
[image: Oracle Corporation]

Oracle® Database

Rules Manager and Expression Filter Developer's Guide

11g Release 1 (11.1)

B31088-01

July 2007

Oracle Database Rules Manager and Expression Filter Developer's Guide, 11g Release 1 (11.1)

B31088-01

Copyright © 2003, 2007, Oracle. All rights reserved.

Primary Author: Aravind Yalamanchi and Rod Ward

Contributor: William Beauregard, Timothy Chorma, Lory Molesky, Dieter Gawlick, Helen Grembowicz, Deborah Owens, and Jagannathan Srinivasan

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Rules Manager and Expression Filter?

	Oracle Database 11g Release 1 (11.1) New Features in Rules Manager and Expression Filter

1 Introduction to Rules Manager

	1.1 What is a Rule?
	1.2 Developing Rules Applications

Part I Rules Manager

2 Rules Manager Concepts

	2.1 Rules Terminology
	2.2 Database Representation of a Rule Class and Rules
	2.3 Creating Rules Applications That Use Simple or Non-Composite Events
	2.4 Creating Rules Applications That Use Composite Events
	2.4.1 How to Create a Rules Application That Uses Composite Events
	2.4.2 Evaluating Composite Events Using Complex Rule Conditions

	2.5 Setting Event Management Policies (Rule Class Properties) for Rule Applications
	2.6 Creating Rules Applications That Span Multiple Tiers
	2.7 Using Rules Manager with SQL*Loader and Export/Import Utilities
	2.7.1 SQL*Loader
	2.7.2 Export/Import

3 Event Management Policies

	3.1 Consumption of Events
	3.2 Ordering of Rule Execution
	3.3 Duration of Events
	3.4 Equality
	3.4.1 Single Equal Specification for a Rule Class
	3.4.2 Alternate Equal Specifications

	3.5 Storage Properties
	3.6 AUTOCOMMIT
	3.7 DML and CNF Events
	3.8 Rule Class Property Dependencies and Defaults

4 Event and Rule Class Configurations

	4.1 Rules Specified on Relational Tables
	4.2 Rule Conditions For XML Events
	4.3 Rule Conditions with Spatial Predicates
	4.4 Rule Conditions for Text Events
	4.5 Disabling and Enabling Rules
	4.6 Shareable Primitive Rule Conditions
	4.7 Events Through Database Change Notification
	4.8 Collection Events
	4.9 Performance Tuning
	4.10 Database State in Rule Conditions
	4.11 Resetting Events for Development Environments

5 Rule Conditions

	5.1 Support for Incremental Evaluation of Rules
	5.2 Rule Conditions with Sequencing
	5.3 Rule Conditions with Negation
	5.4 Rule Conditions with Set Semantics
	5.5 Rule Conditions with Any n Semantics
	5.6 Rule Conditions with Collection Events

6 Rules Applications That Span Multiple Tiers

	6.1 Creating Rules Applications That Span Multiple Tiers
	6.2 Modes of Operation
	6.2.1 Single Tier Mode
	6.2.2 Multitier Mode
	6.2.2.1 Actions in the Mid-Tier

7 Rules Manager Object Types

8 DBMS_RLMGR Package

9 Rules Manager Views

	9.1 USER_RLMGR_EVENT_STRUCTS View
	9.2 USER_RLMGR_RULE_CLASSES View
	9.3 USER_RLMGR_RULE_CLASS_STATUS View
	9.4 USER_RLMGR_PRIVILEGES View
	9.5 USER_RLMGR_COMPRCLS_PROPERTIES View

10 Rules Manager Use Cases

	10.1 Law Enforcement Rules Application
	10.2 Order Management Rules Application
	10.3 Use of Collections in an Order Management Application

Part II Expression Filter

11 Oracle Expression Filter Concepts

	11.1 What Is Expression Filter?
	11.1.1 Expression Filter Usage Scenarios

	11.2 Introduction to Expressions
	11.2.1 Defining Attribute Sets
	11.2.2 Defining Expression Columns
	11.2.3 Inserting, Updating, and Deleting Expressions

	11.3 Applying the SQL EVALUATE Operator
	11.4 Evaluation Semantics
	11.5 Granting and Revoking Privileges
	11.6 Error Messages

12 Indexing Expressions

	12.1 Concepts of Indexing Expressions
	12.2 Indexable Predicates
	12.3 Index Representation
	12.4 Index Processing
	12.5 Predicate Table Query
	12.6 Index Creation and Tuning
	12.7 Index Usage
	12.8 Index Storage and Maintenance

13 Expressions with XPath Predicates

	13.1 Using XPath Predicates in Expressions
	13.2 Indexing XPath Predicates
	13.2.1 Indexable XPath Predicates
	13.2.2 Index Representation
	13.2.3 Index Processing
	13.2.4 Index Tuning for XPath Predicates

14 Expressions with Spatial and Text Predicates

	14.1 Expressions with Spatial Predicates
	14.1.1 Using Spatial Predicates in Expressions
	14.1.2 Indexing Spatial Predicates

	14.2 Expressions with Text Predicates

15 Using Expression Filter with Utilities

	15.1 Bulk Loading of Expression Data
	15.2 Exporting and Importing Tables, Users, and Databases
	15.2.1 Exporting and Importing Tables Containing Expression Columns
	15.2.2 Exporting a User Owning Attribute Sets
	15.2.3 Exporting a Database Containing Attribute Sets

16 SQL Operators and Statements

	EVALUATE
	ALTER INDEX REBUILD
	ALTER INDEX RENAME TO
	CREATE INDEX
	DROP INDEX

17 Object Types

18 Management Procedures Using the DBMS_EXPFIL Package

19 Expression Filter Views

	19.1 USER_EXPFIL_ASET_FUNCTIONS View
	19.2 USER_EXPFIL_ATTRIBUTES View
	19.3 USER_EXPFIL_ATTRIBUTE_SETS View
	19.4 USER_EXPFIL_DEF_INDEX_PARAMS View
	19.5 USER_EXPFIL_EXPRESSION_SETS View
	19.6 USER_EXPFIL_EXPRSET_STATS View
	19.7 USER_EXPFIL_INDEX_PARAMS View
	19.8 USER_EXPFIL_INDEXES View
	19.9 USER_EXPFIL_PREDTAB_ATTRIBUTES View
	19.10 USER_EXPFIL_PRIVILEGES View
	19.11 USER_EXPFIL_TEXT_INDEX_ERRORS

