
[image: Oracle Corporation]

Oracle® XML DB

Developer's Guide

11g Release 1 (11.1)

B28369-04

May 2008

This manual describes Oracle XML DB. It includes guidelines and examples for storing, generating, accessing, searching, validating, transforming, evolving, and indexing XML data in Oracle Database.

Oracle XML DB Developer's Guide, 11g Release 1 (11.1)

B28369-04

Copyright © 2002, 2008, Oracle. All rights reserved.

Primary Author: Drew Adams

Contributing Author: Nipun Agarwal, Abhay Agrawal, Omar Alonso, David Anniss, Sandeepan Banerjee, Mark Bauer, Ravinder Booreddy, Stephen Buxton, Yuen Chan, Sivasankaran Chandrasekar, Vincent Chao, Ravindranath Chennoju, Dan Chiba, Mark Drake, Fei Ge, Janis Greenberg, Wenyun He, Shelley Higgins, Thuvan Hoang, Sam Idicula, Namit Jain, Neema Jalali, Deepti Kamal, Bhushan Khaladkar, Viswanathan Krishnamurthy, Muralidhar Krishnaprasad, Geoff Lee, Wesley Lin, Annie Liu, Anand Manikutty, Jack Melnick, Nicolas Montoya, Steve Muench, Chuck Murray, Ravi Murthy, Eric Paapanen, Syam Pannala, John Russell, Eric Sedlar, Vipul Shah, Cathy Shea, Asha Tarachandani, Tarvinder Singh, Simon Slack, Muralidhar Subramanian, Asha Tarachandani, Priya Vennapusa, James Warner

Contributor: Reema Al-Shaikh, Harish Akali, Vikas Arora, Deanna Bradshaw, Paul Brandenstein, Lisa Eldridge, Craig Foch, Wei Hu, Reema Koo, Susan Kotsovolos, Sonia Kumar, Roza Leyderman, Zhen Hua Liu, Diana Lorentz, Yasuhiro Matsuda, Valarie Moore, Bhagat Nainani, Visar Nimani, Sunitha Patel, Denis Raphaely, Rebecca Reitmeyer, Ronen Wolf

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions
	Code Examples
	Syntax Descriptions

What's New In Oracle XML DB?

	Oracle Database 11g Release 1 (11.1) New Features in Oracle XML DB

Part I Oracle XML DB Basics

1 Introduction to Oracle XML DB

	Features of Oracle XML DB
	Oracle XML DB Architecture
	XMLType Storage
	APIs for XML
	Catalog Views Related to XML
	Views RESOURCE_VIEW and PATH_VIEW
	Overview of Oracle XML DB Repository
	Accessing and Manipulating XML in the Oracle XML DB Repository
	XML Services
	Oracle XML DB Repository Architecture
	How Does Oracle XML DB Repository Work?
	Oracle XML DB Protocol Architecture

	Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

	Oracle XML DB Features
	XMLType Data Type
	XML Schema Support
	XMLType Storage Models
	XML/SQL Duality
	SQL/XML INCITS Standard SQL Functions
	Rewriting of XQuery and XPath Expressions
	How XPath Expressions Are Evaluated by Oracle XML DB
	Rewriting SQL Code That Contains XQuery and XPath Expressions
	When Can XPath Rewrite Occur?
	What is the XPath-Rewrite Process?

	Oracle XML DB Benefits
	Unifying Data and Content
	Exploiting Database Capabilities
	Exploiting XML Capabilities

	Efficient Storage and Retrieval of Complex XML Documents
	Integrate Applications
	Use XMLType Views If Your Data Is Not XML

	Searching XML Data Using Oracle Text
	Building Messaging Applications using Oracle Streams Advanced Queuing
	Requirements for Running Oracle XML DB
	Standards Supported by Oracle XML DB
	Oracle XML DB Technical Support
	Oracle XML DB Examples Used in This Manual
	Further Oracle XML DB Case Studies and Demonstrations

2 Getting Started with Oracle XML DB

	Oracle XML DB Installation
	When to Use Oracle XML DB
	Designing Your XML Application
	Application Design with Oracle XML DB
	Data
	Access
	Application Language
	Processing
	Storage

	How Structured Is Your Data?
	Access Models
	Application Language
	Processing Models
	Messaging Options

	Storage Models
	Oracle XML DB Performance
	XML Storage Requirements
	XML Memory Management
	XML Parsing Optimizations
	Node-Searching Optimizations
	XML Schema Optimizations
	Load Balancing Through Cached XML Schema
	Reduced Bottlenecks From Code That Is Not Native
	Reduced Java Type Conversion Bottlenecks

3 Using Oracle XML DB

	Storing XML as XMLType
	What is XMLType?
	Benefits of XMLType Data Type and API
	When to Use XMLType

	Creating XMLType Tables and Columns
	Using Virtual Columns to Constrain Data Stored as Binary XML
	Loading XML Content into Oracle XML DB
	Loading XML Content Using SQL or PL/SQL
	Loading XML Content Using Java
	Loading XML Content Using C
	Loading Large XML Files That Contain Small XML Documents
	Loading Large XML Files Using SQL*Loader
	Loading XML Documents into the Repository Using DBMS_XDB
	Loading Documents into the Repository Using Protocols

	Character Sets of XML Documents
	XML Encoding Declaration
	Character-Set Determination When Loading XML Documents into the Database
	Character-Set Determination When Retrieving XML Documents from the Database

	Overview of the W3C XML Schema Recommendation
	XML Instance Documents
	XML Schema for Schemas
	Editing XML Schemas
	XML Schema Features
	Text Representation of the PurchaseOrder XML Schema
	Graphical Representation of the Purchase-Order XML Schema

	Using XML Schema with Oracle XML DB
	Why Use XML Schema With Oracle XML DB?
	Validating Instance Documents with XML Schema
	Constraining Instance Documents for Business Rules or Format Compliance
	Defining How XMLType Contents Must be Stored in the Database

	Structured Storage of XML Documents
	Annotating an XML Schema to Control Naming, Mapping, and Storage
	Controlling How Collections are Stored for Object-Relational XMLType Storage
	Declaring the Oracle XML DB Namespace
	Registering an XML Schema with Oracle XML DB
	SQL Types and Tables Created During XML Schema Registration
	Working with Large XML Schemas
	Working with Global Elements

	Creating XML Schema-Based XMLType Columns and Tables
	Default Tables

	Identifying XML Schema Instance Documents
	Attributes noNamespaceSchemaLocation and schemaLocation
	Dealing with Multiple Namespaces

	Using the Database to Enforce XML Data Integrity
	Comparing Partial to Full XML Schema Validation
	Partial Validation
	Full Validation

	Using SQL Constraints to Enforce Referential Integrity

	DML Operations on XML Content Using Oracle XML DB
	XPath and Oracle XML

	Querying XML Content Stored in Oracle XML DB
	PurchaseOrder XML Document
	Retrieving the Content of an XML Document Using Pseudocolumn OBJECT_VALUE
	Accessing Fragments or Nodes of an XML Document Using EXTRACT
	Accessing Text Nodes and Attribute Values Using XMLCAST and XMLQUERY
	Performing SQL Operations on XMLType Fragments with XMLTABLE
	Searching the Content of an XML Document Using XMLEXISTS
	Using XMLEXISTS in a SQL WHERE Clause

	Relational Access to XML Content Stored in Oracle XML DB Using Views
	Breaking Up a Single Level of XML Data
	Breaking Up Multiple Levels of XML Data
	Querying XML Content As Relational Data

	Updating XML Content Stored in Oracle XML DB
	Updating XML Schema-Based and Non-Schema-Based XML Documents

	Namespace Support in Oracle XML DB
	Processing XMLType Methods and XML-Specific SQL Functions
	Understanding and Optimizing XPath Rewrite
	Using EXPLAIN PLAN to Tune XPath Rewrite
	Using Indexes to Improve the Performance of XPath-Based Functions
	Accessing Members of Collections of Repeating Elements
	Using Indexes to Tune Queries on Collections Stored as OCTs
	EXPLAIN PLAN with ACL-Based Security Enabled: SYS_CHECKACL Filter

	Accessing Relational Database Content Using XML
	Generating XML From Relational Tables Using DBURIType

	XSL Transformation and Oracle XML DB
	Using Oracle XML DB Repository
	Installing and Uninstalling Oracle XML DB Repository
	Oracle XML DB Provides Name-Level Locking
	Use Protocols or SQL to Access and Process Repository Content
	Using Standard Protocols to Store and Retrieve Content
	Uploading Content to Oracle XML DB Using FTP
	Accessing Oracle XML DB Repository Programmatically
	Accessing and Updating XML Content in the Repository
	Accessing the Content of Documents Using SQL
	Accessing the Content of XML Schema-Based Documents
	Using Element XMLRef in Joins to Access Resource Content

	Updating the Content of Documents Stored in the Repository
	Updating Repository Content Using Protocols
	Updating Repository Content Using SQL
	Updating XML Schema-Based Documents in the Repository

	Controlling Access to Repository Data
	Oracle XML DB Transactional Semantics
	Querying Metadata and the Folder Hierarchy
	RESOURCE_VIEW and PATH_VIEW
	Querying Resources in RESOURCE_VIEW and PATH_VIEW

	Oracle XML DB Hierarchical Repository Index
	How Documents are Stored in the Repository

	Viewing Relational Data as XML From a Browser
	Using DBUri Servlet to Access Any Table or View From a Browser

	XSL Transformation Using DBUri Servlet

Part II Storing and Retrieving XML Data in Oracle XML DB

4 XMLType Operations

	Selecting and Querying XML Data
	Searching XML Documents with XPath Expressions
	Oracle Extension XPath Function Support

	Selecting XML Data Using XMLType Methods
	Querying XMLType Data with SQL Functions
	XMLEXISTS SQL Function
	EXISTSNODE SQL Function
	EXTRACT SQL Function
	XMLCAST SQL Function
	EXTRACTVALUE SQL Function

	Querying XML Data With SQL

	Updating XML Instances and XML Data in Tables
	Updating an Entire XML Document
	SQL Functions to Update XML Data
	Inserting XML Elements using SQL Functions

	UPDATEXML SQL Function
	UPDATEXML and NULL Values
	Updating the Same XML Node More Than Once
	Preserving DOM Fidelity When Using UPDATEXML

	Optimization of SQL Functions that Modify XML Data
	Creating Views of XML With SQL Functions that Modify XML Data
	INSERTCHILDXML SQL Function
	INSERTCHILDXMLBEFORE SQL Function
	INSERTCHILDXMLAFTER SQL Function
	INSERTXMLBEFORE SQL Function
	INSERTXMLAFTER SQL Function
	APPENDCHILDXML SQL Function
	DELETEXML SQL Function

5 Indexing XMLType Data

	Oracle XML DB Tasks Involving Indexes
	Overview of Indexing XMLType Data
	Problem: Fine-Grained Structure of XML Data
	B-tree Indexes Are Appropriate for Structured Storage
	Unstructured and Hybrid Storage Present an Indexing Problem for XML Data

	Solution: XMLIndex
	Other Indexes for XML Data
	Function-Based Indexes
	Oracle Text Indexes
	CTXXPath Indexes
	Optimization Chooses Indexes

	Function-Based Indexes on XMLType Data
	Creating Function-Based Indexes on Unstructured XMLType Tables and Columns
	Creating Function-Based Indexes on Structured XMLType Tables and Columns
	XPath Rewrite for EXTRACTVALUE Indexes on Singleton Elements or Attributes
	No XPath Rewrite for EXTRACTVALUE Applied to a Collection

	XMLIndex
	Advantages of XMLIndex
	XPath Expressions Not Indexed by XMLIndex
	Components of an XMLIndex Index
	Ignore the Path Table; It Is Transparent
	Column VALUE of the XMLIndex Path Table
	Creating Secondary Indexes on Column VALUE

	Data Dictionary Static Public Views Related to XMLIndex
	Creating, Dropping, Altering, and Examining an XMLIndex Index
	Creating Additional Secondary Indexes on an XMLIndex Path Table
	How to Tell If XMLIndex is Used
	Turning Off Use of XMLIndex
	XMLIndex Path Subsetting: Specifying the Paths You Want to Index
	Examples of XMLIndex Path Subsetting
	XMLIndex Path-Subsetting Rules

	Using XMLIndex on Oracle XML DB Repository
	Creating an XMLIndex Index on Repository Resources
	Removing Repository Resources From Indexing With XMLIndex
	Querying Repository Data and Metadata Indexed With XMLIndex
	Dropping an XMLIndex Index on Created on Repository Resources

	XMLIndex Parallelism
	Asynchronous (Deferred) Maintenance of XMLIndex Indexes
	Collecting Statistics on XMLIndex Objects For the Cost-Based Optimizer
	Guidelines for Using XMLIndex
	PARAMETERS Clause for CREATE INDEX and ALTER INDEX
	PARAMETERS Clause Syntax for CREATE INDEX and ALTER INDEX
	Usage of XMLIndex_parameters
	Usage of XMLIndex_parameter_clause for ALTER INDEX
	Usage of PATHS Clause
	Usage of create_index_paths_clause and alter_index_paths_clause
	Usage of xml_index_value_clause
	Usage of ASYNC Clause

	Oracle Text Indexes on XML Data
	Creating and Using Oracle Text Indexes
	Oracle Text Indexes Are Used Independently of Other Indexes

6 XML Schema Storage and Query: Basic

	Overview of XML Schema and Oracle XML DB
	Using Oracle XML DB With XML Schema
	Why XML Schema?
	DTD Support in Oracle XML DB
	Inline DTD Definitions
	External DTD Definitions

	Managing XML Schemas with DBMS_XMLSCHEMA
	Registering an XML Schema
	Delete and Reload Documents, Before Registering an XML Schema They Reference
	Storage and Access Infrastructure
	Atomic Nature of XML Schema Registration
	Managing and Storing XML Schemas
	Debugging XML Schema Registration for XML Data Stored Object-Relationally
	SQL Object Types Created During XML Schema Registration, for Structured Storage
	Default Tables Created During XML Schema Registration
	Generated Names are Case Sensitive
	Database Objects That Depend on Registered XML Schemas
	Listing All Registered XML Schemas
	Deleting an XML Schema
	DBMS_XMLSCHEMA.DELETESCHEMA Options

	XMLType Methods Related to XML Schema
	Local and Global XML Schemas
	Local XML Schema
	Global XML Schema

	DOM Fidelity
	What is DOM Fidelity?
	SYS_XDBPD$ and DOM Fidelity for Structured Storage

	XML Translations
	Changing an XML Schema and XML Instance Documents for Translation
	Indicating Translatable Elements in an XML Schema
	Indicating Translation Language Attributes in an XML Instance Document

	Making XML Documents Translatable
	Operations on Translated Documents

	Creating XMLType Tables and Columns Based on XML Schema
	Specifying XMLType Storage Options for XML Schema-Based Data
	Binary XML Storage of XML Schema-Based Data
	Unstructured Storage of XML Schema-Based Data
	Structured Storage of XML Schema-Based Data

	Specifying Relational Constraints on XMLType Tables and Columns

	Oracle XML Schema Annotations
	Common Uses of XML Schema Annotations
	XML Schema Annotation Example
	Available Oracle XML DB XML Schema Annotations

	Querying a Registered XML Schema to Obtain Annotations
	Mapping XML Schema Data Types to Oracle XML DB Storage
	Mapping XML Schema Data Types to SQL Data Types
	Example of Mapping XML Schema Data Types to SQL
	Mapping XML Schema Attribute Data Types to SQL
	Overriding the SQLType Value in an XML Schema When Declaring Attributes

	Mapping XML Schema Element Data Types to SQL
	Overriding the SQLType Value in an XML Schema When Declaring Elements

	Mapping simpleType to SQL
	NCHAR, NVARCHAR, and NCLOB SQLType Values are Not Supported
	simpleType: Mapping XML Strings to SQL VARCHAR2 Versus CLOB
	Working with Time Zones

	Mapping complexType to SQL
	Specifying Attributes in a complexType XML Schema Declaration

	Mapping XML Schema Data Types To Binary XML Encoding Types

7 XPath Rewrite

	Overview of XPath Rewrite
	Where Does XPath Rewrite Occur?
	Which XPath Expressions Are Rewritten?
	Common XML Schema Constructs Supported in XPath Rewrite
	Unsupported XML Schema Constructs in XPath Rewrite
	Common Storage Constructs Supported in XPath Rewrite
	Unsupported Storage Constructs in XPath Rewrite

	XPath Rewrite Can Change Comparison Semantics
	How Are XPath Expressions Rewritten?
	Rewriting XPath Expressions: Mapping Data Types and Path Expressions
	Mapping for a Simple XPath Expression
	Mapping for simpleType Elements
	Mapping of Predicates
	Document Ordering with Collection Traversals
	Schema-Based: Collection Position
	XPath Expressions That Cannot Be Satisfied
	Namespace Handling
	Date Format Conversions
	Existential Checks for Attributes and Elements with Scalar Values

	Diagnosing XPath Rewrite
	Using EXPLAIN PLAN with XPath Rewrite
	Using Events with XPath Rewrite
	Turning Off Functional Evaluation (Event 19021)
	Tracing Reasons that Rewrite Does Not Occur

	XPath Rewrite of Individual SQL Functions
	XPath Rewrite for EXISTSNODE
	EXISTSNODE Mapping with Document Order Preserved
	EXISTSNODE Mapping Without Document Order Preserved

	XPath Rewrite for EXTRACTVALUE
	XPath Rewrite for EXTRACT
	EXTRACT Mapping with Document Order Maintained
	EXTRACT Mapping Without Maintaining Document Order

	XPath Rewrite for XMLSEQUENCE
	XPath Rewrite for UPDATEXML
	XPath Rewrite for INSERTCHILDXML and DELETEXML

8 XML Schema Storage and Query: Advanced

	Generating XML Schemas with DBMS_XMLSCHEMA.GENERATESCHEMA
	Adding Unique Constraints to the Parent Element of an Attribute
	Setting Attribute SQLInline to false for Out-Of-Line Storage
	XPath Rewrite for Out-Of-Line Tables

	Storing Collections in Out-Of-Line Tables
	Fully Qualified XML Schema URLs
	Mapping XML Fragments to Large Objects (LOBs)
	complexType Extensions and Restrictions in Oracle XML DB
	complexType Declarations in XML Schema: Handling Inheritance
	Mapping complexType: simpleContent to Object Types
	Mapping complexType: any and anyAttribute

	Oracle XPath Extension Functions to Examine Type Information
	ora:instanceof-only XPath Function
	ora:instanceof XPath Function

	XML Schema: Working With Circular and Cyclical Dependencies
	For Circular XML Schema Dependencies Set Parameter GENTABLES to TRUE
	Handling Cycling Between complexTypes in XML Schema
	How a complexType Can Reference Itself

	Cyclical References Between XML Schemas

	Support for Recursive Schemas
	Sharing defaultTable Among Common Out-of-line Elements
	Query Rewrite When DOCID is Present
	Disabling DOCID Column Creation

	Guidelines for Using XML Schema with Oracle XML DB
	Using Bind Variables in XPath Expressions

	Loading and Retrieving Large Documents with Collections
	Guidelines for Setting xdbcore Parameters

9 XML Schema Evolution

	Overview of XML Schema Evolution
	Using Copy-Based Schema Evolution
	Scenario for Copy-Based Evolution
	copyEvolve Parameters and Errors
	Limitations When Using copyEvolve
	Guidelines for Using copyEvolve
	Top-Level Element Name Changes
	User-Created Virtual Columns of Tables Other Than Default Tables
	Ensure that the XML Schema and Dependents Are Not Used by Concurrent Sessions
	Rollback When Procedure DBMS_XMLSCHEMA.COPYEVOLVE Raises an Error
	Failed Rollback From Insufficient Privileges
	Privileges Needed for XML Schema Evolution

	Using a Style Sheet to Update Existing Instance Documents
	Examples of Using Procedure copyEvolve

	Using In-Place XML Schema Evolution
	Restrictions for In-Place XML Schema Evolution
	Backward-Compatibility Restrictions
	Other Restrictions on In-Place Evolution

	Supported Operations for In-Place XML Schema Evolution
	Guidelines for Using In-Place XML Schema Evolution
	inPlaceEvolve Parameters
	Creating the Document for the diffXML Parameter
	diffXML Operations and Examples

10 Transforming and Validating XMLType Data

	Transforming XMLType Instances
	SQL Function XMLTRANSFORM and XMLType Method transform()

	XMLTRANSFORM and XMLType.transform(): Examples
	Validating XMLType Instances
	XMLIsValid
	schemaValidate
	isSchemaValidated
	setSchemaValidated
	isSchemaValid

	Validating XML Data Stored as XMLType: Examples

11 Full-Text Search Over XML Data

	Overview of Full-Text Search for XML
	Comparison of Full-Text Search and Other Search Types
	Searching XML Data
	Searching Documents Using Full-Text Search and XML Structure

	About the Full-Text Search Examples
	Roles and Privileges
	Schema and Data for Full-Text Search Examples

	Overview of CONTAINS and ora:contains
	Overview of SQL Function CONTAINS
	Overview of XPath Function ora:contains
	Comparison of CONTAINS and ora:contains

	CONTAINS SQL Function
	Full-Text Search Using SQL Function CONTAINS
	Full-Text Boolean Operators AND, OR, and NOT
	Full-Text Stemming: $
	Combining Boolean and Stemming Operators

	SCORE SQL Function
	Restricting the Scope of a CONTAINS Search
	WITHIN Structure Operator
	INPATH Structure Operator
	HASPATH Structure Operator

	Projecting the CONTAINS Result
	Indexing With a CONTEXT Index
	Introduction to CONTEXT Indexes
	Effect of a CONTEXT Index on CONTAINS
	CONTEXT Index Preferences
	Introduction to Section Groups

	ora:contains XPath Function
	Full-Text Search Using XPath Function ora:contains
	Restricting the Scope of an ora:contains Query
	Projecting the ora:contains Result
	Policies for ora:contains Queries
	Introduction to Policies for ora:contains Queries
	Effect of Policies on ora:contains
	Policy Defaults

