
Oracle® Security Developer Tools
Reference

10g (10.1.4.0.1)

B28165-01

July 2006

Oracle Security Developer Tools Reference, 10g (10.1.4.0.1)

B28165-01

Copyright © 2005, 2006, Oracle. All rights reserved.

Primary Author: Vinaye Misra

Contributing Authors: Howard Bae, Pratik Datta, Lakshmi Kethana, Valarie Moore, Vamsi Motukuru,
Deepak Ramakrishnan, Vasundhra Selvaraj

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xv

Intended Audience.. xv
Documentation Accessibility ... xv
Related Documents ... xvi
Conventions ... xvi

1 Introduction to Oracle Security Developer Tools

Cryptography .. 1-1
Types of Cryptographic Algorithms ... 1-2

Symmetric Cryptographic Algorithms .. 1-2
Asymmetric Cryptographic Algorithms ... 1-2
Hash Functions.. 1-3

Additional Cryptography Resources .. 1-3
Public Key Infrastructure (PKI)... 1-3

Key Pairs.. 1-3
Certificate Authority.. 1-4
Digital Certificates.. 1-4
Related PKI Standards... 1-4
Benefits of PKI .. 1-5

Web Services Security.. 1-6
SAML .. 1-6

SAML Assertions.. 1-7
SAML Requests and Responses ... 1-8

SAML Request and Response Cycle .. 1-8
SAML Protocol Bindings and Profiles ... 1-9
SAML and XML Security... 1-9

Federation .. 1-9
Overview of Oracle Security Developer Tools .. 1-10

Oracle Crypto... 1-11
Oracle Security Engine ... 1-11
Oracle CMS .. 1-12
Oracle S/MIME ... 1-12
Oracle PKI SDK ... 1-12

Oracle PKI SDK LDAP .. 1-12
Oracle PKI SDK TSP .. 1-12

iv

Oracle PKI SDK OCSP... 1-12
Oracle PKI SDK CMP .. 1-13

Oracle JCE Provider .. 1-13
Oracle XML Security... 1-13
Oracle SAML.. 1-14
Oracle Web Services Security .. 1-14
Oracle Liberty SDK ... 1-14
Oracle XKMS.. 1-14

2 Oracle Crypto

Oracle Crypto Features and Benefits .. 2-1
Oracle Crypto Packages .. 2-1

Setting Up Your Oracle Crypto Environment ... 2-2
System Requirements for Oracle Crypto .. 2-2
Setting the CLASSPATH Environment Variable... 2-2

Setting the CLASSPATH on Windows .. 2-2
Setting the CLASSPATH on UNIX .. 2-2

Core Classes and Interfaces.. 2-2
Keys .. 2-3

The oracle.security.crypto.core.Key Interface... 2-3
The oracle.security.crypto.core.PrivateKey Interface .. 2-3
The oracle.security.crypto.core.PublicKey Interface ... 2-3
The oracle.security.crypto.core.SymmetricKey Class.. 2-3

Key Generation... 2-3
The oracle.security.crypto.core.KeyPairGenerator Class.. 2-3
The oracle.security.crypto.core.SymmetricKeyGenerator Class.. 2-4

Ciphers... 2-5
Symmetric Ciphers ... 2-5
The RSA Cipher... 2-6
Password Based Encryption.. 2-6

Signatures .. 2-7
Message Digests ... 2-8

The oracle.security.crypto.core.MessageDigest Class ... 2-8
The oracle.security.crypto.core.MAC Class .. 2-9

Key Agreement... 2-9
Pseudo-Random Number Generators.. 2-10

The oracle.security.crypto.core.RandomBitsSource class .. 2-10
The oracle.security.crypto.core.EntropySource class ... 2-10

The Oracle Crypto Java API Reference ... 2-11
Example Programs... 2-11

3 Oracle JCE Provider

Oracle JCE Provider Features and Benefits ... 3-1
Using the Oracle JCE Provider... 3-3

Setting Up Your Oracle JCE Provider Environment .. 3-3
System Requirements for Oracle JCE Provider ... 3-4
Installation Requirements ... 3-4

v

Setting the CLASSPATH Environment Variable... 3-4
Setting the CLASSPATH on Windows .. 3-4
Setting the CLASSPATH on UNIX .. 3-5

Example Programs.. 3-5

4 Oracle Security Engine

Oracle Security Engine Features and Benefits.. 4-1
Oracle Security Engine Packages ... 4-1

Setting Up Your Oracle Security Engine Environment... 4-2
System Requirements for Oracle Security Engine... 4-2
Setting the CLASSPATH Environment Variable... 4-2

Setting the CLASSPATH on Windows .. 4-2
Setting the CLASSPATH on UNIX... 4-2

Core Classes and Interfaces.. 4-3
The oracle.security.crypto.cert.X500RDN Class .. 4-3
The oracle.security.crypto.cert.X500Name Class .. 4-3
The oracle.security.crypto.cert.CertificateRequest Class ... 4-4
The oracle.security.crypto.cert.X509 Class ... 4-5

The Oracle Security Engine Java API Reference.. 4-5
Example Programs.. 4-5

5 Oracle CMS

Oracle CMS Features and Benefits ... 5-1
Content Types... 5-1
Differences Between Oracle CMS and PKCS #7 Version 1.5 ... 5-2

Setting Up Your Oracle CMS Environment .. 5-2
System Requirements .. 5-2
Setting the CLASSPATH Environment Variable... 5-2

Setting the CLASSPATH on Windows .. 5-3
Setting the CLASSPATH on UNIX... 5-3

Developing Applications with Oracle CMS ... 5-3
CMS Object Types .. 5-4
Constructing CMS Objects using the CMS***ContentInfo Classes... 5-4

Abstract Base Class CMSContentInfo .. 5-4
Constructing a CMS Object .. 5-5
Reading a CMS Object... 5-5

The CMSDataContentInfo Class... 5-5
The ESSReceipt Class.. 5-6
The CMSDigestedDataContentInfo Class ... 5-7

Constructing a CMS Digested-data Object .. 5-8
Reading a CMS Digested-data Object... 5-8
Detached digested-data Objects .. 5-8

The CMSSignedDataContentInfo Class... 5-9
Constructing a CMS Signed-data Object... 5-10
Reading a CMS Signed-data Object ... 5-11
External Signatures (Detached Objects) .. 5-12

vi

Certificates/CRL-Only Objects... 5-12
The CMSEncryptedDataContentInfo Class ... 5-12

Constructing a CMS Encrypted-data Object... 5-13
Reading a CMS Encrypted-data Object ... 5-13
Detached encrypted-data CMS Objects... 5-14

The CMSEnvelopedDataContentInfo Class... 5-14
Constructing a CMS Enveloped-data Object .. 5-15
Reading a CMS Enveloped-data Object .. 5-16
Key Transport Key Exchange Mechanism .. 5-17
Key Agreement Key Exchange Mechanism.. 5-17
Key Encryption (Wrap) Key Exchange Mechanism .. 5-17
Detached Enveloped-data CMS Object ... 5-17

The CMSAuthenticatedDataContentInfo Class... 5-17
Constructing a CMS Authenticated-data Object.. 5-19
Reading a CMS Authenticated-data Object .. 5-20
Detached Authenticated-data CMS Objects ... 5-20

Wrapped (Triple or more) CMSContentInfo Objects ... 5-21
Reading a Nested (Wrapped) CMS Object.. 5-21

Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes 5-21
Limitations of the CMS***Stream and CMS***Connector Classes.................................... 5-22
Difference between CMS***Stream and CMS***Connector Classes................................. 5-22
Using the CMS***OutputStream and CMS***InputStream Classes 5-22

CMS id-data Object... 5-23
CMS id-ct-receipt Object.. 5-23
CMS id-digestedData Object... 5-23
CMS id-signedData Object .. 5-23
CMS id-encryptedData Objects .. 5-23
CMS id-envelopedData Objects.. 5-23
CMS id-ct-authData Objects.. 5-24

Wrapping (Triple or more) CMS***Connector Objects .. 5-24
The Oracle CMS Java API Reference .. 5-25
Example Programs... 5-25

6 Oracle S/MIME

Oracle S/MIME Features and Benefits ... 6-1
Setting Up Your Oracle S/MIME Environment .. 6-1

System Requirements for Oracle S/MIME... 6-1
Setting the CLASSPATH Environment Variable... 6-2

Setting the CLASSPATH on Windows .. 6-2
Setting the CLASSPATH on UNIX... 6-2

Developing Applications with Oracle S/MIME... 6-3
Core Classes and Interfaces .. 6-3

The oracle.security.crypto.smime.SmimeObject Interface.. 6-3
The oracle.security.crypto.smime.SmimeSignedObject Interface.. 6-3
The oracle.security.crypto.smime.SmimeSigned Class ... 6-4
The oracle.security.crypto.smime.SmimeEnveloped Class .. 6-5
The oracle.security.crypto.smime.SmimeMultipartSigned Class.. 6-6

vii

The oracle.security.crypto.smime.SmimeSignedReceipt Class.. 6-6
The oracle.security.crypto.smime.SmimeCompressed Class ... 6-7

Supporting Classes and Interfaces... 6-8
The oracle.security.crypto.smime.Smime Interface ... 6-8
The oracle.security.crypto.smime.SmimeUtils Class... 6-8
The oracle.security.crypto.smime.MailTrustPolicy Class ... 6-8
The oracle.security.crypto.smime.SmimeCapabilities Class .. 6-8
The oracle.security.crypto.smime.SmimeDataContentHandler Class................................ 6-9
The oracle.security.crypto.smime.ess Package... 6-9

Using the Oracle S/MIME Classes .. 6-9
Using the Abstract Class SmimeObject .. 6-10
Signing Messages ... 6-10
Creating "Multipart/Signed" Entities ... 6-11
Creating Digital Envelopes... 6-11
Creating "Certificates-Only" Messages ... 6-12
Reading Messages.. 6-12
Authenticating Signed Messages... 6-12
Opening Digital Envelopes (Encrypted Messages)... 6-13
Adding Enhanced Security Services (ESS) ... 6-14
Processing Enhanced Security Services (ESS).. 6-14

The Oracle S/MIME Java API Reference .. 6-14
Example Programs... 6-15

7 Oracle PKI SDK

Oracle PKI SDK CMP.. 7-1
Oracle PKI SDK CMP Features and Benefits ... 7-1

Package Overview for Oracle PKI SDK CMP... 7-2
Setting Up Your Oracle PKI SDK CMP Environment .. 7-2

System Requirements for Oracle PKI SDK CMP.. 7-2
Setting the CLASSPATH Environment Variable ... 7-2

Setting the CLASSPATH on Windows... 7-2
Setting the CLASSPATH on UNIX.. 7-3

The Oracle PKI SDK CMP Java API Reference.. 7-3
Example Programs... 7-3

Oracle PKI SDK OCSP.. 7-3
Oracle PKI SDK OCSP Features and Benefits.. 7-3
Setting Up Your Oracle PKI SDK OCSP Environment... 7-4

System Requirements for Oracle PKI SDK OCSP .. 7-4
Setting the CLASSPATH Environment Variable ... 7-4

Setting the CLASSPATH on Windows
 7-4
Setting the CLASSPATH on Unix.. 7-4

The Oracle PKI SDK OCSP Java API Reference .. 7-5
Example Programs... 7-5

Oracle PKI SDK TSP ... 7-5
Oracle PKI SDK TSP Features and Benefits ... 7-5

Class and Interface Overview for Oracle PKI SDK TSP.. 7-5

viii

Setting Up Your Oracle PKI SDK TSP Environment .. 7-6
System Requirements for Oracle PKI SDK TSP.. 7-6
Setting the CLASSPATH Environment Variable ... 7-6

Setting the CLASSPATH on Windows ... 7-6
Setting the CLASSPATH on Unix.. 7-7

The Oracle PKI SDK TSP Java API Reference.. 7-7
Example Programs... 7-7

Oracle PKI SDK LDAP.. 7-7
Oracle PKI SDK LDAP Features and Benefits ... 7-7

Class Overview for Oracle PKI SDK LDAP .. 7-7
Setting Up Your Oracle PKI SDK LDAP Environment .. 7-8

System Requirements for Oracle PKI SDK LDAP.. 7-8
Setting the CLASSPATH Environment Variable ... 7-8

Setting the CLASSPATH on Windows ... 7-8
Setting the CLASSPATH on Unix.. 7-8

The Oracle PKI SDK LDAP Java API Reference.. 7-9
Example Programs... 7-9

8 Oracle XML Security

Oracle XML Security Features and Benefits ... 8-2
Setting Up Your Oracle XML Security Environment .. 8-2

System Requirements for Oracle XML Security .. 8-2
Setting the CLASSPATH Environment Variable... 8-3

Setting the CLASSPATH on Windows .. 8-3
Setting the CLASSPATH on UNIX... 8-4

Classes and Interfaces ... 8-4
Core Classes .. 8-4

The oracle.security.xmlsec.dsig.XSSignature Class ... 8-4
The oracle.security.xmlsec.dsig.XSSignedInfo Class... 8-5
The oracle.security.xmlsec.dsig.XSReference class .. 8-5
The oracle.security.xmlsec.dsig.XSKeyInfo class ... 8-6
The oracle.security.xmlsec.enc.XEEncryptedData class.. 8-6
The oracle.security.xmlsec.enc.XEEncryptedKey Class .. 8-7
The oracle.security.xmlsec.enc.XEEncryptionMethod Class.. 8-7
The oracle.security.xmlsec.enc.XECipherData Class... 8-8

Supporting Classes and Interfaces... 8-8
The oracle.security.xmlsec.util.XMLURI Interface .. 8-8
The oracle.security.xmlsec.util.XMLUtils class .. 8-9

Common XML Security Questions ... 8-9
Common Questions about Keys and Certificates.. 8-9
Common Questions about XML Signatures... 8-9
Common Questions about XML Encryption .. 8-10

The Oracle XML Security Java API Reference .. 8-10
Example Programs... 8-10

9 Oracle SAML

Oracle SAML Features and Benefits... 9-1

ix

Oracle SAML 1.0/1.1... 9-1
Oracle SAML 1.0/1.1 Packages .. 9-2
Setting Up Your Oracle SAML 1.0/1.1 Environment ... 9-2

System Requirements for Oracle SAML 1.0/1.1 .. 9-2
Setting the CLASSPATH Environment Variable ... 9-2

Setting the CLASSPATH on Windows... 9-2
Setting the CLASSPATH on UNIX.. 9-3

Classes and Interfaces.. 9-3
Core Classes ... 9-3

The oracle.security.xmlsec.saml.SAMLInitializer Class .. 9-3
The oracle.security.xmlsec.saml.Assertion Class .. 9-4
The oracle.security.xmlsec.samlp.Request Class .. 9-4
The oracle.security.xmlsec.samlp.Response Class.. 9-5

Supporting Classes and Interfaces ... 9-5
The oracle.security.xmlsec.saml.SAMLURI Interface .. 9-5
The oracle.security.xmlsec.saml.SAMLMessage Class .. 9-6

The Oracle SAML 1.0/1.1 Java API Reference... 9-6
Example Programs... 9-6

Oracle SAML 2.0 ... 9-6
Oracle SAML 2.0 Packages ... 9-6
Setting Up Your Oracle SAML 2.0 Environment... 9-7

System Requirements for Oracle SAML 2.0.. 9-7
Setting the CLASSPATH Environment Variable ... 9-7

Setting the CLASSPATH on Windows... 9-7
Setting the CLASSPATH on UNIX.. 9-8

Classes and Interfaces.. 9-8
Core Classes ... 9-8

The oracle.security.xmlsec.saml2.core.Assertion Class.. 9-8
The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class.................................. 9-9
The oracle.security.xmlsec.saml2.protocol.StatusResponse Class................................ 9-9

Supporting Classes and Interfaces .. 9-10
The oracle.security.xmlsec.saml2.util.SAML2URI Interface 9-10

The Oracle SAML 2.0 Java API Reference ... 9-10
Example Programs.. 9-11

10 Oracle Web Services Security

Oracle Web Services Security Features and Benefits ... 10-1
Oracle Web Services Security Packages... 10-1
Related Documentation.. 10-2

Setting Up Your Oracle Web Services Security Environment .. 10-2
System Requirements for Oracle Web Services Security... 10-2
Setting the CLASSPATH Environment Variable.. 10-2

Setting the CLASSPATH on Windows ... 10-3
Setting the CLASSPATH on UNIX.. 10-3

Classes and Interfaces .. 10-4
Core Classes and Interfaces ... 10-4

The oracle.security.xmlsec.wss.WSSecurity Class .. 10-4

x

The oracle.security.xmlsec.wss.soap.WSSOAPEnvelope Class .. 10-4
The oracle.security.xmlsec.wss.WSSElement Class .. 10-5

Supporting Classes and Interfaces.. 10-5
The oracle.security.xmlsec.wss.utils.WSSURI Interface... 10-5
The oracle.security.xmlsec.wss.utils.WSSTokenUtils Class .. 10-5
The oracle.security.xmlsec.wss.utils.WSSUtils Class ... 10-6

The Oracle Web Services Security Java API Reference ... 10-6
Example Programs... 10-6

11 Oracle Liberty SDK

Oracle Liberty SDK Features and Benefits .. 11-1
Oracle Liberty 1.1... 11-2

Setting Up Your Oracle Liberty 1.1 Environment .. 11-2
System Requirements for Oracle Liberty 1.1.. 11-2
Setting the CLASSPATH Environment Variable .. 11-2

Setting the CLASSPATH on Windows.. 11-2
Setting the CLASSPATH on UNIX... 11-3

Overview of Oracle Liberty 1.1 Classes and Interfaces ... 11-3
Core Classes and Interfaces .. 11-3

The oracle.security.xmlsec.liberty.v11.AuthnRequest Class 11-3
The oracle.security.xmlsec.liberty.v11.AuthnResponse Class 11-4
The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class . 11-4
The oracle.security.xmlsec.liberty.v11.LogoutRequest Class..................................... 11-5
The oracle.security.xmlsec.liberty.v11.LogoutResponse Class 11-6
The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class........ 11-6
The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
Class .. 11-7

Supporting Classes and Interfaces .. 11-8
The oracle.security.xmlsec.liberty.v11.LibertyInitializer class................................... 11-8
The oracle.security.xmlsec.liberty.v11.LibertyURI interface...................................... 11-8
The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface 11-8
The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class 11-9
The oracle.security.xmlsec.saml.SAMLURI Interface ... 11-9
The oracle.security.xmlsec.saml.SAMLMessage class .. 11-9

The Oracle Liberty SDK 1.1 API Reference ... 11-9
Example Programs.. 11-9

Oracle Liberty 1.2... 11-9
Setting Up Your Oracle Liberty 1.2 Environment .. 11-10

System Requirements for Oracle Liberty 1.2.. 11-10
Setting the CLASSPATH Environment Variable .. 11-10

Setting the CLASSPATH on Windows .. 11-10
Setting the CLASSPATH on Unix... 11-10

Overview of Oracle Liberty 1.2 Classes and Interfaces ... 11-11
Core Classes and Interfaces .. 11-11

The oracle.security.xmlsec.saml.Assertion class .. 11-11
The oracle.security.xmlsec.samlp.Request class .. 11-12
The oracle.security.xmlsec.samlp.Response class ... 11-12

xi

The oracle.security.xmlsec.liberty.v12.AuthnRequest class 11-13
The oracle.security.xmlsec.liberty.v12.AuthnResponse class 11-14
The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class 11-14
The oracle.security.xmlsec.liberty.v12.LogoutRequest class.................................... 11-15
The oracle.security.xmlsec.liberty.v12.LogoutResponse class 11-16
The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class....... 11-16
The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class 11-17

Supporting Classes and Interfaces .. 11-18
The oracle.security.xmlsec.liberty.v12.LibertyInitializer class................................. 11-18
The oracle.security.xmlsec.liberty.v12.LibertyURI interface.................................... 11-18
The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class 11-18
The oracle.security.xmlsec.saml.SAMLInitializer class .. 11-18
The oracle.security.xmlsec.saml.SAMLURI Interface ... 11-19
The oracle.security.xmlsec.saml.SAMLMessage Class ... 11-19

The Oracle Liberty SDK 1.2 API Reference ... 11-19
Example Programs.. 11-19

12 Oracle XKMS

Oracle XKMS Features and Benefits .. 12-1
Oracle XKMS Packages .. 12-1

Setting Up Your Oracle XKMS Environment .. 12-2
System Requirements for Oracle XKMS .. 12-2
Setting the CLASSPATH Environment Variable.. 12-2

Setting the CLASSPATH on Windows ... 12-2
Setting the CLASSPATH on UNIX ... 12-3

Core Classes and Interfaces... 12-3
oracle.security.xmlsec.xkms.xkiss.LocateRequest.. 12-3
oracle.security.xmlsec.xkms.xkiss.LocateResult... 12-4
oracle.security.xmlsec.xkms.xkiss.ValidateRequest .. 12-4
oracle.security.xmlsec.xkms.xkiss.ValidateResult ... 12-5
oracle.security.xmlsec.xkms.xkrss.RecoverRequest... 12-6
oracle.security.xmlsec.xkms.xkrss.RecoverResult.. 12-6

The Oracle XKMS Java API Reference ... 12-7
Example Programs... 12-8

A References

Glossary

Index

xii

List of Figures

1–1 SAML Request-Response Cycle.. 1-8
1–2 The Oracle Security Developer Tools.. 1-10

xiii

List of Tables

1–1 Summary of Public and Private Key Usage ... 1-4
5–1 Content Types Supported by Oracle CMS ... 5-1
5–2 CMS***ContentInfo Classes.. 5-4
5–3 Useful Methods of CMSContentInfo... 5-4
5–4 Useful Methods of ESSReceipt... 5-6
5–5 Useful Methods of CMSDigestedDataContentInfo .. 5-7
5–6 Useful Methods of CMSSignedDataContentInfo .. 5-9
5–7 Useful Methods of CMSEncryptedDataContentInfo... 5-12
5–8 Useful Methods of CMSEnvelopedDataContentInfo .. 5-14
5–9 Useful Methods of CMSAuthenticatedDataContentInfo.. 5-18
5–10 The CMS***Stream Classes .. 5-21
5–11 The CMS***Connector Classes .. 5-22
6–1 Classes in the oracle.security.crypto.smime.ess Package... 6-9
7–1 Oracle PKI SDK TSP Classes and Interfaces .. 7-5
10–1 Packages in the Oracle Web Services Security Library ... 10-1
12–1 Packages in the Oracle XKMS Library.. 12-2
A–1 Security Standards and Protocols... A-1

xiv

xv

Preface

The Oracle Security Developer Tools Reference provides reference information about the
Oracle Security Developer Tools. This Preface contains the following topics:

■ Intended Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Intended Audience
Oracle Security Developer Tools Reference is intended for Java developers responsible for
developing secure applications. This documentation assumes programming
proficiency using Java, and familiarity with security concepts such as cryptography,
public key infrastructure, Web services security, and identity federation.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

xvi

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, seven days a week. For TTY
support, call 800.446.2398.

Related Documents
For more information, see the following documentation available in the Oracle
Application Server 10g (10.1.4.0.1) documentation set:

■ Oracle Identity Management User Reference

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

Introduction to Oracle Security Developer Tools 1-1

1
Introduction to Oracle Security Developer

Tools

Security tools are a critical component for today’s application development projects.
Commercial requirements and government regulations dictate that sensitive data be
kept confidential and protected from tampering or alteration.

Oracle Security Developer Tools provide you with the cryptographic building blocks
necessary for developing robust security applications, ranging from basic tasks like
secure messaging to more complex projects such as securely implementing a
service-oriented architecture. The tools build upon the core foundations of
cryptography, public key infrastructure, web services security, and federated identity
management.

This chapter takes a closer look at these underlying security technologies and
introduces the components of the Oracle Security Developer Tools. It covers these
topics:

■ Cryptography

■ Public Key Infrastructure (PKI)

■ Web Services Security

■ SAML

■ Federation

■ Overview of Oracle Security Developer Tools

Cryptography
As data travels across untrusted communication channels, cryptography protects the
transmitted messages from being intercepted (a passive attack) or modified (an active
attack) by an intruder. To protect the message, an originator uses a cryptographic tool
to convert plain, readable messages or plaintext into encrypted ciphertext. While the
original text is present, its appearance changes into a form that is unintelligible if
intercepted. The message recipient likewise uses a cryptographic tool to decrypt the
ciphertext into its original readable format.

Cryptography secures communications over a network such as the internet by
providing:

■ Authentication, which assures the receiver that the information is coming from a
trusted source. Authentication is commonly achieved through the use of a
Message Authentication Code (MAC), digital signature, and digital certificate.

Cryptography

1-2 Oracle Security Developer Tools Reference

■ Confidentiality, which ensures that only the intended receiver can read a message.
Confidentiality is commonly attained through encryption.

■ Integrity, which ensures that the received message has not been altered from the
original. Integrity is commonly ensured by using a cryptographic hash function.

■ Non-repudiation, which is a way to prove that a given sender actually sent a
particular message. Non-repudiation is typically achieved through the use of
digital signatures.

Types of Cryptographic Algorithms
The mathematical operations used to map between plaintext and ciphertext are
identified by a cryptographic algorithm (also known as a cipher). Cryptographic
algorithms require the text to be mapped, and, at a minimum, require some value
which controls the mapping process. This value is called a key.

Essentially, there are three types of cryptographic algorithms which can be categorized
by the number of keys used for encryption and decryption, and by their application
and usage. The basic types of cryptographic algorithms are:

■ Symmetric Cryptographic Algorithms

■ Asymmetric Cryptographic Algorithms

■ Hash Functions

Each type is optimized for certain applications. Hash functions are suited for ensuring
data integrity. Symmetric cryptography is ideally suited for encrypting messages.
Asymmetric cryptography is used for the secure exchange of keys, authentication, and
non-repudiation. Asymmetric cryptography could also be used to encrypt messages,
although this is rarely done. Symmetric cryptography operates about 1000 times faster,
and is better suited for encryption than asymmetric cryptography.

Symmetric Cryptographic Algorithms
A symmetric cryptography algorithm (also known as secret key cryptography) uses a
single key for both encryption and decryption. The sender uses the key to encrypt the
plaintext and sends the ciphertext to the receiver. The receiver applies the same key to
decrypt the message and recover the plaintext. The key must be known to both the
sender and receiver. The biggest problem with symmetric cryptography is the secure
distribution of the key.

Symmetric cryptography schemes are generally categorized as being either a block
cipher or stream cipher. A block cipher encrypts one fixed-size block of data (usually
64 bits) at a time using the same key on each block. Some common block ciphers used
today include Blowfish, AES, DES, and 3DES.

Stream ciphers operate on a single bit at a time and implement some form of feedback
mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher that is used for secure communications using the SSL protocol.

Asymmetric Cryptographic Algorithms
An asymmetric cryptography algorithm (also known as public key cryptography)
uses one key to encrypt the plaintext and another key to decrypt the ciphertext. It does
not matter which key is applied first, but both keys are required for the process to
work.

In asymmetric cryptography, one of the keys is designated the public key and is made
widely available. The other key is designated the private key and is never revealed to

Public Key Infrastructure (PKI)

Introduction to Oracle Security Developer Tools 1-3

another party. To send messages under this scheme, the sender encrypts some
information using the receiver’s public key. The receiver then decrypts the ciphertext
using her private key. This method can also be used to prove who sent a message
(non-repudiation). The sender can encrypt some plaintext with her private key, and
when the receiver decrypts the message with the sender’s public key, the receiver
knows that the message was indeed sent by that sender.

Some of the common asymmetric algorithms in use today are RSA, DSA,
Diffie-Hellman, and Elliptic Curve Cryptography (ECC).

Hash Functions
A hash function (also known as a message digest) is a one-way encryption algorithm
that essentially uses no key. Instead, a fixed-length hash value is computed based
upon the plaintext that makes it impossible for either the contents or length of the
plaintext to be recovered. Hash algorithms are typically used to provide a digital
fingerprint of a file's contents, often used to ensure that the file has not been altered by
an intruder or virus. Hash functions are also commonly employed by many operating
systems to encrypt passwords. Hash functions help preserve the integrity of a file.
Some common hash functions include MD2, MD4, MD5 and SHA.

Additional Cryptography Resources
For more information, refer to the cryptography resources listed in Appendix A.

Public Key Infrastructure (PKI)
A public key infrastructure (PKI) is designed to enable secure communications over
public and private networks. Besides secure transmission and storage of data, PKI
enables secure e-mail, digital signatures, and data integrity.

These facilities are delivered using public key cryptography, a mathematical
technique that uses a pair of related cryptographic keys to verify the identity of the
sender (digital signature), or to ensure the privacy of a message (encryption). PKI
facilities support secure information exchange over insecure networks, such as the
Internet.

Critical elements for achieving the goals of PKI include:

■ Encryption algorithms and keys to secure communications

■ Digital certificates that associate a public key with the identity of its owner

■ Key distribution methods to permit widespread, secure use of encryption

■ A trusted entity, known as a Certificate Authority (CA), to vouch for the
relationship between a key and its legitimate owner

■ A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA

Relying third parties use the certificates issued by the CA and the public keys
contained therein to verify digital certificates and encrypt data.

Key Pairs
Encryption techniques often use a text or number called a key, known only to the
sender and recipient.

Public Key Infrastructure (PKI)

1-4 Oracle Security Developer Tools Reference

When both use the same key, the encryption scheme is called symmetric. Difficulties
with relying on a symmetric system include getting that key to both parties without
allowing an eavesdropper to get it, too; and the fact that a separate key is needed for
every two people, so that each individual must maintain many keys, one for each
recipient.

Public key cryptography uses a key pair of mathematically related cryptographic keys
- the public key and the private key. For an explanation of the use of key pairs, see
"Asymmetric Cryptographic Algorithms".

Table 1–1 summarizes who uses public and private keys and when:

Certificate Authority
A Certificate Authority (CA) is a trusted third party that vouches for the public key
owner's identity. Oracle Certificate Authority is one such entity. Others include
Verisign and Thawte.

Digital Certificates
The certification authority validates the public key's link to a particular entity by
creating a digital certificate. This digital certificate contains the public key and
information about the key holder and the signing certification authority. Using a PKI
certificate to authenticate one's identity is analogous to identifying oneself with a
driver's license or passport.

Related PKI Standards
A number of standards and protocols support PKI certificate implementation.

Cryptographic Message Syntax
Cryptographic Message Syntax (CMS) is a general syntax for data protection
developed by the Internet Engineering Task Force (IETF). It supports a wide variety
of content types including signed data, enveloped data, digests, and encrypted data,
among others. CMS allows multiple encapsulation so that, for example, previously
signed data can be enveloped by a second party.

Values produced by CMS are encoded using X.509 Basic Encoding Rules (BER),
meaning that the values are represented as octet strings.

Secure/Multipurpose Internet Mail Extension
Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering
Task Force (IETF) standard for securing MIME data through the use of digital
signatures and encryption.

S/MIME provides the following cryptographic security services for electronic
messaging applications:

Table 1–1 Summary of Public and Private Key Usage

Function Key Type Whose Key

Encrypt data for a recipient Public key Receiver

Sign data Private key Sender

Decrypt data received Private key Receiver

Verify a signature Public key Sender

Public Key Infrastructure (PKI)

Introduction to Oracle Security Developer Tools 1-5

■ Authentication

■ Message integrity and non-repudiation of origin (using digital signatures)

■ Privacy and data security (using encryption)

Lightweight Directory Access Protocol
Lightweight Directory Access Protocol (LDAP) is the open standard for obtaining
and posting information to commonly used directory servers. In a public key
infrastructure (PKI) system, a user’s digital certificate is often stored in an LDAP
directory and accessed as needed by requesting applications and services.

Time Stamp Protocol
In a Time Stamp Protocol (TSP) system, a trusted third-party Time Stamp Authority
(TSA) issues time stamps for digital messages. Time stamping proves that a message
was sent by a particular entity at a particular time, providing non-repudiation for
online transactions.

The Time Stamp Protocol, as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message.

To see how a time-stamping system can work, suppose Sally signs a document and
wants it time stamped. She computes a message digest of the document using a secure
hash function and then sends the message digest (but not the document itself) to the
TSA, which sends her in return a digital time stamp consisting of the message digest,
the date and time it was received at the TSA server, and the signature of the TSA. Since
the message digest does not reveal any information about the content of the document,
the TSA cannot eavesdrop on the documents it time stamps. Later, Sally can present
the document and time stamp together to prove when the document was written. A
verifier computes the message digest of the document, makes sure it matches the
digest in the time stamp, and then verifies the signature of the TSA on the time stamp.

Online Certificate Status Protocol
Online Certificate Status Protocol (OCSP) is one of two common schemes for
checking the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is known as the certificate revocation list (CRL).

OCSP overcomes the chief limitation of CRL: the fact that updates must be frequently
down-loaded to keep the list current at the client end. When a user attempts to access a
server, OCSP sends a request for certificate status information. The server sends back a
response of good, revoked, or unknown. The protocol specifies the syntax for
communication between the server (which contains the certificate status) and the client
application (which is informed of that status).

Certificate Management Protocol
The certificate management protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI) components, such as Certificate Authorities (CAs), Registration
Authorities (RAs), and end entities that are issued certificates.

Benefits of PKI
PKI provides users with the following benefits:

■ Secure and reliable authentication of users

Web Services Security

1-6 Oracle Security Developer Tools Reference

Reliable authentication relies on two factors. The first is proof of possession of the
private key part of the public/private pair, which is verified by an automatic
procedure that uses the public key. The second factor is validation by a
certification authority that a public key belongs to a specific identity. A PKI-based
digital certificate validates this identity connection based on the key pair.

■ Data integrity

Using the private key of a public/private key pair to sign digital transactions
makes it difficult to alter the data in transit. This "digital signature" is a coded
digest of the original message encrypted by the sender’s private key. Recipients
can readily use the sender's corresponding public key to verify who sent the
message and the fact that it has not been altered. Any change to the message or the
digest would have caused the attempted verification using the public key to fail,
telling the recipient not to trust it.

■ Non-repudiation

PKI can also be used to prove who sent a message. The sender encrypts some
plaintext with her private key to create a digital signature, and when the receiver
decrypts the message with the sender’s public key, the receiver knows that the
message was indeed sent by that sender, making it difficult for the message
originator to disown the message; this capability is known as non-repudiation.

■ Prevention of unauthorized access to transmitted or stored information

The time and effort required to derive the private key from the public key makes it
unlikely that the message would be decrypted by anyone other than the key pair
owner.

Web Services Security
Web services provide a standard way for businesses and other organizations to
integrate Web-based applications using open standards technologies such as XML,
SOAP, and WSDL.

SOAP is a lightweight protocol for exchange of information in a service oriented
environment. In such an environment, applications can expose selected functionality
(business logic, for example) for use by other applications. SOAP provides the means
by which applications supply and consume these services; it is an XML-based protocol
for message transport in a distributed, decentralized Web Services application
environment.

While the core SOAP specification solves many problems related to XML and Web
Services, it does not provide a means to address message security requirements such
as confidentiality, integrity, message authentication, and non-repudiation. The need for
securing SOAP prompted OASIS to put forward the Web Services Security standard,
which:

■ Specifies enhancements to allow signing and encryption of SOAP messages

■ Describes a general-purpose method for associating security tokens with messages

■ Provides additional means for describing the characteristics of tokens that are
included with a message

SAML
Security Assertions Markup Language (SAML) is an XML-based framework for
exchanging security information over the Internet. SAML enables the exchange of

SAML

Introduction to Oracle Security Developer Tools 1-7

authentication and authorization information between various security services
systems that otherwise would not be able to interoperate.

The SAML 1.0 and 2.0 specifications were adopted by the Organization for the
Advancement of Structured Information Standards (OASIS) in 2002 and 2005
respectively. OASIS is a worldwide not-for-profit consortium that drives the
development, convergence, and adoption of e-business standards.

SAML 2.0 marks the convergence of the Liberty ID-FF, Shibboleth, and SAML 1.0/1.1
federation protocols.

SAML Assertions
SAML associates an identity (such as an e-mail address or a directory listing) with a
subject (such as a user or system) and defines the access rights within a specific
domain. Every SAML document contains an assertion element. SAML defines four
kinds of assertions, which are declarations of one or more facts about a subject:

■ Subject assertions, which are used to identify a particular user or system.

■ Authentication assertions, which state that the user has proven his identity by a
particular method at a specific time.

■ Attribute assertions, which contain specific details about the user such as an
employee number or account number.

■ Authorization assertions, which state the resources a user can access and under
what conditions.

Assertions are coded statements generated about events that have already occurred.
While SAML makes assertions about credentials, it does not actually authenticate or
authorize users. Example 1–1 shows a typical SAML authentication assertion wrapped
in a SAMLP response message:

Example 1–1 Sample SAMLP Response Containing a SAML 1.0 Authentication Assertion

<samlp:Response
MajorVersion="1" MinorVersion="0"
ResponseID="128.14.234.20.90123456"
InResponseTo="123.45.678.90.12345678"
IssueInstant="2005-12-14T10:00:23Z"
xmlns:saml="urn:oasis:names:tc:SAML:1.0:assertion"
xmlns:samlp="urn:oasis:names:tc:SAML:1.0:protocol">
<samlp:Status>

<samlp:StatusCode Value="samlp:Success" />
</samlp:Status>
<saml:Assertion

MajorVersion="1" MinorVersion="0"
AssertionID="123.45.678.90.12345678"
Issuer="IssuingAuthority.com"
IssueInstant="2005-12-14T10:00:23Z" >
<saml:Conditions

NotBefore="2005-12-14T10:00:30Z"
NotAfter="2005-12-14T10:15:00Z" />

</saml:Conditions
<saml:AuthenticationStatement

AuthenticationMethod="urn:oasis:names:tc:SAML:1.0:am:password"
AuthenticationInstant="2005-12-14T10:00:20Z">
<saml:Subject>

<saml:NameIdentifier NameQualifier="RelyingParty.com">
john.smith

SAML

1-8 Oracle Security Developer Tools Reference

</saml:NameIdentifier>
<saml:SubjectConfirmation>

<saml:ConfirmationMethod>
urn:oasis:names:tc:SAML:1.0:cm:artifact-01

</saml:ConfirmationMethod>
</saml:SubjectConfirmation>

</saml:Subject>
</saml:AuthenticationStatement>

</saml:Assertion>
</samlp:Response>

SAML Requests and Responses
The authority that issues assertions is known as the issuing authority or identity
provider. An issuing authority can be a third-party service provider or an individual
business that is serving as an issuing authority within a private federation of
businesses. SAML-compliant applications and services, which trust the issuing
authority or identity provider and make use of its services, are called relying parties
or service providers.

SAML Request and Response Cycle
In a typical SAML cycle, the relying party (or service provider), which needs to
authenticate a specific client request, sends a SAML request to its issuing authority or
identity provider. The identity provider responds with a SAML assertion, which
supplies the relying party or service provider with the requested security information.
This cycle is illustrated in Figure 1–1.

Figure 1–1 SAML Request-Response Cycle

For example, when a user signs into a SAML-compliant service of a relying party or
identity provider, the service sends a "request for authentication assertion" to the
issuing authority (identity provider). The issuing authority returns an "authentication
assertion" reference stating that the user was authenticated by a particular method at a
specific time. The service can then pass this assertion reference to other relying
party/identity provider sites to validate the user’s credentials. When the user accesses
another SAML-compliant site that requires authentication, that site uses the reference
to request the "authentication assertion" from the issuing authority or identity
provider, which states that the user has already been authenticated.

Federation

Introduction to Oracle Security Developer Tools 1-9

 At the issuing authority, an assertion layer handles request and response messages
using the SAML protocol, which can bind to various communication and transport
protocols (HTTP, SOAP, and so on). Note that while the client always consumes
assertions, the issuing authority or identity provider can act as producer and consumer
since it can both create and validate assertions.

SAML Protocol Bindings and Profiles
SAML defines a protocol for requesting and obtaining assertions (SAMLP). Bindings
define the standard way that SAML request and response messages are transported
across the issuing authorities (identity providers) and relying parties (identity
providers) by providing mappings between SAML messages and standard
communication protocols. For example, the defined transport mechanism for SAML
requests and responses is Simple Object Access Protocol (SOAP) over HTTP. This
enables the exchange of SAML information across several Web services in a standard
manner.

A profile describes how SAML assertions are embedded into and extracted out of
standard frameworks and protocol. Web browser profiles for single sign-on and SOAP
profiles for securing SOAP payloads are some of the profiles defined.

SAML and XML Security
In addition, SAML was designed to integrate with XML Signature and XML
Encryption, standards from the World Wide Web Consortium for embedding
encrypted data or digital signatures within an XML document. This support for XML
signatures allows SAML to handle not only authentication, but also message integrity
and nonrepudiation of the sender. See Chapter 8 for more information about Oracle
XML Security.

Federation
As global businesses strive for ever-closer relationships with suppliers and customers,
they face challenges in creating more intimate, yet highly secure trading relationships.

Parties conducting a business transaction must be certain of the identity of the person
or agent with whom they are dealing; they must also be assured that the other has the
authority to act on behalf of the business with whom the transaction is being
conducted.

Historically, in the course of doing business with partners, companies have resorted to
acquiring names, responsibilities, and other pertinent information about all entities
who might act on behalf of the partner company. With changing roles and
responsibilities, and particularly in large enterprises, this can create significant
logistical problems as the data quickly becomes very costly to maintain and manage.

Besides complexity, other challenges include cost control, enabling secure access to
resources for employees and customers, and regulatory compliance, among others.

These requirements are driving the move toward Federated Identity Management, in
which a federated relationship is established between parties when one party presents
its credentials to the other using a process known as "assertions." The receiving party
recognizes credentials issued by a trusted trading partner and in an agreed-upon
format.

Key federation terminology includes:

■ Principal - the key actor in a federated environment, being an entity that performs
an authorized business task

Overview of Oracle Security Developer Tools

1-10 Oracle Security Developer Tools Reference

■ Identity Provider - a service that authenticates a Principal’s identity

■ Service Provider - an entity that provides a service to a principal or another entity.
For example, a travel agency can act as a Service Provider to a partner’s employees
(principals).

■ Single Sign-on - the Principal’s ability to authenticate with one system entity (the
Identity Provider), and have other entities (the Service Providers) honor that
authentication

The Liberty Alliance is an open organization which establishes technology and
business standards for Federated Identity Management to facilitate interoperable
identity services.

To learn more about this topic, read the white paper Federated Identity Management,
which is available on the Oracle Identity Federation page at
http://www.oracle.com/technology/products/id_
mgmt/osfs/index.html.

Overview of Oracle Security Developer Tools
This section provides an introduction to Oracle Security Developer Tools, which are
pure java tools that enable you to complete a wide range of security projects and tasks.

Figure 1–2 The Oracle Security Developer Tools

Figure 1–2 shows the components of the Oracle Security Developer Tools, arranged in
layers with the fundamental building-blocks at the bottom layer; each additional layer
utilizes and builds upon the previous layers to provide tools for specific security
applications.

Oracle Crypto and Oracle Security Engine are the basic cryptographic tools of the set.
The next layer consists of Oracle CMS for message syntax, Oracle XML Security for
signature encryption, and Oracle PKI SDK, which is a suite of PKI tools consisting of
Oracle PKI SDK LDAP, Oracle PKI SDK TSP, Oracle PKI SDK OCSP, and Oracle PKI
SDK CMP. Oracle S/MIME exploits Oracle CMS to provide a toolset for secure e-mail.
The next layer contains Oracle SAML and Oracle Liberty SDK, which provides
structured assertion markup and federated identity management capabilities. Finally,
Oracle Web Services Security provides web services security.

