-5
and Windows impersonation, B-2
auditing, 4-39
based on external data, 6-49
components, illustration of, 4-24
configuring, 6-1
deny access, 6-10
deny conditions, 6-5
evaluation, use of operators, 6-16
events, 6-48
expressions, 4-22, 4-23
definition, 4-23
illustration of, 4-24
expressions, about, 6-14
expressions, actions for, 6-41
expressions, creating, 6-3, 6-28
expressions, creating for a policy, 6-31
expressions, deleting, 6-33, 6-35
expressions, illustration of, 6-15
expressions, modifying, 6-31, 6-34
expressions, viewing, 6-26
expressions, viewing for a policy domain, 6-27
external data used in, 6-49
how it is used, 4-6
in the Access System, 1-1
plug-ins, 4-22
process overview, 3-49
process, illustration of, 3-49
rules, 4-1, 4-7, 4-22, 4-23
rules and expressions, 6-2
rules, about, 6-4, 6-6
rules, compound conditions, 6-19
rules, configuring, 6-7
rules, deleting, 6-14
rules, evaluation of, 6-16
rules, general information, 6-13
rules, in a policy, 4-36
rules, modifying, 6-13
rules, replacing operators, 6-33
rules, reuse, 6-5
rules, viewing, 6-7
schemes, 4-7
schemes, about, 4-22
schemes, configuring, 6-47
schemes, deleting, 6-48
schemes, for custom plug-ins, 6-44
schemes, for single sign-on, 7-7
schemes, modifying, 6-48
schemes, plug-ins, 6-46
schemes, viewing, 6-47
single sign-on cookies, use of, 7-2
timing conditions, 6-11
WebGate, role in, 3-1
who can configure, 2-1
who configures, 2-4, 4-43
authorization expression
see also authorization
see also expressions
authorization expressions
see expressions
authorization rule
Actions, 6-6
Allow Access, 6-6
Deny Access, 6-6
evaluation, 6-6
General Information, 6-6
Timing Conditions, 6-6
timing conditions for, 6-11
authorization rules
definition, 4-23
timing conditions for, 6-12
authorization scheme
external data, retrieving for authorization, 6-49
Authorization Success, B-15

B
Basic authentication, 5-11
basics, 1-1
Buffer Size, 3-4
Buffer Size field, 3-4, 3-7

