
[image: Oracle Corporation]

Oracle® Database

PL/SQL Packages and Types Reference

11g Release 1 (11.1)

B28419-03

April 2008

Oracle Database PL/SQL Packages and Types Reference, 11g Release 1 (11.1)

B28419-03

Copyright © 1996, 2008, Oracle. All rights reserved.

Primary Author: Denis Raphaely

Contributing Author: Lance Ashdown, Donna Carver, Beethoven Cheng, Rhonda Day, Steve Fogel, Bryn Llewellyn, Paul Lane, Tony Morales, Chuck Murray, Sue Pelski, Kathy Rich, Antonio Romero, Vivian Schupmann, Cathy Shea, Margaret Taft, Kathy Taylor, Randy Urbano, Rodney Ward

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in PL/SQL Packages and Types Reference?

	Oracle Database 11g Release 1 (11.1)

1 Introduction to Oracle Supplied PL/SQL Packages & Types

	Package Overview
	Package Components
	Using Oracle Supplied Packages
	Creating New Packages
	Referencing Package Contents

	Summary of Oracle Supplied PL/SQL Packages and Types

2 APEX_CUSTOM_AUTH

	Documentation of APEX_CUSTOM_AUTH

3 APEX_APPLICATION

	Documentation of APEX_APPLICATION

4 APEX_ITEM

	Documentation of APEX_ITEM

5 APEX_UTIL

	Documentation of APEX_UTIL

6 CTX_ADM

	Documentation of CTX_ADM

7 CTX_CLS

	Documentation of CTX_CLS

8 CTX_DDL

	Documentation of CTX_DDL

9 CTX_DOC

	Documentation of CTX_DOC

10 CTX_OUTPUT

	Documentation of CTX_OUTPUT

11 CTX_QUERY

	Documentation of CTX_QUERY

12 CTX_REPORT

	Documentation of CTX_REPORT

13 CTX_THES

	Documentation of CTX_THES

14 CTX_ULEXER

	Documentation of CTX_ULEXER

15 DBMS_ADDM

	Using DBMS_ADDM
	Security Model

	Summary of DBMS_ADDM Subprograms
	ANALYZE_DB Procedure
	ANALYZE_INST Procedure
	ANALYZE_PARTIAL Procedure
	DELETE Procedure
	DELETE_FINDING_DIRECTIVE Procedure
	DELETE_PARAMETER_DIRECTIVE Procedure
	DELETE_SEGMENT_DIRECTIVE Procedure
	DELETE_SQL_DIRECTIVE Procedure
	GET_REPORT Function
	INSERT_FINDING_DIRECTIVE Procedure
	INSERT_PARAMETER_DIRECTIVE Procedure
	INSERT_SEGMENT_DIRECTIVE Procedure
	INSERT_SQL_DIRECTIVE Procedure

16 DBMS_ADVANCED_REWRITE

	Using DBMS_ADVANCED_REWRITE
	Security Model

	Summary of DBMS_ADVANCED_REWRITE Subprograms
	ALTER_REWRITE_EQUIVALENCE Procedure
	BUILD_SAFE_REWRITE_EQUIVALENCE Procedure
	DECLARE_REWRITE_EQUIVALENCE Procedures
	DROP_REWRITE_EQUIVALENCE Procedure
	VALIDATE_REWRITE_EQUIVALENCE Procedure

17 DBMS_ADVISOR

	Using DBMS_ADVISOR
	Security Model

	Summary of DBMS_ADVISOR Subprograms
	ADD_SQLWKLD_REF Procedure
	ADD_SQLWKLD_STATEMENT Procedure
	ADD_STS_REF Procedure
	CANCEL_TASK Procedure
	COPY_SQLWKLD_TO_STS Procedure
	CREATE_FILE Procedure
	CREATE_OBJECT Procedure
	CREATE_SQLWKLD Procedure
	CREATE_TASK Procedures
	DELETE_SQLWKLD Procedure
	DELETE_SQLWKLD_REF Procedure
	DELETE_SQLWKLD_STATEMENT Procedures
	DELETE_STS_REF Procedure
	DELETE_TASK Procedure
	EXECUTE_TASK Procedure
	GET_REC_ATTRIBUTES Procedure
	GET_TASK_REPORT Function
	GET_TASK_SCRIPT Function
	IMPLEMENT_TASK Procedure
	IMPORT_SQLWKLD_SCHEMA Procedure
	IMPORT_SQLWKLD_SQLCACHE Procedure
	IMPORT_SQLWKLD_STS Procedure
	IMPORT_SQLWKLD_SUMADV Procedure
	IMPORT_SQLWKLD_USER Procedure
	INTERRUPT_TASK Procedure
	MARK_RECOMMENDATION Procedure
	QUICK_TUNE Procedure
	RESET_SQLWKLD Procedure
	RESET_TASK Procedure
	SET_DEFAULT_SQLWKLD_PARAMETER Procedures
	SET_DEFAULT_TASK_PARAMETER Procedures
	SET_SQLWKLD_PARAMETER Procedures
	SET_TASK_PARAMETER Procedure
	TUNE_MVIEW Procedure
	UPDATE_OBJECT Procedure
	UPDATE_REC_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_ATTRIBUTES Procedure
	UPDATE_SQLWKLD_STATEMENT Procedure
	UPDATE_TASK_ATTRIBUTES Procedure

18 DBMS_ALERT

	Using DBMS_ALERT
	Overview
	Security Model
	Constants
	Restrictions
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ALERT Subprograms
	REGISTER Procedure
	REMOVE Procedure
	REMOVEALL Procedure
	SET_DEFAULTS Procedure
	SIGNAL Procedure
	WAITANY Procedure
	WAITONE Procedure

19 DBMS_APPLICATION_INFO

	Using DBMS_APPLICATION_INFO
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_APPLICATION_INFO Subprograms
	READ_CLIENT_INFO Procedure
	READ_MODULE Procedure
	SET_ACTION Procedure
	SET_CLIENT_INFO Procedure
	SET_MODULE Procedure
	SET_SESSION_LONGOPS Procedure

20 DBMS_APPLY_ADM

	Summary of DBMS_APPLY_ADM Subprograms
	ALTER_APPLY Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_APPLY Procedure
	CREATE_OBJECT_DEPENDENCY Procedure
	DELETE_ALL_ERRORS Procedure
	DELETE_ERROR Procedure
	DROP_APPLY Procedure
	DROP_OBJECT_DEPENDENCY Procedure
	EXECUTE_ALL_ERRORS Procedure
	EXECUTE_ERROR Procedure
	GET_ERROR_MESSAGE Function
	SET_DML_HANDLER Procedure
	SET_ENQUEUE_DESTINATION Procedure
	SET_EXECUTE Procedure
	SET_GLOBAL_INSTANTIATION_SCN Procedure
	SET_KEY_COLUMNS Procedures
	SET_PARAMETER Procedure
	SET_SCHEMA_INSTANTIATION_SCN Procedure
	SET_TABLE_INSTANTIATION_SCN Procedure
	SET_UPDATE_CONFLICT_HANDLER Procedure
	SET_VALUE_DEPENDENCY Procedure
	START_APPLY Procedure
	STOP_APPLY Procedure

21 DBMS_AQ

	Using DBMS_AQ
	Constants
	Data Structures
	Operational Notes

	Summary of DBMS_AQ Subprograms
	BIND_AGENT Procedure
	DEQUEUE Procedure
	DEQUEUE_ARRAY Function
	ENQUEUE Procedure
	ENQUEUE_ARRAY Function
	LISTEN Procedures
	POST Procedure
	REGISTER Procedure
	UNBIND_AGENT Procedure
	UNREGISTER Procedure

22 DBMS_AQADM

	Using DBMS_AQADM
	Constants

	Subprogram Groups
	Queue Table Subprograms
	Privilege Subprograms
	Queue Subprograms
	Subscriber Subprograms
	Notification Subprograms
	Propagation Subprograms
	Oracle Streams AQ Agent Subprograms
	Alias Subprograms

	Summary of DBMS_AQADM Subprograms
	ADD_ALIAS_TO_LDAP Procedure
	ADD_SUBSCRIBER Procedure
	ALTER_AQ_AGENT Procedure
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_QUEUE Procedure
	ALTER_QUEUE_TABLE Procedure
	ALTER_SUBSCRIBER Procedure
	CREATE_AQ_AGENT Procedure
	CREATE_NP_QUEUE Procedure
	CREATE_QUEUE Procedure
	CREATE_QUEUE_TABLE Procedure
	DEL_ALIAS_FROM_LDAP Procedure
	DISABLE_DB_ACCESS Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	DROP_AQ_AGENT Procedure
	DROP_QUEUE Procedure
	DROP_QUEUE_TABLE Procedure
	ENABLE_DB_ACCESS Procedure
	ENABLE_JMS_TYPES Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	GET_WATERMARK Procedure
	GRANT_QUEUE_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	MIGRATE_QUEUE_TABLE Procedure
	PURGE_QUEUE_TABLE Procedure
	QUEUE_SUBSCRIBERS Function
	REMOVE_SUBSCRIBER Procedure
	REVOKE_QUEUE_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure
	SCHEDULE_PROPAGATION Procedure
	SET_WATERMARK Procedure
	START_QUEUE Procedure
	STOP_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure
	VERIFY_QUEUE_TYPES Procedure

23 DBMS_AQELM

	Summary of DBMS_AQELM Subprograms
	SET_MAILHOST Procedure
	SET_MAILPORT Procedure
	SET_SENDFROM Procedure

24 DBMS_AQIN

	Using DBMS_AQIN
	Overview

25 DBMS_ASSERT

	Using DBMS_ASSERT
	Operational Notes

	Summary of DBMS_ASSERT Subprograms
	ENQUOTE_LITERAL Function
	ENQUOTE_NAME Function
	NOOP Functions
	QUALIFIED_SQL_NAME Function
	SCHEMA_NAME Function
	SIMPLE_SQL_NAME Function
	SQL_OBJECT_NAME Function

26 DBMS_AUTO_TASK_ADMIN

	Using DBMS_AUTO_TASK_ADMIN
	Constants

	Summary of DBMS_AUTO_TASK_ADMIN Subprograms
	DISABLE Procedures
	ENABLE Procedures
	GET_CLIENT_ATTRIBUTES Procedure
	GET_P1_RESOURCES Procedure
	OVERRIDE_PRIORITY Procedures
	SET_CLIENT_SERVICE Procedure
	SET_P1_RESOURCES Procedure

27 DBMS_AW_STATS

	Using DBMS_AW_STATS
	Summary of DBMS_AW_STATS Subprograms
	ANALYZE Procedure

28 DBMS_CAPTURE_ADM

	Summary of DBMS_CAPTURE_ADM Subprograms
	ABORT_GLOBAL_INSTANTIATION Procedure
	ABORT_SCHEMA_INSTANTIATION Procedure
	ABORT_SYNC_INSTANTIATION Procedure
	ABORT_TABLE_INSTANTIATION Procedure
	ALTER_CAPTURE Procedure
	ALTER_SYNC_CAPTURE Procedure
	BUILD Procedure
	CREATE_CAPTURE Procedure
	CREATE_SYNC_CAPTURE Procedure
	DROP_CAPTURE Procedure
	INCLUDE_EXTRA_ATTRIBUTE Procedure
	PREPARE_GLOBAL_INSTANTIATION Procedure
	PREPARE_SCHEMA_INSTANTIATION Procedure
	PREPARE_SYNC_INSTANTIATION Function
	PREPARE_TABLE_INSTANTIATION Procedure
	SET_PARAMETER Procedure
	START_CAPTURE Procedure
	STOP_CAPTURE Procedure

29 DBMS_CDC_PUBLISH

	Using DBMS_CDC_PUBLISH
	Overview
	Deprecated Subprograms
	Security Model
	Views

	Summary of DBMS_CDC_PUBLISH Subprograms
	ALTER_AUTOLOG_CHANGE_SOURCE Procedure
	ALTER_CHANGE_SET Procedure
	ALTER_CHANGE_TABLE Procedure
	ALTER_HOTLOG_CHANGE_SOURCE Procedure
	CREATE_AUTOLOG_CHANGE_SOURCE Procedure
	CREATE_CHANGE_SET Procedure
	CREATE_CHANGE_TABLE Procedure
	CREATE_HOTLOG_CHANGE_SOURCE Procedure
	DROP_CHANGE_SET Procedure
	DROP_CHANGE_SOURCE Procedure
	DROP_CHANGE_TABLE Procedure
	DROP_SUBSCRIPTION Procedure
	GET_DDLOPER Function
	PURGE Procedure
	PURGE_CHANGE_SET Procedure
	PURGE_CHANGE_TABLE Procedure

30 DBMS_CDC_SUBSCRIBE

	Using DBMS_CDC_SUBSCRIBE
	Overview
	Deprecated Subprograms
	Security Model
	Views

	Summary of DBMS_CDC_SUBSCRIBE Subprograms
	ACTIVATE_SUBSCRIPTION Procedure
	CREATE_SUBSCRIPTION Procedure
	DROP_SUBSCRIPTION Procedure
	EXTEND_WINDOW Procedure
	PURGE_WINDOW Procedure
	SUBSCRIBE Procedure

31 DBMS_COMPARISON

	Using DBMS_COMPARISON
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Data Structures
	COMPARISON_TYPE Record Type

	Summary of DBMS_COMPARISON Subprograms
	COMPARE Function
	CONVERGE Procedure
	CREATE_COMPARISON Procedure
	DROP_COMPARISON Procedure
	PURGE_COMPARISON Procedure
	RECHECK Function

32 DBMS_CONNECTION_POOL

	Summary of DBMS_CONNECTION_POOL Subprograms
	ALTER_PARAM Procedure
	CONFIGURE_POOL Procedure
	START_POOL Procedure
	STOP_POOL Procedure
	RESTORE_DEFAULTS Procedure

33 DBMS_CQ_NOTIFICATION

	Using DBMS_CQ_NOTIFICATION
	Overview
	Security Model
	Constants
	Operational Notes
	Examples

	Data Structures
	CQ_NOTIFICATION$_DESCRIPTOR Object Type
	CQ_NOTIFICATION$_QUERY Object Type
	CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_TABLE Object Type
	CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_ROW Object Type
	CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type
	CQ_NOTIFICATION$_REG_INFO Object Type

	Summary of DBMS_CQ_NOTIFICATION Subprograms
	CQ_NOTIFICATION_QUERYID Function
	DEREGISTER Procedure
	ENABLE_REG Procedure
	NEW_REG_START Function
	REG_END Procedure

34 DBMS_CRYPTO

	Using the DBMS_CRYPTO Subprograms
	Overview
	Security Model
	Types
	Algorithms
	Restrictions
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_CRYPTO Subprograms
	DECRYPT Function
	DECRYPT Procedures
	ENCRYPT Function
	ENCRYPT Procedures
	HASH Function
	MAC Function
	RANDOMBYTES Function
	RANDOMINTEGER Function
	RANDOMNUMBER Function

35 DBMS_CSX_ADMIN

	Using DBMS_CSX_ADMIN
	Overview
	Constants
	Examples

	Summary of DBMS_CSX_ADMIN
	COPYDEFAULTTOKENTABLESET Procedure
	GETTOKENTABLEINFO Procedure & Function
	GETTOKENTABLEINFOBYTABLESPACE Procedure
	NAMESPACEIDTABLE Function
	PATHIDTABLE Function
	QNAMEIDTABLE Function
	REGISTERTOKENTABLESET Procedure

36 DBMS_CUBE

	Using DBMS_CUBE
	Summary of DBMS_CUBE Subprograms
	BUILD Procedure
	IMPORT_XML Procedure
	VALIDATE_XML Procedure

37 DBMS_CUBE_ADVISE

	Summary of DBMS_CUBE_ADVISE Subprograms
	MV_CUBE_ADVICE Function
	SET_CNS_EXCEPTION_LOG Procedure
	TRACE Procedure

38 DBMS_DATA_MINING

	Using DBMS_DATA_MINING
	Overview
	Mining Model Objects
	Deprecated Subprograms
	Mining Functions
	Model Settings
	Data Types

	Summary of DBMS_DATA_MINING Subprograms
	ADD_COST_MATRIX Procedure
	ALTER_REVERSE_EXPRESSION Procedure
	APPLY Procedure
	COMPUTE_CONFUSION_MATRIX Procedure
	COMPUTE_LIFT Procedure
	COMPUTE_ROC Procedure
	CREATE_MODEL Procedure
	DROP_MODEL Procedure
	EXPORT_MODEL Procedure
	GET_ASSOCIATION_RULES Function
	GET_DEFAULT_SETTINGS Function
	GET_FREQUENT_ITEMSETS Function
	GET_MODEL_COST_MATRIX Function
	GET_MODEL_DETAILS_ABN Function
	GET_MODEL_DETAILS_AI Function
	GET_MODEL_DETAILS_GLM Function
	GET_MODEL_DETAILS_GLOBAL Function
	GET_MODEL_DETAILS_KM Function
	GET_MODEL_DETAILS_NB Function
	GET_MODEL_DETAILS_NMF Function
	GET_MODEL_DETAILS_OC Function
	GET_MODEL_DETAILS_SVM Function
	GET_MODEL_DETAILS_XML Function
	GET_MODEL_SETTINGS Function
	GET_MODEL_SIGNATURE Function
	GET_MODEL_TRANSFORMATIONS Function
	GET_TRANSFORM_LIST Procedure
	IMPORT_MODEL Procedure
	RANK_APPLY Procedure
	REMOVE_COST_MATRIX Procedure
	RENAME_MODEL Procedure

39 DBMS_DATA_MINING_TRANSFORM

	Using DBMS_DATA_MINING_TRANSFORM
	Data Transformation with Oracle Data Mining
	Types of Transformations
	The DBMS_DATA_MINING_TRANSFORM Framework
	Data Types

	Summary of DBMS_DATA_MINING_TRANSFORM Subprograms
	CREATE_BIN_CAT Procedure
	CREATE_BIN_NUM Procedure
	CREATE_CLIP Procedure
	CREATE_COL_REM Procedure
	CREATE_MISS_CAT Procedure
	CREATE_MISS_NUM Procedure
	CREATE_NORM_LIN Procedure
	DESCRIBE_STACK Procedure
	GET_EXPRESSION Function
	INSERT_AUTOBIN_NUM_EQWIDTH Procedure
	INSERT_BIN_CAT_FREQ Procedure
	INSERT_BIN_NUM_EQWIDTH Procedure
	INSERT_BIN_NUM_QTILE Procedure
	INSERT_BIN_SUPER Procedure
	INSERT_CLIP_TRIM_TAIL Procedure
	INSERT_CLIP_WINSOR_TAIL Procedure
	INSERT_MISS_CAT_MODE Procedure
	INSERT_MISS_NUM_MEAN Procedure
	INSERT_NORM_LIN_MINMAX Procedure
	INSERT_NORM_LIN_SCALE Procedure
	INSERT_NORM_LIN_ZSCORE Procedure
	SET_EXPRESSION Procedure
	SET_TRANSFORM Procedure
	STACK_BIN_CAT Procedure
	STACK_BIN_NUM Procedure
	STACK_CLIP Procedure
	STACK_COL_REM Procedure
	STACK_MISS_CAT Procedure
	STACK_MISS_NUM Procedure
	STACK_NORM_LIN Procedure
	XFORM_BIN_CAT Procedure
	XFORM_BIN_NUM Procedure
	XFORM_CLIP Procedure
	XFORM_COL_REM Procedure
	XFORM_EXPR_NUM Procedure
	XFORM_EXPR_STR Procedure
	XFORM_MISS_CAT Procedure
	XFORM_MISS_NUM Procedure
	XFORM_NORM_LIN Procedure
	XFORM_STACK Procedure

40 DBMS_DATAPUMP

	Using DBMS_DATAPUMP
	Overview
	Security Model
	Constants

	Data Structures
	Data Structures - Object Types

	Summary of DBMS_DATAPUMP Subprograms
	ADD_FILE Procedure
	ATTACH Function
	DATA_FILTER Procedures
	DATA_REMAP Procedure
	DETACH Procedure
	GET_DUMPFILE_INFO Procedure
	GET_STATUS Procedure
	LOG_ENTRY Procedure
	METADATA_FILTER Procedure
	METADATA_REMAP Procedure
	METADATA_TRANSFORM Procedure
	OPEN Function
	SET_PARALLEL Procedure
	SET_PARAMETER Procedures
	START_JOB Procedure
	STOP_JOB Procedure
	WAIT_FOR_JOB Procedure

41 DBMS_DB_VERSION

	Using DBMS_DB_VERSION
	Overview
	Constants
	Examples

42 DBMS_DDL

	Using DBMS_DDL
	Deprecated Subprograms
	Security Model
	Operational Notes

	Summary of DBMS_DDL Subprograms
	ALTER_COMPILE Procedure
	ALTER_TABLE_NOT_REFERENCEABLE Procedure
	ALTER_TABLE_REFERENCEABLE Procedure
	CREATE_WRAPPED Procedures
	IS_TRIGGER_FIRE_ONCE Function
	SET_TRIGGER_FIRING_PROPERTY Procedure
	WRAP Functions

43 DBMS_DEBUG

	Using DBMS_DEBUG
	Overview
	Constants
	Variables
	Exceptions
	Operational Notes

	Data Structures
	BREAKPOINT_INFO Record Type
	PROGRAM_INFO Record Type
	RUNTIME_INFO Record Type
	BACKTRACE_TABLE Table Type
	BREAKPOINT_TABLE Table Type
	INDEX_TABLE Table Type
	VC2_TABLE Table Type

	Summary of DBMS_DEBUG Subprograms
	ATTACH_SESSION Procedure
	CONTINUE Function
	DEBUG_OFF Procedure
	DEBUG_ON Procedure
	DELETE_BREAKPOINT Function
	DELETE_OER_BREAKPOINT Function
	DETACH_SESSION Procedure
	DISABLE_BREAKPOINT Function
	ENABLE_BREAKPOINT Function
	EXECUTE Procedure
	GET_INDEXES Function
	GET_MORE_SOURCE Procedure
	GET_LINE_MAP Function
	GET_RUNTIME_INFO Function
	GET_TIMEOUT_BEHAVIOUR Function
	GET_VALUE Function
	INITIALIZE Function
	PING Procedure
	PRINT_BACKTRACE Procedure
	PRINT_INSTANTIATIONS Procedure
	PROBE_VERSION Procedure
	SELF_CHECK Procedure
	SET_BREAKPOINT Function
	SET_OER_BREAKPOINT Function
	SET_TIMEOUT Function
	SET_TIMEOUT_BEHAVIOUR Procedure
	SET_VALUE Function
	SHOW_BREAKPOINTS Procedures
	SHOW_FRAME_SOURCE Procedure
	SHOW_SOURCE Procedures
	SYNCHRONIZE Function
	TARGET_PROGRAM_RUNNING Procedure

44 DBMS_DEFER

	Documentation of DBMS_DEFER

45 DBMS_DEFER_QUERY

	Documentation of DBMS_DEFER_QUERY

46 DBMS_DEFER_SYS

	Documentation of DBMS_DEFER_SYS

47 DBMS_DESCRIBE

	Using DBMS_DESCRIBE
	Overview
	Security Model
	Types
	Exceptions
	Examples

	Summary of DBMS_DESCRIBE Subprograms
	DESCRIBE_PROCEDURE Procedure

48 DBMS_DG

	Using DBMS_DG
	Summary of the DBMS_DG Subprogram
	INITIATE_FS_FAILOVER Procedure

49 DBMS_DIMENSION

	Using DBMS_DIMENSION
	Security Model

	Summary of DBMS_DIMENSION Subprograms
	DESCRIBE_DIMENSION Procedure
	VALIDATE_DIMENSION Procedure

50 DBMS_DISTRIBUTED_TRUST_ADMIN

	Using DBMS_DISTRIBUTED_TRUST_ADMIN
	Overview
	Security Model
	Examples

	Summary of DBMS_DISTRIBUTED_TRUST_ADMIN Subprograms
	ALLOW_ALL Procedure
	ALLOW_SERVER Procedure
	DENY_ALL Procedure
	DENY_SERVER Procedure

51 DBMS_EPG

	Using DBMS_EPG
	Overview
	Security Model
	Exceptions

	Data Structures
	Subprogram Groups
	Configuration Subprograms
	Authorization Subprograms

	Summary of DBMS_EPG Subprograms
	AUTHORIZE_DAD Procedure
	CREATE_DAD Procedure
	DEAUTHORIZE_DAD Procedure
	DELETE_DAD_ATTRIBUTE Procedure
	DELETE_GLOBAL_ATTRIBUTE Procedure
	DROP_DAD Procedure
	GET_ALL_DAD_ATTRIBUTES Procedure
	GET_ALL_DAD_MAPPINGS Procedure
	GET_ALL_GLOBAL_ATTRIBUTES Procedure
	GET_DAD_ATTRIBUTE Function
	GET_DAD_LIST Procedure
	GET_GLOBAL_ATTRIBUTE Function
	MAP_DAD Procedure
	SET_DAD_ATTRIBUTE Procedure
	SET_GLOBAL_ATTRIBUTE Procedure
	UNMAP_DAD Procedure

52 DBMS_ERRLOG

	Using DBMS_ERRLOG
	Security Model

	Summary of DBMS_ERRLOG Subprograms
	CREATE_ERROR_LOG Procedure

53 DBMS_EXPFIL

	Summary of Expression Filter Subprograms
	ADD_ELEMENTARY_ATTRIBUTE Procedures
	ADD_FUNCTIONS Procedure
	ASSIGN_ATTRIBUTE_SET Procedure
	BUILD_EXCEPTIONS_TABLE Procedure
	CLEAR_EXPRSET_STATS Procedure
	COPY_ATTRIBUTE_SET Procedure
	CREATE_ATTRIBUTE_SET Procedure
	DEFAULT_INDEX_PARAMETERS Procedure
	DEFAULT_XPINDEX_PARAMETERS Procedure
	DEFRAG_INDEX Procedure
	DROP_ATTRIBUTE_SET Procedure
	GET_EXPRSET_STATS Procedure
	GRANT_PRIVILEGE Procedure
	INDEX_PARAMETERS Procedure
	MODIFY_OPERATOR_LIST Procedure
	REVOKE_PRIVILEGE Procedure
	SYNC_TEXT_INDEXES Procedure
	UNASSIGN_ATTRIBUTE_SET Procedure
	VALIDATE_EXPRESSIONS Procedure
	XPINDEX_PARAMETERS Procedure

54 DBMS_FGA

	Using DBMS_FGA
	Security Model
	Operational Notes

	Summary of DBMS_FGA Subprograms
	ADD_POLICY Procedure
	DISABLE_POLICY Procedure
	DROP_POLICY Procedure
	ENABLE_POLICY Procedure

55 DBMS_FILE_GROUP

	Using DBMS_FILE_GROUP
	Overview
	Constants

	Summary of DBMS_FILE_GROUP Subprograms
	ADD_FILE Procedure
	ALTER_FILE Procedure
	ALTER_FILE_GROUP Procedure
	ALTER_VERSION Procedure
	CREATE_FILE_GROUP Procedure
	CREATE_VERSION Procedure
	DROP_FILE_GROUP Procedure
	DROP_VERSION Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	PURGE_FILE_GROUP Procedure
	REMOVE_FILE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

56 DBMS_FILE_TRANSFER

	Using DBMS_FILE_TRANSFER
	Operating Notes

	Summary of DBMS_FILE_TRANSFER Subprograms
	COPY_FILE Procedure
	GET_FILE Procedure
	PUT_FILE Procedure

57 DBMS_FLASHBACK

	Using DBMS_FLASHBACK
	Overview
	Security Model
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_FLASHBACK Subprograms
	DISABLE Procedure
	ENABLE_AT_SYSTEM_CHANGE_NUMBER Procedure
	ENABLE_AT_TIME Procedure
	GET_SYSTEM_CHANGE_NUMBER Function
	TRANSACTION_BACKOUT Procedures

58 DBMS_FREQUENT_ITEMSET

	Summary of DBMS_FREQUENT_ITEMSET Subprograms
	FI_HORIZONTAL Function
	FI_TRANSACTIONAL Function

59 DBMS_HM

	Using DBMS_HM
	Security Model

	Summary of DBMS_HM Subprograms
	GET_RUN_REPORT Function
	RUN_CHECK Procedure

60 DBMS_HPROF

	Summary of DBMS_HPROF Subprograms
	ANALYZE Function
	START_PROFILING Procedure
	STOP_PROFILING Procedure

61 DBMS_HS_PARALLEL

	LOAD_TABLE
	Using LOAD_TABLE

	CREATE_TABLE_TEMPLATE
	CREATE_OR_REPLACE_VIEW
	Using CREATE_OR_REPLACE_VIEW

	DROP_VIEW

62 DBMS_HS_PASSTHROUGH

	Summary of DBMS_HS_PASSTHROUGH Subprograms
	BIND_INOUT_VARIABLE Procedure
	BIND_INOUT_VARIABLE_RAW Procedure
	BIND_OUT_VARIABLE Procedure
	BIND_OUT_VARIABLE_RAW Procedure
	BIND_VARIABLE Procedure
	BIND_VARIABLE_RAW Procedure
	CLOSE_CURSOR Procedure
	EXECUTE_IMMEDIATE Procedure
	EXECUTE_NON_QUERY Function
	FETCH_ROW Function
	GET_VALUE Procedure
	GET_VALUE_RAW Procedure
	OPEN_CURSOR Function
	PARSE Procedure

63 DBMS_JAVA

	Documentation of DBMS_JAVA

64 DBMS_IOT

	Summary of DBMS_IOT Subprograms
	BUILD_CHAIN_ROWS_TABLE Procedure
	BUILD_EXCEPTIONS_TABLE Procedure

65 DBMS_JOB

	Using DBMS_JOB
	Security Model
	Operational Notes

	Summary of DBMS_JOB Subprograms
	BROKEN Procedure
	CHANGE Procedure
	INSTANCE Procedure
	INTERVAL Procedure
	NEXT_DATE Procedure
	REMOVE Procedure
	RUN Procedure
	SUBMIT Procedure
	USER_EXPORT Procedures
	WHAT Procedure

66 DBMS_LDAP

	Documentation of DBMS_LDAP

67 DBMS_LDAP_UTL

	Documentation of DBMS_LDAP_UTL

68 DBMS_LIBCACHE

	Using DBMS_LIBCACHE
	Overview
	Security Model

	Summary of DBMS_LIBCACHE Subprograms
	COMPILE_FROM_REMOTE Procedure

69 DBMS_LOB

	Using DBMS_LOB
	Overview
	Security Model
	Constants
	Datatypes
	Rules and Limits
	Operational Notes
	Exceptions

	Summary of DBMS_LOB Subprograms
	APPEND Procedures
	CLOSE Procedure
	COMPARE Functions
	CONVERTTOBLOB Procedure
	CONVERTTOCLOB Procedure
	COPY Procedures
	CREATETEMPORARY Procedures
	ERASE Procedures
	FILECLOSE Procedure
	FILECLOSEALL Procedure
	FILEEXISTS Function
	FILEGETNAME Procedure
	FILEISOPEN Function
	FILEOPEN Procedure
	FRAGMENT_DELETE Procedure
	FRAGMENT_INSERT Procedures
	FRAGMENT_MOVE Procedure
	FRAGMENT_REPLACE Procedures
	FREETEMPORARY Procedures
	GET_STORAGE_LIMIT Function
	GETCHUNKSIZE Functions
	GETLENGTH Functions
	GETOPTIONS Functions
	INSTR Functions
	ISOPEN Functions
	ISTEMPORARY Functions
	LOADBLOBFROMFILE Procedure
	LOADCLOBFROMFILE Procedure
	LOADFROMFILE Procedure
	OPEN Procedures
	READ Procedures
	SETOPTIONS Procedures
	SUBSTR Functions
	TRIM Procedures
	WRITE Procedures
	WRITEAPPEND Procedures

70 DBMS_LOCK

	Using DBMS_LOCK
	Overview
	Security Model
	Constants
	Rules and Limits
	Operational Notes

	Summary of DBMS_LOCK Subprograms
	ALLOCATE_UNIQUE Procedure
	CONVERT Function
	RELEASE Function
	REQUEST Function
	SLEEP Procedure

71 DBMS_LOGMNR

	Using DBMS_LOGMNR
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Summary of DBMS_LOGMNR Subprograms
	ADD_LOGFILE Procedure
	COLUMN_PRESENT Function
	END_LOGMNR Procedure
	MINE_VALUE Function
	REMOVE_LOGFILE Procedure
	START_LOGMNR Procedure

72 DBMS_LOGMNR_D

	Using DBMS_LOGMNR_D
	Overview
	Security Model

	Summary of DBMS_LOGMNR_D Subprograms
	BUILD Procedure
	SET_TABLESPACE Procedure

73 DBMS_LOGSTDBY

	Using DBMS_LOGSTDBY
	Overview
	Operational Notes

	Summary of DBMS_LOGSTDBY Subprograms
	APPLY_SET Procedure
	APPLY_UNSET Procedure
	BUILD Procedure
	INSTANTIATE_TABLE Procedure
	IS_APPLY_SERVER Function
	MAP_PRIMARY_SCN Function
	PREPARE_FOR_NEW_PRIMARY Procedure
	PURGE_SESSION Procedure
	REBUILD Procedure
	SET_TABLESPACE Procedure
	SKIP Procedure
	SKIP_ERROR Procedure
	SKIP_TRANSACTION Procedure
	UNSKIP Procedure
	UNSKIP_ERROR Procedure
	UNSKIP_TRANSACTION Procedure

74 DBMS_METADATA

	Using DBMS_METADATA
	Overview
	Security Model
	Rules and Limits

	Data Structures - Object and Table Types
	Subprogram Groupings
	Subprograms for Retrieving Multiple Objects From the Database
	Subprograms for Submitting XML to the Database

	Summary of All DBMS_METADATA Subprograms
	ADD_TRANSFORM Function
	CLOSE Procedure
	CONVERT Functions and Procedures
	FETCH_xxx Functions and Procedures
	GET_xxx Functions
	GET_QUERY Function
	OPEN Function
	OPENW Function
	PUT Function
	SET_COUNT Procedure
	SET_FILTER Procedure
	SET_PARSE_ITEM Procedure
	SET_TRANSFORM_PARAM and SET_REMAP_PARAM Procedures

75 DBMS_MGD_ID_UTL

	Using DBMS_MGD_ID_UTL
	Constants
	Exceptions

	Summary of DBMS_MGD_ID_UTL Subprograms
	ADD_SCHEME Procedure
	CREATE_CATEGORY Function
	EPC_TO_ORACLE_SCHEME Function
	GET_CATEGORY_ID Function
	GET_COMPONENTS Function
	GET_ENCODINGS Function
	GET_JAVA_LOGGING_LEVEL Function
	GET_PLSQL_LOGGING_LEVEL Function
	GET_SCHEME_NAMES Function
	GET_TDT_XML Function
	GET_VALIDATOR Function
	REFRESH_CATEGORY Function
	REMOVE_CATEGORY Procedure
	REMOVE_PROXY Procedure
	REMOVE_SCHEME Procedure
	SET_JAVA_LOGGING_LEVEL Procedure
	SET_PLSQL_LOGGING_LEVEL Procedure
	SET_PROXY Procedure
	VALIDATE_SCHEME Function

76 DBMS_MGWADM

	Using DBMS_MGWADM
	Deprecated Subprograms
	Constants

	Data Structures
	SYS.MGW_MQSERIES_PROPERTIES Object Type
	SYS.MGW_PROPERTIES Object Type
	SYS.MGW_PROPERTY Object Type
	SYS.MGW_TIBRV_PROPERTIES Object Type

	Summary of DBMS_MGWADM Subprograms
	ADD_SUBSCRIBER Procedure
	ALTER_AGENT Procedures
	ALTER_JOB Procedure
	ALTER_MSGSYSTEM_LINK Procedure for TIB/Rendezvous
	ALTER_MSGSYSTEM_LINK Procedure for WebSphere MQ
	ALTER_PROPAGATION_SCHEDULE Procedure
	ALTER_SUBSCRIBER Procedure
	CLEANUP_GATEWAY Procedures
	CREATE_AGENT Procedure
	CREATE_JOB Procedure
	CREATE_MSGSYSTEM_LINK Procedures for TIB/Rendezvous
	CREATE_MSGSYSTEM_LINK Procedures for WebSphere MQ
	DB_CONNECT_INFO Procedure
	DISABLE_JOB Procedure
	DISABLE_PROPAGATION_SCHEDULE Procedure
	ENABLE_JOB Procedure
	ENABLE_PROPAGATION_SCHEDULE Procedure
	REGISTER_FOREIGN_QUEUE Procedure
	REMOVE_AGENT Procedure
	REMOVE_JOB Procedure
	REMOVE_MSGSYSTEM_LINK Procedure
	REMOVE_OPTION Procedure
	REMOVE_SUBSCRIBER Procedure
	RESET_JOB Procedure
	RESET_SUBSCRIBER Procedure
	SCHEDULE_PROPAGATION Procedure
	SET_LOG_LEVEL Procedures
	SET_OPTION Procedure
	SHUTDOWN Procedures
	STARTUP Procedures
	UNREGISTER_FOREIGN_QUEUE Procedure
	UNSCHEDULE_PROPAGATION Procedure

77 DBMS_MGWMSG

	Using DBMS_MGWMSG
	Security Model
	Constants
	Types

	Summary of DBMS_MGWMSG Subprograms
	LCR_TO_XML Function
	NVARRAY_ADD Procedure
	NVARRAY_FIND_NAME Function
	NVARRAY_FIND_NAME_TYPE Function
	NVARRAY_GET Function
	NVARRAY_GET_BOOLEAN Function
	NVARRAY_GET_BYTE Function
	NVARRAY_GET_DATE Function
	NVARRAY_GET_DOUBLE Function
	NVARRAY_GET_FLOAT Function
	NVARRAY_GET_INTEGER Function
	NVARRAY_GET_LONG Function
	NVARRAY_GET_RAW Function
	NVARRAY_GET_SHORT Function
	NVARRAY_GET_TEXT Function
	XML_TO_LCR Function

78 DBMS_MONITOR

	Summary of DBMS_MONITOR Subprograms
	CLIENT_ID_STAT_DISABLE Procedure
	CLIENT_ID_STAT_ENABLE Procedure
	CLIENT_ID_TRACE_DISABLE Procedure
	CLIENT_ID_TRACE_ENABLE Procedure
	DATABASE_TRACE_DISABLE Procedure
	DATABASE_TRACE_ENABLE Procedure
	SERV_MOD_ACT_STAT_DISABLE Procedure
	SERV_MOD_ACT_STAT_ENABLE Procedure
	SERV_MOD_ACT_TRACE_DISABLE Procedure
	SERV_MOD_ACT_TRACE_ENABLE Procedure
	SESSION_TRACE_DISABLE Procedure
	SESSION_TRACE_ENABLE Procedure

79 DBMS_MVIEW

	Using DBMS_MVIEW
	Operational Notes
	Rules and Limits

	Summary of DBMS_MVIEW Subprograms
	BEGIN_TABLE_REORGANIZATION Procedure
	END_TABLE_REORGANIZATION Procedure
	ESTIMATE_MVIEW_SIZE Procedure
	EXPLAIN_MVIEW Procedure
	EXPLAIN_REWRITE Procedure
	I_AM_A_REFRESH Function
	PMARKER Function
	PURGE_DIRECT_LOAD_LOG Procedure
	PURGE_LOG Procedure
	PURGE_MVIEW_FROM_LOG Procedure
	REFRESH Procedures
	REFRESH_ALL_MVIEWS Procedure
	REFRESH_DEPENDENT Procedures
	REGISTER_MVIEW Procedure
	UNREGISTER_MVIEW Procedure

80 DBMS_NETWORK_ACL_ADMIN

	Using DBMS_NETWORK_ACL_ADMIN
	Examples

	Summary of DBMS_NETWORK_ACL_ADMIN Subprograms
	ADD_PRIVILEGE Procedure
	ASSIGN_ACL Procedure
	CHECK_PRIVILEGE Function
	CHECK_PRIVILEGE_ACLID Function
	CREATE_ACL Procedure
	DELETE_PRIVILEGE Procedure
	DROP_ACL Procedure
	UNASSIGN_ACL Procedure

81 DBMS_NETWORK_ACL_UTILITY

	Using DBMS_NETWORK_ACL_UTILITY
	Examples

	Summary of DBMS_NETWORK_ACL_UTILITY Subprograms
	DOMAIN_LEVEL Function
	DOMAINS Function

82 DBMS_OBFUSCATION_TOOLKIT

	Using DBMS_OBFUSCATION_TOOLKIT
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_OBFUSCATION Subprograms
	DES3DECRYPT Procedures and Functions
	DES3ENCRYPT Procedures and Functions
	DES3GETKEY Procedures and Functions
	DESDECRYPT Procedures and Functions
	DESENCRYPT Procedures and Functions
	DESGETKEY Procedures and Functions
	MD5 Procedures and Functions

83 DBMS_ODCI

	Summary of DBMS_ODCI Subprograms
	ESTIMATE_CPU_UNITS Function

84 DBMS_OFFLINE_OG

	Documentation of DBMS_OFFLINE_OG

85 DBMS_OUTLN

	Using DBMS_OUTLN
	Overview
	Security Model

	Summary of DBMS_OUTLN Subprograms
	CLEAR_USED Procedure
	CREATE_OUTLINE Procedure
	DROP_BY_CAT Procedure
	DROP_UNUSED Procedure
	EXACT_TEXT_SIGNATURES Procedure
	UPDATE_BY_CAT Procedure
	UPDATE_SIGNATURES Procedure

86 DBMS_OUTPUT

	Using DBMS_OUTPUT
	Overview
	Security Model
	Operational Notes
	Exceptions
	Rules and Limits
	Examples

	Data Structures
	CHARARR Table Type
	DBMSOUTPUT_LINESARRAY Object Type

	Summary of DBMS_OUTPUT Subprograms
	DISABLE Procedure
	ENABLE Procedure
	GET_LINE Procedure
	GET_LINES Procedure
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure

87 DBMS_PCLXUTIL

	Using DBMS_PCLXUTIL
	Overview
	Operational Notes
	Rules and Limits

	Summary of DBMS_PCLXUTIL Subprograms
	BUILD_PART_INDEX Procedure

88 DBMS_PIPE

	Using DBMS_PIPE
	Overview
	Security Model
	Constants
	Operational Notes
	Exceptions
	Examples

	Summary of DBMS_PIPE Subprograms
	CREATE_PIPE Function
	NEXT_ITEM_TYPE Function
	PACK_MESSAGE Procedures
	PURGE Procedure
	RECEIVE_MESSAGE Function
	RESET_BUFFER Procedure
	REMOVE_PIPE Function
	SEND_MESSAGE Function
	UNIQUE_SESSION_NAME Function
	UNPACK_MESSAGE Procedures

89 DBMS_PREDICTIVE_ANALYTICS

	Using DBMS_PREDICTIVE_ANALYTICS
	Overview

	Summary of DBMS_PREDICTIVE_ANALYTICS Subprograms
	EXPLAIN Procedure
	PREDICT Procedure
	PROFILE Procedure

90 DBMS_PREPROCESSOR

	Using DBMS_PREPROCESSOR
	Overview
	Operating Notes

	Data Structures
	SOURCE_LINES_T Table Type

	Summary of DBMS_PREPROCESSOR Subprograms
	GET_POST_PROCESSED_SOURCE Functions
	PRINT_POST_PROCESSED_SOURCE Procedures

91 DBMS_PROFILER

	Using DBMS_PROFILER
	Overview
	Security Model
	Operational Notes
	Exceptions

	Summary of DBMS_PROFILER Subprograms
	FLUSH_DATA Function and Procedure
	GET_VERSION Procedure
	INTERNAL_VERSION_CHECK Function
	PAUSE_PROFILER Function and Procedure
	RESUME_PROFILER Function and Procedure
	START_PROFILER Functions and Procedures
	STOP_PROFILER Function and Procedure

92 DBMS_PROPAGATION_ADM

	Summary of DBMS_PROPAGATION_ADM Subprograms
	ALTER_PROPAGATION Procedure
	CREATE_PROPAGATION Procedure
	DROP_PROPAGATION Procedure
	START_PROPAGATION Procedure
	STOP_PROPAGATION Procedure

93 DBMS_RANDOM

	Using DBMS_RANDOM
	Security Model
	Operational Notes

	Summary of DBMS_RANDOM Subprograms
	INITIALIZE Procedure
	NORMAL Function
	RANDOM Procedure
	SEED Procedures
	STRING Function
	TERMINATE Procedure
	VALUE Functions

94 DBMS_RECTIFIER_DIFF

	Documentation of DBMS_RECTIFIER_DIFF

95 DBMS_REDEFINITION

	Using DBMS_REDEFINITION
	Overview
	Constants
	Operational Notes
	Rules and Limits

	Summary of DBMS_REDEFINITION Subprograms
	ABORT_REDEF_TABLE Procedure
	CAN_REDEF_TABLE Procedure
	COPY_TABLE_DEPENDENTS Procedure
	FINISH_REDEF_TABLE Procedure
	REGISTER_DEPENDENT_OBJECT Procedure
	START_REDEF_TABLE Procedure
	SYNC_INTERIM_TABLE Procedure
	UNREGISTER_DEPENDENT_OBJECT Procedure

96 DBMS_REFRESH

	Documentation of DBMS_REFRESH

97 DBMS_REPAIR

	Using DBMS_REPAIR
	Overview
	Security Model
	Constants
	Operating Notes
	Exceptions
	Examples

	Summary of DBMS_REPAIR Subprograms
	ADMIN_TABLES Procedure
	CHECK_OBJECT Procedure
	DUMP_ORPHAN_KEYS Procedure
	FIX_CORRUPT_BLOCKS Procedure
	ONLINE_INDEX_CLEAN Function
	REBUILD_FREELISTS Procedure
	SEGMENT_FIX_STATUS Procedure
	SKIP_CORRUPT_BLOCKS Procedure

98 DBMS_REPCAT

	Documentation of DBMS_REPCAT

99 DBMS_REPCAT_ADMIN

	Documentation of DBMS_REPCAT_ADMIN

100 DBMS_REPCAT_INSTANTIATE

	Documentation of DBMS_REPCAT_INSTANTIATE

101 DBMS_REPORT

	Using DBMS_REPORT
	Security Model
	Views

	Summary of DBMS_REPORT Subprograms
	FORMAT_REPORT Function
	GET_REPORT Function

102 DBMS_REPCAT_RGT

	Documentation of DBMS_REPCAT_RGT

103 DBMS_REPUTIL

	Documentation of DBMS_REPUTIL

104 DBMS_RESCONFIG

	Using DBMS_RESCONFIG
	Overview

	Summary of DBMS_RESCONFIG Subprograms
	ADDREPOSITORYRESCONFIG Procedure
	ADDRESCONFIG Procedure
	APPENDRESCONFIG Procedure
	DELETEREPOSITORYRESCONFIG Procedure
	DELETERESCONFIG Procedures
	GETLISTENERS Function
	GETREPOSITORYRESCONFIG Function
	GETREPOSITORYRESCONFIGPATHS Function
	GETRESCONFIG Function
	GETRESCONFIGPATHS Function

105 DBMS_RESOURCE_MANAGER

	Using DBMS_RESOURCE_MANAGER
	Deprecated Subprograms
	Security Model
	Constants

	Summary of DBMS_RESOURCE_MANAGER Subprograms
	CALIBRATE_IO Procedure
	CLEAR_PENDING_AREA Procedure
	CREATE_CONSUMER_GROUP Procedure
	CREATE_PENDING_AREA Procedure
	CREATE_PLAN Procedure
	CREATE_PLAN_DIRECTIVE Procedure
	CREATE_SIMPLE_PLAN Procedure
	DELETE_CONSUMER_GROUP Procedure
	DELETE_PLAN Procedure
	DELETE_PLAN_CASCADE Procedure
	DELETE_PLAN_DIRECTIVE Procedure
	SET_CONSUMER_GROUP_MAPPING Procedure
	SET_CONSUMER_GROUP_MAPPING_PRI Procedure
	SET_INITIAL_CONSUMER_GROUP Procedure
	SUBMIT_PENDING_AREA Procedure
	SWITCH_CONSUMER_GROUP_FOR_SESS Procedure
	SWITCH_CONSUMER_GROUP_FOR_USER Procedure
	SWITCH_PLAN Procedure
	UPDATE_CONSUMER_GROUP Procedure
	UPDATE_PLAN Procedure
	UPDATE_PLAN_DIRECTIVE Procedure
	VALIDATE_PENDING_AREA Procedure

106 DBMS_RESOURCE_MANAGER_PRIVS

	Summary of DBMS_RESOURCE_MANAGER_PRIVS Subprograms
	GRANT_SWITCH_CONSUMER_GROUP Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REVOKE_SWITCH_CONSUMER_GROUP Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

107 DBMS_RESULT_CACHE

	Using DBMS_RESULT_CACHE
	Constants

	Summary of DBMS_RESULT_CACHE Subprograms
	BYPASS Procedure
	FLUSH Function & Procedure
	INVALIDATE Functions & Procedures
	INVALIDATE_OBJECT Functions & Procedures
	MEMORY_REPORT Procedure
	STATUS Function

108 DBMS_RESUMABLE

	Using DBMS_RESUMABLE
	Operational Notes

	Summary of DBMS_RESUMABLE Subprograms
	ABORT Procedure
	GET_SESSION_TIMEOUT Function
	GET_TIMEOUT Function
	SET_SESSION_TIMEOUT Procedure
	SET_TIMEOUT Procedure
	SPACE_ERROR_INFO Function

109 DBMS_RLMGR

	Summary of Rules Manager Subprograms
	ADD_ELEMENTARY_ATTRIBUTE Procedures
	ADD_EVENT Procedures
	ADD_FUNCTIONS Procedure
	ADD_RULE Procedure
	CONDITION_REF Function
	CONSUME_EVENT Function
	CONSUME_PRIM_EVENTS Function
	CREATE_CONDITIONS_TABLE Procedure
	CREATE_EVENT_STRUCT Procedure
	CREATE_EXPFIL_INDEXES Procedure
	CREATE_INTERFACE Procedure
	CREATE_RULE_CLASS Procedure
	DELETE_RULE Procedure
	DROP_CONDITIONS_TABLE Procedure
	DROP_EVENT_STRUCT Procedure
	DROP_EXPFIL_INDEXES Procedure
	DROP_INTERFACE Procedure
	DROP_RULE_CLASS Procedure
	EXTEND_EVENT_STRUCT Procedure
	GET_AGGREGATE_VALUE Function
	GRANT_PRIVILEGE Procedure
	PROCESS_RULES Procedure
	PURGE_EVENTS Procedure
	RESET_SESSION Procedure
	REVOKE_PRIVILEGE Procedure
	SYNC_TEXT_INDEXES Procedure

110 DBMS_RLS

	Using DBMS_RLS
	Overview
	Security Model
	Operational Notes

	Summary of DBMS_RLS Subprograms
	ADD_GROUPED_POLICY Procedure
	ADD_POLICY Procedure
	ADD_POLICY_CONTEXT Procedure
	CREATE_POLICY_GROUP Procedure
	DELETE_POLICY_GROUP Procedure
	DISABLE_GROUPED_POLICY Procedure
	DROP_GROUPED_POLICY Procedure
	DROP_POLICY Procedure
	DROP_POLICY_CONTEXT Procedure
	ENABLE_GROUPED_POLICY Procedure
	ENABLE_POLICY Procedure
	REFRESH_GROUPED_POLICY Procedure
	REFRESH_POLICY Procedure

111 DBMS_ROWID

	Using DBMS_ROWID
	Security Model
	Types
	Exceptions
	Operational Notes
	Examples

	Summary of DBMS_ROWID Subprograms
	ROWID_BLOCK_NUMBER Function
	ROWID_CREATE Function
	ROWID_INFO Procedure
	ROWID_OBJECT Function
	ROWID_RELATIVE_FNO Function
	ROWID_ROW_NUMBER Function
	ROWID_TO_ABSOLUTE_FNO Function
	ROWID_TO_EXTENDED Function
	ROWID_TO_RESTRICTED Function
	ROWID_TYPE Function
	ROWID_VERIFY Function

112 DBMS_RULE

	Using DBMS_RULE
	Security Model

	Summary of DBMS_RULE Subprograms
	CLOSE_ITERATOR Procedure
	EVALUATE Procedures
	GET_NEXT_HIT Function

113 DBMS_RULE_ADM

	Using DBMS_RULE_ADM
	Security Model

	Summary of DBMS_RULE_ADM Subprograms
	ADD_RULE Procedure
	ALTER_EVALUATION_CONTEXT Procedure
	ALTER_RULE Procedure
	CREATE_EVALUATION_CONTEXT Procedure
	CREATE_RULE Procedure
	CREATE_RULE_SET Procedure
	DROP_EVALUATION_CONTEXT Procedure
	DROP_RULE Procedure
	DROP_RULE_SET Procedure
	GRANT_OBJECT_PRIVILEGE Procedure
	GRANT_SYSTEM_PRIVILEGE Procedure
	REMOVE_RULE Procedure
	REVOKE_OBJECT_PRIVILEGE Procedure
	REVOKE_SYSTEM_PRIVILEGE Procedure

114 DBMS_SCHEDULER

	Data Structures
	JOBARG Object Type
	JOBARG_ARRAY Table Type
	JOB Object Type
	JOB_ARRAY Table Type
	JOBATTR Object Type
	JOBATTR_ARRAY Table Type
	SCHEDULER$_STEP_TYPE Object Type
	SCHEDULER$_STEP_TYPE_LIST Table Type

	Using DBMS_SCHEDULER
	Rules and Limits
	Operational Notes

	Summary of DBMS_SCHEDULER Subprograms
	ADD_EVENT_QUEUE_SUBSCRIBER Procedure
	ADD_WINDOW_GROUP_MEMBER Procedure
	ALTER_CHAIN Procedure
	ALTER_RUNNING_CHAIN Procedure
	CLOSE_WINDOW Procedure
	COPY_JOB Procedure
	CREATE_CHAIN Procedure
	CREATE_CREDENTIAL Procedure
	CREATE_EVENT_SCHEDULE Procedure
	CREATE_JOB Procedure
	CREATE_JOB_CLASS Procedure
	CREATE_JOBS Procedure
	CREATE_PROGRAM Procedure
	CREATE_SCHEDULE Procedure
	CREATE_WINDOW Procedure
	CREATE_WINDOW_GROUP Procedure
	DEFINE_ANYDATA_ARGUMENT Procedure
	DEFINE_CHAIN_EVENT_STEP Procedure
	DEFINE_CHAIN_RULE Procedure
	DEFINE_CHAIN_STEP Procedure
	DEFINE_METADATA_ARGUMENT Procedure
	DEFINE_PROGRAM_ARGUMENT Procedure
	DISABLE Procedure
	DROP_CHAIN Procedure
	DROP_CHAIN_RULE Procedure
	DROP_CHAIN_STEP Procedure
	DROP_CREDENTIAL Procedure
	DROP_JOB Procedure
	DROP_JOB_CLASS Procedure
	DROP_PROGRAM Procedure
	DROP_PROGRAM_ARGUMENT Procedure
	DROP_SCHEDULE Procedure
	DROP_WINDOW Procedure
	DROP_WINDOW_GROUP Procedure
	ENABLE Procedure
	END_DETACHED_JOB_RUN Procedure
	EVALUATE_CALENDAR_STRING Procedure
	EVALUATE_RUNNING_CHAIN Procedure
	GENERATE_JOB_NAME Function
	GET_ATTRIBUTE Procedure
	GET_FILE Procedure
	GET_SCHEDULER_ATTRIBUTE Procedure
	OPEN_WINDOW Procedure
	PURGE_LOG Procedure
	PUT_FILE Procedure
	REMOVE_EVENT_QUEUE_SUBSCRIBER Procedure
	REMOVE_WINDOW_GROUP_MEMBER Procedure
	RESET_JOB_ARGUMENT_VALUE Procedure
	RUN_CHAIN Procedure
	RUN_JOB Procedure
	SET_AGENT_REGISTRATION_PASS Procedure
	SET_ATTRIBUTE Procedure
	SET_ATTRIBUTE_NULL Procedure
	SET_JOB_ANYDATA_VALUE Procedure
	SET_JOB_ARGUMENT_VALUE Procedure
	SET_JOB_ATTRIBUTES Procedure
	SET_SCHEDULER_ATTRIBUTE Procedure
	STOP_JOB Procedure

115 DBMS_SERVER_ALERT

	Using DBMS_SERVER_ALERT
	Object Types
	Relational Operators
	Supported Metrics

	Summary of DBMS_SERVER_ALERT Subprograms
	EXPAND_MESSAGE Function
	GET_THRESHOLD Procedure
	SET_THRESHOLD Procedure

116 DBMS_SERVICE

	Using DBMS_SERVICE
	Overview
	Security Model
	Constants
	Exceptions

	Summary of DBMS_SERVICE Subprograms
	CREATE_SERVICE Procedure
	DELETE_SERVICE Procedure
	DISCONNECT_SESSION Procedure
	MODIFY_SERVICE Procedure
	START_SERVICE Procedure
	STOP_SERVICE Procedure

117 DBMS_SESSION

	Using DBMS_SESSION
	Security Model
	Operational Notes

	Summary of DBMS_SESSION Subprograms
	CLEAR_ALL_CONTEXT Procedure
	CLEAR_CONTEXT Procedure
	CLEAR_IDENTIFIER Procedure
	CLOSE_DATABASE_LINK Procedure
	FREE_UNUSED_USER_MEMORY Procedure
	IS_ROLE_ENABLED Function
	IS_SESSION_ALIVE Function
	LIST_CONTEXT Procedures
	MODIFY_PACKAGE_STATE Procedure
	SESSION _TRACE_DISABLE Procedure
	SESSION _TRACE_ENABLE Procedure
	RESET_PACKAGE Procedure
	SET_CONTEXT Procedure
	SET_IDENTIFIER
	SET_NLS Procedure
	SET_ROLE Procedure
	SET_SQL_TRACE Procedure
	SWITCH_CURRENT_CONSUMER_GROUP Procedure
	UNIQUE_SESSION_ID Function

118 DBMS_SHARED_POOL

	Using DBMS_SHARED_POOL
	Overview
	Operational Notes

	Summary of DBMS_SHARED_POOL Subprograms
	ABORTED_REQUEST_THRESHOLD Procedure
	KEEP Procedure
	PURGE Procedure
	SIZES Procedure
	UNKEEP Procedure

119 DBMS_SPACE

	Using DBMS_SPACE
	Security Model

	Data Structures
	ASA_RECO_ROW Record Type
	ASA_RECO_ROW_TB Table Type

	Summary of DBMS_SPACE Subprograms
	ASA_RECOMMENDATIONS Function
	CREATE_INDEX_COST Procedure
	CREATE_TABLE_COST Procedures
	FREE_BLOCKS Procedure
	OBJECT_DEPENDENT_SEGMENTS Function
	OBJECT_GROWTH_TREND Function
	SPACE_USAGE Procedures
	UNUSED_SPACE Procedure

120 DBMS_SPACE_ADMIN

	Using DBMS_SPACE_ADMIN
	Security Model
	Constants
	Operational Notes

	Summary of DBMS_SPACE_ADMIN Subprograms
	ASSM_SEGMENT_VERIFY Procedure
	ASSM_TABLESPACE_VERIFY Procedure
	SEGMENT_CORRUPT Procedure
	SEGMENT_DROP_CORRUPT Procedure
	SEGMENT_DUMP Procedure
	SEGMENT_VERIFY Procedure
	TABLESPACE_FIX_BITMAPS Procedure
	TABLESPACE_FIX_SEGMENT_STATES Procedure
	TABLESPACE_MIGRATE_FROM_LOCAL Procedure
	TABLESPACE_MIGRATE_TO_LOCAL Procedure
	TABLESPACE_REBUILD_BITMAPS Procedure
	TABLESPACE_REBUILD_QUOTAS Procedure
	TABLESPACE_RELOCATE_BITMAPS Procedure
	TABLESPACE_VERIFY Procedure

121 DBMS_SPM

	Using DBMS_SPM
	Security Model

	Summary of DBMS_SPM Subprograms
	ALTER_SQL_PLAN_BASELINE Function
	CONFIGURE Procedure
	CREATE_STGTAB_BASELINE Procedure
	DROP_SQL_PLAN_BASELINE Function
	EVOLVE_SQL_PLAN_BASELINE Function
	LOAD_PLANS_FROM_CURSOR_CACHE Functions
	LOAD_PLANS_FROM_SQLSET Function
	PACK_STGTAB_BASELINE Function
	UNPACK_STGTAB_BASELINE Function

122 DBMS_SQL

	Using DBMS_SQL
	Overview
	Security Model
	Constants
	Exceptions
	Operational Notes
	Examples

	Data Structures
	DESC_REC Record Type
	DESC_REC2 Record Type
	DESC_REC3 Record Type
	BFILE_TABLE Table Type
	BINARY_DOUBLE_TABLE Table Type
	BINARY_FLOAT_TABLE Table Type
	BLOB_TABLE Table Type
	CLOB_TABLE Table Type
	DATE_TABLE Table Type
	DESC_TAB Table Type
	DESC_TAB2 Table Type
	DESC_TAB3 Table Type
	INTERVAL_DAY_TO_SECOND_TABLE
	INTERVAL_YEAR_TO_MONTH_TABLE Table Type
	NUMBER_TABLE Table Type
	TIME_TABLE Table Type
	TIME_WITH_TIME_ZONE_TABLE Table Type
	TIMESTAMP_TABLE Table Type
	TIMESTAMP_WITH_LTZ_TABLE Table Type
	TIMESTAMP_WITH_TIME_ZONE_TABLE Table Type
	UROWID_TABLE Table Type
	VARCHAR2_TABLE Table Type
	VARCHAR2A Table Type
	VARCHAR2S Table Type

	Summary of DBMS_SQL Subprograms
	BIND_ARRAY Procedures
	BIND_VARIABLE Procedures
	CLOSE_CURSOR Procedure
	COLUMN_VALUE Procedure
	COLUMN_VALUE_LONG Procedure
	DEFINE_ARRAY Procedure
	DEFINE_COLUMN Procedure
	DEFINE_COLUMN_LONG Procedure
	DESCRIBE_COLUMNS Procedure
	DESCRIBE_COLUMNS2 Procedure
	DESCRIBE_COLUMNS3 Procedure
	EXECUTE Function
	EXECUTE_AND_FETCH Function
	FETCH_ROWS Function
	IS_OPEN Function
	LAST_ERROR_POSITION Function
	LAST_ROW_COUNT Function
	LAST_ROW_ID Function
	LAST_SQL_FUNCTION_CODE Function
	OPEN_CURSOR Function
	PARSE Procedures
	TO_CURSOR_NUMBER Function
	TO_REFCURSOR Function
	VARIABLE_VALUE Procedures

123 DBMS_SQLDIAG

	Using DBMS_SQLDIAG
	Overview
	Constants
	Examples

	Summary of DBMS_SQLDIAG Subprograms
	ACCEPT_SQL_PATCH Function & Procedure
	ALTER_SQL_PATCH Procedure
	CANCEL_DIAGNOSIS_TASK Procedure
	CREATE_DIAGNOSIS_TASK Functions
	CREATE_STGTAB_SQLPATCH Procedure
	DROP_DIAGNOSIS_TASK Procedure
	DROP_SQL_PATCH Procedure
	EXECUTE_DIAGNOSIS_TASK Procedure
	EXPLAIN_SQL_TESTCASE Function
	EXPORT_SQL_TESTCASE Procedures
	EXPORT_SQL_TESTCASE_DIR_BY_INC Function
	EXPORT_SQL_TESTCASE_DIR_BY_TXT Function
	GET_SQL Function
	INCIDENTID_2_SQL Procedure
	INTERRUPT_DIAGNOSIS_TASK Procedure
	PACK_STGTAB_SQLPATCH Procedure
	REPORT_DIAGNOSIS_TASK Function
	RESET_DIAGNOSIS_TASK Procedure
	RESUME_DIAGNOSIS_TASK Procedure
	SET_DIAGNOSIS_TASK_PARAMETER Procedure
	UNPACK_STGTAB_SQLPATCH Procedure

124 DBMS_SQLPA

	Using DBMS_SQLPA
	Overview
	Security Model

	Summary of DBMS_SQLPA Subprograms
	CANCEL_ANALYSIS_TASK Procedure
	CREATE_ANALYSIS_TASK Functions
	DROP_ANALYSIS_TASK Procedure
	EXECUTE_ANALYSIS_TASK Function & Procedure
	INTERRUPT_ANALYSIS_TASK Procedure
	REPORT_ANALYSIS_TASK Function
	RESET_ANALYSIS_TASK Procedure
	RESUME_ANALYSIS_TASK Procedure
	SET_ANALYSIS_TASK_PARAMETER Procedures
	SET_ANALYSIS_DEFAULT_PARAMETER Procedures

125 DBMS_SQLTUNE

	Using DBMS_SQLTUNE
	Overview
	Security Model

	Data Structures
	SQLSET_ROW Object Type

	Subprogram Groups
	SQL Tuning Advisor Subprograms
	SQL Profile Subprograms
	SQL Tuning Set Subprograms
	Real-time SQL Monitoring Subprograms

	Summary of DBMS_SQLTUNE Subprograms
	ACCEPT_SQL_PROFILE Procedure and Function
	ADD_SQLSET_REFERENCE Function
	ALTER_SQL_PROFILE Procedure
	CANCEL_TUNING_TASK Procedure
	CAPTURE_CURSOR_CACHE_SQLSET Procedure
	CREATE_SQLSET Procedure and Function
	CREATE_STGTAB_SQLPROF Procedure
	CREATE_STGTAB_SQLSET Procedure
	CREATE_TUNING_TASK Functions
	DELETE_SQLSET Procedure
	DROP_SQL_PROFILE Procedure
	DROP_SQLSET Procedure
	DROP_TUNING_TASK Procedure
	EXECUTE_TUNING_TASK Function & Procedure
	IMPLEMENT_TUNING_TASK Function
	INTERRUPT_TUNING_TASK Procedure
	LOAD_SQLSET Procedure
	PACK_STGTAB_SQLPROF Procedure
	PACK_STGTAB_SQLSET Procedure
	REMAP_STGTAB_SQLPROF Procedure
	REMAP_STGTAB_SQLSET Procedure
	REMOVE_SQLSET_REFERENCE Procedure
	REPORT_AUTO_TUNING_TASK Function
	REPORT_SQL_MONITOR Function
	REPORT_TUNING_TASK Function
	RESET_TUNING_TASK Procedure
	RESUME_TUNING_TASK Procedure
	SCRIPT_TUNING_TASK Function
	SELECT_CURSOR_CACHE Function
	SELECT_SQL_TRACE Function
	SELECT_SQLSET Function
	SELECT_WORKLOAD_REPOSITORY Functions
	SET_TUNING_TASK_PARAMETER Procedures
	SQLTEXT_TO_SIGNATURE Function
	UNPACK_STGTAB_SQLPROF Procedure
	UNPACK_STGTAB_SQLSET Procedure
	UPDATE_SQLSET Procedures

126 DBMS_STAT_FUNCS

	Summary of DBMS_STAT_FUNCS Subprograms
	EXPONENTIAL_DIST_FIT Procedure
	NORMAL_DIST_FIT Procedure
	POISSON_DIST_FIT Procedure
	SUMMARY Procedure
	UNIFORM_DIST_FIT Procedure
	WEIBULL_DIST_FIT Procedure

127 DBMS_STATS

	Using DBMS_STATS
	Overview
	Types
	Constants
	Operational Notes
	Deprecated Subprograms
	Examples

	Summary of DBMS_STATS Subprograms
	ALTER_STATS_HISTORY_RETENTION Procedure
	CONVERT_RAW_VALUE Procedures
	CONVERT_RAW_VALUE_NVARCHAR Procedure
	CONVERT_RAW_VALUE_ROWID Procedure
	COPY_TABLE_STATS Procedure
	CREATE_EXTENDED_STATS Function
	CREATE_STAT_TABLE Procedure
	DELETE_COLUMN_STATS Procedure
	DELETE_DATABASE_PREFS Procedure
	DELETE_DATABASE_STATS Procedure
	DELETE_DICTIONARY_STATS Procedure
	DELETE_FIXED_OBJECTS_STATS Procedure
	DELETE_INDEX_STATS Procedure
	DELETE_PENDING_STATS Procedure
	DELETE_SCHEMA_PREFS Procedure
	DELETE_SCHEMA_STATS Procedure
	DELETE_SYSTEM_STATS Procedure
	DELETE_TABLE_PREFS Procedure
	DELETE_TABLE_STATS Procedure
	DIFF_TABLE_STATS_IN_HISTORY Function
	DIFF_TABLE_STATS_IN_PENDING Function
	DIFF_TABLE_STATS_IN_STATTAB Function
	DROP_EXTENDED_STATS Procedure
	DROP_STAT_TABLE Procedure
	EXPORT_COLUMN_STATS Procedure
	EXPORT_DATABASE_PREFS Procedure
	EXPORT_DATABASE_STATS Procedure
	EXPORT_DICTIONARY_STATS Procedure
	EXPORT_FIXED_OBJECTS_STATS Procedure
	EXPORT_INDEX_STATS Procedure
	EXPORT_PENDING_STATS Procedure
	EXPORT_SCHEMA_PREFS Procedure
	EXPORT_SCHEMA_STATS Procedure
	EXPORT_SYSTEM_STATS Procedure
	EXPORT_TABLE_PREFS Procedure
	EXPORT_TABLE_STATS Procedure
	FLUSH_DATABASE_MONITORING_INFO Procedure
	GATHER_DATABASE_STATS Procedures
	GATHER_DICTIONARY_STATS Procedure
	GATHER_FIXED_OBJECTS_STATS Procedure
	GATHER_INDEX_STATS Procedure
	GATHER_SCHEMA_STATS Procedures
	GATHER_SYSTEM_STATS Procedure
	GATHER_TABLE_STATS Procedure
	GENERATE_STATS Procedure
	GET_COLUMN_STATS Procedures
	GET_INDEX_STATS Procedures
	GET_PARAM Function
	GET_PREFS Function
	GET_STATS_HISTORY_AVAILABILITY Function
	GET_STATS_HISTORY_RETENTION Function
	GET_SYSTEM_STATS Procedure
	GET_TABLE_STATS Procedure
	IMPORT_COLUMN_STATS Procedure
	IMPORT_DATABASE_PREFS Procedure
	IMPORT_DATABASE_STATS Procedure
	IMPORT_DICTIONARY_STATS Procedure
	IMPORT_FIXED_OBJECTS_STATS Procedure
	IMPORT_INDEX_STATS Procedure
	IMPORT_SCHEMA_PREFS Procedure
	IMPORT_SCHEMA_STATS Procedure
	IMPORT_SYSTEM_STATS Procedure
	IMPORT_TABLE_PREFS Procedure
	IMPORT_TABLE_STATS Procedure
	LOCK_PARTITION_STATS Procedure
	LOCK_SCHEMA_STATS Procedure
	LOCK_TABLE_STATS Procedure
	PREPARE_COLUMN_VALUES Procedures
	PREPARE_COLUMN_VALUES_NVARCHAR2 Procedure
	PREPARE_COLUMN_VALUES_ROWID Procedure
	PUBLISH_PENDING_STATS Procedure
	PURGE_STATS Procedure
	RESET_GLOBAL_PREF_DEFAULTS Procedure
	RESET_PARAM_DEFAULTS Procedure
	RESTORE_DATABASE_STATS Procedure
	RESTORE_DICTIONARY_STATS Procedure
	RESTORE_FIXED_OBJECTS_STATS Procedure
	RESTORE_SCHEMA_STATS Procedure
	RESTORE_SYSTEM_STATS Procedure
	RESTORE_TABLE_STATS Procedure
	SET_COLUMN_STATS Procedures
	SET_DATABASE_PREFS Procedure
	SET_GLOBAL_PREFS Procedure
	SET_INDEX_STATS Procedures
	SET_PARAM Procedure
	SET_SCHEMA_PREFS Procedure
	SET_SYSTEM_STATS Procedure
	SET_TABLE_PREFS Procedure
	SET_TABLE_STATS Procedure
	SHOW_EXTENDED_STATS_NAME Function
	UNLOCK_PARTITION_STATS Procedure
	UNLOCK_SCHEMA_STATS Procedure
	UNLOCK_TABLE_STATS Procedure
	UPGRADE_STAT_TABLE Procedure

128 DBMS_STORAGE_MAP

	Using DBMS_STORAGE_MAP
	Overview
	Operational Notes

	Summary of DBMS_STORAGE_MAP Subprograms
	DROP_ALL Function
	DROP_ELEMENT Function
	DROP_FILE Function
	LOCK_MAP Procedure
	MAP_ALL Function
	MAP_ELEMENT Function
	MAP_FILE Function
	MAP_OBJECT Function
	RESTORE Function
	SAVE Function
	UNLOCK_MAP Procedure

129 DBMS_STREAMS

	Using DBMS_STREAMS
	Security Model

	Summary of DBMS_STREAMS Subprograms
	COMPATIBLE_11_1 Function
	COMPATIBLE_10_2 Function
	COMPATIBLE_10_1 Function
	COMPATIBLE_9_2 Function
	CONVERT_ANYDATA_TO_LCR_DDL Function
	CONVERT_ANYDATA_TO_LCR_ROW Function
	CONVERT_LCR_TO_XML Function
	CONVERT_XML_TO_LCR Function
	GET_INFORMATION Function
	GET_STREAMS_NAME Function
	GET_STREAMS_TYPE Function
	GET_TAG Function
	SET_TAG Procedure

130 DBMS_STREAMS_ADM

	Using DBMS_STREAMS_ADM
	Overview
	Deprecated Subprograms
	Security Model
	Operational Notes

	Summary of DBMS_STREAMS_ADM Subprograms
	ADD_COLUMN Procedure
	ADD_GLOBAL_PROPAGATION_RULES Procedure
	ADD_GLOBAL_RULES Procedure
	ADD_MESSAGE_PROPAGATION_RULE Procedure
	ADD_MESSAGE_RULE Procedure
	ADD_SCHEMA_PROPAGATION_RULES Procedure
	ADD_SCHEMA_RULES Procedure
	ADD_SUBSET_PROPAGATION_RULES Procedure
	ADD_SUBSET_RULES Procedure
	ADD_TABLE_PROPAGATION_RULES Procedure
	ADD_TABLE_RULES Procedure
	CLEANUP_INSTANTIATION_SETUP Procedure
	DELETE_COLUMN Procedure
	GET_MESSAGE_TRACKING Function
	GET_SCN_MAPPING Procedure
	MAINTAIN_GLOBAL Procedure
	MAINTAIN_SCHEMAS Procedure
	MAINTAIN_SIMPLE_TABLESPACE Procedure
	MAINTAIN_SIMPLE_TTS Procedure
	MAINTAIN_TABLES Procedure
	MAINTAIN_TABLESPACES Procedure
	MAINTAIN_TTS Procedure
	MERGE_STREAMS Procedure
	MERGE_STREAMS_JOB Procedure
	POST_INSTANTIATION_SETUP Procedure
	PRE_INSTANTIATION_SETUP Procedure
	PURGE_SOURCE_CATALOG Procedure
	RECOVER_OPERATION Procedure
	REMOVE_QUEUE Procedure
	REMOVE_RULE Procedure
	REMOVE_STREAMS_CONFIGURATION Procedure
	RENAME_COLUMN Procedure
	RENAME_SCHEMA Procedure
	RENAME_TABLE Procedure
	SET_MESSAGE_NOTIFICATION Procedure
	SET_MESSAGE_TRACKING Procedure
	SET_RULE_TRANSFORM_FUNCTION Procedure
	SET_UP_QUEUE Procedure
	SPLIT_STREAMS Procedure

131 DBMS_STREAMS_ADVISOR_ADM

	Using DBMS_STREAMS_ADVISOR_ADM
	Overview
	Constants
	Views
	Operational Notes

	Summary of DBMS_STREAMS_ADVISOR_ADM Subprograms
	ANALYZE_CURRENT_PERFORMANCE Procedure

132 DBMS_STREAMS_AUTH

	Summary of DBMS_STREAMS_AUTH Subprograms
	GRANT_ADMIN_PRIVILEGE Procedure
	GRANT_REMOTE_ADMIN_ACCESS Procedure
	REVOKE_ADMIN_PRIVILEGE Procedure
	REVOKE_REMOTE_ADMIN_ACCESS Procedure

133 DBMS_STREAMS_MESSAGING

	Summary of DBMS_STREAMS_MESSAGING Subprograms
	DEQUEUE Procedure
	ENQUEUE Procedure

134 DBMS_STREAMS_TABLESPACE_ADM

	Using DBMS_STREAMS_TABLESPACE_ADM
	Overview

	Data Structures
	DIRECTORY_OBJECT_SET Table Type
	FILE Record Type
	FILE_SET Table Type
	TABLESPACE_SET Table Type

	Summary of DBMS_STREAMS_TABLESPACE_ADM Subprograms
	ATTACH_SIMPLE_TABLESPACE Procedure
	ATTACH_TABLESPACES Procedure
	CLONE_SIMPLE_TABLESPACE Procedure
	CLONE_TABLESPACES Procedure
	DETACH_SIMPLE_TABLESPACE Procedure
	DETACH_TABLESPACES Procedure
	PULL_SIMPLE_TABLESPACE Procedure
	PULL_TABLESPACES Procedure

135 DBMS_TDB

	Using DBMS_TDB
	Overview
	Security Model
	Constants
	Views
	Operational Notes

	Summary of DBMS_TDB Subprograms
	CHECK_DB Function
	CHECK_EXTERNAL Function

136 DBMS_TRACE

	Using DBMS_TRACE
	Overview
	Security Model
	Constants
	Restrictions
	Operational Notes

	Summary of DBMS_TRACE Subprograms
	CLEAR_PLSQL_TRACE Procedure
	GET_PLSQL_TRACE_LEVEL Function
	PLSQL_TRACE_VERSION Procedure
	SET_PLSQL_TRACE Procedure

137 DBMS_TRANSACTION

	Using DBMS_TRANSACTION
	Security Model

	Summary of DBMS_TRANSACTION Subprograms
	ADVISE_COMMIT Procedure
	ADVISE_NOTHING Procedure
	ADVISE_ROLLBACK Procedure
	BEGIN_DISCRETE_TRANSACTION Procedure
	COMMIT Procedure
	COMMIT_COMMENT Procedure
	COMMIT_FORCE Procedure
	LOCAL_TRANSACTION_ID Function
	PURGE_LOST_DB_ENTRY Procedure
	PURGE_MIXED Procedure
	READ_ONLY Procedure
	READ_WRITE Procedure
	ROLLBACK Procedure
	ROLLBACK_FORCE Procedure
	ROLLBACK_SAVEPOINT Procedure
	SAVEPOINT Procedure
	STEP_ID Function
	USE_ROLLBACK_SEGMENT Procedure