A Managing Expressions Defined on One or More Database Tables

B Application Examples

C Internal Objects

	C.1 Attribute Set or Event Structure Object Type
	C.2 Expression Filter Internal Objects
	C.2.1 Expression Validation Trigger
	C.2.2 Expression Filter Index Objects
	C.2.3 Expression Filter System Triggers

D Converting Rules Applications

	D.1 Differences Between Expression Filter and Rules Manager
	D.2 Converting an Expression Filter Application to a Rules Manager Application

E Installing Rules Manager and Expression Filter

F XML Schemas

G Implementing Various Forms of Rule Actions With the Action Callback Procedure

Index

List of Examples

	11-1 Defining an Attribute Set From an Existing Object Type
	11-2 Defining an Attribute Set Incrementally
	11-3 Adding User-Defined Functions to an Attribute Set
	11-4 Inserting an Expression into the Consumer Table
	11-5 Inserting an Expression That References a User-Defined Function

List of Figures

	1-1 Rules Manager Implementation Process for a Rules Application
	2-1 Database Representation of Rule Class and Rules
	5-1 Hierarchical View of the XML Tag Extensions
	11-1 Expression Filter Implementation Process for a Rules Application
	11-2 Expression Data Type
	12-1 Conceptual Predicate Table
	13-1 Conceptual Predicate Table with XPath Predicates
	14-1 Text Predicate in the Stored Expression Using the CONTAINS Operator

List of Tables

	3-1 Valid and Invalid Rule Class Property Combinations
	5-1 Relational View of the XML Tag Extensions
	7-1 Rules Manager Object Types
	8-1 DBMS_RLMGR Procedures
	9-1 Rules Manager Views
	9-2 USER_RLMGR_EVENT_STRUCTS View
	9-3 USER_RLMGR_RULE_CLASS View
	9-4 USER_RLMGR_RULE_CLASS_STATUS View
	9-5 USER_RLMGR_PRIVILEGES View
	9-6 USER_RLMGR_COMPRCLS_PROPERTIES View
	16-1 Expression Filter Index Creation and Usage Statements
	17-1 Expression Filter Object Types
	18-1 DBMS_EXPFIL Procedures
	19-1 Expression Filter Views
	D-1 Implementation Differences Between Expression Filter and Rules Manager for Rules Applications That Use a Primitive (Simple) Event
	G-1 TravelPromotion Rule Class Table
	G-2 Modified TravelPromotion Rule Class Table

Preface

Oracle Database Rules Manager and Expression Filter Developer's Guide provides usage and reference information about Rules Manager, a feature in the Oracle Database that offers interfaces to define, manage, and enforce complex rules in the database and Expression Filter, a feature of Oracle Database and component of Rules Manager that stores, indexes, and evaluates conditional expressions in relational tables.

Audience

Oracle Database Rules Manager and Expression Filter Developer's Guide is intended for application developers and DBAs who perform the following tasks:

	
Use Event-Condition-Action (ECA) rules to integrate processes and automate workflows

	
Use the database to store and evaluate large sets of conditional expressions

	
Use the database to define, manage, and enforce complex rules

This manual assumes a working knowledge of application programming and familiarity with SQL, PL/SQL, XML, and basic object-oriented programming to access information in relational database systems.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, seven days a week. For TTY support, call 800.446.2398.

Related Documents

For more information, see these Oracle resources:

	
Oracle Database SQL Language Reference

	
Oracle Database Utilities

	
Oracle Database Error Messages

	
Oracle Database Performance Tuning Guide

	
Oracle XML DB Developer's Guide

	
Oracle Database Advanced Application Developer's Guide

	
Oracle Database Object-Relational Developer's Guide

	
Oracle Database PL/SQL Packages and Types Reference

	
Oracle Text Application Developer's Guide

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, terms defined in text or the glossary, or important parts of an example.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Rules Manager and Expression Filter?

This section describes new features of Oracle Database 11g Release 1 (11.1) and provides pointers to additional information.

The following section describes the new features in Rules Manager and Expression Filter:

	
Oracle Database 11g Release 1 (11.1) New Features in Rules Manager and Expression Filter

Oracle Database 11g Release 1 (11.1) New Features in Rules Manager and Expression Filter

	
Rules Manager — support for Text predicates (CONTAINS) in rule conditions

Text predicates in the rule condition are specified using the CONTAINS operator within the conditions for primitive events.

	
See Also:

See Section 4.4, "Rule Conditions for Text Events"

	
Rules Manager — support for shareable primitive rule conditions

Rules Manager has provisions to share parts of the rule condition across rules by using references into a common repository of primitive rule conditions. This provides the ability to share primitive conditions, which simplifies the construction of the rule conditions for composite events and also allows for managing them as one logical unit for any modifications made to the shared primitive rule condition.

	
See Also:

See Section 4.6, "Shareable Primitive Rule Conditions"

	
Rules Manager — support for disabling and enabling rules

Rules Manager lets you add rules to the rule class, but keep them disabled. A rule class table created with DBMS_RLMGR.CREATE_RULE_CLASS procedure implicitly has an rlm$enabled column in which to store the status of each rule set to 'Y'. Optionally, a value 'N' can be assigned to this column during the insert of a new rule or update of an existing rule, which will disable the rules until such time these rules in the rule class are set to be enabled.

	
See Also:

See Section 4.5, "Disabling and Enabling Rules"

	
Rules Manager — support for purging events in development environments

Rules Manager provides a DBMS_RLMGR.PURGE_EVENTS procedure call to purge any state information and the events from the database prior to deploying an application in a production environment.