	Performance of ora:contains
	Use a Primary Filter in the Query
	XPath Rewrite and CONTEXT Indexes

	Text Path BNF Specification
	Support for Full-Text XML Examples
	Purchase-Order XML Document, po001.xml
	CREATE TABLE Statements
	Purchase-Order XML Schema for Full-Text Search Examples

Part III Using XMLType APIs

12 PL/SQL APIs for XMLType

	Overview of PL/SQL APIs for XMLType
	API Features
	Lazy Loading of XML Data (Lazy Manifestation)
	XMLType Data Type Supports XML Schema
	XMLType Supports Data in Different Character Sets

	PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	Overview of the W3C Document Object Model (DOM) Recommendation
	Oracle XDK Extensions to the W3C DOM Standard
	Supported W3C DOM Recommendations
	Difference Between DOM and SAX

	PL/SQL DOM API for XMLType (DBMS_XMLDOM): Features
	Enhanced Performance

	Designing End-to-End Applications Using Oracle XDK and Oracle XML DB
	Using PL/SQL DOM API for XMLType: Preparing XML Data
	Defining an XML Schema Mapping to SQL Object Types
	DOM Fidelity for XML Schema Mapping

	Wrapping Existing Data into XML with XMLType Views
	DBMS_XMLDOM Methods Supported
	PL/SQL DOM API for XMLType: Node Types
	Working with XML Schema-Based Data
	DOM NodeList and NamedNodeMap Objects
	Using PL/SQL DOM API for XMLType (DBMS_XMLDOM)
	PL/SQL DOM API for XMLType – Examples
	Large Node Handling Using DBMS_XMLDOM
	Get-Push Model
	Get-Pull Model
	Set-Pull Model
	Set-Push Model
	Determining Binary Stream or Character Stream

	PL/SQL Parser API for XMLType (DBMS_XMLPARSER)
	PL/SQL Parser API for XMLType: Features
	Using PL/SQL Parser API for XMLType (DBMS_XMLPARSER)

	PL/SQL XSLT Processor for XMLType (DBMS_XSLPROCESSOR)
	Enabling Transformations and Conversions with XSLT
	PL/SQL XSLT Processor for XMLType: Features
	Using PL/SQL XSLT Processor API for XMLType (DBMS_XSLPROCESSOR)

	PL/SQL Translation API for XMLType (DBMS_XMLTRANSLATIONS)
	DBMS_XMLTRANSLATIONS Methods

13 Package DBMS_XMLSTORE

	Overview of PL/SQL Package DBMS_XMLSTORE
	Using Package DBMS_XMLSTORE
	Inserting with DBMS_XMLSTORE
	Updating with DBMS_XMLSTORE
	Deleting with DBMS_XMLSTORE

14 Java DOM API for XMLType

	Overview of Java DOM API for XMLType
	Java DOM API for XMLType
	Using JDBC to Access XMLType Data
	How Java Applications Use JDBC to Access XML Documents in Oracle XML DB

	Using JDBC to Manipulate XML Documents Stored in a Database

	Loading a Large XML Document into the Database with JDBC
	Java DOM API for XMLType Features
	Creating XML Schema-Based Documents
	JDBC or SQLJ

	Java DOM API for XMLType Classes
	Java Methods That Are Deprecated or Not Supported
	Using Java DOM API for XMLType

	Handling Large Nodes Using Java
	Stream Extensions to Java DOM
	Get-Pull Model
	Get-Push Model
	Set-Pull Model
	Set-Push Model

	Using the Java DOM API and JDBC With Binary XML

15 Using the C API for XML

	Overview of the C API for XML (Oracle XDK and Oracle XML DB)
	Using OCI and the C API for XML with Oracle XML DB
	Accessing XMLType Data Stored in the Database
	Creating XMLType Instances on the Client

	XML Context Parameter for C DOM API Functions
	OCIXmlDbInitXmlCtx() Syntax
	OCIXmlDbFreeXmlCtx() Syntax

	Initializing and Terminating an XML Context
	Using the C API for XML With Binary XML
	Using the Oracle XDK Pull Parser With Oracle XML DB
	Common XMLType Operations in C

16 Using Oracle Data Provider for .NET with Oracle XML DB

	ODP.NET XML Support and Oracle XML DB
	ODP.NET Sample Code

Part IV Viewing Existing Data as XML

17 Generating XML Data from the Database

	Overview of Generating XML Data From Oracle Database
	Overview of Generating XML Using Standard SQL/XML Functions
	Overview of Generating XML Using Oracle Database SQL Functions
	Overview of Generating XML Using DBMS_XMLGEN
	Overview of Generating XML with XSQL Pages Publishing Framework
	Overview of Generating XML Using XML SQL Utility (XSU)
	Overview of Generating XML Using DBURIType

	Generating XML Using SQL Functions
	XMLELEMENT and XMLATTRIBUTES SQL Functions
	Escaping Characters in Generated XML Data
	Formatting of XML Dates and Timestamps
	XMLElement Examples

	XMLFOREST SQL Function
	XMLSEQUENCE SQL Function
	XMLCONCAT SQL Function
	XMLAGG SQL Function
	XMLPI SQL Function
	XMLCOMMENT SQL Function
	XMLROOT SQL Function
	XMLSERIALIZE SQL Function
	XMLPARSE SQL Function
	XMLCOLATTVAL SQL Function
	XMLCDATA SQL Function

	Generating XML Using DBMS_XMLGEN
	Using DBMS_XMLGEN
	Functions and Procedures of Package DBMS_XMLGEN
	DBMS_XMLGEN Examples

	Generating XML Using SQL Function SYS_XMLGEN
	Using XMLFormat Object Type

	Generating XML Using SQL Function SYS_XMLAGG
	Generating XML Using XSQL Pages Publishing Framework
	Generating XML Using XML SQL Utility (XSU)
	Guidelines for Generating XML With Oracle XML DB
	Using XMLAGG ORDER BY Clause to Order Query Results Before Aggregation
	Using XMLTABLE to Return a Rowset

18 Using XQuery with Oracle XML DB

	Overview of XQuery in Oracle XML DB
	Overview of the XQuery Language
	Functional Language Based on Sequences
	XQuery Expressions
	FLWOR Expressions

	SQL Functions XMLQUERY and XMLTABLE
	XMLQUERY SQL Function in Oracle XML DB
	XMLTABLE SQL Function in Oracle XML DB

	When To Use XQuery
	Predefined Namespaces and Prefixes
	Oracle XQuery Extension Functions
	ora:contains XQuery Function
	ora:matches XQuery Function
	ora:replace XQuery Function
	ora:sqrt XQuery Function
	ora:view XQuery Function

	XMLQUERY and XMLTABLE Examples
	XQuery Is About Sequences
	Using XQuery to Query XML Data in Oracle XML DB Repository
	Using ora:view to Query Relational Data in XQuery Expressions
	Using XQuery with XMLType Data
	Using Namespaces with XQuery

	Performance Tuning for XQuery
	XQuery Optimization over a SQL/XML View Created by ora:view
	XQuery Optimization over XML Schema-Based XMLType Data

	XQuery Static Type-Checking in Oracle XML DB
	SQL*Plus XQUERY Command
	Using XQuery with PL/SQL, JDBC, and ODP.NET
	Oracle XML DB Support for XQuery
	Support for XQuery and SQL
	Implementation Choices Specified in the XQuery Standard
	XQuery Features Not Supported by Oracle XML DB
	XQuery Optional Features

	Support for XQuery Functions and Operators
	XQuery Functions fn:doc, fn:collection, and fn:doc-available

19 XMLType Views

	What Are XMLType Views?
	Creating XMLType Views: Syntax

	Creating Non-Schema-Based XMLType Views
	Using SQL/XML Generation Functions to Create Non-Schema-Based XMLType Views
	Using Object Types with SYS_XMLGEN to Create Non-Schema-Based XMLType Views

	Creating XML Schema-Based XMLType Views
	Using SQL/XML Generation Functions to Create XML Schema-Based XMLType Views
	Using Namespaces With SQL/XML Functions

	Using Object Types and Views to Create XML Schema-Based XMLType Views
	Creating Schema-Based XMLType Views Over Object Views
	Wrapping Relational Department Data with Nested Employee Data as XML

	Creating XMLType Views From XMLType Tables
	Referencing XMLType View Objects Using SQL Function REF
	DML (Data Manipulation Language) on XMLType Views
	XPath Rewrite on XMLType Views
	Views Constructed With SQL/XML Generation Functions
	XPath Rewrite on Non-Schema-Based Views Constructed With SQL/XML
	XPath Rewrite on Schema-Based Views Constructed With SQL/XML

	Views Using Object Types, Object Views, and SYS_XMLGEN
	Non-Schema-Based XMLType Views Using Object Types or Object Views
	XML-Schema-Based Views Using Object Types or Object Views

	XPath Rewrite Event Trace

	Generating XML Schema-Based XML Without Creating Views

20 Accessing Data Through URIs

	Overview of Oracle XML DB URL Features
	URIs and URLs
	URIType and its Subtypes
	DBUris and XDBUris – What For?
	URIType Methods
	HTTPURIType Method getContentType()
	DBURIType Method getContentType()
	DBURIType Method getCLOB()
	DBURIType Method getBLOB()

	Accessing Data Using URIType Instances
	XDBUris: Pointers to Repository Resources
	XDBUri URI Syntax
	XDBUri Examples

	DBUris: Pointers to Database Data
	Viewing the Database as XML Data
	DBUri URI Syntax
	DBUris are Scoped to a Database and Session
	DBUri Examples
	Targeting a Table
	Targeting a Row in a Table
	Targeting a Column
	Retrieving the Text Value of a Column
	Targeting a Collection

	Creating New Subtypes of URIType using Package URIFACTORY
	Registering New URIType Subtypes with Package URIFACTORY

	SYS_DBURIGEN SQL Function
	Rules for Passing Columns or Object Attributes to SYS_DBURIGEN
	SYS_DBURIGEN SQL Function: Examples

	DBUriServlet
	Customizing DBUriServlet
	DBUriServlet Security
	Configuring Package URIFACTORY to Handle DBUris

Part V Oracle XML DB Repository

21 Accessing Oracle XML DB Repository Data

	Overview of Oracle XML DB Foldering
	Repository Terminology and Supplied Resources
	Repository Terminology
	Supplied Files and Folders

	Oracle XML DB Resources
	Where Is Repository Data Stored?
	Names of Generated Tables
	Defining Structured Storage for Resources
	ASM Virtual Folder

	Path-Name Resolution
	Managing and Controlling Access to Resources
	Link Types
	Repository and Document Links
	Hard Links and Weak Links
	Creating a Weak Link Without Knowledge of Folder Hierarchy
	Restricting Multiple Hard Links

	Accessing Oracle XML DB Repository Resources
	Navigational or Path Access
	Accessing Oracle XML DB Resources Using Internet Protocols
	Where You Can Use Oracle XML DB Protocol Access
	Using Protocol Access
	Retrieving Oracle XML DB Resources
	Storing Oracle XML DB Resources
	Using Internet Protocols and XMLType: XMLType Direct Stream Write

	Accessing ASM Files Using Protocols and Resource APIs – For DBAs

	Query-Based Access
	Accessing Repository Data Using Servlets
	Accessing Data Stored in Repository Resources
	Managing and Controlling Access to Resources

22 Configuring Oracle XML DB Repository

	Resource Configuration Files Configure a Resource
	Configuring a Resource
	Common Configuration Parameters
	Configuration Element ResConfig
	Configuration Element defaultChildConfig
	Configuration Element applicationData

23 Using XLink and XInclude With Oracle XML DB

	Overview of XLink and XInclude
	XLink and XInclude Link Types
	XLink and XInclude Links Model Document Relationships
	XLink and XInclude Link Types

	XInclude: Compound Documents
	Using XLink With Oracle XML DB
	Using XInclude With Oracle XML DB
	Expanding Compound-Document Inclusions
	Validating Compound Documents
	Updating Compound Documents
	Versioning, Locking, and Controlling Access to Compound Documents

	Using DOCUMENT_LINKS View to Examine XLink and XInclude Links
	Querying DOCUMENT_LINKS for XLink Information
	Querying DOCUMENT_LINKS for XInclude Information

	Configuring Resources for XLink and XInclude
	Configuring Treatment of Unresolved Links: UnresolvedLink Attribute
	Configuring the Document Links to Create: LinkType Element
	Configuring the Path Format for Retrieval: PathFormat Element
	Configuring Conflict-Resolution for XInclude: ConflictRule Element
	Configuring Decomposition of Documents Using XInclude: SectionConfig Element
	XLink and XInclude Configuration Examples

	Using DBMS_XDB.processLinks to Manage XLink and XInclude Links

24 Managing Resource Versions

	Overview of Oracle XML DB Versioning
	Oracle XML DB Versioning Features
	Oracle XML DB Versioning Terms Used in This Chapter
	Oracle XML DB Resource ID and Path Name

	Creating a Version-Controlled Resource (VCR)
	Version Resource ID or VCR Version
	Resource ID of a New Version
	Accessing a Version-Controlled Resource (VCR)
	Updating a Version-Controlled Resource (VCR)
	Procedure DBMS_XDB_VERSION.checkOut
	Procedure DBMS_XDB_VERSION.checkIn
	Procedure DBMS_XDB_VERSION.unCheckOut
	Update Contents and Properties

	Access Control and Security of a VCR
	Guidelines for Using Oracle XML DB Versioning

25 SQL Access Using RESOURCE_VIEW and PATH_VIEW

	Overview of Oracle XML DB RESOURCE_VIEW and PATH_VIEW
	RESOURCE_VIEW Definition and Structure
	PATH_VIEW Definition and Structure
	Understanding the Difference Between RESOURCE_VIEW and PATH_VIEW
	Operations You Can Perform Using UNDER_PATH and EQUALS_PATH

	RESOURCE_VIEW and PATH_VIEW SQL Functions
	UNDER_PATH SQL Function
	EQUALS_PATH SQL Function
	PATH SQL Function
	DEPTH SQL Function

	Using RESOURCE_VIEW and PATH_VIEW SQL Functions
	Accessing Repository Data Paths, Resources and Links: Examples
	Deleting Repository Resources: Examples
	Deleting Nonempty Folder Resources

	Updating Repository Resources: Examples

	Working with Multiple Oracle XML DB Resources
	Performance Tuning of Oracle XML DB Resource Queries
	Searching for Resources Using Oracle Text

26 Using PL/SQL to Access the Repository

	Overview of PL/SQL Package DBMS_XDB
	DBMS_XDB: Resource Management
	DBMS_XDB: ACL-Based Security Management
	DBMS_XDB: Configuration Management

27 Access Control Lists and Security Classes

	Access Control Concepts
	Principals: Users and Roles
	Database Roles Map Database Privileges to Users
	Role Sets
	Principal DAV::owner

	Privileges
	Security Classes
	Protected Objects
	Access Control Entry (ACE)
	Access Control List (ACL)

	Database Privileges for Repository Operations
	Security Classes
	Security Class as ACL Type

	System Security Classes
	Security Class DAV::dav
	Atomic Privileges in Security Class DAV::dav
	Aggregate Privileges in Security Class DAV::dav

	Security Class PrincipalSecurityClass
	Atomic Privileges Defined by Security Class PrincipalSecurityClass
	Aggregate Privileges Defined by Security Class PrincipalSecurityClass

	ACLs and ACEs
	System ACLs
	ACL and ACE Evaluation
	ACL Validation
	ACL Inheritance
	Complementing the Principals in an ACE: Element invert
	ACE Validity Time Period

	Working with Access Control Lists (ACLs)
	Creating an ACL Using DBMS_XDB.createResource
	Retrieving an ACL Document, Given its Repository Path
	Setting the ACL of a Resource
	Deleting an ACL
	Updating an ACL
	Retrieving the ACL Document that Protects a Given Resource
	Retrieving Privileges Granted to the Current User for a Particular Resource
	Checking if the Current User Has Privileges on a Resource
	Checking if the Current User Has Privileges With the ACL and Resource Owner
	Retrieving the Path of the ACL that Protects a Given Resource
	Retrieving the Paths of All Resources Protected by a Given ACL

	ACL Caching
	Repository Resources and Database Table Security
	Integrating Oracle XML DB with LDAP

28 Using Protocols to Access the Repository

	Overview of Oracle XML DB Protocol Server
	Session Pooling

	Oracle XML DB Protocol Server Configuration Management
	Configuring Protocol Server Parameters
	Configuring Secure HTTP (HTTPS)
	Enable the HTTP Listener to Use SSL
	Enable TCPS Dispatcher

	Interaction with Oracle XML DB File-System Resources
	Protocol Server Handles XML Schema-Based or Non-Schema-Based XML Documents
	Event-Based Logging

	Using FTP and Oracle XML DB Protocol Server
	Oracle XML DB Protocol Server: FTP Features
	FTP Features That Are Not Supported
	FTP Client Methods That Are Supported
	FTP Quote Methods
	Using FTP with ASM Files
	Using FTP on the Standard Port Instead of the Oracle XML DB Default Port
	FTP Server Session Management
	Handling Error 421. Modifying the Default Timeout Value of an FTP Session
	FTP Client Failure in Passive Mode

	Using HTTP(S) and Oracle XML DB Protocol Server
	Oracle XML DB Protocol Server: HTTP(S) Features
	HTTP(S) Features That Are Not Supported
	HTTP(S) Client Methods That Are Supported
	Using HTTP(S) on a Standard Port Instead of an Oracle XML DB Default Port
	HTTPS: Support for Secure HTTP
	Anonymous Access to Oracle XML DB Repository using HTTP
	Using Java Servlets with HTTP(S)
	Embedded PL/SQL Gateway
	Sending Multibyte Data From a Client
	Characters That Are Not ASCII In URLs
	Controlling Character Sets for HTTP(S)

	Using WebDAV and Oracle XML DB
	Oracle XML DB WebDAV Features
	WebDAV Features That Are Not Supported
	Supported WebDAV Client Methods

	Using WebDAV with Microsoft Windows XP SP2
	Using Oracle XML DB and WebDAV: Creating a WebFolder in Microsoft Windows

29 User-Defined Repository Metadata

	Overview of Metadata and XML
	Kinds of Metadata – Uses of the Term
	User-Defined Resource Metadata
	Scenario: Metadata for a Photo Collection

	XML Schemas to Define Resource Metadata
	Adding, Updating, and Deleting Resource Metadata
	Using APPENDRESOURCEMETADATA to Add Metadata
	Using DELETERESOURCEMETADATA to Delete Metadata
	Using SQL DML to Add Metadata
	Using WebDAV PROPPATCH to Add Metadata

	Querying Schema-Based Resource Metadata
	XML Image Metadata from Binary Image Metadata
	Adding Non-Schema-Based Resource Metadata
	PL/SQL Procedures Affecting Resource Metadata

30 Oracle XML DB Repository Events

	Overview of Repository Events
	Repository Events: Use Cases
	Repository Events and Database Triggers
	Repository Event Listeners and Event Handlers
	Repository Event Configuration

	Possible Repository Events
	Repository Operations and Events
	Repository Event Handler Considerations
	Configuring Repository Events
	Configuration Element event-listeners
	Configuration Element listener
	Repository Events Configuration Examples

31 Using Oracle XML DB Content Connector

	Overview of JCR and Oracle XML DB Content Connector
	About the Content Repository API for Java (JCR)
	About Oracle XML DB Content Connector

	How Oracle XML DB Repository Is Exposed in JCR
	Example of How Files and Folders are Exposed in JCR
	Oracle Extensions to JCR Node Types
	Binary and XML Content
	System-Defined Metadata
	User-Defined Metadata
	Hard Links and Weak Links

	How to Use Oracle XML DB Content Connector
	Setting CLASSPATH
	Obtaining the JCR Repository Object
	Sample Code to Upload File
	Additional Code Samples
	Logging API for Oracle XML DB Content Connector
	Supported JCR Compliance Levels
	Oracle XML DB Content Connector Restrictions
	Default Workspace Name
	Operations Restricted to Specific Node Types
	Determining the State of Files or Folders
	Interaction Between Binary and XML Content
	Order in Which Changes Are Saved
	Undefined Properties
	Node Type nt:base Is Abstract
	Node jcr:content Is Created Automatically
	Saving Normalizes Node jcr:xmltext
	Node Type mix:referenceable
	Full-Text Indexing

	Using XML Schemas with JCR
	Why Register XML Schemas for Use with JCR?
	How to Register an XML Schema with JCR
	How JCR Node Types are Generated from XML Schemas
	Built-In Simple Types
	XML Schema-Defined Simple Types
	Complex Types
	Global Element Declarations

32 Writing Oracle XML DB Applications in Java

	Overview of Oracle XML DB Java Applications
	Which Oracle XML DB APIs Are Available Inside and Outside the Database?

