
[image: Oracle Corporation]

Oracle® Spatial

Developer's Guide

11g Release 1 (11.1)

B28400-05

June 2009

Provides usage and reference information for indexing and storing spatial data and for developing spatial applications using Oracle Spatial and Oracle Locator.

Oracle Spatial Developer's Guide, 11g Release 1 (11.1)

B28400-05

Copyright © 1999, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Chuck Murray

Contributors: Dan Abugov, Nicole Alexander, Bruce Blackwell, Raja Chatterjee, Dan Geringer, Mike Horhammer, Ying Hu, Baris Kazar, Ravi Kothuri, Siva Ravada, Jack Wang, Ji Yang

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Spatial?

	3-D Geometry Support
	Enhanced Web Services Support: Business Directory, Web Feature Service, Catalog Services, and OpenLS
	Routing Engine Enhancements
	SQL Multimedia Types
	Annotation Text
	DEFAULT Geocoding Match Mode Equivalent to RELAX_POSTAL_CODE
	New MatchVector Attribute for SDO_GEOR_ADDR
	SDO_GEOM.CLOSEST_POINTS Procedure
	SDO_UTIL.BEARING_TILT_FOR_POINTS Procedure
	KML (Keyhole Markup Language) Functions

Part I Conceptual and Usage Information

1 Spatial Concepts

	1.1 What Is Oracle Spatial?
	1.2 Object-Relational Model
	1.3 Introduction to Spatial Data
	1.4 Geometry Types
	1.5 Data Model
	1.5.1 Element
	1.5.2 Geometry
	1.5.3 Layer
	1.5.4 Coordinate System
	1.5.5 Tolerance
	1.5.5.1 Tolerance in the Geometry Metadata for a Layer
	1.5.5.2 Tolerance as an Input Parameter

	1.6 Query Model
	1.7 Indexing of Spatial Data
	1.7.1 R-Tree Indexing
	1.7.2 R-Tree Quality

	1.8 Spatial Relationships and Filtering
	1.9 Spatial Operators, Procedures, and Functions
	1.10 Spatial Aggregate Functions
	1.10.1 SDOAGGRTYPE Object Type

	1.11 Three-Dimensional Spatial Objects
	1.11.1 Modeling Surfaces
	1.11.2 Modeling Solids
	1.11.3 Three-Dimensional Optimized Rectangles
	1.11.4 Validation Checks for Three-Dimensional Geometries

	1.12 Geocoding
	1.13 Spatial Java Application Programming Interface
	1.14 Predefined User Accounts Created by Spatial
	1.15 Performance and Tuning Information
	1.16 Open Geospatial Consortium (OGC) Conformance
	1.17 Spatial Release (Version) Number
	1.18 Spatial Application Hardware Requirement Considerations
	1.19 Spatial Error Messages
	1.20 Spatial Examples
	1.21 README File for Spatial and Related Features

2 Spatial Data Types and Metadata

	2.1 Simple Example: Inserting, Indexing, and Querying Spatial Data
	2.2 SDO_GEOMETRY Object Type
	2.2.1 SDO_GTYPE
	2.2.2 SDO_SRID
	2.2.3 SDO_POINT
	2.2.4 SDO_ELEM_INFO
	2.2.5 SDO_ORDINATES
	2.2.6 Usage Considerations

	2.3 SDO_GEOMETRY Methods
	2.4 SDO_GEOMETRY Constructors
	2.5 TIN-Related Object Types
	2.5.1 SDO_TIN Object Type
	2.5.2 SDO_TIN_BLK_TYPE and SDO_TIN_BLK Object Types

	2.6 Point Cloud-Related Object Types
	2.6.1 SDO_PC Object Type
	2.6.2 SDO_PC_BLK_TYPE and SDO_PC_BLK Object Type

	2.7 Geometry Examples
	2.7.1 Rectangle
	2.7.2 Polygon with a Hole
	2.7.3 Compound Line String
	2.7.4 Compound Polygon
	2.7.5 Point
	2.7.6 Oriented Point
	2.7.7 Type 0 (Zero) Element
	2.7.8 Several Two-Dimensional Geometry Types
	2.7.9 Three-Dimensional Geometry Types

	2.8 Geometry Metadata Views
	2.8.1 TABLE_NAME
	2.8.2 COLUMN_NAME
	2.8.3 DIMINFO
	2.8.4 SRID

	2.9 Spatial Index-Related Structures
	2.9.1 Spatial Index Views
	2.9.1.1 xxx_SDO_INDEX_INFO Views
	2.9.1.2 xxx_SDO_INDEX_METADATA Views

	2.9.2 Spatial Index Table Definition
	2.9.3 R-Tree Index Sequence Object

	2.10 Unit of Measurement Support
	2.10.1 Creating a User-Defined Unit of Measurement

3 SQL Multimedia Type Support

	3.1 ST_GEOMETRY and SDO_GEOMETRY Interoperability
	3.2 Tolerance Value with SQL Multimedia Types
	3.3 Avoiding Name Conflicts
	3.4 Annotation Text Type and Views
	3.4.1 Using the ST_ANNOTATION_TEXT Constructor
	3.4.2 Annotation Text Metadata Views

4 Loading Spatial Data

	4.1 Bulk Loading
	4.1.1 Bulk Loading SDO_GEOMETRY Objects
	4.1.2 Bulk Loading Point-Only Data in SDO_GEOMETRY Objects

	4.2 Transactional Insert Operations Using SQL
	4.3 Recommendations for Loading and Validating Spatial Data

5 Indexing and Querying Spatial Data

	5.1 Creating a Spatial Index
	5.1.1 Constraining Data to a Geometry Type
	5.1.2 Creating a Cross-Schema Index
	5.1.3 Using Partitioned Spatial Indexes
	5.1.3.1 Creating a Local Partitioned Spatial Index

	5.1.4 Exchanging Partitions Including Indexes
	5.1.5 Export and Import Considerations with Spatial Indexes and Data
	5.1.6 Distributed Transactions and Spatial Index Consistency
	5.1.7 Rollback Segments and Sort Area Size

	5.2 Querying Spatial Data
	5.2.1 Spatial Query
	5.2.1.1 Primary Filter Operator
	5.2.1.2 Primary and Secondary Filter Operator
	5.2.1.3 Within-Distance Operator
	5.2.1.4 Nearest Neighbor Operator
	5.2.1.5 Spatial Functions

	5.2.2 Spatial Join
	5.2.3 Data and Index Dimensionality, and Spatial Queries

6 Coordinate Systems (Spatial Reference Systems)

	6.1 Terms and Concepts
	6.1.1 Coordinate System (Spatial Reference System)
	6.1.2 Cartesian Coordinates
	6.1.3 Geodetic Coordinates (Geographic Coordinates)
	6.1.4 Projected Coordinates
	6.1.5 Local Coordinates
	6.1.6 Geodetic Datum
	6.1.7 Transformation

	6.2 Geodetic Coordinate Support
	6.2.1 Geodesy and Two-Dimensional Geometry
	6.2.2 Choosing a Geodetic or Projected Coordinate System
	6.2.3 Choosing Non-Ellipsoidal or Ellipsoidal Height
	6.2.3.1 Non-Ellipsoidal Height
	6.2.3.2 Ellipsoidal Height

	6.2.4 Geodetic MBRs
	6.2.5 Other Considerations and Requirements with Geodetic Data

	6.3 Local Coordinate Support
	6.4 EPSG Model and Spatial
	6.5 Three-Dimensional Coordinate Reference System Support
	6.5.1 Geographic 3D Coordinate Reference Systems
	6.5.2 Compound Coordinate Reference Systems
	6.5.3 Three-Dimensional Transformations
	6.5.4 Cross-Dimensionality Transformations

	6.6 TFM_PLAN Object Type
	6.7 Coordinate Systems Data Structures
	6.7.1 SDO_COORD_AXES Table
	6.7.2 SDO_COORD_AXIS_NAMES Table
	6.7.3 SDO_COORD_OP_METHODS Table
	6.7.4 SDO_COORD_OP_PARAM_USE Table
	6.7.5 SDO_COORD_OP_PARAM_VALS Table
	6.7.6 SDO_COORD_OP_PARAMS Table
	6.7.7 SDO_COORD_OP_PATHS Table
	6.7.8 SDO_COORD_OPS Table
	6.7.9 SDO_COORD_REF_SYS Table
	6.7.10 SDO_COORD_REF_SYSTEM View
	6.7.11 SDO_COORD_SYS Table
	6.7.12 SDO_CRS_COMPOUND View
	6.7.13 SDO_CRS_ENGINEERING View
	6.7.14 SDO_CRS_GEOCENTRIC View
	6.7.15 SDO_CRS_GEOGRAPHIC2D View
	6.7.16 SDO_CRS_GEOGRAPHIC3D View
	6.7.17 SDO_CRS_PROJECTED View
	6.7.18 SDO_CRS_VERTICAL View
	6.7.19 SDO_DATUM_ENGINEERING View
	6.7.20 SDO_DATUM_GEODETIC View
	6.7.21 SDO_DATUM_VERTICAL View
	6.7.22 SDO_DATUMS Table
	6.7.23 SDO_ELLIPSOIDS Table
	6.7.24 SDO_PREFERRED_OPS_SYSTEM Table
	6.7.25 SDO_PREFERRED_OPS_USER Table
	6.7.26 SDO_PRIME_MERIDIANS Table
	6.7.27 SDO_UNITS_OF_MEASURE Table
	6.7.28 Relationships Among Coordinate System Tables and Views
	6.7.29 Finding Information About EPSG-Based Coordinate Systems
	6.7.29.1 Geodetic Coordinate Systems
	6.7.29.2 Projected Coordinate Systems

	6.8 Legacy Tables and Views
	6.8.1 MDSYS.CS_SRS Table
	6.8.1.1 Well-Known Text (WKT)
	6.8.1.2 US-American and European Notations for Datum Parameters
	6.8.1.3 Procedures for Updating the Well-Known Text

	6.8.2 MDSYS.SDO_ANGLE_UNITS View
	6.8.3 MDSYS.SDO_AREA_UNITS View
	6.8.4 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT Tables
	6.8.5 MDSYS.SDO_DIST_UNITS View
	6.8.6 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables
	6.8.7 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_SNAPSHOT Tables

	6.9 Creating a User-Defined Coordinate Reference System
	6.9.1 Creating a Geodetic CRS
	6.9.2 Creating a Projected CRS
	6.9.3 Creating a Vertical CRS
	6.9.4 Creating a Compound CRS
	6.9.5 Creating a Geographic 3D CRS
	6.9.6 Creating a Transformation Operation

	6.10 Notes and Restrictions with Coordinate Systems Support
	6.10.1 Different Coordinate Systems for Geometries with Operators and Functions
	6.10.2 3D LRS Functions Not Supported with Geodetic Data
	6.10.3 Functions Supported by Approximations with Geodetic Data
	6.10.4 Unknown CRS and NaC Coordinate Reference Systems

	6.11 U.S. National Grid Support
	6.12 Example of Coordinate System Transformation

7 Linear Referencing System

	7.1 Terms and Concepts
	7.1.1 Geometric Segments (LRS Segments)
	7.1.2 Shape Points
	7.1.3 Direction of a Geometric Segment
	7.1.4 Measure (Linear Measure)
	7.1.5 Offset
	7.1.6 Measure Populating
	7.1.7 Measure Range of a Geometric Segment
	7.1.8 Projection
	7.1.9 LRS Point
	7.1.10 Linear Features
	7.1.11 Measures with Multiline Strings and Polygons with Holes

	7.2 LRS Data Model
	7.3 Indexing of LRS Data
	7.4 3D Formats of LRS Functions
	7.5 LRS Operations
	7.5.1 Defining a Geometric Segment
	7.5.2 Redefining a Geometric Segment
	7.5.3 Clipping a Geometric Segment
	7.5.4 Splitting a Geometric Segment
	7.5.5 Concatenating Geometric Segments
	7.5.6 Scaling a Geometric Segment
	7.5.7 Offsetting a Geometric Segment
	7.5.8 Locating a Point on a Geometric Segment
	7.5.9 Projecting a Point onto a Geometric Segment
	7.5.10 Converting LRS Geometries