	
See Also:

See Section 4.11, "Resetting Events for Development Environments"

	
Rules Manager — support for UPDATE and DELETE operations on DML events

When the event structure used for a rule class is defined with one or more table alias attributes, the rule class can be configured to treat all INSERT, UPDATE, and DELETE operations on the underlying tables as the events for which the rules are evaluated. Note that events for UPDATE and DELETE operations on the underlying tables are only applicable for the rule classes configured for composite events.

	
See Also:

See Section 3.7, "DML and CNF Events"

	
Rules Manager — support for notifications of data changes within a transaction after the end of a transaction

Rules Manager makes use of the Database Change Notification feature to receive notifications of net data changes (within a transaction) after the end of each transaction. These notifications are used to capture the modified rows or the event data and match them with the rules in the rule class.

	
See Also:

See Section 4.7, "Events Through Database Change Notification"

	
Rules Manager — support for collection events and aggregate predicates in rule conditions

Using the new rule condition language extensions, Rules Manager can group a set of events based on certain attributes and test conditions on these collections. The conditions on the collections involve aggregate operators such as SUM, AVG, MIN, MAX, and COUNT. The conditions can be specified to operate on collections with moving window semantics.

	
See Also:

See Section 5.6, "Rule Conditions with Collection Events"

	
Expression Filter — support for Text predicates (CONTAINS) in stored expressions

The Text predicates in the stored expressions are specified using the CONTAINS operator within the SQL WHERE clause syntax.

	
See Also:

See Section 14.2, "Expressions with Text Predicates"

1 Introduction to Rules Manager

Application developers use rules to integrate business processes and automatically respond to events created by workflows. However, these rules are often embedded in code modules or a special purpose memory-based rules repository making maintenance of them challenging. Rules that are managed in Oracle Database keep pace with changing business conditions and are always up-to-date; rules are easily changed with SQL and are not hard-coded in your application or loaded into a memory-based rules repository. Rules can be evaluated efficiently with the complete business context stored in your Oracle Database as well as data provided by your application. Event response is flexible; rules can trigger actions in Oracle Database or in your application, or both.

Rules Manager application programming interface (APIs) define, manage, and enforce complex rules in the Oracle Database with better scalability and operational characteristics than a special purpose rules product. Additionally, Rules Manager as a database feature can be used in multiuser and multisession environments.

Rules Manager can model any event-condition-action (ECA)-based system ranging from the simplest single event-single rule system to rule-based systems that involve millions of events and millions of rules. Applications for Rules Manager include information distribution, task assignment, event-based computing, radio frequency ID (RFID), supply chain, enterprise application integration (EAI), business asset management (BAM), and business process management (BPM).

Rules Manager processes an event or a group of events for a set of rules that are based on ECA semantics. An event can be an individual entity (simple or primitive event) or a group of events (composite event). Rules Manager models complex event scenarios using SQL and XML based rule condition language. An event can be incoming application data or data stored as rows in one or more relational tables. Rules Manager supports the Oracle-supplied XMLType data type, which allows it to process XML events.

When an event happens, and if a rule condition evaluates to true for that event, then a prescribed rule action is performed, which can be either executed immediately or obtained as a list of rules that evaluate to true for the event for later execution by the application or some other component and that can be queried.

While processing a set of rules for an event, Rules Manager enforces various event management policies, including conflict resolution among composite events or groups of matching rules, ordering of events, lifetime of an event, and sharing events across multiple rule executions.

The concept of rules is briefly introduced in Section 1.1 followed by an overview of Rules Manager features. Section 1.2 describes some general concepts about developing rules applications using Rules Manager.

If you have an existing Expression Filter application and want to upgrade it to a Rules Manager application, first see Section D.1, which describes an implementation of Expression Filter and Rules Manager. Next, see Section D.2, which describes the process of upgrading an Expression Filter application to a Rules Manager application.

1.1 What is a Rule?

A rule is a directive to guide or influence a process behavior. A rule consists of a conditional expression that is specified using the attributes defined in a corresponding event structure and a rule action that takes place when the rule condition is satisfied by an instance of the event structure. Event management policies define how an event instance is handled once the rule action is executed. This, in a nutshell, describes how a typical rules-based system works.

Typically, rules follow Event-Condition-Action (ECA) rule semantics where an event happens and if a rule condition evaluates to true for this event, then some prescribed action is performed. The ECA components are defined as:

	
Event -- the state information for the process

	
Condition -- the Boolean condition that evaluates to true or false for the event

	
Action -- the action to be carried out if the rule condition evaluates to true for the event

The standard notation for ECA rules is:

ON <event structure>
IF <condition>
THEN <action>

where, the ON clause identifies the event structure for which the rule is defined, the IF clause specifies the rule condition, and the THEN clause specifies the rule action.

An example of a rule is the following: If a customer chose to fly Abcair Airlines to Orlando and if his stay in Orlando is more than 7 days, then offer an Acar rental car promotion to him. Using the ECA notation, this rule is:

ON
 AddFlight (Custid, Airline, FromCity, ToCity, Depart, Return)
IF
 Airline = 'Abcair' and ToCity = 'Orlando' and Return-Depart >= 7
THEN
 OfferPromotion (CustId, 'RenralCar', 'Acar')

where:

The ON clause identifies the event structure for this rule.

The IF clause defines the rule condition using variables in the event structure.

The THEN clause defines the commands that represent the action for this rule.
Rules Manager

Rules Manager, a feature of Oracle Database, offers interfaces to define, manage, and enforce complex rules in the database. The five elements of a Rules Manager application are:

	
An event structure that is defined as an object type with attributes that describe specific features of an event.

	
A rule consisting of a condition and action preferences.

	
A rule condition is expressed using the attributes defined in the event structure.

	
Rule action preferences determine the exact action for each rule and specify the details for the action.

	
A rule class that is a database table that stores and groups the rules defined for an event structure.

	
An action callback PL/SQL procedure that implements the rule actions for the rule class. The implementation can rely on some attributes of the event structure and the action preference associated with the rules.

	
A results view that configures a rule class for external rule action execution.

