
[image: Oracle Corporation]

Oracle® Database

Data Warehousing Guide

11g Release 1 (11.1)

B28313-02

September 2007

Oracle Database Data Warehousing Guide, 11g Release 1 (11.1)

B28313-02

Copyright © 2001, 2007, Oracle. All rights reserved.

Primary Author: Paul Lane

Contributing Author: Viv Schupmann and Ingrid Stuart (Change Data Capture)

Contributor: Patrick Amor, Hermann Baer, Mark Bauer, Subhransu Basu, Srikanth Bellamkonda, Randy Bello, Paula Bingham, Tolga Bozkaya, Lucy Burgess, Donna Carver, Rushan Chen, Benoit Dageville, John Haydu, Lilian Hobbs, Hakan Jakobsson, George Lumpkin, Alex Melidis, Valarie Moore, Cetin Ozbutun, Ananth Raghavan, Jack Raitto, Ray Roccaforte, Sankar Subramanian, Gregory Smith, Margaret Taft, Murali Thiyagarajan, Ashish Thusoo, Thomas Tong, Mark Van de Wiel, Jean-Francois Verrier, Gary Vincent, Andreas Walter, Andy Witkowski, Min Xiao, Tsae-Feng Yu

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software—Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Database?

	Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing
	Oracle Database 10g Release 2 (10.2) New Features in Data Warehousing

Part I Concepts

1 Data Warehousing Concepts

	What is a Data Warehouse?
	Subject Oriented
	Integrated
	Nonvolatile
	Time Variant
	Contrasting OLTP and Data Warehousing Environments

	Data Warehouse Architectures
	Data Warehouse Architecture: Basic
	Data Warehouse Architecture: with a Staging Area
	Data Warehouse Architecture: with a Staging Area and Data Marts

	Extracting Information from a Data Warehouse
	Data Mining
	Oracle Data Mining Functionality
	Oracle Data Mining Interfaces

Part II Logical Design

2 Logical Design in Data Warehouses

	Logical Versus Physical Design in Data Warehouses
	Creating a Logical Design
	Data Warehousing Schemas
	Star Schemas
	Other Data Warehousing Schemas

	Data Warehousing Objects
	Data Warehousing Objects: Fact Tables
	Requirements of Fact Tables

	Data Warehousing Objects: Dimension Tables
	Hierarchies
	Typical Dimension Hierarchy

	Data Warehousing Objects: Unique Identifiers
	Data Warehousing Objects: Relationships
	Example of Data Warehousing Objects and Their Relationships

Part III Physical Design

3 Physical Design in Data Warehouses

	Moving from Logical to Physical Design
	Physical Design
	Physical Design Structures
	Tablespaces
	Tables and Partitioned Tables
	Table Compression

	Views
	Integrity Constraints
	Indexes and Partitioned Indexes
	Materialized Views
	Dimensions

4 Hardware and I/O Considerations in Data Warehouses

	Overview of Hardware and I/O Considerations in Data Warehouses
	Configure I/O for Bandwidth not Capacity
	Stripe Far and Wide
	Use Redundancy
	Test the I/O System Before Building the Database
	Plan for Growth

	Storage Management

5 Partitioning in Data Warehouses

6 Indexes

	Using Bitmap Indexes in Data Warehouses
	Benefits for Data Warehousing Applications
	Cardinality
	How to Determine Candidates for Using a Bitmap Index

	Bitmap Indexes and Nulls
	Bitmap Indexes on Partitioned Tables
	Using Bitmap Join Indexes in Data Warehouses
	Four Join Models for Bitmap Join Indexes
	Bitmap Join Index Restrictions and Requirements

	Using B-Tree Indexes in Data Warehouses
	Using Index Compression
	Choosing Between Local Indexes and Global Indexes

7 Integrity Constraints

	Why Integrity Constraints are Useful in a Data Warehouse
	Overview of Constraint States
	Typical Data Warehouse Integrity Constraints
	UNIQUE Constraints in a Data Warehouse
	FOREIGN KEY Constraints in a Data Warehouse
	RELY Constraints
	NOT NULL Constraints
	Integrity Constraints and Parallelism
	Integrity Constraints and Partitioning
	View Constraints

8 Basic Materialized Views

	Overview of Data Warehousing with Materialized Views
	Materialized Views for Data Warehouses
	Materialized Views for Distributed Computing
	Materialized Views for Mobile Computing
	The Need for Materialized Views
	Components of Summary Management
	Data Warehousing Terminology
	Materialized View Schema Design
	Schemas and Dimension Tables
	Materialized View Schema Design Guidelines

	Loading Data into Data Warehouses
	Overview of Materialized View Management Tasks

	Types of Materialized Views
	Materialized Views with Aggregates
	Requirements for Using Materialized Views with Aggregates

	Materialized Views Containing Only Joins
	Materialized Join Views FROM Clause Considerations

	Nested Materialized Views
	Why Use Nested Materialized Views?
	Nesting Materialized Views with Joins and Aggregates
	Nested Materialized View Usage Guidelines
	Restrictions When Using Nested Materialized Views

	Creating Materialized Views
	Creating Materialized Views with Column Alias Lists
	Naming Materialized Views
	Storage And Table Compression
	Build Methods
	Enabling Query Rewrite
	Query Rewrite Restrictions
	Materialized View Restrictions
	General Query Rewrite Restrictions

	Refresh Options
	General Restrictions on Fast Refresh
	Restrictions on Fast Refresh on Materialized Views with Joins Only
	Restrictions on Fast Refresh on Materialized Views with Aggregates
	Restrictions on Fast Refresh on Materialized Views with UNION ALL
	Achieving Refresh Goals
	Refreshing Nested Materialized Views

	ORDER BY Clause
	Materialized View Logs
	Using the FORCE Option with Materialized View Logs

	Using Oracle Enterprise Manager
	Using Materialized Views with NLS Parameters
	Adding Comments to Materialized Views

	Registering Existing Materialized Views
	Choosing Indexes for Materialized Views
	Dropping Materialized Views
	Analyzing Materialized View Capabilities
	Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure
	DBMS_MVIEW.EXPLAIN_MVIEW Declarations
	Using MV_CAPABILITIES_TABLE
	MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details
	MV_CAPABILITIES_TABLE Column Details

9 Advanced Materialized Views

	Partitioning and Materialized Views
	Partition Change Tracking
	Partition Key
	Join Dependent Expression
	Partition Marker
	Partial Rewrite

	Partitioning a Materialized View
	Partitioning a Prebuilt Table
	Benefits of Partitioning a Materialized View

	Rolling Materialized Views

	Materialized Views in Analytic Processing Environments
	Cubes
	Benefits of Partitioning Materialized Views
	Compressing Materialized Views
	Materialized Views with Set Operators
	Examples of Materialized Views Using UNION ALL

	Materialized Views and Models
	Invalidating Materialized Views
	Security Issues with Materialized Views
	Querying Materialized Views with Virtual Private Database (VPD)
	Using Query Rewrite with Virtual Private Database
	Restrictions with Materialized Views and Virtual Private Database

	Altering Materialized Views

10 Dimensions

	What are Dimensions?
	Creating Dimensions
	Dropping and Creating Attributes with Columns
	Multiple Hierarchies
	Using Normalized Dimension Tables

	Viewing Dimensions
	Using Oracle Enterprise Manager
	Using the DESCRIBE_DIMENSION Procedure

	Using Dimensions with Constraints
	Validating Dimensions
	Altering Dimensions
	Deleting Dimensions

Part IV Managing the Data Warehouse Environment

11 Overview of Extraction, Transformation, and Loading

	Overview of ETL in Data Warehouses
	ETL Basics in Data Warehousing
	Extraction of Data
	Transportation of Data

	ETL Tools for Data Warehouses
	Daily Operations in Data Warehouses
	Evolution of the Data Warehouse

12 Extraction in Data Warehouses

	Overview of Extraction in Data Warehouses
	Introduction to Extraction Methods in Data Warehouses
	Logical Extraction Methods
	Full Extraction
	Incremental Extraction

	Physical Extraction Methods
	Online Extraction
	Offline Extraction

	Change Data Capture
	Timestamps
	Partitioning
	Triggers

	Data Warehousing Extraction Examples
	Extraction Using Data Files
	Extracting into Flat Files Using SQL*Plus
	Extracting into Flat Files Using OCI or Pro*C Programs
	Exporting into Export Files Using the Export Utility
	Extracting into Export Files Using External Tables

	Extraction Through Distributed Operations

13 Transportation in Data Warehouses

	Overview of Transportation in Data Warehouses
	Introduction to Transportation Mechanisms in Data Warehouses
	Transportation Using Flat Files
	Transportation Through Distributed Operations
	Transportation Using Transportable Tablespaces
	Transportable Tablespaces Example
	Other Uses of Transportable Tablespaces

14 Loading and Transformation

	Overview of Loading and Transformation in Data Warehouses
	Transformation Flow
	Multistage Data Transformation
	Pipelined Data Transformation

	Loading Mechanisms
	Loading a Data Warehouse with SQL*Loader
	Loading a Data Warehouse with External Tables
	Loading a Data Warehouse with OCI and Direct-Path APIs
	Loading a Data Warehouse with Export/Import

	Transformation Mechanisms
	Transforming Data Using SQL
	CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT
	Transforming Data Using UPDATE
	Transforming Data Using MERGE
	Transforming Data Using Multitable INSERT

	Transforming Data Using PL/SQL
	Transforming Data Using Table Functions
	What is a Table Function?

	Error Logging and Handling Mechanisms
	Business Rule Violations
	Data Rule Violations (Data Errors)
	Handling Data Errors in PL/SQL
	Handling Data Errors with an Error Logging Table

	Loading and Transformation Scenarios
	Key Lookup Scenario
	Business Rule Violation Scenario
	Data Error Scenarios
	Pivoting Scenarios

15 Maintaining the Data Warehouse

	Using Partitioning to Improve Data Warehouse Refresh
	Refresh Scenarios
	Scenarios for Using Partitioning for Refreshing Data Warehouses
	Refresh Scenario 1
	Refresh Scenario 2

	Optimizing DML Operations During Refresh
	Implementing an Efficient MERGE Operation
	Maintaining Referential Integrity
	Purging Data

	Refreshing Materialized Views
	Complete Refresh
	Fast Refresh
	Partition Change Tracking (PCT) Refresh
	ON COMMIT Refresh
	Manual Refresh Using the DBMS_MVIEW Package
	Refresh Specific Materialized Views with REFRESH
	Refresh All Materialized Views with REFRESH_ALL_MVIEWS
	Refresh Dependent Materialized Views with REFRESH_DEPENDENT
	Using Job Queues for Refresh
	When Fast Refresh is Possible
	Recommended Initialization Parameters for Parallelism
	Monitoring a Refresh
	Checking the Status of a Materialized View
	Viewing Partition Freshness

	Scheduling Refresh
	Tips for Refreshing Materialized Views with Aggregates
	Tips for Refreshing Materialized Views Without Aggregates
	Tips for Refreshing Nested Materialized Views
	Tips for Fast Refresh with UNION ALL
	Tips After Refreshing Materialized Views

	Using Materialized Views with Partitioned Tables
	Fast Refresh with Partition Change Tracking
	PCT Fast Refresh Scenario 1
	PCT Fast Refresh Scenario 2
	PCT Fast Refresh Scenario 3

	Fast Refresh with CONSIDER FRESH

16 Change Data Capture

	Overview of Change Data Capture
	Capturing Change Data Without Change Data Capture
	Capturing Change Data with Change Data Capture
	Publish and Subscribe Model
	Publisher
	Subscribers

	Change Sources and Modes of Change Data Capture
	Synchronous Change Data Capture
	Asynchronous Change Data Capture
	Asynchronous HotLog Mode
	Asynchronous Distributed HotLog Mode
	Asynchronous AutoLog Mode

	Change Sets
	Valid Combinations of Change Sources and Change Sets

	Change Tables
	Getting Information About the Change Data Capture Environment
	Preparing to Publish Change Data
	Creating a User to Serve As a Publisher
	Granting Privileges and Roles to the Publisher
	Creating a Default Tablespace for the Publisher
	Password Files and Setting the REMOTE_LOGIN_PASSWORDFILE Parameter

	Determining the Mode in Which to Capture Data
	Setting Initialization Parameters for Change Data Capture Publishing
	Initialization Parameters for Synchronous Publishing
	Initialization Parameters for Asynchronous HotLog Publishing
	Initialization Parameters for Asynchronous Distributed HotLog Publishing
	Initialization Parameters for Asynchronous AutoLog Publishing

	Adjusting Initialization Parameter Values When Oracle Streams Values Change
	Tracking Changes to the CDC Environment

	Publishing Change Data
	Performing Synchronous Publishing
	Performing Asynchronous HotLog Publishing
	Performing Asynchronous Distributed HotLog Publishing
	Performing Asynchronous AutoLog Publishing

	Subscribing to Change Data
	Managing Published Data
	Managing Asynchronous Change Sources
	Enabling And Disabling Asynchronous Distributed HotLog Change Sources

	Managing Asynchronous Change Sets
	Creating Asynchronous Change Sets with Starting and Ending Dates
	Enabling and Disabling Asynchronous Change Sets
	Stopping Capture on DDL for Asynchronous Change Sets
	Recovering from Errors Returned on Asynchronous Change Sets

	Managing Synchronous Change Sets
	Enabling and Disabling Synchronous Change Sets

	Managing Change Tables
	Creating Change Tables
	Understanding Change Table Control Columns
	Understanding TARGET_COLMAP$ and SOURCE_COLMAP$ Values
	Using Change Markers
	Controlling Subscriber Access to Change Tables
	Purging Change Tables of Unneeded Data
	Dropping Change Tables

	Exporting and Importing Change Data Capture Objects Using Oracle Data Pump
	Restrictions on Using Oracle Data Pump with Change Data Capture
	Examples of Oracle Data Pump Export and Import Commands
	Publisher Considerations for Exporting and Importing Change Tables
	Re-Creating AutoLog Change Data Capture Objects After an Import Operation

	Impact on Subscriptions When the Publisher Makes Changes

	Considerations for Synchronous Change Data Capture
	Restriction on Direct-Path INSERT
	Datatypes and Table Structures Supported for Synchronous Change Data Capture
	Limitation on Restoring Source Tables from the Recycle Bin

	Considerations for Asynchronous Change Data Capture
	Asynchronous Change Data Capture and Redo Log Files
	Asynchronous Change Data Capture and Supplemental Logging
	Asynchronous Change Data Capture and Oracle Streams Components
	Datatypes and Table Structures Supported for Asynchronous Change Data Capture
	Restrictions for NOLOGGING and UNRECOVERABLE Operations

	Implementation and System Configuration
	Database Configuration Assistant Considerations
	Summary of Supported Distributed HotLog Configurations and Restrictions
	Oracle Database Releases for Source and Staging Databases
	Upgrading a Distributed HotLog Change Source to Oracle Release 11.1
	Hardware Platforms and Operating Systems
	Requirements for Multiple Publishers on the Staging Database
	Requirements for Database Links

Part V Data Warehouse Performance

17 Basic Query Rewrite

	Overview of Query Rewrite
	When Does Oracle Rewrite a Query?

	Ensuring that Query Rewrite Takes Effect
	Initialization Parameters for Query Rewrite
	Controlling Query Rewrite
	Accuracy of Query Rewrite
	Privileges for Enabling Query Rewrite
	Sample Schema and Materialized Views
	How to Verify Query Rewrite Occurred

	Example of Query Rewrite

18 Advanced Query Rewrite

	How Oracle Rewrites Queries
	Cost-Based Optimization
	General Query Rewrite Methods
	When are Constraints and Dimensions Needed?

	Checks Made by Query Rewrite
	Join Compatibility Check
	Data Sufficiency Check
	Grouping Compatibility Check
	Aggregate Computability Check

	Rewrite Using Dimensions
	Benefits of Using Dimensions
	How to Define Dimensions

	Types of Query Rewrite
	Text Match Rewrite
	Join Back
	Aggregate Computability
	Aggregate Rollup
	Rollup Using a Dimension
	When Materialized Views Have Only a Subset of Data
	Query Rewrite Definitions
	Selection Categories
	Examples of Query Rewrite Selection
	Handling of the HAVING Clause in Query Rewrite
	Query Rewrite When the Materialized View has an IN-List

	Partition Change Tracking (PCT) Rewrite
	PCT Rewrite Based on Range Partitioned Tables
	PCT Rewrite Based on Range-List Partitioned Tables
	PCT Rewrite Based on List Partitioned Tables
	PCT Rewrite and PMARKER
	PCT Rewrite Using Rowid as PMARKER

	Multiple Materialized Views

	Other Query Rewrite Considerations
	Query Rewrite Using Nested Materialized Views
	Query Rewrite in the Presence of Inline Views
	Query Rewrite Using Remote Tables
	Query Rewrite in the Presence of Duplicate Tables
	Query Rewrite Using Date Folding
	Query Rewrite Using View Constraints
	View Constraints Restrictions

	Query Rewrite Using Set Operator Materialized Views
	UNION ALL Marker

	Query Rewrite in the Presence of Grouping Sets
	Query Rewrite When Using GROUP BY Extensions
	Hint for Queries with Extended GROUP BY

	Query Rewrite in the Presence of Window Functions
	Query Rewrite and Expression Matching
	Query Rewrite Using Partially Stale Materialized Views

	Cursor Sharing and Bind Variables
	Handling Expressions in Query Rewrite

	Advanced Query Rewrite Using Equivalences
	Verifying that Query Rewrite has Occurred
	Using EXPLAIN PLAN with Query Rewrite
	Using the EXPLAIN_REWRITE Procedure with Query Rewrite
	DBMS_MVIEW.EXPLAIN_REWRITE Syntax
	Using REWRITE_TABLE
	Using a Varray
	EXPLAIN_REWRITE Benefit Statistics
	Support for Query Text Larger than 32KB in EXPLAIN_REWRITE
	EXPLAIN_REWRITE and Multiple Materialized Views
	EXPLAIN_REWRITE Output

	Design Considerations for Improving Query Rewrite Capabilities
	Query Rewrite Considerations: Constraints
	Query Rewrite Considerations: Dimensions
	Query Rewrite Considerations: Outer Joins
	Query Rewrite Considerations: Text Match
	Query Rewrite Considerations: Aggregates
	Query Rewrite Considerations: Grouping Conditions
	Query Rewrite Considerations: Expression Matching
	Query Rewrite Considerations: Date Folding
	Query Rewrite Considerations: Statistics
	Query Rewrite Considerations: Hints
	REWRITE and NOREWRITE Hints
	REWRITE_OR_ERROR Hint
	Multiple Materialized View Rewrite Hints
	EXPAND_GSET_TO_UNION Hint

19 Schema Modeling Techniques

	Schemas in Data Warehouses
	Third Normal Form
	Optimizing Third Normal Form Queries

	Star Schemas
	Snowflake Schemas

	Optimizing Star Queries
	Tuning Star Queries
	Using Star Transformation
	Star Transformation with a Bitmap Index
	Execution Plan for a Star Transformation with a Bitmap Index
	Star Transformation with a Bitmap Join Index
	Execution Plan for a Star Transformation with a Bitmap Join Index
	How Oracle Chooses to Use Star Transformation
	Star Transformation Restrictions

20 SQL for Aggregation in Data Warehouses

	Overview of SQL for Aggregation in Data Warehouses
	Analyzing Across Multiple Dimensions
	Optimized Performance
	An Aggregate Scenario
	Interpreting NULLs in Examples

	ROLLUP Extension to GROUP BY
	When to Use ROLLUP
	ROLLUP Syntax
	Partial Rollup

	CUBE Extension to GROUP BY
	When to Use CUBE
	CUBE Syntax
	Partial CUBE
	Calculating Subtotals Without CUBE

	GROUPING Functions
	GROUPING Function
	When to Use GROUPING
	GROUPING_ID Function
	GROUP_ID Function

	GROUPING SETS Expression
	GROUPING SETS Syntax

	Composite Columns
	Concatenated Groupings
	Concatenated Groupings and Hierarchical Data Cubes

	Considerations when Using Aggregation
	Hierarchy Handling in ROLLUP and CUBE
	Column Capacity in ROLLUP and CUBE
	HAVING Clause Used with GROUP BY Extensions
	ORDER BY Clause Used with GROUP BY Extensions
	Using Other Aggregate Functions with ROLLUP and CUBE

	Computation Using the WITH Clause
	Working with Hierarchical Cubes in SQL
	Specifying Hierarchical Cubes in SQL
	Querying Hierarchical Cubes in SQL
	SQL for Creating Materialized Views to Store Hierarchical Cubes
	Examples of Hierarchical Cube Materialized Views

21 SQL for Analysis and Reporting

	Overview of SQL for Analysis and Reporting
	Ranking Functions
	RANK and DENSE_RANK Functions
	Ranking Order
	Ranking on Multiple Expressions
	RANK and DENSE_RANK Difference
	Per Group Ranking
	Per Cube and Rollup Group Ranking
	Treatment of NULLs

	Bottom N Ranking
	CUME_DIST Function
	PERCENT_RANK Function
	NTILE Function
	ROW_NUMBER Function

	Windowing Aggregate Functions
	Treatment of NULLs as Input to Window Functions
	Windowing Functions with Logical Offset
	Centered Aggregate Function
	Windowing Aggregate Functions in the Presence of Duplicates
	Varying Window Size for Each Row
	Windowing Aggregate Functions with Physical Offsets
	FIRST_VALUE and LAST_VALUE Functions

	Reporting Aggregate Functions
	RATIO_TO_REPORT Function

	LAG/LEAD Functions
	LAG/LEAD Syntax

	FIRST/LAST Functions
	FIRST/LAST Syntax
	FIRST/LAST As Regular Aggregates
	FIRST/LAST As Reporting Aggregates

	Inverse Percentile Functions
	Normal Aggregate Syntax
	Inverse Percentile Example Basis
	As Reporting Aggregates

	Inverse Percentile Restrictions

	Hypothetical Rank and Distribution Functions
	Hypothetical Rank and Distribution Syntax

	Linear Regression Functions
	REGR_COUNT Function
	REGR_AVGY and REGR_AVGX Functions
	REGR_SLOPE and REGR_INTERCEPT Functions
	REGR_R2 Function
	REGR_SXX, REGR_SYY, and REGR_SXY Functions
	Linear Regression Statistics Examples
	Sample Linear Regression Calculation

	Pivoting Operations
	Example: Pivoting
	Pivoting on Multiple Columns
	Pivoting: Multiple Aggregates
	Distinguishing PIVOT-Generated Nulls from Nulls in Source Data
	Unpivoting Operations
	Wildcard and Subquery Pivoting with XML Operations

	Other Analytic Functionality
	Linear Algebra
	Frequent Itemsets
	Descriptive Statistics
	Hypothesis Testing - Parametric Tests
	Crosstab Statistics
	Hypothesis Testing - Non-Parametric Tests
	Non-Parametric Correlation

	WIDTH_BUCKET Function
	WIDTH_BUCKET Syntax

	User-Defined Aggregate Functions
	CASE Expressions
	Creating Histograms With User-Defined Buckets

	Data Densification for Reporting
	Partition Join Syntax
	Sample of Sparse Data
	Filling Gaps in Data
	Filling Gaps in Two Dimensions
	Filling Gaps in an Inventory Table
	Computing Data Values to Fill Gaps

	Time Series Calculations on Densified Data
	Period-to-Period Comparison for One Time Level: Example
	Period-to-Period Comparison for Multiple Time Levels: Example
	Creating a Custom Member in a Dimension: Example

22 SQL for Modeling

	Overview of SQL Modeling
	How Data is Processed in a SQL Model
	Why Use SQL Modeling?
	SQL Modeling Capabilities

	Basic Topics in SQL Modeling
	Base Schema
	MODEL Clause Syntax
	Keywords in SQL Modeling
	Assigning Values and Null Handling
	Calculation Definition

	Cell Referencing
	Symbolic Dimension References
	Positional Dimension References

	Rules
	Single Cell References
	Multi-Cell References on the Right Side
	Multi-Cell References on the Left Side
	Use of the CV Function
	Use of the ANY Wildcard
	Nested Cell References

	Order of Evaluation of Rules
	Global and Local Keywords for Rules
	UPDATE, UPSERT, and UPSERT ALL Behavior
	UPDATE Behavior
	UPSERT Behavior
	UPSERT ALL Behavior

	Treatment of NULLs and Missing Cells
	Distinguishing Missing Cells from NULLs
	Use Defaults for Missing Cells and NULLs
	Using NULLs in a Cell Reference