	7.6 Tolerance Values with LRS Functions
	7.7 Example of LRS Functions

8 Spatial Analysis and Mining

	8.1 Spatial Information and Data Mining Applications
	8.2 Spatial Binning for Detection of Regional Patterns
	8.3 Materializing Spatial Correlation
	8.4 Colocation Mining
	8.5 Spatial Clustering
	8.6 Location Prospecting

9 Extending Spatial Indexing Capabilities

	9.1 SDO_GEOMETRY Objects in User-Defined Type Definitions
	9.2 SDO_GEOMETRY Objects in Function-Based Indexes
	9.2.1 Example: Function with Standard Types
	9.2.2 Example: Function with a User-Defined Object Type

Part II Spatial Web Services

10 Introduction to Spatial Web Services

	10.1 Types of Spatial Web Services
	10.2 Types of Users of Spatial Web Services
	10.3 Setting Up the Client for Spatial Web Services
	10.4 Demo Files for Sample Java Client

11 Geocoding Address Data

	11.1 Concepts for Geocoding
	11.1.1 Address Representation
	11.1.2 Match Modes
	11.1.3 Match Codes
	11.1.4 Error Messages for Output Geocoded Addresses
	11.1.5 Match Vector for Output Geocoded Addresses

	11.2 Data Types for Geocoding
	11.2.1 SDO_GEO_ADDR Type
	11.2.2 SDO_ADDR_ARRAY Type
	11.2.3 SDO_KEYWORDARRAY Type

	11.3 Using the Geocoding Capabilities
	11.4 Geocoding from a Place Name
	11.5 Data Structures for Geocoding
	11.5.1 GC_AREA_<suffix> Table
	11.5.2 GC_COUNTRY_PROFILE Table
	11.5.3 GC_INTERSECTION_<suffix> Table
	11.5.4 GC_POI_<suffix> Table
	11.5.5 GC_POSTAL_CODE_<suffix> Table
	11.5.6 GC_ROAD_<suffix> Table
	11.5.7 GC_ROAD_SEGMENT_<suffix> Table
	11.5.8 Indexes on Tables for Geocoding

	11.6 Installing the Parser-Profile Tables
	11.7 Using the Geocoding Service (XML API)
	11.7.1 Deploying and Configuring the Geocoding Service
	11.7.1.1 Configuring the geocodercfg.xml File

	11.7.2 Geocoding Request DTD and Example
	11.7.3 Geocoding Response DTD and Example

12 Business Directory (Yellow Pages) Support

	12.1 Business Directory Concepts
	12.2 Using the Business Directory Capabilities
	12.3 Data Structures for Business Directory Support
	12.3.1 OPENLS_DIR_BUSINESSES Table
	12.3.2 OPENLS_DIR_BUSINESS_CHAINS Table
	12.3.3 OPENLS_DIR_CATEGORIES Table
	12.3.4 OPENLS_DIR_CATEGORIZATIONS Table
	12.3.5 OPENLS_DIR_CATEGORY_TYPES Table
	12.3.6 OPENLS_DIR_SYNONYMS Table

13 Routing Engine

	13.1 Deploying and Configuring the Routing Engine
	13.1.1 Configuring the web.xml File

	13.2 Routing Engine XML API
	13.2.1 Route Request and Response Examples
	13.2.2 Route Request DTD
	13.2.2.1 route_request Element
	13.2.2.2 route_request Attributes
	13.2.2.3 input_location Element
	13.2.2.4 pre_geocoded_location Element

	13.2.3 Route Response DTD
	13.2.4 Batch Route Request and Response Examples
	13.2.5 Batch Route Request DTD
	13.2.5.1 batch_route_request Element
	13.2.5.2 batch_route_request Attributes

	13.2.6 Batch Route Response DTD

	13.3 Data Structures Used by the Routing Engine
	13.3.1 EDGE Table
	13.3.2 NODE Table
	13.3.3 PARTITION Table
	13.3.4 SIGN_POST Table

14 OpenLS Support

	14.1 Supported OpenLS Services
	14.2 OpenLS Application Programming Interfaces
	14.3 OpenLS Service Support and Examples
	14.3.1 OpenLS Geocoding
	14.3.2 OpenLS Mapping
	14.3.3 OpenLS Routing
	14.3.4 OpenLS Directory Service (YP)

15 Web Feature Service (WFS) Support

	15.1 WFS Engine
	15.2 Managing Feature Types
	15.2.1 Capabilities Documents

	15.3 Request and Response XML Examples
	15.4 Java API for WFS Administration
	15.4.1 createXMLTableIndex method
	15.4.2 dropFeatureType method
	15.4.3 dropXMLTableIndex method
	15.4.4 getIsXMLTableIndexCreated method
	15.4.5 grantFeatureTypeToUser method
	15.4.6 grantMDAccessToUser method
	15.4.7 publishFeatureType method
	15.4.7.1 Related Classes for publishFeatureType

	15.4.8 revokeFeatureTypeFromUser method
	15.4.9 revokeMDAccessFromUser method
	15.4.10 setXMLTableIndexInfo method

16 Catalog Services for the Web (CSW) Support

	16.1 CSW Engine and Architecture
	16.2 CSW APIs and Configuration
	16.2.1 Capabilities Documents
	16.2.2 Spatial Path Extractor Function (extractSDO)
	16.2.2.1 Registering and Unregistering the extractSDO Function

	16.3 Request and Response XML Examples
	16.4 Java API for CSW Administration
	16.4.1 createXMLTableIndex method
	16.4.2 deleteDomainInfo method
	16.4.3 deleteRecordViewMap method
	16.4.4 disableVersioning method
	16.4.5 dropRecordType method
	16.4.6 dropXMLTableIndex method
	16.4.7 enableVersioning method
	16.4.8 getIsXMLTableIndexCreated method
	16.4.9 getRecordTypeId method
	16.4.10 grantMDAccessToUser method
	16.4.11 grantRecordTypeToUser method
	16.4.12 publishRecordType method
	16.4.12.1 Related Classes for publishRecordType

	16.4.13 registerTypePluginMap method
	16.4.14 revokeMDAccessFromUser method
	16.4.15 revokeRecordTypeFromUser method
	16.4.16 setCapabilitiesInfo method
	16.4.17 setDomainInfo method
	16.4.18 setRecordViewMap method
	16.4.19 setXMLTableIndexInfo method

17 Security Considerations for Spatial Web Services

	17.1 User Management
	17.1.1 Identity Propagation to the Database
	17.1.2 Caching and User Administration

	17.2 Access Control and Versioning
	17.2.1 Virtual Private Databases
	17.2.2 Workspace Manager

	17.3 Deploying and Configuring the .ear File
	17.3.1 Adding Spatial Service Handlers

	17.4 Interfaces for Spatial Web Services
	17.4.1 SOAP/WSS Interface
	17.4.2 XML (Non-SOAP) Interface
	17.4.3 PL/SQL Interface (OpenLS Only)
	17.4.4 Level of Security, by Interface

Part III Reference Information

18 SQL Statements for Indexing Spatial Data

	ALTER INDEX
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

19 Spatial Operators

	SDO_ANYINTERACT
	SDO_CONTAINS
	SDO_COVEREDBY
	SDO_COVERS
	SDO_EQUAL
	SDO_FILTER
	SDO_INSIDE
	SDO_JOIN
	SDO_NN
	SDO_NN_DISTANCE
	SDO_ON
	SDO_OVERLAPBDYDISJOINT
	SDO_OVERLAPBDYINTERSECT
	SDO_OVERLAPS
	SDO_RELATE
	SDO_TOUCH
	SDO_WITHIN_DISTANCE

20 Spatial Aggregate Functions

	SDO_AGGR_CENTROID
	SDO_AGGR_CONCAT_LINES
	SDO_AGGR_CONVEXHULL
	SDO_AGGR_LRS_CONCAT
	SDO_AGGR_MBR
	SDO_AGGR_UNION

21 SDO_CS Package (Coordinate System Transformation)

	SDO_CS.ADD_PREFERENCE_FOR_OP
	SDO_CS.CONVERT_NADCON_TO_XML
	SDO_CS.CONVERT_NTV2_TO_XML
	SDO_CS.CONVERT_XML_TO_NADCON
	SDO_CS.CONVERT_XML_TO_NTV2
	SDO_CS.CREATE_CONCATENATED_OP
	SDO_CS.CREATE_OBVIOUS_EPSG_RULES
	SDO_CS.CREATE_PREF_CONCATENATED_OP
	SDO_CS.DELETE_ALL_EPSG_RULES
	SDO_CS.DELETE_OP
	SDO_CS.DETERMINE_CHAIN
	SDO_CS.DETERMINE_DEFAULT_CHAIN
	SDO_CS.FIND_GEOG_CRS
	SDO_CS.FIND_PROJ_CRS
	SDO_CS.FIND_SRID
	SDO_CS.FROM_OGC_SIMPLEFEATURE_SRS
	SDO_CS.FROM_USNG
	SDO_CS.GET_EPSG_DATA_VERSION
	SDO_CS.MAKE_2D
	SDO_CS.MAKE_3D
	SDO_CS.MAP_EPSG_SRID_TO_ORACLE
	SDO_CS.MAP_ORACLE_SRID_TO_EPSG
	SDO_CS.REVOKE_PREFERENCE_FOR_OP
	SDO_CS.TO_OGC_SIMPLEFEATURE_SRS
	SDO_CS.TO_USNG
	SDO_CS.TRANSFORM
	SDO_CS.TRANSFORM_LAYER
	SDO_CS.UPDATE_WKTS_FOR_ALL_EPSG_CRS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_CRS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_DATUM
	SDO_CS.UPDATE_WKTS_FOR_EPSG_ELLIPS
	SDO_CS.UPDATE_WKTS_FOR_EPSG_OP
	SDO_CS.UPDATE_WKTS_FOR_EPSG_PARAM
	SDO_CS.UPDATE_WKTS_FOR_EPSG_PM
	SDO_CS.VALIDATE_WKT

22 SDO_CSW_PROCESS Package (CSW Processing)

	SDO_CSW_PROCESS.DeleteCapabilitiesInfo
	SDO_CSW_PROCESS.DeleteDomainInfo
	SDO_CSW_PROCESS.DeletePluginMap
	SDO_CSW_PROCESS.DeleteRecordViewMap
	SDO_CSW_PROCESS.GetRecordTypeId
	SDO_CSW_PROCESS.InsertCapabilitiesInfo
	SDO_CSW_PROCESS.InsertDomainInfo
	SDO_CSW_PROCESS.InsertPluginMap
	SDO_CSW_PROCESS.InsertRecordViewMap
	SDO_CSW_PROCESS.InsertRtDataUpdated
	SDO_CSW_PROCESS.InsertRtMDUpdated

23 SDO_GCDR Package (Geocoding)

	SDO_GCDR.CREATE_PROFILE_TABLES
	SDO_GCDR.GEOCODE
	SDO_GCDR.GEOCODE_ADDR
	SDO_GCDR.GEOCODE_ADDR_ALL
	SDO_GCDR.GEOCODE_ALL
	SDO_GCDR.GEOCODE_AS_GEOMETRY
	SDO_GCDR.REVERSE_GEOCODE

24 SDO_GEOM Package (Geometry)

	SDO_GEOM.RELATE
	SDO_GEOM.SDO_ARC_DENSIFY
	SDO_GEOM.SDO_AREA
	SDO_GEOM.SDO_BUFFER
	SDO_GEOM.SDO_CENTROID
	SDO_GEOM.SDO_CLOSEST_POINTS
	SDO_GEOM.SDO_CONVEXHULL
	SDO_GEOM.SDO_DIFFERENCE
	SDO_GEOM.SDO_DISTANCE
	SDO_GEOM.SDO_INTERSECTION
	SDO_GEOM.SDO_LENGTH
	SDO_GEOM.SDO_MAX_MBR_ORDINATE
	SDO_GEOM.SDO_MBR
	SDO_GEOM.SDO_MIN_MBR_ORDINATE
	SDO_GEOM.SDO_POINTONSURFACE
	SDO_GEOM.SDO_UNION
	SDO_GEOM.SDO_VOLUME
	SDO_GEOM.SDO_XOR
	SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT
	SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT
	SDO_GEOM.WITHIN_DISTANCE