C
cache, 5-7
Access Manager SDK, E-6
Access Server, 3-29, 4-31, 5-7, 5-57, 5-60, 6-8, 6-11, 6-31
Access Server, flushing, 2-8
Access System, 9-1
AccessGate, 3-20
credential mapping, 5-22
default timeout, 3-29
flushing users from, 8-3
form-based login errors and caching, E-6
header variables, 5-54, 6-37
Identity Server cache flush, 2-8
InactiveReconfigPeriods, 3-28
minimum elements in Access Server, 3-5
ObSSOCookie, 3-52
password, 5-23, 5-26
password policy, 2-2, 8-5
policy, 3-5
Policy Cache Timeout field, 5-54
session token, 3-5
session token cache, 3-5
timeout, 3-5, 9-2
timeout, default, 9-2
upgrading for Access Server, 4-31
user cache timeout, 5-54
WebGate, 3-22
Cache Timeout field, 3-20, 3-25
CacheControlHeader field, 3-22, 3-26
CachePragmaHeader field, 3-22, 3-26
Cert mode, 3-19, 3-24
cert_decode, 5-20
about, 5-24
cert_decode plug-in, 5-21
challenge methods
Basic, 5-10
cert_decode plug-in, 5-21
Client Cert (X509), 5-10
credential_mapping plug-in, 5-21
Ext, 5-10
Form, 5-10
form, 5-8, 5-9, 5-10
None, 5-10
NT/Win2000 plug-in, 5-21
SecurID plug-in, 5-21
selection_filter plug-in, 5-21
validate_password plug-in, 5-21
challenge parameter
form, 5-64
challenge redirects, 3-45
Client Certificate authentication, 5-11
clusters
Access Server clusters, 3-10
adding, 3-10
compound condition, 6-15
conditions, complex, 6-15
configuration
about, 1-1
configuration data
formerly named Oblix data, xx
configuration tree
formerly named Oblix tree, xx
configureAAAServer tool, 3-12
configureAccessGate tool, 3-30
configureWebGate command, 3-30
CONNECT operation, 4-12
Connector for WebSphere, 7-13
cookies
client cookie, 3-53
duplicate actions, 6-42
effect of, 5-53
encrypted session token and, 7-2
encrypting the single sign-on cookie, 2-2, 2-3
for single sign-on, 7-2
form-based authentication cookie, 3-52
generated during login, 3-52
HTTP header variable size, 5-53
Identity application session cookie, 3-52, 3-53
lasted over multiple sessions, 5-17
multi-domain SSO, 7-8
ObFormLoginCookie, 3-52, A-7
OBPERM Cookie, 3-52
ObSSOCookie, 3-19, 3-52, A-1
ObTEMTCookie, 3-52
ObTEMP Cookie, 3-52
passing actions in, 6-37
persistent, xxii
primary HTTP cookie domain, 3-21, 3-26
setting the ObSSOCookie, 5-17
sending credentials in, 7-13
single sign-on cookie, 3-52
single sign-on logout, 2-6
system settings cookie, 3-53
triggering actions after setting, 5-60
triggering actions after setting the
ObSSOCookie, xxii
COREid
now named Oracle Access Manager, xix
COREid Access Manager Domain
now named Access Domain, xx
COREid Administrator
now named Master Administrator, xx
COREid Basic Over LDAP authentication
now named Oracle Access and Identity, xx
COREid for AD Forest Basic Over LDAP
authentication
now named Oracle Access and Identity for AD
Forest Basic over LDAP, xx
COREid Identity Domain
now named Identity Domain, xx
COREid None authentication
now named Anonymous authentication, xx
COREid System Console
now named Identity System Console, xx
Credential Mapping Authentication Plug-In, A-5
credential mapping cache, 5-22
credential_mapping, 5-20
about, 5-21
for form-based authentication, A-5
parameters, 5-22
credentials
sent in a URL, 7-13
custom plug-in, A-5
D
Debug field, 3-6, 3-19, 3-23
Debug File Name field, 3-6
decimal addressing, 3-43
DELETE operation, 4-12
deny access, 6-10
DenyOnNotProtected, 3-22, 3-26
advantages of, 3-42
allow access to all resources, 4-25
deny all access unless explicitly allowed, 3-42
setting for a WebGate, 3-22
Description field, 3-18, 3-23
diagnostics, 3-35, 8-2
running, 8-5
directory server
configuration, 2-8
Display Name field, 4-14
duplicate actions, 6-42
defaults for, 6-42
restrictions on, 6-43
Index-5
EJB, 4-12
operations, 4-13
email
configuring user feedback email address, 2-5
Enabling Impersonation, B-1
With a Header Variable, B-3
with a User Name and Password, B-11
encryption
schemes, 7-3
Engine Configuration Refresh Period field, 3-4, 3-7
expressions, 4-7, 4-22, 6-2
about, 4-22, 6-14
associating with actions, 6-36, 6-41
complex conditions in, 6-15
compound conditions in, 6-15
contents of, 6-15
creating, 6-28
creating, overview, 6-3
duplicate actions, 6-43
duplicate actions in, 6-43
evaluation of, 6-15
evaluation of rules in, 6-16
illustration of, 6-15
in authorization rules, 6-4
inconclusive results in, 6-42
status codes, 6-16
testing, 4-41
viewing, 6-26
external data
retrieving for authorization, 6-49

F
Failover Threshold field, 3-20, 3-25
features
new, xix
feedback
email address for, 2-5
File Rotation Interval field, 3-4, 3-7
form
challenge method, 5-9
challenge parameter, 5-64
form challenge method, 5-8, 5-10
form login
Identity System, 3-48
form-based authentication, 3-50, 3-52, 5-8, A-1
about, A-1, C-1
action challenge parameter, A-3
challenge parameters, A-3
collecting external data for, A-6
configuring, A-7
considerations, A-7
creating the form, A-7
credential_mapping plug-in, A-5
creds challenge parameter, A-3
custom plug-in, A-5
examples, A-12
form challenge parameter, A-3
header variables, A-6
instead of a plug-in, 5-55
multi-language form, A-19
ObFormLoginCookie, 3-52, A-7
overview, 5-55
passthrough challenge parameter, A-4
plug-ins, 5-20, A-4
redirection, use of, A-4
session cookie, A-5
task overview, A-2
validate_password plug-in, A-5

G
GET operation, 4-12
GetProxySSLStateHeader, 3-28
getting started, 1-1
Global Pass Phrase, 3-31
globalization, xxi, xxii, 3-28

H
HEAD operation, 4-12
header variables, 7-13
actions and, 5-53, 6-37
caching, 5-54, 6-37
cookies and, 6-37
duplicate actions and, 6-43
for impersonation, B-3
GetProxySSLStateHeader, 3-28
HTTP, 5-56
in authorization rules, 6-6
in single sign-on, 7-13
passing information via, 3-50, 5-52
passing on redirection, 5-55, 5-56, 5-57
redirection and, 5-53
setting credentials in, 7-13
use with cookies, 5-53
Web server handling of, 5-54
with WebGate behind a reverse proxy, 3-28
host identifiers, 2-2, 2-4, 3-2, 3-22, 3-26, 4-6
adding, 3-44
and SSO, 7-7
and virtual Web hosting, 3-43
definition, 4-6, 4-30
deleting, 3-44
using, 3-43, 4-29
using vs preferred hosts, 3-42
viewing, 3-44
vs DenyOnNotProtected, 3-22, 3-46
Hostname field, 3-6, 3-18, 3-23
hosts
configuring identifiers for, 3-42
HTTP, 4-12
operations, 4-12