138 DBMS_TRANSFORM

	Summary of DBMS_TRANSFORM Subprograms
	CREATE_TRANSFORMATION Procedure
	DROP_TRANSFORMATION Procedure
	MODIFY_TRANSFORMATION Procedure

139 DBMS_TTS

	Using DBMS_TTS
	Security Model
	Exceptions
	Operational Notes

	Summary of DBMS_TTS Subprograms
	DOWNGRADE Procedure
	TRANSPORT_SET_CHECK Procedure

140 DBMS_TYPES

	Using DBMS_TYPES
	Constants
	Exceptions

141 DBMS_UTILITY

	Using DBMS_UTILITY
	Security Model
	Constants
	Types
	Exceptions

	Summary of DBMS_UTILITY Subprograms
	ACTIVE_INSTANCES Procedure
	ANALYZE_DATABASE Procedure
	ANALYZE_PART_OBJECT Procedure
	ANALYZE_SCHEMA Procedure
	CANONICALIZE Procedure
	COMMA_TO_TABLE Procedures
	COMPILE_SCHEMA Procedure
	CREATE_ALTER_TYPE_ERROR_TABLE Procedure
	CURRENT_INSTANCE Function
	DATA_BLOCK_ADDRESS_BLOCK Function
	DATA_BLOCK_ADDRESS_FILE Function
	DB_VERSION Procedure
	EXEC_DDL_STATEMENT Procedure
	FORMAT_CALL_STACK Function
	FORMAT_ERROR_BACKTRACE Function
	FORMAT_ERROR_STACK Function
	GET_CPU_TIME Function
	GET_DEPENDENCY Procedure
	GET_HASH_VALUE Function
	GET_PARAMETER_VALUE Function
	GET_TIME Function
	INVALIDATE Procedure
	IS_CLUSTER_DATABASE Function
	MAKE_DATA_BLOCK_ADDRESS Function
	NAME_RESOLVE Procedure
	NAME_TOKENIZE Procedure
	OLD_CURRENT_SCHEMA Function
	OLD_CURRENT_USER Function
	PORT_STRING Function
	SQLID_TO_SQLHASH Function
	TABLE_TO_COMMA Procedures
	VALIDATE Procedure

142 DBMS_WARNING

	Using DBMS_WARNING
	Security Model

	Summary of DBMS_WARNING Subprograms
	ADD_WARNING_SETTING_CAT Procedure
	ADD_WARNING_SETTING_NUM Procedure
	GET_CATEGORY Function
	GET_WARNING_SETTING_CAT Function
	GET_WARNING_SETTING_NUM Function
	GET_WARNING_SETTING_STRING Function
	SET_WARNING_SETTING_STRING Procedure

143 DBMS_WM

	Documentation of DBMS_WM

144 DBMS_WORKLOAD_CAPTURE

	Using DBMS_WORKLOAD_CAPTURE
	Overview
	Security Model

	Summary of DBMS_WORKLOAD_CAPTURE Subprograms
	ADD_FILTER Procedures
	DELETE_CAPTURE_INFO Procedure
	DELETE_FILTER Procedure
	EXPORT_AWR Procedure
	FINISH_CAPTURE Procedure
	GET_CAPTURE_INFO Function
	IMPORT_AWR Function
	PROCESS_CAPTURE Procedure
	REPORT Function
	START_CAPTURE Procedure

145 DBMS_WORKLOAD_REPLAY

	Using DBMS_WORKLOAD_REPLAY
	Security Model

	Summary of DBMS_WORKLOAD_REPLAY Subprograms
	CALIBRATE Function
	CANCEL_REPLAY Procedure
	DELETE_REPLAY_INFO Procedure
	EXPORT_AWR Procedure
	GET_REPLAY_INFO Function
	IMPORT_AWR Function
	INITIALIZE_REPLAY Procedure
	PAUSE_REPLAY Procedure
	PREPARE_REPLAY Procedure
	PROCESS_CAPTURE Procedure
	REMAP_CONNECTION Procedure
	REPORT Function
	RESUME_REPLAY Procedure
	START_REPLAY Procedure

146 DBMS_WORKLOAD_REPOSITORY

	Using DBMS_WORKLOAD_REPOSITORY
	Examples

	Data Structures
	AWR_BASELINE_METRIC_TYPE Object Type
	AWR_BASELINE_METRIC_TYPE_TABLE Table Type

	Summary of DBMS_WORKLOAD_REPOSITORY Subprograms
	ADD_COLORED_SQL Procedure
	ASH_REPORT_HTML Function
	ASH_REPORT_TEXT Function
	AWR_DIFF_REPORT_HTML Function
	AWR_DIFF_REPORT_TEXT Function
	AWR_REPORT_HTML Function
	AWR_REPORT_TEXT Function
	AWR_SQL_REPORT_HTML Function
	AWR_SQL_REPORT_TEXT Function
	CREATE_BASELINE Functions & Procedures
	CREATE_BASELINE_TEMPLATE Procedures
	CREATE_SNAPSHOT Function and Procedure
	DROP_BASELINE Procedure
	DROP_BASELINE_TEMPLATE Procedure
	DROP_SNAPSHOT_RANGE Procedure
	MODIFY_SNAPSHOT_SETTINGS Procedures
	MODIFY_BASELINE_WINDOW_SIZE Procedure
	REMOVE_COLORED_SQL Procedure
	RENAME_BASELINE Procedure
	SELECT_BASELINE_METRICS Function

147 DBMS_XA

	Using DBMS_XA
	Overview
	Security Model
	Constants
	Operational Notes

	Data Structures
	DBMS_XA_XID Object Type
	DBMS_XA_XID_ARRAY Table Type

	Summary of DBMS_XA Subprograms
	DIST_TXN_SYNC Procedure
	XA_COMMIT Function
	XA_END Function
	XA_FORGET Function
	XA_GETLASTOER Function
	XA_PREPARE Function
	XA_RECOVER Function
	XA_ROLLBACK Function
	XA_SETTIMEOUT Function
	XA_START Function

148 DBMS_XDB

	Using DBMS_XDB
	Overview
	Constants

	Summary of DBMS_XDB Subprograms
	ACLCHECKPRIVILEGES Function
	ADDMIMEMAPPING Procedure
	ADDSCHEMALOCMAPPING Procedure
	ADDSERVLET Procedure
	ADDSERVLETMAPPING Procedure
	ADDSERVLETSECROLE Procedure
	ADDXMLEXTENSION Procedure
	APPENDPATH Procedure
	APPENDRESOURCEMETADATA Procedure
	CFG_GET Function
	CFG_REFRESH Procedure
	CFG_UPDATE Procedure
	CHANGEOWNER Procedure
	CHANGEPRIVILEGES Function
	CHECKPRIVILEGES Function
	COPYRESOURCE Procedure
	CREATEFOLDER Function
	CREATEOIDPATH Function
	CREATERESOURCE Functions
	DELETEMIMEMAPPING Procedure
	DELETERESOURCE Procedure
	DELETERESOURCEMETADATA Procedures
	DELETESCHEMALOCMAPPING Procedure
	DELETESERVLET Procedure
	DELETESERVLETMAPPING Procedure
	DELETESERVLETSECROLE Procedure
	DELETEXMLEXTENSION Procedure
	EXISTSRESOURCE Function
	GETACLDOCUMENT Function
	GETCHILDRESPATHS Function
	GETCONTENTBLOB Function
	GETCONTENTCLOB Function
	GETCONTENTVARCHAR2 Function
	GETCONTENTXMLREF Function
	GETCONTENTXMLTYPE Function
	GETFTPPORT Function
	GETHTTPPORT Function
	GETLISTENERENDPOINT Procedure
	GETLOCKTOKEN Procedure
	GETPRIVILEGES Function
	GETRESOID Function
	GETXDB_TABLESPACE Function
	HASBLOBCONTENT Function
	HASCHARCONTENT Function
	HASXMLCONTENT Function
	HASXMLREFERENCE Function
	ISFOLDER Function
	LINK Procedures
	LOCKRESOURCE Function
	MOVEXDB_TABLESPACE Procedure
	PROCESSLINKS Procedure
	PURGERESOURCEMETADATA Procedure
	REBUILDHIERARCHICALINDEX Procedure
	RENAMERESOURCE Procedure
	SETACL Procedure
	SETCONTENT Procedures
	SETFTPPORT Procedure
	SETHTTPPORT Procedure
	SETLISTENERENDPOINT Procedure
	SETLISTENERLOCALACCESS Procedure
	SPLITPATH Procedure
	TOUCHRESOURCE Procedure
	UPDATERESOURCEMETADATA Procedures
	UNLOCKRESOURCE Function

149 DBMS_XDB_ADMIN

	Summary of DBMS_XDB_ADMIN Subprograms
	CREATEREPOSITORYXMLINDEX Procedure
	DROPREPOSITORYXMLINDEX Procedure
	XMLINDEXADDPATH Procedure
	XMLINDEXREMOVEPATH Procedure

150 DBMS_XDBRESOURCE

	Using DBMS_XDBRESOURCE
	Overview

	Summary of DBMS_XDBRESOURCE Subprograms
	FREERESOURCE Procedure
	GETACL Function
	GETACLDOCFROMRES Function
	GETAUTHOR Function
	GETCHARACTERSET Function
	GETCOMMENT Function
	GETCONTENTBLOB Function
	GETCONTENTCLOB Function
	GETCONTENTREF Function
	GETCONTENTTYPE Function
	GETCONTENTXML Function
	GETCONTENTVARCHAR2 Function
	GETCREATIONDATE Function
	GETCREATOR Function
	GETCUSTOMMETADATA Function
	GETDISPLAYNAME Function
	GETLANGUAGE Function
	GETLASTMODIFIER Function
	GETMODIFICATIONDATE Function
	GETOWNER Function
	GETREFCOUNT Function
	GETVERSIONID Function
	HASACLCHANGED Function
	HASAUTHORCHANGED Function
	HASCHANGED Function
	HASCHARACTERSETCHANGED Function
	HASCOMMENTCHANGED Function
	HASCONTENTCHANGED Function
	HASCONTENTTYPECHANGED Function
	HASCREATIONDATECHANGED Function
	HASCREATORCHANGED Function
	HASCUSTOMMETADATACHANGED Function
	HASDISPLAYNAMECHANGED Function
	HASLANGUAGECHANGED Function
	HASLASTMODIFIERCHANGED Function
	HASMODIFICATIONDATECHANGED Function
	HASOWNERCHANGED Function
	HASREFCOUNTCHANGED Function
	HASVERSIONIDCHANGED Function
	ISFOLDER Function
	ISNULL Function
	MAKEDOCUMENT Function
	SAVE Procedure
	SETACL Procedure
	SETAUTHOR Procedure
	SETCHARACTERSET Procedure
	SETCOMMENT Procedure
	SETCONTENT Procedures
	SETCONTENTTYPE Procedure
	SETCUSTOMMETADATA Procedure
	SETDISPLAYNAME Procedure
	SETLANGUAGE Procedure
	SETOWNER Procedure

151 DBMS_XDB_VERSION

	Summary of DBMS_XDB_VERSION Subprograms
	CHECKIN Function
	CHECKOUT Procedure
	GETCONTENTSBLOBBYRESID Function
	GETCONTENTSCLOBBYRESID Function
	GETCONTENTSXMLBYRESID Function
	GETPREDECESSORS Function
	GETPREDSBYRESID Function
	GETRESOURCEBYRESID Function
	GETSUCCESSORS Function
	GETSUCCSBYRESID Function
	MAKEVERSIONED Function
	UNCHECKOUT Function

152 DBMS_XDBT

	Using DBMS_XDBT
	Overview
	Operational Notes

	Summary of DBMS_XDBT Subprograms
	CONFIGUREAUTOSYNC Procedure
	CREATEDATASTOREPREF Procedure
	CREATEFILTERPREF Procedure
	CREATEINDEX Procedure
	CREATELEXERPREF Procedure
	CREATEPREFERENCES Procedure
	CREATESECTIONGROUPPREF Procedure
	CREATESTOPLISTPREF Procedure
	CREATESTORAGEPREF Procedure
	CREATEWORLDLISTPREF Procedure
	DROPPREFERENCES Procedure

153 DBMS_XDBZ

	Using DBMS_XDBZ
	Constants

	Summary of DBMS_XDBZ Subprograms
	DISABLE_HIERARCHY Procedure
	ENABLE_HIERARCHY Procedure
	GET_ACLOID Function
	GET_USERID Function
	IS_HIERARCHY_ENABLED Function
	PURGELDAPCACHE Function

154 DBMS_XEVENT

	Using DBMS_XEVENT
	Constants

	Subprogram Groups
	XDBEvent Type Subprograms
	XDBRepositoryEvent Type Subprograms
	XDBHandlerList Type Subprograms
	XDBHandler Type Subprograms
	XDBPath Type Subprograms
	XDBLink Type Subprograms

	Summary of DBMS_XEVENT Subprograms
	CLEAR Procedure
	GETAPPLICATIONDATA Function
	GETCHILDOID Function
	GETCURRENTUSER Function
	GETEVENT Function
	GETFIRST Function
	GETHANDLERLIST Function
	GETINTERFACE Function
	GETLANGUAGE Function
	GETLINK Function
	GETLINKNAME Function
	GETLOCK Function
	GETLANGUAGE Function
	GETNAME Function
	GETNEXT Function
	GETOLDRESOURCE Function
	GETOPENACCESSMODE Function
	GETOPENDENYMODE Function
	GETOUTPUTSTREAM Function
	GETPARAMETER Function
	GETPARENT Function
	GETPARENTNAME Function
	GETPARENTOID Function
	GETPARENTPATH Function
	GETPATH Function
	GETRESOURCE Function
	GETSCHEMA Function
	GETSOURCE Function
	GETUPDATEBYTECOUNT Function
	GETUPDATEBYTEOFFSET Function
	GETXDBEVENT Function
	ISNULL Functions
	REMOVE Procedure
	SETRENDERPATH Procedure
	SETRENDERSTREAM Procedure

155 DBMS_XMLDOM

	Using DBMS_XMLDOM
	Overview
	Constants
	Types
	Exceptions

	Subprogram Groups
	DOMNode Subprograms
	DOMAttr Subprograms
	DOMCDataSection Subprograms
	DOMCharacterData Subprograms
	DOMComment Subprograms
	DOMDocument Subprograms
	DOMDocumentFragment Subprograms
	DOMDocumentType Subprograms
	DOMElement Subprograms
	DOMEntity Subprograms
	DOMEntityReference Subprograms
	DOMImplementation Subprograms
	DOMNamedNodeMap Subprograms
	DOMNodeList Subprograms
	DOMNotation Subprograms
	DOMProcessingInstruction Subprograms
	DOMText Subprograms

	Summary of DBMS_XMLDOM Subprograms
	ADOPTNODE Function
	APPENDCHILD Function
	APPENDDATA Procedure
	CLONENODE Function
	CREATEATTRIBUTE Functions
	CREATECDATASECTION Function
	CREATECOMMENT Function
	CREATEDOCUMENT Function
	CREATEDOCUMENTFRAGMENT Function
	CREATEELEMENT Functions
	CREATEENTITYREFERENCE Function
	CREATEPROCESSINGINSTRUCTION Function
	CREATETEXTNODE Function
	DELETEDATA Procedure
	FINDENTITY Function
	FINDNOTATION Function
	FREEDOCFRAG Procedure
	FREEDOCUMENT Procedure
	FREENODE Procedure
	GETATTRIBUTE Functions
	GETATTRIBUTENODE Functions
	GETATTRIBUTES Function
	GETCHILDNODES Function
	GETCHILDRENBYTAGNAME Functions
	GETDATA Functions
	GETDOCTYPE Function
	GETDOCUMENTELEMENT Function
	GETELEMENTSBYTAGNAME Functions
	GETENTITIES Function
	GETEXPANDEDNAME Procedure and Functions
	GETFIRSTCHILD Function
	GETIMPLEMENTATION Function
	GETLASTCHILD Function
	GETLENGTH Functions
	GETLOCALNAME Procedure and Functions
	GETNAME Functions
	GETNAMEDITEM Function
	GETNAMESPACE Procedure and Functions
	GETNEXTSIBLING Function
	GETNODETYPE Function
	GETNODENAME Function
	GETNODEVALUE Function
	GETNODEVALUEASBINARYSTREAM Function & Procedure
	GETNODEVALUEASCHARACTERSTREAM Function & Procedure
	GETNOTATIONNAME Function
	GETNOTATIONS Function
	GETTARGET Function
	GETOWNERDOCUMENT Function
	GETOWNERELEMENT Function
	GETPARENTNODE Function
	GETPREFIX Function
	GETPREVIOUSSIBLING Function
	GETPUBLICID Functions
	GETQUALIFIEDNAME Functions
	GETSCHEMANODE Function
	GETSPECIFIED Function
	GETSTANDALONE Function
	GETSYSTEMID Functions
	GETTAGNAME Function
	GETVALUE Function
	GETVERSION Function
	GETXMLTYPE Function
	HASATTRIBUTE Functions
	HASATTRIBUTES Function
	HASCHILDNODES Function
	HASFEATURE Function
	IMPORTNODE Function
	INSERTBEFORE Function
	INSERTDATA Procedure
	ISNULL Functions
	ITEM Functions
	MAKEATTR Function
	MAKECDATASECTION Function
	MAKECHARACTERDATA Function
	MAKECOMMENT Function
	MAKEDOCUMENT Function
	MAKEDOCUMENTFRAGMENT Function
	MAKEDOCUMENTTYPE Function
	MAKEELEMENT Function
	MAKEENTITY Function
	MAKEENTITYREFERENCE Function
	MAKENODE Functions
	MAKENOTATION Function
	MAKEPROCESSINGINSTRUCTION Function
	MAKETEXT Function
	NEWDOMDOCUMENT Functions
	NORMALIZE Procedure
	REMOVEATTRIBUTE Procedures
	REMOVEATTRIBUTENODE Function
	REMOVECHILD Function
	REMOVENAMEDITEM Function
	REPLACECHILD Function
	REPLACEDATA Procedure
	RESOLVENAMESPACEPREFIX Function
	SETATTRIBUTE Procedures
	SETATTRIBUTENODE Functions
	SETDATA Procedures
	SETDOCTYPE Procedure
	SETNAMEDITEM Function
	SETNODEVALUE Procedure
	SETNODEVALUEASBINARYSTREAM Function & Procedure
	SETNODEVALUEASCHARACTERSTREAM Function & Procedure
	SETPREFIX Procedure
	SETSTANDALONE Procedure
	SETVALUE Procedure
	SETVERSION Procedure
	SPLITTEXT Function
	SUBSTRINGDATA Function
	USEBINARYSTREAM Function
	WRITETOBUFFER Procedures
	WRITETOCLOB Procedures
	WRITETOFILE Procedures

156 DBMS_XMLGEN

	Summary of DBMS_XMLGEN Subprograms
	CLOSECONTEXT Procedure
	CONVERT Functions
	GETNUMROWSPROCESSED Function
	GETXML Functions
	GETXMLTYPE Functions
	NEWCONTEXT Functions
	RESTARTQUERY Procedure
	SETCONVERTSPECIALCHARS Procedure
	SETMAXROWS Procedure
	SETNULLHANDLING Procedure
	SETROWSETTAG Procedure
	SETROWTAG Procedure
	SETSKIPROWS Procedure
	USEITEMTAGSFORCOLL Procedure
	USENULLATTRIBUTEINDICATOR Procedure

157 DBMS_XMLINDEX

	Using DBMS_XMLINDEX
	Overview

	Summary of DBMS_XMLINDEX Subprograms
	CREATEDATEINDEX Procedure
	CREATENUMBERINDEX Procedure
	SYNCINDEX Procedure

158 DBMS_XMLPARSER

	Summary of DBMS_XMLPARSER Subprograms
	FREEPARSER
	GETDOCTYPE
	GETDOCUMENT
	GETRELEASEVERSION
	GETVALIDATIONMODE
	NEWPARSER
	PARSE
	PARSEBUFFER
	PARSECLOB
	PARSEDTD
	PARSEDTDBUFFER
	PARSEDTDCLOB
	SETBASEDIR
	SETDOCTYPE
	SETERRORLOG
	SETPRESERVEWHITESPACE
	SETVALIDATIONMODE
	SHOWWARNINGS

159 DBMS_XMLQUERY

	Using DBMS_XMLQUERY
	Constants
	Types

	Summary of DBMS_XMLQUERY Subprograms
	CLOSECONTEXT
	GETDTD
	GETEXCEPTIONCONTENT
	GETNUMROWSPROCESSED
	GETVERSION
	GETXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBINDVALUE
	SETCOLLIDATTRNAME
	SETDATAHEADER
	SETDATEFORMAT
	SETENCODINGTAG
	SETERRORTAG
	SETMAXROWS
	SETMETAHEADER
	SETRAISEEXCEPTION
	SETRAISENOROWSEXCEPTION
	SETROWIDATTRNAME
	SETROWIDATTRVALUE
	SETROWSETTAG
	SETROWTAG
	SETSKIPROWS
	SETSQLTOXMLNAMEESCAPING
	SETSTYLESHEETHEADER
	SETTAGCASE
	SETXSLT
	SETXSLTPARAM
	USENULLATTRIBUTEINDICATOR
	USETYPEFORCOLLELEMTAG

160 DBMS_XMLSAVE

	Using DBMS_XMLSAVE
	Constants
	Types

	Summary of DBMS_XMLSAVE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	GETEXCEPTIONCONTENT
	INSERTXML
	NEWCONTEXT
	PROPAGATEORIGINALEXCEPTION
	REMOVEXSLTPARAM
	SETBATCHSIZE
	SETCOMMITBATCH
	SETDATEFORMAT
	SETIGNORECASE
	SETKEYCOLUMN
	SETPRESERVEWHITESPACE
	SETROWTAG
	SETSQLTOXMLNAMEESCAPING
	SETUPDATECOLUMN
	SETXSLT
	SETXSLTPARAM
	UPDATEXML

161 DBMS_XMLSCHEMA

	Using DBMS_XMLSCHEMA
	Overview
	Constants
	Views
	Operational Notes

	Summary of DBMS_XMLSCHEMA Subprograms
	COMPILESCHEMA Procedure
	COPYEVOLVE Procedure
	DELETESCHEMA Procedure
	GENERATEBEAN Procedure
	GENERATESCHEMA Function
	GENERATESCHEMAS Function
	INPLACEEVOLVE Procedure
	PURGESCHEMA Procedure
	REGISTERSCHEMA Procedures
	REGISTERURI Procedure

162 DBMS_XMLSTORE

	Using DBMS_XMLSTORE
	Types

	Summary of DBMS_XMLSTORE Subprograms
	CLEARKEYCOLUMNLIST
	CLEARUPDATECOLUMNLIST
	CLOSECONTEXT
	DELETEXML
	INSERTXML
	NEWCONTEXT
	SETKEYCOLUMN
	SETROWTAG
	SETUPDATECOLUMN
	UPDATEXML

163 DBMS_XMLTRANSLATIONS

	Summary of DBMS_XMLTRANSLATIONS Subprograms
	DISABLETRANSLATION Procedure
	ENABLETRANSLATION Procedure
	EXTRACTXLIFF Function & Procedure
	GETBASEDOCUMENT Function
	MERGEXLIFF Functions
	SETSOURCELANG Function
	TRANSLATEXML Function
	UPDATETRANSLATION Function

164 DBMS_XPLAN

	Using DBMS_XPLAN
	Overview
	Security Model
	Examples

	Summary of DBMS_XPLAN Subprograms
	DISPLAY Function
	DISPLAY_AWR Function
	DISPLAY_CURSOR Function
	DISPLAY_SQL_PLAN_BASELINE Function
	DISPLAY_SQLSET Function

165 DBMS_XSLPROCESSOR

	Using DBMS_XSLPROCESSOR
	Overview

	Summary of DBMS_XSLPROCESSOR Subprograms
	CLOB2FILE Procedure
	FREEPROCESSOR Procedure
	FREESTYLESHEET Procedure
	NEWPROCESSOR Function
	NEWSTYLESHEET Functions
	PROCESSXSL Functions and Procedures
	READ2CLOB Function
	REMOVEPARAM Procedure
	RESETPARAMS Procedure
	SELECTNODES Function
	SELECTSINGLENODE Function
	SETERRORLOG Procedure
	SETPARAM Procedure
	SHOWWARNINGS Procedure
	TRANSFORMNODE Function
	VALUEOF Function and Procedure

166 DEBUG_EXTPROC

	Using DEBUG_EXTPROC
	Security Model
	Operational Notes
	Rules and Limits

	Summary of DEBUG_EXTPROC Subprograms
	STARTUP_EXTPROC_AGENT Procedure

167 HTF

	Using HTF
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTF Subprograms
	ADDRESS Function
	ANCHOR Function
	ANCHOR2 Function
	APPLETCLOSE Function
	APPLETOPEN Function
	AREA Function
	BASE Function
	BASEFONT Function
	BGSOUND Function
	BIG Function
	BLOCKQUOTECLOSE Function
	BLOCKQUOTEOPEN Function
	BODYCLOSE Function
	BODYOPEN Function
	BOLD Function
	BR Function
	CENTER Function
	CENTERCLOSE Function
	CENTEROPEN Function
	CITE Function
	CODE Function
	COMMENT Function
	DFN Function
	DIRLISTCLOSE Function
	DIRLISTOPEN Function
	DIV Function
	DLISTCLOSE Function
	DLISTDEF Function
	DLISTOPEN Function
	DLISTTERM Function
	EM Function
	EMPHASIS Function
	ESCAPE_SC Function
	ESCAPE_URL Function
	FONTCLOSE Function
	FONTOPEN Function
	FORMAT_CELL Function
	FORMCHECKBOX Function
	FORMCLOSE Function
	FORMFILE Function
	FORMHIDDEN Function
	FORMIMAGE Function
	FORMOPEN Function
	FORMPASSWORD Function
	FORMRADIO Function
	FORMRESET Function
	FORMSELECTCLOSE Function
	FORMSELECTOPEN Function
	FORMSELECTOPTION Function
	FORMSUBMIT Function
	FORMTEXT Function
	FORMTEXTAREA Function
	FORMTEXTAREA2 Function
	FORMTEXTAREACLOSE Function
	FORMTEXTAREAOPEN Function
	FORMTEXTAREAOPEN2 Function
	FRAME Function
	FRAMESETCLOSE Function
	FRAMESETOPEN Function
	HEADCLOSE Function
	HEADER Function
	HEADOPEN Function
	HR Function
	HTMLCLOSE Function
	HTMLOPEN Function
	IMG Function
	IMG2 Function
	ISINDEX Function
	ITALIC Function
	KBD Function
	KEYBOARD Function
	LINE Function
	LINKREL Function
	LINKREV Function
	LISTHEADER Function
	LISTINGCLOSE Function
	LISTINGOPEN Function
	LISTITEM Function
	MAILTO Function
	MAPCLOSE Function
	MAPOPEN Function
	MENULISTCLOSE Function
	MENULISTOPEN Function
	META Function
	NL Function
	NOBR Function
	NOFRAMESCLOSE Function
	NOFRAMESOPEN Function
	OLISTCLOSE Function
	OLISTOPEN Function
	PARA Function
	PARAGRAPH Function
	PARAM Function
	PLAINTEXT Function
	PRECLOSE Function
	PREOPEN Function
	PRINT Functions
	PRN Functions
	S Function
	SAMPLE Function
	SCRIPT Function
	SMALL Function
	STRIKE Function
	STRONG Function
	STYLE Function
	SUB Function
	SUP Function
	TABLECAPTION Function
	TABLECLOSE Function
	TABLEDATA Function
	TABLEHEADER Function
	TABLEOPEN Function
	TABLEROWCLOSE Function
	TABLEROWOPEN Function
	TELETYPE Function
	TITLE Function
	ULISTCLOSE Function
	ULISTOPEN Function
	UNDERLINE Function
	VARIABLE Function
	WBR Function

168 HTP

	Using HTP
	Operational Notes
	Rules and Limits
	Examples

	Summary of Tags
	Summary of HTP Subprograms
	ADDRESS Procedure
	ANCHOR Procedure
	ANCHOR2 Procedure
	APPLETCLOSE Procedure
	APPLETOPEN Procedure
	AREA Procedure
	BASE Procedure
	BASEFONT Procedure
	BGSOUND Procedure
	BIG Procedure
	BLOCKQUOTECLOSE Procedure
	BLOCKQUOTEOPEN Procedure
	BODYCLOSE Procedure
	BODYOPEN Procedure
	BOLD Procedure
	BR Procedure
	CENTER Procedure
	CENTERCLOSE Procedure
	CENTEROPEN Procedure
	CITE Procedure
	CODE Procedure
	COMMENT Procedure
	DFN Procedure
	DIRLISTCLOSE Procedure
	DIRLISTOPEN Procedure
	DIV Procedure
	DLISTCLOSE Procedure
	DLISTDEF Procedure
	DLISTOPEN Procedure
	DLISTTERM Procedure
	EM Procedure
	EMPHASIS Procedure
	ESCAPE_SC Procedure
	FONTCLOSE Procedure
	FONTOPEN Procedure
	FORMCHECKBOX Procedure
	FORMCLOSE Procedure
	FORMOPEN Procedure
	FORMFILE Procedure
	FORMHIDDEN Procedure
	FORMIMAGE Procedure
	FORMPASSWORD Procedure
	FORMRADIO Procedure
	FORMRESET Procedure
	FORMSELECTCLOSE Procedure
	FORMSELECTOPEN Procedure
	FORMSELECTOPTION Procedure
	FORMSUBMIT Procedure
	FORMTEXT Procedure
	FORMTEXTAREA Procedure
	FORMTEXTAREA2 Procedure
	FORMTEXTAREACLOSE Procedure
	FORMTEXTAREAOPEN Procedure
	FORMTEXTAREAOPEN2 Procedure
	FRAME Procedure
	FRAMESETCLOSE Procedure
	FRAMESETOPEN Procedure
	HEADCLOSE Procedure
	HEADER Procedure
	HEADOPEN Procedure
	HR Procedure
	HTMLCLOSE Procedure
	HTMLOPEN Procedure
	IMG Procedure
	IMG2 Procedure
	ISINDEX Procedure
	ITALIC Procedure
	KBD Procedure
	KEYBOARD Procedure
	LINE Procedure
	LINKREL Procedure
	LINKREV Procedure
	LISTHEADER Procedure
	LISTINGCLOSE Procedure
	LISTINGOPEN Procedure
	LISTITEM Procedure
	MAILTO Procedure
	MAPCLOSE Procedure
	MAPOPEN Procedure
	MENULISTCLOSE Procedure
	MENULISTOPEN Procedure
	META Procedure
	NL Procedure
	NOBR Procedure
	NOFRAMESCLOSE Procedure
	NOFRAMESOPEN Procedure
	OLISTCLOSE Procedure
	OLISTOPEN Procedure
	PARA Procedure
	PARAGRAPH Procedure
	PARAM Procedure
	PLAINTEXT Procedure
	PRECLOSE Procedure
	PREOPEN Procedure
	PRINT Procedures
	PRINTS Procedure
	PRN Procedures
	PS Procedure
	S Procedure
	SAMPLE Procedure
	SCRIPT Procedure
	SMALL Procedure
	STRIKE Procedure
	STRONG Procedure
	STYLE Procedure
	SUB Procedure
	SUP Procedure
	TABLECAPTION Procedure
	TABLECLOSE Procedure
	TABLEDATA Procedure
	TABLEHEADER Procedure
	TABLEOPEN Procedure
	TABLEROWCLOSE Procedure
	TABLEROWOPEN Procedure
	TELETYPE Procedure
	TITLE Procedure
	ULISTCLOSE Procedure
	ULISTOPEN Procedure
	UNDERLINE Procedure
	VARIABLE Procedure
	WBR Procedure

169 ORD_DICOM

	Documentation of ORD_DICOM

170 ORD_DICOM_ADMIN

	Documentation of ORD_DICOM_ADMIN

171 OWA_CACHE

	Using OWA_CACHE
	Constants

	Summary of OWA_CACHE Subprograms
	DISABLE Procedure
	GET_ETAG Function
	GET_LEVEL Function
	SET_CACHE Procedure
	SET_EXPIRES Procedure
	SET_NOT_MODIFIED Procedure
	SET_SURROGATE_CONTROL Procedure

172 OWA_COOKIE

	Using OWA_COOKIE
	Overview
	Types
	Rules and Limits

	Summary of OWA_COOKIE Subprograms
	GET Function
	GET_ALL Procedure
	REMOVE Procedure
	SEND procedure

173 OWA_CUSTOM

	Using OWA_CUSTOM
	Constants

	Summary of OWA_CUSTOM Subprograms
	AUTHORIZE Function

174 OWA_IMAGE

	Using OWA_IMAGE
	Overview
	Types
	Variables
	Examples

	Summary of OWA_IMAGE Subprograms
	GET_X Function
	GET_Y Function

175 OWA_OPT_LOCK

	Using OWA_OPT_LOCK
	Overview
	Types

	Summary of OWA_OPT_LOCK Subprograms
	CHECKSUM Functions
	GET_ROWID Function
	STORE_VALUES Procedure
	VERIFY_VALUES Function

176 OWA_PATTERN

	Using OWA_PATTERN
	Types
	Operational Notes

	Summary of OWA_PATTERN Subprograms
	AMATCH Function
	CHANGE Functions and Procedures
	GETPAT Procedure
	MATCH Function

177 OWA_SEC

	Using OWA_SEC
	Operational Notes

	Summary of OWA_SEC Subprograms
	GET_CLIENT_HOSTNAME Function
	GET_CLIENT_IP Function
	GET_PASSWORD Function
	GET_USER_ID Function
	SET_AUTHORIZATION Procedure
	SET_PROTECTION_REALM Procedure

178 OWA_TEXT

	Using OWA_TEXT
	Types

	Summary of OWA_TEXT Subprograms
	ADD2MULTI Procedure
	NEW_ROW_LIST Function and Procedure
	PRINT_MULTI Procedure
	PRINT_ROW_LIST Procedure
	STREAM2MULTI Procedure

179 OWA_UTIL

	Using OWA_UTIL
	Overview
	Types

	Summary of OWA_UTIL Subprograms
	BIND_VARIABLES Function
	CALENDARPRINT Procedures
	CELLSPRINT Procedures
	CHOOSE_DATE Procedure
	GET_CGI_ENV Function
	GET_OWA_SERVICE_PATH Function
	GET_PROCEDURE Function
	HTTP_HEADER_CLOSE Procedure
	LISTPRINT Procedure
	MIME_HEADER Procedure
	PRINT_CGI_ENV Procedure
	REDIRECT_URL Procedure
	SHOWPAGE Procedure
	SHOWSOURCE Procedure
	SIGNATURE procedure
	STATUS_LINE Procedure
	TABLEPRINT Function
	TODATE Function
	WHO_CALLED_ME Procedure

180 SDO_CS

	Documentation of SDO_CS

181 SDO_CSW_PROCESS

	Documentation of SDO_CSW_PROCESS

182 SDO_GCDR

	Documentation of SDO_GCDR

183 SDO_GEOM

	Documentation of SDO_GEOM

184 SDO_GEOR

	Documentation of SDO_GEOR

185 SDO_GEOR_ADMIN

	Documentation of SDO_GEOR_ADMIN

186 SDO_GEOR_UTL

	Documentation of SDO_GEOR_UTL

187 SDO_LRS

	Documentation of SDO_LRS

188 SDO_MIGRATE

	Documentation of SDO_MIGRATE

189 SDO_NET

	Documentation of SDO_NET

190 SDO_NET_MEM

	Documentation of SDO_NET_MEM

191 SDO_OLS

	Documentation of SDO_OLS

192 SDO_PC_PKG

	Documentation of SDO_PC_PKG

193 SDO_SAM

	Documentation of SDO_SAM

194 SDO_TIN_PKG

	Documentation of SDO_TIN_PKG

195 SDO_TOPO

	Documentation of SDO_TOPO

196 SDO_TOPO_MAP

	Documentation of SDO_TOPO_MAP

197 SDO_TUNE

	Documentation of SDO_TUNE

198 SDO_UTIL

	Documentation of SDO_UTIL

199 SDO_WFS_LOCK

	Documentation of SDO_WFS_LOCK

200 SDO_WFS_PROCESS

	Documentation of SDO_WFS_PROCESS

201 SEM_APIS

	Documentation of SEM_APIS

202 SEM_PERF

	Documentation of SEM_PERF

203 UTL_COLL

	Summary of UTL_COLL Subprograms
	IS_LOCATOR Function

204 UTL_COMPRESS

	Using UTL_COMPRESS
	Constants
	Exceptions
	Operational Notes

	Summary of UTL_COMPRESS Subprograms
	ISOPEN Function
	LZ_COMPRESS Functions and Procedures
	LZ_COMPRESS_ADD Procedure
	LZ_COMPRESS_CLOSE
	LZ_COMPRESS_OPEN
	LZ_UNCOMPRESS Functions and Procedures
	LZ_UNCOMPRESS_EXTRACT Procedure
	LZ_UNCOMPRESS_OPEN Function
	LZ_UNCOMPRESS_CLOSE Procedure

205 UTL_ENCODE

	Summary of UTL_ENCODE Subprograms
	BASE64_DECODE Function
	BASE64_ENCODE Function
	MIMEHEADER_DECODE Function
	MIMEHEADER_ENCODE Function
	QUOTED_PRINTABLE_DECODE Function
	QUOTED_PRINTABLE_ENCODE Function
	TEXT_DECODE Function
	TEXT_ENCODE Function
	UUDECODE Function
	UUENCODE Function

206 UTL_FILE

	Using UTL_FILE
	Security Model
	Types
	Operational Notes
	Rules and Limits
	Exceptions
	Examples

	Summary of UTL_FILE Subprograms
	FCLOSE Procedure
	FCLOSE_ALL Procedure
	FCOPY Procedure
	FFLUSH Procedure
	FGETATTR Procedure
	FGETPOS Function
	FOPEN Function
	FOPEN_NCHAR Function
	FREMOVE Procedure
	FRENAME Procedure
	FSEEK Procedure
	GET_LINE Procedure
	GET_LINE_NCHAR Procedure
	GET_RAW Function
	IS_OPEN Function
	NEW_LINE Procedure
	PUT Procedure
	PUT_LINE Procedure
	PUT_LINE_NCHAR Procedure
	PUT_NCHAR Procedure
	PUTF Procedure
	PUTF_NCHAR Procedure
	PUT_RAW Function

207 UTL_HTTP

	Using UTL_HTTP
	Overview
	Security Model
	Constants
	Datatypes
	Operational Notes
	Exceptions
	Examples

	Subprogram Groups
	Simple HTTP Fetches in a Single Call Subprograms
	Session Settings Subprograms
	HTTP Requests Subprograms
	HTTP Responses Subprograms
	HTTP Cookies Subprograms
	HTTP Persistent Connections Subprograms
	Error Conditions Subprograms

	Summary of UTL_HTTP Subprograms
	ADD_COOKIES Procedure
	BEGIN_REQUEST Function
	CLEAR_COOKIES Procedure
	CLOSE_PERSISTENT_CONN Procedure
	CLOSE_PERSISTENT_CONNS Procedure
	END_REQUEST Procedure
	END_RESPONSE Procedure
	GET_AUTHENTICATION Procedure
	GET_BODY_CHARSET Procedure
	GET_COOKIE_COUNT Function
	GET_COOKIE_SUPPORT Procedure
	GET_COOKIES Function
	GET_DETAILED_EXCP_SUPPORT Procedure
	GET_DETAILED_SQLCODE Function
	GET_DETAILED_SQLERRM Function
	GET_FOLLOW_REDIRECT Procedure
	GET_HEADER Procedure
	GET_HEADER_BY_NAME Procedure
	GET_HEADER_COUNT Function
	GET_PERSISTENT_CONN_COUNT Function
	GET_PERSISTENT_CONN_SUPPORT Procedure
	GET_PERSISTENT_CONNS Procedure
	GET_PROXY Procedure
	GET_RESPONSE Function
	GET_RESPONSE_ERROR_CHECK Procedure
	GET_TRANSFER_TIMEOUT Procedure
	READ_LINE Procedure
	READ_RAW Procedure
	READ_TEXT Procedure
	REQUEST Function
	REQUEST_PIECES Function
	SET_AUTHENTICATION Procedure
	SET_BODY_CHARSET Procedures
	SET_COOKIE_SUPPORT Procedures
	SET_DETAILED_EXCP_SUPPORT Procedure
	SET_FOLLOW_REDIRECT Procedures
	SET_HEADER Procedure
	SET_PERSISTENT_CONN_SUPPORT Procedure
	SET_PROXY Procedure
	SET_RESPONSE_ERROR_CHECK Procedure
	SET_TRANSFER_TIMEOUT Procedure
	SET_WALLET Procedure
	WRITE_LINE Procedure
	WRITE_RAW Procedure
	WRITE_TEXT Procedure

208 UTL_I18N

	Using UTL_I18N
	Overview
	Constants

	Summary of UTL_I18N Subprograms
	ESCAPE_REFERENCE Function
	GET_COMMON_TIME_ZONES Function
	GET_DEFAULT_CHARSET Function
	GET_DEFAULT_ISO_CURRENCY Function
	GET_DEFAULT_LINGUISTIC_SORT Function
	GET_LOCAL_LANGUAGES Function
	GET_LOCAL_LINGUISTIC_SORTS Function
	GET_LOCAL_TERRITORIES Function
	GET_LOCAL_TIME_ZONES Function
	GET_TRANSLATION Function
	MAP_CHARSET Function
	MAP_FROM_SHORT_LANGUAGE Function
	MAP_LANGUAGE_FROM_ISO Function
	MAP_LOCALE_TO_ISO Function
	MAP_TERRITORY_FROM_ISO Function
	MAP_TO_SHORT_LANGUAGE Function
	RAW_TO_CHAR Functions
	RAW_TO_NCHAR Functions
	STRING_TO_RAW Function
	TRANSLITERATE Function
	UNESCAPE_REFERENCE Function

209 UTL_INADDR

	Using UTL_INADDR
	Exceptions
	Examples

	Summary of UTL_INADDR Subprograms
	GET_HOST_ADDRESS Function
	GET_HOST_NAME Function

210 UTL_LMS

	Using UTL_LMS
	Security Model

	Summary of UTL_LMS Subprograms
	FORMAT_MESSAGE Function
	GET_MESSAGE Function

211 UTL_MAIL

	Using UTL_MAIL
	Security Model
	Operational Notes
	Rules and Limits

	Summary of UTL_MAIL Subprograms
	SEND Procedure
	SEND_ATTACH_RAW Procedure
	SEND_ATTACH_VARCHAR2 Procedure

212 UTL_NLA

	Using UTL_NLA
	Overview
	Rules and Limits

	Subprogram Groups
	BLAS Level 1 (Vector-Vector Operations) Subprograms
	BLAS Level 2 (Matrix-Vector Operations) Subprograms
	BLAS Level 3 (Matrix-Matrix Operations) Subprograms
	LAPACK Driver Routines (Linear Equations) Subprograms
	LAPACK Driver Routines (LLS and Eigenvalue Problems) Subprograms

	Summary of UTL_NLA Subprograms
	BLAS_ASUM Functions
	BLAS_AXPY Procedures
	BLAS_COPY Procedures
	BLAS_DOT Functions
	BLAS_GBMV Procedures
	BLAS_GEMM Procedures
	BLAS_GEMV Procedures
	BLAS_GER Procedures
	BLAS_IAMAX Functions
	BLAS_NRM2 Functions
	BLAS_ROT Procedures
	BLAS_ROTG Procedures
	BLAS_SCAL Procedures
	BLAS_SPMV Procedures
	BLAS_SPR Procedures
	BLAS_SPR2 Procedures
	BLAS_SBMV Procedures
	BLAS_SWAP Procedures
	BLAS_SYMM Procedures
	BLAS_SYMV Procedures
	BLAS_SYR Procedures
	BLAS_SYR2 Procedures
	BLAS_SYR2K Procedures
	BLAS_SYRK Procedures
	BLAS_TBMV Procedures
	BLAS_TBSV Procedures
	BLAS_TPMV Procedures
	BLAS_TPSV Procedures
	BLAS_TRMM Procedures
	BLAS_TRMV Procedures
	BLAS_TRSM Procedures
	BLAS_TRSV Procedures
	LAPACK_GBSV Procedures
	LAPACK_GEES Procedures
	LAPACK_GELS Procedures
	LAPACK_GESDD Procedures
	LAPACK_GESV Procedures
	LAPACK_GESVD Procedures
	LAPACK_GEEV Procedures
	LAPACK_GTSV Procedures
	LAPACK_PBSV Procedures
	LAPACK_POSV Procedures
	LAPACK_PPSV Procedures
	LAPACK_PTSV Procedures
	LAPACK_SBEV Procedures
	LAPACK_SBEVD Procedures
	LAPACK_SPEV Procedures
	LAPACK_SPEVD Procedures
	LAPACK_SPSV Procedures
	LAPACK_STEV Procedures
	LAPACK_STEVD Procedures
	LAPACK_SYEV Procedures
	LAPACK_SYEVD Procedures
	LAPACK_SYSV Procedures

213 UTL_RAW

	Using UTL_RAW
	Overview
	Operational Notes

	Summary of UTL_RAW Subprograms
	BIT_AND Function
	BIT_COMPLEMENT Function
	BIT_OR Function
	BIT_XOR Function
	CAST_FROM_BINARY_DOUBLE Function
	CAST_FROM_BINARY_FLOAT Function
	CAST_FROM_BINARY_INTEGER Function
	CAST_FROM_NUMBER Function
	CAST_TO_BINARY_DOUBLE Function
	CAST_TO_BINARY_FLOAT Function
	CAST_TO_BINARY_INTEGER Function
	CAST_TO_NUMBER Function
	CAST_TO_RAW Function
	CAST_TO_VARCHAR2 Function
	CAST_TO_NVARCHAR2 Function
	COMPARE Function
	CONCAT Function
	CONVERT Function
	COPIES Function
	LENGTH Function
	OVERLAY Function
	REVERSE Function
	SUBSTR Function
	TRANSLATE Function
	TRANSLITERATE Function
	XRANGE Function

214 UTL_RECOMP

	Using UTL_RECOMP
	Overview
	Operational Notes
	Examples

	Summary of UTL_RECOMP Subprograms
	RECOMP_PARALLEL Procedure
	RECOMP_SERIAL Procedure

215 UTL_REF

	Using UTL_REF
	Overview
	Security Model
	Types
	Exceptions

	Summary of UTL_REF Subprograms
	DELETE_OBJECT Procedure
	LOCK_OBJECT Procedure
	SELECT_OBJECT Procedure
	UPDATE_OBJECT Procedure

216 UTL_SMTP

	Using UTL_SMTP
	Overview
	Security Model
	Types
	Reply Codes
	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_SMTP Subprograms
	CLOSE_DATA Function and Procedure
	COMMAND Function and Procedure
	COMMAND_REPLIES Function
	DATA Function and Procedure
	EHLO Function and Procedure
	HELO Function and Procedure
	HELP Function
	MAIL Function and Procedure
	NOOP Function and Procedure
	OPEN_CONNECTION Functions
	OPEN_DATA Function and Procedure
	QUIT Function and Procedure
	RCPT Function
	RSET Function and Procedure
	VRFY Function
	WRITE_DATA Procedure
	WRITE_RAW_DATA Procedure

217 UTL_SPADV

	Summary of UTL_SPADV Subprograms
	COLLECT_STATS Procedure
	SHOW_STATS Procedure

218 UTL_TCP

	Using UTL_TCP
	Overview
	Security Model
	Types
	Exceptions
	Rules and Limits
	Examples

	Summary of UTL_TCP Subprograms
	AVAILABLE Function
	CLOSE_ALL_CONNECTIONS Procedure
	CLOSE_CONNECTION Procedure
	FLUSH Procedure
	GET_LINE Function
	GET_LINE_NCHAR Function
	GET_RAW Function
	GET_TEXT Function
	GET_TEXT_NCHAR Function
	OPEN_CONNECTION Function
	READ_LINE Function
	READ_RAW Function
	READ_TEXT Function
	WRITE_LINE Function
	WRITE_RAW Function
	WRITE_TEXT Function

219 UTL_URL

	Using UTL_URL
	Overview
	Exceptions
	Examples

	Summary of UTL_URL Subprograms
	ESCAPE Function
	UNESCAPE Function

220 WPG_DOCLOAD

	Using WPG_DOCLOAD
	Constants

	Summary of WPG_DOCLOAD Subprograms
	DOWNLOAD_FILE Procedures

221 ANYDATA TYPE

	Using ANYDATA TYPE
	Restrictions
	Operational Notes

	Summary of ANYDATA Subprograms
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

222 ANYDATASET TYPE

	Construction
	Summary of ANYDATASET TYPE Subprograms
	ADDINSTANCE Member Procedure
	BEGINCREATE Static Procedure
	ENDCREATE Member Procedure
	GET* Member Functions
	GETCOUNT Member Function
	GETINSTANCE Member Function
	GETTYPE Member Function
	GETTYPENAME Member Function
	PIECEWISE Member Procedure
	SET* Member Procedures

223 ANYTYPE TYPE

	Summary of ANYTYPE Subprograms
	BEGINCREATE Static Procedure
	SETINFO Member Procedure
	ADDATTR Member Procedure
	ENDCREATE Member Procedure
	GETPERSISTENT Static Function
	GETINFO Member Function
	GETATTRELEMINFO Member Function

224 Oracle Streams AQ TYPEs

	Summary of Types
	AQ$_AGENT Type
	AQ$_AGENT_LIST_T Type
	AQ$_DESCRIPTOR Type
	AQ$_NTFN_DESCRIPTOR Type
	AQ$_NTFN_MSGID_ARRAY Type
	AQ$_POST_INFO Type
	AQ$_POST_INFO_LIST Type
	AQ$_PURGE_OPTIONS_T Type
	AQ$_RECIPIENT_LIST_T Type
	AQ$_REG_INFO Type
	AQ$_REG_INFO_LIST Type
	AQ$_SUBSCRIBER_LIST_T Type
	DEQUEUE_OPTIONS_T Type
	ENQUEUE_OPTIONS_T Type
	SYS.MSG_PROP_T Type
	MESSAGE_PROPERTIES_T Type
	MESSAGE_PROPERTIES_ARRAY_T Type
	MSGID_ARRAY_T Type

225 Database URI TYPEs

	Summary of URITYPE Supertype Subprograms
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of HTTPURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML
	HTTPURITYPE

	Summary of DBURITYPE Subtype Subprogams
	CREATEURI
	DBURITYPE
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML

	Summary of XDBURITYPE Subtype Subprograms
	CREATEURI
	GETBLOB
	GETCLOB
	GETCONTENTTYPE
	GETEXTERNALURL
	GETURL
	GETXML
	XDBURITYPE

	Summary of URIFACTORY Package Subprograms
	GETURI
	ESCAPEURI
	UNESCAPEURI
	REGISTERURLHANDLER
	UNREGISTERURLHANDLER

226 Expression Filter Types

	Summary of Expression Filter Types
	EXF$ATTRIBUTE
	EXF$ATTRIBUTE_LIST
	EXF$INDEXOPER
	EXF$TABLE_ALIAS
	EXF$TEXT
	EXF$XPATH_TAG
	EXF$XPATH_TAGS

227 JMS Types

	Using JMS Types
	Overview
	Java Versus PL/SQL Data Types
	More on Bytes, Stream and Map Messages
	Upcasting and Downcasting Between General and Specific Messages
	JMS Types Error Reporting
	Oracle JMS Type Constants
	CONVERT_JMS_SELECTOR

	Summary of JMS Types
	SYS.AQ$_JMS_MESSAGE Type
	SYS.AQ$_JMS_TEXT_MESSAGE Type
	SYS.AQ$_JMS_BYTES_MESSAGE Type
	SYS.AQ$_JMS_MAP_MESSAGE Type
	SYS.AQ$_JMS_STREAM_MESSAGE Type
	SYS.AQ$_JMS_OBJECT_MESSAGE Type
	SYS.AQ$_JMS_NAMESARRAY Type
	SYS.AQ$_JMS_VALUE Type
	SYS.AQ$_JMS_EXCEPTION Type

228 Logical Change Record TYPEs

	Summary of Logical Change Record Types
	LCR$_DDL_RECORD Type
	LCR$_ROW_RECORD Type

	Common Subprograms for LCR$_DDL_RECORD and LCR$_ROW_RECORD
	LCR$_ROW_LIST Type
	LCR$_ROW_UNIT Type

229 Oracle Multimedia ORDAudio TYPE

	Documentation of ORDAudio

230 Oracle Multimedia ORDDicom TYPE

	Documentation of ORDDicom

231 Oracle Multimedia ORDDoc TYPE

	Documentation of ORDDoc

232 Oracle Multimedia ORDImage TYPE

	Documentation of ORDImage

233 Oracle Multimedia SQL/MM Still Image TYPE

	Documentation of SQL/MM Still Image

234 Oracle Multimedia ORDVideo TYPE

	Documentation of ORDVideo

235 MGD_ID Package Types

	Summary of Types
	MGD_ID_COMPONENT Object Type
	MGD_ID_COMPONENT_VARRAY Object Type
	MGD_ID Object Type

	Summary of MGD_ID Subprograms
	MGD_ID Constructor Function
	FORMAT Function
	GET_COMPONENT Function
	TO_STRING Function
	TRANSLATE Function

236 Rule TYPEs

	Summary of Rule Types
	RE$ATTRIBUTE_VALUE Type
	RE$ATTRIBUTE_VALUE_LIST Type
	RE$COLUMN_VALUE Type
	RE$COLUMN_VALUE_LIST Type
	RE$NAME_ARRAY Type
	RE$NV_ARRAY Type
	RE$NV_LIST Type
	RE$NV_NODE Type
	RE$RULE_HIT Type
	RE$RULE_HIT_LIST Type
	RE$TABLE_ALIAS Type
	RE$TABLE_ALIAS_LIST Type
	RE$TABLE_VALUE Type
	RE$TABLE_VALUE_LIST Type
	RE$VARIABLE_TYPE Type
	RE$VARIABLE_TYPE_LIST Type
	RE$VARIABLE_VALUE Type
	RE$VARIABLE_VALUE_LIST Type

237 Rules Manager Types

	Summary of Rule Manager Types
	RLM$EVENTIDS Object Type

238 UTL Streams Types

	Summary of UTL Binary Streams Types
	UTL_BINARYINPUTSTREAM Type
	UTL_BINARYOUTPUTSTREAM Type
	UTL_CHARACTERINPUTSTREAM Type
	UTL_CHARACTEROUTPUTSTREAM Type

239 XMLTYPE

	Summary of XMLType Subprograms
	CREATENONSCHEMABASEDXML
	CREATESCHEMABASEDXML
	CREATEXML
	EXISTSNODE
	EXTRACT
	GETBLOBVAL
	GETCLOBVAL
	GETNAMESPACE
	GETNUMBERVAL
	GETROOTELEMENT
	GETSCHEMAURL
	GETSTRINGVAL
	ISFRAGMENT
	ISSCHEMABASED
	ISSCHEMAVALID
	ISSCHEMAVALIDATED
	SCHEMAVALIDATE
	SETSCHEMAVALIDATED
	TOOBJECT
	TRANSFORM
	XMLTYPE

Index

Preface

This Preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

Oracle Database PL/SQL Packages and Types Reference is intended for programmers, systems analysts, project managers, and others interested in developing database applications. This manual assumes a working knowledge of application programming and familiarity with SQL to access information in relational database systems. Some sections also assume a knowledge of basic object-oriented programming:

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

For more information, see the following documents:

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database PL/SQL Language Reference

Many of the examples in this book use the sample schemas, which are installed by default when you select the Basic Installation option with an Oracle Database installation. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://otn.oracle.com/membership/

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://otn.oracle.com/documentation/

Conventions

This section describes the conventions used in the text and code examples of this documentation set. It describes:

	
Conventions in Text

	
Conventions in Code Examples

Conventions in Text

We use various conventions in text to help you more quickly identify special terms. The following table describes those conventions and provides examples of their use.

	Convention	Meaning	Example
	Bold	Bold typeface indicates terms that are defined in the text or terms that appear in a glossary, or both.	When you specify this clause, you create an index-organized table.
	Italics	Italic typeface indicates book titles or emphasis.	Oracle Database Concepts
Ensure that the recovery catalog and target database do not reside on the same disk.

	UPPERCASE monospace (fixed-width) font	Uppercase monospace typeface indicates elements supplied by the system. Such elements include parameters, privileges, datatypes, RMAN keywords, SQL keywords, SQL*Plus or utility commands, packages and methods, as well as system-supplied column names, database objects and structures, usernames, and roles.	You can specify this clause only for a NUMBER column.
You can back up the database by using the BACKUP command.

Query the TABLE_NAME column in the USER_TABLES data dictionary view.

Use the DBMS_STATS.GENERATE_STATS procedure.

	lowercase monospace (fixed-width) font	Lowercase monospace typeface indicates executable programs, filenames, directory names, and sample user-supplied elements. Such elements include computer and database names, net service names and connect identifiers, user-supplied database objects and structures, column names, packages and classes, usernames and roles, program units, and parameter values.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	Enter sqlplus to start SQL*Plus.
The password is specified in the orapwd file.

Back up the datafiles and control files in the /disk1/oracle/dbs directory.

The department_id, department_name, and location_id columns are in the hr.departments table.

Set the QUERY_REWRITE_ENABLED initialization parameter to true.

The JRepUtil class implements these methods.

	lowercase italic monospace (fixed-width) font	Lowercase italic monospace font represents placeholders or variables.	You can specify the parallel_clause.
Run old_release.SQL where old_release refers to the release you installed prior to upgrading.

Conventions in Code Examples

Code examples illustrate SQL, PL/SQL, SQL*Plus, or other command-line statements. They are displayed in a monospace (fixed-width) font and separated from normal text as shown in this example:

SELECT username FROM dba_users WHERE username = 'MIGRATE';

The following table describes typographic conventions used in code examples and provides examples of their use.

	Convention	Meaning	Example
	

[]

	Anything enclosed in brackets is optional.	

DECIMAL (digits [, precision])

	

{ }

	Braces are used for grouping items.	

{ENABLE | DISABLE}

	

|

	A vertical bar represents a choice of two options.	

{ENABLE | DISABLE}
[COMPRESS | NOCOMPRESS]

	

...

	Ellipsis points mean repetition in syntax descriptions.
In addition, ellipsis points can mean an omission in code examples or text.

	

CREATE TABLE ... AS subquery;

SELECT col1, col2, ... , coln FROM employees;

	Other symbols	You must use symbols other than brackets ([]), braces ({ }), vertical bars (|), and ellipsis points (...) exactly as shown.	

acctbal NUMBER(11,2);
acct CONSTANT NUMBER(4) := 3;

	

Italics

	Italicized text indicates placeholders or variables for which you must supply particular values.	

enter password

DB_NAME = database_name

	

UPPERCASE

	Uppercase typeface indicates elements supplied by the system. We show these terms in uppercase in order to distinguish them from terms you define. Unless terms appear in brackets, enter them in the order and with the spelling shown. Because these terms are not case sensitive, you can use them in either UPPERCASE or lowercase.	

SELECT last_name, employee_id FROM employees;
SELECT * FROM USER_TABLES;
DROP TABLE hr.employees;

	

lowercase

	Lowercase typeface indicates user-defined programmatic elements, such as names of tables, columns, or files.
Note: Some programmatic elements use a mixture of UPPERCASE and lowercase. Enter these elements as shown.

	

SELECT last_name, employee_id FROM employees;
sqlplus hr/hr
CREATE USER mjones IDENTIFIED BY ty3MU9;

What's New in PL/SQL Packages and Types Reference?

The following sections describe the new documentation:

	
Oracle Database 11g Release 1 (11.1)

	
New Packages

	
Updated Packages

	
New Types

	
Updated Types

Oracle Database 11g Release 1 (11.1)

New Packages

	
APEX_CUSTOM_AUTH

	
APEX_APPLICATION

	
APEX_ITEM

	
APEX_UTIL

	
DBMS_ADDM

	
DBMS_ASSERT

	
DBMS_AUTO_TASK_ADMIN

	
DBMS_AW_STATS

	
DBMS_COMPARISON

	
DBMS_CONNECTION_POOL

	
DBMS_CSX_ADMIN

	
DBMS_CUBE

	
DBMS_CUBE_ADVISE

	
DBMS_DG

	
DBMS_HM

	
DBMS_HPROF

	
DBMS_HS_PARALLEL

	
DBMS_MGD_ID_UTL

	
DBMS_NETWORK_ACL_ADMIN

	
DBMS_NETWORK_ACL_UTILITY

	
DBMS_RESCONFIG

	
DBMS_RESULT_CACHE

	
DBMS_SPM

	
DBMS_SQLDIAG

	
DBMS_STREAMS_ADVISOR_ADM

	
DBMS_WORKLOAD_CAPTURE

	
DBMS_WORKLOAD_REPLAY

	
DBMS_XA

	
DBMS_XDB_ADMIN

	
DBMS_XDBRESOURCE

	
DBMS_XEVENT

	
DBMS_XMLINDEX

	
DBMS_XMLTRANSLATIONS

	
SDO_CSW_PROCESS

	
SDO_GEOR_ADMIN

	
SDO_OLS

	
SDO_PC_PKG

	
SDO_TIN_PKG

	
SDO_WFS_LOCK

	
SDO_WFS_PROCESS

	
SEM_APIS

	
SEM_PERF

	
UTL_SPADV

Updated Packages

	
DBMS_ADVISOR

	
DBMS_APPLY_ADM

	
DBMS_AQ

	
DBMS_AQADM

	
DBMS_CAPTURE_ADM

	
DBMS_CDC_PUBLISH

	
DBMS_CDC_SUBSCRIBE

	
DBMS_CQ_NOTIFICATION

	
DBMS_DATA_MINING

	
DBMS_DATA_MINING_TRANSFORM

	
DBMS_DATAPUMP

	
DBMS_EXPFIL

	
DBMS_FLASHBACK

	
DBMS_HS_PASSTHROUGH

	
DBMS_LOB

	
DBMS_LOGSTDBY

	
DBMS_MGWADM

	
DBMS_MVIEW

	
DBMS_OUTLN

	
DBMS_PREDICTIVE_ANALYTICS

	
DBMS_PROPAGATION_ADM

	
DBMS_RESOURCE_MANAGER

	
DBMS_RLMGR

	
DBMS_RULE_ADM

	
DBMS_SCHEDULER

	
DBMS_SERVER_ALERT

	
DBMS_SESSION

	
DBMS_SPACE

	
DBMS_SQL

	
DBMS_SQLTUNE

	
DBMS_STATS

	
DBMS_STREAMS

	
DBMS_STREAMS_ADM

	
DBMS_STREAMS_TABLESPACE_ADM

	
DBMS_TRACE

	
DBMS_UTILITY

	
DBMS_WORKLOAD_REPOSITORY

	
DBMS_XDB

	
DBMS_XMLSCHEMA

	
DBMS_XPLAN

	
UTL_INADDR

	
UTL_RECOMP

	
UTL_SMTP

	
UTL_SPADV

	
UTL_TCP

New Types

	
MGD_ID Package Types

	
UTL Streams Types

Updated Types

	
Oracle Streams AQ TYPEs

	
Logical Change Record TYPEs

1 Introduction to Oracle Supplied PL/SQL Packages & Types

Oracle supplies many PL/SQL packages with the Oracle server to extend database functionality and provide PL/SQL access to SQL features. You can use the supplied packages when creating your applications or for ideas in creating your own stored procedures.

This manual covers the packages provided with the Oracle database server. Packages supplied with other products, such as Oracle Developer or the Oracle Application Server, are not covered.

Note that not every package or type described in this manual or elsewhere in the Oracle Database Documentation Library is installed by default. In such cases, the documentation states this and explains how to install the object. Run this query as a suitably privileged user:

SELECT DISTINCT Owner, Object_Type, Object_Name FROM DBA_Objects_AE
 WHERE Owner IN (
 'SYS', 'OUTLN', 'SYSTEM', 'CTXSYS', 'DBSNMP',
 'LOGSTDBY_ADMINISTRATOR', 'ORDSYS',
 'ORDPLUGINS', 'OEM_MONITOR', 'WKSYS', 'WKPROXY',
 'WK_TEST', 'WKUSER', 'MDSYS', 'LBACSYS', 'DMSYS',
 'WMSYS', 'OLAPDBA', 'OLAPSVR', 'OLAP_USER',
 'OLAPSYS', 'EXFSYS', 'SYSMAN', 'MDDATA',
 'SI_INFORMTN_SCHEMA', 'XDB', 'ODM')
 AND Object_Type IN ('PACKAGE', 'TYPE')
 ORDER BY Owner, Object_Type, Object_Name

This lists every Oracle-supplied package and type that is currently installed in the database. Note that it lists a number of objects not mentioned in the Oracle Database Documentation Library. This is deliberate. Some of the Oracle-supplied packages and types are intended to be used only by other Oracle-supplied components. Any package or type that is not described in the Oracle Database Documentation Library is not supported for direct customer use.

This chapter contains the following topics:

	
Package Overview

	
Summary of Oracle Supplied PL/SQL Packages and Types

	
See Also:

Oracle Database Advanced Application Developer's Guide for information on how to create your own packages

Package Overview

A package is an encapsulated collection of related program objects stored together in the database. Program objects are procedures, functions, variables, constants, cursors, and exceptions.

Packages have many advantages over standalone procedures and functions. For example, they:

	
Let you organize your application development more efficiently.

	
Let you grant privileges more efficiently.

	
Let you modify package objects without recompiling dependent schema objects.

	
Enable Oracle to read multiple package objects into memory at once.

	
Let you overload procedures or functions. Overloading means creating multiple procedures with the same name in the same package, each taking arguments of different number or datatype.

	
Can contain global variables and cursors that are available to all procedures and functions in the package.

Package Components

PL/SQL packages have two parts: the specification and the body, although sometimes the body is unnecessary. The specification is the interface to your application; it declares the types, variables, constants, exceptions, cursors, and subprograms available for use. The body fully defines cursors and subprograms, and so implements the specification.

Unlike subprograms, packages cannot be called, parameterized, or nested. However, the formats of a package and a subprogram are similar:

CREATE PACKAGE name AS -- specification (visible part)
 -- public type and item declarations
 -- subprogram specifications
END [name];

CREATE PACKAGE BODY name AS -- body (hidden part)
 -- private type and item declarations
 -- subprogram bodies
[BEGIN
 -- initialization statements]
END [name];

The specification holds public declarations that are visible to your application. The body holds implementation details and private declarations that are hidden from your application. You can debug, enhance, or replace a package body without changing the specification. You can change a package body without recompiling calling programs because the implementation details in the body are hidden from your application.

Using Oracle Supplied Packages

Most Oracle supplied packages are automatically installed when the database is created. Certain packages are not installed automatically. Special installation instructions for these packages are documented in the individual chapters.

To call a PL/SQL function from SQL, you must either own the function or have EXECUTE privileges on the function. To select from a view defined with a PL/SQL function, you must have SELECT privileges on the view. No separate EXECUTE privileges are needed to select from the view. Instructions on special requirements for packages are documented in the individual chapters.

Creating New Packages

To create packages and store them permanently in an Oracle database, use the CREATE PACKAGE and CREATE PACKAGE BODY statements. You can execute these statements interactively from SQL*Plus or Enterprise Manager.

To create a new package, do the following:

	
Create the package specification with the CREATE PACKAGE statement.

You can declare program objects in the package specification. Such objects are called public objects. Public objects can be referenced outside the package, as well as by other objects in the package.

	
Note:

It is often more convenient to add the OR REPLACE clause in the CREATE PACKAGE statement. But note that CREATE PACKAGE warns you if you are about to overwrite an existing package with the same name while CREATE OR REPLACE just overwrites it with no warning.

	
Create the package body with the CREATE PACKAGE BODY statement.

You can declare and define program objects in the package body.

	
You must define public objects declared in the package specification.

	
You can declare and define additional package objects, called private objects. Private objects are declared in the package body rather than in the package specification, so they can be referenced only by other objects in the package. They cannot be referenced outside the package.

	
See Also:

	
Oracle Database PL/SQL Language Reference

	
Oracle Database Advanced Application Developer's Guidefor more information on creating new packages

	
Oracle Database Concepts

for more information on storing and executing packages

Separating the Specification and Body

The specification of a package declares the public types, variables, constants, and subprograms that are visible outside the immediate scope of the package. The body of a package defines the objects declared in the specification, as well as private objects that are not visible to applications outside the package.

Oracle stores the specification and body of a package separately in the database. Other schema objects that call or reference public program objects depend only on the package specification, not on the package body. Using this distinction, you can change the definition of a program object in the package body without causing Oracle to invalidate other schema objects that call or reference the program object. Oracle invalidates dependent schema objects only if you change the declaration of the program object in the package specification.

Creating a New Package: Example

The following example shows a package specification for a package named EMPLOYEE_MANAGEMENT. The package contains one stored function and two stored procedures.

CREATE PACKAGE employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER;
 PROCEDURE fire_emp (emp_id NUMBER);
 PROCEDURE sal_raise (emp_id NUMBER, sal_incr NUMBER);
END employee_management;

The body for this package defines the function and the procedures:

CREATE PACKAGE BODY employee_management AS
 FUNCTION hire_emp (name VARCHAR2, job VARCHAR2,
 mgr NUMBER, hiredate DATE, sal NUMBER, comm NUMBER,
 deptno NUMBER) RETURN NUMBER IS

The function accepts all arguments for the fields in the employee table except for the employee number. A value for this field is supplied by a sequence. The function returns the sequence number generated by the call to this function.

 new_empno NUMBER(10);

 BEGIN
 SELECT emp_sequence.NEXTVAL INTO new_empno FROM dual;
 INSERT INTO emp VALUES (new_empno, name, job, mgr,
 hiredate, sal, comm, deptno);
 RETURN (new_empno);
 END hire_emp;

 PROCEDURE fire_emp(emp_id IN NUMBER) AS

The procedure deletes the employee with an employee number that corresponds to the argument emp_id. If no employee is found, then an exception is raised.

 BEGIN
 DELETE FROM emp WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
END fire_emp;

PROCEDURE sal_raise (emp_id IN NUMBER, sal_incr IN NUMBER) AS

The procedure accepts two arguments. Emp_id is a number that corresponds to an employee number. Sal_incr is the amount by which to increase the employee's salary.

 BEGIN

 -- If employee exists, then update salary with increase.

 UPDATE emp
 SET sal = sal + sal_incr
 WHERE empno = emp_id;
 IF SQL%NOTFOUND THEN
 raise_application_error(-20011, 'Invalid Employee
 Number: ' || TO_CHAR(emp_id));
 END IF;
 END sal_raise;
END employee_management;

	
Note:

If you want to try this example, then first create the sequence number emp_sequence. You can do this using the following SQL*Plus statement:

SQL> CREATE SEQUENCE emp_sequence
 > START WITH 8000 INCREMENT BY 10;

Referencing Package Contents

To reference the types, items, and subprograms declared in a package specification, use the dot notation. For example:

package_name.type_name
package_name.item_name
package_name.subprogram_name

Summary of Oracle Supplied PL/SQL Packages and Types

Table 1-1 lists the supplied PL/SQL server packages. These packages run as the invoking user, rather than the package owner. Unless otherwise noted, the packages are callable through public synonyms of the same name.

	
Caution:

	
The procedures and functions provided in these packages and their external interfaces are reserved by Oracle and are subject to change.

	
Modifying Oracle supplied packages can cause internal errors and database security violations. Do not modify supplied packages.

Table 1-1 Summary of Oracle Supplied PL/SQL Packages

	Package Name	Description
	
APEX_CUSTOM_AUTH

	
Provides an interface for authentication and session management

	
APEX_APPLICATION

	
Enables users to take advantage of global variables

	
APEX_ITEM

	
Enables users to create form elements dynamically based on a SQL query instead of creating individual items page by page

	
APEX_UTIL

	
Provides utilities for getting and setting session state, getting files, checking authorizations for users, resetting different states for users, and also getting and setting preferences for users

	
CTX_ADM

	
Lets you administer servers and the data dictionary

	
CTX_CLS

	
Lets you generate CTXRULE rules for a set of documents

	
CTX_DDL

	
Lets you create and manage the preferences, section lists and stopgroups required for Text indexes

	
CTX_DOC

	
Lets you request document services

	
CTX_OUTPUT

	
Lets you manage the index log

	
CTX_QUERY

	
Lets you generate query feedback, count hits, and create stored query expressions

	
CTX_REPORT

	
Lets you create various index reports

	
CTX_THES

	
Lets you to manage and browse thesauri

	
CTX_ULEXER

	
For use with the user-lexer

	
DBMS_ADVANCED_REWRITE

	
Contains interfaces for advanced query rewrite users to create, drop, and maintain functional equivalence declarations for query rewrite

	
DBMS_ADVISOR

	
Part of the SQLAccess Advisor, an expert system that identifies and helps resolve performance problems relating to the execution of SQL statements

	
DBMS_ALERT

	
Provides support for the asynchronous notification of database events

	
DBMS_APPLICATION_INFO

	
Lets you register an application name with the database for auditing or performance tracking purposes

	
DBMS_APPLY_ADM

	
Provides administrative procedures to start, stop, and configure an apply process

	
DBMS_AQ

	
Lets you add a message (of a predefined object type) onto a queue or to dequeue a message

	
DBMS_AQADM

	
Lets you perform administrative functions on a queue or queue table for messages of a predefined object type

	
DBMS_AQELM

	
Provides procedures to manage the configuration of Advanced Queuing asynchronous notification by e-mail and HTTP

	
DBMS_AQIN

	
Plays a part in providing secure access to the Oracle JMS interfaces

	
DBMS_ASSERT

	
Provides an interface to validate properties of the input value

	
DBMS_AUTO_TASK_ADMIN

	
Used by the DBA as well as Enterprise Manager to access the AUTOTASK controls

	
DBMS_AW_STATS

	
Contains a subprogram that generates and stores optimizer statistics for cubes and dimensions

	
DBMS_CAPTURE_ADM

	
Describes administrative procedures to start, stop, and configure a capture process; used in Streams

	
DBMS_CDC_PUBLISH

	
Identifies new data that has been added to, modified, or removed from, relational tables and publishes the changed data in a form that is usable by an application

	
DBMS_CDC_SUBSCRIBE

	
Lets you view and query the change data that was captured and published with the DBMS_LOGMNR_CDC_PUBLISH package

	
DBMS_COMPARISON

	
Provides interfaces to compare and converge database objects at different databases

	
DBMS_CONNECTION_POOL

	
Provides an interface to manage the Database Resident Connection Pool

	
DBMS_CQ_NOTIFICATION

	
Is part of a set of features that clients use to receive notifications when result sets of a query have changed. The package contains interfaces that can be used by mid-tier clients to register objects and specify delivery mechanisms.

	
DBMS_CRYPTO

	
Lets you encrypt and decrypt stored data, can be used in conjunction with PL/SQL programs running network communications, and supports encryption and hashing algorithms

	
DBMS_CSX_ADMIN

	
Provides an interface to customize the setup when transporting a tablespace containing binary XML data

	
DBMS_CUBE

	
Contains subprograms that create OLAP cubes and dimensions, and that load and process the data for querying

	
DBMS_CUBE_ADVISE

	
Contains subprograms for evaluating cube materialized views to support log-based fast refresh and query rewrite

	
DBMS_DATA_MINING

	
Implements the Oracle Data Mining interface for creating, evaluating, and managing mining models

	
DBMS_DATA_MINING_TRANSFORM

	
Provides subroutines that can be used to prepare data for Oracle Data Mining

	
DBMS_DATAPUMP

	
Lets you move all, or part of, a database between databases, including both data and metadata

	
DBMS_DB_VERSION

	
Specifies the Oracle version numbers and other information useful for simple conditional compilation selections based on Oracle versions

	
DBMS_DDL

	
Provides access to some SQL DDL statements from stored procedures, and provides special administration operations not available as DDLs

	
DBMS_DEBUG

	
Implements server-side debuggers and provides a way to debug server-side PL/SQL program units

	
DBMS_DEFER

	
Provides the user interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	
DBMS_DEFER_QUERY

	
Permits querying the deferred remote procedure calls (RPC) queue data that is not exposed through views. Requires the Distributed Option.

	
DBMS_DEFER_SYS

	
Provides the system administrator interface to a replicated transactional deferred remote procedure call facility. Requires the Distributed Option.

	
DBMS_DESCRIBE

	
Describes the arguments of a stored procedure with full name translation and security checking

	
DBMS_DG

	
Allows applications to notify the primary database in an Oracle Data Guard broker environment to initiate a fast-start failover when the application encounters a condition that warrants a failover

	
DBMS_DIMENSION

	
Enables you to verify dimension relationships and provides an alternative to the Enterprise Manager Dimension Wizard for displaying a dimension definition

	
DBMS_DISTRIBUTED_TRUST_ADMIN

	
Maintains the Trusted Database List, which is used to determine if a privileged database link from a particular server can be accepted

	
DBMS_EPG

	
Implements the embedded PL/SQL gateway that enables a web browser to invoke a PL/SQL stored procedure through an HTTP listener

	
DBMS_ERRLOG

	
Provides a procedure that enables you to create an error logging table so that DML operations can continue after encountering errors rather than abort and roll back

	
DBMS_EXPFIL

	
Contains all the procedures used to manage attribute sets, expression sets, expression indexes, optimizer statistics, and privileges by Expression Filter

	
DBMS_FGA

	
Provides fine-grained security functions

	
DBMS_FILE_GROUP

	
One of a set of Streams packages, provides administrative interfaces for managing file groups, file group versions, files and file group repositories

	
DBMS_FILE_TRANSFER

	
Lets you copy a binary file within a database or to transfer a binary file between databases

	
DBMS_FLASHBACK

	
Lets you flash back to a version of the database at a specified wall-clock time or a specified system change number (SCN)

	
DBMS_FREQUENT_ITEMSET

	
Enables frequent itemset counting

	
DBMS_HM

	
Contains constants and procedure declarations for health check management

	
DBMS_HPROF

	
Provides an interface for profiling the execution of PL/SQL applications

	
DBMS_HS_PARALLEL

	
Enables parallel processing for heterogeneous targets access

	
DBMS_HS_PASSTHROUGH

	
Lets you use Heterogeneous Services to send pass-through SQL statements to non-Oracle systems

	
DBMS_IOT

	
Creates a table into which references to the chained rows for an Index Organized Table can be placed using the ANALYZE command

	
DBMS_JAVA

	
Provides a PL/SQL interface for accessing database functionality from Java

	
DBMS_JOB

	
Schedules and manages jobs in the job queue

	
DBMS_LDAP

	
Provides functions and procedures to access data from LDAP servers

	
DBMS_LDAP_UTL

	
Provides the Oracle Extension utility functions for LDAP

	
DBMS_LIBCACHE

	
Prepares the library cache on an Oracle instance by extracting SQL and PL/SQL from a remote instance and compiling this SQL locally without execution

	
DBMS_LOB

	
Provides general purpose routines for operations on Oracle Large Object (LOBs) datatypes - BLOB, CLOB (read/write), and BFILEs (read-only)

	
DBMS_LOCK

	
Lets you request, convert and release locks through Oracle Lock Management services

	
DBMS_LOGMNR

	
Provides functions to initialize and run the log reader

	
DBMS_LOGMNR_D

	
Queries the dictionary tables of the current database, and creates a text based file containing their contents

	
DBMS_LOGSTDBY

	
Describes procedures for configuring and managing the logical standby database environment

	
DBMS_METADATA

	
Lets callers easily retrieve complete database object definitions (metadata) from the dictionary

	
DBMS_MGD_ID_UTL

	
Provides a set of utility subprograms

	
DBMS_MGWADM

	
Describes the Messaging Gateway administrative interface; used in Advanced Queuing

	
DBMS_MGWMSG

	
Describes object types (used by the canonical message types to convert message bodies) and helper methods, constants, and subprograms for working with the Messaging Gateway message types; used in Advanced Queuing.