	Design Guidelines: Java Inside or Outside the Database?
	HTTP(S): Accessing Java Servlets or Directly Accessing XMLType Resources
	Accessing Many XMLType Object Elements: Use JDBC XMLType Support
	Use the Servlets to Manipulate and Write Out Data Quickly as XML

	Writing Oracle XML DB HTTP Servlets in Java
	Configuring Oracle XML DB Servlets
	HTTP Request Processing for Oracle XML DB Servlets
	Session Pool and Oracle XML DB Servlets
	Native XML Stream Support
	Oracle XML DB Servlet APIs
	Oracle XML DB Servlet Example
	Installing the Oracle XML DB Example Servlet
	Configuring the Oracle XML DB Example Servlet
	Testing the Example Servlet

33 Using Native Oracle XML DB Web Services

	Overview of Native Oracle XML DB Web Services
	Configuring and Enabling Web Services for Oracle XML DB
	Configuring Web Services for Oracle XML DB
	Enabling Web Services for Specific Users

	Querying Oracle XML DB Using a Web Service
	Accessing PL/SQL Stored Procedures Using a Web Service
	Example of Using a PL/SQL Function With a Web Service

Part VI Oracle Tools that Support Oracle XML DB

34 Administering Oracle XML DB

	Installing Oracle XML DB
	Installing Oracle XML DB with Database Configuration Assistant
	Dynamic Protocol Registration of FTP and HTTP(S) Services with Local Listener

	Installing Oracle XML DB Manually without DBCA
	Post-Installation

	Upgrading an Existing Oracle XML DB Installation
	Validation of ACL Documents and Configuration File

	Using Oracle Enterprise Manager to Administer Oracle XML DB
	Configuring Oracle XML DB Using xdbconfig.xml
	Oracle XML DB Configuration File, xdbconfig.xml
	<xdbconfig> (Top-Level Element)
	<sysconfig> (Child of <xdbconfig>)
	<userconfig> (Child of <xdbconfig>)
	<protocolconfig> (Child of <sysconfig>)
	<httpconfig> (Child of <protocolconfig>)
	<servlet> (Descendant of <httpconfig>)
	Oracle XML DB Configuration File Example
	Oracle XML DB Configuration API
	Configuring Default Namespace to Schema Location Mappings
	Configuring XML File Extensions

35 Loading XML Data Using SQL*Loader

	Overview of Loading XMLType Data Into Oracle Database
	Using SQL*Loader to Load XMLType Data
	Using SQL*Loader to Load XMLType Data in LOBs
	Loading LOB Data in Predetermined Size Fields
	Loading LOB Data in Delimited Fields
	Loading XML Columns Containing LOB Data from LOBFILEs
	Specifying LOBFILEs

	Using SQL*Loader to Load XMLType Data Directly From the Control File

	Loading Very Large XML Documents into Oracle Database

36 Exporting and Importing XMLType Tables

	Overview of Oracle Data Pump
	EXPORT/IMPORT Support in Oracle XML DB
	Exporting XML Schema-Based XMLType Tables
	Exporting Hierarchy-Enabled (Repository) Tables
	Exporting and Importing Transportable Tablespaces
	Repository Resources and Foldering Support
	Full Database Export
	Exporting and Importing with Different Character Sets

	Export/Import Syntax and Examples
	Performing a Table-Mode Export /Import
	Performing a Schema-Mode Export/Import

37 Exchanging XML Data with Oracle Streams AQ

	How Do AQ and XML Complement Each Other?
	AQ and XML Message Payloads
	AQ Enables Hub-and-Spoke Architecture for Application Integration
	Messages Can Be Retained for Auditing, Tracking, and Mining
	Advantages of Using AQ

	Oracle Streams and AQ
	Streams Message Queuing

	XMLType Attributes in Object Types
	Internet Data Access Presentation (iDAP)
	iDAP Architecture
	XMLType Queue Payloads

	Guidelines for Using XML and Oracle Streams Advanced Queuing
	Storing Oracle Streams AQ XML Messages with Many PDFs as One Record?
	Adding New Recipients After Messages Are Enqueued
	Enqueuing and Dequeuing XML Messages?
	Parsing Messages with XML Content from Oracle Streams AQ Queues
	Preventing the Listener from Stopping Until the XML Document Is Processed
	Using HTTPS with AQ
	Storing XML in Oracle Streams AQ Message Payloads
	Comparing iDAP and SOAP

Part VII Appendixes

A Oracle-Supplied XML Schemas and Examples

	XDBResource.xsd: XML Schema for Oracle XML DB Resources
	XDBResource.xsd

	XDBResConfig.xsd: XML Schema for Resource Configuration
	XDBResConfig.xsd

	acl.xsd: XML Schema for Oracle XML DB ACLs
	ACL Representation XML Schema, acl.xsd
	acl.xsd

	xdbconfig.xsd: XML Schema for Configuring Oracle XML DB
	xdbconfig.xsd

	xdiff.xsd: XML Schema for Comparing Schemas for In-Place Evolution
	xdiff.xsd

	Purchase-Order XML Schemas
	XSL Style Sheet Example, PurchaseOrder.xsl
	Loading XML Using C (OCI)
	Initializing and Terminating an XML Context (OCI)

B Oracle XML DB Restrictions

Index

List of Examples

	1-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled
	3-1 Creating a Table with an XMLType Column
	3-2 Creating a Table of XMLType
	3-3 Inserting XML Content into an XMLType Table
	3-4 Inserting XML Content into an XML Type Table Using Java
	3-5 Inserting XML Content into an XMLType Table Using C
	3-6 Inserting XML Content into the Repository Using PL/SQL DBMS_XDB
	3-7 Purchase-Order XML Schema, purchaseOrder.xsd
	3-8 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	3-9 Registering an XML Schema with DBMS_XMLSCHEMA.registerSchema
	3-10 Objects Created During XML Schema Registration
	3-11 Creating an XMLType Table that Conforms to an XML Schema
	3-12 Creating an XMLType Table for Nested Collections
	3-13 Using DESCRIBE for an XML Schema-Based XMLType Table
	3-14 Error From Attempting to Insert an Incorrect XML Document
	3-15 Error When Inserting Incorrect XML Document (Partial Validation)
	3-16 Using CHECK Constraint to Force Full XML Schema Validation
	3-17 Using BEFORE INSERT Trigger to Enforce Full XML Schema Validation
	3-18 Using a Virtual Column to Constrain an XMLType Table Stored as Binary XML
	3-19 Database Integrity Constraints and Triggers for an XMLType Table Stored Object-Relationally
	3-20 Enforcing Database Integrity When Loading XML Using FTP
	3-21 PurchaseOrder XML Instance Document
	3-22 Using OBJECT_VALUE to Retrieve an Entire XML Document
	3-23 Accessing XML Fragments Using EXTRACT
	3-24 Accessing a Text Node Value Using XMLCAST
	3-25 Using XMLTABLE to Access Description Nodes
	3-26 Counting the Number of Elements in a Collection Using XMLTABLE
	3-27 Counting the Number of Child Elements in an Element Using XMLTABLE
	3-28 Searching XML Content Using XMLExists
	3-29 Limiting the Results of a SELECT Using XMLExists in a WHERE Clause
	3-30 Finding the Reference for any PurchaseOrder Using XMLQuery and XMLExists
	3-31 Creating a Relational View On XML Content
	3-32 Using a View to Access Individual Members of a Collection
	3-33 SQL queries on XML Content Using Views
	3-34 Querying XML Using Views of XML Content
	3-35 Updating XML Content Using UPDATEXML
	3-36 Replacing an Entire Element Using UPDATEXML
	3-37 Incorrectly Updating a Node That Occurs Multiple Times In a Collection
	3-38 Correctly Updating a Node That Occurs Multiple Times In a Collection
	3-39 Changing Text Node Values Using UPDATEXML
	3-40 Using EXPLAIN PLAN to Analyze the Selection of Purchase Orders
	3-41 Creating an Index on a Text Node
	3-42 Explain Plan Showing Use of a B-Tree Index
	3-43 EXPLAIN PLAN for a Selection of Collection Elements
	3-44 Creating an Index for Direct Access to an Ordered Collection Table
	3-45 EXPLAIN PLAN Generated When XPath Rewrite Does Not Occur
	3-46 Using SQL/XML Functions to Generate XML
	3-47 Creating XMLType Views Over Conventional Relational Tables
	3-48 Querying XMLType Views
	3-49 Accessing DEPARTMENTS Table XML Content Using DBURIType and getXML()
	3-50 Using a Predicate in the XPath Expression to Restrict Which Rows Are Included
	3-51 XSLT Style Sheet Example: PurchaseOrder.xsl
	3-52 Applying a Style Sheet Using TRANSFORM
	3-53 Uploading Content into the Repository Using FTP
	3-54 Creating a Text Document Resource Using DBMS_XDB
	3-55 Using PL/SQL Package DBMS_XDB To Create Folders
	3-56 Using XDBURIType to Access a Text Document in the Repository
	3-57 Using XDBURIType and a Repository Resource to Access Content
	3-58 Accessing XML Documents Using Resource and Namespace Prefixes
	3-59 Querying Repository Resource Data Using SQL Function REF and Element XMLRef
	3-60 Selecting XML Document Fragments Based on Metadata, Path, and Content
	3-61 Updating a Document Using UPDATE and UPDATEXML on the Resource
	3-62 Updating a Node in the XML Document Using UPDATE and UPDATEXML
	3-63 Updating XML Schema-Based Documents in the Repository
	3-64 Viewing RESOURCE_VIEW and PATH_VIEW Structures
	3-65 Accessing Resources Using EQUALS_PATH and RESOURCE_VIEW
	3-66 Determining the Path to XSL Style Sheets Stored in the Repository
	3-67 Counting Resources Under a Path
	3-68 Listing the Folder Contents in a Path
	3-69 Listing the Links Contained in a Folder
	3-70 Finding Paths to Resources that Contain Purchase-Order XML Documents
	3-71 EXPLAIN Plan Output for a Folder-Restricted Query
	4-1 Selecting XMLType Columns Using Method getCLOBVal()
	4-2 Using XMLExists to Find a node
	4-3 Using EXISTSNODE to Find a node
	4-4 Purchase-Order XML Document
	4-5 Using EXTRACT to Extract the Value of a Node
	4-6 Extracting the Scalar Value of an XML Fragment Using XMLCAST
	4-7 Extracting the Scalar Value of an XML Fragment Using EXTRACTVALUE
	4-8 Invalid Uses of EXTRACTVALUE
	4-9 Querying XMLType Using EXTRACTVALUE and EXISTSNODE
	4-10 Querying Transient XMLType Data
	4-11 Extracting XML Data with XMLTable, and Inserting It into a Database Table
	4-12 Extracting XML Data with EXTRACTVALUE, and Inserting It into a Table
	4-13 Searching XML Data with XMLType Methods extract() and existsNode()
	4-14 Searching XML Data with EXTRACTVALUE
	4-15 Extracting Fragments From an XMLType Instance Using EXTRACT
	4-16 Updating XMLType Using SQL UPDATE Statement
	4-17 Updating XMLType Using UPDATE and UPDATEXML
	4-18 Updating Multiple Text Nodes and Attribute Values Using UPDATEXML
	4-19 Updating Selected Nodes Within a Collection Using UPDATEXML
	4-20 NULL Updates With UPDATEXML - Element and Attribute
	4-21 NULL Updates With UPDATEXML - Text Node
	4-22 XPath Expressions in UPDATEXML Expression
	4-23 Object Relational Equivalent of UPDATEXML Expression
	4-24 Creating Views Using UPDATEXML
	4-25 Inserting a LineItem Element into a LineItems Element
	4-26 Inserting an Element that Uses a Namespace
	4-27 Inserting a LineItem Element Before the First LineItem ELement
	4-28 Inserting a Date Element as the Last Child of an Action Element
	4-29 Deleting LineItem Element Number 222
	5-1 Creating a Function-Based Index on a CLOB XMLType Instance
	5-2 Function-Based Index Is Used Only by a Matching Query
	5-3 CREATE INDEX with EXTRACTVALUE on a Singleton Element or Attribute
	5-4 XPath Rewrite of an EXTRACTVALUE Index on a Singleton Element or Attribute
	5-5 Trying to Create a Function-Based Index on a Repeating Attribute
	5-6 Creating a Function-Based Index Using EXTRACT and getStringVal()
	5-7 Function-Based Index on Concatenated Nodes
	5-8 Path Table Contents for Two Purchase Orders
	5-9 Creating an XMLIndex Index on XMLType Unstructured Storage
	5-10 Creating an XMLIndex Index on XMLType Hybrid Storage
	5-11 XML Schema Fragment that Maps LineItems to CLOB Storage
	5-12 Obtaining the Name of an XMLIndex Index on a Particular Table
	5-13 Renaming and Dropping an XMLIndex Index
	5-14 Naming the Path Table of an XMLIndex Index
	5-15 Determining the System-Generated Name of an XMLIndex Path Table
	5-16 Specifying Storage Options When Creating an XMLIndex Index
	5-17 Determining the Names of the Secondary Indexes of an XMLIndex Index
	5-18 Creating a Function-Based Index on Path-Table Column VALUE
	5-19 Trying to Create a Numeric Index on Path-Table Column VALUE Directly
	5-20 Creating a Numeric Index on Column VALUE with Procedure createNumberIndex
	5-21 Creating a Date Index on Column VALUE with Procedure createDateIndex
	5-22 Creating an Oracle Text CONTEXT Index on Path-Table Column VALUE
	5-23 Showing All Secondary Indexes on an XMLIndex Path Table
	5-24 Examining an Explain Plan to See If XMLIndex Is Used
	5-25 Obtaining the Name of an XMLIndex Index from Its Path-Table Name
	5-26 Using XMLIndex to Extract an XML Fragment
	5-27 Using Optimizer Hints to Turn Off XMLIndex
	5-28 XMLIndex Path Subsetting With CREATE INDEX
	5-29 XMLIndex Path Subsetting With ALTER INDEX
	5-30 XMLIndex Path Subsetting Using a Namespace Prefix
	5-31 Using XMLIndex When Querying Resource Data
	5-32 Using XMLIndex When Querying Resource Metadata
	5-33 Creating an XMLIndex Index in Parallel
	5-34 Using Different PARALLEL Degrees for XMLIndex Internal Objects
	5-35 Specifying Deferred Synchronization for XMLIndex
	5-36 Manually Synchronizing an XMLIndex Index Using SYNCINDEX
	5-37 Automatic Collection of Statistics on XMLIndex Objects
	5-38 Creating an Oracle Text Index
	5-39 Searching XML Data Using SQL Function CONTAINS
	5-40 Using an Oracle Text Index and an XMLIndex Index
	6-1 XML Schema Instance purchaseOrder.xsd
	6-2 purchaseOrder.xml: Document That Conforms to purchaseOrder.xsd
	6-3 Registering an XML Schema with DBMS_XMLSCHEMA.REGISTERSCHEMA
	6-4 Creating SQL Object Types to Store XMLType Tables
	6-5 Default Table for Global Element PurchaseOrder
	6-6 Data Dictionary Table for Registered Schemas
	6-7 Deleting an XML Schema with DBMS_XMLSCHEMA.DELETESCHEMA
	6-8 Registering a Local XML Schema
	6-9 Registering a Global XML Schema
	6-10 XML Schema Defining Security-Class Documents
	6-11 Security Class Document Associated With the XML Schema
	6-12 XML Schema With Attribute xdb:translate Set to True for a Single-Valued Element
	6-13 Security Class Document After Translation
	6-14 XML Schema With Attribute xdb:translate Set to True for a Multi-Valued Element
	6-15 Security Class Document for an XML Schema With Multiple-Valued Elements
	6-16 Inserting a Document With No Language Information
	6-17 Security Class Document After Insertion
	6-18 Inserting a Document With Language Information
	6-19 Security Class Document After Insertion
	6-20 Creating XML Schema-Based XMLType Tables and Columns
	6-21 Specifying CLOB Storage for Schema-Based XMLType Tables and Columns
	6-22 Specifying Structured Storage Options for Schema-Based XMLType Tables and Columns
	6-23 Using Common Schema Annotations
	6-24 Registering an Annotated XML Schema
	6-25 Querying Metadata from a Registered XML Schema
	6-26 Mapping XML Schema Data Types to SQL Data Types Using Attribute SQLType
	7-1 XPath Rewrite
	7-2 XPath Rewrite with UPDATEXML
	7-3 Rewritten Object Relational Equivalent of XPath Rewrite with UPDATEXML
	7-4 SELECT Statement and XPath Rewrite
	7-5 DML Statement and XPath Rewrite
	7-6 CREATE INDEX Statement and XPath Rewrite
	7-7 Creating XML Schema-Based Purchase-Order Data
	7-8 Mapping Predicates
	7-9 Mapping Collection Predicates
	7-10 Mapping Collection Predicates, Using EXISTSNODE
	7-11 Document Ordering with Collection Traversals
	7-12 Handling Namespaces
	7-13 Date Format Conversions
	7-14 EXISTSNODE Mapping with Document Order Preserved
	7-15 Rewriting EXTRACTVALUE
	7-16 Creating Indexes with EXTRACTVALUE
	7-17 XPath Mapping for EXTRACT with Document Ordering Preserved
	8-1 Generating an XML Schema with Function GENERATESCHEMA
	8-2 Adding a Unique Constraint to the Parent Element of an Attribute
	8-3 Setting SQLInline to False for Out-Of-Line Storage
	8-4 Querying an Out-Of-Line Table
	8-5 XPath Rewrite for an Out-Of-Line Table
	8-6 Using an Index with an Out-Of-Line Table
	8-7 Storing a Collection Out of Line
	8-8 Renaming an Intermediate Table of REF Values
	8-9 XPath Rewrite for an Out-Of-Line Collection
	8-10 XPath Rewrite for an Out-Of-Line Collection, with Index on REFs
	8-11 Using a Fully Qualified XML Schema URL
	8-12 Oracle XML DB XML Schema: Mapping complexType XML Fragments to LOBs
	8-13 Inheritance in XML Schema: complexContent as an Extension of complexTypes
	8-14 Inheritance in XML Schema: Restrictions in complexTypes
	8-15 XML Schema complexType: Mapping complexType to simpleContent
	8-16 Oracle XML DB XML Schema: Mapping complexType to any/anyAttribute
	8-17 Using ora:instanceof-only
	8-18 Using ora:instanceof
	8-19 Using ora:instanceof with Heterogeneous XML Schema-Based Data
	8-20 An XML Schema With Circular Dependency
	8-21 XML Schema: Cycling Between complexTypes
	8-22 XML Schema: Cycling Between complexTypes, Self-Reference
	8-23 Cyclic Dependencies
	8-24 Recursive Schema
	8-25 Out-of-line Table
	8-26 Invalid Default Table Sharing
	8-27 Using Bind Variables in XPath
	9-1 Revised Purchase-Order XML Schema
	9-2 evolvePurchaseOrder.xsl: Style Sheet to Update Instance Documents
	9-3 Loading Revised XML Schema and XSL Style Sheet
	9-4 Using DBMS_XMLSCHEMA.COPYEVOLVE to Update an XML Schema
	9-5 Splitting a Complex Type into Two Complex Types
	9-6 diffXML Parameter Document
	10-1 Registering XML Schema and Inserting XML Data
	10-2 Using XMLTRANSFORM and DBURITYPE to Retrieve a Style Sheet
	10-3 Using XMLTRANSFORM and a Subquery to Retrieve a Style Sheet
	10-4 Using Method transform() with a Transient Style Sheet
	10-5 Using Method isSchemaValid()
	10-6 Validating XML Using Method isSchemaValid()
	10-7 Using Method schemaValidate() Within Triggers
	10-8 Using PL/SQL Function XMLISVALID Within CHECK Constraints
	11-1 Simple CONTAINS Query
	11-2 CONTAINS With a Structured Predicate
	11-3 CONTAINS Using XML Structure to Restrict the Query
	11-4 CONTAINS With Structure Inside Full-Text Predicate
	11-5 ora:contains with an Arbitrarily Complex Text Query
	11-6 CONTAINS Query with Simple Boolean
	11-7 CONTAINS Query with Complex Boolean
	11-8 CONTAINS Query with Stemming
	11-9 CONTAINS Query with Complex Query Expression
	11-10 Simple CONTAINS Query with SCORE
	11-11 WITHIN
	11-12 Nested WITHIN
	11-13 WITHIN an Attribute
	11-14 WITHIN and AND: Two Words in Some Comment Section
	11-15 WITHIN and AND: Two Words in the Same Comment
	11-16 WITHIN and AND: No Parentheses
	11-17 WITHIN and AND: Parentheses Illustrating Operator Precedence
	11-18 Structure Inside Full-Text Predicate: INPATH
	11-19 Structure Inside Full-Text Predicate: INPATH
	11-20 INPATH with Complex Path Expression (1)
	11-21 INPATH with Complex Path Expression (2)
	11-22 Nested INPATH
	11-23 Nested INPATH Rewritten
	11-24 Simple HASPATH
	11-25 HASPATH Equality
	11-26 HASPATH with Other Operators
	11-27 Using EXTRACT to Scope the Results of a CONTAINS Query
	11-28 Using EXTRACT and ora:contains to Project the Result of a CONTAINS Query
	11-29 Simple CONTEXT Index on Table PURCHASE_ORDERS
	11-30 Simple CONTEXT Index on Table PURCHASE_ORDERS with Path Section Group
	11-31 Simple CONTEXT Index on Table PURCHASE_ORDERS_xmltype
	11-32 Simple CONTEXT Index on XMLType Table
	11-33 CONTAINS Query on XMLType Table
	11-34 CONTAINS: Default Case Matching
	11-35 Create a Preference for Mixed Case
	11-36 CONTEXT Index on PURCHASE_ORDERS Table, Mixed Case
	11-37 CONTAINS: Mixed (Exact) Case Matching
	11-38 Simple CONTEXT Index on purchase_orders Table with Path Section Group
	11-39 ora:contains with an Arbitrarily Complex Text Query
	11-40 ora:contains in EXISTSNODE and EXTRACT
	11-41 Create a Policy to Use with ora:contains
	11-42 Query on a Common Word with ora:contains
	11-43 Query on a Common Word with ora:contains and Policy my_nostopwords_policy
	11-44 ora:contains, Default Case-Sensitivity
	11-45 Create a Preference for Mixed Case
	11-46 Create a Policy with Mixed Case (Case-Insensitive)
	11-47 ora:contains, Case-Sensitive (1)
	11-48 ora:contains, Case-Sensitive (2)
	11-49 ora:contains in EXISTSNODE, Large Table
	11-50 EXPLAIN PLAN: EXISTSNODE
	11-51 B-tree Index on ID
	11-52 ora:contains in EXISTSNODE, Mixed Query
	11-53 EXPLAIN PLAN: EXISTSNODE
	11-54 ora:contains in EXISTSNODE
	11-55 Purchase Order XML Document, po001.xml
	11-56 CREATE TABLE purchase_orders
	11-57 CREATE TABLE purchase_orders_xmltype
	11-58 CREATE TABLE purchase_orders_xmltype_table
	11-59 Purchase-Order XML Schema for Full-Text Search Examples
	12-1 Creating and Manipulating a DOM Document
	12-2 Creating an Element Node and Obtaining Information About It
	12-3 Creating a User-Defined Subtype of SYS.util_BinaryOutputStream()
	12-4 Retrieving Node Value with a User-Defined Stream
	12-5 Get-Pull of Binary Data
	12-6 Get-Pull of Character Data
	12-7 Set-Pull of Binary Data
	12-8 Set-Push of Binary Data
	12-9 Parsing an XML Document
	12-10 Transforming an XML Document Using an XSL Style Sheet
	13-1 Inserting Data with Specified Columns
	13-2 Updating Data With Key Columns
	13-3 DBMS_XMLSTORE.DELETEXML Example
	14-1 XMLType Java: Using JDBC to Query an XMLType Table
	14-2 XMLType Java: Selecting XMLType Data
	14-3 XMLType Java: Directly Returning XMLType Data
	14-4 XMLType Java: Returning XMLType Data
	14-5 XMLType Java: Updating, Inserting, or Deleting XMLType Data
	14-6 XMLType Java: Getting Metadata on XMLType
	14-7 XMLType Java: Updating an Element in an XMLType Column
	14-8 Manipulating an XMLType Column
	14-9 Loading a Large XML Document
	14-10 Creating a DOM Object with the Java DOM API
	14-11 Using the Java DOM API With Binary XML
	15-1 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()
	15-2 Using the C API for XML With Binary XML
	15-3 Using the Oracle XML DB Pull Parser
	15-4 Using the DOM to Count Ordered Parts
	16-1 Retrieve XMLType Data to .NET
	17-1 XMLELEMENT: Formatting a Date
	17-2 XMLELEMENT: Generating an Element for Each Employee
	17-3 XMLELEMENT: Generating Nested XML
	17-4 XMLELEMENT: Generating Employee Elements with ID and Name Attributes
	17-5 XMLELEMENT: Using Namespaces to Create a Schema-Based XML Document
	17-6 XMLELEMENT: Generating an Element from a User-Defined Data-Type Instance
	17-7 XMLFOREST: Generating Elements with Attribute and Child Elements
	17-8 XMLFOREST: Generating an Element from a User-Defined Data-Type Instance
	17-9 XMLSEQUENCE Returns Only Top-Level Element Nodes
	17-10 XMLSEQUENCE: Generating One XML Document from Another
	17-11 XMLSEQUENCE: Generate a Document for Each Row of a Cursor
	17-12 XMLSEQUENCE: Un-Nesting Collections in XML Documents into SQL Rows
	17-13 XMLCONCAT: Concatenating XMLType Instances from a Sequence
	17-14 XMLCONCAT: Concatenating XML Elements
	17-15 XMLAGG: Generating Department Elements with a List of Employee Elements
	17-16 XMLAGG: Generating Nested Elements
	17-17 Using XMLPI
	17-18 Using XMLCOMMENT
	17-19 Using XMLRoot
	17-20 Using XMLSERIALIZE
	17-21 Using XMLPARSE
	17-22 XMLCOLATTVAL: Generating Elements with Attribute and Child Elements
	17-23 Using XMLCDATA
	17-24 DBMS_XMLGEN: Generating Simple XML
	17-25 DBMS_XMLGEN: Generating Simple XML with Pagination (Fetch)
	17-26 DBMS_XMLGEN: Generating Nested XML With Object Types
	17-27 DBMS_XMLGEN: Generating Nested XML With User-Defined Data-Type Instances
	17-28 DBMS_XMLGEN: Generating an XML Purchase Order
	17-29 DBMS_XMLGEN: Generating a New Context Handle from a REF Cursor
	17-30 DBMS_XMLGEN: Specifying NULL Handling
	17-31 DBMS_XMLGEN: Generating Recursive XML with a Hierarchical Query
	17-32 DBMS_XMLGEN: Binding Query Variables with Method setBindValue
	17-33 Using SYS_XMLGEN to Create XML
	17-34 SYS_XMLGEN: Generating an XML Element from a Database Column
	17-35 SYS_XMLGEN: Converting a Scalar Value to XML Element Contents
	17-36 SYS_XMLGEN: Default Element Name ROW
	17-37 Overriding the Default Element Name: Using SYS_XMLGEN with XMLFormat
	17-38 SYS_XMLGEN: Converting a User-Defined Data-Type Instance to XML
	17-39 SYS_XMLGEN: Converting an XMLType Instance
	17-40 Using SYS_XMLGEN with Object Views
	17-41 Using XSQL Servlet <xsql:include-xml> with Nested XMLAgg Functions
	17-42 Using XSQL Servlet <xsql:include-xml> with XMLElement and XMLAgg
	17-43 Using XMLAGG ORDER BY Clause
	17-44 Returning a Rowset using XMLTABLE
	18-1 Creating Resources for Examples
	18-2 XMLQuery Applied to a Sequence of Items of Different Types
	18-3 FLOWR Expression Using For, Let, Order By, Where, and Return
	18-4 FLOWR Expression Using Built-In Functions
	18-5 Using ora:view to Query Relational Tables as XML Views
	18-6 Using ora:view in a Nested FLWOR Query
	18-7 Using ora:view with XMLTable to Query a Relational Table as XML
	18-8 Using XMLQuery with PASSING Clause, to Query an XMLType Column
	18-9 Using XMLTable with XML Schema-Based Data
	18-10 Using XMLQuery with Schema-Based Data
	18-11 Using XMLTable with PASSING and COLUMNS Clauses
	18-12 Using XMLTable to Decompose XML Collection Elements into Relational Data
	18-13 Using XMLQuery with a Namespace Declaration
	18-14 Using XMLTable with the XMLNAMESPACES Clause
	18-15 Optimization of XMLQuery with ora:view
	18-16 Optimization of XMLTable with ora:view
	18-17 Optimization of XMLQuery with Schema-Based XMLType Data
	18-18 Optimization of XMLTable with Schema-Based XMLType Data
	18-19 Static Type-Checking of XQuery Expressions: ora:view
	18-20 Static Type-Checking of XQuery Expressions: Schema-Based XML
	18-21 Using the SQL*Plus XQUERY Command
	18-22 Using XQuery with PL/SQL
	18-23 Using XQuery with JDBC
	18-24 Using XQuery with ODP.NET and C#
	19-1 Creating an XMLType View Using XMLELEMENT
	19-2 Creating an XMLType View Using Object Types and SYS_XMLGEN
	19-3 Registering XML Schema emp_simple.xsd
	19-4 Creating an XMLType View Using SQL/XML Functions
	19-5 Querying an XMLType View
	19-6 Using Namespace Prefixes in XMLType Views
	19-7 Using SQL/XML Generation Functions in Schema-Based XMLType Views
	19-8 Creating Object Types for Schema-Based XMLType Views
	19-9 Generating an XML Schema with DBMS_XMLSCHEMA.GENERATESCHEMA
	19-10 Registering XML Schema emp_complex.xsd
	19-11 Creating an XMLType View
	19-12 Creating an Object View and an XMLType View on the Object View
	19-13 Creating Object Types
	19-14 Registering XML Schema dept_complex.xsd
	19-15 Creating XMLType Views on Relational Tables
	19-16 Creating XMLType Views Using SQL/XML Functions
	19-17 Creating an XMLType View by Restricting Rows From an XMLType Table
	19-18 Creating an XMLType View by Transforming an XMLType Table
	19-19 Identifying When a View is Implicitly Updatable
	19-20 Non-Schema-Based Views Constructed Using SQL/XML
	19-21 XML-Schema-Based Views Constructed With SQL/XML
	19-22 Non-Schema-Based Views Constructed Using SYS_XMLGEN
	19-23 Non-Schema-Based Views Constructed Using SYS_XMLGEN on an Object View
	19-24 XML-Schema-Based Views Constructed Using Object Types
	19-25 Generating XML Schema-Based XML Without Creating Views
	20-1 Using HTTPURIType Method getContentType()
	20-2 Creating and Querying a URI Column
	20-3 Using Different Kinds of URI, Created in Different Ways
	20-4 Using an XDBUri to Access a Repository Resource by URI
	20-5 Using Method getXML() with EXTRACTVALUE
	20-6 Using a DBUri to Target a Complete Table
	20-7 Using a DBUri to Target a Particular Row in a Table
	20-8 Using a DBUri to Target a Specific Column
	20-9 Using a DBUri to Target an Object Column with Specific Attribute Values
	20-10 Using a DBUri to Retrieve Only the Text Value of a Node
	20-11 Using a DBUri to Target a Collection
	20-12 URIFACTORY: Registering the ECOM Protocol
	20-13 SYS_DBURIGEN: Generating a DBUri that Targets a Column
	20-14 Passing Columns With Single Arguments to SYS_DBURIGEN
	20-15 Inserting Database References Using SYS_DBURIGEN
	20-16 Returning a Portion of the Results By Creating a View and Using SYS_DBURIGEN
	20-17 Using SYS_DBURIGEN in the RETURNING Clause to Retrieve a URL
	20-18 Using a URL to Override the MIME Type
	20-19 Changing the Installation Location of DBUriServlet
	20-20 Restricting Servlet Access to a Database Role
	20-21 Registering a Handler for a DBUri Prefix
	21-1 Querying PATH_VIEW to Determine Link Type
	21-2 Obtaining the OID Path of a Resource
	21-3 Creating a Weak Link Using an OID Path
	22-1 Resource Configuration File
	22-2 applicationData Element
	23-1 XInclude Used in a Book Document to Include Parts and Chapters
	23-2 Using XDBURIType to Expand Document Inclusions
	23-3 Querying Document Links Mapped From XLink Links
	23-4 Querying Document Links Mapped From XInclude Links
	23-5 Mapping XInclude Links to Hard Document Links, With OID Retrieval
	23-6 Mapping XLInk Links to Weak Links, With Named-Path Retrieval
	23-7 Configuring XInclude Document Decomposition
	23-8 Repository Document, Showing Generated xi:include Elements
	24-1 Using DBMS_XDB_VERSION.GetResourceByResId To Retrieve a Resource
	24-2 Using DBMS_XDB_VERSION.makeVersioned To Create a VCR
	24-3 Retrieving the Resource ID of the New Version After Check-In
	24-4 Oracle XML DB: Creating and Updating a Version-Controlled Resource (VCR)
	24-5 VCR Check-Out
	24-6 VCR Check-In
	24-7 VCR unCheckOut
	25-1 Determining Paths Under a Path: Relative
	25-2 Determining Paths Under a Path: Absolute
	25-3 Determining Paths Not Under a Path
	25-4 Determining Paths Using Multiple Correlations
	25-5 Relative Path Names for Three Levels of Resources
	25-6 Extracting Resource Metadata using UNDER_PATH
	25-7 Using Functions PATH and DEPTH with PATH_VIEW
	25-8 Extracting Link and Resource Information from PATH_VIEW
	25-9 All Paths to a Certain Depth Under a Path
	25-10 Using EQUALS_PATH to Locate a Path
	25-11 Retrieve RESID of a Given Resource
	25-12 Obtaining the Path Name of a Resource from its RESID
	25-13 Folders Under a Given Path
	25-14 Joining RESOURCE_VIEW with an XMLType Table
	25-15 Deleting Resources
	25-16 Deleting Links to Resources
	25-17 Deleting a Nonempty Folder
	25-18 Updating a Resource
	25-19 Updating a Path in the PATH_VIEW
	25-20 Updating Resources Based on Attributes
	25-21 Finding Resources Inside a Folder
	25-22 Copying Resources
	25-23 Find All Resources Containing "Paper"
	25-24 Find All Resources Containing "Paper" that are Under a Specified Path
	26-1 Using DBMS_XDB to Manage Resources
	26-2 Using Procedure DBMS_XDB.getACLDocument
	26-3 Using Procedure DBMS_XDB.setACL
	26-4 Using Function DBMS_XDB.changePrivileges
	26-5 Using Function DBMS_XDB.getPrivileges
	26-6 Using Function DBMS_XDB.cfg_get
	26-7 Using Procedure DBMS_XDB.cfg_update
	27-1 Simple Access Control Entry (ACE) that Grants a System Privilege
	27-2 Simple Access Control List (ACL) that Grants a System Privilege
	27-3 Simple Security Class
	27-4 Element extends-from
	27-5 Element constrained-with
	27-6 Complementing a Set of Principals with Element invert
	27-7 ACE with Start and End Dates
	27-8 Creating an ACL Using DBMS_XDB.createResource
	27-9 Retrieving an ACL Document, Given its Repository Path
	27-10 Setting the ACL of a Resource
	27-11 Deleting an ACL
	27-12 Updating (Replacing) an Access Control List
	27-13 Appending ACEs to an Access Control List
	27-14 Deleting an ACE from an Access Control List
	27-15 Retrieving the ACL Document for a Resource
	27-16 Retrieving Privileges Granted to the Current User for a Particular Resource
	27-17 Checking If a User Has a Certain Privileges on a Resource
	27-18 Checking User Privileges using ACLCheckPrivileges
	27-19 Retrieving the Path of the ACL that Protects a Given Resource
	27-20 Retrieving the Paths of All Resources Protected by a Given ACL
	27-21 ACL Referencing an LDAP User
	27-22 ACL Referencing an LDAP Group
	28-1 Navigating ASM Folders
	28-2 Transferring ASM Files Between Databases with FTP proxy Method
	28-3 Modifying the Default Timeout Value of an FTP Session
	29-1 Register an XML Schema for Technical Photo Information
	29-2 Register an XML Schema for Photo Categorization
	29-3 Add Metadata to a Resource - Technical Photo Information
	29-4 Add Metadata to a Resource - Photo Content Categories
	29-5 Delete Specific Metadata from a Resource
	29-6 Add Metadata to a Resource Using DML with RESOURCE_VIEW
	29-7 Add Metadata with WebDAV PROPPATCH
	29-8 Query XML Schema-Based Resource Metadata
	29-9 Add Non-Schema-Based Metadata to a Resource
	30-1 Resource Configuration File for Java Event Listeners With Preconditions
	30-2 Resource Configuration File for PL/SQL Event Listeners With No Preconditions
	30-3 PL/SQL Code Implementing Event Listeners
	30-4 Java Code Implementing Event Listeners
	30-5 Invoking Event Handlers
	31-1 JCR Node Representation of MyFolder
	31-2 Code Fragment Showing How to Get a Repository Object
	31-3 Using Oracle XML DB Content Connector to Upload a File
	31-4 XML Document With XML Schema-Based Content
	31-5 XML Schema
	31-6 JCR Representation of XML Content Not Registered for JCR Use
	31-7 JCR Representation of XML Content Registered for JCR Use
	31-8 Registering an XML Schema for Use with Oracle XML DB
	31-9 Registering an XML Schema for Use with JCR
	32-1 Writing an Oracle XML DB Servlet
	33-1 Adding a Web Services Configuration Servlet
	33-2 Verifying Addition of Web Services Configuration Servlet
	33-3 XML Schema for Database Queries To Be Processed by Web Service
	33-4 Input XML Document for SQL Query Using Query Web Service
	33-5 Output XML Document for SQL Query Using Query Web Service
	33-6 Definition of PL/SQL Function Used for Web-Service Access
	33-7 WSDL Document Corresponding to a Stored PL/SQL Function
	33-8 Input XML Document for PL/SQL Query Using Web Service
	33-9 Output XML Document for PL/SQL Query Using Web Service
	34-1 Oracle XML DB Configuration File
	34-2 Updating the Configuration File Using CFG_UPDATE and CFG_GET
	35-1 Loading Very Large XML Documents Into Oracle Database Using SQL*Loader
	36-1 Exporting XMLType Data in TABLE Mode
	36-2 Importing XMLType Data in TABLE Mode
	36-3 Creating Table po2
	36-4 Exporting XMLType Data in SCHEMA Mode
	36-5 Importing XMLType Data in SCHEMA Mode
	36-6 Importing XMLType Data in SCHEMA Mode, Remapping Schema
	37-1 XMLType and AQ: Creating a Table and Queue, and Transforming Messages
	37-2 XMLType and AQ: Dequeuing Messages
	A-1 Annotated Purchase-Order XML Schema, purchaseOrder.xsd
	A-2 Revised Purchase-Order XML Schema
	A-3 Inserting XML Content into an XMLType Table Using C
	A-4 Using OCIXmlDbInitXmlCtx() and OCIXmlDbFreeXmlCtx()