25 SDO_LRS Package (Linear Referencing System)

	SDO_LRS.CLIP_GEOM_SEGMENT
	SDO_LRS.CONCATENATE_GEOM_SEGMENTS
	SDO_LRS.CONNECTED_GEOM_SEGMENTS
	SDO_LRS.CONVERT_TO_LRS_DIM_ARRAY
	SDO_LRS.CONVERT_TO_LRS_GEOM
	SDO_LRS.CONVERT_TO_LRS_LAYER
	SDO_LRS.CONVERT_TO_STD_DIM_ARRAY
	SDO_LRS.CONVERT_TO_STD_GEOM
	SDO_LRS.CONVERT_TO_STD_LAYER
	SDO_LRS.DEFINE_GEOM_SEGMENT
	SDO_LRS.DYNAMIC_SEGMENT
	SDO_LRS.FIND_LRS_DIM_POS
	SDO_LRS.FIND_MEASURE
	SDO_LRS.FIND_OFFSET
	SDO_LRS.GEOM_SEGMENT_END_MEASURE
	SDO_LRS.GEOM_SEGMENT_END_PT
	SDO_LRS.GEOM_SEGMENT_LENGTH
	SDO_LRS.GEOM_SEGMENT_START_MEASURE
	SDO_LRS.GEOM_SEGMENT_START_PT
	SDO_LRS.GET_MEASURE
	SDO_LRS.GET_NEXT_SHAPE_PT
	SDO_LRS.GET_NEXT_SHAPE_PT_MEASURE
	SDO_LRS.GET_PREV_SHAPE_PT
	SDO_LRS.GET_PREV_SHAPE_PT_MEASURE
	SDO_LRS.IS_GEOM_SEGMENT_DEFINED
	SDO_LRS.IS_MEASURE_DECREASING
	SDO_LRS.IS_MEASURE_INCREASING
	SDO_LRS.IS_SHAPE_PT_MEASURE
	SDO_LRS.LOCATE_PT
	SDO_LRS.LRS_INTERSECTION
	SDO_LRS.MEASURE_RANGE
	SDO_LRS.MEASURE_TO_PERCENTAGE
	SDO_LRS.OFFSET_GEOM_SEGMENT
	SDO_LRS.PERCENTAGE_TO_MEASURE
	SDO_LRS.PROJECT_PT
	SDO_LRS.REDEFINE_GEOM_SEGMENT
	SDO_LRS.RESET_MEASURE
	SDO_LRS.REVERSE_GEOMETRY
	SDO_LRS.REVERSE_MEASURE
	SDO_LRS.SCALE_GEOM_SEGMENT
	SDO_LRS.SET_PT_MEASURE
	SDO_LRS.SPLIT_GEOM_SEGMENT
	SDO_LRS.TRANSLATE_MEASURE
	SDO_LRS.VALID_GEOM_SEGMENT
	SDO_LRS.VALID_LRS_PT
	SDO_LRS.VALID_MEASURE
	SDO_LRS.VALIDATE_LRS_GEOMETRY

26 SDO_MIGRATE Package (Upgrading)

	SDO_MIGRATE.TO_CURRENT

27 SDO_OLS Package (OpenLS)

	SDO_OLS.MakeOpenLSClobRequest
	SDO_OLS.MakeOpenLSRequest

28 SDO_PC_PKG Package (Point Clouds)

	SDO_PC_PKG.CLIP_PC
	SDO_PC_PKG.CREATE_PC
	SDO_PC_PKG.DROP_DEPENDENCIES
	SDO_PC_PKG.GET_PT_IDS
	SDO_PC_PKG.INIT
	SDO_PC_PKG.TO_GEOMETRY

29 SDO_SAM Package (Spatial Analysis and Mining)

	SDO_SAM.AGGREGATES_FOR_GEOMETRY
	SDO_SAM.AGGREGATES_FOR_LAYER
	SDO_SAM.BIN_GEOMETRY
	SDO_SAM.BIN_LAYER
	SDO_SAM.COLOCATED_REFERENCE_FEATURES
	SDO_SAM.SIMPLIFY_GEOMETRY
	SDO_SAM.SIMPLIFY_LAYER
	SDO_SAM.SPATIAL_CLUSTERS
	SDO_SAM.TILED_AGGREGATES
	SDO_SAM.TILED_BINS

30 SDO_TIN_PKG Package (TINs)

	SDO_TIN_PKG.CLIP_TIN
	SDO_TIN_PKG.CREATE_TIN
	SDO_TIN_PKG.DROP_DEPENDENCIES
	SDO_TIN_PKG.INIT
	SDO_TIN_PKG.TO_GEOMETRY

31 SDO_TUNE Package (Tuning)

	SDO_TUNE.AVERAGE_MBR
	SDO_TUNE.ESTIMATE_RTREE_INDEX_SIZE
	SDO_TUNE.EXTENT_OF
	SDO_TUNE.MIX_INFO
	SDO_TUNE.QUALITY_DEGRADATION

32 SDO_UTIL Package (Utility)

	SDO_UTIL.AFFINETRANSFORMS
	SDO_UTIL.APPEND
	SDO_UTIL.BEARING_TILT_FOR_POINTS
	SDO_UTIL.CIRCLE_POLYGON
	SDO_UTIL.CONCAT_LINES
	SDO_UTIL.CONVERT_UNIT
	SDO_UTIL.DROP_WORK_TABLES
	SDO_UTIL.ELLIPSE_POLYGON
	SDO_UTIL.EXTRACT
	SDO_UTIL.EXTRACT3D
	SDO_UTIL.EXTRUDE
	SDO_UTIL.FROM_GML311GEOMETRY
	SDO_UTIL.FROM_GMLGEOMETRY
	SDO_UTIL.FROM_KMLGEOMETRY
	SDO_UTIL.FROM_WKBGEOMETRY
	SDO_UTIL.FROM_WKTGEOMETRY
	SDO_UTIL.GETNUMELEM
	SDO_UTIL.GETNUMVERTICES
	SDO_UTIL.GETVERTICES
	SDO_UTIL.INITIALIZE_INDEXES_FOR_TTS
	SDO_UTIL.POINT_AT_BEARING
	SDO_UTIL.POLYGONTOLINE
	SDO_UTIL.PREPARE_FOR_TTS
	SDO_UTIL.RECTIFY_GEOMETRY
	SDO_UTIL.REMOVE_DUPLICATE_VERTICES
	SDO_UTIL.REVERSE_LINESTRING
	SDO_UTIL.SIMPLIFY
	SDO_UTIL.TO_GML311GEOMETRY
	SDO_UTIL.TO_GMLGEOMETRY
	SDO_UTIL.TO_KMLGEOMETRY
	SDO_UTIL.TO_WKBGEOMETRY
	SDO_UTIL.TO_WKTGEOMETRY
	SDO_UTIL.VALIDATE_WKBGEOMETRY
	SDO_UTIL.VALIDATE_WKTGEOMETRY

33 SDO_WFS_LOCK Package (WFS)

	SDO_WFS_LOCK.RegisterFeatureTable
	SDO_WFS_LOCK.UnRegisterFeatureTable

34 SDO_WFS_PROCESS Package (WFS Processing)

	SDO_WFS_PROCESS.DropFeatureType
	SDO_WFS_PROCESS.DropFeatureTypes
	SDO_WFS_PROCESS.GenCollectionProcs
	SDO_WFS_PROCESS.GetFeatureTypeId
	SDO_WFS_PROCESS.GrantFeatureTypeToUser
	SDO_WFS_PROCESS.GrantMDAccessToUser
	SDO_WFS_PROCESS.InsertCapabilitiesInfo
	SDO_WFS_PROCESS.InsertFtDataUpdated
	SDO_WFS_PROCESS.InsertFtMDUpdated
	SDO_WFS_PROCESS.PopulateFeatureTypeXMLInfo
	SDO_WFS_PROCESS.PublishFeatureType
	SDO_WFS_PROCESS.RegisterMTableView
	SDO_WFS_PROCESS.RevokeFeatureTypeFromUser
	SDO_WFS_PROCESS.RevokeMDAccessFromUser
	SDO_WFS_PROCESS.UnRegisterMTableView

Part IV Supplementary Information

A Installation, Compatibility, and Upgrade

	A.1 Ensuring That GeoRaster Works Properly After an Installation or Upgrade

B Oracle Locator

C Complex Spatial Queries: Examples

	C.1 Tables Used in the Examples
	C.2 SDO_WITHIN_DISTANCE Examples
	C.3 SDO_NN Examples
	C.4 SDO_AGGR_UNION Example

Glossary

Index

List of Examples

	2-1 Simple Example: Inserting, Indexing, and Querying Spatial Data
	2-2 SDO_GEOMETRY Methods
	2-3 SDO_GEOMETRY Constructors to Create Geometries
	2-4 SDO_TIN Attribute in a Query
	2-5 SDO_PC Attribute in a Query
	2-6 SQL Statement to Insert a Rectangle
	2-7 SQL Statement to Insert a Polygon with a Hole
	2-8 SQL Statement to Insert a Compound Line String
	2-9 SQL Statement to Insert a Compound Polygon
	2-10 SQL Statement to Insert a Point-Only Geometry
	2-11 Query for Point-Only Geometry Based on a Coordinate Value
	2-12 SQL Statement to Insert an Oriented Point Geometry
	2-13 SQL Statement to Insert an Oriented Multipoint Geometry
	2-14 SQL Statement to Insert a Geometry with a Type 0 Element
	2-15 SQL Statements to Insert Various Two-Dimensional Geometries
	2-16 SQL Statements to Insert Three-Dimensional Geometries
	2-17 Updating Metadata and Creating Indexes for 3-Dimensional Geometries
	2-18 Creating and Using a User-Defined Unit of Measurement
	3-1 Using the ST_GEOMETRY Type for a Spatial Column
	3-2 Creating, Indexing, Storing, and Querying ST_GEOMETRY Data
	3-3 Using the ST_ANNOTATION_TEXT Constructor
	4-1 Control File for a Bulk Load of Cola Market Geometries
	4-2 Control File for a Bulk Load of Polygons
	4-3 Control File for a Bulk Load of Point-Only Data
	4-4 Procedure to Perform a Transactional Insert Operation
	4-5 PL/SQL Block Invoking a Procedure to Insert a Geometry
	5-1 Primary Filter with a Temporary Query Window
	5-2 Primary Filter with a Transient Instance of the Query Window
	5-3 Primary Filter with a Stored Query Window
	5-4 Secondary Filter Using a Temporary Query Window
	5-5 Secondary Filter Using a Stored Query Window
	6-1 Using a Geodetic MBR
	6-2 Three-Dimensional Datum Transformation
	6-3 Transformation Between Geoidal And Ellipsoidal Height
	6-4 Cross-Dimensionality Transformation
	6-5 Creating a User-Defined Geodetic Coordinate Reference System
	6-6 Inserting a Row into the SDO_COORD_SYS Table
	6-7 Creating a User-Defined Projected Coordinate Reference System
	6-8 Inserting a Row into the SDO_COORD_OPS Table
	6-9 Inserting a Row into the SDO_COORD_OP_PARAM_VALS Table
	6-10 Creating a User-Defined Projected CRS: Extended Example
	6-11 Creating a Vertical Coordinate Reference System
	6-12 Creating a Compound Coordinate Reference System
	6-13 Creating a Geographic 3D Coordinate Reference System
	6-14 Creating a Transformation Operation
	6-15 Loading Offset Matrixes
	6-16 Simplified Example of Coordinate System Transformation
	6-17 Output of SELECT Statements in Coordinate System Transformation Example
	7-1 Including LRS Measure Dimension in Spatial Metadata
	7-2 Simplified Example: Highway
	7-3 Simplified Example: Output of SELECT Statements
	10-1 WSConfig.xml File
	11-1 Geocoding, Returning Address Object and Specific Attributes
	11-2 Geocoding from a Place Name and Country
	11-3 Geocoding from a Place Name, Country, and Other Fields
	11-4 Required Indexes on Tables for Geocoding
	11-5 Modified geocodercfg.xml File
	11-6 Geocoding Request (XML API)
	11-7 Geocoding Response (XML API)
	13-1 Route Request with Specified Addresses
	13-2 Route Response with Specified Addresses
	13-3 Route Request with Specified Longitude/Latitude Points
	13-4 Route Response with Specified Longitude/Latitude Points
	13-5 Route Request with Previously Geocoded Locations
	13-6 Route Response with Previously Geocoded Locations
	13-7 Batch Route Request with Specified Addresses
	13-8 Batch Route Response with Specified Addresses
	13-9 Batch Route Request with Previously Geocoded Locations
	13-10 Batch Route Response with Previously Geocoded Locations
	14-1 OpenLS Geocoding Request
	14-2 OpenLS Geocoding Response
	14-3 OpenLS Mapping Request
	14-4 OpenLS Mapping Response
	14-5 OpenLS Routing Request
	14-6 OpenLS Routing Response
	14-7 OpenLS Directory Service (YP) Request
	14-8 OpenLS Directory Service (YP) Response
	15-1 GetCapabilities Request
	15-2 GetCapabilities Response
	15-3 DescribeFeatureType Request
	15-4 DescribeFeatureType Response
	15-5 GetFeature Request
	15-6 GetFeature Response
	15-7 GetFeatureWithLock Request
	15-8 GetFeatureWithLock Response
	15-9 LockFeature Request
	15-10 LockFeature Response
	15-11 Insert Request
	15-12 Insert Response
	15-13 Update Request
	15-14 Update Response
	15-15 Delete Request
	15-16 Delete Response
	16-1 GetCapabilities Request
	16-2 GetCapabilities Response
	16-3 DescribeRecord Request
	16-4 DescribeRecord Response
	16-5 GetRecords Request
	16-6 GetRecords Response
	16-7 GetDomain Request
	16-8 GetDomain Response
	16-9 GetRecordById Request
	16-10 GetRecordById Response
	16-11 Insert Request
	16-12 Insert Response
	16-13 Update Request
	16-14 Update Response
	16-15 Delete Request
	16-16 Delete Response
	C-1 Finding All Cities Within a Distance of a Highway
	C-2 Finding All Highways Within a Distance of a City
	C-3 Finding the Cities Nearest to a Highway
	C-4 Finding the Cities Above a Specified Population Nearest to a Highway
	C-5 Aggregate Union with Groupings for Many Rows