	
DBMS_MONITOR

	
Let you use PL/SQL for controlling additional tracing and statistics gathering

	
DBMS_MVIEW

	
Lets you refresh snapshots that are not part of the same refresh group and purge logs. DBMS_SNAPSHOT is a synonym.

	
DBMS_NETWORK_ACL_ADMIN

	
Provides the interface to administer the network Access Control List (ACL)

	
DBMS_NETWORK_UTL

	
Provides the interface to administer the network Access Control List (ACL)

	
DBMS_OBFUSCATION_TOOLKIT

	
Provides procedures for Data Encryption Standards

	
DBMS_ODCI

	
Returns the CPU cost of a user function based on the elapsed time of the function

	
DBMS_OFFLINE_OG

	
Provides a public interface for offline instantiation of master groups

	
DBMS_OLAP

	
Provides procedures for summaries, dimensions, and query rewrites

	
DBMS_OUTLN

	
Provides the interface for procedures and functions associated with management of stored outlines Synonymous with OUTLN_PKG

	
DBMS_OUTLN_EDIT

	
Lets you edit an invoker's rights package

	
DBMS_OUTPUT

	
Accumulates information in a buffer so that it can be retrieved later

	
DBMS_PCLXUTIL

	
Provides intra-partition parallelism for creating partition-wise local indexes

	
DBMS_PIPE

	
Provides a DBMS pipe service which enables messages to be sent between sessions

	
DBMS_PREDICTIVE_ANALYTICS

	
Provides subroutines that implement automatic data mining operations for predict, explain, and profile

	
DBMS_PREPROCESSOR

	
Provides an interface to print or retrieve the source text of a PL/SQL unit in its post-processed form

	
DBMS_PROFILER

	
Provides a Probe Profiler API to profile existing PL/SQL applications and identify performance bottlenecks

	
DBMS_PROPAGATION_ADM

	
Provides administrative procedures for configuring propagation from a source queue to a destination queue

	
DBMS_RANDOM

	
Provides a built-in random number generator

	
DBMS_RECTIFIER_DIFF

	
Provides an interface to detect and resolve data inconsistencies between two replicated sites

	
DBMS_REDEFINITION

	
Lets you perform an online reorganization of tables

	
DBMS_REFRESH

	
Lets you create groups of snapshots that can be refreshed together to a transactionally consistent point in time Requires the Distributed Option

	
DBMS_REPAIR

	
Provides data corruption repair procedures

	
DBMS_REPCAT

	
Provides routines to administer and update the replication catalog and environment. Requires the Replication Option.

	
DBMS_REPCAT_ADMIN

	
Lets you create users with the privileges needed by the symmetric replication facility. Requires the Replication Option.

	
DBMS_REPCAT_INSTATIATE

	
Instantiates deployment templates. Requires the Replication Option.

	
DBMS_REPCAT_RGT

	
Controls the maintenance and definition of refresh group templates. Requires the Replication Option.

	
DBMS_REPUTIL

	
Provides routines to generate shadow tables, triggers, and packages for table replication.

	
DBMS_RESCONFIG

	
Provides an interface to operate on the Resource Configuration List, and to retrieve listener information for a resource

	
DBMS_RESOURCE_MANAGER

	
Maintains plans, consumer groups, and plan directives; it also provides semantics so that you may group together changes to the plan schema

	
DBMS_RESOURCE_MANAGER_PRIVS

	
Maintains privileges associated with resource consumer groups

	
DBMS_RESULT_CACHE

	
Provides an interface to operate on the Result Cache

	
DBMS_RESUMABLE

	
Lets you suspend large operations that run out of space or reach space limits after executing for a long time, fix the problem, and make the statement resume execution

	
DBMS_RLMGR

	
Contains various procedures to create and manage rules and rule sessions by the Rules Manager

	
DBMS_RLS

	
Provides row level security administrative interface

	
DBMS_ROWID

	
Provides procedures to create rowids and to interpret their contents

	
DBMS_RULE

	
Describes the EVALUATE procedure used in Streams

	
DBMS_RULE_ADM

	
Describes the administrative interface for creating and managing rules, rule sets, and rule evaluation contexts; used in Streams

	
DBMS_SCHEDULER

	
Provides a collection of scheduling functions that are callable from any PL/SQL program

	
DBMS_SERVER_ALERT

	
Lets you issue alerts when some threshold has been violated

	
DBMS_SERVICE

	
Lets you create, delete, activate and deactivate services for a single instance

	
DBMS_SESSION

	
Provides access to SQL ALTER SESSION statements, and other session information, from stored procedures

	
DBMS_SHARED_POOL

	
Lets you keep objects in shared memory, so that they will not be aged out with the normal LRU mechanism

	
DBMS_SPACE

	
Provides segment space information not available through standard SQL

	
DBMS_SPACE_ADMIN

	
Provides tablespace and segment space administration not available through the standard SQL

	
DBMS_SPM

	
Supports the SQL plan management feature by providing an interface for the DBA or other user to perform controlled manipulation of plan history and SQL plan baselines maintained for various SQL statements

	
DBMS_SQL

	
Lets you use dynamic SQL to access the database

	
DBMS_SQLDIAG

	
Provides an interface to the SQL Diagnosability functionality

	
DBMS_SQLTUNE

	
Provides the interface to tune SQL statements

	
DBMS_STAT_FUNCS

	
Provides statistical functions

	
DBMS_STATS

	
Provides a mechanism for users to view and modify optimizer statistics gathered for database objects

	
DBMS_STORAGE_MAP

	
Communicates with FMON to invoke mapping operations

	
DBMS_STREAMS

	
Describes the interface to convert SYS.AnyData objects into LCR objects and an interface to annotate redo entries generated by a session with a binary tag.

	
DBMS_STREAMS_ADMIN

	
Describes administrative procedures for adding and removing simple rules, without transformations, for capture, propagation, and apply at the table, schema, and database level

	
DBMS_STREAMS_AUTH

	
Provides interfaces for granting privileges to Streams administrators and revoking privileges from Streams administrators

	
DBMS_STREAMS_ADVISOR_ADM

	
Provides an interface to gather information about an Oracle Streams environment and advise database administrators based on the information gathered

	
DBMS_STREAMS_MESSAGING

	
Provides interfaces to enqueue messages into and dequeue messages from a SYS.AnyData queue

	
DBMS_STREAMS_TABLESPACE_ADM

	
Provides administrative procedures for copying tablespaces between databases and moving tablespaces from one database to another

	
DBMS_TDB

	
Reports whether a database can be transported between platforms using the RMAN CONVERT DATABASE command. It verifies that databases on the current host platform are of the same endian format as the destination platform, and that the state of the current database does not prevent transport of the database.

	
DBMS_TRACE

	
Provides routines to start and stop PL/SQL tracing

	
DBMS_TRANSACTION

	
Provides access to SQL transaction statements from stored procedures and monitors transaction activities

	
DBMS_TRANSFORM

	
Provides an interface to the message format transformation features of Oracle Advanced Queuing

	
DBMS_TTS

	
Checks if the transportable set is self-contained

	
DBMS_TYPES

	
Consists of constants, which represent the built-in and user-defined types

	
DBMS_UTILITY

	
Provides various utility routines

	
DBMS_WARNING

	
Provides the interface to query, modify and delete current system or session settings

	
DBMS_WM

	
Describes how to use the programming interface to Oracle Database Workspace Manager to work with long transactions

	
DBMS_WORKLOAD_CAPTURE

	
Configures the Workload Capture system and produce the workload capture data.

	
DBMS_WORKLOAD_REPLAY

	
Provides an interface to replay and report on a record of a workload on a production or test system

	
DBMS_WORKLOAD_REPOSITORY

	
Lets you manage the Workload Repository, performing operations such as managing snapshots and baselines

	
DBMS_XA

	
Contains the XA/Open interface for applications to call XA interface in PL/SQL

	
DBMS_XDB

	
Describes Resource Management and Access Control interface for PL/SQL

	
DBMS_XDB_ADMIN

	
Provides an interface to implement XMLIndex administration operation

	
DBMS_XDBRESOURCE

	
Provides an interface to operate on the XDB resource's metadata and contents

	
DBMS_XDB_VERSION

	
Describes the versioning interface

	
DBMS_XDBT

	
Describes how an administrator can create a ConText index on the XML DB hierarchy and configure it for automatic maintenance

	
DBMS_XDBZ

	
Controls the Oracle XML DB repository security, which is based on Access Control Lists (ACLs)

	
DBMS_XEVENT

	
Provides event-related types and supporting subprograms

	
DBMS_XMLDOM

	
Explains access to XMLType objects

	
DBMS_XMLGEN

	
Converts the results of a SQL query to a canonical XML format

	
DBMS_XMLINDEX

	
Provides an interface to implement asychronous indexing and apply node referencing

	
DBMS_XMLPARSER

	
Explains access to the contents and structure of XML documents

	
DBMS_XMLQUERY

	
Provides database-to-XMLType functionality

	
DBMS_XMLSAVE

	
Provides XML-to-database-type functionality

	
DBMS_XMLSCHEMA

	
Explains procedures to register and delete XML schemas

	
DBMS_XMLSTORE

	
Provides the ability to store XML data in relational tables

	
DBMS_XMLTRANSLATIONS

	
Provides an interface to perform translations so that strings can be searched or displayed in various languages

	
DBMS_XPLAN

	
Describes how to format the output of the EXPLAIN PLAN command

	
DBMS_XSLPROCESSOR

	
Explains access to the contents and structure of XML documents

	
DEBUG_EXTPROC

	
Lets you debug external procedures on platforms with debuggers that attach to a running process

	
HTF

	
Hypertext functions generate HTML tags

	
HTP

	
Hypertext procedures generate HTML tags

	
ORD_DICOM

	
Supports the management and manipulation of Digital Imaging and Communications in Medicine (DICOM) content stored in BLOBs or BFILEs rather than in an ORDDicom object type

	
ORD_DICOM_ADMIN

	
Used by Oracle Multimedia Digital Imaging and Communications in Medicine (DICOM) administrators to maintain the Oracle Multimedia DICOM data model repository

	
OWA_CACHE

	
Provides an interface that enables the PL/SQL Gateway cache to improve the performance of PL/SQL web applications

	
OWA_COOKIE

	
Provides an interface for sending and retrieving HTTP cookies from the client's browser

	
OWA_CUSTOM

	
Provides a Global PLSQL Agent Authorization callback function

	
OWA_IMAGE

	
Provides an interface to access the coordinates where a user clicked on an image

	
OWA_OPT_LOCK

	
Contains subprograms that impose optimistic locking strategies so as to prevent lost updates

	
OWA_PATTERN

	
Provides an interface to locate text patterns within strings and replace the matched string with another string

	
OWA_SEC

	
Provides an interface for custom authentication

	
OWA_TEXT

	
Contains subprograms used by OWA_PATTERN for manipulating strings. They are externalized so you can use them directly.

	
OWA_UTIL

	
Contains utility subprograms for performing operations such as getting the value of CGI environment variables, printing the data that is returned to the client, and printing the results of a query in an HTML table

	
SDO_CS

	
Provides functions for coordinate system transformation

	
SDO_CSW_PROCESS

	
Contains subprograms for various processing operations related to support for Catalog Services for the Web (CSW)

	
SDO_GCDR

	
Contains the Oracle Spatial geocoding subprograms, which let you geocode unformatted postal addresses

	
SDO_GEOM

	
Provides functions implementing geometric operations on spatial objects

	
SDO_GEOR

	
Contains functions and procedures for the Spatial GeoRaster feature, which lets you store, index, query, analyze, and deliver raster image data and its associated Spatial vector geometry data and metadata

	
SDO_GEOR_ADMIN

	
Contains subprograms for administrative operations related to GeoRaster.

	
SDO_GEOR_UTL

	
Contains utility functions and procedures for the Spatial GeoRaster feature, including those related to using triggers with GeoRaster data

	
SDO_LRS

	
Provides functions for linear referencing system support

	
SDO_MIGRATE

	
Provides functions for migrating spatial data from previous releases

	
SDO_NET

	
Provides functions and procedures for working with data modeled as nodes and links in a network

	
SDO_NET_MEM

	
Contains functions and procedures for performing editing and analysis operations on network data using a network memory object

	
SDO_OLS

	
Contains functions and procedures for performing editing and analysis operations on network data using a network memory object

	
SDO_PC_PKG

	
Contains subprograms to support the use of point clouds in Spatial

	
SDO_SAM

	
Contains functions and procedures for spatial analysis and data mining

	
SDO_TIN_PKG

	
Contains subprograms to support the use of triangulated irregular networks (TINs) in Spatial

	
SDO_TOPO

	
Provides procedures for creating and managing Spatial topologies

	
SDO_TOPO_MAP

	
Contains subprograms for editing Spatial topologies using a cache (TopoMap object)

	
SDO_TUNE

	
Provides functions for selecting parameters that determine the behavior of the spatial indexing scheme used in Oracle Spatial

	
SDO_UTIL

	
Provides utility functions and procedures for Oracle Spatial

	
SDO_WFS_LOCK

	
Contains subprograms for WFS support for registering and unregistering feature tables

	
SDO_WFS_PROC

	
Provides utility functions and procedures for Oracle Spatial

	
SEM_APIS

	
Contains subprograms for working with the Resource Description Framework (RDF) and Web Ontology Language (OWL) in an Oracle database.

	
SEM_PERF

	
Contains subprograms for examining and enhancing the performance of the Resource Description Framework (RDF) and Web Ontology Language (OWL) support in an Oracle database

	
UTL_COLL

	
Enables PL/SQL programs to use collection locators to query and update

	
UTL_COMPRESS

	
Provides a set of data compression utilities

	
UTL_DBWS

	
Provides database web services

	
UTL_ENCODE

	
Provides functions that encode RAW data into a standard encoded format so that the data can be transported between hosts

	
UTL_FILE

	
Enables your PL/SQL programs to read and write operating system text files and provides a restricted version of standard operating system stream file I/O

	
UTL_HTTP

	
Enables HTTP callouts from PL/SQL and SQL to access data on the Internet or to call Oracle Web Server Cartridges

	
UTL_I18N

	
Provides a set of services (Oracle Globalization Service) that help developers build multilingual applications

	
UTL_INADDR

	
Provides a procedure to support internet addressing

	
UTL_LMS

	
Retrieves and formats error messages in different languages

	
UTL_MAIL

	
A utility for managing email which includes commonly used email features, such as attachments, CC, BCC, and return receipt

	
UTL_NLA

	
Exposes a subset of the BLAS and LAPACK (Version 3.0) operations on vectors and matrices represented as VARRAYs

	
UTL_RAW

	
Provides SQL functions for manipulating RAW datatypes

	
UTL_REF

	
Enables a PL/SQL program to access an object by providing a reference to the object

	
UTL_SMTP

	
Provides PL/SQL functionality to send emails

	
UTL_SPADV

	
Provides subprograms to collect and analyze statistics for the Oracle Streams components in a distributed database environment

	
UTL_TCP

	
Provides PL/SQL functionality to support simple TCP/IP-based communications between servers and the outside world

	
UTL_URL

	
Provides escape and unescape mechanisms for URL characters

	
WPG_DOCLOAD

	
Provides an interface to download files, both BLOBs and BFILEs

	
ANYDATA TYPE

	
A self-describing data instance type containing an instance of the type plus a description

	
ANYDATASET TYPE

	
Contains a description of a given type plus a set of data instances of that type

	
ANYTYPE TYPE

	
Contains a type description of any persistent SQL type, named or unnamed, including object types and collection types; or, it can be used to construct new transient type descriptions

	
Oracle Streams AQ Types

	
Describes the types used in Advanced Queuing

	
Database URI Type

	
Contains URI Support, UriType Super Type, HttpUriType Subtype, DBUriType Subtype, XDBUriType Subtype, UriFactory Package

	
Expression Filter Types

	
Expression Filter feature is supplied with a set of predefined types and public synonyms for these types.

	
JMS TYPES

	
Describes JMS types so that a PL/SQL application can use JMS queues of JMS types

	
Oracle Multimedia ORDAudio TYPE

	
Supports the storage and management of audio data

	
Oracle Multimedia ORDDicom Type

	
Supports the storage, management, and manipulation of Digital Imaging and Communications in Medicine (DICOM) data

	
Oracle Multimedia ORDDoc TYPE

	
Supports the storage and management of heterogeneous media data including image, audio, and video

	
Oracle Multimedia ORDImage TYPE

	
Supports the storage, management, and manipulation of image data

	
Oracle Multimedia SQL/MM Still Image TYPE

	
Supports the SQL/MM Still Image Standard, which lets you store, retrieve, and modify images in the database and locate images using visual predicates

	
Oracle Multimedia ORDVideo TYPE

	
Supports the storage and management of video data

	
LOGICAL CHANGE RECORD TYPES

	
Describes LCR types, which are message payloads that contain information about changes to a database, used in Streams

	
MG_ID Package Types

	
Provides an extensible framework that supports current RFID tags with the standard family of EPC bit encodings for the supported encoding types

	
RULES TYPEs

	
Describes the types used with rules, rule sets, and evaluation contexts

	
RULES Manager Types

	
Rules Manager is supplied with one predefined type and a public synonym

	
UTL Streams Types

	
Describes describes abstract streams types used with Oracle XML functionality

	
XMLType

	
Describes the types and functions used for native XML support in the server

2 APEX_CUSTOM_AUTH

The APEX_CUSTOM_AUTH package provides an interface for authentication and session management.

	
Documentation of APEX_CUSTOM_AUTH

Documentation of APEX_CUSTOM_AUTH

For a complete description of this package within the context of APEX, see APEX_CUSTOM_AUTH in the Oracle Database Application Express User's Guide.

3 APEX_APPLICATION

The APEX_APPLICATION package enables users to take advantage of global variables.

	
Documentation of APEX_APPLICATION

Documentation of APEX_APPLICATION

For a complete description of this package within the context of APEX, see APEX_APPLICATION in the Oracle Database Application Express User's Guide.

4 APEX_ITEM

The APEX_ITEM package enables users to create form elements dynamically based on a SQL query instead of creating individual items page by page.

	
Documentation of APEX_ITEM

Documentation of APEX_ITEM

For a complete description of this package within the context of APEX, see APEX_ITEM in the Oracle Database Application Express User's Guide.

5 APEX_UTIL

The APEX_UTIL package provides utilities for getting and setting session state, getting files, checking authorizations for users, resetting different states for users, and also getting and setting preferences for users.

	
Documentation of APEX_UTIL

Documentation of APEX_UTIL

For a complete description of this package within the context of APEX, see APEX_UTIL in the Oracle Database Application Express User's Guide.

6 CTX_ADM

This Oracle Text package lets you administer the Oracle Text data dictionary. Note that you must install this package in order to use it.

	
Documentation of CTX_ADM

Documentation of CTX_ADM

For a complete description of this package within the context of Oracle Text, see CTX_ADM in the Oracle Text Reference.

7 CTX_CLS

This Oracle Text package enables generation of CTXRULE rules for a set of documents.

	
Documentation of CTX_CLS

Documentation of CTX_CLS

For a complete description of this package within the context of Oracle Text, see CTX_CLS in the Oracle Text Reference.

8 CTX_DDL

This Oracle Text package lets you create and manage the preferences, section groups, and stoplists required for Text indexes. Note that you must install this package in order to use it.

	
Documentation of CTX_DDL

Documentation of CTX_DDL

For complete description of this package within the context of Oracle Text, see CTX_DDL in the Oracle Text Reference.

9 CTX_DOC

This Oracle Text package lets you request document services. Note that you must install this package in order to use it.

	
Documentation of CTX_DOC

Documentation of CTX_DOC

For a complete description of this package within the context of Oracle Text, see CTX_DOC in the Oracle Text Reference.

10 CTX_OUTPUT

This Oracle Text package lets you manage the index log. Note that you must install this package in order to use it.

	
Documentation of CTX_OUTPUT

Documentation of CTX_OUTPUT

For a complete description of this package within the context of Oracle Text, see CTX_OUTPUT in the Oracle Text Reference.

11 CTX_QUERY

This Oracle Text package lets you generate query feedback, count hits, and create stored query expressions. Note that you must install this package in order to use it.

	
Documentation of CTX_QUERY

Documentation of CTX_QUERY

For a complete description of this package within the context of Oracle Text, see CTX_QUERY in the Oracle Text Reference.

12 CTX_REPORT

This Oracle Text package lets you create various index reports. Note that you must install this package in order to use it.

	
Documentation of CTX_REPORT

Documentation of CTX_REPORT

For a complete description of this package within the context of Oracle Text, see CTX_REPORT in the Oracle Text Reference.

13 CTX_THES

This Oracle Text package lets you to manage and browse thesauri. Note that you must install this package in order to use it.

	
Documentation of CTX_THES

Documentation of CTX_THES

For a complete description of this package within the context of Oracle Text, see CTX_THES in the Oracle Text Reference.

14 CTX_ULEXER

This Oracle Text package is for use with the user-lexer. Note that you must install this package in order to use it.

	
Documentation of CTX_ULEXER

Documentation of CTX_ULEXER

For a complete description of this package within the context of Oracle Text, see CTX_ULEXER in the Oracle Text Reference.

15 DBMS_ADDM

The DBMS_ADDM package facilitates the use of Advisor functionality regarding the Automatic Database Diagnostic Monitor.

	
See Also:

	
Oracle Real Application Clusters Administration and Deployment Guide for more information about "Automatic Workload Repository in Oracle Real Application Clusters Environments"

	
Oracle Database Performance Tuning Guide for more information about "Automatic Performance Diagnostics"

This chapter contains the following topics:

	
Using DBMS_ADDM

	
Security Model

	
Summary of DBMS_ADDM Subprograms

Using DBMS_ADDM

	
Security Model

Security Model

The DBMS_ADDM package runs with the caller's permission, not the definer's, and then applies the security constraints required by the DBMS_ADVISOR package.

	
See Also:

The DBMS_ADVISOR package for more information about "Security Model".

Summary of DBMS_ADDM Subprograms

Table 15-1 DBMS_ADDM Package Subprograms

	Subprogram	Description
	
ANALYZE_DB Procedure

	
Creates an ADDM task for analyzing in database analysis mode and executes it

	
ANALYZE_INST Procedure

	
Creates an ADDM task for analyzing in instance analysis mode and executes it.

	
ANALYZE_PARTIAL Procedure

	
Creates an ADDM task for analyzing a subset of instances in partial analysis mode and executes it

	
DELETE Procedure

	
Deletes an already created ADDM task (of any kind)

	
DELETE_FINDING_DIRECTIVE Procedure

	
Deletes a finding directive

	
DELETE_PARAMETER_DIRECTIVE Procedure

	
Deletes a parameter directive

	
DELETE_SEGMENT_DIRECTIVE Procedure

	
Deletes a segment directive

	
DELETE_SQL_DIRECTIVE Procedure

	
Deletes a SQL directive

	
GET_REPORT Function

	
Retrieves the default text report of an executed ADDM task

	
INSERT_FINDING_DIRECTIVE Procedure

	
Creates a directive to limit reporting of a specific finding type.

	
INSERT_PARAMETER_DIRECTIVE Procedure

	
Creates a directive to prevent ADDM from creating actions to alter the value of a specific system parameter

	
INSERT_SEGMENT_DIRECTIVE Procedure

	
Creates a directive to prevent ADDM from creating actions to "run Segment Advisor" for specific segments

	
INSERT_SQL_DIRECTIVE Procedure

	
Creates a directive to limit reporting of actions on specific SQL

ANALYZE_DB Procedure

This procedure creates an ADDM task for analyzing in database analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_DB (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);

Parameters

Table 15-2 ANALYZE_DB Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Examples

To create an ADDM task in database analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_database_analysis_mode_task';
 DBMS_ADDM.ANALYZE_DB(:tname, 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

ANALYZE_INST Procedure

This procedure creates an ADDM task for analyzing in instance analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_INST (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 instance_number IN NUMBER := NULL,
 db_id IN NUMBER := NULL);

Parameters

Table 15-3 ANALYZE_INST Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
instance_number

	
Number of the instance to analyze. By default it is the instance currently connected

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Usage Notes

On single instance systems (i.e., not using RAC) the resulting task is identical to using the ANALYZE_DB procedure.

Examples

To create an ADDM task in instance analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

ANALYZE_PARTIAL Procedure

This procedure creates an ADDM task for analyzing a subset of instances in partial analysis mode and executes it.

Syntax

DBMS_ADDM.ANALYZE_PARTIAL (
 task_name IN OUT VARCHAR2,
 instance_numbers IN VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);

Parameters

Table 15-4 ANALYZE_PARTIAL Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be created

	
instance_numbers

	
Comma separated list of instance numbers to analyze

	
begin_snapshot

	
Number of the snapshot that starts the analysis period

	
end_snapshot

	
Number of the snapshot that ends the analysis period

	
db_id

	
Database ID for the database you to analyze. By default, this is the database currently connected

Return Values

The name of the created task is returned in the task_name parameter. It may be different from the value that is given as input (only in cases that name is already used by another task).

Examples

To create an ADDM task in partial analysis mode and execute it, with its name in variable tname:

var tname VARCHAR2(60);
BEGIN
 :tname := 'my_partial_analysis_modetask';
 DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,3', 1, 2);
END

To see a report:

SET LONG 100000
SET PAGESIZE 50000
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80.

DELETE Procedure

This procedure deletes an already created ADDM task (of any kind). For database analysis mode and partial analysis mode this will delete the local tasks associated with the main task.

Syntax

DBMS_ADDM.DELETE (
 task_name IN VARCHAR2);

Parameters

Table 15-5 DELETE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task to be deleted

Examples

BEGIN
 DBMS_ADDM.DELETE ('my_partial_analysis_mode_task');
END

DELETE_FINDING_DIRECTIVE Procedure

This procedure deletes a finding directive.

Syntax

DBMS_ADDM.DELETE_FINDING_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 15-6 DELETE_FINDING_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

DELETE_PARAMETER_DIRECTIVE Procedure

This procedure deletes a parameter directive. This removes a specific system directive for parameters. Subsequent ADDM tasks will not be affected by this directive.

Syntax

DBMS_ADDM.DELETE_PARAMETER_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 15-7 DELETE_PARAMETER_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

Examples

BEGIN
 DBMS_ADDM.DELETE_PARAMETER_DIRECTIVE (NULL,'my Parameter directive');
END;

DELETE_SEGMENT_DIRECTIVE Procedure

This procedure deletes a segment directive.

Syntax

DBMS_ADDM.DELETE_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 15-8 DELETE_SEGMENT_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

DELETE_SQL_DIRECTIVE Procedure

This procedure deletes a SQL directive.

Syntax

DBMS_ADDM.DELETE_SQL_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2);

Parameters

Table 15-9 DELETE_SQL_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it is a system directive.

	
dir_name

	
Name of the directive. All directives must be given unique names.

GET_REPORT Function

This function retrieves the default text report of an executed ADDM task.

Syntax

DBMS_ADDM.GET_REPORT (
 task_name IN VARCHAR2
 RETURN CLOB);

Parameters

Table 15-10 GET_REPORT Function Parameters

	Parameter	Description
	
task_name

	
Name of the task to be reported on

Examples

Set long 1000000
Set pagesize 50000
SELECT DBMS_ADDM.GET_REPORT('my_partial_analysis_mode_task') FROM DUAL;

INSERT_FINDING_DIRECTIVE Procedure

This procedure creates a directive to limit reporting of a specific finding type. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_FINDING_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 finding_name IN VARCHAR2,
 min_active_sessions IN NUMBER := 0,
 min_perc_impact IN NUMBER := 0);

Parameters

Table 15-11 INSERT_FINDING_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
finding_name

	
Name of an ADDM finding to which this directive applies. All valid findings names appear in the NAME column of view DBA_ADVISOR_FINDING_NAMES.

	
min_active_sessions

	
Minimal number of active sessions for the finding. If a finding has less than this number, it is filtered from the ADDM result.

	
min_perc_impact

	
Minimal number for the "percent impact" of the finding relative to total database time in the analysis period. If the finding's impact is less than this number, it is filtered from the ADDM result.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for 'Undersized SGA' findings. The result of GET_REPORT will only show an 'Undersized SGA' finding if the finding is responsible for at least 2 average active sessions during the analysis period, and this constitutes at least 10% of the total database time during that period.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_FINDING_DIRECTIVE(
 NULL,
 'Undersized SGA directive',
 'Undersized SGA',
 2,
 10);
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing 'Undersized SGA' findings regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_PARAMETER_DIRECTIVE Procedure

This procedure creates a directive to prevent ADDM from creating actions to alter the value of a specific system parameter. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_PARAMETER_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 parameter_name IN VARCHAR2);

Parameters

Table 15-12 INSERT_PARAMETER_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
parameter_name

	
Specifies the parameter to use. Valid parameter names appear in V$PARAMETER.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for all actions that recommend modifying the parameter 'sga_target'. The result of GET_REPORT will not show actions these actions.

var tname varchar2(60);
BEGIN
 DBMS_ADDM.INSERT_PARAMETER_DIRECTIVE(
 NULL,
 'my Parameter directive',
 'sga_target');
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_SEGMENT_DIRECTIVE Procedure

This procedure creates a directive to prevent ADDM from creating actions to "run Segment Advisor" for specific segments. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 owner_name IN VARCHAR2,
 object_name IN VARCHAR2 := NULL,
 sub_object_name IN VARCHAR2 := NULL);

DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 object_number IN NUMBER);

Parameters

Table 15-13 INSERT_SEGMENT_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
owner_name

	
Specifies the owner of the segment/s to be filtered. A wildcard is allowed in the same syntax used for "like" constraints.

	
object_name

	
Name of the main object to be filtered. Again, wildcards are allowed. The default value of NULL is equivalent to a value of '%'.

	
sub_object_name

	
Name of the part of the main object to be filtered. This could be a partition name, or even sub partitions (separated by a '.').Again, wildcards are allowed. The default value of NULL is equivalent to a value of '%'.

	
object_number

	
Object number of the SEGMENT that this directive is to filter, found in views DBA_OBJECTS or DBA_SEGMENTS

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for all segments that belong to user SCOTT. The result of GET_REPORT will not show actions for running Segment advisor for segments that belong to SCOTT.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_SEGMENT_DIRECTIVE(NULL,
 'my Segment directive',
 'SCOTT');
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

INSERT_SQL_DIRECTIVE Procedure

This procedure creates a directive to limit reporting of actions on specific SQL. The directive can be created for a specific task (only when the task is in INITIAL status), or for all subsequently created ADDM tasks (such as a system directive).

Syntax

DBMS_ADDM.INSERT_SQL_DIRECTIVE (
 task_name IN VARCHAR2,
 dir_name IN VARCHAR2,
 sql_id IN VARCHAR2,
 min_active_sessions IN NUMBER := 0,
 min_response_time IN NUMBER := 0);

Parameters

Table 15-14 INSERT_SQL_DIRECTIVE Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task this directive applies to. If the value is NULL, it applies to all subsequently created ADDM Tasks.

	
dir_name

	
Name of the directive. All directives must be given unique names.

	
sql_id

	
Identifies which SQL statement to filter. A valid value contains exactly 13 characters from '0' to '9' and 'a' to 'z'.

	
min_active_sessions

	
Minimal number of active sessions for the SQL. If a SQL action has less than this number, it is filtered from the ADDM result.

	
min_response_time

	
Minimal value for response time of the SQL (in microseconds). If the SQL had lower response time, it is filtered from the ADDM result.

Examples

A new ADDM task is created to analyze a local instance. However, it has special treatment for SQL with id 'abcd123456789'. The result of GET_REPORT will only show actions for that SQL (actions to tune the SQL, or to investigate application using it) if the SQL is responsible for at least 2 average active sessions during the analysis period, and the average response time was at least 1 second.

var tname VARCHAR2(60);
BEGIN
 DBMS_ADDM.INSERT_SQL_DIRECTIVE(
 NULL,
 'my SQL directive',
 'abcd123456789',
 2,
 1000000);
 :tname := 'my_instance_analysis_mode_task';
 DBMS_ADDM.ANALYZE_INST(:tname, 1, 2);
END;

To see a report containing all actions regardless of the directive:

SELECT DBMS_ADVISOR.GET_TASK_REPORT(:tname, 'TEXT', 'ALL') FROM DUAL;

16 DBMS_ADVANCED_REWRITE

DBMS_ADVANCED_REWRITE contains interfaces for advanced query rewrite users. Using this package, you can create, drop, and maintain functional equivalence declarations for query rewrite.

	
See Also:

Oracle Database Data Warehousing Guide for more information about query rewrite

This chapter contains the following topics:

	
Using DBMS_ADVANCED_REWRITE

	
Security Model

	
Summary of DBMS_ADVANCED_REWRITE Subprograms

Using DBMS_ADVANCED_REWRITE

This section contains topics which relate to using the DBMS_ADVANCED_REWRITE package.

	
Security Model

Security Model

No privileges to access these procedures are granted to anyone by default. To gain access to these procedures, you must connect as SYSDBA and explicitly grant execute access to the desired database administrators.

You can control security on this package by granting the EXECUTE privilege to selected database administrators or roles. For example, the user er can be given access to use this package by the following statement, executed as SYSDBA:

GRANT EXECUTE ON DBMS_ADVANCED_REWRITE TO er;

You may want to write a separate cover package on top of this package for restricting the alert names used. Instead of granting the EXECUTE privilege on the DBMS_ADVANCED_REWRITE package directly, you can then grant it to the cover package.

In addition, similar to the privilege required for regular materialized views, the user should be granted the privilege to create an equivalence. For example, the user er can be granted this privilege by executing the following statement as SYSDBA:

GRANT CREATE MATERIALIZED VIEW TO er;

Summary of DBMS_ADVANCED_REWRITE Subprograms

This table list the all the package subprograms in alphabetical order.

Table 16-1 DBMS_ADVANCED_REWRITE Package Subprograms

	Subprogram	Description
	
ALTER_REWRITE_EQUIVALENCE Procedure

	
Changes the mode of the rewrite equivalence declaration to the mode you specify

	
BUILD_SAFE_REWRITE_EQUIVALENCE Procedure

	
Enables the rewrite of top-level materialized views using submaterialized views. Oracle Corporation does not recommend you directly use this procedure

	
DECLARE_REWRITE_EQUIVALENCE Procedures

	
Creates a declaration indicating that source_stmt is functionally equivalent to destination_stmt for as long as the equivalence declaration remains enabled, and that destination_stmt is more favorable in terms of performance

	
DROP_REWRITE_EQUIVALENCE Procedure

	
Drops the specified rewrite equivalence declaration

	
VALIDATE_REWRITE_EQUIVALENCE Procedure

	
Validates the specified rewrite equivalence declaration using the same validation method as described with the validate parameter

ALTER_REWRITE_EQUIVALENCE Procedure

This procedure changes the mode of the rewrite equivalence declaration to the mode you specify.

Syntax

DBMS_ADVANCED_REWRITE.ALTER_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 rewrite_mode VARCHAR2);

Parameters

Table 16-2 ALTER_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to alter. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is altered in the current schema. The invoker must have the appropriate alter materialized view privileges to alter an equivalence declaration outside their own schema.

	
rewrite_mode

	
The following modes are supported, in increasing order of power:

disabled: Query rewrite does not use the equivalence declaration. Use this mode to temporarily disable use of the rewrite equivalence declaration.

text_match: Query rewrite uses the equivalence declaration only in its text match modes. This mode is useful for simple transformations.

general: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. However, query rewrite makes no attempt to rewrite the specified destination_query.

recursive: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. Moreover, query rewrite further attempts to rewrite the specified destination_query for further performance enhancements whenever it uses the equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient to solve your performance problem.

BUILD_SAFE_REWRITE_EQUIVALENCE Procedure

This procedure enables the rewrite and refresh of top-level materialized views using submaterialized views. It is provided for the exclusive use by scripts generated by the DBMS_ADVISOR.TUNE_MVIEW procedure. It is required to enable query rewrite and fast refresh when DBMS_ADVISOR.TUNE_MVIEW decomposes a materialized view into a top-level materialized view and one or more submaterialized views.

Oracle does not recommend you directly use the BUILD_SAFE_REWRITE_EQUIVALENCE procedure. You should use either the DBMS_ADVISOR.TUNE_MVIEW or the DBMS_ADVANCED_REWRITE.CREATE_REWRITE_EQUIVALENCE procedure as appropriate.

DECLARE_REWRITE_EQUIVALENCE Procedures

This procedure creates a declaration indicating that source_stmt is functionally equivalent to destination_stmt for as long as the equivalence declaration remains enabled, and that destination_stmt is more favorable in terms of performance. The scope of the declaration is system wide. The query rewrite engine uses such declarations to perform rewrite transformations in QUERY_REWRITE_INTEGRITY = trusted and stale_tolerated modes.

Because the underlying equivalences between the source and destination statements cannot be enforced by the query rewrite engine, queries can be only rewritten in trusted and stale_tolerated integrity modes.

Syntax

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt VARCHAR2,
 destination_stmt VARCHAR2,
 validate BOOLEAN := TRUE,
 rewrite_mode VARCHAR2 := 'TEXT_MATCH');

DBMS_ADVANCED_REWRITE.DECLARE_REWRITE_EQUIVALENCE (
 name VARCHAR2,
 source_stmt CLOB,
 destination_stmt CLOB,
 validate BOOLEAN := TRUE,
 rewrite_mode VARCHAR2 := 'TEXT_MATCH');

Parameters

Table 16-3 DECLARE_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name.

Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is created in the current schema. The invoker must have the appropriate CREATE MATERIALIZED VIEW privileges to alter an equivalence declaration.

	
source_stmt

	
A sub-SELECT expression in either VARCHAR2 or CLOB format. This is the query statement that is the target of optimization.

	
destination_stmt

	
A sub-SELECT expression in either VARCHAR2 or CLOB format.

	
validate

	
A Boolean indicating whether to validate that the specified source_stmt is functionally equivalent to the specified destination_stmt. If validate is specified as TRUE, DECLARE_REWRITE_EQUIVALENCE evaluates the two sub-SELECTs and compares their results. If the results are not the same, DECLARE_REWRITE_EQUIVALENCE does not create the rewrite equivalence and returns an error condition. If FALSE, DECLARE_REWRITE_EQUIVALENCE does not validate the equivalence.

	
rewrite_mode

	
The following modes are supported, in increasing order of power:

	
disabled: Query rewrite does not use the equivalence declaration. Use this mode to temporarily disable use of the rewrite equivalence declaration.

	
text_match: Query rewrite uses the equivalence declaration only in its text match modes. This mode is useful for simple transformations.

	
general: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. However, query rewrite makes no attempt to rewrite the specified destination_query.

	
recursive: Query rewrite uses the equivalence declaration in all of its transformation modes against the incoming request queries. Moreover, query rewrite further attempts to rewrite the specified destination_query for further performance enhancements whenever it uses the equivalence declaration.

Oracle recommends you use the least powerful mode that is sufficient to solve your performance problem.

Exceptions

Table 16-4 DECLARE_REWRITE_EQUIVALENCE Procedure Exceptions

	Exception	Description
	
ORA-30388

	
Name of the rewrite equivalence is not specified

	
ORA-30391

	
The specified rewrite equivalence does not exist

	
ORA-30392

	
The checksum analysis for the rewrite equivalence failed

	
ORA-30393

	
A query block in the statement did not write

	
ORA-30396

	
Rewrite equivalence procedures require the COMPATIBLE parameter to be set to 10.1 or greater

Usage Notes

Query rewrite using equivalence declarations occurs simultaneously and in concert with query rewrite using materialized views. The same query rewrite engine is used for both. The query rewrite engine uses the same rewrite rules to rewrite queries using both equivalence declarations and materialized views. Because the rewrite equivalence represents a specific rewrite crafted by a sophisticated user, the query rewrite engine gives priority to rewrite equivalences over materialized views when it is possible to perform a rewrite with either a materialized view or a rewrite equivalence. For this same reason, the cost-based optimizer (specifically, cost-based rewrite) will not choose an unrewritten query plan over a query plan that is rewritten to use a rewrite equivalence even if the cost of the un-rewritten plan appears more favorable. Query rewrite matches properties of the incoming request query against the equivalence declaration's source_stmt or the materialized view's defining statement, respectively, and derives an equivalent relational expression in terms of the equivalence declaration's destination_stmt or the materialized view's container table, respectively.

DROP_REWRITE_EQUIVALENCE Procedure

This procedure drops the specified rewrite equivalence declaration.

Syntax

DBMS_ADVANCED_REWRITE.DROP_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 16-5 DROP_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to drop. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is dropped in the current schema. The invoker must have the appropriate drop materialized view privilege to drop an equivalence declaration outside their own schema.

VALIDATE_REWRITE_EQUIVALENCE Procedure

This procedure validates the specified rewrite equivalence declaration using the same validation method as described with the VALIDATE parameter in "VALIDATE_REWRITE_EQUIVALENCE Procedure".

Syntax

DBMS_ADVANCED_REWRITE.VALIDATE_REWRITE_EQUIVALENCE (
 name VARCHAR2);

Parameters

Table 16-6 VALIDATE_REWRITE_EQUIVALENCE Procedure Parameters

	Parameter	Description
	
name

	
A name for the equivalence declaration to validate. The name can be of the form owner.name, where owner complies with the rules for a schema name, and name compiles with the rules for a table name. Alternatively, a simple name that complies with the rules for a table name can be specified. In this case, the rewrite equivalence is validated in the current schema. The invoker must have sufficient privileges to execute both the source_stmt and destination_stmt of the specified equivalence declaration.

17 DBMS_ADVISOR

DBMS_ADVISOR is part of the Server Manageability suite of Advisors, a set of expert systems that identifies and helps resolve performance problems relating to the various database server components.

	
See Also:

	
Oracle Database Administrator's Guide for information regarding the Segment Advisor

	
Oracle Database 2 Day + Performance Tuning Guide for information regarding how to use various Advisors in Enterprise Manager

	
Oracle Database Performance Tuning Guide for information regarding the SQL Tuning Advisor and SQL Access Advisor

	
Oracle Database 2 Day DBA and Oracle Database Administrator's Guide for information regarding the Undo Advisor

This chapter contains the following topics:

	
Using DBMS_ADVISOR

	
Security Model

	
Summary of DBMS_ADVISOR Subprograms

Using DBMS_ADVISOR

This section contains topics which relate to using the DBMS_ADVISOR package.

	
Security Model

Security Model

Security on this package can be controlled by granting EXECUTE on this package to selected users or roles. You might want to write a cover package on top of this one that restricts the alert names used. EXECUTE privilege on this cover package can then be granted rather than on this package. In addition, there is an ADVISOR privilege, which is required by DBMS_ADVISOR procedures.

Summary of DBMS_ADVISOR Subprograms

Table 17-1 DBMS_ADVISOR Package Subprograms

	Subprogram	Description	Used in
	
ADD_SQLWKLD_REF Procedure

	
Adds a workload reference to an Advisor task

	
SQL Access Advisor only

	
ADD_SQLWKLD_STATEMENT Procedure

	
Adds a single statement to a workload

	
SQL Access Advisor only

	
ADD_STS_REF Procedure

	
Establishes a link between the current SQL Access Advisor task and a SQL Tuning Set

	
SQL Access Advisor only

	
CANCEL_TASK Procedure

	
Cancels a currently executing task operation

	
All Advisors

	
COPY_SQLWKLD_TO_STS Procedure

	
Copies the contents of a SQL workload object to a SQL Tuning Set

	
SQL Access Advisor

	
CREATE_FILE Procedure

	
Creates an external file from a PL/SQL CLOB variable, which is useful for creating scripts and reports

	
All Advisors

	
CREATE_OBJECT Procedure

	
Creates a new task object

	
All Advisors

	
CREATE_SQLWKLD Procedure

	
Creates a new workload object

	
SQL Access Advisor only

	
CREATE_TASK Procedures

	
Creates a new Advisor task in the repository

	
All Advisors

	
DELETE_SQLWKLD Procedure

	
Deletes an entire workload object

	
SQL Access Advisor only

	
DELETE_SQLWKLD_REF Procedure

	
Deletes an entire workload object

	
SQL Access Advisor only

	
DELETE_SQLWKLD_STATEMENT Procedures

	
Deletes one or more statements from a workload

	
SQL Access Advisor only

	
DELETE_STS_REF Procedure

	
Removes a link between the current SQL Access Advisor task and a SQL Tuning Set object

	
SQL Access Advisor only

	
DELETE_TASK Procedure

	
Deletes the specified task from the repository

	
All Advisors

	
EXECUTE_TASK Procedure

	
Executes the specified task

	
All Advisors

	
GET_REC_ATTRIBUTES Procedure

	
Retrieves specific recommendation attributes from a task

	
All Advisors

	
GET_TASK_REPORT Function

	
Creates and returns a report for the specified task

	
All Advisors

	
GET_TASK_SCRIPT Function

	
Creates and returns an executable SQL script of the Advisor task's recommendations in a buffer

	
All Advisors

	
IMPLEMENT_TASK Procedure

	
Implements the recommendations for a task

	
All Advisors

	
IMPORT_SQLWKLD_SCHEMA Procedure

	
Imports data into a workload from the current SQL cache

	
SQL Access Advisor only

	
IMPORT_SQLWKLD_SQLCACHE Procedure

	
Imports data into a workload from the current SQL cache

	
SQL Access Advisor only

	
IMPORT_SQLWKLD_STS Procedure

	
Imports data into a workload from a SQL Tuning Set into a SQL workload data object

	
SQL Access Advisor only

	
IMPORT_SQLWKLD_SUMADV Procedure

	
Imports data into a workload from the current SQL cache

	
SQL Access Advisor only

	
IMPORT_SQLWKLD_USER Procedure

	
Imports data into a workload from the current SQL cache

	
SQL Access Advisor only

	
INTERRUPT_TASK Procedure

	
Stops a currently executing task, ending its operations as it would at a normal exit, so that the recommendations are visible

	
All Advisors

	
MARK_RECOMMENDATION Procedure

	
Sets the annotation_status for a particular recommendation

	
All Advisors

	
QUICK_TUNE Procedure

	
Performs an analysis on a single SQL statement

	
All Advisors

	
RESET_TASK Procedure

	
Resets a task to its initial state

	
All Advisors

	
SET_DEFAULT_SQLWKLD_PARAMETER Procedures

	
Imports data into a workload from schema evidence

	
SQL Access Advisor only

	
SET_DEFAULT_TASK_PARAMETER Procedures

	
Modifies a default task parameter

	
All Advisors

	
SET_SQLWKLD_PARAMETER Procedures

	
Sets the value of a workload parameter

	
SQL Access Advisor only

	
SET_TASK_PARAMETER Procedure

	
Sets the specified task parameter value

	
All Advisors

	
TUNE_MVIEW Procedure

	
Shows how to decompose a materialized view into two or more materialized views or to restate the materialized view in a way that is more advantageous for fast refresh and query rewrite

	
SQL Access Advisor only

	
UPDATE_OBJECT Procedure

	
Updates a task object

	
All Advisors

	
UPDATE_REC_ATTRIBUTES Procedure

	
Updates an existing recommendation for the specified task

	
All Advisors

	
UPDATE_SQLWKLD_ATTRIBUTES Procedure

	
Updates a workload object

	
SQL Access Advisor only

	
UPDATE_SQLWKLD_STATEMENT Procedure

	
Updates one or more SQL statements in a workload

	
SQL Access Advisor only

	
UPDATE_TASK_ATTRIBUTES Procedure

	
Updates a task's attributes

	
All Advisors

ADD_SQLWKLD_REF Procedure

This procedure establishes a link between the current SQL Access Advisor task and a SQL Workload object. The link allows an advisor task to access interesting data for doing an analysis. The link also provides a stable view of the data. Once a connection between a SQL Access Advisor task and a SQL Workload object is made, the workload is protected from removal or modification.

Users should use ADD_STS_REF instead of ADD_SQLWKLD_REF for all SQL Tuning Set-based advisor runs. This function is only provided for backward compatibility.

Syntax

DBMS_ADVISOR.ADD_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN VARCHAR2,
 is_sts IN NUMBER :=0);

Parameters

Table 17-2 ADD_SQLWKLD_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access task name that uniquely identifies an existing task.

	
workload_name

	
The name of the workload object to be linked. Once a object has been linked to a task, it becomes read-only and cannot be deleted. There is no limit to the number of links to workload objects. To remove the link to the workload object, use the procedure DELETE_REFERENCE.

	
is_sts

	
Indicates the type of workload source. Possible values are:

	
0 - SQL workload object

	
1 - SQL Tuning Set

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name, 1);
END;
/

ADD_SQLWKLD_STATEMENT Procedure

This procedure has been deprecated.

This procedure adds a single statement to the specified workload.

Syntax

DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 module IN VARCHAR2,
 action IN VARCHAR2,
 cpu_time IN NUMBER := 0,
 elapsed_time IN NUMBER := 0,
 disk_reads IN NUMBER := 0,
 buffer_gets IN NUMBER := 0,
 rows_processed IN NUMBER := 0,
 optimizer_cost IN NUMBER := 0,
 executions IN NUMBER := 1,
 priority IN NUMBER := 2,
 last_execution_date IN DATE := 'SYSDATE',
 stat_period IN NUMBER := 0,
 username IN VARCHAR2,
 sql_text IN CLOB);

Parameters

Table 17-3 ADD_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload name that uniquely identifies an existing workload.

	
module

	
An optional business application module that will be associated with the SQL statement.

	
action

	
An optional application action that will be associated with the SQL statement.

	
cpu_time

	
The total CPU time in seconds that is consumed by the SQL statement.

	
elapsed_time

	
The total elapsed time in seconds that is consumed by the SQL statement.

	
disk_reads

	
The total disk-read operations that are consumed by the SQL statement.

	
buffer_gets

	
The total buffer-get operations that are consumed by the SQL statement.

	
rows_processed

	
The average number of rows processed by the SQL statement.

	
optimizer_cost

	
The optimizer's calculated cost value.

	
executions

	
The total execution count by the SQL statement. This value should be greater than zero.

	
priority

	
The relative priority of the SQL statement. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW.

	
last_execution_date

	
The date and time at which the SQL statement last executed. If the value is NULL, then the current date and time will be used.

	
stat_period

	
Time interval in seconds from which statement statistics were calculated.

	
username

	
The Oracle user name that executed the SQL statement. Because a username is an Oracle identifier, the username value must be entered exactly as it is stored in the server. For example, if the user SCOTT is the executing user, then you must provide the user identifier SCOTT in all uppercase letters. It will not recognize the user scott as a match for SCOTT.

	
sql_text

	
The complete SQL statement. To increase the quality of a recommendation, the SQL statement should not contain bind variables.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" for directions on setting a task to its initial state.

The ADD_SQLWKLD_STATEMENT procedure accepts several parameters that may be ignored by the caller. cpu_time, elapsed_time, disk_reads, buffer_gets, and optimizer_cost are only used to sort workload data when actual analysis occurs, so actual values are only necessary when the order_list task parameter references a particular statistic.To determine what statistics to provide when adding a new SQL statement to a workload, examine or set the task parameter order_list. The order_list parameter accepts any combination of the keys: buffer_gets, optimizer_cost, cpu_time, disk_reads, elapsed_time, executions, and priority. A typical setting of priority, optimizer_cost would indicate the SQL Access Advisor will sort the workload data by priority and optimizer_cost and process the highest cost statements first. Any statements added to the workload would need to include appropriate priority and optimizer_cost values. All other statistics can be defaulted or set to zero.For the statistical keys referenced by the order_list task parameter, the actual parameter values should be reasonably accurate since they will be compared to other statements in the workload. If the caller is unable to estimate values, choose values that would determine its importance relative to other statements in the workload. For example, if the current statement is considered the most critical query in your business, then an appropriate value would be anything greater than all other values for the same statistic found in the workload.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold) FROM sh.sales');
END;
/

ADD_STS_REF Procedure

This procedure establishes a link between the current SQL Access Advisor task and a SQL Tuning Set. The link allows an advisor task to access data for the purpose of doing an analysis. The link also provides a stable view of the data. Once a connection between a SQL Access Advisor task and a SQL Tuning Set is made, the STS is protected from removal or modification.

Users should use ADD_STS_REF for any STS-based advisor runs. The older method using ADD_SQLWKLD_REF with parameter IS_STS=1 is only supported for backward compatibility. Furthermore, the ADD_STS_REF function accepts a SQL Tuning Set owner name, whereas ADD_SQLWKLD_REF does not.

Syntax

DBMS_ADVISOR.ADD_SQLWKLD_REF(
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2 NOT NULL);

Parameters

Table 17-4 ADD_STS_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access Advisor task name that uniquely identifies an existing task.

	
sts_owner

	
The owner of the SQL Tuning Set. The value of this parameter may be NULL, in which case the advisor assumes the SQL Tuning Set to be owned by the currently logged-in user.

	
sts_name

	
The name of the SQL Tuning Set object to be linked.

Once a SQL Tuning Set has been linked to a task, it becomes read-only and cannot be deleted.

There is no limit to the number of links to SQL Tuning Sets.

To remove the link to the SQL Tuning Set, use the procedure DBMS_ADVISOR.DELETE_STS_REF.

Examples

DBMS_ADVISOR.ADD_STS_REF ('My Task', 'SCOTT', 'My STS');

CANCEL_TASK Procedure

This procedure causes a currently executing operation to terminate. This call does a soft interrupt. It will not break into a low-level database access call like a hard interrupt such as Ctrl-C. The SQL Access Advisor periodically checks for soft interrupts and acts appropriately. As a result, this operation may take a few seconds to respond to a call.

Syntax

DBMS_ADVISOR.CANCEL_TASK (
 task_name IN VARCHAR2);

Parameters

Table 17-5 CANCEL_TASK Procedure Parameter

	Parameter	Description
	
task_name

	
A valid Advisor task name that uniquely identifies an existing task.

Usage Notes

A cancel command effective restores the task to its condition prior to the start of the cancelled operation. Therefore, a cancelled task or data object cannot be resumed.

Because all Advisor task procedures are synchronous, to cancel an operation, you must use a separate database session.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CANCEL_TASK('My Task');
END;
/

COPY_SQLWKLD_TO_STS Procedure

This procedure copies the contents of a SQL workload object to a SQL Tuning Set.

Syntax

To use this procedure, the caller must have privileges to create and modify a SQL Tuning Set.

Parameters

Table 17-6 COPY_SQLWKLD_TO_STS Procedure Parameter

	Parameter	Description
	
workload_name

	
The SQL Workload object name to copy.

	
sts_name

	
The SQL Tuning Set name into which the SQL Workload object will be copied.

	
import_mode

	
Specifies the handling of the target SQL Tuning Set. Possible values are:

	
APPEND

Causes SQL Workload data to be appended to the target SQL Tuning Set.

	
NEW

Indicates the SQL Tuning Set can only contain the copied contents. If the SQL Tuning Set exists and has data, an error will be reported.

	
REPLACE

Causes any existing data in the target SQL Tuning Set to be purged prior to the workload copy.

In all cases, if the specified SQL Tuning Set does not exist, it will be created.

Usage Notes

To use this procedure, the caller must have privileges to create and modify a SQL Tuning Set.

Examples

BEGIN
 DBMS_ADVISOR.COPY_SQLWKLD_TO_STS('MY_OLD_WORKLOAD', 'MY_NEW_STS', 'NEW');
END;
/

CREATE_FILE Procedure

This procedure creates an external file from a PL/SQL CLOB variable, which is used for creating scripts and reports. CREATE_FILE accepts a CLOB input parameter and writes the character string contents to the specified file.

Syntax

DBMS_ADVISOR.CREATE_FILE (
 buffer IN CLOB,
 location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

Table 17-7 CREATE_FILE Procedure Parameters

	Parameter	Description
	
buffer

	
A CLOB buffer containing report or script information.

	
location

	
Specifies the directory that will contain the new file. You must use the directory alias as defined by the CREATE DIRECTORY statement. The Advisor will translate the alias into the actual directory location.

	
filename

	
Specifies the output file to receive the script commands. The filename can only contain the name and an optional file type of the form filename.filetype.

Usage Notes

All formatting must be embedded within the CLOB.

The Oracle server restricts file access within Oracle Stored Procedures. This means that file locations and names must adhere to the known file permissions in the server.

Examples

CREATE DIRECTORY MY_DIR as '/homedir/user4/gssmith';
GRANT READ,WRITE ON DIRECTORY MY_DIR TO PUBLIC;

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT(task_name),
 'MY_DIR','script.sql');

END;
/

CREATE_OBJECT Procedure

This procedure creates a new task object.

Syntax

DBMS_ADVISOR.CREATE_OBJECT (
 task_name IN VARCHAR2,
 object_type IN VARCHAR2,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 object_id OUT NUMBER);

DBMS_ADVISOR.CREATE_OBJECT (
 task_name IN VARCHAR2,
 object_type IN VARCHAR2,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL,
 object_id OUT NUMBER);

Parameters

Table 17-8 CREATE_OBJECT Procedure Parameters

	Parameter	Description
	
task_name

	
A valid Advisor task name that uniquely identifies an existing task.

	
object_type

	
Specifies the external object type.

	
attr1

	
Advisor-specific data.

	
attr2

	
Advisor-specific data.

	
attr3

	
Advisor-specific data.

	
attr4

	
Advisor-specific data.

	
attr5

	
Advisor-specific data.

	
object_id

	
The advisor-assigned object identifier.

The attribute parameters have different values depending upon the object type. See Oracle Database Administrator's Guide for details regarding these parameters and object types.

Return Values

Returns the new object identifier.

Usage Notes

Task objects are typically used as input data for a particular advisor. Segment advice can be generated at the object, segment, or tablespace level. If for the object level, advice is generated on all partitions of the object (if the object is partitioned). The advice is not cascaded to any dependent objects. If for the segment level, advice can be obtained on a single segment, such as the partition or subpartition of a table, index, or LOB column. If for a tablespace level, target advice for every segment in the tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the Segment Advisor.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
END;
/

CREATE_SQLWKLD Procedure

This procedure has been deprecated.

This procedure creates a new private SQL Workload object for the user. A SQL Workload object manages a SQL workload on behalf of the SQL Access Advisor. A SQL Workload object must exist prior to performing any other SQL Workload operations, such as importing or updating SQL statements.

Syntax

DBMS_ADVISOR.CREATE_SQLWKLD (
 workload_name IN OUT VARCHAR2,
 description IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE');

Parameters

Table 17-9 CREATE_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
A name that uniquely identifies the created workload. If not specified, the system will generate a unique name. Names can be up to 30 characters long.

	
description

	
Specifies an optional workload description. Descriptions can be up to 256 characters.

	
template

	
An optional SQL Workload name of an existing workload data object or data object template.

	
is_template

	
An optional value that enables you to set the newly created workload as a template. Valid values are TRUE and FALSE.

Return Values

The SQL Access Advisor returns a unique workload object identifier number that must be used for subsequent activities within the new SQL Workload object.

Usage Notes

By default, workload objects are created using built-in default settings. To create a workload using the parameter settings of an existing workload or workload template, the user may specify an existing workload name.

Once a SQL Workload object is present, it can then be referenced by one or more SQL Access Advisor tasks using the ADD_SQLWKLD_REF procedure.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
END;
/

CREATE_TASK Procedures

This procedure creates a new Advisor task in the repository.

Syntax

DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2,
 task_id OUT NUMBER,
 task_name IN OUT VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE',
 how_created IN VARCHAR2 := NULL);

DBMS_ADVISOR.CREATE_TASK (
 advisor_name IN VARCHAR2,
 task_name IN VARCHAR2,
 task_desc IN VARCHAR2 := NULL,
 template IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := 'FALSE',
 how_created IN VARCHAR2 := NULL);

Parameters

Table 17-10 CREATE_TASK Procedure Parameters

	Parameter	Description
	
advisor_name

	
Specifies the unique advisor name as defined in the view DBA_ADVISOR_DEFINITIONS.

	
task_id

	
A number that uniquely identifies the created task. The number is generated by the procedure and returned to the user.

	
task_name

	
Specifies a new task name. Names must be unique among all tasks for the user.

When using the second form of the CREATE_TASK syntax listed above (with OUT), a unique name can be generated. Names can be up to 30 characters long.

	
task_desc

	
Specifies an optional task description. Descriptions can be up to 256 characters in length.

	
template

	
An optional task name of an existing task or task template. To specify built-in SQL Access Advisor templates, use the template name as described earlier.

	
is_template

	
An optional value that allows the user to set the newly created task as template. Valid values are: TRUE and FALSE.

	
how_created

	
An optional value that identifies how the source was created.

Return Values

Returns a unique task ID number and a unique task name if one is not specified.

Usage Notes

A task must be associated with an advisor, and once the task has been created, it is permanently associated with the original advisor. By default, tasks are created using built-in default settings. To create a task using the parameter settings of an existing task or task template, the user may specify an existing task name.

For the SQL Access Advisor, use the identifier DBMS_ADVISOR.SQLACCESS_ADVISOR as the advisor_name.

The SQL Access Advisor provides three built-in task templates, using the following constants:

	
DBMS_ADVISOR.SQLACCESS_OLTP

Parameters are preset to favor an OLTP application environment.

	
DBMS_ADVISOR.SQLACCESS_WAREHOUSE

Parameters are preset to favor a data warehouse application environment.

	
DBMS_ADVISOR.SQLACCESS_GENERAL

Parameters are preset to favor a hybrid application environment where both OLTP and data warehouse operations may occur. For the SQL Access Advisor, this is the default template.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
END;
/

DELETE_SQLWKLD Procedure

This procedure has been deprecated.

This procedure deletes an existing SQL Workload object from the repository.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Table 17-11 DELETE_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload. The wildcard % is supported as a WORKLOAD_NAME. The rules of use are identical to the LIKE operator. For example, to delete all tasks for the current user, use the wildcard % as the WORKLOAD_NAME. If a wildcard is provided, the DELETE_SQLWKLD operation will not delete any workloads marked as READ_ONLY or TEMPLATE.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See the "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.DELETE_SQLWKLD(workload_name);
END;
/

DELETE_SQLWKLD_REF Procedure

This procedure has been deprecated.

This procedure removes a link between the current SQL Access task and a SQL Workload data object.

Users should use DELETE_STS_REF instead of DELETE_SQLWKLD_REF for all SQL Tuning Set-based advisor runs. This function is only provided for backward compatibility.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD_REF (
 task_name IN VARCHAR2,
 workload_name IN VARCHAR2,
 is_sts IN NUMBER :=0);

Parameters

Table 17-12 DELETE_SQLWKLD_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access task name that uniquely identifies an existing task.

	
workload_name

	
The name of the workload object to be unlinked. The wildcard % is supported as a workload_name. The rules of use are identical to the LIKE operator. For example, to remove all links to workload objects, use the wildcard % as the workload_name.

	
is_sts

	
Indicates the type of workload source. Possible values are:

	
0 - SQL workload object

	
1 - SQL Tuning Set

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.DELETE_SQLWKLD_REF(task_name, workload_name);
END;
/

DELETE_SQLWKLD_STATEMENT Procedures

This procedure has been deprecated.

This procedure deletes one or more statements from a workload.

Syntax

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN NUMBER);

DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 search IN VARCHAR2,
 deleted OUT NUMBER);

Parameters

Table 17-13 DELETE_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
sql_id

	
The Advisor-generated identifier number that is assigned to the statement. To specify all workload statements, use the constant ADVISOR_ALL.

	
search

	
Disabled.

	
deleted

	
Returns the number of statements deleted by the searched deleted operation.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See the "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 deleted NUMBER;
 id NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'YEARLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');

 SELECT sql_id INTO id FROM USER_ADVISOR_SQLW_STMTS
 WHERE workload_name = 'My Workload';

 DBMS_ADVISOR.DELETE_SQLWKLD_STATEMENT(workload_name, id);
END;
/

DELETE_STS_REF Procedure

This procedure removes a link between the current SQL Access Advisor task and a SQL Tuning Set object.Users should use DELETE_STS_REF for any STS-based advisor runs. The older method using DELETE_SQLWKLD_REF with parameter IS_STS=1 is only supported for backward compatibility. Furthermore, the DELETE_STS_REF function accepts an STS owner name, whereas DELETE_SQLWKLD_REF does not.

Syntax

DBMS_ADVISOR.DELETE_STS_REF (
 task_name IN VARCHAR2 NOT NULL,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2 NOT NULL);

Parameters

Table 17-14 DELETE_STS_REF Procedure Parameters

	Parameter	Description
	
task_name

	
The SQL Access Advisor task name that uniquely identifies an existing task.

	
sts_owner

	
The owner of the SQL Tuning Set. The value of this parameter may be NULL, in which case the advisor assumes the SQL Tuning Set to be owned by the currently logged-in user.

	
sts_name

	
The name of the SQL Tuning Set to be unlinked.

The wildcard % is supported as a STS_NAME. The rules of use are identical to the SQL LIKE operator. For example, to remove all links to SQL Tuning Set objects, use the wildcard % as the STS_NAME.

Examples

DBMS_ADVISOR.DELETE_STS_REF ('My task', 'SCOTT', 'My STS');

DELETE_TASK Procedure

This procedure deletes an existing task from the repository.

Syntax

DBMS_ADVISOR.DELETE_TASK (
 task_name IN VARCHAR2);

Parameters

Table 17-15 DELETE_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
A single Advisor task name that will be deleted from the repository.

The wildcard % is supported as a TASK_NAME. The rules of use are identical to the LIKE operator. For example, to delete all tasks for the current user, use the wildcard % as the TASK_NAME.

If a wildcard is provided, the DELETE_TASK operation will not delete any tasks marked as READ_ONLY or TEMPLATE.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.DELETE_TASK(task_name);
END;
/

EXECUTE_TASK Procedure

This procedure performs the Advisor analysis or evaluation for the specified task. The procedure is overloaded.

The execution-related arguments are optional and you do not need to set them for advisors that do not allow their tasks to be executed multiple times.

Advisors can execute a task multiple times and use the results for further processing and analysis.

Syntax

DBMS_ADVISOR.EXECUTE_TASK (
 task_name IN VARCHAR2);

DBMS_ADVISOR.EXECUTE_TASK (
 task_name IN VARCHAR2,
 execution_type IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 execution_params IN dbms_advisor.argList := NULL,
 execution_desc IN VARCHAR2 := NULL,
RETURN VARCHAR2;

Parameters

Table 17-16 EXECUTE_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
execution_type

	
The type of action to be performed by the function. If NULL, it will default to the value of the DEFAULT_EXECUTION_TYPE parameter.

As an example, the SQL Performance Analyzer accepts the following possible values:

	
EXPLAIN PLAN: Generate an explain plan for a SQL statement. This is similar to an EXPLAIN PLAN command. The resulting plans will be stored in the advisor framework in association with the task.

	
TEST EXECUTE: Test execute the SQL statement and collect its execute plan and statistics. The resulting plans and statistics are stored in the advisor framework.

	
ANALYZE PERFORMANCE: Analyze and compare two versions of SQL performance data. The performance data is generated by test executing a SQL statement or generating its explain plan.

	
execution_name

	
A name to qualify and identify an execution. If not specified, it will be generated by the Advisor and returned by function.

	
execution_params

	
A list of parameters (name, value) for the specified execution. Note that execution parameters are real task parameters, but they affect only the execution they are specified for.

As an example, consider the following:

DBMS_ADVISOR.ARGLIST('time_limit', 12, 'username', 'foo')

	
execution_desc

	
A 256-length string describing the execution.

Usage Notes

Task execution is a synchronous operation. Control will not be returned to the caller until the operation has completed, or a user-interrupt was detected.

Upon return, you can check the DBA_ADVISOR_LOG table for the execution status.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
END;
/

GET_REC_ATTRIBUTES Procedure

This procedure retrieves a specified attribute of a new object as recommended by Advisor analysis.

Syntax

DBMS_ADVISOR.GET_REC_ATTRIBUTES (
 workload_name IN VARCHAR2,
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value OUT VARCHAR2,
 owner_name IN VARCHAR2 := NULL);

Parameters

Table 17-17 GET_REC_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
rec_id

	
The Advisor-generated identifier number that is assigned to the recommendation.

	
action_id

	
The Advisor-generated action identifier that is assigned to the particular command.

	
attribute_name

	
Specifies the attribute to change.

	
value

	
The buffer to receive the requested attribute value.

	
owner_name

	
Optional owner name of the target task. This permits access to task data not owned by the current user.

Return Values

The requested attribute value is returned in the VALUE argument.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';
 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.GET_REC_ATTRIBUTES(task_name, 1, 1, 'NAME', attribute);
END;
/

GET_TASK_REPORT Function

This function creates and returns a report for the specified task.

Syntax

DBMS_ADVISOR.GET_TASK_REPORT (
 task_name IN VARCHAR2,
 type IN VARCHAR2 := 'TEXT',
 level IN VARCHAR2 := 'TYPICAL',
 section IN VARCHAR2 := 'ALL',
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL)
RETURN CLOB;

Parameters

Table 17-18 GET_TASK_REPORT Function Parameters

	Parameter	Description
	
task_name

	
The name of the task from which the script will be created.

	
type

	
The only valid value is TEXT.

	
level

	
The possible values are BASIC, TYPICAL, and ALL.

	
section

	
Advisor-specific report sections.

	
owner_name

	
Owner of the task. If specified, the system will check to see if the current user has read privileges to the task data.

	
execution_name

	
An identifier of a specific execution of the task. It is needed only for advisors that allow their tasks to be executed multiple times.

	
object_id

	
An identifier of an advisor object that can be targeted by the script.

Return Values

Returns the buffer receiving the script.

GET_TASK_SCRIPT Function

This function creates a SQL*Plus-compatible SQL script and sends the output to file. The script will contain all of the accepted recommendations from the specified task.

Syntax

DBMS_ADVISOR.GET_TASK_SCRIPT (
 task_name IN VARCHAR2
 type IN VARCHAR2 := 'IMPLEMENTATION',
 rec_id IN NUMBER := NULL,
 act_id IN NUMBER := NULL,
 owner_name IN VARCHAR2 := NULL,
 execution_name IN VARCHAR2 := NULL,
 object_id IN NUMBER := NULL)
RETURN CLOB;

Parameters

Table 17-19 GET_TASK_SCRIPT Function Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
type

	
Specifies the type of script to generate. The possible values are IMPLEMENTATION and UNDO.

	
rec_id

	
An optional recommendation identifier number that can be used to extract a subset of the implementation script.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all accepted recommendations would be included. The default is to include all accepted recommendations for the task.

	
act_id

	
Optional action identifier number that can be used to extract a single action as a DDL command.

A zero or the value DBMS_ADVISOR.ADVISOR_ALL indicates all actions for the recommendation would be included. The default is to include all actions for a recommendation.

	
owner_name

	
An optional task owner name.

	
execution_name

	
An identifier of a specific execution of the task. It is needed only for advisors that allow their tasks to be executed multiple times.

	
object_id

	
An identifier of an advisor object that can be targeted by the script.

Return Values

Returns the script as a CLOB buffer.

Usage Notes

Though the script is ready to execute, Oracle recommends that the user review the script for acceptable locations for new materialized views and indexes.

For a recommendation to appear in a generated script, it must be marked as accepted.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 buf CLOB;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 buf := DBMS_ADVISOR.GET_TASK_SCRIPT(task_name);
END;
/

IMPLEMENT_TASK Procedure

This procedure implements the recommendations of the specified task.

Syntax

DBMS_ADVISOR.IMPLEMENT_TASK (
 task_name IN VARCHAR2,
 rec_id IN NUMBER := NULL,
 exit_on_error IN BOOLEAN := NULL);

Parameters

Table 17-20 IMPLEMENT_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The name of the task.

	
rec_id

	
An optional recommendation ID.

	
exit_on_error

	
An optional boolean to exit on the first error.

IMPORT_SQLWKLD_SCHEMA Procedure

This procedure has been deprecated.

This procedure constructs and loads a SQL workload based on schema evidence. The workload is also referred to as a hypothetical workload.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 17-21 IMPORT_SQLWKLD_SCHEMA Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW.

	
failed_rows

	
Returns the number or rows that were not saved due to syntax or validation errors

	
saved_rows

	
Returns the number of rows actually saved in the repository.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

To successfully import a hypothetical workload, the target schemas must contain dimensions.

If the VALID_TABLE_LIST parameter is not set, the search space may become very large and require a significant amount of time to complete. Oracle recommends that you limit your search space to specific set of tables.

If a task contains valid recommendations from a prior run, adding or modifying task will mark the task as invalid, preventing the viewing and reporting of potentially valuable recommendation data.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SCHEMA(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

IMPORT_SQLWKLD_SQLCACHE Procedure

This procedure has been deprecated.

This procedure creates a SQL workload from the current contents of the server's SQL cache.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 17-22 IMPORT_SQLWKLD_SQLCACHE Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following 1-HIGH, 2-MEDIUM, or 3-LOW.

	
saved_rows

	
Returns the number of rows saved as output parameters.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SQLCACHE(workload_name, 'REPLACE', 1, saved,
 failed);
END;
/

IMPORT_SQLWKLD_STS Procedure

This procedure has been deprecated.

This procedure loads a SQL workload from an existing SQL Tuning Set. A SQL Tuning Set is typically created from the server workload repository using various time and data filters.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_STS (
 workload_name IN VARCHAR2,
 sts_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

DBMS_ADVISOR.IMPORT_SQLWKLD_STS (
 workload_name IN VARCHAR2,
 sts_owner IN VARCHAR2,
 sts_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 17-23 IMPORT_SQLWKLD_STS Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
sts_owner

	
The optional owner of the SQL Tuning Set.

	
sts_name

	
The name of an existing SQL Tuning Set workload from which the data will be imported. If the sts_owner value is not provided, the owner will default to the current user.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the application priority for each statement that is saved in the workload object. The value must be one of the following: 1-HIGH, 2-MEDIUM, or 3-LOW. The default value is 2.

	
saved_rows

	
Returns the number of rows actually saved in the repository.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_STS(workload_name, 'MY_SQLSET', 'REPLACE', 1,
 saved, failed);
END;
/

IMPORT_SQLWKLD_SUMADV Procedure

This procedure has been deprecated.

This procedure collects a SQL workload from a Summary Advisor workload. This procedure is intended to assist Oracle9i Database Summary Advisor users in the migration to SQL Access Advisor.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 priority IN NUMBER := 2,
 sumadv_id IN NUMBER,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 17-24 IMPORT_SQLWKLD_SUMADV Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
priority

	
Specifies the default application priority for each statement that is saved in the workload object. If a Summary Advisor workload statement contains a priority of zero, the default priority will be applied. If the workload statement contains a valid priority, then the Summary Advisor priority will be converted to a comparable SQL Access Advisor priority. The value must be one of the following:

1-HIGH, 2-MEDIUM, or 3-LOW.

	
sumadv_id

	
Specifies the Summary Advisor workload identifier number.

	
saved_rows

	
Returns the number of rows actually saved in the repository.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
 sumadv_id NUMBER;
BEGIN
 workload_name := 'My Workload';
 sumadv_id := 394;

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_SUMADV(workload_name, 'REPLACE', 1, sumadv_id,
 saved, failed);
END;
/

IMPORT_SQLWKLD_USER Procedure

This procedure has been deprecated.

This procedure collects a SQL workload from a specified user table.

Syntax

DBMS_ADVISOR.IMPORT_SQLWKLD_USER (
 workload_name IN VARCHAR2,
 import_mode IN VARCHAR2 := 'NEW',
 owner_name IN VARCHAR2,
 table_name IN VARCHAR2,
 saved_rows OUT NUMBER,
 failed_rows OUT NUMBER);

Parameters

Table 17-25 IMPORT_SQLWKLD_USER Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
import_mode

	
Specifies the action to be taken when storing the workload. Possible values are:

	
APPEND Indicates that the collected workload will be added to any existing workload in the task.

	
NEW Indicates that the collected workload will be the exclusive workload for the task. If an existing workload is found, an exception will be thrown.

	
REPLACE Indicates the collected workload will be the exclusive workload for the task. If an existing workload is found, it will be deleted prior to saving the new workload.

The default value is NEW.

	
owner_name

	
Specifies the owner name of the table or view from which workload data will be collected.

	
table_name

	
Specifies the name of the table or view from which workload data will be collected.

	
saved_rows

	
Returns the number of rows actually saved in the workload object.

	
failed_rows

	
Returns the number of rows that were not saved due to syntax or validation errors.

Return Values

This call returns the number of rows saved and failed as output parameters.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 saved NUMBER;
 failed NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name,'VALID_TABLE_LIST','SH.%');
 DBMS_ADVISOR.IMPORT_SQLWKLD_USER(workload_name, 'REPLACE', 'SH',
 'USER_WORKLOAD', saved, failed);
END;
/

INTERRUPT_TASK Procedure

This procedure stops a currently executing task. The task will end its operations as it would at a normal exit. The user will be able to access any recommendations that exist to this point.

Syntax

DBMS_ADVISOR.INTERRUPT_TASK (
 task_name IN VARCHAR2);

Parameters

Table 17-26 INTERRUPT_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
A single Advisor task name that will be interrupted.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
END;
/

While this session is executing its task, you can interrupt the task from a second session using the following statement:

BEGIN
 DBMS_ADVISOR.INTERRUPT_TASK('My Task');
END;
/

MARK_RECOMMENDATION Procedure

This procedure marks a recommendation for import or implementation.

Syntax

DBMS_ADVISOR.MARK_RECOMMENDATION (
 task_name IN VARCHAR2
 id IN NUMBER,
 action IN VARCHAR2);

Parameters

Table 17-27 MARK_RECOMMENDATION Procedure Parameters

	Parameter	Description
	
task_name

	
Name of the task.

	
id

	
The recommendation identifier number assigned by the Advisor.

	
action

	
The recommendation action setting. The possible actions are:

	
ACCEPT Marks the recommendation as accepted. With this setting, the recommendation will appear in implementation and undo scripts.

	
IGNORE Marks the recommendation as ignore. With this setting, the recommendation will not appear in an implementation or undo script.

	
REJECT Marks the recommendation as rejected. With this setting, the recommendation will not appear in any implementation or undo scripts.

Usage Notes

For a recommendation to be implemented, it must be marked as accepted. By default, all recommendations are considered accepted and will appear in any generated scripts.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
 rec_id NUMBER;
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);

 rec_id := 1;
 DBMS_ADVISOR.MARK_RECOMMENDATION(task_name, rec_id, 'REJECT');
END;
/

QUICK_TUNE Procedure

This procedure performs an analysis and generates recommendations for a single SQL statement.