Note: For additional information about the standards mentioned
here, see Appendix A, "References".

Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-11

A description of each tool follows:

■ Oracle Crypto

■ Oracle Security Engine

■ Oracle CMS

■ Oracle S/MIME

■ Oracle PKI SDK

■ Oracle JCE Provider

■ Oracle XML Security

■ Oracle SAML

■ Oracle Web Services Security

■ Oracle Liberty SDK

■ Oracle XKMS

Oracle Crypto
The Oracle Crypto toolkit provides the following features:

■ Public key cryptography algorithms such as RSA

■ Digital signature algorithms such as Digital Signature Algorithm (DSA), RSA, and
Elliptic Curve Cryptography (ECC)

■ Key exchange algorithms such as Diffie-Hellman and Elliptic Curve
Cryptography (ECC)

■ Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2,
and RC4

■ Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512

■ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

■ Methods for building and parsing ASN.1 objects

Oracle Security Engine
The Oracle Security Engine toolkit provides the following features:

■ X.509 Version 3 Certificates, as defined in RFC 3280

■ Full PKCS#12 support

■ PKCS#10 support for certificate requests

■ CRLs as defined in RFC 3280

■ Implementation of Signed Public Key And Challenge (SPKAC)

■ Support for X.500 Relative Distinguished Name

■ PKCS#7 support for wrapping X.509 certificates and CRLs

■ Implementation of standard X.509 certificates and CRL extensions

Overview of Oracle Security Developer Tools

1-12 Oracle Security Developer Tools Reference

Oracle CMS
Oracle CMS provides an extensive set of tools for reading and writing CMS objects,
and supporting tools for developing secure message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in
RFC-2630. Oracle CMS implements all the RFC-2630 content types.

Oracle S/MIME
Oracle S/MIME provides the following Secure/Multipurpose Internet Mail
Extension (S/MIME) features:

■ Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

■ Support for X.509 certificate chains in PKCS#7 and PKCS#12 formats

■ Private key encryption using PKCS#5, PKCS#8, and PKCS#12

■ An integrated ASN.1 library for input and output of data in ASN.1 DER/BER
format

Oracle PKI SDK
Oracle PKI SDK contains a set of tools for working with digital certificates, including
access to LDAP directories, date stamping of digital messages, certificate validation,
and certificate management. It includes the following toolkits:

■ Oracle PKI SDK LDAP

■ Oracle PKI SDK TSP

■ Oracle PKI SDK OCSP

■ Oracle PKI SDK CMP

Oracle PKI SDK LDAP
Oracle PKI SDK LDAP provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform using the Oracle PKI SDK LDAP
are:

■ Validating a user’s certificate in an LDAP directory

■ Adding a certificate to an LDAP directory

■ Retrieving a certificate from an LDAP directory

■ Deleting a certificate from an LDAP directory

Oracle PKI SDK TSP
The Oracle PKI SDK TSP provides the following features and functionality:

■ Oracle PKI SDK TSP conforms to RFC 3161 and is compatible with other products
that conform to this time stamp protocol (TSP) specification.

■ Oracle PKI SDK TSP provides an example implementation of a TSA server to use
for testing TSP request messages, or as a basis for developing your own time
stamping service.

Oracle PKI SDK OCSP
The Oracle PKI SDK OCSP provides the following features and functionality:

Overview of Oracle Security Developer Tools

Introduction to Oracle Security Developer Tools 1-13

■ The Oracle PKI SDK OCSP conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert’s Validation Authority.

■ The Oracle PKI SDK OCSP API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant
validation authority.

■ The Oracle PKI SDK OCSP API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that
you can use as a basis for developing your own OCSP server to check the validity
of certificates you have issued.

Oracle PKI SDK CMP
The set of functions supported by certificate management protocol (CMP) messages
are:

■ Registration of an entity, which takes place prior to issuing a certificate

■ Initialization, such as the generation of a key pair

■ Certification (issuing certificates)

■ Key pair recovery for reissuing lost keys

■ Key pair updates when a certificate expires and a new key pair and certificate
needs to be generated

■ Revocation requests to the CA to include a certificate in a CRL

■ Cross-certification between two CAs

The Oracle PKI SDK CMP conforms to RFC 2510 and is compatible with other
products that conform to this certificate management protocol (CMP) specification. In
addition, it conforms to RFC 2511 and is compatible with other products that conform
to this certificate request message format (CRMF) specification.

Oracle JCE Provider
Java Cryptography Extension (JCE) from Sun Microsystems is a framework for
implementing encryption, key generation and key agreement, and Message
Authentication Code (MAC) algorithms.

The Oracle JCE Provider package supplies a concrete implementation of a subset of the
cryptographic services defined in JCE.

Oracle XML Security
 XML Security refers to common data security requirements of XML documents, such
as confidentiality, integrity, message authentication, and non-repudiation.

Oracle XML Security fulfills these needs by providing the following features:

■ Support for the W3C XML Signature standard

■ Support for the XML Encryption proposed standard

■ Support for the Decryption Transform proposed standard

■ Support for the XML Canonicalization standard

■ Support for the Exclusive XML Canonicalization standard

■ Compatibility with a wide range of JAXP 1.1 compliant XML parsers and XSLT
engines

Overview of Oracle Security Developer Tools

1-14 Oracle Security Developer Tools Reference

Oracle SAML
The Oracle SAML API provides tools and documentation to assist developers of
SAML-compliant Java security services. You can integrate Oracle SAML into existing
Java solutions, including applets, applications, EJBs, servlets, and JSPs.

Oracle SAML provides the following features:

■ Support for the SAML 1.0/1.1 and 2.0 specifications

■ Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

Oracle Web Services Security
Oracle Web Services Security provides an authentication and authorization framework
based on OASIS specifications. Oracle Web Services Security provides the following
features:

■ Support for the SOAP Message Security standard

■ Support for the Username Token Profile standard

■ Support for the X.509 Certificate Token Profile standard

■ Support for the SAML Assertion Token proposed standard (Draft 15)

Oracle Liberty SDK
Oracle Liberty SDK allows Java developers to design and develop single sign-on
(SSO) and federated identity solutions based on the Liberty Alliance specifications.
Oracle Liberty SDK, available in versions 1.1 and 1.2, aims to unify, simplify, and
extend all aspects of development and integration of systems conforming to the
Liberty Alliance 1.1 and 1.2 specifications.

 Oracle Liberty SDK provides the following features:

■ Support for the Liberty Alliance Project version 1.1 and 1.2 specifications

■ Support for Liberty-based Single Sign-on and Federated Identity

Oracle XKMS
Oracle XKMS (XML Key Management Specification) provides a convenient way to
handle public key infrastructures by allowing developers to write XML transactions
for digital signature processing. Oracle XKMS implements the W3C XKMS standard
and avoids some of the cost and complexity involved with public key infrastructures.

Note: For additional information about the standards and
specifications mentioned in this chapter, see Appendix A,
"References".

Oracle Crypto 2-1

2
Oracle Crypto

This chapter provides information about using the Oracle Crypto Software
Development Kit (SDK). Oracle Crypto allows Java developers to develop applications
that ensure data security and integrity.

This chapter contains the following topics:

■ Oracle Crypto Features and Benefits

■ Setting Up Your Oracle Crypto Environment

■ Core Classes and Interfaces

■ The Oracle Crypto Java API Reference

■ Example Programs

Oracle Crypto Features and Benefits
Oracle Crypto provides the following features:

■ Public key cryptography algorithms such as RSA

■ Digital signature algorithms such as DSA, RSA, and Elliptic Curve Cryptography
(ECC)

■ Key exchange algorithms such as Diffie-Hellman and Elliptic Curve
Cryptography (ECC)

■ Symmetric cryptography algorithms such as Blowfish, AES, DES, 3DES, RC2,
and RC4

■ Message digest algorithms such as MD2, MD4, MD5, SHA-1, SHA-256, SHA-384,
and SHA-512

■ MAC algorithms such as HMAC-MD5 and HMAC-SHA-1

■ Methods for building and parsing ASN.1 objects

Oracle Crypto Packages
Oracle Crypto contains the following packages:

■ oracle.security.crypto.core - Basic cryptographic primitives

■ oracle.security.crypto.core.math - Utility classes for handling
mathematical functions

■ oracle.security.crypto.util - Various utility classes

Setting Up Your Oracle Crypto Environment

2-2 Oracle Security Developer Tools Reference

■ oracle.security.crypto.asn1 - Facilities for reading and writing both
BER-encoded and DER-encoded ASN.1 structures

Setting Up Your Oracle Crypto Environment
This section explains how to set up your environment to use Oracle Crypto. It contains
the following topics:

■ System Requirements for Oracle Crypto

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle Crypto
In order to use the Oracle Crypto SDK, your system must have the Java Development
Kit (JDK) version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to
the required jar and class files. Make sure that the osdt_core.jar file is included in
your CLASSPATH.

Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

C:\ORACLE_HOME\jlib\osdt_core.jar

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar

Core Classes and Interfaces
This section provides information and code samples for using the core classes and
interfaces of Oracle Crypto. The core classes and interfaces are divided into the
following categories:

■ Keys

■ Key Generation

Core Classes and Interfaces

Oracle Crypto 2-3

■ Ciphers

■ Signatures

■ Message Digests

■ Key Agreement

■ Pseudo-Random Number Generators

Keys
Oracle Crypto provides the following classes and interfaces for working with keys:

■ The oracle.security.crypto.core.Key Interface

■ The oracle.security.crypto.core.PrivateKey Interface

■ The oracle.security.crypto.core.PublicKey Interface

■ The oracle.security.crypto.core.SymmetricKey Class

The oracle.security.crypto.core.Key Interface
This interface represents a key which may be used for encryption or decryption, for
generating or verifying a digital signature, or for generating or verifying a MAC. A
key may be a private key, a public key, or a symmetric key.

The oracle.security.crypto.core.PrivateKey Interface
This interface represents a private key which may be an RSAPrivateKey, a
DSAPrivateKey, a DHPrivateKey, an ECPrivateKey or a PrivateKeyPKCS8
instance that holds an encrypted private key.

The oracle.security.crypto.core.PublicKey Interface
This interface represents a public key which may be a RSAPublicKey, a
DSAPublicKey, a DHPublicKey or a ECPublicKey instance.

The oracle.security.crypto.core.SymmetricKey Class
This class represents a symmetric key which may be used for encryption, decryption
or for MAC operations.

Key Generation
Oracle Crypto provides the following classes for key generation:

■ The oracle.security.crypto.core.KeyPairGenerator Class

■ The oracle.security.crypto.core.SymmetricKeyGenerator Class

The oracle.security.crypto.core.KeyPairGenerator Class
This abstract class is used to generate key pairs such as RSA, DSA, Diffie-Hellman or
ECDSA key pairs.

To get a new key pair generator, create a new instance of KeyPairGenerator by
calling the static getInstance() method with an AlgorithmIdentifier object as
a parameter. Example 2–1 shows how to create a new KeyPairGenerator instance:

Example 2–1 Code Example for Creating a New KeyPairGenerator Instance

KeyPairGenerator kpg = KeyPairGenerator.getInstance(AlgID.rsaEncryption);

Core Classes and Interfaces

2-4 Oracle Security Developer Tools Reference

This creates a KeyPairGenerator object from one of the concrete classes:
RSAKeyPairGenerator, DSAKeyPairGenerator, DHKeyPairGenerator, or
ECKeyPairGenerator.

Initialize the key pair generator by using one of the initialize() methods.
Generate the key pair with the generateKeyPair() method. Example 2–2 shows
how to initialize the key pair generator and then generate a key pair:

Example 2–2 Code Example for Initializing and Generating a Key Pair

kpg.initialize(1024, RandomBitsSource.getDefault());
KeyPair kp = kpg.generateKeyPair();
PrivateKey privKey = kp.getPrivate();
PublicKey pubKey = kp.getPublic();

Save the keys using the output() method, or in the case of the private key, encrypt it
and save it using the PrivateKeyPKCS8 class. Example 2–3 shows how to save a key
pair.

Example 2–3 Code Example for Saving a Key Pair

FileOutputStream pubKeyFos = new
FileOutputStream("my-pub-key.der");
pubKey.output(pubKeyFos);
pubKeyFos.close();

PrivateKeyPKCS8 privKeyPKCS8 =
new PrivateKeyPKCS8(privKey, "myPassword");

FileOutputStream privKeyFos =
new FileOutputStream("my-encrypted-priv-key.der");

privKeyPKCS8.output(privKeyFos);
privKeyFos.close();

The oracle.security.crypto.core.SymmetricKeyGenerator Class
This class generates symmetric key pairs such as Blowfish, DES, 3DES, RC4, RC2, AES,
and HMAC keys.

To get a new symmetric key generator, create a new instance of
SymmetricKeyGenerator by calling the static getInstance() method with an
AlgorithmIdentifier object as a parameter. Example 2–4 shows how to create a
new SymmetricKeyGenerator instance:

Example 2–4 Code Example for Creating a New SymmetricKeyGenerator Instance

SymmetricKeyGenerator skg = SymmetricKeyGenerator.getInstance(AlgID.desCBC);

Generate the key pair with the generateKey() method. You can then save the key
by using the getEncoded() method. Example 2–5 shows how to generate and save a
symmetric key pair.

Example 2–5 Code Example for Generating and Saving Symmetric Keys

SymmetricKey sk = skg.generateKey();

FileOutputStream symKeyFos =
new FileOutputStream("my-sym-key.der");

symKeyFos.write(sk.getEncoded());

Core Classes and Interfaces

Oracle Crypto 2-5

symKeyFos.close();

Ciphers
The Oracle Crypto Cipher classes and interfaces are divided into the following
categories:

■ Symmetric Ciphers

■ The RSA Cipher

■ Password Based Encryption

Symmetric Ciphers
The symmetric ciphers are made up of two categories: the block ciphers (such as
Blowfish, DES, 3DES, RC2, and AES) and the stream ciphers (such as RC4).

A symmetric cipher can be used for four types of operations:

■ Encryption of raw data. Use one of the encrypt() methods by passing data to be
encrypted.

■ Decryption of encrypted data. Use one of the decrypt() methods by passing
encrypted data to be decrypted.

■ Wrapping of private or symmetric keys. Use one of the wrapKey() methods by
passing the private or symmetric key to be encrypted.

■ Unwrapping of private or symmetric encrypted keys. Use either the
unwrapPrivateKey() or the unwrapSymmetricKey() method by passing the
encrypted private or symmetric key to be decrypted.

The concrete block cipher classes extend the abstract
oracle.security.crypto.core.BlockCipher class, which extends the
oracle.security.crypto.core.Cipher class. The stream cipher classes directly
extend the oracle.security.crypto.core.Cipher class.

To create a new instance of Cipher, call the static getInstance() method with an
AlgorithmIdentifier and a Key object as parameters.

Example 2–6 shows how to create a new Cipher instance. First an RC4 object is created
and initialized with the specified key. Second a block cipher DES object is created and
initialized with the specified key and padding. This creates a cipher and initializes it
with the passed parameters. To re-initialize an existing cipher, call one of the
initialize() methods.

Example 2–6 Code Example for Creating a Cipher Instance

Cipher rc4 = Cipher.getInstance(AlgID.rc4, rc4SymKey);

Cipher desCipher = Cipher.getInstance(AlgID.desCBC, desSymKey, Padding.PKCS5);

When using CBC ciphers, the AlgorithmIdentifier object may hold cryptographic
parameters such as the initialization vector (IV) or the effective key length for RC2
ciphers. To specify these parameters when creating or initializing block ciphers, build a
CBCAlgorithmIdentifier object or RC2AlgorithmIdentifier object with the
cryptographic parameters. Example 2–7 shows how to create and initialize a CBC
cipher and a RC2 cipher.

Core Classes and Interfaces

2-6 Oracle Security Developer Tools Reference

Example 2–7 Code Example for Creating and Initializing CBC Ciphers

CBCAlgorithmIdentifier cbcAlgID =
new CBCAlgorithmIdentifier(AlgID.desCBC, iv);

desCipher.initialize(cbcAlgID, desSymKey, Padding.PKCS5);
RC2AlgorithmIdentifier rc2AlgID =

new RC2AlgorithmIdentifier(iv, 56);
BlockCipher rc2Cipher =

(BlockCipher)Cipher.getInstance(rc2AlgID, rc2SymKey, Padding.PKCS5);

The RSA Cipher
The RSA cipher is an implementation of PKCS#1 v2.0 that supports the RSAES-OAEP
and RSAES-PKCS1-v1_5 encryption schemes. According to the specification,
RSAES-OAEP is recommended for new applications, and RSAES-PKCS1-v1_5 is
included only for compatibility with existing applications and protocols.

The encryption schemes are used to combine RSA encryption and decryption
primitives with an encoding method. Encryption and decryption can only be done
through the methods encrypt(byte[]) and decrypt(byte[]).

You can use an RSA cipher for four types of operations:

■ Encryption of raw data. Use one of the encrypt() methods by passing data to be
encrypted.

■ Decryption of encrypted data. Use one of the decrypt() methods by passing
encrypted data to be decrypted.

■ Wrapping of keys. Use the wrapKey() method by passing the key to be
encrypted.

■ Unwrapping of encrypted keys. Use the unwrapSymmetricKey() method by
passing the encrypted key to be decrypted.

To create a new instance of Cipher, call the static getInstance() method with
AlgorithmIdentifier and Key objects as parameters. Example 2–8 demonstrates
how to create an RSApkcs1 object and initialize it with the specified key. The cipher
can then be used to encrypt or decrypt data.

Example 2–8 Code Example for Creating and Initializing an RSA Cipher

Cipher rsaEnc = Cipher.getInstance(AlgID.rsaEncryption, pubKey);
byte[] encryptedData = rsaEnc.encrypt(data);
Cipher rsaDec = Cipher.getInstance(AlgID..rsaEncryption, privKey);
byte[] decryptedData = rsaDec.decrypt(encryptedData);

When using RSA ciphers, the AlgorithmIdentifier object may hold cryptographic
parameters such as the mask generation function for RSAES-OAEP. To specify these
parameters when creating or initializing RSA ciphers, build an
OAEPAlgorithmIdentifier, or use the default one located in the
oracle.security.crypto.core.AlgID interface.

Password Based Encryption
The abstract oracle.security.crypto.core.PBE class provides methods for
Password Based Encryption (PBE) operations. The concrete classes extending the PBE
are the PKCS5PBE and PKCS12PBE classes.

You can use a PBE object for four types of operations:

■ Encryption of raw data. For example:

Core Classes and Interfaces

Oracle Crypto 2-7

byte[] encData = pbeEnc.encrypt("myPassword", data);

■ Decryption of encrypted data. For example:

byte[] decData = pbeDec.decrypt("myPassword", encData);

■ Wrapping of private or symmetric keys. For example:

byte[] encPrivKey = pbeEnc.encryptPrivateKey("myPassword", privKey);
byte[] encSymKey = pbeEnc.encryptSymmetricKey("myPassword", symKey);

■ Unwrapping of private or symmetric encrypted keys. For example:

PrivateKey decPrivKey = pbeDec.decryptPrivateKey("myPassword", encPrivKey);
SymmetricKey decSymKey = pbeDec.decryptSymmetricKey("myPassword", encSymKey);

To create a new instance of PBE, call the static getInstance() method with a
PBEAlgorithmIdentifier object as a parameter. For example:

PBE pbeEnc = PBE.getInstance(pbeAlgID);

This will create a PKCS5PBE object and initialize it with the specified PBE algorithm.
The PBE can then be used to encrypt or decrypt data, wrap or unwrap keys.

When using PBE objects, the AlgorithmIdentifier object may hold cryptographic
parameters such as the salt or the iteration count as well as the ASN.1 Object Identifier
specifying the PBE algorithm to use. To specify these parameters when creating or
initializing PBEs, build a PBEAlgorithmIdentifier object with the cryptographic
parameters.

Example 2–9 Code Example for Creating a PBE Object

PBEAlgorithmIdentifier pbeAlgID =
new PBEAlgorithmIdentifier(PBEAlgorithmIdentifier.pbeWithMD5AndDES_CBC, salt, 1024);

pbeEnc.initialize(pbeAlgID);
PBE pbeDec = PBE.getInstance(pbeAlgID);

Signatures
The oracle.security.crypto.core.Signature abstract class provides methods
to sign and verify signatures. The concrete classes extending the Signature class are
the RSAMDSignature, DSA and the ECDSA classes.

The algorithms available for signature operations are:

■ For RSA: AlgID.md2WithRSAEncryption, AlgID.md5WithRSAEncryption
and AlgID.sha_1WithRSAEncryption

■ For DSA: AlgID.dsaWithSHA1

■ For ECDSA: AlgID.ecdsaWithSHA1

To create a new instance of Signature, call the static getInstance() method with
an AlgorithmIdentifier and a PrivateKey or PublicKey objects as
parameters. Example 2–10 shows how to create a new Signature object and initialize
it with the specified algorithm.

Example 2–10 Code Example for Creating a New Signature Object

Signature rsaSign = Signature.getInstance(AlgID.md5WithRSAEncryption);
Signature rsaVerif = Signature.getInstance(AlgID.md5WithRSAEncryption);

Core Classes and Interfaces

2-8 Oracle Security Developer Tools Reference

Example 2–11 shows how to set the keys for the Signature objects and set the
document to be signed or verified.

Example 2–11 Code Example for Setting Signature Keys and Documents

rsaSign.setPrivateKey(privKey);
rsaSign.setDocument(data);
rsaVerif.setPublicKey(pubKey);
rsaVerif.setDocument(data);

 Example 2–12 shows how to compute the signature using the private key or to verify
the signature using the public key and the signature bytes.

Example 2–12 Code Example for Computing or Verifying a Signature

byte[] sigBytes = rsaSign.sign();
boolean verified = rsaVerif.verify(sigBytes);

Message Digests
Oracle Crypto provides the following message digest classes:

■ The oracle.security.crypto.core.MessageDigest Class

■ The oracle.security.crypto.core.MAC Class

The oracle.security.crypto.core.MessageDigest Class
The MessageDigest abstract class provides methods to hash and digest data. The
concrete classes extending the MessageDigest class are the MD2, MD4, MD5 and the
SHA classes.

The available algorithms for message digest operations are: AlgID.md2, AlgID.md4,
AlgID.md5, AlgID.sha_1, AlgID.sha_256, AlgID.sha_384 and AlgID.sha_
512.

The basic process for creating a message digest is as follows:

1. Create a new instance of MessageDigest by calling the static getInstance()
method with an AlgorithmIdentifier object as a parameter.

2. Add the data to be digested.

3. Compute the hash value.

Example 2–13 shows how to create an MD5 message digest object.

Example 2–13 Code Example for Creating a Message Digest

//Create a new MD5 MessageDigest object
MessageDigest md5 = Signature.getInstance(AlgID.md5);

//Add the data to be digested
md5.udpate(data1);
md5.udpate(data2);

//Compute the hash value
md5.computeCurrent();
byte[] digestBits = md5.getDigestBits();

Core Classes and Interfaces

Oracle Crypto 2-9

The oracle.security.crypto.core.MAC Class
The MAC abstract class provides methods to compute and verify a Message
Authentication Code (MAC). The concrete class extending the MAC is the HMAC class.

The available algorithms for MAC operations are: AlgID.hmacMD5 and
AlgID.hmacSHA.

The basic process for creating a MAC is as follows:

1. Create a new instance of MAC by calling the static getInstance() method with
an AlgorithmIdentifier and a SymmetricKey object as a parameter.

2. Add the data to be digested.

3. Compute the MAC value and verify it.

Example 2–14 shows how to create a new HMAC object with the HMAC-SHA1
algorithm.

Example 2–14 Code Example for Creating a MAC

//Create an HMAC object with the HMAC-SHA1 algorithm
MAC hmacSha1Compute = MAC.getInstance(AlgID.hmacSHA, hmacSha1Key);

//Add the data to be digested
hmacSha1Compute.udpate(data);

//Compute the MAC value and verify
byte[] macValue = hmacSha1Compute.computeMAC();
boolean verified = hmacSha1Verify.verifyMAC(data, macValue);

Key Agreement
The oracle.security.crypto.core.KeyAgreement class abstract class
provides methods for public key agreement schemes such as Diffie-Hellman. The
concrete classes extending the KeyAgreement class are the DHKeyAgreement and
the ECDHKeyAgreement classes.

The available algorithms for key agreement operations are: AlgID.dhKeyAgreement
and ECDHKeyAgreement (Elliptic Curve Diffie-Hellman key agreement).

The basic process for key agreement is as follows:

1. Create a new instance of KeyAgreement by calling the static getInstance()
method with an AlgorithmIdentifier object as a parameter.

2. Set the local private key and the other party’s public key.

3. Compute the shared secret value.

Example 2–15 shows how to perform key agreement.

Example 2–15 Code Example for Key Agreement

//Create a DH key agreement object
KeyAgreement dh = KeyAgreement.getInstance(AlgID.dhKeyAgreement);

//Set the private key and public key
dh.setPrivateKey(privKey);
dh.setPublicKey(otherPubKey);

//Compute the shared secret

Core Classes and Interfaces

2-10 Oracle Security Developer Tools Reference

byte[] sharedSecret = dh.generateSecret();

Pseudo-Random Number Generators
In cryptography, random numbers are used to generate keys. Cryptographic systems
need cryptographically strong (pseudo) random numbers that cannot be guessed by
an attacker.

Oracle Crypto provides the following pseudo-random number generator (PRNG)
classes:

■ The oracle.security.crypto.core.RandomBitsSource class

■ The oracle.security.crypto.core.EntropySource class

The oracle.security.crypto.core.RandomBitsSource class
RandomBitsSource is an abstract class representing secure PRNG implementations.
Note that, by the very nature of PRNGs, the security of their output depends on the
amount and quality of seeding entropy used. Implementing classes should provide
guidance as to their proper initialization and use. The concrete classes extending the
RandomBitsSource are the MD5RandomBitsSource, SHA1RandomBitsSource,
and the DSARandomBitsSource classes.

Create a new instance of RandomBitsSource by calling the static getDefault()
method to return the default PRNG:

RandomBitsSource rbs = RandomBitsSource.getDefault();

A RandomBitsSource object can also be created by instantiating one of the
subclasses:

RandomBitsSource rbs = new SHA1RandomBitsSource();

By default, a newly created PRNG created from a subclass will be seeded. To seed a
generic RandomBitsSource object, use one of the seed methods by using a byte
array or an EntropySource object:

rbs.seed(myByteArray);

The object is then ready to generate random data:

rbs.randomBytes(myRandomByteArray);

The oracle.security.crypto.core.EntropySource class
The EntropySource class provides a source of seed material for the PRNGs. The
concrete classes extending the EntropySource are the SpinnerEntropySource
and SREntropySource classes.

Create a new instance of EntropySource by calling the static getDefault()
method to return the default entropy source:

EntropySource es = EntropySource.getDefault();

You can also create an EntropySource object by instantiating one of the subclasses:

EntropySource rbs = new SpinnerEntropySource();

The entropy source is readied for use by using one of the generateByte methods:

Example Programs

Oracle Crypto 2-11

es.generateBytes(mySeedingArray);

The Oracle Crypto Java API Reference
The Oracle Crypto Java API reference (Javadoc) is available at:

Oracle Security Developer Tools Crypto Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Example Programs

2-12 Oracle Security Developer Tools Reference

Oracle JCE Provider 3-1

3
Oracle JCE Provider

The Java Cryptography Extension (JCE) from Sun Microsystems is an optional package
to the Java 2 platform. It is a framework for implementing encryption, key generation
and key agreement, and Message Authentication Code (MAC) algorithms.

The Oracle JCE Provider package supplies a concrete implementation of a subset of the
cryptographic services defined in JCE 1.2.1.

This chapter contains these topics:

■ Oracle JCE Provider Features and Benefits

■ Setting Up Your Oracle JCE Provider Environment

■ Example Programs

Oracle JCE Provider Features and Benefits
Oracle JCE Provider supports a number of cryptographic algorithms in the following
application areas:

■ Ciphers -

– AES

– Blowfish

– DES

– Triple DES

– DSA

– RC2

– RSA

– RC4

– PBE with MD2/MD5/SHA1 and DES/RC2/Triple DES/RC4

■ KeyAgreement: Diffie-Hellman with two or more parties

■ PKCS5Padding and NoPadding support for:

– RSA

– AES

– DES

– Triple DES

Oracle JCE Provider Features and Benefits

3-2 Oracle Security Developer Tools Reference

– RC2

– Blowfish

■ PKCS1Padding and OAEPPadding for RSA

■ Support for standard key ranges

■ KeyFactory:

– RSA

– DSA

– Diffie-Hellman

■ SecretKeyFactory:

– AES

– Blowfish

– DES

– Triple DES

– DSA

– RC2

– RC4

– HMAC-MD5

– HMAC-SHA1

– PBE with MD2/MD5/SHA1 and DES/RC2/Triple DES/RC4

■ Support for X.509EncodedKeySpec and PKCS8EncodedKeySpec

■ KeyPairGeneration:

– RSA

– DSA

– Diffie-Hellman

■ KeyGeneration:

– AES

– Blowfish

– DES

– Triple DES

– RC2

– RC4

– HMAC-MD5

– HMAC-SHA1

■ Standard default parameters for DSA (same as those provided by SunJCE)

Note: While the minimum acceptable strength is 512, Oracle JCE
Provider supplies a default strength of 1024.

Setting Up Your Oracle JCE Provider Environment

Oracle JCE Provider 3-3

■ Message Digests:

– MD2

– MD5

– SHA-1

– SHA-256

– SHA-284

– SHA-512

■ Signatures:

– SHA1withDSA

– MD5withRSA

– SHA1withRSA

– MD2withRSA

■ MAC:

– HMAC-MD5

– HMAC-SHA1

■ Support for standard ASN1 encodings

■ SecureRandom:

– MD5PRNG

– SHA1PRNG

■ Pseudo-random number generators, using proprietary algorithms based on the
Bruce Schneier/Applied Cryptography design pattern

■ Support for X509 certificates

■ Key Store:

– PKCS#8

– PKCS#12

Using the Oracle JCE Provider
For more information about the Java Cryptography Extension and how to use the
Oracle JCE Provider, please refer to the Sun JCE documentation at:

http://java.sun.com/products/jce/

Setting Up Your Oracle JCE Provider Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section explains how to set up your environment for Oracle JCE
Provider. It contains these topics:

■ System Requirements for Oracle JCE Provider

■ Installation Requirements

■ Setting the CLASSPATH Environment Variable

Setting Up Your Oracle JCE Provider Environment

3-4 Oracle Security Developer Tools Reference

System Requirements for Oracle JCE Provider
Oracle JCE Provider is compatible with Java Cryptography Extension (JCE) version
1.2.1. In order to use Oracle JCE Provider, you must install JCE 1.2.1 on your system.

The Java Cryptography Extension is available from Sun Microsystems at:

http://java.sun.com/products/jce/

Installation Requirements
Add the following line to your java.security file, which is usually located in
$JAVA_HOME/jre/lib/security:

security.provider.1=com.phaos.jce.provider.Phaos

When installing the distribution files, the location of the Oracle JCE Provider jar file
depends on where the JCE 1.2.1 framework is installed:

If the JCE 1.2.1 framework is an "installed" extension
If the JCE 1.2.1 framework is an installed extension, the following files:

■ jce1_2_1.jar

■ jce_provider_jdk1x.jar

■ US_export_policy.jar

■ local_policy.jar

must appear in the standard location for jar files of an installed extension:

where $JAVA_HOME refers to the directory where the Java software is installed.

If the JCE 1.2.1 framework is located on the classpath
If the JCE 1.2.1 framework is not installed as an extension but instead is located on the
class path, and a security manager is installed, you need to grant permissions to the
JCE 1.2.1 framework and JCE providers when you run applets or applications using
JCE.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to
the required jar and class files. Make sure that the the following files are included in
your CLASSPATH:

■ osdt_core3.jar

■ osdt_jce.jar

Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

File Platform

$JAVA_HOME\lib\ext Win32

$JAVA_HOME/lib/ext Solaris

Example Programs

Oracle JCE Provider 3-5

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

C:\ORACLE_HOME\jlib\osdt_core3.jar;
C:\ORACLE_HOME\jlib\osdt_jce.jar

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core3.jar:\
$ORACLE_HOME/jlib/osdt_jce.jar

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Example Programs

3-6 Oracle Security Developer Tools Reference

Oracle Security Engine 4-1

4
Oracle Security Engine

This chapter provides information about using the Oracle Security Engine Software
Development Kit (SDK) certificate package. Oracle Security Engine is a superset of
Oracle Crypto. It contains all of the libraries and tools provided with Oracle Crypto,
plus additional packages and utilities for generating digital certificates.

Oracle Crypto allows Java developers to develop applications that ensure data security
and integrity. For more information about the Oracle Crypto functionality, see "Oracle
Crypto" in Chapter 2.

For an overview of public key infrastructure (PKI), see "Public Key Infrastructure
(PKI)" in Chapter 1.

This chapter contains the following topics:

■ Oracle Security Engine Features and Benefits

■ Setting Up Your Oracle Security Engine Environment

■ Core Classes and Interfaces

■ The Oracle Security Engine Java API Reference

■ Example Programs

Oracle Security Engine Features and Benefits
Oracle Security Engine provides the following features:

■ X.509 Version 3 Certificates, as defined in RFC 3280

■ Full PKCS#12 support

■ PKCS#10 support for certificate requests

■ certificate revocation list (CRL) functionality as defined in RFC 3280

■ Implementation of Signed Public Key And Challenge (SPKAC)

■ Support for X.500 Relative Distinguished Names

■ PKCS#7 support for wrapping X.509 certificates and CRLs

■ Implementation of standard X.509 certificates and CRL extensions

Oracle Security Engine Packages
The Oracle Security Engine toolkit contains the following packages:

■ oracle.security.crypto.cert - Facilities for handling digital certificates,
CRLs, and PKCS#12.

Setting Up Your Oracle Security Engine Environment

4-2 Oracle Security Developer Tools Reference

■ oracle.security.crypto.cert.ext - Standard X.509 certificates and CRL
extensions.

Setting Up Your Oracle Security Engine Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section provides information for setting up your environment for
Oracle Security Engine. It contains the following topics:

■ System Requirements for Oracle Security Engine

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle Security Engine
In order to use Oracle Security Engine, your system must have the Java Development
Kit (JDK) version 1.2.2.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;

6. Click OK.

Setting the CLASSPATH on UNIX
To set your CLASSPATH on UNIX, set your CLASSPATH environment variable to
include the full path and file name of all of the required jar and class files. For
example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:

Core Classes and Interfaces

Oracle Security Engine 4-3

Core Classes and Interfaces
This section provides information and code samples for using the certificate facility
classes of Oracle Security Engine. Oracle Security Engine also includes all of the classes
provided with Oracle Crypto. See Chapter 2, "Oracle Crypto" for an overview of the
core Oracle Crypto classes.

The core certificate facility classes are:

■ The oracle.security.crypto.cert.X500RDN Class

■ The oracle.security.crypto.cert.X500Name Class

■ The oracle.security.crypto.cert.CertificateRequest Class

■ The oracle.security.crypto.cert.X509 Class

The oracle.security.crypto.cert.X500RDN Class
This class represents an X.500 Relative Distinguished Name (RDN). This is the
building block for X.500 names. A RDN consists of a set of attribute-value pairs.
Typically, there is a single attribute-value pair in each RDN.

Example 4–1 Code Example for Creating and Retrieving an X500RDN Object

// Create the X500RDN object
X500RDN rdn = new X500RDN(PKIX.id_at_commonName, "Joe Smith");

// Retrieve the value
X500Name n = Instance of oracle.security.crypto.cert.X500Name;
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();

The oracle.security.crypto.cert.X500Name Class
This class represents distinguished names as used in the X.500 series of specifications,
defined in X.520. An X500Name object is made of X500RDN objects. An X500Name
holds attributes defining an entity such as the common name, country, organization,
and so on.

To create an X500Name object, use the standard constructor and then populate the
object with attributes. Once created, the object can then be DER-encoded to make it
available to other processes:

Example 4–2 Code Example for Creating an X500Name Object

X500Name name = new X500Name();
name.addComponent(PKIX.id_at_commonName, "Joe Smith");
name.addComponent(PKIX.id_at_countryName, "USA");
name.addComponent(PKIX.id_at_stateOrProvinceName, "NY");
name.addComponent(PKIX.id_at_localityName, "New York");
name.addComponent(PKIX.id_at_organizationName, "Oracle");
name.addComponent(PKIX.id_at_organizationalUnitName, "Engineering");
name.addComponent(PKIX.emailAddress, "joe.smith@oracle.com");

// Make object DER-encoded so its available to other processes

byte[] encodedName = Utils.toBytes(name);
X500Name n = new X500Name(new ByteArrayInputStream(encodedName));
String name = n.getAttribute(PKIX.id_at_commonName).getValue().getValue();
String email = n.getAttribute(PKIX.emailAddress).getValue().getValue();

Core Classes and Interfaces

4-4 Oracle Security Developer Tools Reference

The oracle.security.crypto.cert.CertificateRequest Class
This class represents a PKCS#10 certificate request containing information about an
entity and a signature of the content of the request. The certificate request is used to
convey information and authentication data (the signature) that will be used by a
Certificate Authority (CA) to generate a certificate for the corresponding entity.

Creating a new certificate request involves the following high-level steps:

1. Create a new instance of CertificateRequest by using the empty constructor
and setting the keys and the subject name, or by using the constructor taking an
X500Name and a KeyPair object.

2. Add X.509 extensions to the certificate request.

3. Sign the certificate request and save it to a file.

4. Send the certificate request you created to a Certificate Authority.

Example 4–3 Code Example for Creating a Certificate Request

//Create CertificateRequest by setting the keys and subject name
 CertificateRequest certReq = new CertificateRequest();
 certReq.setPrivateKey(privKey);
certReq.setPublicKey(pubKey);
 certReq.setSubject(subjectName);

//OR

// Create CertificateRequest by taking an X500Name and KeyPair object
CertificateRequest certReq = new CertificateRequest(subjectName, keyPair);

// Add X.509 certificate extensions in a extensionRequest attribute
X509ExtensionSet extSet = new X509ExtensionSet();

// Basic Constraints: non-CA, critical
extSet.addExtension(new BasicConstraintsExtension(false, true));

// Key Usage: signature, data encipherment, key agreement
// & non-repudiation flags, critical
extSet.addExtension(new KeyUsageExtension(new int[] {

KeyUsageExtension.DIGITAL_SIGNATURE,
KeyUsageExtension.DATA_ENCIPHERMENT,
KeyUsageExtension.KEY_AGREEMENT,
KeyUsageExtension.NON_REPUDIATION},

true));

// Subject Alternative Name: email address, non-critical
if (email.length() > 0)

extSet.addExtension(new SubjectAltNameExtension(
new GeneralName(GeneralName.Type.RFC822_NAME, email), false));

// Subject Key Identifier: key ID bytes, non-critical
extSet.addExtension(new SubjectKeyIDExtension

(CryptoUtils.generateKeyID(kp.getPublic())));
req.addAttribute(PKIX.extensionRequest, extSet);

// Sign the certificate request and save to file
req.sign();
req.output(reqOS);
reqOS.close();
}

Example Programs

Oracle Security Engine 4-5

// The certificate request can then be sent to a CA

The oracle.security.crypto.cert.X509 Class
This class represents an X.509 certificate. Oracle Security Engine supports the
generation of new certificates as well as the parsing of existing certificates.

The Oracle Security Engine Java API Reference
The Oracle Security Engine Java API reference (Javadoc) is available at:

Oracle Security Developer Tools Security Engine Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Example Programs

4-6 Oracle Security Developer Tools Reference

Oracle CMS 5-1

5
Oracle CMS

This chapter describes key features and benefits of Oracle CMS and explains how to
set up and use Oracle CMS.

This chapter contains these topics:

■ Oracle CMS Features and Benefits

■ Setting Up Your Oracle CMS Environment

■ Developing Applications with Oracle CMS

■ The Oracle CMS Java API Reference

■ Example Programs

Oracle CMS Features and Benefits
The Oracle CMS SDK is a pure Java API with an extensive set of tools for reading and
writing CMS objects, sample programs, and supporting tools for developing secure
message envelopes.

Oracle CMS implements the IETF Cryptographic Message Syntax specified in
RFC-2630. A link to this document is available in Appendix A, "References".

Content Types
Oracle CMS supports all the content types specified in RFC-2630, as shown in
Table 5–1:

Oracle CMS is a full implementation of RFC-2630 with the following exceptions:

■ There is no support for Attribute Certificates

■ There is no support for Key Agreement RecipientInfo

Table 5–1 Content Types Supported by Oracle CMS

Type Identifier

data 1.2.840.113549.1.7.1

signed-data 1.2.840.113549.1.7.2

enveloped-data 1.2.840.113549.1.7.3

digested-data 1.2.840.113549.1.7.5

encrypted-data 1.2.840.113549.1.7.6

authenticated-data 1.2.840.113549.1.9.16.1.2

Setting Up Your Oracle CMS Environment

5-2 Oracle Security Developer Tools Reference

Oracle CMS supports the following Enhanced Security Services for S/MIME content
type specified in RFC-2634:

A link to this document is available in Appendix A, "References".

The following IETF PKIX TimeStamp Protocol content type corresponding to RFC 3161
is supported:

Differences Between Oracle CMS and PKCS #7 Version 1.5
Oracle CMS is based on PKCS #7 v 1.5 but differs in the following ways:

■ The enveloped-data contains an optional OriginatorInfo

■ The SignerIdentifier in the signed-data SignerInfo is a choice of
IssuerAndSerialNo or SubjectKeyIdentifier

Setting Up Your Oracle CMS Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section describes how to set up your environment for Oracle
CMS. It contains the following:

■ System Requirements

■ Setting the CLASSPATH Environment Variable

System Requirements
In order to use Oracle CMS, your system must have the Java Development Kit (JDK)
version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ the osdt_core.jar file

■ the osdt_cert.jar file

■ the osdt_cms.jar file

Type Identifier

receipt 1.2.840.113549.1.9.16.1.2

Type Identifier

TSTInfo 1.2.840.113549.1.9.16.1.4

Note: Oracle CMS will not process a content type other than the ones
specified earlier.

Note: You must keep these differences in mind if you require
interoperability with PKCS#7 implementations.

Developing Applications with Oracle CMS

Oracle CMS 5-3

Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_cms.jar;

6. Click OK.

Setting the CLASSPATH on UNIX
To set your CLASSPATH on UNIX, set your CLASSPATH environment variable to
include the full path and file name of all of the required jar and class files. For
example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_cms.jar

Developing Applications with Oracle CMS
There are two approaches to reading and writing CMS objects with the
oracle.security.crypto.cms package:

■ Using the CMSContentInfo classes, which are relatively easy to utilize

■ Using one of the following classes:

■ CMSInputStream

■ CMSOutputStream

■ CMSInputConnector

■ CMSOutputConnector

These classes provide the ability to read and write CMS objects in a single pass,
eliminating the need to accumulate the input data before writing any output.

The Oracle CMS API enables you to build nested (wrapped) CMS objects with no limit
on the number of wrappings.

This section contains these topics:

■ CMS Object Types

■ Constructing CMS Objects using the CMS***ContentInfo Classes

■ Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes

Developing Applications with Oracle CMS

5-4 Oracle Security Developer Tools Reference

CMS Object Types
Application developers should be aware of some specific CMS object types which are
discussed in subsequent sections.

A detached object applies to data and receipt content types. For these types, a
detached object is one where the protected content is absent.