	Reference Models

	Advanced Topics in SQL Modeling
	FOR Loops
	Evaluation of Formulas with FOR Loops

	Iterative Models
	Rule Dependency in AUTOMATIC ORDER Models
	Ordered Rules
	Analytic Functions
	Unique Dimensions Versus Unique Single References
	Rules and Restrictions when Using SQL for Modeling

	Performance Considerations with SQL Modeling
	Parallel Execution
	Aggregate Computation
	Using EXPLAIN PLAN to Understand Model Queries
	Using ORDERED FAST: Example
	Using ORDERED: Example
	Using ACYCLIC FAST: Example
	Using ACYCLIC: Example
	Using CYCLIC: Example

	Examples of SQL Modeling

23 OLAP and Data Mining

	OLAP and Data Mining Comparison
	OLAP Overview
	OLAP Technology in the Oracle Database
	Full Integration of Multidimensional Technology
	Ease of Application Development
	Ease of Administration
	Security
	Unmatched Performance and Scalability
	Reduced Costs

	Querying Dimensional Objects
	Tools for Creating and Managing Dimensional Objects

24 Advanced Business Intelligence Queries

	Examples of Business Intelligence Queries

25 Using Parallel Execution

	Introduction to Parallel Execution Tuning
	When to Implement Parallel Execution
	When Not to Implement Parallel Execution
	Operations That Can Be Parallelized

	How Parallel Execution Works
	Degree of Parallelism
	The Parallel Execution Server Pool
	Variations in the Number of Parallel Execution Servers
	Processing Without Enough Parallel Execution Servers

	How Parallel Execution Servers Communicate
	Parallelizing SQL Statements
	Dividing Work Among Parallel Execution Servers
	Parallelism Between Operations
	Producer/Consumer Operations

	Granules of Parallelism
	Block Range Granules
	Partition Granules

	Types of Parallelism
	Parallel Query
	Parallel Queries on Index-Organized Tables
	Nonpartitioned Index-Organized Tables
	Partitioned Index-Organized Tables
	Parallel Queries on Object Types

	Parallel DDL
	DDL Statements That Can Be Parallelized
	CREATE TABLE ... AS SELECT in Parallel
	Recoverability and Parallel DDL
	Space Management for Parallel DDL
	Storage Space When Using Dictionary-Managed Tablespaces
	Free Space and Parallel DDL

	Parallel DML
	Advantages of Parallel DML over Manual Parallelism
	When to Use Parallel DML
	Enabling Parallel DML
	Transaction Restrictions for Parallel DML
	Rollback Segments
	Recovery for Parallel DML
	Space Considerations for Parallel DML
	Locks for Parallel DML
	Restrictions on Parallel DML
	Data Integrity Restrictions
	Trigger Restrictions
	Distributed Transaction Restrictions
	Examples of Distributed Transaction Parallelization

	Parallel Execution of Functions
	Functions in Parallel Queries
	Functions in Parallel DML and DDL Statements

	Other Types of Parallelism

	Initializing and Tuning Parameters for Parallel Execution
	Using Default Parameter Settings
	Setting the Degree of Parallelism for Parallel Execution
	How Oracle Database Determines the Degree of Parallelism for Operations
	Hints and Degree of Parallelism
	Table and Index Definitions
	Default Degree of Parallelism
	Adaptive Multiuser Algorithm
	Minimum Number of Parallel Execution Servers
	Limiting the Number of Available Instances

	Balancing the Workload
	Parallelization Rules for SQL Statements
	Rules for Parallelizing Queries
	Rules for UPDATE, MERGE, and DELETE
	Rules for INSERT ... SELECT
	Rules for DDL Statements
	Rules for [CREATE | REBUILD] INDEX or [MOVE | SPLIT] PARTITION
	Rules for CREATE TABLE AS SELECT
	Summary of Parallelization Rules

	Enabling Parallelism for Tables and Queries
	Degree of Parallelism and Adaptive Multiuser: How They Interact
	How the Adaptive Multiuser Algorithm Works

	Forcing Parallel Execution for a Session
	Controlling Performance with the Degree of Parallelism

	Tuning General Parameters for Parallel Execution
	Parameters Establishing Resource Limits for Parallel Operations
	PARALLEL_MAX_SERVERS
	Increasing the Number of Concurrent Users
	Limiting the Number of Resources for a User
	PARALLEL_MIN_SERVERS
	SHARED_POOL_SIZE
	Computing Additional Memory Requirements for Message Buffers
	Adjusting Memory After Processing Begins
	PARALLEL_MIN_PERCENT

	Parameters Affecting Resource Consumption
	PGA_AGGREGATE_TARGET
	PARALLEL_EXECUTION_MESSAGE_SIZE
	Parameters Affecting Resource Consumption for Parallel DML and Parallel DDL

	Parameters Related to I/O
	DB_CACHE_SIZE
	DB_BLOCK_SIZE
	DB_FILE_MULTIBLOCK_READ_COUNT
	DISK_ASYNCH_IO and TAPE_ASYNCH_IO

	Monitoring and Diagnosing Parallel Execution Performance
	Is There Regression?
	Is There a Plan Change?
	Is There a Parallel Plan?
	Is There a Serial Plan?
	Is There Parallel Execution?
	Is the Workload Evenly Distributed?
	Monitoring Parallel Execution Performance with Dynamic Performance Views
	V$PX_BUFFER_ADVICE
	V$PX_SESSION
	V$PX_SESSTAT
	V$PX_PROCESS
	V$PX_PROCESS_SYSSTAT
	V$PQ_SESSTAT
	V$FILESTAT
	V$PARAMETER
	V$PQ_TQSTAT
	V$SESSTAT and V$SYSSTAT

	Monitoring Session Statistics
	Monitoring System Statistics
	Monitoring Operating System Statistics

	Affinity and Parallel Operations
	Affinity and Parallel Queries
	Affinity and Parallel DML

	Miscellaneous Parallel Execution Tuning Tips
	Setting Buffer Cache Size for Parallel Operations
	Overriding the Default Degree of Parallelism
	Rewriting SQL Statements
	Creating and Populating Tables in Parallel
	Creating Temporary Tablespaces for Parallel Sort and Hash Join
	Size of Temporary Extents

	Executing Parallel SQL Statements
	Using EXPLAIN PLAN to Show Parallel Operations Plans
	Additional Considerations for Parallel DML
	PDML and Direct-Path Restrictions
	Limitation on the Degree of Parallelism
	Using Local and Global Striping
	Increasing INITRANS
	Limitation on Available Number of Transaction Free Lists for Segments
	Using Multiple Archivers
	Database Writer Process (DBWn) Workload
	[NO]LOGGING Clause

	Creating Indexes in Parallel
	Parallel DML Tips
	Parallel DML Tip 1: INSERT
	Parallel DML Tip 2: Direct-Path INSERT
	Parallel DML Tip 3: Parallelizing INSERT, MERGE, UPDATE, and DELETE

	Incremental Data Loading in Parallel
	Updating the Table in Parallel
	Inserting the New Rows into the Table in Parallel
	Merging in Parallel

Glossary

Index

Preface

This preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documents

	
Conventions

Audience

This guide is intended for database administrators, system administrators, and database application developers who design, maintain, and use data warehouses.

To use this document, you need to be familiar with relational database concepts, basic Oracle server concepts, and the operating system environment under which you are running Oracle.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at

http://www.oracle.com/accessibility/

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents

Many of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Note that this book is meant as a supplement to standard texts about data warehousing. This book focuses on Oracle-specific material and does not reproduce in detail material of a general nature. For additional information, see:

	
The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

	
Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Oracle Database?

This section describes the new features of Oracle Database 11g Release 1 (11.1) and provides pointers to additional information. New features information from previous releases is also retained to help those users migrating to the current release.

The following section describes new features in Oracle Database:

	
Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing

	
Oracle Database 10g Release 2 (10.2) New Features in Data Warehousing

Oracle Database 11g Release 1 (11.1) New Features in Data Warehousing

	
Pivot and Unpivot Operators

The PIVOT operator makes it easy to create aggregated cross-tabular output that condenses many rows into a compact result set useful for reports. For instance, input data holding sales of one month in each row can be pivoted into output holding twelve months in each row, with each month in its own column. By combining multiple input rows into each output row, PIVOT also enables inter-row comparison without a table self-join. The UNPIVOT operator reshapes data into a format useful for further relational operations. For example, if a source data set presents twelve months of sales values in each row, UNPIVOT can reshape each source row into twelve output rows, each holding one month of sales data. The unpivoted results are in a more normalized relational form than the source data, and they can be manipulated with simpler and more efficient SQL.

	
See Also:

Chapter 20, "SQL for Aggregation in Data Warehouses" for more information

	
Partition Advisor

The SQL Access Advisor has been enhanced to include partition advice. It recommends the right strategy to partition tables, indexes, and materialized views to get best performance from an application.

	
See Also:

Chapter 5, "Partitioning in Data Warehouses" for more information

	
Change Data Capture (CDC) Enhancements

CDC is now aware of direct-path load operations and implicit data changes as the result of partition-maintenance operations. Users can now turn synchronous CDC on and off as needed. Also, the flexibility of purging change data from change tables has been improved, so you can specify a date range for which data should be purged.

Another improvement is that it is easier to maintain a subscription window to change data. You now have control over the definition of the change subscription, so the window can be moved forward and backward.

	
See Also:

Chapter 16, "Change Data Capture" for more information

	
Query Rewrite Enhancements

Query rewrite has been enhanced to support queries containing inline views. Prior to this release, queries containing inline views could rewrite only if there was an exact text match with the inline views in the materialized views. Because inline views no longer need to textually match between the query and the materialized view, a larger number of queries with inline views can be rewritten. Another significant query rewrite improvement is the ability to rewrite queries that reference remote tables.

	
See Also:

Chapter 17, "Basic Query Rewrite" for more information

	
Refresh Enhancements

Refresh has been enhanced to support automatic index creation for UNION ALL materialized views, the use of query rewrite during a materialized view's atomic refresh, and materialized view refresh with set operators. Also, partition change tracking refresh of UNION ALL materialized views is now possible. Finally, catalog views have been enhanced to contain information on the staleness of partitioned materialized views. These improvements will lead to faster refresh performance.

	
See Also:

Chapter 15, "Maintaining the Data Warehouse" for more information

	
Resource Consumption

Administrators can now specify with a single parameter (MEMORY_TARGET) the total amount of memory (shared memory and SQL execution memory) that can be used by the Oracle Database, leaving to the server the responsibility to determine the optimal distribution of memory across the various memory components of the database instance.

	
See Also:

Chapter 25, "Using Parallel Execution" for more information

	
Oracle OLAP Option Data Warehousing Features

The OLAP Option of the Oracle Database has been enhanced with several features designed to make OLAP cubes attractive alternatives to tables for managing and querying aggregate data in the data warehouse. These include:

	
Further integration of cubes into the SQL query engine. Advancements include integration of cubes with the Oracle query optimizer and a cube row source. These features dramatically increase the efficiency of SQL queries that select from OLAP cubes and dimensions by pushing joins directly into the Oracle Database's multidimensional engine, allowing efficient joins between tables and cubes and by improving overall row/second throughput when selecting from cubes.

	
Automatic query rewrite to cube organized materialized views. Cube-organized materialized views access data from OLAP cubes rather than tables. Like table-based materialized views, application can write queries to detail tables or views and let the database automatically rewrite the query to pre-aggregated data in the cube.

	
Database-managed automatic refresh of cubes. In this release, cubes can be refreshed using the DBMS_MVIEW.REFRESH program, just like table-based materialized views. Cubes provide excellent support for FAST (incremental) refresh.

	
Cost-based aggregation. In many situations, cubes are much more efficient at managing aggregate data as compared to tables. Cost-based aggregation improves upon these advantages by improving the efficiency of pre-aggregating and querying aggregate data, and by simplifying the process of managing aggregate data.

Database administrators who support dimensionally modeled data sets (for example, star/snowflake schema) for query by business intelligence tools and applications should consider using OLAP cubes as a summary management solution because they may offer significant performance advantages.

Oracle Database 10g Release 2 (10.2) New Features in Data Warehousing

	
SQL Model Calculations

The MODEL clause enables you to specify complex formulas while avoiding multiple joins and UNION clauses. This clause supports analytical queries such as share of ancestor and prior period comparisons, as well as calculations typically done in large spreadsheets. The MODEL clause provides building blocks for budgeting, forecasting, and statistical applications.

	
See Also:

Chapter 22, "SQL for Modeling"

	
Materialized View Refresh Enhancements

Materialized view fast refresh involving multiple tables, whether partitioned or non-partitioned, no longer requires that a materialized view log be present.

	
See Also:

Chapter 15, "Maintaining the Data Warehouse"

	
Query Rewrite Enhancements

Query rewrite performance has been improved because query rewrite is now able to use multiple materialized views to rewrite a query.

	
See Also:

Chapter 17, "Basic Query Rewrite"

	
Partitioning Enhancements

You can now use partitioning with index-organized tables. Also, materialized views in OLAP are able to use partitioning. You can now use hash-partitioned global indexes.

	
See Also:

Chapter 5, "Partitioning in Data Warehouses"

	
Change Data Capture

Oracle now supports asynchronous change data capture as well as synchronous change data capture.

	
See Also:

Chapter 16, "Change Data Capture"

	
ETL Enhancements

Oracle's extraction, transformation, and loading capabilities have been improved with several MERGE improvements and better external table capabilities.

	
See Also:

Chapter 11, "Overview of Extraction, Transformation, and Loading"

Part I

Concepts

This section introduces basic data warehousing concepts.

It contains the following chapter:

	
Chapter 1, "Data Warehousing Concepts"

1 Data Warehousing Concepts

This chapter provides an overview of the Oracle data warehousing implementation. It includes:

	
What is a Data Warehouse?

	
Data Warehouse Architectures

	
Extracting Information from a Data Warehouse

Note that this book is meant as a supplement to standard texts about data warehousing. This book focuses on Oracle-specific material and does not reproduce in detail material of a general nature. Two standard texts are:

	
The Data Warehouse Toolkit by Ralph Kimball (John Wiley and Sons, 1996)

	
Building the Data Warehouse by William Inmon (John Wiley and Sons, 1996)

What is a Data Warehouse?

A data warehouse is a relational database that is designed for query and analysis rather than for transaction processing. It usually contains historical data derived from transaction data, but can include data from other sources. Data warehouses separate analysis workload from transaction workload and enable an organization to consolidate data from several sources. This helps in:

	
Maintaining historical records

	
Analyzing the data to gain a better understanding of the business and to improve the business.

In addition to a relational database, a data warehouse environment can include an extraction, transportation, transformation, and loading (ETL) solution, statistical analysis, reporting, data mining capabilities, client analysis tools, and other applications that manage the process of gathering data, transforming it into useful, actionable information, and delivering it to business users.

	
See Also:

Chapter 11, "Overview of Extraction, Transformation, and Loading"

A common way of introducing data warehousing is to refer to the characteristics of a data warehouse as set forth by William Inmon:

	
Subject Oriented

	
Integrated

	
Nonvolatile

	
Time Variant

Subject Oriented

Data warehouses are designed to help you analyze data. For example, to learn more about your company's sales data, you can build a data warehouse that concentrates on sales. Using this data warehouse, you can answer questions such as "Who was our best customer for this item last year?" or "Who is likely to be our best customer next year?" This ability to define a data warehouse by subject matter, sales in this case, makes the data warehouse subject oriented.

Integrated

Integration is closely related to subject orientation. Data warehouses must put data from disparate sources into a consistent format. They must resolve such problems as naming conflicts and inconsistencies among units of measure. When they achieve this, they are said to be integrated.

Nonvolatile

Nonvolatile means that, once entered into the data warehouse, data should not change. This is logical because the purpose of a data warehouse is to enable you to analyze what has occurred.

Time Variant

A data warehouse's focus on change over time is what is meant by the term time variant. In order to discover trends and identify hidden patterns and relationships in business, analysts need large amounts of data. This is very much in contrast to online transaction processing (OLTP) systems, where performance requirements demand that historical data be moved to an archive.

Contrasting OLTP and Data Warehousing Environments

Figure 1-1 illustrates key differences between an OLTP system and a data warehouse.

Figure 1-1 Contrasting OLTP and Data Warehousing Environments

[image: Description of Figure 1-1 follows]

One major difference between the types of system is that data warehouses are not usually in third normal form (3NF), a type of data normalization common in OLTP environments.

Data warehouses and OLTP systems have very different requirements. Here are some examples of differences between typical data warehouses and OLTP systems:

	
Workload

Data warehouses are designed to accommodate ad hoc queries and data analysis. You might not know the workload of your data warehouse in advance, so a data warehouse should be optimized to perform well for a wide variety of possible query and analytical operations.

OLTP systems support only predefined operations. Your applications might be specifically tuned or designed to support only these operations.

	
Data modifications

A data warehouse is updated on a regular basis by the ETL process (run nightly or weekly) using bulk data modification techniques. The end users of a data warehouse do not directly update the data warehouse except when using analytical tools, such as data mining, to make predictions with associated probabilities, assign customers to market segments, and develop customer profiles.

In OLTP systems, end users routinely issue individual data modification statements to the database. The OLTP database is always up to date, and reflects the current state of each business transaction.

	
Schema design

Data warehouses often use denormalized or partially denormalized schemas (such as a star schema) to optimize query and analytical performance.

OLTP systems often use fully normalized schemas to optimize update/insert/delete performance, and to guarantee data consistency.

	
Typical operations

A typical data warehouse query scans thousands or millions of rows. For example, "Find the total sales for all customers last month."

A typical OLTP operation accesses only a handful of records. For example, "Retrieve the current order for this customer."

	
Historical data

Data warehouses usually store many months or years of data. This is to support historical analysis and reporting.

OLTP systems usually store data from only a few weeks or months. The OLTP system stores only historical data as needed to successfully meet the requirements of the current transaction.

Data Warehouse Architectures

Data warehouses and their architectures vary depending upon the specifics of an organization's situation. Three common architectures are:

	
Data Warehouse Architecture: Basic

	
Data Warehouse Architecture: with a Staging Area

	
Data Warehouse Architecture: with a Staging Area and Data Marts

Data Warehouse Architecture: Basic

Figure 1-2 shows a simple architecture for a data warehouse. End users directly access data derived from several source systems through the data warehouse.

Figure 1-2 Architecture of a Data Warehouse

[image: Description of Figure 1-2 follows]

In Figure 1-2, the metadata and raw data of a traditional OLTP system is present, as is an additional type of data, summary data. Summaries are very valuable in data warehouses because they pre-compute long operations in advance. For example, a typical data warehouse query is to retrieve something such as August sales. A summary in an Oracle database is called a materialized view.

Data Warehouse Architecture: with a Staging Area

You need to clean and process your operational data before putting it into the warehouse, as shown in Figure 1-2. You can do this programmatically, although most data warehouses use a staging area instead. A staging area simplifies building summaries and general warehouse management. Figure 1-3 illustrates this typical architecture.

Figure 1-3 Architecture of a Data Warehouse with a Staging Area

[image: Description of Figure 1-3 follows]

Data Warehouse Architecture: with a Staging Area and Data Marts

Although the architecture in Figure 1-3 is quite common, you may want to customize your warehouse's architecture for different groups within your organization. You can do this by adding data marts, which are systems designed for a particular line of business. Figure 1-4 illustrates an example where purchasing, sales, and inventories are separated. In this example, a financial analyst might want to analyze historical data for purchases and sales or mine historical data to make predictions about customer behavior.

Figure 1-4 Architecture of a Data Warehouse with a Staging Area and Data Marts

[image: Description of Figure 1-4 follows]

	
Note:

Data marts are an important part of many data warehouses, but they are not the focus of this book.

Extracting Information from a Data Warehouse

You can extract information from the masses of data stored in a data warehouse by analyzing the data. The Oracle Database provides several ways to analyze data:

	
A wide array of statistical functions, including descriptive statistics, hypothesis testing, correlations analysis, test for distribution fit, cross tabs with Chi-square statistics, and analysis of variance (ANOVA); these functions are described in the Oracle Database SQL Language Reference.

	
OLAP

	
Data Mining

Data Mining

Data mining uses large quantities of data to create models. These models can provide insights that are revealing, significant, and valuable. For example, data mining can be used to:

	
Predict those customers likely to change service providers.

	
Discover the factors involved with a disease.

	
Identify fraudulent behavior.

Data mining is not restricted to solving business problems. For example, data mining can be used in the life sciences to discover gene and protein targets and to identify leads for new drugs.

Oracle Data Mining performs data mining in the Oracle Database. Oracle Data Mining does not require data movement between the database and an external mining server, thereby eliminating redundancy, improving efficient data storage and processing, ensuring that up-to-date data is used, and maintaining data security.

For detailed information about Oracle Data Mining, see Oracle Data Mining Concepts.

Oracle Data Mining Functionality

Oracle Data Mining supports the major data mining functions. There is at least one algorithm for each data mining function.

Oracle Data Mining supports the following data mining functions:

	
Classification: Grouping items into discrete classes and predicting which class an item belongs to; classification algorithms are Decision Tree, Naive Bayes, Generalized Linear Models (Binary Logistic Regression), and Support Vector Machines.

	
Regression: Approximating and predicting continuous numerical values; the algorithms for regression are Support Vector Machines and Generalized Linear Models (Multivariate Linear Regression).

	
Anomaly Detection: Detecting anomalous cases, such as fraud and intrusions; the algorithm for anomaly detection is one-class Support Vector Machines.

	
Attribute Importance: Identifying the attributes that have the strongest relationships with the target attribute (for example, customers likely to churn); the algorithm for attribute importance is Minimum Descriptor Length.

	
Clustering: Finding natural groupings in the data that are often used for identifying customer segments; the algorithms for clustering are k-Means and O-Cluster.

	
Associations: Analyzing "market baskets", items that are likely to be purchased together; the algorithm for associations is a priori.

	
Feature Extraction: Creating new attributes (features) as a combination of the original attributes; the algorithm for feature extraction is Non-Negative Matrix Factorization.

In addition to mining structured data, ODM permits mining of text data (such as police reports, customer comments, or physician's notes) or spatial data.

Oracle Data Mining Interfaces

Oracle Data Mining APIs provide extensive support for building applications that automate the extraction and dissemination of data mining insights.

Data mining activities such as model building, testing, and scoring are accomplished through a PL/SQL API, a Java API, and SQL Data Mining functions. The Java API is compliant with the data mining standard JSR 73. The Java API and the PL/SQL API are fully interoperable.

Oracle Data Mining allows the creation of a supermodel, that is, a model that contains the instructions for its own data preparation. The embedded data preparation can be implemented automatically and/or manually. Embedded Data Preparation supports user-specified data transformations; Automatic Data Preparation supports algorithm-required data preparation, such as binning, normalization, and outlier treatment.

SQL Data Mining functions support the scoring of classification, regression, clustering, and feature extraction models. Within the context of standard SQL statements, pre-created models can be applied to new data and the results returned for further processing, just like any other SQL query.

Predictive Analytics automates the process of data mining. Without user intervention, Predictive Analytics routines manage data preparation, algorithm selection, model building, and model scoring so that the user can benefit from data mining without having to be a data mining expert.

ODM programmatic interfaces include

	
Data mining functions in Oracle SQL for high performance scoring of data

	
DBMS_DATA_MINING PL/SQL packages for model creation, description, analysis, and deployment

	
DBMS_DATA_MINING_TRANSFORM PL/SQL package for transformations required for data mining

	
Java interface based on the Java Data Mining standard for model creation, description, analysis, and deployment

	
DBMS_PREDICTIVE_ANALYTICS PL/SQL package supports the following procedures:

	
EXPLAIN - Ranks attributes in order of influence in explaining a target column

	
PREDICT - Predicts the value of a target column

	
PROFILE - Creates segments and rules that identify the records that have the same target value

Part II

Logical Design

This section deals with the issues in logical design in a data warehouse.

It contains the following chapter:

	
Chapter 2, "Logical Design in Data Warehouses"

2 Logical Design in Data Warehouses

This chapter explains how to create a logical design for a data warehousing environment and includes the following topics:

	
Logical Versus Physical Design in Data Warehouses

	
Creating a Logical Design

	
Data Warehousing Schemas

	
Data Warehousing Objects

Logical Versus Physical Design in Data Warehouses

Your organization has decided to build a data warehouse. You have defined the business requirements and agreed upon the scope of your application, and created a conceptual design. Now you need to translate your requirements into a system deliverable. To do so, you create the logical and physical design for the data warehouse. You then define:

	
The specific data content

	
Relationships within and between groups of data

	
The system environment supporting your data warehouse

	
The data transformations required

	
The frequency with which data is refreshed

The logical design is more conceptual and abstract than the physical design. In the logical design, you look at the logical relationships among the objects. In the physical design, you look at the most effective way of storing and retrieving the objects as well as handling them from a transportation and backup/recovery perspective.

