
[image: Oracle Corporation]

Oracle® Multimedia

DICOM Developer's Guide

11g Release 1 (11.1)

B28416-03

May 2009

Oracle Multimedia DICOM enables Oracle Database to store, manage, and retrieve DICOM content such as single-frame and multiframe images, waveforms, slices of 3-D volumes, video segments, and structured reports in an integrated fashion with other enterprise information. Oracle Multimedia DICOM extends Oracle Database reliability, availability, and data management to media objects in medical applications.

Oracle Multimedia DICOM supports Digital Imaging and Communications in Medicine, the standard for medical images.

Oracle Multimedia DICOM Developer's Guide, 11g Release 1 (11.1)

B28416-03

Copyright © 2007, 2009, Oracle and/or its affiliates. All rights reserved.

Primary Author: Sue Pelski

Contributors: Rob Abbott, Melliyal Annamalai, Fengting Chen, Dongbai Guo, Dong Lin, Susan Mavris, David Noblet, Yingmei Sun, Manjari Yalavarthy, Jie Zhang

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

Part I Common Usage and Reference

1 Introduction to Oracle Multimedia DICOM

	1.1 Medical Imaging and Communication
	1.2 Oracle Multimedia and DICOM
	1.2.1 Oracle Multimedia DICOM Format Support
	1.2.2 ORDDicom Object Type
	1.2.3 DICOM Metadata Extraction
	1.2.4 DICOM Conformance Validation
	1.2.5 DICOM Image Processing
	1.2.6 Making Private DICOM Content Anonymous
	1.2.7 Creating ORDDicom Objects from Images and Metadata
	1.2.8 Run-Time, Updatable DICOM Data Model

2 Oracle Multimedia DICOM Concepts

	2.1 Oracle Multimedia DICOM Architecture
	2.2 Oracle Multimedia DICOM Storage
	2.3 Model-Driven Design
	2.4 DICOM Data Model Repository
	2.4.1 Configuration Documents in the Repository
	2.4.2 Administrator and User Sessions in the Repository

	2.5 Extraction of Metadata from DICOM Content
	2.6 Validation of DICOM Content
	2.7 Image Conversion and Creation of New DICOM Content
	2.8 Making DICOM Content Anonymous

3 Overview of DICOM Development

	3.1 Loading the Repository
	3.2 Accessing Information about Documents in the Repository
	3.3 Loading DICOM Content
	3.4 Extracting DICOM Metadata
	3.4.1 Extracting Metadata - Administrator Tasks
	3.4.2 Extracting Metadata - Developer Tasks

	3.5 Searching and Retrieving DICOM Attributes
	3.6 Writing and Editing DICOM Metadata
	3.7 Processing, Converting, and Compressing DICOM Image Data
	3.8 Creating DICOM Images from Secondary Capture Images
	3.9 Validating Conformance with DICOM Constraints
	3.9.1 Validating Conformance - Administrator Tasks
	3.9.2 Validating Conformance - Developer Tasks

	3.10 Protecting Private Patient Data
	3.10.1 Protecting Privacy - Administrator Tasks
	3.10.2 Protecting Privacy - Developer Tasks

4 DICOM Data Model Utility Reference

	DICOM Data Model Utility Functions and Procedures
	getDictionaryTag() Function
	getMappingXPath() Function
	setDataModel() Procedure

	DICOM Repository Public Information Views
	orddcm_conformance_vld_msgs
	orddcm_constraint_names
	orddcm_documents
	orddcm_document_types

Part II DICOM Development

5 ORDDicom Reference

	5.1 ORDDicom Object Example Media Table and Directory Definition
	5.1.1 Directory Definition
	5.1.2 MEDICAL_IMAGE_OBJ Table Definition

	ORDDicom Object Type
	ORDDicom Constructors
	ORDDicom() for BLOBs
	ORDDicom() for ORDImage
	ORDDicom() for other sources

	ORDDicom Methods
	export()
	extractMetadata()
	getAttributeByName()
	getAttributeByTag()
	getContent()
	getContentLength()
	getSeriesInstanceUID()
	getSourceInformation()
	getSourceLocation()
	getSourceName()
	getSourceType()
	getSOPClassUID()
	getSOPInstanceUID()
	getStudyInstanceUID()
	import()
	isAnonymous()
	isConformanceValid()
	isLocal()
	makeAnonymous()
	processCopy() to BLOBs
	processCopy() to ORDDicom
	processCopy() to ORDImage
	setProperties()
	writeMetadata()

6 DICOM Relational Interface Reference

	6.1 DICOM Relational Example Media Table and Directory Definition
	6.1.1 Directory Definition
	6.1.2 MEDICAL_IMAGE_REL Table Definition

	DICOM Relational Functions
	extractMetadata() for BFILEs
	extractMetadata() for BLOBs
	extractMetadata() for ORDImage
	isAnonymous() for BFILEs
	isAnonymous() for BLOBs
	isAnonymous() for ORDImage
	isConformanceValid() for BFILEs
	isConformanceValid() for BLOBs
	isConformanceValid() for ORDImage

	DICOM Relational Procedures
	createDICOMImage() for BFILEs
	createDICOMImage() for BLOBs
	createDICOMImage() for ORDImage
	export()
	importFrom()
	makeAnonymous() for BFILEs
	makeAnonymous() for BLOBs
	makeAnonymous() for ORDImage
	processCopy() for BFILEs
	processCopy() for BLOBs
	processCopy() for ORDImage
	processCopy() for BFILEs with SOP instance UID
	processCopy() for BLOBs with SOP instance UID
	processCopy() for ORDImage with SOP instance UID
	writeMetadata() for BFILEs
	writeMetadata() for BLOBs
	writeMetadata() for ORDImage

7 DICOM Application Development

	7.1 Setting Up Your Environment
	7.2 Creating a Table with an ORDDicom Column
	7.3 Loading DICOM Content Using the SQL*Loader Utility
	7.4 Developing DICOM Applications Using the PL/SQL API
	7.4.1 Selecting DICOM Attributes
	7.4.2 Creating Thumbnail Images and Changing Image Formats
	7.4.3 Making Anonymous Copies of ORDDicom Objects
	7.4.4 Checking the Conformance of ORDDicom Objects
	7.4.5 Handling Oracle Multimedia DICOM Exceptions in PL/SQL

	7.5 Developing DICOM Applications Using the DICOM Java API
	7.5.1 Setting Up Your Environment Variables
	7.5.2 Importing Oracle Java Classes into Your Application
	7.5.3 Handling Oracle Multimedia DICOM Exceptions in Java

Part III DICOM Administration

8 Overview of DICOM Administration

	8.1 Assigning Administrator Roles and Privileges
	8.2 Loading the Data Model Repository
	8.3 Browsing the Repository with Information Views
	8.4 Exporting Documents from the Repository
	8.5 Inserting Documents into the Repository
	8.5.1 Inserting Anonymity, Mapping, and Constraint Documents
	8.5.2 Inserting Dictionary Documents
	8.5.3 Inserting Preference and UID Definition Documents

	8.6 Updating Documents in the Repository
	8.6.1 Updating Anonymity, Mapping, and Constraint Documents
	8.6.2 Updating Dictionary Documents
	8.6.3 Updating Preference and UID Definition Documents

	8.7 Deleting Documents from the Repository
	8.7.1 Deleting Anonymity, Mapping, and Constraint Documents
	8.7.2 Deleting Dictionary Documents
	8.7.3 Deleting Preference and UID Definition Documents

9 ORD_DICOM_ADMIN Package Reference

	ORD_DICOM_ADMIN Data Model Repository Functions and Procedures
	getDocumentContent() Function
	deleteDocument() Procedure
	editDataModel() Procedure
	exportDocument() Procedure
	insertDocument() Procedure
	publishDataModel() Procedure
	rollbackDataModel() Procedure

	DICOM Repository Administrator Information Views
	orddcm_document_refs

10 Administering the DICOM Repository

	10.1 Sample Session: Inserting Two Documents
	10.2 Sample Session: Updating a Mapping Document
	10.3 Sample Session: Deleting a Constraint Document

11 Creating Configuration Documents

	11.1 Characteristics of Configuration Documents
	11.1.1 Characteristics of Anonymity Documents
	11.1.2 Characteristics of Constraint Documents
	11.1.3 Characteristics of Mapping Documents
	11.1.4 Characteristics of Standard Dictionary Documents
	11.1.5 Characteristics of Private Dictionary Documents
	11.1.6 Characteristics of Preference Documents
	11.1.7 Characteristics of UID Definition Documents

	11.2 Writing Configuration Documents
	11.2.1 Creating Anonymity Documents
	11.2.1.1 Making a Standard Attribute Anonymous - Example 1
	11.2.1.2 Making a Private Attribute Anonymous - Example 2
	11.2.1.3 Making All Private Attributes Anonymous - Example 3
	11.2.1.4 Making Undefined Standard Attributes Anonymous - Example 4

	11.2.2 Creating Constraint Documents
	11.2.2.1 Defining a Simple Constraint Rule - Example 1
	11.2.2.2 Defining Constraint Rules by Importing Other Constraint Rules - Example 2
	11.2.2.3 Defining and Referencing Constraint Macros - Example 3

	11.2.3 Creating Mapping Documents and Metadata XML Schemas
	11.2.3.1 Structure of a Mapping Document
	11.2.3.2 Structure of a Metadata XML Schema
	11.2.3.3 Mapping Document for Metadata with No Schema Constraints - Example 1
	11.2.3.4 Mapping Document for Metadata with Schema Constraints and a Mapped Section Only - Example 2
	11.2.3.5 Mapping Document for Metadata with Schema Constraints - Example 3

	11.2.4 Creating Standard Dictionary Documents
	11.2.4.1 Defining Standard Attributes - Examples 1 and 2
	11.2.4.2 Retiring a Standard Attribute - Example 3

	11.2.5 Creating Private Dictionary Documents
	11.2.5.1 Defining Private Attributes - Examples 1 Through 3
	11.2.5.2 Defining Attribute Definers - Example 4
	11.2.5.3 Retiring a Private Attribute - Example 5

	11.2.6 Creating Preference Documents
	11.2.6.1 Defining Preferences - Example 1

	11.2.7 Creating UID Definition Documents
	11.2.7.1 Defining a UID Definition - Example 1
	11.2.7.2 Retiring a UID Definition - Example 2

Part IV Appendixes

A Configuration Documents

B XML Schemas

	B.1 Anonymity Document Schema
	B.2 Constraint Document Schema
	B.3 Data Type Definition Schema
	B.4 Default DICOM Metadata Schema
	B.5 Mapping Document Schema
	B.6 Metadata Data Type Definition Schema
	B.7 Preference Document Schema
	B.8 Private Dictionary Document Schema
	B.9 Standard Dictionary Document Schema
	B.10 UID Definition Document Schema

C Encoding Rules

D DICOM Image Processing

	D.1 The frame Image Processing Operator
	D.2 Other Image Processing Operators
	D.3 DICOM Image Content and Compression Formats
	D.4 Multiframe Image Processing and Creation
	D.5 Order of Precedence with processCopy() Method Arguments

E Migrating from Release 10.2 DICOM Support

	E.1 Using the DICOM Relational Interface to Migrate Applications
	E.2 Copying Data and Rewriting Applications for DICOM
	E.3 Choosing a Migration Option

Glossary

Index

List of Examples

	2-1 Sample XML Mapping Document
	2-2 Sample XML Metadata Document
	2-3 Sample Constraint Document
	2-4 Sample Anonymity Document
	3-1 Constraint Rule for the Patient Module
	7-1 Create a Table for DICOM Content
	7-2 Loading DICOM Content
	7-3 Finish Loading and Initializing the DICOM Table
	7-4 Selected Metadata from the DICOM Content
	7-5 Generate and Process the New ORDImage Object
	7-6 Populate the Column and Generate an Anonymous ORDDicom Object
	7-7 Check DICOM Conformance
	10-1 Registering a Global XML Schema
	B-1 Anonymity Document Schema
	B-2 Constraint Document Schema
	B-3 Data Type Definition Schema
	B-4 Default DICOM Metadata Schema
	B-5 Mapping Document Schema
	B-6 Data Type Definition Schema
	B-7 Preference Document Schema
	B-8 Private Dictionary Document Schema
	B-9 Standard Dictionary Document Schema
	B-10 UID Definition Document Schema

List of Figures

	2-1 Oracle Multimedia DICOM Architecture
	2-2 ORDDicom Object
	2-3 Table in a Medical Image Database
	2-4 DICOM Model-Based Parsing Details
	2-5 DICOM Data Model Repository
	2-6 DICOM Metadata Extraction and XML Mapping
	2-7 Image Conversion Process

List of Tables

	2-1 Configuration Documents and Their XML Schemas
	3-1 Additional References for Users
	3-2 Public Information Views
	7-1 Sample Contents of an ORDDicom Object in a Database Table
	8-1 Additional References for Administrators
	8-2 Administrator and Public Information Views
	C-1 Encoding Rules for Transfer Syntax
	D-1 DICOM Content Photometric Interpretations
	D-2 DICOM Content Compression Formats

Preface

This guide describes how to use the Digital Imaging and Communications in Medicine (DICOM) feature of Oracle Multimedia, which ships with Oracle Database.

For information about Oracle Database and the features and options that are available to you, see Oracle Database New Features Guide.

In Oracle Database 11g Release 1 (11.1), the name Oracle interMedia has been changed to Oracle Multimedia. The feature remains the same, only the name has changed. References to Oracle interMedia will be replaced with Oracle Multimedia, however some references to Oracle interMedia or interMedia may still appear in graphical user interfaces, code examples, and related documents in the Documentation Library for Oracle Database 11g Release 1 (11.1).

Audience

This guide is for application developers and administrators who are interested in storing, retrieving, and manipulating DICOM format medical images and other objects in a database.

The sample code in this guide will not necessarily match the code shipped with the Oracle installation. If you want to run examples that are shipped with the Oracle installation on your system, use the files provided with the installation. Do not attempt to compile and run the code in this guide.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Deaf/Hard of Hearing Access to Oracle Support Services

To reach Oracle Support Services, use a telecommunications relay service (TRS) to call Oracle Support at 1.800.223.1711. An Oracle Support Services engineer will handle technical issues and provide customer support according to the Oracle service request process. Information about TRS is available at http://www.fcc.gov/cgb/consumerfacts/trs.html, and a list of phone numbers is available at http://www.fcc.gov/cgb/dro/trsphonebk.html.

Related Documents

	
Note:

For information added after the release of this guide, refer to the online README.txt file under your <ORACLE_HOME> directory. Depending on your operating system, this file may be in:
<ORACLE_HOME>/ord/im/admin/README.txt

See your operating system-specific installation guide for more information.

For more information about using Oracle Multimedia in a development environment, see the following documents in the Oracle Database software documentation set:

	
Oracle Multimedia Reference

	
Oracle Multimedia User's Guide

	
Oracle Call Interface Programmer's Guide

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database SecureFiles and Large Objects Developer's Guide

	
Oracle Database Concepts

	
Oracle Database PL/SQL Language Reference

	
Oracle Database SQL Language Reference

	
Oracle Database Java Developer's Guide

	
Oracle Database JDBC Developer's Guide and Reference

For more information about using XML, see Oracle XML DB Developer's Guide.

For more information about medical imaging standards, see the documentation provided by the National Electrical Manufacturers Association (NEMA).

For reference information on Oracle Multimedia Java classes in Javadoc format, see the following Oracle API documentation (also known as Javadoc) in the Oracle Database Online Documentation Library:

	
Oracle Multimedia DICOM Java API Reference

	
Oracle Multimedia Java API Reference

	
Oracle Multimedia Servlets and JSP Java API Reference

For more information about Java, including information about Java Advanced Imaging (JAI), see the API documentation provided by Sun Microsystems.

Many of the examples in this book are based on the database user PM and the tables MEDICAL_IMAGE_OBJ and MEDICAL_IMAGE_REL, which will be created in the Product Media (PM) sample schema. See Oracle Database Sample Schemas for information about how these schemas are installed and how you can use them yourself.

Conventions

In this guide, Oracle interMedia (now known as Oracle Multimedia) was sometimes referred to as interMedia.

In examples, an implied carriage return occurs at the end of each line, unless otherwise noted. You must press the Return key at the end of a line of input.

Also in examples, vertical ellipsis points indicate that information not directly related to the example has been omitted.

In statements or commands, horizontal ellipsis points indicate that parts of the statement or command not directly related to the example have been omitted.

Also in statements or commands, angle brackets enclose user-supplied names and brackets enclose optional clauses from which you can choose one or none.

Although Boolean is a proper noun, it is presented as boolean in this guide when its use in Java code requires case-sensitivity.

The following text conventions are also used in this guide:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Part I

Common Usage and Reference

This part includes introductory and conceptual information, as well as user and reference information that is common to administrators and developers of DICOM applications.

Part I contains the following chapters:

	
Chapter 1, "Introduction to Oracle Multimedia DICOM"

	
Chapter 2, "Oracle Multimedia DICOM Concepts"

	
Chapter 3, "Overview of DICOM Development"

	
Chapter 4, "DICOM Data Model Utility Reference"

1 Introduction to Oracle Multimedia DICOM

This chapter contains background information about medical imaging as well as a general introduction to the Oracle Multimedia DICOM (formerly Oracle interMedia DICOM) feature.

This chapter includes the following sections:

	
Medical Imaging and Communication

	
Oracle Multimedia and DICOM

1.1 Medical Imaging and Communication

Digital Imaging and Communications in Medicine (DICOM) is a medical imaging standard. This standard was initiated by the American College of Radiology (ACR) and the National Electrical Manufacturers Association (NEMA) to enhance the connectivity of radiological devices. Before the DICOM standard became widely adopted, each manufacturer had its own proprietary image format and communication protocol. This proliferation of formats and protocols made it almost impossible to produce third-party software to manage or study medical content. Nor was it possible to connect hardware devices from different manufacturers.

In 1985, the American College of Radiology and the National Electrical Manufacturers Association jointly published a medical imaging and communication standard, named the ACR-NEMA standard, to address this problem. In 1993, the ACR-NEMA standard was revised and renamed as DICOM (Version 3.0). Since then, the DICOM standard has become the dominant standard for radiology imaging and communication. All major manufacturers conform to this standard. Today, any software component can take DICOM content from any manufacturer and manage that content with a uniform interface. The term DICOM content refers to standalone DICOM Information Objects that are encoded according to the data structure and encoding definitions of PS 3.10-2007 of the DICOM standard (commonly referred to as DICOM Part 10 files). DICOM content can include different types of data, such as patient administration information, waveforms, images, slices of 3-D volumes, video segments, diagnostic reports, graphics, or text annotations. DICOM content contains a number of standard attributes. Optionally, DICOM content can also contain private attributes. (In the DICOM standard, the phrase DICOM objects refers to DICOM content.)