I
Identity application
cookies generated at login, 3-50, 3-52
login process for, 3-48
protecting, 7-15
Identity Domain, 4-9
formerly named COREid Identity Domain, xx
formerly named NetPoint Identity Domain, xx
Identity Server
  cache flush, 2-8
  logged you in but other system logged you out
  error, E-3
Identity Server logged you in but other system logged
  you out error, E-3
Identity System
  anonymous access to, 5-10
  configuring, 2-xvi
  form login, 3-48
  IdentityXML, 2-xvii
  protecting, process for, 3-48
  SSO logout for, C-2
Identity System Console
  formerly named COREid System Console, xx
Idle Session Time field, 3-19, 3-24
IIS, A-10
IIS Lockdown tool, 3-35
IIS6, 3-35
IMPERSONATE, B-15
impersonation, 3-21, 3-25, B-1
  about, B-1
  action in a policy domain, B-7
  and third-party products, B-11
  creating an Impersonator as a Trusted User, B-4
  Domino, 7-19
  enabling, B-1
  enabling in the Access System, 7-19
  enabling with a header variable, B-3
  enabling with user name and password, B-11
  for OWA, B-12
  impersonator as a trusted user, B-4
  requirements for, B-3
  testing, B-9
  Windows impersonation, about, B-17
Impersonation Password field, 3-21, 3-26
Impersonation Username field, 3-21, 3-25
InactiveReconfigPeriod, 3-28
InactiveReconfigPeriods, 3-28
inconclusive results, 6-42
installation, xvi, 3-12, 4-2
  silent, 3-12
introduction, 1-1
IP address
  deny access according to IP address, 6-11
IP address validation, 3-34
IPValidation, 3-19, 3-34
  configuring, 3-34
IPValidation field, 3-19, 3-24
IPValidationException field, 3-19, 3-24

K
Kerberos Protocol, B-19

L
language
  multi-language form, A-19
localization, A-11
logging
  automatic updates, xxii
  new features in this release, xxii
  what’s new in this release, xxii
login, 2-6
  cookies generated during, 3-52
  form-based, A-1
  form-based login, configuring, A-2
  on Netscape, 3-28
  process, 3-45, 3-48
  process, scenarios for, 3-50
  self-registration auto login, 3-21
LOGON_PASSWORD, B-11
LOGON_USER, B-11
logout, 2-6
  adding logout URLs, 3-22
  button for, 3-27
  configuring, C-1
  configuring, for WebGates, 3-22
  custom logout pages, C-2
  for an Identity System resource, 3-27
  forced, 3-19
  from a multi-domain SSO session, 7-12
  from a single-domain SSO session, 7-8
  how it works, C-1
  issues with form-based authentication, A-7
  logout URL, 7-8, C-1
  SSO logout URL, configuring, 2-6
  logout.html, 7-14
  LogOutUrls field, 3-26
  Lotus Domino, 7-19

M
Master Administrator
  formerly named COREid Administrator, xx
  formerly named NetPoint Administrator, xx
Master Audit Rule, 4-32
Maximum Client Session Time field, 3-4, 3-6, 3-19,
  3-25
Maximum Connections field, 3-19, 3-24
Maximum Elements in Cache field, 3-20, 3-25
Maximum Elements in Policy Cache field, 3-5,
  3-8
Maximum Elements in Session Token Cache
  field, 3-5
Maximum Elements in User Cache field, 3-5, 3-8
Maximum User Session Time field, 3-19, 3-24
mySAP, 7-13

N
name changes, xix
names, new, xix
NetPoint
  now named Oracle Access Manager, xix
NetPoint 5.x, 3-28
NetPoint Access Manager Domain
   now named Access Domain, xx
NetPoint Access Protocol
   now named Oracle Access Protocol, xx
NetPoint Administrator
   now named Master Administrator, xx
NetPoint Basic Over LDAP authentication
   now named Oracle Access and Identity, xx
NetPoint for AD Forest Basic Over LDAP authentication
   now named Oracle Access and Identity for AD Forest basic over LDAP, xx
NetPoint Identity Domain
   now named Identity Domain, xx
NetPoint Identity Protocol
   now named Oracle Identity Protocol, xx
NetPoint None authentication
   now named Anonymous authentication, xx
NetPoint SAML Services
   now named Oracle Access and Identity, xix
Netscape, 3-28
   network traffic, 3-28
   cache timeout, 9-2
   for Access System, 3-28
   reducing, 3-28
   new features
      logging, xxii
NPUSERNAME, B-15
NT/Win2000 plug-in, 5-21
   number of connections, 3-36
   Number of Threads field, 3-4, 3-6
multi-domain SSO and, 7-9
   security of, 7-3
   single sign-on and, 7-4
   unencrypted data in, 7-2
ObTEMC Cookie, 3-52
ObTEMC cookie, 3-52
ObTEMP Cookie, 3-52
ObTEMP cookie, 3-53
OctetString Virtual Directory Engine (VDE)
   now named Oracle Virtual Directory, xx
OHS2, 3-28
Open mode, 3-19, 3-24
OPTIONS operation, 4-12
Oracle Access and Identity authentication
   formerly named NetPoint or COREid Basic Over LDAP, xx
Oracle Access Manager
   formerly NetPoint or COREid, xix
   protecting, 5-4
   unprotecting, 5-4
Oracle Access Protocol
   formerly named NetPoint Access Protocol, xx
Oracle Application Server 10g Release 2 (10.1.2)
   also available as Oracle COREid 7.0.4, xx
Oracle COREid release 7.0.4
   also available as part of Oracle Application Server 10g Release 2 (10.1.2), xx
Oracle HTTP Server 2, 3-28
Oracle Identity Federation, xix
   formerly SHAREid, xix
Oracle Identity Protocol
   formerly named NetPoint Identity Protocol, xx
Oracle Virtual Directory Server
   formerly OctetString Virtual Directory Engine (VDE), xx
OracleAS, 7-13
OTHER operation, 4-12