A degenerate object is a certificate-only signed-data object and is defined only for the
signed-data content type. It refers to the case where the signed-data object has no
signers. It is normally used to store certificates and is associated with file extensions
p7b and p7c.

An external signature is defined only for the signed-data content type. It is essentially
a detached signed-data object; that is, the signed-data object has one or more signers
but the content that was signed is not present in the signed-data object.

Constructing CMS Objects using the CMS***ContentInfo Classes
Table 5–2 lists the classes which make up the CMS***ContentInfo classes.

You can use these classes to:

■ Read and write objects of the appropriate content type

■ Construct and process detached objects

■ Create nested objects

A detailed discussion of CMS***ContentInfo classes follows.

Abstract Base Class CMSContentInfo
CMSContentInfo is an abstract class representing a fundamental CMS object.
Table 5–2 lists the subclasses of CMSContentInfo.

Some of the useful methods of this abstract class are described in Table 5–3.

Table 5–2 CMS***ContentInfo Classes

Class Content Type

CMSDataContentInfo CMS.id_data

ESSReceipt CMS.id_ct_receipt (RFC-2634 receipt)

CMSDigestedDataContentInfo CMS.id_digestedData

CMSSignedDataContentInfo CMS.id_signedData

CMSEncryptedDataContentInfo CMS.id_encryptedData

CMSEnvelopedDataContentInfo CMS.id_envelopedData

CMSAuthenticateDataContentInfo CMS.id_ct_authData

Table 5–3 Useful Methods of CMSContentInfo

Method Description

contentTypeName
(oracle.security.crypto.asn1.ASN1ObjectID
contentType)

Returns the content type of the object as a string.

getContentType() Returns the content type of the object as an
object identifier (OID).

Developing Applications with Oracle CMS

Oracle CMS 5-5

Constructing a CMS Object

Perform the following steps to construct a CMS object:

1. Create the object of the specified content type.

2. Initialize the object.

3. Call the output(..) method to write the object encoding.

If you are reading in an existing CMSContentInfo, but you do not know the concrete
type in advance, use inputInstance(). To create a new object, use one of the
constructors of the concrete subclass with which you are working. To read in one of a
known concrete type, use the no-args constructor and then invoke the input()
method.

Reading a CMS Object

Perform the following steps to read an object:

1. Call CMSContentInfo.inputInstance(..) to read in the object.

2. Call getContentType() to determine its content type.

3. You can now invoke the content type-specific operations.

The CMSDataContentInfo Class
The class CMSDataContentInfo represents an object of type id-data as defined by
the constant CMS.id_data, and is intended to refer to arbitrary octet strings whose
interpretation is left up to the application.

A useful method of this class is:

byte[] getData()

which returns the data stored in the data object.

To create a CMS data object:

1. Create an instance of CMSDataContentInfo using the constructor that takes a
byte array, documentBytes, that contains the information:

CMSDataContentInfo exdata =
new CMSDataContentInfo(byte[] documentBytes)

2. Write the data object to a file, for example data.p7m:

exdata.output(new FileOutputStream("data.p7m"));

input(java.io.InputStream is) Initializes this object by reading a BER encoding
from the specified input stream.

inputInstance(java.io.InputStream is) Creates a new CMSContentInfo object by
reading a BER encoding from the specified input
stream.

isDegenerate() Indicates if the object is degenerate.

isDetached() Indicates if the object is detached.

output(java.io.OutputStream os) Writes the encoding of the object to the given
output stream.

Table 5–3 (Cont.) Useful Methods of CMSContentInfo

Method Description

Developing Applications with Oracle CMS

5-6 Oracle Security Developer Tools Reference

The steps you use when reading a CMS data object depend on whether you know the
object's content type.

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type id-data:

CMSDataContentInfo exdata =
new CMSDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance, check the type prior to
reading:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSDataContentInfo)
{
 CMSDataContentInfo exdata = (CMSDataContentInfo) cmsdata;
 //
}

2. To access the information stored in the CMS data object:

byte[] docBytes = exdata.getData();

The ESSReceipt Class
Class ESSReceipt represents an object of type id-ct-receipt as defined by the constant
CMS.id_ct_receipt, and refers to an RFC-2634 receipt.

Table 5–4 lists some useful methods of this class.

Take the following steps to create a CMS receipt object.

1. Create an instance of ESSReceipt using the constructor that takes a content type
identifier, a byte array containing the signed content identifier and a byte array
containing the originator signature value:

ESSReceipt rcpt =
new ESSReceipt(contentType, signedContentIdentifier,

Note: You cannot create a CMSDataContentInfo object that
contains null content.

Table 5–4 Useful Methods of ESSReceipt

Method Description

byte[] getOriginatorSignatureValue() Returns the signature value of the message
that triggered the generation of this receipt.

ASN1ObjectID getReceiptContentType() Returns the content type of the message
that triggered the generation of this receipt.

byte[] getReceiptData() Returns the encoded receipt.

byte[] getSignedContentIdentifier() Returns the signed content identifier of the
message that triggered the generation of
this receipt.

void inputContent(InputStream is) Initialize this object by reading the BER
encoding from the specified input stream.

Developing Applications with Oracle CMS

Oracle CMS 5-7

originatorSignatureValue);

2. Write the receipt object to a file, for example data.p7m:

rcpt.output(new FileOutputStream("data.p7m"));

To read a receipt object:

1. Open a connection to the file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type
id-ct-receipt:

ESSReceipt rcptdata = new ESSReceipt(new FileInputStream("data.p7m"));

Otherwise, if the content type is unknown:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof ESSReceipt)
{

ESSReceipt rcptdata = (ESSReceipt) cmsdata;
//

}

2. Access the information stored in the receipt object:

ASN1ObjectID contentType = getReceiptContentType();
byte[] sciBytes = rcptdata.getSignedContentIdentifier()
byte[] osvBytes = rcptdata.getOriginatorSignatureValue();

The CMSDigestedDataContentInfo Class
The class CMSDigestedDataContentInfo represents an object of type
id-digestedData as defined by the constant CMS.id_digestedData.

Table 5–5 lists some of the useful methods of this class.

Note: When you create an ESSReceipt object, do not leave any input
parameters set to null.

Table 5–5 Useful Methods of CMSDigestedDataContentInfo

Method Description

byte[] getDigest() Returns the message digest value.

AlgorithmIdentifier getDigestAlgID() Returns the message digest algorithm ID.

CMSContentInfo getEnclosed() Returns the digested content.

ASN1ObjectID getEnclosedContentType() Returns the content type of the digested
content.

ASN1Integer getVersion() Returns the version number of this object.

isDetached() Indicates if this object is detached.

void setEnclosed(CMSContentInfo content) Sets the encapsulated content, that is, the
object that was originally digested.

void writeDetached(boolean writeDetached) Indicates if the object that is being digested
should be omitted when creating the
CMSDigestedDataContentInfo object.

Developing Applications with Oracle CMS

5-8 Oracle Security Developer Tools Reference

Constructing a CMS Digested-data Object

Take the following steps to create a CMS digested-data object.

1. Create an instance of CMSDigestedDataContentInfo using the constructor
that takes the object to be digested and the digest algorithm identifier. For
example, if contentInfo is a CMSDataContentInfo object and MD5 is the digest
algorithm:

CMSDigestedDataContentInfo dig =
new CMSDigestedDataContentInfo(contentInfo, CMS.md5);

2. Write the CMS digested-data object to a file named data.p7m.

dig.output(new FileOutputStream("data.p7m"));

Reading a CMS Digested-data Object

The steps you need to read a CMS digested-data object depend on whether you
know the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-digestedData:

CMSDigestedDataContentInfo digdata =
new CMSDigestedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSDigestedDataContentInfo)
{

CMSDigestedDataContentInfo digdata =
(CMSDigestedDataContentInfo) cmsdata;

//
}

2. To access the information stored in the CMS digested-data object:

int version = digdata.getVersion().intValue();
AlgorithmIdentifier digestAlgID = digdata.getDigestAlgID();
byte[] digestValue = digdata.getDigest();
CMSContentInfo digContentInfo = digData.getEnclosed()
if (digData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)digContentInfo;

3. To verify the integrity of the protected data, verify the digest:

digData.verify();

Detached digested-data Objects

When working with a detached object, the object that is digested is not a part of the
resulting CMS digested-data structure. To generate a detached object, call the
writeDetached (true | false) method. For example:

dig.writeDetached(true);

Developing Applications with Oracle CMS

Oracle CMS 5-9

While you can read in a detached CMS digested-data object as shown earlier, the
digest verification will fail because the original object that was digested is not present.
To resolve this, call the setEnclosed (CMScontentInfo) method to set the
digestedContent:

digdata.setEnclosed(CMScontentInfo object);

followed by digest verification:

digdata.verify();

The CMSSignedDataContentInfo Class
The class CMSSignedDataContentInfo represents an object of type
id-signedData as defined by the constant CMS.id_signedData.

Oracle CMS supports a choice of IssuerAndSerialNo or SubjectKeyIdentifier
for use as the SignerIdentifier. For interoperability with PKCS #7 and S/MIME,
however, the IssuerAndSerialNo must be used as the SignerIdentifier.

Table 5–6 lists some useful methods of this class:

Table 5–6 Useful Methods of CMSSignedDataContentInfo

Method Description

void addCertificate(X509 cert) Appends the given certificate to
the list of certificates which will be
included with this signed data
object.

void addCRL(CRL crl) Appends the given CRL to the list
of CRLs which will be included
with this signed data object.

void addSignature(AttributeSet authenticatedAttributes,
 PrivateKey signerKey, X509 signerCert,
 AlgorithmIdentifier digestAlgID,
 AlgorithmIdentifier digestEncryptionAlgID,
 AttributeSet unauthenticatedAttributes)

Adds a signature using the
IssuerAndSerialNumber as the
SignerIdentifier, that is, a Version1
CMSSignerInfo.

void addSignature(AttributeSet authenticatedAttributes,
 PrivateKey signerKey, X509 signerCert,
 AlgorithmIdentifier digestAlgID,
 AlgorithmIdentifier digestEncryptionAlgID,
 AttributeSet unauthenticatedAttributes,
 boolean useSPKI64)

Adds a signature using the
SubjectKeyIdentifier as the
SignerIdentifier; that is, a Version3
CMSSignerInfo.

void addSignerInfo(X509 signerCert,
 CMSSignerInfo signerInfo)

Adds a CMSSignerInfo to the list
of signers.

Vector getCertificates() Returns the list of certificates
included with this signed data
object.

Vector getCRLs() Returns the list of CRLs included
with this signed data object.

CMSContentInfo getEnclosed() Returns the signed document.

ASN1ObjectID getEnclosedContentType() Returns the content type of the
document which was signed.

CMSSignerInfo getSignerInfo(signerCert) Returns the CMSSignerInfo
corresponding to the certificate.

ASN1Integer getVersion() Returns the version number of
this object.

Developing Applications with Oracle CMS

5-10 Oracle Security Developer Tools Reference

Oracle CMS supports the RSA and DSA signature algorithms.

Constructing a CMS Signed-data Object

Follow these steps to create a CMS signed-data object:

1. Create an instance of CMSSignedDataContentInfo. For example, to create the
CMSSignedDataContentInfo object, pass the contentInfo object (the data that is
to be signed):

CMSSignedDataContentInfo sig =
new CMSSignedDataContentInfo(contentInfo);

2. Add signatures:

X509 signerCert = new X509(new FileInputStream("name"));
PrivateKey signerKey =

CryptoUtils.inputPrivateKey(new FileInputStream("name"));

a. To add a signature using the IssuerAndSerialNo as the SignerIdentifier, MD5
digests and RSA Signature Algorithm:

boolean isDegenerate() IIndicates if this is a degenerate
CMSSignedDataContentInfo
object (that is, has no SignerInfo
structures)

boolean isDetached() Indicates if this is a detached
object.

boolean isExternalSignature() Checks for the presence of
external signatures.

void setEnclosed(CMSContentInfo content) Sets the content which was
signed.

Enumeration signers() Returns the signatures on this
signed data object in the form of
an enumeration, each element of
which is an instance of
CMSSignerInfo.

void verify(CertificateTrustPolicy trustPolicy) Returns normally if this CMS
signed data object contains at least
one valid signature, according to
the given trust policy.

void verify(CertificateTrustPolicy
trustPolicy,CMSContentInfo contentInfo)

Returns normally if this signed
data object contains at least one
valid signature, according to the
given trust policy.

void verifySignature(X509 signerCert) Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate.

void verifySignature(X509 signerCert,
CMSContentInfo contentInfo)

Returns successfully if this signed
data object contains a signature
which is validated by the given
certificate and data.

void writeExternalSignature(boolean
createExternalSignature)

Indicates if an external signature
must be created.

Table 5–6 (Cont.) Useful Methods of CMSSignedDataContentInfo

Method Description

Developing Applications with Oracle CMS

Oracle CMS 5-11

sig.addSignature(null, signerKey, signerCert, CMS.md5,
CMS.rsaEncryption, null);

b. To add a signature using the 64 bit SubjectKeyIdentifier as the SignerIdentifier,
SHA-1 digests and DSS Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
CMS.dsaWithSHA, null, true);

c. To add a signature using the 160 bit SubjectKeyIdentifier as the
SignerIdentifier, SHA-1 digests and RSA Signature Algorithm:

sig.addSignature(null, signerKey, signerCert, CMS.sha_1,
CMS.rsaEncryption, null, false);

3. Add any Certificates and CRLs:

sig.addCertificate (....)
sig.addCRL (...)

4. Write the CMS signed-data object to a file, for example data.p7m:

sig.output(new FileOutputStream("data.p7m"));

Reading a CMS Signed-data Object

The steps you need to read a CMS signed-data object depend on whether you know
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file is of content type id-signedData:

CMSSignedDataContentInfo sigdata =
new CMSSignedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSSignedDataContentInfo)
{

CMSSignedDataContentInfo sigdata =
(CMSSignedDataContentInfo) cmsdata;

//
}

2. Access the information stored in the CMS signed-data object:

int version = sigdata.getVersion().intValue();
CMSContentInfo sigContentInfo = sigData.getEnclosed()
Vector certs = sigdata.getCertificates();
Vector crls = sigData.getCRLs();
Enumeration e = sigData.signers();
CMSContentInfo sigContentInfo = sigData.getEnclosed();
if (sigData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)sigContentInfo;

3. Verify the signature using the signer's public key certificate:

sigData.verify(signerCert);

4. To get more information about the signer:

Developing Applications with Oracle CMS

5-12 Oracle Security Developer Tools Reference

CMSSignerInfo sigInfo = sigdata.getSignerInfo(signerCert);
byte[] signatureValue = sigInfo.getEncryptedDigest();
AlgorithmIdentifier digest = sigInfo.getDigestAlgID();
AlgorithmIdentifier signature = sigInfo.getDigestEncryptionAlgID();
AttributeSet signedAttributes = sigInfo.getAuthenticatedAttributes();
AttributeSet unsignedAttributes = sigInfo.getUnauthenticatedAttributes();

External Signatures (Detached Objects)

For a detached object, the signed object is not part of the resulting CMS signed-data
structure. To generate a detached object, call the writeExternalSignature()
method:

sig.writeExternalSignature(true);

While you can read in a detached CMS signed-data object as shown in "Reading a
CMS Signed-data Object", the signature verification will fail because the original object
that was signed is not present. Call the setEnclosed (..) method to set the signed
content:

sigdata.setEnclosed(contentInfo);

followed by signature verification:

sigdata.verify(signerCert);

Certificates/CRL-Only Objects

These are essentially CMSSignedDataContentInfo objects with attached
certificates, or CRLs, or both, but without any signatures. To generate a
Certificate/CRL-only object:

CMSSignedDataContentInfo sigdata =
new CMSSignedDataContentInfo(new CMSDataContentInfo(new byte[0]));

sigData.addCertificate (...);
sigData.addCRL(...);
sigData.output(..);

You can read in a Certificate/CRL-only signed-data object as shown in "Reading a
CMS Signed-data Object".

The CMSEncryptedDataContentInfo Class
The class CMSEncryptedDataContentInfo represents an object of type
id-encryptedData as defined by the constant CMS.id_encryptedData.

Table 5–7 lists some useful methods of this class.

Table 5–7 Useful Methods of CMSEncryptedDataContentInfo

Method Description

AlgorithmIdentifier
getContentEncryptionAlgID()

Returns the content encryption
algorithm

CMSContentInfo
 getEnclosed(SymmetricKey decryptionKey)

Returns the decrypted content

ASN1ObjectID
getEnclosedContentType()

Returns the content type of the
encrypted content

byte[] getEncryptedContent() Returns the encrypted content

Developing Applications with Oracle CMS

Oracle CMS 5-13

You can use any of the ciphers supported by the Oracle Security Engine to perform the
encryption operation, including RC2, DES, Triple-DES, AES, and so on.

Constructing a CMS Encrypted-data Object

To create an encrypted-data object:

1. Create an instance of CMSEncryptedDataContentInfo. For example, if
contentInfo is a CMSDataContentInfo object and the cipher is Triple-DES in
CBC mode:

SymmetricKey contentEncryptionKey =
SymmetricKeyGenerator.getInstance(CMS.des_ede3_cbc).generateKey();

CMSEncryptedDataContentInfo enc =
new CMSEncryptedDataContentInfo(contentInfo, contentEncryptionKey,

CMS.des_ede3_cbc);

2. Write the encrypted-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

Reading a CMS Encrypted-data Object

The steps you need to read an encrypted-data object depend on whether you know
the object's content type.

1. Open a connection to the data.p7m file using FileInputStream.

If you know that the object stored in the file data.p7m is of content type
id-encryptedData:

CMSEncryptedDataContentInfo encdata =
new CMSEncryptedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSEncryptedDataContentInfo)
{

CMSEncryptedDataContentInfo encdata =
(CMSEncryptedDataContentInfo) cmsdata;

AttributeSet
getUnprotectedAttributes()

Returns the set of unprotected
attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if this is a detached CMS
object

void setEncryptedContent(byte[] encryptedContent) Sets the encrypted content

void setUnprotectedAttributes
(oracle.security.crypto.cert.AttributeSet

unprotectedAttributes)

Sets the unprotected attributes

void writeDetached
(boolean writeDetachedObject)

Indicates if the encryptedContent
will be a part of the
EncryptedContentInfo structure in
this object's output encoding

Table 5–7 (Cont.) Useful Methods of CMSEncryptedDataContentInfo

Method Description

Developing Applications with Oracle CMS

5-14 Oracle Security Developer Tools Reference

//
}

2. To access the information stored in the CMS encrypted-data object:

int version = encdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = encdata.getContentEncryptionAlgID();
byte[] encValue = encdata.getEncryptedContent();
CMSContentInfo encContentInfo =

encdata.getEnclosed(ContentEncryptionKey); //Decrypt the Content
if (encData.getEnclosedContentType().equals(CMS.id_data))
 CMSDataContentInfo contentInfo = (CMSDataContentInfo)encContentInfo;

Detached encrypted-data CMS Objects

If it is a detached object, the encrypted object is not a part of the resulting CMS
encrypted-data structure. To generate a detached object, call the writeDetached
(..) method:

enc.writeDetached(true);

While you can read in a detached CMS encrypted-data object as shown in "Reading a
CMS Encrypted-data Object", the content decryption will fail because the original
object that was encrypted is not present. Call the setEncryptedContent (..)
method to set the encryptedContent:

encData.setEncryptedContent(enc.getEncryptedContent());

followed by content decryption:

encdata.getEnclosed(ContentEncryptionKey);

The CMSEnvelopedDataContentInfo Class
The class CMSEnvelopedDataContentInfo represents an object of type
id-envelopedData as defined by the constant CMS.id_envelopedData.

Table 5–8 lists some useful methods of this class:

Table 5–8 Useful Methods of CMSEnvelopedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier
keyEncryptionAlgID,
 SymmetricKey keyEncryptionKey,
 byte[] keyIdentifier, Date keyDate,
 ASN1Sequence otherKeyAttribute)

Adds a recipient using the key
encryption (wrap) key exchange
mechanism.

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the key
exchange mechanism specification

void addRecipient(X509 recipientCert,
 AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the key
transport (IssuerAndSerialNo) key
exchange mechanism

void addRecipient(X509 recipientCert, AlgorithmIdentifier
 keyEncryptionAlgID, boolean useSPKI64)

Adds a recipient the key transport
(SubjectKeyIdentifier)

 key exchange mechanism

AlgorithmIdentifier getContentEncryptionAlgID() Returns the content encryption
algorithm

Developing Applications with Oracle CMS

Oracle CMS 5-15

Constructing a CMS Enveloped-data Object

To create an enveloped-data object:

1. Create an instance of CMSEnvelopedDataContentInfo. For example, if
contentInfo is a CMSDataContentInfo object and the cipher is Triple-DES in
CBC mode:

CMSEnvelopedDataContentInfo env =
new CMSEnvelopedDataContentInfo(contentInfo, CMS.des_ede3_cbc);

2. Add recipients, keeping in mind the recipient’s key management technique.

■ If the recipient uses the key encryption (wrap) key management mechanism:

env.addRecipient(keyEncryptionAlgID, keyEncryptionKey,
keyIdentifier, keyDate, otherKeyAttribute);

CMSContentInfo getEnclosed(PrivateKeyprivateKey,
 X509 recipientCert)

Returns the enclosed content after
decryption using Key Transport

 RecipientInfo

CMSContentInfo getEnclosed(SymmetricKey
symmetricKey,
 byte[] keyIdentifier)

Returns the enclosed content after
decryption using Key Encryption

 RecipientInfo

CMSContentInfo getEnclosed(SymmetricKey
symmetricKey,
 byte[] keyIdentifier,Date keyDate)

Returns the enclosed content after
decryption

ASN1ObjectID getEnclosedContentType() Returns the content type of the
encrypted content

byte[] getEncryptedContent() Returns the enclosed content
which is encrypted

OriginatorInfo getOriginatorInfo() Returns the OriginatorInfo

AttributeSet getUnprotectedAttribs() Returns the unprotected attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if the encrypted content
is not present

Enumeration recipients() Returns the list of message
recipients

void setEnclosed(byte[] encryptedContent) Sets the Encrypted Content

void setOriginatorInfo(OriginatorInfo
origInfo)

Sets the OriginatorInfo

void
setUnprotectedAttribs
(oracle.security.crypto.cert.AttributeSet

 unprotectedAttributes)

Sets the unprotected attributes

void writeDetached(boolean writeDetached) Indicates if the encrypted content
must be omitted from this object's
output encoding

Table 5–8 (Cont.) Useful Methods of CMSEnvelopedDataContentInfo

Method Description

Developing Applications with Oracle CMS

5-16 Oracle Security Developer Tools Reference

■ If the recipient key exchange mechanism was specified using a
CMSRecipientInfoSpec object:

env.addRecipient(ris)

■ If the recipient uses the key transport (IssuerAndSerialNo recipient
identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption);

■ If the recipient uses the key transport (64-bit SubjectKeyIdentifier
recipient identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, true)

■ If the recipient uses the key transport (160-bit SubjectKeyIdentifier
recipient identifier) key management mechanism:

env.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

env.setOriginatorInfo(originatorInfo);
env.setUnprotectedAttribs(unprotectedAttributes);

4. Write the CMS enveloped-data object to a file, say data.p7m:

enc.output(new FileOutputStream("data.p7m"));

Reading a CMS Enveloped-data Object

The steps you need to read the object depend on whether you know the object’s
content type.

1. Open a connection to the data.p7m file using FileInputStream. If you know
that the object stored in the file is of content type id-envelopedData:

CMSEnvelopedDataContentInfo envdata =
new CMSEnvelopedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSEnvelopedDataContentInfo)
{

CMSEnvelopedDataContentInfo envdata =
(CMSEnvelopedDataContentInfo) cmsdata;

//
.....

}

2. To access the information stored in the enveloped-data object:

int version = envdata.getVersion().intValue();
AlgorithmIdentifier encAlgID = envdata.getContentEncryptionAlgID();
ASN1ObjectID contentType = env.getEnclosedContentType();
byte[] encryptedContent = env.getEncryptedContent();
OriginatorInfo origInfo = env.getOriginatorInfo();
AttributeSet unprotected = env.getUnprotectedAttribs();

3. Decrypt the content depending on the recipient information:

Developing Applications with Oracle CMS

Oracle CMS 5-17

CMSContentInfo envContentInfo =
env.getEnclosed(privateKey, recipientCert);

or

CMSContentInfo envContentInfo =
env.getEnclosed(symmetricKey, keyIdentifier);

or

CMSContentInfo envContentInfo =
env.getEnclosed(symmetricKey, keyIdentifier, keyDate)

if (envContentInfo instanceof CMSDataContentInfo)
{

CMSDataContentInfo contentInfo = (CMSDataContentInfo) envContentInfo;
// ...

}

Key Transport Key Exchange Mechanism

This mechanism supports the use of either IssuerAndSerialNo or
SubjectKeyIdentifier as the recipient identifier.

Key Agreement Key Exchange Mechanism

This mechanism is not currently supported.

Key Encryption (Wrap) Key Exchange Mechanism

Oracle CMS supports CMS3DESWrap and CMSRC2Wrap algorithms. Mixed mode
wrapping is not supported; for example, 3DES keys cannot be RC2-wrapped.

Detached Enveloped-data CMS Object

If working with a detached object, note that the enveloped object is not part of the
resulting CMS enveloped-data structure. Call the writeDetached (..) method to
generate a detached object:

env.writeDetached(true);

While you can read in a detached enveloped-data object as shown in "Reading a
CMS Enveloped-data Object", the content decryption will fail because the original,
enveloped object is not present. Call the setEnclosed (..) method to set the
enveloped content:

envdata.setEnclosed(env.getEncryptedContent());

followed by content decryption:

envdata.getEnclosed(............);

The CMSAuthenticatedDataContentInfo Class
The class CMSAuthenticatedDataContentInfo represents an object of type
id-ct-authData as defined by the constant CMS.id_ct_authData.

Note: Using the OtherKeyAttribute could cause interoperability
problems.

Developing Applications with Oracle CMS

5-18 Oracle Security Developer Tools Reference

Table 5–9 lists some useful methods of this class.

Note: Oracle CMS supports HMAC with SHA-1 Message
Authentication Code (MAC) Algorithm.

Table 5–9 Useful Methods of CMSAuthenticatedDataContentInfo

Method Description

void addRecipient(AlgorithmIdentifier keyEncryptionAlgID,
 SymmetricKey keyEncryptionKey, byte[] keyIdentifier,
 java.util.Date keyDate, ASN1Sequence otherKeyAttribute)

Adds a recipient using the
key wrap key exchange
mechanism

void addRecipient(CMSRecipientInfoSpec ris) Adds a recipient using the
specified key exchange
mechanism

void addRecipient(X509 recipientCert,
 AlgorithmIdentifier keyEncryptionAlgID)

Adds a recipient using the
key transport key exchange
mechanism using the
IssuerAndSerialNo as the
recipient identifier

void addRecipient(X509 recipientCert,
 AlgorithmIdentifier keyEncryptionAlgID, boolean useSPKI64)

Adds a recipient using the
key transport key exchange
mechanism using the
SubjectKeyIdentifier as the
recipient identifier

AttributeSet getAuthenticatedAttributes() Returns the Authenticated
Attributes

AlgorithmIdentifier getDigestAlgID() Returns the digest algorithm

CMSContentInfo getEnclosed() Returns the authenticated
content

ASN1ObjectID getEnclosedContentType() Returns the content type of
the enclosed content

byte[] getMAC() Returns the message
authentication code

AlgorithmIdentifier getMACAlgID() Returns the MAC algorithm
used for authentication

OriginatorInfo getOriginatorInfo() Returns the Originator
information

AttributeSet getUnauthenticatedAttributes() Returns the
Unauthenticated Attributes

ASN1Integer getVersion() Returns the version number

boolean isDetached() Indicates if this object is
detached

java.util.Enumeration recipients() Returns the list of message
recipients

void setAuthenticatedAttributes(AttributeSet
authenticatedAttributes,
 AlgorithmIdentifier digestAlgorithm)

Sets the Authenticated
attributes

void setEnclosed(CMSContentInfo content) Sets the authenticated
content

void setOriginatorInfo(OriginatorInfo originatorInfo) Sets the OriginatorInfo

void setUnauthenticatedAttributes(AttributeSet
unauthenticatedAttributes)

Sets the unauthenticated
attributes

Developing Applications with Oracle CMS

Oracle CMS 5-19

Constructing a CMS Authenticated-data Object

Take the following steps to create an authenticated-data object:

1. Create an instance of CMSAuthenticatedDataContentInfo. For example, if
contentInfo is a CMSDataContentInfo object, Triple-DES HMAC key and
HMAC with SHA-1 MAC algorithm:

SymmetricKey contentEncryptionKey =
SymmetricKeyGenerator.getInstance(CMS.des_ede3_cbc).generateKey();

CMSAuthenticatedDataContentInfo auth =
new CMSAuthenticatedDataContentInfo(contentInfo,

contentEncryptionKey, CMS.hmac_SHA_1);

2. Add recipients, keeping in mind the recipient’s key management technique.

■ If the recipient uses the key encryption (wrap) key management mechanism:

auth.addRecipient(keyEncryptionAlgID, keyEncryptionKey, keyIdentifier,
keyDate, otherKeyAttribute);

■ If the recipient key exchange mechanism was specified using a
CMSRecipientInfoSpec object:

auth.addRecipient(ris)

■ If the recipient uses the key transport (IssuerAndSerialNo recipient
identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption);

■ If the recipient uses the key transport (64-bit SubjectKeyIdentifier
recipient identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, true)

■ If the recipient uses the key transport (160-bit SubjectKeyIdentifier
recipient identifier) key management mechanism:

auth.addRecipient(recipientCert, CMS.rsaEncryption, false)

3. Set any optional arguments:

auth.setAuthenticatedAttributes(authenticatedAttributes, CMS.md5);

void verifyMAC(PrivateKey privateKey, X509 recipientCert) Returns the enclosed
content after decryption

void verifyMAC(SymmetricKey symmetricKey, byte[] keyIdentifier) Returns the enclosed
content after decryption

void verifyMAC(SymmetricKey symmetricKey, byte[] keyIdentifier,
 Date keyDate)

Returns the enclosed
content after decryption

void verifyMAC(SymmetricKey symmetricKey, byte[] keyIdentifier,
 Date keyDate, ASN1Sequence otherKeyAttribute)

Returns the enclosed
content after decryption

void writeDetached(boolean writeDetachedObject) Indicates if the
authenticated content must
be omitted from this object's
output encoding

Table 5–9 (Cont.) Useful Methods of CMSAuthenticatedDataContentInfo

Method Description

Developing Applications with Oracle CMS

5-20 Oracle Security Developer Tools Reference

auth.setOriginatorInfo(originatorInfo);
auth.setUnauthenticatedAttributes(unauthenticatedAttributes);

4. Write the CMS authenticated-data object to a file, say data.p7m:

auth.output(new FileOutputStream("data.p7m"));

Reading a CMS Authenticated-data Object

The steps you need to read the object depend on whether you know the object’s
content type:

1. Open a connection to the data.p7m file using FileInputStream. If you know
that the object stored in the file is of content type id-ct-authData:

CMSAuthenticatedDataContentInfo authdata =
new CMSAuthenticatedDataContentInfo(new FileInputStream("data.p7m"));

However, if you do not know the content type in advance:

CMSContentInfo cmsdata =
CMSContentInfo.inputInstance(new FileInputStream("data.p7m"));

if (cmsdata instanceof CMSAuthenticatedDataContentInfo)
{
CMSAuthenticatedDataContentInfo authdata =
 (CMSAuthenticatedDataContentInfo) cmsdata;
 //
}

2. To access the information stored in the CMS authenticated-data object:

int version = authdata.getVersion().intValue();
AlgorithmIdentifier macAlgID = authdata.getMACAlgID();
byte[] macValue = authdata.getMAC();
CMSContentInfo authContentInfo = authdata.getEnclosed();
if (authData.getEnclosedContentType().equals(CMS.id_data))

CMSDataContentInfo contentInfo = (CMSDataContentInfo)authContentInfo;

3. Verify the MAC depending on the recipient information:

authdata.verifyMAC(recipientPrivateKey, recipientCert);

or

authdata.verifyMAC(symmetricKey, keyIdentifier)

or

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate)

or

authdata.verifyMAC(symmetricKey, keyIdentifier, keyDate,
otherKeyAttribute)

Detached Authenticated-data CMS Objects

While you can read in a detached authenticated-data object as shown earlier, the MAC
verification will fail because the original object that was authenticated is not present.
To resolve this, call the setEnclosed (..) method to set the authenticated content:

authdata.setEnclosed(contentInfo);

Developing Applications with Oracle CMS

Oracle CMS 5-21

followed by MAC verification using the appropriate key exchange mechanism:

authdata.verifyMAC(...)

Wrapped (Triple or more) CMSContentInfo Objects
To wrap a CMSContentInfo object in another CMSContentInfo object, you simply
pass an initialized CMSContentInfo object to the enclosing CMSContentInfo object
through its constructor. Call the output (..) method of the enclosing outermost
CMSContentInfo object to generate the nested object.

Reading a Nested (Wrapped) CMS Object

The approach to reading a nested object depends on whether you know the outermost
content type in advance.

If you do not know the outermost content type in advance, call the static method:

CMSContentInfo.inputInstance(...)

If you do know the outermost content type in advance, call the appropriate
constructor:

new CMS***DataContentInfo(....)

Then, recursively call the getEnclosed(..) method to extract the next inner object.

Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes
The CMS**DataContentInfo classes provide the same functionality as the
CMS***Stream classes. The primary advantage of the CMS***Stream classes over the
CMS**DataContentInfo classes is that CMS objects can be created or read in one pass
without having to accumulate all the necessary information.

Table 5–10 lists the content types of the CMS***Stream classes:

Table 5–11 lists the content types of the CMS***Connector classes:

Table 5–10 The CMS***Stream Classes

Class Content Type

CMSDigestedDataInputStream,
CMSDigestedDataOutputStream

CMS.id_digestedData

CMSSignedDataInputStream,
CMSSignedDataOutputStream

CMS.id_signedData

CMSEncryptedDataInputStream,
CMSEncryptedDataOutputStream

CMS.id_encryptedData

CMSEnvelopedDataInputStream,
CMSEnvelopedDataOutputStream

CMS.id_envelopedData

CMSAuthenticatedDataInputStream,
CMSAuthenticatedDataOutputStream

CMS.id_ct_authData

Developing Applications with Oracle CMS

5-22 Oracle Security Developer Tools Reference

Limitations of the CMS***Stream and CMS***Connector Classes
There are some limitations to CMS***Stream and CMS***Connector classes when
processing objects:

1. They cannot verify the digest of a detached CMS id-digestedData object.

2. They cannot verify the signature of a detached CMS id-signedData object.

3. They cannot verify the MAC of a detached CMS id-ct-authData object.

Difference between CMS***Stream and CMS***Connector Classes
The CMS***OutputStream class is an output stream filter which wraps the data written
to it within a CMS (RFC-2630) ContentInfo structure, whose BER encoding is then
written to the underlying output stream. The CMS***OutputConnector class is an
output stream filter which likewise wraps the data written to it within a CMS
(RFC-2630) ContentInfo structure, except that only the values octets of the Content
field of the ContentInfo structure (minus the explicit [0] tag) are written to the
underlying output stream.

The CMS***InputStream class is an input stream filter which reads in a BER encoding
of a CMS (RFC-2630) ContentInfo structure from the underlying output stream. The
CMS***InputConnector class is an input stream filter that expects the underlying input
stream to be positioned at the start of the value octets of the Content field of the
ContentInfo structure (after the explicit [0] tag).

CMS***Connectors are useful in creating and reading nested objects.

Using the CMS***OutputStream and CMS***InputStream Classes
To construct an object:

1. Create a CMS***OutputStream class of the appropriate content type. All the
relevant parameters are passed through the constructor.

2. Write the data being protected to the CMS***OutputStream created in step 1.

3. After all the data is written, close the CMS***OutputStream created in step 1 .

To read an object:

Table 5–11 The CMS***Connector Classes

Class Content Type

CMSDigestedDataInputConnector,
CMSDigestedDataOutputConnector

CMS.id_digestedData

CMSSignedDataInputConnector,
CMSSignedDataOutputConnector

CMS.id_signedData

CMSEncryptedDataInputConnector,
CMSEncryptedDataOutputConnector

CMS.id_encryptedData

CMSEnvelopedDataInputConnector,
CMSEnvelopedDataOutputConnector

CMS.id_envelopedData

CMSAuthenticatedDataInputConnector,
CMSAuthenticatedDataOutputConnector

CMS.id_ct_authData

Caution: Always use the CMS**DataContentInfo classes when
processing detached objects.

Developing Applications with Oracle CMS

Oracle CMS 5-23

1. Create a CMS***InputStream class of the appropriate content type by passing the
underlying input stream through the constructor.

2. Read the protected data from the CMS***InputStream created in step 1 using the
read() and read (byte[],...) methods.

3. Invoke terminate() after you have finished reading data from the
CMS***InputStream created in step 1. This completes the reading of the object.

4. Invoke the appropriate methods to verify that the protected content is secure.

CMS id-data Object

The getData() method returns the data which can then be written to a
CMS***OutputStream or CMS***OutputConnector.

CMS id-ct-receipt Object

The getReceiptData() method returns the encoded receipt which can then be
written to a CMS***OutputStream or CMS***OutputConnector.

To read ESSReceipt data from the input stream:

byte[] rcptData = in.read(...);
ESSReceipt er = new ESSReceipt();
er.inputContent(rcptData);

CMS id-digestedData Object

You will not be able to verify the digest of a detached digested-data object. Setting the
boolean parameter writeEContentInfo in the CMSDigestedDataOutputStream
constructor to false enables you to create a detached digested-data object.

CMS id-signedData Object

You will not be able to verify the signature of a detached signed-data object.

The CMSSignerInfoSpec class stores signer-specific information. For every
signature you want to add, you will need to create a corresponding
CMSSignerInfoSpec object which is then passed to the constructor.

Setting the boolean parameter createExternalSignatures in the
CMSSignedDataOutputStream constructor to true enables you to create a detached
signed-data object or external signatures.

To create a Certificate/CRL only object, do not pass any signer information to the
CMSDSignedDataOutputStream constructor.

CMS id-encryptedData Objects

Setting the boolean parameter writeEncryptedOutput in the
CMSEncryptedDataOutputStream constructor to false enables you to create a
detached encrypted-data object.

CMS id-envelopedData Objects

The CMSRecipientInfoSpec class stores recipient-specific information. For every
recipient you want to add, you will need to create a corresponding
CMSRecipientInfoSpec object which is then passed to the constructor.

Setting the boolean parameter writeContent in the
CMSEnvelopedDataOutputStream constructor to false enables you to create a
detached enveloped-data object.

Developing Applications with Oracle CMS

5-24 Oracle Security Developer Tools Reference

Key Transport Key Exchange Mechanism
Use the CMSKeyTransRecipientInfoSpec class to store recipient information that
uses the key transport key management mechanism.

Key Agreement Key Exchange Mechanism
This mechanism is not supported at this time.

Key Encryption (wrap) Key Exchange Mechanism
Use the CMSKEKRecipientInfoSpec class to store recipient information that uses
the key wrap key management mechanism.

CMS id-ct-authData Objects

You will not be able to verify the MAC of a detached authenticated-data object.

Setting the boolean parameter detachEncapContent in the
CMSAuthenticatedDataOutputStream constructor to true enables you to create a
detached authenticated-data object.

Wrapping (Triple or more) CMS***Connector Objects
You use CMS***OutputConnectors to create nested objects.

Use the following code to create signed, enveloped, digested, and encrypted data and
write it to the file nested.p7m:

// nested.p7m <--- FileOutputStream <--- CMSSignedDataOutputConnector
// <--- CMSEnvelopedDataOutputConnector <---
// <---- CMSDigestedDataOutputConnector <---
// <---- CMSEncryptedDataOutputConnector <---
// <---- write the data (byte[] data)

FileOutputStream fos = new FileOutputStream("nested.p7m");
CMSSignedDataOutputConnector conn1 =

new CMSSignedDataOutputConnector(fos,);
CMSEnvelopedDataOutputConnector conn2 =

new CMSEnvelopedDataOutputConnector(conn1, ...);
CMSDigestedDataOutputConnector conn3 =

new CMSDigestedDataOutputConnector(conn2, ...);
CMSEncryptedDataOutputConnector conn4 =

new CMSEncryptedDataOutputConnector(conn3, ...);
OutputStream os = conn4.getOutputStream();
os.write(data);
os.close();

To read signed, enveloped, digested, and encrypted data stored in file nested.p7m:

// nested.p7m ---> FileInputStream ---> CMSSignedDataInputConnector -
// ---> CMSEnvelopedDataInputConnector ---
// -----> CMSDigestedDataInputConnector ---
// ----> CMSEncryptedDataInputConnector ---
// ---> read the data (byte[] data)

FileInputStream fos = new FileInputStream("nested.p7m");
CMSSignedDataInputConnector conn1 =

new CMSSignedDataInputConnector(fos,);
CMSEnvelopedDataInputConnector conn2 =

new CMSEnvelopedDataInputConnector(conn1, ...);
CMSDigestedDataInputConnector conn3 =

new CMSDigestedDataInputConnector(conn2, ...);

Example Programs

Oracle CMS 5-25

CMSEncryptedDataInputConnector conn4 =
new CMSEncryptedDataInputConnector(conn3, ...);

InputStream is = conn4.getInputStream();
is.read(data);

The Oracle CMS Java API Reference
The Oracle CMS API Reference (Javadoc) is available at:

Oracle Security Developer Tools CMS Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Example Programs

5-26 Oracle Security Developer Tools Reference

Oracle S/MIME 6-1

6
Oracle S/MIME

This chapter provides an overview of Oracle S/MIME, describes key features and
benefits, and explains how to set up and use Oracle S/MIME.

This chapter contains these topics:

■ Oracle S/MIME Features and Benefits

■ Setting Up Your Oracle S/MIME Environment

■ Developing Applications with Oracle S/MIME

■ The Oracle S/MIME Java API Reference

■ Example Programs

Oracle S/MIME Features and Benefits
Oracle S/MIME is a pure Java solution which provides the following features:

■ Full support for X.509 Version 3 certificates with extensions, including certificate
parsing and verification

■ Support for X.509 certificate chains in PKCS #7 and PKCS #12 formats

■ Private key encryption using PKCS #5, PKCS #8, and PKCS #12

■ An integrated ASN.1 library for input and output of data in ASN.1 DER/BER
format

Setting Up Your Oracle S/MIME Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section explains how to set up your environment for Oracle
S/MIME. It contains these topics:

■ System Requirements for Oracle S/MIME

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle S/MIME
In order to use Oracle S/MIME, your system must have the Java Development Kit
(JDK) version 1.2.2 or higher. Oracle S/MIME also requires:

■ An implementation of the JavaBeans Activation Framework (JAF). Sun's
royalty-free implementation is available at:

http://www.javasoft.com/beans/glasgow/jaf.html

Setting Up Your Oracle S/MIME Environment

6-2 Oracle Security Developer Tools Reference

■ An implementation of the JavaMail API. Sun's royalty-free implementation is
available at:

http://www.javasoft.com/products/javamail/index.html

If you are using POP or IMAP, be sure to download Sun's POP3 (or IMAP) Provider,
which is also available at the JavaMail page.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar file

■ osdt_cert.jar file

■ osdt_cms.jar file

■ osdt_smime.jar file

■ Your JAF (Java Activation Framework), JavaMail, and POP3 provider installations.