Like other standards, DICOM is mostly developed by volunteers. Working groups formed by domain experts propose additions and changes to the existing standards, and the changes are approved by a balloting process. Typically, NEMA publishes a new version of the standard each year. This standard is available worldwide from the NEMA Web site at

http://medical.nema.org/

The Integrating the Healthcare Enterprise (IHE) initiative also provides information about issues related to DICOM content and communication. This information is available from the IHE Web site at

http://www.ihe.net/

The DICOM standard has two major areas of focuses: the data model (or file format) and the communication protocol. The data model is defined using object-oriented programming principles. Content such as images and waveforms captured by medical devices are represented as information objects. Services such as get, find, and store operations can be defined on these objects. The services and the information objects are combined into a service object pair (SOP).

DICOM defines different types of transfer syntax (or binary encoding rules) for sending objects across the network or encoding objects in files. Transfer syntax specifies the mapping of a DICOM object hierarchy into a binary stream. The binary data can be stored on physical media such as tapes, CDs, or disks, and organized in accordance with the DICOM file hierarchy. The binary data can also be exchanged over a network with the DICOM communication protocol, which covers the upper layers (application, presentation, and session layer) of the Open Systems Interconnection (OSI) seven-layer model. The DICOM communication protocol is typically implemented on top of TCP/IP. Recently, the DICOM standard introduced Web access to DICOM objects (WADO). WADO deals primarily with HTTP access to DICOM objects. Messages exchanged between a DICOM server and a DICOM object involve operations such as radiology workflow, gray-scale image rendering, image printing, and storage and retrieval.

The Oracle Multimedia DICOM feature is concerned with the storage, management, and manipulation of DICOM format medical images and other objects encoded into files. Oracle Multimedia does not support the DICOM communication protocol.

1.2 Oracle Multimedia and DICOM

The Digital Imaging and Communications in Medicine (DICOM) feature was first introduced to Oracle Multimedia in Oracle Database 10g Release 2 (10.2). For that release, Oracle Multimedia DICOM enhanced the previous behavior of the Oracle Multimedia ORDImage object type by allowing Oracle Multimedia to recognize DICOM content and extract a subset of embedded DICOM attributes relating to patient, study, and series.

Oracle Database 11g Release 1 (11.1) continues to provide the same DICOM support in ORDImage. In addition, this release provides more complete DICOM support in a new ORDDicom object type.

1.2.1 Oracle Multimedia DICOM Format Support

With Oracle Database 11g Release 1 (11.1), Oracle Multimedia provides full support for DICOM, the format universally recognized as the standard for medical imaging. Applications can now use Oracle Multimedia DICOM Java and PL/SQL APIs to store, manage, and manipulate DICOM content.

Customers can build large archives of medical content that are managed and secured using Oracle Database. Complete DICOM metadata support enables customers to index and search the archived DICOM content for research purposes. Central storage of DICOM content makes telemedicine practical. Incorporating DICOM content in a database enables customers to build electronic healthcare records applications, while using application development tools from Oracle or others.

1.2.2 ORDDicom Object Type

A new Oracle Multimedia object type, ORDDicom, natively supports DICOM content produced by medical devices. This object type holds the DICOM content and extracted metadata, and implements the methods to manipulate the DICOM content. A new Java proxy class, OrdDicom, provides access to the ORDDicom database object through JDBC in a Java application. For applications that already store DICOM content directly in BLOBs or BFILES, a relational interface is provided as a PL/SQL package (ORD_DICOM).

By presenting DICOM content stored in a database as objects, Oracle enables both rapid application development and easy, secure management of large archives of DICOM content.

1.2.3 DICOM Metadata Extraction

Oracle Database 10g Release 2 (10.2) provided support for extracting the most important metadata as DICOM attribute tags into an XML document, and then indexing and searching these tags to find DICOM content that matched certain conditions. Oracle Database 11g Release 1 (11.1) extends that capability by supporting complete and extensible metadata extraction. Customers can extract metadata according to an Oracle-specified XML schema, or create and use their own schema definition to extract subsets of the standard DICOM attribute tags or private tags. The extracted metadata can then be stored in a table to facilitate DICOM content searching based on standard or private DICOM attributes.

This enhanced metadata extraction capability enables customers to build large archives of DICOM content. By customizing extracted XML metadata documents, customers will be able to create highly specialized indexes to DICOM content based on standard and private DICOM attribute tags.

1.2.4 DICOM Conformance Validation

Oracle Multimedia can verify that DICOM content adheres to a set of user-specified conformance rules.

DICOM content is generated by many devices. While most conform to the DICOM standard, some do not. It is important to be able to identify DICOM content that does not conform to the standard, or to the conformance rules for a particular organization or enterprise. Validating DICOM content for conformance can ensure the consistency of a DICOM archive. It enables a database to accept DICOM content from multiple sources and verify the integrity of the content.

1.2.5 DICOM Image Processing

Oracle Database 11g Release 1 (11.1) adds methods and functions to copy and convert images from DICOM into other image formats (for example: JPEG, GIF, PNG, and TIFF), and to copy and generate scaled versions and thumbnail images. In addition, this release provides a set of optional methods and functions to copy and process (for example: compress, scale, rotate, and crop) image content, optionally during the conversion process.

To view medical images stored in the DICOM format in Web applications, a copy of the images must be created in formats that are compatible with the browsers that are currently used in the industry. Oracle Database 11g Release 1 (11.1) enables customers to automatically copy, reformat, and deliver DICOM images to applications that require popular industry-standard image formats such as JPEG.

1.2.6 Making Private DICOM Content Anonymous

Oracle Database 11g Release 1 (11.1) adds a method that makes new ORDDicom objects with DICOM content and extracted XML attributes anonymous, in accordance with the rules specified by an anonymity document. The anonymity document defines both the set of attributes that should be made anonymous and the actions to take to make them anonymous.

This method can be used to generate new, anonymous ORDDicom objects, assuring that users of a DICOM medical archive see only the DICOM content and metadata that they are authorized to see. For example, clinicians need full access to DICOM content and metadata for each patient they are treating. They must be able to view all the DICOM metadata included in DICOM content. Researchers, on the other hand, need only partial access to the same DICOM metadata for patients participating in a study. Patient privacy regulations require that this class of users not be permitted to view attributes and metadata included in ORDDicom objects that contain personally identifying information.

By providing anonymity services in the database, Oracle Database allows appropriate access for different classes of users of a DICOM medical archive, regardless of the application used to access the ORDDicom objects in the archive.

1.2.7 Creating ORDDicom Objects from Images and Metadata

Oracle Database 11g Release 1 (11.1) includes the ability to generate new ORDDicom objects by combining digital images of various formats (for example: DICOM, JPEG, RAW, TIFF, and GIF) with an XML representation of the associated DICOM metadata. This operation results in well-formed and validated ORDDicom objects, which can be stored in a table in the database or delivered to a DICOM viewer. This feature is particularly useful for generating DICOM secondary capture images.

Storing and retrieving film-based medical images is expensive and prone to error. Clinical and research purposes require that some DICOM content be retained for extended periods of time. Replacing film-based medical images with DICOM images reduces storage and retrieval costs. Storing scanned images with their metadata in DICOM format can make non-DICOM images more useful. Using the same technique, new DICOM content can also be generated to correct metadata errors in the original DICOM content.

1.2.8 Run-Time, Updatable DICOM Data Model

A key feature of DICOM support in Oracle Database 11g Release 1 (11.1) is that its run-time behavior is determined by a set of user-configurable documents. This set of documents is collectively managed by the data model repository. Administrators can update this data model repository to configure Oracle Multimedia DICOM for a particular database instance.

Hospitals need to be up and running at all times. They cannot shut down the system for any of the following reasons:

	
To update to a new version of the DICOM standard

	
To incorporate private DICOM attribute tags for a new piece of equipment

	
To change their DICOM conformance rules

	
To modify the set of DICOM attribute tags they extract from each ORDDicom object or to change the XML encoding of the extracted attributes

	
To modify their DICOM anonymity rules

This design enables customers to upgrade Oracle Multimedia DICOM at any time, without interfering with a running DICOM archive.

2 Oracle Multimedia DICOM Concepts

This chapter describes Oracle Multimedia DICOM at a conceptual level.

This chapter includes the following sections:

	
Oracle Multimedia DICOM Architecture

	
Oracle Multimedia DICOM Storage

	
Model-Driven Design

	
DICOM Data Model Repository

	
Extraction of Metadata from DICOM Content

	
Validation of DICOM Content

	
Image Conversion and Creation of New DICOM Content

	
Making DICOM Content Anonymous

See Part II, DICOM Development, for specific information about developing DICOM applications.

See Part III, DICOM Administration, for more information about managing the DICOM data model repository.

2.1 Oracle Multimedia DICOM Architecture

Oracle Multimedia DICOM enables Oracle Database to store, manage, and retrieve DICOM content such as single frame and multiframe images, waveforms, slices of 3-D volumes, video segments, and structured reports.

The Oracle Multimedia DICOM architecture defines the framework (see Figure 2-1) through which DICOM content is supported in the database. This DICOM content can then be securely shared across multiple applications written with popular languages and tools, easily managed and administered by relational database management and administration technologies, and offered on a scalable database that supports thousands of users.

Figure 2-1 shows the Oracle Multimedia DICOM architecture from a two-tier perspective: database tier -- Oracle Database; and client tier -- thick clients.

In the database tier, through the use of Oracle Multimedia DICOM, Oracle Database holds DICOM content in tables. As illustrated, DICOM content stored in a column of a table can include DICOM data such as X-rays, ultrasound images, and magnetic resonance images. In the table, a separate column stores a JPEG thumbnail image of the DICOM image. Another column stores the XML metadata documents associated with each image. Within a Java Virtual Machine (JVM), there is a server-side DICOM data model repository as well as a DICOM parser, a DICOM XML encoder, a DICOM conformance validator, and an image processor. The DICOM parser extracts metadata from DICOM content. The DICOM XML encoder maps the extracted DICOM attributes into an XML document, in accordance with the mapping rules defined in the data model repository. The DICOM conformance validator checks the syntactical and semantic consistency of DICOM content with respect to constraint rules specified in the data model repository. The image processor includes Java Advanced Imaging (JAI), and provides image processing for operations such as producing thumbnail-size images and converting between DICOM and other supported image formats. Using Oracle Multimedia DICOM methods, import and export operations between the database and external file storage systems are possible. The double-sided arrow connecting Oracle Database with External File Storage in Figure 2-1 shows this type of data communication.Through JDBC calls, thick clients can access the content stored in an Oracle database and perform procedures such as image processing outside of the database. Other means of interacting with Oracle Database, such as the OCI call interface, can also be used to access DICOM content stored in an Oracle database. These types of data access can also be used to integrate Oracle Database with third-party media processors.

For more information about JAI, see the Sun Microsystems Java Web site at

http://java.sun.com/

In the client tier, the ability to access ORDDicom objects in the database is supported through Oracle Multimedia DICOM Java API. Oracle Multimedia DICOM Java API supplies direct access to ORDDicom objects from Java applications.

See Oracle Multimedia DICOM Java API Reference for information about using Oracle Multimedia DICOM with Java.

Figure 2-1 Oracle Multimedia DICOM Architecture

[image: Description of Figure 2-1 follows]

For a view of the complete architecture for Oracle Multimedia, see Figure 1-1 in Oracle Multimedia User's Guide.

2.2 Oracle Multimedia DICOM Storage

When using the object interface, you must create an ORDDicom object in a table before you can perform Oracle Multimedia DICOM operations on DICOM content. Oracle Multimedia defines the ORDDicom object type, which is similar to a Java or C++ class, to contain DICOM content.

Figure 2-2 shows an ORDDicom object at a very high level. Items in Figure 2-2 are numbered as a means of identifying the items in this description. An instance of an ORDDicom object type (Item 1) consists of methods and attributes. Methods are functions or procedures that can be performed on the ORDDicom object, such as makeAnonymous() and setProperties(). The attributes include the following:

	
Extracted DICOM attributes represented as an XML metadata document (Item 2)

	
The DICOM content (Item 3), which is the original DICOM content in unmodified form stored within the database, under transaction control as a BLOB (recommended), or stored in an operating system-specific file in a local file system with pointers stored in the database

	
Certain frequently accessed general attributes (Item 4), such as SOP Class UID, which are extracted and stored for ease of access and indexing

	
Miscellaneous attributes (Item 5) that are meant for Oracle internal use

Figure 2-2 ORDDicom Object

[image: Description of Figure 2-2 follows]

Similar to the NUMBER or BLOB data types, you can use the ORDDicom data type as the data type of a table column.

Figure 2-3 shows the structure of a simple table in a medical database that contains an ORDDicom object. Items in Figure 2-3 are numbered as a means of identifying the items in this description. Item 1 represents the medical image database. Item 2 represents a simple medical image table managed by the database. This table contains two columns: ID (Item 3) and Image (Item 4). Item 3 represents the identifier for a specified DICOM image in the database. Item 4 represents the DICOM content in the database, which can be stored as an ORDDicom object (Item 5). Thus, the column type for the Image column is ORDDicom.

Figure 2-3 Table in a Medical Image Database

[image: Description of Figure 2-3 follows]

2.3 Model-Driven Design

Oracle Multimedia DICOM is designed with a model-driven software architecture. Thus, the run-time behavior of Oracle Multimedia DICOM is controlled by a domain-specific data model. The DICOM data model is a collection of XML documents that are managed in the data model repository. DICOM administrators can manage and modify the DICOM data model. The XML documents that make up the data model can be inserted and deleted at run time when there are multiple user sessions accessing the data model. Changes to the data model are protected with database transaction semantics, and each user session can refresh to the latest data model when necessary or desired.

Figure 2-4 illustrates the principles of model-driven software architecture using the DICOM metadata extraction feature. The items above the dotted line show the portions of the data model that are related to the metadata extraction feature. The items below the dotted line show the software run-time components of the extract metadata feature that access the data model. A line that connects an item of the data model and an item of the run-time component shows the run-time access to the corresponding item that is managed by the data model repository.

At design time, DICOM administrators can change the DICOM data model. Publishing these changes affects the run-time behavior of the extract metadata feature, and other DICOM operations.

Figure 2-4 shows three components of the data model. Items in Figure 2-4 are numbered as a means of identifying the items in this description. Item 1 represents the DICOM data dictionary, which provides the definitions for DICOM standard and private attributes. Item 2 represents a mapping document, which describes how an attribute should be mapped into an XML document. Item 3 represents a sample DICOM XML metadata schema, which defines the structure and data type of an XML document that is used to store DICOM attributes. The lines connecting elements of Item 2 and Item 3 show the mapping between a DICOM attribute stored in DICOM content and an XML element stored in an XML document that conforms to the XML schema.

The process of converting DICOM content (Item 4) into an XML metadata document (Item 8) is shown in the bottom half of Figure 2-4. Solid lines connecting items show the flow of data between run-time components. Two of the attributes of the sample DICOM content are shown in Item 5. The first attribute contains the attribute tag (0010,0010), the data type PN, the length in bytes 12, and the value Joe Smith. This attribute is encoded in the DICOM content, although its data type is not necessarily encoded in the DICOM content. The parser (Item 6) can find an attribute definition by looking it up in the DICOM data dictionary (Item 1) using the attribute tag (0010,0010). The attribute definition determines the interpretation of the DICOM content. The result is passed to an XML encoder (Item 7). Similarly, the XML encoder looks up the data model (Item 2) to find the XML encoding guidelines for the attribute, and produces an XML document accordingly. Finally, an XML schema validator (Item 9) can validate the generated document against the XML metadata schema (Item 3).

In Figure 2-4, everything that controls the run-time behavior is part of the data model, which can be configured by a DICOM administrator.

Figure 2-4 DICOM Model-Based Parsing Details

[image: Description of Figure 2-4 follows]

2.4 DICOM Data Model Repository

A key feature of Oracle Multimedia DICOM is that its run-time behavior is determined by a set of user-configurable documents (a data model). This set of documents is managed collectively in the data model repository. Administrators can update the data model repository to configure Oracle Multimedia DICOM for a particular database instance. With this design, customers can perform tasks such as upgrading Oracle Multimedia DICOM to a new version of the DICOM standard or adding new conformance validation rules at any time, without interfering with a running DICOM archive. Each database has its own set of configuration documents. Each organization or enterprise can customize the installed configuration documents according to its needs.

2.4.1 Configuration Documents in the Repository

The set of configuration documents that comprises the data model repository includes anonymity documents, constraint documents, mapping documents, preference documents, private and standard dictionary documents, and UID definition documents. Each configuration document comes with an XML schema definition. Other documents can be added to the repository as needed.

Oracle ships a set of default configuration documents with each software release. All schemas corresponding to the default documents are registered during installation. All schemas are fixed and must not be modified for a database installation.

Table 2-1 lists the document type, the default XML document name, and the XML schema definition name for each type of document in the data model repository.

Table 2-1 Configuration Documents and Their XML Schemas

	Document Type	Default XML Document	XML Schema Definition
	
Anonymity

	
ordcman.xml

	
ordcman.xsd

	
Constraint

	
ordcmct.xml

ordcmcmd.xml

ordcmcmc.xml

	
ordcmct.xsd

	
Mapping

	
ordcmmp.xml

	
ordcmmp.xsd

	
Preference

	
ordcmpf.xml

	
ordcmpf.xsd

	
Private Dictionary

	
ordcmpv.xml

	
ordcmpv.xsd

	
Standard Dictionary

	
ordcmsd.xml

	
ordcmsd.xsd

	
UID Definition

	
ordcmui.xml

	
ordcmui.xsd

An anonymity document is an XML document that specifies the set of attributes to be made anonymous, and the actions to be taken to make those attributes anonymous. The default anonymity document, ordcman.xml, lists a subset of the attributes defined in the Basic Application Level Confidentiality Profile in Part 15 of the DICOM standard.

A constraint document is an XML document that defines a collection of rules that check the conformance of the DICOM content with the DICOM standard. The constraint document specifies attribute relationships and semantic constraints that cannot be expressed by the DICOM metadata schema. The default constraint documents, ordcmct.xml, ordcmcmd.xml, and ordcmcmc.xml, show a sample set of validation rules defined in accordance with a subset of Part 3 of the DICOM standard.

A mapping document is an XML document that defines how each attribute should map to a particular element in an XML metadata document tree. This document determines the structure of the extracted XML representation of the DICOM metadata. The default mapping document, ordcmmp.xml, defines the mapping from DICOM content to XML representation as a flat list with all XML encoded DICOM attributes included under the root element <DICOM_OBJECT>.

A preference document is an XML document that defines run-time parameters, such as how to log warning messages when processing DICOM content. The default preference document is ordcmpf.xml.

A private dictionary document is an XML document that enables users to define manufacturer-specific or enterprise-specific attributes of DICOM content. The default private dictionary document, ordcmpv.xml, defines Oracle private attributes.

A standard dictionary document is an XML document that lists the standard attributes defined in Part 6 of the DICOM standard. The default standard dictionary document is ordcmsd.xml.