List of Figures

	1-1 Geometric Types
	1-2 Query Model
	1-3 MBR Enclosing a Geometry
	1-4 R-Tree Hierarchical Index on MBRs
	1-5 The Nine-Intersection Model
	1-6 Topological Relationships
	1-7 Distance Buffers for Points, Lines, and Polygons
	1-8 Tolerance in an Aggregate Union Operation
	1-9 Frustum as Query Window for Spatial Objects
	2-1 Areas of Interest for the Simple Example
	2-2 Storage of TIN Data
	2-3 Rectangle
	2-4 Polygon with a Hole
	2-5 Compound Line String
	2-6 Compound Polygon
	2-7 Point-Only Geometry
	2-8 Oriented Point Geometry
	2-9 Geometry with Type 0 (Zero) Element
	5-1 Geometries with MBRs
	5-2 Layer with a Query Window
	7-1 Geometric Segment
	7-2 Describing a Point Along a Segment with a Measure and an Offset
	7-3 Measures, Distances, and Their Mapping Relationship
	7-4 Measure Populating of a Geometric Segment
	7-5 Measure Populating with Disproportional Assigned Measures
	7-6 Linear Feature, Geometric Segments, and LRS Points
	7-7 Creating a Geometric Segment
	7-8 Defining a Geometric Segment
	7-9 Redefining a Geometric Segment
	7-10 Clipping, Splitting, and Concatenating Geometric Segments
	7-11 Measure Assignment in Geometric Segment Operations
	7-12 Segment Direction with Concatenation
	7-13 Scaling a Geometric Segment
	7-14 Offsetting a Geometric Segment
	7-15 Locating a Point Along a Segment with a Measure and an Offset
	7-16 Ambiguity in Location Referencing with Offsets
	7-17 Multiple Projection Points
	7-18 Conversion from Standard to LRS Line String
	7-19 Segment for Clip Operation Affected by Tolerance
	7-20 Simplified LRS Example: Highway
	8-1 Spatial Mining and Oracle Data Mining
	11-1 Basic Flow of Action with the Spatial Geocoding Service
	13-1 Basic Flow of Action with the Spatial Routing Engine
	15-1 Web Feature Service Architecture
	16-1 CSW Architecture
	24-1 Arc Tolerance
	24-2 SDO_GEOM.SDO_DIFFERENCE
	24-3 SDO_GEOM.SDO_INTERSECTION
	24-4 SDO_GEOM.SDO_UNION
	24-5 SDO_GEOM.SDO_XOR
	25-1 Translating a Geometric Segment
	32-1 Simplification of a Geometry

List of Tables

	1-1 SDO_GEOMETRY Attributes for Three-Dimensional Geometries
	1-2 Predefined User Accounts Created by Spatial
	2-1 Valid SDO_GTYPE Values
	2-2 Values and Semantics in SDO_ELEM_INFO
	2-3 SDO_GEOMETRY Methods
	2-4 SDO_TIN Type Attributes
	2-5 Columns in the TIN Block Table
	2-6 SDO_PC Type Attributes
	2-7 Columns in the Point Cloud Block Table
	2-8 Columns in the xxx_SDO_INDEX_INFO Views
	2-9 Columns in the xxx_SDO_INDEX_METADATA Views
	2-10 Columns in an R-Tree Spatial Index Data Table
	2-11 SDO_UNITS_OF_MEASURE Table Entries for User-Defined Unit
	3-1 Columns in the Annotation Text Metadata Views
	5-1 Data and Index Dimensionality, and Query Support
	6-1 SDO_COORD_AXES Table
	6-2 SDO_COORD_AXIS_NAMES Table
	6-3 SDO_COORD_OP_METHODS Table
	6-4 SDO_COORD_OP_PARAM_USE Table
	6-5 SDO_COORD_OP_PARAM_VALS Table
	6-6 SDO_COORD_OP_PARAMS Table
	6-7 SDO_COORD_OP_PATHS Table
	6-8 SDO_COORD_OPS Table
	6-9 SDO_COORD_REF_SYS Table
	6-10 SDO_COORD_SYS Table
	6-11 SDO_CRS_COMPOUND View
	6-12 SDO_CRS_ENGINEERING View
	6-13 SDO_CRS_GEOCENTRIC View
	6-14 SDO_CRS_GEOGRAPHIC2D View
	6-15 SDO_CRS_GEOGRAPHIC3D View
	6-16 SDO_CRS_PROJECTED View
	6-17 SDO_CRS_VERTICAL View
	6-18 SDO_DATUM_ENGINEERING View
	6-19 SDO_DATUM_GEODETIC View
	6-20 SDO_DATUM_VERTICAL View
	6-21 SDO_DATUMS Table
	6-22 SDO_ELLIPSOIDS Table
	6-23 SDO_PREFERRED_OPS_SYSTEM Table
	6-24 SDO_PREFERRED_OPS_USER Table
	6-25 SDO_PRIME_MERIDIANS Table
	6-26 SDO_UNITS_OF_MEASURE Table
	6-27 EPSG Table Names and Oracle Spatial Names
	6-28 MDSYS.CS_SRS Table
	6-29 MDSYS.SDO_ANGLE_UNITS View
	6-30 SDO_AREA_UNITS View
	6-31 MDSYS.SDO_DATUMS_OLD_FORMAT and SDO_DATUMS_OLD_SNAPSHOT Tables
	6-32 MDSYS.SDO_DIST_UNITS View
	6-33 MDSYS.SDO_ELLIPSOIDS_OLD_FORMAT and SDO_ELLIPSOIDS_OLD_SNAPSHOT Tables
	6-34 MDSYS.SDO_PROJECTIONS_OLD_FORMAT and SDO_PROJECTIONS_OLD_SNAPSHOT Tables
	7-1 Highway Features and LRS Counterparts
	11-1 Attributes for Formal Address Representation
	11-2 Match Modes for Geocoding Operations
	11-3 Match Codes for Geocoding Operations
	11-4 Geocoded Address Error Message Interpretation
	11-5 Geocoded Address Match Vector Interpretation
	11-6 SDO_GEO_ADDR Type Attributes
	11-7 GC_AREA_<suffix> Table
	11-8 GC_COUNTRY_PROFILE Table
	11-9 GC_INTERSECTION_<suffix> Table
	11-10 GC_POI_<suffix> Table
	11-11 GC_POSTAL_CODE_<suffix> Table
	11-12 GC_ROAD_<suffix> Table
	11-13 GC_ROAD_SEGMENT_<suffix> Table
	12-1 OPENLS_DIR_BUSINESSES Table
	12-2 OPENLS_DIR_BUSINESS_CHAINS Table
	12-3 OPENLS_DIR_CATEGORIES Table
	12-4 OPENLS_DIR_CATEGORIZATIONS Table
	12-5 OPENLS_DIR_CATEGORY_TYPES Table
	12-6 OPENLS_DIR_SYNONYMS Table
	13-1 EDGE Table
	13-2 NODE Table
	13-3 PARTITION Table
	13-4 SIGN_POST Table
	14-1 Spatial OpenLS Services Dependencies
	18-1 Spatial Index Creation and Usage Statements
	19-1 Main Spatial Operators
	19-2 Convenience Operators for SDO_RELATE Operations
	19-3 params Keywords for the SDO_JOIN Operator
	19-4 Keywords for the SDO_NN Param Parameter
	20-1 Spatial Aggregate Functions
	21-1 Subprograms for Coordinate System Transformation
	21-2 Table to Hold Transformed Layer
	22-1 Subprograms for CSW Processing Operations
	23-1 Subprograms for Geocoding Address Data
	24-1 Geometry Subprograms
	25-1 Subprograms for Creating and Editing Geometric Segments
	25-2 Subprograms for Querying and Validating Geometric Segments
	25-3 Subprograms for Converting Geometric Segments
	27-1 Subprograms for OpenLS Support
	28-1 Point Cloud Subprograms
	29-1 Subprograms for Spatial Analysis and Mining
	30-1 TIN Subprograms
	31-1 Tuning Subprograms
	32-1 Spatial Utility Subprograms
	33-1 Subprograms for WFS Support
	34-1 Subprograms for WFS Processing Operations
	B-1 Spatial-Related Features Supported for Locator
	B-2 Spatial Features Not Supported for Locator
	B-3 Feature Availability with Standard or Enterprise Edition

Preface

Oracle Spatial Developer's Guide provides usage and reference information for indexing and storing spatial data and for developing spatial applications using Oracle Spatial and Oracle Locator.

Oracle Spatial requires the Enterprise Edition of Oracle Database 11g. It is a foundation for the deployment of enterprise-wide spatial information systems, and Web-based and wireless location-based applications requiring complex spatial data management. Oracle Locator is a feature of the Standard and Enterprise Editions of Oracle Database 11g. It offers a subset of Oracle Spatial capabilities (see Appendix B for a list of Locator features) typically required to support Internet and wireless service applications and partner-based geographic information system (GIS) solutions.

The Standard and Enterprise Editions of Oracle Database 11g have the same basic features. However, several advanced features, such as extended data types, are available only with the Enterprise Edition, and some of these features are optional. For example, to use Oracle Database 11g table partitioning, you must have the Enterprise Edition and the Partitioning Option.

For information about the differences between Oracle Database 11g Standard Edition and Oracle Database 11g Enterprise Edition and the features and options that are available to you, see Oracle Database New Features Guide.

Audience

This guide is intended for anyone who needs to store spatial data in an Oracle database.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

For more information, see the following documents:

	
Oracle Spatial GeoRaster Developer's Guide

	
Oracle Spatial Topology and Network Data Models Developer's Guide

	
Oracle Database SQL Language Reference

	
Oracle Database Administrator's Guide

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database Error Messages - Spatial messages are in the range of 13000 to 13499.

	
Oracle Database Performance Tuning Guide

	
Oracle Database Utilities

	
Oracle Database Advanced Replication

	
Oracle Database Data Cartridge Developer's Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Spatial?

This section describes major new and changed Oracle Spatial features for the current release.