O
   ob_date, 4-34
   ob_datetime, 4-34
   ob_event, 4-34
   ob_ip, 4-34
   ob_operation, 4-34
   ob_reason, 4-35
   ob_serverid, 4-34
   ob_time, 4-34
   ob_time_no_offset, 4-34
   ob_url, 4-34
   ob_userid, 4-34
   ObFormLoginCookie, 3-52, A-7
Oblix data
   now named configuration data, xx
Oblix tree
   now named configuration tree, xx
obMappingFilter, A-11
ObPERM Cookie, 3-52
ObPERM cookie, 3-53
ObSSOCookie, 3-21, 3-24, 3-34, 3-48, 3-52, 7-2
   and redirection for SSO, 7-12
   and single domain SSO, 7-4
   cache, 3-52
   configuring, 7-3
   form-based authentication and, A-1
   grandfathering, 7-3
   password
   policy cache, 2-2, 8-5
   Password Policy Reload Period field, 3-4, 3-8
   passwords
   caching, 5-26
   PDF files, 3-22
   performance, 3-7, 3-46
   caching passwords, 5-26
   configure cache timeout, 9-2
   duplicate actions, impact, 6-42
logout URLs, impact, 7-8
viewing policy domains, impact, 9-3
personalizing the end user’s interaction, 5-53
plug-ins
  about, 4-22
  adding, 5-27
  adding to an authentication scheme, 5-28
cert_decode, 5-20, 5-21
    about, 5-24
credential_mapping, 5-20
    about, 5-21
    for form-based authentication, A-5
    parameters, 5-22
custom
  for form-based authentication, A-5
  custom plug-ins, creating, 4-22
custom, authorization schemes for, 6-44
custom, to use in authorization schemes, 6-44
definition, 4-22
deleting from an authentication scheme, 5-29
for a step, 5-33
for authentication
  about, 5-17
  Access System-provided, 5-18
  custom, 5-18
    for challenge methods, 5-20
    to change security levels, 5-19
  for authentication flows, 5-42
  for authentication schemes, 4-21, 4-22, 5-2
for authorization
  about, 6-45
  specifying, 6-46
  task overview, 6-45
for authorization schemes, 4-22
  optional parameters, 6-46
  required parameters, 6-46
for custom authorization actions, 6-44
for disjoint (multiple) searchbases, 5-13
for UNIX, 4-22
for Windows, 4-22
form-based authentication, A-4
in a step, changing, 5-40
NT/WIN2000, 5-21
return codes, 5-19
reuse of, 5-19
SecurID, 5-21
Security Bridge, 5-63
selection_filter, 5-20, 5-21
validate_password, 5-20, 5-21
  about, 5-23
  for form-based authentication, A-5
  parameters, 5-23
versus form-based authentication, 5-55
viewing, 5-27
vs using form-based authentication, 5-55
why separate into steps, 5-34
Windows NT/2000, 5-66
Plumtree Corporate Portal, 7-13
policy, 4-1
  see also policy domain
adding, 4-37
finding, 4-28
policy base
  about, 4-2
policy cache, 3-5
policy cache timeout, 5-54
Policy Cache Timeout field, 3-5, 3-8
policy domain
  about, 4-1
  administration
    about, 4-3
    configuring, 4-45
    delegating, 4-43, 4-45
    task overview, 4-4, 4-5
    why have multiple administrators, 4-11
  administrators, 4-43
  administrators, configuring, 4-45
  administrators, viewing, 4-45
  audit rules for, 4-39
    creating, 4-40
    audit rules for, modifying, 4-40
    auditing access to resources, 4-32, 4-39
    authentication actions for, setting, 5-59
    authorization expressions for, deleting, 6-35
    authorization expressions for, viewing, 6-27
    authorization rules for, viewing, 6-7
    components of, 4-6
    creating, 4-26
    creating the first one, 4-3
    creating, overview, 4-5
    default, xx, 4-9
    default domains, 4-9
    default rules for, 5-47
    defining subsets of protected resources, 4-36
    delegated administration, 4-43
    delegated administration, caveat, 2-4
    delegating administration of, 4-43
    deleting, 4-27
    denying access to all resources in, 3-45
    disabling, 4-27
    effect of multiple policy domains and
      policies, 4-16
    EJB resource, 4-13
    enabling, 4-26, 4-27
    examples of, 4-9
    finding, 4-28
    granularity of domains, 4-16
    host identifiers, 4-6, 4-29
    HTTP resource, 4-13
    location of policy data in the DIT, 4-2
    managing, about, 4-4
    master audit rule, 4-32
    modifying, 4-27
    order of evaluation, 4-8
    overview of creating, 4-2
    policies
      about, 4-6, 4-36
      adding, 4-37
      audit rules for, 4-40, 4-41
      configuring, 4-36
deleting, 4-38
deploying, 4-39
finding, 4-28
modifying, 4-38
order of evaluation, 4-37
ordering, 4-38
overlapping patterns for, 4-37
policies within, 4-7
Policy Manager, 1-1
Policy Manager application, 3-2
prerequisites for configuring, 4-1
protecting all resources, 4-25
RDBMS resource, 4-13
resource types, configuring, 4-11
resources, adding, 4-29
root, 4-2
root URL, 4-2
rules and expression in, 4-22
rules in policy domains, about, 4-24
schemes in, 4-21
servlet resource, 4-13
single sign-on across domains, 7-2
single sign-on with third-party applications, 7-2
single sign-on within a domain, 7-2
structure, 4-8
testing the configuration, 4-41
top URL prefix in the DIT, 4-2
unprotecting all resources, 4-25
URL patterns, 4-19
URL patterns, about, 4-19
URL prefixes, 3-45, 4-14, 4-16
URL prefixes, illustration of, 4-16
URLs for resources, configuring, 4-14
URLs in, 4-6
viewing, 4-28
who administers, 4-11
who creates, 4-9
Policy Manager API, xx
formerly named Access Management API, xx
Policy Manager API Support Mode, 3-4, 3-6, 3-10, 3-21, 3-26
formerly named AM Service State, xx
Primary HTTP Host field, 3-21, 3-26
Procedure
AccessGates and WebGates
To associate an AccessGate with an Access Server, 3-39
To associate an AccessGate with an Access Server cluster, 3-40
To change the configuration polling frequency, 3-29
To change the default configuration cache timeout, 9-2
To check the status of a WebGate, 3-36
To create an AccessGate instance, 3-23
To delete an AccessGate, 3-32
To disassociate an AccessGate from an Access Server or an Access Server cluster, 3-41
To modify a WebGate through the command line, 3-33
To modify an AccessGate through the Access System Console, 3-30
To modify an AccessGate through the command line, 3-30
To view AccessGates, 3-17
To view AccessGates associated with a cluster, 3-41
administrators
To add a Master Access Administrator, 2-3
To create a group of Delegated Access Administrators, 2-4
To modify a group of delegated administrators, 2-5
To modify policy domain rights, 4-45
To view Delegated Access Administrators for a policy domain, 4-45
audits, logs, and reports
To add a user access privilege report, 8-6
To configure a server's Master Audit policy, 4-33