Any application using the Oracle S/MIME API must have all the neccessary MIME
types registered in its command map.

Some applications, specifically those reading S/MIME entries from a FileDataSource,
will need to register the S/MIME file types.

Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_cms.jar;C:\ORACLE_HOME\jlib\osdt_smime.jar;
C:\jaf-1.0.2\activation.jar;C:\javamail-1.3.1\mail.jar;

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
names of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_cms.jar:$ORACLE_HOME/jlib/osdt_smime.jar:\
/usr/lib/jaf-1.0.2/activation.jar:/usr/lib/javamail-1.3.1/mail.jar

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-3

Developing Applications with Oracle S/MIME
This section describes selected interfaces and classes in the Oracle S/MIME API and
illustrates their use. It includes these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

■ Using the Oracle S/MIME Classes

Selected methods are described as appropriate.

Core Classes and Interfaces
This section describes core classes and interfaces in the Oracle S/MIME API, and
explains how to create and parse S/MIME objects.

The oracle.security.crypto.smime.SmimeObject Interface
The oracle.security.crypto.smime.SmimeObject interface represents an
S/MIME object. Classes that implement this interface include:

■ SmimeSigned

■ SmimeEnveloped

■ SmimeMultipartSigned

■ SmimeSignedReceipt

■ SmimeCompressed

Methods in this interface include:

String generateContentType ()
Returns the content type string for this S/MIME object. For example:

"application/pkcs7-mime; smime-type=signed-data"

String generateContentType (boolean useStandardContentTypes)
If the argument is true, returns the same as generateContentType(); if false,
returns old-style (Netscape) content type string. For example:
 "application/x-pkcs7-mime; smime-type=signed-data"

void writeTo (java.io.OutputStream os, java.lang.String mimeType)
Outputs this object to the specified output stream.

The oracle.security.crypto.smime.SmimeSignedObject Interface
The oracle.security.crypto.smime.SmimeSignedObject interface extends
SmimeObject, and specifies methods common to all S/MIME signed objects,
including SmimeSigned and SmimeMultipartSigned.

Methods in this interface include:

Vector getCertificates ()
Returns the list of certificates included in this S/MIME object's signed content.

Vector getCRLs ()
Returns the list of certificate revocation lists in the S/MIME object's signed content.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the document which was signed.

oracle.security.crypto.smime.ess.EquivalentLabels getEquivalentLabels

Developing Applications with Oracle S/MIME

6-4 Oracle Security Developer Tools Reference

(oracle.security.crypto.cert.X509 signerCert)
Returns the EquivalentLabels if present or null.

oracle.security.crypto.smime.ess.ESSSecurityLabel getESSSecurityLabel
(oracle.security.crypto.cert.X509 signerCert)
Returns the ESSSecurityLabel if present or null.

oracle.security.crypto.smime.ess.MLExpansionHistory getMLExpansionHistory(
 oracle.security.crypto.cert.X509 signerCert)
Returns the MLExpansionHistory attribute if present or null.

oracle.security.crypto.smime.ess.ReceiptRequest getReceiptRequest(
 oracle.security.crypto.cert.X509 signerCert)
Returns the ReceiptRequest attribute if present or null.

oracle.security.crypto.smime.ess.SigningCertificate getSigningCertificate(
 oracle.security.crypto.cert.X509 signerCert)
Returns the SigningCertificate.

void verify (oracle.security.crypto.cert.CertificateTrustPolicy trustPolicy)
Returns normally if the signed contents include at least one valid signature according
to the specified trust policy, otherwise throws an AuthenticationException.

void verifySignature (oracle.security.crypto.cert.X509 signerCert)
Returns normally if the signed contents contain a signature which can be validated by
the given certificate, otherwise throws an AuthenticationException.

The oracle.security.crypto.smime.SmimeSigned Class
The oracle.security.crypto.smime.SmimeSigned class represents an
S/MIME signed message (.implements SmimeSignedObject). You may use this class to
build a new message or parse an existing one.

Constructors and methods include:

SmimeSigned (javax.mail.internet.MimeBodyPart content)
Creates a new SmimeSigned object, using the specified MIME body part for the
contents to be signed.

SmimeSigned ()
Creates a new empty SmimeSigned object, which is useful for building a
"certificates-only" S/MIME message.

SmimeSigned (InputStream is)
Creates a new SmimeSigned object by reading its encoding from the specified input
stream.

void addSignature (oracle.security.crypto.core.PrivateKey signerKey
oracle.security.crypto.cert.X509 signerCert,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Adds a signature to the message, using the specified private key, certificate, and
message digest algorithm.

void addSignature (oracle.security.crypto.core.PrivateKey signerKey,
 oracle.security.crypto.cert.X509 signerCert,
 oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
 java.util.Date timeStamp)
Adds a signature to the message, including a time stamp.

void addSignature (oracle.security.crypto.core.PrivateKey signerKey,
oracle.security.crypto.cert.X509 signerCert,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID,
SmimeCapabilities smimeCaps)

Adds a signature to the message, including S/MIME capabilities.

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-5

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the MIME body part that was signed.

To build a new message, use any of these three constructors:

// Create a new S/MIME Signed Message
SmimeSigned sig = new SmimeSigned();

// -OR-
// Create a new S/MIME Signed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeSigned sig1 = new SmimeSigned(bp);

// -OR-
// Create a new S/MIME Signed Message with a specified MIME body part
// and a flag switching comression on or off
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
boolean useCompression = true;
SmimeSigned sig2 = new SmimeSigned(bp, useCompression);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSigned sig = new SmimeSigned(is);

The oracle.security.crypto.smime.SmimeEnveloped Class
The oracle.security.crypto.smime.SmimeEnveloped class represents an
S/MIME enveloped message (implements SmimeObject), and may be used to build a
new message or parse an existing one.

Constructors and methods include:

SmimeEnveloped (javax.mail.internet.MimeBodyPart content,
oracle.security.crypto.core.AlgorithmIdentifier contentEncryptionAlgID)

Creates a new SmimeEnveloped object from the specified MIME body part, using the
specified content encryption algorithm.

SmimeEnveloped (InputStream is)
Creates a new SmimeEnveloped object by reading its encoding from the specified
input stream.

void addRecipient (oracle.security.crypto.cert.X509 cert)
Encrypts the message for the recipient using the given public key certificate.

byte[] getEncryptedContent ()
Returns the contents without decrypting.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart (
 oracle.security.crypto.core.PrivateKey recipientKey,
 oracle.security.crypto.cert.X509 recipientCert)
Returns the MIME body part for the recipient specified by recipientCert, after
decryption using the given recipient private key.

Use the following code to build a new message:

// Create a new S/MIME Enveloped Message with a specified MIME body part and a
specified content
// encryption algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.aes256_CBC;

Developing Applications with Oracle S/MIME

6-6 Oracle Security Developer Tools Reference

SmimeEnveloped env = new SmimeEnveloped(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeEnveloped env = new SmimeEnveloped(is);

The oracle.security.crypto.smime.SmimeMultipartSigned Class
The oracle.security.crypto.smime.SmimeMultipartSigned class
represents an S/MIME multi-part signed message. A multipart signed message is
intended for email clients that are not MIME-aware. This class can be used to build a
new message or parse an existing one.

Constructors and methods include:

SmimeMultipartSigned (javax.mail.internet.MimeBodyPart bodyPart,
oracle.security.crypto.core.AlgorithmIdentifier digestAlgID)

Creates a new SmimeMultipartSigned message, with the specified MIME body
part and message digest algorithm.

void addBodyPart (javax.mail.BodyPart part)
Inherited from javax.mail.Multipart, adds the specified body part to this
SmimeMultipartSigned object. (See the javax.mail API documentation for more
details.)

void addSignature (oracle.security.crypto.core.PrivateKey signerKey,
oracle.security.crypto.cert.X509 signerCert)

Adds a signature to the message, using the specified private key and certificate.

void addSignature (oracle.security.crypto.core.PrivateKey signerKey,
oracle.security.crypto.cert.X509 signerCert, java.util.Date timeStamp)

Adds a signature to the message, using the specified private key and certificate plus a
time stamp.

void addSignature (oracle.security.crypto.core.PrivateKey signerKey,
oracle.security.crypto.cert.X509 signerCert, java.util.Date timeStamp,
SmimeCapabilities smimeCaps)

Adds a signature to the message, using the specified private key and certificate, plus
S/MIME capabilities.

javax.mail.internet.MimeBodyPart getEnclosedBodyPart ()
Returns the MIME body part that was signed.

Use the following code to build a new message:

// Create a new S/MIME Multipart Signed Message with a specified
// MIME body part and a specified digest algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = AlgID.sha1;
SmimeMutlipartSigned sig = new SmimeMultipartSigned(bp, algId);

To parse a message, use the constructor that takes a
javax.activation.DataSource:

DataSource ds = Data source containing message to be parsed
SmimeMultipartSigned sig = new SmimeMultipartSigned(ds);

The oracle.security.crypto.smime.SmimeSignedReceipt Class
The oracle.security.crypto.smime.SmimeSignedReceipt class represents
an S/MIME wrapped and signed receipt. You may use this class to build a new
message or parse an existing one.

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-7

To build a new message, use any of these four constructors:

// Create a new S/MIME wrapped and signed receipt with the specified receipt,
// the specified digest of the message's signed attributes
// and the addresses of the receipt recipients
ESSReceipt receipt = ESS receipt to include in message
byte [] msgSigDigest = Digest of signed attributes to be included in message
Address [] addresses = Addresses of receipt recipients
SmimeSignedReceipt sig = new SmimeSigned(receipt, msgSigDigest, addresses);

 // -OR-
// Create a new S/MIME wrapped and signed receipt
// with a specified S/MIME Signed Message containing the receipt
SmimeSignedObject sso = S/MIME signed message containing receipt
SmimeSignedReceipt sig1 = new SmimeSignedReceipt(sso);

// -OR-
// Create a new S/MIME wrapped and signed receipt with a
// specified S/MIME Signed Message containing the receipt,
// the signer's certificate and the addresses of the receipt recipients
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509 signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
SmimeSignedReceipt sig2 = new SmimeSignedReceipt(sso1, signerCert, addresses1);

// -OR-

// Create a new S/MIME wrapped and signed receipt with a
// specified S/MIME Signed Message containing the receipt,
// the signer's certificate, the addresses of the receipt recipients and
// a specified MLExpansionHistory attribute.
SmimeSignedObject sso1 = S/MIME signed message containing receipt
X509 signerCert = The message signer's certificate
Address [] addresses1 = Addresses of receipt recipients
MLExpansionHistory mlExpansionHistory = The MLExpansionHistory attribute
SmimeSignedReceipt sig2 =

new SmimeSignedReceipt(sso1, signerCert, addresses1, mlExpansionHistory);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeSignedReceipt sig = new SmimeSignedReceipt(is);

The oracle.security.crypto.smime.SmimeCompressed Class
The oracle.security.crypto.smime.SmimeCompressed class represents an
S/MIME compressed message as defined in RFC 3274. You can use this class to build a
new message or parse an existing one.

Use the following code to build a new message:

// Create a new S/MIME Compressed Message with a specified MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
SmimeCompressed comp = new SmimeCompressed(bp);

// -OR-
// Create a new S/MIME Compressed Message with a specified MIME body part

Note: A link to RFC 3274 is available in Appendix A, "References".

Developing Applications with Oracle S/MIME

6-8 Oracle Security Developer Tools Reference

// and a specified compression algorithm
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Hello from SendSignedMsg!");
AlgorithmIdentifier algId = Smime.id_alg_zlibCompress;
SmimeCompressed comp = new SmimeCompressed(bp, algId);

To parse a message, use the constructor that takes a java.io.InputStream:

InputStream is = Input stream containing message to be parsed
SmimeCompressed comp1 = new SmimeCompressed(is);

Supporting Classes and Interfaces
This section describes Oracle S/MIME supporting classes and interfaces.

The oracle.security.crypto.smime.Smime Interface
The oracle.security.crypto.smime.Smime interface defines constants such as
algorithm identifiers, content type identifiers, and attribute identifiers.

The oracle.security.crypto.smime.SmimeUtils Class
The oracle.security.crypto.smime.SmimeUtils class contains static utility
methods.

Methods of this class include:

public static FileDataSource createFileDataSource (File file,
String contentTypeHeader)

public static FileDataSource createFileDataSource (String name,
String contentTypeHeader)

For transparent handling of multipart or multipart/signed S/MIME types, use these
methods instead of directly instantiating a javax.activation.FileDataSource.

The oracle.security.crypto.smime.MailTrustPolicy Class
The oracle.security.crypto.smime.MailTrustPolicy class implements a
certificate trust policy
(oracle.security.crypto.cert.CertificateTrustPolicy) used to verify
signatures on signed S/MIME objects.

The oracle.security.crypto.smime.SmimeCapabilities Class
The oracle.security.crypto.smime.SmimeCapabilities class encapsulates
a set of capabilities for an S/MIME object including, for example, the supported
encryption algorithms.

A useful method of this class is:

void addCapability(oracle.security.crypto.asn1.ASN1ObjectID capabilityID)
which adds the capability with the specified object ID to this set of S/MIME
capabilities.

Note: The default javax.activation.FileDataSource
included with JAF 1.0.1 does not handle multipart MIME boundaries
when used with Javamail 1.1.x.

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-9

The oracle.security.crypto.smime.SmimeDataContentHandler Class
The oracle.security.crypto.smime.SmimeDataContentHandler class
provides the DataContentHandler for S/MIME content types. It implements
javax.activation.DataContentHandler.

The oracle.security.crypto.smime.ess Package
The oracle.security.crypto.smime.ess package contains the following
classes:

Using the Oracle S/MIME Classes
This section describes how to use the Oracle S/MIME SDK to work with multi-part
signed messages, create and open digital envelopes, and implement Enhanced
Security Services (ESS). It covers these topics:

■ Using the Abstract Class SmimeObject

■ Signing Messages

■ Creating "Multipart/Signed" Entities

■ Creating Digital Envelopes

■ Creating "Certificates-Only" Messages

■ Reading Messages

■ Authenticating Signed Messages

■ Opening Digital Envelopes (Encrypted Messages)

■ Adding Enhanced Security Services (ESS)

Table 6–1 Classes in the oracle.security.crypto.smime.ess Package

Class Description

ContentHints Content hints

ContentReference Content reference

EquivalentLabels ESS EquivalentLabels

ESSCertID Represents the ESSCertID of a certificate which is used in
the Signing Certificate Attribute

ESSSecurityLabel An ESS security label

GeneralNames The GeneralNames type, which is a SEQUENCE of the
GeneralName type defined in RFC 2459 (a link to RFC
2459 is available in Appendix A, "References")

MLData Represents the MLData element which is used in the
MLExpansionHistory attribute

MLExpansionHistory Mailing list expansion history

ReceiptRequest An ESS Receipt Request

ReceiptRequest.AllOrFirstTier A 'AllOrFirstTier' is a part of the 'ReceiptsFrom' field of a
ReceiptRequest

SigningCertificate An ESS Signing Certificate

Developing Applications with Oracle S/MIME

6-10 Oracle Security Developer Tools Reference

Using the Abstract Class SmimeObject
SmimeObject is an abstract class representing a fundamental S/MIME message
content entity. Subclasses of SmimeObject include SmimeSigned,
SmimeEnveloped, and SmimeMultipartSigned.

One of the characteristics of SmimeObject implementations is that they "know their
own MIME type" -- that is, they implement the generateContentType method.
Thus, to place such an object inside a MIME message or body part, follow the same
outline that was used in the SmimeSigned example:

1. Create the object.

2. Invoke generateContentType on the object to obtain a MIME type.

3. Pass the object, together with the generated content type, to the setContent
method of a MimeMessage or MimeBodyPart object.

The SmimeObject class provides another version of the generateContentType
method, which takes a boolean parameter. When given true as a parameter,
generateContentType behaves exactly as in the case of no argument. When given
false as a parameter, generateContentType returns the older MIME types required
by certain mail clients, including Netscape Communicator 4.0.4. Specifically:

■ "application/pkcs7-mime" becomes "application/x-pkcs7-mime"

■ "application/pkcs7-signature" becomes "application/x-pkcs7-signature"

Signing Messages
Create a signed message, or signed MIME body part, using these steps:

1. Prepare an instance of MimeBodyPart which contains the content you wish to
sign. This body part may have any content-type desired. In the following example
we create a "text/plain" body part:

MimeBodyPart doc = new MimeBodyPart();
doc.setText("Example signed message.");

2. Create an instance of SmimeSigned using the constructor which takes the
MimeBodyPart created earlier as argument.

SmimeSigned sig = new SmimeSigned (doc);

3. Add all desired signatures. For each signature, you need to specify a private key, a
certificate for the matching public key, and a message digest algorithm. For
example:

sig.addSignature (signatureKey, signatureCert, AlgID.sha1);
In this example we specified the SHA-1 message digest algorithm. Alternatively,
we could have specified the MD5 algorithm by passing AlgID.md5 as the
argument.

4. Place your SmimeSignedObject into a MimeMessage or MimeBodyPart, as
appropriate. For example:

MimeMessage m = new MimeMessage();
m.setContent (sig, sig.generateContentType());

or

MimeBodyPart bp = new MimeBodyPart();
bp.setContent (sig, sig.generateContentType());

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-11

The generateContentType method used in these examples returns a string
identifying the appropriate MIME type for the object, which in this case is:

application/pkcs7-mime; smime-type=signed-data

With these simple steps, you can now transport the MIME message, place the body
part containing S/MIME content into a MIME multipart object, or perform any other
operation appropriate for these objects. See the JavaMail API for details.

Creating "Multipart/Signed" Entities
The SmimeMultipartSigned class provides an alternative way to create signed
messages. These messages use the "multipart/signed" mime type instead of
"application/pkcs7-mime". The advantage is that the content of the resulting message
is readable with non-MIME enabled mail clients, although such clients will not, of
course, be able to verify the signature.

Creating a multi-part/signed message is slightly different from creating a signed
message. For example, to send a multi-part/signed text message:

// create the content text as a MIME body part
MimeBodyPart bp = new MimeBodyPart();
bp.setText("Example multipart/signed message.");
// the constructor takes the signature algorithm
SmimeMultipartSigned sig = new SmimeMultipartSigned(bp, AlgID.sha1);
// sign the content
sig.addSignature(signerKey, signerCert);
// place the content in a MIME message
MimeMessage msg = new MimeMessage();
msg.setContent(sig, sig.generateContentType());

The reason for identifying the message digest in the SmimeMultipartSigned
constructor is that, unlike the case of application/pkcs7-mime signed data objects,
multipart/signed messages require that all signatures use the same message digest
algorithm.

The generateContentType method returns the following string:

multipart/signed; protocol="application/pkcs7-signature"

Creating Digital Envelopes
An S/MIME digital envelope (encrypted message) is represented by the
SmimeEnveloped class. This is a MIME entity which is formed by encrypting a
MIME body part with some symmetric encryption algorithm (eg, Triple-Des or RC2)
and a randomly generated session key, then encrypting the session key with the RSA
public key for each intended message recipient.

In the following example, doc is an instance of MimeBodyPart, which is to be
wrapped in an instance of SmimeEnveloped, and recipientCert is the recipient's
certificate.

SmimeEnveloped env = new SmimeEnveloped(doc, Smime.dES_EDE3_CBC);
env.addRecipient (recipientCert);

Any number of envelope recipients may be added by making repeated calls to
addRecipient.

Developing Applications with Oracle S/MIME

6-12 Oracle Security Developer Tools Reference

Creating "Certificates-Only" Messages
It is possible to create an S/MIME signed-data object that contains neither content nor
signatures; rather, it contains just certificates, or CRLs, or both. Such entities can be
used as a certificate transport mechanism. They have the special content type:

application/pkcs7-mime; smime-type=certs-only

Here is an example:

X509 cert1, cert2;
SmimeSigned certBag = new SmimeSigned();
certBag.addCertificate(cert1);
certBag.addCertificate(cert2);

Now you can pass certBag to an appropriate setContent method. When
generateContentType is invoked on certBag, it will automatically return a
content type with the correct "certs-only" value for the smime-type parameter.

Reading Messages
The basic JavaMail API technique for extracting Java objects from MIME entities is to
invoke the getContent() method on an instance of MimePart, an interface which
models MIME entities and is implemented by the MimeMesage and MimeBodyPart
classes.

The getContent method consults the currently installed default command map -
which is part of the JavaBeans Activities Framework - to find a data content handler
for the given MIME type, which is responsible for converting the content of the MIME
entity into a Java object of the appropriate class.

The mailcap file provided with your distribution can be used to install the
SmimeDataContentHandler class, which serves as a data content handler for the
following types:

Authenticating Signed Messages
Once you obtain an instance of SmimeSigned or SmimeMutlipartSigned from
getContent(), you will naturally want to verify the attached signatures. To explain
the available options for signature verification, it is neccessary to discuss the structure
of an S/MIME signed message.

The content of a signed S/MIME message is a CMS object of type SignedData. Such
an object itself has a content - the document to which the signatures are applied -
which is the text encoding of a MIME entity. It also contains from zero to any number
of signatures, and, optionally, a set of certificates, CRLs, or both, which the receiving
party may use to validate the signatures.

The SmimeSigned and SmimeMultipartSigned classes encapsulate all of this
information. They provide two authentication methods: verifyingSignature and
verify.

Content Type Returns Instance Of

application/pkcs7-mime SmimeSigned or Smime Enveloped

application/pkcs7-signature SmimeSigned

application/pkcs10 oracle.security.crypto.cert.CertificateRequest

multipart/signed SmimeMultipartSigned

Developing Applications with Oracle S/MIME

Oracle S/MIME 6-13

To verify a particular signature with a certificate already in possession, ignoring any
certificate and CRLs attached by the signer, use verifySignature. For example:

SmimeSignedObject sig =
(SmimeSignedObject)msg.getContent(); // msg is a Message

sig.verifySignature(cert, msg.getFrom()); // cert is an X509 object

If verification fails, the verifySignature method throws either an
UnknownSignerException or an AuthenticationException ; otherwise, it
returns normally.

Use verify to verify that the content contains at least one valid signature; that is,
there exists a valid certificate chain, starting from a trusted root CA, and terminating
in a certificate for the private key which generated the signature. This method makes
use of the attached certificate and CRLs in order to follow certificate chains.

For example, given a trusted certificate authority (CA) certificate already in hand:

TrustedCAPolicy trusts = new TrustedCAPolicy();
// if true, need CRL for each cert in chain
trusts.setRequireCRLs(false);
// caCert is an X509 object with CA cert
trusts.addTrustedCA(caCert);
SmimeSignedObject sig = (SmimeSignedObject)msg.getContent();
sig.verify(trusts, msg.getFrom());

Like verifySignature, verify throws an AuthenticationException if the
signature cannot be verified; otherwise it returns normally. In either case you can
recover the document that was signed, which is itself a MIME entity, by invoking
getEnclosedBodyPart():

MimeBodyPart doc = sig.getEnclosedBodyPart();

Opening Digital Envelopes (Encrypted Messages)
An S/MIME digital envelope consists of:

■ A protected MIME body part, which has been encrypted with a symmetric key
algorithm (for example, DES or RC2)

■ A randomly generated content encryption key

■ Information that allows one or more intended recipients to decrypt the content

For each recipient, this information consists of the content encryption key, itself
encrypted with the recipient's public key.

To obtain the encrypted content from an SmimeEnveloped object, you need the
recipient's private key and the corresponding certificate; the certificate is used as an
index into the recipient information table contained in the envelope's data structure.

For example:

SmimeEnveloped env = (SmimeEnveloped)msg.getContent();
MimeBodyPart mbp = env.getEnclosedBodyPart(privKey, cert)
// privKey is a PrivateKey object
// cert is an X509 object

Passing the private key and the certificate to the getEnclosedBodyPart method
returns the decrypted content as an instance of MimeBodyPart.

The getContent method can now be invoked on the MimeBodyPart object to
retrieve the (now decrypted) content. This content may be a String (in the case of an
encrypted text message), or any other object such as an SmimeSigned.

The Oracle S/MIME Java API Reference

6-14 Oracle Security Developer Tools Reference

Adding Enhanced Security Services (ESS)
You can add the ESS services ReceiptRequests, SecurityLabels, and
SigningCertificates to an S/MIME signed message by adding them to the
signedAttributes of a signature.

// Create a Signed Message
SmimeSigned sig = new SmimeSigned();

AttributeSet signedAttributes = new AttributeSet();

Receipt Request (oracle.security.crypto.smime.ess.ReceiptRequest)
To request a signed receipt from the recipient of a message, add a receiptRequest
attribute to the signedAttributes field while adding a signature:

ReceiptRequest rr = new ReceiptRequest();
.........
signedAttributes.addAttribute(Smime.id_aa_receiptRequest, rr);

Security Label (oracle.security.crypto.smime.ess.ESSSecurityLabel)
To attach a security label to a message, add an ESSSecurityLabel attribute to the
signedAttributes field while adding a signature:

ESSSecurityLabel sl = new ESSSecurityLabel();
.........
signedAttributes.addAttribute(Smime.id_aa_securityLabel, sl);

Signing Certificate
(oracle.security.crypto.smime.ess.SigningCertificate)

To attach a signing certificate to a message, add a SigningCertificate attribute to
the signedAttributes field while adding a signature:

SigningCertificate sc = new SigningCertificate();
.........
signedAttributes.addAttribute(Smime.id_aa_signingCertificate, sc);

Use the signedAttributes while adding a signature:

sig.addSignature(signerKey, signerCert, digestAlgID, signedAttributes);

The ESS signed receipts are generated using the SmimeSignedReceipt class in the
oracle.security.crypto.smime package, in a manner similar to using a
SmimeSigned class, except that the content that is signed is an
oracle.security.crypto.cms.ESSReceipt object.

Processing Enhanced Security Services (ESS)
An S/MIME signed receipt must have correctly set content type parameters for the
data content handlers to recognize it. If the content type parameters are missing, the
signed receipt is treated as a signed message.

The Oracle S/MIME Java API Reference
The Oracle S/MIME Java API Reference (Javadoc) is located at:

Oracle Security Developer Tools S/MIME Java API Reference

Example Programs

Oracle S/MIME 6-15

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Example Programs

6-16 Oracle Security Developer Tools Reference

Oracle PKI SDK 7-1

7
Oracle PKI SDK

A public key infrastructure (PKI) is a security architecture that provides an increased
level of confidence for exchanging information over the Internet.

This chapter provides information about using the packages in Oracle PKI SDK, which
is a set of software development kits (SDKs) for developing PKI-aware applications.

This chapter contains the following topics:

■ Oracle PKI SDK CMP

■ Oracle PKI SDK OCSP

■ Oracle PKI SDK TSP

■ Oracle PKI SDK LDAP

Oracle PKI SDK CMP
This section provides information about using the Oracle public key infrastructure
(PKI) Software Development Kit (SDK) for certificate management protocol (CMP).
Oracle PKI SDK CMP allows Java developers to quickly implement certificate
management functionality such as issuing and renewing certificates, creating and
publishing CRLs, and providing key recovery capabilities.

This chapter contains the following topics:

■ Oracle PKI SDK CMP Features and Benefits

■ Setting Up Your Oracle PKI SDK CMP Environment

■ The Oracle PKI SDK CMP Java API Reference

■ Example Programs

Oracle PKI SDK CMP Features and Benefits
The Oracle PKI SDK CMP provides the following features and functionality:

■ Oracle PKI SDK CMP conforms to RFC 2510, and is compatible with other
products that conform to this certificate management protocol (CMP)
specification. RFC 2510 defines protocol messages for all aspects of certificate
creation and management.

■ Oracle PKI SDK CMP conforms to RFC 2511, and is compatible with other
products that conform to this certificate request message format (CRMF)
specification. RFC 2511 describes the Certificate Request Message Format (CRMF),
which is used to convey X.509 certificate requests to a Certification Authority
(CA).

Oracle PKI SDK CMP

7-2 Oracle Security Developer Tools Reference

Package Overview for Oracle PKI SDK CMP
The Oracle PKI SDK CMP toolkit contains the following packages:

■ The oracle.security.crypto.cmp package provides classes that implement
certificate management protocol (CMP) as described in RFC 2510, and certificate
request message format (CRMF) as described in RFC 2511.

■ The oracle.security.crypto.cmp.attribute package provides attribute
classes for registration controls, registration information, and general information.
This package includes the following classes and their subclasses:

– RegistrationControl

– RegistrationInfo

– InfoTypeAndValue (which extends
oracle.security.crypto.cert.AttributeTypeAndValue)

■ The oracle.security.crypto.cmp.transport package provides classes for
CMP and CRMF transport protocols. It includes the TCPMessage class and its
specific message-type subclasses.

Setting Up Your Oracle PKI SDK CMP Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section provides information for setting up your environment for
Oracle PKI SDK CMP. It contains the following topics:

■ System Requirements for Oracle PKI SDK CMP

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle PKI SDK CMP
In order to use Oracle PKI SDK CMP, your system must have the Java Development
Kit (JDK) version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_cms.jar

■ osdt_cmp.jar

Setting the CLASSPATH on Windows

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

Oracle PKI SDK OCSP

Oracle PKI SDK 7-3

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH. For example:

C:\ORACLE_HOME\jlib\osdt_core.jar;C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_cms.jar;C:\ORACLE_HOME\jlib\osdt_cmp.jar

6. Click OK.

Setting the CLASSPATH on UNIX

On UNIX, set your CLASSPATH environment variable to include the full path and file
names of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:$ORACLE_HOME/jlib/osdt_cms.jar:\
$ORACLE_HOME/jlib/osdt_cmp.jar

The Oracle PKI SDK CMP Java API Reference
The Oracle PKI SDK CMP Java API reference (Javadoc) is available at:

Oracle Security Developer Tools PKI SDK CMP Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle PKI SDK OCSP
This section provides information about using the Oracle Online Certificate Status
Protocol (OCSP) Software Development Kit (SDK). Oracle PKI SDK OCSP allows Java
developers to quickly develop OCSP-enabled client applications and OCSP responders
that conform to RFC 2560 specifications.

This section contains the following topics:

■ Oracle PKI SDK OCSP Features and Benefits

■ Setting Up Your Oracle PKI SDK OCSP Environment

■ The Oracle PKI SDK OCSP Java API Reference

■ Example Programs

Oracle PKI SDK OCSP Features and Benefits
Oracle PKI SDK OCSP provides the following features and functionality:

■ Oracle PKI SDK OCSP conforms to RFC 2560 and is compatible with other
products that conform to this specification, such as Valicert’s Validation Authority.
RFC 2560 specifies a protocol useful in determining the current status of a digital
certificate without requiring CRLs.

■ The Oracle PKI SDK OCSP API provides classes and methods for constructing
OCSP request messages that can be sent through HTTP to any RFC 2560 compliant
validation authority.

■ The Oracle PKI SDK OCSP API provides classes and methods for constructing
responses to OCSP request messages, and an OCSP server implementation that

Oracle PKI SDK OCSP

7-4 Oracle Security Developer Tools Reference

you can use as a basis for developing your own OCSP server to check the validity
of certificates you have issued.

Setting Up Your Oracle PKI SDK OCSP Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section provides information for setting up your environment for
Oracle PKI SDK OCSP. It contains the following topics:

■ System Requirements for Oracle PKI SDK OCSP

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle PKI SDK OCSP
In order to use Oracle PKI SDK OCSP, your system must have the Java Development
Kit (JDK) version 1.2.2 or higher. Also, make sure that your PATH environment
variable includes the Java bin directory.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_ocsp.jar

Setting the CLASSPATH on Windows
 To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH. For example:

C:\ORACLE_HOME\jlib\osdt_core.jar;C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_ocsp.jar

6. Click OK.

Setting the CLASSPATH on Unix

On Unix, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_ocsp.jar

Oracle PKI SDK TSP

Oracle PKI SDK 7-5

The Oracle PKI SDK OCSP Java API Reference
The Oracle PKI SDK OCSP Java API reference (Javadoc) is available at:

Oracle Security Developer Tools PKI SDK OCSP Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle PKI SDK TSP
This section provides information about using the Oracle PKI SDK TSP, which allows
Java developers to quickly implement time-stamping functionality within a public key
infrastructure (PKI) framework.

This section contains the following topics:

■ Oracle PKI SDK TSP Features and Benefits

■ Setting Up Your Oracle PKI SDK TSP Environment

■ The Oracle PKI SDK TSP Java API Reference

■ Example Programs

Oracle PKI SDK TSP Features and Benefits
Oracle PKI SDK TSP provides the following features and functionality:

■ Oracle PKI SDK TSP conforms to RFC 3161 and is compatible with other products
that conform to this time stamp protocol (TSP) specification.

■ Oracle PKI SDK TSP provides an example implementation of a TSA server to use
for testing TSP request messages, or as a basis for developing your own time
stamping service.

Class and Interface Overview for Oracle PKI SDK TSP
Oracle PKI SDK TSP contains the following classes and interfaces:

Table 7–1 Oracle PKI SDK TSP Classes and Interfaces

Class or Interface Name Description

TSP Interface Defines various constants associated with the Time Stamp Protocol
(TSP).

HttpTSPRequest Class Implementation of a TSP request message over HTTP.

HttpTSPResponse Class Implementation of a TSP response message over HTTP.

MessageImprint Class This class represents a MessageImprint object as defined in
RFC 3161.

TSAPolicyID Class This class represents a TSAPolicyID object as defined in RFC 3161.

TSPContentHandlerFactory Class A content handler for TSP over HTTP.

TSPMessage Class A TSP message.

Oracle PKI SDK TSP

7-6 Oracle Security Developer Tools Reference

Setting Up Your Oracle PKI SDK TSP Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section provides information for setting up your environment for
Oracle PKI SDK TSP. It contains the following topics:

■ System Requirements for Oracle PKI SDK TSP

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle PKI SDK TSP
In order to use Oracle PKI SDK TSP, your system must have the Java Development Kit
(JDK) version 1.2.2 or higher. Also, make sure that your PATH environment variable
includes the Java bin directory.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_cms.jar

■ osdt_cmp.jar

■ osdt_tsp.jar

Setting the CLASSPATH on Windows

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all the required jar and class files to the
CLASSPATH. For example:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_cms.jar;C:\ORACLE_HOME\jlib\osdt_cmp.jar;
C:\ORACLE_HOME\jlib\osdt_tsp.jar

6. Click OK.

TSPTimeStampReq Class A TSP message of type TimeStampReq as defined in RFC 3161.

TSPTimeStampResp Class A TSP message of type TimeStampResp as defined in RFC 3161.

TSPUtils Class Defines various utility methods for the
oracle.security.crypto.tsp package.

Table 7–1 (Cont.) Oracle PKI SDK TSP Classes and Interfaces

Class or Interface Name Description

Oracle PKI SDK LDAP

Oracle PKI SDK 7-7

Setting the CLASSPATH on Unix

On Unix, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:$ORACLE_HOME/jlib/osdt_cms.jar:\
$ORACLE_HOME/jlib/osdt_cmp.jar;$ORACLE_HOME/jlib/osdt_tsp.jar

The Oracle PKI SDK TSP Java API Reference
The Oracle PKI SDK TSP Java API reference (Javadoc) is available at:

Oracle PKI SDK TSP Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle PKI SDK LDAP
This section provides information about using Oracle PKI SDK LDAP, which allows
Java developers to quickly implement operations that involve publishing and
retrieving digital certificates from a directory server.

This section contains the following topics:

■ Oracle PKI SDK LDAP Features and Benefits

■ Setting Up Your Oracle PKI SDK LDAP Environment

■ The Oracle PKI SDK LDAP Java API Reference

■ Example Programs

Oracle PKI SDK LDAP Features and Benefits
Oracle PKI SDK LDAP provides facilities for accessing a digital certificate within an
LDAP directory. Some of the tasks you can perform with Oracle PKI SDK LDAP are:

■ Validating a user’s certificate in an LDAP directory

■ Adding a certificate to an LDAP directory

■ Retrieving a certificate from an LDAP directory

■ Deleting a certificate from an LDAP directory

Class Overview for Oracle PKI SDK LDAP
The oracle.security.crypto.LDAP package contains two classes:

■ LDAPCertificateValidator, which validates a user certificate by checking
whether it exists in its subject’s LDAP directory entry

■ LDAPUtils, which is a collection of methods to add, retrieve, and remove
certificates from a subject’s LDAP directory entry

Oracle PKI SDK LDAP

7-8 Oracle Security Developer Tools Reference

Setting Up Your Oracle PKI SDK LDAP Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section provides information on setting up your environment for
Oracle PKI SDK LDAP. It contains the following topics:

■ System Requirements for Oracle PKI SDK LDAP

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle PKI SDK LDAP
To use Oracle PKI SDK LDAP, your system must have the following:

■ Java Development Kit (JDK) version 1.2.2 or higher. Also, make sure that the Java
bin directory is added to your PATH environment variable.

■ Sun Microsystem’s Java Naming and Directory Interface (JNDI) version 1.2.1 or
higher. You must add all of the JNDI jar files to your CLASSPATH.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_ldap.jar

■ jndi.jar, ldapbp.jar, ldap.jar, jaas.jar, and providerutil.jar
(Sun’s Java Naming and Directory Interface (JNDI))

Setting the CLASSPATH on Windows

To set your CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH. For example:

C:\ORACLE_HOME\jlib\osdt_core.jar;C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_ldap.jar;

6. Click OK.

Setting the CLASSPATH on Unix

On Unix, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:
$ORACLE_HOME/jlib/osdt_cert.jar:
$ORACLE_HOME/jlib/osdt_ldap.jar

Oracle PKI SDK LDAP

Oracle PKI SDK 7-9

The Oracle PKI SDK LDAP Java API Reference
The Oracle PKI SDK LDAP Java API reference (Javadoc) is available at:

Oracle Security Developer Tools PKI SDK LDAP Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle PKI SDK LDAP

7-10 Oracle Security Developer Tools Reference

Oracle XML Security 8-1

8
Oracle XML Security

Extensible Markup Language (XML) is an application of Standard Generalized
Markup Language (SGML). XML is a meta-language that allows implementors to
define their own self-describing markup. Implementors use XML to define their own
set of custom tags. The tags are similar to those found in an HTML document; like
XML, HTML is also an application of SGML.

For a document to be valid, it must conform to all the constraints imposed by a given
Document Type Definition (DTD) or schema. A valid XML document is said to be
semantically correct.

XML security refers to standard security requirements of XML documents such as
confidentiality, integrity, message authentication, and non-repudiation. The need for
digital signature and encryption standards for XML documents prompted the World
Wide Web Consortium (W3C) to put forth an XML Signature standard and an XML
Encryption standard. The XML Signature standard is the product of a joint working
group that also includes the Internet Engineering Task Force (IETF). In addition, the
W3C and IETF have also jointly proposed an XML Key Management Specification
(XKMS) that defines protocols for distributing and registering public keys associated
with XML signatures and XML encryption.

This chapter describes key features and benefits of Oracle XML Security, and explains
how to set up your environment to use Oracle XML Security.

This chapter contains these topics:

■ Oracle XML Security Features and Benefits

■ Setting Up Your Oracle XML Security Environment

■ Classes and Interfaces

■ Common XML Security Questions

■ The Oracle XML Security Java API Reference

■ Example Programs

Oracle XML Security Features and Benefits

8-2 Oracle Security Developer Tools Reference

Oracle XML Security Features and Benefits
The Oracle XML Security SDK is a pure Java solution which provides the following
features:

■ Support for the XML Signature standard

■ Support for the XML Encryption standard

■ Support for the Decryption Transform standard

■ Support for the XML Canonicalization standard

■ Support for the Exclusive XML Canonicalization standard

■ Compatibility with a wide range of JAXP 1.1 compliant XML parsers and XSLT
engines

Links to these standards are available in Appendix A, "References".

Setting Up Your Oracle XML Security Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

This section explains how to set up your environment for Oracle XML Security. It
contains these topics:

■ System Requirements for Oracle XML Security

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle XML Security
In order to use Oracle XML Security, your system must have the following
components installed:

■ The Java Development Kit (JDK) version 1.2.2 or higher

■ A JAXP-compatible XML parser and XSLT processor

Oracle XML Security has been tested with the following implementations:

■ Apache Xalan-Java (with Xerces-J)

■ Oracle XDK for Java

See Also: The following resources provide more information about
XML and XML standards:

■ W3C's Recommendation for XML 1.0

■ JavaSoft's XML FAQ

■ O'Reilly's XML Web site

■ The Internet Engineering Task Force Web Site

■ W3C's Recommendation for XML Signatures

■ W3C's Recommendation for XML Encryption

■ The proposed XML Key Management specification

Links to these resources are available in Appendix A, "References".

Setting Up Your Oracle XML Security Environment

Oracle XML Security 8-3

Apache Libraries
Sun JDK 1.4.x distributions contain an embedded version of the Apache Crimson
parser and an older version of the Apache Xalan XSLT engine. Oracle does not
recommend using these versions, as they contain a number of bugs and
incompatibilities that can result in signature and encryption failures. If you are using
JDK 1.4.x with an Apache XML parser, the XSLT engine, or both, put the Apache
library JAR files in your JRE's /lib/endorsed directory to override the JRE's built-in
version of Apache.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ jaxen.jar, which is included in the $ORACLE_HOME/jlib directory of the
security tools distribution. Oracle XML Security relies on the Jaxen XPath engine
for XPath processing.

■ The appropriate XML parser and XSLT processor implementations, unless you
have installed them in your JRE's /lib/ext or /lib/endorsed directory.

Setting the CLASSPATH on Windows
If you are installing Oracle XML Security on Windows, set your CLASSPATH as
follows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;

Note: If you have questions regarding compatibility with other
parsers, see the Oracle Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Note: The Jaxen library included in the Oracle XML Security
distribution is a modified version of the Jaxen 1.0 FCS release. If you
also have an earlier Jaxen release in your CLASSPATH, you must
ensure that the version from this distribution appears first.

Classes and Interfaces

8-4 Oracle Security Developer Tools Reference

C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\jaxen.jar;

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/jaxen.jar:

Classes and Interfaces
This section describes classes in the XML Security API. It includes:

■ Core Classes

■ Supporting Classes and Interfaces

Core Classes
This section describes core classes, illustrates how to create class instances, and uses
code samples to illustrate the capabilities of each class.

The oracle.security.xmlsec.dsig.XSSignature Class
This class represents the top-level Signature element of the XML Signature schema.
Creating an instance of this class is the first step in creating a new signature or in
verifying an existing signature.

To create a new signature, you create a new instance of the XSSignature class by
calling the static newInstance() method:

Example 8–1 Creating a Signature with XSSignature

XSSignature sig = XSSignature.newInstance("MySignatureID");

To obtain Signature elements from an XML document to verify a signature, you first
obtain an org.w3c.dom.NodeList object that contains all the Signature elements
as instances of org.w3c.dom.Node. You can then iterate through the NodeList and
convert each node to an instance of XSSignature, as the following example
illustrates:

Example 8–2 Verifying a Signature with XSSignature

Document doc = Instance of org.w3c.dom.Document;
// Get list of all XML Signatures in the document.
NodeList sigList = doc.getElementsByTagNameNS(XMLURI.ns_xmldsig, "Signature");
if (sigList.getLength() == 0)

System.err.println("No XML-DSIG Signature elements found.");

// Convert each org.w3c.dom.Node object to a
oracle.security.xmlsec.dsig.XSSignature
// object and perform verification
for (int s = 0, n = sigList.getLength(); s < n; ++s)

Classes and Interfaces

Oracle XML Security 8-5

{
XSSignature sig = new XSSignature((Element)sigList.item(s));
//Perform signature verification for this signature
...