A UID definition document is an XML document that lists the unique identifiers (UIDs) for each DICOM data type. The UID is based on an ISO object identifier (OID) that uniquely identifies the DICOM content worldwide. It is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization. The default UID definition document, ordcmui.xml, lists UIDs defined by Part 6 of the DICOM standard.

See Appendix A and Appendix B, respectively, for more information about the installed configuration documents and their related XML schema definitions.

2.4.2 Administrator and User Sessions in the Repository

Administrators can manage configuration documents using the data model repository interface.

The data model repository must be loaded before any Oracle Multimedia DICOM methods, procedures, or functions are invoked. Loading the repository is accomplished through a DICOM package interface, using the setDataModel() procedure.

Figure 2-5 uses a Unified Modeling Language (UML) sequence diagram to show the state of the DICOM data model repository in its installed state as well as in various states after being updated. Also shown are two administrator sessions and two user sessions working with one data model repository. The numbered items in Figure 2-5 represent various components of, or operations on, the data model repository. The numbered items in the following list correspond to the numbered items in Figure 2-5, respectively.

Data Model States:

In Item 10, all the boxes in this column represent the data model repository in the following states:

	
State 0: the installed version.

	
State 1: the version that includes updates from the Admin Session 1 editing session XG1.

	
State 2: the version that includes updates from the Admin Session 1 editing session XG1 and the Admin Session 2 editing session XG2.

	
State 3: the version that includes updates from the Admin Session 1 editing sessions XG1 and XG3 as well as updates from the Admin Session 2 editing session XG2.

Administrator Sessions:

	
Item 1- All boxes in this column represent tasks performed by Admin Session 1.

	
Item 6 - All boxes in this column represent tasks performed by Admin Session 2.

	
Item 2 - Admin Session 1 calls the editDataModel() procedure to begin editing session XG1. This locks the installed version of the data model (State 0) and prevents other administrators from editing the data model. During this time, users can view only the installed version of the data model (State 0). Admin Session 1 edits the data model.

	
Item 3 - Admin Session 1 completes editing session XG1 and calls the publishDataModel() procedure to publish the changes to the data model. The data model is updated to State 1 and the lock is released. Other administrators can now lock the data model for editing. And, other users can now view the updated data model by calling the setDataModel() procedure.

	
Item 7 - Admin Session 2 calls the editDataModel() procedure to begin editing session XG2. This locks the data model (State 1) and prevents other administrators from editing the data model. During this time, users can view State 1 of the data model. Admin Session 2 edits the data model.

	
Item 8 - Admin Session 2 completes editing session XG2 and calls the publishDataModel() procedure to publish the changes to the data model. The data model is updated to State 2 and the lock is released.

	
Item 4 - Admin Session 1 calls the editDataModel() procedure to begin editing session XG3. This locks the data model (State 2) and prevents other administrators from editing the data model. During this time, users can view State 2 of the data model. Admin Session 1 edits the data model.

	
Item 9 - Admin Session 2 calls the editDataModel() procedure to begin editing session XG4. Because Admin Session 1 has already locked the data model, Admin Session 2 is unable to obtain the lock, and the call to the editDataModel() procedure fails.

	
Item 5 - Admin Session 1 completes editing session XG3 and calls the publishDataModel() procedure to publish the changes to the data model. The data model is updated to State 3 and the lock is released.

User Sessions:

	
Item 11 - All boxes in this column represent tasks performed by User Session 1.

	
Item 15 - All boxes in this column represent tasks performed by User Session 2.

	
Item 12 - User Session 1 calls the setDataModel() procedure to load the data model. The data model is still at the installed version (State 0) because Admin Session 1 has not yet published the changes for editing session XG1.

	
Item 16 - User Session 2 calls the setDataModel() procedure to load the data model. The data model is at State 1, which reflects the published changes from editing session XG1.

	
Item 13 - User Session 1 calls the setDataModel() procedure again. The data model is now at State 1, which reflects the published changes from editing session XG1.

	
Item 17 - User Session 2 calls the setDataModel() procedure again. The data model is still at State 1 because Admin Session 2 has not yet published the changes for editing session XG2.

	
Item 14 - User Session 1 calls the setDataModel() procedure once again. The data model is now at State 2, which reflects the published changes from editing sessions XG1 and XG2.

	
Item 18 - User Session 2 calls the setDataModel() procedure once again. The data model is now at State 3, which reflects the published changes from editing sessions XG1, XG2, and XG3.

Figure 2-5 DICOM Data Model Repository

[image: Description of Figure 2-5 follows]

As shown in Figure 2-5, the setDataModel() procedure is invoked frequently during user sessions. All users must call this procedure at the beginning of each database session to load the repository from the database into memory structures. This procedure can also be called whenever the application needs to see new data model changes. This procedure is available to users through the DICOM data model utility in the DICOM package interface.

See Part III, DICOM Administration, for more information about the data model repository administration interface. See Chapter 4 for more information about the DICOM data model utility in the DICOM package interface.

2.5 Extraction of Metadata from DICOM Content

Extracting metadata from DICOM content involves several operations using an XML metadata schema and a mapping document.

A DICOM metadata document is an XML document that contains the metadata extracted from DICOM content. Optionally, each metadata document can be constrained by an XML schema. Each XML metadata schema has a matching XML mapping document.

The mapping of DICOM content to the DICOM metadata document is defined by a mapping document. The mapping document defines how attributes from the DICOM content should be mapped into an XML document that conforms to the schema. Like other configuration documents, mapping documents are managed by the DICOM data model repository (see Section 2.4).

Oracle provides a default XML metadata schema (ordcmmd.xsd) and a matching XML mapping document (ordcmmp.xml). Application designers who create their own metadata schemas must ensure that their schema definition and mapping documents are compatible. They must also ensure that their data type definitions are compatible with the Oracle data type definitions (ordcmmddt.xsd).

Figure 2-6 shows the components involved in the metadata extraction and XML mapping process. Each numbered item inFigure 2-6 represents a component in this process.

Figure 2-6 DICOM Metadata Extraction and XML Mapping

[image: Description of Figure 2-6 follows]

The input is DICOM content (Item 1) in binary format, which can be stored in an ORDDicom object, or directly in a BLOB or a BFILE. The output is an XML metadata document (Items 7 and 8). The layout of the metadata document is specified by the mapping document (Item 3). Metadata extraction uses a mapping option parameter that specifies which group of attributes to include in the output metadata document. The solid lines connecting items inFigure 2-6 show the flow of data. Item 3 can also be interpreted as a processing engine that performs metadata extraction according to the specifications of the mapping document.

The DICOM content (Item 1) encodes a DICOM data element (Item 2) in binary code. At run time, the parser reads the binary stream of DICOM content, and builds a representation of the DICOM data element (Item 2) in memory. To map the in-memory representation of each DICOM attribute into an XML element, the XML encoder looks up the definition of the attribute in the mapping document (Item 3) that is stored in the data model repository.

For example, the first entry of this mapping document maps the DICOM attribute Patient's Name (0010,0010) to the XML path /DICOM/Patient/Name, where Name is a subelement of the Patient element, and Patient is the child element of the document root element DICOM.

Attributes that are part of a DICOM data element and whose XML paths are explicitly defined in a mapping document are called mapped attributes. Attributes that are part of a DICOM data element but whose XML paths are not explicitly defined in a mapping document are called unmapped attributes.

Based on the mapping document, each DICOM metadata document can contain two sections: a mapped section and an optional, unmapped section. In the mapped section (Item 7), attributes are organized according to a predefined hierarchy. Attributes in the mapped section can be addressed with a fixed XPath query. In the unmapped section, attributes are sorted by their attribute tags and listed by their value representations. Attributes in the unmapped section can be addressed by an XPath query of the element tag in the following form:

/DICOM/Other/VR_TYPE(tag=='HHHHHHHH')

In this query, HHHHHHHH is the hexadecimal attribute tag, and /DICOM/Other is the specified path for the unmapped section. See Section 11.2.3 for information about how to create a your own mapping document.

The mapping option of the extract metadata function specifies which group of attributes to include in the output XML metadata document. The three mapping options are mapped, standard, or all.

If the extract option is mapped (Item 4), only mapped attributes are included in the XML metadata document. This option is useful when the application using the metadata document has a fixed set of required attributes. The resulting metadata document (Item 7) has a well-defined tree structure.

If the extract option is standard (Item 5), all mapped attributes and all unmapped attributes that are defined by the DICOM standard are extracted into the XML metadata document. Private attributes whose mappings are not defined are excluded from the output. This option is useful when an application such as a full-text search can use all the standard attributes that are included in the DICOM content.

If the extract option is all (Item 6), all attributes that are included in the DICOM content are extracted and encoded into the XML metadata document. This option provides lossless mapping of DICOM attributes from binary to XML.

	
Note:

Attributes whose binary length exceeds the user-specified limit are not included in the XML metadata document. See Section 11.2.6 for more information about specifying these limits within a preference document.

If the mapping option is all or standard, unmapped attributes of the DICOM data element are stored under the XML element Other (Item 8). The resulting XML document can be stored in a database table, indexed, and queried using keywords or XPath query statements. To define alternative mapping structures and element names for mapped and unmapped sections, see Section 11.2.3.

Example 2-1 shows a sample XML mapping document (sample_map.xml).

Example 2-1 Sample XML Mapping Document

<?xml version="1.0" encoding="UTF-8"?>
<XML_MAPPING_DOCUMENT xmlns="http://xmlns.oracle.com/ord/dicom/mapping_1_0"
xmlns:dt="http://xmlns.oracle.com/ord/dicom/datatype_1_0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://xmlns.oracle.com/ord/dicom/mapping_1_0"
http://xmlns.oracle.com/ord/dicom/mapping_1_0">
 <DOCUMENT_HEADER>
 <dt:DOCUMENT_CHANGE_LOG>
 <dt:DOCUMENT_MODIFIER>Dongbai Guo</dt:DOCUMENT_MODIFIER>
 <dt:DOCUMENT_MODIFICATION_DATE>2006-01-13</dt:DOCUMENT_MODIFICATION_DATE>
 <dt:DOCUMENT_VERSION>0.0</dt:DOCUMENT_VERSION>
 <dt:MODIFICATION_COMMENT>Sample mapping document for metadata schema definition
1</dt:MODIFICATION_COMMENT>
 </dt:DOCUMENT_CHANGE_LOG>
 </DOCUMENT_HEADER>

 <NAMESPACE>http://xmlns.oracle.com/ord/dicom/metatest1</NAMESPACE>
 <ROOT_ELEM_TAG>DICOM_OBJECT</ROOT_ELEM_TAG>
 <UNMAPPED_ELEM>OTHER_ATTRIBUTES</UNMAPPED_ELEM>
 <MAPPED_ELEM>KEY_ATTRIBUTES</MAPPED_ELEM>

 <MAPPED_PATH occurs="true" notEmpty="true" writeTag="true" writeDefiner="true" writeName="true" writeRawValue="true">
 <ATTRIBUTE_TAG>00020002</ATTRIBUTE_TAG>
 <PATH>MEDIA_STORAGE_SOP_CLASS_UID</PATH>
 </MAPPED_PATH>

 <MAPPED_PATH occurs="true" notEmpty="true">
 <ATTRIBUTE_TAG>00020003</ATTRIBUTE_TAG>
 <PATH>MEDIA_STORAGE_SOP_INSTANCE_UID</PATH>
 </MAPPED_PATH>

 <MAPPED_PATH writeTag="true" writeDefiner="true" writeName="true" writeRawValue="true">
 <ATTRIBUTE_TAG>00100010</ATTRIBUTE_TAG>
 <PATH>PATIENT_NAME</PATH>
 </MAPPED_PATH>

</XML_MAPPING_DOCUMENT>

In this example, the DICOM standard attribute SOP_CLASS_UID that has the DICOM attribute tag (0002,0002) maps to the XML metadata element MEDIA_STORAGE_SOP_CLASS_UID at the XML tree location /DICOM_OBJECT/KEY_ATTRIBUTES/. Similarly, the DICOM standard attribute SOP_INSTANCE_UID (0002,0003) maps to the XML metadata element MEDIA_STORAGE_SOP_INSTANCE_UID. The DICOM standard attribute study date (0008,0020) has not been listed by the XML mapping document. Thus, if it exists in the DICOM content, it appears in the unmapped section of the DICOM metadata document under the XML tree location (/DICOM_OBJECT/OTHER_ATTRIBUTES).

Example 2-2 shows a sample XML metadata document that can be generated by extracting mapped metadata using the XML mapping document shown in Example 2-1.

Example 2-2 Sample XML Metadata Document

<?xml version="1.0" encoding="DEC-MCS"?>
<DICOM_OBJECT xmlns="http://xmlns.oracle.com/ord/dicom/metatest1"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/ord/dicom/metatest1
http://xmlns.oracle.com/ord/dicom/metatest1">

 <KEY_ATTRIBUTES>

 <MEDIA_STORAGE_SOP_CLASS_UID definer="DICOM" tag="00020002"
 name="Media Storage SOP Class UID">1.2.840.10008.5.1.4.1.1.1</MEDIA_STORAGE_SOP_CLASS_UID>

 <MEDIA_STORAGE_SOP_INSTANCE_UID tag="00020003" definer="DICOM"
 name="media storage SOP instance UID">1.3.6.1.4.1.5962.1.1.10.1.2.20040119072730.12322
 </MEDIA_STORAGE_SOP_INSTANCE_UID>

 <PATIENT_NAME definer="DICOM" tag="00100010" name="Patient's Name">

 <NAME type="unibyte">

 <FAMILY>CompressedSamples</FAMILY>

 <GIVEN>RG2</GIVEN>

 </NAME>

 <VALUE>CompressedSamples^RG2</VALUE>

 </PATIENT_NAME>

 </KEY_ATTRIBUTES>

</DICOM_OBJECT>

2.6 Validation of DICOM Content

Validating DICOM content involves verifying that the data conforms to a specified set of constraint rules.

There are several advantages of implementing conformance validation in the database instead of in the middle tier or the application tier. First, validating DICOM content can ensure the integrity and consistency of archived DICOM content by enabling a database to accept DICOM content from all sources and check the integrity of that content. With this feature, the database can act as the centralized data store, connecting a variety of DICOM content sources while enforcing enterprise data constraint rules. Large organizations or government branches can establish their own sets of constraint rules that are more or less restrictive than the rules in the DICOM standard, and then enforce conformance with those constraint rules. In new areas, such as life sciences, where the DICOM standard is still being developed, constraint rules can serve as transitional tools to enforce a conventional representation of the DICOM content, thereby simplifying future transition to the DICOM standard. Finally, database systemwide conformance can greatly simplify enterprise (application) integration and data mining.

DICOM constraint documents define one or more constraint rules to check the conformance of DICOM content with respect to the DICOM standard or the guidelines for a particular organization or enterprise. Example 2-3 shows one of the installed constraint documents (ordcmct.xml).

Example 2-3 Sample Constraint Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright (c) 2007, Oracle. All rights reserved.
 NAME
 ordcmct.xml - Oracle Multimedia DICOM default constraint document
-->

<CONFORMANCE_CONSTRAINT_DEFINITION xmlns="http://xmlns.oracle.com/ord/dicom/constraint_1_0"
 xmlns:dt="http://xmlns.oracle.com/ord/dicom/datatype_1_0"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/dicom/constraint_1_0
 http://xmlns.oracle.com/ord/dicom/constraint_1_0">
 <DOCUMENT_HEADER>
 <dt:DOCUMENT_CHANGE_LOG>
 <dt:DOCUMENT_MODIFIER>Dongbai Guo</dt:DOCUMENT_MODIFIER>
 <dt:DOCUMENT_MODIFICATION_DATE>2007-04-09</dt:DOCUMENT_MODIFICATION_DATE>
 <dt:DOCUMENT_VERSION>1.0</dt:DOCUMENT_VERSION>
 <dt:MODIFICATION_COMMENT>Oracle default constraint rules</dt:MODIFICATION_COMMENT>
 </dt:DOCUMENT_CHANGE_LOG>
 </DOCUMENT_HEADER>
 <EXTERNAL_RULE_INCLUDE name="ImagePixelMacro">
 A subset of Image Pixel Macro defined in DICOM standard,
 PS 3.3-2007, Table C.7-11b
 </EXTERNAL_RULE_INCLUDE>
 <EXTERNAL_RULE_INCLUDE name="GeneralStudyModule">
 A subset of General Study Module defined in DICOM standard,
 PS 3.3-2007, Table C.7-3
 </EXTERNAL_RULE_INCLUDE>
 <EXTERNAL_RULE_INCLUDE name="GeneralSeriesModule">
 A subset of General Series Module defined in DICOM standard,
 PS 3.3-2007, Table C.7-5a
 </EXTERNAL_RULE_INCLUDE>
 <EXTERNAL_RULE_INCLUDE name="SOPCommonModule">
 A subset of SOP Common Module defined in DICOM standard,
 PS 3.3-2007, Table C.12-1
 </EXTERNAL_RULE_INCLUDE>

 <GLOBAL_RULE name="OracleOrdDicomImage">
 <PREDICATE>
 <GLOBAL_RULE_REF>ImagePixelMacro</GLOBAL_RULE_REF>
 </PREDICATE>
 <ACTION action="warning" when="false">missing mandatory image attribute</ACTION>
 </GLOBAL_RULE>

 <GLOBAL_RULE name="OracleOrdObject">
 <PREDICATE>
 <GLOBAL_RULE_REF>SOPCommonModule</GLOBAL_RULE_REF>
 </PREDICATE>
 <PREDICATE>
 <GLOBAL_RULE_REF>GeneralSeriesModule</GLOBAL_RULE_REF>
 </PREDICATE>
 <PREDICATE>
 <GLOBAL_RULE_REF>GeneralStudyModule</GLOBAL_RULE_REF>
 </PREDICATE>
 </GLOBAL_RULE>
</CONFORMANCE_CONSTRAINT_DEFINITION>

After a constraint document has been inserted into the repository, users can validate DICOM content against the global constraint rules defined in the constraint document. (Global constraint rules are defined with the <GLOBAL_RULE> tag.) For example, users can check whether the DICOM content conforms to the installed global constraint rule named OracleOrdDicomImage.

2.7 Image Conversion and Creation of New DICOM Content

ORDDicom objects can be processed and converted to other image formats. In addition, new ORDDicom objects can be created from existing ORDDicom objects. Figure 2-7 shows these operations.

Figure 2-7 Image Conversion Process

[image: Description of Figure 2-7 follows]

The following text describes Figure 2-7 and discusses each of the components. The numbered items in the following text correspond to the numbered items in Figure 2-7. The lines connecting the items in Figure 2-7 show the direction for the flow of data.

The image converter (Item 2) can take DICOM content, specifically a DICOM image (Item 1), and processing commands (Item 3), and convert the DICOM content into an image (Item 4) of another format that is supported by Oracle Multimedia (for example: JPEG or GIF formats) for display in a Web browser or an application.