Index-10
To create an audit rule for a policy domain, 4-39
To define an audit rule for a policy, 4-40
To delete the Master Audit Rule, 4-35
To modify an audit rule for a policy domain, 4-40
To modify the Master Audit Rule, 4-35

authentication
To add a step to an authentication scheme, 5-38
To add plug-ins to an authentication scheme, 5-28
To add, remove, or re-order plug-ins in an existing step, 5-39
To configure the flows of an authentication scheme, 5-44
To correct an authentication flow containing a cycle, 5-45
To create a default authentication rule for a policy domain, 5-47
To create an authentication rule for a policy, 5-49
To create an authentication scheme, 5-8
To define a persistent cookie in the authentication scheme, 5-17
To delete a policy domain’s authentication rule, 5-49
To delete a policy’s authentication rule, 5-51
To delete a step from an authentication scheme, 5-40
To delete an authentication scheme, 5-13, 5-16
To delete plug-ins from an authentication scheme, 5-29
To enable or disable an authentication scheme, 5-15
To modify a policy domain’s authentication rule, 5-48
To modify a policy’s authentication rule, 5-50
To modify the content of an authentication scheme, 5-11, 5-16
To view the configuration for an authentication scheme, 5-13, 5-16
To view the configuration of an authentication flow, 5-43
To view the details for a step, 5-37
To view the list of plug-ins for an authentication scheme, 5-27
To view the steps of an authentication scheme, 5-36

authorization
To configure an authentication scheme for disjoint domains, 6-41
To create an action for an authorization expression, 6-41
To create an action for an authorization rule, 6-40
To create an authorization expression for a policy, 6-31