Rules Manager supports XML-based condition language, SQL commands for rule specification, automated tracking of events, declarative management of event policies, rule actions, and an application programmatic interface (API).

Rules Manager supports primitive (simple) and composite events. Rules Manager is appropriate for any rules-based applications requiring composite events. Rules Manager supports complex rule conditions involving negation, set semantics, Any n construct, sequencing, and collections. Rules Manager supports incremental evaluation of rules involving composite events. Complex rule conditions are specified using XML tags within conditional expressions in the SQL WHERE clause format. Rule class event management policies such as consumption, conflict resolution, and duration can be enforced for each rule application. Figure 1-1 shows the process steps for creating and implementing a Rules Manager rules application. Section 2.3 describes these steps in more detail.

For more information about creating, using, and maintaining Rules Manager applications, see Part I, "Rules Manager", Chapter 2 through Chapter 10.

Figure 1-1 Rules Manager Implementation Process for a Rules Application

[image: Description of Figure 1-1 follows]

1.2 Developing Rules Applications

Developing a rules application using Rules Manager requires a somewhat different approach toward application development. Typically, you would scan through a new API and other reference material, then create some sample scripts based on the examples to get a feel for how the feature works. Next, you might begin to apply these methods learned to your own application. However, this is where you might get bogged down in the detail of the implementation because the approach to Rules Manager application development uses a somewhat different focus. The focus is on the decision points that already exist in your application and that is all. You need not focus on all the supporting parts of your application that do not necessarily pertain to these decision points.

As an application developer you must ask yourself the following questions:

	
Where are the decision points in my application?

	
What are the decisions that each decision point is making?

	
How is each decision being made?

	
Once a decision is made how is it executed in the application?

Note that each decision point may use one or more rules that may involve one or more events happening in some sequence.

Once you determine the decision points in your application, you integrate the Rules Manager into your application by using the standard notation for ECA rules to model each decision point as described in Section 1.1. It is best to keep your approach as simple as possible.

For example, using Rules Manager for the simplest case, if your application has a decision point that uses one or more rules each relying on a single instance of an event structure that happens in the application, you would define a primitive event structure to model this event activity. In a complex event scenario, if your application has another decision point that uses one or more rules, each relying on multiple instances of the same or different event structures that happen in some sequence, define a composite event structure consisting of separately defined primitive event structures for each individual event that happens. The composite event structure couples these primitive events together to model the composite event activity. Next, create the rule class. Creating the rule class implicitly creates the rule class table containing an expression column to store the rule conditions and one or more action preferences columns that are used to determine the appropriate action when the rule evaluates to true. In addition to the rule class table, the previous step also creates an action callback procedure that you can modify to execute the action for the matching rules.

This unique approach lets you quickly integrate Rules Manager into existing applications as easily as if it were a new application because you only need to focus on the decision points contained in your application or in your data analysis for a new application. Remember Rules Manager stores, processes, and matches rules with instances of either incoming single events or groups of events to resolve the rules concentrated around each decision point. The object then becomes how best to model these decision points using Rules Manager. This is explained in Part I, "Rules Manager".

Part I

Rules Manager

This part introduces developing applications using Rules Manager feature.

Part I contains the following chapters:

	
Chapter 2, "Rules Manager Concepts"

	
Chapter 3, "Event Management Policies"

	
Chapter 5, "Rule Conditions"

	
Chapter 6, "Rules Applications That Span Multiple Tiers"

	
Chapter 7, "Rules Manager Object Types"

	
Chapter 8, "DBMS_RLMGR Package"

	
Chapter 9, "Rules Manager Views"

	
Chapter 10, "Rules Manager Use Cases"

2 Rules Manager Concepts

Rules Manager is a feature of Oracle Database that uses the Expression Filter and object relational features to provide the features of a special-purpose rules engine with greater scalability and better operational characteristics.

2.1 Rules Terminology

Rules Manager uses the following terminology:

	
An event structure is an object (abstract) type that is defined with a set of attributes that describes the specific features of an event. For example, it is the data structure that captures the customer flight information, using variables, such as Airline, Customer Id, From City, and so forth. The object type definition of the AddFlight event structure is as follows:

	

TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

	
An event is the instantiation of the event structure, so each instance of the event structure is an event. For example, these are three events:

AddFlight (123, 'Abcair', 'Boston', 'Orlando', '01-Apr-2003', '08-Apr-2003');
AddFlight (234, 'Acbair', 'Chicago', 'San Jose', '01-Aug-2003',
 '10-Aug-2003');
AddFlight (345, 'Acbair', 'New York', 'San Jose', '22-Jun-2003',
 '24-Jun-2003');

	
Events are classified into two types:

	
Primitive event - represents an event that is assumed to be instantaneous and atomic in an application. A primitive event cannot be further broken down into other events and it either occurs completely or not at all. Each primitive event is typically bound to a specific point in time and the rules defined for the corresponding event structure can be fully evaluated with the event. For example, the AddFlight event is an example of a primitive event:

AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)

	
Composite event - represents the combination of two or more primitive events. All primitive events included in the composite event can be bound to a time window and thus generated at different points in time. So the rules defined for the composite event structure cannot be fully evaluated until all the corresponding primitive events are generated. For example, adding a second primitive event AddRentalCar to the AddFlight primitive event creates a composite event:

 AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
 AddRentalCar (CustId, CarType, Checkout, Checkin, Options)

Because evaluation of rules for composite event structures must be deferred until all parts of a composite event are available, Rules Manager provides several ways of efficiently evaluating composite events.

See Section 2.4 for more information about composite events and complex rule applications.