This process can also be reversed. Using an image such as an ORDImage object storing a JPEG file, TIFF file, or other supported image file (Item 4) and a DICOM metadata document (Item 5), the image converter can merge the two items and produce DICOM content that can then be used to create a new ORDDicom object (Item 1). Similarly, the image converter (Item 2) can copy and convert the DICOM content (Item 4) and an XML metadata document (Item 5) into a new ORDDicom object (Item 1). Common uses of this type of process can include lossless compression on the converted image to save disk space, translation into a different type of transfer syntax to enable cross-platform image exchanging, or metadata updating.

When processing, the embedded image content can contain one or more frames. Depending on the processing command for frames, the image converter can read the pixel content of one or all the frames in an image. After the embedded DICOM image is written to an ORDImage object or a BLOB in a format such as GIF or JPEG, you can use existing Oracle Multimedia features to display the converted image on the Web with Oracle Multimedia JSP tag libraries or other tools.

2.8 Making DICOM Content Anonymous

Government regulations, such as the Health Insurance Portability and Accountability Act (HIPAA) in the United States, mandate the protection of private data about patients. Sharing DICOM content with external resources often requires making patient private data anonymous. Making DICOM content anonymous in the database avoids exposing patient private data outside of the database, simplifying the protection of that information.

For more information about the HIPAA regulations in the U. S., see the HIPAA Web site at

http://www.hhs.gov/ocr/privacy/index.html

The process of making DICOM content anonymous can be customized using the data model repository. Users can create different anonymity documents in XML. Each anonymity document lists a set of attributes to be made anonymous, as well as the type of actions to be taken to make the attributes anonymous. Supported actions are remove and replace. The remove action is the default action that deletes an attribute or sets it to zero length in the DICOM content as well as the ORDDicom object attributes. The replace action replaces an attribute with a string, which can either be empty or contain a user-defined string in the DICOM content as well as the ORDDicom object attributes. Example 2-4 shows a sample anonymity document.

Example 2-4 Sample Anonymity Document

<?xml version="1.0" encoding="UTF-8"?>
<!-- Copyright (c) 2006, 2007, Oracle. All rights reserved. -->
<ANONYMITY_RULE_DOCUMENT xmlns="http://xmlns.oracle.com/ord/dicom/anonymity_1_0"
 xmlns:dt="http://xmlns.oracle.com/ord/dicom/datatype_1_0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/ord/dicom/anonymity_1_0
 http://xmlns.oracle.com/ord/dicom/anonymity_1_0">
 <DOCUMENT_HEADER>
 <dt:DOCUMENT_CHANGE_LOG>
 <dt:DOCUMENT_MODIFIER>Dongbai Guo</dt:DOCUMENT_MODIFIER>
 <dt:DOCUMENT_MODIFICATION_DATE>2006-02-06</dt:DOCUMENT_MODIFICATION_DATE>
 <dt:DOCUMENT_VERSION>0.1</dt:DOCUMENT_VERSION>
 <dt:MODIFICATION_COMMENT>Sample anonymity document</dt:MODIFICATION_COMMENT>
 <dt:BASE_DOCUMENT>Test Document</dt:BASE_DOCUMENT>
 <dt:BASE_DOCUMENT_RELEASE_DATE>2004-01-01</dt:BASE_DOCUMENT_RELEASE_DATE>
 <dt:BASE_DOCUMENT_DESCRIPTION>Same as ordcman.xml from label 070321</dt:BASE_DOCUMENT_DESCRIPTION>
 </dt:DOCUMENT_CHANGE_LOG>
 </DOCUMENT_HEADER>
 <PRIVATE_ATTRIBUTES action="remove"></PRIVATE_ATTRIBUTES>
 <UNDEFINED_STANDARD_ATTRIBUTES action="remove"></UNDEFINED_STANDARD_ATTRIBUTES>
 <UNDEFINED_PRIVATE_ATTRIBUTES action="remove"></UNDEFINED_PRIVATE_ATTRIBUTES>
 <INDIVIDUAL_ATTRIBUTE>
 <ATTRIBUTE_TAG>00100010</ATTRIBUTE_TAG>
 <DESCRIPTION>Patient Name</DESCRIPTION>
 <ANONYMITY_ACTION action="replace">Smith^Joe</ANONYMITY_ACTION>
 </INDIVIDUAL_ATTRIBUTE>
 <INDIVIDUAL_ATTRIBUTE>
 <ATTRIBUTE_TAG>00100020</ATTRIBUTE_TAG>
 <DESCRIPTION>Patient ID</DESCRIPTION>
 <ANONYMITY_ACTION action="replace">madeAnonymous</ANONYMITY_ACTION>
 </INDIVIDUAL_ATTRIBUTE>
 <INDIVIDUAL_ATTRIBUTE>
 <ATTRIBUTE_TAG>00100030</ATTRIBUTE_TAG>
 <DESCRIPTION>Patient Birth Date</DESCRIPTION>
 <ANONYMITY_ACTION action="remove"></ANONYMITY_ACTION>
 </INDIVIDUAL_ATTRIBUTE>
</ANONYMITY_RULE_DOCUMENT>

3 Overview of DICOM Development

This chapter briefly describes developer and administrator tasks that are related to developing applications using Oracle Multimedia DICOM.

Because Oracle Multimedia DICOM is fully functional after installing Oracle Multimedia, developers can begin writing applications immediately using the following application programming interfaces (APIs):

	
ORDDicom object API

	
DICOM data model utility API

	
DICOM relational API

	
DICOM Java API

Administrators can assist developers by inserting or deleting configuration documents from the data model repository. To accomplish these tasks, administrators can use the ORD_DICOM_ADMIN data model repository API.

Oracle Multimedia DICOM provides capabilities for a number of operations related to DICOM content. For example, administrators can review the Oracle-defined configuration documents in the DICOM data model repository before determining whether to add user-defined documents for your environment. Using information views or invoking data model utility functions, administrators can obtain attributes and other detailed information about these configuration documents. Users can also work directly with the DICOM content, metadata attributes, and other objects to perform various operations.

This chapter includes the following sections:

	
Loading the Repository

	
Accessing Information about Documents in the Repository

	
Loading DICOM Content

	
Extracting DICOM Metadata

	
Searching and Retrieving DICOM Attributes

	
Writing and Editing DICOM Metadata

	
Processing, Converting, and Compressing DICOM Image Data

	
Creating DICOM Images from Secondary Capture Images

	
Validating Conformance with DICOM Constraints

	
Protecting Private Patient Data

Table 3-1 provides cross-references to other locations within the Oracle Multimedia documentation set where you can access additional information about topics mentioned in this chapter.

Table 3-1 Additional References for Users

	Topic	More Information
	
Reference information for public information views

	
Chapter 4

	
Reference information for administrator information views

	
Chapter 9

	
Reference information for the DICOM data model utility API

	
Chapter 4

	
Reference information for the ORDDicom object API

	
Chapter 5

	
Reference information for the DICOM relational API

	
Chapter 6

	
Reference information for the ORD_DICOM_ADMIN data model repository API

	
Chapter 9

	
Reference information for the DICOM Java API

	
Oracle Multimedia DICOM Java API Reference

	
Examples of operations on DICOM content

	
Chapter 7

	
Examples of administrative operations in the data model repository

	
Chapter 10

	
Information about writing configuration documents

	
Chapter 11

	
Listings of the DICOM XML schemas

	
Appendix B

After installation, each database includes a set of default configuration documents in the Oracle Multimedia DICOM data model repository. See Table 2-1 for a list of these documents.

After installation, administrators can add configuration documents that are specific to a particular organization for the following types of documents:

	
Anonymity documents - XML documents that can be used to specify the set of attributes to be made anonymous as well as the actions to be taken to make those attributes anonymous.

	
Constraint documents - XML documents that define a collection of rules, including the relationships and semantic constraints of attributes not expressed by the DICOM metadata schema, to validate the conformance of DICOM content with the DICOM standard.

	
Mapping documents - XML documents that define how each attribute maps to a particular element in an XML metadata document, and determines the structure of DICOM metadata documents.

	
Preference documents - XML documents that define run-time parameters, such as turning the logging of warning messages on or off or specifying categories of error messages.

	
Private dictionary documents - XML documents that can be used to extend the standard dictionary document definitions.

	
Standard dictionary documents - XML documents that can be used to reflect updates to the DICOM standard.

	
UID definition documents - XML documents that list the unique identifiers (UIDs) defined by the DICOM standard.

See Appendix A and Chapter 11 for more information about these documents.

See Part III, DICOM Administration for more information about managing configuration documents in the DICOM repository.

3.1 Loading the Repository

At the start of every database session, users and administrators must load the data model repository from the database into memory structures. Users load the data model by calling the setDataModel() procedure. Administrators load the data model by calling either the setDataModel() procedure or the editDataModel() procedure.

After loading the repository into memory, users and administrators can call the setDataModel() procedure whenever the application needs to see new data model changes.

	
Note:

Users and administrators must call the setDataModel() procedure before calling any other DICOM methods, functions, or procedures.

Using the DICOM data model utility in the ORD_DICOM package, call the setDataModel() procedure as follows:

exec ord_dicom.setdatamodel;

See setDataModel() Procedure in Chapter 4 (and editDataModel() Procedure in Chapter 9) for reference information.

3.2 Accessing Information about Documents in the Repository

A number of information views are available to users of the DICOM repository. These information views provide details about the documents in the repository, including names of documents, types of documents, names of constraints, and constraint validation messages.

Table 3-2 lists the public information views that are available to users (and administrators).

Table 3-2 Public Information Views

	Name	Access Category
	
orddcm_conformance_vld_msgs

	
Public (messages for user's schema only)

	
orddcm_constraint_names

	
Public

	
orddcm_document_types

	
Public

	
orddcm_documents

	
Public

Users (and administrators) commonly use the orddcm_documents and orddcm_document_types views to view details for the documents in the repository. The orddcm_documents view lists details of the documents stored in the repository. The orddcm_document_types view identifies the supported Oracle Multimedia DICOM document types with a list of codes.

Two other public information views are also available that provide information about constraints. The orddcm_constraint_names view lists the names of the constraints installed in the repository. The orddcm_conformance_vld_msgs view lists the constraint messages that are generated for a set of constraints during a validation operation. This view lists only the constraint messages for the current user.

See Chapter 4 for details about public information views.

For administrators only, Oracle Multimedia DICOM provides the orddcm_document_refs information view. This view lists the documents in the repository that are referenced by other documents in the repository. See orddcm_document_refs in Chapter 9 for details about this administrator view.

3.3 Loading DICOM Content

You can use the SQL*Loader utility to load DICOM content into existing tables in Oracle Database.

To load DICOM content, first you must create a table with the appropriate columns and initialize those columns. Then, call the SQL*Loader utility and load the DICOM content from your data files into the table columns as SecureFile LOBs (see Oracle Multimedia User's Guide). Before performing any operations on the DICOM content, you must call the setDataModel() procedure to load the DICOM data model.

After the DICOM content is loaded, you can perform other operations, such as extracting DICOM metadata, searching and retrieving DICOM attributes, writing and editing DICOM metadata, creating thumbnail images, validating the conformance of your DICOM content, or making private DICOM content anonymous.

See Section 7.3 for examples that show how to use the SQL*Loader utility to load DICOM content and then make specific metadata attributes in the DICOM content anonymous.

See Oracle Database Utilities for more information about using the SQL*Loader utility to load objects and LOBs into Oracle Database.

3.4 Extracting DICOM Metadata

Oracle Multimedia DICOM provides support for extracting metadata from DICOM content. By searching the extracted metadata, applications can search the DICOM content.

To extract all the DICOM attributes into an XML document that conforms to the default metadata XML schema, first call the setProperties() method to store the extracted metadata XML document into the metadata attribute of the ORDDicom object. The default metadata XML schema defines a complete and generalized data model for storing DICOM attributes. A customized metadata schema and corresponding mapping document that is customized for your specific application may yield better performance for indexing and searching than the generalized, default metadata schema. Your custom schemas and mapping documents can be used to define frequently searched DICOM attributes within a hierarchical structure that is optimized for searching.

To extract the DICOM attributes into an application-specific XML document in XMLType, call the extractMetadata() method and specify the application-specific mapping document. The resulting application-specific metadata XML document can be stored in a column of the same table where the ORDDicom object is stored. This metadata column can be bound to the application-specific XML schema.

3.4.1 Extracting Metadata - Administrator Tasks

As an administrator, perform the following tasks to initiate the process of extracting DICOM metadata:

	
Design the XML schema for the extracted metadata. Generally, the most frequently searched DICOM attributes are included in the mapped section of the XML schema.

See Appendix B for more information about XML schemas.

	
Register the schema with Oracle XML DB as a global XML schema. (See Example 10-1 for a sample of this task.)

See Oracle XML DB Developer's Guide for more information about registering XML schemas.

	
Create the mapping document for the metadata XML schema.

See Section 11.2.3 for detailed information about creating mapping documents.

	
Load the mapping document into the data model repository.

See Section 8.5 for information about inserting mapping documents into the repository.

3.4.2 Extracting Metadata - Developer Tasks

As a developer, perform the following tasks to complete the process of extracting DICOM metadata:

	
Query the orddcm_documents view to ensure that the mapping document is loaded and available.

select * from orddcm_documents;

See orddcm_documents in Chapter 4 for reference information about this view.

	
Call the extractMetadata() method to extract metadata into an XML metadata document by specifying the name of the mapping document and the appropriate parameters.

See extractMetadata() in Chapter 5 for reference information about this method.

	
Store the returned XML metadata document in a column in the database that is bound to the application-specific XML schema for later searching.

See Oracle XML DB Developer's Guide for more information about this task.

3.5 Searching and Retrieving DICOM Attributes

Oracle Multimedia DICOM provides support for searching and retrieving DICOM attributes.

To extract the SOP instance UID, SOP class UID, study instance UID, and series instance UID attributes into ORDDicom object attributes, first call the setProperties() method to populate the attributes of the ORDDicom object. These DICOM attributes can be easily retrieved from within the ORDDicom object. To make searching faster, these attributes can also be indexed by creating indexes on the corresponding object attributes. (See setProperties() in Chapter 5 for reference information.)

To search and retrieve attributes within the metadata XML document, call either of these SQL functions: extractValue() or extract() by specifying the XPath expression for the attributes. (See Oracle Database SQL Language Reference for reference information.) To make searching faster, the attributes in the metadata XML document can also be indexed. (See Oracle XML DB Developer's Guide for more information about indexing XMLType data.)

To retrieve a single DICOM attribute, you can call either the getAttributeByTag() or getAttributeByName() method. (See getAttributeByTag() and getAttributeByName() in Chapter 5 for reference information.) This process is not recommended for large tables, or for frequent retrievals of attributes. However, if you do use this process, Oracle recommends building function-based indexes on these methods to make searching faster.

	
Note:

Before you can retrieve DICOM attributes, you must call the setProperties() method to populate the attributes of the ORDDicom object.

3.6 Writing and Editing DICOM Metadata

Oracle Multimedia DICOM provides support for creating new ORDDicom objects from existing ORDDicom objects with metadata embedded within the DICOM content that has been modified or overwritten. The writeMetadata() method creates a new copy of the ORDDicom object from the original ORDDicom object and the modified metadata. The original ORDDicom object is preserved.

Perform the following tasks to write and edit DICOM metadata:

	
Extract the DICOM metadata from DICOM content by calling the extractMetadata() method, using the Oracle default mapping document.

See extractMetadata() in Chapter 5 for reference information about this method.

	
Add or modify DICOM attributes in the extracted metadata XML document.

See Chapter 8 for information about working with DICOM metadata in XML documents.

	
Create an empty ORDDicom object using an empty ORDDicom constructor as the placeholder for the new DICOM content.

See ORDDicom Constructors in Chapter 5 for reference information about constructors.

	
Call the writeMetadata() method to write the modified metadata XML document and the DICOM content from the original ORDDicom object into the newly created ORDDicom object. The metadata XML document is used to overwrite the metadata in the DICOM content and object attributes of the new ORDDicom object.

See writeMetadata() in Chapter 5 for reference information about this method.

3.7 Processing, Converting, and Compressing DICOM Image Data

Oracle Multimedia DICOM provides the processCopy() method to copy and process the image in the DICOM content and save it as DICOM format or another image format, in accordance with the specified commands. The processCopy() method creates a new image and preserves the original DICOM image.

The following list summarizes the processing, converting, and compressing operations supported by Oracle Multimedia DICOM, and includes examples of the command parameter of the processCopy() method that corresponds to each operation.

	
Create a JPEG thumbnail image. For example:

'fileFormat=jpeg, maxScale=100 100'

	
Create a JPEG image of the same size as the original DICOM image. For example:

'fileFormat=jpeg'

	
Compress the image content within the DICOM content. For example:

'compressionFormat=jpeg'

	
Retrieve a specified frame from DICOM multiframe content. For example:

'frame=10'

	
Cut a specified region of a DICOM image. For example:

'cut=20 20 100 100'

See Chapter 5 for reference information about the processCopy() methods and supported commands.

3.8 Creating DICOM Images from Secondary Capture Images

Oracle Multimedia DICOM provides the relational procedure createDICOMImage() to create DICOM format images from images in formats such as JPEG or TIFF in addition to DICOM metadata in data type XMLType.

Perform the following tasks to create DICOM format images from secondary images and DICOM metadata:

	
Load the image into a BLOB, or define the image as a BFILE type.

	
Create an XMLType object from the DICOM metadata of the corresponding image.

	
Create an empty BLOB object as the placeholder for the new DICOM image.

	
Create the DICOM format image using the createDICOMImage() procedure.

See Chapter 6 for reference information about the createDICOMImage() procedure.

3.9 Validating Conformance with DICOM Constraints

Oracle Multimedia DICOM provides support to validate the conformance of your DICOM content, according to DICOM specified constraints, with the following method: isConformanceValid(). Use this method to check if the embedded DICOM content conforms to a specific set of constraints.

DICOM content can come from many sources. And, this content may or may not be created in accordance with the DICOM standard. Before you decide to store DICOM content in your repository, you may want to check for specific attributes, such as a patient's sex. As defined in the Patient Module Attributes of the DICOM standard, this attribute can have the following values: M (male), F (female), or O (other). You can define constraint rules to check for correct values for specific attributes, such as a patient's sex. Or, you can define a custom set of constraint rules and then ensure that all DICOM content in your repository conforms to those rules.

Conformance constraints are a collection of rules to use for validating the conformance of DICOM content with the DICOM standard and other organization-wide guidelines. These rules are specified in an XML document called a constraint document, which is stored in the repository. The default constraint document shipped with Oracle Multimedia DICOM defines rules that enforce conformance with parts of the DICOM standard.

After installation, you can define constraint documents to include user-defined constraint rules that are specific to your organization. To see a list of constraint names, query the information view orddcm_constraint_names.