This provides a shortcut method of all necessary operations to analyze the specified SQL statement. The operation creates a task using the specified task name. The task will be created using a specified Advisor task template. Finally, the task will be executed and the results will be saved in the repository.

Syntax

DBMS_ADVISOR.QUICK_TUNE (
 advisor_name IN VARCHAR2,
 task_name IN VARCHAR2,
 attr1 IN CLOB,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN NUMBER := NULL,
 task_or_template IN VARCHAR2 := NULL);

Parameters

Table 17-28 QUICK_TUNE Procedure Parameters

	Parameter	Description
	
advisor_name

	
Name of the Advisor that will perform the analysis.

	
task_name

	
Name of the task.

	
attr1

	
Advisor-specific attribute in the form of a CLOB variable.

	
attr2

	
Advisor-specific attribute in the form of a VARCHAR2 variable.

	
attr3

	
Advisor-specific attribute in the form of a NUMBER.

	
task_or_template

	
An optional task name of an existing task or task template.

Usage Notes

If indicated by the user, the final recommendations can be implemented by the procedure.

The task will be created using either a specified SQL Access task template or the built-in default template of SQLACCESS_GENERAL. The workload will only contain the specified statement, and all task parameters will be defaulted.

attr1 must be the single SQL statement to tune. For the SQL Access Advisor, attr2 is the user who would execute the single statement. If omitted, the current user will be used.

Examples

DECLARE
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.QUICK_TUNE(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_name,
 'SELECT AVG(amount_sold) FROM sh.sales WHERE promo_id=10');
END;
/

RESET_SQLWKLD Procedure

This procedure has been deprecated.

This procedure resets a workload to its initial starting point. This has the effect of removing all journal messages, log messages, and recalculating necessary volatility and usage statistics.

Syntax

DBMS_ADVISOR.RESET_SQLWKLD (
 workload_name IN VARCHAR2);

Parameters

Table 17-29 RESET_SQLWKLD Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

Usage Notes

RESET_SQLWKLD should be executed after any workload adjustments such as adding or removing SQL statements.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');

 DBMS_ADVISOR.RESET_SQLWKLD(workload_name);
END;
/

RESET_TASK Procedure

This procedure resets a task to its initial state. All intermediate and recommendation data will be removed from the task. The task status will be set to INITIAL.

Syntax

DBMS_ADVISOR.RESET_TASK (
 task_name IN VARCHAR2);

Parameters

Table 17-30 RESET_TASK Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.EXECUTE_TASK(task_name);
 DBMS_ADVISOR.RESET_TASK(task_name);
END;
/

SET_DEFAULT_SQLWKLD_PARAMETER Procedures

This procedure has been deprecated.

This procedure modifies the default value for a user parameter within a SQL Workload object or SQL Workload object template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting. When a default value is changed for a parameter, workload objects will inherit the new value when they are created.

Syntax

DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER (
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 17-31 SET_DEFAULT_SQLWKLD_PARAMETER Procedure Parameters

	Parameter	Description
	
parameter

	
The name of the data parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the workload object type, but not necessarily unique to all workload object types. Various object types may use the same parameter name for different purposes.

	
value

	
The value of the specified parameter. The value can be specified as a string or a number. If the value is DBMS_ADVISOR.DEFAULT, the value will be reset to the default value.

Usage Notes

A parameter will only affect operations that modify the workload collection. Therefore, parameters should be set prior to importing or adding new SQL statements to a workload. If a parameter is set after data has been placed in a workload object, it will have no effect on the existing data.

Examples

BEGIN
 DBMS_ADVISOR.SET_DEFAULT_SQLWKLD_PARAMETER('VALID_TABLE_LIST','SH.%');
END;
/

SET_DEFAULT_TASK_PARAMETER Procedures

This procedure modifies the default value for a user parameter within a task or a template. A user parameter is a simple variable that stores various attributes that affect various Advisor operations. When a default value is changed for a parameter, tasks will inherit the new value when they are created.

A default task is different from a regular task. The default value is the initial value that will be inserted into a newly created task, while setting a task parameter with SET_TASK_PARAMETER sets the local value only. Thus, SET_DEFAULT_TASK_PARAMETER has no effect on an existing task.

Syntax

DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER (
 advisor_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 17-32 SET_DEFAULT_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
advisor_name

	
Specifies the unique advisor name as defined in the view DBA_ADVISOR_DEFINITIONS.

	
parameter

	
The name of the task parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the task type, but not necessarily unique to all task types. Various task types may use the same parameter name for different purposes.

	
value

	
The value of the specified task parameter. The value can be specified as a string or a number.

Examples

BEGIN
 DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(DBMS_ADVISOR.SQLACCESS_ADVISOR,
 'VALID_TABLE_LIST', 'SH.%');
END;
/

SET_SQLWKLD_PARAMETER Procedures

This procedure has been deprecated.

This procedure modifies a user parameter within a SQL Workload object or SQL Workload object template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting.

Syntax

DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_SQLWKLD_PARAMETER (
 workload_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 17-33 SET_SQLWKLD_PARAMETER Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

	
parameter

	
The name of the data parameter to be modified. Parameter names are not case sensitive.

	
value

	
The value of the specified parameter. The value can be specified as a string or a number. If the value is DBMS_ADVISOR.DEFAULT, the value will be reset to the default value.

Usage Notes

A parameter will only affect operations that modify the workload collection. Therefore, parameters should be set prior to importing or adding new SQL statements to a workload. If a parameter is set after data has been placed in a workload object, it will have no effect on the existing data.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.SET_SQLWKLD_PARAMETER(workload_name, 'VALID_TABLE_LIST','SH.%');
END;
/

SET_TASK_PARAMETER Procedure

This procedure modifies a user parameter within an Advisor task or a template. A user parameter is a simple variable that stores various attributes that affect workload collection, tuning decisions and reporting.

Syntax

DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN VARCHAR2);

DBMS_ADVISOR.SET_TASK_PARAMETER (
 task_name IN VARCHAR2
 parameter IN VARCHAR2,
 value IN NUMBER);

Parameters

Table 17-34 SET_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
task_name

	
The Advisor task name that uniquely identifies an existing task.

	
parameter

	
The name of the task parameter to be modified. Parameter names are not case sensitive. Parameter names are unique to the task type, but not necessarily unique to all task types. Various task types may use the same parameter name for different purposes.

	
value

	
The value of the specified task parameter. The value can be specified as a string or a number. If the value is DEFAULT, the value will be reset to the default value.

Usage Notes

A task cannot be modified unless it is in its initial state. See "RESET_TASK Procedure" to set a task to its initial state. See your Advisor-specific documentation for further information on using this procedure.

SQL Access Advisor Task Parameters

Table 17-35 lists SQL Access Advisor task parameters.

Table 17-35 SQL Access Advisor Task Parameters

	Parameter	Description
	
ANALYSIS_SCOPE

	
A comma-separated list that specifies the tuning artifacts to consider during analysis.

The possible values are:

	
ALL Short name for specifying INDEX, MVIEW, TABLE, and PARTITION.

	
EVALUATION Causes a read-only evaluation of the specified workload. No new recommendations will be made. Can only be specified alone.

	
INDEX Allows the SQL Access Advisor to recommend index structure changes.

	
MVIEW Allows the SQL Access Advisor to recommend materialized view and log changes.

	
PARTITION Allows the SQL Access Advisor to recommend partition options. Use this in conjunction with the INDEX, MVIEW, and TABLE options.

	
TABLE Allows the SQL Access Advisor to make base-table recommendations. In this release, the only base-table recommendation is partitioning.

Using the new keywords, the following combinations are valid:

	
INDEX

	
MVIEW

	
INDEX, PARTITION

	
INDEX, MVIEW, PARTITION

	
INDEX, TABLE, PARTITION

	
MVIEW, PARTITION

	
MIVEW, TABLE, PARTITION

	
INDEX, MVIEW, TABLE, PARTITION

	
TABLE, PARTITION

	
EVALUATION

The default value is INDEX. The datatype is STRINGLIST.

	
CREATION_COST

	
When set to true (default), the SQL Access Advisor will weigh the cost of creation of the access structure (index or materialized view) against the frequency of the query and potential improvement in the query execution time. When set to false, the cost of creation is ignored. The datatype is STRING.

	
DAYS_TO_EXPIRE

	
Specifies the expiration time in days for the current SQL Access Advisor task. The value is relative to the last modification date. Once the task expires, it will become a candidate for removal by an automatic purge operation.

Specifies the expiration time in days for the current Access Advisor task. The value is relative to the last modification date. The datatype is NUMBER.

Once the task expires, it becomes a candidate for removal by an automatic purge operation.

The possible values are:

	
an integer in the range of 0 to 2147483647

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is 30.

	
DEF_EM_TEMPLATE

	
Contains the default task or template name from which the Enterprise Manager SQL Access Advisor Wizard reads its initial values.

The default value is SQLACCESS_EMTASK. The datatype is STRING.

	
DEF_INDEX_OWNER

	
Specifies the default owner for new index recommendations. When a script is created, this value will be used to qualify the index name.

Possible values are:

	
Existing schema name. Quoted identifiers are supported.

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_INDEX_TABLESPACE

	
Specifies the default tablespace for new index recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED No tablespace clause will be present in the script for indexes.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVIEW_OWNER

	
Specifies the default owner for new materialized view recommendations. When a script is created, this value will be used to qualify the materialized view name.

Possible values are:

	
Existing schema name. Quoted identifiers are supported.

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVIEW_TABLESPACE

	
Specifies the default tablespace for new materialized view recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized view logs.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_MVLOG_TABLSPACE

	
Specifies the default tablespace for new materialized view log recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized view logs.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DEF_PARTITION_TABLESPACE

	
Specifies the default tablespace for new partitioning recommendations. When a script is created, this value will be used to specify a tablespace clause.

Possible values are:

	
Existing tablespace name. Quoted identifiers are supported.

	
ADVISOR_UNUSED. No tablespace clause will be present in the script for materialized views.

The default value is ADVISOR_UNUSED. The datatype is STRING.

	
DML_VOLATILITY

	
When set to TRUE, the SQL Access Advisor will consider the impact of index maintenance and materialized view refresh in determining the recommendations. It will limit the access structure recommendations involving columns or tables that are frequently updated. For example, if there are too many DMLs on a column, it may favor a Btree index over a bitmap index on that column. For this process to be effective, the workload must include DML (insert/update/delete/merge/direct path inserts) statements that represent the update behavior of the application. The datatype is STRING.

See the related parameter refresh_mode.

	
END_TIME

	
Specifies an end time for selecting SQL statements. If the statement did not execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY HH24:MI:SS, where:

	
DD is the numeric date

	
MM is the numeric month

	
YYYY is the numeric year

	
HH is the hour in 24 hour format

	
MI is the minute

	
SS is the second

The datatype is STRING.

	
EVALUATION_ONLY

	
This parameter is maintained for backward compatibility. All values will be translated and placed into the ANALYSIS_SCOPE task parameter.

If set to TRUE, causes SQL Access Advisor to analyze the workload, but only comment on how well the current configuration is supporting it. No tuning recommendations will be generated.

Possible values are:

	
FALSE

	
TRUE

The default value is FALSE. The datatype is STRING.

	
EXECUTION_TYPE

	
This parameter is maintained for backward compatibility. All values will be translated and placed into the ANALYSIS_SCOPE task parameter.

The translated values are:

	
FULL => FULL

	
INDEX_ONLY => INDEX

	
MVIEW_ONLY => MVIEW

	
MVIEW_LOG_ONLY => MVIEW_LOG_ONLY

The type of recommendations that is desired. Possible values:

	
FULL All supported recommendation types will be considered.

	
INDEX_ONLY The SQL Access Advisor will only consider index solutions as recommendations.

	
MVIEW_ONLY The SQL Access Advisor will consider materialized view and materialized view log solutions as recommendations.

	
MVIEW_LOG_ONLY The SQL Access Advisor will only consider materialized view log solutions as recommendations.

The default value is FULL. The datatype is STRINGLIST.

	
IMPLEMENT_EXIT_ON_ERROR

	
When performing an IMPLEMENT_TASK operation, this parameter will control behavior when an action fails to implement. If set to TRUE, IMPLEMENT_TASK will stop on the first unexpected error.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
INDEX_NAME_TEMPLATE

	
Specifies the method by which new index names are formed.

If the TASK_ID is omitted from the template, names generated by two concurrently executing SQL Access Advisor tasks may conflict and cause undesirable effects. So it is recommended that you include the TASK_ID in the template. Once formatted, the maximum size of a name is 30 characters.

Valid keywords are:

	
Any literal value up to 22 characters.

	
TABLE Causes the parent table name to be substituted into the index name. If the name is too long, it will be trimmed to fit.

	
TASK_ID Causes the current task identifier number to be inserted in hexadecimal form.

	
SEQ Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is <TABLE>_IDX$$_<TASK_ID><SEQ>. The datatype is STRING.

	
INVALID_ACTION_LIST

	
Contains a fully qualified list of actions that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

An action can be any string. If an action is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. An action string is not scanned for correctness.

During a task execution, if a SQL statement's action matches a name in the action list, it will not be processed by the task. An action name is case sensitive.

The possible values are:

	
single action

	
comma-delimited action list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_MODULE_LIST

	
Contains a fully qualified list of modules that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A module string is not scanned for correctness.

During a task execution, if a SQL statement's module matches a name in the list, it will not be processed by the task. A module name is case sensitive.

The possible values are:

	
single application

	
comma-delimited module list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_SQLSTRING_LIST

	
Contains a fully qualified list of text strings that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted values are supported.

A SQL string can be any string. If a string is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A SQL string is not scanned for correctness.

During a task execution, if a SQL statement contains a string in the SQL string list, it will not be processed by the task.

The possible values are:

	
single string

	
comma-delimited string list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
INVALID_USERNAME_LIST

	
Contains a fully qualified list of usernames that are not eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

During a task execution, if a SQL statement's username matches a name in the username list, it will not be processed by the task. A username is not case sensitive unless it is quoted.

The possible values are:

	
single username

	
comma-delimited username list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
JOURNALING

	
Controls the logging of messages to the journal (DBA_ADVISOR_JOURNAL and USER_ADVISOR_JOURNAL views). The higher the setting, the more information is logged to the journal.

Possible values are:

	
UNUSED: no journal messages

	
FATAL: explanation of fatal conditions

	
ERROR: explanation of errors

	
WARNING: explanation of warnings

	
INFORMATION: information message

	
INFORMATION2: common information

	
INFORMATION3: common information

	
INFORMATION4: common information

	
INFORMATION5: common information

	
INFORMATION6: common information

Each journal value represents all recorded messages at that level or lower. For example, when choosing WARNING, all messages marked WARNING as well as ERROR and FATAL will be recorded in the repository.

INFORMATION6 represents the most thorough message recording and UNUSED is the least.

The default value is INFORMATION. The datatype is NUMBER.

	
LIMITED_PARTITION_SCHEMES

	
User can suggest that the Partition Expert cut off the number of partitioning schemes to investigate. This can help with cutting down the run time of the advisor.

Possible values are:

	
An integer in the range of 1 to 10

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is NUMBER.

	
MAX_NUMBER_PARTITIONS

	
Limits the number of partitions the advisor will recommend for any base table, index, or materialized view.

Possible values are:

	
An integer in the range of 1 to 4294967295

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is ADVISOR_UNLIMITED. The datatype is NUMBER.

	
MODE

	
Specifies the mode by which Access Advisor will operate during an analysis.

Valid values are:

	
LIMITED Indicates the Advisor will attempt to a quick job by limiting the search-space of candidate recommendations, and correspondingly, the results may be of a low quality.

	
COMPREHENSIVE Indicates the Advisor will search a large pool of candidates that may take long to run, but the resulting recommendations will be of the highest quality.

The default value is COMPREHENSIVE. The datatype is STRING.

	
MVIEW_NAME_TEMPLATE

	
Specifies the method by which new materialized view names are formed.

If the TASK_ID is omitted from the template, names generated by two concurrently executing SQL Access Advisor tasks may conflict and cause undesirable effects. So it is recommended that you include the TASK_ID in the template.

The format is any combination of keyword tokens and literals. However, once formatted, the maximum size of a name is 30 characters.

Valid tokens are:

	
Any literal value up to 22 characters.

	
TASK_ID Causes the current task identifier number to be inserted in hexadecimal form.

	
SEQ Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is: MV$$_<TASK_ID><SEQ>. The datatype is STRING.

	
ORDER_LIST

	
This parameter has been deprecated.

Contains the primary natural order in which the Access Advisor processes workload elements during the analysis operation. To determine absolute natural order, Access Advisor sorts the workload using ORDER_LIST values. A comma must separate multiple order keys.

Possible values are:

	
BUFFER_GETS Sets the order using the SQL statement's buffer-get count value.

	
CPU_TIME Sets the order using the SQL statement's CPU time value.

	
DISK_READS Sets the order using the SQL statement's disk-read count value.

	
ELAPSED_TIME Sets the order using the SQL statement's elapsed time value.

	
EXECUTIONS Sets the order using the SQL statement's execution frequency value.

	
OPTIMIZER_COST Sets the order using the SQL statement's optimizer cost value.

	
I/O Sets the order using the SQL statement's I/O count value.

	
PRIORITY Sets the order using the user-supplied business priority value.

All values are accessed in descending order, where a high value is considered more interesting than a low value.

The default value is PRIORITY, OPTIMIZER_COST. The datatype is STRINGLIST.

	
PARTITION_NAME_TEMPLATE

	
Specifies the method by which new partition names are formed. The format is any combination of keyword tokens and literals. However, once formatted, the maximum size of a name is 30 characters.

Valid tokens are:

	
Any literal value up to 22 characters.

	
<TABLE> Causes the parent table name to be substituted into the partition name. If the name is too long, it will be trimmed to fit.

	
<TASK_ID> Causes the current task identifier number to be inserted in hexadecimal form.

	
<SEQ> Causes a sequence number to be inserted in hexadecimal form. Because this number is used to guarantee uniqueness, it is a required token.

The default template is PTN$$_<TABLE>_<TASK_ID><SEQ>. The datatype is STRING.

	
PARTITIONING_GOAL

	
Specifies the approach used to make partitioning recommendations. One possible value is PERFORMANCE, which is the default. The datatype is STRING.

	
PARTITIONING_TYPES

	
Specifies the type of partitioning used. Possible values are RANGE and HASH. The datatype is STRING.

	
RANKING_MEASURE

	
Contains the primary natural order in which the SQL Access Advisor processes workload elements during the analysis operation. To determine absolute natural order, SQL Access Advisor sorts the workload using RANKING_MEASURE values. A comma must separate multiple order keys.

Possible values are:

	
BUFFER_GETS Sets the order using the SQL statement's buffer-get count value.

	
CPU_TIME Sets the order using the SQL statement's cpu time value.

	
DISK_READS Sets the order using the SQL statement's disk-read count value.

	
ELAPSED_TIME Sets the order using the SQL statement's elapsed time value.

	
EXECUTIONS Sets the order using the SQL statement's elapsed time value.

	
OPTIMIZER_COST Sets the order using the SQL statement's optimizer cost value.

	
PRIORITY Sets the order using the user-supplied business priority value.

All values are accessed in descending order, where a high value is considered more interesting than a low value.

The default value is PRIORITY, OPTIMIZER_COST. The datatype is STRINGLIST.

	
RECOMMEND_MV_EXACT_TEXT_MATCH

	
When considering candidate materialized views, exact text match solutions will only be included if this parameter contains TRUE.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
RECOMMENDED_TABLESPACES

	
Allows the SQL Access Advisor to recommend optimal tablespaces for any partitioning scheme. If this is not set, the SQL Access Advisor will simply recommend a partitioning method but give no advice on physical storage.

Possible values are:

	
TRUE

	
FALSE (the default)

The datatype is STRING.

	
REFRESH_MODE

	
Specifies whether materialized views are refreshed ON_DEMAND or ON_COMMIT. This will be used to weigh the impact of materialized view refresh when the parameter dml_volatility is set to TRUE.

Possible values are:

	
ON_DEMAND

	
ON_COMMIT

The default value is ON_DEMAND. The datatype is STRING.

	
REPORT_DATE_FORMAT

	
This is the default date and time formatting template. The default format is DD/MM/YYYYHH24:MI. The datatype is STRING.

	
SHOW_RETAINS

	
Controls the display of RETAIN actions within an implementation script and the SQL Access Advisor wizard.

The possible values are:

	
TRUE

	
FALSE

The default value is TRUE. The datatype is STRING.

	
SQL_LIMIT

	
Specifies the number of SQL statements to be analyzed. The SQL_LIMIT filter is applied after all other filters have been applied. For example, if only statements referencing the table foo.bar are to be accepted, the SQL_LIMIT value will be only apply to those statements.

When used in conjunction with the parameter ORDER_LIST, SQL Access Advisor will process the most interesting SQL statements by ordering the statements according to the specified sort keys.

The possible values are:

	
an integer in the range of 1 to 2147483647

	
ADVISOR_UNLIMITED

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is NUMBER.

	
START_TIME

	
Specifies a start time for selecting SQL statements. If the statement did not execute on or before the specified time, it will not be processed.

Each date must be in the standard Oracle form of MM-DD-YYY HH24:MI:SS, where:

	
DD is the numeric date

	
MM is the numeric month

	
YYYY is the numeric year

	
HH is the hour in 24 hour format

	
MI is the minute

	
SS is the second

The datatype is STRING.

	
STORAGE_CHANGE

	
Contains the amount of space adjustment that can be consumed by SQL Access Advisor recommendations. Zero or negative values are only permitted if the workload scope is marked as FULL.

When the SQL Access Advisor produces a set of recommendations, the resultant physical structures must be able to fit into the budgeted space. A space budget is computed by adding the STORAGE_CHANGE value to the space quantity currently used by existing access structures. A negative STORAGE_CHANGE value may force SQL Access Advisor to remove existing structures in order to shrink space demand.

Possible values:

	
Any valid integer including negative values, zero and positive values.

The default value is ADVISOR_UNLIMITED. The datatype is NUMBER.

	
TIME_LIMIT

	
Specifies the time in minutes that the SQL Access Advisor can use to perform an analysis operation. If the SQL Access Advisor reaches a specified recommendation quality or all input data has been analyzed, processing will terminate regardless of any remaining time.

Possible values:

	
An integer in the range of 1 to 10,000

	
ADVISOR_UNLIMITED

The default value is 720 (12 hours). The datatype is NUMBER.

Note that specifying ADVISOR_UNLIMITED has the same effect as setting the parameter to the maximum of 10,000 (about one week). The SQL Access Advisor will never run for more than 10,000 minutes.

	
VALID_ACTION_LIST

	
Contains a fully qualified list of actions that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

An action can be any string. If an action is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. An action string is not scanned for correctness.

During a task execution, if a SQL statement's action does not match a name in the action list, it will not be processed by the task. An action name is case sensitive.

The possible values are:

	
single action

	
comma-delimited action list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_MODULE_LIST

	
Contains a fully qualified list of application modules that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A module can be any string. If a module is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A module string is not scanned for correctness.

During a task execution, if a SQL statement's module does not match a name in the module list, it will not be processed by the task. A module name is case sensitive.

The possible values are:

	
single application

	
comma-delimited module list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_SQLSTRING_LIST

	
Contains a fully qualified list of text strings that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

A SQL string can be any string. If a string is not quoted, it will be changed to uppercase lettering and stripped of leading and trailing spaces. A SQL string is not scanned for correctness.

During a task execution, if a SQL statement does not contain string in the SQL string list, it will not be processed by the task.

The possible values are:

	
single string

	
comma-delimited string list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
VALID_TABLE_LIST

	
Contains a fully qualified list of tables that are eligible for tuning. The list elements are comma-delimited, and quoted identifiers are supported. Wildcard specifications are supported for tables. The default value is all tables within the user's scope are eligible for tuning. Supported wildcard character is %. A % wildcard matches any set of consecutive characters.

When a SQL statement is processed, it will not be accepted unless at least one referenced table is specified in the valid table list. If the list is unused, then all table references within a SQL statement are considered valid.

The valid syntax for a table reference is:

	
schema.table

	
schema

	
schema.% (equivalent to schema)

	
comma-delimited action list

	
ADVISOR_UNUSED

The possible values are:

	
single table reference

	
comma-delimited reference list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is TABLELIST.

	
VALID_USERNAME_LIST

	
Contains a fully qualified list of usernames that are eligible for processing in a SQL workload object. The list elements are comma-delimited, and quoted names are supported.

During a task execution, if a SQL statement's username does not match a name in the username list, it will not be processed by the task. A username is not case sensitive unless it is quoted.

The possible values are:

	
single username

	
comma-delimited username list

	
ADVISOR_UNUSED

The default value is ADVISOR_UNUSED. The datatype is STRINGLIST.

	
WORKLOAD_SCOPE

	
Describes the level of application coverage the workload represents. Possible values are FULL and PARTIAL.

FULL Should be used if the workload contains all interesting application SQL statements for the targeted tables.

PARTIAL (default) Should be used if the workload contains anything less than a full representation of the interesting application SQL statements for the targeted tables.

The datatype is STRING.

Segment Advisor Parameters

Table 17-36 lists the input task parameters that can be set in the Segment Advisor using the SET_TASK_PARAMETER procedure.

Table 17-36 Segment Advisor Task Parameters

	Parameter	Description
	
MODE

	
The data to use for analysis. The default value is COMPREHENSIVE, and the possible values are:

	
LIMITED: Analysis restricted to statistics available in the Automatic Workload Repository

	
COMPREHENSIVE: Analysis based on sampling and Automatic Workload Repository statistics

	
TIME_LIST

	
The time limit for which the Advisor should run. It is specified in seconds, and the default and possible values are UNLIMITED.

	
RECOMMEND_ALL

	
Whether to generate recommendations for all segments.

The default value is TRUE. If set to TRUE, it generates recommendations all segments specified by the user. If set to FALSE, it generates recommendations for only those objects that are eligible for shrink.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.SET_TASK_PARAMETER(task_name, 'VALID_TABLELIST',
 'SH.%,SCOTT.EMP');
END;
/

Undo Advisor Task Parameters

Table 17-37 lists the input task parameters that can be set in the Undo Advisor using the SET_TASK_PARAMETER procedure.

Table 17-37 Undo Advisor Task Parameters

	Parameter	Description
	
TARGET_OBJECTS

	
The undo tablespace of the system. There is no default value, and the possible value is UNDO_TBS.

	
START_SNAPSHOT

	
The starting time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value and the possible values are the valid snapshot numbers in the AWR repository.

	
END_SNAPSHOT

	
The ending time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value and the possible values are the valid snapshot numbers in the AWR repository.

	
BEGIN_TIME_SEC

	
The number of seconds between the beginning time of the period and now. Describes a period of time for the system to perform analysis. BEGIN_TIME_SEC should be greater than END_TIME_SEC. There is no default value and the possible values are any positive integer.

	
END_TIME_SEC

	
The number of seconds between the ending time of the period and now. END_TIME_SEC should be less than BEGIN_TIME_SEC. There is no default value and the possible values are any positive integer.

Examples

DECLARE
 tname VARCHAR2(30);
 oid NUMBER;
 BEGIN
 DBMS_ADVISOR.CREATE_TASK('Undo Advisor', tid, tname, 'Undo Advisor Task');
 DBMS_ADVISOR.CREATE_OBJECT(tname, 'UNDO_TBS', null, null, null, 'null', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'TARGET_OBJECTS', oid);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'START_SNAPSHOT', 1);
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'END_SNAPSHOT', 2);
 DBMS_ADVISOR.EXECUTE_TASK(tname);
 END;
/

Automatic Database Diagnostic Monitor (ADDM) Task Parameters

Table 17-38 lists the input task parameters that can be set in ADDM using the SET_TASK_PARAMETER procedure. See Oracle Database Performance Tuning Guide for more information on using these parameters.

Table 17-38 ADDM Task Parameters

	Parameter	Description
	
START_SNAPSHOT

	
The starting time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value, and the possible values are the valid snapshot numbers in the AWR repository.

	
END_SNAPSHOT

	
The ending time for the system to perform analysis using the snapshot numbers in the AWR repository. There is no default value, and the possible values are the valid snapshot numbers in the AWR repository.

	
DB_ID

	
The database for START_SNAPSHOT and END_SNAPSHOT. The default value is the current database ID.

	
INSTANCE

	
The instance for START_SNAPSHOT and END_SNAPSHOT. The default value is 0 or UNUSED, and the possible values are all positive integers. By default, all instances are analyzed.

	
INSTANCES

	
If the INSTANCE parameter has been set, INSTANCES is ignored. The default value is UNUSED, and the possible values are comma-separated list of instance numbers (for example, "1, 3, 5"). By default, all instances are analyzed.

	
DBIO_EXPECTED

	
The average time to read the database block in microseconds. The default value is 10 milliseconds, and the possible values are system-dependent.

Examples

The following creates and executes an ADDM task for the current database and an AWR snapshot range between 19 and 26. Note that this example will analyze all instances, whether you have only one or a RAC database.

DECLARE
 tid NUMBER;
 tname VARCHAR2(30) := 'ADDM_TEST';
BEGIN
 DBMS_ADVISOR.CREATE_TASK('ADDM', tid, tname, 'my test');
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'START_SNAPSHOT', '19');
 DBMS_ADVISOR.SET_TASK_PARAMETER(tname, 'END_SNAPSHOT', '26');
 DBMS_ADVISOR.EXECUTE_TASK(tname);
END;
/

	
See Also:

	
Oracle Database Performance Tuning Guide for more information regarding ADDM usage

	
DBMS_ADDM for details on how to create and execute ADDM tasks

SQL Tuning Advisor Task Parameters

See the DBMS_SQLTUNE package and Oracle Database Performance Tuning Guide for more information.

TUNE_MVIEW Procedure

This procedure shows how to decompose a materialized view into two or more materialized views and to restate the materialized view in a way that is more advantageous for fast refresh and query rewrite. It also shows how to fix materialized view logs and to enable query rewrite.

Syntax

DBMS_ADVISOR.TUNE_MVIEW (
 task_name IN OUT VARCHAR2,
 mv_create_stmt IN [CLOB | VARCHAR2]);

Parameters

Table 17-39 TUNE_MVIEW Procedure Parameters

	Parameter	Description
	
task_name

	
The task name for looking up the results in a catalog view. If not specified, the system will generate a name and return.

	
mv_create_stmt

	
The original materialized view creation statement.

	
See Also:

Oracle Database Performance Tuning Guide for more information about using the TUNE_MVIEW procedure

Usage Notes

Executing TUNE_MVIEW generates two sets of output results: one is for CREATE implementation and the other is for undoing the CREATE MATERIALIZED VIEW implementation. The output results are accessible through USER_TUNE_MVIEW and DBA_TUNE_MVIEW views. You can also use DBMS_ADVISOR.GET_TASK_SCRIPT and DBMS_ADVISOR.CREATE_FILE to output the TUNE_MVIEW results into a script file for later execution.

USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views

These views are to get the result after executing the TUNE_MVIEW procedure.

Table 17-40 USER_TUNE_MVIEW and DBA_TUNE_MVIEW Views

	Column Name	Column Description
	
OWNER

	
The materialized view owner's name.

	
TASK_NAME

	
The task name as a key to access the set of recommendations

	
SCRIPT_TYPE

	
Recommendation ID used to indicate the row is for IMPLEMENTATION or UNDO script.

	
ACTION_ID

	
Action ID used as the command order number.

	
STATEMENT

	
For TUNE_MVIEW output, this column represents the following statements, and includes statement properties such as REFRESH and REWRITE options:

	
CREATE MATERIALIZED VIEW LOG

	
ALTER MATERIALIZED VIEW LOG FORCE

	
[CREATE | DROP] MATERIALIZED VIEW

Examples

name VARCHAR2(30);
DBMS_ADVISOR.TUNE_MVIEW.(name, 'SELECT AVG(C1) FROM my_fact_table WHERE c10 = 7');

The following is an example to show how to use TUNE_MVIEW to optimize a CREATE MATERIALIZED VIEW statement:

NAME VARCHAR2(30) := 'my_tune_mview_task';
EXECUTE DBMS_ADVISOR.TUNE_MVIEW (name, 'CREATE MATERIALIZED VIEW MY_MV
REFRESH FAST AS SELECT C2, AVG(C1) FROM MY_FACT_TABLE WHERE C10 = 7
GROUP BY C2');

You can view the CREATE output results by querying USER_TUNE_MVIEW or DBA_TUNE_MVIEW as the following example:

SELECT * FROM USER_TUNE_MVIEW WHERE TASK_NAME='my_tune_mview_task' AND
SCRIPT_TYPE='CREATE';

Alternatively, you can save the output results in an external script file as in the following example:

CREATE DIRECTORY TUNE_RESULTS AS ''/myscript_dir'' ;
GRANT READ, WRITE ON DIRECTORY TUNE_RESULTS TO PUBLIC;
EXECUTE DBMS_ADVISOR.CREATE_FILE(DBMS_ADVISOR.GET_TASK_SCRIPT('my_tune_mview_task'), -
'/homes/tune','my_tune_mview_create.sql');

The preceding statement will save the CREATE output results in /myscript_dir/my_tune_mview_create.sql.

UPDATE_OBJECT Procedure

This procedure updates an existing task object. Task objects are typically used as input data for a particular advisor. Segment advice can be generated at the object, segment, or tablespace level.

Syntax

DBMS_ADVISOR.UPDATE_OBJECT (
 task_name IN VARCHAR2
 object_id IN NUMBER,
 attr1 IN VARCHAR2 := NULL,
 attr2 IN VARCHAR2 := NULL,
 attr3 IN VARCHAR2 := NULL,
 attr4 IN CLOB := NULL,
 attr5 IN VARCHAR2 := NULL);

Parameters

Table 17-41 UPDATE_OBJECT Procedure Parameters

	Parameter	Description
	
task_name

	
A valid advisor task name that uniquely identifies an existing task.

	
object_id

	
The advisor-assigned object identifier.

	
attr1

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr2

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr3

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr4

	
Advisor-specific data. If set to NULL, there will be no effect on the target object.

	
attr5

	
Advisor-specific data. If set to null, there will be no effect on the target object.

The attribute parameters have different values depending upon the object type. See Oracle Database Administrator's Guide for details regarding these parameters and object types.

Usage Notes

If for the object level, advice is generated on all partitions of the object (if the object is partitioned). The advice is not cascaded to any dependent objects. If for the segment level, advice can be obtained on a single segment, such as the partition or subpartition of a table, index, or lob column. If for a tablespace level, target advice for every segment in the tablespace will be generated.

See Oracle Database Administrator's Guide for further information regarding the Segment Advisor.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 obj_id NUMBER;
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_OBJECT (task_name,'SQL',NULL,NULL,NULL,
 'SELECT * FROM SH.SALES',obj_id);
 DBMS_ADVISOR.UPDATE_OBJECT (task_name, obj_id,NULL,NULL,NULL,
 'SELECT count(*) FROM SH.SALES');
END;
/

UPDATE_REC_ATTRIBUTES Procedure

This procedure updates the owner, name, and tablespace for a recommendation.

Syntax

DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES (
 task_name IN VARCHAR2
 rec_id IN NUMBER,
 action_id IN NUMBER,
 attribute_name IN VARCHAR2,
 value IN VARCHAR2);

Parameters

Table 17-42 UPDATE_REC_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The task name that uniquely identifies an existing task.

	
rec_id

	
The Advisor-generated identifier number that is assigned to the recommendation.

	
action_id

	
The Advisor-generated action identifier that is assigned to the particular command.

	
attribute_name

	
Name of the attribute to be changed. The valid values are:

	
owner The new owner of the object.

	
name The new name of the object.

	
tablespace The new tablespace for the object.

	
value

	
Specifies the new value for the recommendation attribute.

Usage Notes

Recommendation attributes cannot be modified unless the task has successfully executed.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
 workload_name VARCHAR2(30);
 attribute VARCHAR2(100);
BEGIN
 task_name := 'My Task';
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_REF(task_name, workload_name);
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.EXECUTE_TASK(task_name);

attribute := 'SH';

 DBMS_ADVISOR.UPDATE_REC_ATTRIBUTES(task_name, 1, 3, 'OWNER', attribute);
END;
/

UPDATE_SQLWKLD_ATTRIBUTES Procedure

This procedure has been deprecated.

This procedure changes various attributes of a SQL Workload object or template.

Syntax

DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES (
 workload_name IN VARCHAR2,
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 how_created IN VARCHAR2 := NULL);

Parameters

Table 17-43 UPDATE_SQLWKLD_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
workload_name

	
The workload object name that uniquely identifies an existing workload.

	
new_name

	
The new workload object name. If the value is NULL or contains the value ADVISOR_UNUSED, the workload will not be renamed. A task name can be up to 30 characters long.

	
description

	
A new workload description. If the value is NULL or contains the value ADVISOR_UNUSED, the description will not be changed. Names can be up to 256 characters long.

	
read_only

	
Set to TRUE so it cannot be changed.

	
is_template

	
TRUE if workload is to be used as a template.

	
how_created

	
Indicates a source application name that initiated the workload creation. If the value is NULL or contains the value ADVISOR_UNUSED, the source will not be changed.

Examples

DECLARE
 workload_name VARCHAR2(30);
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');
 DBMS_ADVISOR.UPDATE_SQLWKLD_ATTRIBUTES(workload_name,'New workload name');
END;
/

UPDATE_SQLWKLD_STATEMENT Procedure

This procedure has been deprecated.

This procedure updates an existing SQL statement in a specified SQL workload.

Syntax

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 sql_id IN NUMBER,
 application IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL,
 priority IN NUMBER := NULL,
 username IN VARCHAR2 := NULL);

DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT (
 workload_name IN VARCHAR2,
 search IN VARCHAR2,
 updated OUT NUMBER,
 application IN VARCHAR2 := NULL,
 action IN VARCHAR2 := NULL,
 priority IN NUMBER := NULL,
 username IN VARCHAR2 := NULL);

Parameters

Table 17-44 UPDATE_SQLWKLD_STATEMENT Procedure Parameters

	Parameter	Description
	
workload_name

	
The SQL Workload object name that uniquely identifies an existing workload.

	
sql_id

	
The Advisor-generated identifier number that is assigned to the statement. To specify all workload statements, use the constant DBMS_ADVISOR.ADVISOR_ALL.

	
updated

	
Returns the number of statements changed by a searched update.

	
application

	
Specifies a business application name that will be associated with the SQL statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
action

	
Specifies the application action for the statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
priority

	
The relative priority of the SQL statement. The value must be one of the following: 1 - HIGH, 2 - MEDIUM, or 3 - LOW.

If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

	
username

	
The Oracle user name that executed the SQL statement. If the value is NULL or contains the value ADVISOR_UNUSED, then the column will not be updated in the repository.

Because a username is an Oracle identifier, the username value must be entered exactly like it is stored in the server. For example, if the user SCOTT is the executing user, then you must provide the user identifier SCOTT in all uppercase letters. It will not recognize the user scott as a match for SCOTT.

	
search

	
Disabled.

Usage Notes

A workload cannot be modified or deleted if it is currently referenced by an active task. A task is considered active if it is not in its initial state. See "RESET_TASK Procedure" to set a task to its initial state.

Examples

DECLARE
 workload_name VARCHAR2(30);
 updated NUMBER;
 id NUMBER;
BEGIN
 workload_name := 'My Workload';

 DBMS_ADVISOR.CREATE_SQLWKLD(workload_name, 'My Workload');
 DBMS_ADVISOR.ADD_SQLWKLD_STATEMENT(workload_name, 'MONTHLY', 'ROLLUP',
 100,400,5041,103,640445,680000,2,
 1,SYSDATE,1,'SH','SELECT AVG(amount_sold)
 FROM sh.sales WHERE promo_id = 10');

 SELECT sql_id INTO id FROM USER_ADVISOR_SQLW_STMTS
 WHERE workload_name = 'My Workload';

 DBMS_ADVISOR.UPDATE_SQLWKLD_STATEMENT(workload_name, id);
END;
/

UPDATE_TASK_ATTRIBUTES Procedure

This procedure changes various attributes of a task or a task template.

Syntax

DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES (
 task_name IN VARCHAR2
 new_name IN VARCHAR2 := NULL,
 description IN VARCHAR2 := NULL,
 read_only IN VARCHAR2 := NULL,
 is_template IN VARCHAR2 := NULL,
 how_created IN VARCHAR2 := NULL);

Parameters

Table 17-45 UPDATE_TASK_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
task_name

	
The Advisor task name that uniquely identifies an existing task.

	
new_name

	
The new Advisor task name. If the value is NULL or contains the value ADVISOR_UNUSED, the task will not be renamed. A task name can be up to 30 characters long.

	
description

	
A new task description. If the value is NULL or contains the value ADVISOR_UNUSED, the description will not be changed. Names can be up to 256 characters long.

	
read_only

	
Sets the task to read-only. Possible values are: TRUE and FALSE.

If the value is NULL or contains the value ADVISOR_UNUSED, the setting will not be changed.

	
is_template

	
Marks the task as a template. Physically, there is no difference between a task and a template; however, a template cannot be executed. Possible values are: TRUE and FALSE. If the value is NULL or contains the value ADVISOR_UNUSED, the setting will not be changed.

	
how_created

	
Indicates a source application name that initiated the task creation. If the value is NULL or contains the value ADVISOR_UNUSED, the source will not be changed.

Examples

DECLARE
 task_id NUMBER;
 task_name VARCHAR2(30);
BEGIN
 task_name := 'My Task';

 DBMS_ADVISOR.CREATE_TASK(DBMS_ADVISOR.SQLACCESS_ADVISOR, task_id, task_name);
 DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES(task_name,'New Task Name');
 DBMS_ADVISOR.UPDATE_TASK_ATTRIBUTES('New Task Name',NULL,'New description');
END;
/

18 DBMS_ALERT

DBMS_ALERT supports asynchronous notification of database events (alerts). By appropriate use of this package and database triggers, an application can notify itself whenever values of interest in the database are changed.

This chapter contains the following topics:

	
Using DBMS_ALERT

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Exceptions

	
Operational Notes

	
Examples

	
Summary of DBMS_ALERT Subprograms

Using DBMS_ALERT

	
Overview

	
Security Model

	
Constants

	
Restrictions

	
Exceptions

	
Operational Notes

	
Examples

Overview

Suppose a graphics tool is displaying a graph of some data from a database table. The graphics tool can, after reading and graphing the data, wait on a database alert (WAITONE) covering the data just read. The tool automatically wakes up when the data is changed by any other user. All that is required is that a trigger be placed on the database table, which performs a signal (SIGNAL) whenever the trigger is fired.

Security Model

Security on this package can be controlled by granting EXECUTE on this package to selected users or roles. You might want to write a cover package on top of this one that restricts the alert names used. EXECUTE privilege on this cover package can then be granted rather than on this package.

Constants

The DBMS_ALERT package uses the constants shown in Table 18-1:

Table 18-1 DBMS_ALERT Constants

	Name	Type	Value	Description
	
MAXWAIT

	
INTEGER

	
86400000

	
The maximum time to wait for an alert (1000 days which is essentially forever).

Restrictions

Because database alerters issue commits, they cannot be used with Oracle Forms. For more information on restrictions on calling stored procedures while Oracle Forms is active, refer to your Oracle Forms documentation.

Exceptions

DBMS_ALERT raises the application error -20000 on error conditions. Table 18-2 shows the messages and the procedures that can raise them.

Operational Notes

The following notes relate to general and specific applications:

	
Alerts are transaction-based. This means that the waiting session is not alerted until the transaction signalling the alert commits. There can be any number of concurrent signalers of a given alert, and there can be any number of concurrent waiters on a given alert.

	
A waiting application is blocked in the database and cannot do any other work.

	
An application can register for multiple events and can then wait for any of them to occur using the WAITANY procedure.

	
An application can also supply an optional timeout parameter to the WAITONE or WAITANY procedures. A timeout of 0 returns immediately if there is no pending alert.

	
The signalling session can optionally pass a message that is received by the waiting session.

	
Alerts can be signalled more often than the corresponding application wait calls. In such cases, the older alerts are discarded. The application always gets the latest alert (based on transaction commit times).

	
If the application does not require transaction-based alerts, the DBMS_PIPE package may provide a useful alternative.

	
See Also:

Chapter 88, "DBMS_PIPE"

	
If the transaction is rolled back after the call to SIGNAL, no alert occurs.

	
It is possible to receive an alert, read the data, and find that no data has changed. This is because the data changed after the prior alert, but before the data was read for that prior alert.

	
Usually, Oracle is event-driven; this means that there are no polling loops. There are two cases where polling loops can occur:

	
Shared mode. If your database is running in shared mode, a polling loop is required to check for alerts from another instance. The polling loop defaults to one second and can be set by the SET_DEFAULTS procedure.

	
WAITANY procedure. If you use the WAITANY procedure, and if a signalling session does a signal but does not commit within one second of the signal, a polling loop is required so that this uncommitted alert does not camouflage other alerts. The polling loop begins at a one second interval and exponentially backs off to 30-second intervals.

Table 18-2 DBMS_ALERT Error Messages

	Error Message	Procedure
	
ORU-10001 lock request error, status: N

	
SIGNAL

	
ORU-10015 error: N waiting for pipe status

	
WAITANY

	
ORU-10016 error: N sending on pipe 'X'

	
SIGNAL

	
ORU-10017 error: N receiving on pipe 'X'

	
SIGNAL

	
ORU-10019 error: N on lock request

	
WAIT

	
ORU-10020 error: N on lock request

	
WAITANY

	
ORU-10021 lock request error; status: N

	
REGISTER

	
ORU-10022 lock request error, status: N

	
SIGNAL

	
ORU-10023 lock request error; status N

	
WAITONE

	
ORU-10024 there are no alerts registered

	
WAITANY

	
ORU-10025 lock request error; status N

	
REGISTER

	
ORU-10037 attempting to wait on uncommitted signal from same session

	
WAITONE

Examples

Suppose you want to graph average salaries by department, for all employees. Your application needs to know whenever EMP is changed. Your application would look similar to this code:

DBMS_ALERT.REGISTER('emp_table_alert');
 <<readagain>>:
 /* ... read the emp table and graph it */
 DBMS_ALERT.WAITONE('emp_table_alert', :message, :status);
 if status = 0 then goto <<readagain>>; else
 /* ... error condition */

The EMP table would have a trigger similar to this:

CREATE TRIGGER emptrig AFTER INSERT OR UPDATE OR DELETE ON emp
 BEGIN
 DBMS_ALERT.SIGNAL('emp_table_alert', 'message_text');
 END;

When the application is no longer interested in the alert, it makes this request:

DBMS_ALERT.REMOVE('emp_table_alert');

This reduces the amount of work required by the alert signaller. If a session exits (or dies) while registered alerts exist, the alerts are eventually cleaned up by future users of this package.

The example guarantees that the application always sees the latest data, although it may not see every intermediate value.

Summary of DBMS_ALERT Subprograms

Table 18-3 DBMS_ALERT Package Subprograms

	Subprogram	Description
	
REGISTER Procedure

	
Receives messages from an alert

	
REMOVE Procedure

	
Disables notification from an alert

	
REMOVEALL Procedure

	
Removes all alerts for this session from the registration list

	
SET_DEFAULTS Procedure

	
Sets the polling interval

	
SIGNAL Procedure

	
Signals an alert (send message to registered sessions)

	
WAITANY Procedure

	
Waits timeout seconds to receive alert message from an alert registered for session

	
WAITONE Procedure

	
Waits timeout seconds to receive message from named alert

REGISTER Procedure

This procedure lets a session register interest in an alert.

Syntax

DBMS_ALERT.REGISTER (
 name IN VARCHAR2);

Parameters

Table 18-4 REGISTER Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert in which this session is interested.

	
Caution:

Alert names beginning with 'ORA$' are reserved for use for products provided by Oracle. Names must be 30 bytes or less. The name is case insensitive.

Usage Notes

A session can register interest in an unlimited number of alerts. Alerts should be deregistered when the session no longer has any interest, by calling REMOVE.

REMOVE Procedure

This procedure enables a session that is no longer interested in an alert to remove that alert from its registration list. Removing an alert reduces the amount of work done by signalers of the alert.

Syntax

DBMS_ALERT.REMOVE (
 name IN VARCHAR2);

Parameters

Table 18-5 REMOVE Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert (case-insensitive) to be removed from registration list.

Usage Notes

Removing alerts is important because it reduces the amount of work done by signalers of the alert. If a session dies without removing the alert, that alert is eventually (but not immediately) cleaned up.

REMOVEALL Procedure

This procedure removes all alerts for this session from the registration list. You should do this when the session is no longer interested in any alerts.

This procedure is called automatically upon first reference to this package during a session. Therefore, no alerts from prior sessions which may have terminated abnormally can affect this session.

This procedure always performs a commit.

Syntax

DBMS_ALERT.REMOVEALL;

SET_DEFAULTS Procedure

In case a polling loop is required, use the SET_DEFAULTS procedure to set the polling interval.

Syntax

DBMS_ALERT.SET_DEFAULTS (
 sensitivity IN NUMBER);

Parameters

Table 18-6 SET_DEFAULTS Procedure Parameters

	Parameter	Description
	
sensitivity

	
Polling interval, in seconds, to sleep between polls. The default interval is five seconds.

SIGNAL Procedure

This procedure signals an alert. The effect of the SIGNAL call only occurs when the transaction in which it is made commits. If the transaction rolls back, SIGNAL has no effect.

All sessions that have registered interest in this alert are notified. If the interested sessions are currently waiting, they are awakened. If the interested sessions are not currently waiting, they are notified the next time they do a wait call.

Multiple sessions can concurrently perform signals on the same alert. Each session, as it signals the alert, blocks all other concurrent sessions until it commits. This has the effect of serializing the transactions.

Syntax

DBMS_ALERT.SIGNAL (
 name IN VARCHAR2,
 message IN VARCHAR2);

Parameters

Table 18-7 SIGNAL Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert to signal.

	
message

	
Message, of 1800 bytes or less, to associate with this alert.

This message is passed to the waiting session. The waiting session might be able to avoid reading the database after the alert occurs by using the information in the message.

WAITANY Procedure

Call this procedure to wait for an alert to occur for any of the alerts for which the current session is registered.

Syntax

DBMS_ALERT.WAITANY (
 name OUT VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Table 18-8 WAITANY Procedure Parameters

	Parameter	Description
	
name

	
Returns the name of the alert that occurred.

	
message

	
Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on this alert occurred before WAITANY, the message corresponds to the most recent SIGNAL call. Messages from prior SIGNAL calls are discarded.

	
status

	
Values returned:

0 - alert occurred

1 - timeout occurred

	
timeout

	
Maximum time to wait for an alert.

If no alert occurs before timeout seconds, this returns a status of 1.

Usage Notes

An implicit COMMIT is issued before this procedure is executed. The same session that waits for the alert may also first signal the alert. In this case remember to commit after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Exceptions

-20000, ORU-10024: there are no alerts registered.

WAITONE Procedure

This procedure waits for a specific alert to occur. An implicit COMMIT is issued before this procedure is executed. A session that is the first to signal an alert can also wait for the alert in a subsequent transaction. In this case, remember to commit after the signal and before the wait; otherwise, DBMS_LOCK.REQUEST (which is called by DBMS_ALERT) returns status 4.

Syntax

DBMS_ALERT.WAITONE (
 name IN VARCHAR2,
 message OUT VARCHAR2,
 status OUT INTEGER,
 timeout IN NUMBER DEFAULT MAXWAIT);

Parameters

Table 18-9 WAITONE Procedure Parameters

	Parameter	Description
	
name

	
Name of the alert to wait for.

	
message

	
Returns the message associated with the alert.

This is the message provided by the SIGNAL call. If multiple signals on this alert occurred before WAITONE, the message corresponds to the most recent SIGNAL call. Messages from prior SIGNAL calls are discarded.

	
status

	
Values returned:

0 - alert occurred

1 - timeout occurred

	
timeout

	
Maximum time to wait for an alert.

If the named alert does not occurs before timeout seconds, this returns a status of 1.

19 DBMS_APPLICATION_INFO

Application developers can use the DBMS_APPLICATION_INFO package with Oracle Trace and the SQL trace facility to record names of executing modules or transactions in the database for later use when tracking the performance of various modules and debugging.

This chapter contains the following topics:

	
Using DBMS_APPLICATION_INFO

	
Overview

	
Security Model

	
Operational Notes

	
Summary of DBMS_APPLICATION_INFO Subprograms

Using DBMS_APPLICATION_INFO

	
Overview

	
Security Model

	
Operational Notes

Overview

Registering the application allows system administrators and performance tuning specialists to track performance by module. System administrators can also use this information to track resource use by module. When an application registers with the database, its name and actions are recorded in the V$SESSION and V$SQLAREA views.

Security Model

	
Note:

The public synonym for DBMS_APPLICATION_INFO is not dropped before creation so that you can redirect the public synonym to point to your own package.

No further privileges are required. The DBMSAPIN.SQL script is already run as a part of standard database creation .

Operational Notes

Your applications should set the name of the module and name of the action automatically each time a user enters that module. The module name could be the name of a form in an Oracle Forms application, or the name of the code segment in an Oracle Precompilers application. The action name should usually be the name or description of the current transaction within a module.

If you want to gather your own statistics based on module, you can implement a wrapper around this package by writing a version of this package in another schema that first gathers statistics and then calls the SYS version of the package. The public synonym for DBMS_APPLICATION_INFO can then be changed to point to the DBA's version of the package.

Summary of DBMS_APPLICATION_INFO Subprograms

Table 19-1 DBMS_APPLICATION_INFO Package Subprograms

	Subprogram	Description
	
READ_CLIENT_INFO Procedure

	
Reads the value of the client_info field of the current session

	
READ_MODULE Procedure

	
Reads the values of the module and action fields of the current session

	
SET_ACTION Procedure

	
Sets the name of the current action within the current module

	
SET_CLIENT_INFO Procedure

	
Sets the client_info field of the session

	
SET_MODULE Procedure

	
Sets the name of the module that is currently running to a new module

	
SET_SESSION_LONGOPS Procedure

	
Sets a row in the V$SESSION_LONGOPS table

READ_CLIENT_INFO Procedure

This procedure reads the value of the client_info field of the current session.

Syntax

DBMS_APPLICATION_INFO.READ_CLIENT_INFO (
 client_info OUT VARCHAR2);

Parameters

Table 19-2 READ_CLIENT_INFO Procedure Parameters

	Parameter	Description
	
client_info

	
Last client information value supplied to the SET_CLIENT_INFO procedure.

READ_MODULE Procedure

This procedure reads the values of the module and action fields of the current session.

Syntax

DBMS_APPLICATION_INFO.READ_MODULE (
 module_name OUT VARCHAR2,
 action_name OUT VARCHAR2);

Parameters

Table 19-3 READ_MODULE Procedure Parameters

	Parameter	Description
	
module_name

	
Last value that the module name was set to by calling SET_MODULE.

	
action_name

	
Last value that the action name was set to by calling SET_ACTION or SET_MODULE.

Usage Notes

Module and action names for a registered application can be retrieved by querying V$SQLAREA or by calling the READ_MODULE procedure. Client information can be retrieved by querying the V$SESSION view, or by calling the READ_CLIENT_INFO Procedure.

Examples

The following sample query illustrates the use of the MODULE and ACTION column of the V$SQLAREA.

SELECT sql_text, disk_reads, module, action
FROM v$sqlarea
WHERE module = 'add_employee';

SQL_TEXT DISK_READS MODULE ACTION
------------------- ---------- ------------------ ----------------
INSERT INTO emp 1 add_employee insert into emp
(ename, empno, sal, mgr, job, hiredate, comm, deptno)
VALUES
(name, next.emp_seq, manager, title, SYSDATE, commission, department)

1 row selected.

SET_ACTION Procedure

This procedure sets the name of the current action within the current module.

Syntax

DBMS_APPLICATION_INFO.SET_ACTION (
 action_name IN VARCHAR2);

Parameters

Table 19-4 SET_ACTION Procedure Parameters

	Parameter	Description
	
action_name

	
The name of the current action within the current module. When the current action terminates, call this procedure with the name of the next action if there is one, or NULL if there is not. Names longer than 32 bytes are truncated.

Usage Notes

The action name should be descriptive text about the current action being performed. You should probably set the action name before the start of every transaction.

Set the transaction name to NULL after the transaction completes, so that subsequent transactions are logged correctly. If you do not set the transaction name to NULL, subsequent transactions may be logged with the previous transaction's name.

Example

The following is an example of a transaction that uses the registration procedure:

CREATE OR REPLACE PROCEDURE bal_tran (amt IN NUMBER(7,2)) AS
BEGIN

-- balance transfer transaction

 DBMS_APPLICATION_INFO.SET_ACTION(
 action_name => 'transfer from chk to sav');
 UPDATE chk SET bal = bal + :amt
 WHERE acct# = :acct;
 UPDATE sav SET bal = bal - :amt
 WHERE acct# = :acct;
 COMMIT;
 DBMS_APPLICATION_INFO.SET_ACTION(null);

END;

SET_CLIENT_INFO Procedure

This procedure supplies additional information about the client application.

Syntax

DBMS_APPLICATION_INFO.SET_CLIENT_INFO (
 client_info IN VARCHAR2);

Parameters

Table 19-5 SET_CLIENT_INFO Procedure Parameters

	Parameter	Description
	
client_info

	
Supplies any additional information about the client application. This information is stored in the V$SESSION view. Information exceeding 64 bytes is truncated.

	
Note:

CLIENT_INFO is readable and writable by any user. For storing secured application attributes, you can use the application context feature.

SET_MODULE Procedure

This procedure sets the name of the current application or module.

Syntax

DBMS_APPLICATION_INFO.SET_MODULE (
 module_name IN VARCHAR2,
 action_name IN VARCHAR2);

Parameters

Table 19-6 SET_MODULE Procedure Parameters

	Parameter	Description
	
module_name

	
Name of module that is currently running. When the current module terminates, call this procedure with the name of the new module if there is one, or NULL if there is not. Names longer than 48 bytes are truncated.

	
action_name

	
Name of current action within the current module. If you do not want to specify an action, this value should be NULL. Names longer than 32 bytes are truncated.

Usage Notes

Example

CREATE or replace PROCEDURE add_employee(
 name VARCHAR2,
 salary NUMBER,
 manager NUMBER,
 title VARCHAR2,
 commission NUMBER,
 department NUMBER) AS
BEGIN
 DBMS_APPLICATION_INFO.SET_MODULE(
 module_name => 'add_employee',
 action_name => 'insert into emp');
 INSERT INTO emp
 (ename, empno, sal, mgr, job, hiredate, comm, deptno)
 VALUES (name, emp_seq.nextval, salary, manager, title, SYSDATE,
 commission, department);
 DBMS_APPLICATION_INFO.SET_MODULE(null,null);
END;

SET_SESSION_LONGOPS Procedure

This procedure sets a row in the V$SESSION_LONGOPS view. This is a view that is used to indicate the on-going progress of a long running operation. Some Oracle functions, such as parallel execution and Server Managed Recovery, use rows in this view to indicate the status of, for example, a database backup.

Applications may use the SET_SESSION_LONGOPS procedure to advertise information on the progress of application specific long running tasks so that the progress can be monitored by way of the V$SESSION_LONGOPS view.

Syntax

DBMS_APPLICATION_INFO.SET_SESSION_LONGOPS (
 rindex IN OUT BINARY_INTEGER,
 slno IN OUT BINARY_INTEGER,
 op_name IN VARCHAR2 DEFAULT NULL,
 target IN BINARY_INTEGER DEFAULT 0,
 context IN BINARY_INTEGER DEFAULT 0,
 sofar IN NUMBER DEFAULT 0,
 totalwork IN NUMBER DEFAULT 0,
 target_desc IN VARCHAR2 DEFAULT 'unknown target',
 units IN VARCHAR2 DEFAULT NULL)

set_session_longops_nohint constant BINARY_INTEGER := -1;

Parameters

Table 19-7 SET_SESSION_LONGOPS Procedure Parameters

	Parameter	Description
	
rindex

	
A token which represents the v$session_longops row to update. Set this to set_session_longops_nohint to start a new row. Use the returned value from the prior call to reuse a row.

	
slno

	
Saves information across calls to set_session_longops: It is for internal use and should not be modified by the caller.

	
op_name

	
Specifies the name of the long running task. It appears as the OPNAME column of v$session_longops. The maximum length is 64 bytes.

	
target

	
Specifies the object that is being worked on during the long running operation. For example, it could be a table ID that is being sorted. It appears as the TARGET column of v$session_longops.

	
context

	
Any number the client wants to store. It appears in the CONTEXT column of v$session_longops.

	
sofar

	
Any number the client wants to store. It appears in the SOFAR column of v$session_longops. This is typically the amount of work which has been done so far.

	
totalwork

	
Any number the client wants to store. It appears in the TOTALWORK column of v$session_longops. This is typically an estimate of the total amount of work needed to be done in this long running operation.

	
target_desc

	
Specifies the description of the object being manipulated in this long operation. This provides a caption for the target parameter. This value appears in the TARGET_DESC field of v$session_longops. The maximum length is 32 bytes.

	
units

	
Specifies the units in which sofar and totalwork are being represented. It appears as the UNITS field of v$session_longops. The maximum length is 32 bytes.

Example

This example performs a task on 10 objects in a loop. As the example completes each object, Oracle updates V$SESSION_LONGOPS on the procedure's progress.

DECLARE
 rindex BINARY_INTEGER;
 slno BINARY_INTEGER;
 totalwork number;
 sofar number;
 obj BINARY_INTEGER;

 BEGIN
 rindex := dbms_application_info.set_session_longops_nohint;
 sofar := 0;
 totalwork := 10;

 WHILE sofar < 10 LOOP
 -- update obj based on sofar
 -- perform task on object target

 sofar := sofar + 1;
 dbms_application_info.set_session_longops(rindex, slno,
 "Operation X", obj, 0, sofar, totalwork, "table", "tables");
 END LOOP;
 END;

20 DBMS_APPLY_ADM

The DBMS_APPLY_ADM package, one of a set of Oracle Streams packages, provides subprograms to start, stop, and configure an apply process. This package includes subprograms for configuring apply handlers, setting enqueue destinations for messages, and specifying execution directives for messages. This package also provides administrative subprograms that set the instantiation SCN for objects at a destination database. This package also includes subprograms for managing apply errors.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and apply processes

This chapter contains the following topic:

	
Summary of DBMS_APPLY_ADM Subprograms

Summary of DBMS_APPLY_ADM Subprograms

Table 20-1 DBMS_APPLY_ADM Package Subprograms

	Subprogram	Description
	
ALTER_APPLY Procedure

	
Alters an apply process

	
COMPARE_OLD_VALUES Procedure

	
Specifies whether to compare the old value of one or more columns in a row logical change record (row LCR) with the current value of the corresponding columns at the destination site during apply

	
CREATE_APPLY Procedure

	
Creates an apply process

	
CREATE_OBJECT_DEPENDENCY Procedure

	
Creates an object dependency

	
DELETE_ALL_ERRORS Procedure

	
Deletes all the error transactions for the specified apply process

	
DELETE_ERROR Procedure

	
Deletes the specified error transaction

	
DROP_APPLY Procedure

	
Drops an apply process

	
DROP_OBJECT_DEPENDENCY Procedure

	
Drops an object dependency

	
EXECUTE_ALL_ERRORS Procedure

	
Reexecutes the error transactions for the specified apply process.

	
EXECUTE_ERROR Procedure

	
Reexecutes the specified error transaction

	
GET_ERROR_MESSAGE Function

	
Returns the message payload from the error queue for the specified message number and transaction identifier

	
SET_DML_HANDLER Procedure

	
Alters operation options for a specified object with a specified apply process

	
SET_ENQUEUE_DESTINATION Procedure

	
Sets the queue where the apply process automatically enqueues a message that satisfies the specified rule

	
SET_EXECUTE Procedure

	
Specifies whether a message that satisfies the specified rule is executed by an apply process

	
SET_GLOBAL_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified source database and, optionally, for the schemas at the source database and the tables owned by these schemas

	
SET_KEY_COLUMNS Procedures

	
Records the set of columns to be used as the substitute primary key for local apply purposes and removes existing substitute primary key columns for the specified object if they exist

	
SET_PARAMETER Procedure

	
Sets an apply parameter to the specified value

	
SET_SCHEMA_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified schema in the specified source database and, optionally, for the tables owned by the schema at the source database

	
SET_TABLE_INSTANTIATION_SCN Procedure

	
Records the specified instantiation SCN for the specified table in the specified source database

	
SET_UPDATE_CONFLICT_HANDLER Procedure

	
Adds, updates, or drops an update conflict handler for the specified object

	
SET_VALUE_DEPENDENCY Procedure

	
Sets or removes a value dependency

	
START_APPLY Procedure

	
Directs the apply process to start applying messages

	
STOP_APPLY Procedure

	
Stops the apply process from applying any messages and rolls back any unfinished transactions being applied

	
Note:

All procedures commit unless specified otherwise. However, the GET_ERROR_MESSAGE function does not commit.

ALTER_APPLY Procedure

This procedure alters an apply process.

Syntax

 DBMS_APPLY_ADM.ALTER_APPLY(
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT FALSE,
 message_handler IN VARCHAR2 DEFAULT NULL
 remove_message_handler IN BOOLEAN DEFAULT FALSE,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 remove_ddl_handler IN BOOLEAN DEFAULT FALSE,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT NULL,
 remove_apply_tag IN BOOLEAN DEFAULT FALSE,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 remove_precommit_handler IN BOOLEAN DEFAULT FALSE,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-2 ALTER_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply process being altered. You must specify an existing apply process name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the apply process. The positive rule set contains the rules that instruct the apply process to apply messages.

If you want to use a positive rule set for the apply process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_apply_rules, enter hr.job_apply_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_rule_set parameter is set to FALSE, then this procedure retains any existing positive rule set. If you specify NULL and the remove_rule_set parameter is set to TRUE, then this procedure removes any existing positive rule set.

	
remove_rule_set

	
If TRUE, then the procedure removes the positive rule set for the specified apply process. If you remove the positive rule set for an apply process, and the apply process does not have a negative rule set, then the apply process dequeues all messages in its queue.

If you remove the positive rule set for an apply process, and a negative rule set exists for the apply process, then the apply process dequeues all messages in its queue that are not discarded by the negative rule set.

If FALSE, then the procedure retains the positive rule set for the specified apply process.

If the rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

	
message_handler

	
A user-defined procedure that processes non-LCR messages in the queue for the apply process.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a message handler procedure.

	
remove_message_handler

	
If TRUE, then the procedure removes the message handler for the specified apply process.

If FALSE, then the procedure retains any message handler for the specified apply process.

If the message_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
ddl_handler

	
A user-defined procedure that processes DDL logical change records (DDL LCRs) in the queue for the apply process.

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a DDL handler procedure.

	
remove_ddl_handler

	
If TRUE, then the procedure removes the DDL handler for the specified apply process.

If FALSE, then the procedure retains any DDL handler for the specified apply process.

If the ddl_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
apply_user

	
The user in whose security domain an apply process dequeues messages that satisfy its rule sets, applies messages directly to database objects, runs custom rule-based transformations configured for apply process rules, and runs apply handlers configured for the apply process. If NULL, then the apply user is not changed.

If a non-NULL value is specified to change the apply user, then the user who invokes the ALTER_APPLY procedure must be granted DBA role. Only the SYS user can set the apply_user to SYS.

If you change the apply user, then this procedure grants the new apply user dequeue privilege on the queue used by the apply process and configures the user as a secure queue user of the queue.

In addition to the privileges granted by this procedure, you also should grant the following privileges to the apply user:

	
The necessary privileges to perform DML and DDL changes on the apply objects

	
EXECUTE privilege on the rule sets used by the apply process

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all apply handler procedures

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in subprograms run by the apply process

These privileges must be granted directly to the apply user. They cannot be granted through roles.

By default, this parameter is set to the user who created the apply process by running either the CREATE_APPLY procedure in this package or a procedure in the DBMS_STREAMS_ADM package.

Note: If the specified user is dropped using DROP USER... CASCADE, then the apply_user for the apply process is set to NULL automatically. You must specify an apply user before the apply process can run.

	
apply_tag

	
A binary tag that is added to redo entries generated by the specified apply process. The tag is a binary value that can be used to track LCRs.

The tag is relevant only if a capture process at the database where the apply process is running will capture changes made by the apply process. If so, then the captured changes will include the tag specified by this parameter.

If NULL, the default, then the apply tag for the apply process is not changed.

The following is an example of a tag with a hexadecimal value of 17:

HEXTORAW('17')

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
remove_apply_tag

	
If TRUE, then the procedure sets the apply tag for the specified apply process to NULL, and the apply process generates redo entries with NULL tags.

If FALSE, then the procedure retains any apply tag for the specified apply process.

If the apply_tag parameter is non-NULL, then this parameter should be set to FALSE.

	
precommit_handler

	
A user-defined procedure that can receive internal commit directives in the queue for the apply process before they are processed by the apply process. Typically, precommit handlers are used for auditing commit information for transactions processed by an apply process.

An internal commit directive is enqueued in the following ways:

	
When a capture process captures row LCRs, the capture process enqueues the commit directive for the transaction that contains the row LCRs.

	
When a user or application enqueues messages and then issues a COMMIT statement, the commit directive is enqueued automatically.

For a captured row LCR, a commit directive contains the commit SCN of the transaction from the source database. For a user message, the commit SCN is generated by the apply process.

The precommit handler procedure must conform to the following restrictions:

	
Any work that commits must be an autonomous transaction.

	
Any rollback must be to a named savepoint created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is rolled back, and all of the messages in the transaction are moved to the error queue.

See "Usage Notes" in the CREATE_APPLY Procedure for more information about a precommit handler procedure.

	
remove_precommit_handler

	
If TRUE, then the procedure removes the precommit handler for the specified apply process.

If FALSE, then the procedure retains any precommit handler for the specified apply process.

If the precommit_handler parameter is non-NULL, then this parameter should be set to FALSE.

	
negative_rule_set_name

	
The name of the negative rule set for the apply process. The negative rule set contains the rules that instruct the apply process to discard messages.

If you want to use a negative rule set for the apply process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_apply_rules, enter hr.neg_apply_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_negative_rule_set parameter is set to FALSE, then the procedure retains any existing negative rule set. If you specify NULL and the remove_negative_rule_set parameter is set to TRUE, then the procedure removes any existing negative rule set.

If you specify both a positive and a negative rule set for an apply process, then the negative rule set is always evaluated first.

	
remove_negative_rule_set

	
If TRUE, then the procedure removes the negative rule set for the specified apply process. If you remove the negative rule set for an apply process, and the apply process does not have a positive rule set, then the apply process dequeues all messages in its queue.

If you remove the negative rule set for an apply process, and a positive rule set exists for the apply process, then the apply process dequeues all messages in its queue that are not discarded by the positive rule set.

If FALSE, then the procedure retains the negative rule set for the specified apply process.

If the negative_rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

Usage Notes

An apply process is stopped and restarted automatically when you change the value of one or more of the following ALTER_APPLY procedure parameters:

	
message_handler

	
ddl_handler

	
apply_user

	
apply_tag

	
precommit_handler

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare the old value of one or more columns in a row logical change record (row LCR) with the current value of the corresponding columns at the destination site during apply. This procedure is relevant only for UPDATE and DELETE operations because only these operations result in old column values in row LCRs. The default is to compare old values for all columns.

This procedure is overloaded. The column_list and column_table parameters are mutually exclusive.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about conflict detection and resolution in an Oracle Streams environment

Syntax

DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name IN VARCHAR2,
 column_list IN VARCHAR2,
 operation IN VARCHAR2 DEFAULT 'UPDATE',
 compare IN BOOLEAN DEFAULT TRUE,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM.COMPARE_OLD_VALUES(
 object_name IN VARCHAR2,
 column_table IN DBMS_UTILITY.LNAME_ARRAY,
 operation IN VARCHAR2 DEFAULT 'UPDATE',
 compare IN BOOLEAN DEFAULT TRUE,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-3 COMPARE_OLD_VALUES Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
column_list

	
A comma-delimited list of column names in the table. There must be no spaces between entries.

Specify * to include all nonkey columns.

	
column_table

	
A PL/SQL index-by table of type DBMS_UTILITY.LNAME_ARRAY that contains names of columns in the table. The first column name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

	
operation

	
The name of the operation, which can be specified as:

	
UPDATE for UPDATE operations

	
DELETE for DELETE operations

	
* for both UPDATE and DELETE operations

	
compare

	
If compare is TRUE, the old values of the specified columns are compared during apply. If compare is FALSE, the old values of the specified columns are not compared during apply.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Usage Notes

By default, an apply process uses the old column values in a row LCR to detect conflicts. You can choose not to compare old column values to avoid conflict detection for specific tables. For example, if you use a time column for conflict detection, then an apply process does not need to check old values for non-key and nontime columns.

	
Note:

An apply process always compares old values for key columns when they are present in a row LCR. This procedure raises an error if a key column is specified in column_list or column_table and the compare parameter is set to FALSE.

CREATE_APPLY Procedure

This procedure creates an apply process.

	
Note:

The user who invokes this procedure must be granted DBA role.

Syntax

 DBMS_APPLY_ADM.CREATE_APPLY(
 queue_name IN VARCHAR2,
 apply_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 message_handler IN VARCHAR2 DEFAULT NULL,
 ddl_handler IN VARCHAR2 DEFAULT NULL,
 apply_user IN VARCHAR2 DEFAULT NULL,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_tag IN RAW DEFAULT '00',
 apply_captured IN BOOLEAN DEFAULT FALSE,
 precommit_handler IN VARCHAR2 DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-4 CREATE_APPLY Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue from which the apply process dequeues messages. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the apply process is created.

	
apply_name

	
The name of the apply process being created. A NULL specification is not allowed. Do not specify an owner.

The specified name must not match the name of an existing apply process or messaging client.

Note: The apply_name setting cannot be altered after the apply process is created.

	
rule_set_name

	
The name of the positive rule set for the apply process. The positive rule set contains the rules that instruct the apply process to apply messages.

If you want to use a positive rule set for the apply process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_apply_rules, enter hr.job_apply_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no negative rule set is specified, then the apply process applies either all captured messages or all messages in the persistent queue, depending on the setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

	
message_handler

	
A user-defined procedure that processes non-LCR messages in the queue for the apply process.

See "Usage Notes" for more information about a message handler procedure.

	
ddl_handler

	
A user-defined procedure that processes DDL logical change record (DDL LCRs) in the queue for the apply process.

All applied DDL LCRs commit automatically. Therefore, if a DDL handler calls the EXECUTE member procedure of a DDL LCR, then a commit is performed automatically.

See "Usage Notes" for more information about a DDL handler procedure.

	
apply_user

	
The user who applies all DML and DDL changes that satisfy the apply process rule sets and who runs user-defined apply handlers. If NULL, then the user who runs the CREATE_APPLY procedure is used.

Only a user who is granted DBA role can set an apply user. Only the SYS user can set the apply_user to SYS.

The apply user is the user in whose security domain an apply process dequeues messages that satisfy its rule sets, applies messages directly to database objects, runs custom rule-based transformations configured for apply process rules, and runs apply handlers configured for the apply process. This user must have the necessary privileges to apply changes. This procedure grants the apply user dequeue privilege on the queue used by the apply process and configures the user as a secure queue user of the queue.

In addition to the privileges granted by this procedure, you also should grant the following privileges to the apply user:

	
The necessary privileges to perform DML and DDL changes on the apply objects

	
EXECUTE privilege on the rule sets used by the apply process

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all apply handler procedures

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in subprograms run by the apply process

These privileges must be granted directly to the apply user. They cannot be granted through roles.

Note: If the specified user is dropped using DROP USER... CASCADE, then the apply_user setting for the apply process is set to NULL automatically. You must specify an apply user before the apply process can run.

	
apply_database_link

	
The database at which the apply process applies messages. This parameter is used by an apply process when applying changes from Oracle to non-Oracle systems, such as Sybase. Set this parameter to NULL to specify that the apply process applies messages at the local database.

Note: The apply_database_link setting cannot be altered after the apply process is created.

	
apply_tag

	
A binary tag that is added to redo entries generated by the specified apply process. The tag is a binary value that can be used to track LCRs.

The tag is relevant only if a capture process at the database where the apply process is running will capture changes made by the apply process. If so, then the captured changes will include the tag specified by this parameter.

By default, the tag for an apply process is the hexadecimal equivalent of '00' (double zero).

The following is an example of a tag with a hexadecimal value of 17:

HEXTORAW('17')

If NULL, then the apply process generates redo entries with NULL tags.

See Also: Oracle Streams Replication Administrator's Guide for more information about tags

	
apply_captured

	
Either TRUE or FALSE.

If TRUE, then the apply process applies only the captured LCRs in the queue. Captured LCRs are LCRs that were captured by an Oracle Streams capture process.

If FALSE, then the apply process applies only the messages in a persistent queue. These are messages that were not captured by an Oracle Streams capture process, such as persistent LCRs or user messages.

To apply both captured LCRs and messages in a persistent queue, you must create at least two apply processes.

Note: The apply_captured setting cannot be altered after the apply process is created.

See Also: Oracle Streams Concepts and Administration for more information about processing messages with an apply process

	
precommit_handler

	
A user-defined procedure that can receive internal commit directives in the queue for the apply process before they are processed by the apply process. Typically, precommit handlers are used for auditing commit information for transactions processed by an apply process.

An internal commit directive is enqueued in the following ways:

	
When a capture process captures row LCRs, the capture process enqueues the commit directive for the transaction that contains the row LCRs.

	
When a synchronous capture captures row LCRs, the the persistent LCRs that were enqueued by the synchronous capture are organized into a message group. The synchronous capture records the transaction identifier in each persistent LCR in a transaction.

	
When a user or application enqueues messages and then issues a COMMIT statement, the commit directive is enqueued automatically.

For a row LCR captured by a capture process or synchronous capture, a commit directive contains the commit SCN of the transaction from the source database. For message enqueued by a user or application, the commit SCN is generated by the apply process.

The precommit handler procedure must conform to the following restrictions:

	
Any work that commits must be an autonomous transaction.

	
Any rollback must be to a named savepoint created in the procedure.

If a precommit handler raises an exception, then the entire apply transaction is rolled back, and all of the messages in the transaction are moved to the error queue.

See "Usage Notes" for more information about a precommit handler procedure.

	
negative_rule_set_name

	
The name of the negative rule set for the apply process. The negative rule set contains the rules that instruct the apply process to discard messages.

If you want to use a negative rule set for the apply process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_apply_rules, enter hr.neg_apply_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified, then the apply process applies either all captured LCRs or all of the messages in the persistent queue, depending on the setting of the apply_captured parameter.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for an apply process, then the negative rule set is always evaluated first.

	
source_database

	
The global name of the source database of the changes that will be applied by the apply process. The source database is the database where the changes originated. If an apply process applies captured messages, then the apply process can apply messages from only one capture process at one source database.