	
A rule class is a database table that stores and groups a set of rules that share a common event structure. For example, this rule class of three rules is for the AddFlight event structure:

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF Airline = 'Abcair', and ToCity = 'Orlando'
THEN OfferPromtion (CustId, 'RentalCar', 'Acar')

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF Airline = 'Acbair', and ToCity = 'Houston'
THEN OfferPromtion (CustId, 'RentalCar', 'Bcar')

ON AddFlight (CustId, Airline, FromCity, ToCity, Depart, Return)
IF ToCity = 'Orlando' and Return-Depart >7
THEN OfferPromtion (CustId, 'ThemePark', 'Ocean World')

	
Rules are evaluated for an instance of the corresponding event structure. For example, the following event is used to evaluate the rules defined using the AddFlight event structure:

AddFlight (123, 'Abcair', 'Boston', 'Orlando', '01-Apr-2003', '08-Apr-2003');

	
A rule is a row in a rule class table that has elements consisting of:

	
The rule condition, which is a conditional expression that is formed using the attributes defined in the event structure. For example, this is a rule condition using the attributes: Airline, ToCity, Return, and Depart:

Airline = 'Abcair' and ToCity = 'Orlando' and Return-Depart >= 7

	
The rule action preferences, which determine the exact action for each rule and specify the details for the action.

Typically, the actions associated with rules in the rule class are homogenous. For example, if a rule class is used to determine the discount offered during a checkout process, each rule in the class is associated with a specific discount percentage. For rules that match an event instance, these values are used to determine the appropriate action for the rule.

Action preferences can come in different forms, such as:

	
A list of literals that are bound as arguments to the common procedure, such as:

'RentalCar', 'Acar', 'Bcar',...

	
Dynamic PL/SQL commands, such as:

BEGIN OfferRentalPromotion(:1,'Acar'); END;

	
An action callback procedure is a procedure that acts as an entry point for executing actions for all the rules in a rule class. This procedure is implemented to execute the action for each rule in the rule class based on the action preferences associated with the rule and the event attributes. For the previous example, the action callback procedure can be implemented to invoke the OfferPromotion procedure with the appropriate arguments.

	
A results view configures a rule class for external action execution when the actions for each matching rule cannot be executed by means of an action callback procedure, such as applications that span multiple tiers.

The rules matching an event are available by querying this preconfigured view and the corresponding actions can be executed by the component issuing the query. This is useful when the action for certain rules is implemented in the application on multiple tiers. See Section 2.6 for more information.

	
The results from a rule evaluation are available through the results view until the end of the rule session. By default, the database session (from connect to disconnect) is considered the rule session. Alternatively, the reset session procedure (dbms_rlmgr.reset_session()) can be used to end a rule session and start a new session within a database session. Note that at the beginning of a rule session, the results view is empty.

	
Rule class properties define the event management policies that Rules Manager enforces for each rules application. Two main policies discussed in this chapter are consumption and conflict resolution. Consumption refers to whether an event can be used for multiple rule executions or for just a single rule execution (see Section 3.1). Conflict resolution, or ordering, determines the order in which matching rules with various events are to be executed (see Section 3.2). Section 2.5 and Chapter 3 describe the complete set of event management policies that Rules Manager supports.

2.2 Database Representation of a Rule Class and Rules

Rules Manager uses a relational table to hold the contents of a rule class with each row in the table representing a rule. The rule class table minimally has three columns, one for rule identifiers (rlm$ruleid), one for rule conditions (rlm$rulecond), and one for the description of the rule (rlm$ruledesc). In addition, the rule class table can have one or more columns to store rule action preferences.

Figure 2-1 shows a database representation of the TravelPromotion rule class and its rules for processing the AddFlight event instances.

Figure 2-1 Database Representation of Rule Class and Rules

[image: Description of Figure 2-1 follows]

The TravelPromotion rule class consists of the following columns:

	
rlm$ruleid -- contains the unique rule identifier that identifies each rule within a rule class.

	
rlm$rulecond -- contains the rule condition describing each rule; in this case, the rule condition, when satisfied, allows the promotion specified to be offered.

	
rlm$enabled -- contains a value indicating whether the rule added to the rule class is enabled or disabled. A value of 'Y' indicates the rule is enabled, a value of 'N' indicates that it is disabled. By default, a rule created with a missing value for the rlm$enabled column is considered enabled.

	
PromoType -- contains one action preference that is used when the rule condition is satisfied, and in each case, the action callback procedure is called that executes the actions for the rules in the rule class; in this case, the type of promotion to be offered, such as a car rental promotion or hotel stay promotion is stored in this column. This value is used by the PromoAction action callback procedure to invoke the OfferPromotion procedure with the appropriate arguments.

	
OfferedBy -- contains another action preference that is associated with the previous action preference column; in this case, it contains the name of the company offering the promotion.

	
rlm$ruledesc -- contains a description of the rule in plain text provided by the person defining the rule.

An ECA rule is stored in a row of the TravelPromotion rule class table. The event structure, defined as an object type in the database, is associated with the rule condition column and this provides the necessary vocabulary for the rule conditions (stored in the column). The event structure, the rule class table, and the action callback procedure are all created as part of rule class creation.

Once all the rules are added to the rule class, events are ready to be processed and rules evaluated. At runtime, each rule in the rule class is processed against each instance of the event structure. When a rule evaluates to true for a particular event, the PromoAction action callback procedure calls the designated OfferPromotion procedure using rule action preferences to execute the prescribed action of offering a specific type of promotion from a particular vendor. Rules Manager enforces various event management policies, such as conflict resolution when an event matches more than one rule, or immediate event consumption when the first match is found and no further evaluation is necessary. These and other event management policies are described in more detail in Chapter 3.

Section 2.3, Section 2.6, and Section 2.4 describe the process of creating rules applications that use a simple event, that span multiple tiers, and that use composite events, respectively. Though the basic five steps are the same for all three cases, the details vary, and some additional steps are necessary for multiple tier applications.

2.3 Creating Rules Applications That Use Simple or Non-Composite Events

The basic steps to create a rules application that uses a simple or non-composite event are as follows:

	
Create the event structure as an object type in the database.

Using the AddFlight example, the event structure is defined as:

CREATE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

	
Create the rule class for the event structure.

	
Note:

For successful creation of a rule class, you should have sufficient privileges to create views, object types, tables, packages, and procedures.