3-D Geometry Support

Oracle Spatial supports the creation and storage of three-dimensional geometry objects, as explained in Section 1.11.

Enhanced Web Services Support: Business Directory, Web Feature Service, Catalog Services, and OpenLS

Expanded support is provided for spatial Web services. A Web service enables developers of Oracle Spatial applications to provide feature data and metadata to their application users over the Web. Chapter 10 introduces the support for Web services and includes some overall requirements and considerations. The following chapters document new features that are supported through Web services:

	
Chapter 12, "Business Directory (Yellow Pages) Support"

	
Chapter 14, "OpenLS Support"

	
Chapter 15, "Web Feature Service (WFS) Support"

	
Chapter 16, "Catalog Services for the Web (CSW) Support"

Routing Engine Enhancements

The routing engine includes the following enhancements:

	
Per-maneuver times and geometries

	
Long ID support

	
Edge ID support at both the route level and segment level

	
Better generation of driving directions

The routing engine is described in Chapter 13.

SQL Multimedia Types

Support for the SQL Multimedia spatial types (ST_xxx) has been enhanced. These types are specified in ISO 13249-3, Information technology - Database languages - SQL Multimedia and Application Packages - Part 3: Spatial. The Oracle Spatial support for these types is described in a new chapter (Chapter 3).

Annotation Text

Oracle Spatial now supports annotation text as specified in the OpenGIS Implementation Specification for Geographic information - Simple feature access - Part 1: Common architecture. This support is described in Section 3.4.

DEFAULT Geocoding Match Mode Equivalent to RELAX_POSTAL_CODE

The DEFAULT match mode for geocoding operations is now equivalent to the RELAX_POSTAL_CODE mode. In the previous release, it was equivalent to the RELAX_BASE_NAME mode. The match modes for geocoding operations are explained Section 11.1.2.

New MatchVector Attribute for SDO_GEOR_ADDR

MatchVector has been added as the last attribute for the SDO_GEO_ADDR object type. This attribute is a string that indicates how each address attribute has been matched against the data used for geocoding. The MatchVector attribute is listed in Table 11-6 and is explained more fully in Section 11.1.5.

SDO_GEOM.CLOSEST_POINTS Procedure

The new SDO_GEOM.SDO_CLOSEST_POINTS procedure (described in Chapter 24) computes the minimum distance between two geometries and the points (one on each geometry) that are the minimum distance apart.

SDO_UTIL.BEARING_TILT_FOR_POINTS Procedure

The new SDO_UTIL.BEARING_TILT_FOR_POINTS procedure (described in Chapter 32) computes the bearing and tilt from a start point to an end point.

KML (Keyhole Markup Language) Functions

The SDO_UTIL.FROM_KMLGEOMETRY function converts a KML (Keyhole Markup Language) document to a Spatial geometry object, and the SDO_UTIL.TO_KMLGEOMETRY function converts a Spatial geometry object to a KML document. These functions are described in Chapter 32.

(These functions were introduced in a patch release to 11.1.)

Part I

Conceptual and Usage Information

This document has the following parts:

	
Part I provides conceptual and usage information about Oracle Spatial.

	
Part II provides conceptual and usage information about Oracle Spatial Web services.

	
Part III provides reference information about Oracle Spatial operators, functions, and procedures.

	
Part IV provides supplementary information (appendixes and a glossary).

Part I is organized for efficient learning about Oracle Spatial. It covers basic concepts and techniques first, and proceeds to more advanced material, such as coordinate systems, the linear referencing system, geocoding, and extending spatial indexing. Part I contains the following chapters:

	
Chapter 1, "Spatial Concepts"

	
Chapter 2, "Spatial Data Types and Metadata"

	
Chapter 3, "SQL Multimedia Type Support"

	
Chapter 4, "Loading Spatial Data"

	
Chapter 5, "Indexing and Querying Spatial Data"

	
Chapter 6, "Coordinate Systems (Spatial Reference Systems)"

	
Chapter 7, "Linear Referencing System"

	
Chapter 8, "Spatial Analysis and Mining"

	
Chapter 9, "Extending Spatial Indexing Capabilities"

1 Spatial Concepts

Oracle Spatial is an integrated set of functions and procedures that enables spatial data to be stored, accessed, and analyzed quickly and efficiently in an Oracle database.

Spatial data represents the essential location characteristics of real or conceptual objects as those objects relate to the real or conceptual space in which they exist.

This chapter contains the following major sections:

	
Section 1.1, "What Is Oracle Spatial?"

	
Section 1.2, "Object-Relational Model"

	
Section 1.3, "Introduction to Spatial Data"

	
Section 1.4, "Geometry Types"

	
Section 1.5, "Data Model"

	
Section 1.6, "Query Model"

	
Section 1.7, "Indexing of Spatial Data"

	
Section 1.8, "Spatial Relationships and Filtering"

	
Section 1.9, "Spatial Operators, Procedures, and Functions"

	
Section 1.10, "Spatial Aggregate Functions"

	
Section 1.11, "Three-Dimensional Spatial Objects"

	
Section 1.12, "Geocoding"

	
Section 1.13, "Spatial Java Application Programming Interface"

	
Section 1.14, "Predefined User Accounts Created by Spatial"

	
Section 1.15, "Performance and Tuning Information"

	
Section 1.16, "Open Geospatial Consortium (OGC) Conformance"

	
Section 1.17, "Spatial Release (Version) Number"

	
Section 1.18, "Spatial Application Hardware Requirement Considerations"

	
Section 1.19, "Spatial Error Messages"

	
Section 1.20, "Spatial Examples"

	
Section 1.21, "README File for Spatial and Related Features"

1.1 What Is Oracle Spatial?

Oracle Spatial, often referred to as Spatial, provides a SQL schema and functions that facilitate the storage, retrieval, update, and query of collections of spatial features in an Oracle database. Spatial consists of the following:

	
A schema (MDSYS) that prescribes the storage, syntax, and semantics of supported geometric data types

	
A spatial indexing mechanism

	
Operators, functions, and procedures for performing area-of-interest queries, spatial join queries, and other spatial analysis operations

	
Functions and procedures for utility and tuning operations

	
Topology data model for working with data about nodes, edges, and faces in a topology (described in Oracle Spatial Topology and Network Data Models Developer's Guide).

	
Network data model for representing capabilities or objects that are modeled as nodes and links in a network (described in Oracle Spatial Topology and Network Data Models Developer's Guide).

	
GeoRaster, a feature that lets you store, index, query, analyze, and deliver GeoRaster data, that is, raster image and gridded data and its associated metadata (described in Oracle Spatial GeoRaster Developer's Guide).

The spatial component of a spatial feature is the geometric representation of its shape in some coordinate space. This is referred to as its geometry.

	
Caution:

Do not modify any packages, tables, or other objects under the MDSYS schema. (The only exception is if you need to create a user-defined coordinate reference system, as explained in Section 6.9.)

1.2 Object-Relational Model

Spatial supports the object-relational model for representing geometries. This model stores an entire geometry in the Oracle native spatial data type for vector data, SDO_GEOMETRY. An Oracle table can contain one or more SDO_GEOMETRY columns. The object-relational model corresponds to a "SQL with Geometry Types" implementation of spatial feature tables in the Open GIS ODBC/SQL specification for geospatial features.

The benefits provided by the object-relational model include:

	
Support for many geometry types, including arcs, circles, compound polygons, compound line strings, and optimized rectangles

	
Ease of use in creating and maintaining indexes and in performing spatial queries

	
Index maintenance by the Oracle database

	
Geometries modeled in a single column

	
Optimal performance

1.3 Introduction to Spatial Data

Oracle Spatial is designed to make spatial data management easier and more natural to users of location-enabled applications and geographic information system (GIS) applications. Once spatial data is stored in an Oracle database, it can be easily manipulated, retrieved, and related to all other data stored in the database.

A common example of spatial data can be seen in a road map. A road map is a two-dimensional object that contains points, lines, and polygons that can represent cities, roads, and political boundaries such as states or provinces. A road map is a visualization of geographic information. The location of cities, roads, and political boundaries that exist on the surface of the Earth are projected onto a two-dimensional display or piece of paper, preserving the relative positions and relative distances of the rendered objects.

The data that indicates the Earth location (such as longitude and latitude) of these rendered objects is the spatial data. When the map is rendered, this spatial data is used to project the locations of the objects on a two-dimensional piece of paper. A GIS is often used to store, retrieve, and render this Earth-relative spatial data.

Types of spatial data (other than GIS data) that can be stored using Spatial include data from computer-aided design (CAD) and computer-aided manufacturing (CAM) systems. Instead of operating on objects on a geographic scale, CAD/CAM systems work on a smaller scale, such as for an automobile engine or printed circuit boards.

The differences among these systems are in the size and precision of the data, not the data's complexity. The systems might all involve the same number of data points. On a geographic scale, the location of a bridge can vary by a few tenths of an inch without causing any noticeable problems to the road builders, whereas if the diameter of an engine's pistons is off by a few tenths of an inch, the engine will not run.

In addition, the complexity of data is independent of the absolute scale of the area being represented. For example, a printed circuit board is likely to have many thousands of objects etched on its surface, containing in its small area information that may be more complex than the details shown on a road builder's blueprints.

These applications all store, retrieve, update, or query some collection of features that have both nonspatial and spatial attributes. Examples of nonspatial attributes are name, soil_type, landuse_classification, and part_number. The spatial attribute is a coordinate geometry, or vector-based representation of the shape of the feature.

1.4 Geometry Types

A geometry is an ordered sequence of vertices that are connected by straight line segments or circular arcs. The semantics of the geometry are determined by its type. Spatial supports several primitive types, and geometries composed of collections of these types, including two-dimensional:

	
Points and point clusters

	
Line strings

	
n-point polygons

	
Arc line strings (All arcs are generated as circular arcs.)

	
Arc polygons

	
Compound polygons

	
Compound line strings

	
Circles

	
Optimized rectangles

Two-dimensional points are elements composed of two ordinates, X and Y, often corresponding to longitude and latitude. Line strings are composed of one or more pairs of points that define line segments. Polygons are composed of connected line strings that form a closed ring, and the area of the polygon is implied. For example, a point might represent a building location, a line string might represent a road or flight path, and a polygon might represent a state, city, zoning district, or city block.

Self-crossing polygons are not supported, although self-crossing line strings are supported. If a line string crosses itself, it does not become a polygon. A self-crossing line string does not have any implied area.

Figure 1-1 illustrates the geometric types.

Figure 1-1 Geometric Types

[image: Description of Figure 1-1 follows]

Spatial also supports the storage and indexing of three-dimensional and four-dimensional geometric types, where three or four coordinates are used to define each vertex of the object being defined. For information about support for three-dimensional geometries, see Section 1.11.

1.5 Data Model

The Spatial data model is a hierarchical structure consisting of elements, geometries, and layers. Layers are composed of geometries, which in turn are made up of elements.

1.5.1 Element

An element is the basic building block of a geometry. The supported spatial element types are points, line strings, and polygons. For example, elements might model star constellations (point clusters), roads (line strings), and county boundaries (polygons). Each coordinate in an element is stored as an X,Y pair. The exterior ring and zero or more interior rings (holes) of a complex polygon are considered a single element.

Point data consists of one coordinate. Line data consists of two coordinates representing a line segment of the element. Polygon data consists of coordinate pair values, one vertex pair for each line segment of the polygon. Coordinates are defined in order around the polygon (counterclockwise for an exterior polygon ring, clockwise for an interior polygon ring).

1.5.2 Geometry

A geometry (or geometry object) is the representation of a spatial feature, modeled as an ordered set of primitive elements. A geometry can consist of a single element, which is an instance of one of the supported primitive types, or a homogeneous or heterogeneous collection of elements. A multipolygon, such as one used to represent a set of islands, is a homogeneous collection. A heterogeneous collection is one in which the elements are of different types, for example, a point and a polygon.

An example of a geometry might describe the buildable land in a town. This could be represented as a polygon with holes where water or zoning prevents construction.

1.5.3 Layer

A layer is a collection of geometries having the same attribute set. For example, one layer in a GIS might include topographical features, while another describes population density, and a third describes the network of roads and bridges in the area (lines and points). The geometries and associated spatial index for each layer are stored in the database in standard tables.