Orient your design toward the needs of the end users. End users typically want to perform analysis and look at aggregated data, rather than at individual transactions. However, end users might not know what they need until they see it. In addition, a well-planned design allows for growth and changes as the needs of users change and evolve.

By beginning with the logical design, you focus on the information requirements and save the implementation details for later.

Creating a Logical Design

A logical design is conceptual and abstract. You do not deal with the physical implementation details yet. You deal only with defining the types of information that you need.

One technique you can use to model your organization's logical information requirements is entity-relationship modeling. Entity-relationship modeling involves identifying the things of importance (entities), the properties of these things (attributes), and how they are related to one another (relationships).

The process of logical design involves arranging data into a series of logical relationships called entities and attributes. An entity represents a chunk of information. In relational databases, an entity often maps to a table. An attribute is a component of an entity that helps define the uniqueness of the entity. In relational databases, an attribute maps to a column.

To be sure that your data is consistent, you need to use unique identifiers. A unique identifier is something you add to tables so that you can differentiate between the same item when it appears in different places. In a physical design, this is usually a primary key.

While entity-relationship diagramming has traditionally been associated with highly normalized models such as OLTP applications, the technique is still useful for data warehouse design in the form of dimensional modeling. In dimensional modeling, instead of seeking to discover atomic units of information (such as entities and attributes) and all of the relationships between them, you identify which information belongs to a central fact table and which information belongs to its associated dimension tables. You identify business subjects or fields of data, define relationships between business subjects, and name the attributes for each subject.

	
See Also:

Chapter 10, "Dimensions" for further information regarding dimensions

Your logical design should result in (1) a set of entities and attributes corresponding to fact tables and dimension tables and (2) a model of operational data from your source into subject-oriented information in your target data warehouse schema.

You can create the logical design using a pen and paper, or you can use a design tool such as Oracle Warehouse Builder (specifically designed to support modeling the ETL process).

	
See Also:

Oracle Warehouse Builder documentation set

Data Warehousing Schemas

A schema is a collection of database objects, including tables, views, indexes, and synonyms. You can arrange schema objects in the schema models designed for data warehousing in a variety of ways. Most data warehouses use a dimensional model.

The model of your source data and the requirements of your users help you design the data warehouse schema. You can sometimes get the source model from your company's enterprise data model and reverse-engineer the logical data model for the data warehouse from this. The physical implementation of the logical data warehouse model may require some changes to adapt it to your system parameters—size of computer, number of users, storage capacity, type of network, and software.

Star Schemas

The star schema is the simplest data warehouse schema. It is called a star schema because the diagram resembles a star, with points radiating from a center. The center of the star consists of one or more fact tables and the points of the star are the dimension tables, as shown in Figure 2-1.

Figure 2-1 Star Schema

[image: Description of Figure 2-1 follows]

The most natural way to model a data warehouse is as a star schema, where only one join establishes the relationship between the fact table and any one of the dimension tables.

A star schema optimizes performance by keeping queries simple and providing fast response time. All the information about each level is stored in one row.

Other Data Warehousing Schemas

Some schemas in data warehousing environments use third normal form rather than star schemas. Another schema that is sometimes useful is the snowflake schema, which is a star schema with normalized dimensions in a tree structure. Another alternative is provided by OLAP, which supports dimensional data types such as cubes and dimensions within Oracle Database.

	
See Also:

Chapter 19, "Schema Modeling Techniques" for further information regarding star and snowflake schemas in data warehouses, Oracle Database Concepts for further conceptual material, Oracle OLAP User's Guide for more information regarding OLAP schemas

Data Warehousing Objects

Fact tables and dimension tables are the two types of objects commonly used in dimensional data warehouse schemas.

Fact tables are the large tables in your data warehouse schema that store business measurements. Fact tables typically contain facts and foreign keys to the dimension tables. Fact tables represent data, usually numeric and additive, that can be analyzed and examined. Examples include sales, cost, and profit.

Dimension tables, also known as lookup or reference tables, contain the relatively static data in the data warehouse. Dimension tables store the information you normally use to contain queries. Dimension tables are usually textual and descriptive and you can use them as the row headers of the result set. Examples are customers or products.

Data Warehousing Objects: Fact Tables

A fact table typically has two types of columns: those that contain numeric facts (often called measurements), and those that are foreign keys to dimension tables. A fact table contains either detail-level facts or facts that have been aggregated. Fact tables that contain aggregated facts are often called summary tables. A fact table usually contains facts with the same level of aggregation. Though most facts are additive, they can also be semi-additive or non-additive. Additive facts can be aggregated by simple arithmetical addition. A common example of this is sales. Non-additive facts cannot be added at all. An example of this is averages. Semi-additive facts can be aggregated along some of the dimensions and not along others. An example of this is inventory levels, where you cannot tell what a level means simply by looking at it.

Requirements of Fact Tables

You must define a fact table for each star schema. From a modeling standpoint, the primary key of the fact table is usually a composite key that is made up of all of its foreign keys.

Data Warehousing Objects: Dimension Tables

A dimension is a structure, often composed of one or more hierarchies, that categorizes data. Dimensional attributes help to describe the dimensional value. They are normally descriptive, textual values. Several distinct dimensions, combined with facts, enable you to answer business questions. Commonly used dimensions are customers, products, and time.

Dimension data is typically collected at the lowest level of detail and then aggregated into higher level totals that are more useful for analysis. These natural rollups or aggregations within a dimension table are called hierarchies.

Hierarchies

Hierarchies are logical structures that use ordered levels as a means of organizing data. A hierarchy can be used to define data aggregation. For example, in a time dimension, a hierarchy might aggregate data from the month level to the quarter level to the year level. A hierarchy can also be used to define a navigational drill path and to establish a family structure.

Within a hierarchy, each level is logically connected to the levels above and below it. Data values at lower levels aggregate into the data values at higher levels. A dimension can be composed of more than one hierarchy. For example, in the product dimension, there might be two hierarchies—one for product categories and one for product suppliers.

Dimension hierarchies also group levels from general to granular. Query tools use hierarchies to enable you to drill down into your data to view different levels of granularity. This is one of the key benefits of a data warehouse.

When designing hierarchies, you must consider the relationships in business structures. For example, a divisional multilevel sales organization.

Hierarchies impose a family structure on dimension values. For a particular level value, a value at the next higher level is its parent, and values at the next lower level are its children. These familial relationships enable analysts to access data quickly.

Levels

A level represents a position in a hierarchy. For example, a time dimension might have a hierarchy that represents data at the month, quarter, and year levels. Levels range from general to specific, with the root level as the highest or most general level. The levels in a dimension are organized into one or more hierarchies.

Level Relationships

Level relationships specify top-to-bottom ordering of levels from most general (the root) to most specific information. They define the parent-child relationship between the levels in a hierarchy.

Hierarchies are also essential components in enabling more complex rewrites. For example, the database can aggregate an existing sales revenue on a quarterly base to a yearly aggregation when the dimensional dependencies between quarter and year are known.

Typical Dimension Hierarchy

Figure 2-2 illustrates a dimension hierarchy based on customers.

Figure 2-2 Typical Levels in a Dimension Hierarchy

[image: Description of Figure 2-2 follows]

	
See Also:

Chapter 10, "Dimensions" and Chapter 17, "Basic Query Rewrite" for further information regarding hierarchies

Data Warehousing Objects: Unique Identifiers

Unique identifiers are specified for one distinct record in a dimension table. Artificial unique identifiers are often used to avoid the potential problem of unique identifiers changing. Unique identifiers are represented with the # character. For example, #customer_id.

Data Warehousing Objects: Relationships

Relationships guarantee business integrity. An example is that if a business sells something, there is obviously a customer and a product. Designing a relationship between the sales information in the fact table and the dimension tables products and customers enforces the business rules in databases.

Example of Data Warehousing Objects and Their Relationships

Figure 2-3 illustrates a common example of a sales fact table and dimension tables customers, products, promotions, times, and channels.

Figure 2-3 Typical Data Warehousing Objects

[image: Description of Figure 2-3 follows]

Part III

Physical Design

This section deals with the physical design of a data warehouse.

It contains the following chapters:

	
Chapter 3, "Physical Design in Data Warehouses"

	
Chapter 4, "Hardware and I/O Considerations in Data Warehouses"

	
Chapter 5, "Partitioning in Data Warehouses"

	
Chapter 6, "Indexes"

	
Chapter 7, "Integrity Constraints"

	
Chapter 8, "Basic Materialized Views"

	
Chapter 9, "Advanced Materialized Views"

	
Chapter 10, "Dimensions"

3 Physical Design in Data Warehouses

This chapter describes the physical design of a data warehousing environment, and includes the following topics:

	
Moving from Logical to Physical Design

	
Physical Design

Moving from Logical to Physical Design

Logical design is what you draw with a pen and paper or design with Oracle Warehouse Builder or Oracle Designer before building your data warehouse. Physical design is the creation of the database with SQL statements.

During the physical design process, you convert the data gathered during the logical design phase into a description of the physical database structure. Physical design decisions are mainly driven by query performance and database maintenance aspects. For example, choosing a partitioning strategy that meets common query requirements enables Oracle Database to take advantage of partition pruning, a way of narrowing a search before performing it.

	
See Also:

	
Chapter 5, "Partitioning in Data Warehouses" for further information regarding partitioning

	
Oracle Database Concepts for further conceptual material regarding all design matters

Physical Design

During the logical design phase, you defined a model for your data warehouse consisting of entities, attributes, and relationships. The entities are linked together using relationships. Attributes are used to describe the entities. The unique identifier (UID) distinguishes between one instance of an entity and another.

Figure 3-1 illustrates a graphical way of distinguishing between logical and physical designs.

Figure 3-1 Logical Design Compared with Physical Design

[image: Description of Figure 3-1 follows]

During the physical design process, you translate the expected schemas into actual database structures. At this time, you have to map:

	
Entities to tables

	
Relationships to foreign key constraints

	
Attributes to columns

	
Primary unique identifiers to primary key constraints

	
Unique identifiers to unique key constraints

Physical Design Structures

Once you have converted your logical design to a physical one, you will need to create some or all of the following structures:

	
Tablespaces

	
Tables and Partitioned Tables

	
Views

	
Integrity Constraints

	
Dimensions

Some of these structures require disk space. Others exist only in the data dictionary. Additionally, the following structures may be created for performance improvement:

	
Indexes and Partitioned Indexes

	
Materialized Views

Tablespaces

A tablespace consists of one or more datafiles, which are physical structures within the operating system you are using. A datafile is associated with only one tablespace. From a design perspective, tablespaces are containers for physical design structures.

Tablespaces need to be separated by differences. For example, tables should be separated from their indexes and small tables should be separated from large tables. Tablespaces should also represent logical business units if possible. Because a tablespace is the coarsest granularity for backup and recovery or the transportable tablespaces mechanism, the logical business design affects availability and maintenance operations.

You can now use ultralarge data files, a significant improvement in very large databases.

	
See Also:

Chapter 4, "Hardware and I/O Considerations in Data Warehouses" for information regarding tablespaces

Tables and Partitioned Tables

Tables are the basic unit of data storage. They are the container for the expected amount of raw data in your data warehouse.

Using partitioned tables instead of nonpartitioned ones addresses the key problem of supporting very large data volumes by allowing you to divide them into smaller and more manageable pieces. The main design criterion for partitioning is manageability, though you will also see performance benefits in most cases because of partition pruning or intelligent parallel processing. For example, you might choose a partitioning strategy based on a sales transaction date and a monthly granularity. If you have four years' worth of data, you can delete a month's data as it becomes older than four years with a single, fast DDL statement and load new data while only affecting 1/48th of the complete table. Business questions regarding the last quarter will only affect three months, which is equivalent to three partitions, or 3/48ths of the total volume.

Partitioning large tables improves performance because each partitioned piece is more manageable. Typically, you partition based on transaction dates in a data warehouse. For example, each month, one month's worth of data can be assigned its own partition.

Table Compression

You can save disk space by compressing heap-organized tables. A typical type of heap-organized table you should consider for table compression is partitioned tables.

To reduce disk use and memory use (specifically, the buffer cache), you can store tables and partitioned tables in a compressed format inside the database. This often leads to a better scaleup for read-only operations. Table compression can also speed up query execution. There is, however, a cost in CPU overhead.

Table compression should be used with highly redundant data, such as tables with many foreign keys. You should avoid compressing tables with much update or other DML activity. Although compressed tables or partitions are updatable, there is some overhead in updating these tables, and high update activity may work against compression by causing some space to be wasted.

	
See Also:

Oracle Database VLDB and Partitioning Guide and Chapter 15, "Maintaining the Data Warehouse"

Views

A view is a tailored presentation of the data contained in one or more tables or other views. A view takes the output of a query and treats it as a table. Views do not require any space in the database.

	
See Also:

Oracle Database Concepts

Integrity Constraints

Integrity constraints are used to enforce business rules associated with your database and to prevent having invalid information in the tables. Integrity constraints in data warehousing differ from constraints in OLTP environments. In OLTP environments, they primarily prevent the insertion of invalid data into a record, which is not a big problem in data warehousing environments because accuracy has already been guaranteed. In data warehousing environments, constraints are only used for query rewrite. NOT NULL constraints are particularly common in data warehouses. Under some specific circumstances, constraints need space in the database. These constraints are in the form of the underlying unique index.

	
See Also:

Chapter 7, "Integrity Constraints"

Indexes and Partitioned Indexes

Indexes are optional structures associated with tables or clusters. In addition to the classical B-tree indexes, bitmap indexes are very common in data warehousing environments. Bitmap indexes are optimized index structures for set-oriented operations. Additionally, they are necessary for some optimized data access methods such as star transformations.

Indexes are just like tables in that you can partition them, although the partitioning strategy is not dependent upon the table structure. Partitioning indexes makes it easier to manage the data warehouse during refresh and improves query performance.

	
See Also:

Chapter 6, "Indexes" and Chapter 15, "Maintaining the Data Warehouse"

Materialized Views

Materialized views are query results that have been stored in advance so long-running calculations are not necessary when you actually execute your SQL statements. From a physical design point of view, materialized views resemble tables or partitioned tables and behave like indexes in that they are used transparently and improve performance.

	
See Also:

Chapter 8, "Basic Materialized Views"

Dimensions

A dimension is a schema object that defines hierarchical relationships between columns or column sets. A hierarchical relationship is a functional dependency from one level of a hierarchy to the next one. A dimension is a container of logical relationships and does not require any space in the database. A typical dimension is city, state (or province), region, and country.

	
See Also:

Chapter 10, "Dimensions"

4 Hardware and I/O Considerations in Data Warehouses

This chapter explains some of the hardware and I/O issues in a data warehousing environment and includes the following topics:

	
Overview of Hardware and I/O Considerations in Data Warehouses

	
Storage Management

Overview of Hardware and I/O Considerations in Data Warehouses

I/O performance should always be a key consideration for data warehouse designers and administrators. The typical workload in a data warehouse is especially I/O intensive, with operations such as large data loads and index builds, creation of materialized views, and queries over large volumes of data. The underlying I/O system for a data warehouse should be designed to meet these heavy requirements.

In fact, one of the leading causes of performance issues in a data warehouse is poor I/O configuration. Database administrators who have previously managed other systems will likely need to pay more careful attention to the I/O configuration for a data warehouse than they may have previously done for other environments.

This chapter provides the following five high-level guidelines for data-warehouse I/O configurations:

	
Configure I/O for Bandwidth not Capacity

	
Stripe Far and Wide

	
Use Redundancy

	
Test the I/O System Before Building the Database

	
Plan for Growth

The I/O configuration used by a data warehouse will depend on the characteristics of the specific storage and server capabilities, so the material in this chapter is only intended to provide guidelines for designing and tuning an I/O system.

	
See Also:

Oracle Database Performance Tuning Guide for additional information on I/O configurations and tuning

Configure I/O for Bandwidth not Capacity

Storage configurations for a data warehouse should be chosen based on the I/O bandwidth that they can provide, and not necessarily on their overall storage capacity. Buying storage based solely on capacity has the potential for making a mistake, especially for systems less than 500GB is total size. The capacity of individual disk drives is growing faster than the I/O throughput rates provided by those disks, leading to a situation in which a small number of disks can store a large volume of data, but cannot provide the same I/O throughput as a larger number of small disks.

As an example, consider a 200GB data mart. Using 72GB drives, this data mart could be built with as few as six drives in a fully-mirrored environment. However, six drives might not provide enough I/O bandwidth to handle a medium number of concurrent users on a 4-CPU server. Thus, even though six drives provide sufficient storage, a larger number of drives may be required to provide acceptable performance for this system.

While it may not be practical to estimate the I/O bandwidth that will be required by a data warehouse before a system is built, it is generally practical with the guidance of the hardware manufacturer to estimate how much I/O bandwidth a given server can potentially utilize, and ensure that the selected I/O configuration will be able to successfully feed the server. There are many variables in sizing the I/O systems, but one basic rule of thumb is that your data warehouse system should have multiple disks for each CPU (at least two disks for each CPU at a bare minimum) in order to achieve optimal performance.

Stripe Far and Wide

The guiding principle in configuring an I/O system for a data warehouse is to maximize I/O bandwidth by having multiple disks and channels access each database object. You can do this by striping the datafiles of the Oracle Database. A striped file is a file distributed across multiple disks. This striping can be managed by software (such as a logical volume manager), or within the storage hardware. The goal is to ensure that each tablespace is striped across a large number of disks (ideally, all of the disks) so that any database object can be accessed with the highest possible I/O bandwidth.

Use Redundancy

Because data warehouses are often the largest database systems in a company, they have the most disks and thus are also the most susceptible to the failure of a single disk. Therefore, disk redundancy is a requirement for data warehouses to protect against a hardware failure. Like disk-striping, redundancy can be achieved in many ways using software or hardware.

A key consideration is that occasionally a balance must be made between redundancy and performance. For example, a storage system in a RAID-5 configuration may be less expensive than a RAID-0+1 configuration, but it may not perform as well, either. Redundancy is necessary for any data warehouse, but the approach to redundancy may vary depending upon the performance and cost constraints of each data warehouse.

Test the I/O System Before Building the Database

The most important time to examine and tune the I/O system is before the database is even created. Once the database files are created, it is more difficult to reconfigure the files. Some logical volume managers may support dynamic reconfiguration of files, while other storage configurations may require that files be entirely rebuilt in order to reconfigure their I/O layout. In both cases, considerable system resources must be devoted to this reconfiguration.

When creating a data warehouse on a new system, the I/O bandwidth should be tested before creating all of the database datafiles to validate that the expected I/O levels are being achieved. On most operating systems, this can be done with simple scripts to measure the performance of reading and writing large test files.

Plan for Growth

A data warehouse designer should plan for future growth of a data warehouse. There are many approaches to handling the growth in a system, and the key consideration is to be able to grow the I/O system without compromising on the I/O bandwidth. You cannot, for example, add four disks to an existing system of 20 disks, and grow the database by adding a new tablespace striped across only the four new disks. A better solution would be to add new tablespaces striped across all 24 disks, and over time also convert the existing tablespaces striped across 20 disks to be striped across all 24 disks.

Storage Management

Two features to consider for managing disks are Oracle Managed Files and Automatic Storage Management. Without these features, a database administrator must manage the database files, which, in a data warehouse, can be hundreds or even thousands of files. Oracle Managed Files simplifies the administration of a database by providing functionality to automatically create and manage files, so the database administrator no longer needs to manage each database file. Automatic Storage Management provides additional functionality for managing not only files but also the disks. With Automatic Storage Management, the database administrator would administer a small number of disk groups. Automatic Storage Management handles the tasks of striping and providing disk redundancy, including rebalancing the database files when new disks are added to the system.

	
See Also:

Oracle Database Storage Administrator's Guide for more details

5 Partitioning in Data Warehouses

Data warehouses often contain very large tables and require techniques both for managing these large tables and for providing good query performance across them. An important tool for achieving this, as well as enhancing data access and improving overall application performance is partitioning.

Partitioning offers support for very large tables and indexes by letting you decompose them into smaller and more manageable pieces called partitions. This support is especially important for applications that access tables and indexes with millions of rows and many gigabytes of data. Partitioned tables and indexes facilitate administrative operations by enabling these operations to work on subsets of data. For example, you can add a new partition, organize an existing partition, or drop a partition with minimal to zero interruption to a read-only application.

Partitioning can help you tune SQL statements to avoid unnecessary index and table scans (using partition pruning). It also enables you to improve the performance of massive join operations when large amounts of data (for example, several million rows) are joined together by using partition-wise joins. Finally, partitioning data greatly improves manageability of very large databases and dramatically reduces the time required for administrative tasks such as backup and restore.

Granularity in a partitioning scheme can be easily changed by splitting or merging partitions. Thus, if a table's data is skewed to fill some partitions more than others, the ones that contain more data can be split to achieve a more even distribution. Partitioning also enables you to swap partitions with a table. By being able to easily add, remove, or swap a large amount of data quickly, swapping can be used to keep a large amount of data that is being loaded inaccessible until loading is completed, or can be used as a way to stage data between different phases of use. Some examples are current day's transactions or online archives.

A good starting point for considering partitioning strategies is to use the partitioning advice within the SQL Access Advisor, part of the Tuning Pack. The SQL Access Advisor offers both graphical and command-line interfaces.

	
See Also:

	
Oracle Database Concepts for an introduction to the ideas behind partitioning

	
Oracle Database VLDB and Partitioning Guide for a detailed examination of how and when to use partitioning

	
Oracle Database 2 Day + Performance Tuning Guide for details regarding the SQL Access Advisor

	
Oracle Database Performance Tuning Guide for details regarding the SQL Access Advisor in command-line mode

6 Indexes

This chapter contains the following topics:

	
Using Bitmap Indexes in Data Warehouses

	
Using B-Tree Indexes in Data Warehouses

	
Using Index Compression

	
Choosing Between Local Indexes and Global Indexes

	
See Also:

Oracle Database Concepts for general information regarding indexing

Using Bitmap Indexes in Data Warehouses

Bitmap indexes are widely used in data warehousing environments. The environments typically have large amounts of data and ad hoc queries, but a low level of concurrent DML transactions. For such applications, bitmap indexing provides:

	
Reduced response time for large classes of ad hoc queries.

	
Reduced storage requirements compared to other indexing techniques.

	
Dramatic performance gains even on hardware with a relatively small number of CPUs or a small amount of memory.

	
Efficient maintenance during parallel DML and loads.

Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of disk space because the indexes can be several times larger than the data in the table. Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

An index provides pointers to the rows in a table that contain a given key value. A regular index stores a list of rowids for each key corresponding to the rows with that key value. In a bitmap index, a bitmap for each key value replaces a list of rowids.

Each bit in the bitmap corresponds to a possible rowid, and if the bit is set, it means that the row with the corresponding rowid contains the key value. A mapping function converts the bit position to an actual rowid, so that the bitmap index provides the same functionality as a regular index. Bitmap indexes store the bitmaps in a compressed way. If the number of distinct key values is small, bitmap indexes compress better and the space saving benefit compared to a B-tree index becomes even better.

Bitmap indexes are most effective for queries that contain multiple conditions in the WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is accessed. This improves response time, often dramatically. If you are unsure of which indexes to create, the SQL Access Advisor can generate recommendations on what to create. As the bitmaps from bitmap indexes can be combined quickly, it is usually best to use single-column bitmap indexes.

When creating bitmap indexes, you should use NOLOGGING and COMPUTE STATISTICS. In addition, you should keep in mind that bitmap indexes are usually easier to destroy and re-create than to maintain.

Benefits for Data Warehousing Applications

Bitmap indexes are primarily intended for data warehousing applications where users query the data rather than update it. They are not suitable for OLTP applications with large numbers of concurrent transactions modifying the data.

Parallel query and parallel DML work with bitmap indexes. Bitmap indexing also supports parallel create indexes and concatenated indexes.

	
See Also:

Chapter 19, "Schema Modeling Techniques" for further information about using bitmap indexes in data warehousing environments

Cardinality

The advantages of using bitmap indexes are greatest for columns in which the ratio of the number of distinct values to the number of rows in the table is small. We refer to this ratio as the degree of cardinality. A gender column, which has only two distinct values (male and female), is optimal for a bitmap index. However, data warehouse administrators also build bitmap indexes on columns with higher cardinalities.