List of Figures

	1-1 XMLType Storage and Oracle XML DB Repository
	1-2 XMLType Storage
	1-3 Oracle XML DB Repository Architecture
	1-4 Web Browser View of Oracle XML DB Repository
	1-5 XML Use Cases and XMLType Storage Models
	1-6 Oracle XML DB Benefits
	1-7 Unifying Data and Content: Some Common XML Architectures
	2-1 Oracle XML DB Design Options
	2-2 Oracle XML DB Storage Options for XML Data
	2-3 Oracle XML DB Application Program Interface (API) Stack
	3-1 Using Windows Explorer to Load Content into the Repository
	3-2 XMLSpy Graphical Representation of the PurchaseOrder XML Schema
	3-3 XMLSpy Showing Support for Oracle XML DB Schema Annotations
	3-4 Copying Files into Oracle XML DB Repository
	3-5 Path-Based Access Using HTTP and a URL
	3-6 Using Microsoft Word to Update and Edit Content Stored in Oracle XML DB
	3-7 Database XSL Transformation of a PurchaseOrder Using DBUri Servlet
	3-8 Database XSL Transformation of Departments Table Using DBUri Servlet
	4-1 XMLExists Syntax
	4-2 EXISTSNODE Syntax
	4-3 EXTRACT Syntax
	4-4 XMLCast Syntax
	4-5 EXTRACTVALUE Syntax
	4-6 UPDATEXML Syntax
	4-7 INSERTCHILDXML Syntax
	4-8 INSERTCHILDXMLBEFORE Syntax
	4-9 INSERTCHILDXMLAFTER Syntax
	4-10 INSERTXMLBEFORE Syntax
	4-11 INSERTXMLAFTER Syntax
	4-12 APPENDCHILDXML Syntax
	4-13 DELETEXML Syntax
	6-1 Creating an XMLType Table
	6-2 How Oracle XML DB Maps XML Schema-Based XMLType Tables
	6-3 Mapping simpleType: XML Strings to SQL VARCHAR2 or CLOB
	8-1 Mapping complexType to SQL for Out-Of-Line Storage
	8-2 Mapping complexType XML Fragments to Character Large Objects (CLOB)
	8-3 Cross Referencing Between Different complexTypes in the Same XML Schema
	8-4 complexType Self Referencing Within an XML Schema
	8-5 Cyclical References Between XML Schemas
	10-1 XMLtransform Syntax
	10-2 Using XMLTRANSFORM
	12-1 Using PL/SQL DOM API for XMLType
	12-2 Using PL/SQL Parser API for XMLType
	12-3 Using PL/SQL XSLT Processor for XMLType
	14-1 Using Java DOM API for XMLType
	17-1 XMLELEMENT Syntax
	17-2 XMLAttributes Clause Syntax (XMLATTRIBUTES)
	17-3 XMLFOREST Syntax
	17-4 XMLSEQUENCE Syntax
	17-5 XMLCONCAT Syntax
	17-6 XMLAGG Syntax
	17-7 XMLPI Syntax
	17-8 XMLComment Syntax
	17-9 XMLRoot Syntax
	17-10 XMLSerialize Syntax
	17-11 XMLParse Syntax
	17-12 XMLCOLATTVAL Syntax
	17-13 XMLCDATA Syntax
	17-14 Using DBMS_XMLGEN
	17-15 SYS_XMLGEN Syntax
	17-16 SYS_XMLAGG Syntax
	18-1 XMLQUERY Syntax
	18-2 XMLTABLE Syntax
	19-1 Creating XMLType Views Clause: Syntax
	20-1 A DBUri Corresponds to an XML Visualization of Relational Data
	20-2 SYS_DBURIGEN Syntax
	21-1 A Folder Tree, Showing Hierarchical Structures in the Repository
	21-2 Oracle XML DB Folders in Windows Explorer
	21-3 Accessing Repository Data Using HTTP(S)/WebDAV and Navigational Access From IE Browser: Viewing Web Folders
	21-4 ASM Virtual Folder Hierarchy
	25-1 Accessing Repository Resources Using RESOURCE_VIEW and PATH_VIEW
	25-2 RESOURCE_VIEW and PATH_VIEW Structure
	25-3 RESOURCE_VIEW and PATH_VIEW Explained
	25-4 UNDER_PATH Syntax
	25-5 EQUALS_PATH Syntax
	25-6 PATH Syntax
	28-1 Oracle XML DB Architecture: Protocol Server
	28-2 Creating a WebFolder in Microsoft Windows
	37-1 Oracle Streams Advanced Queuing and XML Message Payloads
	37-2 iDAP Architecture for Performing AQ Operations Using HTTP(S)