1.5.4 Coordinate System

A coordinate system (also called a spatial reference system) is a means of assigning coordinates to a location and establishing relationships between sets of such coordinates. It enables the interpretation of a set of coordinates as a representation of a position in a real world space.

Any spatial data has a coordinate system associated with it. The coordinate system can be georeferenced (related to a specific representation of the Earth) or not georeferenced (that is, Cartesian, and not related to a specific representation of the Earth). If the coordinate system is georeferenced, it has a default unit of measurement (such as meters) associated with it, but you can have Spatial automatically return results in another specified unit (such as miles). (For more information about unit of measurement support, see Section 2.10.)

Spatial data can be associated with a Cartesian, geodetic (geographical), projected, or local coordinate system:

	
Cartesian coordinates are coordinates that measure the position of a point from a defined origin along axes that are perpendicular in the represented two-dimensional or three-dimensional space.

If a coordinate system is not explicitly associated with a geometry, a Cartesian coordinate system is assumed.

	
Geodetic coordinates (sometimes called geographic coordinates) are angular coordinates (longitude and latitude), closely related to spherical polar coordinates, and are defined relative to a particular Earth geodetic datum. (A geodetic datum is a means of representing the figure of the Earth and is the reference for the system of geodetic coordinates.)

	
Projected coordinates are planar Cartesian coordinates that result from performing a mathematical mapping from a point on the Earth's surface to a plane. There are many such mathematical mappings, each used for a particular purpose.

	
Local coordinates are Cartesian coordinates in a non-Earth (non-georeferenced) coordinate system. Local coordinate systems are often used for CAD applications and local surveys.

When performing operations on geometries, Spatial uses either a Cartesian or curvilinear computational model, as appropriate for the coordinate system associated with the spatial data.

For more information about coordinate system support in Spatial, including geodetic, projected, and local coordinates and coordinate system transformation, see Chapter 6.

1.5.5 Tolerance

Tolerance is used to associate a level of precision with spatial data. Tolerance reflects the distance that two points can be apart and still be considered the same (for example, to accommodate rounding errors). The tolerance value must be a positive number greater than zero. The significance of the value depends on whether or not the spatial data is associated with a geodetic coordinate system. (Geodetic and other types of coordinate systems are described in Section 1.5.4.)

	
For geodetic data (such as data identified by longitude and latitude coordinates), the tolerance value is a number of meters. For example, a tolerance value of 100 indicates a tolerance of 100 meters. The tolerance value for geodetic data should not be smaller than 0.05 (5 centimeters), and in most cases it should be larger. Spatial uses 0.05 as the tolerance value for geodetic data if you specify a smaller value with the following functions: SDO_GEOM.RELATE, SDO_GEOM.SDO_DIFFERENCE, SDO_GEOM.SDO_INTERSECTION, SDO_GEOM.SDO_UNION, and SDO_GEOM.SDO_XOR; for other functions, Spatial uses the smaller tolerance value that you specify.

	
For non-geodetic data, the tolerance value is a number of the units that are associated with the coordinate system associated with the data. For example, if the unit of measurement is miles, a tolerance value of 0.005 indicates a tolerance of 0.005 (that is, 1/200) mile (approximately 26 feet or 7.9 meters), and a tolerance value of 2 indicates a tolerance of 2 miles.

In both cases, the smaller the tolerance value, the more precision is to be associated with the data.

For geometries that have 16 or more digits of precision, Spatial boolean operations (such as SDO_GEOM.SDO_UNION and SDO_GEOM.SDO_INTERSECTION) and the SDO_GEOM.RELATE function might produce inconsistent results due to the loss of precision in floating point arithmetic. The number of digits of precision is calculated as in the following example: if the tolerance is set to 0.0000000005 and the coordinates have 6 digits to the left of decimal (for example, 123456.4321), the precision is 10 + 6 digits (16). In such cases, it is better to use a larger tolerance value (fewer leading zeros after the decimal) to get consistent results using Spatial operations.

A tolerance value is specified in two cases:

	
In the geometry metadata definition for a layer (see Section 1.5.5.1)

	
As an input parameter to certain functions (see Section 1.5.5.2)

For additional information about tolerance with linear referencing system (LRS) data, see Section 7.6.

1.5.5.1 Tolerance in the Geometry Metadata for a Layer

The dimensional information for a layer includes a tolerance value. Specifically, the DIMINFO column (described in Section 2.8.3) of the xxx_SDO_GEOM_METADATA views includes an SDO_TOLERANCE value for each dimension, and the value should be the same for each dimension.

If a function accepts an optional tolerance parameter and this parameter is null or not specified, the SDO_TOLERANCE value of the layer is used. Using the non-geodetic data from the example in Section 2.1, the actual distance between geometries cola_b and cola_d is 0.846049894. If a query uses the SDO_GEOM.SDO_DISTANCE function to return the distance between cola_b and cola_d and does not specify a tolerance parameter value, the result depends on the SDO_TOLERANCE value of the layer. For example:

	
If the SDO_TOLERANCE value of the layer is 0.005, this query returns .846049894.

	
If the SDO_TOLERANCE value of the layer is 0.5, this query returns 0.

The zero result occurs because Spatial first constructs an imaginary buffer of the tolerance value (0.5) around each geometry to be considered, and the buffers around cola_b and cola_d overlap in this case.

You can, therefore, take either of two approaches in selecting an SDO_TOLERANCE value for a layer:

	
The value can reflect the desired level of precision in queries for distances between objects. For example, if two non-geodetic geometries 0.8 units apart should be considered as separated, specify a small SDO_TOLERANCE value such as 0.05 or smaller.

	
The value can reflect the precision of the values associated with geometries in the layer. For example, if all geometries in a non-geodetic layer are defined using integers and if two objects 0.8 units apart should not be considered as separated, an SDO_TOLERANCE value of 0.5 is appropriate. To have greater precision in any query, you must override the default by specifying the tolerance parameter.

With non-geodetic data, the guideline to follow for most instances of the second case (precision of the values of the geometries in the layer) is: take the highest level of precision in the geometry definitions, and use .5 at the next level as the SDO_TOLERANCE value. For example, if geometries are defined using integers (as in the simplified example in Section 2.1), the appropriate value is 0.5; however, if geometries are defined using numbers up to four decimal positions (for example, 31.2587), the appropriate value is 0.00005.

	
Note:

This guideline should not be used if the geometries include any polygons that are so narrow at any point that the distance between facing sides is less than the proposed tolerance value. Be sure that the tolerance value is less than the shortest distance between any two sides in any polygon.
Moreover, if you encounter "invalid geometry" errors with inserted or updated geometries, and if the geometries are in fact valid, consider increasing the precision of the tolerance value (for example, changing 0.00005 to 0.000005).

1.5.5.2 Tolerance as an Input Parameter

Many Spatial functions accept a tolerance parameter, which (if specified) overrides the default tolerance value for the layer (explained in Section 1.5.5.1). If the distance between two points is less than or equal to the tolerance value, Spatial considers the two points to be a single point. Thus, tolerance is usually a reflection of how accurate or precise users perceive their spatial data to be.

For example, assume that you want to know which restaurants are within 5 kilometers of your house. Assume also that Maria's Pizzeria is 5.1 kilometers from your house. If the spatial data has a geodetic coordinate system and if you ask, Find all restaurants within 5 kilometers and use a tolerance of 100 (or greater, such as 500), Maria's Pizzeria will be included, because 5.1 kilometers (5100 meters) is within 100 meters of 5 kilometers (5000 meters). However, if you specify a tolerance less than 100 (such as 50), Maria's Pizzeria will not be included.

Tolerance values for Spatial functions are typically very small, although the best value in each case depends on the kinds of applications that use or will use the data. See also the tolerance guidelines in Section 1.5.5.1, and ensure that all input geometries are valid. (Spatial functions may not work as expected if the geometry data is not valid.)

1.6 Query Model

Spatial uses a two-tier query model to resolve spatial queries and spatial joins. The term is used to indicate that two distinct operations are performed to resolve queries. The output of the two combined operations yields the exact result set.

The two operations are referred to as primary and secondary filter operations.

	
The primary filter permits fast selection of candidate records to pass along to the secondary filter. The primary filter compares geometry approximations to reduce computation complexity and is considered a lower-cost filter. Because the primary filter compares geometric approximations, it returns a superset of the exact result set.

	
The secondary filter applies exact computations to geometries that result from the primary filter. The secondary filter yields an accurate answer to a spatial query. The secondary filter operation is computationally expensive, but it is only applied to the primary filter results, not the entire data set.

Figure 1-2 illustrates the relationship between the primary and secondary filters.

Figure 1-2 Query Model

[image: Description of Figure 1-2 follows]

As shown in Figure 1-2, the primary filter operation on a large input data set produces a smaller candidate set, which contains at least the exact result set and may contain more records. The secondary filter operation on the smaller candidate set produces the exact result set.

Spatial uses a spatial index to implement the primary filter. Spatial does not require the use of both the primary and secondary filters. In some cases, just using the primary filter is sufficient. For example, a zoom feature in a mapping application queries for data that has any interaction with a rectangle representing visible boundaries. The primary filter very quickly returns a superset of the query. The mapping application can then apply clipping routines to display the target area.

The purpose of the primary filter is to quickly create a subset of the data and reduce the processing burden on the secondary filter. The primary filter, therefore, should be as efficient (that is, selective yet fast) as possible. This is determined by the characteristics of the spatial index on the data.

For more information about querying spatial data, see Section 5.2.

1.7 Indexing of Spatial Data

The introduction of spatial indexing capabilities into the Oracle database engine is a key feature of the Spatial product. A spatial index, like any other index, provides a mechanism to limit searches, but in this case the mechanism is based on spatial criteria such as intersection and containment. A spatial index is needed to:

	
Find objects within an indexed data space that interact with a given point or area of interest (window query)

	
Find pairs of objects from within two indexed data spaces that interact spatially with each other (spatial join)

A spatial index is considered a logical index. The entries in the spatial index are dependent on the location of the geometries in a coordinate space, but the index values are in a different domain. Index entries may be ordered using a linearly ordered domain, and the coordinates for a geometry may be pairs of integer, floating-point, or double-precision numbers.

Testing of spatial indexes with many workloads and operators is ongoing, and results and recommendations will be documented as they become available.

The following sections explain the concepts and options associated with R-tree indexing.

1.7.1 R-Tree Indexing

A spatial R-tree index can index spatial data of up to four dimensions. An R-tree index approximates each geometry by a single rectangle that minimally encloses the geometry (called the minimum bounding rectangle, or MBR), as shown in Figure 1-3.

Figure 1-3 MBR Enclosing a Geometry

[image: Description of Figure 1-3 follows]

For a layer of geometries, an R-tree index consists of a hierarchical index on the MBRs of the geometries in the layer, as shown in Figure 1-4.

Figure 1-4 R-Tree Hierarchical Index on MBRs

[image: Description of Figure 1-4 follows]

In Figure 1-4:

	
1 through 9 are geometries in a layer.

	
a, b, c, and d are the leaf nodes of the R-tree index, and contain minimum bounding rectangles of geometries, along with pointers to the geometries. For example, a contains the MBR of geometries 1 and 2, b contains the MBR of geometries 3 and 4, and so on.

	
A contains the MBR of a and b, and B contains the MBR of c and d.

	
The root contains the MBR of A and B (that is, the entire area shown).

An R-tree index is stored in the spatial index table (SDO_INDEX_TABLE in the USER_SDO_INDEX_METADATA view, described in Section 2.9). The R-tree index also maintains a sequence object (SDO_RTREE_SEQ_NAME in the USER_SDO_INDEX_METADATA view) to ensure that simultaneous updates by concurrent users can be made to the index.

1.7.2 R-Tree Quality

A substantial number of insert and delete operations affecting an R-tree index may degrade the quality of the R-tree structure, which may adversely affect query performance.

The R-tree is a hierarchical tree structure with nodes at different heights of the tree. The performance of an R-tree index structure for queries is roughly proportional to the area and perimeter of the index nodes of the R-tree. The area covered at level 0 represents the area occupied by the minimum bounding rectangles of the data geometries, the area at level 1 indicates the area covered by leaf-level R-tree nodes, and so on. The original ratio of the area at the root (topmost level) to the area at level 0 can change over time based on updates to the table; and if there is a degradation in that ratio (that is, if it increases significantly), rebuilding the index may help the performance of queries.