}

The oracle.security.xmlsec.dsig.XSSignedInfo Class
This class represents the SignedInfo element of the XML Signature schema. As with
XSSignature, you must use this class to both create and verify signatures. In
signature creation, you create an instance of this class with the following code:

Example 8–3 Creating a Signature with XSSignedInfo

XSignature sig = XSSignature.newInstance("MySignatureID");
XSSignedInfo si = sig.createSignedInfo("MySignedInfoID");

When performing verification, you first obtain an instance of XSSignature as shown
in Example 8–2, then obtain the SignedInfo element from the top-level Signature
with the following code:

Example 8–4 Verifying a Signature with XSSignedInfo

XSSignature sig;

//Instance of XSSignature is obtained (Example 8-2)

//Get SignedInfo
XSSignedInfo si = sig.getSignedInfo();

The oracle.security.xmlsec.dsig.XSReference class
This class represents the Reference element of the XML Signature schema. You must
use this class when creating and verifying signatures. In signature creation, you create
an instance of this class with the following code:

Example 8–5 Creating Signature Reference Elements with XSReference

XSignature sig = XSSignature.newInstance("MySignatureID");
String uri = "the URI of the data object you want to reference";
String type = "the type of the data object you want to reference (optional)";
XSAlgorithmIdentifier digestAlg =

the digest algorithm identifier (e.g., XMLURI.alg_sha1);
XSReference ref =

sig.createReference("MyReferenceID", uri, type, digestAlg);

When performing verification, you first obtain an instance of XSSignature as shown
in Example 8–2, then obtain the Reference elements from the top-level Signature
with the following code:

Example 8–6 Obtaining Reference Elements of XSSignature

XSSignature sig;

//Instance of XSSignature is obtained (Example 8-2)

//Get Vector of reference objects
Vector refs = sig.References();

Classes and Interfaces

8-6 Oracle Security Developer Tools Reference

The oracle.security.xmlsec.dsig.XSKeyInfo class
This class represents the KeyInfo element of the XML Signature schema. You may use
this class for signature creation as well as signature verification.

In signature creation, you create an instance of this class with the following code:

Example 8–7 Creating Key Information Elements with XSKeyInfo

XSignature sig = XSSignature.newInstance("MySignatureID");
XSKeyInfo si = sig.createKeyInfo("MyKeyInfoID");

A KeyInfo element can have various child elements that contain the actual key data.
The classes that support these KeyInfo children are found in the
oracle.security.xmlsec.keys package.

For example, to create an RSAKeyValue element containing a signer's public key, you
can use the following code:

Example 8–8 Creating an RSAKeyValue Element with the Signer’s Public Key

X509 cert = An instance of the oracle.security.crypto.cert.X509 class;
XSKeyInfo ki = An instance of the XSKeyInfo class;
RSAKeyValue rsaKeyValue = ki.createKeyValue(cert.getPublicKey());
ki.addKeyInfoData(rsaKeyValue);

When performing verification, you first obtain an instance of XSSignature as shown
in Example 8–2, then obtain the KeyInfo element from the top-level Signature with
the following code:

Example 8–9 Obtaining KeyInfo Elements of XSSignature

XSSignature sig;

//Instance of XSSignature is obtained (Example 8-2)

//Get KeyInfo
XSSignedInfo si = sig.getKeyInfo();

The oracle.security.xmlsec.enc.XEEncryptedData class
This class represents the EncryptedData element of the XML encryption schema.
You must create an instance of this class when encrypting or decrypting arbitrary data
or an entire XML document.

When encrypting, you create an instance of this class with the following code:

Example 8–10 Using XEEncryptedData for Encryption

Document doc = Instance of org.w3c.dom.Document;
String dataType = Either XMLURI.obj_content (content only) or

XMLURI.obj_Element (entire element);
XEEncryptedData encData =

XEEncryptedData.newInstance(doc, "MyEncryptedDataID", dataType);

When decrypting, you can obtain the EncryptedData elements from an XML
document with the following code:

Classes and Interfaces

Oracle XML Security 8-7

Example 8–11 Using XEEncryptedData for Decryption

Document doc = Instance of org.w3c.dom.Document;

// Get list of all XML EncryptedData elements in the document.
NodeList encDataList =

doc.getElementsByTagNameNS(XMLURI.ns_xmlenc, "EncryptedData");
if (encDataList.getLength() == 0)

System.err.println("No XML-ENC EncryptedData elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.enc.XEEncryptedData
// object and perform decryption
for (int s = 0, n = encDataList.getLength(); s < n; ++s)
{

XEEncryptedData = new XEEncryptedData((Element)encDataList.item(s));

//TODO: Perform decryption of the encrypted data
//contained in this element

}

The oracle.security.xmlsec.enc.XEEncryptedKey Class
This class represents the EncryptedKey element of the XML Encryption Schema. You
can use an instance of this class to encrypt and decrypt cryptographic key material.

When encrypting a key, you create an instance of this class with the following code:

Example 8–12 Using XEEncryptedKey for Key Encryption

Document doc = Instance of org.w3c.dom.Document;
XEEncryptedKey encKey = XEEncryptedKey.newInstance(doc, "MyEncryptedKeyID");

When decrypting a key, you first obtain the XEEncryptedData from an XML document
using the code in Example 8–11, then obtain the EncryptedKey elements with the
following code:

Example 8–13 Using XEEncryptedKey for Key Decryption

XEEncryptedData encData;
//Instance of XEEncryptedData is obtained (See Example 8-11

//Get Vector of XEEncryptedKey objects
XEKeyInfo ki = encData.getKeyInfo();
Vector encKeys;
if (ki != null)

Vector encKeys = encData.getEncryptedKeys();

The oracle.security.xmlsec.enc.XEEncryptionMethod Class
This class represents the EncryptionMethod element of the XML encryption schema.
It contains the algorithm and parameters used in encrypting data or encrypting a key.

When encrypting, you create an instance of this class with the following code:

Example 8–14 Using XEEncryptionMethod for Encryption

String algURI = "String containing the URI of the encryption algorithm";
XEEncryptedObject encObj = Instance of XEEncryptedData or XEEncryptedKey;
XEEncryptionMethod em = encObj.createEncryptionMethod(algURI);

Classes and Interfaces

8-8 Oracle Security Developer Tools Reference

When decrypting, you first obtain an EncryptedData element using Example 8–11,
or an EncryptedKey element using Example 8–13, then obtain an
EncryptionMethod element with the following code:

Example 8–15 Using XEEncryptionMethod for Decryption

XEEncryptedObject encObj;

//Obtain instance of XEEncryptedData (see class example earlier) or
//XEEncryptedKey (see class example earlier)
XEEncryptionMethod em = encObj.getEncryptionMethod();

The oracle.security.xmlsec.enc.XECipherData Class
This class represents the CipherData element that provides the encrypted data. It
either stores the encrypted data in the CipherValue element or refers to a source
containing the data through the CipherReference element. When performing
encryption, you create an instance of XEEncryptedData or XEEncryptedKey, then
create an instance of XECipherData with the following code:

Example 8–16 Using XECipherData when Encrypting

XEEncryptedObject encObj;

//Create an instance of XEEncryptedData (see class example earlier)
//XEEncryptedKey (see example 8-12)
XECipherData cd = encObj.createCipherData();

When decrypting, you first obtain an EncryptedData element using Example 8–11,
or an EncryptedKey element using Example 8–13, then obtain an instance of an
XECipherData element with the following code:

Example 8–17 Using XECipherData when Decrypting

XEEncryptedObject encObj;

//Obtain an instance of XEEncryptedData (see example 8-11) or
//XEEncryptedKey (see example 8-13)
XECipherData cd = encObj.getCipherData();

Supporting Classes and Interfaces
This section describes additional classes and interfaces in the Oracle XML Security
SDK.

The oracle.security.xmlsec.util.XMLURI Interface
This interface defines URI string constants for algorithms, namespaces, and objects. It
uses the following naming convention:

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

■ Object type URIs begin with "obj_".

Common XML Security Questions

Oracle XML Security 8-9

The oracle.security.xmlsec.util.XMLUtils class
This class contains static utility methods for XML and XML-DSIG. Methods frequently
used in applications include the createDocBuilder(), createDocument(),
toBytesXML(), and toStringXML() methods.

Common XML Security Questions
This section answers frequently asked questions about XML security and about using
Oracle XML Security. It addresses these areas:

■ Common Questions about Keys and Certificates

■ Common Questions about XML Signatures

■ Common Questions about XML Encryption

Common Questions about Keys and Certificates
This section describes common issues related to keys and certificates.

What is the DER format? The PEM format? How are these formats used?
DER is an abbreviation for ASN.1 Distinguished Encoding Rules. DER is a binary
format that is used to encode certificates and private keys. Oracle XML Security SDK
uses DER as its native format, as do most commercial products that use certificates and
private keys.

Many other formats used to encode certificates and private keys, including PEM,
PKCS #7, and PKCS #12, are transformations of DER encoding. For example, PEM
(Privacy Enhanced Mail) is a text format that is the Base 64 encoding of the DER
binary format. The PEM format also specifies the use of text BEGIN and END lines that
indicate the type of content that is being encoded.

I received a certificate in my email in a text format. It has several lines of text
characters that don't seem to mean anything. How do I convert it into the format
that Oracle XML Security uses?
If you received the certificate in your email, it is in PEM format. You need to convert
the certificate from PEM (Privacy-Enhanced Mail) format to ASN.1 DER
(Distinguished Encoding Rules) format.

How do I use a certificate that is exported from a browser?
If you have exported the certificate from a browser, it is most likely in PKCS #12
format (*.p12 or *.pfx). You must parse the PKCS #12 object into its component parts.

Common Questions about XML Signatures
This section describes common questions about keys and certificates.

What signature algorithms does Oracle XML Security support?
Oracle XML Security supports the following signature algorithms:

■ DSA with SHA1

■ RSA with SHA1

See Also: For more information about these algorithms, refer to the
links for DSA-SHA and RSA-SHA in Appendix A, "References".

The Oracle XML Security Java API Reference

8-10 Oracle Security Developer Tools Reference

Common Questions about XML Encryption
This section describes common issues related to keys and certificates.

What data encryption algorithms does Oracle XML Security support?
Oracle XML Security supports the following signature algorithms:

■ AES-128 in CBC mode

■ AES-192 in CBC mode

■ AES-256 in CBC mode

■ DES EDE in CBC mode

Links to these standards are available in Appendix A, "References".

What key wrapping algorithms does Oracle XML Security support?
Oracle XML Security supports the following key wrapping algorithms:

■ AES-128

■ AES-192

■ AES-256

■ DES-EDE

Links to these standards are available in Appendix A, "References".

What key transport algorithms does Oracle XML Security support?
Oracle XML Security supports the following key transport algorithms:

■ RSAES-OAEP-ENCRYPT with MGF1

■ RSAES-PKCS1-v1_5

Links to these standards are available in Appendix A, "References".

What key agreement algorithms does Oracle XML Security support?
Oracle XML Security supports the Diffie-Hellman key agreement algorithm.

The Oracle XML Security Java API Reference
The Oracle XML Security API (Javadoc) is available at:

Oracle Security Developer Tools XML Security Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

See Also: A link to this standard is available in Appendix A,
"References".

Oracle SAML 9-1

9
Oracle SAML

This chapter provides information about using the Oracle Security Assertions Markup
Language (SAML) Software Development Kit (SDK). Oracle SAML allows Java
developers to develop cross-domain single sign-on and federated access control
solutions that conform to the SAML 1.0/1.1 and SAML 2.0 specifications.

This chapter contains the following topics:

■ Oracle SAML Features and Benefits

■ Oracle SAML 1.0/1.1

■ Oracle SAML 2.0

Oracle SAML Features and Benefits
The Oracle SAML SDK provides a Java API with supporting tools, documentation,
and sample programs to assist developers of SAML-compliant Java security services.
Oracle SAML can be integrated into existing Java solutions, including applets,
applications, EJBs, servlets, and JSPs.

Oracle SAML provides the following features:

■ Support for the SAML 1.0/1.1 and 2.0 specifications

■ Support for SAML-based single sign-on (SSO), Attribute, Metadata, Enhanced
Client Proxy, and federated identity profiles

Oracle SAML 1.0/1.1
This section explains how to set up your environment for Oracle SAML 1.0/1.1, how
to use Oracle SAML 1.0/1.1, and the classes and interfaces of the Oracle SAML 1.0/1.1
toolkit. It contains the following topics:

■ Oracle SAML 1.0/1.1 Packages

■ Setting Up Your Oracle SAML 1.0/1.1 Environment

■ Classes and Interfaces

■ The Oracle SAML 1.0/1.1 Java API Reference

■ Example Programs

See Also: For more information and links to these specifications and
related documents, see Appendix A, "References".

Oracle SAML 1.0/1.1

9-2 Oracle Security Developer Tools Reference

Oracle SAML 1.0/1.1 Packages
The Oracle SAML Java API contains the following packages for creating SAML
1.0/1.1-compliant Java applications:

oracle.security.xmlsec.saml

This package contains classes that support SAML assertions.

oracle.security.xmlsec.samlp

This package contains classes that support the SAML request and response protocol
(SAMLP).

Setting Up Your Oracle SAML 1.0/1.1 Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

This section explains how to set up your environment for Oracle SAML 1.0/1.1. It
contains these topics:

■ System Requirements for Oracle SAML 1.0/1.1

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle SAML 1.0/1.1
In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ osdt_saml.jar

■ The jaxen.jar file (Jaxen XPath engine, included with your Oracle XML
Security distribution)

■ The jar files for your chosen XML parser and XSLT processor (for example,
xalan.jar and xercesImpl.jar if using Apache Xalan-Java)

Setting the CLASSPATH on Windows To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all the required jar files to the CLASSPATH.

Oracle SAML 1.0/1.1

Oracle SAML 9-3

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\osdt_saml.jar;
C:\ORACLE_HOME\jlib\jaxen.jar;
C:\xalan-j_2_6_0\bin\xalan.jar;C:\xalan-j_2_6_0\bin\xercesImpl.jar

6. Click OK.

Setting the CLASSPATH on UNIX On UNIX, set your CLASSPATH environment variable to
include the full path and file name of all the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/osdt_saml.jar:\
$ORACLE_HOME/jlib/jaxen.jar:\
/usr/lib/xalan-j_2_6_0/bin/xalan.jar:/usr/lib/xalan-j_2_6_0/bin/xercesImpl.jar

Classes and Interfaces
This section provides information and code samples for using the classes and
interfaces of Oracle SAML 1.0/1.1. It contains these topics:

■ Core Classes

■ Supporting Classes and Interfaces

Core Classes
This section provides a brief overview of the core SAML and SAMLP 1.0/1.1 classes
with some brief code examples.

The core classes are:

■ The oracle.security.xmlsec.saml.SAMLInitializer Class

■ The oracle.security.xmlsec.saml.Assertion Class

■ The oracle.security.xmlsec.samlp.Request Class

■ The oracle.security.xmlsec.samlp.Response Class

The oracle.security.xmlsec.saml.SAMLInitializer Class This class initializes the Oracle SAML
toolkit. By default Oracle SAML is automatically initialized for SAML v1.0. You can
also initialize Oracle SAML for a specific version of the SAML specification. When the
initialize method is called for a specific version, previously initialized versions
will remain initialized. Example 9–1 shows how to initialize the SAML toolkit for
SAML v1.0 and SAML v1.1.

Example 9–1 Initializing the Oracle SAML Toolkit

// initializes for SAML v1.1
SAMLInitializer.initialize(1, 1);
// initializes for SAML v1.0, done by default
SAMLInitializer.initialize(1, 0);

Oracle SAML 1.0/1.1

9-4 Oracle Security Developer Tools Reference

The oracle.security.xmlsec.saml.Assertion Class This class represents the Assertion
element of the SAML Assertion schema.

Example 9–2 shows how to create a new Assertion element and append it to an
existing XML document.

Example 9–2 Creating an Assertion Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 9–3 shows how to obtain Assertion elements from an XML document.

Example 9–3 Obtaining Assertion Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Assertion elements in the document

NodeList assrtList =
doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");

if (assrtList.getLength() == 0)
System.err.println("No Assertion elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.saml.Assertion object and process

for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{

Assertion assertion = new Assertion((Element)assrtList.item(s));
// Process Assertion element
...

}

The oracle.security.xmlsec.samlp.Request Class This class represents the Request element
of the SAML Protocol schema.

Example 9–4 shows how to create a new Request element and append it to an
existing XML document.

Example 9–4 Creating a Request Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

Example 9–5 shows how to obtain Request elements from an existing XML
document.

Example 9–5 Obtaining Request Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Request elements in the document

NodeList reqList =
doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");

if (reqList.getLength() == 0)
System.err.println("No Request elements found.");

Oracle SAML 1.0/1.1

Oracle SAML 9-5

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.samlp.Request object and process

for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

Request request = new Request((Element)reqList.item(s));
// Process Request element
...

}

The oracle.security.xmlsec.samlp.Response Class This class represents the Response
element of the SAML Protocol schema.

Example 9–6 shows how to create a Response element and append it to an existing
XML document.

Example 9–6 Creating a Response Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

Example 9–7 shows how to obtain Response elements from an existing XML
document.

Example 9–7 Obtaining Response Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document

NodeList respList =
doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");

if (respList.getLength() == 0)
System.err.println("No Response elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.samlp.Response object and process

for (int s = 0, n = respList.getLength(); s < n; ++s)
{

Response response = new Response((Element)respList.item(s));
// Process Response element
...

}

Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle
SAML 1.0/1.1:

■ The oracle.security.xmlsec.saml.SAMLURI Interface

■ The oracle.security.xmlsec.saml.SAMLMessage Class

The oracle.security.xmlsec.saml.SAMLURI Interface This interface defines URI string
constants for algorithms, namespaces, and objects. The following naming conventions
are used:

Oracle SAML 2.0

9-6 Oracle Security Developer Tools Reference

■ Action Namespace URIs defined in the SAML 1.0 specifications begin with
action_ .

■ Authentication Method Namespace URIs defined in the SAML 1.0 specifications
begin with authentication_method_ .

■ Confirmation Method Namespace URIs defined in the SAML 1.0 specifications
begin with confirmation_method_ .

■ Namespace URIs begin with ns_ .

The oracle.security.xmlsec.saml.SAMLMessage Class This is the base class for all the SAML
and SAML extension messages that may be signed and contain an XML-DSIG (digital
signature) structure.

The Oracle SAML 1.0/1.1 Java API Reference
The Oracle SAML 1.0/1.1 Java API reference (Javadoc) is available at:

Oracle Security Developer Tools SAML 1.0/1.1 Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle SAML 2.0
This section explains how to set up your environment for Oracle SAML 2.0, how to use
Oracle SAML 2.0, and the classes and interfaces of the Oracle SAML 2.0 toolkit. It
contains the following topics:

■ Oracle SAML 2.0 Packages

■ Setting Up Your Oracle SAML 2.0 Environment

■ Classes and Interfaces

■ The Oracle SAML 2.0 Java API Reference

■ Example Programs

Oracle SAML 2.0 Packages
The Oracle SAML Java API contains the following packages for creating SAML
2.0-compliant Java applications:

oracle.security.xmlsec.saml2.core

This package contains classes that support SAML assertions.

oracle.security.xmlsec.saml2.protocol

This package contains classes that support the SAML request and response protocol
(SAMLP).

oracle.security.xmlsec.saml2.ac
This package contains classes that support the SAML authentication context basic
types.

Oracle SAML 2.0

Oracle SAML 9-7

oracle.security.xmlsec.saml2.ac.classes
This package contains classes that support various SAML authentication context
classes.

oracle.security.xmlsec.saml2.metadata
This package contains classes that support the SAML metadata.

oracle.security.xmlsec.saml2.profiles.attributes
This package contains classes that support various SAML attribute profiles.

oracle.security.xmlsec.saml2.profiles.sso.ecp
This package contains classes that support the SAML ECP SSO profile.

Setting Up Your Oracle SAML 2.0 Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

This section explains how to set up your environment for Oracle SAML 2.0. It contains
these topics:

■ System Requirements for Oracle SAML 2.0

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle SAML 2.0
In order to use Oracle SAML, your system must have the Java Development Kit (JDK)
version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names of all
the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ osdt_saml2.jar

■ The jaxen.jar file (Jaxen XPath engine, included with your Oracle XML
Security distribution)

■ The jar files for your chosen XML parser and XSLT processor (for example,
xalan.jar and xercesImpl.jar if using Apache Xalan-Java)

Setting the CLASSPATH on Windows To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

Oracle SAML 2.0

9-8 Oracle Security Developer Tools Reference

5. Add the full path and file names for all of the required jar files to the CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\osdt_saml2.jar;
C:\ORACLE_HOME\jlib\jaxen.jar;
C:\xalan-j_2_6_0\bin\xalan.jar;C:\xalan-j_2_6_0\bin\xercesImpl.jar

6. Click OK.

Setting the CLASSPATH on UNIX On UNIX, set your CLASSPATH environment variable to
include the full path and file name of all of the required jar and class files. For
example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/osdt_saml2.jar:\
$ORACLE_HOME/jlib/jaxen.jar:\
/usr/lib/xalan-j_2_6_0/bin/xalan.jar:/usr/lib/xalan-j_2_6_0/bin/xercesImpl.jar

Classes and Interfaces
This section provides information and code samples for using the classes and
interfaces of Oracle SAML 2.0. It contains these sections:

■ Core Classes

■ Supporting Classes and Interfaces

Core Classes
This section provides an overview of the core SAML and SAMLP classes with some
brief code examples. The core classes are:

■ The oracle.security.xmlsec.saml2.core.Assertion Class

■ The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class

■ The oracle.security.xmlsec.saml2.protocol.StatusResponse Class

The oracle.security.xmlsec.saml2.core.Assertion Class This class represents the Assertion
element of the SAML Assertion schema.

Example 9–8 shows how to create a new Assertion element and append it to an
existing XML document.

Example 9–8 Creating an Assertion Element and Appending it to an XML Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 9–9 shows how to obtain Assertion elements from an XML document.

Example 9–9 Obtaining Assertion Elements From an XML Document

// Get a list of all Assertion elements in the document

Oracle SAML 2.0

Oracle SAML 9-9

NodeList assrtList =
doc.getElementsByTagNameNS(SAML2URI.ns_saml, "Assertion");

if (assrtList.getLength() == 0)
System.err.println("No Assertion elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.saml2.core.Assertion object and process

for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{

Assertion assertion = new Assertion((Element)assrtList.item(s));
// Process Assertion element
...

}

The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class This class represents the
AuthnRequest element of the SAML Protocol schema.

Example 9–10 shows how to create a new AuthnRequest element and append it to an
existing XML document.

Example 9–10 Creating an AuthnRequest Element and Appending it to an XML
Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest request = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(response);

Example 9–11 shows how to obtain AuthnRequest elements from an existing XML
document.

Example 9–11 Obtaining AuthnRequest Elements From an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all AuthnRequest elements in the document

NodeList reqList =

doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "AuthnRequest");
if (reqList.getLength() == 0)

System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.saml2.protocol.AuthnRequest
// object and process

for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

AuthnRequest request = new AuthnRequest((Element)reqList.item(s));
// Process Request element
...

}

The oracle.security.xmlsec.saml2.protocol.StatusResponse Class This class represents the
StatusResponse element of the SAML Protocol schema.

Example 9–12 shows how to create a StatusResponse element and append it to an
existing XML document.

Oracle SAML 2.0

9-10 Oracle Security Developer Tools Reference

Example 9–12 Creating a StatusResponse Element and Appending to an XML Document

Document doc = Instance of org.w3c.dom.Document;
StatusResponse response = new StatusResponse(doc);
doc.getDocumentElement().appendChild(response);

Example 9–13 shows how to obtain StatusResponse elements from an existing XML
document.

Example 9–13 Creating a StatusResponse Element and Appending it to an XML
Document

Document doc = Instance of org.w3c.dom.Document;

// Get a list of all Response elements in the document

NodeList respList =

doc.getElementsByTagNameNS(SAML2URI.ns_samlp, "StatusResponse");
if (respList.getLength() == 0)

System.err.println("No Response elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.saml2.protocol.StatusResponse object and process

for (int s = 0, n = respList.getLength(); s < n; ++s)
{

StatusResponse response = new StatusResponse((Element)respList.item(s));
// Process StatusResponse element
...

}

Supporting Classes and Interfaces
This section provides an overview of the supporting classes and interfaces of Oracle
SAML 2.0. It includes:

■ The oracle.security.xmlsec.saml2.util.SAML2URI Interface

The oracle.security.xmlsec.saml2.util.SAML2URI Interface This interface defines URI string
constants for algorithms, namespaces, and objects. The interface uses these naming
conventions:

■ Action namespace URIs defined in the SAML 1.0/1.1/2.0 specifications begin with
action_ .

■ Authentication method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with authentication_method_.

■ Confirmation method namespace URIs defined in the SAML 1.0/1.1/2.0
specifications begin with confirmation_method_ .

■ Namespace URIs begin with ns_.

The Oracle SAML 2.0 Java API Reference
The Oracle SAML Java API reference (Javadoc) is available at:

Oracle Security Developer Tools SAML 1.0/1.1 Java API Reference

Oracle SAML 2.0

Oracle SAML 9-11

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle SAML 2.0

9-12 Oracle Security Developer Tools Reference

Oracle Web Services Security 10-1

10
Oracle Web Services Security

Oracle Web Services Security provides a framework of authorization and
authentication for interacting with a web service using XML-based messages. This
chapter provides information about key features and benefits of Oracle Web Services
Security, and describes how to install and use the SDK.

This chapter contains these topics:

■ Oracle Web Services Security Features and Benefits

■ Setting Up Your Oracle Web Services Security Environment

■ Classes and Interfaces

■ The Oracle Web Services Security Java API Reference

■ Example Programs

Oracle Web Services Security Features and Benefits
Oracle Web Services Security is a pure Java solution which provides the following
features:

■ Support for the SOAP Message Security standard

■ Support for the Username Token Profile standard

■ Support for the X.509 Certificate Token Profile standard

■ Support for the SAML Assertion Token standard

Oracle Web Services Security Packages
The Oracle Web Services Security library contains the following packages:

Table 10–1 Packages in the Oracle Web Services Security Library

Package Description

oracle.security.xmlsec.wss Contains general-purpose Oracle Web Services Security
classes, including interfaces for token and reference
creation and validation

oracle.security.xmlsec.wss.encoding Contains classes for encoding and decoding algorithms
required to support Web Services processing

oracle.security.xmlsec.wss.saml Contains core classes supporting SAML assertion
tokens

oracle.security.xmlsec.wss.soap Contains core classes supporting the creation and
parsing of SOAP messages with WSS security headers

Setting Up Your Oracle Web Services Security Environment

10-2 Oracle Security Developer Tools Reference

Related Documentation
The following resources provide more information about Web Services Security:

■ OASIS WSS SOAP Message Security Specification

■ OASIS WSS Username Token Profile Specification

■ OASIS WSS X.509 Certificate Token Profile Specification

■ OASIS WSS SAML Assertion Token Profile Specification

Setting Up Your Oracle Web Services Security Environment
This section explains how to set up your environment for Oracle Web Services
Security. It contains these topics:

■ System Requirements for Oracle Web Services Security

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle Web Services Security
In order to use Oracle Web Services Security, you must have the following
components:

■ Java Development Kit (JDK) version 1.2.2 or higher

■ A JAXP-compatible XML parser and XSLT processor.

Oracle Web Services Security has been tested with the following implementations:

■ Apache Xalan-Java (with Xerces-J)

■ Oracle XDK for Java

For questions regarding compatibility with other parsers, visit
http://www.oracle.com/technology/documentation.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

oracle.security.xmlsec.wss.transforms Contains classes implementing the transformation
algorithms defined in Oracle Web Services Security

oracle.security.xmlsec.wss.username Contains classes supporting the creation and parsing of
username tokens

oracle.security.xmlsec.soap Contains SOAP utility classes

oracle.security.xmlsec.wss.x509 Contains core classes supporting X.509 certificate
tokens

oracle.security.xmlsec.wss.utils Contains Oracle Web Services Security utility classes

See Also: Links to these documents are available in Appendix A,
"References".

Table 10–1 (Cont.) Packages in the Oracle Web Services Security Library

Package Description

Setting Up Your Oracle Web Services Security Environment

Oracle Web Services Security 10-3

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ osdt_saml.jar

■ The jaxen.jar file (Jaxen XPath engine, included with your Oracle XML
Security distribution)

■ osdt_wss.jar

■ The appropriate XML parser and XSLT processor implementations, unless you
have installed them in your JRE's /lib/ext or /lib/endorsed directory

Setting the CLASSPATH on Windows
To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar files to the CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\osdt_saml.jar;
C:\ORACLE_HOME\jlib\jaxen.jar;
C:\ORACLE_HOME\jlib\osdt_wss.jar;

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/osdt_saml.jar:\
$ORACLE_HOME/jlib/jaxen.jar:\
$ORACLE_HOME/jlib/osdt_wss.jar:

Note: Oracle XML Security relies on the Jaxen XPath engine for
XPath processing. Note that the Jaxen library included in this
distribution is a modified version of the Jaxen 1.0 FCS release. If your
CLASSPATH also includes an earlier Jaxen release, you must ensure
that the Oracle XML Security version appears first.

Classes and Interfaces

10-4 Oracle Security Developer Tools Reference

Classes and Interfaces
This section describes classes and interfaces in the Oracle Web Services Security API. It
contains these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

Core Classes and Interfaces
This section describes the core classes in the Oracle Web Services Security API and
provides examples of their use.

The oracle.security.xmlsec.wss.WSSecurity Class
The oracle.security.xmlsec.wss.WSSecurity class represents the top-level
security element of the WSS SOAP Message Security schema. Creating an instance of
this class is the first step in creating a new security header or in validating an existing
security header.

To create a new security header, you create a new instance of the WSSecurity class by
calling the static newInstance() method:

WSSecuritysig = WSSecurity.newInstance("MySecurityHeaderID");

Example 10–1 shows how to obtain security elements from an XML document in order
to perform security processing:

1. Obtain an org.w3c.dom.NodeList object that contains all the security elements
as instances of org.w3c.dom.Node.

2. Iterate through the NodeList and convert each node to an instance of
WSSecurity.

Example 10–1 Obtaining Security Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all WSS Security elements in the document.
NodeList secList =

doc.getElementsByTagNameNS(WSSURI.ns_wsse, "Security");
if (secList.getLength() == 0)

System.err.println("No wsse:Security elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.wss.WSSecurity object and perform verification
for (int s = 0, n = secList.getLength(); s < n; ++s)
{

WSSecurity sec = new WSSecurity((Element)sigList.item(s));

//Process the wsse:Security header
...

}

The oracle.security.xmlsec.wss.soap.WSSOAPEnvelope Class
The oracle.security.xmlsec.wss.soap.WSSOAPEnvelope class represents the
SOAP message. As with WSSecurity, you must use this class to create SOAP
messages as well as for parsing and validation.

Classes and Interfaces

Oracle Web Services Security 10-5

To create a SOAP message, you can create an instance of this class with the code
shown in Example 10–2:

Example 10–2 Creating a SOAP Envelope

WSSOAPEnvelope env =
new WSSOAPEnvelope.newInstance(XMLUtils.createDocBuilder());

WSSecurity mySecHdr
env.addSecurity(mySecHdr);

When processing the message, you can obtain the Security element from the top-level
SOAP message with the code shown in Example 10–3:

Example 10–3 Obtaining the Security Element for a SOAP Message

WSSOAPEnvelope env;

//Get List of Security headers
ArrayList l = (ArrayList)senv.getSecurity(null, false);
WSSecurity sec = (WSSecurity)l.get(0);
//Get List of Encrypted Keys
ArrayList r = (ArrayList) sec.getEncryptedKeys();
XEEncryptedKey xk = (XEEncryptedKey) r.get(0);
//Decrypt and Replace message contents
PrivateKey pk // Decryption Key
sec.decrypt (xk, pk);

The oracle.security.xmlsec.wss.WSSElement Class
oracle.security.xmlsec.wss.WSSElement is the base class for WSS Security
elements. It supports reference elements with local Id and wsu:Id attributes for
referencing them. All WSS schema elements, including tokens, extend this element.

Supporting Classes and Interfaces
This section describes supporting classes and interfaces in the Oracle Web Services
Security API.

The oracle.security.xmlsec.wss.utils.WSSURI Interface
The oracle.security.xmlsec.wss.utils.WSSURI interface defines URI string
constants for algorithms, namespaces, and objects.

The oracle.security.xmlsec.wss.utils.WSSTokenUtils Class
The oracle.security.xmlsec.wss.utils.WSSTokenUtils class contains static
utility methods for WSS security token. Some of the methods that may be frequently
used in an application include:

■ createSecurityToken()

■ createSecurityTokenReference()

■ createUsernameToken()

■ createBinarySecurityToken()

■ createBinarySecurityEncoder()

■ createTimestamp()

The Oracle Web Services Security Java API Reference

10-6 Oracle Security Developer Tools Reference

The oracle.security.xmlsec.wss.utils.WSSUtils Class
The oracle.security.xmlsec.wss.utils.WSSUtils class contains static utility
methods for WSS. Some methods that may be frequently used in applications include:

■ addWsuIdToElement()

■ createTextFromChild()

■ insertChildElementWithText()

■ prependChild()

■ encodeBinary()

■ decodeBinary()

The Oracle Web Services Security Java API Reference
The Oracle Web Services Security API Reference (Javadoc) is available at:

Oracle Security Developer Tools Web Services Security Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle Liberty SDK 11-1

11
Oracle Liberty SDK

The Liberty Alliance is an open organization that was founded with the goal of
allowing individuals and businesses to engage in virtually any transaction without
compromising the privacy and security of vital identity information. Specifications
issued by the Liberty Alliance are based on an open identity federation framework,
allowing partner companies to form business relationships based on a
cross-organizational, federated network identity model.

This chapter describes the features and benefits of the Oracle Liberty SDK, and
explains how to set up your environment and use Oracle Liberty SDK.

This chapter contains these topics:

■ Oracle Liberty SDK Features and Benefits

■ Oracle Liberty 1.1

■ Oracle Liberty 1.2

Oracle Liberty SDK Features and Benefits
Oracle Liberty SDK allows Java developers to design and develop single sign-on
(SSO) and federated identity management (FIM) solutions. Oracle Liberty SDK aims
to unify, simplify, and extend all aspects of development and integration of systems
conforming to the Liberty Alliance ID-FF 1.1 and 1.2 specifications.

Oracle Liberty SDK 1.1 and 1.2 enable simplified software development through the
use of an intuitive and straightforward Java API. The toolkits provide tools,
information, and examples to help you develop solutions that conform to the Liberty
Alliance specifications. The toolkits can also be seamlessly integrated into any existing
Java solution, including applets, applications, EJBs, servlets, JSPs, and so on.

The Oracle Liberty SDK is a pure java solution which provides the following features:

■ Support for the Liberty Alliance ID-FF version 1.1 and 1.2 specifications

■ Support for Liberty-based Single Sign-on and Federated Identity protocols

■ Support for the SAML 1.0/1.1 specifications

See Also: You can find the Liberty Alliance specifications at
http://www.projectliberty.org/resources/specificatio
ns.php.

Oracle Liberty 1.1

11-2 Oracle Security Developer Tools Reference

Oracle Liberty 1.1
This section explains how to set up your environment for and use Oracle Liberty 1.1,
and describes the classes and interfaces of Oracle Liberty 1.1. It contains the following
topics:

■ Setting Up Your Oracle Liberty 1.1 Environment

■ Overview of Oracle Liberty 1.1 Classes and Interfaces

■ The Oracle Liberty SDK 1.1 API Reference

■ Example Programs

Setting Up Your Oracle Liberty 1.1 Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

This section explains how to set up your environment for Oracle Liberty 1.1. It
contains these topics:

■ System Requirements for Oracle Liberty 1.1

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle Liberty 1.1
In order to use Oracle Liberty 1.1, your system must have the Java Development Kit
(JDK) version 1.2.2 or higher.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ osdt_saml.jar

■ Thejaxen.jar file (Jaxen XPath engine, included with your Oracle XML Security
distribution)

■ the osdt_lib_v11.jar file

Setting the CLASSPATH on Windows

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar files to the CLASSPATH.

Oracle Liberty 1.1

Oracle Liberty SDK 11-3

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\osdt_saml.jar;
C:\ORACLE_HOME\jlib\jaxen.jar;
C:\ORACLE_HOME\jlib\osdt_lib_v11.jar;

6. Click OK.

Setting the CLASSPATH on UNIX To set your CLASSPATH on UNIX, set your CLASSPATH
environment variable to include the full path and file name of all of the required jar
and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/osdt_saml.jar:\
$ORACLE_HOME/jlib/jaxen.jar:\
$ORACLE_HOME/jlib/osdt_lib_v11.jar

Overview of Oracle Liberty 1.1 Classes and Interfaces
This section introduces some useful classes and interfaces of Oracle Liberty SDK v. 1.1.
It contains these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

Core Classes and Interfaces
This section describes core classes and interfaces of the Oracle Liberty SDK v. 1.1.

The core classes are:

■ The oracle.security.xmlsec.liberty.v11.AuthnRequest Class

■ The oracle.security.xmlsec.liberty.v11.AuthnResponse Class

■ The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class

■ The oracle.security.xmlsec.liberty.v11.LogoutRequest Class

■ The oracle.security.xmlsec.liberty.v11.LogoutResponse Class

■ The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class

■ The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

The oracle.security.xmlsec.liberty.v11.AuthnRequest Class

This class represents the AuthnRequest element of the Liberty protocol schema.

Example 11–1 shows how to create a new AuthnRequest element and append it to a
document.

Example 11–1 Creating an AuthnRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

Example 11–2 shows how to obtain AuthnRequest elements from an XML document.

Oracle Liberty 1.1

11-4 Oracle Security Developer Tools Reference

Example 11–2 Obtaining AuthnRequest Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnRequest elements in the document.
NodeList arList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnRequest");
if (arList.getLength() == 0)

System.err.println("No AuthnRequest elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnRequest object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnRequest authnRequest =
new AuthnRequest((Element)arList.item(s));

// Process AuthnRequest element
...

}

The oracle.security.xmlsec.liberty.v11.AuthnResponse Class

This class represents the AuthnResponse element of the Liberty protocol schema.

Example 11–3 shows how to create a new AuthnResponse element and append it to a
document.

Example 11–3 Creating an AuthnResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

Example 11–4 shows how to obtain AuthnResponse elements from an XML
document.

Example 11–4 Obtaining AuthnResponse elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnResponse elements in the document.
NodeList arList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)

System.err.println("No AuthnResponse elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.AuthnResponse object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnResponse authnResponse =
new AuthnResponse((Element)arList.item(s));

// Process AuthnResponse element
...

}

The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class

This class represents the FederationTerminationNotification element of the
Liberty protocol schema.

Oracle Liberty 1.1

Oracle Liberty SDK 11-5

Example 11–5 shows how to create a new federation termination notification element
and append it to a document.

Example 11–5 Creating a FederationTerminationNotification Element and Appending it
to a Document

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn =

new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

Example 11–6 shows how to obtain federation termination notification elements from
an XML document.

Example 11–6 Obtaining FederationTerminationNotification Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all FederationTerminationNotification elements in the document
 NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"FederationTerminationNotification");
if (ftnList.getLength() == 0)

System.err.println("No FederationTerminationNotification elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.FederationTerminationNotification
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{

FederationTerminationNotification ftn =
 new FederationTerminationNotification((Element)ftnList.item(s));

// Process FederationTerminationNotification element
...

}

The oracle.security.xmlsec.liberty.v11.LogoutRequest Class

This class represents the LogoutRequest element of the Liberty protocol schema.

Example 11–7 shows how to create a new LogoutRequest element and append it to a
document.

Example 11–7 Creating a LogoutRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–8 shows how to obtain LogoutRequest elements from an XML
document.

Example 11–8 Obtaining LogoutRequest Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all LogoutRequest elements in the document.
NodeList lrList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"LogoutRequest");
if (lrList.getLength() == 0)

Oracle Liberty 1.1

11-6 Oracle Security Developer Tools Reference

System.err.println("No LogoutRequest elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.LogoutRequest
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

// Process LogoutRequest element
...

}

The oracle.security.xmlsec.liberty.v11.LogoutResponse Class

This class represents the LogoutResponse element of the Liberty protocol schema.

Example 11–9 shows how to create a new LogoutResponse element and append it to
a document.

Example 11–9 Creating a LogoutResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–10 shows how to obtain LogoutResponse elements from an XML
document.

Example 11–10 Obtaining LogoutResponse elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all LogoutResponse elements in the document.
NodeList lrList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)

System.err.println("No LogoutResponse elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));

// Process LogoutResponse element
...

}

The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class

This class represents the RegisterNameIdentifierRequest element of the Liberty
protocol schema.

Example 11–11 shows how to create a new RegisterNameIdentifierRequest
element and append it to a document.

Oracle Liberty 1.1

Oracle Liberty SDK 11-7

Example 11–11 Creating a RegisterNameIdentifierRequest Element and Appending it to
a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir =

new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–12 shows how to obtain RegisterNameIdentifierRequest elements
from an XML document.

Example 11–12 Obtaining RegisterNameIdentifierRequest Elements from an XML
Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all RegisterNameIdentifierRequest elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"RegisterNameIdentifierRequest");
if (rnirList.getLength() == 0)

System.err.println("No RegisterNameIdentifierRequest elements found.");

// Convert each org.w3c.dom.Node object to an
//oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierRequest rnir = new
RegisterNameIdentifierRequest((Element)rnirList.item(s));

// Process RegisterNameIdentifierRequest element
...

}

The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class
 This class represents the RegisterNameIdentifierResponse element of the
Liberty protocol schema.

Example 11–13 shows how to create a new RegisterNameIdentifierResponse
element and append it to a document.

Example 11–13 Creating a RegisterNameIdentifierResponse Element and Appending it
to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir = new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–14 shows how to obtain RegisterNameIdentifierResponse
elements from an XML document.

Example 11–14 Obtaining RegisterNameIdentifierResponse Elements from an XML
Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"RegisterNameIdentifierResponse");
if (rnirList.getLength() == 0)

Oracle Liberty 1.1

11-8 Oracle Security Developer Tools Reference

System.err.println("No RegisterNameIdentifierResponse elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierResponse rnir = new
RegisterNameIdentifierResponse((Element)rnirList.item(s));

// Process RegisterNameIdentifierResponse element
...

}

Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.1.

The supporting classes and interfaces are:

■ The oracle.security.xmlsec.liberty.v11.LibertyInitializer class

■ The oracle.security.xmlsec.liberty.v11.LibertyURI interface

■ The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface

■ The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

■ The oracle.security.xmlsec.saml.SAMLURI Interface

■ The oracle.security.xmlsec.saml.SAMLMessage class

The oracle.security.xmlsec.liberty.v11.LibertyInitializer class

The oracle.security.xmlsec.liberty.v11.LibertyInitializer class
handles load-time initialization and configuration of the Oracle Liberty SDK library.
You must call this class's static initialize() method before making any calls to the
Oracle Liberty SDK API.

The oracle.security.xmlsec.liberty.v11.LibertyURI interface

The oracle.security.xmlsec.liberty.v11.LibertyURI interface defines
URI string constants for algorithms, namespaces and objects. The following naming
convention is used:

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

■ Object type URIs begin with "obj_".

■ Liberty profile namespace URIs begin with "prof_".