During conformance validation, if a constraint rule was defined to generate messages for a specified predicate condition, these messages are generated to indicate the predicate conditions. To see a list of these constraint messages, query the information view orddcm_conformance_vld_msgs.

See Section 3.2 for more information about public information views.

Regardless of the interface you use, validating the conformance of DICOM content requires a combination of administrator and developer tasks. The following subsections describe these tasks. Administrator tasks must always be performed first.

3.9.1 Validating Conformance - Administrator Tasks

As an administrator, perform the following tasks to initiate the process of validating the conformance of DICOM content:

	
Create a constraint document for your organization. This is the document where you define constraint rules to generate messages for specified predicate conditions.

Example 3-1 shows the constraint rule for the Patient Module of the DICOM standard, which is defined in the Oracle-installed constraint document ordcmcmd.xml.

Example 3-1 Constraint Rule for the Patient Module

 <GLOBAL_RULE name="PatientModule">
 <DESCRIPTION>
 A subset of Patient Module defined in DICOM standard,
 PS 3.3-2007, Table C.7-1
 </DESCRIPTION>
 <PREDICATE>
 <BOOLEAN_FUNC operator="notEmpty">
 <ATTRIBUTE_TAG>00100040</ATTRIBUTE_TAG>
 </BOOLEAN_FUNC>
 </PREDICATE>
 <PREDICATE>
 <DESCRIPTION>Patient's Sex</DESCRIPTION>
 <RELATIONAL operator="in">
 <ATTRIBUTE_TAG>00100040</ATTRIBUTE_TAG>
 <STRING_VALUE>M</STRING_VALUE>
 <STRING_VALUE>F</STRING_VALUE>
 <STRING_VALUE>O</STRING_VALUE>
 </RELATIONAL>
 </PREDICATE>
 <PREDICATE>
 <DESCRIPTION>Referenced patient sequence constraint</DESCRIPTION>
 <LOGICAL operator="derive">
 <PREDICATE>
 <BOOLEAN_FUNC operator="occurs">
 <ATTRIBUTE_TAG>00081120</ATTRIBUTE_TAG>
 </BOOLEAN_FUNC>
 </PREDICATE>
 <PREDICATE>
 <LOGICAL operator="and">
 <PREDICATE>
 <BOOLEAN_FUNC operator="notEmpty">
 <ATTRIBUTE_TAG>00081120.00081150</ATTRIBUTE_TAG>
 </BOOLEAN_FUNC>
 </PREDICATE>
 <PREDICATE>
 <BOOLEAN_FUNC operator="notEmpty">
 <ATTRIBUTE_TAG>00081120.00081155</ATTRIBUTE_TAG>
 </BOOLEAN_FUNC>
 </PREDICATE>
 </LOGICAL>
 </PREDICATE>
 </LOGICAL>
 </PREDICATE>
 <ACTION action="log" when="false">Validation error: missing mandatory attribute for patient module</ACTION>
 <ACTION action="warning" when="false">Warning: validation failure</ACTION>
 </GLOBAL_RULE>

See Section 11.2.2 for information about how to create constraint documents.

	
Load the constraint document into the data model repository.

See Section 8.5.1 for information about inserting constraint documents into the repository.

3.9.2 Validating Conformance - Developer Tasks

As a developer, perform the following tasks to complete the process of validating the conformance of DICOM content against your constraint rules:

	
Query the orddcm_constraint_names view to see the list of available constraint names for your organization as follows:

select * from orddcm_constraint_names;

See orddcm_constraint_names in Chapter 4 for reference information about this view.

	
Call the isConformanceValid() method to check the conformance of your DICOM content as follows:

 declare
 cursor dicom_src_cur is
 select dicom_src from medical_image_obj order by id;
 begin
 for rec in dicom_src_cur loop
 dbms_output.put_line('isConformanceValid(PatientModule): ' ││
 rec.dicom_src.isConformanceValid('PatientModule'));
 end loop;
 end;
 /

See isConformanceValid() in Chapter 5 for reference information about this method.

	
Query the orddcm_conformance_vld_msgs view to see the list of constraint messages generated during constraint validation for your data as follows:

select * from orddcm_conformance_vld_msgs;

See orddcm_conformance_vld_msgs in Chapter 4 for reference information about this view.

If your DICOM content does not conform to the constraint rules defined for your organization, you have the option of writing another ORDDicom object with corrected DICOM metadata. See Section 3.6 for information about writing DICOM metadata.

3.10 Protecting Private Patient Data

Oracle Multimedia DICOM provides support to protect the confidentiality of private patient data with the following methods:

	
makeAnonymous() - Use this method to remove or replace private patient data. This method creates a new ORDDicom object, and preserves the original ORDDicom object.

	
isAnonymous() - Use this method to check if the private patient data for a specified ORDDicom object has been removed or replaced, according to a specified anonymity document. In general, call this method before calling the makeAnonymous() method.

Both of these methods use anonymity documents, XML documents that are stored in the repository, to determine the patient identifying information that must be made anonymous. In addition to specifying the set of attributes to be made anonymous, anonymity documents specify the actions to be taken to make those attributes anonymous.

After installation, you can use the default anonymity document shipped with Oracle Multimedia DICOM. Or, you can add customized anonymity documents to overwrite or remove patient identifying information, as necessary.

3.10.1 Protecting Privacy - Administrator Tasks

As an administrator, perform the following tasks to initiate the process of making private patient data anonymous:

	
Create an anonymity document that defines the DICOM attributes to be removed or replaced.

See Section 11.2.1 for information about how to create anonymity documents.

	
Load the anonymity document into the data model repository.

See Section 8.5.1 for information about inserting anonymity documents into the repository.

3.10.2 Protecting Privacy - Developer Tasks

As a developer, perform the following tasks to complete the process of making private patient data anonymous:

	
Query the orddcm_documents view to see the list of anonymity documents that have been loaded into the data model repository as follows:

select * from orddcm_documents;

See orddcm_documents in Chapter 4 for reference information about this view.

	
Create an empty ORDDicom object using the empty ORDDicom constructor if you plan to call the makeAnonymous() method. The empty ORDDicom object will be used as a placeholder for the new ORDDicom object. Create the empty object as follows:

 insert into medical_image_obj (id, dicom_src)
 values (3, ORDDicom());

	
Call the isAnonymous() method to check if the original ORDDicom object is already anonymous, in accordance with the specified anonymity document.

 select t.dicom_src.isAnonymous('ordcman.xml') from medical_image_obj t;

See isAnonymous() in Chapter 5 for reference information about this method.

	
Call the makeAnonymous() method to copy and make the original ORDDicom object anonymous, and then write the new DICOM content into the empty ORDDicom object. Call this method as follows:

 declare
 obj_src orddicom;
 obj_dest orddicom;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
 begin
 select dicom_src, dicom_dest into obj_src, obj_dest
 from medical_image_obj where id = 1 for update;
 obj_src.makeAnonymous(dest_sop_instance_uid, obj_dest, 'ordcman.xml');

 update medical_image_obj set dicom_dest = obj_dest where id = 1;
 end;
/

See makeAnonymous() in Chapter 5 for reference information about this method.

4 DICOM Data Model Utility Reference

Oracle Multimedia describes the DICOM data model utility in the ORD_DICOM package. This package is defined in the ordcpksp.sql file. After installation, this file is available in the Oracle home directory at:

<ORACLE_HOME>/ord/im/admin (on Linux and UNIX)

<ORACLE_HOME>\ord\im\admin (on Windows)

Oracle Multimedia contains the following information about the DICOM data model utility:

	
DICOM Data Model Utility Functions and Procedures

	
DICOM Repository Public Information Views

This chapter describes the functions, procedures, and information views in the DICOM data model utility interface, which operate on the DICOM data model repository. For information about other DICOM application programming interfaces (APIs), see the following chapters:

	
Chapter 5 - ORDDicom object API

	
Chapter 6 - DICOM relational API

	
Chapter 9 - ORD_DICOM_ADMIN data model repository API

See Oracle Multimedia DICOM Java API Reference for information about the DICOM Java API.

DICOM Data Model Utility Functions and Procedures

The ORD_DICOM package defines the following DICOM data model utility functions and procedures:

	
getDictionaryTag() Function

	
getMappingXPath() Function

	
setDataModel() Procedure

getDictionaryTag() Function

Format

getDictionaryTag(attributeName IN VARCHAR2, definerName IN VARCHAR2 DEFAULT 'DICOM') RETURN VARCHAR2

Description

Looks in the standard or private data dictionaries for the specified attribute name and definer name and returns the value of the attribute name as a hexadecimal DICOM attribute tag. This function can be used to get the hexadecimal tag value that is needed in the getMappingXpath() function.

Parameters

	attributeName
	
The name of specified attribute in the standard or private data dictionary (for example: Patient's Name). The maximum length of this parameter is 128 characters.

	definerName
	
The definer name of the specified attribute in the standard or private data dictionary. The default name is 'DICOM', which refers to the DICOM standard. The maximum length of this parameter is 64 characters.

Pragmas

None.

Exceptions

None.

Usage Notes

Before calling this function, call the setDataModel() procedure.

	
Note:

Call the setDataModel() procedure at the following times:
	
At the beginning of each database session

	
Whenever the application needs to see new data model changes

Examples

Get the specified DICOM attribute name and return its value as a hexadecimal tag:

exec ord_dicom.setDataModel();
select ord_dicom.getDictionaryTag('Patient''s Name', 'DICOM') as Patient_Name
from dual;

PATIENT_NAME
--
00100010

select ord_dicom.getDictionaryTag('Audio Type', 'DICOM') as Audio_Type from dual;

AUDIO_TYPE
--
50XX2000

getMappingXPath() Function

Format

getMappingXPath (tag IN VARCHAR2, docName IN VARCHAR2 DEFAULT 'ordcmmp.xml', definerName IN VARCHAR2 DEFAULT 'DICOM') RETURN VARCHAR2

Description

Returns the absolute XPath expression associated with the specified DICOM attribute tag and definer name from the specified mapping document. The XPath expression that is returned can be used to obtain values from an extracted XML metadata document.

Parameters

	tag
	
A DICOM attribute tag from the specified mapping document, represented as an 8-character hexadecimal string (for example: 00100010).

	docName
	
The name of a mapping document. The default name is 'ordcmmp.xml'.

	definerName
	
The definer name of the DICOM attribute tag in the specified mapping document. The default name is 'DICOM', which refers to the DICOM standard.

Pragmas

None.

Exceptions

None.

Usage Notes

Before calling this function, call the setDataModel() procedure.

	
Note:

Call the setDataModel() procedure at the following times:
	
At the beginning of each database session

	
Whenever the application needs to see new data model changes

To see a list of all the mapping documents in the data model repository, query the public information view orddcm_documents.

Examples

Example 1:

Return the XPATH expression for DICOM attributes other than SEQUENCE type attributes:

exec ord_dicom.setDataModel();
select ord_dicom.getMappingXPath('00100010') as map_xpath from dual;

MAP_XPATH
--
/DICOM_OBJECT/PERSON_NAME[@tag="00100010" and @definer="DICOM"]/VALUE/text()

1 row selected.

--extract attribute from a document
select extract(t.metadata, ord_dicom.getMappingXPath('00100010'),
'xmlns="http://xmlns.oracle.com/ord/dicom/metadata_1_0"') as
Patient_Name from metadata_tab t where id=1;

PATIENT_NAME
--
anonymous

1 row selected.

Example 2:

Return the XPATH expression for DICOM SEQUENCE type attributes only:

exec ord_dicom.setDataModel();
select ord_dicom.getMappingXPath('00082218') as map_xpath from dual;

MAP_XPATH
--
/DICOM_OBJECT/SEQUENCE[@tag="00082218" and @definer="DICOM"]

1 row selected.

------------- extract attribute from a document
set long 1000
select extract(t.metadata, ord_dicom.getMappingXPath('00082218'),
'xmlns="http://xmlns.oracle.com/ord/dicom/metadata_1_0"') as
Anatomic_Region from metadata_tab t where id=2;

ANATOMIC_REGION
--
<SEQUENCE xmlns="http://xmlns.oracle.com/ord/dicom/metadata_1_0" tag="00082218"
definer="DICOM" name="Anatomic Region Sequence" offset="590" length="52"><ITEM><
SHORT_STRING tag="00080100" definer="DICOM" name="Code Value" offset="606" lengt
h="8">T-11170</SHORT_STRING><SHORT_STRING tag="00080102" definer="DICOM" name="C
oding Scheme Designator" offset="622" length="4">SNM3</SHORT_STRING><LONG_STRING
 tag="00080104" definer="DICOM" name="Code Meaning" offset="634" length="8">Maxi
lla</LONG_STRING></ITEM></SEQUENCE>

1 row selected.

where:

	
metadata_tab: a table containing metadata that has been extracted from the DICOM content.

setDataModel() Procedure

Format

setDataModel(modelName IN VARCHAR2 DEFAULT 'DEFAULT')

Description

Loads the data model repository from the database into the memory structures. This procedure must be called at the beginning of each database session. It can be called again whenever the application needs to see new data model changes.

Parameters

	modelName
	
The model name of the data model repository. The default name is 'DEFAULT', which is the only value supported in Oracle Database 11g Release 1 (11.1).

Pragmas

None.

Exceptions

None.

Usage Notes

You may want to call the setDataModel() procedure only once during a database session. Subsequent calls to this procedure may result in changed behavior if the data model has changed since you made the original call to the setDataModel() procedure.

To use the same DICOM data model throughout a session, Oracle recommends following the call to the setDataModel() procedure with a COMMIT statement. Because data that is loaded by the setDataModel() procedure is subject to transaction semantics, the database session's copy of the data model will be deleted during a rollback operation if the call to the setDataModel() procedure is made within the transaction that is being rolled back.

If you roll back the transaction in which you call the setDataModel() procedure, you may get an error message indicating that the data model is not loaded when you use the DICOM feature in the same session following the rollback operation. Call the setDataModel() procedure to reload the data model.

Examples

Load the repository from the database into memory:

 exec ord_dicom.setdatamodel;
 select * from orddcm_documents;

DICOM Repository Public Information Views

This section describes the Oracle Multimedia DICOM repository public information views, which are the following:

	
orddcm_conformance_vld_msgs

	
orddcm_constraint_names

	
orddcm_documents

	
orddcm_document_types

orddcm_conformance_vld_msgs

Format

	Column Name	Data Type	Description
	SOP_INSTANCE_UID	VARCHAR2(128 CHAR)	SOP_INSTANCE_UID of DICOM content
	RULE_NAME	VARCHAR2(64 CHAR)	Constraint rule name
	MESSAGE	VARCHAR2(1999 CHAR)	Message
	MSG_TYPE	VARCHAR2(20 CHAR)	Message type, valid values are: log, warning, or error
	MSG_TIME	TIMESTAMP	Message generation time

Description

This information view lists the constraint messages generated during constraint validation. The public read and delete access privileges are granted for this information view.

Usage Notes

This information view shows the constraint validation messages that are generated for a specified user schema only.

Examples

Show the list of constraint validation messages that were generated for the predicate conditions defined in the specified constraint document. The conformance validation rule shown in this example is PatientModule, as defined in the DICOM standard.

SOP_INSTANCE_UID RULE_NAME MESSAGE MSG_TYPE MSG_TIME

1.2.840.114346. PatientModule Validation error: log 01-MAR-07
3384726461.899958945. missing mandatory 01.40.21.158337 PM
2180235641.3197827030 attribute for
 patient module

1.2.840.114346. PatientModule Warning: warning 01-MAR-07
3384726461.899958945. validation failure 01.40.21.168322 PM
2180235641.3197827030

2 rows selected.

orddcm_constraint_names

Format

	Column Name	Data Type	Description
	NAME	VARCHAR2(100)	Constraint name

Description

This read-only information view lists the constraint names. The public read access privilege is granted for this information view.

Usage Notes

Before querying this information view, call the setDataModel() procedure at least once during the database session. Call the procedure again whenever the application needs to see new data model changes.

Examples

Show a list of the constraint names that are available after installation:

--
NAME
--
PatientModule
GeneralStudyModule
GeneralSeriesModule
SOPCommonModule
ImagePixelMacro
OracleOrdDicomImage
OracleOrdObject

7 rows selected.

orddcm_documents

Format

	Column Name	Data Type	Description
	DOC_NAME	VARCHAR2(100)	Document name
	DOC_TYPE	VARCHAR2(100)	Document type
	CREATE_DATE	DATE	Document creation date
	ISINSTALLED_BY_ORACLE	NUMBER(1)	A value of 1 indicates that the document was installed by Oracle. A value of 0 indicates that the document was loaded by an administrator.

Description

This read-only information view lists details of the documents stored in the repository. The public read access privilege is granted for this information view.

Usage Notes

Before querying this information view, call the setDataModel() procedure at least once during the database session. Call the procedure again whenever the application needs to see new data model changes.

Examples

Show a list of the configuration documents in the repository, by name, type, and date of creation and indicate whether the configuration document is Oracle-defined or user-defined. This example shows details about the default Oracle-defined configuration documents, which are available upon installation.

--
DOC_NAME DOC_TYPE CREATE_DA INSTALLED_BY_ORACLE
--
ordcmpv.xml PRIVATE_DICTIONARY 04-OCT-06 1
ordcmmp.xml MAPPING 04-OCT-06 1
ordcman.xml ANONYMITY 04-OCT-06 1
ordcmpf.xml PREFERENCE 04-OCT-06 1
ordcmui.xml UID_DEFINITION 04-OCT-06 1
ordcmcmc.xml CONSTRAINT 04-OCT-06 1
ordcmcmd.xml CONSTRAINT 04-OCT-06 1
ordcmct.xml CONSTRAINT 04-OCT-06 1
ordcmsd.xml STANDARD_DICTIONARY 04-OCT-06 1

9 rows selected.

orddcm_document_types

Format

	Column Name	Data Type	Description
	DOC_TYPE	VARCHAR2(100)	Document type code of the document type
This column contains the following values:

STANDARD_DICTIONARY

PRIVATE_DICTIONARY

CONSTRAINT

MAPPING

ANONYMITY

PREFERENCE

UID_DEFINITION
	SCHEMA_URL	VARCHAR2(700)	The URL of the XML schema registered with Oracle XML DB that is associated with this document type
This column contains the following values, which are listed respective to the order of the values in the DOC_TYPE column:

http://xmlns.oracle.com/ord/dicom/standardDictionary_1_0

http://xmlns.oracle.com/ord/dicom/privateDictionary_1_0

http://xmlns.oracle.com/ord/dicom/constraint_1_0

http://xmlns.oracle.com/ord/dicom/mapping_1_0

http://xmlns.oracle.com/ord/dicom/anonymity_1_0

http://xmlns.oracle.com/ord/dicom/preference_1_0

http://xmlns.oracle.com/ord/dicom/UIDdefinition_1_0
	DOC_TYPE_DESC	VARCHAR2(4000)	Document type description
This column contains the following values, which are listed respective to the order of the values in the DOC_TYPE column:

DICOM standard data dictionary

Private data dictionary

Constraint document

Mapping document

Anonymity document

Preference document

DICOM UID definition document

Description

This read-only information view identifies the supported Oracle Multimedia DICOM document types. Use this information view to find the list of codes for document types when inserting a new document into the Oracle Multimedia DICOM repository. The public read access privilege is granted for this information view.