To create an authorization expression for a policy domain, 6-28
To create an authorization scheme, 6-47
To define an authorization rule, 6-8
To delete an authorization rule, 6-14
To delete an authorization scheme, 6-48
To delete an item, 6-33
To delete the authorization expression for a policy, 6-36
To delete the authorization expression for a policy domain, 6-35
To delete the entire content of an expression, 6-34
To display a current list of authorization rules, 6-7
To display the Authorization Expression page for a policy to modify the expression, 6-35
To display the page for modifying the authorization expression for a policy domain, 6-34
To implement a custom action, 6-44
To modify an authorization rule, 6-13
To modify an authorization scheme, 6-48
To replace one authorization rule with another, 6-33
To replace one operator with another, 6-33
To retrieve external data for an authorization request, 6-50
To set a timing condition, 6-12
To set Allow access, 6-9
To set Deny Access, 6-10
To set the behavior for handling duplicate actions for an expression, 6-43
To set the system default duplicate actions behavior for the Access Server, 6-43
To view an authorization expression for a policy, 6-27
To view an authorization expression for a policy domain, 6-27
To view configured authorization schemes, 6-47
To view the general information for an authorization rule, 6-13

form-based authentication
To configure a form-based authentication scheme, A-8
To include only active users in the obMappingFilter, A-11
To include only non-active users in the obMappingFilter, A-11
To retrieve external data for an authentication request, A-6
To set the login form encoding to UTF-8 for 10g Release 3 (10.1.4), A-15

hosts and resources
To change a resource description, 4-31
To define a resource type, 4-13
To delete a resource, 4-32
To deny access to all unprotected resources, 3-46
To view or delete existing Host Identifiers, 3-44
impersonation
To add an impersonation action to your policy domain, B-7, B-15
To add the impersonation dll to your IIS configuration, B-8, B-16
To bind your trusted OWA user to your WebGate, B-14
To bind your trusted user to your WebGate, B-6
To create a trusted user account, B-4
To create a trusted user account for OWA, B-13
To create an IIS virtual site not protected by SPPS, B-9
To give appropriate rights to the trusted user, B-5, B-14
To test impersonation through a Web page, B-17
To test impersonation through a Web page that displays server variables, B-11
To test impersonation through the Event Viewer, B-10, B-16
policy domains and policies
To add a policy, 4-37
To add resources to a policy domain, 4-29
To create a policy domain, 4-26
To create an authentication rule for a policy, 5-49
To create an authorization expression for a policy, 6-31
To delegate rights for a policy domain, 4-45
To delete a policy, 4-38
To delete a policy domain, 4-27
To delete a policy domain’s authentication rule, 5-49
To delete a policy’s authentication rule, 5-51
To delete the authorization expression for a policy, 6-36
To delete the authorization expression for a policy domain, 6-35
To disable a policy domain, 4-28
To display the Authorization Expression page for a policy to modify the expression, 6-35
To display the page for modifying the authorization expression for a policy domain, 6-34
To enable a policy domain, 4-28
To modify a policy, 4-38
To modify a policy domain, 4-27
To modify a policy domain’s authentication rule, 5-48
To modify a policy’s authentication rule, 5-50
To run Access Tester, 4-42
To search for existing policy domains or policies, 4-28
To set authentication actions for a policy domain, 5-56
To set the order of policies within a domain, 4-38
To turn off the display of Resource Type and URL Prefix columns, 9-3
To view policy domains and configuration information, 4-29
Policy Manager
To change search parameters, 9-4
To change the default number of search results, 9-4
To set Search as the default page, 9-3
servers
To access the configureAAAserver tool, 3-12
To add an Access Server cluster, 3-10
To add an Access Server instance, 3-5
To archive sync records, 8-8
To configure the directory server, 2-8
To create the revoked user list, 8-3
To customize email, 2-6
To delete an Access Server, 3-10
To flush all redirect URLs, 8-5
To flush user information from the cache, 8-3
To generate a cryptographic key, 8-4
To implement synchronization, 9-2
To install an Access Server in silent mode, 3-12
To modify common parameters, 3-13
To purge sync records, 8-9
To re-configurable an Access Server, 3-12
To remove an Access Server service, 3-14
To run diagnostics for Access Servers, 8-6
To set the number of queues on Solaris, 3-16
To set the number of queues on Windows NT, 3-16
To set the number of queues on Windows 2000, 3-16
To view Access Server configuration details, 3-3
To view certificate details, 5-26
To view or modify an Access Server cluster, 3-11
To view server settings, 2-5
single sign-on
To configure a second WebGate for single sign-on, 7-7
To configure redirection, 7-11
To configure single sign-on using a Lotus Domino Web server, 7-19
To configure the logout button, 3-27
To configure the ObSSOCookie, 7-4
To configure the SSO Logout URL, 2-7
To configure the WebGate, 7-6
To create a policy domain that protects the Access System applications, 7-18
To create a policy domain that protects the Identity System applications, 7-15
To secure the ObSSOCookie, 5-17
To configure the sample scheme to obtain external authorization data, 6-51
To set authentication actions for a policy, 5-59
Process overview
Form-based authentication from the user's perspective, 5-55
How a URL prefix is used, 4-17
How URL patterns are used, 4-19
Identity resource protected by WebGate, 3-51
Multi-domain single sign-on, 7-10
WebGate-to-Access Server configuration polling, 3-28
proxy, 7-8
PUT operation, 4-12