For this example, create the TravelPromotion rule class for the AddFlight event structure and define the PromoType and OfferedBy columns as its action preferences. This procedure takes the name of the rule class, the name of the existing event structure created in Step 1, the name of the action callback procedure, and the action preference specification as arguments. The action preferences specification defines the data types of action preferences that are associated with each rule in the rule class.

BEGIN
dbms_rlmgr.create_rule_class (
 rule_class => 'TravelPromotion',
 event_struct => 'AddFlight',
 action_cbk => 'PromoAction',
 actprf_spec => 'PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)');
END;

Rule class creation creates a table to store the corresponding rule definitions and action preferences. The rule class table uses the same name as the rule class and it is created in the user's schema. The rule class table defines three columns to store the rule identifiers, rule descriptions, and the rule conditions. In this example, the table also creates the rule action preferences columns specified with the previous command to store the action preferences.

TABLE TravelPromotion (
 rlm$ruleid VARCHAR2(100),
 rlm$rulecond VARCHAR2(4000),
 rlm$enabled CHAR(1) DEFAULT 'Y',
 rlm$ruledesc VARCHAR2(1000),
 PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20));

You can query the table to see the rules defined in the rule class as well as perform SQL INSERT, UPDATE, and DELETE operations to add, update, and delete rules.

Rule class creation implicitly creates the skeleton for a callback procedure to perform the action. The action callback procedure acts as an entry point for executing actions for all the rules in the rule class. The action callback is called once for every rule that matches an event. The implementation of the action callback procedure can rely on values in the event instance and the action preferences associated with the matching rule.

PROCEDURE PromoAction (rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 null;
 --- The action for the matching rules can be performed here.
 --- The appropriate action can be determined from the event
 --- instance and the action preferences associated with each rule.
END;

The action callback procedure, in this case, is created with the name the user provides and has two arguments:

	
The event as an instance of the corresponding object type.

	
The action preferences as a ROWTYPE of the corresponding rule class table. The %ROWTYPE attribute provides a record type that represents a row in a table.

	
Replace the system-generated callback procedure with the user implementation to perform the appropriate action for each matching rule. The following action callback procedure can be implemented to invoke the OfferPromotion procedure with arguments obtained from the event instance and the rule definition:

For this example,

PROCEDURE PromoAction (
 rlm$event AddFlight,
 rlm$rule TravelPromotion%ROWTYPE) is
BEGIN
 OfferPromotion (rlm$event.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy);
END;

In this example, the procedure OfferPromotion performs the action and each matching rule provides the appropriate action preferences. Appendix G shows alternate ways for implementing the action callback procedure for a different choice of action preferences.

	
Add rules to the rule class.

Adding rules consists of using the SQL INSERT statement to add a row for each rule. Each row inserted typically contains a rule identifier, a condition, and values for action preferences. The following rule is inserted into the TravelPromotion table:

INSERT INTO TravelPromotion (rlm$ruleid, PromoType, OfferedBy, rlm$rulecond) VALUES
('UN_AV_FL', 'Rental Car', 'Acar',
'Airline= ''Abcair'' and ToCity = ''Orlando'' and Return-Depart >= 7');

	
Process the rules for an event.

Use the dbms_rlmgr.process_rules() procedure to process the rules in a rule class for an event instance. Processing the rules consists of passing in an event instance as a string of name-value pairs (generated using the getVarchar() procedure) or as an AnyData instance for an event consisting of binary data types as described in Section 11.3. Recall that the Oracle supplied getVarchar() method is used to represent the data item as string-formatted name-value pairs when this is possible and that AnyData is an Oracle supplied object type that can hold instances of any Oracle data type, both Oracle supplied and user-defined.

The following example processes the rules in the TravelPromotion rule class for an AddFlight event instance using the getVarchar() function.

BEGIN
dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_inst => AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando', '01-APR-2003', '08-APR-2003'));
END;

The following example processes the rules in the TravelPromotion rule class for an AddFlight event instance using the AnyData.ConvertObject() procedure.

BEGIN
dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_inst => AnyData.convertObject(AddFlight(987, 'Abcair', 'Boston', 'Orlando', '01-APR-2003', '08-APR-2003')));
END;

The previous command processes the rules in the TravelPromotion rule class for an AddFlight event instance and performs the action associated with each matching rule through the action callback procedure.

2.4 Creating Rules Applications That Use Composite Events

Probably the more common types of rules applications are those that use a composite event structure that combines two or more primitive events. Evaluating rule classes for composite events creates additional requirements. Rules Manager addresses these requirements by:

	
Aggregating events for rule execution

When two or more primitive events are brought together, each primitive event may be generated by the application at different points in time. This often means a rule cannot be evaluated conclusively until all the primitive events are available. Rules Manager manages the primitive events and joins them together before evaluating the rules. Rules Manager hides the complexity of managing composite events by maintaining the association between the primitive events and the composite event. See Chapter 5 for more information.

	
Maintaining intermediate state of event processing

When composite events are completely formed in the user application, some parts of rule conditions may need to be evaluated repeatedly with some parts of the composite events. This may lead to multiple evaluations of one primitive event for each instance of a second primitive event, and so forth to find matching rules. This evaluation becomes complex very quickly as the number of primitive events exceeds two. XML tags support incremental evaluation of rules for composite events resulting in Rules Manager improving the performance of the system. Rules Manager maintains the intermediate state of rule evaluation persistently for efficient processing. See Section 5.1 for more information.

	
Note:

The intermediate state maintained for a rule is closely related to the corresponding rule condition (for composite events). So, any modifications made to the rule condition (using the UPDATE command) will discard the intermediate state associated with the rule and the state is maintained only for the events processed subsequently. Effectively, updating a rule condition is equivalent to deleting the corresponding rule and inserting a new one. Modifying the rule's action preferences or the rule identifier has no impact on the rule evaluation state.

	
Supporting complex rule constructs

Rules Manager enables you to build complex rules with negation, Any n, and Set semantics in conditional expressions. Using XML tags within rule conditions, Rules Manager can support these complex rule constructs that are commonly used in applications. See Chapter 5 for more information.