Usage Notes

None.

Examples

Show the document type, schema URL, and document type description for the Oracle-installed configuration documents:

DOC_TYPE SCHEMA_URL DOC_TYPE_DSC

STANDARD_DICTIONARY http://xmlns.oracle.com/ord/dicom/standardDictionary_1_0 DICOM Standard Data Dictionary

PRIVATE_DICTIONARY http://xmlns.oracle.com/ord/dicom/privateDictionary_1_0 Private Data Dictionary

MAPPING http://xmlns.oracle.com/ord/dicom/mapping_1_0 Mapping document

ANONYMITY http://xmlns.oracle.com/ord/dicom/anonymity_1_0 Anonymity document

PREFERENCE http://xmlns.oracle.com/ord/dicom/preference_1_0 Preference document

UID_DEFINITION http://xmlns.oracle.com/ord/dicom/UIDdefinition_1_0 DICOM UID definition document

CONSTRAINT http://xmlns.oracle.com/ord/dicom/constraint_1_0 Constraint document

7 rows selected.

Part II

DICOM Development

This part includes user and reference information for developers of DICOM applications.

Part II contains the following chapters:

	
Chapter 5, "ORDDicom Reference"

	
Chapter 6, "DICOM Relational Interface Reference"

	
Chapter 7, "DICOM Application Development"

5 ORDDicom Reference

Oracle Multimedia describes the ORDDicom object type, which supports the storage, management, and manipulation of DICOM format medical images and other data. The ORDDicom object is intended as an object that is written only once. To generate a new ORDDicom object by image processing or compression, create a new ORDDicom object, ORDImage object, or BLOB.

The ORDDicom object type is defined in the ordcspec.sql file. After installation, this file is available in the Oracle home directory at:

<ORACLE_HOME>/ord/im/admin (on Linux and UNIX)

<ORACLE_HOME>\ord\im\admin (on Windows)

Oracle Multimedia contains the following information about the ORDDicom object type:

	
ORDDicom Object Type on

	
ORDDicom Constructors

	
ORDDicom Methods

This chapter describes the attributes, constructors, and methods in the ORDDicom object interface. For information about other DICOM application programming interfaces (APIs), see the following chapters:

	
Chapter 4 - DICOM data model utility API

	
Chapter 6 - DICOM relational API

	
Chapter 9 - ORD_DICOM_ADMIN data model repository API

See Oracle Multimedia DICOM Java API Reference for information about the DICOM Java API.

5.1 ORDDicom Object Example Media Table and Directory Definition

The methods described in this reference chapter show examples based on the MEDICAL_IMAGE_OBJ table, which these examples create in the Product Media (PM) sample schema. Refer to the MEDICAL_IMAGE_OBJ table definition that follows when reading through the examples. See Oracle Database Sample Schemas for information about the sample schemas.

Before using ORDDicom methods, you must load some data into the table. For example, you can use the SQL*Loader utility, a Java client, or the import() method. Substitute DICOM files you have for the ones shown in the examples.

	
Note:

If you manipulate the DICOM content itself (by either directly modifying the BLOB or changing the external source), call the setProperties() method to ensure that the object attributes stay synchronized. You must also ensure that the update time is modified. Otherwise, the object attributes will not match the DICOM content.

5.1.1 Directory Definition

The following statements must be issued before executing the examples, where /mydir/work is the directory where the user pm can find the DICOM files:

CREATE OR REPLACE DIRECTORY DICOMDIR as '/mydir/work';
GRANT READ, WRITE ON DIRECTORY DICOMDIR TO pm;

5.1.2 MEDICAL_IMAGE_OBJ Table Definition

Before loading data into the table, you must create the table and columns where the data is to be stored. The following PL/SQL code segment creates the MEDICAL_IMAGE_OBJ table with five columns.

CONNECT pm

Enter password: password

CREATE TABLE MEDICAL_IMAGE_OBJ
(
 id integer primary key,
 dicom_src ordsys.orddicom,
 dicom_dest ordsys.orddicom,
 image_dest ordsys.ordimage,
 blob_dest blob
);
COMMIT;

where:

	
dicom_src: the source DICOM content in the ORDDicom object.

	
dicom_dest: the destination DICOM content in the ORDDicom object.

	
image_dest: the destination DICOM content in the ORDImage object.

	
blob_dest: the destination DICOM content in the BLOB.

ORDDicom Object Type

The ORDDicom object type supports the storage, management, and manipulation of DICOM format medical images and other data. The attributes for this object type are defined as follows in the ordcspec.sql file:

 -- TYPE ATTRIBUTES

 SOP_INSTANCE_UID VARCHAR2(128),
 SOP_CLASS_UID VARCHAR2(64),
 STUDY_INSTANCE_UID VARCHAR2(64),
 SERIES_INSTANCE_UID VARCHAR2(64),
 source ORDDataSource,
 metadata SYS.XMLType,
 contentLength INTEGER,
 flag INTEGER,
 extension BLOB,

where:

	
SOP_INSTANCE_UID: the SOP instance UID of the embedded DICOM content.

	
SOP_CLASS_UID: the SOP class UID of the embedded DICOM content.

	
STUDY_INSTANCE_UID: the study instance UID of the embedded DICOM content.

	
SERIES_INSTANCE_UID: the series instance UID of the embedded DICOM content.

	
source: the original DICOM content stored within the database, under transaction control as a BLOB (recommended), or stored in an operating system-specific file in a local file system with pointer stored in the database.

	
metadata: the XML metadata document extracted from the embedded DICOM content.

	
contentLength: the length of the embedded DICOM content, in number of bytes.

	
flag: an Oracle reserved attribute.

	
extension: an Oracle reserved attribute.

ORDDicom Constructors

The ORDDicom object can be constructed using following constructors in a SQL statement or PL/SQL program:

	
ORDDicom() for BLOBs

	
ORDDicom() for ORDImage

	
ORDDicom() for other sources

The ORDDicom object has embedded BLOB attributes. BLOB locators must be initialized before they can be accessed. Thus, newly constructed ORDDicom objects (except when constructed from a temporary BLOB) must be inserted into a table before calling object member methods on these ORDDicom objects. This section describes the ORDDicom constructors.

ORDDicom() for BLOBs

Format

ORDDicom(SELF IN OUT NOCOPY ORDDicom, data IN BLOB, setproperties IN INTEGER DEFAULT 0) RETURN SELF AS RESULT

Description

Constructs an ORDDicom object from a BLOB. The data stored in the BLOB is copied into the ORDDicom object when the constructed ORDDicom object is inserted or updated into a table. The metadata conforms to the XML schema defined by the default mapping document.

Parameters

	data
	
Embedded DICOM content stored in a BLOB.

	setproperties
	
Indicator flag that determines whether or not the DICOM attributes are extracted from the embedded DICOM content. If the value is 1, the DICOM attributes are extracted into the metadata attribute of the constructed ORDDicom object, and the attributes of the ORDDicom object are populated. If the value is 0, no DICOM attributes are extracted. The default is 0.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this constructor to create an ORDDicom object when the DICOM content is stored in either a temporary or a persistent BLOB.

Examples

Create an ORDDicom object from a BLOB:

SQL> desc blob_tbl;Name Null? Type---------------------------- -------- ----------------------------ID NUMBER(38)DATA BLOB

 insert into medical_image_obj (id, dicom_src)
 select s.id, ORDDicom(s.data) from blob_tbl s;

ORDDicom() for ORDImage

Format

ORDDicom(SELF IN OUT NOCOPY ORDDicom, data IN ORDImage, setproperties IN INTEGER DEFAULT 0) RETURN SELF AS RESULT

Description

Constructs an ORDDicom object from an OrdImage object that has either a local source (BLOB) or a file source (BFILE). If the DICOM content is stored originally in the BLOB of the ORDImage object, the data is copied into the BLOB in the ORDDicom object source attribute when the constructed ORDDicom object is inserted or updated into a table. If the DICOM content is stored originally as a BFILE source of the ORDImage object, the srcType, srcLocation, and srcName parameters from the ORDImage source are copied into the source attribute of the ORDDicom object. The metadata conforms to the XML schema defined by the default mapping document.

Parameters

	data
	
Embedded DICOM content stored in an ORDImage object.

	setproperties
	
Indicator flag that determines whether or not the DICOM attributes are extracted from the embedded DICOM content. If the value is 1, the DICOM attributes are extracted into the metadata attribute of the constructed ORDDicom object, and the attributes of the ORDDicom object are populated. If the value is 0, no DICOM attributes are extracted. The default is 0.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this constructor to create an ORDDicom object when the DICOM content is stored in an OrdImage object. Or, use this constructor for migrating an ORDImage object to an ORDDicom object.

Examples

Create an ORDDicom object from an OrdImage object:

SQL> desc image_tbl;Name Null? Type---------------------------- -------- ----------------------------ID NUMBER(38)IMAGE ORDIMAGE

 insert into medical_image_obj (id, dicom_src)
 select s.id, ORDDicom(s.image) from image_tbl s;

ORDDicom() for other sources

Format

ORDDicom(SELF IN OUT NOCOPY ORDDicom, source_type IN VARCHAR2 DEFAULT 'LOCAL', source_location IN VARCHAR2 DEFAULT NULL, source_name IN VARCHAR2 DEFAULT NULL, setproperties IN INTEGER DEFAULT 0) RETURN SELF AS RESULT

Description

Constructs an ORDDicom object from a specific source. By default, the value of the source_type parameter is set to 'LOCAL', which means that the source of the data is stored locally in the database in a BLOB. With the default values, an empty object with a local source is constructed. If the value of the source_type parameter is set to 'FILE', an ORDDicom object is constructed with the source stored as an external FILE. The metadata conforms to the XML schema defined by the default XML mapping document.

Parameters

	source_type
	
The type of the source. Valid values are: 'FILE' or 'LOCAL'.

	source_location
	
The directory location of the source (used for source_type='FILE').

	source_name
	
The file name of the source (used for source_type='FILE').

	setproperties
	
Indicator flag that determines whether or not the DICOM attributes are extracted from the embedded DICOM content. If the value is 1, the DICOM attributes are extracted into the metadata attribute of the constructed ORDDicom object, and the attributes of the ORDDicom object are populated. If the value is 0, no DICOM attributes are extracted. The default is 0.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this constructor to create an ORDDicom object when the DICOM content is stored in the file system. Use the empty constructor when uploading DICOM content from a client, such as a Web browser or a Java application. Or, use the empty constructor as a destination object for methods such as processCopy(), makeAnonymous(), and writeMetadata().

Examples

Example 1:

Create an ORDDicom object from a file without populating the object attributes:

 insert into medical_image_obj (id, dicom_src)
 values (1, ORDDicom('FILE', 'DICOMDIR', 'example.dcm'));

Example 2:

Create an ORDDicom object from a file with the setProperties flag set:

 insert into medical_image_obj (id, dicom_src)
 values (2, ORDDicom('FILE', 'DICOMDIR', 'example.dcm', 1));

Example 3:

Create an empty ORDDicom object:

 insert into medical_image_obj (id, dicom_src)
 values (3, ORDDicom());

ORDDicom Methods

This section presents reference information on the ORDDicom methods, which are the following:

	
export()

	
extractMetadata()

	
getAttributeByName()

	
getAttributeByTag()

	
getContent()

	
getContentLength()

	
getSeriesInstanceUID()

	
getSourceInformation()

	
getSourceLocation()

	
getSourceName()

	
getSourceType()

	
getSOPClassUID()

	
getSOPInstanceUID()

	
getStudyInstanceUID()

	
import()

	
isAnonymous()

	
isConformanceValid()

	
isLocal()

	
makeAnonymous()

	
processCopy() to BLOBs

	
processCopy() to ORDDicom

	
processCopy() to ORDImage

	
setProperties()

	
writeMetadata()

export()

Format

export(SELF IN ORDDicom, dest_type IN VARCHAR2, dest_location IN VARCHAR2, dest_name IN VARCHAR2)

Description

Exports embedded DICOM content to a specified destination. The data remains in the source BLOB when it is copied to the destination.

Parameters

	dest_type
	
The type of the destination (only 'FILE' is supported).

	dest_location
	
The location of the destination (must be a valid Oracle directory object).

	dest_name
	
The name of the destination file.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to export the embedded DICOM content to the local file system.

Examples

Export embedded DICOM content to a specified file:

declare
 obj orddicom;
 begin
 select dicom_src into obj from medical_image_obj where id = 1;
 obj.export('FILE', 'DICOMDIR', 'exported.dcm');
 end;
/

extractMetadata()

Format

extractMetadata (extractOption IN VARCHAR2 DEFAULT 'ALL', docName IN VARCHAR2 DEFAULT 'ordcmmp.xml') RETURN SYS.XMLTYPE

Description

Returns the DICOM metadata as XML code for a specified mapping document. The default mapping document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0. The metadata attribute of the ORDDicom object is not affected.

Parameters

	extractOption
	
A string that specifies the types of metadata to extract from the DICOM content. Valid values are: 'ALL', 'MAPPED', and 'STANDARD'. The default is 'ALL'.

When the value of this parameter is 'ALL', all the attributes in the embedded DICOM content are extracted. When the value is set to 'MAPPED', only mapped attributes are extracted. And, when the value is set to 'STANDARD', only attributes that conform to the DICOM standard and mapped attributes are extracted.

	docName
	
The name of the mapping document. The default mapping document 'ordcmmp.xml' is loaded during installation. This document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to retrieve metadata from the embedded DICOM content as XML code, and then store it in a database table for searching or viewing.

Examples

Extract metadata from the embedded DICOM content:

 declare
 obj orddicom;
 metadata xmltype;
 begin
 select dicom_src into obj from medical_image_obj where id = 1;

 -- extract all the metadata using the default mapping document.
 metadata := obj.extractMetadata();

 -- extract the standard metadata using the default mapping document.
 metadata := obj.extractMetadata('standard');

 -- extract the standard metadata by specifying the mapping document.
 metadata := obj.extractMetadata('standard', 'ordcmmp.xml');
 end;
/

getAttributeByName()

Format

getAttributeByName (attributeName IN VARCHAR2, definerName IN VARCHAR2 DEFAULT 'DICOM') RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the value of a DICOM attribute, in a VARCHAR2 string for DICOM attributes other than SQ type attributes. For SQ type attributes, this method returns a segment of XML code in a VARCHAR2 string. This method is a helper method only.

Parameters

	attributeName
	
The name of a specified attribute or item.

	definerName
	
The name of the attribute definer. The default name is 'DICOM'.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to retrieve any single attribute in the embedded DICOM content. For performance reasons, do not use this method to retrieve more than two or three attributes.

Before calling this method for the first time, call the setProperties() method.

This method is not recommended for use in applications that require maximum performance.

Examples

Return the name of a specified DICOM attribute:

 declare
 obj orddicom;
 res varchar2(4000);
 begin
 select dicom_src into obj from medical_image_obj where id = 1;
 obj.setProperties;

 -- Patient ID attribute, this will return patient ID value
 res := obj.getAttributeByName('Patient ID');
 dbms_output.put_line('Patient ID attribute: ' ││ res);

 -- attribute in SQ type, this will return an xml segment.
 res := obj.getAttributeByName('Source Image Sequence');
 dbms_output.put_line('Source Image Sequence attribute: ' ││ res);
 end ;
 /

getAttributeByTag()

Format

getAttributeByTag (tag IN VARCHAR2, definerName IN VARCHAR2 DEFAULT 'DICOM') RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the value of a DICOM attribute, in a VARCHAR2 string for DICOM attributes other than SQ type attributes. For SQ type attributes, this method returns a segment of XML code in a VARCHAR2 string. This method is a helper method only.

Parameters

	tag
	
The code value used to specify a DICOM attribute or item tag, as a hexadecimal string. To access child attributes of the sequence type (SQ), use the "." notation. For example: "00082218.00080100" returns the code value (tag "00080100") of anatomic region sequence (tag "00082218"). And "00080005[2]" returns the second item value of the specific character set attribute (tag "00080005").

	definerName
	
The name of the attribute definer. The default name is 'DICOM'.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to retrieve any single attribute in the embedded DICOM content. For performance reasons, do not use this method to retrieve more than two or three attributes.

Before calling this method for the first time, call the setProperties() method.

This method is not recommended for use in applications that require maximum performance.

Examples

Return the tag of a specified DICOM attribute:

 declare
 obj orddicom;
 res varchar2(4000);
 begin
 select dicom_src into obj from medical_image_obj where id = 1;
 obj.setProperties;

 -- Patient ID attribute, this will return patient ID value
 res := obj.getAttributeByTag('00100020');
 dbms_output.put_line('Patient ID attribute: ' ││ res);

 -- attribute in SQ type, this will return an xml segment.
 res := obj.getAttributeByTag('00082112');
 dbms_output.put_line('Source Image Sequence attribute: ' ││ res);
 end ;
 /

getContent()

Format

getContent() RETURN BLOB DETERMINISTIC

Description

Returns the embedded DICOM content stored in the source attribute of the ORDDicom object. This method returns the BLOB handle, or a null value if the DICOM content has not been imported.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the content of the source attribute for the ORDDicom object:

 select t.dicom_src.getContent() from medical_image_obj t;

getContentLength()

Format

getContentLength() RETURN INTEGER DETERMINISTIC PARALLEL_ENABLE

Description

Returns the length of the embedded DICOM content. This method returns the value of the contentLength attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the value of the contentLength attribute for the ORDDicom object:

 select t.dicom_src.getContentLength() from medical_image_obj t;

getSeriesInstanceUID()

Format

getSeriesInstanceUID() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE,

Description

Returns the value of the SERIES_INSTANCE_UID attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the value of the SERIES_INSTANCE_UID attribute for the ORDDicom object:

 select t.dicom_src.getSeriesInstanceUID() from medical_image_obj t;

getSourceInformation()

Format

getSourceInformation() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the source information from the source attribute of the ORDDicom object as a URL in the form "source_type://source_location/source_name".