If NULL, then the source database name of the first LCR received by the apply process is used for the source database.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

The rules in the apply process rule sets determine which messages are dequeued by the apply process. If the apply process dequeues an LCR with a source database that is different than the source database for the apply process, then an error is raised. You can determine the source database for an apply process by querying the DBA_APPLY_PROGRESS data dictionary view.

Usage Notes

The following sections describe usage notes for this procedure:

Handler Procedure Names

For the message_handler, ddl_handler, and precommit_handler parameters, specify an existing procedure in one of the following forms:

	
[schema_name.]procedure_name

	
[schema_name.]package_name.procedure_name

If the procedure is in a package, then the package_name must be specified. For example, to specify a procedure in the apply_pkg package in the hr schema named process_ddls, enter hr.apply_pkg.process_ddls. An error is returned if the specified procedure does not exist.

The user who invokes the CREATE_APPLY procedure must have EXECUTE privilege on a specified handler procedure. Also, if the schema_name is not specified, then the user who invokes the CREATE_APPLY procedure is the default.

Message Handler and DDL Handler Procedure

The procedure specified in both the message_handler parameter and the ddl_handler parameter must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN ANYDATA);

Here, handler_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. For the message handler, the parameter passed to the procedure is a ANYDATA encapsulation of a user message. For the DDL handler procedure, the parameter passed to the procedure is a ANYDATA encapsulation of a DDL LCR.

	
See Also:

Chapter 228, "Logical Change Record TYPEs" for information about DDL LCRs

Precommit Handler Procedure

The procedure specified in the precommit_handler parameter must have the following signature:

PROCEDURE handler_procedure (
 parameter_name IN NUMBER);

Here, handler_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. The parameter passed to the procedure is the commit SCN of a commit directive.

CREATE_OBJECT_DEPENDENCY Procedure

This procedure creates an object dependency. An object dependency is a virtual dependency definition that defines a parent-child relationship between two objects at a destination database.

An apply process schedules execution of transactions that involve the child object after all transactions with a lower commit system change number (commit SCN) that involve the parent object have been committed. An apply process uses the object identifier of the objects in the logical change records (LCRs) to detect dependencies. The apply process does not use column values in the LCRs to detect dependencies.

	
Note:

An error is raised if NULL is specified for either of the procedure parameters.

	
See Also:

	
"DROP_OBJECT_DEPENDENCY Procedure"

	
Oracle Streams Replication Administrator's Guide

Syntax

 DBMS_APPLY_ADM.CREATE_OBJECT_DEPENDENCY(
 object_name IN VARCHAR2,
 parent_object_name IN VARCHAR2);

Parameters

Table 20-5 CREATE_OBJECT_DEPENDENCY Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the child database object, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
parent_object_name

	
The name of the parent database object, specified as [schema_name.]object_name. For example, hr.departments. If the schema is not specified, then the current user is the default.

DELETE_ALL_ERRORS Procedure

This procedure deletes all the error transactions for the specified apply process.

Syntax

DBMS_APPLY_ADM.DELETE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL);

Parameter

Table 20-6 DELETE_ALL_ERRORS Procedure Parameter

	Parameter	Description
	
apply_name

	
The name of the apply process that raised the errors while processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply processes are deleted.

DELETE_ERROR Procedure

This procedure deletes the specified error transaction.

Syntax

DBMS_APPLY_ADM.DELETE_ERROR(
 local_transaction_id IN VARCHAR2);

Parameter

Table 20-7 DELETE_ERROR Procedure Parameter

	Parameter	Description
	
local_transaction_id

	
The identification number of the error transaction to delete. If the specified transaction does not exist in the error queue, then an error is raised.

DROP_APPLY Procedure

This procedure drops an apply process.

Syntax

 DBMS_APPLY_ADM.DROP_APPLY(
 apply_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-8 DROP_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply process being dropped. You must specify an existing apply process name. Do not specify an owner.

	
drop_unused_rule_sets

	
If TRUE, then the procedure drops any rule sets, positive and negative, used by the specified apply process if these rule sets are not used by any other Oracle Streams client. Oracle Streams clients include capture processes, propagations, apply processes, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.

If FALSE, then the procedure does not drop the rule sets used by the specified apply process, and the rule sets retain their rules.

Usage Notes

When you use this procedure to drop an apply process, information about rules created for the apply process using the DBMS_STREAMS_ADM package is removed from the data dictionary views for Oracle Streams rules. Information about such a rule is removed even if the rule is not in either the positive or negative rule set for the apply process. The following are the data dictionary views for Oracle Streams rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
See Also:

Oracle Streams Concepts and Administration for more information about Oracle Streams data dictionary views

DROP_OBJECT_DEPENDENCY Procedure

This procedure drops an object dependency. An object dependency is a virtual dependency definition that defines a parent-child relationship between two objects at a destination database.

	
Note:

	
An error is raised if an object dependency does not exist for the specified database objects.

	
An error is raised if NULL is specified for either of the procedure parameters.

	
See Also:

	
"CREATE_OBJECT_DEPENDENCY Procedure"

	
Oracle Streams Replication Administrator's Guide

Syntax

 DBMS_APPLY_ADM.DROP_OBJECT_DEPENDENCY(
 object_name IN VARCHAR2,
 parent_object_name IN VARCHAR2);

Parameters

Table 20-9 CREATE_OBJECT_DEPENDENCY Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the child database object, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
parent_object_name

	
The name of the parent database object, specified as [schema_name.]object_name. For example, hr.departments. If the schema is not specified, then the current user is the default.

EXECUTE_ALL_ERRORS Procedure

This procedure reexecutes the error transactions in the error queue for the specified apply process.

The transactions are reexecuted in commit SCN order. Error reexecution stops if an error is raised.

	
See Also:

Oracle Streams Concepts and Administration for more information about the error queue

Syntax

DBMS_APPLY_ADM.EXECUTE_ALL_ERRORS(
 apply_name IN VARCHAR2 DEFAULT NULL,
 execute_as_user IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-10 EXECUTE_ALL_ERRORS Procedure Parameters

	Parameter	Description
	
apply_name

	
The name of the apply process that raised the errors while processing the transactions. Do not specify an owner.

If NULL, then all error transactions for all apply processes are reexecuted.

	
execute_as_user

	
If TRUE, then the procedure reexecutes the transactions in the security context of the current user.

If FALSE, then the procedure reexecutes each transaction in the security context of the original receiver of the transaction. The original receiver is the user who was processing the transaction when the error was raised. The DBA_APPLY_ERROR data dictionary view lists the original receiver for each error transaction.

The user who executes the transactions must have privileges to perform DML and DDL changes on the apply objects and to run any apply handlers. This user must also have dequeue privileges on the queue used by the apply process.

EXECUTE_ERROR Procedure

This procedure reexecutes the specified error transaction in the error queue.

	
See Also:

Oracle Streams Concepts and Administration for more information about the error queue

Syntax

DBMS_APPLY_ADM.EXECUTE_ERROR(
 local_transaction_id IN VARCHAR2,
 execute_as_user IN BOOLEAN DEFAULT FALSE,
 user_procedure IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-11 EXECUTE_ERROR Procedure Parameters

	Parameter	Description
	
local_transaction_id

	
The identification number of the error transaction to execute. If the specified transaction does not exist in the error queue, then an error is raised.

	
execute_as_user

	
If TRUE, then the procedure reexecutes the transaction in the security context of the current user.

If FALSE, then the procedure reexecutes the transaction in the security context of the original receiver of the transaction. The original receiver is the user who was processing the transaction when the error was raised. The DBA_APPLY_ERROR data dictionary view lists the original receiver for each error transaction.

The user who executes the transaction must have privileges to perform DML and DDL changes on the apply objects and to run any apply handlers. This user must also have dequeue privileges on the queue used by the apply process.

	
user_procedure

	
A user-defined procedure that modifies the error transaction so that it can be successfully executed.

Specify NULL to execute the error transaction without running a user procedure.

See Also: "Usage Notes" for more information about the user procedure

Usage Notes

You must specify the full procedure name for the user_procedure parameter in one of the following forms:

	
[schema_name.]package_name.procedure_name

	
[schema_name.]procedure_name

If the procedure is in a package, then the package_name must be specified. The user who invokes the EXECUTE_ERROR procedure must have EXECUTE privilege on the specified procedure. Also, if the schema_name is not specified, then the user who invokes the EXECUTE_ERROR procedure is the default.

For example, suppose the procedure_name has the following properties:

	
strmadmin is the schema_name.

	
fix_errors is the package_name.

	
fix_hr_errors is the procedure_name.

In this case, specify the following:

strmadmin.fix_errors.fix_hr_errors

The procedure you create for error handling must have the following signature:

PROCEDURE user_procedure (
 in_anydata IN ANYDATA,
 error_record IN DBA_APPLY_ERROR%ROWTYPE,
 error_message_number IN NUMBER,
 messaging_default_processing IN OUT BOOLEAN,
 out_anydata OUT ANYDATA);

The user procedure has the following parameters:

	
in_anydata: The ANYDATA encapsulation of a message that the apply process passes to the procedure. A single transaction can include multiple messages. A message can be a row logical change record (row LCR), a DDL logical change record (DDL LCR), or a user message.

	
error_record: The row in the DBA_APPLY_ERROR data dictionary view that identifies the transaction

	
error_message_number: The message number of the ANYDATA object in the in_anydata parameter, starting at 1

	
messaging_default_processing: If TRUE, then the apply process continues processing the message in the in_anydata parameter, which can include executing DML or DDL statements and invoking apply handlers.

If FALSE, then the apply process skips processing the message in the in_anydata parameter and moves on to the next message in the in_anydata parameter.

	
out_anydata: The ANYDATA object processed by the user procedure and used by the apply process if messaging_default_processing is TRUE.

If an LCR is executed using the EXECUTE LCR member procedure in the user procedure, then the LCR is executed directly, and the messaging_default_processing parameter should be set to FALSE. In this case, the LCR is not passed to any apply handlers.

Processing an error transaction with a user procedure results in one of the following outcomes:

	
The user procedure modifies the transaction so that it can be executed successfully.

	
The user procedure fails to make the necessary modifications, and an error is raised when transaction execution is attempted. In this case, the transaction is rolled back and remains in the error queue.

The following restrictions apply to the user procedure:

	
Do not execute COMMIT or ROLLBACK statements. Doing so can endanger the consistency of the transaction.

	
Do not modify LONG, LONG RAW or LOB column data in an LCR.

	
If the ANYDATA object in the in_anydata parameter is a row LCR, then the out_anydata parameter must be row LCR if the messaging_default_processing parameter is set to TRUE.

	
If the ANYDATA object in the in_anydata parameter is a DDL LCR, then the out_anydata parameter must be DDL LCR if the messaging_default_processing parameter is set to TRUE.

	
The user who runs the user procedure must have SELECT privilege on the DBA_APPLY_ERROR data dictionary view.

	
Note:

LCRs containing transactional directives, such as COMMIT and ROLLBACK, are not passed to the user procedure.

GET_ERROR_MESSAGE Function

This function returns the message payload from the error queue for the specified message number and transaction identifier. The message can be a logical change record (LCR) or a non-LCR message.

This function is overloaded. One version of this function contains two OUT parameters. These OUT parameters contain the destination queue into which the message should be enqueued, if one exists, and whether or not the message should be executed. The destination queue is specified using the SET_ENQUEUE_DESTINATION procedure, and the execution directive is specified using the SET_EXECUTE procedure.

	
See Also:

	
"SET_ENQUEUE_DESTINATION Procedure"

	
"SET_EXECUTE Procedure"

Syntax

DBMS_APPLY_ADM.GET_ERROR_MESSAGE(
 message_number IN NUMBER,
 local_transaction_id IN VARCHAR2,
 destination_queue_name OUT VARCHAR2,
 execute OUT BOOLEAN)
RETURN ANYDATA;

DBMS_APPLY_ADM.GET_ERROR_MESSAGE(
 message_number IN NUMBER,
 local_transaction_id IN VARCHAR2)
RETURN ANYDATA;

Parameters

Table 20-12 GET_ERROR_MESSAGE Function Parameters

	Parameter	Description
	
message_number

	
The identification number of the message. This number identifies the position of the message in the transaction. Query the DBA_APPLY_ERROR data dictionary view to view the message number of each apply error.

	
local_transaction_id

	
Identifier of the error transaction for which to return a message

	
destination_queue_name

	
Contains the name of the queue into which the message should be enqueued. If the message should not be enqueued into a queue, then this parameter contains NULL.

	
execute

	
Contains TRUE if the message should be executed

Contains FALSE if the message should not be executed

SET_DML_HANDLER Procedure

This procedure sets a user procedure as a DML handler for a specified operation on a specified object. The user procedure alters the apply behavior for the specified operation on the specified object.

Syntax

DBMS_APPLY_ADM.SET_DML_HANDLER(
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 operation_name IN VARCHAR2,
 error_handler IN BOOLEAN DEFAULT FALSE,
 user_procedure IN VARCHAR2,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 apply_name IN VARCHAR2 DEFAULT NULL,
 assemble_lobs IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-13 SET_DML_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. The specified object does not need to exist when you run this procedure.

	
object_type

	
The type of the source object. Currently, TABLE is the only possible source object type.

	
operation_name

	
The name of the operation, which can be specified as:

	
INSERT

	
UPDATE

	
DELETE

	
LOB_UPDATE

	
DEFAULT

For example, suppose you run this procedure twice for the hr.employees table. In one call, you set operation_name to UPDATE and user_procedure to employees_update. In another call, you set operation_name to INSERT and user_procedure to employees_insert. Both times, you set error_handler to FALSE. In this case, the employees_update procedure is run for UPDATE operations on the hr.employees table, and the employees_insert procedure is run for INSERT operations on the hr.employees table.

Specify DEFAULT to set the procedure as the default DML handler for the database object. In this case, the DML handler is used for any INSERT, UPDATE, DELETE, and LOB_WRITE on the database object, if another DML handler is not specifically set for the operation on the database object.

	
error_handler

	
If TRUE, then the specified user procedure is run when a row logical change record (row LCR) involving the specified operation on the specified object raises an apply process error. You can code the user procedure to resolve possible error conditions, notify administrators of the error, log the error, or any combination of these actions.

If FALSE, then the handler being set is run for all row LCRs involving the specified operation on the specified object.

	
user_procedure

	
A user-defined procedure that is invoked during apply for the specified operation on the specified object. If the procedure is a DML handler, then it is invoked instead of the default apply performed by Oracle. If the procedure is an error handler, then it is invoked when the apply process encounters an error.

Specify NULL to unset a DML handler that is set for the specified operation on the specified object.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

	
apply_name

	
The name of the apply process that uses the DML handler or error handler.

If NULL, then the procedure sets the DML handler or error handler as a general handler for all apply processes in the database.

If the user_procedure parameter is set to NULL to unset a handler, and the handler being unset is set for a specific apply process, then use the apply_name parameter to specify the apply process to unset the handler.

	
assemble_lobs

	
If TRUE, then LOB assembly is used for LOB columns in LCRs processed by the handler. LOB assembly combines multiple LCRs for a LOB column resulting from a single row change into one row LCR before passing the LCR to the handler. Database compatibility must be 10.2.0 or higher to use LOB assembly.

If FALSE, then LOB assembly is not used for LOB columns in LCRs processed by the handler.

Usage Notes

Run this procedure at the destination database. The SET_DML_HANDLER procedure provides a way for users to apply logical change records containing DML changes (row LCRs) using a customized apply.

If the error_handler parameter is set to TRUE, then it specifies that the user procedure is an error handler. An error handler is invoked only when a row LCR raises an apply process error. Such an error can result from a data conflict if no conflict handler is specified or if the update conflict handler cannot resolve the conflict. If the error_handler parameter is set to FALSE, then the user procedure is a DML handler, not an error handler, and a DML handler is always run instead of performing the specified operation on the specified object.

This procedure either sets a DML handler or an error handler for a particular operation on an object. It cannot set both a DML handler and an error handler for the same object and operation.

If the apply_name parameter is non-NULL, then the DML handler or error handler is set for the specified apply process. In this case, this handler is not invoked for other apply processes at the local destination database. If the apply_name parameter is NULL, the default, then the handler is set as a general handler for all apply processes at the destination database. When a handler is set for a specific apply process, then this handler takes precedence over any general handlers. For example, consider the following scenario:

	
A DML handler named handler_hr is specified for an apply process named apply_hr for UPDATE operations on the hr.employees table.

	
A general DML handler named handler_gen also exists for UPDATE operations on the hr.employees table.

In this case, the apply_hr apply process uses the handler_hr DML handler for UPDATE operations on the hr.employees table.

At the source database, you must specify an unconditional supplemental log group for the columns needed by a DML or error handler.

	
Attention:

Do not modify LONG, LONG RAW, or nonassembled LOB column data in an LCR with DML handlers, error handlers, or custom rule-based transformation functions. DML handlers and error handlers can modify LOB columns in row LCRs that have been constructed by LOB assembly.

	
Note:

Currently, setting an error handler for an apply process that is applying changes to a non-Oracle database is not supported.

The SET_DML_HANDLER procedure can be used to set either a DML handler or an error handler for row LCRs that perform a specified operation on a specified object. The signatures of a DML handler procedure and of an error handler procedure are described following this section.

In either case, you must specify the full procedure name for the user_procedure parameter in one of the following forms:

	
[schema_name.]package_name.procedure_name

	
[schema_name.]procedure_name

If the procedure is in a package, then the package_name must be specified. The user who invokes the SET_DML_HANDLER procedure must have EXECUTE privilege on the specified procedure. Also, if the schema_name is not specified, then the user who invokes the SET_DML_HANDLER procedure is the default.

For example, suppose the procedure_name has the following properties:

	
hr is the schema_name.

	
apply_pkg is the package_name.

	
employees_default is the procedure_name.

In this case, specify the following:

hr.apply_pkg.employees_default

The following restrictions apply to the user procedure:

	
Do not execute COMMIT or ROLLBACK statements. Doing so can endanger the consistency of the transaction that contains the LCR.

	
If you are manipulating a row using the EXECUTE member procedure for the row LCR, then do not attempt to manipulate more than one row in a row operation. You must construct and execute manually any DML statements that manipulate more than one row.

	
If the command type is UPDATE or DELETE, then row operations resubmitted using the EXECUTE member procedure for the LCR must include the entire key in the list of old values. The key is the primary key or the smallest unique index that has at least one NOT NULL column, unless a substitute key has been specified by the SET_KEY_COLUMNS procedure. If there is no specified key, then the key consists of all non LOB, non LONG, and non LONG RAW columns.

	
If the command type is INSERT, then row operations resubmitted using the EXECUTE member procedure for the LCR should include the entire key in the list of new values. Otherwise, duplicate rows are possible. The key is the primary key or the smallest unique index that has at least one NOT NULL column, unless a substitute key has been specified by the SET_KEY_COLUMNS procedure. If there is no specified key, then the key consists of all non LOB, non LONG, and non LONG RAW columns.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about and restrictions regarding DML handlers and LOB, LONG, and LONG RAW data types

Signature of a DML Handler Procedure

The procedure specified in the user_procedure parameter must have the following signature:

PROCEDURE user_procedure (
 parameter_name IN ANYDATA);

Here, user_procedure stands for the name of the procedure and parameter_name stands for the name of the parameter passed to the procedure. The parameter passed to the procedure is a ANYDATA encapsulation of a row LCR.

	
See Also:

Chapter 228, "Logical Change Record TYPEs" for more information about LCRs

Signature of an Error Handler Procedure

The procedure you create for error handling must have the following signature:

PROCEDURE user_procedure (
 message IN ANYDATA,
 error_stack_depth IN NUMBER,
 error_numbers IN DBMS_UTILITY.NUMBER_ARRAY,
 error_messages IN emsg_array);

If you want to retry the DML operation within the error handler, then have the error handler procedure run the EXECUTE member procedure for the LCR. The last error raised is on top of the error stack. To specify the error message at the top of the error stack, use error_numbers(1) and error_messages(1).

	
Note:

	
Each parameter is required and must have the specified datatype. However, you can change the names of the parameters.

	
The emsg_array value must be a user-defined array that is a table of type VARCHAR2 with at least 76 characters.

Running an error handler results in one of the following outcomes:

	
The error handler successfully resolves the error and returns control to the apply process.

	
The error handler fails to resolve the error, and the error is raised. The raised error causes the transaction to be rolled back and placed in the error queue.

SET_ENQUEUE_DESTINATION Procedure

This procedure sets the queue where the apply process automatically enqueues a message that satisfies the specified rule.

This procedure modifies the specified rule's action context to specify the queue. A rule action context is optional information associated with a rule that is interpreted by the client of the rules engine after the rule evaluates to TRUE for a message. In this case, the client of the rules engine is an Oracle Streams apply process. The information in an action context is an object of type SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A queue destination specified by this procedure always consists of the following name-value pair in an action context:

	
The name is APPLY$_ENQUEUE.

	
The value is a ANYDATA instance containing the queue name specified as a VARCHAR2.

Syntax

DBMS_APPLY_ADM.SET_ENQUEUE_DESTINATION(
 rule_name IN VARCHAR2,
 destination_queue_name IN VARCHAR2);

Parameters

Table 20-14 SET_ENQUEUE_DESTINATION Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. For example, to specify a rule named hr5 in the hr schema, enter hr.hr5 for this parameter. If the schema is not specified, then the current user is the default.

	
destination_queue_name

	
The name of the queue into which the apply process should enqueue the message. Specify the queue in the form [schema_name.]queue_name. Only local queues can be specified.

For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

If NULL, then an existing name-value pair with the name APPLY$_ENQUEUE is removed. If no name-value pair exists with the name APPLY$_ENQUEUE for the rule, then no action is taken.

If non-NULL and a name-value pair already exists for the rule with the name APPLY$_ENQUEUE, then it is removed, and a new name-value pair with the value specified by this parameter is added.

Usage Notes

If an apply handler, such as a DML handler, DDL handler, or message handler, processes a message that also is enqueued into a destination queue, then the apply handler processes the message before it is enqueued.

The following are considerations for using this procedure:

	
This procedure does not verify that the specified queue exists. If the queue does not exist, then an error is raised when an apply process tries to enqueue a message into it.

	
Oracle Streams capture processes, propagations, and messaging clients ignore the action context created by this procedure.

	
The apply user of the apply processes using the specified rule must have the necessary privileges to enqueue messages into the specified queue. If the queue is a secure queue, then the apply user must be a secure queue user of the queue.

	
The specified rule must be in the positive rule set for an apply process. If the rule is in the negative rule set for an apply process, then the apply process does not enqueue the message into the destination queue.

	
If the commit SCN for a message is less than or equal to the relevant instantiation SCN for the message, then the message is not enqueued into the destination queue, even if the message satisfies the apply process rule sets.

SET_EXECUTE Procedure

This procedure specifies whether a message that satisfies the specified rule is executed by an apply process.

This procedure modifies the specified rule's action context to specify message execution. A rule action context is optional information associated with a rule that is interpreted by the client of the rules engine after the rule evaluates to TRUE for a message. In this case, the client of the rules engine is an Oracle Streams apply process. The information in an action context is an object of type SYS.RE$NV_LIST, which consists of a list of name-value pairs.

A message execution directive specified by this procedure always consists of the following name-value pair in an action context:

	
The name is APPLY$_EXECUTE.

	
The value is a ANYDATA instance that contains NO as a VARCHAR2. When the value is NO, then an apply process does not execute the message and does not send the message to any apply handler.

Syntax

DBMS_APPLY_ADM.SET_EXECUTE(
 rule_name IN VARCHAR2,
 execute IN BOOLEAN);

Parameters

Table 20-15 SET_EXECUTE Procedure Parameters

	Parameter	Description
	
rule_name

	
The name of the rule, specified as [schema_name.]rule_name. For example, to specify a rule named hr5 in the hr schema, enter hr.hr5 for this parameter. If the schema is not specified, then the current user is the default.

	
execute

	
If TRUE, then the procedure removes the name-value pair with the name APPLY$_EXECUTE for the specified rule. Removing the name-value pair means that the apply process executes messages that satisfy the rule. If no name-value pair with name APPLY$_EXECUTE exists for the rule, then no action is taken.

If FALSE, then the procedure adds a name-value pair to the rule's action context. The name is APPLY$_EXECUTE and the value is NO. An apply process does not execute a message that satisfies the rule and does not send the message to any apply handler. If a name-value pair already exists for the rule with the name APPLY$_EXECUTE, then it is removed, and a new one with the value NO is added.

If NULL, then the procedure raises an error.

Usage Notes

If the message is a logical change record (LCR) and the message is not executed, then the change encapsulated in the LCR is not made to the relevant local database object. Also, if the message is not executed, then it is not sent to any apply handler.

	
Note:

	
Oracle Streams capture processes, propagations, and messaging clients ignore the action context created by this procedure.

	
The specified rule must be in the positive rule set for an apply process for the apply process to follow the execution directive. If the rule is in the negative rule set for an apply process, then the apply process ignores the execution directive for the rule.

SET_GLOBAL_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified source database and, optionally, for the schemas at the source database and the tables owned by these schemas. This procedure overwrites any existing instantiation SCN for the database, and, if it sets the instantiation SCN for a schema or a table, then it overwrites any existing instantiation SCN for the schema or table.

This procedure gives you precise control over which DDL logical change records (DDL LCRs) from a source database are ignored and which DDL LCRs are applied by an apply process.

Syntax

DBMS_APPLY_ADM.SET_GLOBAL_INSTANTIATION_SCN(
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-16 SET_GLOBAL_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source database from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply process is a non-Oracle database.

	
recursive

	
If TRUE, then the procedure sets the instantiation SCN for the source database, all schemas in the source database, and all tables owned by the schemas in the source database. This procedure selects the schemas and tables from the ALL_USERS and ALL_TABLES data dictionary views, respectively, at the source database under the security context of the current user.

If FALSE, then the procedure sets the global instantiation SCN for the source database, but does not set the instantiation SCN for any schemas or tables

Note: If recursive is set to TRUE, then a database link from the destination database to the source database is required. This database link must have the same name as the global name of the source database and must be accessible to the current user. Also, a table must be accessible to the current user in either the ALL_TABLES or DBA_TABLES data dictionary view at the source database for this procedure to set the instantiation SCN for the table at the destination database.

Usage Notes

If the commit SCN of a DDL LCR for a database object from a source database is less than or equal to the instantiation SCN for that source database at a destination database, then the apply process at the destination database disregards the DDL LCR. Otherwise, the apply process applies the DDL LCR.

The global instantiation SCN specified by this procedure is used for a DDL LCR only if the DDL LCR does not have object_owner, base_table_owner, and base_table_name specified. For example, the global instantiation SCN set by this procedure is used for DDL LCRs with a command_type of CREATE USER.

If the recursive parameter is set to TRUE, then this procedure sets the instantiation SCN for each schema at a source database and for the tables owned by these schemas. This procedure uses the SET_SCHEMA_INSTANTIATION_SCN procedure to set the instantiation SCN for each schema, and it uses the SET_TABLE_INSTANTIATION_SCN procedure to set the instantiation SCN for each table. Each schema instantiation SCN is used for DDL LCRs on the schema, and each table instantiation SCN is used for DDL LCRs and row LCRs on the table.

If the recursive parameter is set to FALSE, then this procedure does not set the instantiation SCN for any schemas or tables.

	
Note:

	
Any instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

	
The instantiation SCN is not set for the SYS or SYSTEM schemas.

	
See Also:

	
"SET_SCHEMA_INSTANTIATION_SCN Procedure"

	
"SET_TABLE_INSTANTIATION_SCN Procedure"

	
"LCR$_DDL_RECORD Type" for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

SET_KEY_COLUMNS Procedures

This procedure records the set of columns to be used as the substitute primary key for apply purposes and removes existing substitute primary key columns for the specified object if they exist.

This procedure is overloaded. The column_list and column_table parameters are mutually exclusive.

Syntax

DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name IN VARCHAR2,
 column_list IN VARCHAR2,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

DBMS_APPLY_ADM.SET_KEY_COLUMNS(
 object_name IN VARCHAR2,
 column_table IN DBMS_UTILITY.NAME_ARRAY,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-17 SET_KEY_COLUMNS Procedure Parameters

	Parameter	Description
	
object_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default. If the apply process is applying changes to a non-Oracle database in a heterogeneous environment, then the object name is not verified.

	
column_list

	
A comma-delimited list of the columns in the table that you want to use as the substitute primary key, with no spaces between the column names.

If the column_list parameter is empty or NULL, then the current set of key columns is removed.

	
column_table

	
A PL/SQL index-by table of type DBMS_UTILITY.NAME_ARRAY of the columns in the table that you want to use as the substitute primary key. The index for column_table must be 1-based, increasing, dense, and terminated by a NULL.

If the column_table parameter is empty or NULL, then the current set of key columns is removed.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Usage Notes

When not empty, this set of columns takes precedence over any primary key for the specified object. Do not specify substitute key columns if the object already has primary key columns and you want to use those primary key columns as the key.

Run this procedure at the destination database. At the source database, you must specify an unconditional supplemental log group for the substitute key columns.

	
Note:

	
Unlike true primary keys, columns specified as substitute key column columns can contain NULLs. However, Oracle recommends that each column you specify as a substitute key column be a NOT NULL column. You also should create a single index that includes all of the columns in a substitute key. Following these guidelines improves performance for updates, deletes, and piecewise updates to LOBs because Oracle can locate the relevant row more efficiently.

	
You should not permit applications to update the primary key or substitute key columns of a table. This ensures that Oracle can identify rows and preserve the integrity of the data.

	
If there is neither a primary key, nor a unique index that has at least one NOT NULL column, nor a substitute key for a table, then the key consists of all non LOB, non LONG, and non LONG RAW columns.

SET_PARAMETER Procedure

This procedure sets an apply parameter to the specified value.

Syntax

DBMS_APPLY_ADM.SET_PARAMETER (
 apply_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-18 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
apply_name

	
The apply process name. Do not specify an owner.

	
parameter

	
The name of the parameter you are setting. See "Apply Process Parameters" for a list of these parameters.

	
value

	
The value to which the parameter is set.

If NULL, then the parameter is set to its default value.

Apply Process Parameters

The following table lists the parameters for the apply process.

Table 20-19 Apply Process Parameters

	Parameter Name	Possible Values	Default	Description
	
allow_duplicate_rows

	
Y or N

	
N

	
If Y and more than one row is changed by a single row logical change record (row LCR) with an UPDATE or DELETE command type, then the apply process only updates or deletes one of the rows.

If N, then the apply process raises an error when it encounters a single row LCR with an UPDATE or DELETE command type that changes more than one row in a table.

Note: Regardless of the setting for this parameter, apply processes do not allow changes to duplicate rows for tables with LOB, LONG, or LONG RAW columns.

See Also: "Duplicate Rows and Substitute Primary Key Columns"

	
commit_serialization

	
full or none

	
full

	
The order in which applied transactions are committed.

Apply servers can apply nondependent transactions at the destination database in an order that is different from the commit order at the source database. Dependent transactions are always applied at the destination database in the same order as they were committed at the source database.

You control whether the apply servers can apply nondependent transactions in a different order at the destination database using the commit_serialization apply parameter. This parameter has the following settings:

	
full - The apply process commits applied transactions in the order in which they were committed at the source database.

	
none - The apply process can commit transactions in any order. Performance is best if you specify none.

Regardless of the specification, applied transactions can execute in parallel subject to data dependencies and constraint dependencies.

Logical standby environments typically specify full.

If you specify none, then it is possible that a destination database commits changes in a different order than the source database. For example, suppose two nondependent transactions are committed at the source database in the following order:

	
Transaction A

	
Transaction B

At the destination database, these transactions might be committed in the opposite order:

	
Transaction B

	
Transaction A

	
disable_on_error

	
Y or N

	
Y

	
If Y, then the apply process is disabled on the first unresolved error, even if the error is not fatal.

If N, then the apply process continues regardless of unresolved errors.

	
disable_on_limit

	
Y or N

	
N

	
If Y, then the apply process is disabled if the apply process terminates because it reached a value specified by the time_limit parameter or transaction_limit parameter.

If N, then the apply process is restarted immediately after stopping because it reached a limit.

When an apply process is restarted, it gets a new session identifier, and the processes associated with the apply process also get new session identifiers. However, the coordinator process number (APnn) remains the same.

	
maximum_scn

	
A valid SCN or infinite

	
infinite

	
The apply process is disabled before applying a transaction with a commit SCN greater than or equal to the value specified.

If infinite, then the apply process runs regardless of the SCN value.

	
parallelism

	
A positive integer

	
1

	
The number of apply servers that can concurrently apply transactions. For example, if parallelism is set to 5, then an apply process uses a total of five apply servers. The reader server is a process. So, if parallelism is set to 5, then an apply process uses a total of six processes. An apply process always uses two or more processes.

Setting the parallelism parameter to a number higher than the number of available parallel execution servers can disable the apply process. Make sure the PROCESSES and PARALLEL_MAX_SERVERS initialization parameters are set appropriately when you set the parallelism apply process parameter.

Note: When the value of this parameter is changed for a running apply process, the apply process is stopped and restarted automatically. This can take some time depending on the size of the transactions currently being applied.

	
preserve_encryption

	
Y or N

	
Y

	
Whether to preserve encryption for columns encrypted using transparent data encryption.

If Y, then columns in tables at the destination database must be encrypted when corresponding columns in row LCRs are encrypted. If columns are encrypted in row LCRs but the corresponding columns are not encrypted in the tables at the destination database, then an error is raised when the apply process tries to apply the row LCRs.

If N, then columns in tables at the destination database do not need to be encrypted when corresponding columns in row LCRs are encrypted. If columns are encrypted in row LCRs but the corresponding columns are not encrypted in the tables at the destination database, then the apply process applies the changes in the row LCRs.

Note: When the value of this parameter is changed for a running apply process, the apply process is stopped and restarted automatically. This can take some time depending on the size of the transactions currently being applied.

	
rtrim_on_implicit_conversion

	
Y or N

	
Y

	
Whether to remove blank padding from the right end of a column when automatic data type conversion is performed during apply.

If Y, then blank padding is removed when a CHAR or NCHAR source column in a row LCR is converted to a VARCHAR2, NVARCHAR2, or CLOB column in a table.

If N, then blank padding is preserved in the column.

See Also: Oracle Streams Concepts and Administration for information about automatic data type conversion during apply

	
startup_seconds

	
0, a positive integer, or infinite

	
0

	
The maximum number of seconds to wait for another instantiation of the same apply process to finish. If the other instantiation of the same apply process does not finish within this time, then the apply process does not start.

If infinite, then an apply process does not start until another instantiation of the same apply process finishes.

	
time_limit

	
A positive integer or infinite

	
infinite

	
The apply process stops as soon as possible after the specified number of seconds since it started.

If infinite, then the apply process continues to run until it is stopped explicitly.

	
trace_level

	
0 or a positive integer

	
0

	
Set this parameter only under the guidance of Oracle Support Services.

	
transaction_limit

	
A positive integer or infinite

	
infinite

	
The apply process stops after applying the specified number of transactions.

If infinite, then the apply process continues to run regardless of the number of transactions applied.

	
txn_lcr_spill_threshold

	
A positive integer or infinite

	
10000

	
The apply process begins to spill messages from memory to hard disk for a particular transaction when the number of messages in memory for the transaction exceeds the specified number. The number of messages in first chunk of messages spilled from memory equals the number specified for this parameter, and the number of messages spilled in future chunks is either 100 or the number specified for this parameter, whichever is less.

If the reader server of an apply process has the specified number of messages in memory for a particular transaction, then when it detects the next message for this transaction, it spills the messages that are in memory to the hard disk. For example, if this parameter is set to 10000, and a transaction has 10,200 messages, then the reader server handles the transaction in the following way:

	
Reads the first 10,000 messages in the transaction into memory

	
Spills messages 1 - 10,000 to hard disk when it detects message 10,000

	
Reads the next 100 messages in the transaction into memory

	
Spills messages 10,001 - 10,100 to hard disk when it detects message 10,100

	
Reads the next 100 messages in the transaction into memory

The apply process applies the first 10,100 messages from the hard disk and the last 100 messages from memory.

When the reader server spills messages from memory, the messages are stored in a database table on the hard disk. These messages are not spilled from memory to a queue table.

Message spilling occurs at the transaction level. For example, if this parameter is set to 10000, and the reader server of an apply process is assembling two transactions, one with 7,500 messages and another with 8,000 messages, then it does not spill any messages.

If infinite, then the apply process does not spill messages to the hard disk.

Query the DBA_APPLY_SPILL_TXN data dictionary view for information about transactions spilled by an apply process.

Note: When the value of this parameter is changed for a running apply process, the new setting does not take effect until the apply process is restarted.

	
write_alert_log

	
Y or N

	
Y

	
If Y, then the apply process writes a message to the alert log on exit.

If N, then the apply process does not write a message to the alert log on exit.

The message specifies the reason why the apply process stopped.

Usage Notes

When you alter a parameter value, a short amount of time might pass before the new value for the parameter takes effect.

	
Note:

	
For all parameters that are interpreted as positive integers, the maximum possible value is 4,294,967,295. Where applicable, specify infinite for larger values.

	
For parameters that require an SCN setting, any valid SCN value can be specified.

Duplicate Rows and Substitute Primary Key Columns

A table has duplicate rows when the all of the column values are identical for two or more rows in the table, excluding LOB, LONG, and LONG RAW columns. You can specify substitute primary key columns for a table at a destination database using by the SET_KEY_COLUMNS procedure. When substitute primary key columns are specified for a table with duplicate rows at a destination database, and the allow_duplicate_rows apply process parameter is set to Y, meet the following requirements to keep the table data synchronized at the source and destination databases:

	
Ensure that updates at the source database always update at least one of the columns specified as a substitute key column at the destination database.

	
Ensure that the substitute key columns uniquely identify each row in the table at the destination database.

The rest of this section provides more details about these requirements.

If a table does not have a primary key, a unique index that has at least one NOT NULL column, or a substitute key, then the key consists of all non LOB, non LONG, and non LONG RAW columns. When there is no key for a table and the allow_duplicate_rows apply process parameter is set to Y, a single row LCR with an UPDATE or DELETE command type only is applied to one of the duplicate rows. In this case, if the table at the source database and the table at the destination database have corresponding duplicate rows, then a change that changes all of the duplicate rows at the source database also changes all the duplicate rows at the destination database when the row LCRs resulting from the change are applied.

For example, suppose a table at a source database has two duplicate rows. An update is performed on the duplicate rows, resulting in two row LCRs. At the destination database, one row LCR is applied to one of the duplicate rows. At this point, the rows are no longer duplicate at the destination database because one of the rows has changed. When the second row LCR is applied at the destination database, the rows are duplicate again. Similarly, if a delete is performed on these duplicate rows at the source database, then both rows are deleted at the destination database when the row LCRs resulting from the change are applied.

When substitute primary key columns are specified for a table, row LCRs are identified with rows in the table during apply using the substitute primary key columns. If substitute primary key columns are specified for a table with duplicate rows at a destination database, and the allow_duplicate_rows apply process parameter is set to Y, then an update performed on duplicate rows at the source database can result in different changes when the row LCRs are applied at the destination database. Specifically, if the update does not change one of the columns specified as a substitute primary key column, then the same duplicate row can be updated multiple times at the destination database, while other duplicate rows might not be updated.

Also, if the substitute key columns do not identify each row in the table at the destination database uniquely, then a row LCR identified with multiple rows can update any one of the rows. In this case, the update in the row LCR might not be applied to the correct row in the table at the destination database.

An apply process ignores substitute primary key columns when it determines whether rows in a table are duplicates. An apply process determines that rows are duplicates only if all of the column values in the rows are identical (excluding LOB, LONG, and LONG RAW columns). Therefore, an apply process always raises an error if a single update or delete changes two or more nonduplicate rows in a table.

For example, consider a table with columns c1, c2, and c3 on which the SET_KEY_COLUMNS procedure is used to designate column c1 as the substitute primary key. If two rows have the same key value for the c1 column, but different value for the c2 or c3 columns, then an apply process does not treat the rows as duplicates. If an update or delete modifies more than one row because the c1 values in the rows are the same, then the apply process raises an error regardless of the setting for the allow_duplicate_rows apply process parameter.

	
See Also:

"SET_KEY_COLUMNS Procedures"

SET_SCHEMA_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified schema in the specified source database and, optionally, for the tables owned by the schema at the source database. This procedure overwrites any existing instantiation SCN for the schema, and, if it sets the instantiation SCN for a table, it overwrites any existing instantiation SCN for the table.

This procedure gives you precise control over which DDL logical change records (LCRs) for a schema are ignored and which DDL LCRs are applied by an apply process.

Syntax

DBMS_APPLY_ADM.SET_SCHEMA_INSTANTIATION_SCN(
 source_schema_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL,
 recursive IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-20 SET_SCHEMA_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_schema_name

	
The name of the source schema. For example, hr.

	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source schema from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply process is a non-Oracle database.

	
recursive

	
If TRUE, then the procedure sets the instantiation SCN for the specified schema and all tables owned by the schema in the source database. This procedure selects the tables owned by the specified schema from the ALL_TABLES data dictionary view at the source database under the security context of the current user.

If FALSE, then the procedure sets the instantiation SCN for specified schema, but does not set the instantiation SCN for any tables

Note: If recursive is set to TRUE, then a database link from the destination database to the source database is required. This database link must have the same name as the global name of the source database and must be accessible to the current user. Also, a table must be accessible to the current user in either the ALL_TABLES or DBA_TABLES data dictionary view at the source database for this procedure to set the instantiation SCN for the table at the destination database.

Usage Notes

If the commit SCN of a DDL LCR for a database object in a schema from a source database is less than or equal to the instantiation SCN for that database object at a destination database, then the apply process at the destination database disregards the DDL LCR. Otherwise, the apply process applies the DDL LCR.

The schema instantiation SCN specified by this procedure is used on the following types of DDL LCRs:

	
DDL LCRs with a command_type of CREATE TABLE

	
DDL LCRs with a non-NULL object_owner specified and neither base_table_owner nor base_table_name specified.

For example, the schema instantiation SCN set by this procedure is used for a DDL LCR with a command_type of CREATE TABLE and ALTER USER.

The schema instantiation SCN specified by this procedure is not used for DDL LCRs with a command_type of CREATE USER. A global instantiation SCN is needed for such DDL LCRs.

If the recursive parameter is set to TRUE, then this procedure sets the table instantiation SCN for each table at the source database owned by the schema. This procedure uses the SET_TABLE_INSTANTIATION_SCN procedure to set the instantiation SCN for each table. Each table instantiation SCN is used for DDL LCRs and row LCRs on the table.

If the recursive parameter is set to FALSE, then this procedure does not set the instantiation SCN for any tables.

	
Note:

Any instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

	
See Also:

	
"SET_GLOBAL_INSTANTIATION_SCN Procedure"

	
"SET_TABLE_INSTANTIATION_SCN Procedure"

	
"LCR$_DDL_RECORD Type" for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

SET_TABLE_INSTANTIATION_SCN Procedure

This procedure records the specified instantiation SCN for the specified table in the specified source database. This procedure overwrites any existing instantiation SCN for the particular table.

This procedure gives you precise control over which logical change records (LCRs) for a table are ignored and which LCRs are applied by an apply process.

Syntax

DBMS_APPLY_ADM.SET_TABLE_INSTANTIATION_SCN(
 source_object_name IN VARCHAR2,
 source_database_name IN VARCHAR2,
 instantiation_scn IN NUMBER,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-21 SET_TABLE_INSTANTIATION_SCN Procedure Parameters

	Parameter	Description
	
source_object_name

	
The name of the source object specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
source_database_name

	
The global name of the source database. For example, DBS1.NET.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

	
instantiation_scn

	
The instantiation SCN. Specify NULL to remove the instantiation SCN metadata for the source table from the data dictionary.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database of a local apply process is a non-Oracle database.

Usage Notes

If the commit SCN of an LCR for a table from a source database is less than or equal to the instantiation SCN for that table at some destination database, then the apply process at the destination database disregards the LCR. Otherwise, the apply process applies the LCR.

The table instantiation SCN specified by this procedure is used on the following types of LCRs:

	
Row LCRs for the table

	
DDL LCRs that have a non-NULL base_table_owner and base_table_name specified, except for DDL LCRs with a command_type of CREATE TABLE

For example, the table instantiation SCN set by this procedure is used for DDL LCRs with a command_type of ALTER TABLE or CREATE TRIGGER.

	
Note:

The instantiation SCN specified by this procedure is used only for LCRs captured by a capture process. It is not used for user-created LCRs.

	
See Also:

	
"SET_GLOBAL_INSTANTIATION_SCN Procedure"

	
"SET_SCHEMA_INSTANTIATION_SCN Procedure"

	
"LCR$_ROW_RECORD Type" for more information about row LCRs

	
"LCR$_DDL_RECORD Type" for more information about DDL LCRs

	
Oracle Streams Replication Administrator's Guide

SET_UPDATE_CONFLICT_HANDLER Procedure

This procedure adds, modifies, or removes a prebuilt update conflict handler for the specified object.

Syntax

DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name IN VARCHAR2,
 method_name IN VARCHAR2,
 resolution_column IN VARCHAR2,
 column_list IN DBMS_UTILITY.NAME_ARRAY,
 apply_database_link IN VARCHAR2 DEFAULT NULL);

Parameters

Table 20-22 SET_UPDATE_CONFLICT_HANDLER Procedure Parameters

	Parameter	Description
	
object_name

	
The schema and name of the table, specified as [schema_name.]object_name, for which an update conflict handler is being added, modified, or removed.

For example, if an update conflict handler is being added for table employees owned by user hr, then specify hr.employees. If the schema is not specified, then the current user is the default.

	
method_name

	
Type of update conflict handler to create.

You can specify one of the prebuilt handlers, which determine whether the column list from the source database is applied for the row or whether the values in the row at the destination database are retained:

	
MAXIMUM: Applies the column list from the source database if it has the greater value for the resolution column. Otherwise, retains the values at the destination database.

	
MINIMUM: Applies the column list from the source database if it has the lesser value for the resolution column. Otherwise, retains the values at the destination database.

	
OVERWRITE: Applies the column list from the source database, overwriting the column values at the destination database.

	
DISCARD: Retains the column list from the destination database, discarding the column list from the source database.

If NULL, then the procedure removes any existing update conflict handler with the same object_name, resolution_column, and column_list. If non-NULL, then the procedure replaces any existing update conflict handler with the same object_name and resolution_column.

	
resolution_column

	
Name of the column used to uniquely identify an update conflict handler. For the MAXIMUM and MINIMUM prebuilt methods, the resolution column is also used to resolve the conflict. The resolution column must be one of the columns listed in the column_list parameter.

NULL is not allowed for this parameter. For the OVERWRITE and DISCARD prebuilt methods, you can specify any column in the column list.

	
column_list

	
List of columns for which the conflict handler is called.

If a conflict occurs for one or more of the columns in the list when an apply process tries to apply a row logical change record (row LCR), then the conflict handler is called to resolve the conflict. The conflict handler is not called if a conflict occurs only for columns that are not in the list.

Note: Prebuilt update conflict handlers do not support LOB, LONG, LONG RAW, and user-defined type columns. Therefore, you should not include these types of columns in the column_list parameter.

	
apply_database_link

	
The name of the database link to a non-Oracle database. This parameter should be set only when the destination database is a non-Oracle database.

Note: Currently, conflict handlers are not supported when applying changes to a non-Oracle database.

Usage Notes

If you want to modify an existing update conflict handler, then you specify the table and resolution column of an the existing update conflict handler. You can modify the prebuilt method or the column list.

If you want to remove an existing update conflict handler, then specify NULL for the prebuilt method and specify the table, column list, and resolution column of the existing update conflict handler.

If an update conflict occurs, then Oracle completes the following series of actions:

	
Calls the appropriate update conflict handler to resolve the conflict

	
If no update conflict handler is specified or if the update conflict handler cannot resolve the conflict, then calls the appropriate error handler for the apply process, table, and operation to handle the error

	
If no error handler is specified or if the error handler cannot resolve the error, then raises an error and moves the transaction containing the row LCR that caused the error to the error queue

If you cannot use a prebuilt update conflict handler to meet your requirements, then you can create a PL/SQL procedure to use as a custom conflict handler. You use the SET_DML_HANDLER procedure to designate one or more custom conflict handlers for a particular table. In addition, a custom conflict handler can process LOB columns and use LOB assembly.

	
Note:

Currently, setting an update conflict handler for an apply process that is applying to a non-Oracle database is not supported.

	
See Also:

	
"Signature of an Error Handler Procedure" for information about setting an error handler

	
"SET_DML_HANDLER Procedure"

	
Oracle Streams Replication Administrator's Guide for more information about prebuilt and custom update conflict handlers

Examples

The following is an example for setting an update conflict handler for the employees table in the hr schema:

DECLARE
 cols DBMS_UTILITY.NAME_ARRAY;
BEGIN
 cols(1) := 'salary';
 cols(2) := 'commission_pct';
 DBMS_APPLY_ADM.SET_UPDATE_CONFLICT_HANDLER(
 object_name => 'hr.employees',
 method_name => 'MAXIMUM',
 resolution_column => 'salary',
 column_list => cols);
END;
/

This example sets a conflict handler that is called if a conflict occurs for the salary or commission_pct column in the hr.employees table. If such a conflict occurs, then the salary column is evaluated to resolve the conflict. If a conflict occurs only for a column that is not in the column list, such as the job_id column, then this conflict handler is not called.

SET_VALUE_DEPENDENCY Procedure

This procedure sets or removes a value dependency. A value dependency is a virtual dependency definition that defines a relationship between the columns of two or more tables.

An apply process uses the name of a value dependencies to detect dependencies between row logical change records (row LCRs) that contain the columns defined in the value dependency. Value dependencies can define virtual foreign key relationships between tables, but, unlike foreign key relationships, value dependencies can involve more than two database objects.

This procedure is overloaded. The attribute_list and attribute_table parameters are mutually exclusive.

	
See Also:

Oracle Streams Replication Administrator's Guide

Syntax

DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name IN VARCHAR2,
 object_name IN VARCHAR2,
 attribute_list IN VARCHAR2);

DBMS_APPLY_ADM.SET_VALUE_DEPENDENCY(
 dependency_name IN VARCHAR2,
 object_name IN VARCHAR2,
 attribute_table IN DBMS_UTILITY.NAME_ARRAY);

Parameters

Table 20-23 SET_VALUE_DEPENDENCY Procedure Parameters

	Parameter	Description
	
dependency_name

	
The name of the value dependency.

If a dependency with the specified name does not exist, then it is created.

If a dependency with the specified name exists, then the specified object and attributes are added to the dependency.

If NULL, an error is raised.

	
object_name

	
The name of the table, specified as [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

If NULL and the specified dependency exists, then the dependency is removed. If NULL and the specified dependency does not exist, then an error is raised.

If NULL, then attribute_list and attribute_table also must be NULL.

	
attribute_list

	
A comma-delimited list of column names in the table. There must be no spaces between entries.

	
attribute_table

	
A PL/SQL index-by table of type DBMS_UTILITY.NAME_ARRAY that contains names of columns in the table. The first column name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

START_APPLY Procedure

This procedure directs the apply process to start applying messages.

Syntax

DBMS_APPLY_ADM.START_APPLY(
 apply_name IN VARCHAR2);

Parameter

Table 20-24 START_APPLY Procedure Parameter

	Parameter	Description
	
apply_name

	
The apply process name. A NULL setting is not allowed. Do not specify an owner.

Usage Notes

The apply process status is persistently recorded. Hence, if the status is ENABLED, then the apply process is started upon database instance startup. An apply process (annn) is an Oracle background process. The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the start status of an apply process.

STOP_APPLY Procedure

This procedure stops the apply process from applying messages and rolls back any unfinished transactions being applied.

Syntax

DBMS_APPLY_ADM.STOP_APPLY(
 apply_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 20-25 STOP_APPLY Procedure Parameters

	Parameter	Description
	
apply_name

	
The apply process name. A NULL setting is not allowed. Do not specify an owner.

	
force

	
If TRUE, then the procedure stops the apply process as soon as possible.

If FALSE, then the procedure stops the apply process after ensuring that there are no gaps in the set of applied transactions.

The behavior of the apply process depends on the setting specified for the force parameter and the setting specified for the commit_serialization apply process parameter. See "Usage Notes" for more information.

Usage Notes

The apply process status is persistently recorded. Hence, if the status is DISABLED or ABORTED, then the apply process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the STOP status of an apply process.

The following table describes apply process behavior for each setting of the force parameter in the STOP_APPLY procedure and the commit_serialization apply process parameter. In all cases, the apply process rolls back any unfinished transactions when it stops.

	force	commit_serialization	Apply Process Behavior
	TRUE	full	The apply process stops immediately and does not apply any unfinished transactions.
	TRUE	none	When the apply process stops, some transactions that have been applied locally might have committed at the source database at a later point in time than some transactions that have not been applied locally.
	FALSE	full	The apply process stops after applying the next uncommitted transaction in the commit order, if any such transaction is in progress.
	FALSE	none	Before stopping, the apply process applies all of the transactions that have a commit time that is earlier than the applied transaction with the most recent commit time.

For example, assume that the commit_serialization apply process parameter is set to none and there are three transactions: transaction 1 has the earliest commit time, transaction 2 is committed after transaction 1, and transaction 3 has the latest commit time. Also assume that an apply process has applied transaction 1 and transaction 3 and is in the process of applying transaction 2 when the STOP_APPLY procedure is run. Given this scenario, if the force parameter is set to TRUE, then transaction 2 is not applied, and the apply process stops (transaction 2 is rolled back). If, however, the force parameter is set to FALSE, then transaction 2 is applied before the apply process stops.

A different scenario would result if the commit_serialization apply process parameter is set to full. For example, assume that the commit_serialization apply process parameter is set to full and there are three transactions: transaction A has the earliest commit time, transaction B is committed after transaction A, and transaction C has the latest commit time. In this case, the apply process has applied transaction A and is in the process of applying transactions B and C when the STOP_APPLY procedure is run. Given this scenario, if the force parameter is set to TRUE, then transactions B and C are not applied, and the apply process stops (transactions B and C are rolled back). If, however, the force parameter is set to FALSE, then transaction B is applied before the apply process stops, and transaction C is rolled back.

	
See Also:

"SET_PARAMETER Procedure" for more information about the commit_serialization apply process parameter

21 DBMS_AQ

The DBMS_AQ package provides an interface to Oracle Streams Advanced Queuing (AQ).

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide

	
Oracle Streams AQ TYPEs for information about TYPEs to use with DBMS_AQ.

This chapter contains the following topics:

	
Using DBMS_AQ

	
Constants

	
Data Structures

	
Operational Notes

	
Summary of DBMS_AQ Subprograms

Using DBMS_AQ

	
Constants

	
Data Structures

	
Operational Notes

Constants

The DBMS_AQ package uses the constants shown in Table 21-1.

When using enumerated constants such as BROWSE, LOCKED, or REMOVE, the PL/SQL constants must be specified with the scope of the packages defining it. All types associated with the operational interfaces have to be prepended with DBMS_AQ. For example: DBMS_AQ.BROWSE.

	
Note:

The sequence_deviation attribute has no effect in releases prior to Oracle Streams AQ 10g Release 1 (10.1) if message_grouping parameter of DBMS_AQADM subprograms is set to TRANSACTIONAL. The sequence deviation feature is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

Table 21-1 Enumerated Constants

	Parameter	Options	Type	Description
	
VISIBILITY

	
IMMEDIATE

	
	

	
.

	
ON_COMMIT

	
	

	
DEQUEUE_MODE

	
BROWSE

	
	

	
.

	
LOCKED

	
	

	
.

	
REMOVE

	
	

	
.

	
REMOVE_NODATA

	
	

	
NAVIGATION

	
FIRST_MESSAGE

	
	

	
.

	
NEXT_MESSAGE

	
	

	
STATE

	
WAITING

	
	

	
.

	
READY

	
	

	
.

	
PROCESSED

	
	

	
.

	
EXPIRED

	
	

	
SEQUENCE_DEVIATION

	
BEFORE

	
	

	
.

	
TOP

	
	

	
WAIT

	
FOREVER

	
BINARY_INTEGER

	

	
.

	
NO_WAIT

	
BINARY_INTEGER

	

	
DELAY

	
NO_DELAY

	
	

	
EXPIRATION

	
NEVER

	
	

	
NAMESPACE

	
NAMESPACE_AQ

	
	

	
.

	
NAMESPACE_ANONYMOUS

	
	

	
NTFN_GROUPING_CLASS

	
NFTN_GROUPING_CLASS_TIME

	
NUMBER

	

	
NTFN_GROUPING_TYPE

	
NTFN_GROUPING_TYPE_SUMMARY

	
NUMBER

	

	
.

	
NTFN_GROUPING_TYPE_LAST

	
NUMBER

	

	
NTFN_GROUPING_REPEAT_COUNT

	
NTFN_GROUPING_FOREVER

	
NUMBER

	

Data Structures

Table 21-2 DBMS_AQ Data Structures

	Data Structures	Description
	
Object Name

	
Names database objects

	
Type Name

	
Defines queue types

	
Oracle Streams AQ PL/SQL Callback

	
Specifies the user-defined PL/SQL procedure, defined in the database to be invoked on message notification

Object Name

The object_name data structure names database objects. It applies to queues, queue tables, agent names, and object types.

Syntax

object_name := VARCHAR2;
object_name := [schema_name.]name;

Usage Notes

Names for objects are specified by an optional schema name and a name. If the schema name is not specified, the current schema is assumed. The name must follow object name guidelines in Oracle Database SQL Language Reference with regard to reserved characters. Schema names, agent names, and object type names can be up to 30 bytes long. Queue names and queue table names can be up to 24 bytes long.

Type Name

The type_name data structure defines queue types.

Syntax

type_name := VARCHAR2;
type_name := object_type | "RAW";

Attributes

Table 21-3 Type Name Attributes

	Attribute	Description
	
object_type

	
Maximum number of attributes in the object type is limited to 900.

	
"RAW"

	
To store payload of type RAW, Oracle Streams AQ creates a queue table with a LOB column as the payload repository. The theoretical maximum size of the message payload is the maximum amount of data that can be stored in a LOB column. However, the maximum size of the payload is determined by which programmatic environment you use to access Oracle Streams AQ. For PL/SQL, Java and precompilers the limit is 32K; for the OCI the limit is 4G. Because the PL/SQL enqueue and dequeue interfaces accept RAW buffers as the payload parameters you will be limited to 32K bytes. In OCI, the maximum size of your RAW data will be limited to the maximum amount of contiguous memory (as an OCIRaw is simply an array of bytes) that the OCI Object Cache can allocate. Typically, this will be at least 32K bytes and much larger in many cases.

Because LOB columns are used for storing RAW payload, the Oracle Streams AQ administrator can choose the LOB tablespace and configure the LOB storage by constructing a LOB storage string in the storage_clause parameter during queue table creation time.

Oracle Streams AQ PL/SQL Callback

The plsqlcallback data structure specifies the user-defined PL/SQL procedure, defined in the database to be invoked on message notification.

Syntax

If a notification message is expected for a RAW payload enqueue, then the PL/SQL callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN RAW,
 payloadl IN NUMBER);

Attributes

Table 21-4 Oracle Streams AQ PL/SQL Callback Attributes

	Attribute	Description
	
context

	
Specifies the context for the callback function that was passed by dbms_aq.register. See AQ$_REG_INFO Type.

	
reginfo

	
See AQ$_REG_INFO Type.

	
descr

	
See AQ$_DESCRIPTOR Type

	
payload

	
If a notification message is expected for a raw payload enqueue then this contains the raw payload that was enqueued into a non persistent queue. In case of a persistent queue with raw payload this parameter will be null.

	
payloadl

	
Specifies the length of payload. If payload is null, payload1 = 0.

If the notification message is expected for an ADT payload enqueue, the PL/SQL callback must have the following signature:

procedure plsqlcallback(
 context IN RAW,
 reginfo IN SYS.AQ$_REG_INFO,
 descr IN SYS.AQ$_DESCRIPTOR,
 payload IN VARCHAR2,
 payloadl IN NUMBER);

Operational Notes

	
DBMS_AQ and DBMS_AQADM Java Classes

DBMS_AQ and DBMS_AQADM Java Classes

Java interfaces are available for DBMS_AQ and DBMS_AQADM. The Java interfaces are provided in the $ORACLE_HOME/rdbms/jlib/aqapi.jar. Users are required to have EXECUTE privileges on the DBMS_AQIN package to use these interfaces.

Summary of DBMS_AQ Subprograms

Table 21-5 DBMS_AQ Package Subprograms

	Subprograms	Description
	
BIND_AGENT Procedure

	
Creates an entry for an Oracle Streams AQ agent in the LDAP directory

	
DEQUEUE Procedure

	
Dequeues a message from the specified queue

	
DEQUEUE_ARRAY Function

	
Dequeues an array of messages from the specified queue

	
ENQUEUE Procedure

	
Adds a message to the specified queue

	
ENQUEUE_ARRAY Function

	
Adds an array of messages to the specified queue

	
LISTEN Procedures

	
Listen to one or more queues on behalf of a list of agents

	
POST Procedure

	
Posts to a anonymous subscription which allows all clients who are registered for the subscription to get notifications

	
REGISTER Procedure

	
Registers for message notifications

	
UNBIND_AGENT Procedure

	
Removes an entry for an Oracle Streams AQ agent from the LDAP directory

	
UNREGISTER Procedure

	
Unregisters a subscription which turns off notification

	
Note:

DBMS_AQ does not have a purity level defined; therefore, you cannot call any procedure in this package from other procedures that have RNDS, WNDS, RNPS or WNPS constraints defined.

BIND_AGENT Procedure

This procedure creates an entry for an Oracle Streams AQ agent in the LDAP server.

Syntax

DBMS_AQ.BIND_AGENT(
 agent IN SYS.AQ$_AGENT,
 certificate IN VARCHAR2 default NULL);

Parameters

Table 21-6 BIND_AGENT Procedure Parameters

	Parameter	Description
	
agent

	
Agent that is to be registered in LDAP server.

	
certificate

	
Location (LDAP distinguished name) of the "organizationalperson" entry in LDAP whose digital certificate (attribute usercertificate) is to be used for this agent. Example: "cn=OE, cn=ACME, cn=com" is a distinguished name for a OrganizationalPerson OE whose certificate will be used with the specified agent.

Usage Notes

In the LDAP server, digital certificates are stored as an attribute (usercertificate) of the OrganizationalPerson entity. The distinguished name for this OrganizationalPerson must be specified when binding the agent.

DEQUEUE Procedure

This procedure dequeues a message from the specified queue.

Syntax

DBMS_AQ.DEQUEUE (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 message_properties OUT message_properties_t,
 payload OUT "<ADT_1>"
 msgid OUT RAW);

Parameters

Table 21-7 DEQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Specifies the name of the queue.

	
dequeue_options

	
See DEQUEUE_OPTIONS_T Type.

	
message_properties

	
See MESSAGE_PROPERTIES_T Type.

	
payload

	
Not interpreted by Oracle Streams AQ. The payload must be specified according to the specification in the associated queue table. For the definition of type_name refer to Type Name.

	
msgid

	
System generated identification of the message.

Usage Notes

The search criteria for messages to be dequeued is determined by the following parameters in dequeue_options:

	
consumer_name

	
msgid

Msgid uniquely identifies the message to be dequeued. Only messages in the READY state are dequeued unless msgid is specified.

	
correlation

Correlation identifiers are application-defined identifiers that are not interpreted by Oracle Streams AQ.

	
deq_condition

Dequeue condition is an expression based on the message properties, the message data properties and PL/SQL functions. A deq_condition is specified as a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions (as specified in the where clause of a SQL query). Message properties include priority, corrid and other columns in the queue table.

To specify dequeue conditions on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of the queue table that stores the payload.

Example: tab.user_data.orderstatus='EXPRESS'

The dequeue order is determined by the values specified at the time the queue table is created unless overridden by the msgid and correlation ID in dequeue_options.

The database-consistent read mechanism is applicable for queue operations. For example, a BROWSE call may not see a message that is enqueued after the beginning of the browsing transaction.

The default NAVIGATION parameter during dequeue is NEXT_MESSAGE. This means that subsequent dequeues will retrieve the messages from the queue based on the snapshot obtained in the first dequeue. In particular, a message that is enqueued after the first dequeue command will be processed only after processing all the remaining messages in the queue. This is usually sufficient when all the messages have already been enqueued into the queue, or when the queue does not have a priority-based ordering. However, applications must use the FIRST_MESSAGE navigation option when the first message in the queue needs to be processed by every dequeue command. This usually becomes necessary when a higher priority message arrives in the queue while messages already-enqueued are being processed.

	
Note:

It may be more efficient to use the FIRST_MESSAGE navigation option when messages are concurrently enqueued. If the FIRST_MESSAGE option is not specified, Oracle Streams AQ continually generates the snapshot as of the first dequeue command, leading to poor performance. If the FIRST_MESSAGE option is specified, then Oracle Streams AQ uses a new snapshot for every dequeue command.

Messages enqueued in the same transaction into a queue that has been enabled for message grouping will form a group. If only one message is enqueued in the transaction, then this will effectively form a group of one message. There is no upper limit to the number of messages that can be grouped in a single transaction.

In queues that have not been enabled for message grouping, a dequeue in LOCKED or REMOVE mode locks only a single message. By contrast, a dequeue operation that seeks to dequeue a message that is part of a group will lock the entire group. This is useful when all the messages in a group need to be processed as an atomic unit.

When all the messages in a group have been dequeued, the dequeue returns an error indicating that all messages in the group have been processed. The application can then use the NEXT_TRANSACTION to start dequeuing messages from the next available group. In the event that no groups are available, the dequeue will time out after the specified WAIT period.

Using Secure Queues

For secure queues, you must specify consumer_name in the dequeue_options parameter. See DEQUEUE_OPTIONS_T Type for more information about consumer_name.

When you use secure queues, the following are required:

	
You must have created a valid Oracle Streams AQ agent using DBMS_AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure .

	
You must map the Oracle Streams AQ agent to a database user with dequeue privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See ENABLE_DB_ACCESS Procedure.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

DEQUEUE_ARRAY Function

This function dequeues an array of messages and returns them in the form of an array of payloads, an array of message properties and an array of message IDs. This function returns the number of messages successfully dequeued.

Syntax

DBMS_AQ.DEQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 dequeue_options IN dequeue_options_t,
 array_size IN pls_integer,
 message_properties_array OUT message_properties_array_t,
 payload_array OUT "<COLLECTION_1>",
 msgid_array OUT msgid_array_t,
 error_array OUT error_array_t)
RETURN pls_integer;

Parameters

Table 21-8 DEQUEUE_ARRAY Function Parameters

	Parameter	Description
	
queue_name

	
The queue name from which messages are dequeued (same as single-row dequeue).

	
dequeue_options

	
The set of options which will be applied to all messages in the array (same as single-row dequeue).

	
array_size

	
The number of elements to dequeue.

	
message_properties_array

	
A record containing an array corresponding to each message property. Each payload element has a corresponding set of message properties. See MESSAGE_PROPERTIES_ARRAY_T Type.

	
payload_array

	
An array of dequeued payload data. "<COLLECTION_1>" can be an associative array, varray or nested table in its PL/SQL representation.

	
msgid_array

	
An array of message IDs of the dequeued messages. See MSGID_ARRAY_T Type.

	
error_array

	
Currently not implemented

Usage Notes

A nonzero wait time, as specified in dequeue_options, is recognized only when there are no messages in the queue. If the queue contains messages that are eligible for dequeue, then the DEQUEUE_ARRAY function will dequeue up to array_size messages and return immediately.

Dequeue by message_id is not supported. See DEQUEUE Procedure for more information on the navigation parameter. Existing NAVIGATION modes are supported. In addition, two new NAVIGATION modes are supported for queues enabled for message grouping:

	
FIRST_MESSAGE_MULTI_GROUP

	
NEXT_MESSAGE_MULTI_GROUP

	
See Also:

ENQUEUE_OPTIONS_T Type

For transaction grouped queues and ONE_GROUP navigation, messages are dequeued from a single transaction group only, subject to the array_size limit. In MULTI_GROUP navigation, messages are dequeued across multiple transaction groups, still subject to the array_size limit. ORA-25235 is returned to indicate the end of a transaction group.

DEQUEUE_ARRAY is not supported for buffered messages, but you can still use this procedure on individual buffered messages by setting array_size to one message.

ENQUEUE Procedure

This procedure adds a message to the specified queue.

Syntax

DBMS_AQ.ENQUEUE (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 message_properties IN message_properties_t,
 payload IN "<ADT_1>",
 msgid OUT RAW);

Parameters

Table 21-9 ENQUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Specifies the name of the queue to which this message should be enqueued. The queue cannot be an exception queue.

	
enqueue_options

	
See ENQUEUE_OPTIONS_T Type.

	
message_properties

	
See MESSAGE_PROPERTIES_T Type.

	
payload

	
Not interpreted by Oracle Streams AQ. The payload must be specified according to the specification in the associated queue table. NULL is an acceptable parameter. For the definition of type_name refer to Type Name.

	
msgid

	
System generated identification of the message. This is a globally unique identifier that can be used to identify the message at dequeue time.

Usage Notes

The sequence_deviation parameter in enqueue_options can be used to change the order of processing between two messages. The identity of the other message, if any, is specified by the enqueue_options parameter relative_msgid. The relationship is identified by the sequence_deviation parameter.

Specifying sequence_deviation for a message introduces some restrictions for the delay and priority values that can be specified for this message. The delay of this message must be less than or equal to the delay of the message before which this message is to be enqueued. The priority of this message must be greater than or equal to the priority of the message before which this message is to be enqueued.

	
Note:

The sequence_deviation attribute has no effect in releases prior to Oracle Streams AQ 10g Release 1 (10.1) if message_grouping parameter of DBMS_AQADM subprograms is set to TRANSACTIONAL. The sequence deviation feature is deprecated in Oracle Streams AQ 10g Release 2 (10.2).

If a message is enqueued to a multiconsumer queue with no recipient, and if the queue has no subscribers (or rule-based subscribers that match this message), then Oracle error ORA_24033 is raised. This is a warning that the message will be discarded because there are no recipients or subscribers to whom it can be delivered.

Using Secure Queues

For secure queues, you must specify the sender_id in the messages_properties parameter. See MESSAGE_PROPERTIES_T Type for more information about sender_id.

When you use secure queues, the following are required:

	
You must have created a valid Oracle Streams AQ agent using DBMS_AQADM.CREATE_AQ_AGENT. See CREATE_AQ_AGENT Procedure .

	
You must map sender_id to a database user with enqueue privileges on the secure queue. Use DBMS_AQADM.ENABLE_DB_ACCESS to do this. See ENABLE_DB_ACCESS Procedure.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

ENQUEUE_ARRAY Function

This function enqueues an array of payloads using a corresponding array of message properties. The output will be an array of message IDs of the enqueued messages.

Syntax

DBMS_AQ.ENQUEUE_ARRAY (
 queue_name IN VARCHAR2,
 enqueue_options IN enqueue_options_t,
 array_size IN pls_integer,
 message_properties_array IN message_properties_array_t,
 payload_array IN "<COLLECTION_1>",
 msgid_array OUT msgid_array_t,
 error_array OUT error_array_t)
RETURN pls_integer;

Parameters

Table 21-10 ENQUEUE_ARRAY Function Parameters

	Parameter	Description
	
queue_name

	
The queue name in which messages are enqueued (same as single-row enqueue).

	
enqueue_options

	
See ENQUEUE_OPTIONS_T Type.

	
array_size

	
The number of elements to enqueue.

	
message_properties_array

	
A record containing an array corresponding to each message property. For each property, the user must allocate array_size elements. See MESSAGE_PROPERTIES_ARRAY_T Type.

	
payload_array

	
An array of payload data. "<COLLECTION_1>" can be an associative array, VARRAY, or nested table in its PL/SQL representation.

	
msgid_array

	
An array of message IDs for the enqueued messages. If an error occurs for a particular message, then its corresponding message ID is null. See MSGID_ARRAY_T Type.

	
error_array

	
Currently not implemented

Usage Notes

ENQUEUE_ARRAY is not supported for buffered messages, but you can still use this procedure on individual buffered messages by setting array_size to one message.

LISTEN Procedures

This procedure listens on one or more queues on behalf of a list of agents. The address field of the agent indicates the queue the agent wants to monitor. Only local queues are supported as addresses. Protocol is reserved for future use.

Syntax

DBMS_AQ.LISTEN (
 agent_list IN AQ$_AGENT_LIST_T,
 wait IN BINARY_INTEGER DEFAULT DBMS_AQ.FOREVER,
 agent OUT SYS.AQ$_AGENT);

DBMS_AQ.LISTEN (
 agent_list IN AQ$_AGENT_LIST_T,
 wait IN BINARY_INTEGER DEFAULT FOREVER,
 listen_delivery_mode IN PLS_INTEGER DEFAULT DBMS_AQ.PERSISTENT,
 agent OUT SYS.AQ$_AGENT,
 message_delivery_mode OUT PLS_INTEGER);

TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;
TYPE aq$_agent_list_t IS TABLE of aq$_agent INDEXED BY BINARY_INTEGER;

Parameters

Table 21-11 LISTEN Procedure Parameters

	Parameter	Description
	
agent_list

	
List of agents to listen for

	
wait

	
Time out for the listen call in seconds. By default, the call will block forever.

	
listen_delivery_mode

	
The caller specifies whether it is interested in persistent, buffered messages or both types of messages, specifying a delivery mode of DBMS_AQ.PERSISTENT or DBMS_AQ.BUFFERED or DBMS_AQ.PERSISTENT_OR_BUFFERED

	
agent

	
Agent with a message available for consumption

	
message_delivery_mode

	
Returns the message type along with the queue and consumer for which there is a message

Usage Notes

If agent-address is a multiconsumer queue, then agent-name is mandatory. For single-consumer queues, agent-name must not be specified.

This procedure takes a list of agents as an argument. You specify the queue to be monitored in the address field of each agent listed. You also must specify the name of the agent when monitoring multiconsumer queues. For single-consumer queues, an agent name must not be specified. Only local queues are supported as addresses. Protocol is reserved for future use.

This is a blocking call that returns when there is a message ready for consumption for an agent in the list. If there are messages for more than one agent, only the first agent listed is returned. If there are no messages found when the wait time expires, an error is raised.

A successful return from the LISTEN call is only an indication that there is a message for one of the listed agents in one the specified queues. The interested agent must still dequeue the relevant message.

	
Note:

You cannot call LISTEN on nonpersistent queues.

POST Procedure

This procedure posts to a list of anonymous subscriptions that allows all clients who are registered for the subscriptions to get notifications.

Syntax

DBMS_AQ.POST (
 post_list IN SYS.AQ$_POST_INFO_LIST,
 post_count IN NUMBER);

Parameters

Table 21-12 POST Procedure Parameters

	Parameter	Description
	
post_list

	
Specifies the list of anonymous subscriptions to which you want to post. It is a list of AQ$_POST_INFO_LIST Type.

	
post_count

	
Specifies the number of entries in the post_list.

Usage Notes

This procedure is used to post to anonymous subscriptions which allows all clients who are registered for the subscriptions to get notifications. Several subscriptions can be posted to at one time.

REGISTER Procedure

This procedure registers an e-mail address, user-defined PL/SQL procedure, or HTTP URL for message notification.

Syntax

DBMS_AQ.REGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 count IN NUMBER);

Parameters

Table 21-13 REGISTER Procedure Parameters

	Parameter	Description
	
reg_list

	
Specifies the list of subscriptions to which you want to register for message notifications. It is a list of AQ$_REG_INFO Type.

	
count

	
Specifies the number of entries in the reg_list.

Usage Notes

	
This procedure is used to register for notifications. You can specify an e-mail address to which message notifications are sent, register a procedure to be invoked on a notification, or register an HTTP URL to which the notification is posted. Interest in several subscriptions can be registered at one time.

	
The procedure can also be used to register for grouping notifications using five grouping attributes:

	
Class – grouping criterion (currently only TIME criterion is supported)

	
Value – the value of the grouping criterion (currently only time in seconds for criterion TIME)

	
Type – summary or last, also contains count of notifications received in group (for AQ namespace only, not for DBCHANGE namespace)

	
Repeat count – how many times to perform grouping (Default is FOREVER)

	
Start time – when to start grouping (Default is current time)

	
If you register for e-mail notifications, you should set the host name and port name for the SMTP server that will be used by the database to send e-mail notifications. If required, you should set the send-from e-mail address, which is set by the database as the sent from field. You need a Java-enabled database to use this feature.

	
If you register for HTTP notifications, you may want to set the host name and port number for the proxy server and a list of no-proxy domains that will be used by the database to post HTTP notifications.

	
See Also:

Chapter 23, "DBMS_AQELM" for more information on e-mail and HTTP notifications

UNBIND_AGENT Procedure

This procedure removes the entry for an Oracle Streams AQ agent from the LDAP server.

Syntax

DBMS_AQ.UNBIND_AGENT(
 agent IN SYS.AQ$_AGENT);

Parameters

Table 21-14 BIND_AGENT Procedure Parameters

	Parameter	Description
	
agent

	
Agent that is to be removed from the LDAP server

UNREGISTER Procedure

This procedure unregisters a subscription which turns off notifications.

Syntax

DBMS_AQ.UNREGISTER (
 reg_list IN SYS.AQ$_REG_INFO_LIST,
 reg_count IN NUMBER);

Parameters

Table 21-15 UNREGISTER Procedure Parameters

	Parameter	Description
	
reg_list

	
Specifies the list of subscriptions to which you want to register for message notifications. It is a list of AQ$_REG_INFO Type.

	
reg_count

	
Specifies the number of entries in the reg_list.

Usage Notes

This procedure is used to unregister a subscription which turns off notifications. Several subscriptions can be unregistered from at one time.

22 DBMS_AQADM

The DBMS_AQADM package provides procedures to manage Oracle Streams Advanced Queuing (AQ) configuration and administration information.

	
See Also:

	
Oracle Streams Advanced Queuing User's Guide

	
Chapter 224, "Oracle Streams AQ TYPEs" for information about the TYPEs to use with DBMS_AQADM

This chapter contains the following topics:

	
Using DBMS_AQADM

	
Constants

	
Subprogram Groups

	
Queue Table Subprograms

	
Privilege Subprograms

	
Queue Subprograms

	
Subscriber Subprograms

	
Notification Subprograms

	
Propagation Subprograms

	
Oracle Streams AQ Agent Subprograms

	
Alias Subprograms

	
Summary of DBMS_AQADM Subprograms

Using DBMS_AQADM

This section contains the following topics.

	
Constants

Constants

When using enumerated constants, such as INFINITE, TRANSACTIONAL, or NORMAL_QUEUE, the symbol must be specified with the scope of the packages defining it. All types associated with the administrative interfaces must be prepended with DBMS_AQADM. For example: DBMS_AQADM.NORMAL_QUEUE.