R
RC4 encryption, 7-3
RC6 encryption, 7-3
redirecting users to a specific URL, 5-53
redirection, 5-54, 6-6
and header variables, 5-52
authorization rules and, 6-6
configured in an action, 5-54
configuring, 7-11
for authentication success and failure, 5-57
in form-based login, A-4
in multi-domain SSO, 7-11
multi-domain SSO use of, 5-7
to a URL for authentication, 5-7
Redirection URL field, 5-57
REMOTE_USER, B-12, B-15
report files, 3-22
reports
user access privileges, 8-6
Requirements
impersonation, B-3
resource
adding to a policy domain, 4-29
auditing of, 4-39
authenticating users who try to access, 5-1
deleting, 4-32
deny access by default, 3-42, 3-45
EJB, 4-12
HTTP, 3-16, 4-12
identified by host identifier, 3-42
identified by preferred host, 3-42
J2EE, 4-13
policies for, 4-15
policy domain root, 4-2
protecting, 2-1
protecting all resources, 4-25
protecting with policy domain, 4-1
protecting with WebGate, 3-1
type
configuring, 4-11
defining, 4-13
unprotecting all resources, 4-25
URL pattern for, 4-15
URL patterns, about, 4-19
URL prefix, about, 4-17
URLs for, 4-14
who can define resource types, 2-4
Resource Matching field, 4-14
Resource Name field, 4-14
Resource Operation field, 4-14
resource types
about, 4-11
C programs, 4-13
C++ programs, 4-13
CRM applications, 4-13
directories, 4-13
Enterprise Java Beans (EJBs), 4-13
ERP applications, 4-13
Java programs, 4-13
Java Server pages (JSPs), 4-13
query strings, 4-13
supported, 4-13
web applications, 4-13
web pages, 4-13
reverse proxy, 3-28, 7-8
revoking users, 8-3
role
deny access to a role, 6-11
RSA SecurID, 7-13
rule
deny access filters, 6-11
rules
about, 4-22
illustration of, 4-24
types of, 4-23

S
S4U2Self Extension, B-19
schemes
see also authentication scheme
about, 4-21
see also authorization scheme
searchbase
multiple searchbases, 5-13
SecurID plug-in, 5-21
Security Bridge, 5-65
Security Bridge plug-in, 5-63
Security IDs, B-18
Security Provider for WebLogic SSPI, 7-14
Select Cluster Type field, 3-40
selection filter plug-in, 5-21
selection_filter, 5-20
server settings
directory servers, 2-8
email addresses, 2-5
SSO logout URL, 2-6
viewing, 2-5
servers
see also Access Server
virtual, 3-45
session token cache, 3-5
Session Token Cache field, 3-8
shared secret, 8-4
changing, 8-5
configuring, 7-3
creating, 8-4
definition, 7-3
frequency of reading, 3-28
read interval, 3-28
who creates, 2-2, 2-3
SHAREId
now named Oracle Identity Federation, xix
silent mode, 3-12
Simple mode, 3-19, 3-24
single sign-on, 3-48
between Identity and Access System, 7-14
configuring, 7-1
cookies, 7-2
definition, 7-1
issues with IP addresses, 3-34
logout from, 2-6, 7-8
logout from multi-domain, 7-12
multi-domain, 7-8
ObSSOCookie, 3-52
ObSSOCookie, securing, 5-17
passing user information, 5-53, 6-38
prerequisites, 7-1
reverse proxy, 7-8
security level for, 5-7
single domain, 7-4
single domain, setting up, 7-5
triggering authentication actions after signing on, 5-61
types of, 7-2
using older WebGates, 7-3
Sleep For field, 3-20, 3-25
SlowFormLogin, 3-28
SNMP, 3-5, 3-8
see also Oracle Access Manager Identity and Common Administration Guide
enabling, 3-5, 3-8
SNMP Agent Registration Port, 3-5
SNMP Agent Registration Port field, 3-5, 3-8
SNMP State field, 3-5
SSL
configuring, 3-28
SSO
see single sign-on
SSO Logout URL, 7-14
SSO logout value
    cache flush after changing, 2-8
State field, 3-18
sync records, 8-8
synch records, 8-8
System Console
    Identity Server logged you in but the System Console logged you out error, E-3