For example, on a table with one million rows, a column with 10,000 distinct values is a candidate for a bitmap index. A bitmap index on this column can outperform a B-tree index, particularly when this column is often queried in conjunction with other indexed columns. In fact, in a typical data warehouse environments, a bitmap index can be considered for any non-unique column.

B-tree indexes are most effective for high-cardinality data: that is, for data with many possible values, such as customer_name or phone_number. In a data warehouse, B-tree indexes should be used only for unique columns or other columns with very high cardinalities (that is, columns that are almost unique). The majority of indexes in a data warehouse should be bitmap indexes.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve query performance. AND and OR conditions in the WHERE clause of a query can be resolved quickly by performing the corresponding Boolean operations directly on the bitmaps before converting the resulting bitmap to rowids. If the resulting number of rows is small, the query can be answered quickly without resorting to a full table scan.

Example 6-1 Bitmap Index

The following shows a portion of a company's customers table.

SELECT cust_id, cust_gender, cust_marital_status, cust_income_level
FROM customers;

CUST_ID C CUST_MARITAL_STATUS CUST_INCOME_LEVEL
---------- - -------------------- ---------------------
...
 70 F D: 70,000 - 89,999
 80 F married H: 150,000 - 169,999
 90 M single H: 150,000 - 169,999
 100 F I: 170,000 - 189,999
 110 F married C: 50,000 - 69,999
 120 M single F: 110,000 - 129,999
 130 M J: 190,000 - 249,999
 140 M married G: 130,000 - 149,999
...

Because cust_gender, cust_marital_status, and cust_income_level are all low-cardinality columns (there are only three possible values for marital status, two possible values for gender, and 12 for income level), bitmap indexes are ideal for these columns. Do not create a bitmap index on cust_id because this is a unique column. Instead, a unique B-tree index on this column provides the most efficient representation and retrieval.

Table 6-1 illustrates the bitmap index for the cust_gender column in this example. It consists of two separate bitmaps, one for gender.

Table 6-1 Sample Bitmap Index

	
	gender='M'	gender='F'
	
cust_id 70

	
0

	
1

	
cust_id 80

	
0

	
1

	
cust_id 90

	
1

	
0

	
cust_id 100

	
0

	
1

	
cust_id 110

	
0

	
1

	
cust_id 120

	
1

	
0

	
cust_id 130

	
1

	
0

	
cust_id 140

	
1

	
0

Each entry (or bit) in the bitmap corresponds to a single row of the customers table. The value of each bit depends upon the values of the corresponding row in the table. For example, the bitmap cust_gender='F' contains a one as its first bit because the gender is F in the first row of the customers table. The bitmap cust_gender='F' has a zero for its third bit because the gender of the third row is not F.

An analyst investigating demographic trends of the company's customers might ask, "How many of our married customers have an income level of G or H?" This corresponds to the following query:

SELECT COUNT(*) FROM customers
WHERE cust_marital_status = 'married'
AND cust_income_level IN ('H: 150,000 - 169,999', 'G: 130,000 - 149,999');

Bitmap indexes can efficiently process this query by merely counting the number of ones in the bitmap illustrated in Figure 6-1. The result set will be found by using bitmap OR merge operations without the necessity of a conversion to rowids. To identify additional specific customer attributes that satisfy the criteria, use the resulting bitmap to access the table after a bitmap to rowid conversion.

Figure 6-1 Executing a Query Using Bitmap Indexes

[image: Description of Figure 6-1 follows]

How to Determine Candidates for Using a Bitmap Index

Bitmap indexes should help when either the fact table is queried alone, and there are predicates on the indexed column, or when the fact table is joined with two or more dimension tables, and there are indexes on foreign key columns in the fact table, and predicates on dimension table columns.

A fact table column is a candidate for a bitmap index when the following conditions are met:

	
There are 100 or more rows for each distinct value in the indexed column. When this limit is met, the bitmap index will be much smaller than a regular index, and you will be able to create the index much faster than a regular index. An example would be one million distinct values in a multi-billion row table.

And either of the following are true:

	
The indexed column will be restricted in queries (referenced in the WHERE clause).

or

	
The indexed column is a foreign key for a dimension table. In this case, such an index will make star transformation more likely.

Bitmap Indexes and Nulls

Unlike most other types of indexes, bitmap indexes include rows that have NULL values. Indexing of nulls can be useful for some types of SQL statements, such as queries with the aggregate function COUNT.

Example 6-2 Bitmap Index

SELECT COUNT(*) FROM customers WHERE cust_marital_status IS NULL;

This query uses a bitmap index on cust_marital_status. Note that this query would not be able to use a B-tree index, because B-tree indexes do not store the NULL values.

SELECT COUNT(*) FROM customers;

Any bitmap index can be used for this query because all table rows are indexed, including those that have NULL data. If nulls were not indexed, the optimizer would be able to use indexes only on columns with NOT NULL constraints.

Bitmap Indexes on Partitioned Tables

You can create bitmap indexes on partitioned tables but they must be local to the partitioned table—they cannot be global indexes. A partitioned table can only have global B-tree indexes, partitioned or non-partitioned. See Oracle Database VLDB and Partitioning Guide for further information.

Using Bitmap Join Indexes in Data Warehouses

In addition to a bitmap index on a single table, you can create a bitmap join index, which is a bitmap index for the join of two or more tables. In a bitmap join index, the bitmap for the table to be indexed is built for values coming from the joined tables. In a data warehousing environment, the join condition is an equi-inner join between the primary key column or columns of the dimension tables and the foreign key column or columns in the fact table.

A bitmap join index can improve the performance by an order of magnitude. By storing the result of a join, the join can be avoided completely for SQL statements using a bitmap join index. Furthermore, since it is most likely to have a much smaller number of distinct values for a bitmap join index compared to a regular bitmap index on the join column, the bitmaps compress better, yielding to less space consumption than a regular bitmap index on the join column.

Bitmap join indexes are much more efficient in storage than materialized join views, an alternative for materializing joins in advance. This is because the materialized join views do not compress the rowids of the fact tables.

Four Join Models for Bitmap Join Indexes

The most common usage of a bitmap join index is in star model environments, where a large table is indexed on columns joined by one or several smaller tables. We will refer to the large table as the fact table and to the smaller tables as dimension tables. The following section describes the four different join models supported by bitmap join indexes. See Chapter 19, "Schema Modeling Techniques" for schema modeling techniques.

Example 6-3 Bitmap Join Index: One Dimension Table Columns Joins One Fact Table

Unlike the example in "Bitmap Index", where a bitmap index on the cust_gender column on the customers table was built, we now create a bitmap join index on the fact table sales for the joined column customers(cust_gender). Table sales stores cust_id values only:

SELECT time_id, cust_id, amount_sold FROM sales;

TIME_ID CUST_ID AMOUNT_SOLD
--------- ---------- -----------
01-JAN-98 29700 2291
01-JAN-98 3380 114
01-JAN-98 67830 553
01-JAN-98 179330 0
01-JAN-98 127520 195
01-JAN-98 33030 280
...

To create such a bitmap join index, column customers(cust_gender) has to be joined with table sales. The join condition is specified as part of the CREATE statement for the bitmap join index as follows:

CREATE BITMAP INDEX sales_cust_gender_bjix
ON sales(customers.cust_gender)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

The following query shows illustrates the join result that is used to create the bitmaps that are stored in the bitmap join index:

SELECT sales.time_id, customers.cust_gender, sales.amount_sold
FROM sales, customers
WHERE sales.cust_id = customers.cust_id;

TIME_ID C AMOUNT_SOLD
--------- - -----------
01-JAN-98 M 2291
01-JAN-98 F 114
01-JAN-98 M 553
01-JAN-98 M 0
01-JAN-98 M 195
01-JAN-98 M 280
01-JAN-98 M 32
...

Table 6-2 illustrates the bitmap representation for the bitmap join index in this example.

Table 6-2 Sample Bitmap Join Index

	
	cust_gender='M'	cust_gender='F'
	
sales record 1

	
1

	
0

	
sales record 2

	
0

	
1

	
sales record 3

	
1

	
0

	
sales record 4

	
1

	
0

	
sales record 5

	
1

	
0

	
sales record 6

	
1

	
0

	
sales record 7

	
1

	
0

You can create other bitmap join indexes using more than one column or more than one table, as shown in these examples.

Example 6-4 Bitmap Join Index: Multiple Dimension Columns Join One Fact Table

You can create a bitmap join index on more than one column from a single dimension table, as in the following example, which uses customers(cust_gender, cust_marital_status) from the sh schema:

CREATE BITMAP INDEX sales_cust_gender_ms_bjix
ON sales(customers.cust_gender, customers.cust_marital_status)
FROM sales, customers
WHERE sales.cust_id = customers.cust_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Example 6-5 Bitmap Join Index: Multiple Dimension Tables Join One Fact Table

You can create a bitmap join index on multiple dimension tables, as in the following, which uses customers(gender) and products(category):

CREATE BITMAP INDEX sales_c_gender_p_cat_bjix
ON sales(customers.cust_gender, products.prod_category)
FROM sales, customers, products
WHERE sales.cust_id = customers.cust_id
AND sales.prod_id = products.prod_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Example 6-6 Bitmap Join Index: Snowflake Schema

You can create a bitmap join index on more than one table, in which the indexed column is joined to the indexed table by using another table. For example, you can build an index on countries.country_name, even though the countries table is not joined directly to the sales table. Instead, the countries table is joined to the customers table, which is joined to the sales table. This type of schema is commonly called a snowflake schema.

CREATE BITMAP INDEX sales_co_country_name_bjix
ON sales(countries.country_name)
FROM sales, customers, countries
WHERE sales.cust_id = customers.cust_id
 AND customers.country_id = countries.country_id
LOCAL NOLOGGING COMPUTE STATISTICS;

Bitmap Join Index Restrictions and Requirements

Join results must be stored, therefore, bitmap join indexes have the following restrictions:

	
Parallel DML is only supported on the fact table. Parallel DML on one of the participating dimension tables will mark the index as unusable.

	
Only one table can be updated concurrently by different transactions when using the bitmap join index.

	
No table can appear twice in the join.

	
You cannot create a bitmap join index on a temporary table.

	
The columns in the index must all be columns of the dimension tables.

	
The dimension table join columns must be either primary key columns or have unique constraints.

	
The dimension table column(s) participating the join with the fact table must be either the primary key column(s) or with the unique constraint.

	
If a dimension table has composite primary key, each column in the primary key must be part of the join.

	
The restrictions for creating a regular bitmap index also apply to a bitmap join index. For example, you cannot create a bitmap index with the UNIQUE attribute. See Oracle Database SQL Language Reference for other restrictions.

Using B-Tree Indexes in Data Warehouses

A B-tree index is organized like an upside-down tree. The bottom level of the index holds the actual data values and pointers to the corresponding rows, much as the index in a book has a page number associated with each index entry.

In general, use B-tree indexes when you know that your typical query refers to the indexed column and retrieves a few rows. In these queries, it is faster to find the rows by looking at the index. However, using the book index analogy, if you plan to look at every single topic in a book, you might not want to look in the index for the topic and then look up the page. It might be faster to read through every chapter in the book. Similarly, if you are retrieving most of the rows in a table, it might not make sense to look up the index to find the table rows. Instead, you might want to read or scan the table.

B-tree indexes are most commonly used in a data warehouse to enforce unique keys. In many cases, it may not even be necessary to index these columns in a data warehouse, because the uniqueness was enforced as part of the preceding ETL processing, and because typical data warehouse queries may not work better with such indexes. B-tree indexes are more common in environments using third normal form schemas. In general, bitmap indexes should be more common than B-tree indexes in most data warehouse environments.

Using Index Compression

Bitmap indexes are always stored in a patented, compressed manner without the need of any user intervention. B-tree indexes, however, can be stored specifically in a compressed manner to enable huge space savings, storing more keys in each index block, which also leads to less I/O and better performance.

Key compression lets you compress a B-tree index, which reduces the storage overhead of repeated values. In the case of a nonunique index, all index columns can be stored in a compressed format, whereas in the case of a unique index, at least one index column has to be stored uncompressed.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If the key is not defined to have a unique piece, Oracle provides one in the form of a rowid appended to the grouping piece. Key compression is a method of breaking off the grouping piece and storing it so it can be shared by multiple unique pieces. The cardinality of the chosen columns to be compressed determines the compression ratio that can be achieved. So, for example, if a unique index that consists of five columns provides the uniqueness mostly by the last two columns, it is most optimal to choose the three leading columns to be stored compressed. If you choose to compress four columns, the repetitiveness will be almost gone, and the compression ratio will be worse.

Although key compression reduces the storage requirements of an index, it can increase the CPU time required to reconstruct the key column values during an index scan. It also incurs some additional storage overhead, because every prefix entry has an overhead of four bytes associated with it.

Choosing Between Local Indexes and Global Indexes

B-tree indexes on partitioned tables can be global or local. With Oracle8i and earlier releases, Oracle recommended that global indexes not be used in data warehouse environments because a partition DDL statement (for example, ALTER TABLE ... DROP PARTITION) would invalidate the entire index, and rebuilding the index is expensive. In Oracle Database 10g, global indexes can be maintained without Oracle marking them as unusable after DDL. This enhancement makes global indexes more effective for data warehouse environments.

However, local indexes will be more common than global indexes. Global indexes should be used when there is a specific requirement which cannot be met by local indexes (for example, a unique index on a non-partitioning key, or a performance requirement).

Bitmap indexes on partitioned tables are always local.

7 Integrity Constraints

This chapter describes integrity constraints. It contains the following topics:

	
Why Integrity Constraints are Useful in a Data Warehouse

	
Overview of Constraint States

	
Typical Data Warehouse Integrity Constraints

Why Integrity Constraints are Useful in a Data Warehouse

Integrity constraints provide a mechanism for ensuring that data conforms to guidelines specified by the database administrator. The most common types of constraints include:

	
UNIQUE constraints

To ensure that a given column is unique

	
NOT NULL constraints

To ensure that no null values are allowed

	
FOREIGN KEY constraints

To ensure that two keys share a primary key to foreign key relationship

Constraints can be used for these purposes in a data warehouse:

	
Data cleanliness

Constraints verify that the data in the data warehouse conforms to a basic level of data consistency and correctness, preventing the introduction of dirty data.

	
Query optimization

The Oracle Database utilizes constraints when optimizing SQL queries. Although constraints can be useful in many aspects of query optimization, constraints are particularly important for query rewrite of materialized views.

Unlike data in many relational database environments, data in a data warehouse is typically added or modified under controlled circumstances during the extraction, transformation, and loading (ETL) process. Multiple users normally do not update the data warehouse directly, as they do in an OLTP system.

	
See Also:

Chapter 11, "Overview of Extraction, Transformation, and Loading"

Overview of Constraint States

To understand how best to use constraints in a data warehouse, you should first understand the basic purposes of constraints. Some of these purposes are:

	
Enforcement

In order to use a constraint for enforcement, the constraint must be in the ENABLE state. An enabled constraint ensures that all data modifications upon a given table (or tables) satisfy the conditions of the constraints. Data modification operations which produce data that violates the constraint fail with a constraint violation error.

	
Validation

To use a constraint for validation, the constraint must be in the VALIDATE state. If the constraint is validated, then all data that currently resides in the table satisfies the constraint.

Note that validation is independent of enforcement. Although the typical constraint in an operational system is both enabled and validated, any constraint could be validated but not enabled or vice versa (enabled but not validated). These latter two cases are useful for data warehouses.

	
Belief

In some cases, you will know that the conditions for a given constraint are true, so you do not need to validate or enforce the constraint. However, you may wish for the constraint to be present anyway to improve query optimization and performance. When you use a constraint in this way, it is called a belief or RELY constraint, and the constraint must be in the RELY state. The RELY state provides you with a mechanism for telling Oracle that a given constraint is believed to be true.

Note that the RELY state only affects constraints that have not been validated.

Typical Data Warehouse Integrity Constraints

This section assumes that you are familiar with the typical use of constraints. That is, constraints that are both enabled and validated. For data warehousing, many users have discovered that such constraints may be prohibitively costly to build and maintain. The topics discussed are:

	
UNIQUE Constraints in a Data Warehouse

	
FOREIGN KEY Constraints in a Data Warehouse

	
RELY Constraints

	
NOT NULL Constraints

	
Integrity Constraints and Parallelism

	
Integrity Constraints and Partitioning

	
View Constraints

UNIQUE Constraints in a Data Warehouse

A UNIQUE constraint is typically enforced using a UNIQUE index. However, in a data warehouse whose tables can be extremely large, creating a unique index can be costly both in processing time and in disk space.

Suppose that a data warehouse contains a table sales, which includes a column sales_id. sales_id uniquely identifies a single sales transaction, and the data warehouse administrator must ensure that this column is unique within the data warehouse.

One way to create the constraint is as follows:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id);

By default, this constraint is both enabled and validated. Oracle implicitly creates a unique index on sales_id to support this constraint. However, this index can be problematic in a data warehouse for three reasons:

	
The unique index can be very large, because the sales table can easily have millions or even billions of rows.

	
The unique index is rarely used for query execution. Most data warehousing queries do not have predicates on unique keys, so creating this index will probably not improve performance.

	
If sales is partitioned along a column other than sales_id, the unique index must be global. This can detrimentally affect all maintenance operations on the sales table.

A unique index is required for unique constraints to ensure that each individual row modified in the sales table satisfies the UNIQUE constraint.

For data warehousing tables, an alternative mechanism for unique constraints is illustrated in the following statement:

ALTER TABLE sales ADD CONSTRAINT sales_uk
UNIQUE (prod_id, cust_id, promo_id, channel_id, time_id) DISABLE VALIDATE;

This statement creates a unique constraint, but, because the constraint is disabled, a unique index is not required. This approach can be advantageous for many data warehousing environments because the constraint now ensures uniqueness without the cost of a unique index.

However, there are trade-offs for the data warehouse administrator to consider with DISABLE VALIDATE constraints. Because this constraint is disabled, no DML statements that modify the unique column are permitted against the sales table. You can use one of two strategies for modifying this table in the presence of a constraint:

	
Use DDL to add data to this table (such as exchanging partitions). See the example in Chapter 15, "Maintaining the Data Warehouse".

	
Before modifying this table, drop the constraint. Then, make all necessary data modifications. Finally, re-create the disabled constraint. Re-creating the constraint is more efficient than re-creating an enabled constraint. However, this approach does not guarantee that data added to the sales table while the constraint has been dropped is unique.

FOREIGN KEY Constraints in a Data Warehouse

In a star schema data warehouse, FOREIGN KEY constraints validate the relationship between the fact table and the dimension tables. A sample constraint might be:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE VALIDATE;

However, in some situations, you may choose to use a different state for the FOREIGN KEY constraints, in particular, the ENABLE NOVALIDATE state. A data warehouse administrator might use an ENABLE NOVALIDATE constraint when either:

	
The tables contain data that currently disobeys the constraint, but the data warehouse administrator wishes to create a constraint for future enforcement.

	
An enforced constraint is required immediately.

Suppose that the data warehouse loaded new data into the fact tables every day, but refreshed the dimension tables only on the weekend. During the week, the dimension tables and fact tables may in fact disobey the FOREIGN KEY constraints. Nevertheless, the data warehouse administrator might wish to maintain the enforcement of this constraint to prevent any changes that might affect the FOREIGN KEY constraint outside of the ETL process. Thus, you can create the FOREIGN KEY constraints every night, after performing the ETL process, as shown in the following:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
ENABLE NOVALIDATE;

ENABLE NOVALIDATE can quickly create an enforced constraint, even when the constraint is believed to be true. Suppose that the ETL process verifies that a FOREIGN KEY constraint is true. Rather than have the database re-verify this FOREIGN KEY constraint, which would require time and database resources, the data warehouse administrator could instead create a FOREIGN KEY constraint using ENABLE NOVALIDATE.

RELY Constraints

The ETL process commonly verifies that certain constraints are true. For example, it can validate all of the foreign keys in the data coming into the fact table. This means that you can trust it to provide clean data, instead of implementing constraints in the data warehouse. You create a RELY constraint as follows:

ALTER TABLE sales ADD CONSTRAINT sales_time_fk
FOREIGN KEY (time_id) REFERENCES times (time_id)
RELY DISABLE NOVALIDATE;

This statement assumes that the primary key is in the RELY state. RELY constraints, even though they are not used for data validation, can:

	
Enable more sophisticated query rewrites for materialized views. See Chapter 17, "Basic Query Rewrite" for further details.

	
Enable other data warehousing tools to retrieve information regarding constraints directly from the Oracle data dictionary.

Creating a RELY constraint is inexpensive and does not impose any overhead during DML or load. Because the constraint is not being validated, no data processing is necessary to create it.

NOT NULL Constraints

When using query rewrite, you should consider whether NOT NULL constraints are required. The primary situation where you will need to use them is for join back query rewrite. See Chapter 18, "Advanced Query Rewrite" for further information regarding NOT NULL constraints when using query rewrite.

Integrity Constraints and Parallelism

All constraints can be validated in parallel. When validating constraints on very large tables, parallelism is often necessary to meet performance goals. The degree of parallelism for a given constraint operation is determined by the default degree of parallelism of the underlying table.

Integrity Constraints and Partitioning

You can create and maintain constraints before you partition the data. Later chapters discuss the significance of partitioning for data warehousing. Partitioning can improve constraint management just as it does to management of many other operations. For example, Chapter 15, "Maintaining the Data Warehouse" provides a scenario creating UNIQUE and FOREIGN KEY constraints on a separate staging table, and these constraints are maintained during the EXCHANGE PARTITION statement.

View Constraints

You can create constraints on views. The only type of constraint supported on a view is a RELY constraint.

This type of constraint is useful when queries typically access views instead of base tables, and the database administrator thus needs to define the data relationships between views rather than tables.

	
See Also:

Chapter 8, "Basic Materialized Views" and Chapter 17, "Basic Query Rewrite"

8 Basic Materialized Views

This chapter describes the use of materialized views. It contains the following topics:

	
Overview of Data Warehousing with Materialized Views

	
Types of Materialized Views

	
Creating Materialized Views

	
Registering Existing Materialized Views

	
Choosing Indexes for Materialized Views

	
Dropping Materialized Views

	
Analyzing Materialized View Capabilities

Overview of Data Warehousing with Materialized Views

Typically, data flows from one or more online transaction processing (OLTP) database into a data warehouse on a monthly, weekly, or daily basis. The data is normally processed in a staging file before being added to the data warehouse. Data warehouses commonly range in size from tens of gigabytes to a few terabytes. Usually, the vast majority of the data is stored in a few very large fact tables.

One technique employed in data warehouses to improve performance is the creation of summaries. Summaries are special types of aggregate views that improve query execution times by precalculating expensive joins and aggregation operations prior to execution and storing the results in a table in the database. For example, you can create a summary table to contain the sums of sales by region and by product.

The summaries or aggregates that are referred to in this book and in literature on data warehousing are created in Oracle Database using a schema object called a materialized view. Materialized views can perform a number of roles, such as improving query performance or providing replicated data.

In the past, organizations using summaries spent a significant amount of time and effort creating summaries manually, identifying which summaries to create, indexing the summaries, updating them, and advising their users on which ones to use. The introduction of summary management eased the workload of the database administrator and meant the user no longer needed to be aware of the summaries that had been defined. The database administrator creates one or more materialized views, which are the equivalent of a summary. The end user queries the tables and views at the detail data level. The query rewrite mechanism in the Oracle server automatically rewrites the SQL query to use the summary tables. This mechanism reduces response time for returning results from the query. Materialized views within the data warehouse are transparent to the end user or to the database application.

Although materialized views are usually accessed through the query rewrite mechanism, an end user or database application can construct queries that directly access the materialized views. However, serious consideration should be given to whether users should be allowed to do this because any change to the materialized views will affect the queries that reference them.

Materialized Views for Data Warehouses

In data warehouses, you can use materialized views to precompute and store aggregated data such as the sum of sales. Materialized views in these environments are often referred to as summaries, because they store summarized data. They can also be used to precompute joins with or without aggregations. A materialized view eliminates the overhead associated with expensive joins and aggregations for a large or important class of queries.