List of Tables

	1-1 APIs Related to XML
	1-2 Catalog Views Related to XML
	1-3 XMLType Storage Models: Relative Advantages
	3-1 SQL*Loader - Conventional and Direct-Path Load Modes
	4-1 Common XPath Constructs
	5-1 Oracle XML DB Tasks Involving Indexes
	5-2 XMLIndex Path Table
	5-3 XMLIndex Static Public Views
	5-4 Index Synchronization
	6-1 XMLType Methods Related to XML Schema
	6-2 CREATE TABLE Encoding Options for Binary XML
	6-3 Annotations in Elements
	6-4 Annotations in Elements Declaring Global complexType Elements
	6-5 Annotations in XML Schema Declarations
	6-6 Mapping XML Schema String Data Types to SQL
	6-7 Mapping XML Schema Binary Data Types (hexBinary/base64Binary) to SQL
	6-8 Default Mapping of Numeric XML Schema Primitive Types to SQL
	6-9 Mapping XML Schema Date and Time Data Types to SQL
	6-10 Default Mapping of Other XML Schema Primitive and Derived Data Types to SQL
	6-11 Binary XML Encoding Types
	6-12 Mapping XML Schema Data Types to Binary XML Encoding Types
	7-1 Sample List of XPath Expressions for Rewrite to Underlying SQL Constructs
	7-2 Simple XPath Mapping for purchaseOrder XML Schema
	7-3 Event Levels and Behaviors
	7-4 XPath Mapping for EXISTSNODE with Document Ordering Preserved
	7-5 XPath Mapping for EXISTSNODE Without Document Ordering
	7-6 XPath Mapping for EXTRACTVALUE
	7-7 XPath Mapping for EXTRACT with Document Ordering Preserved
	7-8 XPath Mapping for EXTRACT Without Document Ordering Preserved
	9-1 Parameters of Procedure DBMS_XMLSCHEMA.COPYEVOLVE
	9-2 Errors Associated with Procedure DBMS_XMLSCHEMA.COPYEVOLVE
	9-3 XML Schema Evolution: XMLType Table Temporary Table Columns
	9-4 XML Schema Evolution: XMLType Column Temporary Table Columns
	9-5 Procedure copyEvolve Mapping Table
	9-6 Parameters of Procedure DBMS_XMLSCHEMA.INPLACEEVOLVE
	12-1 XML and HTML DOM Node Types and Their Child Node Types
	14-1 Java DOM API for XMLType: Classes
	15-1 OCIXmlDbInitXMlCtx() Parameters
	15-2 Common XMLType Operations in C
	17-1 DBMS_XMLGEN Functions and Procedures
	17-2 Attributes of the XMLFormat Object
	18-1 Predefined Namespaces and Prefixes
	20-1 URIType Methods
	20-2 URIFACTORY Methods
	20-3 DBUriServlet: Optional Arguments
	21-1 Synonyms for Oracle XML DB Foldering Terms
	21-2 Differences Between PATH_VIEW and RESOURCE_VIEW
	21-3 Accessing Oracle XML DB Repository: API Options
	24-1 Oracle XML DB Versioning Terms
	24-2 DBMS_XDB_VERSION Functions and Procedures
	25-1 Structure of RESOURCE_VIEW
	25-2 Structure of PATH_VIEW
	25-3 UNDER_PATH SQL Function Signature
	26-1 DBMS_XDB Resource Management Functions and Procedures
	26-2 DBMS_XDB: Security Management Procedures and Functions
	26-3 DBMS_XDB: Configuration Management Functions and Procedures
	27-1 Database Privileges Needed for Operations on Oracle XML DB Resources
	27-2 Atomic Privileges in Security Class DAV::dav
	27-3 Aggregate Privileges Defined by Security Class DAV::dav
	27-4 Atomic Privileges Defined by Security Class PrincipalSecurityClass
	27-5 Aggregate Privileges Defined by Security Class PrincipalSecurityClass
	28-1 Common Protocol Configuration Parameters
	28-2 Configuration Parameters Specific to FTP
	28-3 Configuration Parameters Specific to HTTP(S)/WebDAV (Except Servlet Parameters)
	30-1 Predefined Repository Events
	30-2 Oracle XML DB Repository Operations and Events
	31-1 Oracle XML DB Resource to JCR Mappings
	31-2 XML Schema Built-In Types Mapped to JCR Property Value Types
	32-1 XML Elements Defined for Servlet Deployment Descriptors
	32-2 Java 2.2 Methods That Are Not Implemented
	33-1 Web Service Mapping Between XML and SQL Data Types
	36-1 Format of the XMLType columns in the table with the corresponding format of the dump file

Preface

This manual describes Oracle XML DB, and how you can use it to store, generate, manipulate, manage, and query XML data in the database.

After introducing you to the heart of Oracle XML DB, namely the XMLType framework and Oracle XML DB repository, the manual provides a brief introduction to design criteria to consider when planning your Oracle XML DB application. It provides examples of how and where you can use Oracle XML DB.

The manual then describes ways you can store and retrieve XML data using Oracle XML DB, APIs for manipulating XMLType data, and ways you can view, generate, transform, and search on existing XML data. The remainder of the manual discusses how to use Oracle XML DB repository, including versioning and security, how to access and manipulate repository resources using protocols, SQL, PL/SQL, or Java, and how to manage your Oracle XML DB application using Oracle Enterprise Manager. It also introduces you to XML messaging and Oracle Streams Advanced Queuing XMLType support.

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle XML DB Developer's Guide is intended for developers building XML Oracle Database applications.

An understanding of XML, XML Schema, XQuery, XPath, and XSL is helpful when using this manual.

Many examples provided here are in SQL, PL/SQL, Java, or C. A working knowledge of one of these languages is presumed.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information, see these Oracle resources:

	
Oracle Database New Features Guide for information about the differences between Oracle Database 11g and the Oracle Database 11g Enterprise Edition and the available features and options. This book also describes features new to Oracle Database 11g Release 1 (11.1).

	
Oracle Database XML Java API Reference

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database Error Messages. Oracle Database error message documentation is available only as HTML. If you have access to only printed or PDF Oracle Database documentation, you can browse the error messages by range. Once you find the specific range, use the search (find) function of your Web browser to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle Database online documentation.

	
Oracle Text Application Developer's Guide

	
Oracle Text Reference

	
Oracle Database Concepts.

	
Oracle Database Java Developer's Guide

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Streams Advanced Queuing User's Guide

	
Oracle Database PL/SQL Packages and Types Reference

Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

For additional information, see:

	
http://www.w3.org/XML/Schema – XML Schema

	
http://www.w3.org/2001/XMLSchema – XML Schema

	
http://www.w3.org/TR/xmlschema-0/ – XML Schema: primer

	
http://www.w3.org/TR/xmlschema-1/ – XML Schema: structures

	
http://www.w3.org/TR/xmlschema-2/ – XML Schema: data types

	
http://www.oasis-open.org/cover/schemas.html – XML Schema

	
http://www.xml.com/pub/a/2000/11/29/schemas/part1.html – XML Schema

	
http://xml.coverpages.org/xmlMediaMIME.html – media/MIME types

	
http://www.w3.org/TR/xptr/ – XPointer

	
http://www.w3.org/TR/xpath – XPath 1.0

	
http://www.w3.org/TR/xpath20/ – XPath 2.0

	
http://www.zvon.org/xxl/XPathTutorial/General/examples.html – XPath

	
XML In a Nutshell, by Elliotte Rusty Harold and W. Scott Means, O'Reilly, January 2001, http://www.oreilly.com/catalog/xmlnut/chapter/ch09.html

	
http://www.w3.org/TR/2002/NOTE-unicode-xml-20020218/ – Unicode in XML

	
http://www.w3.org/TR/REC-xml-names/ – namespaces

	
http://www.w3.org/TR/xml-infoset/ – information sets

	
http://www.w3.org/TR/xslt – XSLT

	
http://www.oasis-open.org/cover/xsl.html – XSL

	
http://www.zvon.org/HTMLonly/XSLTutorial/Books/Book1/index.html – XSL

	
http://www.w3.org/2002/ws/Activity.html – Web services

	
http://www.ietf.org/rfc/rfc959.txt – RFC 959: FTP Protocol Specification

	
ISO/IEC 13249-2:2000, Information technology - Database languages - SQL Multimedia and Application Packages - Part 2: Full-Text, International Organization For Standardization, 2000

	
Note:

Throughout this manual, "XML Schema" refers to the XML Schema 1.0 recommendation, http://www.w3.org/XML/Schema.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Code Examples

The code examples in this book are for illustration only. In many cases, however, you can copy and paste parts of examples and run them in your environment.

Standard Database Schemas

Many of the examples in this book use the standard database schemas that are included in your database. In particular, database schema OE contains XML purchase-order documents in XMLType table purchaseorder, and XML documents with warehouse information in XMLType column warehouse_spec of table warehouses.

The purchase-order documents are also contained in Oracle XML DB Repository, under the repository path /home/OE/PurchaseOrders/2002/. The XML schema that governs these documents is file purchaseorder.xsd, at repository location /home/OE/purchaseorder.xsd. An XSL style sheet that is used in some examples to transform purchase-order documents is file purchaseorder.xsl, at repository location /home/OE/purchaseorder.xsl. This XML schema and style sheet can also be found in Appendix A, "Oracle-Supplied XML Schemas and Examples".

	
See Also:

	
Oracle Database Sample Schemas for information about database schema HR

	
Oracle Database Sample Schemas for information about database schema OE

Pretty Printing of XML Data

To promote readability, especially of lengthy or complex XML data, output is sometimes shown pretty-printed (formatted) in code examples.

Query Explain Plans

Some of the code examples in this book present query explain plans. These are for illustration only. Running examples presented here in your environment will likely result in different explain plans from those presented here.

Reminder About Case Sensitivity

When examining the examples in this book, keep in mind the following:

	
SQL is case-insensitive, but names in SQL code are implicitly uppercase, unless you enclose them in double-quotes.

	
XML is case-sensitive. You must refer to SQL names in XML code using the correct case: uppercase SQL names must be written as uppercase.

For example, if you create a table named my_table in SQL without using double-quotes, then you must refer to it in XML code as "MY_TABLE".

Syntax Descriptions

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL Language Reference for information about how to interpret these descriptions.

What's New In Oracle XML DB?

This section describes the new features and functionality, enhancements, APIs, and product integration support added to Oracle XML DB for Oracle Database 11g Release 1 (11.1).

Oracle Database 11g Release 1 (11.1) New Features in Oracle XML DB

Binary XML

Binary XML is a new storage model for abstract data type XMLType, joining the existing storage models of structured (object-relational) and unstructured (CLOB) storage. Binary XML is XML-Schema aware, but it can also be used with XML data that is not based on an XML schema. See "XMLType Storage Models".

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for an overview of XMLType data stored as binary XML

	
Oracle Database SQL Language Reference for information about creating XMLType tables and columns stored as binary XML

	
Oracle Database XML Java API Reference for information about manipulating binary XML data using Java

	
Oracle Database XML C API Reference for information about manipulating binary XML data using C

XMLIndex

A new index type is provided for XMLType: XMLIndex. This can greatly improve the performance of XPath-based predicates and fragment extraction for XMLType data, whether based on an XML schema or not. The new index type is a (logical) domain index that consists of underlying physical table(s) and secondary indexes. See Chapter 5, "Indexing XMLType Data".

	
Note:

The CTXSYS.CTXXPath index is deprecated in Oracle Database 11g Release 1 (11.1). The functionality that was provided by CTXXPath is now provided by XMLIndex.
Oracle recommends that you replace CTXXPath indexes with XMLIndex indexes. The intention is that CTXXPath will no longer be supported in a future release of the database.

	
See Also:

	
Oracle Database Reference for information about new view XIDX_USER_PENDING

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XMLINDEX

XMLType OCTs Now Use Heap Storage Instead of IOTs

You can store collections of XML elements as ordered collection tables (OCTs). OCTs now use heap storage, by default. In prior releases, OCTs were index-organized tables (IOTs), by default. A new XML schema registration option, REGISTER_NT_AS_IOT, forces the use of IOTs.

	
See Also:

"Controlling How Collections are Stored for Object-Relational XMLType Storage"

Default Value of XML Schema Annotation storeVarrayAsTable Is Now true

In prior releases, the default value of XML schema annotation storeVarrayAsTable was false; the default value is now true. This means that, by default, an XML collection is now stored as a set of rows in an ordered collection table (OCT). Each row corresponds to an element in the collection. With annotation storeVarrayAsTable = "false", the entire collection is instead serialized as a varray and stored in a LOB column.

Using storeVarrayAsTable = "true" facilitates efficient queries and updates on members of a collection, as well as the creation of B-tree indexes on a collection.

	
See Also:

"Controlling How Collections are Stored for Object-Relational XMLType Storage" for more information about storing XML collections object-relationally

Repository Events

Applications can now register listeners with handlers for events associated with Oracle XML DB Repository operations such as creating, deleting, and updating a resource. See Chapter 30, "Oracle XML DB Repository Events".

	
See Also:

	
Oracle Database XML Java API Reference for new Java methods

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XEVENT

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_RESCONFIG

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XDBRESOURCE

Support for Content Repository API for Java (JCR: JSR-170)

Oracle XML DB now supports Content Repository API for Java (JCR) and the JSR-170 standard. You can access Oracle XML DB Repository using the JCR APIs. See Chapter 31, "Using Oracle XML DB Content Connector".

	
See Also:

Oracle Database XML Java API Reference for new Java methods

New Repository Resource Link Types

You can now create weak folder links to represent Oracle XML DB Repository folder-child relationships. Hard links are still available, as well. See "Link Types".

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XDB

	
Oracle Database SQL Language Reference for updates to function under_path

Support for WebDAV Privileges and New Oracle XML DB Privileges

All WebDAV privileges are now supported by Oracle XML DB Repository. In addition, there are some new Oracle XML DB-specific atomic privileges. See Chapter 27, "Access Control Lists and Security Classes".

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_NETWORK_ACL_ADMIN

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package UTL_TCP

	
Oracle Database PL/SQL Packages and Types Reference for information about PL/SQL package UTL_INADDR

Web Services

You can now access Oracle Database through Web services. You can write and deploy Web services that can query the database using SQL or XQuery, or access stored PL/SQL functions and procedures. See Chapter 33, "Using Native Oracle XML DB Web Services"

In-Place XML Schema Evolution

In many cases, you can now evolve XML schemas without copying the corresponding XML instance documents. See Chapter 9, "XML Schema Evolution".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XMLSCHEMA

Support for Recursive XML Schemas

Oracle XML DB now performs XPath rewrite on some queries that use '//' in XPath expressions to target nodes at multiple or arbitrary depths, even when the XML data conforms to a recursive XML schema. See "Support for Recursive Schemas"

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for updates to PL/SQL package DBMS_XMLSCHEMA

Support for XLink and XInclude

Oracle XML DB now supports the XLink and XInclude standards. See Chapter 23, "Using XLink and XInclude With Oracle XML DB".

Support for XML Translations

You can now associate natural-language translation information with XML schemas and corresponding instance documents. This includes support for standard attributes xml:lang and xml:srclang. See "XML Translations".

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_XMLTRANSLATIONS

Support for Large XML Nodes

The previous 64K limit on text nodes and attribute values has been lifted. Text nodes and attribute values are no longer limited in size to 64K bytes each. New streaming push and pull APIs are available in PL/SQL, Java, and C to provide virtually unlimited node sizes. See "Large Node Handling Using DBMS_XMLDOM" for information about handling large nodes in PL/SQL and "Handling Large Nodes Using Java".

	
See Also:

	
Oracle Database SQL Language Reference for information about creating XMLType tables and columns stored as binary XML

	
Oracle Database XML Java API Reference for information about new Java methods

	
Oracle Database PL/SQL Packages and Types Reference for information about new PL/SQL package DBMS_SDA and updates to PL/SQL package DBMS_XMLDOM

Unified Java API

The Java XML APIs in Oracle XML DB and Oracle XDK have been unified.

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
Oracle Database XML Java API Reference, package oracle.xml.parser.v2

Oracle Data Pump Support for XMLType

Oracle Data Pump is now the recommended way to import and export XMLType data. See Chapter 36, "Exporting and Importing XMLType Tables".

Support for XMLType by Oracle Streams and Logical Standby

Oracle Streams and logical standby now support XMLType stored as CLOB. Both XML schema-based and non-schema-based XML data are supported.

	
See Also:

	
Oracle Streams Concepts and Administration

	
Oracle Data Guard Concepts and Administration

	
Oracle Database Utilities

	
Oracle Database Reference for information on views DBA_STREAMS_UNSUPPORTED and DBA_STREAMS_COLUMNS

Oracle XDK Pull-Parser API (XML Events, JSR-173)

You can use the new Oracle XML Developer Kit (XDK) pull-parser API with Oracle XML DB. See "Using the Oracle XDK Pull Parser With Oracle XML DB".

	
See Also:

	
Oracle Database XML C API Reference for information about new C methods and types

	
Oracle XML Developer's Kit Programmer's Guide

XQuery Standard Compliance

Oracle XML DB support for the XQuery language has been updated to reflect the latest version of the XQuery standard, W3C XQuery 1.0 Recommendation.

	
See Also:

	
Oracle XML Developer's Kit Programmer's Guide

	
http://www.w3.org for information about the XQuery language

Fine-Grained Access to Network Services Using PL/SQL

New atomic privileges are provided for access control entries (ACEs). These privileges are used for fine-grained PL/SQL access to network services.

SQL/XML Standard Compliance and Performance Enhancements

Oracle XML DB support for the SQL/XML standard has been updated to reflect the latest version of the standard. This includes support for standard SQL functions XMLExists and XMLCast. See "Querying XMLType Data with SQL Functions" and "Generating XML Using SQL Functions".

	
See Also:

Oracle Database SQL Language Reference for information about new SQL/XML functions XMLExists and XMLCast; as well as updates to functions XMLQuery, XMLTable, and XMLForest.

XML-Update Performance Enhancements

The performance of SQL functions used to update XML data has been enhanced for XML schema-based data that is stored object-relationally. This includes XPath rewrite for SQL functions updateXML, insertChildXML, and deleteXML.

XQuery and SQL/XML Performance Enhancements

XQuery and SQL/XML performance enhancements include treatment of the following:

	
User-defined XQuery functions

	
XQuery prolog variables

	
XQuery count function applied to the result of using a SQL/XML generation function

	
Positional expressions in XPath predicates

	
XQuery computed constructors

	
SQL/XML function XMLAgg

XSLT Performance Enhancements

The performance of XSLT transformations using SQL function XMLTransform and method transform() has been enhanced.

Part I

Oracle XML DB Basics

Part I of this manual introduces Oracle XML DB. It contains the following chapters:

	
Chapter 1, "Introduction to Oracle XML DB"

	
Chapter 2, "Getting Started with Oracle XML DB"

	
Chapter 3, "Using Oracle XML DB"

1 Introduction to Oracle XML DB

This chapter introduces the features and architecture of Oracle XML DB. It contains these topics:

	
Features of Oracle XML DB

	
Oracle XML DB Architecture

	
Oracle XML DB Features

	
Oracle XML DB Benefits

	
Searching XML Data Using Oracle Text

	
Building Messaging Applications using Oracle Streams Advanced Queuing

	
Requirements for Running Oracle XML DB

	
Standards Supported by Oracle XML DB

	
Oracle XML DB Technical Support

	
Oracle XML DB Examples Used in This Manual

	
Further Oracle XML DB Case Studies and Demonstrations

Features of Oracle XML DB

Oracle XML DB is the name for a set of Oracle Database technologies related to high-performance XML storage and retrieval. It provides native XML support by encompassing both SQL and XML data models in an interoperable manner.

Oracle XML DB includes the following features:

	
Support for the World Wide Web Consortium (W3C) XML and XML Schema data models and standard access methods for navigating and querying XML. The data models are incorporated into Oracle Database.

	
Ways to store, query, update, and transform XML data while accessing it using SQL.

	
Ways to perform XML operations on SQL data.

	
A simple, lightweight XML repository where you can organize and manage database content, including XML, using a file/folder/URL metaphor.

	
A storage-independent, content-independent and programming language-independent infrastructure for storing and managing XML data. This provides new ways of navigating and querying XML content stored in the database. For example, Oracle XML DB Repository facilitates this by managing XML document hierarchies.

	
Industry-standard ways to access and update XML. The standards include the W3C XPath recommendation and the ISO-ANSI SQL/XML standard. FTP, HTTP(S), and WebDAV can be used to move XML content into and out of Oracle Database. Industry-standard APIs provide programmatic access and manipulation of XML content using Java, C, and PL/SQL.

	
XML-specific memory management and optimizations.

	
Enterprise-level Oracle Database features for XML content: reliability, availability, scalability, and security.

Oracle XML DB can be used in conjunction with Oracle XML Developer's Kit (XDK) to build applications that run in the middle tier in either Oracle Application Server or Oracle Database.

	
See Also:

Oracle XML Developer's Kit Programmer's Guide

Oracle XML DB Architecture

Figure 1-1 and Figure 1-2 show the software architecture of Oracle XML DB. The two main features are:

	
Storage of XMLType tables and views

	
Oracle XML DB Repository

Figure 1-1 XMLType Storage and Oracle XML DB Repository

[image: Description of Figure 1-1 follows]

Figure 1-2 XMLType Storage

[image: Description of Figure 1-2 follows]

XMLType Storage

Figure 1-2 shows XMLType storage in Oracle XML DB.

When XML schemas are registered with Oracle XML DB, a set of default tables are created and used to store XML instance documents associated with the XML schema. These documents can be viewed and accessed in Oracle XML DB Repository.

Data in XMLType views can be stored in local or remote tables. Remote tables can be accessed through database links.

XMLType tables and views can be indexed using XMLIndex, B-tree, function-based, and Oracle Text indexes.

You can access data in Oracle XML DB Repository using any of the following:

	
HTTP(S), through the HTTP protocol handler

	
WebDAV and FTP, through the WebDAV and FTP protocol server

	
SQL, through Oracle Net Services, including Java Database Connectivity (JDBC)

Oracle XML DB supports XML data messaging using Oracle Streams Advanced Queuing (AQ) and Web Services.

	
See Also:

	
Part II, "Storing and Retrieving XML Data in Oracle XML DB"

	
Chapter 28, "Using Protocols to Access the Repository"

	
Chapter 37, "Exchanging XML Data with Oracle Streams AQ"

APIs for XML

Table 1-1 lists the reference documentation for the PL/SQL, C, and C++ Application Programming Interfaces (APIs) that you can use to manipulate XML documents and data. The main reference for PL/SQL, C, and C++ APIs is Oracle Database PL/SQL Packages and Types Reference.

	
See Also:

Oracle Database XML Java API Reference for information about Java APIs for XML

Table 1-1 APIs Related to XML

	API	Documentation	Description
	
XMLType

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "XMLType", Oracle Database XML C API Reference, and Oracle Database XML C++ API Reference

	
PL/SQL, C, and C++ APIs with XML operations on XMLType data – validation, transformation.