If the performance of SDO_FILTER operations has degraded, and if there have been a large number of insert, update, or delete operations affecting geometries, the performance degradation may be due to a degradation in the quality of the associated R-tree index. You can check for degradation of index quality by using the SDO_TUNE.QUALITY_DEGRADATION function (described in Chapter 31); and if the function returns a number greater than 2, consider rebuilding the index. Note, however, that the R-tree index quality degradation number may not be significant in terms of overall query performance due to Oracle caching strategies and other significant Oracle capabilities, such as table pinning, which can essentially remove I/O overhead from R-tree index queries.

To rebuild an R-tree index, use the ALTER INDEX REBUILD statement, which is described in Chapter 18.

1.8 Spatial Relationships and Filtering

Spatial uses secondary filters to determine the spatial relationship between entities in the database. The spatial relationship is based on geometry locations. The most common spatial relationships are based on topology and distance. For example, the boundary of an area consists of a set of curves that separates the area from the rest of the coordinate space. The interior of an area consists of all points in the area that are not on its boundary. Given this, two areas are said to be adjacent if they share part of a boundary but do not share any points in their interior.

The distance between two spatial objects is the minimum distance between any points in them. Two objects are said to be within a given distance of one another if their distance is less than the given distance.

To determine spatial relationships, Spatial has several secondary filter methods:

	
The SDO_RELATE operator evaluates topological criteria.

	
The SDO_WITHIN_DISTANCE operator determines if two spatial objects are within a specified distance of each other.

	
The SDO_NN operator identifies the nearest neighbors for a spatial object.

The syntax of these operators is given in Chapter 19.

The SDO_RELATE operator implements a nine-intersection model for categorizing binary topological relationships between points, lines, and polygons. Each spatial object has an interior, a boundary, and an exterior. The boundary consists of points or lines that separate the interior from the exterior. The boundary of a line string consists of its end points; however, if the end points overlap (that is, if they are the same point), the line string has no boundary. The boundaries of a multiline string are the end points of each of the component line strings; however, if the end points overlap, only the end points that overlap an odd number of times are boundaries. The boundary of a polygon is the line that describes its perimeter. The interior consists of points that are in the object but not on its boundary, and the exterior consists of those points that are not in the object.

Given that an object A has three components (a boundary Ab, an interior Ai, and an exterior Ae), any pair of objects has nine possible interactions between their components. Pairs of components have an empty (0) or not empty (1) set intersection. The set of interactions between two geometries is represented by a nine-intersection matrix that specifies which pairs of components intersect and which do not. Figure 1-5 shows the nine-intersection matrix for two polygons that are adjacent to one another. This matrix yields the following bit mask, generated in row-major form: "101001111".

Figure 1-5 The Nine-Intersection Model

[image: Description of Figure 1-5 follows]

Some of the topological relationships identified in the seminal work by Professor Max Egenhofer (University of Maine, Orono) and colleagues have names associated with them. Spatial uses the following names:

	
DISJOINT: The boundaries and interiors do not intersect.

	
TOUCH: The boundaries intersect but the interiors do not intersect.

	
OVERLAPBDYDISJOINT: The interior of one object intersects the boundary and interior of the other object, but the two boundaries do not intersect. This relationship occurs, for example, when a line originates outside a polygon and ends inside that polygon.

	
OVERLAPBDYINTERSECT: The boundaries and interiors of the two objects intersect.

	
EQUAL: The two objects have the same boundary and interior.

	
CONTAINS: The interior and boundary of one object is completely contained in the interior of the other object.

	
COVERS: The interior of one object is completely contained in the interior or the boundary of the other object and their boundaries intersect.

	
INSIDE: The opposite of CONTAINS. A INSIDE B implies B CONTAINS A.

	
COVEREDBY: The opposite of COVERS. A COVEREDBY B implies B COVERS A.

	
ON: The interior and boundary of one object is on the boundary of the other object (and the second object covers the first object). This relationship occurs, for example, when a line is on the boundary of a polygon.

	
ANYINTERACT: The objects are non-disjoint.

Figure 1-6 illustrates these topological relationships.

Figure 1-6 Topological Relationships

[image: Description of Figure 1-6 follows]

The SDO_WITHIN_DISTANCE operator determines if two spatial objects, A and B, are within a specified distance of one another. This operator first constructs a distance buffer, Db, around the reference object B. It then checks that A and Db are non-disjoint. The distance buffer of an object consists of all points within the given distance from that object. Figure 1-7 shows the distance buffers for a point, a line, and a polygon.

Figure 1-7 Distance Buffers for Points, Lines, and Polygons

[image: Description of Figure 1-7 follows]

In the point, line, and polygon geometries shown in Figure 1-7:

	
The dashed lines represent distance buffers. Notice how the buffer is rounded near the corners of the objects.

	
The geometry on the right is a polygon with a hole: the large rectangle is the exterior polygon ring and the small rectangle is the interior polygon ring (the hole). The dashed line outside the large rectangle is the buffer for the exterior ring, and the dashed line inside the small rectangle is the buffer for the interior ring.

The SDO_NN operator returns a specified number of objects from a geometry column that are closest to a specified geometry (for example, the five closest restaurants to a city park). In determining how close two geometry objects are, the shortest possible distance between any two points on the surface of each object is used.

1.9 Spatial Operators, Procedures, and Functions

The Spatial PL/SQL application programming interface (API) includes several operators and many procedures and functions.

Spatial operators, such as SDO_FILTER and SDO_RELATE, provide optimum performance because they use the spatial index. (Spatial operators require that the geometry column in the first parameter have a spatial index defined on it.) Spatial operators must be used in the WHERE clause of a query. The first parameter of any operator specifies the geometry column to be searched, and the second parameter specifies a query window. If the query window does not have the same coordinate system as the geometry column, Spatial performs an implicit coordinate system transformation. For detailed information about the spatial operators, see Chapter 19.

Spatial procedures and functions are provided as subprograms in PL/SQL packages, such as SDO_GEOM, SDO_CS, and SDO_LRS. These subprograms do not require that a spatial index be defined, and they do not use a spatial index if it is defined. These subprograms can be used in the WHERE clause or in a subquery. If two geometries are input parameters to a Spatial procedure or function, both must have the same coordinate system.

The following performance-related guidelines apply to the use of spatial operators, procedures, and functions:

	
If an operator and a procedure or function perform comparable operations, and if the operator satisfies your requirements, use the operator. For example, unless you need to do otherwise, use SDO_RELATE instead of SDO_GEOM.RELATE, and use SDO_WITHIN_DISTANCE instead of SDO_GEOM.WITHIN_DISTANCE.

	
With operators, always specify TRUE in uppercase. That is, specify = 'TRUE', and do not specify <> 'FALSE' or = 'true'.

	
With operators, use the /*+ ORDERED */ optimizer hint if the query window comes from a table. (You must use this hint if multiple windows come from a table.) See the Usage Notes and Examples for specific operators for more information.

For information about using operators with topologies, see Oracle Spatial Topology and Network Data Models Developer's Guide.

1.10 Spatial Aggregate Functions

SQL has long had aggregate functions, which are used to aggregate the results of a SQL query. The following example uses the SUM aggregate function to aggregate employee salaries by department:

SELECT SUM(salary), dept
 FROM employees
 GROUP BY dept;

Oracle Spatial aggregate functions aggregate the results of SQL queries involving geometry objects. Spatial aggregate functions return a geometry object of type SDO_GEOMETRY. For example, the following statement returns the minimum bounding rectangle of all geometries in a table (using the definitions and data from Section 2.1):

SELECT SDO_AGGR_MBR(shape) FROM cola_markets;

The following example returns the union of all geometries except cola_d:

SELECT SDO_AGGR_UNION(SDOAGGRTYPE(c.shape, 0.005))
 FROM cola_markets c WHERE c.name <> 'cola_d';

For reference information about the spatial aggregate functions and examples of their use, see Chapter 20.

	
Note:

Spatial aggregate functions are supported for two-dimensional geometries only, except for SDO_AGGR_MBR, which is supported for both two-dimensional and three-dimensional geometries.

1.10.1 SDOAGGRTYPE Object Type

Many spatial aggregate functions accept an input parameter of type SDOAGGRTYPE. Oracle Spatial defines the object type SDOAGGRTYPE as:

CREATE TYPE sdoaggrtype AS OBJECT (
 geometry SDO_GEOMETRY,
 tolerance NUMBER);

	
Note:

Do not use SDOAGGRTYPE as the data type for a column in a table. Use this type only in calls to spatial aggregate functions.

The tolerance value in the SDOAGGRTYPE definition should be the same as the SDO_TOLERANCE value specified in the DIMINFO column in the xxx_SDO_GEOM_METADATA views for the geometries, unless you have a specific reason for wanting a different value. For more information about tolerance, see Section 1.5.5; for information about the xxx_SDO_GEOM_METADATA views, see Section 2.8.

The tolerance value in the SDOAGGRTYPE definition can affect the result of a spatial aggregate function. Figure 1-8 shows a spatial aggregate union (SDO_AGGR_UNION) operation of two geometries using two different tolerance values: one smaller and one larger than the distance between the geometries.

Figure 1-8 Tolerance in an Aggregate Union Operation

[image: Description of Figure 1-8 follows]

In the first aggregate union operation in Figure 1-8, where the tolerance is less than the distance between the rectangles, the result is a compound geometry consisting of two rectangles. In the second aggregate union operation, where the tolerance is greater than the distance between the rectangles, the result is a single geometry.

1.11 Three-Dimensional Spatial Objects

Effective with Oracle Database Release 11.1, Oracle Spatial supports the storage and retrieval of three-dimensional spatial data, which can include points, point clouds (collections of points), lines, polygons, surfaces, and solids. Table 1-1 show the SDO_GTYPE and element-related attributes of the SDO_GEOMETRY type that are relevant to three-dimensional geometries. (The SDO_GEOMETRY type is explained in Section 2.2.)

Table 1-1 SDO_GEOMETRY Attributes for Three-Dimensional Geometries

	Type of 3-D Data	SDO_GTYPE	Element Type, Interpretation in SDO_ELEM_INFO
	
Point

	
3001

	
Does not apply. Specify all 3 dimension values in the SDO_POINT_TYPE attribute.

	
Line

	
3002

	
2, 1

	
Polygon

	
3003

	
1003, 1: planar exterior polygon

2003, 1: planar interior polygon

1003, 3: planar exterior rectangle

2003, 3: planar interior rectangle

	
Surface

	
3003

	
1006, 1: surface (followed by element information for the polygons)

	
Collection

	
3004

	
Same considerations as for two-dimensional

	
Multipoint (point cloud)

	
3005

	
1, n (where n is the number of points)

	
Multiline

	
3006

	
Same considerations as for two-dimensional

	
Multisurface

	
3007

	
Element definitions for one or more surfaces

	
Solid

	
3008

	
Simple solid formed by a single closed surface: one element type 1007, followed by one element type 1006 (the external surface) and optionally one or more element type 2006 (internal surfaces)

Composite solid formed by multiple adjacent simple solids: one element type 1008 (holding the count of simple solids), followed by any number of element type 1007 (each describing one simple solid)

	
Multisolid

	
3009

	
Element definitions for one or more simple solids (element type 1007) or composite solids (element type 1008)

The following Spatial operators consider all three dimensions in their computations:

	
SDO_ANYINTERACT

	
SDO_FILTER

	
SDO_INSIDE (for solid geometries only)

	
SDO_NN

	
SDO_WITHIN_DISTANCE

The other operators consider only the first two dimensions. (Spatial operators are described in Chapter 19.)

The SDO_GEOM.SDO_VOLUME function applies only to solid geometries, which are by definition three-dimensional; however, this function cannot be used with geodetic data. (This function is described in Chapter 24.) For information ab out support for three-dimensional geometries with other SDO_GEOM subprograms, see the usage information after Table 24-1, "Geometry Subprograms".

For distance computations with three-dimensional geometries:

	
If the data is geodetic (geographic 3D), the distance computations are done on the geodetic surface.