Materialized Views for Distributed Computing

In distributed environments, you can use materialized views to replicate data at distributed sites and to synchronize updates done at those sites with conflict resolution methods. These replica materialized views provide local access to data that otherwise would have to be accessed from remote sites. Materialized views are also useful in remote data marts. See Oracle Database Advanced Replication and Oracle Database Heterogeneous Connectivity Administrator's Guide for details on distributed and mobile computing.

Materialized Views for Mobile Computing

You can also use materialized views to download a subset of data from central servers to mobile clients, with periodic refreshes and updates between clients and the central servers.

This chapter focuses on the use of materialized views in data warehouses. See Oracle Database Advanced Replication and Oracle Database Heterogeneous Connectivity Administrator's Guide for details on distributed and mobile computing.

The Need for Materialized Views

You can use materialized views to increase the speed of queries on very large databases. Queries to large databases often involve joins between tables, aggregations such as SUM, or both. These operations are expensive in terms of time and processing power. The type of materialized view you create determines how the materialized view is refreshed and used by query rewrite.

Materialized views improve query performance by precalculating expensive join and aggregation operations on the database prior to execution and storing the results in the database. The query optimizer automatically recognizes when an existing materialized view can and should be used to satisfy a request. It then transparently rewrites the request to use the materialized view. Queries go directly to the materialized view and not to the underlying detail tables. In general, rewriting queries to use materialized views rather than detail tables improves response time. Figure 8-1 illustrates how query rewrite works.

Figure 8-1 Transparent Query Rewrite

[image: Description of Figure 8-1 follows]

When using query rewrite, create materialized views that satisfy the largest number of queries. For example, if you identify 20 queries that are commonly applied to the detail or fact tables, then you might be able to satisfy them with five or six well-written materialized views. A materialized view definition can include any number of aggregations (SUM, COUNT(x), COUNT(*), COUNT(DISTINCT x), AVG, VARIANCE, STDDEV, MIN, and MAX). It can also include any number of joins. If you are unsure of which materialized views to create, Oracle provides the SQL Access Advisor, which is a set of advisory procedures in the DBMS_ADVISOR package to help in designing and evaluating materialized views for query rewrite.

If a materialized view is to be used by query rewrite, it must be stored in the same database as the detail tables on which it relies. A materialized view can be partitioned, and you can define a materialized view on a partitioned table. You can also define one or more indexes on the materialized view.

Unlike indexes, materialized views can be accessed directly using a SELECT statement. However, it is recommended that you try to avoid writing SQL statements that directly reference the materialized view, because then it is difficult to change them without affecting the application. Instead, let query rewrite transparently rewrite your query to use the materialized view.

Note that the techniques shown in this chapter illustrate how to use materialized views in data warehouses. Materialized views can also be used by Oracle Replication. See Oracle Database Advanced Replication for further information.

Components of Summary Management

Summary management consists of:

	
Mechanisms to define materialized views and dimensions.

	
A refresh mechanism to ensure that all materialized views contain the latest data.

	
A query rewrite capability to transparently rewrite a query to use a materialized view.

	
The SQL Access Advisor, which recommends materialized views, partitions, and indexes to create.

	
TUNE_MVIEW, which shows you how to make your materialized view fast refreshable and use general query rewrite.

The use of summary management features imposes no schema restrictions, and can enable some existing DSS database applications to improve performance without the need to redesign the database or the application.

Figure 8-2 illustrates the use of summary management in the warehousing cycle. After the data has been transformed, staged, and loaded into the detail data in the warehouse, you can invoke the summary management process. First, use the SQL Access Advisor to plan how you will use materialized views. Then, create materialized views and design how queries will be rewritten. If you are having problems trying to get your materialized views to work then use TUNE_MVIEW to obtain an optimized materialized view.

Figure 8-2 Overview of Summary Management

[image: Description of Figure 8-2 follows]

Understanding the summary management process during the earliest stages of data warehouse design can yield large dividends later in the form of higher performance, lower summary administration costs, and reduced storage requirements.

Data Warehousing Terminology

Some basic data warehousing terms are defined as follows:

	
Dimension tables describe the business entities of an enterprise, represented as hierarchical, categorical information such as time, departments, locations, and products. Dimension tables are sometimes called lookup or reference tables.

Dimension tables usually change slowly over time and are not modified on a periodic schedule. They are used in long-running decision support queries to aggregate the data returned from the query into appropriate levels of the dimension hierarchy.

	
Hierarchies describe the business relationships and common access patterns in the database. An analysis of the dimensions, combined with an understanding of the typical work load, can be used to create materialized views. See Chapter 10, "Dimensions" for more information.

	
Fact tables describe the business transactions of an enterprise.

The vast majority of data in a data warehouse is stored in a few very large fact tables that are updated periodically with data from one or more operational OLTP databases.

Fact tables include facts (also called measures) such as sales, units, and inventory.

	
A simple measure is a numeric or character column of one table such as fact.sales.

	
A computed measure is an expression involving measures of one table, for example, fact.revenues - fact.expenses.

	
A multitable measure is a computed measure defined on multiple tables, for example, fact_a.revenues - fact_b.expenses.

Fact tables also contain one or more foreign keys that organize the business transactions by the relevant business entities such as time, product, and market. In most cases, these foreign keys are non-null, form a unique compound key of the fact table, and each foreign key joins with exactly one row of a dimension table.

	
A materialized view is a precomputed table comprising aggregated and joined data from fact and possibly from dimension tables. Among builders of data warehouses, a materialized view is also known as a summary.

Materialized View Schema Design

Summary management can perform many useful functions, including query rewrite and materialized view refresh, even if your data warehouse design does not follow these guidelines. However, you will realize significantly greater query execution performance and materialized view refresh performance benefits and you will require fewer materialized views if your schema design complies with these guidelines.

A materialized view definition includes any number of aggregates, as well as any number of joins. In several ways, a materialized view behaves like an index:

	
The purpose of a materialized view is to increase query execution performance.

	
The existence of a materialized view is transparent to SQL applications, so that a database administrator can create or drop materialized views at any time without affecting the validity of SQL applications.

	
A materialized view consumes storage space.

	
The contents of the materialized view must be updated when the underlying detail tables are modified.

Schemas and Dimension Tables

In the case of normalized or partially normalized dimension tables (a dimension that is stored in more than one table), identify how these tables are joined. Note whether the joins between the dimension tables can guarantee that each child-side row joins with one and only one parent-side row. In the case of denormalized dimensions, determine whether the child-side columns uniquely determine the parent-side (or attribute) columns. These relationships can be enabled with constraints, using the NOVALIDATE and RELY options if the relationships represented by the constraints are guaranteed by other means. Note that if the joins between fact and dimension tables do not support the parent-child relationship described previously, you still gain significant performance advantages from defining the dimension with the CREATE DIMENSION statement. Another alternative, subject to some restrictions, is to use outer joins in the materialized view definition (that is, in the CREATE MATERIALIZED VIEW statement).

You must not create dimensions in any schema that does not satisfy these relationships. Incorrect results can be returned from queries otherwise.

Materialized View Schema Design Guidelines

Before starting to define and use the various components of summary management, you should review your schema design to abide by the following guidelines wherever possible.

Guidelines 1 and 2 are more important than guideline 3. If your schema design does not follow guidelines 1 and 2, it does not then matter whether it follows guideline 3. Guidelines 1, 2, and 3 affect both query rewrite performance and materialized view refresh performance.

Table 8-1 Schema Design Guidelines

	Schema Guideline	Description
	
Guideline 1

Dimensions

	
Dimensions should either be denormalized (each dimension contained in one table) or the joins between tables in a normalized or partially normalized dimension should guarantee that each child-side row joins with exactly one parent-side row. The benefits of maintaining this condition are described in "Creating Dimensions".

You can enforce this condition by adding FOREIGN KEY and NOT NULL constraints on the child-side join keys and PRIMARY KEY constraints on the parent-side join keys.

	
Guideline 2

Dimensions

	
If dimensions are denormalized or partially denormalized, hierarchical integrity must be maintained between the key columns of the dimension table. Each child key value must uniquely identify its parent key value, even if the dimension table is denormalized. Hierarchical integrity in a denormalized dimension can be verified by calling the VALIDATE_DIMENSION procedure of the DBMS_DIMENSION package.

	
Guideline 3

Dimensions

	
Fact and dimension tables should similarly guarantee that each fact table row joins with exactly one dimension table row. This condition must be declared, and optionally enforced, by adding FOREIGN KEY and NOT NULL constraints on the fact key column(s) and PRIMARY KEY constraints on the dimension key column(s), or by using outer joins. In a data warehouse, constraints are typically enabled with the NOVALIDATE and RELY clauses to avoid constraint enforcement performance overhead. See Oracle Database SQL Language Reference for further details.

	
Guideline 4

Incremental Loads

	
Incremental loads of your detail data should be done using the SQL*Loader direct-path option, or any bulk loader utility that uses Oracle's direct-path interface. This includes INSERT ... AS SELECT with the APPEND or PARALLEL hints, where the hints cause the direct loader log to be used during the insert. See Oracle Database SQL Language Reference and "Types of Materialized Views" for more information.

	
Guideline 5

Partitions

	
Range/composite partition your tables by a monotonically increasing time column if possible (preferably of type DATE).

	
Guideline 6

Dimensions

	
After each load and before refreshing your materialized view, use the VALIDATE_DIMENSION procedure of the DBMS_DIMENSION package to incrementally verify dimensional integrity.

	
Guideline 7

Time Dimensions

	
If a time dimension appears in the materialized view as a time column, partition and index the materialized view in the same manner as you have the fact tables.

If you are concerned with the time required to enable constraints and whether any constraints might be violated, then use the ENABLE NOVALIDATE with the RELY clause to turn on constraint checking without validating any of the existing constraints. The risk with this approach is that incorrect query results could occur if any constraints are broken. Therefore, as the designer, you must determine how clean the data is and whether the risk of incorrect results is too great.

Loading Data into Data Warehouses

A popular and efficient way to load data into a data warehouse or data mart is to use SQL*Loader with the DIRECT or PARALLEL option, Data Pump, or to use another loader tool that uses the Oracle direct-path API. See Oracle Database Utilities for the restrictions and considerations when using SQL*Loader with the DIRECT or PARALLEL keywords.

Loading strategies can be classified as one-phase or two-phase. In one-phase loading, data is loaded directly into the target table, quality assurance tests are performed, and errors are resolved by performing DML operations prior to refreshing materialized views. If a large number of deletions are possible, then storage utilization can be adversely affected, but temporary space requirements and load time are minimized.

In a two-phase loading process:

	
Data is first loaded into a temporary table in the warehouse.

	
Quality assurance procedures are applied to the data.

	
Referential integrity constraints on the target table are disabled, and the local index in the target partition is marked unusable.

	
The data is copied from the temporary area into the appropriate partition of the target table using INSERT AS SELECT with the PARALLEL or APPEND hint. The temporary table is then dropped. Alternatively, if the target table is partitioned, you can create a new (empty) partition in the target table and use ALTER TABLE ... EXCHANGE PARTITION to incorporate the temporary table into the target table. See Oracle Database SQL Language Reference for more information.

	
The constraints are enabled, usually with the NOVALIDATE option.

Immediately after loading the detail data and updating the indexes on the detail data, the database can be opened for operation, if desired. You can disable query rewrite at the system level by issuing an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE statement until all the materialized views are refreshed.

If QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED, access to the materialized view can be allowed at the session level to any users who do not require the materialized views to reflect the data from the latest load by issuing an ALTER SESSION SET QUERY_REWRITE_ENABLED = TRUE statement. This scenario does not apply when QUERY_REWRITE_INTEGRITY is either ENFORCED or TRUSTED because the system ensures in these modes that only materialized views with updated data participate in a query rewrite.

Overview of Materialized View Management Tasks

The motivation for using materialized views is to improve performance, but the overhead associated with materialized view management can become a significant system management problem. When reviewing or evaluating some of the necessary materialized view management activities, consider some of the following:

	
Identifying what materialized views to create initially.

	
Indexing the materialized views.

	
Ensuring that all materialized views and materialized view indexes are refreshed properly each time the database is updated.

	
Checking which materialized views have been used.

	
Determining how effective each materialized view has been on workload performance.

	
Measuring the space being used by materialized views.

	
Determining which new materialized views should be created.

	
Determining which existing materialized views should be dropped.

	
Archiving old detail and materialized view data that is no longer useful.

After the initial effort of creating and populating the data warehouse or data mart, the major administration overhead is the update process, which involves:

	
Periodic extraction of incremental changes from the operational systems.

	
Transforming the data.

	
Verifying that the incremental changes are correct, consistent, and complete.

	
Bulk-loading the data into the warehouse.

	
Refreshing indexes and materialized views so that they are consistent with the detail data.

The update process must generally be performed within a limited period of time known as the update window. The update window depends on the update frequency (such as daily or weekly) and the nature of the business. For a daily update frequency, an update window of two to six hours might be typical.

You need to know your update window for the following activities:

	
Loading the detail data

	
Updating or rebuilding the indexes on the detail data

	
Performing quality assurance tests on the data

	
Refreshing the materialized views

	
Updating the indexes on the materialized views

Types of Materialized Views

The SELECT clause in the materialized view creation statement defines the data that the materialized view is to contain. Only a few restrictions limit what can be specified. Any number of tables can be joined together. Besides tables, other elements such as views, inline views (subqueries in the FROM clause of a SELECT statement), subqueries, and materialized views can all be joined or referenced in the SELECT clause. You cannot, however, define a materialized view with a subquery in the SELECT list of the defining query. You can, however, include subqueries elsewhere in the defining query, such as in the WHERE clause.

The types of materialized views are:

	
Materialized Views with Aggregates

	
Materialized Views Containing Only Joins

	
Nested Materialized Views

Materialized Views with Aggregates

In data warehouses, materialized views normally contain aggregates as shown in Example 8-1. For fast refresh to be possible, the SELECT list must contain all of the GROUP BY columns (if present), and there must be a COUNT(*) and a COUNT(column) on any aggregated columns. Also, materialized view logs must be present on all tables referenced in the query that defines the materialized view. The valid aggregate functions are: SUM, COUNT(x), COUNT(*), AVG, VARIANCE, STDDEV, MIN, and MAX, and the expression to be aggregated can be any SQL value expression. See "Restrictions on Fast Refresh on Materialized Views with Aggregates".

Fast refresh for a materialized view containing joins and aggregates is possible after any type of DML to the base tables (direct load or conventional INSERT, UPDATE, or DELETE). It can be defined to be refreshed ON COMMIT or ON DEMAND. A REFRESH ON COMMIT materialized view will be refreshed automatically when a transaction that does DML to one of the materialized view's detail tables commits. The time taken to complete the commit may be slightly longer than usual when this method is chosen. This is because the refresh operation is performed as part of the commit process. Therefore, this method may not be suitable if many users are concurrently changing the tables upon which the materialized view is based.

Here are some examples of materialized views with aggregates. Note that materialized view logs are only created because this materialized view will be fast refreshed.

Example 8-1 Example 1: Creating a Materialized View

CREATE MATERIALIZED VIEW LOG ON products WITH SEQUENCE, ROWID
(prod_id, prod_name, prod_desc, prod_subcategory, prod_subcategory_desc,
prod_category, prod_category_desc, prod_weight_class, prod_unit_of_measure,
 prod_pack_size, supplier_id, prod_status, prod_list_price, prod_min_price)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON sales
WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 8k NEXT 8k PCTINCREASE 0)
BUILD IMMEDIATE
REFRESH FAST
ENABLE QUERY REWRITE
AS SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales,
COUNT(*) AS cnt, COUNT(s.amount_sold) AS cnt_amt
FROM sales s, products p
WHERE s.prod_id = p.prod_id GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes total number and value of sales for a product. It is derived by joining the tables sales and products on the column prod_id. The materialized view is populated with data immediately because the build method is immediate and it is available for use by query rewrite. In this example, the default refresh method is FAST, which is allowed because the appropriate materialized view logs have been created on tables products and sales.

Example 8-2 Example 2: Creating a Materialized View

CREATE MATERIALIZED VIEW product_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
BUILD DEFERRED
REFRESH COMPLETE ON DEMAND
ENABLE QUERY REWRITE AS
SELECT p.prod_name, SUM(s.amount_sold) AS dollar_sales
FROM sales s, products p WHERE s.prod_id = p.prod_id
GROUP BY p.prod_name;

This example creates a materialized view product_sales_mv that computes the sum of sales by prod_name. It is derived by joining the tables sales and products on the column prod_id. The materialized view does not initially contain any data, because the build method is DEFERRED. A complete refresh is required for the first refresh of a build deferred materialized view. When it is refreshed and once populated, this materialized view can be used by query rewrite.

Example 8-3 Example 3: Creating a Materialized View

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW sum_sales
PARALLEL
BUILD IMMEDIATE
REFRESH FAST ON COMMIT AS
SELECT s.prod_id, s.time_id, COUNT(*) AS count_grp,
 SUM(s.amount_sold) AS sum_dollar_sales,
 COUNT(s.amount_sold) AS count_dollar_sales,
 SUM(s.quantity_sold) AS sum_quantity_sales,
 COUNT(s.quantity_sold) AS count_quantity_sales
FROM sales s
GROUP BY s.prod_id, s.time_id;

This example creates a materialized view that contains aggregates on a single table. Because the materialized view log has been created with all referenced columns in the materialized view's defining query, the materialized view is fast refreshable. If DML is applied against the sales table, then the changes will be reflected in the materialized view when the commit is issued.

Requirements for Using Materialized Views with Aggregates

Table 8-2 illustrates the aggregate requirements for materialized views. If aggregate X is present, aggregate Y is required and aggregate Z is optional.

Table 8-2 Requirements for Materialized Views with Aggregates

	X	Y	Z
	
COUNT(expr)

	
-

	
-

	
MIN(expr)

	
	

	
MAX(expr)

	
	

	
SUM(expr)

	
COUNT(expr)

	
-

	
SUM(col), col has NOT NULL constraint

	
-

	

	
AVG(expr)

	
COUNT(expr)

	
SUM(expr)

	
STDDEV(expr)

	
COUNT(expr) SUM(expr)

	
SUM(expr * expr)

	
VARIANCE(expr)

	
COUNT(expr) SUM(expr)

	
SUM(expr * expr)

Note that COUNT(*) must always be present to guarantee all types of fast refresh. Otherwise, you may be limited to fast refresh after inserts only. Oracle recommends that you include the optional aggregates in column Z in the materialized view in order to obtain the most efficient and accurate fast refresh of the aggregates.

Materialized Views Containing Only Joins

Some materialized views contain only joins and no aggregates, such as in Example 8-4, where a materialized view is created that joins the sales table to the times and customers tables. The advantage of creating this type of materialized view is that expensive joins will be precalculated.

Fast refresh for a materialized view containing only joins is possible after any type of DML to the base tables (direct-path or conventional INSERT, UPDATE, or DELETE).

A materialized view containing only joins can be defined to be refreshed ON COMMIT or ON DEMAND. If it is ON COMMIT, the refresh is performed at commit time of the transaction that does DML on the materialized view's detail table.

If you specify REFRESH FAST, Oracle performs further verification of the query definition to ensure that fast refresh can be performed if any of the detail tables change. These additional checks are:

	
A materialized view log must be present for each detail table unless the table supports PCT. Also, when a materialized view log is required, the ROWID column must be present in each materialized view log.

	
The rowids of all the detail tables must appear in the SELECT list of the materialized view query definition.

If some of these restrictions are not met, you can create the materialized view as REFRESH FORCE to take advantage of fast refresh when it is possible. If one of the tables did not meet all of the criteria, but the other tables did, the materialized view would still be fast refreshable with respect to the other tables for which all the criteria are met.

Materialized Join Views FROM Clause Considerations

If the materialized view contains only joins, the ROWID columns for each table (and each instance of a table that occurs multiple times in the FROM list) must be present in the SELECT list of the materialized view.

If the materialized view has remote tables in the FROM clause, all tables in the FROM clause must be located on that same site. Further, ON COMMIT refresh is not supported for materialized view with remote tables. Materialized view logs must be present on the remote site for each detail table of the materialized view and ROWID columns must be present in the SELECT list of the materialized view, as shown in the following example.

Example 8-4 Materialized View Containing Only Joins

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW detail_sales_mv
PARALLEL BUILD IMMEDIATE
REFRESH FAST AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "customers_rid",
 c.cust_id, c.cust_last_name, s.amount_sold, s.quantity_sold, s.time_id
FROM sales s, times t, customers c
WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Alternatively, if the previous example did not include the columns times_rid and customers_rid, and if the refresh method was REFRESH FORCE, then this materialized view would be fast refreshable only if the sales table was updated but not if the tables times or customers were updated.

CREATE MATERIALIZED VIEW detail_sales_mv
PARALLEL
BUILD IMMEDIATE
REFRESH FORCE AS
SELECT s.rowid "sales_rid", c.cust_id, c.cust_last_name, s.amount_sold,
 s.quantity_sold, s.time_id
FROM sales s, times t, customers c
WHERE s.cust_id = c.cust_id(+) AND s.time_id = t.time_id(+);

Nested Materialized Views

A nested materialized view is a materialized view whose definition is based on another materialized view. A nested materialized view can reference other relations in the database in addition to referencing materialized views.

Why Use Nested Materialized Views?

In a data warehouse, you typically create many aggregate views on a single join (for example, rollups along different dimensions). Incrementally maintaining these distinct materialized aggregate views can take a long time, because the underlying join has to be performed many times.

Using nested materialized views, you can create multiple single-table materialized views based on a joins-only materialized view and the join is performed just once. In addition, optimizations can be performed for this class of single-table aggregate materialized view and thus refresh is very efficient.

Example 8-5 Nested Materialized View

You can create a nested materialized view on materialized views, but all parent and base materialized views must contain joins or aggregates. If the defining queries for a materialized view do not contain joins or aggregates, it cannot be nested. All the underlying objects (materialized views or tables) on which the materialized view is defined must have a materialized view log. All the underlying objects are treated as if they were tables. In addition, you can use all the existing options for materialized views.

Using the tables and their columns from the sh sample schema, the following materialized views illustrate how nested materialized views can be created.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON times WITH ROWID;

/*create materialized view join_sales_cust_time as fast refreshable at
 COMMIT time */
CREATE MATERIALIZED VIEW join_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT c.cust_id, c.cust_last_name, s.amount_sold, t.time_id,
 t.day_number_in_week, s.rowid srid, t.rowid trid, c.rowid crid
FROM sales s, customers c, times t
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

To create a nested materialized view on the table join_sales_cust_time, you would have to create a materialized view log on the table. Because this will be a single-table aggregate materialized view on join_sales_cust_time, you need to log all the necessary columns and use the INCLUDING NEW VALUES clause.

/* create materialized view log on join_sales_cust_time */
CREATE MATERIALIZED VIEW LOG ON join_sales_cust_time
WITH ROWID (cust_last_name, day_number_in_week, amount_sold)
INCLUDING NEW VALUES;

/* create the single-table aggregate materialized view sum_sales_cust_time
on join_sales_cust_time as fast refreshable at COMMIT time */
CREATE MATERIALIZED VIEW sum_sales_cust_time
REFRESH FAST ON COMMIT AS
SELECT COUNT(*) cnt_all, SUM(amount_sold) sum_sales, COUNT(amount_sold)
 cnt_sales, cust_last_name, day_number_in_week
FROM join_sales_cust_time
GROUP BY cust_last_name, day_number_in_week;

Nesting Materialized Views with Joins and Aggregates

Some types of nested materialized views cannot be fast refreshed. Use EXPLAIN_MVIEW to identify those types of materialized views. You can refresh a tree of nested materialized views in the appropriate dependency order by specifying the nested = TRUE parameter with the DBMS_MVIEW.REFRESH parameter. For example, if you call DBMS_MVIEW.REFRESH ('SUM_SALES_CUST_TIME', nested => TRUE), the REFRESH procedure will first refresh the join_sales_cust_time materialized view, and then refresh the sum_sales_cust_time materialized view.

Nested Materialized View Usage Guidelines

You should keep the following in mind when deciding whether to use nested materialized views:

	
If you want to use fast refresh, you should fast refresh all the materialized views along any chain.

	
If you want the highest level materialized view to be fresh with respect to the detail tables, you need to ensure that all materialized views in a tree are refreshed in the correct dependency order before refreshing the highest-level. You can automatically refresh intermediate materialized views in a nested hierarchy using the nested = TRUE parameter, as described in "Nesting Materialized Views with Joins and Aggregates". If you do not specify nested = TRUE and the materialized views under the highest-level materialized view are stale, refreshing only the highest-level will succeed, but makes it fresh only with respect to its underlying materialized view, not the detail tables at the base of the tree.