Table 22-1 Enumerated Types in the Administrative Interface

	Parameter	Options
	
retention

	
0, 1, 2...INFINITE

	
message_grouping

	
TRANSACTIONAL, NONE

	
queue_type

	
NORMAL_QUEUE, EXCEPTION_QUEUE, NON_PERSISTENT_QUEUE

	
See Also:

For more information on the Java classes and data structures used in both DBMS_AQ and DBMS_AQADM, see the DBMS_AQ package.

Subprogram Groups

This DBMS_AQADM package is made up of the following subprogram groups:

	
Queue Table Subprograms

	
Privilege Subprograms

	
Queue Subprograms

	
Subscriber Subprograms

	
Notification Subprograms

	
Propagation Subprograms

	
Oracle Streams AQ Agent Subprograms

	
Alias Subprograms

Queue Table Subprograms

Table 22-2 Queue Table Subprograms

	Subprograms	Description
	
ALTER_QUEUE_TABLE Procedure

	
Alters the existing properties of a queue table

	
CREATE_QUEUE_TABLE Procedure

	
Creates a queue table for messages of a predefined type

	
DROP_QUEUE_TABLE Procedure

	
Drops an existing queue table

	
ENABLE_JMS_TYPES Procedure

	
A precondition for the enqueue of JMS types and XML types

	
MIGRATE_QUEUE_TABLE Procedure

	
Upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table

	
PURGE_QUEUE_TABLE Procedure

	
Purges messages from queue tables

Privilege Subprograms

Table 22-3 Privilege Subprograms

	Subprograms	Description
	
GRANT_QUEUE_PRIVILEGE Procedure

	
Grants privileges on a queue to users and roles

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants Oracle Streams AQ system privileges to users and roles

	
REVOKE_QUEUE_PRIVILEGE Procedure

	
Revokes privileges on a queue from users and roles

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes Oracle Streams AQ system privileges from users and roles

Queue Subprograms

Table 22-4 Queue Subprograms

	Subprograms	Description
	
ALTER_QUEUE Procedure

	
Alters existing properties of a queue

	
CREATE_NP_QUEUE Procedure

	
Creates a nonpersistent RAW queue

	
CREATE_QUEUE Procedure

	
Creates a queue in the specified queue table

	
DROP_QUEUE Procedure

	
Drops an existing queue

	
QUEUE_SUBSCRIBERS Function

	
Returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t

	
START_QUEUE Procedure

	
Enables the specified queue for enqueuing or dequeuing

	
STOP_QUEUE Procedure

	
Disables enqueuing or dequeuing on the specified queue

Subscriber Subprograms

Table 22-5 Subscriber Subprograms

	Subprograms	Description
	
ADD_SUBSCRIBER Procedure

	
Adds a default subscriber to a queue

	
ALTER_SUBSCRIBER Procedure

	
Alters existing properties of a subscriber to a specified queue

	
REMOVE_SUBSCRIBER Procedure

	
Removes a default subscriber from a queue

Notification Subprograms

Table 22-6 Notification Subprograms

	Subprograms	Description
	
GET_WATERMARK Procedure

	
Retrieves the value of watermark set by the SET_WATERMARK Procedure

	
SET_WATERMARK Procedure

	
Used for Oracle Streams AQ notification to specify and limit memory use

Propagation Subprograms

Table 22-7 Propagation Subprograms

	Subprograms	Description
	
ALTER_PROPAGATION_SCHEDULE Procedure

	
Alters parameters for a propagation schedule

	
DISABLE_PROPAGATION_SCHEDULE Procedure

	
Disables a propagation schedule

	
ENABLE_PROPAGATION_SCHEDULE Procedure

	
Enables a previously disabled propagation schedule

	
SCHEDULE_PROPAGATION Procedure

	
Schedules propagation of messages from a queue to a destination identified by a specific database link

	
UNSCHEDULE_PROPAGATION Procedure

	
Unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link

	
VERIFY_QUEUE_TYPES Procedure

	
Verifies that the source and destination queues have identical types

Oracle Streams AQ Agent Subprograms

Table 22-8 Oracle Streams AQ Agent Subprograms

	Subprograms	Description
	
ALTER_AQ_AGENT Procedure

	
Alters an agent registered for Oracle Streams AQ Internet access, and an Oracle Streams AQ agent that accesses secure queues

	
CREATE_AQ_AGENT Procedure

	
Registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols, and creates an Oracle Streams AQ agent to access secure queues

	
DISABLE_DB_ACCESS Procedure

	
Revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent

	
DROP_AQ_AGENT Procedure

	
Drops an agent that was previously registered for Oracle Streams AQ Internet access

	
ENABLE_DB_ACCESS Procedure

	
Grants an Oracle Streams AQ Internet agent the privileges of a specific database user

Alias Subprograms

Table 22-9 Alias Subprograms

	Subprograms	Description
	
ADD_ALIAS_TO_LDAP Procedure

	
Creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP

	
DEL_ALIAS_FROM_LDAP Procedure

	
Drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP

Summary of DBMS_AQADM Subprograms

Table 22-10 DBMS_AQADM Package Subprograms

	Subprograms	Description
	
ADD_ALIAS_TO_LDAP Procedure

	
Creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP

	
ADD_SUBSCRIBER Procedure

	
Adds a default subscriber to a queue

	
ALTER_AQ_AGENT Procedure

	
Alters an agent registered for Oracle Streams AQ Internet access, and an Oracle Streams AQ agent that accesses secure queues

	
ALTER_PROPAGATION_SCHEDULE Procedure

	
Alters parameters for a propagation schedule

	
ALTER_QUEUE Procedure

	
Alters existing properties of a queue

	
ALTER_QUEUE_TABLE Procedure

	
Alters the existing properties of a queue table

	
ALTER_SUBSCRIBER Procedure

	
Alters existing properties of a subscriber to a specified queue

	
CREATE_AQ_AGENT Procedure

	
Registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols, and creates an Oracle Streams AQ agent to access secure queues

	
CREATE_NP_QUEUE Procedure

	
Creates a nonpersistent RAW queue

	
CREATE_QUEUE Procedure

	
Creates a queue in the specified queue table

	
CREATE_QUEUE_TABLE Procedure

	
Creates a queue table for messages of a predefined type

	
DEL_ALIAS_FROM_LDAP Procedure

	
Drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP

	
DISABLE_DB_ACCESS Procedure

	
Revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent

	
DISABLE_PROPAGATION_SCHEDULE Procedure

	
Disables a propagation schedule

	
DROP_AQ_AGENT Procedure

	
Drops an agent that was previously registered for Oracle Streams AQ Internet access

	
DROP_QUEUE Procedure

	
Drops an existing queue

	
DROP_QUEUE_TABLE Procedure

	
Drops an existing queue table

	
ENABLE_DB_ACCESS Procedure

	
Grants an Oracle Streams AQ Internet agent the privileges of a specific database user

	
ENABLE_JMS_TYPES Procedure

	
A precondition for the enqueue of JMS types and XML types

	
ENABLE_PROPAGATION_SCHEDULE Procedure

	
Enables a previously disabled propagation schedule

	
GET_WATERMARK Procedure

	
Retrieves the value of watermark set by the SET_WATERMARK Procedure

	
GRANT_QUEUE_PRIVILEGE Procedure

	
Grants privileges on a queue to users and roles

	
GRANT_SYSTEM_PRIVILEGE Procedure

	
Grants Oracle Streams AQ system privileges to users and roles

	
MIGRATE_QUEUE_TABLE Procedure

	
Upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table

	
PURGE_QUEUE_TABLE Procedure

	
Purges messages from queue tables

	
QUEUE_SUBSCRIBERS Function

	
Returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t

	
REMOVE_SUBSCRIBER Procedure

	
Removes a default subscriber from a queue

	
REVOKE_QUEUE_PRIVILEGE Procedure

	
Revokes privileges on a queue from users and roles

	
REVOKE_SYSTEM_PRIVILEGE Procedure

	
Revokes Oracle Streams AQ system privileges from users and roles

	
SCHEDULE_PROPAGATION Procedure

	
Schedules propagation of messages from a queue to a destination identified by a specific database link

	
SET_WATERMARK Procedure

	
Used for Oracle Streams AQ notification to specify and limit memory use

	
START_QUEUE Procedure

	
Enables the specified queue for enqueuing or dequeuing

	
STOP_QUEUE Procedure

	
Disables enqueuing or dequeuing on the specified queue

	
UNSCHEDULE_PROPAGATION Procedure

	
Unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link

	
VERIFY_QUEUE_TYPES Procedure

	
Verifies that the source and destination queues have identical types

ADD_ALIAS_TO_LDAP Procedure

This procedure creates an alias for a queue, agent, or a JMS ConnectionFactory in LDAP. The alias will be placed directly under the database server's distinguished name in LDAP hierarchy.

Syntax

DBMS_AQADM.ADD_ALIAS_TO_LDAP(
 alias IN VARCHAR2,
 obj_location IN VARCHAR2);

Parameters

Table 22-11 ADD_ALIAS_TO_LDAP Procedure Parameters

	Parameter	Description
	
alias

	
Name of the alias. Example: west_shipping.

	
obj_location

	
The distinguished name of the object (queue, agent or connection factory) to which alias refers.

Usage Notes

This method can be used to create aliases for queues, agents, and JMS ConnectionFactory objects. These object must exist before the alias is created. These aliases can be used for JNDI lookup in JMS and Oracle Streams AQ Internet access.

ADD_SUBSCRIBER Procedure

This procedure adds a default subscriber to a queue.

Syntax

DBMS_AQADM.ADD_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2 DEFAULT NULL,
 transformation IN VARCHAR2 DEFAULT NULL
 queue_to_queue IN BOOLEAN DEFAULT FALSE,
 delivery_mode IN PLS_INTEGER DEFAULT DBMS_AQADM.PERSISTENT);

Parameters

Table 22-12 ADD_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent on whose behalf the subscription is being defined.

	
rule

	
A conditional expression based on the message properties, the message data properties and PL/SQL functions. A rule is specified as a Boolean expression using syntax similar to the WHERE clause of a SQL query. This Boolean expression can include conditions on message properties, user data properties (object payloads only), and PL/SQL or SQL functions (as specified in the where clause of a SQL query). Currently supported message properties are priority and corrid.

To specify rules on a message payload (object payload), use attributes of the object type in clauses. You must prefix each attribute with tab.user_data as a qualifier to indicate the specific column of the queue table that stores the payload. The rule parameter cannot exceed 4000 characters.

	
transformation

	
Specifies a transformation that will be applied when this subscriber dequeues the message. The source type of the transformation must match the type of the queue. If the subscriber is remote, then the transformation is applied before propagation to the remote queue.

	
queue_to_queue

	
If TRUE, propagation is from queue-to-queue.

	
delivery_mode

	
The administrator may specify one of DBMS_AQADM.PERSISTENT, DBMS_AQADM.BUFFERED, or DBMS_AQADM.PERSISTENT_OR_BUFFERED for the delivery mode of the messages the subscriber is interested in. This parameter will not be modifiable by ALTER_SUBSCRIBER.

Usage Notes

A program can enqueue messages to a specific list of recipients or to the default list of subscribers. This operation only succeeds on queues that allow multiple consumers. This operation takes effect immediately, and the containing transaction is committed. Enqueue requests that are executed after the completion of this call will reflect the new behavior.

Any string within the rule must be quoted:

rule => 'PRIORITY <= 3 AND CORRID = ''FROM JAPAN'''

Note that these are all single quotation marks.

ALTER_AQ_AGENT Procedure

This procedure alters an agent registered for Oracle Streams AQ Internet access. It is also used to alter an Oracle Streams AQ agent that accesses secure queues.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

Syntax

DBMS_AQADM.ALTER_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

Table 22-13 ALTER_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
certification_location

	
Agent's certificate location in LDAP (default is NULL). If the agent is allowed to access Oracle Streams AQ through SMTP, then its certificate must be registered in LDAP. For access through HTTP, the certificate location is not required.

	
enable_http

	
TRUE means the agent can access Oracle Streams AQ through HTTP. FALSE means the agent cannot access Oracle Streams AQ through HTTP.

	
enable_smtp

	
TRUE means the agent can access Oracle Streams AQ through SMTP (e-mail). FALSE means the agent cannot access Oracle Streams AQ through SMTP.

	
enable_anyp

	
TRUE means the agent can access Oracle Streams AQ through any protocol (HTTP or SMTP).

ALTER_PROPAGATION_SCHEDULE Procedure

This procedure alters parameters for a propagation schedule.

Syntax

DBMS_AQADM.ALTER_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-14 ALTER_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
duration

	
Duration of the propagation window in seconds. A NULL value means the propagation window is forever or until the propagation is unscheduled.

	
next_time

	
Date function to compute the start of the next propagation window from the end of the current window. If this value is NULL, then propagation is stopped at the end of the current window. For example, to start the window at the same time every day, next_time should be specified as SYSDATE + 1 - duration/86400.

	
latency

	
Maximum wait, in seconds, in the propagation window for a message to be propagated after it is enqueued. The default value is 60. Caution: if latency is not specified for this call, then latency will over-write any existing value with the default value.

For example, if the latency is 60 seconds and there are no messages to be propagated during the propagation window, then messages from that queue for the destination are not propagated for at least 60 more seconds. It will be at least 60 seconds before the queue will be checked again for messages to be propagated for the specified destination. If the latency is 600, then the queue will not be checked for 10 minutes and if the latency is 0, then a job queue process will be waiting for messages to be enqueued for the destination and as soon as a message is enqueued it will be propagated.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

ALTER_QUEUE Procedure

This procedure alters existing properties of a queue. The parameters max_retries, retention_time, and retry_delay are not supported for nonpersistent queues.

Syntax

DBMS_AQADM.ALTER_QUEUE (
 queue_name IN VARCHAR2,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT NULL,
 retention_time IN NUMBER DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-15 ALTER_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be altered

	
max_retries

	
Limits the number of times a dequeue with REMOVE mode can be attempted on a message. The maximum value of max_retries is 2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is greater than MAX_RETRIES. RETRY_COUNT is incremented when the application issues a rollback after executing the dequeue. If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

Note that max_retries is supported for all single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retry_delay

	
Delay time in seconds before this message is scheduled for processing again after an application rollback. The default is NULL, which means that the value will not be altered.

Note that retry_delay is supported for single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retention_time

	
Retention time in seconds for which a message is retained in the queue table after being dequeued. The default is NULL, which means that the value will not be altered.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the ALTER_QUEUE operation is carried out. The ALTER_QUEUE operation become persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog. The default value is NULL, which means that the value will not be changed.

ALTER_QUEUE_TABLE Procedure

This procedure alters the existing properties of a queue table.

Syntax

DBMS_AQADM.ALTER_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 comment IN VARCHAR2 DEFAULT NULL,
 primary_instance IN BINARY_INTEGER DEFAULT NULL,
 secondary_instance IN BINARY_INTEGER DEFAULT NULL);

Parameters

Table 22-16 ALTER_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be created.

	
comment

	
Modifies the user-specified description of the queue table. This user comment is added to the queue catalog. The default value is NULL which means that the value will not be changed.

	
primary_instance

	
This is the primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table will be done in this instance. The default value is NULL, which means that the current value will not be changed.

	
secondary_instance

	
The queue table fails over to the secondary instance if the primary instance is not available. The default value is NULL, which means that the current value will not be changed.

ALTER_SUBSCRIBER Procedure

This procedure alters existing properties of a subscriber to a specified queue. Only the rule can be altered.

Syntax

DBMS_AQADM.ALTER_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent,
 rule IN VARCHAR2
 transformation IN VARCHAR2);

Parameters

Table 22-17 ALTER_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent on whose behalf the subscription is being altered. See "AQ$_AGENT Type".

	
rule

	
A conditional expression based on the message properties, the message data properties and PL/SQL functions. The rule parameter cannot exceed 4000 characters. To eliminate the rule, set the rule parameter to NULL.

	
transformation

	
Specifies a transformation that will be applied when this subscriber dequeues the message. The source type of the transformation must match the type of the queue. If the subscriber is remote, then the transformation is applied before propagation to the remote queue.

Usage Notes

This procedure alters both the rule and the transformation for the subscriber. If you want to retain the existing value for either of them, you must specify its old value. The current values for rule and transformation for a subscriber can be obtained from the schema.AQ$queue_table_R and schema.AQ$queue_table_S views.

CREATE_AQ_AGENT Procedure

This procedure registers an agent for Oracle Streams AQ Internet access using HTTP/SMTP protocols. It is also used to create an Oracle Streams AQ agent to access secure queues.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

Syntax

DBMS_AQADM.CREATE_AQ_AGENT (
 agent_name IN VARCHAR2,
 certificate_location IN VARCHAR2 DEFAULT NULL,
 enable_http IN BOOLEAN DEFAULT FALSE,
 enable_smtp IN BOOLEAN DEFAULT FALSE,
 enable_anyp IN BOOLEAN DEFAULT FALSE)

Parameters

Table 22-18 CREATE_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
certification_location

	
Agent's certificate location in LDAP (default is NULL). If the agent is allowed to access Oracle Streams AQ through SMTP, then its certificate must be registered in LDAP. For access through HTTP, the certificate location is not required.

	
enable_http

	
TRUE means the agent can access Oracle Streams AQ through HTTP. FALSE means the agent cannot access Oracle Streams AQ through HTTP.

	
enable_smtp

	
TRUE means the agent can access Oracle Streams AQ through SMTP (e-mail). FALSE means the agent cannot access Oracle Streams AQ through SMTP.

	
enable_anyp

	
TRUE means the agent can access Oracle Streams AQ through any protocol (HTTP or SMTP).

Usage Notes

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet agents.

CREATE_NP_QUEUE Procedure

	
Note:

nonpersistent queues are deprecated as of Release 10gR2. Oracle recommends using buffered messaging.

This procedure creates a nonpersistent RAW queue.

Syntax

DBMS_AQADM.CREATE_NP_QUEUE (
 queue_name IN VARCHAR2,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-19 CREATE_NP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the nonpersistent queue that is to be created. The name must be unique within a schema and must follow object name guidelines in Oracle Database SQL Language Reference.

	
multiple_consumers

	
FALSE means queues created in the table can only have one consumer for each message. This is the default. TRUE means queues created in the table can have multiple consumers for each message.

Note that this parameter is distinguished at the queue level, because a nonpersistent queue does not inherit this characteristic from any user-created queue table.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog.

Usage Notes

The queue may be either single-consumer or multiconsumer queue. All queue names must be unique within a schema. The queues are created in a 8.1-compatible or higher system-created queue table (AQ$_MEM_SC or AQ$_MEM_MC) in the same schema as that specified by the queue name.

If the queue name does not specify a schema name, the queue is created in the login user's schema. After a queue is created with CREATE_NP_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created with both enqueue and dequeue disabled.

You cannot dequeue from a nonpersistent queue. The only way to retrieve a message from a nonpersistent queue is by using the OCI notification mechanism. You cannot invoke the LISTEN call on a nonpersistent queue.

CREATE_QUEUE Procedure

This procedure creates a queue in the specified queue table.

Syntax

DBMS_AQADM.CREATE_QUEUE (
 queue_name IN VARCHAR2,
 queue_table IN VARCHAR2,
 queue_type IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 max_retries IN NUMBER DEFAULT NULL,
 retry_delay IN NUMBER DEFAULT 0,
 retention_time IN NUMBER DEFAULT 0,
 dependency_tracking IN BOOLEAN DEFAULT FALSE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 22-20 CREATE_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be created. The name must be unique within a schema and must follow object name guidelines in Oracle Database SQL Language Reference with regard to reserved characters.

	
queue_table

	
Name of the queue table that will contain the queue.

	
queue_type

	
Specifies whether the queue being created is an exception queue or a normal queue. NORMAL_QUEUE means the queue is a normal queue. This is the default. EXCEPTION_QUEUE means it is an exception queue. Only the dequeue operation is allowed on the exception queue.

	
max_retries

	
Limits the number of times a dequeue with the REMOVE mode can be attempted on a message. The maximum value of max_retries is 2**31 -1.

A message is moved to an exception queue if RETRY_COUNT is greater than MAX_RETRIES. RETRY_COUNT is incremented when the application issues a rollback after executing the dequeue. If a dequeue transaction fails because the server process dies (including ALTER SYSTEM KILL SESSION) or SHUTDOWN ABORT on the instance, then RETRY_COUNT is not incremented.

Note that max_retries is supported for all single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retry_delay

	
Delay time, in seconds, before this message is scheduled for processing again after an application rollback.

The default is 0, which means the message can be retried as soon as possible. This parameter has no effect if max_retries is set to 0. Note that retry_delay is supported for single consumer queues and 8.1-compatible or higher multiconsumer queues but not for 8.0-compatible multiconsumer queues.

	
retention_time

	
Number of seconds for which a message is retained in the queue table after being dequeued from the queue. INFINITE means the message is retained forever. NUMBER is the number of seconds for which to retain the messages. The default is 0, no retention.

	
dependency_tracking

	
Reserved for future use. FALSE is the default. TRUE is not permitted in this release.

	
comment

	
User-specified description of the queue. This user comment is added to the queue catalog.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the CREATE_QUEUE operation is carried out. The CREATE_QUEUE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

All queue names must be unique within a schema. After a queue is created with CREATE_QUEUE, it can be enabled by calling START_QUEUE. By default, the queue is created with both enqueue and dequeue disabled.

CREATE_QUEUE_TABLE Procedure

This procedure creates a queue table for messages of a predefined type.

Syntax

DBMS_AQADM.CREATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 queue_payload_type IN VARCHAR2,
 storage_clause IN VARCHAR2 DEFAULT NULL,
 sort_list IN VARCHAR2 DEFAULT NULL,
 multiple_consumers IN BOOLEAN DEFAULT FALSE,
 message_grouping IN BINARY_INTEGER DEFAULT NONE,
 comment IN VARCHAR2 DEFAULT NULL,
 auto_commit IN BOOLEAN DEFAULT TRUE,
 primary_instance IN BINARY_INTEGER DEFAULT 0,
 secondary_instance IN BINARY_INTEGER DEFAULT 0,
 compatible IN VARCHAR2 DEFAULT NULL,
 secure IN BOOLEAN DEFAULT FALSE);

Parameters

Table 22-21 CREATE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be created

	
queue_payload_type

	
Type of the user data stored. See Type Name for valid values for this parameter.

	
storage_clause

	
Storage parameter. The storage parameter is included in the CREATE TABLE statement when the queue table is created. The storage_clause argument can take any text that can be used in a standard CREATE TABLE storage_clause argument.The storage parameter can be made up of any combinations of the following parameters: PCTFREE, PCTUSED, INITRANS, MAXTRANS, TABLEPSACE, LOB, and a table storage clause.

If a tablespace is not specified here, then the queue table and all its related objects are created in the default user tablespace. If a tablespace is specified here, then the queue table and all its related objects are created in the tablespace specified in the storage clause. See Oracle Database SQL Language Reference for the usage of these parameters.

	
sort_list

	
The columns to be used as the sort key in ascending order. This parameter has the following format:

'sort_column_1,sort_column_2'

The allowed column names are priority and enq_time. If both columns are specified, then sort_column_1 defines the most significant order.

After a queue table is created with a specific ordering mechanism, all queues in the queue table inherit the same defaults. The order of a queue table cannot be altered after the queue table has been created.

If no sort list is specified, then all the queues in this queue table are sorted by the enqueue time in ascending order. This order is equivalent to FIFO order.

Even with the default ordering defined, a dequeuer is allowed to choose a message to dequeue by specifying its msgid or correlation. msgid, correlation, and sequence_deviation take precedence over the default dequeueing order, if they are specified.

	
multiple_consumers

	
FALSE means queues created in the table can only have one consumer for each message. This is the default. TRUE means queues created in the table can have multiple consumers for each message.

	
message_grouping

	
Message grouping behavior for queues created in the table. NONE means each message is treated individually. TRANSACTIONAL means messages enqueued as part of one transaction are considered part of the same group and can be dequeued as a group of related messages.

	
comment

	
User-specified description of the queue table. This user comment is added to the queue catalog.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the CREATE_QUEUE_TABLE operation is carried out. The CREATE_QUEUE_TABLE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Note: This parameter has been deprecated.

	
primary_instance

	
The primary owner of the queue table. Queue monitor scheduling and propagation for the queues in the queue table are done in this instance.

The default value for primary instance is 0, which means queue monitor scheduling and propagation will be done in any available instance.

	
secondary_instance

	
The queue table fails over to the secondary instance if the primary instance is not available. The default value is 0, which means that the queue table will fail over to any available instance.

	
compatible

	
The lowest database version with which the queue is compatible. Currently the possible values are either 8.0, 8.1, or 10.0. If the database is in 10.1-compatible mode, the default value is 10.0. If the database is in 8.1-compatible or 9.2-compatible mode, the default value is 8.1. If the database is in 8.0 compatible mode, the default value is 8.0.

	
secure

	
This parameter must be set to TRUE if you want to use the queue table for secure queues. Secure queues are queues for which AQ agents must be associated explicitly with one or more database users who can perform queue operations, such as enqueue and dequeue. The owner of a secure queue can perform all queue operations on the queue, but other users cannot perform queue operations on a secure queue, unless they are configured as secure queue users.

Usage Notes

The sort keys for dequeue ordering, if any, must be defined at table creation time. The following objects are created at this time:

	
aq$_queue_table_name_e, a default exception queue associated with the queue table

	
aq$queue_table_name, a read-only view, which is used by Oracle Streams AQ applications for querying queue data

	
aq$_queue_table_name_t, an index (or an index organized table (IOT) in the case of multiple consumer queues) for the queue monitor operations

	
aq$_queue_table_name_i, an index (or an index organized table in the case of multiple consumer queues) for dequeue operations

For 8.1-compatible or higher queue tables, the following index-organized tables are created:

	
aq$_queue_table_name_s, a table for storing information about the subscribers

	
aq$_queue_table_name_r, a table for storing information about rules on subscriptions

aq$_queue_table_name_h, an index-organized table for storing the dequeue history data

CLOB, BLOB, and BFILE are valid attributes for Oracle Streams AQ object type payloads. However, only CLOB and BLOB can be propagated using Oracle Streams AQ propagation in Oracle8i release 8.1.5 or later. See the Oracle Streams Advanced Queuing User's Guide for more information.

The default value of the compatible parameter depends on the database compatibility mode in the init.ora. If the database is in 10.1-compatible mode, the default value is 10.0. If the database is in 8.1-compatible or 9.2-compatible mode, the default value is 8.1. If the database is in 8.0 compatible mode, the default value is 8.0

You can specify and modify the primary_instance and secondary_instance only in 8.1-compatible or higher mode. You cannot specify a secondary instance unless there is a primary instance.

DEL_ALIAS_FROM_LDAP Procedure

This procedure drops an alias for a queue, agent, or JMS ConnectionFactory in LDAP.

Syntax

DBMS_AQ.DEL_ALIAS_FROM_LDAP(
 alias IN VARCHAR2);

Parameters

Table 22-22 DEL_ALIAS_FROM_LDAP Procedure Parameters

	Parameter	Description
	
alias

	
The alias to be removed.

DISABLE_DB_ACCESS Procedure

This procedure revokes the privileges of a specific database user from an Oracle Streams AQ Internet agent.

Syntax

DBMS_AQADM.DISABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Table 22-23 DISABLE_DB_ACCESS Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
db_username

	
Specifies the database user whose privileges are to be revoked from the Oracle Streams AQ Internet agent.

Usage Notes

The Oracle Streams AQ Internet agent should have been previously granted those privileges using the ENABLE_DB_ACCESS Procedure.

DISABLE_PROPAGATION_SCHEDULE Procedure

This procedure disables a propagation schedule.

Syntax

DBMS_AQADM.DISABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-24 DISABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

DROP_AQ_AGENT Procedure

This procedure drops an agent that was previously registered for Oracle Streams AQ Internet access.

Syntax

DBMS_AQADM.DROP_AQ_AGENT (
 agent_name IN VARCHAR2)

Parameters

Table 22-25 DROP_AQ_AGENT Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent

DROP_QUEUE Procedure

This procedure drops an existing queue.

Syntax

DBMS_AQADM.DROP_QUEUE (
 queue_name IN VARCHAR2,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 22-26 DROP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue that is to be dropped.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the DROP_QUEUE operation is carried out. The DROP_QUEUE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

DROP_QUEUE is not allowed unless STOP_QUEUE has been called to disable the queue for both enqueuing and dequeuing. All the queue data is deleted as part of the drop operation.

DROP_QUEUE_TABLE Procedure

This procedure drops an existing queue table.

Syntax

DBMS_AQADM.DROP_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE,
 auto_commit IN BOOLEAN DEFAULT TRUE);

Parameters

Table 22-27 DROP_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Name of a queue table to be dropped.

	
force

	
FALSE means the operation does not succeed if there are any queues in the table. This is the default. TRUE means all queues in the table are stopped and dropped automatically.

	
auto_commit

	
TRUE causes the current transaction, if any, to commit before the DROP_QUEUE_TABLE operation is carried out. The DROP_QUEUE_TABLE operation becomes persistent when the call returns. This is the default. FALSE means the operation is part of the current transaction and becomes persistent only when the caller enters a commit.

Caution: This parameter has been deprecated.

Usage Notes

All the queues in a queue table must be stopped and dropped before the queue table can be dropped. You must do this explicitly unless the force option is used, in which case this is done automatically.

ENABLE_DB_ACCESS Procedure

This procedure grants an Oracle Streams AQ Internet agent the privileges of a specific database user.

Syntax

DBMS_AQADM.ENABLE_DB_ACCESS (
 agent_name IN VARCHAR2,
 db_username IN VARCHAR2)

Parameters

Table 22-28 ENABLE_DB_ACCESS Procedure Parameters

	Parameter	Description
	
agent_name

	
Specifies the username of the Oracle Streams AQ Internet agent.

	
db_username

	
Specified the database user whose privileges are to be granted to the Oracle Streams AQ Internet agent.

Usage Notes

The Oracle Streams AQ Internet agent should have been previously created using the CREATE_AQ_AGENT Procedure.

For secure queues, the sender and receiver agent of the message must be mapped to the database user performing the enqueue or dequeue operation.

	
See Also:

Oracle Streams Concepts and Administration for information about secure queues

The SYS.AQ$INTERNET_USERS view has a list of all Oracle Streams AQ Internet agents and the names of the database users whose privileges are granted to them.

ENABLE_JMS_TYPES Procedure

Enqueue of JMS types and XML types does not work with Oracle Streams Sys.Anydata queues unless you call this procedure after DBMS_STREAMS_ADM.SET_UP_QUEUE. Enabling an Oracle Streams queue for these types may affect import/export of the queue table.

Syntax

DBMS_AQADM.ENABLE_JMS_TYPES (
 queue_table IN VARCHAR2);

Parameters

Table 22-29 ENABLE_JMS_TYPES Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies name of the queue table to be enabled for JMS and XML types.

ENABLE_PROPAGATION_SCHEDULE Procedure

This procedure enables a previously disabled propagation schedule.

Syntax

DBMS_AQADM.ENABLE_PROPAGATION_SCHEDULE (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-30 ENABLE_PROPAGATION_SCHEDULE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

GET_WATERMARK Procedure

This procedure retrieves the value of watermark set by SET_WATERMARK.

Syntax

DBMS_AQADM.GET_WATERMARK (
 wmvalue OUT NUMBER);

Parameters

Table 22-31 GET_WATERMARK Procedure Parameter

	Parameter	Description
	
wmvalue

	
Watermark value in megabytes.

GRANT_QUEUE_PRIVILEGE Procedure

This procedure grants privileges on a queue to users and roles. The privileges are ENQUEUE or DEQUEUE. Initially, only the queue table owner can use this procedure to grant privileges on the queues.

Syntax

DBMS_AQADM.GRANT_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2,
 grant_option IN BOOLEAN := FALSE);

Parameters

Table 22-32 GRANT_QUEUE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ queue privilege to grant. The options are ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

	
queue_name

	
Name of the queue.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

	
grant_option

	
Specifies if the access privilege is granted with the GRANT option or not. If the privilege is granted with the GRANT option, then the grantee is allowed to use this procedure to grant the access privilege to other users or roles, regardless of the ownership of the queue table. The default is FALSE.

GRANT_SYSTEM_PRIVILEGE Procedure

This procedure grants Oracle Streams AQ system privileges to users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. Initially, only SYS and SYSTEM can use this procedure successfully.

Syntax

DBMS_AQADM.GRANT_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2,
 admin_option IN BOOLEAN := FALSE);

Parameters

Table 22-33 GRANT_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ system privilege to grant. The options are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. ENQUEUE_ANY means users granted this privilege are allowed to enqueue messages to any queues in the database. DEQUEUE_ANY means users granted this privilege are allowed to dequeue messages from any queues in the database. MANAGE_ANY means users granted this privilege are allowed to run DBMS_AQADM calls on any schemas in the database.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

	
admin_option

	
Specifies if the system privilege is granted with the ADMIN option or not.

If the privilege is granted with the ADMIN option, then the grantee is allowed to use this procedure to grant the system privilege to other users or roles. The default is FALSE.

MIGRATE_QUEUE_TABLE Procedure

This procedure upgrades an 8.0-compatible queue table to an 8.1-compatible or higher queue table, or downgrades an 8.1-compatible or higher queue table to an 8.0-compatible queue table.

Syntax

DBMS_AQADM.MIGRATE_QUEUE_TABLE (
 queue_table IN VARCHAR2,
 compatible IN VARCHAR2);

Parameters

Table 22-34 MIGRATE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies name of the queue table to be migrated.

	
compatible

	
Set this to 8.1 to upgrade an 8.0-compatible queue table, or set this to 8.0 to downgrade an 8.1-compatible queue table.

PURGE_QUEUE_TABLE Procedure

This procedure purges messages from queue tables. You can perform various purge operations on both single-consumer and multiconsumer queue tables for persistent and buffered messages.

Syntax

DBMS_AQADM.PURGE_QUEUE_TABLE(
 queue_table IN VARCHAR2,
 purge_condition IN VARCHAR2,
 purge_options IN aq$_purge_options_t);

where type aq$_purge_options_t is described in Chapter 224, "Oracle Streams AQ TYPEs".

Parameters

Table 22-35 PURGE_QUEUE_TABLE Procedure Parameters

	Parameter	Description
	
queue_table

	
Specifies the name of the queue table to be purged.

	
purge_condition

	
Specifies the purge condition to use when purging the queue table. The purge condition must be in the format of a SQL WHERE clause, and it is case-sensitive. The condition is based on the columns of aq$queue_table_name view.

When specifying the purge_condition, qualify the column names in aq$queue_table_name view with qtview.

To purge all queues in a queue table, set purge_condition to either NULL (a bare null word, no quotes) or'' (two single quotes).

	
purge_options

	
Type aq$_purge_options_t contains a block parameter and a delivery_mode parameter.

	
If block is TRUE, then an exclusive lock on all the queues in the queue table is held while purging the queue table. This will cause concurrent enqueuers and dequeuers to block while the queue table is purged. The purge call always succeeds if block is TRUE. The default for block is FALSE. This will not block enqueuers and dequeuers, but it can cause the purge to fail with an error during high concurrency times.

	
delivery_mode is used to specify whether DBMS_AQADM.PERSISTENT, DBMS_AQADM.BUFFERED or DBMS_AQADM.PERSISTENT_OR_BUFFERED types of messages are to be purged. You cannot implement arbitrary purge conditions if buffered messages have to be purged.

Usage Notes

	
You an purge selected messages from the queue table by specifying a purge_condition. Table 22-35 describes these parameters. Messages can be enqueued to and dequeued from the queue table while the queue table is being purged.

	
A trace file is generated in the udump destination when you run this procedure. It details what the procedure is doing.

	
This procedure commits batches of messages in autonomous transactions. Several such autonomous transactions may get executed as a part of one purge_queue_table call depending on the number of messages in the queue table.

QUEUE_SUBSCRIBERS Function

This function returns the subscribers to an 8.0-compatible multiconsumer queue in the PL/SQL index by table collection type DBMS_AQADM.AQ$_subscriber_list_t. Each element of the collection is of type sys.aq$_agent. This functionality is provided for 8.1-compatible queues by the AQ$queue_table_name_S view.

Syntax

DBMS_AQADM.QUEUE_SUBSCRIBERS (
 queue_name IN VARCHAR2);
RETURN aq$_subscriber_list_t IS

Parameters

Table 22-36 QUEUE_SUBSCRIBERS Function Parameters

	Parameter	Description
	
queue_name

	
Specifies the queue whose subscribers are to be printed.

REMOVE_SUBSCRIBER Procedure

This procedure removes a default subscriber from a queue. This operation takes effect immediately, and the containing transaction is committed. All references to the subscriber in existing messages are removed as part of the operation.

Syntax

DBMS_AQADM.REMOVE_SUBSCRIBER (
 queue_name IN VARCHAR2,
 subscriber IN sys.aq$_agent);

Parameters

Table 22-37 REMOVE_SUBSCRIBER Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue.

	
subscriber

	
Agent who is being removed. See AQ$_AGENT Type.

REVOKE_QUEUE_PRIVILEGE Procedure

This procedure revokes privileges on a queue from users and roles. The privileges are ENQUEUE or DEQUEUE.

Syntax

DBMS_AQADM.REVOKE_QUEUE_PRIVILEGE (
 privilege IN VARCHAR2,
 queue_name IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Table 22-38 REVOKE_QUEUE_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ queue privilege to revoke. The options are ENQUEUE, DEQUEUE, and ALL. ALL means both ENQUEUE and DEQUEUE.

	
queue_name

	
Name of the queue.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role. If the privilege has been propagated by the grantee through the GRANT option, then the propagated privilege is also revoked.

Usage Notes

To revoke a privilege, the revoker must be the original grantor of the privilege. The privileges propagated through the GRANT option are revoked if the grantor's privileges are revoked.

REVOKE_SYSTEM_PRIVILEGE Procedure

This procedure revokes Oracle Streams AQ system privileges from users and roles. The privileges are ENQUEUE_ANY, DEQUEUE_ANY and MANAGE_ANY. The ADMIN option for a system privilege cannot be selectively revoked.

Syntax

DBMS_AQADM.REVOKE_SYSTEM_PRIVILEGE (
 privilege IN VARCHAR2,
 grantee IN VARCHAR2);

Parameters

Table 22-39 REVOKE_SYSTEM_PRIVILEGE Procedure Parameters

	Parameter	Description
	
privilege

	
The Oracle Streams AQ system privilege to revoke. The options are ENQUEUE_ANY, DEQUEUE_ANY, and MANAGE_ANY. The ADMIN option for a system privilege cannot be selectively revoked.

	
grantee

	
Grantee(s). The grantee(s) can be a user, a role, or the PUBLIC role.

SCHEDULE_PROPAGATION Procedure

This procedure schedules propagation of messages from a queue to a destination identified by a specific database link.

Syntax

DBMS_AQADM.SCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 start_time IN DATE DEFAULT SYSDATE,
 duration IN NUMBER DEFAULT NULL,
 next_time IN VARCHAR2 DEFAULT NULL,
 latency IN NUMBER DEFAULT 60,
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-40 SCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the administrative user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
start_time

	
Initial start time for the propagation window for messages from the source queue to the destination.

	
duration

	
Duration of the propagation window in seconds. A NULL value means the propagation window is forever or until the propagation is unscheduled.

	
next_time

	
Date function to compute the start of the next propagation window from the end of the current window. If this value is NULL, then propagation is stopped at the end of the current window. For example, to start the window at the same time every day, next_time should be specified as SYSDATE + 1 - duration/86400.

	
latency

	
Maximum wait, in seconds, in the propagation window for a message to be propagated after it is enqueued.

For example, if the latency is 60 seconds and there are no messages to be propagated during the propagation window, then messages from that queue for the destination are not propagated for at least 60 more seconds.

It is at least 60 seconds before the queue is checked again for messages to be propagated for the specified destination. If the latency is 600, then the queue is not checked for 10 minutes, and if the latency is 0, then a job queue process will be waiting for messages to be enqueued for the destination. As soon as a message is enqueued, it is propagated.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

Usage Notes

Messages may also be propagated to other queues in the same database by specifying a NULL destination. If a message has multiple recipients at the same destination in either the same or different queues, the message is propagated to all of them at the same time.

SET_WATERMARK Procedure

This procedure is used for Oracle Streams AQ notification to specify and limit memory use.

Syntax

DBMS_AQADM.SET_WATERMARK (
 wmvalue IN NUMBER);

Parameters

Table 22-41 SET_WATERMARK Procedure Parameter

	Parameter	Description
	
wmvalue

	
Watermark value in megabytes.

START_QUEUE Procedure

This procedure enables the specified queue for enqueuing or dequeuing.

Syntax

DBMS_AQADM.START_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE);

Parameters

Table 22-42 START_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue to be enabled

	
enqueue

	
Specifies whether ENQUEUE should be enabled on this queue. TRUE means enable ENQUEUE. This is the default. FALSE means do not alter the current setting.

	
dequeue

	
Specifies whether DEQUEUE should be enabled on this queue. TRUE means enable DEQUEUE. This is the default. FALSE means do not alter the current setting.

Usage Notes

After creating a queue, the administrator must use START_QUEUE to enable the queue. The default is to enable it for both ENQUEUE and DEQUEUE. Only dequeue operations are allowed on an exception queue. This operation takes effect when the call completes and does not have any transactional characteristics.

STOP_QUEUE Procedure

This procedure disables enqueuing or dequeuing on the specified queue.

Syntax

DBMS_AQADM.STOP_QUEUE (
 queue_name IN VARCHAR2,
 enqueue IN BOOLEAN DEFAULT TRUE,
 dequeue IN BOOLEAN DEFAULT TRUE,
 wait IN BOOLEAN DEFAULT TRUE);

Parameters

Table 22-43 STOP_QUEUE Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the queue to be disabled

	
enqueue

	
Specifies whether ENQUEUE should be disabled on this queue. TRUE means disable ENQUEUE. This is the default. FALSE means do not alter the current setting.

	
dequeue

	
Specifies whether DEQUEUE should be disabled on this queue. TRUE means disable DEQUEUE. This is the default. FALSE means do not alter the current setting.

	
wait

	
Specifies whether to wait for the completion of outstanding transactions. TRUE means wait if there are any outstanding transactions. In this state no new transactions are allowed to enqueue to or dequeue from this queue. FALSE means return immediately either with a success or an error.

Usage Notes

By default, this call disables both ENQUEUE and DEQUEUE. A queue cannot be stopped if there are outstanding transactions against the queue. This operation takes effect when the call completes and does not have any transactional characteristics.

UNSCHEDULE_PROPAGATION Procedure

This procedure unschedules previously scheduled propagation of messages from a queue to a destination identified by a specific database link.

Syntax

DBMS_AQADM.UNSCHEDULE_PROPAGATION (
 queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL
 destination_queue IN VARCHAR2 DEFAULT NULL);

Parameters

Table 22-44 UNSCHEDULE_PROPAGATION Procedure Parameters

	Parameter	Description
	
queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the administrative user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
destination_queue

	
Name of the target queue to which messages are to be propagated in the form of a dblink

VERIFY_QUEUE_TYPES Procedure

This procedure verifies that the source and destination queues have identical types. The result of the verification is stored in the table sys.aq$_message_types, overwriting all previous output of this command.

Syntax

DBMS_AQADM.VERIFY_QUEUE_TYPES (
 src_queue_name IN VARCHAR2,
 dest_queue_name IN VARCHAR2,
 destination IN VARCHAR2 DEFAULT NULL,
 rc OUT BINARY_INTEGER);

Parameters

Table 22-45 VERIFY_QUEUE_TYPES Procedure Parameters

	Parameter	Description
	
src_queue_name

	
Name of the source queue whose messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
dest_queue_name

	
Name of the destination queue where messages are to be propagated, including the schema name. If the schema name is not specified, then it defaults to the schema name of the user.

	
destination

	
Destination database link. Messages in the source queue for recipients at this destination are propagated. If it is NULL, then the destination is the local database and messages are propagated to other queues in the local database. The length of this field is currently limited to 128 bytes, and if the name is not fully qualified, then the default domain name is used.

	
rc

	
Return code for the result of the procedure. If there is no error, and if the source and destination queue types match, then the result is 1. If they do not match, then the result is 0. If an Oracle error is encountered, then it is returned in rc.

23 DBMS_AQELM

The DBMS_AQELM package provides subprograms to manage the configuration of Oracle Streams Advanced Queuing (AQ) asynchronous notification by e-mail and HTTP.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for detailed information about DBMS_AQELM

This chapter contains the following topic:

	
Summary of DBMS_AQELM Subprograms

Summary of DBMS_AQELM Subprograms

Table 23-1 DBMS_ALERT Package Subprograms

	Subprogram	Description
	
SET_MAILHOST Procedure

	
Sets the host name for the SMTP server that the database will uses send out e-mail notifications

	
SET_MAILPORT Procedure

	
Sets the port number for the SMTP server

	
SET_SENDFROM Procedure

	
Sets the sent-from e-mail address

SET_MAILHOST Procedure

This procedure sets the host name for the SMTP server. The database uses this SMTP server host name to send out e-mail notifications.

Syntax

DBMS_AQELM.SET_MAILHOST (
 mailhost IN VARCHAR2);

Parameters

Table 23-2 SET_MAILHOST Procedure Parameters

	Parameter	Description
	
mailhost

	
SMTP server host name.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM package needs to set the host name before registering for e-mail notifications.

SET_MAILPORT Procedure

This procedure sets the port number for the SMTP server.

Syntax

DBMS_AQELM.SET_MAILPORT (
 mailport IN NUMBER);

Parameters

Table 23-3 SET_MAILPORT Procedure Parameters

	Parameter	Description
	
mailport

	
SMTP server port number.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on DBMS_AQELM package needs to set the port number before registering for e-mail notifications. The database uses this SMTP server port number to send out e-mail notifications. If not set, the SMTP mailport defaults to 25

SET_SENDFROM Procedure

This procedure sets the sent-from e-mail address. This e-mail address is used in the sent-from field in all the e-mail notifications sent out by the database to the registered e-mail addresses.

Syntax

DBMS_AQELM.SET_SENDFROM (
 sendfrom IN VARCHAR2);

Parameters

Table 23-4 SET_SENDFROM Procedure Parameters

	Parameter	Description
	
sendfrom

	
The sent-from e-mail address.

Usage Notes

As part of the configuration for e-mail notifications, a user with AQ_ADMINISTRATOR_ROLE or with EXECUTE permissions on the DBMS_AQELM package should set the sent-from address before registering for e-mail notifications

24 DBMS_AQIN

The DBMS_AQIN package plays a part in providing secure access to the Oracle JMS interfaces.

	
See Also:

Oracle Streams Advanced Queuing User's Guide for detailed information about DBMS_AQIN

This chapter contains the following topic:

	
Using DBMS_AQIN

	
Over view

Using DBMS_AQIN

This section contains topics which relate to using the DBMS_AQIN package.

	
Overview

Overview

While you should not call any subprograms in the DBMS_AQIN package directly, you must have the EXECUTE privilege on the DBMS_AQIN and DBMS_AQJMS packages to use the Oracle JMS interfaces. Use the following syntax to accomplish this with regard to the DBMS_AQIN package:

GRANT EXECUTE ON DBMS_AQIN to user;

Note that you can also acquire these rights through the AQ_USER_ROLE or the AQ_ADMINSTRATOR_ROLE.

25 DBMS_ASSERT

The DBMS_ASSERT package provides an interface to validate properties of the input value.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about "Avoiding SQL Injection in PL/SQL"

This chapter contains the following topics:

	
Using DBMS_ASSERT

	
Operational Notes

	
Summary of DBMS_ASSERT Subprograms

Using DBMS_ASSERT

	
Operational Notes

Operational Notes

If the condition which determines the property asserted in a function is not met then a value error is raised. Otherwise the input value is returned via return value. Most functions return the value unchanged, however, several functions modify the value.

Summary of DBMS_ASSERT Subprograms

Table 25-1 DBMS_APPLICATION_INFO Package Subprograms

	Subprogram	Description
	
ENQUOTE_LITERAL Function

	
Enquotes a string literal

	
ENQUOTE_NAME Function

	
Encloses a name in double quotes

	
NOOP Functions

	
Returns the value without any checking

	
QUALIFIED_SQL_NAME Function

	
Verifies that the input string is a qualified SQL name

	
SCHEMA_NAME Function

	
Verifies that the input string is an existing schema name

	
SIMPLE_SQL_NAME Function

	
Verifies that the input string is a simple SQL name

	
SQL_OBJECT_NAME Function

	
Verifies that the input parameter string is a qualified SQL identifier of an existing SQL object

ENQUOTE_LITERAL Function

This function enquotes a string literal.

Syntax

DBMS_ASSERT.ENQUOTE_LITERAL (
 str VARCHAR2)
RETURN VARCHAR2;

Parameters

Table 25-2 ENQUOTE_LITERAL Function Parameters

	Parameter	Description
	
str

	
String to enquote

Usage Notes

	
Add leading and trailing single quotes to a string literal.

	
Verify that all single quotes except leading and trailing characters are paired with adjacent single quotes.

ENQUOTE_NAME Function

This function encloses a name in double quotes.

Syntax

DBMS_ASSERT.ENQUOTE_NAME (
 str VARCHAR2,
 capitalize BOOLEAN DEFAULT TRUE)
RETURN VARCHAR2;

Parameters

Table 25-3 ENQUOTE_NAME Function Parameters

	Parameter	Description
	
str

	
String to enquote

	
capitalize

	
If TRUE or defaulted, alphabetic characters of str which was not in quotes are translated to upper case

NOOP Functions

This function returns the value without any checking.

Syntax

DBMS_ASSERT.NOOP (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

DBMS_ASSERT.NOOP (
 str CLOB CHARACTER SET ANY_CS)
 RETURN CLOB CHARACTER SET str%CHARSET;

Parameters

Table 25-4 NOOP Function Parameters

	Parameter	Description
	
str

	
Input value

QUALIFIED_SQL_NAME Function

This function verifies that the input string is a qualified SQL name.

Syntax

DBMS_ASSERT.QUALIFIED_SQL_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 25-5 QUALIFIED_SQL_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44004: string is not a qualified SQL name

Usage Notes

A qualified SQL name <qualified name> can be expressed by the following grammar:

 <local qualified name> ::= <simple name> {'.' <simple name>}
 <database link name> ::= <local qualified name> ['@' <connection string>]
 <connection string> ::= <simple name>
 <qualified name> ::= <local qualified name> ['@' <database link name>]

SCHEMA_NAME Function

This function verifies that the input string is an existing schema name.

Syntax

DBMS_ASSERT.SCHEMA_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 25-6 SCHEMA_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44001: Invalid schema name

Usage Notes

By definition, a schema name need not be just a simple SQL name. For example, "FIRST LAST" is a valid schema name. As a consequence, care must be taken to quote the output of schema name before concatenating it with SQL text.

SIMPLE_SQL_NAME Function

This function verifies that the input string is a simple SQL name.

Syntax

DBMS_ASSERT.SIMPLE_SQL_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 25-7 SIMPLE_SQL_NAME Procedure Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44003: string is not a simple SQL name

Usage Notes

	
The input value must be meet the following conditions:

	
The name must begin with an alphabetic character. It may contain alphanumeric characters as well as the characters _, $, and # in the second and subsequent character positions.

	
Quoted SQL names are also allowed.

	
Quoted names must be enclosed in double quotes.

	
Quoted names allow any characters between the quotes.

	
Quotes inside the name are represented by two quote characters in a row, for example, "a name with "" inside" is a valid quoted name.

	
The input parameter may have any number of leading and/or trailing white space characters.

	
The length of the name is not checked.

SQL_OBJECT_NAME Function

This function verifies that the input parameter string is a qualified SQL identifier of an existing SQL object.

Syntax

DBMS_ASSERT.SQL_OBJECT_NAME (
 str VARCHAR2 CHARACTER SET ANY_CS)
 RETURN VARCHAR2 CHARACTER SET str%CHARSET;

Parameters

Table 25-8 SQL_OBJECT_NAME Function Parameters

	Parameter	Description
	
str

	
Input value

Exceptions

ORA44002: Invalid object name

26 DBMS_AUTO_TASK_ADMIN

The DBMS_AUTO_TASK_ADMIN package provides an interface to AUTOTASK functionality. It is used by the DBA as well as Enterprise Manager to access the AUTOTASK controls. Enterprise Manager also uses the AUTOTASK Advisor.

	
See Also:

Oracle Database Administrator's Guide for more information about "Configuring Automated Maintenance Task"

This chapter contains the following sections:

	
Using DBMS_AUTO_TASK_ADMIN

	
Constants

	
Summary of DBMS_AUTO_TASK_ADMIN Subprograms

Using DBMS_AUTO_TASK_ADMIN

	
Constants

Constants

The DBMS_AUTO_TASK_ADMIN package uses the constants shown in Table 26-1:

Table 26-1 DBMS_AUTO_TASK_ADMIN Constants

	Name	Type	Value	Description
	
TASK_PRIORITY_MEDIUM

	
INTEGER

	
1

	
Task with this priority should be executed as time permits.

	
TASK_PRIORITY_HIGH

	
INTEGER

	
2

	
Task with this priority should be executed within the current Maintenance Window.

	
TASK_PRIORITY_URGENT

	
INTEGER

	
3

	
Task with this is to be executed at the earliest opportunity.

Summary of DBMS_AUTO_TASK_ADMIN Subprograms

Table 26-2 DBMS_XMLSTORE Package Subprograms

	Method	Description
	
DISABLE Procedures

	
Prevents AUTOTASK from executing any requests from a specified client or operation.

	
ENABLE Procedures

	
Allows a previously disabled client, operation, target type, or individual target to be enabled under AUTOTASK control

	
GET_CLIENT_ATTRIBUTES Procedure

	
Returns values of select client attributes

	
GET_P1_RESOURCES Procedure

	
Returns percent of resources allocated to each AUTOTASK High Priority Consumer Groups

	
OVERRIDE_PRIORITY Procedures

	
Manually overrides task priority.

	
SET_CLIENT_SERVICE Procedure

	
Associates an AUTOTASK Client with a specified Service

	
SET_P1_RESOURCES Procedure

	
Sets percentage-based resource allocation for each High Priority Consumer Group used by AUTOTASK Clients

DISABLE Procedures

This procedure prevents AUTOTASK from executing any requests from a specified client or operation.

Syntax

Disables all AUTOTASK functionality.

DBMS_AUTO_TASK_ADMIN.DISABLE;

Disables all tasks for the client or operation.

DBMS_AUTO_TASK_ADMIN.DISABLE (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 window_name IN VARCHAR2);

Parameters

Table 26-3 DISABLE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
window_name

	
Optional name of the window in which client is to be disabled

Usage Notes

	
If operation and window_name are both NULL, the client is disabled.

	
If operation is not NULL, window_name is ignored and the operation is disabled

	
If operation is NULL and window_name is not NULL, the client is disabled in the specified window.

ENABLE Procedures

This procedure allows a previously disabled client, operation, target type, or individual target to be enabled under AUTOTASK control. Specifying the DEFERRED option postpones the effect of the call until the start of the next maintenance window. If IMMEDIATE option is specified the effect of this call is immediate – as long as there is a currently open maintenance window.

Syntax

Re-enabling AUTOTASK. This version enables the specified client. Note that any explicitly disabled tasks or operations must be re-enabled individually.

DBMS_AUTO_TASK_ADMIN.ENABLE;

Re-enabling a client or operation.Note that any explicitly disabled tasks or operations must be re-enabled individually.

DBMS_AUTO_TASK_ADMIN.ENABLE (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 window_name IN VARCHAR2);

Parameters

Table 26-4 DISABLE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
window_name

	
Optional name of the window in which client is to be enabled

Usage Notes

	
If operation and window_name are both NULL, the client is enabled.

	
If operation is not NULL, window_name is ignored and the specified operation is enabled

	
If operation is NULL and window_name is not NULL, the client is enabled in the specified window.

GET_CLIENT_ATTRIBUTES Procedure

This procedure returns values of select client attributes.

Syntax

DBMS_AUTO_TASK_ADMIN.GET_CLIENT_ATTRIBUTES(
 client_name IN VARCHAR2, service_name OUT VARCHAR2, window_group OUT VARCHAR2);

Parameters

Table 26-5 GET_CLIENT_ATTRIBUTES Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
service_name

	
Service name for client, may be NULL

	
window_group

	
Name of the window group in which the client is active

GET_P1_RESOURCES Procedure

This procedure returns percent of resources allocated to each AUTOTASK High Priority Consumer Group.

Syntax

DBMS_AUTO_TASK_ADMIN.GET_P1_RESOURCES(
 stats_group_pct OUT NUMBER,
 seg_group_pct OUT NUMBER,
 tune_group_pct OUT NUMBER,
 health_group_pct OUT NUMBER);

Parameters

Table 26-6 GET_P1_RESOURCES Procedure Parameters

	Parameter	Description
	
stats_group_pct

	
%resources for Statistics Gathering

	
seq_group_pct

	
%resources for Space Management

	
tune_group_pct

	
%resources for SQL Tuning

	
health_group_pct

	
%resources for Health Checks

Usage Notes

Values will add up to 100%.

OVERRIDE_PRIORITY Procedures

This procedure is used to manually override task priority. This can be done at the client, operation or individual task level. This priority assignment will be honored during the next maintenance window in which the named client is active. Specifically, setting the priority to URGENT will cause a high priority job to be generated at the start of the maintenance window. Setting priority to CLEAR removes the override.

Syntax

Override Priority for a Client.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 priority IN VARCHAR2);

Override Priority for an Operation.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 priority IN VARCHAR2);

Override Priority for a Task.

DBMS_AUTO_TASK_ADMIN.OVERRIDE_PRIORITY (
 client_name IN VARCHAR2,
 operation IN VARCHAR2,
 task_target_type IN VARCHAR2,
 task_target_name IN VARCHAR2,
 priority IN VARCHAR2);

Parameters

Table 26-7 OVERRIDE_PRIORITY Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
priority

	
URGENT, HIGH, MEDIUM or LOW

	
operation

	
Name of the operation as specified in DBA_AUTOTASK_OPERATION View

	
task_target_type

	
Type of target to be affected, as found in V$AUTOTASK_TARGET_TYPE View

	
task_target_name

	
Name of the specific target to be affected

SET_CLIENT_SERVICE Procedure

This procedure associates an AUTOTASK Client with a specified Service.

Syntax

DBMS_AUTO_TASK_ADMIN.SET_CLIENT_SERVICE(
 client_name IN VARCHAR2,
 service_name IN VARCHAR2);

Parameters

Table 26-8 SET_CLIENT_SERVICE Procedure Parameters

	Parameter	Description
	
client_name

	
Name of the client, as found in DBA_AUTOTASK_CLIENT View

	
service_name

	
Service name for client, may be NULL

Usage Notes

All work performed on behalf of the Client will take place only on instances where the service is enabled.

SET_P1_RESOURCES Procedure

This procedure sets percentage-based resource allocation for each High Priority Consumer Group used by AUTOTASK Clients.

Syntax

DBMS_AUTO_TASK_ADMIN.SET_P1_RESOURCES(
 stats_group_pct OUT NUMBER,
 seg_group_pct OUT NUMBER,
 tune_group_pct OUT NUMBER,
 health_group_pct OUT NUMBER);

Parameters

Table 26-9 SET_P1_RESOURCES Procedure Parameters

	Parameter	Description
	
stats_group_pct

	
%resources for Statistics Gathering

	
seq_group_pct

	
%resources for Space Management

	
tune_group_pct

	
%resources for SQL Tuning

	
health_group_pct

	
%resources for Health Checks

Usage Notes

Values must be integers in the range 0 to 100, and must add up to 100 (percent), otherwise, an exception is raised.

27 DBMS_AW_STATS

DBMS_AW_STATS contains a subprogram that generates and stores optimizer statistics for cubes and dimensions. Generating the statistics does not have a significant performance cost.

	
See Also:

Oracle OLAP User's Guide regarding use of the OLAP option to support business intelligence and analytical applications

This chapter contains the following topic:

	
Using DBMS_AW_STATS

	
Summary of DBMS_AW_STATS Subprograms

Using DBMS_AW_STATS

Cubes and dimensions are first class data objects that support multidimensional analytics. They are stored in a container called an analytic workspace. Multidimensional objects and analytics are available with the OLAP option to Oracle Database.

Optimizer statistics are used to create execution plans for queries that join two cube views or join a cube view to a table or a view of a table. They are also used for query rewrite to cube materialized views. You need to generate the statistics only for these types of queries.

Queries against a single cube do not use optimizer statistics. These queries are automatically optimized within the analytic workspace.

Summary of DBMS_AW_STATS Subprograms

Table 27-1 DBMS_AW_STATS Package Subprograms

	Subprogram	Description
	
ANALYZE Procedure

	
Generates optimizer statistics on OLAP cubes and dimensions.

ANALYZE Procedure

This procedure generates optimizer statistics on a cube or a dimension.

For a cube, the statistics are for all of the measures and calculated measures associated with the cube. These statistics include:

	
The average length of data values

	
The length of the largest data value

	
The minimum value

	
The number of distinct values

	
The number of null values

For a dimension, the statistics are for the dimension and its attributes, levels, and hierarchies. These statistics include:

	
The average length of a value

	
The length of the largest value

	
The minimum value

	
The maximum value

Syntax

DBMS_AW_STATS.ANALYZE
 (object IN VARCHAR2);

Parameters

Table 27-2 ANALYZE Procedure Parameters

	Parameter	Description
	
object

	
The qualified name of a cube or a dimension.

For a cube, the format of a qualified name is owner.cube_name.

For a dimension, the format is owner.dimension_name.

Example

This sample script generates optimizer statistics on UNITS_CUBE and its dimensions.

BEGIN
 DBMS_AW_STATS.ANALYZE('units_cube');
 DBMS_AW_STATS.ANALYZE('time');
 DBMS_AW_STATS.ANALYZE('customer');
 DBMS_AW_STATS.ANALYZE('product');
 DBMS_AW_STATS.ANALYZE('channel');
END;
/

The optimizer statistics enable Oracle Database to generate an execution plan for queries against UNITS_CUBE, as shown here:

SQL> EXPLAIN PLAN FOR SELECT * from units_cube_view;

Explained.

SQL> SELECT plan_table_output FROM TABLE(dbms_xplan.display());

PLAN_TABLE_OUTPUT

Plan hash value: 3488499021

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--
| 0 | SELECT STATEMENT | | 4475K| 93M| 661 (85)| 00:00:08 |
| 1 | CUBE SCAN PARTIAL OUTER| UNITS_CUBE | 4475K| 93M| 661 (85)| 00:00:08 |
--

8 rows selected.

28 DBMS_CAPTURE_ADM

The DBMS_CAPTURE_ADM package, one of a set of Oracle Streams packages, provides subprograms for starting, stopping, and configuring a capture process. The source of the captured changes is the redo logs, and the repository for the captured changes is a queue.

	
See Also:

Oracle Streams Concepts and Administration and Oracle Streams Replication Administrator's Guide for more information about this package and capture processes

This chapter contains the following topic:

	
Summary of DBMS_CAPTURE_ADM Subprograms

Summary of DBMS_CAPTURE_ADM Subprograms

Table 28-1 DBMS_CAPTURE_ADM Package Subprograms

	Subprogram	Description
	
ABORT_GLOBAL_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures

	
ABORT_SCHEMA_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION and PREPARE_TABLE_INSTANTIATION procedures

	
ABORT_SYNC_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_SYNC_INSTANTIATION procedure

	
ABORT_TABLE_INSTANTIATION Procedure

	
Reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure

	
ALTER_CAPTURE Procedure

	
Alters a capture process

	
ALTER_SYNC_CAPTURE Procedure

	
Alters a synchronous capture

	
BUILD Procedure

	
Extracts the data dictionary of the current database to the redo logs and automatically specifies database supplemental logging for all primary key and unique key columns

	
CREATE_CAPTURE Procedure

	
Creates a capture process

	
CREATE_SYNC_CAPTURE Procedure

	
Creates a synchronous capture

	
DROP_CAPTURE Procedure

	
Drops a capture process

	
INCLUDE_EXTRA_ATTRIBUTE Procedure

	
Includes or excludes an extra attribute in logical change records (LCRs) captured by the specified capture process or synchronous capture

	
PREPARE_GLOBAL_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating all the tables in the database at another database and can enable supplemental logging for key columns or all columns in these tables

	
PREPARE_SCHEMA_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating all tables in the schema at another database and can enable supplemental logging for key columns or all columns in these tables

	
PREPARE_SYNC_INSTANTIATION Function

	
Performs the synchronization necessary for instantiating one or more tables at another database and returns the prepare SCN

	
PREPARE_TABLE_INSTANTIATION Procedure

	
Performs the synchronization necessary for instantiating the table at another database and can enable supplemental logging for key columns or all columns in the table

	
SET_PARAMETER Procedure

	
Sets a capture process parameter to the specified value

	
START_CAPTURE Procedure

	
Starts the capture process, which mines redo logs and enqueues the mined redo information into the associated queue

	
STOP_CAPTURE Procedure

	
Stops the capture process from mining redo logs

	
Note:

All subprograms commit unless specified otherwise.

ABORT_GLOBAL_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to the database, schema, and table instantiations

	
Removes any supplemental logging enabled by the PREPARE_GLOBAL_INSTANTIATION, PREPARE_SCHEMA_INSTANTIATION, and PREPARE_TABLE_INSTANTIATION procedures

Syntax

DBMS_CAPTURE_ADM.ABORT_GLOBAL_INSTANTIATION();

ABORT_SCHEMA_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_SCHEMA_INSTANTIATION procedure. It also reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure on tables in the specified schema.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to schema instantiations and table instantiations of tables in the schema

	
Removes any supplemental logging enabled by the PREPARE_SCHEMA_INSTANTIATION procedure

	
Removes any supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure for tables in the specified schema

Syntax

DBMS_CAPTURE_ADM.ABORT_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2);

Parameter

Table 28-2 ABORT_SCHEMA_INSTANTIATION Procedure Parameter

	Parameter	Description
	
schema_name

	
The name of the schema for which to abort the effects of preparing instantiation

ABORT_SYNC_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_SYNC_INSTANTIATION procedure. Specifically, this procedure removes data dictionary information related to the table instantiation.

This procedure is overloaded. The table_names parameter is VARCHAR2 datatype in one version and DBMS_UTILITY.UNCL_ARRAY datatype in the other version.

Syntax

DBMS_CAPTURE_ADM.ABORT_SYNC_INSTANTIATION(
 table_names IN VARCHAR2);

DBMS_CAPTURE_ADM.ABORT_SYNC_INSTANTIATION(
 table_names IN DBMS_UTILITY.UNCL_ARRAY);

Parameters

Table 28-3 ABORT_SYNC_INSTANTIATION Procedure Parameter

	Parameter	Description
	
table_names

	
When the table_names parameter is VARCHAR2 datatype, a comma-delimited list of the tables for which to abort the effects of preparing instantiation. There must be no spaces between entries.

When the table_names parameter is DBMS_UTILITY.UNCL_ARRAY datatype, specify a PL/SQL index-by table of this type that contains the names of the tables for which to abort the effects of preparing instantiation. The first table name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

In either version of the procedure, specify the name of each table in the form [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

ABORT_TABLE_INSTANTIATION Procedure

This procedure reverses the effects of running the PREPARE_TABLE_INSTANTIATION procedure.

Specifically, this procedure performs the following actions:

	
Removes data dictionary information related to the table instantiation

	
Removes any supplemental logging enabled by the PREPARE_TABLE_INSTANTIATION procedure

Syntax

DBMS_CAPTURE_ADM.ABORT_TABLE_INSTANTIATION(
 table_name IN VARCHAR2);

Parameter

Table 28-4 ABORT_TABLE_INSTANTIATION Procedure Parameter

	Parameter	Description
	
table_name

	
The name of the table for which to abort the effects of preparing instantiation, specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

ALTER_CAPTURE Procedure

This procedure alters a capture process.

	
See Also:

Oracle Streams Concepts and Administration for more information about altering a capture process

Syntax

DBMS_CAPTURE_ADM.ALTER_CAPTURE(
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_rule_set IN BOOLEAN DEFAULT FALSE,
 start_scn IN NUMBER DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT NULL,
 first_scn IN NUMBER DEFAULT NULL,
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 remove_negative_rule_set IN BOOLEAN DEFAULT FALSE,
 capture_user IN VARCHAR2 DEFAULT NULL,
 checkpoint_retention_time IN NUMBER DEFAULT NULL);

Parameters

Table 28-5 ALTER_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process being altered. You must specify an existing capture process name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the capture process. The positive rule set contains the rules that instruct the capture process to capture changes.

To change the positive rule set for the capture process, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_capture_rules, enter hr.job_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_rule_set parameter is set to FALSE, then the procedure retains any existing positive rule set. If you specify NULL and the remove_rule_set parameter is set to TRUE, then the procedure removes any existing positive rule set.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a capture process

	
remove_rule_set

	
If TRUE, then the procedure removes the positive rule set for the specified capture process. If you remove a positive rule set for a capture process, and the capture process does not have a negative rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you remove a positive rule set for a capture process, and the capture process has a negative rule set, then the capture process captures all supported changes that are not discarded by the negative rule set.

If FALSE, then the procedure retains the positive rule set for the specified capture process.

If the rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

	
start_scn

	
A valid SCN for the database from which the capture process should start capturing changes. The SCN value be greater than or equal to the first SCN for the capture process. Also, the capture process must be stopped before resetting its start SCN.

An error is returned if an invalid SCN is specified or if the capture process is enabled.

	
use_database_link

	
If TRUE, then the capture process at a downstream database uses a database link to the source database for administrative purposes relating to the capture process. If you want a capture process that is not using a database link currently to begin using a database link, then specify TRUE. In this case, a database link with the same name as the global name of the source database must exist at the downstream database.

If FALSE, then either the capture process is running on the source database, or the capture process at a downstream database does not use a database link to the source database. If you want a capture process that is using a database link currently to stop using a database link, then specify FALSE. In this case, you must prepare source database objects for instantiation manually when you add or change capture process rules that pertain to these objects.

If NULL, then the current value of this parameter for the capture process is not changed.

	
first_scn

	
Specifies the lowest SCN in the redo log from which a capture process can capture changes. If you specify a new first SCN for the capture process, then the specified first SCN must meet the following requirements:

	
It must be greater than the current first SCN for the capture process.

	
It must be less than or equal to the current applied SCN for the capture process. However, this requirement does not apply if the current applied SCN for the capture process is zero.

	
It must be less than or equal to the required checkpoint SCN for the capture process.

An error is returned if the specified SCN does not meet the first three requirements. See "Usage Notes" for information about determining an SCN value that meets all of these conditions.

When the first SCN is modified, the capture process purges information from its LogMiner data dictionary that is required to restart it at an earlier SCN. See BUILD Procedure for more information about a LogMiner data dictionary.

If the specified first SCN is higher than the current start SCN for the capture process, then the start SCN is set automatically to the new value of the first SCN.

	
negative_rule_set_name

	
The name of the negative rule set for the capture process. The negative rule set contains the rules that instruct the capture process to discard changes.

To change the negative rule set for the capture process, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_capture_rules, enter hr.neg_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL and the remove_negative_rule_set parameter is set to FALSE, then the procedure retains any existing negative rule set. If you specify NULL and the remove_negative_rule_set parameter is set to TRUE, then the procedure removes any existing negative rule set.

If you specify both a positive and a negative rule set for a capture process, then the negative rule set is always evaluated first.

	
remove_negative_rule_set

	
If TRUE, then the procedure removes the negative rule set for the specified capture process. If you remove a negative rule set for a capture process, and the capture process does not have a positive rule set, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you remove a negative rule set for a capture process, and a positive rule set exists for the capture process, then the capture process captures all changes that are not discarded by the positive rule set.

If FALSE, then the procedure retains the negative rule set for the specified capture process.

If the negative_rule_set_name parameter is non-NULL, then this parameter should be set to FALSE.

	
capture_user

	
The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. If NULL, then the capture user is not changed.

To change the capture user, the user who invokes the ALTER_CAPTURE procedure must be granted DBA role. Only the SYS user can set the capture_user to SYS.

If you change the capture user, then this procedure grants the new capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue. In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process

These privileges must be granted directly to the capture user. They cannot be granted through roles.

The capture process is stopped and restarted automatically when you change the value of this parameter.

Note: If the specified user is dropped using DROP USER... CASCADE, then the capture_user setting for the capture process is set to NULL automatically. You must specify a capture user before the capture process can run.

	
checkpoint_retention_time

	
Either the number of days that a capture process should retain checkpoints before purging them automatically, or DBMS_CAPTURE_ADM.INFINITE if checkpoints should not be purged automatically. If NULL, then the checkpoint retention time is not changed.

If a number is specified, then a capture process purges a checkpoint the specified number of days after the checkpoint was taken. Partial days can be specified using decimal values. For example, .25 specifies 6 hours.

When a checkpoint is purged, LogMiner data dictionary information for the archived redo log file that corresponds to the checkpoint is purged, and the first_scn of the capture process is reset to the SCN value corresponding to the first change in the next archived redo log file.

See Also: Oracle Streams Concepts and Administration for more information about checkpoint retention time

Usage Notes

If you want to alter the first SCN for a capture process, then the value specified must meet the conditions in the description for the first_scn parameter. The following query determines the current first SCN, applied SCN, and required checkpoint SCN for each capture process in a database:

SELECT CAPTURE_NAME, FIRST_SCN, APPLIED_SCN, REQUIRED_CHECKPOINT_SCN
 FROM DBA_CAPTURE;

ALTER_SYNC_CAPTURE Procedure

This procedure alters a synchronous capture.

	
See Also:

Oracle Streams Concepts and Administration for more information about altering a capture process

Syntax

DBMS_CAPTURE_ADM.ALTER_SYNC_CAPTURE(
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL);

Parameters

Table 28-6 ALTER_SYNC_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the synchronous capture being altered. You must specify an existing synchronous capture name. Do not specify an owner.

	
rule_set_name

	
The name of the positive rule set for the synchronous capture. The positive rule set contains the rules that instruct the synchronous capture to capture changes.

To change the rule set for the synchronous capture, specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the strmadmin schema named sync_cap_rules, enter strmadmin.sync_cap_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You should only specify a rule set that was created using the DBMS_STREAMS_ADM package.

If NULL, then the rule set is not changed.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a synchronous capture

	
capture_user

	
The user in whose security domain a synchronous capture captures changes that satisfy its rule set and runs custom rule-based transformations configured for synchronous capture rules. If NULL, then the capture user is not changed.

To change the capture user, the user who invokes the ALTER_SYNC_CAPTURE procedure must be granted DBA role. Only the SYS user can set the capture_user to SYS.

If you change the capture user, then this procedure grants the new capture user enqueue privilege on the queue used by the synchronous capture and configures the user as a secure queue user of the queue. In addition, ensure that capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the synchronous capture

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process

These privileges must be granted directly to the capture user. They cannot be granted through roles.

Note: If the specified user is dropped using DROP USER... CASCADE, then the capture_user setting for the synchronous capture is set to NULL automatically. You must specify a capture user before the synchronous capture can capture changes.

BUILD Procedure

This procedure extracts the data dictionary of the current database to the redo log and automatically specifies database supplemental logging by running the following SQL statement:

ALTER DATABASE ADD SUPPLEMENTAL LOG DATA;

This procedure is overloaded. One version of this procedure contains the OUT parameter first_scn, and the other does not.

Syntax

DBMS_CAPTURE_ADM.BUILD(
 first_scn OUT NUMBER);

DBMS_CAPTURE_ADM.BUILD();

Parameters

Table 28-7 BUILD Procedure Parameter

	Parameter	Description
	
first_scn

	
Contains the lowest SCN value corresponding to the data dictionary extracted to the redo log that can be specified as a first SCN for a capture process

Usage Notes

If there are any in-flight transactions, then this procedure waits until these transactions commit before completing. An in-flight transaction is one that is active during the data dictionary build.

You can run this procedure multiple times at a source database.

If you plan to capture changes originating at a source database with a capture process, then this procedure must be executed at the source database at least once. When the capture process is started, either at a local source database or at a downstream database, the capture process uses the extracted information in the redo log to create a LogMiner data dictionary.

A LogMiner data dictionary is a separate data dictionary used by a capture process to determine the details of a change that it is capturing. The LogMiner data dictionary is necessary because the primary data dictionary of the source database might not be synchronized with the redo data being scanned by a capture process.

After executing this procedure, you can query the FIRST_CHANGE# column of the V$ARCHIVED_LOG dynamic performance view where the DICTIONARY_BEGIN column is YES to determine the lowest SCN value for the database that can be specified as a first SCN for a capture process. The first SCN for a capture process is the lowest SCN in the redo log from which the capture process can capture changes.You can specify the first SCN for a capture process when you run the CREATE_CAPTURE or ALTER_CAPTURE procedure in the DBMS_CAPTURE_ADM package.

CREATE_CAPTURE Procedure

This procedure creates a capture process.

	
See Also:

	
Oracle Streams Concepts and Administration for more information about creating a capture process

	
Chapter 113, "DBMS_RULE_ADM" for more information about rules and rule sets

Syntax

DBMS_CAPTURE_ADM.CREATE_CAPTURE(
 queue_name IN VARCHAR2,
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2 DEFAULT NULL,
 start_scn IN NUMBER DEFAULT NULL,
 source_database IN VARCHAR2 DEFAULT NULL,
 use_database_link IN BOOLEAN DEFAULT FALSE,
 first_scn IN NUMBER DEFAULT NULL,
 logfile_assignment IN VARCHAR2 DEFAULT 'implicit',
 negative_rule_set_name IN VARCHAR2 DEFAULT NULL,
 capture_user IN VARCHAR2 DEFAULT NULL,
 checkpoint_retention_time IN NUMBER DEFAULT 60);

Parameters

Table 28-8 CREATE_CAPTURE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue into which the capture process enqueues changes. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the hr schema named streams_queue, enter hr.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the capture process is created.

	
capture_name

	
The name of the capture process being created. A NULL specification is not allowed. Do not specify an owner.

Note: The capture_name setting cannot be altered after the capture process is created.

	
rule_set_name

	
The name of the positive rule set for the capture process. The positive rule set contains the rules that instruct the capture process to capture changes.

If you want to use a positive rule set for the capture process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the hr schema named job_capture_rules, enter hr.job_capture_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify NULL, and no negative rule set is specified, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you specify NULL, and a negative rule set exists for the capture process, then the capture process captures all changes that are not discarded by the negative rule set.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a capture process

	
start_scn

	
A valid SCN for the database from which the capture process should start capturing changes.

An error is returned if an invalid SCN is specified.

See Also: "Usage Notes" for more information setting the start_scn parameter

	
source_database

	
The global name of the source database. The source database is where the changes to be captured originated.

If you do not include the domain name, then the procedure appends it to the database name automatically. For example, if you specify DBS1 and the domain is .NET, then the procedure specifies DBS1.NET automatically.