	
Setting event management policies

Rules Manager allows an individual with application domain knowledge to declaratively set event management policies for a rules application. Event policies are specified as properties of a rules class when the rule class is created to control the behavior of simple and composite events in the system, and the performance of composite events.

The policies controlling the ordering of rule executions and the reuse of events for multiple rule executions are applicable to an application with simple as well as composite events. Other composite event-specific policies control the aging of the unused events, ordering of events, and the correlation of primitive events within composite events. The event management policies are summarized in Section 2.5 and described in Section 3.1 through Section 3.8.

	
Note:

The EQUAL property must be specified for a rules class if it is configured for composite events. Domain knowledge is needed to identify common equality join predicates that correlate the primitive events for all the rules in a rule class.

Designing Rules Applications with Composite Events

Developing a rules application for composite events has some similarities with that of developing a database (SQL) application. The event structure definitions in a rules application are similar to table definitions in a database application. SQL queries operating on these tables are similar to the rule conditions defined in a rule class. In a database application, constraints and indexes specific to each application are created for data integrity and performance. Similarly, in the case of a rules application, properties specified for the rule class enforce the event management policies and improve the performance. These rule class properties are summarized in Section 2.5 and described Chapter 3.

2.4.1 How to Create a Rules Application That Uses Composite Events

The basic steps to create a rules application with composite events are the same as those described for simple events in Section 2.3, with accommodations for multiple primitive events.

The steps to create a rules application with composite events are as follows:

	
Create the composite event structure as an object type in the database.

First, each primitive event structure is created as an object type. For example:

CREATE or REPLACE TYPE AddFlight AS OBJECT (
 CustId NUMBER,
 Airline VARCHAR2(20),
 FromCity VARCHAR2(30),
 ToCity VARCHAR2(30),
 Depart DATE,
 Return DATE);

CREATE or REPLACE TYPE AddRentalCar AS OBJECT (
 CustId NUMBER,
 CarType VARCHAR2(20),
 CheckOut DATE,
 CheckIn DATE,
 Options VARCHAR2(30));

Next, all the primitive event structures that constitute the composite event are created as (first level) embedded types in this object type. For example:

CREATE or REPLACE TYPE TSCompEvent AS OBJECT (Flt AddFlight,
 Car AddRentalCar);

The attribute names, Flt and Car, are used in the rule conditions for identifying the predicates on individual primitive events and for specifying join conditions between primitive events; Flt and Car are the primitive event variables used for composite events.

	
Create the rule class for the composite event structure. The rule class is configured for composite events using an XML properties document that is assigned to the properties argument of the dbms_rlmgr.create_rule_class procedure.

BEGIN
 dbms_rlmgr.create_rule_class (
 rule_class => 'CompTravelPromo',
 event_struct => 'TSCompEvent',
 action_cbk => 'CompPromoAction',
 rslt_viewnm => 'CompMatchingPromos',
 actprf_spec => 'PromoType VARCHAR2(20),
 OfferedBy VARCHAR2(20)',
 rlcls_prop => '<composite equal="Flt.CustId, Car.CustId"/>');
END;

The previous code example creates the rule class for the composite event structure. The rlcls_prop argument specifies the XML element <composite> to configure the rule class for composite events. The properties also include an equal specification that identifies the common equality join predicate in all the rules in the rule class. Other critical rule class properties such as consumption, duration, and ordering of events can be specified using the syntax discussed in Section 3.1 through Section 3.7.

This step re-creates each object type representing a primitive event structure to include a timestamp attribute, rlm$CrtTime, which captures the corresponding event creation times. This attribute is created with the TIMESTAMP data type and its value is defaulted to the database timestamp (SYSTIMESTAMP) at the time of event instantiation. Alternately, an application can explicitly set an event creation time by assigning a valid timestamp value to this attribute.

As previously mentioned, this rule class creation also creates the action callback procedure with the specified name as follows:

PROCEDURE CompPromotion (Flt AddFlight,
 Car AddRentalCar,
 rlm$rule CompTravelPromo%ROWTYPE) is
BEGIN
 null;
 --- The action for the matching rules can be performed here.
 --- The appropriate action can be determined from the event
 --- instance and the action preferences associated with each rule.
END;

	
Note:

The primitive events within the composite events are passed in as separate arguments to the callback procedure. The action callback procedure includes additional arguments when the rule class is configured for the RULE consumption policy or when the rule class is enabled for one or more collection events.

	
Replace the system generated action callback procedure with the user implementation to perform the appropriate action for each matching rule. For example:

PROCEDURE CompPromoAction (Flt AddFlight,
 Car AddRentalCar,
 rlm$rule CompTravelPromo%ROWTYPE) is
BEGIN
 OfferPromotion (Flt.CustId,
 rlm$rule.PromoType,
 rlm$rule.OfferedBy);
END;

	
Add the rules to the rule class. In this case, add a rule with a conditional expression that uses XML tags. See Section 5.1 for more information about using XML tag extensions in rule conditions to support complex rule constructs.

INSERT INTO CompTravelPromo (rlm$ruleid, PromoType, OfferedBy, rlm$rulecond)
 VALUES ('UN-HT-FL', 'RentalCar', 'Acar',
 '<condition>
 <and join="Flt.CustId = Car.CustId">
 <object name="Flt">
 Airline=''Abcair'' and ToCity=''Orlando''
 </object>
 <object name="Car">
 CarType = ''Luxury''
 </object>
 </and>
 </condition>');

	
Process the rules using one primitive event at a time. For example:

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddFlight(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003')));

 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddFlight(567, 'Abdair', 'Boston', 'Miami',
 '03-APR-2003', '09-APR-2003')));

 dbms_rlmgr.process_rules (
 rule_class => 'CompTravelPromo',
 event_inst =>
 AnyData.ConvertObject(
 AddRentalCar(987, 'Luxury', '03-APR-2003',
 '08-APR-2003', NULL)));
END;