	
When refreshing materialized views, you need to ensure that all materialized views in a tree are refreshed. If you only refresh the highest-level materialized view, the materialized views under it will be stale and you must explicitly refresh them. If you use the REFRESH procedure with the nested parameter value set to TRUE, only specified materialized views and their child materialized views in the tree are refreshed, and not their top-level materialized views. Use the REFRESH_DEPENDENT procedure with the nested parameter value set to TRUE if you want to ensure that all materialized views in a tree are refreshed.

	
Freshness of a materialized view is calculated relative to the objects directly referenced by the materialized view. When a materialized view references another materialized view, the freshness of the topmost materialized view is calculated relative to changes in the materialized view it directly references, not relative to changes in the tables referenced by the materialized view it references.

Restrictions When Using Nested Materialized Views

You cannot create both a materialized view and a prebuilt materialized view on the same table. For example, If you have a table costs with a materialized view cost_mv based on it, you cannot then create a prebuilt materialized view on table costs. The result would make cost_mv a nested materialized view and this method of conversion is not supported.

Creating Materialized Views

A materialized view can be created with the CREATE MATERIALIZED VIEW statement or using Enterprise Manager. Example 8-6 illustrates creating an materialized view called cust_sales_mv.

Example 8-6 Creating a Materialized View

CREATE MATERIALIZED VIEW cust_sales_mv
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0)
PARALLEL
BUILD IMMEDIATE
REFRESH COMPLETE
ENABLE QUERY REWRITE AS
SELECT c.cust_last_name, SUM(amount_sold) AS sum_amount_sold
FROM customers c, sales s WHERE s.cust_id = c.cust_id
GROUP BY c.cust_last_name;

It is not uncommon in a data warehouse to have already created summary or aggregation tables, and you might not wish to repeat this work by building a new materialized view. In this case, the table that already exists in the database can be registered as a prebuilt materialized view. This technique is described in "Registering Existing Materialized Views".

Once you have selected the materialized views you want to create, follow these steps for each materialized view.

	
Design the materialized view. Existing user-defined materialized views do not require this step. If the materialized view contains many rows, then, if appropriate, the materialized view should be partitioned (if possible) and should match the partitioning of the largest or most frequently updated detail or fact table (if possible). Refresh performance benefits from partitioning, because it can take advantage of parallel DML capabilities and possible PCT-based refresh.

	
Use the CREATE MATERIALIZED VIEW statement to create and, optionally, populate the materialized view. If a user-defined materialized view already exists, then use the ON PREBUILT TABLE clause in the CREATE MATERIALIZED VIEW statement. Otherwise, use the BUILD IMMEDIATE clause to populate the materialized view immediately, or the BUILD DEFERRED clause to populate the materialized view later. A BUILD DEFERRED materialized view is disabled for use by query rewrite until the first COMPLETE REFRESH, after which it will be automatically enabled, provided the ENABLE QUERY REWRITE clause has been specified.

	
See Also:

Oracle Database SQL Language Reference for descriptions of the SQL statements CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, and DROP MATERIALIZED VIEW

Creating Materialized Views with Column Alias Lists

Currently, when a materialized view is created, if its defining query contains same-name columns in the SELECT list, the name conflicts need to be resolved by specifying unique aliases for those columns. Otherwise, the CREATE MATERIALIZED VIEW statement will fail with the error messages of columns ambiguously defined. However, the standard method of attaching aliases in the SELECT clause for name resolution restricts the use of the full text match query rewrite and it will occur only when the text of the materialized view's defining query and the text of user input query are identical. Thus, if the user specifies select aliases in the materialized view's defining query while there is no alias in the query, the full text match comparison will fail. This is particularly a problem for queries from Discoverer, which makes extensive use of column aliases.

The following is an example of the problem. sales_mv is created with column aliases in the SELECT clause but the input query Q1 does not have the aliases. The full text match rewrite will fail. The materialized view is as follows:

CREATE MATERIALIZED VIEW sales_mv
ENABLE QUERY REWRITE AS
SELECT s.time_id sales_tid, c.time_id costs_tid
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Input query statement Q1 is as follows:

SELECT s.time_id, c.time_id
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

Even though the materialized view's defining query is almost identical and logically equivalent to the user's input query, query rewrite does not happen because of the failure of full text match that is the only rewrite possibility for some queries (for example, a subquery in the WHERE clause).

You can add a column alias list to a CREATE MATERIALIZED VIEW statement. The column alias list explicitly resolves any column name conflict without attaching aliases in the SELECT clause of the materialized view. The syntax of the materialized view column alias list is illustrated in the following example:

CREATE MATERIALIZED VIEW sales_mv (sales_tid, costs_tid)
ENABLE QUERY REWRITE AS
SELECT s.time_id, c.time_id
FROM sales s, products p, costs c
WHERE s.prod_id = p.prod_id AND c.prod_id = p.prod_id AND
 p.prod_name IN (SELECT prod_name FROM products);

In this example, the defining query of sales_mv now matches exactly with the user query Q1, so full text match rewrite will take place.

Note that when aliases are specified in both the SELECT clause and the new alias list clause, the alias list clause supersedes the ones in the SELECT clause.

Naming Materialized Views

The name of a materialized view must conform to standard Oracle naming conventions. However, if the materialized view is based on a user-defined prebuilt table, then the name of the materialized view must exactly match that table name.

If you already have a naming convention for tables and indexes, you might consider extending this naming scheme to the materialized views so that they are easily identifiable. For example, instead of naming the materialized view sum_of_sales, it could be called sum_of_sales_mv to denote that this is a materialized view and not a table or view.

Storage And Table Compression

Unless the materialized view is based on a user-defined prebuilt table, it requires and occupies storage space inside the database. Therefore, the storage needs for the materialized view should be specified in terms of the tablespace where it is to reside and the size of the extents.

If you do not know how much space the materialized view will require, then the DBMS_MVIEW.ESTIMATE_SIZE package can estimate the number of bytes required to store this uncompressed materialized view. This information can then assist the design team in determining the tablespace in which the materialized view should reside.

You should use table compression with highly redundant data, such as tables with many foreign keys. This is particularly useful for materialized views created with the ROLLUP clause. Table compression reduces disk use and memory use (specifically, the buffer cache), often leading to a better scaleup for read-only operations. Table compression can also speed up query execution at the expense of update cost.

	
See Also:

Oracle Database SQL Language Reference for a complete description of STORAGE semantics, Oracle Database Performance Tuning Guide, and Oracle Database VLDB and Partitioning Guide for table compression examples

Build Methods

Two build methods are available for creating the materialized view, as shown in Table 8-3. If you select BUILD IMMEDIATE, the materialized view definition is added to the schema objects in the data dictionary, and then the fact or detail tables are scanned according to the SELECT expression and the results are stored in the materialized view. Depending on the size of the tables to be scanned, this build process can take a considerable amount of time.

An alternative approach is to use the BUILD DEFERRED clause, which creates the materialized view without data, thereby enabling it to be populated at a later date using the DBMS_MVIEW.REFRESH package described in Chapter 15, "Maintaining the Data Warehouse".

Table 8-3 Build Methods

	Build Method	Description
	
BUILD IMMEDIATE

	
Create the materialized view and then populate it with data.

	
BUILD DEFERRED

	
Create the materialized view definition but do not populate it with data.

Enabling Query Rewrite

Before creating a materialized view, you can verify what types of query rewrite are possible by calling the procedure DBMS_MVIEW.EXPLAIN_MVIEW, or use DBMS_ADVISOR.TUNE_MVIEW to optimize the materialized view so that many types of query rewrite are possible. Once the materialized view has been created, you can use DBMS_MVIEW.EXPLAIN_REWRITE to find out if (or why not) it will rewrite a specific query.

Even though a materialized view is defined, it will not automatically be used by the query rewrite facility. Even though query rewrite is enabled by default, you also must specify the ENABLE QUERY REWRITE clause if the materialized view is to be considered available for rewriting queries.

If this clause is omitted or specified as DISABLE QUERY REWRITE when the materialized view is created, the materialized view can subsequently be enabled for query rewrite with the ALTER MATERIALIZED VIEW statement.

If you define a materialized view as BUILD DEFERRED, it is not eligible for query rewrite until it is populated with data through a complete refresh.

Query Rewrite Restrictions

Query rewrite is not possible with all materialized views. If query rewrite is not occurring when expected, DBMS_MVIEW.EXPLAIN_REWRITE can help provide reasons why a specific query is not eligible for rewrite. If this shows that not all types of query rewrite are possible, use the procedure DBMS_ADVISOR.TUNE_MVIEW to see if the materialized view can be defined differently so that query rewrite is possible. Also, check to see if your materialized view satisfies all of the following conditions.

Materialized View Restrictions

You should keep in mind the following restrictions:

	
The defining query of the materialized view cannot contain any non-repeatable expressions (ROWNUM, SYSDATE, non-repeatable PL/SQL functions, and so on).

	
The query cannot contain any references to RAW or LONG RAW datatypes or object REFs.

	
If the materialized view was registered as PREBUILT, the precision of the columns must agree with the precision of the corresponding SELECT expressions unless overridden by the WITH REDUCED PRECISION clause.

General Query Rewrite Restrictions

You should keep in mind the following restrictions:

	
A query can reference both local and remote tables. Such a query can be rewritten as long as an eligible materialized view referencing the same tables is available locally.

	
Neither the detail tables nor the materialized view can be owned by SYS.

	
If a column or expression is present in the GROUP BY clause of the materialized view, it must also be present in the SELECT list.

	
Aggregate functions must occur only as the outermost part of the expression. That is, aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

	
CONNECT BY clauses are not allowed.

Refresh Options

When you define a materialized view, you can specify three refresh options: how to refresh, what type of refresh, and can trusted constraints be used. If unspecified, the defaults are assumed as ON DEMAND, FORCE, and ENFORCED constraints respectively.

The two refresh execution modes are ON COMMIT and ON DEMAND. Depending on the materialized view you create, some of the options may not be available. Table 8-4 describes the refresh modes.

Table 8-4 Refresh Modes

	Refresh Mode	Description
	
ON COMMIT

	
Refresh occurs automatically when a transaction that modified one of the materialized view's detail tables commits. This can be specified as long as the materialized view is fast refreshable (in other words, not complex). The ON COMMIT privilege is necessary to use this mode.

	
ON DEMAND

	
Refresh occurs when a user manually executes one of the available refresh procedures contained in the DBMS_MVIEW package (REFRESH, REFRESH_ALL_MVIEWS, REFRESH_DEPENDENT).

When a materialized view is maintained using the ON COMMIT method, the time required to complete the commit may be slightly longer than usual. This is because the refresh operation is performed as part of the commit process. Therefore this method may not be suitable if many users are concurrently changing the tables upon which the materialized view is based.

If you anticipate performing insert, update or delete operations on tables referenced by a materialized view concurrently with the refresh of that materialized view, and that materialized view includes joins and aggregation, Oracle recommends you use ON COMMIT fast refresh rather than ON DEMAND fast refresh.

If you think the materialized view did not refresh, check the alert log or trace file.

If a materialized view fails during refresh at COMMIT time, you must explicitly invoke the refresh procedure using the DBMS_MVIEW package after addressing the errors specified in the trace files. Until this is done, the materialized view will no longer be refreshed automatically at commit time.

You can specify how you want your materialized views to be refreshed from the detail tables by selecting one of four options: COMPLETE, FAST, FORCE, and NEVER. Table 8-5 describes the refresh options.

Table 8-5 Refresh Options

	Refresh Option	Description
	
COMPLETE

	
Refreshes by recalculating the materialized view's defining query.

	
FAST

	
Applies incremental changes to refresh the materialized view using the information logged in the materialized view logs, or from a SQL*Loader direct-path or a partition maintenance operation.

	
FORCE

	
Applies FAST refresh if possible; otherwise, it applies COMPLETE refresh.

	
NEVER

	
Indicates that the materialized view will not be refreshed with refresh mechanisms.

Whether the fast refresh option is available depends upon the type of materialized view. You can call the procedure DBMS_MVIEW.EXPLAIN_MVIEW to determine whether fast refresh is possible.

You can also specify if it is acceptable to use trusted constraints and QUERY_REWRITE_INTEGRITY = TRUSTED during refresh. Any nonvalidated RELY constraint is a trusted constraint. For example, nonvalidated foreign key/primary key relationships, functional dependencies defined in dimensions or a materialized view in the UNKNOWN state. If query rewrite is enabled during refresh, these can improve the performance of refresh by enabling more performant query rewrites. Any materialized view that can use TRUSTED constraints for refresh is left in a state of trusted freshness (the UNKNOWN state) after refresh.

This is reflected in the column STALENESS in the view USER_MVIEWS. The column UNKNOWN_TRUSTED_FD in the same view is also set to Y, which means yes.

You can define this property of the materialized view either during create time by specifying REFRESH USING TRUSTED [ENFORCED] CONSTRAINTS or by using ALTER MATERIALIZED VIEW DDL.

Table 8-6 Constraints

	Constraints to Use	Description
	

TRUSTED CONSTRAINTS

	
Refresh can use trusted constraints and QUERY_REWRITE_INTEGRITY = TRUSTED during refresh.This allows use of non-validated RELY constraints and rewrite against materialized views in UNKNOWN or FRESH state during refresh.

	

ENFORCED CONSTRAINTS

	
Refresh can use validated constraints and QUERY_REWRITE_INTEGRITY = ENFORCED during refresh. This allows use of only validated, enforced constraints and rewrite against materialized views in FRESH state during refresh.

General Restrictions on Fast Refresh

The defining query of the materialized view is restricted as follows:

	
The materialized view must not contain references to non-repeating expressions like SYSDATE and ROWNUM.

	
The materialized view must not contain references to RAW or LONG RAW data types.

	
It cannot contain a SELECT list subquery.

	
It cannot contain analytical functions (for example, RANK) in the SELECT clause.

	
It cannot contain a MODEL clause.

	
It cannot contain a HAVING clause with a subquery.

	
It cannot contain nested queries that have ANY, ALL, or NOT EXISTS.

	
It cannot contain a [START WITH …] CONNECT BY clause.

	
It cannot contain multiple detail tables at different sites.

	
ON COMMIT materialized views cannot have remote detail tables.

	
Nested materialized views must have a join or aggregate.

Restrictions on Fast Refresh on Materialized Views with Joins Only

Defining queries for materialized views with joins only and no aggregates have the following restrictions on fast refresh:

	
All restrictions from "General Restrictions on Fast Refresh".

	
They cannot have GROUP BY clauses or aggregates.

	
Rowids of all the tables in the FROM list must appear in the SELECT list of the query.

	
Materialized view logs must exist with rowids for all the base tables in the FROM list of the query.

	
You cannot create a fast refreshable materialized view from multiple tables with simple joins that include an object type column in the SELECT statement.

Restrictions on Fast Refresh on Materialized Views with Aggregates

Defining queries for materialized views with aggregates or joins have the following restrictions on fast refresh:

	
All restrictions from "General Restrictions on Fast Refresh".

Fast refresh is supported for both ON COMMIT and ON DEMAND materialized views, however the following restrictions apply:

	
All tables in the materialized view must have materialized view logs, and the materialized view logs must:

	
Contain all columns from the table referenced in the materialized view. However, none of these columns in the base table can be encrypted.

	
Specify with ROWID and INCLUDING NEW VALUES.

	
Specify the SEQUENCE clause if the table is expected to have a mix of inserts/direct-loads, deletes, and updates.

	
Only SUM, COUNT, AVG, STDDEV, VARIANCE, MIN and MAX are supported for fast refresh.

	
COUNT(*) must be specified.

	
Aggregate functions must occur only as the outermost part of the expression. That is, aggregates such as AVG(AVG(x)) or AVG(x)+ AVG(x) are not allowed.

	
For each aggregate such as AVG(expr), the corresponding COUNT(expr) must be present. Oracle recommends that SUM(expr) be specified. See Table 8-2 for further details.

	
If VARIANCE(expr) or STDDEV(expr) is specified, COUNT(expr) and SUM(expr) must be specified. Oracle recommends that SUM(expr *expr) be specified. See Table 8-2 for further details.

	
The SELECT column in the defining query cannot be a complex expression with columns from multiple base tables. A possible workaround to this is to use a nested materialized view.

	
The SELECT list must contain all GROUP BY columns.

	
If the materialized view has one of the following, then fast refresh is supported only on conventional DML inserts and direct loads.

	
Materialized views with MIN or MAX aggregates

	
Materialized views which have SUM(expr) but no COUNT(expr)

	
Materialized views without COUNT(*)

Such a materialized view is called an insert-only materialized view.

	
A materialized view with MAX or MIN is fast refreshable after delete or mixed DML statements if it does not have a WHERE clause.

	
Materialized views with named views or subqueries in the FROM clause can be fast refreshed provided the views can be completely merged. For information on which views will merge, refer to the Oracle Database Performance Tuning Guide.

	
If there are no outer joins, you may have arbitrary selections and joins in the WHERE clause.

	
Materialized aggregate views with outer joins are fast refreshable after conventional DML and direct loads, provided only the outer table has been modified. Also, unique constraints must exist on the join columns of the inner join table. If there are outer joins, all the joins must be connected by ANDs and must use the equality (=) operator.

	
For materialized views with CUBE, ROLLUP, grouping sets, or concatenation of them, the following restrictions apply:

	
The SELECT list should contain grouping distinguisher that can either be a GROUPING_ID function on all GROUP BY expressions or GROUPING functions one for each GROUP BY expression. For example, if the GROUP BY clause of the materialized view is "GROUP BY CUBE(a, b)", then the SELECT list should contain either "GROUPING_ID(a, b)" or "GROUPING(a) AND GROUPING(b)" for the materialized view to be fast refreshable.

	
GROUP BY should not result in any duplicate groupings. For example, "GROUP BY a, ROLLUP(a, b)" is not fast refreshable because it results in duplicate groupings "(a), (a, b), AND (a)".

Restrictions on Fast Refresh on Materialized Views with UNION ALL

Materialized views with the UNION ALL set operator support the REFRESH FAST option if the following conditions are satisfied:

	
The defining query must have the UNION ALL operator at the top level.

The UNION ALL operator cannot be embedded inside a subquery, with one exception: The UNION ALL can be in a subquery in the FROM clause provided the defining query is of the form SELECT * FROM (view or subquery with UNION ALL) as in the following example:

CREATE VIEW view_with_unionall AS
(SELECT c.rowid crid, c.cust_id, 2 umarker
 FROM customers c WHERE c.cust_last_name = 'Smith'
 UNION ALL
 SELECT c.rowid crid, c.cust_id, 3 umarker
 FROM customers c WHERE c.cust_last_name = 'Jones');

CREATE MATERIALIZED VIEW unionall_inside_view_mv
REFRESH FAST ON DEMAND AS
SELECT * FROM view_with_unionall;

Note that the view view_with_unionall satisfies the requirements for fast refresh.

	
Each query block in the UNION ALL query must satisfy the requirements of a fast refreshable materialized view with aggregates or a fast refreshable materialized view with joins.

The appropriate materialized view logs must be created on the tables as required for the corresponding type of fast refreshable materialized view.

Note that the Oracle Database also allows the special case of a single table materialized view with joins only provided the ROWID column has been included in the SELECT list and in the materialized view log. This is shown in the defining query of the view view_with_unionall.

	
The SELECT list of each query must include a UNION ALL marker, and the UNION ALL column must have a distinct constant numeric or string value in each UNION ALL branch. Further, the marker column must appear in the same ordinal position in the SELECT list of each query block. See "UNION ALL Marker" for more information regarding UNION ALL markers.

	
Some features such as outer joins, insert-only aggregate materialized view queries and remote tables are not supported for materialized views with UNION ALL.

	
The compatibility initialization parameter must be set to 9.2.0 or higher to create a fast refreshable materialized view with UNION ALL.

Achieving Refresh Goals

In addition to the EXPLAIN_MVIEW procedure, which is discussed throughout this chapter, you can use the DBMS_ADVISOR.TUNE_MVIEW procedure to optimize a CREATE MATERIALIZED VIEW statement to achieve REFRESH FAST and ENABLE QUERY REWRITE goals.

Refreshing Nested Materialized Views

A nested materialized view is considered to be fresh as long as its data is synchronized with the data in its detail tables, even if some of its detail tables could be stale materialized views.

You can refresh nested materialized views in two ways: DBMS_MVIEW.REFRESH with the nested flag set to TRUE and REFRESH_DEPENDENT with the nested flag set to TRUE on the base tables. If you use DBMS_MVIEW.REFRESH, the entire materialized view chain is refreshed and the coverage starting from the specified materialized view in top-down fashion. That is, the specified materialized view and all its child materialized views in the dependency hierarchy are refreshed in order. With DBMS_MVIEW.REFRESH_DEPENDENT, the entire chain is refreshed from the bottom up. That is, all the parent materialized views in the dependency hierarchy starting from the specified table are refreshed in order.

Example 8-7 Example of Refreshing a Nested Materialized View

The following statement shows an example of refreshing a nested materialized view:

DBMS_MVIEW.REFRESH('SALES_MV,COST_MV', nested => TRUE);

This statement will first refresh all child materialized views of sales_mv and cost_mv based on the dependency analysis and then refresh the two specified materialized views.

You can query the STALE_SINCE column in the *_MVIEWS views to find out when a materialized view became stale.

ORDER BY Clause

An ORDER BY clause is allowed in the CREATE MATERIALIZED VIEW statement. It is used only during the initial creation of the materialized view. It is not used during a full refresh or a fast refresh.

To improve the performance of queries against large materialized views, store the rows in the materialized view in the order specified in the ORDER BY clause. This initial ordering provides physical clustering of the data. If indexes are built on the columns by which the materialized view is ordered, accessing the rows of the materialized view using the index often reduces the time for disk I/O due to the physical clustering.

The ORDER BY clause is not considered part of the materialized view definition. As a result, there is no difference in the manner in which Oracle Database detects the various types of materialized views (for example, materialized join views with no aggregates). For the same reason, query rewrite is not affected by the ORDER BY clause. This feature is similar to the CREATE TABLE ... ORDER BY capability.

Materialized View Logs

Materialized view logs are required if you want to use fast refresh, with the exception of PCT refresh. That is, if a detail table supports PCT for a materialized view, the materialized view log on that detail table is not required in order to do fast refresh on that materialized view. As a general rule, though, you should create materialized view logs if you want to use fast refresh. Materialized view logs are defined using a CREATE MATERIALIZED VIEW LOG statement on the base table that is to be changed. They are not created on the materialized view unless there is another materialized view on top of that materialized view, which is the case with nested materialized views. For fast refresh of materialized views, the definition of the materialized view logs must normally specify the ROWID clause. In addition, for aggregate materialized views, it must also contain every column in the table referenced in the materialized view, the INCLUDING NEW VALUES clause and the SEQUENCE clause.

An example of a materialized view log is shown as follows where one is created on the table sales:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Alternatively, a materialized view log can be amended to include the rowid, as in the following:

ALTER MATERIALIZED VIEW LOG ON sales ADD ROWID
(prod_id, cust_id, time_id, channel_id, promo_id, quantity_sold, amount_sold)
INCLUDING NEW VALUES;

Oracle recommends that the keyword SEQUENCE be included in your materialized view log statement unless you are sure that you will never perform a mixed DML operation (a combination of INSERT, UPDATE, or DELETE operations on multiple tables). The SEQUENCE column is required in the materialized view log to support fast refresh with a combination of INSERT, UPDATE, or DELETE statements on multiple tables. You can, however, add the SEQUENCE number to the materialized view log after it has been created.

The boundary of a mixed DML operation is determined by whether the materialized view is ON COMMIT or ON DEMAND.

	
For ON COMMIT, the mixed DML statements occur within the same transaction because the refresh of the materialized view will occur upon commit of this transaction.

	
For ON DEMAND, the mixed DML statements occur between refreshes. The following example of a materialized view log illustrates where one is created on the table sales that includes the SEQUENCE keyword:

CREATE MATERIALIZED VIEW LOG ON sales WITH SEQUENCE, ROWID
(prod_id, cust_id, time_id, channel_id, promo_id,
 quantity_sold, amount_sold) INCLUDING NEW VALUES;

Using the FORCE Option with Materialized View Logs

If you specify FORCE and any items specified with the ADD clause have already been specified for the materialized view log, Oracle does not return an error, but silently ignores the existing elements and adds to the materialized view log any items that do not already exist in the log. For example, if you used a filter column such as cust_id and this column already existed, Oracle Database ignores the redundancy and does not return an error.