T
Task overview
    Administering a policy domain, 4-4
    Associating an AccessGate with an Access Server or cluster includes, 3-38
    configuring a custom logout page, C-2
    Configuring form-based authentication, A-2
    Create an AccessGate, 3-16
Creating a form for authentication, A-7
Creating a policy domain, 4-5
Creating authorization expressions, 6-3
Creating the first policy domain, 4-3
Defining and managing authentication schemes, 5-5
Defining authentication and authorization schemes for single sign-on, 7-7
Enabling impersonation with a header variable, B-3
Enabling single domain single sign-on, 7-5
Implementing multi-domain single sign-on, 7-11
Prerequisite tasks for a Master Administrator, 4-2
Providing customized authorization plug-ins, 6-45
servers
    Creating an Access Server, 3-3
    Setting up impersonation for OWA, B-13
TRACE operation, 4-12
ttransport security, 3-4
changing, caveat for, 3-11
configured from the command line, 3-29
for AccessGates, 3-24
modes, 3-4
options, 3-19
password, command line option, 3-31
password, configuring, 3-32
reconfiguring, 3-31
searching based on, 3-17
selecting the mode, 3-6
when to use the same mode, 3-10
Transport Security field, 3-4, 3-6, 3-19, 3-24
troubleshooting, E-1
typical problems in Oracle Access Manager, E-1

U
URL
    containing the ObSSOCookie, 7-2
decimal addressing, 3-43
deny access to all URLs, 3-22
flushing from cache, 8-5
form action URLs, A-10
logout URLs, 3-22, 7-8, C-1
maximum number in cache, 3-20
Oracle Access Manager URLs, unprotecting, 5-4
pattern matching symbols, 4-19
patterns, how used, 4-19
policy domain root URL, 4-2
prefix, 4-2
prefix reload period, 3-4
prefix, how used, 4-17
prefixes for, 4-14
protecting Oracle Access Manager URLs, 5-4
redirection, 5-52, 5-53, 6-6
Redirection URL field, 5-57
SSO Logout URL, 5-57
storing as https, 2-6, 7-14
user credentials in, 3-28
WebGate diagnostic, 3-35
URL Prefix Reload Period field, 3-4, 3-7
URLInUTF8Format, 3-28
UseIISBuiltinAuthentication, 3-28
user cache timeout, 3-5, 5-54
User Cache Timeout field, 3-5, 3-8
user-defined parameters, 3-22, 3-27
GetProxySSLStateHeader, 3-28
InactiveReconfgPeriods, 3-28
SlowFormLogin, 3-28
URLInUTF8Format, 3-27, 3-28
UseIISBuiltinAuthentication, 3-28
WaitForFailover, 3-28
User-Defined Parameters field, 3-22, 3-26
users
access privilege reports, 8-6
authentication and authorization of, 1-2
authorization of, xvi, 1-1
deny access to specific user, 6-11
filtering inactive users, 5-22
flushing from the cache, 8-3
inactive, 5-22
revoking, 8-3
UTF-8, 3-28

V
Validate Password Authentication Plug-Ins, A-5
validate_password, 5-20
about, 5-23
for form-based authentication, A-5
parameters, 5-23
validate_password plug-in, 5-21, A-5
virtual servers, 3-45
virtual Web hosting, 3-45

W
WaitForFailover, 3-28
Web forms, A-1
Web pages
protecting
see resource, protecting
Web server hosts
configuring identifiers for, 3-42
WebGate, 1-2
see also AccessGate
Access Server Timeout Threshold, 3-20
cache, 3-22
CacheControlHeader, 3-22, 3-26
CachePragmaHeader, 3-22, 3-26
checking the status of, 3-36
configuration polling, 3-28
configureWebGate command, 3-30
configuring on IE, 3-26
definition, 1-2, 3-1
DenyOnNotProtected, 3-22
DenyOnNotProtected parameter, 3-26
diagnostic URL, 3-35
diagnostics, 3-35
IP address validation, 3-34
IPValidation, 3-19
IPValidationException, 3-19
login when a resource is not protected, 3-50
login when a resource is protected, 3-50
LogOutUrls, 3-22, 3-26
managing, 3-33
modifying, 3-33
polling frequency, 3-29
polling frequency, changing, 3-29
status, checking, 3-36
synchronizing with Access Server, 3-33
updates in this release, xxi
user-defined parameters for, 3-22, 3-26
webgate.dll, 3-35
WebPass
installed on same Web server as Policy Manager, 1-1
what’s new in this release, xix
attribute sharing, xxi
federated authorization, xxi
globalization, xxi
modifying authentication schemes without disabling them, xxii
persistent cookies in authentication schemes, xxii
triggering authentication actions after the ObSSOCookie is set, xxii
WebGate updates, xxi
Wildcard Extension, B-19
Windows 2000 plug-in, 5-66
Windows Impersonation, B-1
Windows NT plug-in, 5-66