If NULL, or if the specified name is the same as the global name of the current database, then local capture is assumed and only the default values for use_database_link and first_scn can be specified.

	
use_database_link

	
If TRUE, then the capture process at a downstream database uses a database link to the source database for administrative purposes relating to the capture process. The capture process uses the database link to prepare database objects for instantiation at the source database and run the DBMS_CAPTURE_ADM.BUILD procedure at the source database, if necessary.

During the creation of a downstream capture process, if the first_scn parameter is set to NULL, then the use_database_link parameter must be set to TRUE. Otherwise, an error is returned.

If FALSE, then either the capture process is running on the source database, or the capture process at a downstream database does not use a database link to the source database. In this case, you must perform the following administrative tasks manually:

	
Run the DBMS_CAPTURE_ADM.BUILD procedure at the source database to extract the data dictionary at the source database to the redo log when a capture process is created.

	
Obtain the first SCN for the downstream capture process if the first SCN is not specified during capture process creation. The first SCN is needed to create and maintain a capture process.

	
Prepare source database objects for instantiation.

	
first_scn

	
Specifies the lowest SCN in the redo log from which a capture process can capture changes. A non-NULL value for this parameter is valid only if the DBMS_CAPTURE_ADM.BUILD procedure has been run at least once at the source database.

You can query the FIRST_CHANGE# column of the V$ARCHIVED_LOG dynamic performance view where the DICTIONARY_BEGIN column is YES to determine whether the DBMS_CAPTURE_ADM.BUILD procedure has been run on a source database. Any of the values returned by such a query can be used as a first_scn value if the redo log containing that SCN value is still available.

See Also: "Usage Notes" for more information setting the first_scn parameter

	
logfile_assignment

	
If implicit, the default, then the capture process at a downstream database scans all redo log files added by redo transport services or manually from the source database to the downstream database.

If explicit, then a redo log file is scanned by a capture process at a downstream database only if the capture process name is specified in the FOR logminer_session_name clause when the redo log file is added manually to the downstream database. If explicit, then redo transport services cannot be used to add redo log files to the capture process being created.

If you specify explicit for this parameter for a local capture process, then the local capture process cannot use the online redo log to find changes. In this case, the capture process must use the archived redo log.

See Also: "Usage Notes" for information about adding redo log files manually

	
negative_rule_set_name

	
The name of the negative rule set for the capture process. The negative rule set contains the rules that instruct the capture process to discard changes.

If you want to use a negative rule set for the capture process, then you must specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a negative rule set in the hr schema named neg_capture_rules, enter hr.neg_capture_rules. If the schema is not specified, then the current user is the default.

If you specify NULL, and no positive rule set is specified, then the capture process captures all supported changes to all objects in the database, excluding database objects in the SYS and SYSTEM schemas.

If you specify NULL, and a positive rule set exists for the capture process, then the capture process captures all changes that are not discarded by the positive rule set.

An error is returned if the specified rule set does not exist. You can create a rule set and add rules to it using the DBMS_STREAMS_ADM package or the DBMS_RULE_ADM package.

If you specify both a positive and a negative rule set for a capture process, then the negative rule set is always evaluated first.

	
capture_user

	
The user in whose security domain a capture process captures changes that satisfy its rule sets and runs custom rule-based transformations configured for capture process rules. If NULL, then the user who runs the CREATE_CAPTURE procedure is used.

Only a user who is granted DBA role can set a capture user. Only the SYS user can set the capture_user to SYS.

Note: If the specified user is dropped using DROP USER... CASCADE, then the capture_user setting for the capture process is set to NULL automatically. You must specify a capture user before the capture process can run.

See Also: "Usage Notes" for more information about this parameter.

	
checkpoint_retention_time

	
Either the number of days that a capture process should retain checkpoints before purging them automatically, or DBMS_CAPTURE_ADM.INFINITE if checkpoints should not be purged automatically.

If a number is specified, then a capture process purges a checkpoint the specified number of days after the checkpoint was taken. Partial days can be specified using decimal values. For example, .25 specifies 6 hours.

When a checkpoint is purged, LogMiner data dictionary information for the archived redo log file that corresponds to the checkpoint is purged, and the first_scn of the capture process is reset to the SCN value corresponding to the first change in the next archived redo log file.

See Also: Oracle Streams Concepts and Administration for more information about checkpoint retention time

Usage Notes

Consider the following usage notes when you run this procedure:

	
DBA Role Required for User Who Invokes the CREATE_CAPTURE Procedure

	
Capture User Requirements

	
First SCN and Start SCN Settings

	
Explicit Log File Assignment

DBA Role Required for User Who Invokes the CREATE_CAPTURE Procedure

The user who invokes this procedure must be granted DBA role.

Capture User Requirements

The capture_user parameter specifies the user who captures changes that satisfy the capture process rule sets. This user must have the necessary privileges to capture changes. This procedure grants the capture user enqueue privilege on the queue used by the capture process and configures the user as a secure queue user of the queue.

In addition, ensure that the capture user has the following privileges:

	
EXECUTE privilege on the rule sets used by the capture process

	
EXECUTE privilege on all rule-based transformation functions used in the positive rule set

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the capture process

These privileges must be granted directly to the capture user. They cannot be granted through roles.

	
Note:

	
A capture user does not require privileges on a database object to capture changes to the database object. The capture process can pass these changes to a rule-based transformation function. Therefore, ensure that you consider security implications when you configure a capture process.

	
Creation of the first capture process in a database might take some time because the data dictionary is duplicated during this creation.

First SCN and Start SCN Settings

When you create a capture process using this procedure, you can specify the first SCN and start SCN for the capture process. A capture process scans the redo data from the first SCN or an existing capture process checkpoint forward, even if the start SCN is higher than the first SCN or the checkpoint SCN. In this case, the capture process does not capture any changes in the redo data before the start SCN. Oracle recommends that, at capture process creation time, the difference between the first SCN and start SCN be as small as possible to keep the amount of redo scanned by the capture process to a minimum.

In some cases, the behavior of the capture process is different depending on the settings of these SCN values and on whether the capture process is local or downstream.

The following table describes capture process behavior for SCN value settings:

	first_scn Setting	start_scn Setting	Capture Process Type	Description
	Non-NULL	NULL	Local or Downstream	The new capture process is created at the local database with a new LogMiner session starting from the value specified for the first_scn parameter. The start SCN is set to the specified first SCN value automatically, and the new capture process does not capture changes that were made before this SCN.
The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been run at least once before on the source database, and the specified first SCN must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure has not been run at least once on the source database, then an error is raised when the capture process is started.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.

	Non-NULL	Non-NULL	Local or Downstream	If the specified value for the start_scn parameter is greater than or equal to the specified value for the first_scn parameter, then the new capture process is created at the local database with a new LogMiner session starting from the specified first SCN. In this case, the new capture process does not capture changes that were made before the specified start SCN. If the specified value for the start_scn parameter is less than the specified value for the first_scn parameter, then an error is raised.
The BUILD procedure in the DBMS_CAPTURE_ADM package is not run automatically. This procedure must have been called at least once before on the source database, and the specified first_scn must correspond to the SCN value of a previous build that is still available in the redo log. When the new capture process is started for the first time, it creates a new LogMiner data dictionary using the data dictionary information in the redo log. If the BUILD procedure has not been run at least once on the source database, then an error is raised.

Capture process behavior is the same for a local capture process and a downstream capture process created with these SCN settings, except that a local capture process is created at the source database and a downstream capture process is created at the downstream database.

	NULL	Non-NULL	Local	The new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:
	
There is no existing capture process for the local source database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.

	
There are existing capture processes, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The new capture process uses the resulting build of the source data dictionary in the redo log to create a LogMiner data dictionary the first time it is started, and the first SCN corresponds to the SCN of the data dictionary build. If there are any in-flight transactions, then the BUILD procedure waits until these transactions commit before completing. An in-flight transaction is one that is active during capture process creation or a data dictionary build.

However, if there is at least one existing local capture process for the local source database that has taken a checkpoint, then the new capture process shares an existing LogMiner data dictionary with one or more of the existing capture processes. In this case, a capture process with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once. Also, if there are any in-flight transactions, then the capture process is created after these transactions commit.

If there is no existing capture process for the local source database (or if no existing capture processes have taken a checkpoint yet), and the specified start SCN is less than the current SCN for the database, then an error is raised.

	NULL	Non-NULL	Downstream	When the CREATE_CAPTURE procedure creates a downstream capture process, the use_database_link parameter must be set to TRUE when the first_scn parameter is set to NULL. Otherwise, an error is raised. The database link is used to obtain the current SCN of the source database.
The new capture process creates a new LogMiner data dictionary if either one of the following conditions is true:

	
There is no existing capture process that captures changes to the source database at the downstream database, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.

	
There are existing capture processes that capture changes to the source database at the downstream database, but none of the capture processes have taken a checkpoint yet, and the specified value for the start_scn parameter is greater than or equal to the current SCN for the source database.

In either of these cases, the BUILD procedure in the DBMS_CAPTURE_ADM package is run during capture process creation. The first time you start the new capture process, it uses the resulting build of the source data dictionary in the redo log files copied to the downstream database to create a LogMiner data dictionary. Here, the first SCN for the new capture process corresponds to the SCN of the data dictionary build. If there are any in-flight transactions, then the BUILD procedure waits until these transactions commit before completing.

However, if at least one existing capture process has taken a checkpoint and captures changes to the source database at the downstream database, then the new capture process shares an existing LogMiner data dictionary with one or more of these existing capture processes. In this case, one of these existing capture processes with a first SCN that is lower than or equal to the specified start SCN must have been started successfully at least once. Also, if there are any in-flight transactions, then the capture process is created after these transactions commit.

If there is no existing capture process that captures changes to the source database at the downstream database (or no existing capture process has taken a checkpoint), and the specified start_scn parameter value is less than the current SCN for the source database, then an error is raised.

	NULL	NULL	Local or Downstream	The behavior is the same as setting the first_scn parameter to NULL and setting the start_scn parameter to the current SCN of the source database.

	
Note:

When you create a capture process using the DBMS_STREAMS_ADM package, both the first SCN and the start SCN are set to NULL during capture process creation.

	
See Also:

BUILD Procedure for more information about the BUILD procedure and the LogMiner data dictionary

Explicit Log File Assignment

If you specify explicit for the logfile_assignment parameter, then you add a redo log file manually to a downstream database using the following statement:

ALTER DATABASE REGISTER LOGICAL LOGFILE
 file_name FOR capture_process;

Here, file_name is the name of the redo log file being added and capture_process is the name of the capture process that will use the redo log file at the downstream database. The capture_process is equivalent to the logminer_session_name and must be specified. The redo log file must be present at the site running the downstream database. You must transfer this file manually to the site running the downstream database using the DBMS_FILE_TRANSFER package, FTP, or some other transfer method.

	
See Also:

Oracle Database SQL Language Reference for more information about the ALTER DATABASE statement and Oracle Data Guard Concepts and Administration for more information registering redo log files

CREATE_SYNC_CAPTURE Procedure

This procedure creates a synchronous capture.

	
See Also:

Oracle Streams Concepts and Administration for more information about creating a synchronous capture

Syntax

DBMS_CAPTURE_ADM.CREATE_SYNC_CAPTURE(
 queue_name IN VARCHAR2,
 capture_name IN VARCHAR2,
 rule_set_name IN VARCHAR2,
 capture_user IN VARCHAR2 DEFAULT NUL);

Parameters

Table 28-9 CREATE_SYNC_CAPTURE Procedure Parameters

	Parameter	Description
	
queue_name

	
The name of the queue into which the synchronous capture enqueues changes. You must specify an existing queue in the form [schema_name.]queue_name. For example, to specify a queue in the strmadmin schema named streams_queue, enter strmadmin.streams_queue. If the schema is not specified, then the current user is the default.

Note: The queue_name setting cannot be altered after the synchronous capture is created.

	
capture_name

	
The name of the synchronous capture being created. A NULL specification is not allowed. Do not specify an owner.

Note: The capture_name setting cannot be altered after the synchronous capture is created.

	
rule_set_name

	
The name of the positive rule set for the synchronous capture. The positive rule set contains the rules that instruct the synchronous capture to capture changes.

Specify an existing rule set in the form [schema_name.]rule_set_name. For example, to specify a positive rule set in the strmadmin schema named sync_cap_rules, enter strmadmin.sync_cap_rules. If the schema is not specified, then the current user is the default.

An error is returned if the specified rule set does not exist. You should only specify a rule set that was created using the DBMS_STREAMS_ADM package.

If NULL, then an error is returned.

Note: Synchronous capture rules must be added to the synchronous capture rule set using the ADD_TABLE_RULES or ADD_SUBSET_RULES procedure in the DBMS_STREAMS_ADM package. A synchronous capture ignores rules added to the rule set with other procedures.

See Also: Oracle Streams Concepts and Administration for more information about the changes that can be captured by a synchronous capture

	
capture_user

	
The user in whose security domain the synchronous capture captures changes that satisfy its rule set and runs custom rule-based transformations configured for synchronous capture rules. If NULL, then the user who runs the CREATE_SYNC_CAPTURE procedure is used.

Only a user who is granted DBA role can set a capture user. Only the SYS user can set the capture_user to SYS.

Note: If the specified user is dropped using DROP USER... CASCADE, then the capture_user setting for the synchronous capture is set to NULL automatically. You must specify a capture user before the synchronous capture can capture changes.

See Also: "Usage Notes" for more information about this parameter.

Usage Notes

When the CREATE_SYNC_CAPTURE procedure creates a synchronous capture, the procedure must obtain an exclusive lock on each table for which it will capture changes. The rules in the specified rule set for the synchronous capture determine these tables. If there are outstanding transactions on a table for which the synchronous capture will capture changes, then the procedure waits until it can obtain a lock.

The capture_user parameter specifies the user who captures changes that satisfy the synchronous capture rule set. This user must have the necessary privileges to capture changes.

In addition, ensure that the capture user has the following privileges:

	
ENQUEUE privilege on the queue specified in the queue_name parameter

	
EXECUTE privilege on the rule set used by the synchronous capture

	
EXECUTE privilege on all rule-based transformation functions used in the rule set

	
EXECUTE privilege on all packages, including Oracle-supplied packages, that are invoked in rule-based transformations run by the synchronous capture

These privileges must be granted directly to the capture user. They cannot be granted through roles.

	
Note:

A capture user does not require privileges on a database object to capture changes to the database object. The synchronous capture can pass these changes to a rule-based transformation function. Therefore, ensure that you consider security implications when you configure a synchronous capture.

DROP_CAPTURE Procedure

This procedure drops a capture process.

	
Note:

A capture process must be stopped before it can be dropped.

	
See Also:

"STOP_CAPTURE Procedure"

Syntax

DBMS_CAPTURE_ADM.DROP_CAPTURE(
 capture_name IN VARCHAR2,
 drop_unused_rule_sets IN BOOLEAN DEFAULT FALSE);

Parameters

Table 28-10 DROP_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process being dropped. Specify an existing capture process name. Do not specify an owner.

	
drop_unused_rule_sets

	
If TRUE, then the procedure drops any rule sets, positive and negative, used by the specified capture process if these rule sets are not used by any other Oracle Streams client. Oracle Streams clients include capture processes, propagations, apply processes, and messaging clients. If this procedure drops a rule set, then this procedure also drops any rules in the rule set that are not in another rule set.

If FALSE, then the procedure does not drop the rule sets used by the specified capture process, and the rule sets retain their rules.

Usage Notes

When you use this procedure to drop a capture process, rules-related information for the capture process created by the DBMS_STREAMS_ADM package is removed from the data dictionary views for Oracle Streams rules. Information about such a rule is removed even if the rule is not in either rule set for the capture process.

The following are the data dictionary views for Oracle Streams rules:

	
ALL_STREAMS_GLOBAL_RULES

	
DBA_STREAMS_GLOBAL_RULES

	
ALL_STREAMS_MESSAGE_RULES

	
DBA_STREAMS_MESSAGE_RULES

	
ALL_STREAMS_SCHEMA_RULES

	
DBA_STREAMS_SCHEMA_RULES

	
ALL_STREAMS_TABLE_RULES

	
DBA_STREAMS_TABLE_RULES

	
ALL_STREAMS_RULES

	
DBA_STREAMS_RULES

	
See Also:

Oracle Streams Concepts and Administration for more information about Oracle Streams data dictionary views

INCLUDE_EXTRA_ATTRIBUTE Procedure

This procedure includes or excludes an extra attribute in logical change records (LCRs) captured by the specified capture process or synchronous capture.

Syntax

DBMS_CAPTURE_ADM.INCLUDE_EXTRA_ATTRIBUTE(
 capture_name IN VARCHAR2,
 attribute_name IN VARCHAR2,
 include IN BOOLEAN DEFAULT TRUE);

Parameters

Table 28-11 INCLUDE_EXTRA_ATTRIBUTE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process or synchronous capture. Specify an existing capture process name or synchronous capture name. Do not specify an owner.

	
attribute_name

	
The name of the attribute to be included in or excluded from LCRs captured by the capture process or synchronous capture. The following names are valid settings:

	
row_id

The rowid of the row changed in a row LCR. This attribute is not included in DDL LCRs, or in row LCRs for index-organized tables. The type is VARCHAR2.

	
serial#

The serial number of the session that performed the change captured in the LCR. The type is NUMBER.

	
session#

The identifier of the session that performed the change captured in the LCR. The type is NUMBER.

	
thread#

The thread number of the instance in which the change captured in the LCR was performed. Typically, the thread number is relevant only in an Oracle Real Application Clusters (Oracle RAC) environment. The type is NUMBER.

	
tx_name

The name of the transaction that includes the LCR. The type is VARCHAR2.

	
username

The name of the user who performed the change captured in the LCR. The type is VARCHAR2.

	
include

	
If TRUE, then the specified attribute is included in LCRs captured by the capture process or synchronous capture.

If FALSE, then the specified attribute is excluded from LCRs captured by the capture process or synchronous capture.

Usage Notes

Some information is not captured by a capture process or synchronous capture unless you use this procedure to specify that the information should be captured. If you want to exclude an extra attribute that is being captured by a capture process or synchronous capture, then specify the attribute and specify FALSE for the include parameter.

PREPARE_GLOBAL_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all the tables in the database at another database and can enable supplemental logging for key columns or all columns in these tables. This procedure should be used to prepare the tables in the database for instantiation when a capture process will be used to capture changes to the tables in the database.

This procedure records the lowest SCN of each object in the database for instantiation. SCNs subsequent to the lowest SCN for an object can be used for instantiating the object. Running this procedure prepares all current and future objects in the database for instantiation.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_GLOBAL_INSTANTIATION
 supplemental_logging IN VARCHAR2 DEFAULT 'keys');

Parameter

Table 28-12 PREPARE_GLOBAL_INSTANTIATION Procedure Parameter

	Parameter	Description
	
supplemental_logging

	
Either none, keys, or all.

If none is specified, then this procedure does not enable supplemental logging for any columns in the tables in the database. This procedure does not remove existing supplemental logging specifications for these tables.

If keys is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the tables in the database and for any table added to the database in the future. Primary key columns are logged unconditionally. Unique key, bitmap index, and foreign key columns are logged conditionally. Specifying keys does not enable supplemental logging of bitmap join index columns.

If all is specified, then this procedure enables supplemental logging for all columns in the tables in the database and for any table added to the database in the future. The columns are logged unconditionally. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database.

If you use a capture process to capture all of the changes to a database, then use this procedure to prepare the tables in the database for instantiation after the capture process has been configured.

PREPARE_SCHEMA_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating all tables in the schema at another database and can enable supplemental logging for key columns or all columns in these tables. This procedure should be used to prepare the tables in the schema for instantiation when a capture process will be used to capture changes to the tables in the schema.

This procedure records the lowest SCN of each object in the schema for instantiation. SCNs subsequent to the lowest SCN for an object can be used for instantiating the object. Running this procedure prepares all current and future objects in the schema for instantiation.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_SCHEMA_INSTANTIATION(
 schema_name IN VARCHAR2,
 supplemental_logging IN VARCHAR2 DEFAULT 'keys');

Parameters

Table 28-13 PREPARE_SCHEMA_INSTANTIATION Procedure Parameters

	Parameter	Description
	
schema_name

	
The name of the schema. For example, hr.

	
supplemental_logging

	
Either none, keys, or all.

If none is specified, then this procedure does not enable supplemental logging for any columns in the tables in the schema. This procedure does not remove existing supplemental logging specifications for these tables.

If keys is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the tables in the schema and for any table added to this schema in the future. Primary key columns are logged unconditionally. Unique key, bitmap index, and foreign key columns are logged conditionally. Specifying keys does not enable supplemental logging of bitmap join index columns.

If all is specified, then this procedure enables supplemental logging for all columns in the tables in the schema and for any table added to this schema in the future. The columns are logged unconditionally. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database. If you use a capture process to capture all of the changes to a schema, then use this procedure to prepare the tables in the schema for instantiation after the capture process has been configured.

PREPARE_SYNC_INSTANTIATION Function

This function performs the synchronization necessary for instantiating one or more tables at another database. This function returns the prepare system change number (SCN) for the table or tables being prepared for instantiation.

This function should be used to prepare one or more tables for instantiation when a synchronous capture will be used to capture changes to the tables.

This function records the lowest SCN of each table for instantiation (prepare SCN). SCNs subsequent to the lowest SCN for an object can be used for instantiating the object.

This function is overloaded. The table_names parameter is VARCHAR2 datatype in one version and DBMS_UTILITY.UNCL_ARRAY datatype in the other version.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation

Syntax

DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names IN VARCHAR2)
RETURN NUMBER;

DBMS_CAPTURE_ADM.PREPARE_SYNC_INSTANTIATION(
 table_names IN DBMS_UTILITY.UNCL_ARRAY)
RETURN NUMBER;

Parameters

Table 28-14 PREPARE_SYNC_INSTANTIATION Function Parameter

	Parameter	Description
	
table_names

	
When the table_names parameter is VARCHAR2 datatype, a comma-delimited list of the tables to prepare for instantiation. There must be no spaces between entries.

When the table_names parameter is DBMS_UTILITY.UNCL_ARRAY datatype, specify a PL/SQL index-by table of this type that contains the names of the tables to prepare for instantiation. The first table name should be at position 1, the second at position 2, and so on. The table does not need to be NULL terminated.

In either version of the function, specify the name of each table in the form [schema_name.]table_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

PREPARE_TABLE_INSTANTIATION Procedure

This procedure performs the synchronization necessary for instantiating the table at another database and can enable supplemental logging for key columns or all columns in the table. This procedure should be used to prepare the table for instantiation when a capture process will be used to capture changes to the table.

This procedure records the lowest SCN of the table for instantiation. SCNs subsequent to the lowest SCN for an object can be used for instantiating the object.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about instantiation and supplemental logging

Syntax

DBMS_CAPTURE_ADM.PREPARE_TABLE_INSTANTIATION(
 table_name IN VARCHAR2,
 supplemental_logging IN VARCHAR2 DEFAULT 'keys');

Parameters

Table 28-15 PREPARE_TABLE_INSTANTIATION Procedure Parameters

	Parameter	Description
	
table_name

	
The name of the table specified as [schema_name.]object_name. For example, hr.employees. If the schema is not specified, then the current user is the default.

	
supplemental_logging

	
Either none, keys, or all.

If none is specified, then this procedure does not enable supplemental logging for any columns in the table. This procedure does not remove existing supplemental logging specifications for the table.

If keys is specified, then this procedure enables supplemental logging for primary key, unique key, bitmap index, and foreign key columns in the table. The procedure places the key columns for the table in three separate log groups: the primary key columns in an unconditional log group, the unique key columns and bitmap index columns in a conditional log group, and the foreign key columns in a conditional log group. Specifying keys does not enable supplemental logging of bitmap join index columns.

If all is specified, then this procedure enables supplemental logging for all columns in the table. The procedure places all of the columns for the table in an unconditional log group. Supplemental logging is not enabled for columns of the following types: LOB, LONG, LONG RAW, user-defined types, and Oracle-supplied types.

Usage Notes

Run this procedure at the source database. If you use a capture process to capture all of the changes to a table, then use this procedure to prepare the table for instantiation after the capture process has been configured.

SET_PARAMETER Procedure

This procedure sets a capture process parameter to the specified value.

Syntax

DBMS_CAPTURE_ADM.SET_PARAMETER(
 capture_name IN VARCHAR2,
 parameter IN VARCHAR2,
 value IN VARCHAR2 DEFAULT NULL);

Parameters

Table 28-16 SET_PARAMETER Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process. Do not specify an owner.

	
parameter

	
The name of the parameter you are setting. See "Capture Process Parameters" for a list of these parameters.

	
value

	
The value to which the parameter is set.

If NULL, then the parameter is set to its default value.

Usage Notes

When you alter a parameter value, a short amount of time might pass before the new value for the parameter takes effect.

Capture Process Parameters

The following table lists the parameters for the capture process.

Table 28-17 Capture Process Parameters

	Parameter Name	Possible Values	Default	Description
	
disable_on_limit

	
Y or N

	
N

	
If Y, then the capture process is disabled because it reached a value specified by the time_limit parameter or message_limit parameter.

If N, then the capture process is restarted immediately after stopping because it reached a limit.

When a capture process is restarted, it starts to capture changes at the point where it last stopped. A restarted capture process gets a new session identifier, and the processes associated with the capture process also get new session identifiers. However, the capture process number (CPnn) remains the same.

	
downstream_real_time_mine

	
Y or N

	
Y for local capture processes

N for downstream capture processes

	
If Y, then the capture process is a real-time downstream capture process. After setting this parameter to y, switch the redo log file at the source database using the SQL statement ALTER SYSTEM ARCHIVE LOG CURRENT to begin real-time downstream capture. If this parameter is set to Y, then redo data from the source database must be sent to the standby redo log at the downstream database. See Oracle Streams Concepts and Administration for information about creating a real-time downstream capture process.

If N, then the capture process is an archived-log downstream capture process.

This parameter is ignored for local capture processes.

	
maximum_scn

	
A valid SCN or infinite

	
infinite

	
The capture process is disabled before capturing a change record with an SCN greater than or equal to the value specified.

If infinite, then the capture process runs regardless of the SCN value.

	
message_limit

	
A positive integer or infinite

	
infinite

	
The capture process stops after capturing the specified number of messages.

If infinite, then the capture process continues to run regardless of the number of messages captured.

	
message_tracking_frequency

	
0 or a positive integer

	
2000000

	
The frequency at which messages captured by the capture process are tracked automatically.

For example, if this parameter is set to the default value of 2000000, then every two-millionth message is tracked automatically.

The tracking label used for automatic message tracking is capture_process_name:AUTOTRACK, where capture_process_name is the name of the capture process. Only the first 20 bytes of the capture process name are used; the rest is truncated if it exceeds 20 bytes.

If 0 (zero), then no messages are tracked automatically.

See Oracle Streams Replication Administrator's Guide for more information about message tracking.

	
parallelism

	
A positive integer

	
1

	
The number of preparer servers that can concurrently mine the redo log for the capture process.

A capture process consists of one reader server, one or more preparer servers, and one builder server. The preparer servers concurrently format changes found in the redo log into logical change records (LCRs). Each reader server, preparer server, and builder server is a process, and the number of preparer servers equals the number specified for the parallelism capture process parameter. So, if parallelism is set to 5, then a capture process uses a total of seven processes: one reader server, five preparer servers, and one builder server.

Setting the parallelism parameter to a number higher than the number of available parallel execution servers might disable the capture process. Ensure that the PROCESSES and PARALLEL_MAX_SERVERS initialization parameters are set appropriately when you set the parallelism capture process parameter.

Note: When you change the value of this parameter, the capture process is stopped and restarted automatically.

See Also: Oracle Streams Concepts and Administration for more information about capture process components

	
skip_autofiltered_table_ddl

	
Y or N

	
Y

	
If Y, then the capture process does not capture data definition language (DDL) changes to tables that are automatically filtered by the capture process.

If N, then the capture process can capture DDL changes to tables that are automatically filtered by the capture process if the DDL changes satisfy the capture process rule sets.

The AUTO_FILTERED column in the DBA_STREAMS_UNSUPPORTED data dictionary view shows which tables are automatically filtered by capture processes.

	
startup_seconds

	
0, a positive integer, or infinite

	
0

	
The maximum number of seconds to wait for another instantiation of the same capture process to finish. If the other instantiation of the same capture process does not finish within this time, then the capture process does not start. This parameter is useful only if you are starting the capture process manually.

If infinite, then the capture process does not start until another instantiation of the same capture process finishes.

	
time_limit

	
A positive integer or infinite

	
infinite

	
The capture process stops as soon as possible after the specified number of seconds since it started.

If infinite, then the capture process continues to run until it is stopped explicitly.

	
trace_level

	
0 or a positive integer

	
0

	
Set this parameter only under the guidance of Oracle Support Services.

	
write_alert_log

	
Y or N

	
Y

	
If Y, then the capture process writes a message to the alert log on exit.

If N, then the capture process does not write a message to the alert log on exit.

The message specifies the reason the capture process stopped.

	
Note:

	
For all parameters that are interpreted as positive integers, the maximum possible value is 4,294,967,295. Where applicable, specify infinite for larger values.

	
For parameters that require an SCN setting, any valid SCN value can be specified.

START_CAPTURE Procedure

This procedure starts the capture process, which mines redo logs and enqueues the mined redo information into the associated queue.

The start status is persistently recorded. Hence, if the status is ENABLED, then the capture process is started upon database instance startup.

The capture process is a background Oracle process and is prefixed by c.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the start status of a capture process.

	
See Also:

Chapter 130, "DBMS_STREAMS_ADM"

Syntax

DBMS_CAPTURE_ADM.START_CAPTURE(
 capture_name IN VARCHAR2);

Parameters

Table 28-18 START_CAPTURE Procedure Parameter

	Parameter	Description
	
capture_name

	
The name of the capture process. Do not specify an owner.

The capture process uses LogMiner to capture changes in the redo information. A NULL setting is not allowed.

Usage Notes

The capture process status is persistently recorded. Hence, if the status is ENABLED, then the capture process is started upon database instance startup. A capture process (cnnn) is an Oracle background process.

STOP_CAPTURE Procedure

This procedure stops the capture process from mining redo logs.

The stop status is persistently recorded. Hence, if the status is DISABLED, then the capture process is not started upon database instance startup.

The enqueue and dequeue state of DBMS_AQADM.START_QUEUE and DBMS_AQADM.STOP_QUEUE have no effect on the stop status of a capture process.

Syntax

DBMS_CAPTURE_ADM.STOP_CAPTURE(
 capture_name IN VARCHAR2,
 force IN BOOLEAN DEFAULT FALSE);

Parameters

Table 28-19 STOP_CAPTURE Procedure Parameters

	Parameter	Description
	
capture_name

	
The name of the capture process. A NULL setting is not allowed. Do not specify an owner.

	
force

	
If TRUE, then the procedure stops the capture process as soon as possible. If the capture process cannot stop normally, then it aborts.

If FALSE, then the procedure stops the capture process as soon as possible. If the capture process cannot stop normally, then an ORA-26672 error is returned, and the capture process might continue to run.

Usage Notes

The capture process status is persistently recorded. Hence, if the status is DISABLED or ABORTED, then the capture process is not started upon database instance startup. A capture process (cnnn) is an Oracle background process.

29 DBMS_CDC_PUBLISH

The DBMS_CDC_PUBLISH package, one of a set of Change Data Capture packages, is used by a publisher to set up an Oracle Change Data Capture system to capture and publish change data from one or more Oracle relational source tables.

Change Data Capture captures and publishes only committed data. Oracle Change Data Capture identifies new data that has been added to, updated in, or removed from relational tables, and publishes the change data in a form that is usable by subscribers.

Typically, a Change Data Capture system has one publisher who captures and publishes changes for any number of Oracle relational source tables. The publisher then provides subscribers (applications or individuals) with access to the published data. Subscribers access the published data using the DBMS_CDC_SUBSCRIBE package.

	
See Also:

Oracle Database Data Warehousing Guide for information regarding Oracle Change Data Capture

This chapter contains the following topics:

	
Using DBMS_CDC_PUBLISH

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

	
Summary of DBMS_CDC_PUBLISH Subprograms

Using DBMS_CDC_PUBLISH

This section contains the following topics, which relate to using the DBMS_CDC_PUBLISH package:

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

Overview

Through the DBMS_CDC_PUBLISH package, the publisher creates and maintains change sources, change sets, and change tables, and eventually drops them when they are no longer useful.

The publisher, typically a database administrator, is concerned primarily with the source of the data and with creating the schema objects that describe the structure of the capture system: change sources, change sets, and change tables.

Most Change Data Capture systems have one publisher and many subscribers. The publisher accomplishes the following main objectives:

	
Determines which source table changes need to be published.

	
Decides whether to capture changes asynchronously or synchronously.

	
Uses the subprograms in the DBMS_CDC_PUBLISH package to capture change data from the source tables and make it available by creating and administering the change source, change set, and change table objects.

	
Allows controlled access to subscribers by using the SQL GRANT and REVOKE statements to grant and revoke the SELECT privilege on change tables for users and roles. (This is necessary to allow the subscribers to subscribe to the change data using the DBMS_CDC_SUBSCRIBE package.)

	
See Also:

Chapter 30, "DBMS_CDC_SUBSCRIBE" for information on the package used to subscribe to published change data

Deprecated Subprograms

	
Note:

Oracle recommends that you do not use deprecated procedures in new applications. Support for deprecated features is for backward compatibility only.

The following subprograms are deprecated with Oracle Database 11g:

	
DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION with a subscription handle

When dropping a subscription, the publisher should now specify the name of the subscription to be dropped, not the subscription handle.

	
DBMS_CDC_PUBLISH.DROP_SUBSCRIBER_VIEW

Dropping a subscriber view is now performed automatically by Change Data Capture.

Security Model

You must have the EXECUTE_CATALOG_ROLE role to use the DBMS_CDC_PUBLISH package. Additional privileges and roles are required depending on the publishing mode and whether the publisher is on the source or staging database. See the section on Granting Privileges and Roles to the Publisher in Oracle Database Data Warehousing Guide for details.

Views

The DBMS_CDC_PUBLISH package uses the views listed in the section on Getting Information About the Change Data Capture Environment in Oracle Database Data Warehousing Guide.

Summary of DBMS_CDC_PUBLISH Subprograms

Table 29-1 describes the subprograms in the DBMS_CDC_PUBLISH supplied package and the mode or modes with which each can be used. A value of All in the Mode column indicates that the subprogram can be used with synchronous and all modes of asynchronous Change Data Capture, a value of Asynchronous in the Mode column indicates that the subprogram can be used with all modes of asynchronous Change Data Capture (HotLog, Distributed HotLog, and AutoLog).

Table 29-1 DBMS_CDC_PUBLISH Package Subprograms

	Subprogram	Mode	Description
	
ALTER_AUTOLOG_CHANGE_SOURCE Procedure

	
Asynchronous AutoLog

	
Changes one or more properties of an existing AutoLog change source

	
ALTER_CHANGE_SET Procedure

	
All

	
Changes one or more of the properties of an existing change set

	
ALTER_CHANGE_TABLE Procedure

	
All

	
Adds or drops columns for an existing change table, or changes the properties of an existing change table

	
ALTER_HOTLOG_CHANGE_SOURCE Procedure

	
Asynchronous Distributed HotLog

	
Changes one or more properties of an existing Distributed HotLog change source

	
CREATE_AUTOLOG_CHANGE_SOURCE Procedure

	
Asynchronous AutoLog

	
Creates an AutoLog change source

	
CREATE_CHANGE_SET Procedure

	
All

	
Creates a change set

	
CREATE_CHANGE_TABLE Procedure

	
All

	
Creates a change table in a specified schema

	
CREATE_HOTLOG_CHANGE_SOURCE Procedure

	
Asynchronous Distributed HotLog

	
Creates a Distributed HotLog change source

	
DROP_CHANGE_SET Procedure

	
All

	
Drops an existing change set

	
DROP_CHANGE_SOURCE Procedure

	
Asynchronous Autolog and Asynchronous Distributed Hotlog

	
Drops an existing AutoLog or Distributed HotLog change source

	
DROP_CHANGE_TABLE Procedure

	
All

	
Drops an existing change table

	
DROP_SUBSCRIPTION Procedure

	
All

	
Allows a publisher to drop a subscription that was created by a subscriber

	
GET_DDLOPER Function

	
All

	
Converts a binary integer into a user friendly string that describes the DDL operation that actually took place

	
PURGE Procedure

	
All

	
Removes unneeded rows from all change tables in the staging database

	
PURGE_CHANGE_SET Procedure

	
All

	
Removes unneeded rows from all change tables in a specified change set

	
PURGE_CHANGE_TABLE Procedure

	
All

	
Removes unneeded rows from a specified change table

ALTER_AUTOLOG_CHANGE_SOURCE Procedure

This procedure changes the properties of an existing AutoLog change source.

Syntax

DBMS_CDC_PUBLISH.ALTER_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 first_scn IN NUMBER DEFAULT NULL);

Parameters

Table 29-2 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of an existing AutoLog change source. Change source names follow Oracle schema object naming rules.

	
description

	
New description of the change source. The description must be specified using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
first_scn

	
New first SCN.

Exceptions

Table 29-3 ALTER_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31455

	
Nothing to ALTER

	
ORA-31497

	
Invalid value specified for first_scn

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31501

	
Specified change source is not an AutoLog change source

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Specified parameter value longer than maximum length

Usage Notes

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can be used to change more than one property at a time.

	
This procedure can be used in making SCN adjustments after determining which redo logs are no longer needed for an asynchronous AutoLog change set.

	
See Also:

The section on asynchronous Change Data Capture and redo log files in Oracle Database Data Warehousing Guide for information on how the publisher can use the ALTER_AUTOLOG_CHANGE_SOURCE procedure in making SCN adjustments after determining which redo logs are no longer needed for an asynchronous AutoLog change set.

ALTER_CHANGE_SET Procedure

This procedure changes the properties of an existing change set that was created with the CREATE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.ALTER_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 enable_capture IN CHAR DEFAULT NULL,
 recover_after_error IN CHAR DEFAULT NULL,
 remove_ddl IN CHAR DEFAULT NULL,
 stop_on_ddl IN CHAR DEFAULT NULL);

Parameters

Table 29-4 ALTER_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of an existing change set. Change set names follow the Oracle schema object naming rules.

	
description

	
New description of the change set. Specify using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
enable_capture

	
A value of 'Y' or 'N'.

If the value is 'Y', then change data capture is enabled for this change set.

If the value is 'N', then change data capture is disabled for this change set.

Synchronous change sets are created with change data capture enabled.

Asynchronous change sets are created with change data capture disabled.

	
recover_after_error

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture will attempt to recover from earlier capture errors.

If the value is 'N', then Change Data Capture will not attempt to recover from earlier capture errors.

	
remove_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y' and the value of the recover_after_error parameter is 'Y', then any DDL records that may have caused capture errors will be filtered out during recovery.

If the value is 'N', then DDL records that may have caused capture errors will not be filtered out during recovery.

This parameter has meaning only when the recover_after_error parameter is specified with a value of 'Y'.

	
stop_on_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL event is detected.

If the value is 'N', then Change Data Capture continues when a DDL event is detected.

See the Usage Notes for additional information about this parameter.

Exceptions

Table 29-5 ALTER_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Specified change set is not an existing change set

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31455

	
Invalid lock handle while acquiring lock

	
ORA-31468

	
Cannot process DDL change record

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31485

	
Invalid database link

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31505

	
Cannot alter or drop predefined change set

	
ORA-31507

	
Specified parameter value longer than maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture. However, the predefined synchronous change set, SYNC_SET, cannot be altered, and the following parameters cannot be altered for publisher-defined synchronous change sets: enable_capture, recover_after_error, remove_ddl, and stop_on_ddl.

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can alter more than one parameter at a time.

	
Enabling or disabling an asynchronous HotLog or AutoLog change set starts or stops the Oracle Streams capture process and apply process underlying the change set. Enabling or disabling an asynchronous Distributed HotLog change set starts or stops the Oracle Streams apply process underlying the change set.

	
The effect of the stop_on_ddl parameter is as follows:

	
When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data Capture stops if DDL is encountered during change data capture. Some DDL statements can adversely affect capture, such as a statement that drops a source table column that is being captured. The publisher has an opportunity to analyze and adjust to DDL changes that may adversely affect change tables while capture is stopped, thereby preventing possible errors during capture.

Because these statements do not affect the column data itself, Change Data Capture does not stop capturing change data when the stop_on_ddl parameter is set to 'Y' and any of the following statements is encountered:

	
ANALYZE TABLE

	
LOCK TABLE

	
GRANT privileges to access a table

	
REVOKE privileges to access a table

	
COMMENT on a table

	
COMMENT on a column

These statements can be issued on the source database without concern for their impact on Change Data Capture processing.

	
When the stop_on_ddl parameter is set to 'N', Change Data Capture does not stop if DDL is encountered during change data capture. If a change set does not stop on DDL, but a DDL change occurs that affects change tables, that change can result in a capture error. There are also system conditions that can cause capture errors, such as being out of disk space.

	
See Also:

Oracle Database Data Warehousing Guide for information on the effects of, and how to recover from, a capture error

Whenever a DDL statement causes processing to stop, a message is written to the alert log indicating for which change set processing has been stopped and the DDL statement that caused it to be stopped. Similarly, whenever DDL statements are ignored by Change Data Capture and processing continues, a message is written to the alert log indicating which DDL statement was ignored.

	
The publisher can attempt to recover an asynchronous change set after a capture error by specifying 'Y' for the recover_after_error parameter. Capture errors can occur when any of the following is true:

	
The stop_on_ddl parameter is set to 'Y' and there is a DDL record in the change data. In this case, to recover from the error, the publisher must also specify 'Y' for the remove_ddl parameter.

	
The stop_on_ddl parameter is set to 'N' and there is a DDL record that affects capture. For example, if the publisher drops and re-creates a change table, it causes an error the next time that Change Data Capture attempts to add change data to the named change table.

	
A miscellaneous error occurs, such as running out of disk space, or a redo log file error (such as ORA-01688: unable to extend table string.string partition string by string in tablespace string).

	
See Also:

Oracle Database Data Warehousing Guide for more information on how to recover from a capture error.

ALTER_CHANGE_TABLE Procedure

This procedure adds columns to, or drops columns from, or changes the properties of, a change table that was created with the CREATE_CHANGE_TABLE procedure.

Syntax

DBMS_CDC_PUBLISH.ALTER_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 operation IN VARCHAR2,
 column_list IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR,
 ddl_markers IN CHAR DEFAULT NULL);

Parameters

Table 29-6 ALTER_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
The schema that owns the change table.

	
change_table_name

	
The change table that is being altered. Change table names follow the Oracle schema object naming rules.

	
operation

	
Either the value ADD or DROP to indicate whether to add or drop the user columns specified with the column_list parameter and any control columns specified by other parameters.

	
column_list

	
User column names and datatypes for each column of the source table that should be added to, or dropped from, the change table. The list is comma-delimited.

	
rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

ddl_markers

	
Each listed parameter specifies a particular control column, as follows:

	
The rs_id parameter specifies the RSID$ control column.

	
The row_id parameter specifies the ROW_ID$ control column.

	
The user_id parameter specifies the USERNAME$ control column.

	
The timestamp parameter specifies the TIMESTAMP$ control column.

	
The object_id parameter specifies the SYS_NC_OID$ control column.

	
The source_colmap parameter specifies the SOURCE_COLMAP$ control column.

	
The target_colmap parameter specifies the TARGET_COLMAP$ control column.

	
The ddl_markers parameter tracks all DDL operations on the source table and stores information about those operations in the change table. These are the three additional control columns you get when ddl_markers is enabled. There are three values: DDLOPER$ is a bit vector that indicates what kind of DDL operation happened. (Use the procedure DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$) to get the name of the DDL operation.) DDLDESC$ is a CLOB containing the actual DDL statement executed. DDLPDOBJN$ is not used in this release.

Each parameter must have a value of either 'Y' or 'N', where:

	
'Y': Adds the specified control column to, or drops it from the change table, as indicated by the operation parameter.

	
'N': Neither adds the specified control column, nor drops it from the change table.

	
See Also:

Oracle Database Data Warehousing Guide for a complete description of control columns.

Exceptions

Table 29-7 ALTER_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31403

	
Specified change table already contains the specified column

	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31416

	
Invalid SOURCE_COLMAP value

	
ORA-31417

	
Column list contains control column control-column-name

	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Specified owner schema does not exist

	
ORA-31423

	
Specified change table does not contain the specified column

	
ORA-31454

	
Invalid value specified for operation parameter, expecting ADD or DROP

	
ORA-31455

	
Nothing to alter

	
ORA-31456

	
Error executing a procedure in the DBMS_CDC_UTILITY package

	
ORA-31459

	
System triggers for DBMS_CDC_PUBLISH package are not installed

	
ORA-31471

	
Invalid OBJECT_ID value

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher cannot add and drop user columns in the same call to the ALTER_CHANGE_TABLE procedure; these schema changes require separate calls.

	
The publisher must not specify the name of the control columns in the column_ list parameter.

	
When altering an asynchronous change table, the publisher must accept the default value or specify 'N' for the source_colmap and object_id parameters. In addition, for the asynchronous Distributed HotLog mode, the publisher also must accept the default value or specify 'N' for the row_id and username parameters when the change source is 9.2 or 10.1.

	
See Also:

Oracle Database Data Warehousing Guide for information about the impact on subscriptions when a publisher adds a column to a change table.

ALTER_HOTLOG_CHANGE_SOURCE Procedure

This procedure changes the properties of an existing Distributed HotLog change source.

Syntax

DBMS_CDC_PUBLISH.ALTER_HOTLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 remove_description IN CHAR DEFAULT 'N',
 enable_source IN CHAR DEFAULT NULL);

Parameters

Table 29-8 ALTER_HOTLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of an existing Distributed HotLog change source. Change source names follow Oracle schema object naming rules.

	
description

	
New description of the change source. The description must be specified using 255 or fewer characters.

	
remove_description

	
A value of 'Y' or 'N'.

If the value is 'Y', then the current description is changed to NULL. If the value is 'N', then the current description is unchanged.

Do not specify the description parameter with this parameter.

	
enable_source

	
A value of 'Y' or 'N'.

If the value is 'Y', then the change source is enabled. If the value is 'N', then the change source is disabled.

Exceptions

Table 29-9 ALTER_HOTLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Change source is not an existing change source

	
ORA-31455

	
Nothing to ALTER

	
ORA-31480

	
Staging database and source database cannot be the same

	
ORA-31481

	
Change source is not a HotLog change source

	
ORA-31482

	
Invalid option for non-distributed HotLog change source

	
ORA-31484

	
Source database must be at least 9.2.0.6 or greater

	
ORA-31485

	
Invalid database link

	
ORA-31498

	
The description and remove_description parameters cannot both be specified

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Parameter value longer than maximum length

	
ORA-31532

	
Cannot enable change source

	
ORA-31534

	
Change Data Capture publisher is missing DBA role

Usage Notes

	
Properties supplied to this procedure with a NULL value are unchanged.

	
This procedure can be used to change more than one property at a time.

	
Enabling or disabling a Distributed HotLog change source starts or stops the Oracle Streams capture process that underlies the change source.

	
This procedure cannot be used to alter the change source for the asynchronous HotLog mode of Change Database Capture. The change source for the asynchronous HotLog mode is the predefined change source, HOTLOG_SOURCE, which cannot be altered.

CREATE_AUTOLOG_CHANGE_SOURCE Procedure

This procedure creates an AutoLog change source. An AutoLog change source is based on of a set of redo log files automatically copied by redo transport services to the system on which the staging database resides.

Syntax

DBMS_CDC_PUBLISH.CREATE_AUTOLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2,
 first_scn IN NUMBER,
 online_log IN CHAR DEFAULT 'N');

Parameters

Table 29-10 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of the change source. Change source names follow the Oracle schema object naming rules.

	
description

	
Description of the change source. Specify using 255 or fewer characters.

	
source_database

	
Global name of the change source's source database instance.

	
first_scn

	
The SCN of the start of a LogMiner dictionary that is in the change source's archived redo log files.

	
online_log

	
A value of 'Y' or 'N' If the value is 'Y', then the change source uses the AutoLog online option to hot-mine the source database online redo log to gather change data. There can only be one change source with online_log='Y' on a given staging database.

If the value is 'N', then the change source uses the AutoLog archive option to get change data from archived redo log files. There can be one or more change sources with online_log='N' on a given staging database.

Exceptions

Table 29-11 CREATE_AUTOLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31436

	
Duplicate change source specified

	
ORA-31497

	
Invalid value specified for first_scn

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31507

	
Specified parameter value is longer than the maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

	
ORA-31535

	
Cannot support change source in this configuration

Usage Notes

	
The publisher can use this procedure for asynchronous Change Data Capture only.

	
The publisher must take care when specifying a value for the source_database parameter. Change Data Capture does not validate this value when creating the change source. The publisher can query the GLOBAL_NAME column in the GLOBAL_NAME view at the source database for the source_database parameter value.

	
The publisher must configure redo transport services to automatically copy the log files to the system on which the staging database resides.

	
See Also:

The section on performing asynchronous AutoLog publishing in Oracle Database Data Warehousing Guide for information on configuring redo transport services to automatically copy the log files to the system on which the staging database resides.

	
An AutoLog change source must begin with an archived redo log file that contains a LogMiner dictionary. The CREATE_AUTOLOG_CHANGE_SOURCE first_scn parameter indicates the SCN for this dictionary extraction and is the point at which the change source can begin capturing changes. The publisher can determine the value for the first_scn parameter using either of the following methods:

	
Direct DBMS_CAPTURE_ADM.BUILD to return the value when the dictionary is built:

SET SERVEROUTPUT ON
VARIABLE FSCN NUMBER;
BEGIN
 :FSCN := 0;
 DBMS_CAPTURE_ADM.BUILD(:FSCN);
 DBMS_OUTPUT.PUT_LINE('The first_scn value is ' || :FSCN);
END;
/
The first_scn value is 207722

	
Make the following query on the source database. If this query returns multiple distinct values for first_change#, then the data dictionary has been extracted more than once and the publisher should choose the first_change# value that is the most appropriate to the change source.

SELECT DISTINCT FIRST_CHANGE#, NAME
 FROM V$ARCHIVED_LOG
 WHERE DICTIONARY_BEGIN = 'YES';

	
See Also:

The section on performing asynchronous AutoLog publishing in Oracle Database Data Warehousing Guide for information on archived redo log files and the LogMiner dictionary.

	
For the asynchronous mode of Change Data Capture, the amount of change data captured is dependent on the level of supplemental logging enabled at the source database.

	
See Also:

Oracle Database Data Warehousing Guide for information about supplemental logging.

CREATE_CHANGE_SET Procedure

This procedure allows the publisher to create a change set. For asynchronous HotLog and AutoLog Change Data Capture, the publisher can optionally provide beginning and ending date values at which to begin and end change data capture.

Syntax

DBMS_CDC_PUBLISH.CREATE_CHANGE_SET(
 change_set_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 change_source_name IN VARCHAR2,
 stop_on_ddl IN CHAR DEFAULT 'N',
 begin_date IN DATE DEFAULT NULL,
 end_date IN DATE DEFAULT NULL);

Parameters

Table 29-12 CREATE_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of the change set. Change set names follow the Oracle schema object naming rules.

	
description

	
Description of the change set. Specify using 255 or fewer characters.

	
change_source_name

	
Name of the existing change source to contain this change set.

	
stop_on_ddl

	
A value of 'Y' or 'N'.

If the value is 'Y', then Change Data Capture stops when a DDL event is detected.

If the value is 'N', then Change Data Capture continues when a DDL event is detected.

See the Usage Notes for additional information about this parameter.

	
begin_date

	
Date on which the publisher wants the change set to begin capturing changes. A value for this parameter is valid for the asynchronous HotLog and AutoLog modes of Change Data Capture only.

	
end_date

	
Date on which the publisher wants the change set to stop capturing changes. A value for this parameter is valid for the asynchronous HotLog and AutoLog modes of Change Data Capture only.

Exceptions

Table 29-13 CREATE_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31407

	
The end_date must be greater than the begin_date

	
ORA-31408

	
Invalid value specified for begin_scn or end_scn

	
ORA-31437

	
Duplicate change set specified

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31483

	
Cannot have spaces in the parameter

	
ORA-31485

	
Invalid database link

	
ORA-31487

	
Cannot support begin dates or end dates in this configuration

	
ORA-31488

	
Cannot support change set in this configuration

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31503

	
Invalid date supplied for begin_date or end_date

	
ORA-31507

	
Specified parameter value longer than maximum length

	
ORA-31508

	
Invalid parameter value for synchronous change set

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture. However, the default values for the following parameters are the only supported values for synchronous change sets: begin_date, end_date, and stop_on_ddl. The default values for the following parameters are the only supported values for asynchronous Distributed HotLog change sets: begin_date and end_date.

	
When the change source is Distributed HotLog on a release of Oracle Database earlier than 10.2, Change Data Capture inserts rows into the CHANGE_PROPAGATION and CHANGE_PROPAGATION_SETS views on the staging database.

	
An AutoLog online change source (created with online_log='Y') can only contain one change set.

	
The begin_date and end_date parameters are optional. The publisher can specify neither of them, one of them, or both. The effect of these parameters is as follows:

	
When a begin_date is specified, changes from transactions that begin on or after that date are captured.

	
When a begin_date is not specified, capture starts with the earliest available change data.

	
When an end_date is specified, changes from transactions that are committed on or before that date are captured.

	
When an end_date is not specified, Change Data Capture continues indefinitely.

	
The effect of the stop_on_ddl parameter is as follows:

	
When the stop_on_ddl parameter is set to 'Y', asynchronous Change Data Capture stops if DDL is encountered during change data capture. Some DDL statements can adversely affect capture, such as a statement that drops a source table column that is being captured. The publisher has an opportunity to analyze and adjust to DDL changes that may adversely affect change tables while capture is stopped, thereby preventing possible errors during capture.

Because these statements do not affect the column data itself, Change Data Capture does not stop capturing change data when the stop_on_ddl parameter is set to 'Y' and any of the following statements is encountered:

	
ANALYZE TABLE

	
LOCK TABLE

	
GRANT privileges to access a table

	
REVOKE privileges to access a table

	
COMMENT on a table

	
COMMENT on a column

These statements can be issued on the source database without concern for their impact on Change Data Capture processing.

	
When the stop_on_ddl parameter is set to 'N', Change Data Capture does not stop if DDL is encountered during change data capture. If a change set does not stop on DDL, but a DDL change occurs that affects capture, that change can result in a capture error.

	
See Also:

Oracle Database Data Warehousing Guide for information on the effects of, and how to recover from, a capture error.

Whenever a DDL statement causes processing to stop, a message is written to the alert log indicating for which change set processing has been terminated and the DDL statement that caused it to be terminated. Similarly, whenever DDL statements are ignored by Change Data Capture and processing continues, a message is written to the alert log indicating which DDL statement was ignored.

CREATE_CHANGE_TABLE Procedure

This procedure creates a change table in a specified schema.

	
Note:

Oracle recommends that the publisher be certain that the source table that will be referenced in a CREATE_CHANGE_TABLE procedure has been created prior to calling this procedure, particularly if the change set that will be specified in the procedure has the stop_on_ddl parameter set to 'Y'.

Syntax

DBMS_CDC_PUBLISH.CREATE_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 change_set_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_type_list IN VARCHAR2,
 capture_values IN VARCHAR2,
 rs_id IN CHAR,
 row_id IN CHAR,
 user_id IN CHAR,
 timestamp IN CHAR,
 object_id IN CHAR,
 source_colmap IN CHAR,
 target_colmap IN CHAR,
 options_string IN VARCHAR2,
 ddl_markers IN CHAR DEFAULT 'Y');

Parameters

Table 29-14 CREATE_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Name of the schema that owns the change table.

	
change_table_name

	
Name of the change table that is being created. Change table names follow the Oracle schema object naming rules.

	
change_set_name

	
Name of the change set in which this change table resides.

	
source_schema

	
The schema where the source table is located.

	
source_table

	
The source table from which the change records are captured.

	
column_type_list

	
The user columns and datatypes that are being tracked. Specify using a comma-delimited list.

	
capture_values

	
One of the following capture values for update operations:

	
OLD: Captures the original values from the source table.

	
NEW: Captures the changed values from the source table.

	
BOTH: Captures the original and changed values from the source table.

	
rs_id

row_id

user_id

timestamp

object_id

source_colmap

target_colmap

ddl_markers

	
Each listed parameter specifies a particular control column as follows:

	
The rs_id parameter specifies the RSID$ control column.

	
The row_id parameter specifies the ROW_ID$ control column.

	
The user_id parameter specifies the USERNAME$ control column.

	
The timestamp parameter specifies the TIMESTAMP$ control column.

	
The object_id parameter specifies the SYS_NC_OID$ control column.

	
The source_colmap parameter specifies the SOURCE_COLMAP$ control column.

	
The target_colmap parameter specifies the TARGET_COLMAP$ control column.

	
The ddl_markers parameter tracks all DDL operations on the source table and stores information about those operations in the change table. There are three values: DDLOPER$ is a bit vector that indicates what kind of DDL operation happened. (Use the procedure DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$) to get the name of the DDL operation.) DDLDESC$ is a CLOB containing the actual DDL statement executed. DDLPDOBJN$ is not used in this release.

Each parameter can have a value of 'Y' or 'N', where:

	
'Y': Adds the specified control column to the change table.

	
'N': Does not add the specified control column to the change table.

	
options_string

	
The syntactically correct options to be passed to a CREATE TABLE DDL statement. The options string is appended to the generated CREATE TABLE DDL statement after the closing parenthesis that defines the columns of the table. See the Usage Notes for more information.

	
See Also:

Oracle Database Data Warehousing Guide for a complete description of control columns

Exceptions

Table 29-15 CREATE_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31402

	
Unrecognized parameter specified

	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31416

	
Invalid SOURCE_COLMAP value

	
ORA-31417

	
Column list contains control column control-column-name

	
ORA-31418

	
Specified source schema does not exist

	
ORA-31419

	
Specified source table does not exist

	
ORA-31420

	
Unable to submit the purge job

	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Owner schema does not exist

	
ORA-31438

	
Duplicate change table

	
ORA-31447

	
Cannot create change tables in the SYS schema

	
ORA-31450

	
Invalid value for change_table_name

	
ORA-31451

	
Invalid value for capture_values, expecting: OLD, NEW, or BOTH

	
ORA-31452

	
Invalid value for parameter, expecting: Y or N

	
ORA-31459

	
System triggers for DBMS_CDC_PUBLISH package are not installed

	
ORA-31467

	
No column found in the source table

	
ORA-31471

	
Invalid OBJECT_ID value

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
A change table is a database table that contains the change data resulting from DML statements (INSERT, UPDATE, and DELETE) made to a source table. A given change table can capture changes from only one source table.

	
A change table is a database table that contains two types of columns:

	
User columns, which are copies of actual columns of source tables that reside in the change table.

	
Control columns, which maintain special metadata for each change row in the change table. Information such as the DML operation performed, the capture time (time stamp), and changed column vectors are examples of control columns. The publisher must not specify the name of the control columns in the user column list.

	
If there are multiple publishers on the staging database for the Distributed HotLog mode of Change Data capture, and one publisher defines a change table in another publisher's Distributed HotLog change set, then Change Data Capture uses the database link established by the publisher who created the change set to access the source database. Therefore, the database link to the source database established by the publisher who created the change set must be intact for the change table to be successfully created. If the change set publisher's database link is not present when creating a change table, an error is returned indicating that the connection description for the remote database was not found.

	
The publisher must not attempt to control a change table's partitioning properties. Change Data Capture automatically manages the change table partitioning as part of its change table management.

	
When creating a change table for any mode of asynchronous Change Data Capture, the publisher must accept the default value or specify 'N' for the source_colmap and object_id parameters. In addition, for the asynchronous Distributed HotLog mode of Change Data Capture, the publisher also must accept the default value or specify 'N' for the row_id and username parameters when the change source is 9.2 or 10.1.

	
When the publisher specifies the rs_id parameter, the RSID$ column is added to the change table. The RSID$ column value reflects an operation's capture order within a transaction, but not across transactions. The publisher cannot use the RSID$ column value by itself to order committed operations across transactions; it must be used in conjunction with the CSCN$ column value.

	
The publisher can control a change table's physical properties, tablespace properties, and so on, by specifying the options_string parameter. With the options_string parameter, the publisher can set any option that is valid for the CREATE TABLE DDL statement (except for partitioning properties).

	
Note:

How the publisher defines the options_string parameter can have an effect on the performance and operations in a Change Data Capture system. For example, if the publisher places several constraints in the options column, it can have a noticeable effect on performance. Also, if the publisher uses NOT NULL constraints and a particular column is not changed in an incoming change row, then the constraint can cause the INSERT operation to fail and the transaction that contains the INSERT operation to be rolled back.

	
Oracle recommends that change tables not be created in system tablespaces. This can be accomplished if the publisher's default tablespace is not the system tablespace or if the publisher specifies a tablespace in the options_string parameter. If a tablespace is not specified by the publisher, and the publisher's default table space is the system tablespace, then Change Data Capture creates change tables in the system tablespace.

	
See Also:

Oracle Database Data Warehousing Guide for more information on, and examples of, creating change tables in tablespaces managed by the publisher.

CREATE_HOTLOG_CHANGE_SOURCE Procedure

This procedure creates a Distributed HotLog change source on the source database when the publisher runs this procedure from the staging database. A Distributed HotLog change source is based on data in the online redo log files that is automatically transferred to the staging database by Oracle Streams propagation.

Syntax

DBMS_CDC_PUBLISH.CREATE_HOTLOG_CHANGE_SOURCE(
 change_source_name IN VARCHAR2,
 description IN VARCHAR2 DEFAULT NULL,
 source_database IN VARCHAR2);

Parameters

Table 29-16 CREATE_HOTLOG_CHANGE_SOURCE Procedure Parameters

	Parameters	Description
	
change_source_name

	
Name of the Distributed HotLog change source to be created. Each change source name must be unique and must follow the Oracle schema object naming rules.

	
description

	
Description of the change source. Specify using 255 or fewer characters.

	
source_database

	
The name of the database link defined from the staging database to the source database, where the source database is Oracle9i Database, Database 10g Release 1, Oracle Database 10g Release 2, or Oracle Database 11g Release 1. See Oracle Database Data Warehousing Guide for information on creating database links for the Distributed HotLog mode of Change Data Capture.

Exceptions

Table 29-17 CREATE_HOTLOG_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31436

	
Duplicate change source

	
ORA-31480

	
Staging database and source database cannot be the same

	
ORA-31483

	
Cannot have spaces in the parameter

	
ORA-31484

	
Source database must be at least 9.2.0.6 or greater

	
ORA-31485

	
Invalid database link

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31507

	
Parameter value longer than the maximum length

	
ORA-31534

	
Change Data Capture publisher is missing DBA role

Usage Notes

	
The publisher can use this procedure for the asynchronous Distributed HotLog mode of Change Data Capture only.

This procedure cannot be used to create a change source for the asynchronous HotLog mode of Change Database Capture. The publisher must use the predefined change source, HOTLOG_SOURCE, for the asynchronous HotLog mode of Change Data Capture.

	
A Distributed HotLog change source can contain one or more change sets, but they must all be on the same staging database.

	
A staging database publisher cannot create multiple Distributed HotLog change sources with the same name, even when those change sources are on different source databases.

	
When the publisher creates a change source on a release of Oracle Database earlier than 10.2, Change Data Capture:

	
Generates names for the Streams capture process, capture queue, and propagation based on the change source name. If a generated name is already in use, an error indicating that the capture process, queue, or propagation cannot be created is returned.

	
Inserts a row into the CHANGE_SOURCES view on the staging database where the SOURCE_TYPE column of the inserted row indicates that the source Oracle Database release is earlier than 10.2.

	
Note that the database link indicated by the source_database parameter must exist when creating, altering, or dropping a Distributed HotLog change source and the change sets and change tables it contains. However, this database link is not required for change capture to occur. Once the required Distributed HotLog change sources, change sets and change tables are in place and enabled, this database link can be dropped without interrupting change capture. This database link would need to be recreated to create, alter, or drop Distributed HotLog change sources, change sets and change tables.

DROP_CHANGE_SET Procedure

This procedure drops an existing change set that was created with the CREATE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_SET(
 change_set_name IN VARCHAR2);

Parameters

Table 29-18 DROP_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of the change set to be dropped. Change set names follow the Oracle schema object naming rules.

Exceptions

Table 29-19 DROP_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Specified change set is not an existing change set

	
ORA-31411

	
Specified change set is referenced by a change table

	
ORA-31485

	
Invalid database link

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31505

	
Cannot alter or drop predefined change set

	
ORA-31507

	
Specified parameter value is longer than maximum length

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The change set to be dropped cannot contain any change tables.

	
The predefined synchronous change set, SYNC_SET, cannot be dropped.

DROP_CHANGE_SOURCE Procedure

This procedure drops an existing AutoLog change source that was created with the CREATE_AUTOLOG_CHANGE_SOURCE procedure or an existing Distributed HotLog change source that was created with the CREATE_HOTLOG_CHANGE_SOURCE procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_SOURCE(
 change_source_name IN VARCHAR2);

Parameters

Table 29-20 DROP_CHANGE_SOURCE Procedure Parameters

	Parameter	Description
	
change_source_name

	
Name of the change source to be dropped. Change source names follow the Oracle schema object naming rules.

Exceptions

Table 29-21 DROP_CHANGE_SOURCE Procedure Exceptions

	Exception	Description
	
ORA-31401

	
Specified change source is not an existing change source

	
ORA-31406

	
Specified change source is referenced by a change set

	
ORA-31499

	
Null value specified for required parameter

	
ORA-31504

	
Cannot alter or drop predefined change source

	
ORA-31507

	
Specified parameter value longer than maximum length

Usage Notes

	
The change source to be dropped cannot contain any change sets.

	
The predefined change sources, HOTLOG_SOURCE and SYNC_SOURCE, cannot be dropped.

DROP_CHANGE_TABLE Procedure

This procedure drops an existing change table that was created with the CREATE_CHANGE_TABLE procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 force_flag IN CHAR);

Parameters

Table 29-22 DROP_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Name of the schema that owns the change table.

	
change_table_name

	
Name of the change table to be dropped. Change table names follow the Oracle schema object naming rules.

	
force_flag

	
Drops the change table, depending on whether or not there are subscriptions to it, as follows:

	
'Y': Drops the change table even if there are subscriptions to it.

	
'N': Drops the change table only if there are no subscriptions to it.

Exceptions

Table 29-23 DROP_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31421

	
Change table does not exist

	
ORA-31422

	
Specified owner schema does not exist

	
ORA-31424

	
Change table has active subscriptions

	
ORA-31441

	
Table is not a change table

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
If the publisher wants to drop a change table while there are active subscriptions to that table, he or she must call the DROP_CHANGE_TABLE procedure using the force_flag => 'Y' parameter. This tells Change Data Capture to override its normal safeguards and allow the change table to be dropped despite active subscriptions. The subscriptions that include the dropped table will no longer be valid, and subscribers will lose access to the change data.

DROP_SUBSCRIPTION Procedure

This procedure allows a publisher to drop a subscription that was created by a subscriber with a prior call to the DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION procedure.

Syntax

DBMS_CDC_PUBLISH.DROP_SUBSCRIPTION(
 subscription_name IN VARCHAR2);

Parameters

Table 29-24 DROP_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
Name of the subscription that was specified by a previous call to the DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 29-25 DROP_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31432

	
Invalid source table

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
This procedure works the same way as the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.

	
This procedure provides the publisher with a way to drop subscriptions that have not been dropped by the subscriber. It is possible that a subscription that is no longer needed still exists and is holding change data in a change table indefinitely. The publisher can use this procedure to remove such a subscription so that a purge operation can clean up its change data. Oracle recommends that the publisher attempt to verify that the subscription is not needed prior to dropping it. If that is not possible, the publisher should inform the subscription owner that the subscription has been dropped. Ideally, subscribers drop subscriptions that are no longer needed using the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure and the publisher need not use the DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION procedure.

GET_DDLOPER Function

This function converts a binary integer into a user friendly string that describes the DDL operation that actually took place.

Syntax

DBMS_CDC_PUBLISH.GET_DDLOPER (ddloper IN BINARY_INTEGER)
 RETURN VARCHAR2;

Parameters

Table 29-26 Function Parameters

	Parameter	Description
	
ddloper

	
An integer value representing what DDL operation actually occurred. This value is obtained from the ddloper$ column in the subscriber's view.

Example

The following illustrates how to use change markers. First, you execute a DDL statement and then verify that it has been captured.

ALTER TABLE cdc_psales DROP PARTITION Dec_06;

SELECT ddloper$, DECODE(ddloper$, NULL, 'NULL',
 DBMS_CDC_PUBLISH.GET_DDLOPER(ddloper$))
 AS DDL_OPER
FROM cdc_psales_act
WHERE DDLOPER$ IS NOT NULL
ORDER BY cscn$;

ddloper$ DDL_OPER

512 Drop Partition
1 row selected.

SELECT ddldesc$
FROM cdc_psales_act
WHERE ddloper$
IS NOT NULL
ORDER BY cscn;

DDLDESC$

alter table cdc_psales drop partition Dec_06
1 row selected.

Usage Notes

	
If an invalid value for ddloper is given, then 'Invalid value for DDLOPR$' will be returned by this function.

	
This function only works for asynchronous Change Data Capture.

PURGE Procedure

This procedure monitors change table usage by all subscriptions, determines which rows are no longer needed by any subscriptions, and removes the unneeded rows to prevent change tables from growing indefinitely. When called, this procedure purges all change tables on the staging database.

Syntax

DBMS_CDC_PUBLISH.PURGE;

Exceptions

Only standard Oracle exceptions (for example, a privilege violation) are returned during a purge operation.

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually or automatically:

	
The publisher can run this procedure manually from the command line to purge data from change tables.

	
The publisher can run this procedure in a script to routinely perform a purge operation and control the growth of change tables.

	
Note that the DBMS_CDC_PUBLISH.PURGE procedure (used by the publisher and the Change Data Capture default purge job) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE procedure physically removes unneeded rows from change tables. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

PURGE_CHANGE_SET Procedure

This procedure removes unneeded rows from all change tables in the named change set. This procedure allows a finer granularity purge operation than the basic PURGE procedure.

Syntax

DBMS_CDC_PUBLISH.PURGE_CHANGE_SET(

 change_set_name IN VARCHAR2,
 force IN CHAR DEFAULT 'Y',
 purge_date IN DATE DEFAULT NULL);

Parameters

Table 29-27 PURGE_CHANGE_SET Procedure Parameters

	Parameter	Description
	
change_set_name

	
Name of an existing change set. Change set names follow the Oracle schema object naming rules.

	
force

	
If 'Y', try to use partition split/drop, but if the required lock cannot be acquired, use a delete statement to purge. If 'N', only use split/drop partition statements to purge. If a lock cannot be acquired, then no data will be purged.

	
purge_date

	
All records that have a commit_timestamp of less than or equal to this date will be purged.

Exceptions

Table 29-28 PURGE_CHANGE_SET Procedure Exceptions

	Exception	Description
	
ORA-31410

	
Change set is not an existing change set

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually from the command line or in a script to purge unneeded rows from change tables in a specific change set.

	
Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_SET procedure (used by the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_CHANGE_SET procedure physically removes unneeded rows from change tables in the specified change set. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

PURGE_CHANGE_TABLE Procedure

This procedure removes unneeded rows from the named change table. This procedure allows a finer granularity purge operation than the basic PURGE procedure or the PURGE_CHANGE_SET procedure.

Syntax

DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE(
 owner IN VARCHAR2,
 change_table_name IN VARCHAR2,
 force IN CHAR DEFAULT 'Y',
 purge_date IN DATE DEFAULT NULL);

Parameters

Table 29-29 PURGE_CHANGE_TABLE Procedure Parameters

	Parameter	Description
	
owner

	
Owner of the named change table.

	
change_table_name

	
Name of an existing change table. Change table names follow the Oracle schema object naming rules.

	
force

	
If 'Y', try to use partition split/drop, but if the required lock cannot be acquired, use a delete statement to purge. If 'N', only use split/drop partition statements to purge. If a lock cannot be acquired, then no data will be purged.

	
purge_date

	
All records that have a commit_timestamp of less than or equal to this date will be purged.

Exceptions

Table 29-30 PURGE_CHANGE_TABLE Procedure Exceptions

	Exception	Description
	
ORA-31421

	
Change table does not exist

Usage Notes

	
The publisher can use this procedure for asynchronous and synchronous Change Data Capture.

	
The publisher can run this procedure manually from the command line or in a script to purge unneeded rows from a specified change table.

	
Note that the DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE procedure (used by the publisher) is distinct from the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure (used by subscribers). A call to the DBMS_CDC_PUBLISH.PURGE_CHANGE_TABLE procedure physically removes unneeded rows from the specified change table. A call to the DBMS_CDC_SUBSCRIBE.PURGE_WINDOW procedure, logically removes change rows from a subscription window, but does not physically remove rows from the underlying change tables.

30 DBMS_CDC_SUBSCRIBE

The DBMS_CDC_SUBSCRIBE package, one of a set of Change Data Capture packages, lets subscribers view and query change data that was captured and published with the DBMS_CDC_PUBLISH package.

A Change Data Capture system usually has one publisher and many subscribers. The subscribers (applications or individuals), use the Oracle supplied package, DBMS_CDC_SUBSCRIBE, to access published data.

	
See Also:

Oracle Database Data Warehousing Guide for information regarding Oracle Change Data Capture.

This chapter contains the following topics:

	
Using DBMS_CDC_SUBSCRIBE

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

	
Summary of DBMS_CDC_SUBSCRIBE Subprograms

Using DBMS_CDC_SUBSCRIBE

This section contains the following topics, which relate to using the DBMS_CDC_SUBSCRIBE package:

	
Overview

	
Deprecated Subprograms

	
Security Model

	
Views

Overview

The primary role of the subscriber is to use the change data. Through the DBMS_CDC_SUBSCRIBE package, each subscriber registers interest in source tables by subscribing to them.

Once the publisher sets up the system to capture data into change tables (which are viewed as publications by subscribers) and grants subscribers access to the change tables, subscribers can access and query the published change data for any of the source tables of interest. Using the subprograms in the DBMS_CDC_SUBSCRIBE package, the subscriber accomplishes the following main objectives:

	
Indicates the change data of interest by creating a subscription and associated subscriber views on published source tables and source columns

	
Activates the subscription to indicate that the subscriber is ready to receive change data

	
Extends the subscription window to receive a new set of change data

	
Uses SQL SELECT statements to retrieve change data from the subscriber views

	
Purges the subscription window when finished processing a block of changes

	
Drops the subscription when finished with the subscription

Figure 30-1 provides a graphical flowchart of the order in which subscribers most typically use the subprograms in the DBMS_CDC_SUBSCRIBE package (which are listed in Table 30-1). A subscriber would typically create a subscription, subscribe to one or more source tables and columns, activate the subscription, extend the subscription window, query the subscriber views, purge the subscription window, and then either extend the subscription window again or drop the subscription.

	
Note:

If a subscriber uses the PURGE_WINDOW procedure immediately after using an EXTEND_WINDOW procedure, then change data may be lost without ever being processed.

	
See Also:

Chapter 29, "DBMS_CDC_PUBLISH" for information on the package for publishing change data.

Figure 30-1 Subscription Flow

[image: Description of Figure 30-1 follows]

Deprecated Subprograms

The following subprograms are deprecated with Oracle Database 11g:

	
DROP_SUBSCRIBER_VIEW

Subscribers no longer need to drop subscriber views. This work is now done automatically by Change Data Capture.

	
GET_SUBSCRIPTION_HANDLE

Subscribers no longer explicitly specify subscription handles. Subscribers should use the CREATE_SUBSCRIPTION procedure instead to specify a subscription name.

	
PREPARE_SUBSCRIBER_VIEW

Subscribers no longer need to prepare subscriber views. This work is now done automatically by Change Data Capture.

Security Model

Change Data Capture grants EXECUTE privileges to PUBLIC on the DBMS_CDC_SUBSCRIBE package.

Views

The DBMS_CDC_SUBSCRIBE package uses the views listed in the section on Getting Information About the Change Data Capture Environment in Oracle Database Data Warehousing Guide.

Summary of DBMS_CDC_SUBSCRIBE Subprograms

Table 30-1 DBMS_CDC_SUBSCRIBE Package Subprograms

	Subprogram	Description
	
ACTIVATE_SUBSCRIPTION Procedure

	
Indicates that a subscription is ready to start accessing change data

	
CREATE_SUBSCRIPTION Procedure

	
Creates a subscription and associates it with one change set

	
DROP_SUBSCRIPTION Procedure

	
Drops a subscription that was created with a prior call to the CREATE_SUBSCRIPTION procedure

	
EXTEND_WINDOW Procedure

	
Sets a subscription window high boundary so that new change data can be seen

	
PURGE_WINDOW Procedure

	
Sets the low boundary for a subscription window to notify Change Data Capture that the subscriber is finished processing a set of change data

	
SUBSCRIBE Procedure

	
Specifies a source table and the source columns for which the subscriber wants to access change data and specifies the subscriber view through which the subscriber sees change data for the source table

ACTIVATE_SUBSCRIPTION Procedure

This procedure indicates that a subscription is ready to start accessing change data.

Syntax

DBMS_CDC_SUBSCRIBE.ACTIVATE_SUBSCRIPTION (
 subscription_name IN VARCHAR2);

Parameters

Table 30-2 ACTIVATE_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 30-3 ACTIVATE_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31426

	
Cannot modify active subscriptions

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
The ACTIVATE_SUBSCRIPTION procedure indicates that the subscriber is finished subscribing to tables, and the subscription is ready to start accessing change data.

	
Once the subscriber activates the subscription:

	
No additional source tables can be added to the subscription.

	
Change Data Capture holds the available data for the source tables and sets the subscription window to empty.

	
The subscriber must use the EXTEND_WINDOW procedure to see the initial set of change data.

	
The subscription cannot be activated again.

	
A subscription cannot be activated if the underlying change set has reached its end_date parameter value.

CREATE_SUBSCRIPTION Procedure

This procedure creates a subscription that is associated with one change set. This procedure replaces the deprecated GET_SUBSCRIPTION_HANDLE procedure.

Syntax

DBMS_CDC_SUBSCRIBE.CREATE_SUBSCRIPTION (
 change_set_name IN VARCHAR2,
 description IN VARCHAR2,
 subscription_name IN VARCHAR2);

Parameters

Table 30-4 CREATE_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
change_set_name

	
The name of an existing change set to which the subscriber subscribes

	
description

	
A description of the subscription (which might include, for example, the purpose for which it is used). The description must be specified using 255 or fewer characters.

	
subscription_name

	
A unique name for a subscription that must consist of 30 characters or fewer and cannot have a prefix of CDC$. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 30-5 CREATE_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31415

	
Specified change set does not exist

	
ORA-31449

	
Invalid value for change_set_name

	
ORA-31457

	
Maximum length of description field exceeded

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31506

	
Duplicate subscription name specified

	
ORA-31510

	
Name uses reserved prefix CDC$

	
ORA-31511

	
Name exceeds maximum length of 30 characters

Usage Notes

	
The CREATE_SUBSCRIPTION procedure allows a subscriber to register interest in a change set associated with source tables of interest.