Using Oracle Enterprise Manager

A materialized view can also be created using Enterprise Manager by selecting the materialized view object type. There is no difference in the information required if this approach is used.

Using Materialized Views with NLS Parameters

When using certain materialized views, you must ensure that your NLS parameters are the same as when you created the materialized view. Materialized views with this restriction are as follows:

	
Expressions that may return different values, depending on NLS parameter settings. For example, (date > "01/02/03") or (rate <= "2.150") are NLS parameter dependent expressions.

	
Equijoins where one side of the join is character data. The result of this equijoin depends on collation and this can change on a session basis, giving an incorrect result in the case of query rewrite or an inconsistent materialized view after a refresh operation.

	
Expressions that generate internal conversion to character data in the SELECT list of a materialized view, or inside an aggregate of a materialized aggregate view. This restriction does not apply to expressions that involve only numeric data, for example, a+b where a and b are numeric fields.

Adding Comments to Materialized Views

You can add a comment to a materialized view. For example, the following statement adds a comment to data dictionary views for the existing materialized view:

COMMENT ON MATERIALIZED VIEW sales_mv IS 'sales materialized view';

To view the comment after the preceding statement execution, the user can query the catalog views, {USER, DBA} ALL_MVIEW_COMMENTS. For example:

SELECT MVIEW_NAME, COMMENTS
FROM USER_MVIEW_COMMENTS WHERE MVIEW_NAME = 'SALES_MV';

The output will resemble the following:

MVIEW_NAME COMMENTS
----------- -----------------------
SALES_MV sales materialized view

Note: If the compatibility is set to 10.0.1 or higher, COMMENT ON TABLE will not be allowed for the materialized view container table. The following error message will be thrown if it is issued.

ORA-12098: cannot comment on the materialized view.

In the case of a prebuilt table, if it has an existing comment, the comment will be inherited by the materialized view after it has been created. The existing comment will be prefixed with '(from table)'. For example, table sales_summary was created to contain sales summary information. An existing comment 'Sales summary data' was associated with the table. A materialized view of the same name is created to use the prebuilt table as its container table. After the materialized view creation, the comment becomes '(from table) Sales summary data'.

However, if the prebuilt table, sales_summary, does not have any comment, the following comment is added: 'Sales summary data'. Then, if we drop the materialized view, the comment will be passed to the prebuilt table with the comment: '(from materialized view) Sales summary data'.

Registering Existing Materialized Views

Some data warehouses have implemented materialized views in ordinary user tables. Although this solution provides the performance benefits of materialized views, it does not:

	
Provide query rewrite to all SQL applications.

	
Enable materialized views defined in one application to be transparently accessed in another application.

	
Generally support fast parallel or fast materialized view refresh.

Because of these limitations, and because existing materialized views can be extremely large and expensive to rebuild, you should register your existing materialized view tables whenever possible. You can register a user-defined materialized view with the CREATE MATERIALIZED VIEW ... ON PREBUILT TABLE statement. Once registered, the materialized view can be used for query rewrites or maintained by one of the refresh methods, or both.

The contents of the table must reflect the materialization of the defining query at the time you register it as a materialized view, and each column in the defining query must correspond to a column in the table that has a matching datatype. However, you can specify WITH REDUCED PRECISION to allow the precision of columns in the defining query to be different from that of the table columns.

The table and the materialized view must have the same name, but the table retains its identity as a table and can contain columns that are not referenced in the defining query of the materialized view. These extra columns are known as unmanaged columns. If rows are inserted during a refresh operation, each unmanaged column of the row is set to its default value. Therefore, the unmanaged columns cannot have NOT NULL constraints unless they also have default values.

Materialized views based on prebuilt tables are eligible for selection by query rewrite provided the parameter QUERY_REWRITE_INTEGRITY is set to STALE_TOLERATED or TRUSTED. See Chapter 17, "Basic Query Rewrite" for details about integrity levels.

When you drop a materialized view that was created on a prebuilt table, the table still exists—only the materialized view is dropped.

The following example illustrates the two steps required to register a user-defined table. First, the table is created, then the materialized view is defined using exactly the same name as the table. This materialized view sum_sales_tab_mv is eligible for use in query rewrite.

CREATE TABLE sum_sales_tab
PCTFREE 0 TABLESPACE demo
STORAGE (INITIAL 16k NEXT 16k PCTINCREASE 0) AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

CREATE MATERIALIZED VIEW sum_sales_tab_mv
ON PREBUILT TABLE WITHOUT REDUCED PRECISION
ENABLE QUERY REWRITE AS
SELECT s.prod_id, SUM(amount_sold) AS dollar_sales,
 SUM(quantity_sold) AS unit_sales
FROM sales s GROUP BY s.prod_id;

You could have compressed this table to save space. See "Storage And Table Compression" for details regarding table compression.

In some cases, user-defined materialized views are refreshed on a schedule that is longer than the update cycle. For example, a monthly materialized view might be updated only at the end of each month, and the materialized view values always refer to complete time periods. Reports written directly against these materialized views implicitly select only data that is not in the current (incomplete) time period. If a user-defined materialized view already contains a time dimension:

	
It should be registered and then fast refreshed each update cycle.

	
You can create a view that selects the complete time period of interest.

	
The reports should be modified to refer to the view instead of referring directly to the user-defined materialized view.

If the user-defined materialized view does not contain a time dimension, then:

	
Create a new materialized view that does include the time dimension (if possible).

	
The view should aggregate over the time column in the new materialized view.

Choosing Indexes for Materialized Views

The two most common operations on a materialized view are query execution and fast refresh, and each operation has different performance requirements. Query execution might need to access any subset of the materialized view key columns, and might need to join and aggregate over a subset of those columns. Consequently, query execution usually performs best if a single-column bitmap index is defined on each materialized view key column.

In the case of materialized views containing only joins using fast refresh, Oracle recommends that indexes be created on the columns that contain the rowids to improve the performance of the refresh operation.

If a materialized view using aggregates is fast refreshable, then an index appropriate for the fast refresh procedure is created unless USING NO INDEX is specified in the CREATE MATERIALIZED VIEW statement.

If the materialized view is partitioned, then, after doing a partition maintenance operation on the materialized view, the indexes become unusable, and they need to be rebuilt for fast refresh to work.

See Oracle Database Performance Tuning Guide for information on using the SQL Access Advisor to determine what indexes are appropriate for your materialized view.

Dropping Materialized Views

Use the DROP MATERIALIZED VIEW statement to drop a materialized view. For example. the following statement:

DROP MATERIALIZED VIEW sales_sum_mv;

This statement drops the materialized view sales_sum_mv. If the materialized view was prebuilt on a table, then the table is not dropped, but it can no longer be maintained with the refresh mechanism or used by query rewrite. Alternatively, you can drop a materialized view using Oracle Enterprise Manager.

Analyzing Materialized View Capabilities

You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to learn what is possible with a materialized view or potential materialized view. In particular, this procedure enables you to determine:

	
If a materialized view is fast refreshable

	
What types of query rewrite you can perform with this materialized view

	
Whether PCT refresh is possible

Using this procedure is straightforward. You simply call DBMS_MVIEW.EXPLAIN_MVIEW, passing in as a single parameter the schema and materialized view name for an existing materialized view. Alternatively, you can specify the SELECT string for a potential materialized view or the complete CREATE MATERIALIZED VIEW statement. The materialized view or potential materialized view is then analyzed and the results are written into either a table called MV_CAPABILITIES_TABLE, which is the default, or to an array called MSG_ARRAY.

Note that you must run the utlxmv.sql script prior to calling EXPLAIN_MVIEW except when you are placing the results in MSG_ARRAY. The script is found in the admin directory. It is to create the MV_CAPABILITIES_TABLE in the current schema. An explanation of the various capabilities is in Table 8-7, and all the possible messages are listed in Table 8-8.

Using the DBMS_MVIEW.EXPLAIN_MVIEW Procedure

The EXPLAIN_MVIEW procedure has the following parameters:

	
stmt_id

An optional parameter. A client-supplied unique identifier to associate output rows with specific invocations of EXPLAIN_MVIEW.

	
mv

The name of an existing materialized view or the query definition or the entire CREATE MATERIALIZED VIEW statement of a potential materialized view you want to analyze.

	
msg-array

The PL/SQL VARRAY that receives the output.

EXPLAIN_MVIEW analyzes the specified materialized view in terms of its refresh and rewrite capabilities and inserts its results (in the form of multiple rows) into MV_CAPABILITIES_TABLE or MSG_ARRAY.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for further information about the DBMS_MVIEW package

DBMS_MVIEW.EXPLAIN_MVIEW Declarations

The following PL/SQL declarations that are made for you in the DBMS_MVIEW package show the order and datatypes of these parameters for explaining an existing materialized view and a potential materialized view with output to a table and to a VARRAY.

Explain an existing or potential materialized view with output to MV_CAPABILITIES_TABLE:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 stmt_id IN VARCHAR2:= NULL);

Explain an existing or potential materialized view with output to a VARRAY:

DBMS_MVIEW.EXPLAIN_MVIEW (mv IN VARCHAR2,
 msg_array OUT SYS.ExplainMVArrayType);

Using MV_CAPABILITIES_TABLE

One of the simplest ways to use DBMS_MVIEW.EXPLAIN_MVIEW is with the MV_CAPABILITIES_TABLE, which has the following structure:

CREATE TABLE MV_CAPABILITIES_TABLE
(STATEMENT_ID VARCHAR(30), -- Client-supplied unique statement identifier
 MVOWNER VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 MVNAME VARCHAR(30), -- NULL for SELECT based EXPLAIN_MVIEW
 CAPABILITY_NAME VARCHAR(30), -- A descriptive name of the particular
 -- capability:
 -- REWRITE
 -- Can do at least full text match
 -- rewrite
 -- REWRITE_PARTIAL_TEXT_MATCH
 -- Can do at leat full and partial
 -- text match rewrite
 -- REWRITE_GENERAL
 -- Can do all forms of rewrite
 -- REFRESH
 -- Can do at least complete refresh
 -- REFRESH_FROM_LOG_AFTER_INSERT
 -- Can do fast refresh from an mv log
 -- or change capture table at least
 -- when update operations are
 -- restricted to INSERT
 -- REFRESH_FROM_LOG_AFTER_ANY
 -- can do fast refresh from an mv log
 -- or change capture table after any
 -- combination of updates
 -- PCT
 -- Can do Enhanced Update Tracking on
 -- the table named in the RELATED_NAME
 -- column. EUT is needed for fast
 -- refresh after partitioned
 -- maintenance operations on the table
 -- named in the RELATED_NAME column
 -- and to do non-stale tolerated
 -- rewrite when the mv is partially
 -- stale with respect to the table
 -- named in the RELATED_NAME column.
 -- EUT can also sometimes enable fast
 -- refresh of updates to the table
 -- named in the RELATED_NAME column
 -- when fast refresh from an mv log
 -- or change capture table is not
 -- possible.
 -- See Table 8-7
 POSSIBLE CHARACTER(1), -- T = capability is possible
 -- F = capability is not possible
 RELATED_TEXT VARCHAR(2000), -- Owner.table.column, alias name, and so on
 -- related to this message. The specific
 -- meaning of this column depends on the
 -- NSGNO column. See the documentation for
 -- DBMS_MVIEW.EXPLAIN_MVIEW() for details.
 RELATED_NUM NUMBER, -- When there is a numeric value
 -- associated with a row, it goes here.
 MSGNO INTEGER, -- When available, QSM message # explaining
 -- why disabled or more details when
 -- enabled.
 MSGTXT VARCHAR(2000), -- Text associated with MSGNO.
 SEQ NUMBER); -- Useful in ORDER BY clause when
 -- selecting from this table.

You can use the utlxmv.sql script found in the admin directory to create MV_CAPABILITIES_TABLE.

Example 8-8 DBMS_MVIEW.EXPLAIN_MVIEW

First, create the materialized view. Alternatively, you can use EXPLAIN_MVIEW on a potential materialized view using its SELECT statement or the complete CREATE MATERIALIZED VIEW statement.

CREATE MATERIALIZED VIEW cal_month_sales_mv
BUILD IMMEDIATE
REFRESH FORCE
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_desc, SUM(s.amount_sold) AS dollars
FROM sales s, times t WHERE s.time_id = t.time_id
GROUP BY t.calendar_month_desc;

Then, you invoke EXPLAIN_MVIEW with the materialized view to explain. You need to use the SEQ column in an ORDER BY clause so the rows will display in a logical order. If a capability is not possible, N will appear in the P column and an explanation in the MSGTXT column. If a capability is not possible for more than one reason, a row is displayed for each reason.

EXECUTE DBMS_MVIEW.EXPLAIN_MVIEW ('SH.CAL_MONTH_SALES_MV');

SELECT capability_name, possible, SUBSTR(related_text,1,8)
 AS rel_text, SUBSTR(msgtxt,1,60) AS msgtxt
FROM MV_CAPABILITIES_TABLE
ORDER BY seq;

CAPABILITY_NAME P REL_TEXT MSGTXT
--------------- - -------- ------
PCT N
REFRESH_COMPLETE Y
REFRESH_FAST N
REWRITE Y
PCT_TABLE N SALES no partition key or PMARKER in select list
PCT_TABLE N TIMES relation is not a partitioned table
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.TIMES mv log does not have all necessary columns
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have new values
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log must have ROWID
REFRESH_FAST_AFTER_INSERT N SH.SALES mv log does not have all necessary columns
REFRESH_FAST_AFTER_ONETAB_DML N DOLLARS SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ONETAB_DML N see the reason why
 REFRESH_FAST_AFTER_INSERT is disabled
REFRESH_FAST_AFTER_ONETAB_DML N COUNT(*) is not present in the select list
REFRESH_FAST_AFTER_ONETAB_DML N SUM(expr) without COUNT(expr)
REFRESH_FAST_AFTER_ANY_DML N see the reason why
 REFRESH_FAST_AFTER_ONETAB_DML is disabled
REFRESH_FAST_AFTER_ANY_DML N SH.TIMES mv log must have sequence
REFRESH_FAST_AFTER_ANY_DML N SH.SALES mv log must have sequence
REFRESH_PCT N PCT is not possible on any of the detail
 tables in the materialized view
REWRITE_FULL_TEXT_MATCH Y
REWRITE_PARTIAL_TEXT_MATCH Y
REWRITE_GENERAL Y
REWRITE_PCT N PCT is not possible on any detail tables

	
See Also:

Chapter 15, "Maintaining the Data Warehouse" and Chapter 18, "Advanced Query Rewrite" for further details about PCT

MV_CAPABILITIES_TABLE.CAPABILITY_NAME Details

Table 8-7 lists explanations for values in the CAPABILITY_NAME column.

Table 8-7 CAPABILITY_NAME Column Details

	CAPABILITY_NAME	Description
	
PCT

	
If this capability is possible, Partition Change Tracking (PCT) is possible on at least one detail relation. If this capability is not possible, PCT is not possible with any detail relation referenced by the materialized view.

	
REFRESH_COMPLETE

	
If this capability is possible, complete refresh of the materialized view is possible.

	
REFRESH_FAST

	
If this capability is possible, fast refresh is possible at least under certain circumstances.

	
REWRITE

	
If this capability is possible, at least full text match query rewrite is possible. If this capability is not possible, no form of query rewrite is possible.

	
PCT_TABLE

	
If this capability is possible, it is possible with respect to a particular partitioned table in the top level FROM list. When possible, PCT applies to the partitioned table named in the RELATED_TEXT column.

PCT is needed to support fast fresh after partition maintenance operations on the table named in the RELATED_TEXT column.

PCT may also support fast refresh with regard to updates to the table named in the RELATED_TEXT column when fast refresh from a materialized view log is not possible.

PCT is also needed to support query rewrite in the presence of partial staleness of the materialized view with regard to the table named in the RELATED_TEXT column.

When disabled, PCT does not apply to the table named in the RELATED_TEXT column. In this case, fast refresh is not possible after partition maintenance operations on the table named in the RELATED_TEXT column. In addition, PCT-based refresh of updates to the table named in the RELATED_TEXT column is not possible. Finally, query rewrite cannot be supported in the presence of partial staleness of the materialized view with regard to the table named in the RELATED_TEXT column.

	
PCT_TABLE_REWRITE

	
If this capability is possible, it is possible with respect to a particular partitioned table in the top level FROM list. When possible, PCT applies to the partitioned table named in the RELATED_TEXT column.

This capability is needed to support query rewrite against this materialized view in partial stale state with regard to the table named in the RELATED_TEXT column.

When disabled, query rewrite cannot be supported if this materialized view is in partial stale state with regard to the table named in the RELATED_TEXT column.

	
REFRESH_FAST_AFTER_INSERT

	
If this capability is possible, fast refresh from a materialized view log is possible at least in the case where the updates are restricted to INSERT operations; complete refresh is also possible. If this capability is not possible, no form of fast refresh from a materialized view log is possible.

	
REFRESH_FAST_AFTER_ONETAB_DML

	
If this capability is possible, fast refresh from a materialized view log is possible regardless of the type of update operation, provided all update operations are performed on a single table. If this capability is not possible, fast refresh from a materialized view log may not be possible when the update operations are performed on multiple tables.

	
REFRESH_FAST_AFTER_ANY_DML

	
If this capability is possible, fast refresh from a materialized view log is possible regardless of the type of update operation or the number of tables updated. If this capability is not possible, fast refresh from a materialized view log may not be possible when the update operations (other than INSERT) affect multiple tables.

	
REFRESH_FAST_PCT

	
If this capability is possible, fast refresh using PCT is possible. Generally, this means that refresh is possible after partition maintenance operations on those detail tables where PCT is indicated as possible.

	
REWRITE_FULL_TEXT_MATCH

	
If this capability is possible, full text match query rewrite is possible. If this capability is not possible, full text match query rewrite is not possible.

	
REWRITE_PARTIAL_TEXT_MATCH

	
If this capability is possible, at least full and partial text match query rewrite are possible. If this capability is not possible, at least partial text match query rewrite and general query rewrite are not possible.

	
REWRITE_GENERAL

	
If this capability is possible, all query rewrite capabilities are possible, including general query rewrite and full and partial text match query rewrite. If this capability is not possible, at least general query rewrite is not possible.

	
REWRITE_PCT

	
If this capability is possible, query rewrite can use a partially stale materialized view even in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. When this capability is not possible, query rewrite can use a partially stale materialized view only in QUERY_REWRITE_INTEGRITY = STALE_TOLERATED mode.

MV_CAPABILITIES_TABLE Column Details

Table 8-8 lists the semantics for RELATED_TEXT and RELATED_NUM columns.

Table 8-8 MV_CAPABILITIES_TABLE Column Details

	MSGNO	MSGTXT	RELATED_NUM	RELATED_TEXT
	
NULL

	
NULL

	
	
For PCT capability only: [owner.]name of the table upon which PCT is enabled

	
2066

	
This statement resulted in an Oracle error

	
Oracle error number that occurred

	

	
2067

	
No partition key or PMARKER or join dependent expression in SELECT list

	
	
[owner.]name of relation for which PCT is not supported

	
2068

	
Relation is not partitioned

	
	
[owner.]name of relation for which PCT is not supported

	
2069

	
PCT not supported with multicolumn partition key

	
	
[owner.]name of relation for which PCT is not supported

	
2070

	
PCT not supported with this type of partitioning

	
	
[owner.]name of relation for which PCT is not supported

	
2071

	
Internal error: undefined PCT failure code

	
The unrecognized numeric PCT failure code

	
[owner.]name of relation for which PCT is not supported

	
2072

	
Requirements not satisfied for fast refresh of nested materialized view

	
	

	
2077

	
Materialized view log is newer than last full refresh

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2078

	
Materialized view log must have new values

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2079

	
Materialized view log must have ROWID

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2080

	
Materialized view log must have primary key

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2081

	
Materialized view log does not have all necessary columns

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2082

	
Problem with materialized view log

	
	
[owner.]table_name of table upon which the materialized view log is needed

	
2099

	
Materialized view references a remote table or view in the FROM list

	
Offset from the SELECT keyword to the table or view in question

	
[owner.]name of the table or view in question

	
2126

	
Multiple master sites

	
	
Name of the first different node, or NULL if the first different node is local

	
2129

	
Join or filter condition(s) are complex

	
	
[owner.]name of the table involved with the join or filter condition (or NULL when not available)

	
2130

	
Expression not supported for fast refresh

	
Offset from the SELECT keyword to the expression in question

	
The alias name in the SELECT list of the expression in question

	
2150

	
SELECT lists must be identical across the UNION operator

	
Offset from the SELECT keyword to the first different select item in the SELECT list

	
The alias name of the first different select item in the SELECT list

	
2182

	
PCT is enabled through a join dependency

	
	
[owner.]name of relation for which PCT_TABLE_REWRITE is not enabled

	
2183

	
Expression to enable PCT not in PARTITION BY of analytic function or model

	
The unrecognized numeric PCT failure code

	
[owner.]name of relation for which PCT is not enabled

	
2184

	
Expression to enable PCT cannot be rolled up

	
	
[owner.]name of relation for which PCT is not enabled

	
2185

	
No partition key or PMARKER in the SELECT list

	
	
[owner.]name of relation for which PCT_TABLE_REWRITE is not enabled

	
2186

	
GROUP OUTER JOIN is present

	
	

	
2187

	
Materialized view on external table

	
	

9 Advanced Materialized Views

This chapter discusses advanced topics in using materialized views. It contains the following topics:

	
Partitioning and Materialized Views

	
Materialized Views in Analytic Processing Environments

	
Materialized Views and Models

	
Invalidating Materialized Views

	
Security Issues with Materialized Views

	
Altering Materialized Views

Partitioning and Materialized Views

Because of the large volume of data held in a data warehouse, partitioning is an extremely useful option when designing a database. Partitioning the fact tables improves scalability, simplifies system administration, and makes it possible to define local indexes that can be efficiently rebuilt. Partitioning the fact tables also improves the opportunity of fast refreshing the materialized view because this may enable Partition Change Tracking (PCT) refresh on the materialized view. Partitioning a materialized view also has benefits for refresh, because the refresh procedure can then use parallel DML in more scenarios and PCT-based refresh can use truncate partition to efficiently maintain the materialized view. See Oracle Database VLDB and Partitioning Guide for further details about partitioning.

Partition Change Tracking

It is possible and advantageous to track freshness to a finer grain than the entire materialized view. The ability to identify which rows in a materialized view are affected by a certain detail table partition, is known as Partition Change Tracking. When one or more of the detail tables are partitioned, it may be possible to identify the specific rows in the materialized view that correspond to a modified detail partition(s); those rows become stale when a partition is modified while all other rows remain fresh.

You can use PCT to identify which materialized view rows correspond to a particular partition. PCT is also used to support fast refresh after partition maintenance operations on detail tables. For instance, if a detail table partition is truncated or dropped, the affected rows in the materialized view are identified and deleted.

Identifying which materialized view rows are fresh or stale, rather than considering the entire materialized view as stale, allows query rewrite to use those rows that are fresh while in QUERY_REWRITE_INTEGRITY = ENFORCED or TRUSTED modes. Several views, such as DBA_MVIEW_DETAIL_PARTITION, detail which partitions are stale or fresh. Oracle does not rewrite against partial stale materialized views if partition change tracking on the changed table is enabled by the presence of join dependent expression in the materialized view. See "Join Dependent Expression" for more information.

To support PCT, a materialized view must satisfy the following requirements:

	
At least one of the detail tables referenced by the materialized view must be partitioned.

	
Partitioned tables must use either range, list or composite partitioning.

	
The top level partition key must consist of only a single column.

	
The materialized view must contain either the partition key column or a partition marker or ROWID or join dependent expression of the detail table. See Oracle Database PL/SQL Packages and Types Reference for details regarding the DBMS_MVIEW.PMARKER function.

	
If you use a GROUP BY clause, the partition key column or the partition marker or ROWID or join dependent expression must be present in the GROUP BY clause.

	
If you use an analytic window function or the MODEL clause, the partition key column or the partition marker or ROWID or join dependent expression must be present in their respective PARTITION BY subclauses.

	
Data modifications can only occur on the partitioned table. If PCT refresh is being done for a table which has join dependent expression in the materialized view, then data modifications should not have occurred in any of the join dependent tables.

	
The COMPATIBILITY initialization parameter must be a minimum of 9.0.0.0.0.

	
PCT is not supported for a materialized view that refers to views, remote tables, or outer joins.