The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface

The
oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI
interface defines URI string constants for algorithms, namespaces and objects. The
following naming convention is used:

■ Algorithm URIs begin with "alg_".

■ Namespace URIs begin with "ns_".

Oracle Liberty 1.2

Oracle Liberty SDK 11-9

■ Object type URIs begin with "obj_".

The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

The
oracle.security.xmlsec.util.ac.AuthenticationContextStatement
class is an abstract class representing the top-level
AuthenticationContextStatement element of the Liberty authentication context
schema. Each concrete implementation of this class represents a respective class
defined in the Liberty Authentication Context Specification.

The oracle.security.xmlsec.saml.SAMLURI Interface

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string
constants for algorithms, namespaces and objects. The following naming convention is
used:

■ Action namespace URIs defined in the SAML 1.0 specifications begin with
"action_"

■ Authentication method namespace URIs defined in the SAML 1.0 specifications
begin with "authentication_method_".

■ Confirmation method namespace URIs defined in the SAML 1.0 specifications
begin with "confirmation_method_".

■ Namespace URIs begin with "ns_".

The oracle.security.xmlsec.saml.SAMLMessage class

The oracle.security.xmlsec.saml.SAMLMessage class is the base class for all
the SAML and SAML extension messages that may be signed and contain an
XML-DSIG structure.

The Oracle Liberty SDK 1.1 API Reference
The Oracle Liberty SDK version 1.1 API Reference is available at:

Oracle Security Developer Tools Liberty SDK 1.1 Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle Liberty 1.2
This section describes the classes and interfaces of Oracle Liberty 1.2, and explains
how to set up your environment and use Oracle Liberty 1.2. It contains these sections:

■ Setting Up Your Oracle Liberty 1.2 Environment

■ Overview of Oracle Liberty 1.2 Classes and Interfaces

■ The Oracle Liberty SDK 1.2 API Reference

■ Example Programs

Oracle Liberty 1.2

11-10 Oracle Security Developer Tools Reference

Setting Up Your Oracle Liberty 1.2 Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME.

This section explains how to set up your environment for Oracle Liberty 1.2. It
contains these topics:

■ System Requirements for Oracle Liberty 1.2

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle Liberty 1.2
In order to use Oracle Liberty 1.2, your system must have the Java Development Kit
(JDK) version 1.2.2 or higher. Also, make sure that your PATH environment variable
includes the Java bin directory.

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to all
of the required jar and class files. Make sure the following items are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ osdt_saml.jar

■ The jaxen.jar file (Jaxen XPath engine, included with your Oracle XML
Security distribution)

■ osdt_lib_v12.jar

Setting the CLASSPATH on Windows

To set the CLASSPATH on Windows:

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar files to the CLASSPATH.

For example, your CLASSPATH might look like this:

%CLASSPATH%;C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar;
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar;
C:\ORACLE_HOME\jlib\osdt_saml.jar;
C:\ORACLE_HOME\jlib\jaxen\jaxen.jar;
C:\ORACLE_HOME\jlib\osdt_lib_v12.jar;

6. Click OK.

Setting the CLASSPATH on Unix

Oracle Liberty 1.2

Oracle Liberty SDK 11-11

On Unix, set your CLASSPATH environment variable to include the full path and file
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
$ORACLE_HOME/jlib/osdt_cert.jar:\
$ORACLE_HOME/jlib/osdt_xmlsec.jar:\
$ORACLE_HOME/jlib/osdt_saml.jar:\
$ORACLE_HOME/jlib/jaxen/jaxen.jar:\
$ORACLE_HOME/jlib/osdt_lib_v12.jar

Overview of Oracle Liberty 1.2 Classes and Interfaces
This section introduces some useful classes and interfaces of Oracle Liberty SDK v. 1.2.
It contains these topics:

■ Core Classes and Interfaces

■ Supporting Classes and Interfaces

Core Classes and Interfaces
This section describes core classes and interfaces of the Oracle Liberty SDK, v. 1.2.

The core classes are:

■ The oracle.security.xmlsec.saml.Assertion class

■ The oracle.security.xmlsec.samlp.Request class

■ The oracle.security.xmlsec.samlp.Response class

■ The oracle.security.xmlsec.liberty.v12.AuthnRequest class

■ The oracle.security.xmlsec.liberty.v12.AuthnResponse class

■ The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class

■ The oracle.security.xmlsec.liberty.v12.LogoutRequest class

■ The oracle.security.xmlsec.liberty.v12.LogoutResponse class

■ The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class

■ The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

The oracle.security.xmlsec.saml.Assertion class

The oracle.security.xmlsec.saml.Assertion class represents the Assertion
element of the SAML Assertion schema.

Example 11–15 shows how to create a new assertion element and append it to a
document.

Example 11–15 Creating an Assertion element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Assertion assertion = new Assertion(doc);
doc.getDocumentElement().appendChild(assertion);

Example 11–16 shows how to obtain assertion elements from an XML document.

Example 11–16 Obtaining Assertion Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

Oracle Liberty 1.2

11-12 Oracle Security Developer Tools Reference

// Get list of all Assertion elements in the document
NodeList assrtList =

doc.getElementsByTagNameNS(SAMLURI.ns_saml, "Assertion");
if (assrtList.getLength() == 0)

System.err.println("No Assertion elements found.");

// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.saml.Assertion
// object and process
for (int s = 0, n = assrtList.getLength(); s < n; ++s)
{

Assertion assertion = new Assertion((Element)assrtList.item(s));

// Process Assertion element
...

}

The oracle.security.xmlsec.samlp.Request class

The oracle.security.xmlsec.samlp.Request class represents the Request
element of the SAML Protocol schema.

Example 11–17 shows how to create a new Request element and append it to a
document.

Example 11–17 Creating a Request element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Request request = new Request(doc);
doc.getDocumentElement().appendChild(request);

Example 11–18 shows how to obtain Request elements from an XML document.

Example 11–18 Obtaining Request Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all Request elements in the document
NodeList reqList =

doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Request");
if (reqList.getLength() == 0)

System.err.println("No Request elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.samlp.Request
// object and process
for (int s = 0, n = reqList.getLength(); s < n; ++s)
{

Request request = new Request((Element)reqList.item(s));

// Process Request element
...

}

The oracle.security.xmlsec.samlp.Response class

The oracle.security.xmlsec.samlp.Response class represents the Response
element of the SAML Protocol schema.

Oracle Liberty 1.2

Oracle Liberty SDK 11-13

Example 11–19 shows how to create a new element and append it to a document.

Example 11–19 Creating a Response Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
Response response = new Response(doc);
doc.getDocumentElement().appendChild(response);

Example 11–20 shows how to obtain Response elements from an XML document.

Example 11–20 Obtaining Response Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all Response elements in the document
NodeList respList =

doc.getElementsByTagNameNS(SAMLURI.ns_samlp, "Response");
if (respList.getLength() == 0)

System.err.println("No Response elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.samlp.Response
// object and process
for (int s = 0, n = respList.getLength(); s < n; ++s)
{

Response response = new Response((Element)respList.item(s));

// Process Response element
...

}

The oracle.security.xmlsec.liberty.v12.AuthnRequest class

The oracle.security.xmlsec.liberty.v12.AuthnRequest class represents
the AuthnRequest element of the Liberty protocol schema.

Example 11–21 shows how to create a new authorization request element and append
it to a document.

Example 11–21 Creating an AuthnRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnRequest authnRequest = new AuthnRequest(doc);
doc.getDocumentElement().appendChild(authnRequest);

Example 11–22 shows how to obtain AuthnRequest elements from an XML
document.

Example 11–22 Obtaining AuthnRequest Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnRequest elements in the document
NodeList arList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
"AuthnRequest");

if (arList.getLength() == 0)
System.err.println("No AuthnRequest elements found.");

// Convert each org.w3c.dom.Node object to

Oracle Liberty 1.2

11-14 Oracle Security Developer Tools Reference

// an oracle.security.xmlsec.liberty.v12.AuthnRequest
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnRequest authnRequest = new AuthnRequest((Element)arList.item(s));

// Process AuthnRequest element
...

}

The oracle.security.xmlsec.liberty.v12.AuthnResponse class

The oracle.security.xmlsec.liberty.v12.AuthnResponse class represents
the AuthnResponse element of the Liberty protocol schema.

Example 11–23 shows how to create a new authorization response element and
append it to a document.

Example 11–23 Creating an AuthnResponse Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
AuthnResponse authnResponse = new AuthnResponse(doc);
doc.getDocumentElement().appendChild(authnResponse);

Example 11–24 shows how to obtain AuthnResponse elements from an XML
document.

Example 11–24 Obtaining AuthnResponse Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all AuthnResponse elements in the document.
NodeList arList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "AuthnResponse");
if (arList.getLength() == 0)

System.err.println("No AuthnResponse elements found.");

// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.AuthnResponse
// object and process
for (int s = 0, n = arList.getLength(); s < n; ++s)
{

AuthnResponse authnResponse =
new AuthnResponse((Element)arList.item(s));

// Process AuthnResponse element
...

}

The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class

The
oracle.security.xmlsec.liberty.v12.FederationTerminationNotifica
tion class represents the FederationTerminationNotification element of the
Liberty protocol schema.

Example 11–25 shows how to create a new federation termination notification element
and append it to a document.

Oracle Liberty 1.2

Oracle Liberty SDK 11-15

Example 11–25 Creating a DocumentFederationTerminationNotification Element and
Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
FederationTerminationNotification ftn =

new FederationTerminationNotification(doc);
doc.getDocumentElement().appendChild(ftn);

Example 11–26 shows how to obtain federation termination notification elements from
an XML document.

Example 11–26 Obtaining FederationTerminationNotification Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all FederationTerminationNotification elements in the document
NodeList ftnList = doc.getElementsByTagNameNS(LibertyURI.ns_liberty,

"FederationTerminationNotification");
if (ftnList.getLength() == 0)

System.err.println("No FederationTerminationNotification elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v12.FederationTerminationNotification
// object and process
for (int s = 0, n = ftnList.getLength(); s < n; ++s)
{

FederationTerminationNotification ftn = new
FederationTerminationNotification((Element)ftnList.item(s));

// Process FederationTerminationNotification element
...

}

The oracle.security.xmlsec.liberty.v12.LogoutRequest class

The oracle.security.xmlsec.liberty.v12.LogoutRequest class represents
the LogoutRequest element of the Liberty protocol schema.

Example 11–27 shows how to create a new element and append it to a document.

Example 11–27 Creating a new LogoutRequest Element and Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
LogoutRequest lr = new LogoutRequest(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–28 shows how to obtain logout request elements from an XML document.

Example 11–28 Obtaining LogoutRequest Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all LogoutRequest elements in the document
NodeList lrList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutRequest");
if (lrList.getLength() == 0)

System.err.println("No LogoutRequest elements found.");

// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutRequest
// object and process

Oracle Liberty 1.2

11-16 Oracle Security Developer Tools Reference

for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutRequest lr = new LogoutRequest((Element)lrList.item(s));

// Process LogoutRequest element
...

}

The oracle.security.xmlsec.liberty.v12.LogoutResponse class

The oracle.security.xmlsec.liberty.v12.LogoutResponse class
represents the LogoutResponse element of the Liberty protocol schema.

Example 11–29 shows how to create a new logout response element and append it to a
document.

Example 11–29 Creating a new LogoutResponse Element and Appending it to a
Document

Document doc = Instance of org.w3c.dom.Document;
LogoutResponse lr = new LogoutResponse(doc);
doc.getDocumentElement().appendChild(lr);

Example 11–30 shows how to obtain logout response elements from an XML
document.

Example 11–30 Obtaining LogoutResponse Elements from an XML Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all LogoutResponse elements in the document
NodeList lrList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty, "LogoutResponse");
if (lrList.getLength() == 0)

System.err.println("No LogoutResponse elements found.");

// Convert each org.w3c.dom.Node object to
// an oracle.security.xmlsec.liberty.v12.LogoutResponse
// object and process
for (int s = 0, n = lrList.getLength(); s < n; ++s)
{

LogoutResponse lr = new LogoutResponse((Element)lrList.item(s));

// Process LogoutResponse element
...

}

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class

The
oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest
class represents the RegisterNameIdentifierRequest element of the Liberty
protocol schema.

Example 11–31 shows how to create a new RegisterNameIdentifierRequest
element and append it to a document.

Oracle Liberty 1.2

Oracle Liberty SDK 11-17

Example 11–31 Creating a new RegisterNameIdentifierRequest Element and Appending
it to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierRequest rnir = new RegisterNameIdentifierRequest(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–32 shows how to obtain RegisterNameIdentifierRequest elements
from an XML document.

Example 11–32 Obtaining RegisterNameIdentifierRequest Elements from an XML
Document

Document doc = Instance of org.w3c.dom.Document;

// Get list of all
// RegisterNameIdentifierRequest elements
// in the document
NodeList rnirList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
"RegisterNameIdentifierRequest");

if (rnirList.getLength() == 0)
System.err.println("No RegisterNameIdentifierRequest elements found.");

// Convert each org.w3c.dom.Node object to a
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierRequest rnir =
 new RegisterNameIdentifierRequest((Element)rnirList.item(s));

// Process RegisterNameIdentifierRequest element
...

}

The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

The
oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRespons
e class represents the RegisterNameIdentifierResponse element of the Liberty
protocol schema.

Example 11–33 shows how to create a new RegisterNameIdentifierResponse
element and append it to a document.

Example 11–33 Creating a New RegisterNameIdentifierResponse Element and
Appending it to a Document

Document doc = Instance of org.w3c.dom.Document;
RegisterNameIdentifierResponse rnir =

new RegisterNameIdentifierResponse(doc);
doc.getDocumentElement().appendChild(rnir);

Example 11–34 shows how to obtain RegisterNameIdentifierResponse
elements from an XML document.

Example 11–34 Obtaining RegisterNameIdentifierResponse Elements from a Document

Document doc = Instance of org.w3c.dom.Document;

Oracle Liberty 1.2

11-18 Oracle Security Developer Tools Reference

// Get list of all RegisterNameIdentifierResponse elements in the document
NodeList rnirList =

doc.getElementsByTagNameNS(LibertyURI.ns_liberty,
"RegisterNameIdentifierResponse");

if (rnirList.getLength() == 0)
System.err.println("No RegisterNameIdentifierResponse elements found.");

// Convert each org.w3c.dom.Node object to an
// oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse
// object and process
for (int s = 0, n = rnirList.getLength(); s < n; ++s)
{

RegisterNameIdentifierResponse rnir = new
RegisterNameIdentifierResponse((Element)rnirList.item(s));

// Process RegisterNameIdentifierResponse element
...

}

Supporting Classes and Interfaces
This section describes supporting classes and interfaces of Oracle Liberty SDK v. 1.2:

■ The oracle.security.xmlsec.liberty.v12.LibertyInitializer class

■ The oracle.security.xmlsec.liberty.v12.LibertyURI interface

■ The
oracle.security.xmlsec.util.ac.AuthenticationContextStatement
class

■ The oracle.security.xmlsec.saml.SAMLInitializer class

■ The oracle.security.xmlsec.saml.SAMLURI interface

The oracle.security.xmlsec.liberty.v12.LibertyInitializer class

This class handles load-time initialization and configuration of the Oracle Liberty SDK
1.2 library. You must call this class's static initialize() method before making any
calls to the Oracle Liberty SDK 1.2 API.

The oracle.security.xmlsec.liberty.v12.LibertyURI interface

This interface defines URI string constants for algorithms, namespaces, and objects.

The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class

This is an abstract class representing the top-level
AuthenticationContextStatement element of the Liberty authentication context
schema. Each concrete implementation of this class represents the respective class
defined in the Liberty Authentication Context Specification.

The oracle.security.xmlsec.saml.SAMLInitializer class

This class handles load-time initialization and configuration of the Oracle SAML
library. You should call this class's static initialize(int major, int minor)
method, for version 1.1, before making any calls to the Oracle SAML Toolkit API for
SAML 1.1.

Oracle Liberty 1.2

Oracle Liberty SDK 11-19

The oracle.security.xmlsec.saml.SAMLURI Interface

The oracle.security.xmlsec.saml.SAMLURI interface defines URI string
constants for algorithms, namespaces, and objects. The following naming convention
is used:

■ Action Namespace URIs defined in the SAML 1.1 specifications begin with
"action_"

■ Authentication Method Namespace URIs defined in the SAML 1.1 specifications
begin with "authentication_method_"

■ Confirmation Method Namespace URIs defined in the SAML 1.1 specifications
begin with "confirmation_method_"

■ Namespace URIs begin with "ns_"

The oracle.security.xmlsec.saml.SAMLMessage Class

oracle.security.xmlsec.saml.SAMLMessage is the base class for all the SAML
and SAML extension messages that may be signed and contain an XML-DSIG
structure.

The Oracle Liberty SDK 1.2 API Reference
The Oracle Liberty SDK version 1.2 API Reference (Javadoc) is available at:

Oracle Security Developer Tools Liberty SDK 1.2 Java API Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

Oracle Liberty 1.2

11-20 Oracle Security Developer Tools Reference

Oracle XKMS 12-1

12
Oracle XKMS

XKMS (XML Key Management Specification) is a W3C specification for public key
management. It provides a convenient way to handle public key infrastructures by
enabling developers to write XML transactions for digital signature processing.

This chapter contains these topics:

■ Oracle XKMS Features and Benefits

■ Setting Up Your Oracle XKMS Environment

■ Core Classes and Interfaces

■ The Oracle XKMS Java API Reference

■ Example Programs

Oracle XKMS Features and Benefits
Oracle XKMS is a pure Java solution which consists of a toolkit for locating keys and
verifying user identities across businesses and applications. It supports the secure,
trusted messaging required for web services, and provides a way to sidestep some of
the costs and complexity associated with PKI.

Oracle XKMS provides the following features:

■ Simplified access to PKI functionality - by implementing the W3C XKMS
Standard, Oracle XKMS combines the simplicity of XML with the robustness of
PKI. With this toolkit, developers can easily deploy robust application
functionality by deploying secure, lightweight client software.

■ Supports complete key/certificate life cycle - Oracle XKMS helps enterprise
applications locate, retrieve, and validate signature and encryption keys using
lightweight Web Services infrastructure.

■ Secures XKMS messages using XML Signatures - requests and responses can be
digitally signed using Oracle XML toolkit.

■ 100% Java with no native methods

■ Works with JAXP 1.1 compliant XML parsers

Oracle XKMS Packages
The Oracle XKMS library contains the following packages:

Setting Up Your Oracle XKMS Environment

12-2 Oracle Security Developer Tools Reference

Setting Up Your Oracle XKMS Environment
The Oracle Security Developer Tools are installed with Oracle Application Server in
ORACLE_HOME. This section explains how to set up your environment for Oracle
XKMS. It contains these topics:

■ System Requirements for Oracle XKMS

■ Setting the CLASSPATH Environment Variable

System Requirements for Oracle XKMS
In order to use Oracle XKMS, your system must have the following components
installed:

■ The Java Development Kit (JDK) version 1.2.2 or higher

■ A JAXP-compatible XML parser and XSLT processor

■ the Oracle XML Security toolkit

Setting the CLASSPATH Environment Variable
Your CLASSPATH environment variable must contain the full path and file names to
the required jar and class files. Make sure that the following files are included in your
CLASSPATH:

■ osdt_core.jar

■ osdt_cert.jar

■ osdt_xmlsec.jar

■ jaxen.jar, which is included in the $ORACLE_HOME/jlib directory of the
security tools distribution. Oracle XML Security relies on the Jaxen XPath engine
for XPath processing.

■ The appropriate XML parser and XSLT processor implementations, unless you
have installed them in your JRE's /lib/ext or /lib/endorsed directory.

Setting the CLASSPATH on Windows
To set your CLASSPATH on Windows:

Table 12–1 Packages in the Oracle XKMS Library

Package Description

oracle.security.xmlsec.xkms Contains the main XKMS message
elements

oracle.security.xmlsec.xkms.xkiss Contains the classes for the Key
Information Service Specification

oracle.security.xmlsec.xkms.xkrss Contains the classes for the Key
Registration Service Specification

oracle.security.xmlsec.xkms.util Contains constants and utility classes

Note: The Jaxen library included in the Oracle XML Security
distribution is a modified version of the Jaxen 1.0 FCS release. If you
also have an earlier Jaxen release in your CLASSPATH, you must
ensure that the version from this distribution appears first.

Core Classes and Interfaces

Oracle XKMS 12-3

1. In your Windows Control Panel, select System.

2. In the System Properties dialog, select the Advanced tab.

3. Click Environment Variables.

4. In the User Variables section, click New to add a CLASSPATH environment
variable for your user profile. If a CLASSPATH environment variable already
exists, select it and click Edit.

5. Add the full path and file names for all of the required jar and class files to the
CLASSPATH.

For example, your CLASSPATH might look like this:

C:\ORACLE_HOME\jlib\osdt_core.jar;
C:\ORACLE_HOME\jlib\osdt_cert.jar
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar

6. Click OK.

Setting the CLASSPATH on UNIX
On UNIX, set your CLASSPATH environment variable to include the full path and file
name of all of the required jar and class files. For example:

setenv CLASSPATH $CLASSPATH:$ORACLE_HOME/jlib/osdt_core.jar:\
C:\ORACLE_HOME\jlib\osdt_cert.jar
C:\ORACLE_HOME\jlib\osdt_xmlsec.jar

Core Classes and Interfaces
This section provides information and code samples for using the key classes and
interfaces of Oracle XKMS. The core classes are:

■ oracle.security.xmlsec.xkms.xkiss.LocateRequest

■ oracle.security.xmlsec.xkms.xkiss.LocateResult

■ oracle.security.xmlsec.xkms.xkiss.ValidateRequest

■ oracle.security.xmlsec.xkms.xkiss.ValidateResult

■ oracle.security.xmlsec.xkms.xkrss.RecoverRequest

■ oracle.security.xmlsec.xkms.xkrss.RecoverResult

oracle.security.xmlsec.xkms.xkiss.LocateRequest
This class represents the XKMS LocateRequest element.

Example 12–1 shows how to create an instance of LocateRequest:

Example 12–1 Creating an Instance of LocateRequest

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;

//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());

Core Classes and Interfaces

12-4 Oracle Security Developer Tools Reference

// Create the xkms:LocateRequest.
LocateRequest loc = new LocateRequest(sigDoc, queryKeyBinding);

Client requests of type LocateRequest must include an xkms:RespondWith
attribute.

Example 12–2 shows how RespondWith can be added to a LocateRequest:

Example 12–2 Adding RespondWith to a LocateRequest

//Add xkms:RespondWith as X.509 Certificate.
loc.addRespondWith(XKMSURI.respondWith_X509Cert);

oracle.security.xmlsec.xkms.xkiss.LocateResult
This class represents the xkms:LocateResult element.

Example 12–3 shows how to create an instance of LocateResult:

Example 12–3 Creating an Instance of LocateResult

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;

// Create the xkms:LocateResult
LocateResult locRes = new LocateResult(sigDoc);

//Set ResultMajor to Success.
locRes.setResultCode(XKMSURI.result_major_success, null);

If the LocateRequest contained a RespondWith attribute of X509Certificate,
use the following code to add an X509 Certificate to the LocateResult:

Example 12–4 Adding an X509 Certificate to LocateResult

//Creating a signature and adding X509 certificate to the KeyInfo element.
X509 userCert = //Instance of oracle.security.crypto.cert.X509
XSSignature Sig = XSSignature.newInstance(sigDoc, "MySignature");
XSKeyInfo xsInfo = sig.getKeyInfo();
X509Data xData = xsInfo.createX509Data(userCert);

//Add X509Data to the KeyInfo
xsInfo.addKeyInfoData(xData);

//Set Key Binding and add KeyInfo the the KeyBinding
UnverifiedKeyBinding keyBinding = new UnverifiedKeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);

//Add Key Binding to LocateResult
locRes.addKeyBinding(keyBinding);

oracle.security.xmlsec.xkms.xkiss.ValidateRequest
This class represents the XKMS xkms:ValidateRequest element.

Example 12–5 shows how to create an instance of xkms:ValidateRequest:

Core Classes and Interfaces

Oracle XKMS 12-5

Example 12–5 Creating an Instance of ValidateRequest

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;

//Create Query Key Binding
QueryKeyBinding queryKeyBinding = new QueryKeyBinding(sigDoc);
queryKeyBinding.setTimeInstant(new Date());

// Create the xkms:ValidateRequest.
ValidateRequest validateReq = new ValidateRequest(sigDoc, queryKeyBinding);

Requests of type ValidateRequest must include an xkms:RespondWith attribute.
Example 12–6 shows how to add RespondWith to a ValidateRequest:

Example 12–6 Adding RespondWith to a ValidateRequest

//Add xkms:RespondWith as X.509 Certificate.
validateReq.addRespondWith(XKMSURI.respondWith_X509Cert);

oracle.security.xmlsec.xkms.xkiss.ValidateResult
This class represents the XKMS ValidateResult element.

Example 12–7 shows how to create an instance of ValidateResult:

Example 12–7 Creating an Instance of ValidateResult

//Parse the XML document containin the dsig:Signature
Document sigDoc = //Instance of org.w3c.doc.Document;

// Create the xkms:ValidateResult
ValidateResult valRes = new ValidateResult(sigDoc);

//Set ResultMajor to Success.
valRes.setResultCode(XKMSURI.result_major_success, null);

Use the following code to set a status in response to a ValidateRequest:

Example 12–8 Setting a Response Status for a ValidateRequest

//Create a status element and add reasons.
Status responseStatus = new Status(sigDoc);
responseStatus.addValidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addValidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addValidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addValidReason(XKMSURI.reasonCode_Signature);

//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo =

// Instance of oracle.security.xmlsec.dsig.XSKeyInfo,
// which contains X509Data

KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setStatus(responseStatus);
keyBinding.setKeyInfo(xsInfo);

// Add the key binding to the ValidateResult.
valRes.addKeyBinding(keyBinding);

Core Classes and Interfaces

12-6 Oracle Security Developer Tools Reference

oracle.security.xmlsec.xkms.xkrss.RecoverRequest
This class represents the XKMS RecoverRequest element.

Example 12–9 shows how to create an instance of RecoverRequest:

Example 12–9 Creating an Instance of RecoverRequest

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;

// Create the xkms:RecoverRequest
RecoverRequest recReq = new RecoverRequest(sigDoc);

//Set RespondWith to PrivateKey, so that the RecoverResult
contains the private key.
recReq.addRespondWith(XKMSURI.respondWith_PrivateKey);

A RecoverRequest must include the Authentication and RecoverKeyBinding
elements. These can be added with the following code:

Example 12–10 Adding Authentication and RecoverKeyBinding to a RecoverRequest

//Create an instance of XSSignature.
XSSignature sig =

//Instance of oracle.security.xmlsec.dsig.XSSignature

//Create an instance of Authentication element.
Authentication auth = new Authentication(sigDoc);

//Set key binding authentication.
auth.setKeyBindingAuthentication(sig);

//Set Authentication for the RecoverRequest.
recReq.setAuthentication(auth);

//Add RecoverKeyBinding to RecoverRequest.
RecoverKeyBinding recKeyBind = new RecoverKeyBinding(sigDoc);

//Add Key Info on the key to be recovered.
XSKeyInfo xsInfo =

//Instance of oracle.security.xmlsec.dsig.XSKeyInfo
recKeyBind.setKeyInfo(xsInfo);

//Adding status, as known to the key holder, to the KeyBinding
Status keyStatus = new Status(sigDoc);
keyStatus.setStatusValue(XKMSURI.kbs_Indeterminate);
recKeyBind.setStatus(keyStatus);

//Adding RecoverKeyBinding to RecoverRequest.
recReq.setKeyBinding(recKeyBind);

oracle.security.xmlsec.xkms.xkrss.RecoverResult
This class represents the xkms:RecoverResult element.

Example 12–11 shows how to create an instance of RecoverResult:

The Oracle XKMS Java API Reference

Oracle XKMS 12-7

Example 12–11 Creating an Instance of xkms:RecoverResult

// Parse the XML document containing the dsig:Signature.
Document sigDoc = //Instance of org.w3c.dom.Document;

// Create the xkms:RecoverResult
RecoverResult recResult = new RecoverResult(sigDoc);

//Set ResultMajor to Success.
recResult.setResultCode(XKMSURI.result_major_success, null);

The KeyBinding needs to be set for a RecoverResult. You can accomplish this with
the following code:

Example 12–12 Creating a Key Binding for a RecoverResult

//Create a xkms:KeyBinding to add status and X509Data
XSKeyInfo xsInfo =

//Instance of oracle.security.xmlsec.dsig.XSKeyInfo,
//which contains X509Data

KeyBinding keyBinding = new KeyBinding(sigDoc);
keyBinding.setKeyInfo(xsInfo);

//Create a status element and add reasons.
//Status is set to Invalid because the service can decide
//to revoke the key binding in the case of recovery.

Status responseStatus = new Status(sigDoc);
responseStatus.addInvalidReason(XKMSURI.reasonCode_IssuerTrust);
responseStatus.addInvalidReason(XKMSURI.reasonCode_RevocationStatus);
responseStatus.addInvalidReason(XKMSURI.reasonCode_ValidityInterval);
responseStatus.addInvalidReason(XKMSURI.reasonCode_Signature);
responseStatus.setStatusValue(XKMSURI.kbs_Invalid);

keyBinding.setStatus(responseStatus);

//Set KeyBinding into RecoverResult
recResult.addKeyBinding(keyBinding);

Finally, Example 12–13 shows how to set the recovered PrivateKey into the
RecoverResult:

Example 12–13 Setting the Recovered Private Key into RecoverResult

//Create an Instance of dsig:XEEncryptedData
XEEncryptedData encryptedData = //Instance of
oracle.security.xmlsec.enc.XEEncryptedData

//Create an instance of oracle.security.xmlsec.xkms.xkrss.PrivateKey
PrivateKey privKey = new PrivateKey(sigDoc);
privKey.setEncryptedData(encryptedData);

//Add PrivateKey to RecoverResult
recResult.setPrivateKey(privKey);

The Oracle XKMS Java API Reference
The Oracle XKMS Java API Reference (Javadoc) is available at:

Oracle Security Developer Tools XKMS Java API Reference

Example Programs

12-8 Oracle Security Developer Tools Reference

Example Programs
For example programs using the Oracle Security Developer Tools, see the Oracle
Technology Network Web Site at
http://www.oracle.com/technology/index.html.

References A-1

A
References

The following table lists the standards documents and protocols referenced in this
document.

Table A–1 Security Standards and Protocols

Document Reference

[AES-128] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes128-cbc and
http://www.w3.org/2001/04/xmlenc#kw-aes128

[AES-192] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes192-cbc and
http://www.w3.org/2001/04/xmlenc#kw-aes192

[AES-256] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes256-cbc and
http://www.w3.org/2001/04/xmlenc#kw-aes256

Cryptography Bruce Schneier, Applied Cryptography: Protocols, Algorithms, and Source Code
in C (2nd Edition), John Wiley and Sons, 1996.

Cryptography William Stallings, Cryptography and Network Security: Principles and Practice
(3rd Edition), Prentice Hall, 2002.

[DES-EDE] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Block Encryption
Algorithms,http://www.w3.org/2001/04/xmlenc#aes128-cbc and
http://www.w3.org/2001/04/xmlenc#kw-tripledes

Diffie-Hellman Key
Agreement

W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See Diffie-Hellman Key Agreement,
http://www.w3.org/2001/04/xmlenc#dh

[DSA-SHA] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See DSA,
http://www.w3.org/2000/09/xmldsig#dsa-sha1

Liberty Alliance Liberty Alliance Project ID-FF 1.2 and ID-WSF 2.0 Specifications,
http://www.projectliberty.org/resources/specifications
.php

[PKCS] RSA Laboratories, "Public-Key Cryptography Standards (PKCS)",
http://www.rsasecurity.com/rsalabs/node.asp?id=2125

[PKCS1] RSA Laboratories, "PKCS #1: RSA Cryptography Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2125

[PKCS3] RSA Laboratories, "PKCS #3: Diffie-Hellman Key Agreement Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2126

A-2 Oracle Security Developer Tools Reference

[PKCS5] RSA Laboratories, "PKCS #5: Password-Based Cryptography Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2127

[PKCS6] RSA Laboratories, "PKCS #6: Extended-Certificate Syntax Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2128

[PKCS7] RSA Laboratories, "PKCS #7: Cryptographic Message Syntax Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=21299

[PKCS8] RSA Laboratories, "PKCS #8: Private-Key Information Syntax Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2130

[PKCS9] RSA Laboratories, "PKCS #9: Selected Attribute Types",
http://www.rsasecurity.com/rsalabs/node.asp?id=2131

[PKCS10] RSA Laboratories, "PKCS #10: Certification Request Syntax Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2132

[PKCS11] RSA Laboratories, "PKCS #11: Cryptographic Token Interface Standard",
http://www.rsasecurity.com/rsalabs/node.asp?id=2133

[RFC2311] S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade, L. Repka, "S/MIME
Version 2 Message Specification". March 1998,
http://www.ietf.org/rfc/rfc2311.txt

[RFC2459] R. Housley, W. Ford, W. Polk, D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and CRL Profile". January 1999,
http://www.ietf.org/rfc/rfc2459.txt

[RFC2510] C. Adams, S. Farrell, "Internet X.509 Public Key Infrastructure Certificate
Management Protocols". March 1999,
http://www.ietf.org/rfc/rfc2510.txt

[RFC2511] M. Myers, C. Adams, D. Solo, D. Kemp, "Internet X.509 Certificate
Request Message Format". March 1999,
http://www.ietf.org/rfc/rfc2511.txt

[RFC2560] M. Myers, R. Ankney, A. Malpani, S. Galperin, C. Adams, "X.509 Internet
Public Key Infrastructure Online Certificate Status Protocol - OCSP". June
1999, http://www.ietf.org/rfc/rfc2560.txt

[RFC2630] R. Housley, "Cryptographic Message Syntax". June 1999,
http://www.ietf.org/rfc/rfc2630.txt

[RFC2634] P. Hoffman, Editor, "Enhanced Security Services for S/MIME". June 1999,
http://www.ietf.org/rfc/rfc2634.txt

[RFC3161] C. Adams, P. Cain, D. Pinkas, R. Zuccherato, "Internet X.509 Public Key
Infrastructure Time-Stamp Protocol (TSP)". August 2001,
http://www.ietf.org/rfc/rfc3161.txt

[RFC3274] P. Gutmann, "Compressed Data Content Type for Cryptographic Message
Syntax (CMS)". June 2002,
http://www.ietf.org/rfc/rfc3274.txt

[RFC3275] D. Eastlake, J. Reagle, D. Solo, "(Extensible Markup Language)
XML-Signature Syntax and Processing". March 2002,
http://www.ietf.org/rfc/rfc3275.txt

[RFC3280] R. Housley, W. Polk, W. Ford, D. Solo, "Internet X.509 Public Key
Infrastructure Certificate and Certificate Revocation List (CRL) Profile".
April 2002, http://www.ietf.org/rfc/rfc3280.txt

[RSA-OAEP] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See RSA-OAEP,
http://www.w3.org/2001/04/xmlenc#rsa-oaep-mgf1p

[RSA-SHA] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See PKCS1 (RSA-SHA1),
http://www.w3.org/2000/09/xmldsig#rsa-sha1

Table A–1 (Cont.) Security Standards and Protocols

Document Reference

References A-3

[RSAES-OAEP] R. Housley. "RFC 3560 - Use of the RSAES-OAEP Key Transport
Algorithm in Cryptographic Message Syntax (CMS),"
http://www.faqs.org/rfcs/rfc3560.html

[RSAES-PKCS1-v1_5] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002. See RSA Version 1.5,
http://www.w3.org/2001/04/xmlenc#rsa-1_5

[SAML] OASIS Security Services (SAML) TC,
http://www.oasis-open.org/committees/security/

[WSS] OASIS Web Services Security (WSS) TC,
http://www.oasis-open.org/committees/tc_home.php?wg_
abbrev=wss

[WSS v1.0] OASIS Standards and Other Approved Work,
http://www.oasis-open.org/specs/index.php#wssv1.0.

This OASIS standard contains the following:

1. OASIS WSS SOAP Message Security Specification

2. OASIS WSS Username Token Profile Specification

3. OASIS WSS X.509 Certificate Token Profile Specification

4. OASIS WSS SAML Assertion Token Profile Specification

5. OASIS WSS REL Token Profile Specification

[XKMS 2.0] W. Ford, P. Hallam-Baker, B. Fox, B. Dillaway, B. LaMacchia, J. Epstein, J.
Lapp, "XML Key Management Specification", 30 March 2001,
http://www.w3.org/TR/xkms/.

[xml.com] O'Reilly xml.com, http://www.xml.com/

[XML 1.0] W3C Recommendation XML 1.0: Extensible Markup Language (XML) 1.0
(Third Edition), 04 February 2004. http://www.w3.org/TR/REC-xml/

[XML Canonicalization] W3C Recommendation Canonical XML: Canonical XML Version 1.0, 15
March 2001. http://www.w3.org/TR/xml-c14n

[Exclusive XML
Canonicalization]

W3C Recommendation Exclusive XML Canonicalization: Exclusive XML
Canonicalization Version 1.0, 15 March 2001.
http://www.w3.org/TR/xml-exc-c14n/

[XML Decryption
Transform]

W3C Recommendation XML Decryption Transform: Decryption
Transform for XML Signature, 10 December 2002.
http://www.w3.org/TR/xmlenc-decrypt

[XML Encryption] W3C Recommendation XML Encryption: XML Encryption Syntax and
Processing, 10 December 2002.
http://www.w3.org/TR/xmlenc-core/

[XML FAQ] Java Technology and XML FAQs,
http://java.sun.com/xml/faq.html

[XML Signatures] W3C Recommendation XML Signature: XML-Signature Syntax and
Processing, 12 February 2002.
http://www.w3.org/TR/xmldsig-core/

Table A–1 (Cont.) Security Standards and Protocols

Document Reference

A-4 Oracle Security Developer Tools Reference

Glossary-1

Glossary

3DES

See Triple Data Encryption Standard (3DES).

access control item (ACI)

Access control information represents the permissions that various entities or subjects
have to perform operations on a given object in the directory. This information is
stored in Oracle Internet Directory as user-modifiable operational attributes, each of
which is called an access control item (ACI). An ACI determines user access rights to
directory data. It contains a set of rules for controlling access to entries (structural
access items) and attributes (content access items). Access to both structural and
content access items may be granted to one or more users or groups.

access control list (ACL)

A list of resources and the user names of people who are permitted access to those
resources within a computer system. In Oracle Internet Directory, an ACL is a list of
access control item (ACI) attribute values that is associated with directory objects.
The attribute values on that list represent the permissions that various directory user
entities (or subjects) have on a given object.

access control policy point (ACP)

A directory entry that contains access control policy information that applies
downward to all entries at lower positions in the directory information tree (DIT).
This information affects the entry itself and all entries below it. In Oracle Internet
Directory, you can create ACPs to apply an access control policy throughout a subtree
of your directory.

account lockout

A security feature that locks a user account if repeated failed logon attempts occur
within a specified amount of time, based on security policy settings. Account lockout
occurs in OracleAS Single Sign-On when a user submits an account and password
combination from any number of workstations more times than is permitted by Oracle
Internet Directory. The default lockout period is 24 hours.

ACI

See access control item (ACI).

ACL

See access control list (ACL).

Glossary-2

ACP

See access control policy point (ACP).

administrative area

A subtree on a directory server whose entries are under the control of a single
administrative authority. The designated administrator controls each entry in that
administrative area, as well as the directory schema, access control list (ACL), and
attributes for those entries.

Advanced Encryption Standard (AES)

Advanced Encryption Standard (AES) is a symmetric cryptography algorithm that is
intended to replace Data Encryption Standard (DES). AES is a Federal Information
Processing Standard (FIPS) for the encryption of commercial and government data.

advanced replication

See Oracle Database Advanced Replication.

advanced symmetric replication (ASR)

See Oracle Database Advanced Replication.

AES

See Advanced Encryption Standard (AES).

anonymous authentication

The process by which a directory authenticates a user without requiring a user name
and password combination. Each anonymous user then exercises the privileges
specified for anonymous users.

API

See application programming interface (API).

application programming interface (API)

A series of software routines and development tools that comprise an interface
between a computer application and lower-level services and functions (such as the
operating system, device drivers, and other software applications). APIs serve as
building blocks for programmers putting together software applications. For example,
LDAP-enabled clients access Oracle Internet Directory information through
programmatic calls available in the LDAP API.

application service provider

Application Service Providers (ASPs) are third-party entities that manage and
distribute software-based services and solutions to customers across a wide area
network from a central data center. In essence, ASPs are a way for companies to
outsource some or almost all aspects of their information technology needs.

artifact profile

An authentication mechanism which transmits data using a compact reference to an
assertion, called an artifact, instead of sending the full assertion. This profile
accomodates browsers which handle a limited number of characters.

ASN.1

Abstract Syntax Notation One (ASN.1) is an International Telecommunication Union
(ITU) notation used to define the syntax of information data. ASN.1 is used to describe

Glossary-3

structured information, typically information that is to be conveyed across some
communications medium. It is widely used in the specification of Internet protocols.

ASR

See Oracle Database Advanced Replication.

assertion

An assertion is a statement used by providers in security domains to exchange
information about a subject seeking access to a resource. Identity providers, as well as
service providers, exchange assertions about identities to make authentication and
authorization decisions, and to determine and enforce security policies protecting the
resource.

asymmetric algorithm

A cryptographic algorithm that uses different keys for encryption and decryption.

See also: public key cryptography.

asymmetric cryptography

See public key cryptography.

attribute

Directory attributes hold a specific data element such as a name, phone number, or job
title. Each directory entry is comprised of a set of attributes, each of which belongs to
an object class. Moreover, each attribute has both a type, which describes the kind of
information in the attribute, and a value, which contains the actual data.

attribute configuration file

In an Oracle Directory Integration Platform environment, a file that specifies attributes
of interest in a connected directory.

attribute type

Attribute types specify information about a data element, such as the data type,
maximum length, and whether it is single-valued or multivalued. The attribute type
provides the real-world meaning for a value, and specifies the rules for creating and
storing specific pieces of data, such as a name or an e-mail address.

attribute uniqueness

An Oracle Internet Directory feature that ensures that no two specified attributes have
the same value. It enables applications synchronizing with the enterprise directory to
use attributes as unique keys.

attribute value

Attribute values are the actual data contained within an attribute for a particular
entry. For example, for the attribute type email, an attribute value might be
sally.jones@oracle.com.

authentication

The process of verifying the identity claimed by an entity based on its credentials.
Authentication of a user is generally based on something the user knows or has (for
example, a password or a certificate).

Authentication of an electronic message involves the use of some kind of system (such
as public key cryptography) to ensure that a file or message which claims to originate

Glossary-4

from a given individual or company actually does, and a check based on the contents
of a message to ensure that it was not modified in transit.

authentication level

An OracleAS Single Sign-On parameter that enables you to specify a particular
authentication behavior for an application. You can link this parameter with a specific
authentication plugin.

authentication plugin

An implementation of a specific authentication method. OracleAS Single Sign-On has
Java plugins for password authentication, digital certificates, Windows native
authentication, and third-party access management.

authorization

The process of granting or denying access to a service or network resource. Most
security systems are based on a two step process. The first stage is authentication, in
which a user proves his or her identity. The second stage is authorization, in which a
user is allowed to access various resources based on his or her identity and the defined
authorization policy.

authorization policy

Authorization policy describes how access to a protected resource is governed. Policy
maps identities and objects to collections of rights according to some system model.
For example, a particular authorization policy might state that users can access a sales
report only if they belong to the sales group.

basic authentication

An authentication protocol supported by most browsers in which a Web server
authenticates an entity with an encoded user name and password passed via data
transmissions. Basic authentication is sometimes called plaintext authentication
because the base-64 encoding can be decoded by anyone with a freely available
decoding utility. Note that encoding is not the same as encryption.