	
A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the published source tables for which the subscriber has privileges and the change sets in which the source table columns are published.

	
Subscriptions are not shared among subscribers; rather, each subscription name is validated against a given subscriber's login ID.

	
Subscriptions cannot be created if the underlying change set has reached its end_date parameter value.

DROP_SUBSCRIPTION Procedure

This procedure drops a subscription.

Syntax

DBMS_CDC_SUBSCRIBE.DROP_SUBSCRIPTION (
 subscription_name IN VARCHAR2);

Parameters

Table 30-6 DROP_SUBSCRIPTION Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

Exceptions

Table 30-7 DROP_SUBSCRIPTION Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

Usage Notes

Subscribers should be diligent about dropping subscriptions that are no longer needed so that change data will not be held in the change tables unnecessarily.

EXTEND_WINDOW Procedure

This procedure sets the subscription window high boundary so that new change data can be seen.

Syntax

DBMS_CDC_SUBSCRIBE.EXTEND_WINDOW (
 subscription_name IN VARCHAR2,
 upper_bound IN DATE DEFAULT NULL);

Parameters

Table 30-8 EXTEND_WINDOW Procedure Parameters

	Parameter	Description
	
subscription_name

	
The unique name of the subscription that was specified by a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
upper_bound

	
A date/timestamp to move the upper bound of the subscription window to.

Exceptions

Table 30-9 EXTEND_WINDOW Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31429

	
Subscription has not been activated

	
ORA-31432

	
Invalid source table

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31509

	
Publication does not exist

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
Until the subscriber calls the EXTEND_WINDOW procedure to begin receiving change data, the subscription window remains empty.

	
The first time that the subscriber calls the EXTEND_WINDOW procedure, it establishes the initial boundaries for the subscription window.

	
Subsequent calls to the EXTEND_WINDOW procedure extend the high boundary of the subscription window so that new change data can be seen.

	
Oracle recommends that subscribers not view change tables directly. Instead, subscribers should use the DBMS_CDC_SUBSCRIBE package and access data through subscriber views only. Control column values are guaranteed to be consistent only when viewed through subscriber views that have been updated with a call to the EXTEND_WINDOW procedure.

	
When the underlying change set for a subscription has reached its end_date parameter value, subsequent calls to the EXTEND_WINDOW procedure will not raise the high boundary.

PURGE_WINDOW Procedure

This procedure sets the low boundary of the subscription window so that the subscription no longer sees any change data, effectively making the subscription window empty. The subscriber calls this procedure to notify Change Data Capture that the subscriber is finished processing a block of change data.

Syntax

DBMS_CDC_SUBSCRIBE.PURGE_WINDOW (
 subscription_name IN VARCHAR2,
 lower_bound IN DATE DEFAULT NULL);

Parameters

Table 30-10 PURGE_WINDOW Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of the subscription that was specified for a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
lower_bound

	
A date/timestamp to move the lower bound of the subscription window to.

Exceptions

Table 30-11 PURGE_WINDOW Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31429

	
Subscription has not been activated

	
ORA-31432

	
Invalid source table

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31514

	
Change set disabled due to capture error

Usage Notes

	
When finished with a set of changes, the subscriber purges the subscription window with the PURGE_WINDOW procedure. By this action, the subscriber performs the following functions:

	
Informs Change Data Capture that the subscriber is finished with the current set of change data.

	
Enables Change Data Capture to remove change data that is no longer needed by any subscribers.

Change Data Capture manages the change data to ensure that it is available as long as there are subscribers who need it.

	
When the underlying change set for a subscription has reached its end_date parameter value, subsequent calls to the PURGE_WINDOW procedure will not move the low boundary.

SUBSCRIBE Procedure

This procedure specifies a source table and the source columns for which the subscriber wants to access change data. In addition, it specifies the subscriber view through which the subscriber sees change data for the source table.

Syntax

There are two versions of syntax for the SUBSCRIBE procedure, as follow:

	
Using source schema and source table

When this syntax is used, Change Data Capture will attempt to find a single publication ID that contains the specified source_table and column_list. If such a publication cannot be found, then Change Data Capture returns an error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE (
 subscription_name IN VARCHAR2,
 source_schema IN VARCHAR2,
 source_table IN VARCHAR2,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

	
Using publication IDs

When this syntax is used, Change Data Capture will use the publication ID to identify the change table. If the columns specified in the column_list parameter are not in the identified change table, then Change Data Capture returns an error.

DBMS_CDC_SUBSCRIBE.SUBSCRIBE (
 subscription_name IN VARCHAR2,
 publication_id IN NUMBER,
 column_list IN VARCHAR2,
 subscriber_view IN VARCHAR2);

Parameters

Table 30-12 SUBSCRIBE Procedure Parameters

	Parameter	Description
	
subscription_name

	
The name of a subscription that was specified for, or returned by, a previous call to the CREATE_SUBSCRIPTION procedure. Subscription names follow the Oracle schema object naming rules.

	
source_schema

	
The name of the schema where the source table resides

	
source_table

	
The name of a published source table

	
column_list

	
A comma-delimited list of columns from the published source table or publication

	
subscriber_view

	
Unique name for the subscriber view for this source table or publication that must consist of 30 or fewer characters and must not have a prefix of CDC$. Subscriber view names follow the Oracle schema object naming rules.

	
publication_id

	
A valid publication_id, which the subscriber can obtain from the ALL_PUBLISHED_COLUMNS view.

Exceptions

Table 30-13 SUBSCRIBE Procedure Exceptions

	Exception	Description
	
ORA-31409

	
One or more values for input parameters are incorrect

	
ORA-31425

	
Subscription does not exist

	
ORA-31426

	
Cannot modify active subscriptions

	
ORA-31427

	
Specified source table already subscribed

	
ORA-31428

	
No publication contains all the specified columns

	
ORA-31432

	
Invalid source table

	
ORA-31466

	
No publications found

	
ORA-31469

	
Cannot enable Change Data Capture for change set

	
ORA-31510

	
Name uses reserved prefix CDC$

	
ORA-31511

	
Name exceeds maximum length of 30 characters

Usage Notes

	
The SUBSCRIBE procedure allows a subscriber to subscribe to one or more published source tables and to specific columns in each source table. Each call to the SUBSCRIBE procedure can specify only a single source table or publication ID. The subscriber can make multiple calls to the SUBSCRIBE procedure to include multiple source tables or publications IDs in a subscription.

	
If the columns of interest are all in a single publication, the subscriber can call the SUBSCRIBE procedure using the source_schema and source_table parameters or using the publication_id parameter. However, if there are multiple publications on a single source table and these publications share some columns, and if any of the shared columns will be used by a single subscription, then the subscriber should call the SUBSCRIBE procedure using the publication_id parameter.

	
The subscriber can subscribe to any valid publication ID on which the subscriber has privileges to access. The subscriber can find valid publication IDs on which the subscriber has access by querying the ALL_PUBLISHED_COLUMNS view.

	
A subscriber can query the ALL_PUBLISHED_COLUMNS view to see all the published source table columns accessible to the subscriber.

	
Subscriptions must be created before a subscriber calls the SUBSCRIBE procedure. Change Data Capture does not guarantee that there will be any change data available at the moment the subscription is created.

	
Subscribers can subscribe only to published columns from the source table. All of the columns specified in a single call to the SUBSCRIBE procedure must come from the same publication. Any control columns associated with the underlying change table are added to the subscription automatically.

	
All specified source tables or publications must be in the change set that is associated with the named subscription.

	
A single source table can have more than one publication defined on it. A subscriber can subscribe to one or more of these publications. However a subscriber can subscribe to a particular publication only once.

	
Each publication in a subscription has its own subscriber view. Subscriber views are used to query the change data encompassed by the subscription's current window. Subscriber views are created in the schema of the subscriber.

	
A subscriber cannot subscribe to a publication within a change set that has reached its end_date parameter value.

31 DBMS_COMPARISON

The DBMS_COMPARISON package provides interfaces to compare and converge database objects at different databases.

This chapter contains the following topics:

	
Using DBMS_COMPARISON

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

	
Data Structures

	
Summary of DBMS_COMPARISON Subprograms

	
See Also:

	
Oracle Database 2 Day + Data Replication and Integration Guide for information about using the basic features of this package

	
Oracle Streams Replication Administrator's Guide for information about using the advanced features of this package

Using DBMS_COMPARISON

This section contains topics which relate to using the DBMS_COMPARISON package.

	
Overview

	
Security Model

	
Constants

	
Views

	
Operational Notes

Overview

The DBMS_COMPARISON package is an Oracle-supplied package that you can use to compare database objects at two databases. This package also enables you converge the database objects so that they are consistent at different databases. Typically, this package is used in environments that share a database object at multiple databases. When copies of the same database object exist at multiple databases, the database object is a shared database object. Several data dictionary views contain information about comparisons made with the DBMS_COMPARISON package.

Shared database objects might be maintained by data replication. For example, materialized views or Oracle Streams components might replicate the database objects and maintain them at multiple databases. A custom application might also maintain shared database objects. When a database object is shared, it can diverge at the databases that share it. You can use this package to identify differences in the shared database objects. After identifying the differences, you can optionally use this package to synchronize the shared database objects.

To compare a database object that is shared at two different databases, complete the following general steps:

	
Run the CREATE_COMPARE procedure in this package to create a comparison. The comparison identifies the database objects to compare and specifies parameters for the comparison.

	
Run the COMPARE function in this package to compare the database object at the two databases and identify differences. This function returns TRUE when no differences are found and FALSE when differences are found. This function also populates data dictionary views with comparison results. Separate comparison results are generated for each execution of the COMPARE function.

	
If you want to examine the comparison results, query the following data dictionary views:

	
DBA_COMPARISON_SCAN

	
USER_COMPARISON_SCAN

	
DBA_COMPARISON_SCAN_SUMMARY

	
USER_COMPARISON_SCAN_SUMMARY

	
DBA_COMPARISON_SCAN_VALUES

	
USER_COMPARISON_SCAN_VALUES

	
DBA_COMPARISON_ROW_DIF

	
USER_COMPARISON_ROW_DIF

	
If there are differences, and you want to synchronize the database objects at the two databases, then run the CONVERGE procedure in this package.

After you create a comparison with the CREATE_COMPARISON procedure in the DBMS_COMPARISON package, you can run the comparison at any time using the COMPARE function. Each time you run the COMPARE function, it records comparison results in the appropriate data dictionary views. Comparison results might be modified when subprograms in this package are invoked and the scans in the comparison results are specified. For example, comparison results might be modified when you run the RECHECK function.

The comparison results for a single execution of the COMPARE function can include one or more scans. A scan checks for differences in some or all of the rows in a shared database object at a single point in time. You can compare database objects multiple times, and a unique scan ID identifies each scan in the comparison results.

A bucket is a range of rows in a database object that is being compared. Buckets improve performance by splitting the database object into ranges and comparing the ranges independently. Every comparison divides the rows being compared into an appropriate number of buckets, and each bucket is compared by a scan.

Each time the COMPARE function splits a bucket into smaller buckets, it performs new scans of the smaller buckets. The scan that analyzes a larger bucket is the parent scan of each scan that analyzes the smaller buckets into which the larger bucket was split. The root scan in the comparison results is the highest level parent scan. The root scan does not have a parent.

You can recheck a scan using the RECHECK function, and you can converge a scan using the CONVERGE procedure. When you want to recheck or converge all of the rows comparison results, specify the root scan ID for the comparison results in the appropriate subprogram. When you want to recheck or converge a portion of the rows in comparison results, specify the scan ID of the scan that contains the differences.

	
See Also:

Oracle Streams Replication Administrator's Guide for more information about comparisons, including detailed information about scans, buckets, parent scans, and root scans

Security Model

Security on this package can be controlled in either of the following ways:

	
Granting EXECUTE on this package to selected users or roles.

	
Granting EXECUTE_CATALOG_ROLE to selected users or roles.

If subprograms in the package are run from within a stored procedure, then the user who runs the subprograms must be granted EXECUTE privilege on the package directly. It cannot be granted through a role.

Each subprogram in the DBMS_COMPARISON package has a comparison_name parameter. The current user must be the owner of the specified comparison to run a subprogram in the DBMS_COMPARISON package.

To run the COMPARE function, RECHECK function, or CONVERGE procedure, the following users must have SELECT privilege on each copy of the shared database object:

	
The comparison owner at the local database

	
When a database link is used, the user at the remote database to which the comparison owner connects through a database link

The CONVERGE procedure also requires additional privileges for one of these users at the database where it makes changes to the shared database object. The user must have INSERT, UPDATE, and DELETE privileges on the shared database object at this database.

Constants

The DBMS_COMPARISON package defines several enumerated constants that should be used for specifying parameter values. Enumerated constants must be prefixed with the package name. For example, DBMS_COMPARISON.CMP_SCAN_MODE_FULL.

Table 31-1 lists the parameters and enumerated constants.

Table 31-1 DBMS_COMPARISON Parameters with Enumerated Constants

	Parameter	Option	Type	Description
	
comparison_mode

	
	
CMP_COMPARE_MODE_OBJECT

	
VARCHAR2(30)

	
CMP_COMPARE_MODE_OBJECT is a database object. This constant can be specified as 'OBJECT'.

	
scan_mode

	
	
CMP_SCAN_MODE_FULL

	
CMP_SCAN_MODE_RANDOM

	
CMP_SCAN_MODE_CYCLIC

	
CMP_SCAN_MODE_CUSTOM

	
VARCHAR2(30)

	
CMP_SCAN_MODE_FULL indicates that the entire database object is compared. This constant can be specified as 'FULL'.

CMP_SCAN_MODE_RANDOM indicates that a random portion of the database object is compared. This constant can be specified as 'RANDOM'.

CMP_SCAN_MODE_CYCLIC indicates that a portion of the database object is compared when you perform a single comparison. When you compare the database object again, another portion of the database object is compared, starting where the last comparison ended. This constant can be specified as 'CYCLIC'.

CMP_SCAN_MODE_CUSTOM indicates that the user who runs the subprogram specifies the range to compare in the database object. This constant can be specified as 'CUSTOM'.

	
converge_options

	
	
CMP_CONVERGE_LOCAL_WINS

	
CMP_CONVERGE_REMOTE_WINS

	
VARCHAR2(30)

	
CMP_CONVERGE_LOCAL_WINS indicates that the column values at the local database replace the column values at the remote database when these column values are different. This constant can be specified as 'LOCAL'.

CMP_CONVERGE_REMOTE_WINS indicates that the column values at the remote database replace the column values at the local database when these column values are different. This constant can be specified as 'REMOTE'.

	
null_value

	
	
CMP_NULL_VALUE_DEF

	
VARCHAR2(100)

	
CMP_NULL_VALUE_DEF indicates that ORA$STREAMS$NV is substituted for NULL values in database objects during comparison. This constant can be specified as 'ORA$STREAMS$NV'.

	
max_num_buckets

	
	
CMP_MAX_NUM_BUCKETS

	
INTEGER

	
CMP_MAX_NUM_BUCKETS indicates that the maximum number of buckets is 1,000. This constant can be specified as 1000.

	
min_rows_in_bucket

	
	
CMP_MIN_ROWS_IN_BUCKET

	
INTEGER

	
CMP_MIN_ROWS_IN_BUCKET indicates that the minimum number of rows in a bucket is 10,000. This constant can be specified as 10000.

Views

The DBMS_COMPARISON package uses the following views:

	
DBA_COMPARISON

	
USER_COMPARISON

	
DBA_COMPARISON_COLUMNS

	
USER_COMPARISON_COLUMNS

	
DBA_COMPARISON_SCAN

	
USER_COMPARISON_SCAN

	
DBA_COMPARISON_SCAN_SUMMARY

	
USER_COMPARISON_SCAN_SUMMARY

	
DBA_COMPARISON_SCAN_VALUES

	
USER_COMPARISON_SCAN_VALUES

	
DBA_COMPARISON_ROW_DIF

	
USER_COMPARISON_ROW_DIF

	
See Also:

Oracle Database Reference

Operational Notes

This section contains the following operational notes for the DBMS_COMPARISON package:

	
Oracle Database Release Requirements for the DBMS_COMPARISON Package

	
Database Character Set Requirements for the DBMS_COMPARISON Package

	
Database Object Requirements for the DBMS_COMPARISON Package

	
Index Column Requirements for the DBMS_COMPARISON Package

	
Datatype Requirements for the DBMS_COMPARISON Package

	
Only Converge Rows That Are Not Being Updated

Oracle Database Release Requirements for the DBMS_COMPARISON Package

Meet the following Oracle Database release requirements when running the subprograms in the DBMS_COMPARISON package:

	
The local database that runs the subprograms in the DBMS_COMPARISON package must be an Oracle Database 11g Release 1 (11.1) database.

	
The remote database must be an Oracle Database 10g Release 1 (10.1) or later database. Oracle databases prior to this release and non-Oracle databases are not supported.

Database Character Set Requirements for the DBMS_COMPARISON Package

The database character sets must be the same for the databases that contain the database objects being compared.

	
See Also:

Oracle Database Globalization Support Guide for information about database character sets

Database Object Requirements for the DBMS_COMPARISON Package

The DBMS_COMPARISON package can compare the following types of database objects:

	
Tables

	
Single-table views

	
Materialized views

	
Synonyms for tables, single-table views, and materialized views

Database objects of different types can be compared and converged at different databases. For example, a table at one database and a materialized view at another database can be compared and converged with this package.

To run the subprograms in the DBMS_COMPARISON package, the specified database objects must have the same shape at each database. Specifically, the database objects must have the same number of columns at each database, and the datatypes of corresponding columns must match.

If a database object being compared contains columns that do not exist in the other database object, then you can compare the database objects by excluding the extra columns during comparison creation. Use the column_list parameter in the CREATE_COMPARISON procedure to list only the columns that exist in both database objects.

	
See Also:

CREATE_COMPARISON Procedure

Index Column Requirements for the DBMS_COMPARISON Package

This section discusses number, timestamp, and interval columns. These include the following datatypes:

	
Number columns are of the following datatypes: NUMBER, FLOAT, BINARY_FLOAT, and BINARY_DOUBLE.

	
Timestamp columns are of the following datatypes: TIMESTAMP, TIMESTAMP WITH TIME ZONE, and TIMESTAMP WITH LOCAL TIME ZONE

	
Interval columns are of the following datatypes: INTERVAL YEAR TO MONTH and INTERVAL DAY TO SECOND.

For all scan modes to be supported by the DBMS_COMPARISON package, the database objects must have one of the following types of indexes:

	
A single-column index on a number, timestamp, interval, or DATE datatype column

	
A composite index that only includes number, timestamp, interval, or DATE datatype columns. Each column in the composite index must either have a NOT NULL constraint or be part of the primary key.

For the scan modes CMP_SCAN_MODE_FULL and CMP_SCAN_MODE_CUSTOM to be supported, the database objects must have one of the following types of indexes:

	
A single-column index on a number, timestamp, interval, DATE, VARCHAR2, or CHAR datatype column

	
A composite index that only includes number, timestamp, interval, DATE, VARCHAR2, or CHAR columns. Each column in the composite index must either have a NOT NULL constraint or be part of the primary key.

If the database objects do not have one of these types of indexes, then the DBMS_COMPARISON package does not support the database objects. For example, if the database objects only have a single index on an NVARCHAR2 column, then the DBMS_COMPARISON package does not support them. Or, if the database objects have only one index, and it is a composite index that includes a NUMBER column and an NCHAR column, then the DBMS_COMPARISON package does not support them.

You can specify an index when you create a comparison using the index_schema_name and index_name parameters in the CREATE_COMPARISON procedure. If you specify an index, then make sure the columns in the index meet the requirements of the scan mode used for the comparison.

The index columns in a comparison must uniquely identify every row involved in a comparison. The following constraints satisfy this requirement:

	
A primary key constraint

	
A unique constraint on one or more non-NULL columns

If these constraints are not present on a table, then use the index_schema_name and index_name parameters in the CREATE_COMPARISON procedure to specify an index whose columns satisfy this requirement.

The DBMS_COMPARISON package can use an index only if all of the columns in the index are included in the column_list parameter when the comparison is created with the CREATE_COMPARISON procedure.

After a comparison is created, you can determine the index column or columns for it by running the following query:

SELECT COLUMN_NAME, COLUMN_POSITION FROM DBA_COMPARISON_COLUMNS
 WHERE COMPARISON_NAME = 'COMPARE_CUSTOM' AND
 INDEX_COLUMN = 'Y';

If there is more than one index column, then the index column with 1 for the COLUMN_POSITION is the lead index column in the composite index.

	
See Also:

	
"Constants" for information about scan modes

	
CREATE_COMPARISON Procedure for information about specifying an index for a comparison

Datatype Requirements for the DBMS_COMPARISON Package

The DBMS_COMPARISON package can compare data in columns of the following datatypes:

	
VARCHAR2

	
NVARCHAR2

	
NUMBER

	
FLOAT

	
DATE

	
BINARY_FLOAT

	
BINARY_DOUBLE

	
TIMESTAMP

	
TIMESTAMP WITH TIME ZONE

	
TIMESTAMP WITH LOCAL TIME ZONE

	
INTERVAL YEAR TO MONTH

	
INTERVAL DAY TO SECOND

	
RAW

	
CHAR

	
NCHAR

If a column with datatype TIMESTAMP WITH LOCAL TIME ZONE is compared, then the two databases must use the same time zone. Also, if a column with datatype NVARCHAR2 or NCHAR is compared, then the two databases must use the same national character set.

The DBMS_COMPARISON package cannot compare data in columns of the following datatypes:

	
LONG

	
LONG RAW

	
ROWID

	
UROWID

	
CLOB

	
NCLOB

	
BLOB

	
BFILE

	
User-defined types (including object types, REFs, varrays, and nested tables)

	
Oracle-supplied types (including any types, XML types, spatial types, and media types)

You can compare database objects that contain unsupported columns by excluding the unsupported columns during comparison creation. Use the column_list parameter in the CREATE_COMPARISON procedure to list only the supported columns in a shared database object.

	
See Also:

	
CREATE_COMPARISON Procedure

	
Oracle Database SQL Language Reference for more information about data types

	
Oracle Database Globalization Support Guide for information about national character sets

Only Converge Rows That Are Not Being Updated

You should only converge rows that are not being updated on either database. For example, if the shared database object is updated by replication components, then only converge rows for which replication changes have already been applied and make sure no new changes are in the process of being replicated for these rows. If you compare replicated database objects, then it is typically best to compare them during a time of little or no replication activity to identify persistent differences.

	
Attention:

If a scan identifies that a row is different in the shared database object at two databases, and the row is modified after the scan, then it can result in unexpected data in the row after the CONVERGE procedure is run.

	
See Also:

Oracle Streams Replication Administrator's Guide for information about the DBMS_COMPARISON package in an Oracle Streams replication environment

Data Structures

The DBMS_COMPARISON package defines a RECORD type.

RECORD Types

	
COMPARISON_TYPE Record Type

COMPARISON_TYPE Record Type

Contains information returned by the COMPARE function or CONVERGE procedure in the DBMS_COMPARISON package.

	
Note:

The COMPARE function only returns a value for the scan_id field.

Syntax

TYPE COMPARISON_TYPE IS RECORD(
 scan_id NUMBER,
 loc_rows_merged NUMBER,
 rmt_rows_merged NUMBER,
 loc_rows_deleted NUMBER,
 rmt_rows_deleted NUMBER);

Fields

Table 31-2 COMPARISON_TYPE Attributes

	Field	Description
	
scan_id

	
The scan ID of the scan

	
loc_rows_merged

	
The number of rows in the local database object updated with information from the database object at the remote site

	
rmt_rows_merged

	
The number of rows in the database object updated at the remote site with information from the database object at the local site

	
loc_rows_deleted

	
The number of rows deleted from the local database object

	
rmt_rows_deleted

	
The number of rows deleted from the remote database object

Summary of DBMS_COMPARISON Subprograms

Table 31-3 DBMS_COMPARISON Package Subprograms

	Subprogram	Description
	
COMPARE Function

	
Performs the specified comparison

	
CONVERGE Procedure

	
Executes data manipulation language (DML) changes to synchronize the portion of the database object that was compared in the specified scan

	
CREATE_COMPARISON Procedure

	
Creates a comparison

	
DROP_COMPARISON Procedure

	
Drops a comparison

	
PURGE_COMPARISON Procedure

	
Purges the comparison results, or a subset of the comparison results, for a comparison

	
RECHECK Function

	
Rechecks the differences in a specified scan for a comparison

COMPARE Function

This function performs the specified comparison.

Each time a comparison is performed, it results in at least one new scan, and each scan has a unique scan ID. You can define and name a comparison using the CREATE_COMPARISON procedure.

	
See Also:

	
"Overview"

	
CREATE_COMPARISON Procedure

Syntax

DBMS_COMPARISON.COMPARE(
 comparison_name IN VARCHAR2,
 scan_info OUT COMPARISON_TYPE,
 min_value IN VARCHAR2 DEFAULT NULL,
 max_value IN VARCHAR2 DEFAULT NULL,
 perform_row_dif IN BOOLEAN DEFAULT FALSE)
RETURN BOOLEAN;

Parameters

Table 31-4 COMPARE Function Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_info

	
Information about the compare operation returned in the COMPARISON_TYPE datatype.

See COMPARISON_TYPE Record Type.

	
min_value

	
When the scan mode for the comparison is set to CMP_SCAN_MODE_CUSTOM, specify the minimum index column value for the range of rows that are being compared. To determine the index column for a comparison, query the DBA_COMPARISON_COLUMNS data dictionary view. For a composite index, specify a value for the column with column_position equal to 1 in the DBA_COMPARISON_COLUMNS view. See "Index Column Requirements for the DBMS_COMPARISON Package".

If the scan mode is set to a value other than CMP_SCAN_MODE_CUSTOM, then this parameter must be set to NULL.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then an error is raised.

To determine the scan mode for the comparison, query the DBA_COMPARISON data dictionary view.

See Constants for information about scan modes.

	
max_value

	
When the scan mode for the comparison is set to CMP_SCAN_MODE_CUSTOM, specify the maximum index column value for the range of rows that are being compared. To determine the index column for a comparison, query the DBA_COMPARISON_COLUMNS data dictionary view. For a composite index, specify a value for the column with column_position equal to 1 in the DBA_COMPARISON_COLUMNS view. See "Index Column Requirements for the DBMS_COMPARISON Package".

If the scan mode is set to a value other than CMP_SCAN_MODE_CUSTOM, then this parameter must be set to NULL.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then an error is raised.

To determine the scan mode for the comparison, query the DBA_COMPARISON data dictionary view.

See Constants for information about scan modes.

	
perform_row_dif

	
If TRUE, then compares each row individually in the database object being compared after reaching the smallest possible bucket for the comparison.

If FALSE, then compares buckets for differences but does not compare each row individually when differences are found in the smallest possible bucket.

See "Overview" for information about buckets.

Return Values

This function returns TRUE when no differences are found in the database objects being compared. This function returns FALSE when differences are found in the database objects being compared.

CONVERGE Procedure

This procedure executes data manipulation language (DML) changes to synchronize the portion of the database objects that was compared in the specified scan.

Syntax

DBMS_COMPARISON.CONVERGE(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER,
 scan_info OUT COMPARISON_TYPE,
 converge_options IN VARCHAR2 DEFAULT CMP_CONVERGE_LOCAL_WINS,
 perform_commit IN BOOLEAN DEFAULT TRUE,
 local_converge_tag IN RAW DEFAULT NULL,
 remote_converge_tag IN RAW DEFAULT NULL);

Parameters

Table 31-5 CONVERGE Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The identifier for the scan that contains the differences between the database objects being converged.

See "Overview" for more information about specifying a scan ID in this parameter.

	
scan_info

	
Information about the converge operation returned in the COMPARISON_TYPE datatype.

See COMPARISON_TYPE Record Type.

	
converge_options

	
Either the CMP_CONVERGE_LOCAL_WINS constant or the CMP_CONVERGE_REMOTE_WINS constant.

See "Constants" for information about these constants.

	
perform_commit

	
If TRUE, then performs a COMMIT periodically while making the DML changes. The CONVERGE procedure might perform more than one COMMIT when this parameter is set to TRUE.

If FALSE, then does not perform a COMMIT after making DML changes

	
local_converge_tag

	
The Oracle Streams tag to set in the session on the local database before performing any changes to converge the data in the database objects being converged.

If non-NULL, then this parameter setting takes precedence over the local_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison.

If NULL, then this parameter is ignored, and the local_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison is used.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

	
remote_converge_tag

	
The Oracle Streams tag to set in the session on the remote database before performing any changes to converge the data in the database objects being converged.

If non-NULL, then this parameter setting takes precedence over the remote_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison.

If NULL, then this parameter is ignored, and the remote_converge_tag parameter in the CREATE_COMPARISON procedure that created the comparison is used.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

Usage Notes

If one of the database objects being converged is a read-only materialized view, then the converge_options parameter must be set to ensure that the read-only materialized view "wins" in the converge operation. The CONVERGE procedure raises an error if it tries to make changes to a read-only materialized view.

CREATE_COMPARISON Procedure

This procedure creates a comparison.

Syntax

DBMS_COMPARISON.CREATE_COMPARISON(
 comparison_name IN VARCHAR2,
 schema_name IN VARCHAR2,
 object_name IN VARCHAR2,
 dblink_name IN VARCHAR2,
 index_schema_name IN VARCHAR2 DEFAULT NULL,
 index_name IN VARCHAR2 DEFAULT NULL,
 remote_schema_name IN VARCHAR2 DEFAULT NULL,
 remote_object_name IN VARCHAR2 DEFAULT NULL,
 comparison_mode IN VARCHAR2 DEFAULT CMP_COMPARE_MODE_OBJECT,
 column_list IN VARCHAR2 DEFAULT '*',
 scan_mode IN VARCHAR2 DEFAULT CMP_SCAN_MODE_FULL,
 scan_percent IN NUMBER DEFAULT NULL,
 null_value IN VARCHAR2 DEFAULT CMP_NULL_VALUE_DEF,
 local_converge_tag IN RAW DEFAULT NULL,
 remote_converge_tag IN RAW DEFAULT NULL,
 max_num_buckets IN NUMBER DEFAULT CMP_MAX_NUM_BUCKETS,
 min_rows_in_bucket IN NUMBER DEFAULT CMP_MIN_ROWS_IN_BUCKET);

Parameters

Table 31-6 CREATE_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
schema_name

	
The name of the schema that contains the local database object to compare.

	
object_name

	
The name of the local database object to compare.

	
dblink_name

	
Database link to the remote database. The specified database object in the remote database is compared with the database object in the local database.

If NULL, then the comparison is configured to compare two database objects in the local database. In this case, parameters that specify the remote database object apply to the second database object in the comparison and to operations on the second database object. For example, specify the second database object in this procedure by using the remote_schema_name and remote_object_name parameters.

	
index_schema_name

	
The name of the schema that contains the index.

If NULL, then the schema specified in the schema_name parameter is used.

	
index_name

	
The name of the index.

If NULL, then the system determines the index columns for the comparison automatically.

If the index_schema_name parameter is non-NULL, then the index_name parameter must also be non-NULL. Otherwise, an error is raised.

See Also: "Usage Notes" for more information about specifying an index

	
remote_schema_name

	
The name of the schema that contains the database object at the remote database. Specify a non-NULL value if the schema names are different at the two databases.

If NULL, then the schema specified in the schema_name parameter is used.

	
remote_object_name

	
The name of the database object at the remote database. Specify a non-NULL value if the database object names are different at the two databases.

If NULL, then the database object specified in the object_name parameter is used.

	
comparison_mode

	
Specify the default value CMP_COMPARE_MODE_OBJECT. Additional modes might be added in future releases.

	
column_list

	
Specify '*' to include all of the columns in the database objects being compared.

To compare a subset of columns in the database objects, specify a comma-separated list of the columns to check. Any columns that are not in the list are ignored during a comparison and convergence.

See "Usage Notes" for information about columns that are required in the column_list parameter.

	
scan_mode

	
Either CMP_SCAN_MODE_FULL, CMP_SCAN_MODE_RANDOM, CMP_SCAN_MODE_CYCLIC, or CMP_SCAN_MODE_CUSTOM.

If you specify CMP_SCAN_MODE_CUSTOM, then make sure you specify an index using the index_schema_name and index_name parameters. Specifying an index ensures that you can specify the correct min_value and max_value for the lead index column when you run the COMPARE or RECHECK function.

See "Constants" for information about these constants.

	
scan_percent

	
The percentage of the database object to scan for comparison when the scan_mode parameter is set to either CMP_SCAN_MODE_RANDOM or CMP_SCAN_MODE_CYCLIC. For these scan_mode settings, a non-NULL value that is greater than 0 (zero) and less than 100 is required.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_FULL, then the entire database object is scanned for comparison.

If NULL and the scan_mode parameter is set to CMP_SCAN_MODE_CUSTOM, then the portion of the database object scanned for comparison is specified when the COMPARE function is run.

If non-NULL and the scan_mode parameter is set to either CMP_SCAN_MODE_FULL or CMP_SCAN_MODE_CUSTOM, then the scan_percent parameter is ignored.

Note: When the scan_percent parameter is non-NULL, and the lead index column for the comparison does not distribute the rows in the database object evenly, the portion of the database object that is compared might be smaller or larger than the specified scan_percent value. See "Index Column Requirements for the DBMS_COMPARISON Package" for more information about the lead index column.

	
null_value

	
The value to substitute for each NULL in the database objects being compared. Specify a value or use the CMP_NULL_VALUE_DEF constant.

If a column being compared can contain NULLs, then the value specified for this parameter must be different than any non-NULL value in the column. Otherwise, if the value specified for this parameter can appear in the column, some row differences might not be found.

See "Constants" for information about this constant.

	
local_converge_tag

	
The Oracle Streams tag to set in the session on the local database before performing any changes to converge the data in the database objects being compared.

If the local_converge_tag parameter is non-NULL in the CONVERGE procedure when comparison results for this comparison are converged, then the setting in the CONVERGE procedure takes precedence. See CONVERGE Procedure for more information.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

	
remote_converge_tag

	
The Oracle Streams tag to set in the session on the remote database before performing any changes to converge the data in the database objects being compared.

If the remote_converge_tag parameter is non-NULL in the CONVERGE procedure when comparison results for this comparison are converged, then the setting in the CONVERGE procedure takes precedence. See CONVERGE Procedure for more information.

See the Oracle Streams Replication Administrator's Guide for more information about tags.

	
max_num_buckets

	
Specify the maximum number of buckets to use. Specify a value or use the CMP_MAX_NUM_BUCKETS constant. See "Constants" for information about this constant.

See "Overview" for information about buckets.

Note: If an index column for a comparison is a VARCHAR2 or CHAR column, then the number of buckets might exceed the value specified for the max_num_buckets parameter.

	
min_rows_in_bucket

	
Specify the minimum number of rows in each bucket. Specify a value or use the CMP_MIN_ROWS_IN_BUCKET constant. See "Constants" for information about this constant.

See "Overview" for information about buckets.

Usage Notes

This section contains usage notes for the CREATE_COMPARISON procedure.

Usage Notes for the index_schema_name and index_name Parameters

When you specify an index for a comparison with the index_schema_name and index_name parameters, the specified index determines the comparison's index columns and their ordering. The order of the columns in the index determines the index column ordering for the comparison. Therefore, the column in column position 1 in the index is the lead column for the comparison.

The index columns and their ordering affect the details of each SQL statement generated and executed for a comparison. For each SQL statement, the optimizer decides whether or not to use indexes. If the optimizer decides to use indexes, then the optimizer decides which particular indexes to use. An index specified in column_list parameter might or might not be used.

The columns in the specified index must meet the requirements described in "Index Column Requirements for the DBMS_COMPARISON Package". If the index columns do not meet these requirements, then an error is raised.

Usage Notes for the column_list Parameter

When the column_list parameter is set to a value other than '*', the following columns are required in the column_list parameter:

	
Any columns that are required to meet the index column requirements for the DBMS_COMPARISON package. If the index_name parameter is non-NULL, then the columns in the specified index must be in the column list. If the index_name parameter is NULL, then see "Index Column Requirements for the DBMS_COMPARISON Package".

	
If you plan to use the CONVERGE procedure to make changes to a database object based on the comparison, then any columns in this database object that have a NOT NULL constraint but no default value must be included in the column list. If these columns are not included, then the CONVERGE procedure returns an error. See CONVERGE Procedure.

DROP_COMPARISON Procedure

This procedure drops a comparison.

Syntax

DBMS_COMPARISON.DROP_COMPARISON(
 comparison_name IN VARCHAR2);

Parameters

Table 31-7 DROP_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

PURGE_COMPARISON Procedure

This procedure purges the comparison results, or a subset of the comparison results, for a comparison.

	
Note:

At least one of the following parameters must be set to NULL: scan_id or purge_time. If both the scan_id and purge_time parameters are NULL, then this procedure purges all comparison results for the comparison.

Syntax

DBMS_COMPARISON.PURGE_COMPARISON(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER DEFAULT NULL,
 purge_time IN TIMESTAMP DEFAULT NULL);

Parameters

Table 31-8 PURGE_COMPARISON Procedure Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The scan ID of the scan for which results are purged. The scan ID must identify a root scan. If the scan ID does not identify a root scan, then an error is raised. When a root scan ID is specified, it is purged, and all direct and indirect child scans of the specified root scan are purged.

If NULL, then no scan ID is considered when purging comparison results for the comparison.

See "Overview" for information about scans.

	
purge_time

	
The date before which results are purged.

If NULL, then no date is considered when purging comparison results for the comparison.

RECHECK Function

This function rechecks the differences in a specified scan for a comparison.

This function performs one of the following actions:

	
If the specified scan completed successfully the last time it ran, then this function checks the previously identified differences in the scan.

	
If the specified scan completed partially, then this function will continue to check the database object from the point where the previous scan ended.

	
Note:

This function does not compare the shared database object for differences that were not recorded in the specified comparison scan. To check for those differences, run the COMPARE function.

	
See Also:

	
Oracle Streams Replication Administrator's Guide

	
COMPARE Function

Syntax

DBMS_COMPARISON.RECHECK(
 comparison_name IN VARCHAR2,
 scan_id IN NUMBER,
 perform_row_dif IN BOOLEAN DEFAULT FALSE)
RETURN BOOLEAN;

Parameters

Table 31-9 RECHECK Function Parameters

	Parameter	Description
	
comparison_name

	
The name of the comparison.

	
scan_id

	
The scan ID of the scan to recheck.

See "Overview" for more information about specifying a scan ID in this parameter.

	
perform_row_dif

	
If TRUE, then compares each row individually in the database objects being compared after reaching the smallest possible bucket for the comparison.

If FALSE, then compares buckets for differences but does not compare each row individually when differences are found in the smallest possible bucket.

See "Overview" for information about buckets.

Return Values

This function returns TRUE when no differences are found in the database objects being compared. This function returns FALSE when differences are found in the database objects being compared.

32 DBMS_CONNECTION_POOL

The DBMS_CONNECTION_POOL package provides an interface to manage Database Resident Connection Pool.

	
See Also:

Oracle Database Concepts for more information on "Database Resident Connection Pooling"

This chapter contains the following topic:

	
Summary of DBMS_CONNECTION_POOL Subprograms

Summary of DBMS_CONNECTION_POOL Subprograms

Table 32-1 DBMS_CONNECTION_POOL Package Subprograms

	Subprogram	Description
	
ALTER_PARAM Procedure

	
Alters a specific configuration parameter as a standalone unit and does not affect other parameters

	
CONFIGURE_POOL Procedure

	
Configures the pool with advanced options

	
START_POOL Procedure

	
Starts the pool for operations. It is only after this call that the pool could be used by connection clients for creating sessions

	
STOP_POOL Procedure

	
Stops the pool and makes it unavailable for the registered connection clients

	
RESTORE_DEFAULTS Procedure

	
Restores the pool to default settings

ALTER_PARAM Procedure

This procedure alters a specific configuration parameter as a standalone unit and does not affect other parameters.

Syntax

DBMS_CONNECTION_POOL.ALTER_PARAM (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL', param_name IN VARCHAR2, param_value IN VARCHAR2);

Parameters

Table 32-2 ALTER_PARAM Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be configured. Currently only the default pool name is supported.

	
param_name

	
Any parameter name from CONFIGURE_POOL

	
param_value

	
Parameter value for param_name.

Exceptions

Table 32-3 ALTER_PARAM Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56504

	
Invalid connection pool configuration parameter name

	
ORA-56505

	
Invalid connection pool configuration parameter value

	
ORA-56507

	
Connection pool alter configuration failed

Examples

DBMS_CONNECTION_POOL.ALTER_PARAM(
 'SYS_DEFAULT_CONNECTION_POOL', 'MAX_LIFETIME_SESSION', '120');

CONFIGURE_POOL Procedure

This procedure configures the pool with advanced options.

Syntax

DBMS_CONNECTION_POOL.CONFIGURE_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL',
 minsize IN NUMBER DEFAULT 4,
 maxsize IN NUMBER DEFAULT 40,
 incrsize IN NUMBER DEFAULT 2,
 session_cached_cursors IN NUMBER DEFAULT 20,
 inactivity_timeout IN NUMBER DEFAULT 300,
 max_think_time IN NUMBER DEFAULT 120,
 max_use_session IN NUMBER DEFAULT 500000,
 max_lifetime_session IN NUMBER DEFAULT 86400);

Parameters

Table 32-4 CONFIGURE_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be configured. Currently only the default pool name is supported.

	
minsize

	
Minimum number of pooled servers in the pool

	
maxsize

	
Maximum allowed pooled servers in the pool

	
incrsize

	
Pool would increment by this number of pooled server when pooled server are unavailable at application request time

	
session_cached_cursors

	
Turn on SESSION_CACHED_CURSORS for all connections in the pool. This is an existing init.ora parameter

	
inactivity_timeout

	
TTL (Time to live) for an idle session in the pool. This parameter helps to shrink the pool when it is not used to its maximum capacity. If a connection remains in the pool idle for this time, it is killed.

	
max_think_time

	
Maximum time of inactivity by the client after getting a session from the pool. If the client does not issue a database call after grabbing a server from the pool, the client will be forced to relinquish control of the pooled server and will get an ORA-xxxxx error. The freed up server may or may not be returned to the pool.

	
max_use_session

	
Maximum number of times a connection can be taken and released to the pool

	
max_lifetime_session

	
TTL (Time to live) for a pooled session

Exceptions

Table 32-5 CONFIGURE_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56507

	
Connection pool alter configuration failed

Usage Notes

	
All expressions of time are in seconds

	
All of the parameters should be set based on statistical request patterns.

	
minsize should be set keeping in mind that it puts a lower bound on server resource consumption. This is to prevent the timeout from dragging the pool too low, because of a brief period of inactivity.

	
maxsize should be set keeping in mind that it puts an upper bound on concurrency and response-times and also server resource consumption.

	
session_cached_cursors is typically set to the number of most frequently used statements. It occupies cursor resource on the server

	
In doubt, do not set the increment and inactivity_timeout. The pool will have reasonable defaults.

	
max_use_session and max_lifetime_session allow for software rejuvenation or defensive approaches to potential bugs, leaks, accumulations, and like problems, by getting brand new sessions once in a while.

START_POOL Procedure

This procedure starts the pool for operations. It is only after this call that the pool could be used by connection classes for creating sessions.

Syntax

DBMS_CONNECTION_POOL.START_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 32-6 START_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be started. Currently only the default pool name is supported.

Exceptions

Table 32-7 START_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56501

	
Connection pool startup failed

Usage Notes

If the instance is restarted (shutdown followed by startup), the pool is automatically started.

STOP_POOL Procedure

This procedure stops the pool and makes it unavailable for the registered connection classes.

Syntax

DBMS_CONNECTION_POOL.STOP_POOL (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 32-8 STOP_POOL Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be stopped. Currently only the default pool name is supported.

Exceptions

Table 32-9 STOP_POOL Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56506

	
Connection pool shutdown failed

Usage Notes

This stops the pool and takes it offline. This does not destroy the persistent data (such as, the pool name and configuration parameters) associated with the pool.

RESTORE_DEFAULTS Procedure

This procedure restores the pool to default settings.

Syntax

DBMS_CONNECTION_POOL.RESTORE_DEFAULTS (
 pool_name IN VARCHAR2 DEFAULT 'SYS_DEFAULT_CONNECTION_POOL');

Parameters

Table 32-10 RESTORE_DEFAULTS Procedure Parameters

	Parameter	Description
	
pool_name

	
Pool to be restored. Currently only the default pool name is supported.

Exceptions

Table 32-11 RESTORE_DEFAULTS Procedure Exceptions

	Exception	Description
	
ORA-56500

	
Connection pool not found

	
ORA-56507

	
Connection pool alter configuration failed

Usage Notes

If the instance is restarted (shutdown followed by startup), the pool is automatically started.

33 DBMS_CQ_NOTIFICATION

The DBMS_CQ_NOTIFICATION package is part of the database change notification feature that provides the functionality to create registration on queries designated by a client application and so to receive notifications in response to DML or DDL changes on the objects associated with the queries. The notifications are published by the database when the DML or DDL transaction commits.

	
See Also:

Oracle Database Advanced Application Developer's Guide regarding implementing database change notification.

This chapter contains the following topics:

	
Using DBMS_CQ_NOTIFICATION

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Examples

	
Data Structures

	
OBJECT Types

	
Summary of DBMS_CQ_NOTIFICATION Subprograms

Using DBMS_CQ_NOTIFICATION

	
Overview

	
Security Model

	
Constants

	
Operational Notes

	
Examples

Overview

The DBMS_CQ_NOTIFICATION package provides PL/SQL based registration interfaces. A client can use this interface to create registrations on queries based on objects of interest and specify a PL/SQL callback handler to receive notifications. In case of object level registration, when a transaction changes any of the objects associated with the registered queries and |COMMIT|s, the PL/SQL callback, specified during registration for those objects, is invoked. The application can define client-specific processing inside the implementation of its PL/SQL callback handler.

The interface lets you define a registration block (using a mechanism similar to a BEGIN-END block). The recipient of notifications namely the name of the PL/SQL callback handler and a few other registration properties like time-outs can be specified during the BEGIN phase. Any queries executed subsequently (inside the registration block) are considered "interesting queries" and objects referenced by those queries during query execution are registered. The registration is completed by ENDing the registration block.The registration block lets you create new registrations or add objects to existing registrations.

When a registration is created through the PL/SQL interface, a unique registration ID is assigned to the registration by the RDBMS. The client application can use the registration ID to keep track of registrations created by it. When a notification is published by the RDBMS, the registration ID will be part of the notification.

Typical Applications

This functionality is useful for example to applications that cache query result sets on mostly read-only objects in the mid-tier to avoid network round trips to the database. Such an application can create a registration on the queries it is interested in caching. On changes to objects referenced inside those queries, the database publishes a notification when the underlying transaction commits. In response to the notification, the mid-tier application can refresh its cache by re-executing the query/queries.

Security Model

The DBMS_CQ_NOTIFICATION package requires that the user have the CHANGE NOTIFICATION system privilege in order to receive notifications, and be granted EXECUTE privilege on the DBMS_CQ_NOTIFICATION package.

In addition the user is required to have SELECT privileges on all objects to be registered. Note that if the SELECT privilege on an object was granted at the time of registration creation but lost subsequently (due to a revoke), then the registration will be purged and a notification to that effect will be published.

Constants

The DBMS_CQ_NOTIFICATION package uses the constants shown in Table 33-1. The constants are used as flag parameters either during registration or when received during the notification.

The DBMS_CQ_NOTIFICATION package has sets of constants:

	
EVENT_STARTUP, EVENT_SHUTDOWN, EVENT_SHUTDOWN_ANY, EVENT_DEREG describe the type of the notification published by the database.

	
INSERTOP, DELETEOP, UPDATEOP, ALTEROP, DROPOP and UNKNOWNOP describe the type of operation on a table (during a notification published by the database).

	
QOS_RELIABLE, QOS_DEREG_NFY, QOS_ROWIDs describe registration Quality of Service properties that the client requires. These are specified during registration.

Table 33-1 DBMS_CQ_NOTIFICATION Constants

	Name	Type	Value	Description
	
ALL_OPERATIONS

	
BINARY_INTEGER

	
0

	
Interested in being notified on all operations, specified as a parameter during registration

	
ALL_ROWS BINARY_INTEGER

	
BINARY_INTEGER

	
1

	
All rows within the table may have been potentially modified

	
EVENT_STARTUP

	
BINARY_INTEGER

	
1

	
Instance startup notification

	
EVENT_SHUTDOWN

	
BINARY_INTEGER

	
2

	
Instance shutdown notification

	
EVENT_SHUTDOWN_ANY

	
BINARY_INTEGER

	
3

	
Any instance shutdown when running RAC

	
EVENT_DEREG

	
BINARY_INTEGER

	
5

	
Registration has been removed

	
EVENT_OBJCHANGE

	
BINARY_INTEGER

	
6

	
Notification for object change

	
EVENT_QUERYCHANGE CONSTANT

	
BINARY_INTEGER

	
7

	
Notification for query result set change

	
INSERTOP

	
BINARY_INTEGER

	
2

	
Insert operation

	
UPDATEOP

	
BINARY_INTEGER

	
4

	
Update operation

	
DELETEOP

	
BINARY_INTEGER

	
8

	
Delete operation

	
ALTEROP

	
BINARY_INTEGER

	
16

	
Table altered

	
DROPOP

	
BINARY_INTEGER

	
32

	
Table dropped

	
UNKNOWNOP

	
BINARY_INTEGER

	
64

	
Unknown operation

	
QOS_RELIABLE

	
BINARY_INTEGER

	
1

	
Reliable or persistent notification. Also implies that the notifications will be inserted into the persistent storage atomically with the committing transaction that results in an object change.

	
QOS_DEREG_NFY

	
BINARY_INTEGER

	
2

	
Purge registration on first notification

	
QOS_ROWIDS

	
BINARY_INTEGER

	
4

	
Require rowids of modified rows

	
QOS_QUERY

	
BINARY_INTEGER

	
8

	
Register at query granularity

	
QOS_BEST_EFFORT

	
BINARY_INTEGER

	
16

	
Best effort evaluation

	
NTFN_GROUPING_CLASS_TIME

	
BINARY_INTEGER

	
1

	
Group notifications by time

	
NTFN_GROUPING_TYPE_SUMMARY

	
BINARY_INTEGER

	
1

	
Summary grouping of notifications

	
NTFN_GROUPING_TYPE_LAST

	
BINARY_INTEGER

	
2

	
Last notification in the group

	
NTFN_GROUPING_FOREVER

	
BINARY_INTEGER

	
-1

	
Repeat notifications forever

Operational Notes

With regard to object level registration:

	
The notifications are published by the database when a transaction changes the registered objects and COMMITs.

	
All objects referenced in the queries executed inside the registration block starting from the previous NEW_REG_START or ENABLE_REG to REG_END are considered interesting objects and added to the registration.

With regard to query result change registration:

	
The notifications are published by the database when a transaction changes the result set of the registered query and COMMITs.

Troubleshooting

If you have created a registration and seem to not receive notifications when the underlying tables are changed, please check the following.

	
Is the job_queue_processes parameter set to a non-zero value? This parameter needs to be configured to a non-zero value in order to receive PL/SQL notifications via the handler.

	
Are the registrations being created as a non-SYS user?

	
If you are attempting DML changes on the registered object, are you COMMITing the transaction? Please note that the notifications are transactional and will be generated when the transaction COMMITs.

	
It maybe possible that there are run-time errors during the execution of the PL/SQL callback due to implementation errors. If so, they would be logged to the trace file of the JOBQ process that attempts to execute the procedure. The trace file would be usually named <ORACLE_SID>_j*_<PID>.trc. '

For example, if the ORACLE_SID is 'dbs1' and the process is 12483, the trace file might be named 'dbs1_j000_12483.trc.

Suppose a registration is created with 'chnf_callback as the notification handler and with registration_id 100. Let us suppose the user forgets to define the chnf_callback procedure. Then the JOBQ trace file might contain a message of the following form.

Runtime error during execution of PL/SQL cbk chnf_callback for reg CHNF100
 Error in PLSQL notification of msgid:
 Queue :
 Consumer Name :
 PLSQL function :chnf_callback
 Exception Occured, Error msg:
 ORA-00604: error occurred at recursive SQL level 2
 ORA-06550: line 1, column 7:
 PLS-00201: identifier 'CHNF_CALLBACK' must be declared
 ORA-06550: line 1, column 7:
 PL/SQL: Statement ignored

	
See Also:

For more information about troubleshooting Database Change Notification, see Oracle Database Advanced Application Developer's Guide.

Examples

Object Change Registration Example

Suppose that a mid-tier application has a lot of queries on the HR.EMPLOYEES table. If the EMPLOYEES table is infrequently updated, it can obtain better performance by caching rows from the table because that would avoid a round-trip to the backend database server and server side execution latency. Let us assume that the application has implemented a mid-tier HTTP listener that listens for notifications and updates the mid-tier cache in response to a notification.

The DBMS_CQ_NOTIFICATION package can be utilized in this scenario to send notifications about changes to the table by means of the following steps:

	
Implement a mid-tier listener component of the cache management system (for example, using HTTP) that listens to notification messages sent from the database and refreshes the mid-tier cache in response to the notification.

	
Create a server side stored procedure to process notifications

CONNECT system;
Enter password: password
GRANT CHANGE NOTIFICATION TO hr;
GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO hr;

Rem Enable job queue processes to receive notifications.
ALTER SYSTEM SET "job_queue_processes"=2;

CONNECT hr;
Enter password: password
Rem Create a table to record notification events
CREATE TABLE nfevents(regid number, event_type number);

Rem create a table to record changes to registered tables
CREATE TABLE nftablechanges(regid number, table_name varchar2(100),
 table_operation number);

Rem create a table to record rowids of changed rows.
CREATE TABLE nfrowchanges(regid number, table_name varchar2(100),
 row_id varchar2(30));

Rem Create a PL/SQL callback handler to process notifications.
CREATE OR REPLACE PROCEDURE chnf_callback(ntfnds IN SYS.CHNF$_DESC) IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(20);
 BEGIN
 regid := ntfnds.registration_id;
 numtables := ntfnds.numtables;
 event_type := ntfnds.event_type;

 INSERT INTO nfevents VALUES(regid, event_type);
 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_OBJCHANGE) THEN
 FOR i IN 1..numtables LOOP
 tbname := ntfnds.table_desc_array(i).table_name;
 operation_type := ntfnds.table_desc_array(I). Opflags;
 INSERT INTO nftablechanges VALUES(regid, tbname, operation_type);
 /* Send the table name and operation_type to client side listener using UTL_HTTP */
 /* If interested in the rowids, obtain them as follows */
 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0) THEN
 numrows := ntfnds.table_desc_array(i).numrows;
 ELSE
 numrows :=0; /* ROWID INFO NOT AVAILABLE */
 END IF;

 /* The body of the loop is not executed when numrows is ZERO */
 FOR j IN 1..numrows LOOP
 Row_id := ntfnds.table_desc_array(i).row_desc_array(j).row_id;
 INSERT INTO nfrowchanges VALUES(regid, tbname, Row_id);
 /* optionally Send out row_ids to client side listener using UTL_HTTP; */
 END LOOP;

 END LOOP;
 END IF;
 COMMIT;
END;
/

In Step 2 we can send as much information about the invalidation as the mid-tier application needs based on the information obtained from the notification descriptor.

	
Create a registrations on the tables that we wish to be notified about. We pass in the previously defined procedure name (chnf_callback) as the name of the server side PL/SQL procedure to be executed when a notification is generated.

Rem Create a REGISTRATION on the EMPLOYEES TABLE
DECLARE
 REGDS SYS.CHNF$_REG_INFO;
 regid NUMBER;
 mgr_id NUMBER;
 dept_id NUMBER;
 qosflags NUMBER;
BEGIN
 qosflags := DBMS_CQ_NOTIFICATION.QOS_RELIABLE +
 DBMS_CQ_NOTIFICATION.QOS_ROWIDS;
REGDS := SYS.CHNF$_REG_INFO ('chnf_callback', qosflags, 0,0,0);
regid := DBMS_CQ_NOTIFICATION.NEW_REG_START (REGDS);
SELECT manager_id INTO mgr_id FROM EMPLOYEES WHERE employee_id = 200;
DBMS_CQ_NOTIFICATION.REG_END;
END;
/

Once the registration is created in Step 3 above, the server side PL/SQL procedure defined in Step 2 is executed in response to any COMMITted changes to the HR.EMPLOYEES table. As an example, let us assume that the following update is performed on the employees table.

UPDATE employees SET salary=salary*1.05 WHERE employee_id=203;COMMIT;

Once the notification is processed, you will find rows which might look like the following in the nfevents, nftablechanges and nfrowchanges tables.

SQL> SELECT * FROM nfevents;

 REGID EVENT_TYPE

 20045 6

SQL> SELECT * FROM nftablechanges;

 REGID TABLE_NAME TABLE_OPERATION

 20045 HR.EMPLOYEES 4

SQL> select * from nfrowchanges;

 REGID TABLE_NAME ROW_ID
--
 20045 HR.EMPLOYEES AAAKB/AABAAAJ8zAAF

Notes

	
In the above example, a registration was created on the EMPLOYEES table with 'chnf_callback' as the PL/SQL handler for notifications. During registration, the client specified reliable notifications (QOS_RELIABLE) and rowid notifications (QOS_ROWIDS)

	
The handler accesses the table descriptor array from the notification descriptor only if the notification type is of EVENT_OBJCHANGE. In all other cases (e.g EVENT_DEREG, EVENT_SHUTDOWN), the table descriptor array should not be accessed.

	
The handler accesses the row descriptor array from the table notification descriptor only if the ALL_ROWS bit is not set in the table operation flag. If the ALL_ROWS bit is set in the table operation flag, then it means that all rows within the table may have been potentially modified. In addition to operations like TRUNCATE that affect all rows in the tables, this bit may also be set if individual rowids have been rolled up into a FULL table invalidation.

This can occur if too many rows were modified on a given table in a single transaction (more than 80) or the total shared memory consumption due to rowids on the RDBMS is determined too large (exceeds 1% of the dynamic shared pool size). In this case, the recipient must conservatively assume that the entire table has been invalidated and the callback/application must be able to handle this condition.

Also note that the implementation of the user defined callback is up to the developer. In the above example, the callback was used to record event details into database tables. The application can additionally send the notification details to a mid-tier HTTP listener of its cache management system (as in the example) using UTL_HTTP. The listener could then refresh its cache by querying from the back-end database.

Query Result Change Registration Example

	
Creating a Callback

CONNECT system;
Enter password: password
GRANT CHANGE NOTIFICATION TO hr;
GRANT EXECUTE ON DBMS_CQ_NOTIFICATION TO hr;
CONNECT hr;
Enter password: password
Rem Create a table to record notification events
CREATE TABLE nfevents(regid NUMBER, event_type NUMBER);

Rem Create a table to record notification queries
CREATE TABLE nfqueries (qid NUMBER, qop NUMBER);

Rem Create a table to record changes to registered tables
CREATE TABLE nftablechanges(
 qid NUMBER,
 table_name VARCHAR2(100),
 table_operation NUMBER);

Rem Create a table to record rowids of changed rows.
CREATE TABLE nfrowchanges(
 qid NUMBER,
 table_name VARCHAR2(100),
 row_id VARCHAR2(2000));

CREATE OR REPLACE PROCEDURE chnf_callback
 (ntfnds IN CQ_NOTIFICATION$_DESCRIPTOR)
IS
 regid NUMBER;
 tbname VARCHAR2(60);
 event_type NUMBER;
 numtables NUMBER;
 operation_type NUMBER;
 numrows NUMBER;
 row_id VARCHAR2(2000);
 numqueries NUMBER;
 qid NUMBER;
 qop NUMBER;

BEGIN
 regid := ntfnds.registration_id;
 event_type := ntfnds.event_type;
 INSERT INTO nfevents VALUES(regid, event_type);
 numqueries :=0;
 IF (event_type = DBMS_CQ_NOTIFICATION.EVENT_QUERYCHANGE) THEN
 numqueries := ntfnds.query_desc_array.count;
 FOR i in 1..numqueries LOOP
 qid := ntfnds.QUERY_DESC_ARRAY(i).queryid;
 qop := ntfnds.QUERY_DESC_ARRAY(i).queryop;
 INSERT INTO nfqueries VALUES(qid, qop);
 numtables := 0;
 numtables := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array.count;
 FOR j IN 1..numtables LOOP
 tbname := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array(j).table_name;
 operation_type := ntfnds.QUERY_DESC_ARRAY(i).table_desc_array(j).Opflags;
 INSERT INTO nftablechanges VALUES(qid, tbname, operation_type);
 IF (bitand(operation_type, DBMS_CQ_NOTIFICATION.ALL_ROWS) = 0)
 THEN
 numrows := ntfnds.query_desc_array(i).table_desc_array(j).numrows;
 ELSE
 numrows :=0; /* ROWID INFO NOT AVAILABLE */
 END IF;

 /* The body of the loop is not executed when numrows is ZERO */
 FOR k IN 1..numrows LOOP
 Row_id := ntfnds.query_desc_array(i).table_desc_array(j).row_desc_array(k).row_id;
 INSERT INTO nfrowchanges VALUES(qid, tbname, Row_id);

 END LOOP; /* loop over rows */
 END LOOP; /* loop over tables */
 END LOOP; /* loop over queries */
 END IF;
 COMMIT;
END;
/

	
Creates a query registration

DECLARE
 reginfo cq_notification$_reg_info;
 mgr_id NUMBER;
 dept_id NUMBER;
 v_cursor SYS_REFCURSOR;
 regid NUMBER;
BEGIN
 /* Register two queries for result-set-change notifications: */
 /* 1. Construct registration information.
 'chnf_callback' is name of notification handler.
 QOS_QUERY specifies result-set-change notifications. */

 reginfo := cq_notification$_reg_info('chnf_callback',
 DBMS_CQ_NOTIFICATION.QOS_QUERY,0, 0, 0);

 /* 2. Create registration */

 regid := DBMS_CQ_NOTIFICATION.NEW_REG_START(reginfo);

 OPEN v_cursor FOR
 SELECT DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID, manager_id
 FROM HR.employees
 WHERE employee_id = 7902;
 CLOSE v_cursor;

 OPEN v_cursor for
 SELECT dbms_cq_notification.CQ_NOTIFICATION_QUERYID, department_id
 FROM HR.departments
 WHERE department_name = 'IT';
 CLOSE v_cursor;

 DBMS_CQ_NOTIFICATION.REG_END;
END;
/

	
After creating the query registrations, the output from USER_CQ_NOTIFICATION_QUERIES would appear as follows.

SQL> SELECT queryid, regid, to_char(querytext)
 FROM user_cq_notification_queries;

 QUERYID REGID
---------- ----------
TO_CHAR(QUERYTEXT)
--
 22 41
 SELECT HR.DEPARTMENTS.DEPARTMENT_ID FROM HR.DEPARTMENTS WHERE HR.DEPARTMENTS.
DEPARTMENT_NAME = 'IT'

 21 41
 SELECT HR.EMPLOYEES.MANAGER_ID FROM HR.EMPLOYEES WHERE HR.EMPLOYEES.EMPLOYEE_
ID = 7902

Now, let us perform an UPDATE that changes the result of the query with queryid 22
by renaming the department with name 'IT' to FINANCE.

SQL> update departments set department_name = 'FINANCE' where department_name = 'IT';

1 row updated.

SQL> commit;

Commit complete.

Now we can query the notifications that we recorded in the callback.

SQL> select * from nfevents;

 REGID EVENT_TYPE
---------- ----------
 61 7

Event type 7 corresponds to EVENT_QUERYCHANGE

SQL> select * from nfqueries;

 QID QOP
---------- ----------
 42 7

Event type 7 corresponds to EVENT_QUERYCHANGE

SQL> select * from nftablechanges;
SQL> select * from nftablechanges;

 REGID

TABLE_NAME
--
TABLE_OPERATION

 42
HR.DEPARTMENTS
 4

TABLE_OPERATION 4 corresponds to UPDATEOP

SQL> select * from nfrowchanges;
 REGID

TABLE_NAME
--
ROW_ID
--
 61
HR.DEPARTMENTS
AAANkdAABAAALinAAF

Data Structures

The DBMS_CQ_NOTIFICATION package defines the following OBJECT types.

OBJECT Types

	
CQ_NOTIFICATION$_DESCRIPTOR Object Type

	
CQ_NOTIFICATION$_QUERY Object Type

	
CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_TABLE Object Type

	
CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_ROW Object Type

	
CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type

	
CQ_NOTIFICATION$_REG_INFO Object Type

CQ_NOTIFICATION$_DESCRIPTOR Object Type

This is the top level change notification descriptor type. It is a synonym for the SYS.CHNF$_DESC type.

Syntax

TYPE SYS.CHNF$_DESC IS OBJECT(
 registration_id NUMBER,
 transaction_id RAW(8),
 dbname VARCHAR2(30),
 event_type NUMBER,
 numtables NUMBER,
 table_desc_array CQ_NOTIFICATION$_TABLE_ARRAY,
 query_desc_array CQ_NOTIFICATION$_QUERY_ARRAY);

Attributes

Table 33-2 CQ_NOTIFICATION$_DESCRIPTOR Object Type

	Attribute	Description
	
registration_id

	
Registration ID returned during registration

	
transaction_id

	
Transaction ID. transaction_id of the transaction that made the change. Will be NULL unless the event_type is EVENT_OBJCHANGE or EVENT_QUERYCHANGE.

	
dbname

	
Name of database

	
event_type

	
Database event associated with the notification. Can be one of EVENT_OBJCHANGE (change to a registered object), EVENT_STARTUP, or EVENT_QUERYCHANGE, EVENT_SHUTDOWN or EVENT_DEREG (registration has been removed due to a timeout or other reason)

	
numtables

	
Number of modified tables. Will be NULL unless the event_type is EVENT_OBJCHANGE.

	
table_desc_array

	
Array of table descriptors. Will be NULL unless the event_type is EVENT_OBJCHANGE.

	
query_desc_array

	
Array of queries changed. This will be NULL unless event_type is EVENT_QUERYCHANGE

CQ_NOTIFICATION$_QUERY Object Type

The object type describes the changes to a query result caused by an event such as a transaction commit. An array of CQ_NOTIFICATION$_QUERY descriptors is embedded inside the top level notification descriptor (CQ_NOTIFICATION$_DESCRIPTOR) for events of type EVENT_QUERYCHANGE. The array corresponds to the SET of queryids which were invalidated as a result of the event.

This is a synonym for the base type SYS.CHNF$_QDESC.

Syntax

TYPE SYS.CHNF$_QDESC IS OBJECT (
 queryid NUMBER,
 queryop NUMBER,
 table_desc_array CQ_NOTIFICATION$_TABLE_ARRAY);

Attributes

Table 33-3 TYPE SYS.CQ_NOTIFICATION$_QUERY Object Type

	Attribute	Description
	
queryid

	
QueryId of the changed query

	
queryop

	
Operation describing change to the query

	
table_desc_array

	
Array of table changes which contributed to the query Result Set change

CQ_NOTIFICATION$_QUERY_ARRAY Object (Array) Type

This type corresponds to an array of CQ_NOTIFICATION$_QUERY objects. It is a synonym for the SYS.CHNF$_QUERY_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_TABLE_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_TABLE;

CQ_NOTIFICATION$_TABLE Object Type

This descriptor type describes a change to a table and is embedded inside the top level change notification descriptor type for events of type EVENT_OBJCHANGE For query result set changes (event type will be set to EVENT_QUERYCHANGE), the array of table descriptors is embedded inside each query change descriptor.

Note that this is a synonym for the type previously named SYS.CHNF$_TDESC.

Syntax

TYPE SYS.CHNF$_TDESC IS OBJECT (
 opflags NUMBER,
 table_name VARCHAR2(2*M_IDEN+1),
 numrows NUMBER,
 row_desc_array CQ_NOTIFICATION$_ROW_ARRAY)

Attributes

Table 33-4 TYPE SYS.CQ_NOTIFICATION$_TABLE Object Type

	Attribute	Description
	
opflags

	
Table level operation flags. This is a flag field (bit-vector) that describes the operations that occurred on the table. It can be an OR of the following bit fields - INSERTOP, UPDATEOP, DELETEOP, DROPOP, ALTEROP, ALL_ROWS. If the ALL_ROWS (0x1) bit is set it means that either the entire table is modified (for example, DELETE * FROM t) or row level granularity of information is not requested or not available in the notification and the receiver has to conservatively assume that the entire table has been invalidated.

	
table_name

	
Name of modified table

	
numrows

	
Number of modified rows within the table. numrows will be NULL and hence should not be accessed if the ALL_ROWS bit is set in the table change descriptor.

	
row_desc_array

	
Array of row descriptors. This field will be NULL if the ALL_ROWS bit is set in opflags.

CQ_NOTIFICATION$_TABLE_ARRAY Object (Array) Type

This type corresponds to an array of CQ_NOTIFICATION$_TABLE objects. It is a synonym for the SYS.CHNF$_TDESC_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_TABLE_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_TABLE;

CQ_NOTIFICATION$_ROW Object Type

An array of CQ_NOTIFICATION$_ROW is embedded inside a CQ_NOTIFICATION$_TABLE (table change descriptor) if the QOS_ROWIDS option was chosen at the time of registration and the ALL_ROWS bit is not set in the opflags field of the table change descriptor.

Note that this is a synonym for the type previously named SYS.CHNF$_RDESC.

Syntax

TYPE SYS.CHNF$_RDESC IS OBJECT (
 opflags NUMBER,
 row_id VARCAHR2 (2000));

Attributes

Table 33-5 TYPE SYS.CQ_NOTIFICATION$_ROW Object Type

	Attribute	Description
	
opflags

	
Row level operation flags. The flag field (bit vector) describes the operations in the row (could be INSERTOP, UPDATEOP or DELETEOP).

	
row_id

	
The rowid of the modified row

CQ_NOTIFICATION$_ROW_ARRAY Object (Array) Type

This object type corresponds to an array of CQ_NOTIFICATION$_ROW objects and is embedded inside the CQ_NOTIFICATION$_TABLE if QOS_ROWIDS was specified during registration and the ALL_ROWS bit is not set in the opflags field of the table change descriptor.

This type is a synonym for the SYS.CHNF$_RDESC_ARRAY type.

Syntax

TYPE CQ_NOTIFICATION$_ROW_ARRAY IS VARRAY (1073741824) OF CQ_NOTIFICATION$_ROW;

CQ_NOTIFICATION$_REG_INFO Object Type

The object type describes the attributes associated with creating a new registration. It is a synonym for the type previously named SYS.CHNF$_REG_INFO.

Syntax

TYPE SYS.CHNF$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 transaction_lag NUMBER,
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

Attributes

Table 33-6 TYPE CQ_NOTIFICATION$_REG_INFO Object Type

	Attribute	Description
	
callback

	
Name of the server side PL/SQL procedure to be executed on a notification. Prototype is <call_backname>(ntfnds IN SYS.chnf$_desc)

	
qosflags

	
Quality of service flags. Can be set to an OR of the following values:

	
QOS_RELIABLE (0x1): Notifications are reliable (persistent) and survive instance death. This means that on an instance death in a RAC cluster, surviving instances will be able to deliver any queued invalidations. Similarly, pending invalidations can be delivered on instance restart, in a single instance configuration. The disadvantage is that there is a CPU cost/ latency involved in inserting the invalidation message to a persistent store. If this parameter is false, then server side CPU and latency are minimized, because invalidations are buffered into an in memory queue but the client could lose invalidation messages on an instance shutdown.

	
QOS_DEREG_NFY (0x2): The registration will be expunged on the first notification

	
QOS_ROWIDS (0x4): The notification needs to include information about the rowids that were modified

	
QOS_QUERY (0x8): specifies query result change notification as opposed to object change notification

	
QOS_BEST_EFFORt (0x16): can register simplified versions of queries and minimizes evaluation with some false positives.

	
timeout

	
If set to a non-zero value, specifies the time in seconds after which the registration is automatically expunged by the database. If zero / NULL, the registration lives until explicitly deregistered. Note that the timeout option can be combined with the purge on notification (QOS_DEREG_NFY) option as well.

	
operations_filter

	
if non-zero, specifies a filter to be selectively notified on certain operations. These flags can be used to filter based on specific operation types:

	
0: Notify on all operations (DBMS_CQ_NOTIFICATION.ALL_OPERATIONS)

	
0x2: Notify on every INSERT (DBMS_CQ_NOTIFICATION.INSERTOP)

	
0x4: Notify on every UPDATE (DBMS_CQ_NOTIFICATION.UPDATEOP)

	
0x8: Notify on every DELETE (DBMS_CQ_NOTIFICATION.DELETEOP)

A combination of operations can be specified by using a bitwise OR.

Caution: This parameter will be honored for object level registrations but ignored for query result change registrations. To implement notification flow control in 11g, the applications can use the "GROUPING notification" option.

	
transaction_lag

	
Lag between consecutive notifications in units of transactions. Can be used to specify the number of transactions/database changes, by which the client is willing to lag behind the database. If 0, it means that the client needs to receive an invalidation message as soon as it is generated.

Caution: This parameter will be honored for object level registrations but ignored for query result change notification registrations.

	
ntfn_grouping_class

	
When grouping notifications, the class based on which the group is derived. Currently, the only allowed value is DBMS_CQ_NOTIFICATION.NTFN_GROUPING_CLASS_TIME by which notifications are grouped by time.

	
ntfn_grouping_value

	
The grouping value. This describes the time interval that defines the group in seconds. For example, if this were set to 900, it would mean that notifications that were generated in each 15 minute interval would be grouped together.

	
ntfn_grouping_type

	
The type of grouping desired. It can be one of two allowed values

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_SUMMARY - all notifications in the group are summarized into a single notification

	
DBMS_CQ_NOTIFICATION.NTFN_GROUPING_TYPE_LAST - only the last notification in the group is published and the earlier ones discarded

	
ntfn_grouping_start_time

	
When to start generating notifications. If specified as NULL, it defaults to the current system generated time.

	
ntfn_grouping_repeat_count

	
How many times the notification should be repeated. Set this to DBMS_CQ_NOTIFICATION.NTFN_GROUPING_FOREVER to receive notifications for the life time of the registration. Set to a non-zero value if only a certain number of notifications are desired for the life time of the registration.

Usage Notes

	
The type declaration incorporates three other alternative constructors. In the first case all other parameters default to their default values.

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER);

The second option applies to the type constructor defined in a previous release, and which is retained for backward compatibility:

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 transaction_lag NUMBER);

The third definition contains all the members of the type except transaction_lag which is being deprecated:

TYPE CQ_NOTIFICATION$_REG_INFO IS OBJECT (
 callback VARCHAR2(20),
 quosflags NUMBER,
 timeout NUMBER,
 operations_filter NUMBER,
 ntfn_grouping_class NUMBER,
 ntfn_grouping_value NUMBER,
 ntfn_grouping_type NUMBER,
 ntfn_grouping_start_time TIMESTAMP WITH TIME ZONE,
 ntfn_grouping_repeat_count NUMBER);

	
In response to a database change, the server side PL/SQL procedure specified by "callback" is executed. The PL/SQL procedure name has to be specified in the format schema_name.procedure_name. The procedure must have the following signature:

PROCEDURE <procedure_name>(ntfnds IN SYS.chnf$_desc)

CHNF$_DESC describes the change notification descriptor.

	
The init.ora parameter job_queue_processes must be set to a non-zero value to receive PL/SQL notifications, because the specified procedure is executed inside a job queue process when a notification is generated.

Summary of DBMS_CQ_NOTIFICATION Subprograms

Table 33-7 DBMS_CQ_NOTIFICATION Package Subprograms

	Subprogram	Description
	
CQ_NOTIFICATION_QUERYID Function

	
Returns the queryid of the most recent query that was attempted to be registered in a registration block

	
DEREGISTER Procedure

	
De-subscribes the client with the supplied registration identifier (ID)

	
ENABLE_REG Procedure

	
Begins a registration block using an existing registration identifier (ID)

	
NEW_REG_START Function

	
Begins a new registration block

	
REG_END Procedure

	
Ends the registration boundary

CQ_NOTIFICATION_QUERYID Function

This function returns the queryid of the most recent query that was attempted to be registered in a registration block.

Syntax

DBMS_CQ_NOTIFICATION.CQ_NOTIFICATION_QUERYID
 RETURN NUMBER;

Return Values

Returns the queryid of the most recently registered query.

DEREGISTER Procedure

This procedure desubscribes the client with the specified registration identifier (ID).

Syntax

DBMS_CQ_NOTIFICATION.DEREGISTER (
 regid IN NUMBER);

Parameters

Table 33-8 DEREGISTER Procedure Parameters

	Parameter	Description
	
regid

	
Client registration ID

Usage Notes

Only the user that created the registration (or the SYS user) will be able to desubscribe the registration.

ENABLE_REG Procedure

This procedure adds objects to an existing registration identifier (ID). This subprogram is similar to the interface for creating a new registration, except that it takes an existing regid to which to add objects.Subsequent execution of queries causes the objects referenced in the queries to be added to the specified regid, and the registration is completed on invoking the REG_END Procedure.

Syntax

DBMS_CQ_NOTIFICATION.ENABLE_REG (
 regid IN NUMBER);

Parameters

Table 33-9 ENABLE_REG Procedure Parameters

	Parameter	Description
	
regid

	
Client registration ID

Usage Notes

Only the user that created the registration will be able to add further objects to the registration.

NEW_REG_START Function

This procedure begins a new registration block. Any objects referenced by queries executed within the registration block are considered interesting objects and added to the registration. The registration block ends upon calling the REG_END procedure.

Syntax

DBMS_CQ_NOTIFICATION.NEW_REG_START (
 regds IN sys.chnf$_reg_info)
 RETURN NUMBER;

Parameters

Table 33-10 NEW_REG_START Function Parameters

	Parameter	Description
	
sys.chnf$_reg_info

	
Registration descriptor describing the notification handler and other properties of the registration

Return Values

The procedure returns a registration-id which is a unique integer assigned by the database to this registration. The registration-id will be echoed back in every notification received for this registration.

Usage Notes

	
The only operations permitted inside a registration block are queries (the ones the user wishes to register). DML and DDL operations are not permitted.

	
The registration block is a session property and implicitly terminates upon exiting the session. While the registration block is a session property, the registration itself is a persistent database entity. Once created, the registration survives until explicitly deregistered by the client application or timed-out or removed by the database for some other reason (such as loss of privileges).

	
The user must have the CHANGE NOTIFICATION system privilege and SELECT privileges on any objects to be registered.

	
The SYS user will not be permitted to create new registrations.

	
Nesting of registration block is not permitted.

REG_END Procedure

This procedure marks the end of the registration block. No newly executed queries are tracked.

Syntax

DBMS