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the source information for the ORDDicom object:

 select t.dicom_src.getSourceInformation() from medical_image_obj t;

getSourceLocation()

Format

getSourceLocation() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the source location from the source attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the source location for the ORDDicom object:

 select t.dicom_src.getSourceLocation() from medical_image_obj t;

getSourceName()

Format

getSourceName() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the source name from the source attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the source name for the ORDDicom object:

 select t.dicom_src.getSourceName() from medical_image_obj t;

getSourceType()

Format

getSourceType() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the source type from the source attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the source type for the ORDDicom object:

 select t.dicom_src.getSourceType() from medical_image_obj t;

getSOPClassUID()

Format

getSOPClassUID() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE,

Description

Returns the value of the SOP_CLASS_UID attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the value of the SOP_CLASS_UID attribute for the ORDDicom object:

 select t.dicom_src.getSOPClassUID() from medical_image_obj t;

getSOPInstanceUID()

Format

getSOPInstanceUID() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE

Description

Returns the value of the SOP_INSTANCE_UID attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the value of the SOP_INSTANCE_UID attribute for the ORDDicom object:

 select t.dicom_src.getSOPInstanceUID() from medical_image_obj t;

getStudyInstanceUID()

Format

getStudyInstanceUID() RETURN VARCHAR2 DETERMINISTIC PARALLEL_ENABLE,

Description

Returns the value of the STUDY_INSTANCE_UID attribute of the ORDDicom object.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Return the value of the STUDY_INSTANCE_UID attribute for the ORDDicom object:

 select t.dicom_src.getStudyInstanceUID() from medical_image_obj t;

import()

Format

import(SELF IN OUT NOCOPY ORDDicom, setproperties IN INTEGER DEFAULT 1)

Description

Imports DICOM content from the current source. This method assumes that the source attributes have already been set in the ORDDicom object by passing the source_type, source_location, and source_name parameters to the constructor.

Parameters

	setproperties
	
Indicator flag that determines whether or not the DICOM attributes are extracted into the metadata attribute of the ORDDicom object. If the value is 1, the DICOM attributes are extracted into the metadata attribute of the ORDDicom object, and the attributes of the ORDDicom object are populated. If the value is 0, no DICOM attributes are extracted. The default is 1.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method when the ORDDicom object is constructed from a source other than a BLOB, and must be imported into a BLOB.

Examples

Import the DICOM attributes:

 declare
 obj orddicom;
 begin
 select dicom_src into obj from medical_image_obj where id = 1 for update;
 if (obj.isLocal() = 0) then
 obj.import();
 end if;
 update medical_image_obj set dicom_src = obj where id = 1;
 end;
/

isAnonymous()

Format

isAnonymous(anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml') RETURN INTEGER

Description

Determines whether or not the embedded DICOM content is anonymous using a specified anonymity document, which is stored in the data model repository. This method returns a value of 1 if the data is anonymous, otherwise it returns a value of 0.

Parameters

	anonymityDocName
	
The name of the anonymity document. The default name is "ordcman.xml".

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method before calling the makeAnonymous() method to find out whether or not patient identifying information has been removed from the embedded DICOM content.

Examples

Check if the embedded DICOM content is anonymous:

 select t.dicom_src.isAnonymous('ordcman.xml') from medical_image_obj t;

isConformanceValid()

Format

isConformanceValid(constraintName IN VARCHAR2) RETURN INTEGER

Description

Performs a conformance validation check to determine whether or not the embedded DICOM content conforms to a specific set of constraints identified by the constraintName parameter. This method returns a value of 1 if conformance is valid, otherwise it returns a value of 0.

This method also logs error messages from the constraint documents, which can be viewed by querying the public information view orddcm_conformance_vld_msgs. The public information view orddcm_constraint_names contains the list of constraint names.

Parameters

	constraintName
	
The name of the constraint to be used for conformance validation checking.

Pragmas

None.

Exceptions

None.

Usage Notes

If this method is called from a SQL query, ensure that the constraint rule definition does not contain any <ACTION> elements.

Examples

Check if the ORDDicom objects are conformance valid. Then, show any conformance validation messages that are generated.

 declare
 cursor dicom_src_cur is
 select dicom_src from medical_image_obj order by id;
 begin
 for rec in dicom_src_cur loop
 dbms_output.put_line('isConformanceValid(PatientModule): ' ││
 rec.dicom_src.isConformanceValid('PatientModule'));
 end loop;
 end;
 /

 select t1.id, t2.message, t2.msg_time time
 from medical_image_obj t1, orddcm_conformance_vld_msgs t2
 where t1.dicom_src.sop_instance_uid = t2.sop_instance_uid and
 t2.rule_name = 'PatientModule';

isLocal()

Format

isLocal() RETURN INTEGER DETERMINISTIC PARALLEL_ENABLE

Description

Returns the local status of the source. If the DICOM content is stored in the source BLOB, the object is defined as local. If the DICOM content is stored externally in an operating system-specific file, the object is defined as not local. This method returns a value of 1 if the object is local, otherwise it returns a value of 0.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Check if the DICOM content is local:

 select t.dicom_src.isLocal() from medical_image_obj t;
 declare
 obj orddicom;
 begin
 select dicom_src into obj from medical_image_obj where id = 1 for update;
 if (obj.isLocal() = 0) then
 obj.import();
 end if;
 update medical_image_obj set dicom_src = obj where id = 1;
 end;
/

makeAnonymous()

Format

makeAnonymous (SELF IN ORDDicom, dest_SOP_INSTANCE_UID IN VARCHAR2, dest IN OUT NOCOPY ORDDicom, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml')

Description

Removes patient identifying information from the ORDDicom object after copying it into another ORDDicom object, based on a specified anonymity document. Both the embedded DICOM content and the metadata attribute in the destination ORDDicom object are made anonymous.

Parameters

	dest_SOP_INSTANCE_UID
	
The SOP instance UID of the destination ORDDicom object. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty ORDDicom object in which to store the anonymous ORDDicom object.

	anonymityDocName
	
The name of the anonymity document. The default name is "ordcman.xml".

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to remove patient identifying information from the embedded DICOM content for use in data sharing and research.

Examples

Remove patient identifying information from the destination ORDDicom object:

 declare
 obj_src orddicom;
 obj_dest orddicom;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
 begin
 select dicom_src, dicom_dest into obj_src, obj_dest
 from medical_image_obj where id = 1 for update;
 obj_src.makeAnonymous(dest_sop_instance_uid, obj_dest, 'ordcman.xml');

 update medical_image_obj set dicom_dest = obj_dest where id = 1;
 end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

processCopy() to BLOBs

Format

processCopy (SELF IN ORDDicom, command IN VARCHAR2, dest IN OUT NOCOPY BLOB)

Description

Copies the ORDDicom image object that is input into the destination BLOB, and then performs the specified processing operations on the destination BLOB. The original ORDDicom object that was input remains unchanged.

Parameters

	command
	
A command string that accepts an image processing operator as input. Valid values include: frame, contentFormat, fileFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest
	
The destination BLOB that contains the output of the process command on the ORDDicom image.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to process an image into a BLOB after copying it from the ORDDicom object. In this case, the output in the BLOB is a raster image.

In addition, you can use this method to process waveform or video DICOM content. In this case, the output in the BLOB is a video file in AVI format.

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM content into a BLOB and then process it:

 declare
 obj orddicom;
 dest blob;
 begin
 select dicom_src, blob_dest into obj, dest
 from medical_image_obj where id = 1 for update;

 obj.processCopy('fileFormat=jpeg maxScale=100 100', dest);
 end;
/

processCopy() to ORDDicom

Format

processCopy (SELF IN ORDDicom, command IN VARCHAR2, dest_SOP_INSTANCE_UID IN VARCHAR2, dest IN OUT NOCOPY ORDDicom, metadata IN SYS.XMLTYPE DEFAULT NULL)

Description

Copies the ORDDicom image object that is input into a destination ORDDicom image object, and then performs the specified processing operations on the destination ORDDicom image object. Only the DICOM attributes of the destination ORDDicom image are updated with image information. The original ORDDicom object that was input remains unchanged.

Parameters

	command
	
A command string that accepts an image processing operator as input. Valid values include: compressionFormat, frame, contentFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest_SOP_INSTANCE_UID
	
The SOP instance UID of the destination ORDDicom object. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty ORDDicom object in which to store the new DICOM image with the new metadata.

	metadata
	
The new metadata to be written into the new DICOM image.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to modify or fix the image data in the current embedded DICOM content.

In addition, you can use this method to create an ORDDicom object with the image content compressed using JPEG or JPEG 2000.

You can also use this method to extract a single frame into an ORDDicom object from a multiframe ORDDicom object.

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the ORDDicom object into an ORDDicom image object and then process it:

declare
 obj_src orddicom;
 obj_dest orddicom;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
 begin
 select dicom_src, dicom_dest into obj_src, obj_dest
 from medical_image_obj where id = 1 for update;
 obj_src.processcopy('compressionFormat=jpeg',
 dest_sop_instance_uid,
 obj_dest);

 update medical_image_obj set dicom_dest = obj_dest where id = 1;
 end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

processCopy() to ORDImage

Format

processCopy (SELF IN ORDDicom, command IN VARCHAR2, dest IN OUT NOCOPY ORDImage)

Description

Copies the ORDDicom image object that is input into the destination ORDImage object, and then performs the specified processing operations on the destination ORDImage object. The original ORDDicom object that was input remains unchanged.

Parameters

	command
	
A command string that accepts an image processing operator as input. Valid values include: frame, contentFormat, fileFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest
	
An empty ORDImage object in which to store the new, processed ORDImage object without the DICOM metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to get an image that is suitable for presentation on the Web from the embedded DICOM content.

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the ORDDicom object into an ORDImage object and then process it:

 declare
 obj_src orddicom;
 obj_dest ordimage;
 begin
 select dicom_src, image_dest into obj_src, obj_dest
 from medical_image_obj where id = 1 for update;
 obj_src.processcopy('fileFormat=jpeg maxScale=100 100', obj_dest);

 update medical_image_obj set image_dest = obj_dest where id = 1;
 end;
/

setProperties()

Format

setProperties (SELF IN OUT NOCOPY ORDDicom)

Description

Sets the attributes of the ORDDicom object. The attributes of the ORDDicom object are populated and all the embedded DICOM content attributes are extracted into the metadata attribute of ORDDicom object. The XML metadata conforms to the default metadata schema namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Parameters

None.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to populate ORDDicom object attributes and to get the metadata from the embedded DICOM content.

Examples

Set the attributes of the ORDDicom object:

 declare
 obj orddicom;
 begin
 select dicom_src into obj from medical_image_obj where id = 1 for update;
 obj.setProperties();
 update medical_image_obj set dicom_src = obj where id = 1;
 end;
/

writeMetadata()

Format

writeMetadata (SELF IN ORDDicom, metadata IN SYS.XMLTYPE, dest IN OUT NOCOPY ORDDicom)

Description

Modifies the current ORDDicom object with the metadata provided by making a copy of the existing ORDDicom object in the destination ORDDicom object, and then modifying the metadata. The original ORDDicom object remains unchanged. The attributes in the embedded DICOM content of the destination ORDDicom object are copied from the metadata that was input.

Parameters

	metadata
	
The input metadata stored in data type XMLType. In the destination ORDDicom object, the input metadata is used to update the values for attributes that are identical to attributes in the source ORDDicom object or to add any new attributes. The metadata must conform to the default metadata schema with the namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0. The SOP instance UID in the metadata must ensure that the destination DICOM content is globally unique.

	dest
	
An empty ORDDicom object in which to store the new embedded DICOM content with the new metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

Use this method to update attributes in the embedded DICOM content.

In addition, you can use this method to add private attributes to the embedded DICOM content.

See Appendix C for information about the encoding rules that support metadata extraction.

Examples

Write the new metadata to the copy of the embedded DICOM content:

 declare
 obj_src orddicom;
 obj_dest orddicom;
 metadata xmltype;
 begin
 metadata := xmltype(bfilename('DICOMDIR', 'wm_meta.xml'),
 nls_charset_id('AL32UTF8'),
 'http://xmlns.oracle.com/ord/dicom/metadata_1_0');

 select dicom_src, dicom_dest into obj_src, obj_dest
 from medical_image_obj where id = 1 for update;

 obj_src.writeMetadata(metadata, obj_dest);

 update medical_image_obj set dicom_dest = obj_dest where id = 1;

 end;
/

6 DICOM Relational Interface Reference

Application developers, who create medical imaging applications without using the Oracle Multimedia ORDDicom object type to store and manage medical image data in relational tables, and who do not want to migrate their existing medical image applications to use Oracle Multimedia ORDDicom objects, can use the Oracle Multimedia DICOM relational interface for managing their medical image data.

The DICOM relational interface defines the ORD_DICOM PL/SQL package. This package provides the same features as those provided by the ORDDicom object interface in the relational environment. The DICOM relational interface adds Oracle Multimedia support to medical image data stored in BLOBs and BFILEs rather than in the ORDDicom object type.

The ORD_DICOM package is defined in the ordcpksp.sql file. After installation, this file is available in the Oracle home directory at:

<ORACLE_HOME>/ord/im/admin (on Linux and UNIX)

<ORACLE_HOME>\ord\im\admin (on Windows)

Oracle Multimedia contains the following information about the DICOM relational interface:

	
DICOM Relational Functions

	
DICOM Relational Procedures

This chapter describes the functions and procedures in the DICOM relational interface. For information about other DICOM application programming interfaces (APIs), see the following chapters:

	
Chapter 4 - DICOM data model utility API

	
Chapter 5 - ORDDicom object API

	
Chapter 9 - ORD_DICOM_ADMIN data model repository API

See Oracle Multimedia DICOM Java API Reference for information about the DICOM Java API.

6.1 DICOM Relational Example Media Table and Directory Definition

The functions and procedures described in this reference chapter show examples based on the MEDICAL_IMAGE_REL table, which these examples create in the Product Media (PM) sample schema. Refer to the MEDICAL_IMAGE_REL table definition that follows when reading through the examples. See Oracle Database Sample Schemas for information about the sample schemas.

Before using DICOM relational interface functions and procedures, you must load some data into the table. For example, you can use SQL*Loader or the importFrom() method. Substitute DICOM files you have for the ones shown in the examples.

6.1.1 Directory Definition

The following statements must be issued before executing the examples, where /mydir/work is the directory where the user pm can find the DICOM files:

CREATE OR REPLACE DIRECTORY DICOMDIR as '/mydir/work';
GRANT READ, WRITE ON DIRECTORY DICOMDIR TO pm;

6.1.2 MEDICAL_IMAGE_REL Table Definition

Before loading data into the table, you must create the table and columns where the data is to be stored. The following PL/SQL code segment creates the MEDICAL_IMAGE_REL table with five columns.

CONNECT pm

Enter password: password

CREATE TABLE MEDICAL_IMAGE_REL
(
 id integer primary key,
 blob_src blob,
 bfile_src bfile,
 image_src ordsys.ordimage,
 blob_dest blob
);
COMMIT;

where:

	
blob_src: the source DICOM content in the BLOB.

	
bfile_src: the source DICOM content in the BFILE.

	
image_src: the source DICOM content in the ORDImage object.

	
blob_dest: the destination DICOM content in the BLOB.

DICOM Relational Functions

The ORD_DICOM package defines the following DICOM relational functions:

	
extractMetadata() for BFILEs

	
extractMetadata() for BLOBs

	
extractMetadata() for ORDImage

	
isAnonymous() for BFILEs

	
isAnonymous() for BLOBs

	
isAnonymous() for ORDImage

	
isConformanceValid() for BFILEs

	
isConformanceValid() for BLOBs

	
isConformanceValid() for ORDImage

extractMetadata() for BFILEs

Format

extractMetadata (data IN BFILE, extractOption IN VARCHAR2 DEFAULT 'ALL', docName IN VARCHAR2 DEFAULT 'ordcmmp.xml') RETURN SYS.XMLTYPE

Description

Returns the DICOM metadata as XML code for a specified mapping document. The default mapping document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Parameters

	data
	
The input DICOM content stored in a BFILE.

	extractOption
	
A string that specifies the types of metadata to extract from the DICOM content. Valid values are: 'ALL', 'MAPPED', and 'STANDARD'. The default is 'ALL'.

When the value of the extractOption parameter is 'ALL', all the attributes in the DICOM content are extracted. When the value is set to 'MAPPED', only mapped attributes are extracted. And, when the value is set to 'STANDARD', only attributes that conform to the DICOM standard and mapped attributes are extracted.

	docName
	
The name of the mapping document. The default mapping document 'ordcmmp.xml' is loaded during installation. This document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Extract metadata from the DICOM content stored in a BFILE:

declare
 src bfile;
 metadata xmltype;
begin
 select bfile_src into src from medical_image_rel where id = 1 for update;
 metadata := ord_dicom.extractMetadata(src, 'all', 'ordcmmp.xml');
end;
/

extractMetadata() for BLOBs

Format

extractMetadata (data IN BLOB, extractOption IN VARCHAR2 DEFAULT 'ALL', docName IN VARCHAR2 DEFAULT 'ordcmmp.xml') RETURN SYS.XMLTYPE

Description

Returns the DICOM metadata as XML code for a specified mapping document. The default mapping document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Parameters

	data
	
The input DICOM content stored in a BLOB.

	extractOption
	
A string that specifies the types of metadata to extract from the DICOM content. Valid values are: 'ALL', 'MAPPED', and 'STANDARD'. The default is 'ALL'.

When the value of the extractOption parameter is 'ALL', all the attributes in the DICOM content are extracted. When the value is set to 'MAPPED', only mapped attributes are extracted. And, when the value is set to 'STANDARD', only attributes that conform to the DICOM standard and mapped attributes are extracted.

	docName
	
The name of the mapping document. The default mapping document 'ordcmmp.xml' is loaded during installation. This document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Extract metadata from the DICOM content stored in a BLOB:

declare
 src blob;
 metadata xmltype;
begin
 select blob_src into src from medical_image_rel where id = 1 for update;
 metadata := ord_dicom.extractMetadata(src, 'all', 'ordcmmp.xml');
end;

extractMetadata() for ORDImage

Format

extractMetadata (data IN ORDSYS.ORDImage, extractOption IN VARCHAR2 DEFAULT 'ALL', docName IN VARCHAR2 DEFAULT 'ordcmmp.xml') RETURN SYS.XMLTYPE

Description

Returns the DICOM metadata as XML code for a specified mapping document. The default mapping document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Parameters

	data
	
The input DICOM content stored in an ORDImage object.

	extractOption
	
A string that specifies the types of metadata to extract from the DICOM content. Valid values are: 'ALL', 'MAPPED', and 'STANDARD'. The default is 'ALL'.

When the value of the extractOption parameter is 'ALL', all the attributes in the DICOM content are extracted. When the value is set to 'MAPPED', only mapped attributes are extracted. And, when the value is set to 'STANDARD', only attributes that conform to the DICOM standard and mapped attributes are extracted.

	docName
	
The name of the mapping document. The default mapping document 'ordcmmp.xml' is loaded during installation. This document refers to the default metadata namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Extract metadata from the DICOM content stored in an ORDImage object:

declare
 src ordimage;
 metadata xmltype;
begin
 select image_src into src from medical_image_rel where id = 1 for update;
 metadata := ord_dicom.extractMetadata(src, 'all', 'ordcmmp.xml');
end;
/

isAnonymous() for BFILEs

Format

isAnonymous(src IN BFILE, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml') RETURN INTEGER

Description

Determines whether or not the input DICOM content is anonymous, using a specified anonymity document. This function returns a value of 1 if the data is anonymous, otherwise it returns a value of 0.