Basic Encoding Rules (BER)

Basic Encoding Rules (BER) are the standard rules for encoding data units set forth in
ASN.1. BER is sometimes incorrectly paired with ASN.1, which applies only to the
abstract syntax description language, not the encoding technique.

BER

See Basic Encoding Rules (BER).

binding

In networking, binding is the establishment of a logical connection between
communicating entities.

In the case of Oracle Internet Directory, binding refers to the process of authenticating
to the directory.

The formal set of rules for carrying a SOAP message within or on top of another
protocol (underlying protocol) for the purpose of exchange is also called a binding.

block cipher

Block ciphers are a type of symmetric algorithm. A block cipher encrypts a message
by breaking it down into fixed-size blocks (often 64 bits) and encrypting each block
with a key. Some well known block ciphers include Blowfish, DES, and AES.

Glossary-5

See also: stream cipher.

Blowfish

Blowfish is a symmetric cryptography algorithm developed by Bruce Schneier in 1993
as a faster replacement for DES. It is a block cipher using 64-bit blocks and keys of up
to 448 bits.

CA

See Certificate Authority (CA).

CA certificate

A Certificate Authority (CA) signs all certificates that it issues with its private key.
The corresponding Certificate Authority’s public key is itself contained within a
certificate, called a CA Certificate (also referred to as a root certificate). A browser
must contain the CA Certificate in its list of trusted root certificates in order to trust
messages signed by the CA's private key.

cache

Generally refers to an amount of quickly accessible memory in your computer.
However, on the Web it more commonly refers to where the browser stores
downloaded files and graphics on the user's computer.

CBC

See cipher block chaining (CBC).

central directory

In an Oracle Directory Integration Platform environment, the directory that acts as the
central repository. In an Oracle Directory Integration Platform environment, Oracle
Internet Directory is the central directory.

certificate

A certificate is a specially formatted data structure that associates a public key with
the identity of its owner. A certificate is issued by a Certificate Authority (CA). It
contains the name, serial number, expiration dates, and public key of a particular
entity. The certificate is digitally signed by the issuing CA so that a recipient can verify
that the certificate is real. Most digital certificates conform to the X.509 standard.

Certificate Authority (CA)

A Certificate Authority (CA) is a trusted third party that issues, renews, and revokes
digital certificates. The CA essentially vouches for a entity’s identity, and may
delegate the verification of an applicant to a Registration Authority (RA). Some well
known Certificate Authorities (CAs) include Digital Signature Trust, Thawte, and
VeriSign.

certificate chain

An ordered list of certificates containing one or more pairs of a user certificate and its
associated CA certificate.

certificate management protocol (CMP)

Certificate Management Protocol (CMP) handles all relevant aspects of certificate
creation and management. CMP supports interactions between public key
infrastructure (PKI)) components, such as the Certificate Authority (CA),
Registration Authority (RA), and the user or application that is issued a certificate.

Glossary-6

certificate request message format (CRMF)

Certificate Request Message Format (CRMF) is a format used for messages related to
the life-cycle management of X.509 certificates, as described in the RFC 2511
specification.

certificate revocation list (CRL)

A Certificate Revocation List (CRL) is a list of digital certificates which have been
revoked by the Certificate Authority (CA) that issued them.

change logs

A database that records changes made to a directory server.

cipher

See cryptographic algorithm.

cipher block chaining (CBC)

Cipher block chaining (CBC) is a mode of operation for a block cipher. CBC uses what
is known as an initialization vector (IV) of a certain length. One of its key
characteristics is that it uses a chaining mechanism that causes the decryption of a
block of ciphertext to depend on all the preceding ciphertext blocks. As a result, the
entire validity of all preceding blocks is contained in the immediately previous
ciphertext block.

cipher suite

In Secure Sockets Layer (SSL), a set of authentication, encryption, and data integrity
algorithms used for exchanging messages between network nodes. During an SSL
handshake, the two nodes negotiate to see which cipher suite they will use when
transmitting messages back and forth.

ciphertext

Ciphertext is the result of applying a cryptographic algorithm to readable data
(plaintext) in order to render the data unreadable by all entities except those in
possession of the appropriate key.

circle of trust

A trust relationship among a set of identity providers and service providers that
allows a principal to use a single federated identity and single sign-on (SSO) when
conducting business transactions with providers within that set.

Businesses federate or affiliate together into circles of trust based on Liberty-enabled
technology and on operational agreements that define trust relationships between the
businesses.

See also: federated identity management (FIM), Liberty Alliance.

claim

A claim is a declaration made by an entity (for example, a name, identity, key, group,
and so on).

client SSL certificates

A type of certificate used to identify a client machine to a server through Secure
Sockets Layer (SSL) (client authentication).

Glossary-7

cluster

A collection of interconnected usable whole computers that is used as a single
computing resource. Hardware clusters provide high availability and scalability.

CMP

See certificate management protocol (CMP).

CMS

See Cryptographic Message Syntax (CMS).

code signing certificates

A type of certificate used to identify the entity who signed a Java program, Java Script,
or other signed file.

cold backup

In Oracle Internet Directory, this refers to the procedure of adding a new directory
system agent (DSA) node to an existing replicating system by using the database copy
procedure.

concurrency

The ability to handle multiple requests simultaneously. Threads and processes are
examples of concurrency mechanisms.

concurrent clients

The total number of clients that have established a session with Oracle Internet
Directory.

concurrent operations

The number of operations that are being executed on Oracle Internet Directory from all
of the concurrent clients. Note that this is not necessarily the same as the concurrent
clients, because some of the clients may be keeping their sessions idle.

confidentiality

In cryptography, confidentiality (also known as privacy) is the ability to prevent
unauthorized entities from reading data. This is typically achieved through
encryption.

configset

See configuration set entry.

configuration set entry

An Oracle Internet Directory entry holding the configuration parameters for a specific
instance of the directory server. Multiple configuration set entries can be stored and
referenced at runtime. The configuration set entries are maintained in the subtree
specified by the subConfigsubEntry attribute of the directory-specific entry (DSE),
which itself resides in the associated directory information base (DIB) against which
the servers are started.

connect descriptor

A specially formatted description of the destination for a network connection. A
connect descriptor contains destination service and network route information.

The destination service is indicated by using its service name for the Oracle Database
or its Oracle System Identifier (SID) for Oracle release 8.0 or version 7 databases. The

Glossary-8

network route provides, at a minimum, the location of the listener through use of a
network address.

connected directory

In an Oracle Directory Integration Platform environment, an information repository
requiring full synchronization of data between Oracle Internet Directory and
itself—for example, an Oracle human resources database.

consumer

A directory server that is the destination of replication updates. Sometimes called a
slave.

contention

Competition for resources.

context prefix

The distinguished name (DN) of the root of a naming context.

CRL

See certificate revocation list (CRL).

CRMF

See certificate request message format (CRMF).

cryptographic algorithm

A cryptographic algorithm is a defined sequence of processes to convert readable data
(plaintext) to unreadable data (ciphertext) and vice versa. These conversions require
some secret knowledge, normally contained in a key. Examples of cryptographic
algorithms include DES, AES, Blowfish, and RSA.

Cryptographic Message Syntax (CMS)

Cryptographic Message Syntax (CMS) is a syntax defined in RFC 3369 for signing,
digesting, authenticating, and encrypting digital messages.

cryptography

The process of protecting information by transforming it into an unreadable format.
The information is encrypted using a key, which makes the data unreadable, and is
then decrypted later when the information needs to be used again. See also public key
cryptography and symmetric cryptography.

dads.conf

A configuration file for Oracle HTTP Server that is used to configure a database access
descriptor (DAD).

DAS

See Oracle Delegated Administration Services. (DAS).

Data Encryption Standard (DES)

Data Encryption Standard (DES) is a widely used symmetric cryptography algorithm
developed in 1974 by IBM. It applies a 56-bit key to each 64-bit block of data. DES and
3DES are typically used as encryption algorithms by S/MIME.

Glossary-9

data integrity

The guarantee that the contents of the message received were not altered from the
contents of the original message sent.

See also: integrity.

database access descriptor (DAD)

Database connection information for a particular Oracle Application Server
component, such as the OracleAS Single Sign-On schema.

decryption

The process of converting the contents of an encrypted message (ciphertext) back into
its original readable format (plaintext).

default identity management realm

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such hosted environments, the enterprise performing the
hosting is called the default identity management realm, and the enterprises that are
hosted are each associated with their own identity management realm in the directory
information tree (DIT).

default knowledge reference

A knowledge reference that is returned when the base object is not in the directory,
and the operation is performed in a naming context not held locally by the server. A
default knowledge reference typically sends the user to a server that has more
knowledge about the directory partitioning arrangement.

default realm location

An attribute in the root Oracle Context that identifies the root of the default identity
management realm.

defederation

The act of unlinking a user's account from an identity provider or service provider.

Delegated Administration Services

See Oracle Delegated Administration Services.

delegated administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory. Other administrators—called delegated
administrators—may exercise roles in specific identity management realms, or for
specific applications.

DER

See Distinguished Encoding Rules (DER).

DES

See Data Encryption Standard (DES).

DIB

See directory information base (DIB).

Glossary-10

Diffie-Hellman

Diffie-Hellman (DH) is a public key cryptography protocol that allows two parties to
establish a shared secret over an unsecure communications channel. First published in
1976, it was the first workable public key cryptographic system.

See also: symmetric algorithm.

digest

See message digest.

digital certificate

See certificate.

digital signature

A digital signature is the result of a two-step process applied to a given block of data.
First, a hash function is applied to the data to obtain a result. Second, that result is
encrypted using the signer's private key. Digital signatures can be used to ensure
integrity, message authentication, and non-repudiation of data. Examples of digital
signature algorithms include DSA, RSA, and ECDSA.

Digital Signature Algorithm (DSA)

The Digital Signature Algorithm (DSA) is an asymmetric algorithm that is used as
part of the Digital Signature Standard (DSS). It cannot be used for encryption, only for
digital signatures. The algorithm produces a pair of large numbers that enable the
authentication of the signatory, and consequently, the integrity of the data attached.
DSA is used both in generating and verifying digital signatures.

See also: Elliptic Curve Digital Signature Algorithm (ECDSA).

directory

See Oracle Internet Directory, Lightweight Directory Access Protocol (LDAP), and
X.500.

directory information base (DIB)

The complete set of all information held in the directory. The DIB consists of entries
that are related to each other hierarchically in a directory information tree (DIT).

directory information tree (DIT)

A hierarchical tree-like structure consisting of the DNs of the entries.

directory integration and provisioning server

In an Oracle Directory Integration Platform environment, the server that drives the
synchronization of data between Oracle Internet Directory and a connected directory.

directory integration profile

In an Oracle Directory Integration Platform environment, an entry in Oracle Internet
Directory that describes how Oracle Directory Integration Platform communicates
with external systems and what is communicated.

Directory Manager

See Oracle Directory Manager.

directory naming context

See naming context.

Glossary-11

directory provisioning profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration Platform sends to
the directory-enabled applications.

directory replication group (DRG)

The directory servers participating in a replication agreement.

directory server instance

A discrete invocation of a directory server. Different invocations of a directory server,
each started with the same or different configuration set entries and startup flags, are
said to be different directory server instances.

directory synchronization profile

A special kind of directory integration profile that describes how synchronization is
carried out between Oracle Internet Directory and an external system.

directory system agent (DSA)

The X.500 term for a directory server.

directory-specific entry (DSE)

An entry specific to a directory server. Different directory servers may hold the same
directory information tree (DIT) name, but have different contents—that is, the
contents can be specific to the directory holding it. A DSE is an entry with contents
specific to the directory server holding it.

directory user agent (DUA)

The software that accesses a directory service on behalf of the directory user. The
directory user may be a person or another software element.

DIS

See directory integration and provisioning server.

Distinguished Encoding Rules (DER)

Distinguished Encoding Rules (DER) are a set of rules for encoding ASN.1 objects in
byte-sequences. DER is a special case of Basic Encoding Rules (BER).

distinguished name (DN)

A X.500 distinguished name (DN) is a unique name for a node in a directory tree. A
DN is used to provide a unique name for a person or any other directory entry. A DN
is a concatenation of selected attributes from each node in the tree along the path from
the root node to the named entry’s node. For example, in LDAP notation, the DN for a
person named John Smith working at Oracle’s US office would be: "cn=John Smith,
ou=People, o=Oracle, c=us".

DIT

See directory information tree (DIT).

DN

See distinguished name (DN).

Glossary-12

Document Type Definition (DTD)

A Document Type Definition (DTD) is a document that specifies constraints on the
tags and tag sequences that are valid for a given XML document. DTDs follow the
rules of Simple Generalized Markup Language (SGML), the parent language of XML.

domain

A domain includes the Web site and applications that enable a principal to utilize
resources. A federated site acts as an identity provider (also known as the source
domain), a service provider (also known as the destination domain), or both.

domain component attribute

The domain component (dc) attribute can be used in constructing a distinguished
name (DN) from a domain name. For example, using a domain name such as
"oracle.com", one could construct a DN beginning with "dc=oracle, dc=com", and then
use this DN as the root of its subtree of directory information.

DRG

See directory replication group (DRG).

DSA

See Digital Signature Algorithm (DSA) or directory system agent (DSA).

DSE

See directory-specific entry (DSE).

DTD

See Document Type Definition (DTD).

ECC

See Elliptic Curve Cryptography (ECC).

ECDSA

See Elliptic Curve Digital Signature Algorithm (ECDSA).

EJB

See Enterprise Java Bean (EJB).

Elliptic Curve Cryptography (ECC)

Elliptic Curve Cryptography (ECC) is an alternative to the RSA encryption system
which is based on the difficulty of solving elliptic curve discrete logarithm problems
rather than on factoring large numbers. Developed and marketed by Certicom, ECC is
especially suitable for environments, such as wireless devices and PC cards, where
computational power is limited and high speed is required. For any given key size
(measured in bits) ECC provides more security (is harder to decrypt without the key)
than RSA.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is the elliptic curve analog of
the Digital Signature Algorithm (DSA) standard. The advantages of ECDSA
compared to RSA-like schemes are shorter key lengths and faster signing and
decryption. For example, a 160 (210) bit ECC key is expected to give the same security
as a 1024 (2048) bit RSA key, and the advantage increases as level of security is raised.

Glossary-13

encryption

Encryption is the process of converting plaintext to ciphertext by applying a
cryptographic algorithm.

encryption certificate

An encryption certificate is a certificate containing a public key that is used to encrypt
electronic messages, files, documents, or data transmission, or to establish or exchange
a session key for these same purposes.

end-to-end security

This is a property of message-level security that is established when a message
traverses multiple applications within and between business entities and is secure over
its full route through and between the business entities.

Enterprise Java Bean (EJB)

Enterprise JavaBeans (EJBs) are a Java API developed by Sun Microsystems that
defines a component architecture for multi-tier client/server systems. Because EJB
systems are written in Java, they are platform independent. Being object oriented, they
can be implemented into existing systems with little or no recompiling and
configuring.

Enterprise Manager

See Oracle Enterprise Manager.

entry

An entry is a unique record in a directory that describes an object, such as a person. An
entry consists of attributes and their associated attribute values, as dictated by the
object class that describes that entry object. All entries in an LDAP directory structure
are uniquely identified through their distinguished name (DN).

export agent

In an Oracle Directory Integration Platform environment, an agent that exports data
out of Oracle Internet Directory.

export data file

In an Oracle Directory Integration Platform environment, the file that contains data
exported by an export agent.

export file

See export data file.

external agent

A directory integration agent that is independent of Oracle Directory Integration
Platform server. Oracle Directory Integration Platform server does not provide
scheduling, mapping, or error handling services for it. An external agent is typically
used when a third party metadirectory solution is integrated with Oracle Directory
Integration Platform.

external application

Applications that do not delegate authentication to the OracleAS Single Sign-On
server. Instead, they display HTML login forms that ask for application user names
and passwords. At the first login, users can choose to have the OracleAS Single

Glossary-14

Sign-On server retrieve these credentials for them. Thereafter, they are logged in to
these applications transparently.

failover

The process of failure recognition and recovery. In an Oracle Application Server Cold
Failover Cluster (Identity Management), an application running on one cluster node is
transparently migrated to another cluster node. During this migration, clients
accessing the service on the cluster see a momentary outage and may need to
reconnect once the failover is complete.

fan-out replication

Also called a point-to-point replication, a type of replication in which a supplier
replicates directly to a consumer. That consumer can then replicate to one or more
other consumers. The replication can be either full or partial.

Federal Information Processing Standards (FIPS)

Federal Information Processing Standards (FIPS) are standards for information
processing issued by the US government Department of Commerce's National
Institute of Standards and Technology (NIST).

federated identity management (FIM)

The agreements, standards, and technologies that make identity and entitlements
portable across autonomous domains. FIM makes it possible for an authenticated user
to be recognized and take part in personalized services across multiple domains. It
avoids pitfalls of centralized storage of personal information, while allowing users to
link identity information between different accounts. Federated identity requires two
key components: trust and standards. The trust model of federated identity
management is based on circle of trust. The standards are defined by the Liberty
Alliance Project.

federation

See identity federation.

filter

A filter is an expression that defines the entries to be returned from a request or search
on a directory. Filters are typically expressed as DNs, for example: cn=susie
smith,o=acme,c=us.

FIM

See federated identity management (FIM).

FIPS

See Federal Information Processing Standards (FIPS).

forced authentication

The act of forcing a user to reauthenticate if he or she has been idle for a preconfigured
amount of time. Oracle Application Server Single Sign-On enables you to specify a
global user inactivity timeout. This feature is intended for installations that have
sensitive applications.

GET

An authentication method whereby login credentials are submitted as part of the login
URL.

Glossary-15

global administrator

In a hosted environment, one enterprise—for example, an application service
provider—makes Oracle components available to multiple other enterprises and stores
information for them. In such an environment, a global administrator performs
activities that span the entire directory.

global unique identifier (GUID)

An identifier generated by the system and inserted into an entry when the entry is
added to the directory. In a multimaster replicated environment, the GUID, not the
DN, uniquely identifies an entry. The GUID of an entry cannot be modified by a user.

global user inactivity timeout

An optional feature of Oracle Application Server Single Sign-On that forces users to
reauthenticate if they have been idle for a preconfigured amount of time. The global
user inactivity timeout is much shorter than the single sign-out session timeout.

globalization support

Multilanguage support for graphical user interfaces. Oracle Application Server Single
Sign-On supports 29 languages.

globally unique user ID

A numeric string that uniquely identifies a user. A person may change or add user
names, passwords, and distinguished names, but her globally unique user ID always
remains the same.

grace login

A login occurring within the specified period before password expiration.

group search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the groups can be found.

guest user

One who is not an anonymous user, and, at the same time, does not have a specific
user entry.

GUID

See global unique identifier (GUID).

handshake

A protocol two computers use to initiate a communication session.

hash

A number generated from a string of text with an algorithm. The hash value is
substantially smaller than the text itself. Hash numbers are used for security and for
faster access to data.

See also: hash function.

hash function

In cryptography, a hash function or one-way hash function is an algorithm that
produces a given value when applied to a given block of data. The result of a hash
function can be used to ensure the integrity of a given block of data. For a hash

Glossary-16

function to be considered secure, it must be very difficult, given a known data block
and a known result, to produce another data block that produces the same result.

Hashed Message Authentication Code (HMAC)

Hashed Message Authentication Code (HMAC) is a hash function technique used to
create a secret hash function output. This strengthens existing hash functions such as
MD5 and SHA. It is used in transport layer security (TLS).

HMAC

See Hashed Message Authentication Code (HMAC).

HTTP

The Hyper Text Transfer Protocol (HTTP) is the protocol used between a Web browser
and a server to request a document and transfer its contents. The specification is
maintained and developed by the World Wide Web Consortium.

HTTP Redirect Profile

A federation profile which indicates that the requested resource resides under a
different URL.

HTTP Server

See Oracle HTTP Server.

httpd.conf

The file used to configure Oracle HTTP Server.

iASAdmins

The administrative group responsible for user and group management functions in
Oracle Application Server. The OracleAS Single Sign-On administrator is a member of
the group iASAdmins.

identity federation

The linking of two or more accounts a principal may hold with one or more identity
providers or service providers within a given circle of trust.

When users federate the otherwise isolated accounts they have with businesses,
known as their local identities, they create a relationship between two entities, an
association comprising any number of service providers and identity providers.

See also: identity provider, service provider.

identity management

The process by which the complete security lifecycle for network entities is managed
in an organization. It typically refers to the management of an organization’s
application users, where steps in the security life cycle include account creation,
suspension, privilege modification, and account deletion. The network entities
managed may also include devices, processes, applications, or anything else that needs
to interact in a networked environment. Entities managed by an identity management
process may also include users outside of the organization, for example customers,
trading partners, or Web services.

identity management infrastructure database

The database that contains data for OracleAS Single Sign-On and Oracle Internet
Directory.

Glossary-17

identity management realm

A collection of identities, all of which are governed by the same administrative
policies. In an enterprise, all employees having access to the intranet may belong to
one realm, while all external users who access the public applications of the enterprise
may belong to another realm. An identity management realm is represented in the
directory by a specific entry with a special object class associated with it.

identity management realm-specific Oracle Context

An Oracle Context contained in each identity management realm. It stores the
following information:

■ User naming policy of the identity management realm—that is, how users are
named and located.

■ Mandatory authentication attributes.

■ Location of groups in the identity management realm.

■ Privilege assignments for the identity management realm—for example: who has
privileges to add more users to the realm.

■ Application specific data for that realm including authorizations.

identity provider

One of the three primary roles defined in the identity federation protocols supported
by Oracle Identity Federation. The other primary roles are service provider and
principal. The identity provider is responsible for managing and authenticating a set
of identities within a given circle of trust.

A service provider, in turn, provides services or goods to a principal based on the
identity provider’s authentication of a principal’s identity.

Identity providers are service providers offering business incentives so that other
service providers affiliate with them. An identity provider typically authenticates and
asserts a principal’s identity.

import agent

In an Oracle Directory Integration Platform environment, an agent that imports data
into Oracle Internet Directory.

import data file

In an Oracle Directory Integration Platform environment, the file containing the data
imported by an import agent.

infrastructure tier

The Oracle Application Server components responsible for identity management.
These components are OracleAS Single Sign-On, Oracle Delegated Administration
Services, and Oracle Internet Directory.

inherit

When an object class has been derived from another class, it also derives, or inherits,
many of the characteristics of that other class. Similarly, an attribute subtype inherits
the characteristics of its supertype.

instance

See directory server instance.

Glossary-18

integrity

In cryptography, integrity is the ability to detect if data has been modified by entities
that are not authorized to modify it.

Internet Directory

See Oracle Internet Directory.

Internet Engineering Task Force (IETF)

The principal body engaged in the development of new Internet standard
specifications. It is an international community of network designers, operators,
vendors, and researchers concerned with the evolution of the Internet architecture and
the smooth operation of the Internet.

Internet Message Access Protocol (IMAP)

A protocol allowing a client to access and manipulate electronic mail messages on a
server. It permits manipulation of remote message folders, also called mailboxes, in a
way that is functionally equivalent to local mailboxes.

J2EE

See Java 2 Platform, Enterprise Edition (J2EE).

Java 2 Platform, Enterprise Edition (J2EE)

Java 2 Platform, Enterprise Edition (J2EE) is an environment for developing and
deploying enterprise applications, defined by Sun Microsystems Inc. The J2EE
platform consists of a set of services, application programming interfaces (APIs), and
protocols that provide the functionality for developing multitiered, Web-based
applications.

Java Server Page (JSP)

JavaServer Pages (JSP), a server-side technology, are an extension to the Java servlet
technology that was developed by Sun Microsystems. JSPs have dynamic scripting
capability that works in tandem with HTML code, separating the page logic from the
static elements (the design and display of the page). Embedded in the HTML page, the
Java source code and its extensions help make the HTML more functional, being used
in dynamic database queries, for example.

JSP

See Java Server Page (JSP).

key

A key is a data structure that contains some secret knowledge necessary to
successfully encrypt or decrypt a given block of data. The larger the key, the harder it
is to crack a block of encrypted data. For example, a 256-bit key is more secure than a
128-bit key.

key pair

A public key and its associated private key.

See also: public/private key pair.

knowledge reference

The access information (name and address) for a remote directory system agent
(DSA) and the name of the directory information tree (DIT) subtree that the remote
DSA holds. Knowledge references are also called referrals.

Glossary-19

latency

The time a client has to wait for a given directory operation to complete. Latency can
be defined as wasted time. In networking discussions, latency is defined as the travel
time of a packet from source to destination.

LDAP

See Lightweight Directory Access Protocol (LDAP).

LDAP connection cache

To improve throughput, the OracleAS Single Sign-On server caches and then reuses
connections to Oracle Internet Directory.

LDAP Data Interchange Format (LDIF)

A common, text-based format for exchanging directory data between systems. The set
of standards for formatting an input file for any of the LDAP command-line utilities.

LDIF

See LDAP Data Interchange Format (LDIF).

legacy application

Older application that cannot be modified to delegate authentication to the OracleAS
Single Sign-On server. Also known as an external application.

Liberty Alliance

The Liberty Alliance Project is a consortium of companies, non-profits, and
non-government organizations around the globe. It is committed to developing an
open standard for federated identity management (FIM) and identity-based Web
services supporting current and emerging network devices.

Liberty ID-FF

Liberty Identity Federation Framework (Liberty ID-FF) provides an architecture for
Web-based single sign-on (SSO) with federated identities.

Lightweight Directory Access Protocol (LDAP)

A set of protocols for accessing information in directories. LDAP supports TCP/IP,
which is necessary for any type of Internet access. Its framework of design conventions
supports industry-standard directory products, such as Oracle Internet Directory.
Because it is a simpler version of the X.500 standard, LDAP is sometimes called X.500
light.

load balancer

Hardware devices and software that balance connection requests between two or more
servers, either due to heavy load or failover. BigIP, Alteon, or Local Director are all
popular hardware devices. Oracle Application Server Web Cache is an example of load
balancing software.

logical host

In an Oracle Application Server Cold Failover Cluster (Identity Management), one or
more disk groups and pairs of host names and IP addresses. It is mapped to a physical
host in the cluster. This physical host impersonates the host name and IP address of
the logical host.

Glossary-20

MAC

See message authentication code (MAC).

man-in-the-middle

A security attack characterized by the third-party, surreptitious interception of a
message. The third-party, the man-in-the-middle, decrypts the message, re-encrypts it
(with or without alteration of the original message), and retransmits it to the
originally-intended recipient—all without the knowledge of the legitimate sender and
receiver. This type of security attack works only in the absence of authentication.

mapping rules file

In an Oracle Directory Integration Platform environment, the file that specifies
mappings between Oracle Internet Directory attributes and those in a connected
directory.

master definition site (MDS)

In replication, a master definition site is the Oracle Internet Directory database from
which the administrator runs the configuration scripts.

master site

In replication, a master site is any site other than the master definition site (MDS) that
participates in LDAP replication.

matching rule

In a search or compare operation, determines equality between the attribute value
sought and the attribute value stored. For example, matching rules associated with the
telephoneNumber attribute could cause "(650) 123-4567" to be matched with either
"(650) 123-4567" or "6501234567" or both. When you create an attribute, you associate a
matching rule with it.

MD2

Message Digest Two (MD2) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD2 was developed by Ron Rivest
for RSA Security and is intended to be used in systems with limited memory, such as
smart cards.

MD4

Message Digest Four (MD4) is similar to MD2 but designed specifically for fast
processing in software.

MD5

Message Digest Five (MD5) is a message digest hash function. The algorithm
processes input text and creates a 128-bit message digest which is unique to the
message and can be used to verify data integrity. MD5 was developed by Ron Rivest
after potential weaknesses were reported in MD4. MD5 is similar to MD4 but slower
because more manipulation is made to the original data.

MDS

See master definition site (MDS).

message authentication

The process of verifying that a particular message came from a particular entity.

Glossary-21

See also: authentication.

message authentication code (MAC)

The Message Authentication Code (MAC) is a result of a two-step process applied to a
given block of data. First, the result of a hash function is obtained. Second, that result
is encrypted using a secret key. The MAC can be used to authenticate the source of a
given block of data.

message digest

The result of a hash function.

See also: hash.

metadirectory

A directory solution that shares information between all enterprise directories,
integrating them into one virtual directory. It centralizes administration, thereby
reducing administrative costs. It synchronizes data between directories, thereby
ensuring that it is consistent and up-to-date across the enterprise.

middle tier

That portion of a OracleAS Single Sign-On instance that consists of the Oracle HTTP
Server and OC4J. The OracleAS Single Sign-On middle tier is situated between the
identity management infrastructure database and the client.

mod_osso

A module on the Oracle HTTP Server that enables applications protected by OracleAS
Single Sign-On to accept HTTP headers in lieu of a user name and password once the
user has logged into the OracleAS Single Sign-On server. The values for these headers
are stored in the mod_osso cookie.

mod_osso cookie

User data stored on the HTTP server. The cookie is created when a user authenticates.
When the same user requests another application, the Web server uses the information
in the mod_osso cookie to log the user in to the application. This feature speeds server
response time.

mod_proxy

A module on the Oracle HTTP Server that makes it possible to use mod_osso to enable
single sign-on to legacy, or external applications.

MTS

See shared server.

multimaster replication

Also called peer-to-peer or n-way replication, a type of replication that enables
multiple sites, acting as equals, to manage groups of replicated data. In a multimaster
replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

name identifier profile

A federation profile which allows a provider to inform it’s peers when assigning or
updating a name identifier for one of their common users.

Glossary-22

naming attribute

The attribute used to compose the RDN of a new user entry created through Oracle
Delegated Administration Services or Oracle Internet Directory Java APIs. The default
value for this is cn.

naming context

A subtree that resides entirely on one server. It must be contiguous, that is, it must
begin at an entry that serves as the top of the subtree, and extend downward to either
leaf entries or knowledge references (also called referrals) to subordinate naming
contexts. It can range in size from a single entry to the entire directory information
tree (DIT).

native agent

In an Oracle Directory Integration Platform environment, an agent that runs under the
control of the directory integration and provisioning server. It is in contrast to an
external agent.

net service name

A simple name for a service that resolves to a connect descriptor. Users initiate a
connect request by passing a user name and password along with a net service name
in a connect string for the service to which they wish to connect, for example:

CONNECT username/password@net_service_name

Depending on your needs, net service names can be stored in a variety of places,
including:

■ Local configuration file, tnsnames.ora, on each client

■ Directory server

■ Oracle Names server

■ External naming service, such as NDS, NIS or CDS

Net Services

See Oracle Net Services.

nickname attribute

The attribute used to uniquely identify a user in the entire directory. The default value
for this is uid. Applications use this to resolve a simple user name to the complete
distinguished name. The user nickname attribute cannot be multi-valued—that is, a
given user cannot have multiple nicknames stored under the same attribute name.

non-repudiation

In cryptography, the ability to prove that a given digital signature was produced with
a given entity's private key, and that a message was sent untampered at a given point
in time.

OASIS

Organization for the Advancement of Structured Information Standards. OASIS is a
worldwide not-for-profit consortium that drives the development, convergence and
adoption of e-business standards.

Glossary-23

object class

In LDAP, object classes are used to group information. Typically an object class models
a real-world object such as a person or a server. Each directory entry belongs to one or
more object classes. The object class determines the attributes that make up an entry.
One object class can be derived from another, thereby inheriting some of the
characteristics of the other class.

OC4J

See Oracle Containers for J2EE (OC4J).

OCA

See Oracle Certificate Authority.

OCI

See Oracle Call Interface (OCI).

OCSP

See Online Certificate Status Protocol (OCSP).

OEM

See Oracle Enterprise Manager.

OID

See Oracle Internet Directory.

OID Control Utility

A command-line tool for issuing run-server and stop-server commands. The
commands are interpreted and executed by the OID Monitor process.

OID Database Password Utility

The utility used to change the password with which Oracle Internet Directory connects
to an Oracle Database.

OID Monitor

The Oracle Internet Directory component that initiates, monitors, and terminates the
Oracle Internet Directory Server processes. It also controls the replication server if one
is installed, and Oracle Directory Integration Platform Server.

Online Certificate Status Protocol (OCSP)

Online Certificate Status Protocol (OCSP) is one of two common schemes for checking
the validity of digital certificates. The other, older method, which OCSP has
superseded in some scenarios, is certificate revocation list (CRL). OCSP is specified in
RFC 2560.

one-way function

A function that is easy to compute in one direction but quite difficult to reverse
compute, that is, to compute in the opposite direction.

one-way hash function

A one-way function that takes a variable sized input and creates a fixed size output.

See also: hash function.

Glossary-24

Oracle Application Server Single Sign-On

OracleAS Single Sign-On consists of program logic that enables you to log in securely
to applications such as expense reports, mail, and benefits. These applications take two
forms: partner applications and external applications. In both cases, you gain access
to several applications by authenticating only once.

Oracle Call Interface (OCI)

An application programming interface (API) that enables you to create applications
that use the native procedures or function calls of a third-generation language to
access an Oracle Database server and control all phases of SQL statement execution.

Oracle Certificate Authority

Oracle Application Server Certificate Authority is a Certificate Authority (CA) for use
within your Oracle Application Server environment. OracleAS Certificate Authority
uses Oracle Internet Directory as the storage repository for certificates. OracleAS
Certificate Authority integration with OracleAS Single Sign-On and Oracle Internet
Directory provides seamless certificate provisioning mechanisms for applications
relying on them. A user provisioned in Oracle Internet Directory and authenticated in
OracleAS Single Sign-On can choose to request a digital certificate from OracleAS
Certificate Authority.

Oracle CMS

Oracle CMS implements the IETF Cryptographic Message Syntax (CMS) protocol.
CMS defines data protection schemes that allow for secure message envelopes.

Oracle Containers for J2EE (OC4J)

A lightweight, scalable container for Java 2 Platform, Enterprise Edition (J2EE).

Oracle Context

See identity management realm-specific Oracle Context and root Oracle Context.

Oracle Crypto

Oracle Crypto is a pure Java library that provides core cryptography algorithms.

Oracle Database Advanced Replication

A feature in the Oracle Database that enables database tables to be kept synchronized
across two Oracle databases.

Oracle Delegated Administration Services

A set of individual, pre-defined services—called Oracle Delegated Administration
Services units—for performing directory operations on behalf of a user. Oracle Internet
Directory Self-Service Console makes it easier to develop and deploy administration
solutions for both Oracle and third-party applications that use Oracle Internet
Directory.

Oracle Directory Integration and Provisioning

A collection of interfaces and services for integrating multiple directories by using
Oracle Internet Directory and several associated plug-ins and connectors. A feature of
Oracle Internet Directory that enables an enterprise to use an external user repository
to authenticate to Oracle products.

Glossary-25

Oracle Directory Integration and Provisioning Server

In an Oracle Directory Integration Platform environment, a daemon process that
monitors Oracle Internet Directory for change events and takes action based on the
information present in the directory integration profile.

Oracle Directory Integration Platform

A component of Oracle Internet Directory. It is a framework developed to integrate
applications around a central LDAP directory like Oracle Internet Directory.

Oracle Directory Manager

A Java-based tool with a graphical user interface for administering Oracle Internet
Directory.

Oracle Enterprise Manager

A separate Oracle product that combines a graphical console, agents, common
services, and tools to provide an integrated and comprehensive systems management
platform for managing Oracle products.

Oracle HTTP Server

Software that processes Web transactions that use the Hypertext Transfer Protocol
(HTTP). Oracle uses HTTP software developed by the Apache Group.

Oracle Identity Management

An infrastructure enabling deployments to manage centrally and securely all
enterprise identities and their access to various applications in the enterprise.

Oracle Internet Directory

A general purpose directory service that enables retrieval of information about
dispersed users and network resources. It combines Lightweight Directory Access
Protocol (LDAP) Version 3 with the high performance, scalability, robustness, and
availability of the Oracle Database.

Oracle Liberty SDK

Oracle Liberty SDK implements the Liberty Alliance Project specifications enabling
federated single sign-on between third-party Liberty-compliant applications.

Oracle Net Services

The foundation of the Oracle family of networking products, allowing services and
their client applications to reside on different computers and communicate. The main
function of Oracle Net Services is to establish network sessions and transfer data
between a client application and a server. Oracle Net Services is located on each
computer in the network. Once a network session is established, Oracle Net Services
acts as a data courier for the client and the server.

Oracle PKI certificate usages

Defines Oracle application types that a certificate supports.

Oracle PKI SDK

Oracle PKI SDK implements the security protocols that are necessary within public
key infrastructure (PKI) implementations.

Glossary-26

Oracle SAML

Oracle SAML provides a framework for the exchange of security credentials among
disparate systems and applications in an XML-based format as outlined in the OASIS
specification for the Security Assertions Markup Language (SAML).

Oracle Security Engine

Oracle Security Engine extends Oracle Crypto by offering X.509 based certificate
management functions. Oracle Security Engine is a superset of Oracle Crypto.

Oracle S/MIME

Oracle S/MIME implements the Secure/Multipurpose Internet Mail Extension
(S/MIME) specifications from the Internet Engineering Task Force (IETF) for secure
e-mail.

Oracle Wallet Manager

A Java-based application that security administrators use to manage public-key
security credentials on clients and servers.

See also: Oracle Advanced Security Administrator's Guide.

Oracle Web Services Security

Oracle Web Services Security provides a framework for authentication and
authorization using existing security technologies as outlined in the OASIS
specification for Web Services Security.

Oracle XML Security

Oracle XML Security implements the W3C specifications for XML Encryption and
XML Signature.

OracleAS Portal

An OracleAS Single Sign-On partner application that provides a mechanism for
integrating files, images, applications, and Web sites. The External Applications portlet
provides access to external applications.

other information repository

In an Oracle Directory Integration Platform environment, in which Oracle Internet
Directory serves as the central directory, any information repository except Oracle
Internet Directory.

OWM

See Oracle Wallet Manager.

partition

A unique, non-overlapping directory naming context that is stored on one directory
server.

partner application

An Oracle Application Server application or non-Oracle application that delegates the
authentication function to the OracleAS Single Sign-On server. This type of application
spares users from reauthenticating by accepting mod_osso headers.

peer-to-peer replication

Also called multimaster replication or n-way replication. A type of replication that
enables multiple sites, acting as equals, to manage groups of replicated data. In such a

Glossary-27

replication environment, each node is both a supplier and a consumer node, and the
entire directory is replicated on each node.

PKCS#1

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#1 provides recommendations for the implementation of
public-key cryptography based on the RSA algorithm, covering the following aspects:
cryptographic primitives; encryption schemes; signature schemes; ASN.1 syntax for
representing keys and for identifying the schemes.

PKCS#5

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS#5 provides recommendations for the implementation of
password-based cryptography.

PKCS#7

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #7 describes general syntax for data that may have cryptography
applied to it, such as digital signatures and digital envelopes.

PKCS#8

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #8 describes syntax for private key information, including a
private key for some public key algorithms and a set of attributes. The standard also
describes syntax for encrypted private keys.

PKCS#10

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #10 describes syntax for a request for certification of a public key, a
name, and possibly a set of attributes.

PKCS#12

The Public Key Cryptography Standards (PKCS) are specifications produced by RSA
Laboratories. PKCS #12 describes a transfer syntax for personal identity information,
including private keys, certificates, miscellaneous secrets, and extensions. Systems
(such as browsers or operating systems) that support this standard allow a user to
import, export, and exercise a single set of personal identity information—typically in
a format called a wallet.

PKI

See public key infrastructure (PKI).

plaintext

Plaintext is readable data prior to a transformation to ciphertext using encryption, or
readable data that is the result of a transformation from ciphertext using decryption.

point-to-point replication

Also called fan-out replication is a type of replication in which a supplier replicates
directly to a consumer. That consumer can then replicate to one or more other
consumers. The replication can be either full or partial.

policy precedence

In Oracle Application Server Certificate Authority (OCA), policies are applied to
incoming requests in the order that they are displayed on the main policy page. When

Glossary-28

the OCA policy processor module parses policies, those that appear toward the top of
the policy list are applied to requests first. Those that appear toward the bottom of the
list are applied last and take precedence over the others. Only enabled policies are
applied to incoming requests.

policy.properties

A multipurpose configuration file for Oracle Application Server Single Sign-On that
contains basic parameters required by the single sign-on server. Also used to configure
advanced features of OracleAS Single Sign-On, such as multilevel authentication.

POSIX

Portable Operating System Interface for UNIX. A set of programming interface
standards governing how to write application source code so that the applications are
portable between operating systems. A series of standards being developed by the
Internet Engineering Task Force (IETF).

POST Profile

An authentication method whereby login credentials are submitted within the body of
the login form.

predicates

In Oracle Application Server Certificate Authority (OCA), a policy predicate is a
logical expression that can be applied to a policy to limit how it is applied to incoming
certificate requests or revocations. For example, the following predicate expression
specifies that the policy in which it appears can have a different effect for requests or
revocations from clients with DNs that include "ou=sales,o=acme,c=us":

Type=="client" AND DN=="ou=sales,o=acme,c=us"

principal

One of the three primary roles defined in the identity federation protocols supported
by Oracle Identity Federation. The other roles are identity provider and service
provider.

A principal is any entity capable of using a service and capable of acquiring a
federated identity. Typically, a principal is a person or user, or a system entity whose
identity can be authenticated.

primary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node on which the application runs at any given time.

See also: secondary node.

private key

A private key is the secret key in a public/private key pair used in public key
cryptography. An entity uses its private key to decrypt data that has been encrypted
with its public key. The entity can also use its private key to create digital signatures.
The security of data encrypted with the entity's public key as well as signatures
created by the private key depends on the private key remaining secret.

private key cryptography

See symmetric cryptography.

Glossary-29

profile

See directory integration profile.

Project Liberty

See Liberty Alliance.

provisioned applications

Applications in an environment where user and group information is centralized in
Oracle Internet Directory. These applications are typically interested in changes to that
information in Oracle Internet Directory.

provisioning

The process of providing users with access to applications and other resources that
may be available in an enterprise environment.

provisioning agent

An application or process that translates Oracle-specific provisioning events to
external or third-party application-specific events.

provisioning integration profile

A special kind of directory integration profile that describes the nature of
provisioning-related notifications that Oracle Directory Integration Platform sends to
the directory-enabled applications.

proxy server

A server between a client application, such as a Web browser, and a real server. It
intercepts all requests to the real server to see if it can fulfil the requests itself. If not, it
forwards the request to the real server. In OracleAS Single Sign-On, proxies are used
for load balancing and as an extra layer of security.