This command adds three primitive events to the Rules Manager. For the rule defined in Step 4, the first event matches the primitive rule condition for the AddFlight event and the third event matches the condition for the AddRentalCar event. Additionally, these two events satisfy the join predicate in the rule condition. So for the previous example, the first and last primitive events together form a composite event that matches the rule condition specified in Step 4. These primitive event instances are passed to the action callback procedure for action execution. The type information for the primitive events that is passed in is embedded in the corresponding AnyData instance. However, when a string-formatted event is used, the primitive event type information should be explicitly passed in as follows:

BEGIN
 dbms_rlmgr.process_rules (
 rule_class => 'TravelPromotion',
 event_type => 'AddFlight',
 event_inst =>
 AddFlight.getVarchar(987, 'Abcair', 'Boston', 'Orlando',
 '01-APR-2003', '08-APR-2003'));
END;

2.4.2 Evaluating Composite Events Using Complex Rule Conditions

Evaluating composite events using complex rule conditions is supported by Rules Manager with the following:

	
Incremental evaluation of rules by allowing predicate joins between and among primitive events

	
Negation in rule conditions to raise exceptions in processes (that is, when something does not happen, do something)

	
Sequencing in rule conditions by tracking primitive event creation time and enforcing or detecting sequencing among events

	
Set semantics in rule conditions to allow instances of primitive events of the same type to be monitored as a group

	
Any n in rule conditions to allow matching of a subset of primitive events

Rules Manager supports incremental evaluation of rules involving composite events. To support complex rule conditions, the conditional expressions in the SQL WHERE clause are extended with some XML tags that identify different parts of a conditional expression and add special semantics to these expressions. Chapter 5 describes more about each type of complex rule condition. Section 5.1 describes implementing incremental evaluation of rules.

2.5 Setting Event Management Policies (Rule Class Properties) for Rule Applications

Rule class properties define the event management policies that the Rules Manager should enforce for each rules application. Rule class properties include:

	
Consumption -- determines if an event can be used for multiple rule executions or a single rule execution

	
Conflict resolution or ordering -- determines the order in which matching rules with various events are to be executed

	
Duration -- determines the lifetime of unconsumed primitive events

	
Auto-commit -- determines if each interaction with a rule class should be committed automatically

	
Storage -- determines the storage characteristics of the rule class in the database

	
Equal -- specifies the common equality join predicates for all the rules in a rule class, that is, what are the lists of primitive event attributes that are equal in the composite events configured for a rule class

	
DML Events -- specifies when an event structure is created with one or more table alias attributes, that the corresponding rule class should consider the data manipulation language (DML) operations (INSERT, UPDATE, DELETE) on the corresponding tables as the events for which the rules are evaluated

	
CNF Events -- Similar to DML Events except that the rules are processed after the commit of the transaction performing the DML operations.

Rule class properties are specified at the time of rule class creation using an XML properties document that is assigned to the rlcls_prop argument of the dbms_rlmgr.create_rule_set() procedure. For rule classes configured for composite events these properties can be specified at the composite event level (for all the primitive events). In addition, you can specify overrides for one or more primitive events in the properties document. Section 3.1 through Section 3.8 describe each of these rules properties in more detail and how each is implemented.

2.6 Creating Rules Applications That Span Multiple Tiers

For rules applications that span multiple tiers and where rule management is handled in the database, but the action execution for the rules is handled in the application server, the actions for the rules matching an event cannot be invoked from an action callback procedure. Instead, a results view is populated with the events and the matching rules, both of which are available for external action execution. The results view can be queried to determine the rules that match an event and their corresponding actions can then be executed.

To handle rules applications with certain rules having their action execution occurring on the application server, you must also configure the rule class for external execution (in addition to configuring the action callback procedure). The steps to do this are similar to those described in Section 2.3, but are modified and briefly described as follows (see Chapter 6 for a complete description of each step):

	
Create the event structure as an object type in the database (same as Step 1 in Section 2.3).

	
Create the rule class and also define the results view. See Step 2 in Section 6.1 for the details.

	
Implement the action callback procedure (same as Step 3 in Section 2.3).

	
Add rules to the rule class (same as Step 4 in Section 2.3).

	
Identify the matching rules for an event. Use the add event procedure (dbms_rlmgr.add_event()) that adds each event to the rule class one at a time and identifies the matching rules for a given event that is later accessed using the results view. See Step 5 in Section 6.1 for the details.

	
Find the matching rules by querying the results view. See Step 6 in Section 6.1 for the details.

	
Consume the event that is used in a rule execution. See Step 7 in Section 6.1 for the details.

For more information about creating rules applications that span multiple tiers, see Section 6.1, and for more information about running rules applications in multitier mode see Section 6.2.

2.7 Using Rules Manager with SQL*Loader and Export/Import Utilities

Section 2.7.1 describes using SQL*Loader to load data into a rule class table. Section 2.7.2 describes exporting and importing rules applications.

2.7.1 SQL*Loader

SQL*Loader can be used to bulk load data from an ASCII file into a rule class table. For the loader operations, the rule conditions stored in the rlm$rulecond column of the rule class table are treated as strings loaded into a VARCHAR2 column. The data file can hold the XML and SQL based rule conditions in any format allowed for VARCHAR2 data and the values for the action preference columns in the rule class table are loaded using normal SQL*Loader semantics.

The data loaded into the rule condition column is automatically validated using the event structure associated with the rule class. The validation is done by a trigger defined on the rule condition column, due to which, a direct load cannot be used while loading rule definitions into a rule class table.

2.7.2 Export/Import

A rules application defined using a set of event structures and a rule class can be exported and imported back to the same database or a different Oracle database. A rule class in a schema is automatically exported when the corresponding rule class table is exported using the export command's (expdp) tables parameter or when the complete schema is exported. When a rule class is exported, definitions for the associated primitive and composite event structures and the rules defined in the rule class are all placed in the export dump file. However, the internal database objects that maintain the information about event instances and incremental states for partially matched rules are not exported with the rule class. When the tables parameter is used to export a particular rule class, the implementation for the action callback procedure is not written to the export dump file. The action callback procedure is only exported with the schema export.

	
Note:

In the case of a rule class with references to shareable primitive rule conditions, the conditions table storing the conditions are not exported unless the schem