Parameters

	src
	
The input DICOM content stored in a BFILE.

	anonymityDocName
	
The name of the anonymity document. The default name is'ordcman.xml'.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Check if the DICOM content stored in a BFILE is anonymous:

select ord_dicom.isAnonymous(t.bfile_src, 'ordcman.xml')
 from medical_image_rel t where id = 1;

isAnonymous() for BLOBs

Format

isAnonymous(src IN BLOB, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml') RETURN INTEGER

Description

Determines whether or not the input DICOM content is anonymous, using a specified anonymity document. This function returns a value of 1 if the data is anonymous, otherwise it returns a value of 0.

Parameters

	src
	
The input DICOM content stored in a BLOB.

	anonymityDocName
	
The name of the anonymity document. The default name is 'ordcman.xml'.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Check if the DICOM content stored in a BLOB is anonymous:

select ord_dicom.isAnonymous(t.blob_src, 'ordcman.xml')
 from medical_image_rel t where id = 1;

isAnonymous() for ORDImage

Format

isAnonymous(src IN ORDSYS.ORDImage, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml') RETURN INTEGER

Description

Determines whether or not the input DICOM content is anonymous, using a specified anonymity document. This function returns a value of 1 if the data is anonymous, otherwise it returns a value of 0.

Parameters

	src
	
The input DICOM content stored in an ORDImage object.

	anonymityDocName
	
The name of the anonymity document. The default name is 'ordcman.xml'.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Check if the DICOM content stored in an ORDImage object is anonymous:

select ord_dicom.isAnonymous(t.image_src, 'ordcman.xml')
 from medical_image_rel t where id = 1;

isConformanceValid() for BFILEs

Format

isConformanceValid (src IN BFILE, constraintName IN VARCHAR2) RETURN INTEGER

Description

Performs a conformance validation check to determine whether or not the input DICOM content conforms to a specified set of constraints identified by the constraintName parameter. This method returns a value of 1 if conformance is valid, otherwise it returns a value of 0. This method also logs error messages from the constraint documents, which can be viewed by querying the public information view orddcm_conformance_vld_msgs (see Chapter 4).

Parameters

	src
	
The input DICOM content stored in a BFILE.

	constraintName
	
The name of the constraint to be used for conformance validation checking.

Pragmas

None.

Exceptions

None.

Usage Notes

If this method is called from a SQL query, ensure that the constraint rule definition does not contain any <ACTION> elements.

Examples

Delete any existing conformance validation messages. Check if the DICOM content stored in a BFILE is conformance valid. Then, show any new conformance validation messages that are generated.

 -- clear the previous conformance validation messages
delete from orddcm_conformance_vld_msgs;

-- conformance validate the DICOM content
 declare
 src bfile;
 begin
 select bfile_src into src from medical_image_rel where id = 1;
 dbms_output.put_line('isConformanceValid(PatientModule) ' ││
 ord_dicom.isConformanceValid(src, 'PatientModule'));
 end;
 /

-- get the logged conformance validation messages
select message, msg_time time from orddcm_conformance_vld_msgs
 where rule_name='PatientModule';

isConformanceValid() for BLOBs

Format

isConformanceValid (src IN BLOB, constraintName IN VARCHAR2) RETURN INTEGER

Description

Performs a conformance validation check to determine whether or not the input DICOM content conforms to a specified set of constraints identified by the constraintName parameter. This method returns a value of 1 if conformance is valid, otherwise it returns a value of 0. This method also logs error messages from the constraint documents, which can be viewed by querying the public information view orddcm_conformance_vld_msgs (see Chapter 4).

Parameters

	src
	
The input DICOM content stored in a BLOB.

	constraintName
	
The name of the constraint to be used for conformance validation checking.

Pragmas

None.

Exceptions

None.

Usage Notes

If this method is called from a SQL query, ensure that the constraint rule definition does not contain any <ACTION> elements.

Examples

Delete any existing conformance validation messages. Check if the DICOM content stored in a BLOB is conformance valid. Then, show any new conformance validation messages that are generated.

-- clear the previous conformance validation messages
delete from orddcm_conformance_vld_msgs;

-- conformance validate the DICOM content
 declare
 src blob;
 begin
 select blob_src into src from medical_image_rel where id = 1;
 dbms_output.put_line('isConformanceValid(PatientModule) ' ││
 ord_dicom.isConformanceValid(src, 'PatientModule'));
 end;
 /

-- get the logged conformance validation messages
select message, msg_time time from orddcm_conformance_vld_msgs
 where rule_name='PatientModule';

isConformanceValid() for ORDImage

Format

isConformanceValid (src IN ORDSYS.ORDImage, constraintName IN VARCHAR2) RETURN INTEGER

Description

Performs a conformance validation check to determine whether or not the input DICOM content conforms to a specified set of constraints identified by the constraintName parameter. This method returns a value of 1 if conformance is valid, otherwise it returns a value of 0. This method also logs error messages from the constraint documents, which can be viewed by querying the public information view orddcm_conformance_vld_msgs (see Chapter 4).

Parameters

	src
	
The input DICOM content stored in an ORDImage object.

	constraintName
	
The name of the constraint to be used for conformance validation checking.

Pragmas

None.

Exceptions

None.

Usage Notes

If this method is called from a SQL query, ensure that the constraint rule definition does not contain any <ACTION> elements.

Examples

Delete any existing conformance validation messages. Check if the DICOM content stored in an ORDImage object is conformance valid. Then, show any new conformance validation messages that are generated.

-- clear the previous conformance validation messages
delete from orddcm_conformance_vld_msgs;

-- conformance validate the DICOM content
 declare
 src ordimage;
 begin
 select image_src into src from medical_image_rel where id = 1;
 dbms_output.put_line('isConformanceValid(PatientModule) ' ││
 ord_dicom.isConformanceValid(src, 'PatientModule'));
 end;
 /

-- get the logged conformance validation messages
select message, msg_time time from orddcm_conformance_vld_msgs
 where rule_name='PatientModule';

DICOM Relational Procedures

The ORD_DICOM package defines the following DICOM relational procedures:

	
createDICOMImage() for BFILEs

	
createDICOMImage() for BLOBs

	
createDICOMImage() for ORDImage

	
export()

	
importFrom()

	
makeAnonymous() for BFILEs

	
makeAnonymous() for BLOBs

	
makeAnonymous() for ORDImage

	
processCopy() for BFILEs

	
processCopy() for BLOBs

	
processCopy() for ORDImage

	
processCopy() for BFILEs with SOP instance UID

	
processCopy() for BLOBs with SOP instance UID

	
processCopy() for ORDImage with SOP instance UID

	
writeMetadata() for BFILEs

	
writeMetadata() for BLOBs

	
writeMetadata() for ORDImage

createDICOMImage() for BFILEs

Format

createDICOMImage (src IN BFILE, metadata IN SYS.XMLTYPE, dest IN OUT NOCOPY BLOB)

Description

Creates a DICOM image from a source image and DICOM metadata.

Parameters

	src
	
The source raster image stored in a BFILE.

	metadata
	
DICOM metadata stored in data type XMLType. The metadata must include all the standard and private attributes. It must include a new SOP instance UID for the destination DICOM image, ensuring that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the DICOM image created from the source image and metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Create a DICOM image from a source BFILE and DICOM metadata:

declare
 src bfile;
 dest blob;
 metadata xmltype;
begin
 metadata := xmltype(bfilename('DICOMDIR', 'wm_meta.xml'),
 nls_charset_id('AL32UTF8'),
 'http://xmlns.oracle.com/ord/dicom/metadata_1_0');

 select bfile_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;

 ord_dicom.createDicomImage(src, metadata, dest);
end;
/

createDICOMImage() for BLOBs

Format

createDICOMImage (src IN BLOB, metadata IN SYS.XMLTYPE, dest IN OUT NOCOPY BLOB)

Description

Creates a DICOM image from a source image and DICOM metadata.

Parameters

	src
	
The source raster image stored in a BLOB.

	metadata
	
DICOM metadata stored in data type XMLType. The metadata must include all the standard and private attributes. It must include a new SOP instance UID for the destination DICOM image, ensuring that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the DICOM image created from the source image and metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Create a DICOM image from a source BLOB and DICOM metadata:

declare
 src blob;
 dest blob;
 metadata xmltype;
begin
 metadata := xmltype(bfilename('DICOMDIR', 'wm_meta.xml'),
 nls_charset_id('AL32UTF8'),
 'http://xmlns.oracle.com/ord/dicom/metadata_1_0');

 select blob_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;

 ord_dicom.createDicomImage(src, metadata, dest);
end;
/

createDICOMImage() for ORDImage

Format

createDICOMImage (src IN ORDSYS.ORDImage, metadata IN SYS.XMLTYPE, dest IN OUT NOCOPY BLOB)

Description

Creates a DICOM image from a source image and DICOM metadata.

Parameters

	src
	
The source raster image stored in an ORDImage object.

	metadata
	
DICOM metadata stored in data type XMLType. The metadata must include all the standard and private attributes. It must include a new SOP instance UID for the destination DICOM image, ensuring that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the DICOM image created from the source image and metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Create a DICOM image from a source ORDImage object and DICOM metadata:

declare
 src ordimage;
 dest blob;
 metadata xmltype;
begin
 metadata := xmltype(bfilename('DICOMDIR', 'wm_meta.xml'),
 nls_charset_id('AL32UTF8'),
 'http://xmlns.oracle.com/ord/dicom/metadata_1_0');

 select image_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;

 ord_dicom.createDicomImage(src, metadata, dest);
end;
/

export()

Format

export(src IN BLOB, dest_type IN VARCHAR2, dest_location IN VARCHAR2, dest_name IN VARCHAR2)

Description

Exports DICOM content in a BLOB to a specified destination. The data remains in the source BLOB when it is copied to the destination.

Parameters

	src
	
The source location of the DICOM content.

	dest_type
	
The type of the destination (only 'FILE' is supported).

	dest_location
	
The location of the destination (must be a valid Oracle directory object).

	dest_name
	
The name of the destination file.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Export DICOM content from a BLOB to a specified file:

declare
 src blob;
begin
 select blob_src into src from medical_image_rel where id = 1;
 ord_dicom.export(src, 'FILE', 'DICOMDIR', 'exported.dcm');
end;
/

importFrom()

Format

importFrom(dest IN OUT NOCOPY BLOB, source_type IN VARCHAR2, source_location IN VARCHAR2, source_name IN VARCHAR2)

Description

Imports DICOM content from a specified source into a BLOB.

Parameters

	dest
	
The storage destination of the imported DICOM file.

	source_type
	
The type of the source (only 'FILE' is supported).

	source_location
	
The location of the source (must be a valid Oracle directory object).

	source_name
	
The name of the source file.

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Import the DICOM content into a BLOB:

declare
 dest blob;
begin
 select blob_dest into dest from medical_image_rel where id = 1 for update;
 ord_dicom.importFrom(dest, 'file', 'DICOMDIR', 'example.dcm');
end;
/

makeAnonymous() for BFILEs

Format

makeAnonymous (src IN BFILE, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml')

Description

Removes patient identifying information from the source DICOM content after copying it into another DICOM content BLOB, based on a specified anonymity document.

Parameters

	src
	
The input DICOM content stored in a BFILE.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM content. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the anonymous DICOM content.

	anonymityDocName
	
The name of the anonymity document. The default name is "ordcman.xml".

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Remove patient identifying information from the embedded DICOM content stored in a BFILE:

declare
 src bfile;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select bfile_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.makeAnonymous(src, dest_sop_instance_uid, dest, 'ordcman.xml');
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

makeAnonymous() for BLOBs

Format

makeAnonymous (src IN BLOB, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml')

Description

Removes patient identifying information from the source DICOM content after copying it into another DICOM content BLOB, based on a specified anonymity document.

Parameters

	src
	
The input DICOM content stored in a BLOB.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM content. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the anonymous DICOM content.

	anonymityDocName
	
The name of the anonymity document. The default name is "ordcman.xml".

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Remove patient identifying information from the embedded DICOM content stored in a BLOB:

declare
 src blob;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select blob_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.makeAnonymous(src, dest_sop_instance_uid, dest, 'ordcman.xml');
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

makeAnonymous() for ORDImage

Format

makeAnonymous (src IN ORDSYS.ORDImage, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, anonymityDocName IN VARCHAR2 DEFAULT 'ordcman.xml')

Description

Removes patient identifying information from the source DICOM content after copying it into another DICOM content BLOB, based on a specified anonymity document.

Parameters

	src
	
The input DICOM content stored in an ORDImage object.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM content. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the anonymous DICOM content.

	anonymityDocName
	
The name of the anonymity document. The default name is "ordcman.xml".

Pragmas

None.

Exceptions

None.

Usage Notes

None.

Examples

Remove patient identifying information from the embedded DICOM content stored in an ORDImage object:

declare
 src ordimage;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select image_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.makeAnonymous(src, dest_sop_instance_uid, dest, 'ordcman.xml');
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

processCopy() for BFILEs

Format

processCopy (src IN BFILE, command IN VARCHAR2, dest IN OUT NOCOPY BLOB)

Description

Processes and copies the input DICOM image into a new raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source BFILE.

	command
	
A command string that accepts an image processing operator as input. Valid values include: fileFormat, frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest
	
An empty BLOB in which to store the destination image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from a BFILE into a BLOB and then process it:

declare
 src bfile;
 dest blob;
begin
 select bfile_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(src, 'fileFormat=jpeg maxScale=100 100', dest);
end;
/

processCopy() for BLOBs

Format

processCopy (src IN BLOB, command IN VARCHAR2, dest IN OUT NOCOPY BLOB)

Description

Processes and copies the input DICOM image into a new raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source BLOB.

	command
	
A command string that accepts an image processing operator as input. Valid values include: fileFormat, frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest
	
An empty BLOB in which to store the destination image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from a BLOB into another BLOB and then process it:

 src blob;
 dest blob;
begin
 select blob_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(src, 'fileFormat=jpeg maxScale=100 100' dest);
end;
/

processCopy() for ORDImage

Format

processCopy (src IN ORDSYS.ORDImage, command IN VARCHAR2, dest IN OUT NOCOPY BLOB)

Description

Processes and copies the input DICOM image into a new raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source ORDImage object.

	command
	
A command string that accepts an image processing operator as input. Valid values include: fileFormat, frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest
	
An empty BLOB in which to store the destination image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from an ORDImage object into a BLOB and then process it:

declare
 src ordimage;
 dest blob;
begin
 select image_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(src, 'fileFormat=jpeg maxScale=100 100' dest);
end;
/

processCopy() for BFILEs with SOP instance UID

Format

processCopy (src IN BFILE, command IN VARCHAR2, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, metadata IN SYS.XMLTYPE DEFAULT NULL)

Description

Processes and copies the input DICOM image into a new DICOM image or raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source BFILE.

	command
	
A command string that accepts an image processing operator as input. Valid values include: frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM image. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the destination image.

	metadata
	
The new metadata to be written into the new DICOM image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from a BFILE into a BLOB with a specified SOP instance UID and then process it:

 src bfile;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select bfile_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(
 src, 'CompressionFormat=jpeg', dest_sop_instance_uid, dest);
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

processCopy() for BLOBs with SOP instance UID

Format

processCopy (src IN BLOB, command IN VARCHAR2, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, metadata IN SYS.XMLTYPE DEFAULT NULL)

Description

Processes and copies the input DICOM image into a new DICOM image or raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source BLOB.

	command
	
A command string that accepts an image processing operator as input. Valid values include: frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM image. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the destination image.

	metadata
	
The new metadata to be written into the new DICOM image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from a BLOB into another BLOB with a specified SOP instance UID and then process it:

declare
 src blob;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select blob_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(
 src, 'CompressionFormat=jpeg', dest_sop_instance_uid, dest);
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

processCopy() for ORDImage with SOP instance UID

Format

processCopy (src IN ORDSYS.ORDImage, command IN VARCHAR2, dest_sop_instance_uid IN VARCHAR2, dest IN OUT NOCOPY BLOB, metadata IN SYS.XMLTYPE DEFAULT NULL)

Description

Processes and copies the input DICOM image into a new DICOM image or raster image. The input DICOM image remains unchanged.

Parameters

	src
	
The input DICOM image stored in the source ORDImage object.

	command
	
A command string that accepts an image processing operator as input. Valid values include: frame, contentFormat, compressionFormat, cut, scale, and rotate. See the description for the process() method in Oracle Multimedia Reference for a complete list of image processing operators and details on each operator.

	dest_sop_instance_uid
	
The SOP instance UID of the destination DICOM image. It must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the destination image.

	metadata
	
The new metadata to be written into the new DICOM image.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support image content processing.

Examples

Copy the DICOM image from an ORDImage object into a BLOB with a specified SOP instance UID and then process it:

declare
 src ordimage;
 dest blob;
 dest_sop_instance_uid varchar2(128) := '<unique-UID>';
begin
 select image_src, blob_dest into src, dest from medical_image_rel
 where id = 1 for update;
 ord_dicom.processCopy(
 src, 'CompressionFormat=jpeg', dest_sop_instance_uid, dest);
end;
/

where:

	
<unique-UID>: a 64-byte, dot-concatenated, numeric string that represents a globally unique identifier for DICOM content worldwide. The UID is commonly constructed with a root that uniquely identifies the organization producing the DICOM content, and a suffix that uniquely identifies the DICOM content within that organization.

writeMetadata() for BFILEs

Format

writeMetadata (src IN BFILE, metadata IN SYS.XMLTYPE, dest IN OUT NOCOPY BLOB),

Description

Writes or modifies the current DICOM content with the metadata provided by making a copy of the existing DICOM content in the destination BLOB, and then modifying the metadata. The original DICOM content remains unchanged. The attributes in the destination DICOM content are copied from the metadata that was input.

Parameters

	src
	
The input DICOM content stored in a BFILE.

	metadata
	
The input metadata stored in data type XMLType. In the destination DICOM content, the input metadata is used to update the values for attributes that are identical to attributes in the source DICOM content or to add any new attributes. The metadata must conform to the default metadata schema with the namespace http://xmlns.oracle.com/ord/dicom/metadata_1_0. The SOP instance UID in the metadata must ensure that the destination DICOM content is globally unique.

	dest
	
An empty BLOB in which to store the new DICOM content with the new metadata.

Pragmas

None.

Exceptions

None.

Usage Notes

See Appendix C for information about the encoding rules that support metadata extraction.

Examples

Write the new metadata to the copy of the DICOM content in the destination BLOB:

declare
 src bfile;
 dest blob;
 metadata xmltype;
begin
 metadata := xmltype(bfilen