	
Database URI types

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "Database URI TYPEs"

	
Functions used for various URI types.

	
DBMS_METADATA

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_METADATA"

	
PL/SQL API for retrieving metadata from the database dictionary as XML, or retrieving creation DDL and submitting the XML to re-create the associated object.

	
DBMS_RESCONFIG

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_RESCONFIG"

	
PL/SQL API to operate on a resource configuration list, and to retrieve listener information for a resource.

	
DBMS_XDB

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB"

	
PL/SQL API for managing Oracle XML DB Repository resources, ACL-based security, and configuration sessions.

	
DBMS_XDB_ADMIN

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB_ADMIN"

	
PL/SQL API for managing miscellaneous features of Oracle XML DB, including the XMLIndex index on the Oracle XML DB Repository.

	
DBMS_XDBRESOURCE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBRESOURCE"

	
PL/SQL API to operate on repository resource metadata and contents

	
DBMS_XDBT

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBT"

	
PL/SQL API for creation of text indexes on repository resources.

	
DBMS_XDB_VERSION

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDB_VERSION"

	
PL/SQL API for version management of repository resources.

	
DBMS_XDBZ

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XDBZ"

	
Oracle XML DB Repository ACL-based security.

	
DBMS_XEVENT

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XEVENT"

	
PL/SQL API providing event-related types and supporting interface..

	
DBMS_XMLDOM

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLDOM"

	
PL/SQL implementation of the DOM API for XMLType.

	
DBMS_XMLGEN

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLGEN"

	
PL/SQL API for transformation of SQL query results into canonical XML format.

	
DBMS_XMLINDEX

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLINDEX

	
PL/SQL API for XMLIndex.

	
DBMS_XMLPARSER

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLPARSER"

	
PL/SQL implementation of the DOM Parser API for XMLType.

	
DBMS_XMLQUERY

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLQUERY"

	
PL/SQL API providing database-to-XMLType functionality. (Where possible, use DBMS_XMLGEN instead.)

	
DBMS_XMLSAVE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSAVE"

	
PL/SQL API providing XML- to-database type functionality.

	
DBMS_XMLSCHEMA

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSCHEMA

	
PL/SQL API for managing XML schemas within Oracle Database – schema registration, deletion.

	
DBMS_XMLSTORE

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XMLSTORE"

	
PL/SQL API for storing XML data in relational tables.

	
DBMS_XSLPROCESSOR

	
Oracle Database PL/SQL Packages and Types Reference, Chapter "DBMS_XSLPROCESSOR"

	
PL/SQL implementation of an XSLT processor.

Catalog Views Related to XML

Table 1-2 lists the catalog views related to XML. Information about a given view can be obtained by using the SQL command DESCRIBE. Example:

DESCRIBE USER_XML_SCHEMAS

Table 1-2 Catalog Views Related to XML

	Schema	Description
	

USER_XML_SCHEMAS

	
Registered XML schemas owned by the current user

	

ALL_XML_SCHEMAS

	
Registered XML schemas usable by the current user

	

DBA_XML_SCHEMAS

	
Registered XML schemas in Oracle XML DB

	

USER_XML_TABLES

	
XMLType tables owned by the current user

	

ALL_XML_TABLES

	
XMLType tables usable by the current user

	

DBA_XML_TABLES

	
XMLType tables in Oracle XML DB

	

USER_XML_TAB_COLS

	
XMLType table columns owned by the current user

	

ALL_XML_TAB_COLS

	
XMLType table columns usable by the current user

	

DBA_XML_TAB_COLS

	
XMLType table columns in Oracle XML DB

	

USER_XML_VIEWS

	
XMLType views owned by the current user

	

ALL_XML_VIEWS

	
XMLType views usable by the current user

	

DBA_XML_VIEWS

	
XMLType views in Oracle XML DB

	

USER_XML_VIEW_COLS

	
XMLType view columns owned by the current user

	

ALL_XML_VIEW_COLS

	
XMLType view columns usable by the current user

	

DBA_XML_VIEW_COLS

	
XMLType view columns in Oracle XML DB

	
See Also:

Oracle Database PL/SQL Packages and Types Reference

Views RESOURCE_VIEW and PATH_VIEW

Oracle XML DB views RESOURCE_VIEW and PATH_VIEW provide SQL access to data in Oracle XML DB Repository through protocols such as FTP and WebDAV. View PATH_VIEW has one row for each unique path in the repository; view RESOURCE_VIEW has one row for each resource in the repository.

The Oracle XML DB resource API for PL/SQL, DBMS_XDB, provides query and DML functions. It is based on RESOURCE_VIEW and PATH_VIEW.

	
See Also:

	
Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

	
Oracle Database Reference for more information about view PATH_VIEW

	
Oracle Database Reference for more information about view RESOURCE_VIEW

Overview of Oracle XML DB Repository

Oracle XML DB Repository is a component of Oracle Database that is optimized for handling XML data. The Oracle XML DB repository contains resources, which can be either folders (directories, containers) or files. Each resource has these properties:

	
It is identified by a path and name.

	
It has content (data), which can be XML data but need not be.

	
It has a set of system-defined metadata (properties), such as Owner and CreationDate, in addition to its content. Oracle XML DB uses this information to manage the resource.

	
It might also have user-defined metadata: information that is not part of the content, but is associated with it.

	
It has an associated access control list that determines who can access the resource, and for what operations.

Although Oracle XML DB Repository treats XML content specially, you can use Oracle XML DB Repository to store other kinds of data, besides XML; you can use the repository to access any data that is stored in Oracle Database.

	
See Also:

	
Part V. "Oracle XML DB Repository"

	
Chapter 28, "Using Protocols to Access the Repository" for information about accessing XML data in XMLType tables and columns using external protocols

	
Chapter 29, "User-Defined Repository Metadata"

Accessing and Manipulating XML in the Oracle XML DB Repository

You can access data in Oracle XML DB Repository in the following ways (see Figure 1-1):

	
Using SQL, through views RESOURCE_VIEW and PATH_VIEW

	
Using PL/SQL, through the DBML_XDB API

	
Using Java, through the Oracle XML DB resource API for Java

XML Services

Besides supporting APIs that access and manipulate data, Oracle XML DB Repository provides APIs for the following services:

	
Versioning – Oracle XML DB uses the DBMS_XDB_VERSION PL/SQL package for versioning resources in Oracle XML DB Repository. Subsequent updates to a resource create a new version (the data corresponding to previous versions is retained). Versioning support is based on the IETF WebDAV standard.

	
ACL Security – Oracle XML DB resource security is based on access control lists (ACLs). Each resource in Oracle XML DB has an associated ACL that lists its privileges. Whenever resources are accessed or manipulated, the ACLs determine if the operation is legal. An ACL is an XML document that contains a set of access control entries (ACEs). Each ACE grants or revokes a set of permissions to a particular user or group (database role). This access control mechanism is based on the WebDAV specification.

	
Foldering – Oracle XML DB Repository manages a persistent hierarchy of folder (directory) resources that contain other resources (files or folders). Oracle XML DB modules, such as protocol servers, the schema manager, and the Oracle XML DB RESOURCE_VIEW API, use foldering to map path names to resources.

Oracle XML DB Repository Architecture

Figure 1-3 describes the Oracle XML DB Repository architecture. You can access the repository in SQL, for example, using the RESOURCE_VIEW API. In addition to the resource information, the RESOURCE_VIEW also contains a Path column, which holds the paths to each resource.

	
See Also:

	
Chapter 21, "Accessing Oracle XML DB Repository Data"

	
Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

Figure 1-3 Oracle XML DB Repository Architecture

[image: Description of Figure 1-3 follows]

How Does Oracle XML DB Repository Work?

The relational model table-row-column metaphor, is accepted as an effective mechanism for managing structured data. The model is not as effective for managing semi-structured and unstructured data, such as document- or content-oriented XML. For example, a book is not easily represented as a set of rows in a table. It is more natural to represent a book as a hierarchy, book:chapter:section:paragraph, and to represent the hierarchy as a set of folders and subfolders.

	
A hierarchical metaphor manages document-centric XML content. Relational databases are traditionally poor at managing hierarchical structures and traversing a path or URL. Oracle XML DB provides a hierarchically organized repository that can be queried and through which document-centric XML content can be managed.

	
A hierarchical repository index speeds up folder and path traversals. Oracle XML DB includes a patented hierarchical index that speeds up folder and path traversals in Oracle XML DB Repository. The hierarchical repository index is transparent to end users, and lets Oracle XML DB perform folder and path traversals at speeds comparable to or faster than conventional file systems.

	
You can access XML documents in Oracle XML DB Repository using standard connect-access protocols such as FTP, HTTP(S), and WebDAV, in addition to languages SQL, PL/SQL, Java, and C. The repository provides content authors and editors direct access to XML content stored in Oracle Database.

	
A resource in this context is a file or folder, identified by a URL. WebDAV is an IETF standard that defines a set of extensions to the HTTP protocol. It lets an HTTP server act as a file server for a DAV-enabled client. For example, a WebDAV-enabled editor can interact with an HTTP/WebDAV server as if it were a file system. The WebDAV standard uses the term resource to describe a file or a folder. Each resource managed by a WebDAV server is identified by a URL. Oracle XML DB adds native support to Oracle Database for these protocols. The protocols were designed for document-centric operations. By providing support for these protocols, Oracle XML DB lets Windows Explorer, Microsoft Office, and products from vendors such as Altova, Macromedia, and Adobe work directly with XML content stored in Oracle XML DB Repository. Figure 1-4 shows the root-level directory of the repository as seen from a Web browser.

Figure 1-4 Web Browser View of Oracle XML DB Repository

[image: Description of Figure 1-4 follows]

	
See Also:

Chapter 3, "Using Oracle XML DB"

Hence, WebDAV clients such as Microsoft Windows Explorer can connect directly to Oracle XML DB Repository. No additional Oracle Database or Microsoft-specific software or other complex middleware is needed. End users can work directly with Oracle XML DB Repository using familiar tools and interfaces.

Oracle XML DB Protocol Architecture

One key feature of the Oracle XML DB architecture is that HTTP(S), WebDAV, and FTP protocols are supported using the same architecture used to support Oracle Data Provider for .NET (ODP.NET) in a shared server configuration. The Listener listens for HTTP(S) and FTP requests in the same way that it listens for ODP.NET service requests. When the Listener receives an HTTP(S) or FTP request, it hands it off to an Oracle Database shared server process which services it and sends the appropriate response back to the client.You can use the TNS Listener command, lsnrctl status, to verify that HTTP(S) and FTP support has been enabled – see Example 1-1.

Example 1-1 Listener Status with FTP and HTTP(S) Protocol Support Enabled

LSNRCTL for 32-bit Windows: Version 11.1.0.5.0 - Production on 20-AUG-2007 16:02:34

Copyright (c) 1991, 2007, Oracle. All rights reserved.

Connecting to (DESCRIPTION=(ADDRESS=(PROTOCOL=IPC)(KEY=EXTPROC1521))) STATUS of the LISTENER
--
Alias LISTENER
Version TNSLSNR for 32-bit Windows: Version 11.1.0.5.0 - Beta
Start Date 20-JUN-2007 15:35:40
Uptime 0 days 16 hr. 47 min. 42 sec
Trace Level off
Security ON: Local OS Authentication
SNMP OFF
Listener Parameter File C:\oracle\product\11.1.0\db_1\network\admin\listener.ora
Listener Log File c:\oracle\diag\tnslsnr\quine-pc\listener\alert\log.xml

Listening Endpoints Summary...
(DESCRIPTION=(ADDRESS=(PROTOCOL=ipc)(PIPENAME=\\.\pipe\EXTPROC1521ipc)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.us.mycompany.com)(PORT=1521)))
(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.us.mycompany.com)
 (PORT=21))(Presentation=FTP)(Session=RAW)) (DESCRIPTION=(ADDRESS=(PROTOCOL=tcp)(HOST=quine-pc.us.mycompany.com)
 (PORT=443))(Presentation=HTTP)(Session=RAW))
Services Summary...
Service "orcl.us.oracle.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orclXDB.us.oracle.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
Service "orcl_XPT.us.oracle.com" has 1 instance(s).
 Instance "orcl", status READY, has 1 handler(s) for this service...
The command completed successfully

	
See Also:

Chapter 28, "Using Protocols to Access the Repository"

Programmatic Access to Oracle XML DB (Java, PL/SQL, and C)

All Oracle XML DB functionality is accessible from C, PL/SQL, and Java. These are the most popular ways to build Web-based applications:

	
Using servlets and Java Server Pages (JSP). A typical API accesses data using Java Database Connectivity (JDBC).

	
Using Extensible Stylesheet Language (XSL) plus XML Server Pages (XSP). A typical API accesses data in the form of XML documents that are processed using a Document Object Model (DOM) API implementation.

Oracle XML DB supports both of these styles of application development. It provides Java, PL/SQL, and C implementations of the DOM API.Applications that use JDBC, such as those based on servlets, need prior knowledge of the data structure they are processing. Oracle JDBC drivers allow you to access and update XMLType tables and columns, and call PL/SQL procedures that access Oracle XML DB Repository.Applications that use DOM, such as those based on XSLT transformations, typically require less knowledge of the data structure. DOM-based applications use string names to identify pieces of content, and must dynamically walk through the DOM tree to find the required information. For this, Oracle XML DB supports the use of the DOM API to access and update XMLType columns and tables. Programming to a DOM API is more flexible than programming through JDBC, but it may require more resources at run time.

Oracle XML DB Features

Any database used for managing XML must be able to persist XML documents. Oracle XML DB is capable of much more than this. It provides standard database features such as transaction control, data integrity, replication, reliability, availability, security, and scalability., while also allowing for efficient indexing, querying, updating, and searching of XML documents in an XML-centric manner.

The hierarchical nature of XML presents the traditional relational database with a number of challenges:

	
In a relational database, the table-row metaphor locates content. Primary-Key Foreign-Key relationships help define the relationships between content. Content is accessed and updated using the table-row-column metaphor. XML, on the other hand, uses hierarchical techniques to achieve the same functionality. A URL is used to locate an XML document. URL-based standards such as XLink are used to define relationships between XML documents. W3C Recommendations such as XPath are used to access and update content contained within XML documents. Both URLs and XPath expressions are based on hierarchical metaphors. A URL uses a path through a folder hierarchy to identify a document, whereas XPath uses a path through the node hierarchy of an XML document to access part of an XML document.

Oracle XML DB addresses these challenges by introducing new SQL functions and methods that allow the use of XML-centric metaphors, such as XQuery and XPath expressions for querying and updating XML Documents. These are the major features of Oracle XML DB:

	
XMLType Data Type

	
XML Schema Support

	
XMLType Storage Models

	
XML/SQL Duality

	
SQL/XML INCITS Standard SQL Functions

	
Rewriting of XQuery and XPath Expressions

	
XMLType Storage. This was described.

	
Overview of Oracle XML DB Repository. This was described.

XMLType Data Type

XMLType is a native data type for XML data. It provides methods that allow operations such as XML schema validation and XSL transformation on XML content. You can use XMLType as you would any other data type. For example, you can use XMLType when you do any of the following:

	
Creating a column in a relational table

	
Declaring PL/SQL variables

	
Defining and calling PL/SQL procedures and functions

XMLType is an object type, so you can also create a table of XMLType instances. By default, an XMLType table or column can contain any well-formed XML document.

XMLType Tables and Columns Can Conform to an XML Schema

XMLType tables or columns can be constrained to conform to an XML schema. This has several advantages:

	
The database ensures that only XML documents that validate against the XML schema are stored in the column or table.

	
Since the contents of the table or column conform to a known XML structure, Oracle XML DB can use the information contained in the XML schema to provide optimized query and update processing of the XML.

	
You have the option of storing the XML document content using structured storage. This decomposes the document and stores it as a set of object-relational objects. The object-relational model used to store the document is derived from the XML schema.

XMLType API

Data type XMLType provides the following:

	
Constructors, which you can use to create an XMLType instance from a VARCHAR, CLOB, BLOB, or BFILE value.

	
XML-specific methods that operate on XMLType instances. These include the following:

	
extract()– Extract a subset of nodes contained in the XMLType instance.

	
existsNode() – Check whether or not a particular node exists in the XMLType instance.

	
schemaValidate() – Validate the content of the XMLType instance against an XML schema.

	
transform() – Perform an XSL transformation on the content of an XMLType instance.

	
See Also:

Chapter 4, "XMLType Operations" and Chapter 10, "Transforming and Validating XMLType Data"

XML Schema Support

Support for the Worldwide Web Consortium (W3C) XML Schema Recommendation is a key feature in Oracle XML DB. XML Schema specifies the structure, content, and certain semantics of a set of XML documents. It is described in detail at http://www.w3.org/TR/xmlschema-0/.

XML Schema Unifies Document Modeling and Data Modeling

In Oracle XML DB, you can use XML Schema to automatically create database tables and data types for storing XML data. You can thus use a standard data model for all of your data, whether the data is structured, unstructured, or semi-structured.

Create XMLType Tables and Columns, Ensure DOM Fidelity

You can create XML schema-based XMLType tables and columns and optionally specify that they conform to pre-registered XML schemas, maintaining DOM fidelity.

Use XMLType Views to Wrap Relational Data

You can also choose to wrap existing relational and object-relational data into XML format using XMLType views. You can store an XMLType object as an XML object that is based on an XML schema or not based on an XML schema:

	
XML schema-based objects. These are stored in Oracle XML DB tables, columns, or views using binary XML storage, CLOB storage, or object-relational storage.

	
Non-schema-based objects. These are stored in Oracle XML DB as LOBs only.

You can map from incoming XML documents to XMLType storage. The mapping is specified in an XML schema, which you register with Oracle XML DB. After it is registered, the XML schema can be referenced using its URL.

W3C Schema for Schemas

The W3C Schema Working Group publishes an XML schema, often referred to as the "schema for schemas". This XML schema provides the definition, or vocabulary, of the XML Schema language. An XML schema definition (XSD) is an XML document, that is compliant with the vocabulary defined by the schema for schemas. An XML schema uses vocabulary defined by W3C XML Schema Working Group to create a collection of type definitions and element declarations that declare a shared vocabulary for describing the contents and structure of a new class of XML documents.

XML Schema Base Set of Data Types Can be Extended

The XML Schema language provides strong typing of elements and attributes. It defines numerous scalar data types. This base set of data types can be extended to define more complex types, using object-oriented techniques such as inheritance and extension. The XML Schema vocabulary also includes constructs that you can use to define complex types, substitution groups, repeating sets, nesting, ordering, and so on. Oracle XML DB supports all of the constructs defined by the XML Schema Recommendation, except for redefines.

XML schemas are commonly used as a mechanism for checking (validating) whether XML instance documents conform with their specifications. Oracle XML DB includes XMLType methods and SQL functions that you can use to validate XML documents against an XML schema.

	
Note:

This manual uses the term XML schema (lower-case "s") to reference any XML schema that conforms to the W3C XML Schema (upper-case "S") Recommendation. Since an XML schema is used to define a class of XML documents, the term instance document is often used to describe an XML document that conforms to a particular XML schema.

	
See Also:

Chapter 6, "XML Schema Storage and Query: Basic" for more information about using XML schemas with Oracle XML DB

XMLType Storage Models

XMLType is an abstract data type that provides different storage models to best fit your data and your use of it. As an abstract data type, your applications and database queries gain in flexibility: the same interface is available for all XMLType operations. Because different storage (persistence) models are available, you can tailor performance and functionality to best fit the kind of XML data you have and the pattern of its use. One key decision to make when using Oracle XML DB for persisting XML data as XMLType is thus which storage model to use for which XML data.

You can change XMLType storage from one model to another, using database import/export (see Chapter 36, "Exporting and Importing XMLType Tables"); your application code does not need to change. You can change XML storage options when tuning your application.

XMLType tables and columns can be stored in these ways:

	
Structured storage – XMLType data is stored as a set of objects. This is also referred to as object-relational storage and object-based persistence.

	
Unstructured storage – XMLType data is stored in Character Large Object (CLOB) instances. This is also referred to as CLOB storage and text-based persistence.

	
Binary XML storage – XMLType data is stored in a post-parse, binary format specifically designed for XML data. Binary XML is compact, post-parse, XML schema-aware XML. This is also referred to as post-parse persistence.

Unstructured and binary XML storage each provide two LOB storage options, SecureFile and BasicFile.

	
See Also:

	
Oracle Database SQL Language Reference, section "CREATE TABLE", clause "LOB_storage_clause"

	
Oracle Database SecureFiles and Large Objects Developer's Guide for information about LOB storage options SecureFile and BasicFile

You can mix storage models, using one model for one part of an XML document and a different model for another part. The mixture of structured and unstructured storage is sometimes called hybrid storage. What is true about structured storage is true about the structured part of hybrid storage. What is true about unstructured storage is true about the unstructured part of hybrid storage.

XMLType has multiple storage models, and some models can be configured in more than one way. Each model has its advantages, depending on the context. Each model has one or more types of index that are appropriate for it.

The first thing to consider, when choosing an XMLType storage model, is the nature of your XML data and the ways you use it. A spectrum exists, with data-centric use of highly structured data at one end, and document-centric use of highly unstructured data at the other. The first question to ask yourself is this: Is your use case primarily data-centric or document-centric?

	
Data-centric – Your data is, in general, highly structured, with relatively static and predictable structure, and your applications take advantage of this structure. Your data conforms to an XML schema.

	
Document-centric – Two cases:

	
If your data is relatively structured, your applications do not take advantage of that structure. That is, you treat the data as if it were without structure.

	
Your data is generally without structure or of variable structure. Document structure can vary over time (evolution). Content is mixed (semi-structured): many elements contain both text nodes and child elements. Many XML elements can be absent or can appear in different orders. Documents might or might not conform to an XML schema.