	
If the data is non-geodetic (projected or local), the distance computations are valid only if the unit of measure is the same for all three dimensions.

To have any functions, procedures, or operators consider all three dimensions, you must specify PARAMETERS ('sdo_indx_dims=3') in the CREATE INDEX statement when you create the spatial index on a spatial table containing Geographic3D data (longitude, latitude, ellipsoidal height). If you do not specify that parameter in the CREATE INDEX statement, a two-dimensional index is created.

For Spatial functions, procedures, and operators that consider all three dimensions, distance and length computations correctly factor in the height or elevation. For example, consider two three-dimensional points, one at the origin of a Cartesian space (0,0,0), and the other at X=3 on the Y axis and a height (Z) of 4 (3,0,4).

	
If the operation considers all three dimensions, the distance between the two points is 5. (Think of the hypotenuse of a 3-4-5 right triangle.)

	
If the operation considers only two dimensions, the distance between the two points is 3. (That is, the third dimension, or height, is ignored.)

However, for the following operators and subprograms, distances with three-dimensional geometries are computed between the "ground" representations (for example, the longitude/latitude extent of the footprint of a building), and the height information is ignored:

	
SDO_NN operator

	
SDO_WITHIN_DISTANCE operator

	
SDO_GEOM.SDO_DISTANCE function

	
SDO_GEOM.WITHIN_DISTANCE function

For a two-dimensional query window with three-dimensional data, you can use the SDO_FILTER operator, but not any other spatial operators.

For examples of creating different types of three-dimensional spatial geometries, see Section 2.7.9. That section also includes an example showing how to update the spatial metadata and create spatial indexes for three-dimensional geometries.

For information about support for three-dimensional coordinate reference systems, see Section 6.5.

Three-dimensional support does not apply to many spatial aggregate functions and PL/SQL packages and subprograms. The following are supported for two-dimensional geometries only:

	
Spatial aggregate functions, except for SDO_AGGR_MBR, which is supported for both two-dimensional and three-dimensional geometries.

	
SDO_GEOM (geometry) subprograms, except for the following, which are supported for both two-dimensional and three-dimensional geometries:

	
SDO_GEOM.RELATE with the ANYINTERACT mask

	
SDO_GEOM.SDO_AREA

	
SDO_GEOM.SDO_DISTANCE

	
SDO_GEOM.SDO_LENGTH

	
SDO_GEOM.SDO_MAX_MBR_ORDINATE

	
SDO_GEOM.SDO_MBR

	
SDO_GEOM.SDO_MIN_MBR_ORDINATE

	
SDO_GEOM.SDO_VOLUME

	
SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT

	
SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT

	
SDO_GEOM.WITHIN_DISTANCE

	
SDO_SAM (spatial analysis and mining) subprograms

	
SDO_MIGRATE.TO_CURRENT procedure

1.11.1 Modeling Surfaces

A surface contains an area but not a volume, and it can have two or three dimensions. A surface is often constructed by a set of planar regions.

Surfaces can be modeled as surface-type SDO_GEOMETRY objects or, if they are very large, as SDO_TIN objects. The surface-type in SDO_GEOMETRY can be an arbitrary surface defining a contiguous area bounded by adjacent three-dimensional polygons. The number of polygons in the SDO_GEOMETRY is limited by the number of ordinates that can be in the SDO_ORDINATES_ARRAY. An SDO_TIN object, on the other hand, models the surface as a network of triangles with no explicit limit on the number of triangles.

Surfaces are stored as a network of triangles, called triangulated irregular networks, or TINs. The TIN model represents a surface as a set of contiguous, non-overlapping triangles. Within each triangle the surface is represented by a plane. The triangles are made from a set of points called mass points. If mass points are carefully selected, the TIN represents an accurate the model of the surface. Well-placed mass points occur where there is a major change in the shape of the surface, for example, at the peak of a mountain, the floor of a valley, or at the edge (top and bottom) of cliffs.

TINs are generally computed from a set of three-dimensional points specifying coordinate values in the longitude (x), latitude (y), and elevation (z) dimensions. Oracle TIN generation software uses the Delaunay triangulation algorithm, but it is not required that TIN data be formed using only Delaunay triangulation techniques.

During and after the generation of TINs, you can specify stop lines. Stop lines typically indicate places where the elevation lines are not continuous, such as the slope from the top to the bottom of a cliff. Such regions are to be excluded from the TIN.

The general process for working with a TIN is as follows:

	
Initialize the TIN, using the SDO_TIN_PKG.INIT function.

	
Create the TIN, using the SDO_TIN_PKG.CREATE_TIN procedure.

	
As needed for queries, clip the TIN, using the SDO_TIN_PKG.CLIP_TIN function.

	
If necessary, use the SDO_TIN_PKG.TO_GEOMETRY function (for example, to convert the result of a clip operation into a single SDO_GEOMETRY object).

The PL/SQL subprograms for working with TINs are described in Chapter 30.

For a Java example of working with TINs, see the following files:

$ORACLE_HOME/md/demo/TIN/examples/java/README.txt
$ORACLE_HOME/md/demo/TIN/examples/java/readTIN.java

1.11.2 Modeling Solids

The simplest types of solids can be represented as cuboids, such as a cube or a brick. A more complex solid is a frustum, which is a pyramid formed by cutting a larger pyramid (with three or more faces) by a plane parallel to the base of that pyramid. Frustums can only be used as query windows to spatial operators. Frustums and cubes are typically modeled as solid-type SDO_GEOMETRY objects. Figure 1-9 shows a frustum as a query window, with two spatial objects at different distances from the view point.

Figure 1-9 Frustum as Query Window for Spatial Objects

[image: Description of Figure 1-9 follows]

Point clouds, which are large collections of points, can sometimes be used to model the shape or structure of solid and surface geometries. Most applications that use point cloud data contain one of both of the following kinds of spatial queries: queries based on location, and queries based on both location and visibility (that is, visibility queries).

Most applications that use point cloud data seek to minimize data transfer by retrieving objects based on their distance from a view point. For example, in Figure 1-9, object B is farther from the view point than object A, and therefore the application might retrieve object A in great detail (high resolution) and object B in less detail (low resolution). In most scenarios, the number of objects increases significantly as the distance from the view point increases; and if farther objects are retrieved at lower resolutions than nearer objects, the number of bytes returned by the query and the rendering time for the objects decrease significantly.

The general process for working with a point cloud is as follows:

	
Initialize the point cloud, using the SDO_PC_PKG.INIT function.

	
Create the point cloud, using the SDO_PC_PKG.CREATE_PC procedure.

	
As needed for queries, clip the point cloud, using the SDO_PC_PKG.CLIP_PC function.

	
If necessary, use the SDO_PC_PKG.TO_GEOMETRY function (for example, to convert the result of a clip operation into a single SDO_GEOMETRY object).

The PL/SQL subprograms for working with point clouds are described in Chapter 28.

For a Java example of working with point clouds, see the following files:

$ORACLE_HOME/md/demo/PointCloud/examples/java/README.txt
$ORACLE_HOME/md/demo/PointCloud/examples/java/readPointCloud.java

1.11.3 Three-Dimensional Optimized Rectangles

Instead of specifying all the vertices for a three-dimensional rectangle (a polygon in the shape of rectangle in three-dimensional space), you can represent the rectangle by specifying just the two corners corresponding to the minimum ordinate values (min-corner) and the maximum ordinate values (max-corner) for the X, Y, and Z dimensions.

The orientation of a three-dimensional rectangle defined in this way is as follows:

	
If the rectangle is specified as <min-corner, max-corner>, the normal points in the positive direction of the perpendicular third dimension.

	
If the rectangle is specified as <max-corner, min-corner>, the normal points in the negative direction of the perpendicular third dimension.

For example, if the rectangle is in the XY plane and the order of the vertices is <min-corner, max-corner>, the normal is along the positive Z-axis; but if the order is <max-corner, min-corner>, the normal is along the negative Z-axis.

Using these orientation rules for rectangles, you can specify the order of the min-corner and max-corner vertices for a rectangle appropriately so that the following requirements are met:

	
The normal for each polygon in a solid always points outward from the solid when the rectangle is part of the solid.

	
An inner rectangle polygon is oriented in the reverse direction as its outer when the rectangle is part of a surface.

1.11.4 Validation Checks for Three-Dimensional Geometries

The SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT and SDO_GEOM.VALIDATE_LAYER_WITH_CONTEXT subprograms can validate two-dimensional and three-dimensional geometries. For a three-dimensional geometry, these subprograms perform any necessary checks on any two-dimensional geometries (see the Usage Notes for SDO_GEOM.VALIDATE_GEOMETRY_WITH_CONTEXT) within the overall three-dimensional geometry, but also several checks specific to the three-dimensional nature of the overall object.

For a simple solid (one outer surface and any number of inner surfaces), these subprograms perform the following checks:

	
Closedness: The solid must be closed.

	
Reachability: Each face of a solid must have a full-edge intersection with its neighboring faces, and all faces must be reachable from any face.

	
Inner-outer disjointedness: An inner surface must not intersect the outer surface at more than a point or a line; that is, there must be no overlapping areas with inner surfaces.

	
No surface patch: No additional surfaces can be defined on the surfaces that make up the solid.

	
Orientation: For all surfaces, the vertices must be aligned so that the normal vector (or surface normal, or "the normal") points to the outside of (away from) the outer solid. Thus, the volume of the outer solid must be greater than zero, and the volume of any inner solid must be less than zero.

For a composite solid (one or more solids connected to each other), these subprograms perform the following checks:

	
Connectedness: All solids of a composite solid must share at least one face.

	
Zero-volume intersections: Any intersections of the solids in a composite solid must have a volume of zero.

For a multisolid (one or more solids, each of which is a simple or composite solid), these subprograms perform the following check:

	
Disjointedness: Any two solids of a multisolid can share points or lines, but must not intersect in any other manner.

1.12 Geocoding

Geocoding is the process of converting tables of address data into standardized address, location, and possibly other data. The result of a geocoding operation includes the pair of longitude and latitude coordinates that correspond with the input address or location. For example, if the input address is 22 Monument Square, Concord, MA 01742, the longitude and latitude coordinates in the result of the geocoding operation may be (depending on the geocoding data provider) -71.34937 and 42.46101, respectively.

Given a geocoded address, you can perform proximity or location queries using a spatial engine, such as Oracle Spatial, or demographic analysis using tools and data from Oracle's business partners. In addition, you can use geocoded data with other spatial data such as block group, postal code, and county code for association with demographic information. Results of analyses or queries can be presented as maps, in addition to tabular formats, using third-party software integrated with Oracle Spatial.

For conceptual and usage information about the geocoding capabilities of Oracle Spatial, see Chapter 11. For reference information about the MDSYS.SDO_GCDR PL/SQL package, see Chapter 23.

1.13 Spatial Java Application Programming Interface

Oracle Spatial provides a Java application programming interface (API) that includes the following packages:

	
oracle.spatial.geometry provides support for the Spatial SQL SDO_GEOMETRY data type, which is documented in this guide.

	
oracle.spatial.georaster provides support for the core GeoRaster features, which are documented in Oracle Spatial GeoRaster Developer's Guide.

	
oracle.spatial.georaster.image provides support for generating Java images from a GeoRaster object or subset of a GeoRaster object, and for processing the images. These features are documented in Oracle Spatial GeoRaster Developer's Guide.

	
oracle.spatial.georaster.sql provides support for wrapping the GeoRaster PL/SQL API, which is documented in Oracle Spatial GeoRaster Developer's Guide.

	
oracle.spatial.network provides support for the Oracle Spatial network data model, which is documented in Oracle Spatial Topology and Network Data Models Developer's Guide.

	
oracle.spatial.network.lod provides support for the load-on-demand (LOD) approach of network analysis in the Oracle Spatial network data model, which is documented in Oracle Spatial Topology and Network Data Models Developer's Guide.

	
oracle.spatial.network.lod.config provides support for the configuration of load-on-demand (LOD) network analysis in the Oracle Spatial network data model, which is documented in Oracle Spatial Topology and Network Data Models Developer's Guide.

	
oracle.spatial.topo provides support for the Oracle Spatial topology data model, which is documented in Oracle Spa