See also: load balancer.

proxy user

A kind of user typically employed in an environment with a middle tier such as a
firewall. In such an environment, the end user authenticates to the middle tier. The
middle tier then logs into the directory on the end user’s behalf. A proxy user has the
privilege to switch identities and, once it has logged into the directory, switches to the
end user’s identity. It then performs operations on the end user’s behalf, using the
authorization appropriate to that particular end user.

public key

A public key is the non-secret key in a public/private key pair used in public key
cryptography. A public key allows entities to encrypt data that can only then be
decrypted with the public key's owner using the corresponding private key. A public
key can also be used to verify digital signatures created with the corresponding
private key.

public key certificate

See certificate.

public key cryptography

Public key cryptography (also known as asymmetric cryptography) uses two keys, one
public and the other private. These keys are called a key pair. The private key must be
kept secret, while the public key can be transmitted to any party. The private key and

Glossary-30

the public key are mathematically related. A message that is signed by a private key
can be verified by the corresponding public key. Similarly, a message encrypted by the
public key can be decrypted by the private key. This method ensures privacy because
only the owner of the private key can decrypt the message.

public key encryption

The process in which the sender of a message encrypts the message with the public
key of the recipient. Upon delivery, the message is decrypted by the recipient using the
recipient’s private key.

public key infrastructure (PKI)

A public key infrastructure (PKI) is a system that manages the issuing, distribution,
and authentication of public keys and private keys. A PKI typically comprises the
following components:

■ A Certificate Authority (CA) that is responsible for generating, issuing,
publishing and revoking digital certificates.

■ A Registration Authority (RA) that is responsible for verifying the information
supplied in requests for certificates made to the CA.

■ A directory service where a certificate or certificate revocation list (CRL) gets
published by the CA and where they can be retrieved by relying third parties.

■ Relying third parties that use the certificates issued by the CA and the public keys
contained therein to verify digital signatures and encrypt data.

public/private key pair

A mathematically related set of two numbers where one is called the private key and
the other is called the public key. Public keys are typically made widely available,
while private keys are available only to their owners. Data encrypted with a public key
can only be decrypted with its associated private key and vice versa. Data encrypted
with a public key cannot be decrypted with the same public key.

RC2

Rivest Cipher Two (RC2) is a 64-bit block cipher developed by Ronald Rivest for RSA
Security, and was designed as a replacement for Data Encryption Standard (DES).

RC4

Rivest Cipher Four (RC4) is a stream cipher developed by Ronald Rivest for RSA
Security. RC4 allows variable key lengths up to 1024 bits. RC4 is most commonly used
to secure data communications by encrypting traffic between Web sites that use the
Secure Sockets Layer (SSL) protocol.

RDN

See relative distinguished name (RDN).

readable data

Data prior to a transformation to ciphertext via encryption or data that is the result of a
transformation from ciphertext via decryption.

realm

See identity management realm.

Glossary-31

realm search base

An attribute in the root Oracle Context that identifies the entry in the directory
information tree (DIT) that contains all identity management realms. This attribute is
used when mapping a simple realm name to the corresponding entry in the directory.

referral

Information that a directory server provides to a client and which points to other
servers the client must contact to find the information it is requesting.

See also: knowledge reference.

Registration Authority (RA)

The Registration Authority (RA) is responsible for verifying and enrolling users before
a certificate is issued by a Certificate Authority (CA). The RA may assign each
applicant a relative distinguished value or name for the new certificate applied. The
RA does not sign or issue certificates.

registry entry

An entry containing runtime information associated with invocations of Oracle
Internet Directory servers, called a directory server instance. Registry entries are
stored in the directory itself, and remain there until the corresponding directory server
instance stops.

relational database

A structured collection of data that stores data in tables consisting of one or more
rows, each containing the same set of columns. Oracle makes it very easy to link the
data in multiple tables. This is what makes Oracle a relational database management
system, or RDBMS. It stores data in two or more tables and enables you to define
relationships between the tables. The link is based on one or more fields common to
both tables.

relative distinguished name (RDN)

The local, most granular level entry name. It has no other qualifying entry names that
would serve to uniquely address the entry. In the example, cn=Smith,o=acme,c=US,
the RDN is cn=Smith.

remote master site (RMS)

In a replicated environment, any site, other than the master definition site (MDS),
that participates in Oracle Database Advanced Replication.

replica

Each copy of a naming context that is contained within a single server.

replication agreement

A special directory entry that represents the replication relationship among the
directory servers in a directory replication group (DRG).

response time

The time between the submission of a request and the completion of the response.

RFC

The Internet Request For Comments (or RFC) documents are the written definitions of
the protocols and policies of the Internet. The Internet Engineering Task Force (IETF)
facilitates the discussion, development, and establishment of new standards. A

Glossary-32

standard is published using the RFC acronym and a reference number. For example,
the official standard for e-mail is RFC 822.

root CA

In a hierarchical public key infrastructure (PKI), the root Certificate Authority (CA)
is the CA whose public key serves as the most trusted datum for a security domain.

root directory specific entry (DSE)

An entry storing operational information about the directory. The information is stored
in a number of attributes.

root DSE

See root directory specific entry (DSE).

root Oracle Context

In the Oracle Identity Management infrastructure, the root Oracle Context is an entry
in Oracle Internet Directory containing a pointer to the default identity management
realm in the infrastructure. It also contains information on how to locate an identity
management realm given a simple name of the realm.

RSA

RSA is a public key cryptography algorithm named after its inventors (Rivest, Shamir,
and Adelman). The RSA algorithm is the most commonly used encryption and
authentication algorithm and is included as part of the Web browsers from Netscape
and Microsoft, and many other products.

RSAES-OAEP

The RSA Encryption Scheme - Optimal Asymmetric Encryption Padding
(RSAES-OAEP) is a public key encryption scheme combining the RSA algorithm with
the OAEP method. Optimal Asymmetric Encryption Padding (OAEP) is a method for
encoding messages developed by Mihir Bellare and Phil Rogaway.

S/MIME

See Secure/Multipurpose Internet Mail Extension (S/MIME).

SAML

See Security Assertions Markup Language (SAML).

SASL

See Simple Authentication and Security Layer (SASL).

scalability

The ability of a system to provide throughput in proportion to, and limited only by,
available hardware resources.

schema

The collection of attributes, object classes, and their corresponding matching rules.

secondary node

In an Oracle Application Server Cold Failover Cluster (Identity Management), the
cluster node to which an application is moved during a failover.

See also: primary node.

Glossary-33

secret key

A secret key is the key used in a symmetric algorithm. Since a secret key is used for
both encryption and decryption, it must be shared between parties that are
transmitting ciphertext to one another but must be kept secret from all unauthorized
entities.

secret key cryptography

See symmetric cryptography.

Secure Hash Algorithm (SHA)

Secure Hash Algorithm (SHA) is a hash function algorithm that produces a 160-bit
message digest based upon the input. The algorithm is used in the Digital Signature
Standard (DSS). With the introduction of the Advanced Encryption Standard (AES)
which offers three key sizes: 128, 192 and 256 bits, there has been a need for a
companion hash algorithm with a similar level of security. The newer SHA-256,
SHA-284 and SHA-512 hash algorithms comply with these enhanced requirements.

Secure Sockets Layer (SSL)

Secure Sockets Layer (SSL) is a protocol designed by Netscape Communications to
enable encrypted, authenticated communications across networks (such as the
Internet). SSL uses the public key encryption system from RSA, which also includes
the use of a digital certificate. SSL provides three elements of secure communications:
confidentiality, authentication, and integrity.

SSL has evolved into Transport Layer Security (TLS). TLS and SSL are not
interoperable. However, a message sent with TLS can be handled by a client that
handles SSL.

Secure/Multipurpose Internet Mail Extension (S/MIME)

Secure/Multipurpose Internet Mail Extension (S/MIME) is an Internet Engineering
Task Force (IETF) standard for securing MIME data through the use of digital
signatures and encryption.

Security Assertions Markup Language (SAML)

An XML-based framework which defines mechanisms for exchanging security
information about a subject by making assertions about the subject that are used to
make access control decisions. SAML enables the exchange of authentication and
authorization information between identity providers and service providers who
otherwise may not be able to interoperate.

SAML 2.0 is a major revision of the standard which updates SAML 1.1 and combines
input from both Shibboleth and Liberty ID-FF specifications. A key aspect of SAML
2.0 is the ability for two sites to establish and maintain an identifier for a user, with
that user's cooperation. Additional features include privacy mechanisms and support
for global logout.

security token

In the Liberty protocol, refers to a set of security information that represents and
substantiates a claim.

server certificate

A certificate that attests to the identity of an organization that uses a secure Web
server to serve data. A server certificate must be associated with a public/private key
pair issued by a mutually trusted Certificate Authority (CA). Server certificates are
required for secure communications between a browser and a Web server.

Glossary-34

service provider

One of the three primary roles defined in the identity federation protocols supported
by Oracle Identity Federation. The other roles are identity provider and principal.

A service provider, which is the relying party in SAML, provides services or goods to a
principal while relying on an identity provider to authenticate the principal's identity.

service time

The time between the initiation of a request and the completion of the response to the
request.

session key

A secret key that is used for the duration of one message or communication session.

SGA

See System Global Area (SGA).

SHA

See Secure Hash Algorithm (SHA).

shared server

A server that is configured to allow many user processes to share very few server
processes, so the number of users that can be supported is increased. With shared
server configuration, many user processes connect to a dispatcher. The dispatcher
directs multiple incoming network session requests to a common queue. An idle
shared server process from a shared pool of server processes picks up a request from
the queue. This means a small pool of server processes can server a large amount of
clients. Contrast with dedicated server.

sibling

An entry that has the same parent as one or more other entries.

Signed Public Key And Challenge (SPKAC)

Signed Public Key And Challenge (SPKAC) is a proprietary protocol used by the
Netscape Navigator browser to request certificates.

simple authentication

The process by which the client identifies itself to the server by means of a DN and a
password which are not encrypted when sent over the network. In the simple
authentication option, the server verifies that the DN and password sent by the client
match the DN and password stored in the directory.

Simple Authentication and Security Layer (SASL)

Simple Authentication and Security Layer (SASL) is a method for adding
authentication and authorization capabilities to application protocols. SASL provides
a security layer between the protocol and the connection, so that users can be
authenticated to a server. A security layer can also be negotiated to protect subsequent
protocol interactions.

Simple Object Access Protocol (SOAP)

Simple Object Access Protocol (SOAP) is an XML-based protocol that defines a
framework for exchanging messages between systems over the Internet. A common
protocol for Web Services, SOAP is used with transport protocols such as HTTP and
FTP. A SOAP message consists of three parts — an envelope that describes the

Glossary-35

message and how to process it, a set of encoding rules for expressing instances of
application-defined datatypes, and a convention for representing remote procedure
calls and responses.

single key-pair wallet

A PKCS#12-format wallet that contains a single user certificate and its associated
private key. The public key is imbedded in the certificate.

single sign-off

The process by which you terminate an OracleAS Single Sign-On session and log out
of all active partner applications simultaneously. You can do this by logging out of the
application that you are working in.

single sign-on (SSO)

In a federated environment, single sign-on enables users to sign on once with a
member of a federated group of identity providers and service providers, and later use
resources available from members witout needing to sign on again.

single sign-on SDK

Legacy APIs to enable OracleAS Single Sign-On partner applications for single
sign-on. The SDK consists of PL/SQL and Java APIs as well as sample code that
demonstrates how these APIs are implemented. This SDK is now deprecated and
mod_osso is used instead.

single sign-on server

Program logic that enables users to log in securely to single sign-on applications such
as expense reports, mail, and benefits.

SLAPD

Standalone LDAP daemon. An LDAP directory server service that is responsible for
most functions of a directory except replication.

slave

See consumer.

smart knowledge reference

A knowledge reference that is returned when the knowledge reference entry is in the
scope of the search. It points the user to the server that stores the requested
information.

SOAP

See Simple Object Access Protocol (SOAP).

specific administrative area

Administrative areas control:

■ Subschema administration

■ Access control administration

■ Collective attribute administration

A specific administrative area controls one of these aspects of administration. A specific
administrative area is part of an autonomous administrative area.

Glossary-36

SPKAC

See Signed Public Key And Challenge (SPKAC).

sponsor node

In replication, the node that is used to provide initial data to a new node.

SSL

See Secure Sockets Layer (SSL).

SSO

See single sign-on (SSO).

stream cipher

Stream ciphers are a type of symmetric algorithm. A stream cipher encrypts in small
units, often a bit or a byte at a time, and implements some form of feedback
mechanism so that the key is constantly changing. RC4 is an example of a stream
cipher.

See also: block cipher.

subACLSubentry

A specific type of subentry that contains access control list (ACL) information.

subclass

An object class derived from another object class. The object class from which it is
derived is called its superclass.

subentry

A type of entry containing information applicable to a group of entries in a subtree.
The information can be of these types:

■ Access control policy points

■ Schema rules

■ Collective attributes

Subentries are located immediately below the root of an administrative area.

subordinate CA

In a hierarchical public key infrastructure (PKI), the subordinate Certificate
Authority (CA) is a CA whose certificate signature key is certified by another CA, and
whose activities are constrained by that other CA.

subordinate reference

A knowledge reference pointing downward in the directory information tree (DIT)
to a naming context that starts immediately below an entry

subschema DN

The list of directory information tree (DIT) areas having independent schema
definitions.

subSchemaSubentry

A specific type of subentry containing schema information.

Glossary-37

subtree

A section of a directory hierarchy, which is also called a directory information tree
(DIT). The subtree typically starts at a particular directory node and includes all
subdirectories and objects below that node in the directory hierarchy.

subtype

An attribute with one or more options, in contrast to that same attribute without the
options. For example, a commonName (cn) attribute with American English as an
option is a subtype of the commonName (cn) attribute without that option. Conversely,
the commonName (cn) attribute without an option is the supertype of the same
attribute with an option.

success URL

When using Oracle Application Server Single Sign-On, the URL to the routine
responsible for establishing the session and session cookies for an application.

super user

A special directory administrator who typically has full access to directory
information.

superclass

The object class from which another object class is derived. For example, the object
class person is the superclass of the object class organizationalPerson. The
latter, namely, organizationalPerson, is a subclass of person and inherits the
attributes contained in person.

superior reference

A knowledge reference pointing upward to a directory system agent (DSA) that
holds a naming context higher in the directory information tree (DIT) than all the
naming contexts held by the referencing DSA.

supertype

An attribute without options, in contrast to the same attribute with one or more
options. For example, the commonName (cn) attribute without an option is the
supertype of the same attribute with an option. Conversely, a commonName (cn)
attribute with American English as an option is a subtype of the commonName (cn)
attribute without that option.

supplier

In replication, the server that holds the master copy of the naming context. It supplies
updates from the master copy to the consumer server.

symmetric algorithm

A symmetric algorithm is a cryptographic algorithm that uses the same key for
encryption and decryption. There are essentially two types of symmetric (or secret
key) algorithms — stream ciphers and block ciphers.

symmetric cryptography

Symmetric cryptography (or shared secret cryptography) systems use the same key to
encipher and decipher data. The problem with symmetric cryptography is ensuring a
secure method by which the sender and recipient can agree on the secret key. If a third
party were to intercept the secret key in transit, they could then use it to decipher
anything it was used to encipher. Symmetric cryptography is usually faster than

Glossary-38

asymmetric cryptography, and is often used when large quantities of data need to be
exchanged. DES, RC2, and RC4 are examples of symmetric cryptography algorithms.

symmetric key

See secret key.

System Global Area (SGA)

A group of shared memory structures that contain data and control information for
one Oracle database instance. If multiple users are concurrently connected to the same
instance, the data in the instance SGA is shared among the users. Consequently, the
SGA is sometimes referred to as the "shared global area." The combination of the
background processes and memory buffers is called an Oracle instance.

system operational attribute

An attribute holding information that pertains to the operation of the directory itself.
Some operational information is specified by the directory to control the server, for
example, the time stamp for an entry. Other operational information, such as access
information, is defined by administrators and is used by the directory program in its
processing.

think time

The time the user is not engaged in actual use of the processor.

third-party access management system

Non-Oracle single sign-on system that can be modified to use OracleAS Single
Sign-On to gain access to Oracle Application Server applications.

throughput

The number of requests processed byOracle Internet Directory for each unit of time.
This is typically represented as "operations per second."

Time Stamp Protocol (TSP)

Time Stamp Protocol (TSP), as specified in RFC 3161, defines the participating entities,
the message formats, and the transport protocol involved in time stamping a digital
message. In a TSP system, a trusted third-party Time Stamp Authority (TSA) issues
time stamps for messages.

TLS

See Transport Layer Security (TLS).

Transport Layer Security (TLS)

A protocol providing communications privacy over the Internet. The protocol enables
client/server applications to communicate in a way that prevents eavesdropping,
tampering, or message forgery.

Triple Data Encryption Standard (3DES)

Triple Data Encryption Standard (3DES) is based on the Data Encryption Standard
(DES) algorithm developed by IBM in 1974, and was adopted as a national standard in
1977. 3DES uses three 64-bit long keys (overall key length is 192 bits, although actual
key length is 56 bits). Data is encrypted with the first key, decrypted with the second
key, and finally encrypted again with the third key. This makes 3DES three times
slower than standard DES but also three times more secure.

Glossary-39

trusted certificate

A third party identity that is qualified with a level of trust. The trust is used when an
identity is being validated as the entity it claims to be. Typically, trusted certificates
come from a Certificate Authority (CA) you trust to issue user certificates.

trustpoint

See trusted certificate.

TSP

See Time Stamp Protocol (TSP).

Unicode

A type of universal character set, a collection of 64K characters encoded in a 16-bit
space. It encodes nearly every character in just about every existing character set
standard, covering most written scripts used in the world. It is owned and defined by
Unicode Inc. Unicode is canonical encoding which means its value can be passed
around in different locales. But it does not guarantee a round-trip conversion between
it and every Oracle character set without information loss.

UNIX Crypt

The UNIX encryption algorithm.

URI

Uniform Resource Identifier (URI). A way to identify any point of content on the Web,
whether it be a page of text, a video or sound clip, a still or animated image, or a
program. The most common form of URI is the Web page address, which is a
particular form or subset of URI called a URL.

URL

Uniform Resource Locator (URL). The address of a file accessible on the Internet. The
file can be a text file, HTML page, image file, a program, or any other file supported by
HTTP. The URL contains the name of the protocol required to access the resource, a
domain name that identifies a specific computer on the Internet, and a hierarchical
description of the file location on the computer.

URLC token

The OracleAS Single Sign-On code that passes authenticated user information to the
partner application. The partner application uses this information to construct the
session cookie.

user name mapping module

A OracleAS Single Sign-On Java module that maps a user certificate to the user’s
nickname. The nickname is then passed to an authentication module, which uses this
nickname to retrieve the user’s certificate from the directory.

user search base

In the Oracle Internet Directory default directory information tree (DIT), the node in
the identity management realm under which all the users are placed.

UTC (Coordinated Universal Time)

The standard time common to every place in the world. Formerly and still widely
called Greenwich Mean Time (GMT) and also World Time, UTC nominally reflects the

Glossary-40

mean solar time along the Earth's prime meridian. UTC is indicated by a z at the end
of the value, for example, 200011281010z.

UTF-8

A variable-width 8-bit encoding of Unicode that uses sequences of 1, 2, 3, or 4 bytes
for each character. Characters from 0-127 (the 7-bit ASCII characters) are encoded with
one byte, characters from 128-2047 require two bytes, characters from 2048-65535
require three bytes, and characters beyond 65535 require four bytes. The Oracle
character set name for this is AL32UTF8 (for the Unicode 3.1 standard).

UTF-16

16-bit encoding of Unicode.The Latin-1 characters are the first 256 code points in this
standard.

verification

Verification is the process of ensuring that a given digital signature is valid, given the
public key that corresponds to the private key purported to create the signature and
the data block to which the signature purportedly applies.

virtual host

A single physical Web server machine that is hosting one or more Web sites or
domains, or a server that is acting as a proxy to other machines (accepts incoming
requests and reroutes them to the appropriate server).

In the case of OracleAS Single Sign-On, virtual hosts are used for load balancing
between two or more OracleAS Single Sign-On servers. They also provide an extra
layer of security.

virtual host name

In an Oracle Application Server Cold Failover Cluster (Identity Management), the host
name corresponding to a particular virtual IP address.

virtual IP address

In an Oracle Application Server Cold Failover Cluster (Identity Management), each
physical node has its own physical IP address and physical host name. To present a
single system image to the outside world, the cluster uses a dynamic IP address that
can be moved to any physical node in the cluster. This is called the virtual IP address.

wait time

The time between the submission of the request and initiation of the response.

wallet

An abstraction used to store and manage security credentials for an individual entity.
It implements the storage and retrieval of credentials for use with various
cryptographic services. A wallet resource locator (WRL) provides all the necessary
information to locate the wallet.

Wallet Manager

See Oracle Wallet Manager.

Web service

A Web service is application or business logic that is accessible using standard Internet
protocols, such as HTTP, XML, and SOAP. Web Services combine the best aspects of
component-based development and the World Wide Web. Like components, Web

Glossary-41

Services represent black-box functionality that can be used and reused without regard
to how the service is implemented.

Web Services Description Language (WSDL)

Web Services Description Language (WSDL) is the standard format for describing a
Web service using XML. A WSDL definition describes how to access a Web service and
what operations it will perform.

WSDL

See Web Services Description Language (WSDL).

WS-Federation

Web Services Federation Language (WS-Federation) is a specification developed by
Microsoft, IBM, BEA, VeriSign, and RSA Security. It defines mechanisms to allow
federation between entities using different or like mechanisms by allowing and
brokering trust of identities, attributes, and authentication between participating Web
services.

See also: Liberty Alliance.

X.500

X.500 is a standard from the International Telecommunication Union (ITU) that defines
how global directories should be structured. X.500 directories are hierarchical with
different levels for each category of information, such as country, state, and city.

X.509

X.509 is the most widely used standard for defining digital certificates. A standard
from the International Telecommunication Union (ITU), for hierarchical directories
with authentication services, used in many public key infrastructure (PKI)
implementations.

XKMS

The XML Key Management Specification (XKMS), developed by the World Wide Web
Consortium (W3C), specifies protocols for distributing and registering public keys.
XKMS comprises two parts: the XML Key Information Service Specification (X-KISS),
which defines a protocol for a Trust service that resolves public key information; and
the XML Key Registration Service Specification (X-KRSS), which defines a protocol for
a web service that accepts registration of public key information.

XML

Extensible Markup Language (XML) is a specification developed by the World Wide
Web Consortium (W3C). XML is a pared-down version of Standard Generalized
Mark-Up Language (SGML), designed especially for Web documents. XML is a
metalanguage (a way to define tag sets) that allows developers to define their own
customized markup language for many classes of documents.

XML canonicalization (C14N)

This is a process by which two logically equivalent XML documents can be resolved to
the same physical representation. This has significance for digital signatures because a
signature can only verify against the same physical representation of the data against
which it was originally computed. For more information, see the W3C’s XML
Canonicalization specification.

Glossary-42

Index-1

Index

A
algorithms, 3-1

asymmetric, 1-2
Diffie-Hellman, 2-9
hash, 1-3
key agreement, 2-9
message digest, 2-8
signature, 2-7
symmetric, 1-2

C
certificate authority, 1-4
ciphers, 2-5

symmetric, 2-5
CMP, 1-5, 7-1
CMS, 1-4

authenticated data, 5-17
constructing objects, 5-4
detached objects, 5-12
digested data, 5-7
encrypted data, 5-12
enveloped data, 5-14
object types, 5-4
reading objects, 5-5
signed data, 5-9

CRMF, 7-1
cryptography, 1-1

algorithms, 1-2

D
DER, 8-9
digital certificates, 4-1
DTD, 8-1

E
ECC, 1-11
ECDSA, 2-3
Elliptic Curve Cryptography, 1-11
Elliptic Curve Digital Signature Algorithm, 2-3
Enhanced Security Services, 6-14

F
federation, 1-9
FIM, 11-1

H
HMAC, 2-9, 3-2, 5-18

I
identity provider, 1-8, 1-10

J
Java API Reference

Oracle CMS, 5-25
Oracle Crypto, 2-11
Oracle Liberty SDK 1.1, 11-9
Oracle Liberty SDK 1.2, 11-19
Oracle PKI SDK CMP, 7-3
Oracle PKI SDK LDAP, 7-9
Oracle PKI SDK OCSP, 7-5
Oracle PKI SDK TSP, 7-7
Oracle SAML, 9-6
Oracle SAML 2.0, 9-10
Oracle Security Engine, 4-5
Oracle S/MIME, 6-14
Oracle Web Services Security, 10-6
Oracle XKMS, 12-7

JCE, 3-1

K
key agreement, 2-9, 5-17
key encryption, 5-17
key pairs

generating, 2-3
key transport, 5-17

L
LDAP, 1-5, 7-7
Liberty Alliance, 11-1
Liberty protocol

authentication context, 11-9
authorization request, 11-3

Index-2

authorization response, 11-4
base message class, 11-9
federation termination notification, 11-4
logout request, 11-5
logout response, 11-6
register name ID request, 11-6
register name ID response, 11-7

M
MAC, 1-1, 1-13, 2-3, 2-9, 5-18
Message Authentication Code, 1-1, 2-3, 5-18
message digests, 2-8

O
OCSP, 1-5, 7-3
Oracle CMS, 1-12, 5-1

developing applications with, 5-3
environment setup, 5-2
features and benefits, 5-1
system requirements, 5-2

Oracle Crypto, 1-11
core classes, 2-2
environment setup, 2-2
example programs, 2-11
features and benefits, 2-1
supported algorithms, 2-1

Oracle JCE Provider, 1-13, 3-1
environment setup, 3-3
features and benefits, 3-1
supported algorithms, 3-1

Oracle Liberty SDK, 1-14, 11-1
core classes, 11-3
features and benefits, 11-1
initialization, 11-8
supporting classes, 11-8

Oracle Liberty SDK 1.1
environment setup, 11-2

Oracle PKI SDK, 1-12, 7-1
Oracle PKI SDK CMP, 1-13, 7-1

environment setup, 7-2
example programs, 7-3
features and benefits, 7-1

Oracle PKI SDK LDAP, 1-12, 7-7
environment setup, 7-8
example programs, 7-9
features and benefits, 7-7

Oracle PKI SDK OCSP, 1-12, 7-3
environment setup, 7-4
features and benefits, 7-3

Oracle PKI SDK TSP, 1-12, 7-5
environment setup, 7-6
features and benefits, 7-5

Oracle SAML, 1-14, 9-1
core classes, 9-3
environment setup, 9-2
features and benefits, 9-1
SAML 2.0 core classes, 9-8
SAML 2.0 environment setup, 9-7

supporting classes, 9-5
Oracle Security Developer Tools

dependencies, 1-10
Oracle Security Engine, 1-11, 4-1

core classes, 4-3
environment setup, 4-2
features and benefits, 4-1
Java API Reference, 4-5
packages, 4-1

Oracle S/MIME, 1-12, 6-1
environment setup, 3-3, 6-1
example programs, 6-15
features and benefits, 6-1
supporting classes, 6-8

Oracle Web Services Security, 1-14, 10-1
core classes, 10-4
environment setup, 10-2
features and benefits, 10-1
packages, 10-1
supporting classes, 10-5

Oracle XKMS
core classes, 12-3
environment setup, 12-2
features and benefits, 12-1

Oracle XML Security, 1-13, 8-1
core classes, 8-4
environment setup, 8-2
features and benefits, 8-2
supported algorithms, 8-9
supporting classes, 8-8

P
password based encryption, 2-6
PBE objects

generating, 2-7
PEM, 8-9
PKCS 10 certificate requests, 4-4
PKCS#12, 8-9
PKCS#7, 8-9
PKI, 7-1

and CMP, 1-5
and CMS, 1-4
and LDAP, 1-5
and OCSP, 1-5
and S/MIME, 1-4
and TSP, 1-5
benefits, 1-5
digital certificates, 1-4
key pairs, 1-3

principal, 1-9
PRNG, 2-10

seeding, 2-10
pseudo-random numbers, 2-10
public key infrastructure, 1-3

R
RSA ciphers, 2-6

generating, 2-6

Index-3

S
SAML, 1-6, 9-1

2.0, 1-7
and XML security, 1-9
assertion element, 9-4
Oracle SAML 1.0/1.1 packages, 9-2
Oracle SAML 2.0 packages, 9-6
profiles, 1-9
request and response cycle, 1-8
request element, 9-4
response element, 9-5

service provider, 1-8
signatures, 2-7
single sign-on, 1-10
S/MIME, 1-4

new message, 6-5
SOAP, 1-6
SSO, 11-1
symmetric ciphers

generating, 2-5
symmetric key pairs

generating, 2-4

T
TSP, 1-5, 7-5

W
WSS, 1-6, 10-1

security elements, 10-4
SOAP message, 10-4

X
X500, 4-3
X.500 names, 4-3
X509, 1-4, 3-3
X.509 certificates, 4-5
XKMS, 8-1, 12-1
XML, 8-1

cipher data, 8-8
encryption, 8-6
key encryption, 8-7
security requirements, 8-1
signature creation, 8-4, 8-5
signature verification, 8-5

XML security
common questions, 8-9

Index-4

	Contents
	List of Figures
	List of Tables
	Preface
	Intended Audience
	Documentation Accessibility
	Related Documents
	Conventions

	1 Introduction to Oracle Security Developer Tools
	Cryptography
	Types of Cryptographic Algorithms
	Symmetric Cryptographic Algorithms
	Asymmetric Cryptographic Algorithms
	Hash Functions

	Additional Cryptography Resources

	Public Key Infrastructure (PKI)
	Key Pairs
	Certificate Authority
	Digital Certificates
	Related PKI Standards
	Benefits of PKI

	Web Services Security
	SAML
	SAML Assertions
	SAML Requests and Responses
	SAML Request and Response Cycle
	SAML Protocol Bindings and Profiles
	SAML and XML Security

	Federation
	Overview of Oracle Security Developer Tools
	Oracle Crypto
	Oracle Security Engine
	Oracle CMS
	Oracle S/MIME
	Oracle PKI SDK
	Oracle PKI SDK LDAP
	Oracle PKI SDK TSP
	Oracle PKI SDK OCSP
	Oracle PKI SDK CMP

	Oracle JCE Provider
	Oracle XML Security
	Oracle SAML
	Oracle Web Services Security
	Oracle Liberty SDK
	Oracle XKMS

	2 Oracle Crypto
	Oracle Crypto Features and Benefits
	Oracle Crypto Packages

	Setting Up Your Oracle Crypto Environment
	System Requirements for Oracle Crypto
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Core Classes and Interfaces
	Keys
	The oracle.security.crypto.core.Key Interface
	The oracle.security.crypto.core.PrivateKey Interface
	The oracle.security.crypto.core.PublicKey Interface
	The oracle.security.crypto.core.SymmetricKey Class

	Key Generation
	The oracle.security.crypto.core.KeyPairGenerator Class
	The oracle.security.crypto.core.SymmetricKeyGenerator Class

	Ciphers
	Symmetric Ciphers
	The RSA Cipher
	Password Based Encryption

	Signatures
	Message Digests
	The oracle.security.crypto.core.MessageDigest Class
	The oracle.security.crypto.core.MAC Class

	Key Agreement
	Pseudo-Random Number Generators
	The oracle.security.crypto.core.RandomBitsSource class
	The oracle.security.crypto.core.EntropySource class

	The Oracle Crypto Java API Reference
	Example Programs

	3 Oracle JCE Provider
	Oracle JCE Provider Features and Benefits
	Using the Oracle JCE Provider

	Setting Up Your Oracle JCE Provider Environment
	System Requirements for Oracle JCE Provider
	Installation Requirements
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Example Programs

	4 Oracle Security Engine
	Oracle Security Engine Features and Benefits
	Oracle Security Engine Packages

	Setting Up Your Oracle Security Engine Environment
	System Requirements for Oracle Security Engine
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Core Classes and Interfaces
	The oracle.security.crypto.cert.X500RDN Class
	The oracle.security.crypto.cert.X500Name Class
	The oracle.security.crypto.cert.CertificateRequest Class
	The oracle.security.crypto.cert.X509 Class

	The Oracle Security Engine Java API Reference
	Example Programs

	5 Oracle CMS
	Oracle CMS Features and Benefits
	Content Types
	Differences Between Oracle CMS and PKCS #7 Version 1.5

	Setting Up Your Oracle CMS Environment
	System Requirements
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Developing Applications with Oracle CMS
	CMS Object Types
	Constructing CMS Objects using the CMS***ContentInfo Classes
	Abstract Base Class CMSContentInfo
	Constructing a CMS Object
	Reading a CMS Object

	The CMSDataContentInfo Class
	The ESSReceipt Class
	The CMSDigestedDataContentInfo Class
	Constructing a CMS Digested-data Object
	Reading a CMS Digested-data Object
	Detached digested-data Objects

	The CMSSignedDataContentInfo Class
	Constructing a CMS Signed-data Object
	Reading a CMS Signed-data Object
	External Signatures (Detached Objects)
	Certificates/CRL-Only Objects

	The CMSEncryptedDataContentInfo Class
	Constructing a CMS Encrypted-data Object
	Reading a CMS Encrypted-data Object
	Detached encrypted-data CMS Objects

	The CMSEnvelopedDataContentInfo Class
	Constructing a CMS Enveloped-data Object
	Reading a CMS Enveloped-data Object
	Key Transport Key Exchange Mechanism
	Key Agreement Key Exchange Mechanism
	Key Encryption (Wrap) Key Exchange Mechanism
	Detached Enveloped-data CMS Object

	The CMSAuthenticatedDataContentInfo Class
	Constructing a CMS Authenticated-data Object
	Reading a CMS Authenticated-data Object
	Detached Authenticated-data CMS Objects

	Wrapped (Triple or more) CMSContentInfo Objects
	Reading a Nested (Wrapped) CMS Object

	Constructing CMS Objects using the CMS***Stream and CMS***Connector Classes
	Limitations of the CMS***Stream and CMS***Connector Classes
	Difference between CMS***Stream and CMS***Connector Classes
	Using the CMS***OutputStream and CMS***InputStream Classes
	CMS id-data Object
	CMS id-ct-receipt Object
	CMS id-digestedData Object
	CMS id-signedData Object
	CMS id-encryptedData Objects
	CMS id-envelopedData Objects
	CMS id-ct-authData Objects

	Wrapping (Triple or more) CMS***Connector Objects

	The Oracle CMS Java API Reference
	Example Programs

	6 Oracle S/MIME
	Oracle S/MIME Features and Benefits
	Setting Up Your Oracle S/MIME Environment
	System Requirements for Oracle S/MIME
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Developing Applications with Oracle S/MIME
	Core Classes and Interfaces
	The oracle.security.crypto.smime.SmimeObject Interface
	The oracle.security.crypto.smime.SmimeSignedObject Interface
	The oracle.security.crypto.smime.SmimeSigned Class
	The oracle.security.crypto.smime.SmimeEnveloped Class
	The oracle.security.crypto.smime.SmimeMultipartSigned Class
	The oracle.security.crypto.smime.SmimeSignedReceipt Class
	The oracle.security.crypto.smime.SmimeCompressed Class

	Supporting Classes and Interfaces
	The oracle.security.crypto.smime.Smime Interface
	The oracle.security.crypto.smime.SmimeUtils Class
	The oracle.security.crypto.smime.MailTrustPolicy Class
	The oracle.security.crypto.smime.SmimeCapabilities Class
	The oracle.security.crypto.smime.SmimeDataContentHandler Class
	The oracle.security.crypto.smime.ess Package

	Using the Oracle S/MIME Classes
	Using the Abstract Class SmimeObject
	Signing Messages
	Creating "Multipart/Signed" Entities
	Creating Digital Envelopes
	Creating "Certificates-Only" Messages
	Reading Messages
	Authenticating Signed Messages
	Opening Digital Envelopes (Encrypted Messages)
	Adding Enhanced Security Services (ESS)
	Processing Enhanced Security Services (ESS)

	The Oracle S/MIME Java API Reference
	Example Programs

	7 Oracle PKI SDK
	Oracle PKI SDK CMP
	Oracle PKI SDK CMP Features and Benefits
	Package Overview for Oracle PKI SDK CMP

	Setting Up Your Oracle PKI SDK CMP Environment
	System Requirements for Oracle PKI SDK CMP
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	The Oracle PKI SDK CMP Java API Reference
	Example Programs

	Oracle PKI SDK OCSP
	Oracle PKI SDK OCSP Features and Benefits
	Setting Up Your Oracle PKI SDK OCSP Environment
	System Requirements for Oracle PKI SDK OCSP
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on Unix

	The Oracle PKI SDK OCSP Java API Reference
	Example Programs

	Oracle PKI SDK TSP
	Oracle PKI SDK TSP Features and Benefits
	Class and Interface Overview for Oracle PKI SDK TSP

	Setting Up Your Oracle PKI SDK TSP Environment
	System Requirements for Oracle PKI SDK TSP
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on Unix

	The Oracle PKI SDK TSP Java API Reference
	Example Programs

	Oracle PKI SDK LDAP
	Oracle PKI SDK LDAP Features and Benefits
	Class Overview for Oracle PKI SDK LDAP

	Setting Up Your Oracle PKI SDK LDAP Environment
	System Requirements for Oracle PKI SDK LDAP
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on Unix

	The Oracle PKI SDK LDAP Java API Reference
	Example Programs

	8 Oracle XML Security
	Oracle XML Security Features and Benefits
	Setting Up Your Oracle XML Security Environment
	System Requirements for Oracle XML Security
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Classes and Interfaces
	Core Classes
	The oracle.security.xmlsec.dsig.XSSignature Class
	The oracle.security.xmlsec.dsig.XSSignedInfo Class
	The oracle.security.xmlsec.dsig.XSReference class
	The oracle.security.xmlsec.dsig.XSKeyInfo class
	The oracle.security.xmlsec.enc.XEEncryptedData class
	The oracle.security.xmlsec.enc.XEEncryptedKey Class
	The oracle.security.xmlsec.enc.XEEncryptionMethod Class
	The oracle.security.xmlsec.enc.XECipherData Class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.util.XMLURI Interface
	The oracle.security.xmlsec.util.XMLUtils class

	Common XML Security Questions
	Common Questions about Keys and Certificates
	Common Questions about XML Signatures
	Common Questions about XML Encryption

	The Oracle XML Security Java API Reference
	Example Programs

	9 Oracle SAML
	Oracle SAML Features and Benefits
	Oracle SAML 1.0/1.1
	Oracle SAML 1.0/1.1 Packages
	Setting Up Your Oracle SAML 1.0/1.1 Environment
	System Requirements for Oracle SAML 1.0/1.1
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Classes and Interfaces
	Core Classes
	The oracle.security.xmlsec.saml.SAMLInitializer Class
	The oracle.security.xmlsec.saml.Assertion Class
	The oracle.security.xmlsec.samlp.Request Class
	The oracle.security.xmlsec.samlp.Response Class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.saml.SAMLURI Interface
	The oracle.security.xmlsec.saml.SAMLMessage Class

	The Oracle SAML 1.0/1.1 Java API Reference
	Example Programs

	Oracle SAML 2.0
	Oracle SAML 2.0 Packages
	Setting Up Your Oracle SAML 2.0 Environment
	System Requirements for Oracle SAML 2.0
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Classes and Interfaces
	Core Classes
	The oracle.security.xmlsec.saml2.core.Assertion Class
	The oracle.security.xmlsec.saml2.protocol.AuthnRequest Class
	The oracle.security.xmlsec.saml2.protocol.StatusResponse Class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.saml2.util.SAML2URI Interface

	The Oracle SAML 2.0 Java API Reference
	Example Programs

	10 Oracle Web Services Security
	Oracle Web Services Security Features and Benefits
	Oracle Web Services Security Packages
	Related Documentation

	Setting Up Your Oracle Web Services Security Environment
	System Requirements for Oracle Web Services Security
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Classes and Interfaces
	Core Classes and Interfaces
	The oracle.security.xmlsec.wss.WSSecurity Class
	The oracle.security.xmlsec.wss.soap.WSSOAPEnvelope Class
	The oracle.security.xmlsec.wss.WSSElement Class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.wss.utils.WSSURI Interface
	The oracle.security.xmlsec.wss.utils.WSSTokenUtils Class
	The oracle.security.xmlsec.wss.utils.WSSUtils Class

	The Oracle Web Services Security Java API Reference
	Example Programs

	11 Oracle Liberty SDK
	Oracle Liberty SDK Features and Benefits
	Oracle Liberty 1.1
	Setting Up Your Oracle Liberty 1.1 Environment
	System Requirements for Oracle Liberty 1.1
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Overview of Oracle Liberty 1.1 Classes and Interfaces
	Core Classes and Interfaces
	The oracle.security.xmlsec.liberty.v11.AuthnRequest Class
	The oracle.security.xmlsec.liberty.v11.AuthnResponse Class
	The oracle.security.xmlsec.liberty.v11.FederationTerminationNotification Class
	The oracle.security.xmlsec.liberty.v11.LogoutRequest Class
	The oracle.security.xmlsec.liberty.v11.LogoutResponse Class
	The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierRequest Class
	The oracle.security.xmlsec.liberty.v11.RegisterNameIdentifierResponse Class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.liberty.v11.LibertyInitializer class
	The oracle.security.xmlsec.liberty.v11.LibertyURI interface
	The oracle.security.xmlsec.liberty.v11.ac.AuthenticationContextURI interface
	The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	The oracle.security.xmlsec.saml.SAMLURI Interface
	The oracle.security.xmlsec.saml.SAMLMessage class

	The Oracle Liberty SDK 1.1 API Reference
	Example Programs

	Oracle Liberty 1.2
	Setting Up Your Oracle Liberty 1.2 Environment
	System Requirements for Oracle Liberty 1.2
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on Unix

	Overview of Oracle Liberty 1.2 Classes and Interfaces
	Core Classes and Interfaces
	The oracle.security.xmlsec.saml.Assertion class
	The oracle.security.xmlsec.samlp.Request class
	The oracle.security.xmlsec.samlp.Response class
	The oracle.security.xmlsec.liberty.v12.AuthnRequest class
	The oracle.security.xmlsec.liberty.v12.AuthnResponse class
	The oracle.security.xmlsec.liberty.v12.FederationTerminationNotification class
	The oracle.security.xmlsec.liberty.v12.LogoutRequest class
	The oracle.security.xmlsec.liberty.v12.LogoutResponse class
	The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierRequest class
	The oracle.security.xmlsec.liberty.v12.RegisterNameIdentifierResponse class

	Supporting Classes and Interfaces
	The oracle.security.xmlsec.liberty.v12.LibertyInitializer class
	The oracle.security.xmlsec.liberty.v12.LibertyURI interface
	The oracle.security.xmlsec.util.ac.AuthenticationContextStatement class
	The oracle.security.xmlsec.saml.SAMLInitializer class
	The oracle.security.xmlsec.saml.SAMLURI Interface
	The oracle.security.xmlsec.saml.SAMLMessage Class

	The Oracle Liberty SDK 1.2 API Reference
	Example Programs

	12 Oracle XKMS
	Oracle XKMS Features and Benefits
	Oracle XKMS Packages

	Setting Up Your Oracle XKMS Environment
	System Requirements for Oracle XKMS
	Setting the CLASSPATH Environment Variable
	Setting the CLASSPATH on Windows
	Setting the CLASSPATH on UNIX

	Core Classes and Interfaces
	oracle.security.xmlsec.xkms.xkiss.LocateRequest
	oracle.security.xmlsec.xkms.xkiss.LocateResult
	oracle.security.xmlsec.xkms.xkiss.ValidateRequest
	oracle.security.xmlsec.xkms.xkiss.ValidateResult
	oracle.security.xmlsec.xkms.xkrss.RecoverRequest
	oracle.security.xmlsec.xkms.xkrss.RecoverResult

	The Oracle XKMS Java API Reference
	Example Programs

	A References
	Glossary
	Index
	A
	C
	D
	E
	F
	H
	I
	J
	K
	L
	M
	O
	P
	R
	S
	T
	W
	X