	
Note:

Please be aware of the context, so as not to confuse discussion of storage options with discussion of the structure of the XML content to be stored. In this book, "structured" and "unstructured" generally refer to XMLType storage options; they refer less often to the nature of your data. "Hybrid" refers to object-relational storage with some embedded CLOB storage. "Semi-structured" refers to XML content, regardless of storage. Unstructured storage is CLOB-based storage, and structured storage is object-relational storage.

Once you've located the data-centric or document-centric half of the spectrum that is appropriate for your use case and data, consider whether your case is at an end of the spectrum or closer to the middle. That is, just how data-centric or document-centric is your case?

	
Employ object-relational (structured) storage for purely data-centric uses. A typical example of this use case would be an employee record (fields employee number, name, address, and so on). Use B-tree indexing with object-relational storage.

	
Employ hybrid storage if your data is composed primarily of invariable XML structures, but it does contain some variable data; that is, it contains a predictably few mixed-content elements. A typical example of this use case would be an employee record that includes a free-form resume. Index the structured and unstructured parts of your data separately, using appropriate indexes for each part.

	
Employ binary XML storage or CLOB-based (unstructured) storage for all document-centric use cases. In terms of indexing, we can distinguish two use cases:

	
If your data contains some predictable, fixed structures that you query frequently, then you can employ function-based indexes on those parts. A typical example of this use case would be a free-form specification, with author, date, and title fields.

	
Otherwise, for general indexing of document-centric XML data, use XMLIndex indexing. A typical example of this use case would be an XML Web document or a book chapter.

In all document-centric cases, you can additionally use Oracle Text indexing for full-text queries.

These considerations are summarized in Figure 1-5. The figure shows the spectrum of use cases, from most data-centric, at the left, to most document-centric, at the right. The table in the figure classifies use cases and shows the corresponding storage models and indexing methods.

Figure 1-5 XML Use Cases and XMLType Storage Models

[image: Description of Figure 1-5 follows]

See Chapter 5, "Indexing XMLType Data" for more information about indexing XML data. In particular, note that some types of indexing are complementary or orthogonal, so you can use them together.

The following list and Table 1-3 outline some of the advantages of each storage model.

	
Structured (object-relational) storage advantages over unstructured storage include optimized memory management, reduced storage requirements, B-tree indexing, and in-place updates. These advantages are at a cost of increased processing overhead during ingestion and retrieval of XML data, and reduced flexibility in the structure of the XML that can be managed by a given XMLType table or column. Structural flexibility is reduced, because data and metadata (such as column names) are separated in object-relational storage; instance structures cannot vary easily. Structured storage is particularly appropriate for highly structured data whose structure does not vary, if this maps to a manageable number of database tables and joins.

	
Unstructured (CLOB) storage enables higher throughput than structured storage when inserting and retrieving entire XML documents. No data conversion is needed, so the same format can be used outside the database. Unstructured storage also provides greater flexibility than structured storage in the structure of the XML that can be stored. Unstructured storage is particularly appropriate for document-centric use cases. These advantages can come at the expense of certain aspects of intelligent processing: in the absence of indexing, there is little that the database can do to optimize queries or updates on XML data that is stored in a CLOB instance. In particular, the cost of XML parsing (often implicit) can significantly impact query performance. Indexing with XMLIndex can improve the performance of queries against unstructured storage.

	
Binary XML storage provides more efficient database storage, updating, indexing, and fragment extraction than unstructured storage. It can provide better query performance than unstructured storage — it does not suffer from the XML parsing bottleneck (it is a post-parse persistence model). Like structured storage, binary XML storage is aware of XML Schema data types and can take advantage of native database data types. Like unstructured storage, no data conversion is needed during database insertion or retrieval. Like structured storage, binary XML storage allows for piecewise updates. Because binary XML data can also be used outside the database, it can serve as an efficient XML exchange medium, and you can off load work from the database to increase overall performance in many cases. Like unstructured storage, binary XML data is kept in document order. Like structured storage, data and metadata can, using binary storage, be separated at the database level, for efficiency. Like unstructured storage, however, binary XML storage allows for intermixed data and metadata, which lets instance structures vary. Binary XML storage allows for very complex and variable data, which in the structured-storage model could necessitate using many database tables. Unlike the other XMLType storage models, you can use binary storage for XML schema-based data even if the XML schema is not known beforehand, and you can store multiple XML schemas in the same table and query across common elements.

Binary XML storage is the closest thing to a universal storage model for XML data — you can use it effectively for a very wide range of use cases, from document-centric to data-centric.

Table 1-3 XMLType Storage Models: Relative Advantages

	Quality	Structured (Object-Relational) Storage	Unstructured (CLOB) Storage	Binary XML Storage
	
Throughput

	
– XML decomposition can result in reduced throughput when ingesting retrieving the entire content of an XML document.

	
+ High throughput when ingesting and retrieving the entire content of an XML document.

	
++ High throughput. Fast DOM loading.

	
Space efficiency (disk)

	
++ Extremely space-efficient.

	
– Consumes the most disk space, due to insignificant whitespace and repeated tags.

	
+ Space-efficient.

	
Data flexibility

	
– Limited flexibility. Only documents that conform to the XML schema can be stored in the XMLType table or column.

	
+ Flexibility in the structure of the XML documents that can be stored in an XMLType column or table.

	
+ Flexibility in the structure of the XML documents that can be stored in an XMLType column or table.

	
XML schema flexibility

	
– Relatively inflexible. Data and metadata are stored separately. Cannot use multiple XML schemas for the same XMLType table.

	
+ Flexible. Data and metadata are stored together. Cannot use multiple XML schemas for the same XMLType table.

	
++ Flexible. Can store data and metadata together or separately. Can use multiple XML schemas for the same XMLType table.

	
XML fidelity

	
– DOM fidelity: A DOM created from an XML document that has been stored in the database will be identical to a DOM created from the original document. However, insignificant whitespace may be discarded.

	
+ Document fidelity: Maintains the original XML data, byte for byte. In particular, all original whitespace is preserved.

	
– DOM fidelity (see structured storage description).

	
Update operations (DML)

	
++ In-place, piecewise update.

	
– When any part of the document is updated, the entire document must be written back to disk.

	
+ In-place, piecewise update for SecureFile LOB storage.

	
XPath-based queries

	
++ XPath operations can often be evaluated using XPath rewrite, leading to significantly improved performance, particularly with large collections of documents.

	
– XPath operations are evaluated by constructing a DOM from the CLOB data and using functional evaluation. Expensive when performing operations on large documents or large collections of documents.

XMLIndex indexing can improve performance of XPath-based queries.

	
+ Streaming XPath evaluation avoids DOM construction and allows evaluation of multiple XPath expressions in a single pass. Navigational XPath evaluation is significantly faster than with unstructured storage.

XMLIndex indexing can improve performance of XPath-based queries.

	
SQL constraint support

	
+ SQL constraints are supported.

	
– SQL constraints are not available.

	
+ SQL constraints are supported.

	
Support for SQL scalar data types

	
+ Yes

	
– No

	
+ Yes

	
Indexing support

	
B-tree, Oracle Text, and function-based indexes.

	
XMLIndex, function-based, and Oracle Text indexes.

	
XMLIndex, function-based, and Oracle Text indexes.

	
Optimized memory management

	
+ XML operations can be optimized to reduce memory requirements.

	
– XML operations on the document require creating a DOM from the document.

	
+ XML operations can be optimized to reduce memory requirements.

	
Validation upon insert

	
XML data is partially validated when it is inserted.

	
XML schema-based data is partially validated when it is inserted.

	
+ XML schema-based data is fully validated when it is inserted.

	
Note:

When you insert XML schema-based data into binary XMLType columns or tables, the data is fully validated against the XML schema. Insertion fails if the data is invalid.

When XMLType is stored object-relationally, the XMLType instances contain hidden columns that store information about the XML data that does not fit into the SQL object model.

XML/SQL Duality

A key objective of Oracle XML DB is to provide XML/SQL duality. XML programmers can leverage the power of the relational model when working with XML content and SQL programmers can leverage the flexibility of XML when working with relational content. This lets you use the most appropriate tools for a particular business problem.

XML/SQL duality means that the same data can be exposed as rows in a table and manipulated using SQL or exposed as nodes in an XML document and manipulated using techniques such as DOM and XSL transformation. Access and processing techniques are independent of the underlying storage format.

These features provide simple solutions to common business problems. For example:

	
You can use Oracle XML DB SQL functions to generate XML data directly from a SQL query. You can then transform the XML data into other formats, such as HTML, using the database-resident XSLT processor.

	
You can access XML content without converting between different data formats, using SQL queries, on-line analytical processing (OLAP), and business-intelligence/data warehousing operations.

	
You can perform text, spatial data, and multimedia operations on XML content.

SQL/XML INCITS Standard SQL Functions

Oracle XML DB provides the SQL functions defined in the SQL/XML standard. This standard is defined by specifications prepared by the International Committee for Information Technology Standards (INCITS) Technical Committee H2. INCITS is the main standards body for developing standards for the syntax and semantics of database languages, including SQL.

The SQL/XML standard is evolving, so the syntax and semantics of its functions are subject to change in the future. The Oracle XML DB implementation of SQL/XML functions will evolve accordingly.

SQL/XML functions fall into two categories:

	
Functions that you can use to query and access XML content as part of normal SQL operations.

	
Functions that you can use to generate XML data from the result of a SQL query.

With SQL/XML functions you can address XML content in any part of a SQL statement. These functions use XQuery or XPath expressions to traverse the XML structure and identify the nodes on which to operate. The ability to embed XQuery and XPath expressions in SQL statements greatly simplifies XML access.

	
See Also:

	
http://www.incits.org/tc_home/h2.htm for information about INCITS Technical Committee H2

	
http://www.w3.org/TR/xpath for the XPath recommendation

	
Chapter 4, "XMLType Operations" for detailed descriptions of the SQL/XML standard functions for querying XML data

	
Generating XML Using SQL Functions for detailed descriptions of the SQL/XML standard functions for generating XML data

	
Chapter 3, "Using Oracle XML DB" for examples that use the SQL/XML standard functions

Rewriting of XQuery and XPath Expressions

SQL/XML functions and their corresponding XMLType methods use XQuery or XPath expressions to search collections of XML documents and to access a subset of the nodes contained within an XML document. In many cases, Oracle XML DB is able to rewrite such expressions to code that executes directly against the underlying database objects.

	
See Also:

"Generating XML Using SQL Functions" for information about SQL/XML functions

How XPath Expressions Are Evaluated by Oracle XML DB

Oracle XML DB provides the following ways of evaluating XPath expressions that operate on XMLType columns and tables, depending on the XML storage method used:

	
Structured storage – Oracle XML DB attempts to translate the XPath expression in a SQL/XML function into an equivalent SQL query. The SQL query references the object-relational data structures that underpin a schema-based XMLType. This process is referred to as XPath rewrite. It can occur when performing queries and UPDATE operations. In addition, function-based indexes, and B-tree indexes on the underlying object-relational tables, can be used to evaluate XPath expressions for structured storage.

	
Unstructured storage – Function-based indexes can be used to evaluate XPath expressions for unstructured storage. In addition:

	
In the absence of an XMLIndex index, Oracle XML DB evaluates the XPath expression using functional evaluation. Functional evaluation builds a DOM tree for each XML document, and then resolves the XPath programmatically using the methods provided by the DOM API. If the operation involves updating the DOM tree, the entire XML document must be written back to disk when the operation is completed.

	
If an XMLIndex can be used, then it is used instead of functional evaluation.

	
Binary XML storage – Oracle XML DB can evaluate XPath expressions in different ways: using a function-based index, using XMLIndex, and using single-pass streaming. Single-pass streaming means evaluating a set of XPath expressions in a single scan of binary XML data. During query compilation, the cost-based optimizer picks the fastest combination of the methods.

	
See Also:

Table 1-3, "XMLType Storage Models: Relative Advantages"

Rewriting SQL Code That Contains XQuery and XPath Expressions

For XML data that is stored object-relationally, Oracle XML DB can rewrite SQL statements that contain XQuery and XPath expressions to purely relational SQL statements, which are then processed in an optimal manner. In this way, Oracle XML DB insulates the database optimizer from needing to understand the XQuery and XPath languages and the XML data model. The database optimizer processes a rewritten SQL statement the same way it processes other SQL statements. The general term applied to this rewriting process is XPath rewrite.

This means that the database optimizer can derive an execution plan based on conventional relational algebra. This in turn means that Oracle XML DB can leverage all of the features of the database, and ensure that SQL statements containing XQuery and XPath expressions are executed in a highly performant and efficient manner. There is little overhead with this rewriting, and Oracle XML DB executes XQuery-based and XPath-based queries at near-relational speed, while preserving the XML abstraction.

When Can XPath Rewrite Occur?

XPath rewrite is possible when all of the following conditions are met:

	
An XMLType column or table uses structured storage techniques to provide the underlying storage model.

	
An XMLType column or table is associated with a registered XML schema.

	
A SQL statement contains SQL/XML functions or XMLType methods that use XPath expressions to refer to one or more nodes within a set of XML documents.

	
The nodes referenced by an XPath expression can be mapped, using the XML schema, to attributes of the underlying SQL object model.

What is the XPath-Rewrite Process?

XPath rewrite performs the following tasks:

	
Identify the set of XPath expressions included in the SQL statement.

	
Translate each XPath expression into an object relational SQL expression that references the tables, types, and attributes of the underlying SQL: 1999 object model.

	
Rewrite the original SQL statement into an equivalent object relational SQL statement.

	
Pass the new SQL statement to the database optimizer for plan generation and query execution.

In certain cases, XPath rewrite is not possible. This normally occurs when there is no SQL equivalent of the XPath expression. In this situation, Oracle XML DB performs a functional evaluation of the XPath expressions.

In general, functional evaluation of a SQL statement is more expensive than XPath rewrite, particularly if the number of documents that needs to be processed is large. The advantage of functional evaluation is that it is always possible, regardless of whether the XMLType data is stored using structured storage and regardless of the complexity of the XPath expression.

Understanding the concept of XPath rewrite, and the conditions under which it can take place, is a key step in developing Oracle XML DB applications that will deliver the required levels of scalability and performance.

	
See Also:

Chapter 7, "XPath Rewrite"

Oracle XML DB Benefits

The following sections describe several benefits of using Oracle XML DB. Figure 1-6 outlines these benefits.

Figure 1-6 Oracle XML DB Benefits

[image: Description of Figure 1-6 follows]

Unifying Data and Content

Most application data and Web content is stored in a relational database, a file system, or both. XML data is often used for data exchange, and it can be generated from a relational database or a file system. As the volume of XML data exchanged grows, the cost of regenerating this data grows, and these storage methods become less effective at accommodating XML content.

Figure 1-7 Unifying Data and Content: Some Common XML Architectures

[image: Description of Figure 1-7 follows]

Organizations often manage their structured data and unstructured data differently:

	
Unstructured data, in tables, makes document access transparent and table access complex.

	
Structured data, often in binary large objects (such as in BLOB instances), makes access more complex and table access transparent.

With Oracle XML DB, you can store and manage data that is structured, unstructured, and semi-structured using a standard data model and standard SQL and XML. You can perform SQL operations on XML documents and XML operations on object-relational (such as table) data.

Exploiting Database Capabilities

Oracle Database has strong XML support with the following key capabilities:

	
Indexing and search – Applications use queries such as "find all the product definitions created between March and April 2002", a query that is typically supported by a B-tree index on a date column. Oracle XML DB can enable efficient structured searches on XML data, saving content-management vendors the need to build proprietary query APIs to handle such queries. See Chapter 4, "XMLType Operations", Chapter 11, "Full-Text Search Over XML Data", and Chapter 17, "Generating XML Data from the Database".

	
Updates and transaction processing – Commercial relational databases use fast updates of subparts of records, with minimal contention between users trying to update. As traditionally document-centric data participate in collaborative environments through XML, this requirement becomes more important. File or CLOB storage cannot provide the granular concurrency control that Oracle XML DB does. See Chapter 4, "XMLType Operations".

	
Managing relationships – Data with any structure typically has foreign-key constraints. XML data stores generally lack this feature, so you must implement any constraints in application code. Oracle XML DB enables you to constrain XML data according to XML schema definitions, and hence achieve control over relationships that structured data has always enjoyed. See Chapter 6, "XML Schema Storage and Query: Basic" and the purchase-order examples in Chapter 4, "XMLType Operations".

	
Multiple views of data – Most enterprise applications need to group data together in different ways for different modules. This is why relational views are necessary—to allow for these multiple ways to combine data. By allowing views on XML, Oracle XML DB creates different logical abstractions on XML for, say, consumption by different types of applications. See Chapter 19, "XMLType Views".

	
Performance and scalability – Users expect data storage, retrieval, and query to be fast. Loading a file or CLOB value, and parsing, are typically slower than relational data access. Oracle XML DB dramatically speeds up XML storage and retrieval. See Chapter 2, "Getting Started with Oracle XML DB" and Chapter 3, "Using Oracle XML DB".

	
Ease of development – Databases are foremost an application platform that provides standard, easy ways to manipulate, transform, and modify individual data elements. While typical XML parsers give standard read access to XML data they do not provide an easy way to modify and store individual XML elements. Oracle XML DB supports a number of standard ways to store, modify, and retrieve data: using XML Schema, XQuery, XPath, DOM, and Java.

	
See Also:

	
Chapter 14, "Java DOM API for XMLType"

	
Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW"

	
Chapter 26, "Using PL/SQL to Access the Repository"

Exploiting XML Capabilities

If the drawbacks of XML file storage force you to break down XML into database tables and columns, there are several XML advantages you have left:

	
Structure independence: The open content model of XML cannot be captured easily in the pure tables-and-columns world. XML schemas allow global element declarations, not just scoped to a container. Hence you can find a particular data item regardless of where in the XML document it moves to as your application evolves. See Chapter 6, "XML Schema Storage and Query: Basic".

	
Storage independence: When you use relational design, your client programs must know where your data is stored, in what format, what table, and what the relationships are among those tables. XMLType enables you to write applications without that knowledge and lets DBAs map structured data to physical table and column storage. See Chapter 6, "XML Schema Storage and Query: Basic" and Chapter 21, "Accessing Oracle XML DB Repository Data".

	
Ease of presentation: XML is understood natively by Web browsers, many popular desktop applications, and most Internet applications. Relational data is not generally accessible directly from applications; programming is required to make relational data accessible to standard clients. Oracle XML DB stores data as XML and makes it available as XML outside the database; no extra programming is required to display database content. See:

	
Chapter 10, "Transforming and Validating XMLType Data".

	
Chapter 17, "Generating XML Data from the Database".

	
Chapter 19, "XMLType Views".

	
Oracle XML Developer's Kit Programmer's Guide, in the chapter, "XSQL Pages Publishing Framework". It includes XMLType examples.

	
Ease of interchange – XML is the language of choice in business-to-business (B2B) data exchange. If you are forced to store XML in an arbitrary table structure, you are using some kind of proprietary translation. Whenever you translate a language, information is lost and interchange suffers. By natively understanding XML and providing DOM fidelity in the storage/retrieval process, Oracle XML DB enables a clean interchange. See:

	
Chapter 10, "Transforming and Validating XMLType Data"

	
Chapter 19, "XMLType Views"

Efficient Storage and Retrieval of Complex XML Documents

Users today face a performance barrier when storing and retrieving complex, large, or many XML documents. Oracle XML DB provides high performance and scalability for XML operations. The major performance features are:

	
Native XMLType. See Chapter 4, "XMLType Operations".

	
A lazily evaluated virtual DOM support. See Chapter 12, "PL/SQL APIs for XMLType".

	
Database-integrated XQuery, XPath, and XSLT support. This support is described in several chapters, including Chapter 4, "XMLType Operations", Chapter 10, "Transforming and Validating XMLType Data", and Chapter 18, "Using XQuery with Oracle XML DB".

	
XML schema-caching support. See Chapter 6, "XML Schema Storage and Query: Basic".

	
Indexing – both full-text and XML. See Chapter 5, "Indexing XMLType Data" and Chapter 11, "Full-Text Search Over XML Data".

	
A hierarchical index over Oracle XML DB Repository. See Chapter 21, "Accessing Oracle XML DB Repository Data".

Integrate Applications

Oracle XML DB enables data from disparate systems to be accessed through gateways and combined into one common data model. This reduces the complexity of developing applications that must deal with data from different stores.

Use XMLType Views If Your Data Is Not XML

XMLType views provide a way for you wrap existing relational and object-relational data in XML format. This is especially useful if, for example, your legacy data is not in XML format but you need to migrate to XML format. Using XMLType views, you do not need to alter your application code.

	
See Also:

Chapter 19, "XMLType Views"

To use XMLType views, you must first register an XML schema with annotations that represent a bidirectional mapping between XML Schema data types and either SQL data types or binary XML encoding types. You can then create an XMLType view conforming to this mapping, by providing an underlying query that constructs instances of the appropriate types.

Searching XML Data Using Oracle Text

Oracle Database enables special indexing on XML data, including Oracle Text indexes for section searching, special SQL functions to process XML, aggregation of XML, and special optimization of queries involving XML. SQL functions hasPath and inPath are designed to optimize XML data searches where you can search within XML text for substring matches.

Oracle XML DB also provides:

	
SQL function contains and XPath function ora:contains, which can be used with SQL function existsNode for XPath-based searches.

	
The ability to create indexes on URIType and XDBURIType columns.

	
See Also:

	
Chapter 11, "Full-Text Search Over XML Data"

	
"Oracle Text Indexes on XML Data"

	
Oracle Text Application Developer's Guide

	
Oracle Text Reference

Building Messaging Applications using Oracle Streams Advanced Queuing

Oracle Streams Advanced Queuing supports the use of:

	
XMLType as a message/payload type, including XML schema-based XMLType

	
Queuing or dequeuing of XMLType messages

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide for information about using XMLType with Oracle Streams Advanced Queuing

	
Chapter 37, "Exchanging XML Data with Oracle Streams AQ"

Requirements for Running Oracle XML DB

Oracle XML DB is available with Oracle9i release 2 (9.2) and higher.

	
See Also:

	
http://www.oracle.com/technology/tech/xml/ for the latest news and white papers on Oracle XML DB

	
Chapter 2, "Getting Started with Oracle XML DB"

Standards Supported by Oracle XML DB

Oracle XML DB supports all major XML, SQL, Java, and Internet standards:

	
W3C XML Schema 1.0 Recommendation. You can register XML schemas, validate stored XML content against XML schemas, or constrain XML stored in the server to XML schemas.

	
W3C XQuery 1.0 Recommendation and W3C XPath 2.0 Recommendation. You can search or traverse XML stored inside the database using XQuery and XPath, either from HTTP(S) requests or from SQL.

	
ISO-ANSI Working Draft for XML-Related Specifications (SQL/XML) [ISO/IEC 9075 Part 14 and ANSI]. You can use the emerging ANSI SQL/XML functions to query XML from SQL. The task force defining these specifications falls under the auspices of the International Committee for Information Technology Standards (INCITS). The SQL/XML specification will be fully aligned with SQL:2003. SQL/XML functions are sometimes referred to as SQLX functions.

	
Java Database Connectivity (JDBC) API. JDBC access to XML is available for Java programmers.

	
W3C XSL 1.0 Recommendation. You can transform XML documents at the server using XSLT.

	
W3C DOM Recommendation Levels 1.0 and 2.0 Core. You can retrieve XML stored in the server as an XML DOM, for dynamic access.

	
Protocol support. You can store or retrieve XML data from Oracle XML DB using standard protocols such as HTTP(S), FTP, and IETF WebDAV, as well as Oracle Net.

	
Java Servlet version 2.2, (except that the servlet WAR file, web.xml is not supported in its entirety, and only one ServletContext and one web-app are currently supported, and stateful servlets are not supported).

	
Web services: SOAP 1.1. You can access XML stored in the server from SOAP requests. You can build, publish, or find Web Services using Oracle XML DB and Oracle9iAS, using WSDL and UDDI. You can use Oracle Streams Advanced Queuing IDAP, the SOAP specification for queuing operations, on XML stored in Oracle Database.

	
See Also:

	
"SQL/XML INCITS Standard SQL Functions" for more information about the ANSI SQL/XML functions

	
Chapter 28, "Using Protocols to Access the Repository" for more information about protocol support

	
Chapter 32, "Writing Oracle XML DB Applications in Java" for information about using the Java servlet

	
Chapter 37, "Exchanging XML Data with Oracle Streams AQ" and Oracle Streams Advanced Queuing User's Guide for information about using SOAP

Oracle XML DB Technical Support

Besides your regular channels of support through your customer representative or consultant, technical support for Oracle Database XML-enabled technologies is available free through the Discussions option on Oracle Technology Network (OTN):

http://www.oracle.com/technology/tech/xml/

Oracle XML DB Examples Used in This Manual

This manual contains examples that illustrate the use of Oracle XML DB and XMLType. The examples are based on a number of database schema, sample XML documents, and sample XML schema.

	
See Also:

Appendix A, "Oracle-Supplied XML Schemas and Examples"

Further Oracle XML DB Case Studies and Demonstrations

Visit OTN to view Oracle XML DB examples, white papers, case studies, and demonstrations.

Oracle XML DB Examples and Tutorials

You can peruse more Oracle XML DB examples on OTN:

http://www.oracle.com/technology/tech/xml/

Comprehensive XML classes on how to use Oracle XML DB are also available. See the Oracle University link on OTN.

Oracle XML DB Case Studies and Demonstrations

Several detailed Oracle XML DB case studies are available on OTN and include the following:

	
Oracle XML DB Downloadable Demonstration. This detailed demonstration illustrates how to use many Oracle XML DB features. Parts of this demonstration are also included in Chapter 3, "Using Oracle XML DB".

	
Content Management System (CMS) application. This illustrates how you can store files on the database using Oracle XML DB Repository in hierarchically organized folders, place the files under version control, provide security using ACLs, transform XML content to a desired format, search content using Oracle Text, and exchange XML messages using Oracle Streams Advanced Queueing (to request privileges on files or for sending externalization requests). See http://www.oracle.com/technology/sample_code/tech/xml/xmldb/cmsxdb/content.html.

	
XML Dynamic News. This is a complete J2EE 1.3 based application that demonstrates Java and Oracle XML DB features for an online news portal. News feeds are stored and managed persistently in Oracle XML DB. Various other news portals can customize this application to provide static or dynamic news services to end users. End users can personalize their news pages by setting their preferences. The application also demonstrates the use of Model View Controller (MVC) architecture and various J2EE design patterns. See http://www.oracle.com/technology/sample_code/tech/xml/xmlnews/content.html

	
SAX Loader Application. This demonstrates an efficient way to break up large files containing multiple XML documents outside the database and insert them into the database as a set of separate documents. This is provided as a standalone and a Web-based application. Oracle XML DB Utilities package. This highlights the subprograms provided with the XDB_Utilities package. These subprograms operate on BFILE values, CLOB values, DOM, and Oracle XML DB Resource APIs. With this package, you can perform basic Oracle XML DB foldering operations, read and load XML files into a database, and perform basic DOM operations through PL/SQL.Card Payment Gateway Application. This application uses Oracle XML DB to store all your data in XML format and enables access to the resulting XML data using SQL. It illustrates how a credit card company can store its account and transaction data in the database and also maintain XML fidelity. Survey Application. This application determines what members want from Oracle products. OTN posts the online surveys and studies the responses. This Oracle XML DB application demonstrates how a company can create dynamic, interactive HTML forms, deploy them to the Internet, store the responses as XML, and analyze them using the XML enabled Oracle Database.

2 Getting Started with Oracle XML DB

This chapter provides some preliminary design criteria for consideration when planning your Oracle XML DB solution.

This chapter contains these topics:

	
Oracle XML DB Installation

	
When to Use Oracle XML DB

	
Designing Your XML Application

	
Application Design with Oracle XML DB

	
How Structured Is Your Data?

	
Access Models

	
Application Language

	
Processing Models

	
Storage Models

	
Oracle XML DB Performance

Oracle XML DB Installation

Oracle XML DB is installed automatically in the following situations:

	
If Database Configuration Assistant (DBCA) is used to build Oracle Database using the general-purpose template

	
If you use SQL script catqm to install Oracle Database

You can determine whether or not Oracle XML DB is already installed. If it is installed, then the following are true:

	
Database schema (user account) XDB exists. To check that, run this query:

SELECT * FROM ALL_USERS;

	
View RESOURCE_VIEW exists. To check that, use this command:

DESCRIBE RESOURCE_VIEW

	
See Also:

	
Chapter 34, "Administering Oracle XML DB" for information about installing and de-installing Oracle XML DB manually

	
Oracle Database 2 Day + Security Guide for information about database schema XDB

When to Use Oracle XML DB

Oracle XML DB is suited for any application where some or all of the data processed by the application is represented using XML. Oracle XML DB provides for high performance ingestion, storage, processing and retrieval of XML data. Additionally, it also provides the ability to quickly and easily generate XML from existing relational data.

The type of applications that Oracle XML DB is particularly suited to include:

	
Business-to-Business (B2B) and Application-to-Application (A2A) integration

	
Internet applications

	
Content-management applications

	
Messaging

	
Web Services

A typical Oracle XML DB application has one or more of the following requirements and characteristics:

	
Large numbers of XML documents must be ingested or generated

	
Large XML documents need to be processed or generated

	
High performance searching, both within a document and across a large collections of documents

	
High levels of security. Fine grained control of security

	
Data processing must be contained in XML documents and data contained in traditional relational tables

	
Uses languages such as Java that support open standards such as SQL, XML, XQuery, XPath, and XSLT

	
Accesses information using standard Internet protocols such as FTP, HTTP(S)/WebDAV, or Java Database Connectivity (JDBC)

	
Ability to query from SQL and integration with analytic capabilities

	
Validation of XML documents is critical

Designing Your XML Application

Oracle XML DB provides you with the ability to fine tune how XML documents will be stored and processed in Oracle Database. Depending on the nature of the application being developed, XML storage must have at least one of the following features

	
High performance ingestion and retrieval of XML documents

	
High performance indexing and searching of XML documents

	
Be able to update sections of an XML document

	
Manage highly either or both structured and unstructured XML documents

Application Design with Oracle XML DB

This section discusses the preliminary design criteria you can consider when planning your Oracle XML DB application. Figure 2-1 provides an overview of your main design options for building Oracle XML DB applications.

Data

Will your data be highly structured (mostly XML), semi-structured, or mostly unstructured? If highly structured, will your tables be XML schema-based or non-schema-based? See "How Structured Is Your Data?" and Chapter 3, "Using Oracle XML DB".

Access

How will other applications and users access your XML and other data? How secure must the access be? Do you need versioning? See "Access Models".

Application Language

In which language(s) will you be programming your application? See "Application Language".

Processing

Will you need to generate XML? See Chapter 17, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? Will you need to update fragments or the whole document?

Will you need to transform the XML to HTML, WML, or other languages, and how will your application transform the XML? See Chapter 10, "Transforming and Validating XMLType Data".

Does your application need to be primarily database resident or work in both database and middle tier?

Is your application data-centric, document- and content-centric, or integrated (is both data- and document-centric). "Processing Models".

Will you be exchanging XML data with other applications, across gateways? Will you need Advanced Queuing (AQ) or SOAP compliance? See Chapter 37, "Exchanging XML Data with Oracle Streams AQ".

Storage

How and where will you store the data, XML data, XML schema, and so on? See "Storage Models".

	
Note:

The choices you make for data structure, access, language, and processing are typically interdependent, but they are not dependent on the storage model you choose.

Figure 2-1 Oracle XML DB Design Options

[image: Description of Figure 2-1 follows]

How Structured Is Your Data?

If your XML data is not XML schema-based, then, regardless of how structured it is, you can store it in an XMLType table or view as binary XML or as a CLOB instance, or you can store it as a file in an Oracle XML DB Repository folder.

If your XML data is XML schema-based then you can use unstructured, structured (object-relational), or binary XML storage for its structured parts. For the unstructured parts, you have the same options as for data that is not XML schema-based. See also "Storage Models".

Access Models

There are two main data access modes to consider when designing your Oracle XML DB applications:

	
Navigation-based access or path-based access. This is suitable for both content/document and data oriented applications. Oracle XML DB provides the following languages and access APIs:

	
SQL access through resource and path views. See Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

	
PL/SQL access through DBMS_XDB. See Chapter 26, "Using PL/SQL to Access the Repository".

	
Protocol-based access using HTTP(S)/WebDAV or FTP, most suited to content-oriented applications. See Chapter 28, "Using Protocols to Access the Repository".

	
Query-based access. This can be most suited to data oriented applications. Oracle XML DB provides access using SQL queries through the following APIs:

	
Java access (through JDBC). See Java DOM API for XMLType.

	
PL/SQL access. See Chapter 12, "PL/SQL APIs for XMLType".

These options for accessing Oracle XML DB Repository data are also discussed in Chapter 21, "Accessing Oracle XML DB Repository Data".

You can also consider the following access model criteria:

	
What level of security do you need? See Chapter 27, "Access Control Lists and Security Classes".

	
What kind of indexing will best suit your application? Will you need to use Oracle Text indexing and querying? See Chapter 4, "XMLType Operations", Chapter 5, "Indexing XMLType Data", and Chapter 11, "Full-Text Search Over XML Data".

	
Do you need to version the data? If yes, see Chapter 24, "Managing Resource Versions".

Application Language

You can program your Oracle XML DB applications in the following languages:

	
Java (JDBC, Java Servlets)

	
See Also:

	
Chapter 14, "Java DOM API for XMLType"

	
Chapter 32, "Writing Oracle XML DB Applications in Java"

	
PL/SQL

	
See Also:

	
Chapter 12, "PL/SQL APIs for XMLType"

	
Chapter 26, "Using PL/SQL to Access the Repository"

	
"APIs for XML"

Processing Models

The following processing options are available and should be considered when designing your Oracle XML DB application:

	
XSLT. Will you need to transform the XML to HTML, WML, or other languages, and how will your application transform the XML? While storing XML documents in Oracle XML DB you can optionally ensure that their structure complies with (validates against) specific XML schemas. See Chapter 10, "Transforming and Validating XMLType Data".

	
DOM fidelity, document fidelity. Use unstructured storage to preserve document fidelity. Use binary XML or structured storage for XML schema-based data to preserve DOM fidelity. See Chapter 12, "PL/SQL APIs for XMLType" and "DOM Fidelity".

	
XPath searching. You can use XPath syntax embedded in a SQL statement or as part of an HTTP(S) request to query XML content in the database. See Chapter 4, "XMLType Operations", Chapter 11, "Full-Text Search Over XML Data", Chapter 21, "Accessing Oracle XML DB Repository Data", and Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

	
XML Generation and XMLType views. Will you need to generate or regenerate XML? If yes, see Chapter 17, "Generating XML Data from the Database".

How often will XML documents be accessed, updated, and manipulated? See Chapter 4, "XMLType Operations" and Chapter 25, "SQL Access Using RESOURCE_VIEW and PATH_VIEW".

Will you need to update fragments or the whole document? You can use XPath expressions to specify individual elements and attributes of your document during updates, without rewriting the entire document. This is more efficient, especially for large XML documents. Chapter 6, "XML Schema Storage and Query: Basic".

Is your application data-centric, document- and content-centric, or integrated (is both data- and document-centric)? See Chapter 3, "Using Oracle XML DB".

Messaging Options

Advanced Queuing (AQ) supports XML and XMLType applications. You can create queues with payloads that contain XMLType attributes. These can be used for transmitting and storing messages that contain XML documents. By defining Oracle Database objects with XMLType attributes, you can do the following:

	
Store more than one type of XML document in the same queue. The documents are stored internally as CLOB values.

	
Selectively dequeue messages with XMLType attributes using SQL functions such as existsNode and extract.

	
Define rule-based subscribers that query message content using SQL functions such as existsNode and extract.

	
Define transformations to convert Oracle Database objects to XMLType.

	
See Also:

	
Chapter 37, "Exchanging XML Data with Oracle Streams AQ"

	
Oracle Streams Advanced Queuing User's Guide

Storage Models

Figure 2-2 shows the Oracle XML DB storage options for XMLType tables and views.

Figure 2-2 Oracle XML DB Storage Options for XML Data

[image: Description of Figure 2-2 follows]

If you have existing relational data, you can access it as XML data by creating XMLType views over it. You can use the following to define the XMLType views:

	
SQL/XML functions. See Chapter 17, "Generating XML Data from the Database".

	
Object types: object tables, object constructors, and object views.

Regardless of which storage options you choose for your application, Oracle XML DB provides the same functionality. Though the storage model you use can affect your application performance and XML data fidelity, it is totally independent of all of the following:

	
How, and how often, you query or update your data.

	
How you access your data. This is determined only by your application processing requirements.

	
What language(s) your application uses. This is determined only by your application processing requirements.

	
See Also:

	
"XMLType Storage Models"

	
"DOM Fidelity"

Oracle XML DB Performance

One objection to using XML to represent data is that it generates higher overhead than other representations. Oracle XML DB incorporates a number of features specifically designed to address this issue by significantly improving the performance of XML processing. These are described in the following sections:

	
XML Storage Requirements

	
XML Memory Management

	
XML Parsing Optimizations

	
Node-Searching Optimizations

	
XML Schema Optimizations

	
Load Balancing Through Cached XML Schema

	
Reduced Bottlenecks From Code That Is Not Native

	
Reduced Java Type Conversion Bottlenecks

XML Storage Requirements

Data represented in XML and stored in a text file averages three times the size of the same data in a Java object or in relational tables. There are two main reasons for this:

	
Tag names (metadata describing the data) and white space (formatting characters) take up a significant amount of space in the document, particularly for highly structured, data-centric XML.

	
All data in an XML file is represented in human readable (string) format.

Storing Structured Documents in Oracle XML DB Saves Space

The string representation of a numeric value needs about twice as many bytes as the native (binary) representation. When XML documents are stored in Oracle XML DB using structured or binary XML storage, the storage process discards all tags and white space in the document.

The amount of space saved by this optimization depends on the ratio of tag names to data, and the number of collections in the document. For highly-structured, data-centric XML data, the savings can be significant. When a document is printed, or when node-based operations such as XPath evaluation take place, Oracle XML DB uses the information contained in the associated XML schema to dynamically reconstruct any necessary tag information.

XML Memory Management

Document Object Model (DOM) is the dominant programming model for XML documents. DOM APIs are easy to use but the DOM Tree that underpins them is expensive to generate, in terms of memory. A typical DOM implementation maintains approximately 80 to 120 bytes of system overhead for each node in the DOM tree. This means that for highly structured data, the DOM tree can require 10 to 20 times more memory than the document on which it is based.

A conventional DOM implementation requires the entire contents of an XML document to be loaded into the DOM tree before any operations can take place. If an application only needs to process a small percentage of the nodes in the document, this is extremely inefficient in terms of memory and processing overhead. The alternative SAX approach reduces the amount of memory required to process an XML document, but its disadvantage is that it only allows linear processing of nodes in the XML Document.

Oracle XML DB Reduces Memory Overhead for XML Schema-Based Documents by Using XML Objects (XOBs)

Oracle XML DB reduces memory overhead associated with DOM programming by managing XML schema-based XML documents using an internal in-memory structure called an XML Object (XOB). A XOB is much smaller than the equivalent DOM since it does not duplicate information like tag names and node types, that can easily be obtained from the associated XML schema. Oracle XML DB automatically uses a XOB whenever an application works with the contents of a schema-based XMLType. The use of the XOB is transparent to you. It is hidden behind the XMLType data type and the C, PL/SQL, and Java APIs.

XOB Uses Lazily-Loaded Virtual DOM

The XOB can also reduce the amount of memory required to work with an XML document using the Lazily-Loaded Virtual DOM feature. This lets Oracle XML DB defer loading in-memory representation of nodes that are part of sub-elements or collection until methods attempt to operate on a node in that object. Consequently, if an application only operates on a few nodes in a document, only those nodes and their immediate siblings are loaded into memory.The XOB can only used when an XML document is based on an XML schema. If the contents of the XML document are not based on an XML schema, a traditional DOM is used instead of the XOB.

XML Parsing Optimizations

To populate a DOM tree the application must parse the XML document. The process of creating a DOM tree from an XML file is very CPU- intensive. In a typical DOM-based application, where the XML documents are stored as text, every document has to be parsed and loaded into the DOM tree before the application can work with it. If the contents of the DOM tree are updated the entire tree must be serialized back into a text format and written out to disk.

With Oracle XML DB No Re-Parsing is Needed

Oracle XML DB eliminates the need to keep re-parsing documents. No parsing is necessary when an XML document is loaded from disk into memory, if the document is stored as structured or binary XML storage. Oracle XML DB maps directly between the on-disk format and the in-memory format using information derived from the associated XML schema. When changes are made to XML schema-based data, Oracle XML DB is able to write just the updated data back to disk. When XML data is not based on an XML schema, a traditional DOM is used instead.

Node-Searching Optimizations

Most DOM implementations use string comparisons when searching for a particular node in the DOM tree. Even a simple search of a DOM tree can require hundreds or thousands of instruction cycles. Searching for a node in a XOB is much more efficient than searching for a node in a DOM. A XOB is based on a computed offset model, similar to a C/C++ object, and uses dynamic hashtables rather than string comparisons to perform node searches.

XML Schema Optimizations

Making use of the powerful features associated with XML schema in a conventional XML application can generate significant amounts of additional overhead. For example, before an XML document can be validated against an XML schema, the schema itself must be located, parsed, and validated.

Minimizing XML Schema Overhead After a Schema Is Registered

Oracle XML DB minimizes the overhead associated with using XML schema. When an XML schema is registered with the database, it is loaded in the Oracle XML DB schema cache, along with all of the metadata required to map between the XML, XOB and on- disk representations of the data. This means that once the XML schema has been registered with the database, no additional parsing or validation of the XML schema is required before it can be used. The schema cache is shared by all users of the database. Whenever an Oracle XML DB operation requires information contained in the XML schema, it can access the required information directly from the cache.

Load Balancing Through Cached XML Schema

Some operations, such as performing a full schema validation, or serializing an XML document back into text form, can still require significant memory and CPU resources. Oracle XML DB let these operations be off-loaded to the client or middle tier processor. Oracle Call Interface (OCI) interface and thick Java Database Connectivity (JDBC) driver both allow the XOB to be managed by the client.The cached representation of the XML schema can also be downloaded to the client. This lets operations such as XML printing, and XML schema validation be performed using client or middle tier resources, rather than server resources.

Reduced Bottlenecks From Code That Is Not Native

Another bottleneck for XML-based Java applications happens when parsing an XML file. Even natively compiled or JIT compiled Java performs XML parsing operations twice as slowly compared to using native C language. One of the major performance bottlenecks in implementing XML applications is the cost of transforming data in an XML document between text, Java, and native server representations. The cost of performing these transformations is proportional to the size and complexity of the XML file and becomes severe even in moderately sized files.

Oracle XML DB Implements Java and PL/SQL APIs Over Native C

Oracle XML DB addresses these issues by implementing all of the Java and PL/SQL interfaces as very thin facades over a native C-language implementation. This provides for language-neutral XML support (Java, C, PL/SQL, and SQL all use the same underlying implementation), as well as the higher performance XML parsing and DOM processing.

Reduced Java Type Conversion Bottlenecks

One of the biggest bottlenecks when using Java and XML is with type conversions. Internally, Java uses UCS-2 to represent character data. Most XML files and databases do not contain UCS-2 encoded data. This means that all data contained in an XML file has to be converted from 8-Bit or UTF-8 encoding to UCS-2 encoding before it can be manipulated in a Java program.

Oracle XML DB Uses Lazy Type Conversion to Avoid Unneeded Type Conversions

Oracle XML DB addresses these problems with lazy type conversions. With lazy type conversions, the content of a node is not converted into the format required by Java until the application attempts to access the contents of the node. Data remains in the internal represen