Partition Key

Partition change tracking requires sufficient information in the materialized view to be able to correlate a detail row in the source partitioned detail table to the corresponding materialized view row. This can be accomplished by including the detail table partition key columns in the SELECT list and, if GROUP BY is used, in the GROUP BY list.

Consider an example of a materialized view storing daily customer sales. The following example uses the sh sample schema and the three detail tables sales, products, and times to create the materialized view. sales table is partitioned by time_id column and products is partitioned by the prod_id column. times is not a partitioned table.

Example 9-1 Partition Key

The following is an example:

CREATE MATERIALIZED VIEW LOG ON SALES WITH ROWID
 (prod_id, time_id, quantity_sold, amount_sold) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON PRODUCTS WITH ROWID
 (prod_id, prod_name, prod_desc) INCLUDING NEW VALUES;
CREATE MATERIALIZED VIEW LOG ON TIMES WITH ROWID
 (time_id, calendar_month_name, calendar_year) INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW cust_dly_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY s.time_id, p.prod_id, p.prod_name;

For cust_dly_sales_mv, PCT is enabled on both the sales table and products table because their respective partitioning key columns time_id and prod_id are in the materialized view.

Join Dependent Expression

An expression consisting of columns from tables directly or indirectly joined through equijoins to the partitioned detail table on the partitioning key and which is either a dimensional attribute or a dimension hierarchical parent of the joining key is called a join dependent expression. The set of tables in the path to detail table are called join dependent tables. Consider the following:

SELECT s.time_id, t.calendar_month_name
FROM sales s, times t WHERE s.time_id = t.time_id;

In this query, times table is a join dependent table since it is joined to sales table on the partitioning key column time_id. Moreover, calendar_month_name is a dimension hierarchical attribute of times.time_id, because calendar_month_name is an attribute of times.mon_id and times.mon_id is a dimension hierarchical parent of times.time_id. Hence, the expression calendar_month_name from times tables is a join dependent expression. Let's consider another example:

SELECT s.time_id, y.calendar_year_name
FROM sales s, times_d d, times_m m, times_y y
WHERE s.time_id = d.time_id AND d.day_id = m.day_id AND m.mon_id = y.mon_id;

Here, times table is denormalized into times_d, times_m and times_y tables. The expression calendar_year_name from times_y table is a join dependent expression and the tables times_d, times_m and times_y are join dependent tables. This is because times_y table is joined indirectly through times_m and times_d tables to sales table on its partitioning key column time_id.

This lets users create materialized views containing aggregates on some level higher than the partitioning key of the detail table. Consider the following example of materialized view storing monthly customer sales.

Example 9-2 Join Dependent Expression

Assuming the presence of materialized view logs defined earlier, the materialized view can be created using the following DDL:

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD DEFERRED REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT t.calendar_month_name, p.prod_id, p.prod_name, COUNT(*),
 SUM(s.quantity_sold), SUM(s.amount_sold),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, p.prod_id, p.prod_name;

Here, you can correlate a detail table row to its corresponding materialized view row using the join dependent table times and the relationship that times.calendar_month_name is a dimensional attribute determined by times.time_id. This enables partition change tracking on sales table. In addition to this, PCT is enabled on products table because of presence of its partitioning key column prod_id in the materialized view.

Partition Marker

The DBMS_MVIEW.PMARKER function is designed to significantly reduce the cardinality of the materialized view (see Example 9-3 for an example). The function returns a partition identifier that uniquely identifies the partition for a specified row within a specified partition table. Therefore, the DBMS_MVIEW.PMARKER function is used instead of the partition key column in the SELECT and GROUP BY clauses.

Unlike the general case of a PL/SQL function in a materialized view, use of the DBMS_MVIEW.PMARKER does not prevent rewrite with that materialized view even when the rewrite mode is QUERY_REWRITE_INTEGRITY = ENFORCED.

As an example of using the PMARKER function, consider calculating a typical number, such as revenue generated by a product category during a given year. If there were 1000 different products sold each month, it would result in 12,000 rows in the materialized view.

Example 9-3 Partition Marker

Consider an example of a materialized view storing the yearly sales revenue for each product category. With approximately hundreds of different products in each product category, including the partitioning key column prod_id of the products table in the materialized view would substantially increase the cardinality. Instead, this materialized view uses the DBMS_MVIEW.PMARKER function, which increases the cardinality of materialized view by a factor of the number of partitions in the products table.

CREATE MATERIALIZED VIEW prod_yr_sales_mv
BUILD DEFERRED
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT DBMS_MVIEW.PMARKER(p.rowid), p.prod_category, t.calendar_year, COUNT(*),
 SUM(s.amount_sold), SUM(s.quantity_sold),
 COUNT(s.amount_sold), COUNT(s.quantity_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY DBMS_MVIEW.PMARKER (p.rowid), p.prod_category, t.calendar_year;

prod_yr_sales_mv includes the DBMS_MVIEW.PMARKER function on the products table in its SELECT list. This enables partition change tracking on products table with significantly less cardinality impact than grouping by the partition key column prod_id. In this example, the desired level of aggregation for the prod_yr_sales_mv is to group by products.prod_category. Using the DBMS_MVIEW.PMARKER function, the materialized view cardinality is increased only by a factor of the number of partitions in the products table. This would generally be significantly less than the cardinality impact of including the partition key columns.

Please note that partition change tracking is enabled on sales table because of presence of join dependent expression calendar_year in the SELECT list.

Partial Rewrite

A subsequent INSERT statement adds a new row to the sales_part3 partition of table sales. At this point, because cust_dly_sales_mv has PCT available on table sales using a partition key, Oracle can identify the stale rows in the materialized view cust_dly_sales_mv corresponding to sales_part3 partition (The other rows are unchanged in their freshness state). Query rewrite cannot identify the fresh portion of materialized views cust_mth_sales_mv and prod_yr_sales_mv because PCT is available on table sales using join dependent expressions. Query rewrite can determine the fresh portion of a materialized view on changes to a detail table only if PCT is available on the detail table using a partition key or partition marker.

Partitioning a Materialized View

Partitioning a materialized view involves defining the materialized view with the standard Oracle partitioning clauses, as illustrated in the following example. This statement creates a materialized view called part_sales_mv, which uses three partitions, can be fast refreshed, and is eligible for query rewrite:

CREATE MATERIALIZED VIEW part_sales_mv
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
 PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3)
BUILD DEFERRED
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT s.cust_id, s.time_id,
 SUM(s.amount_sold) AS sum_dol_sales, SUM(s.quantity_sold) AS sum_unit_sales
 FROM sales s GROUP BY s.time_id, s.cust_id;

Partitioning a Prebuilt Table

Alternatively, a materialized view can be registered to a partitioned prebuilt table as illustrated in the following example:

CREATE TABLE part_sales_tab_mv(time_id, cust_id, sum_dollar_sales, sum_unit_sale)
PARALLEL PARTITION BY RANGE (time_id)
(PARTITION month1
 VALUES LESS THAN (TO_DATE('31-12-1998', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf1,
 PARTITION month2
 VALUES LESS THAN (TO_DATE('31-12-1999', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf2,
PARTITION month3
 VALUES LESS THAN (TO_DATE('31-12-2000', 'DD-MM-YYYY'))
 PCTFREE 0 PCTUSED 99
 STORAGE (INITIAL 64k NEXT 16k PCTINCREASE 0)
 TABLESPACE sf3) AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

CREATE MATERIALIZED VIEW part_sales_tab_mv
ON PREBUILT TABLE
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.cust_id, SUM(s.amount_sold) AS sum_dollar_sales,
 SUM(s.quantity_sold) AS sum_unit_sales
FROM sales s GROUP BY s.time_id, s.cust_id;

In this example, the table part_sales_tab_mv has been partitioned over three months and then the materialized view was registered to use the prebuilt table. This materialized view is eligible for query rewrite because the ENABLE QUERY REWRITE clause has been included.

Benefits of Partitioning a Materialized View

When a materialized view is partitioned on the partitioning key column or join dependent expressions of the detail table, it is more efficient to use a TRUNCATE PARTITION statement to remove one or more partitions of the materialized view during refresh and then repopulate the partition with new data. Oracle Database uses this variant of fast refresh (called PCT refresh) with partition truncation if the following conditions are satisfied in addition to other conditions described in "Partition Change Tracking".

	
The materialized view is partitioned on the partitioning key column or join dependent expressions of the detail table.

	
If PCT is enabled using either the partitioning key column or join expressions, the materialized view should be range or list partitioned.

	
PCT refresh is nonatomic.

Rolling Materialized Views

When a data warehouse or data mart contains a time dimension, it is often desirable to archive the oldest information and then reuse the storage for new information. This is called the rolling window scenario. If the fact tables or materialized views include a time dimension and are horizontally partitioned by the time attribute, then management of rolling materialized views can be reduced to a few fast partition maintenance operations provided the unit of data that is rolled out equals, or is at least aligned with, the range partitions.

If you plan to have rolling materialized views in your data warehouse, you should determine how frequently you plan to perform partition maintenance operations, and you should plan to partition fact tables and materialized views to reduce the amount of system administration overhead required when old data is aged out. An additional consideration is that you might want to use data compression on your infrequently updated partitions.

You are not restricted to using range partitions. For example, a composite partition using both a time value and a key value could result in a good partition solution for your data.

See Chapter 15, "Maintaining the Data Warehouse" for further details regarding CONSIDER FRESH and for details regarding compression.

Materialized Views in Analytic Processing Environments

This section discusses the concepts used by analytic SQL and how relational databases can handle these types of queries. It also illustrates the best approach for creating materialized views using a common scenario.

Cubes

While data warehouse environments typically view data in the form of a star schema, for analytical SQL queries, data is held in the form of a hierarchical cube. A hierarchical cube includes the data aggregated along the rollup hierarchy of each of its dimensions and these aggregations are combined across dimensions. It includes the typical set of aggregations needed for business intelligence queries.

Example 9-4 Hierarchical Cube

Consider a sales data set with two dimensions, each of which has a 4-level hierarchy:

	
Time, which contains (all times), year, quarter, and month.

	
Product, which contains (all products), division, brand, and item.

This means there are 16 aggregate groups in the hierarchical cube. This is because the four levels of time are multiplied by four levels of product to produce the cube. Table 9-1 shows the four levels of each dimension.

Table 9-1 ROLLUP By Time and Product

	ROLLUP By Time	ROLLUP By Product
	
year, quarter, month

	
division, brand, item

	
year, quarter

	
division, brand

	
year

	
division

	
all times

	
all products

Note that as you increase the number of dimensions and levels, the number of groups to calculate increases dramatically. This example involves 16 groups, but if you were to add just two more dimensions with the same number of levels, you would have 4 x 4 x 4 x 4 = 256 different groups. Also, consider that a similar increase in groups occurs if you have multiple hierarchies in your dimensions. For example, the time dimension might have an additional hierarchy of fiscal month rolling up to fiscal quarter and then fiscal year. Handling the explosion of groups has historically been the major challenge in data storage for online analytical processing systems.

Typical online analytical queries slice and dice different parts of the cube comparing aggregations from one level to aggregation from another level. For instance, a query might find sales of the grocery division for the month of January, 2002 and compare them with total sales of the grocery division for all of 2001.

Benefits of Partitioning Materialized Views

Materialized views with multiple aggregate groups will give their best performance for refresh and query rewrite when partitioned appropriately.

PCT refresh in a rolling window scenario requires partitioning at the top level on some level from the time dimension. And, partition pruning for queries rewritten against this materialized view requires partitioning on GROUPING_ID column. Hence, the most effective partitioning scheme for these materialized views is to use composite partitioning (range-list on (time, GROUPING_ID) columns). By partitioning the materialized views this way, you enable:

	
PCT refresh, thereby improving refresh performance.

	
Partition pruning: only relevant aggregate groups will be accessed, thereby greatly reducing the query processing cost.

If you do not want to use PCT refresh, you can just partition by list on GROUPING_ID column.

Compressing Materialized Views

You should consider data compression when using highly redundant data, such as tables with many foreign keys. In particular, materialized views created with the ROLLUP clause are likely candidates. See Oracle Database SQL Language Reference for data compression syntax and restrictions and "Storage And Table Compression" for details regarding compression.

Materialized Views with Set Operators

Oracle Database provides support for materialized views whose defining query involves set operators. Materialized views with set operators can now be created enabled for query rewrite. You can refresh the materialized view using either ON COMMIT or ON DEMAND refresh.

Fast refresh is supported if the defining query has the UNION ALL operator at the top level and each query block in the UNION ALL, meets the requirements of a materialized view with aggregates or materialized view with joins only. Further, the materialized view must include a constant column (known as a UNION ALL marker) that has a distinct value in each query block, which, in the following example, is columns 1 marker and 2 marker.

See "Restrictions on Fast Refresh on Materialized Views with UNION ALL" for detailed restrictions on fast refresh for materialized views with UNION ALL.

Examples of Materialized Views Using UNION ALL

The following examples illustrate creation of fast refreshable materialized views involving UNION ALL.

Example 9-5 Materialized View Using UNION ALL with Two Join Views

To create a UNION ALL materialized view with two join views, the materialized view logs must have the rowid column and, in the following example, the UNION ALL marker is the columns, 1 marker and 2 marker.

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID;
CREATE MATERIALIZED VIEW LOG ON customers WITH ROWID;

CREATE MATERIALIZED VIEW unionall_sales_cust_joins_mv
REFRESH FAST ON COMMIT
ENABLE QUERY REWRITE AS
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 1 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Smith')
UNION ALL
(SELECT c.rowid crid, s.rowid srid, c.cust_id, s.amount_sold, 2 marker
FROM sales s, customers c
WHERE s.cust_id = c.cust_id AND c.cust_last_name = 'Brown');

Example 9-6 Materialized View Using UNION ALL with Joins and Aggregates

The following example shows a UNION ALL of a materialized view with joins and a materialized view with aggregates. A couple of things can be noted in this example. Nulls or constants can be used to ensure that the data types of the corresponding SELECT list columns match. Also, the UNION ALL marker column can be a string literal, which is 'Year' umarker, 'Quarter' umarker, or 'Daily' umarker in the following example:

CREATE MATERIALIZED VIEW LOG ON sales WITH ROWID, SEQUENCE
(amount_sold, time_id)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW LOG ON times WITH ROWID, SEQUENCE
 (time_id, fiscal_year, fiscal_quarter_number, day_number_in_week)
INCLUDING NEW VALUES;

CREATE MATERIALIZED VIEW unionall_sales_mix_mv
REFRESH FAST ON DEMAND AS
(SELECT 'Year' umarker, NULL, NULL, t.fiscal_year,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
 FROM sales s, times t
 WHERE s.time_id = t.time_id
 GROUP BY t.fiscal_year)
UNION ALL
(SELECT 'Quarter' umarker, NULL, NULL, t.fiscal_quarter_number,
 SUM(s.amount_sold) amt, COUNT(s.amount_sold), COUNT(*)
FROM sales s, times t
WHERE s.time_id = t.time_id and t.fiscal_year = 2001
GROUP BY t.fiscal_quarter_number)
UNION ALL
(SELECT 'Daily' umarker, s.rowid rid, t.rowid rid2, t.day_number_in_week,
 s.amount_sold amt, 1, 1
FROM sales s, times t
WHERE s.time_id = t.time_id
AND t.time_id between '01-Jan-01' AND '01-Dec-31');

Materialized Views and Models

Models, which provide array-based computations in SQL, can be used in materialized views. Because the MODEL clause calculations can be expensive, you may want to use two separate materialized views: one for the model calculations and one for the SELECT ... GROUP BY query. For example, instead of using one, long materialized view, you could create the following materialized views:

CREATE MATERIALIZED VIEW my_groupby_mv
REFRESH FAST
ENABLE QUERY REWRITE AS
SELECT country_name country, prod_name prod, calendar_year year,
 SUM(amount_sold) sale, COUNT(amount_sold) cnt, COUNT(*) cntstr
FROM sales, times, customers, countries, products
WHERE sales.time_id = times.time_id AND
 sales.prod_id = products.prod_id AND
 sales.cust_id = customers.cust_id AND
 customers.country_id = countries.country_id
GROUP BY country_name, prod_name, calendar_year;

CREATE MATERIALIZED VIEW my_model_mv
ENABLE QUERY REWRITE AS
SELECT country, prod, year, sale, cnt
FROM my_groupby_mv
MODEL PARTITION BY(country) DIMENSION BY(prod, year)
 MEASURES(sale s) IGNORE NAV
(s['Shorts', 2000] = 0.2 * AVG(s)[CV(), year BETWEEN 1996 AND 1999],
s['Kids Pajama', 2000] = 0.5 * AVG(s)[CV(), year BETWEEN 1995 AND 1999],
s['Boys Pajama', 2000] = 0.6 * AVG(s)[CV(), year BETWEEN 1994 AND 1999],
...
<hundreds of other update rules>);

By using two materialized views, you can incrementally maintain the materialized view my_groupby_mv. The materialized view my_model_mv is on a much smaller data set because it is built on my_groupby_mv and can be maintained by a complete refresh.

Materialized views with models can use complete refresh or PCT refresh only, and are available for partial text query rewrite only.

See Chapter 22, "SQL for Modeling" for further details about model calculations.

Invalidating Materialized Views

Dependencies related to materialized views are automatically maintained to ensure correct operation. When a materialized view is created, the materialized view depends on the detail tables referenced in its definition. Any DML operation, such as an INSERT, or DELETE, UPDATE, or DDL operation on any dependency in the materialized view will cause it to become invalid. To revalidate a materialized view, use the ALTER MATERIALIZED VIEW COMPILE statement.

A materialized view is automatically revalidated when it is referenced. In many cases, the materialized view will be successfully and transparently revalidated. However, if a column has been dropped in a table referenced by a materialized view or the owner of the materialized view did not have one of the query rewrite privileges and that privilege has now been granted to the owner, you should use the following statement to revalidate the materialized view:

ALTER MATERIALIZED VIEW mview_name COMPILE;

The state of a materialized view can be checked by querying the data dictionary views USER_MVIEWS or ALL_MVIEWS. The column STALENESS will show one of the values FRESH, STALE, UNUSABLE, UNKNOWN, UNDEFINED, or NEEDS_COMPILE to indicate whether the materialized view can be used. The state is maintained automatically. However, if the staleness of a materialized view is marked as NEEDS_COMPILE, you could issue an ALTER MATERIALIZED VIEW ... COMPILE statement to validate the materialized view and get the correct staleness state. If the state of a materialized view is UNUSABLE, you must perform a complete refresh to bring the materialized view back to the FRESH state. If the materialized view is based on a prebuilt table that you never refresh, you will need to drop and re-create the materialized view.

Security Issues with Materialized Views

To create a materialized view in your own schema, you must have the CREATE MATERIALIZED VIEW privilege and the SELECT privilege to any tables referenced that are in another schema. To create a materialized view in another schema, you must have the CREATE ANY MATERIALIZED VIEW privilege and the owner of the materialized view needs SELECT privileges to the tables referenced if they are from another schema. Moreover, if you enable query rewrite on a materialized view that references tables outside your schema, you must have the GLOBAL QUERY REWRITE privilege or the QUERY REWRITE object privilege on each table outside your schema.

If the materialized view is on a prebuilt container, the creator, if different from the owner, must have SELECT WITH GRANT privilege on the container table.

If you continue to get a privilege error while trying to create a materialized view and you believe that all the required privileges have been granted, then the problem is most likely due to a privilege not being granted explicitly and trying to inherit the privilege from a role instead. The owner of the materialized view must have explicitly been granted SELECT access to the referenced tables if the tables are in a different schema.

If the materialized view is being created with ON COMMIT REFRESH specified, then the owner of the materialized view requires an additional privilege if any of the tables in the defining query are outside the owner's schema. In that case, the owner requires the ON COMMIT REFRESH system privilege or the ON COMMIT REFRESH object privilege on each table outside the owner's schema.

Querying Materialized Views with Virtual Private Database (VPD)

For all security concerns, a materialized view serves as a view that happens to be materialized when you are directly querying the materialized view. When creating a view or materialized view, the owner needs to have the necessary permissions to access the underlying base relations of the view or materialized view that they are creating. With these permissions, the owner can publish a view or materialized view that other users can access, assuming they have been granted access to the view or materialized view.

Using materialized views with Virtual Private Database is similar. When you create a materialized view, there must not be any VPD policies in effect against the base relations of the materialized view for the owner of the materialized view. However, the owner of the materialized view may establish a VPD policy on the new materialized view. Users who access the materialized view are subject to the VPD policy on the materialized view. However, they are not additionally subject to the VPD policies of the underlying base relations of the materialized view, since security processing of the underlying base relations is performed against the owner of the materialized view.

Using Query Rewrite with Virtual Private Database

When you access a materialized view using query rewrite, the materialized view serves as an access structure much like an index. As such, the security implications for materialized views accessed in this way are much the same as for indexes: all security checks are performed against the relations specified in the request query. The index or materialized view is used to speed the performance of accessing the data, not provide any additional security checks. Thus, the presence of the index or materialized view presents no additional security checking.

This holds true when you are accessing a materialized view using query rewrite in the presence of VPD. The request query is subject to any VPD policies that are present against the relations specified in the query. Query rewrite may rewrite the query to use a materialize view instead of accessing the detail relations, but only if it can guarantee to deliver exactly the same rows as if the rewrite had not occurred. Specifically, query rewrite must retain and respect any VPD policies against the relations specified in the request query. However, any VPD policies against the materialized view itself do not have effect when the materialized view is accessed using query rewrite. This is because the data is already protected by the VPD policies against the relations in the request query.

Restrictions with Materialized Views and Virtual Private Database

Query rewrite does not use its full and partial text match modes with request queries that include relations with active VPD policies, but it does use general rewrite methods. This is because VPD transparently transforms the request query to affect the VPD policy. If query rewrite were to perform a text match transformation against a request query with a VPD policy, the effect would be to negate the VPD policy.

In addition, when you create or refresh a materialized view, the owner of the materialized view must not have any active VPD policies in effect against the base relations of the materialized view, or an error is returned. The materialized view owner must either have no such VPD policies, or any such policy must return NULL. This is because VPD would transparently modify the defining query of the materialized view such that the set of rows contained by the materialized view would not match the set of rows indicated by the materialized view definition.

One way to work around this restriction yet still create a materialized view containing the desired VPD-specified subset of rows is to create the materialized view in a user account that has no active VPD policies against the detail relations of the materialized view. In addition, you can include a predicate in the WHERE clause of the materialized view that embodies the effect of the VPD policy. When query rewrite attempts to rewrite a request query that has that VPD policy, it will match up the VPD-generated predicate on the request query with the predicate you directly specify when you create the materialized view.

Altering Materialized Views

Six modifications can be made to a materialized view. You can:

	
Change its refresh option (FAST/FORCE/COMPLETE/NEVER).

	
Change its refresh mode (ON COMMIT/ON DEMAND).

	
Recompile it.

	
Enable or disable its use for query rewrite.

	
Consider it fresh.

	
Partition maintenance operations.

All other changes are achieved by dropping and then re-creating the materialized view.

The COMPILE clause of the ALTER MATERIALIZED VIEW statement can be used when the materialized view has been invalidated. This compile process is quick, and allows the materialized view to be used by query rewrite again.

	
See Also:

Oracle Database SQL Language Reference for further information about the ALTER MATERIALIZED VIEW statement and "Invalidating Materialized Views"

10 Dimensions

This chapter discusses using dimensions in a data warehouse: It contains the following topics:

	
What are Dimensions?

	
Creating Dimensions

	
Viewing Dimensions

	
Using Dimensions with Constraints

	
Validating Dimensions

	
Altering Dimensions

	
Deleting Dimensions

What are Dimensions?

A dimension is a structure that categorizes data in order to enable users to answer business questions. Commonly used dimensions are customers, products, and time. For example, each sales channel of a clothing retailer might gather and store data regarding sales and reclamations of their Cloth assortment. The retail chain management can build a data warehouse to analyze the sales of its products across all stores over time and help answer questions such as:

	
What is the effect of promoting one product on the sale of a related product that is not promoted?

	
What are the sales of a product before and after a promotion?

	
How does a promotion affect the various distribution channels?

The data in the retailer's data warehouse system has two important components: dimensions and facts. The dimensions are products, customers, promotions, channels, and time. One approach for identifying your dimensions is to review your reference tables, such as a product table that contains everything about a product, or a promotion table containing all information about promotions. The facts are sales (units sold) and profits. A data warehouse contains facts about the sales of each product at on a daily basis.

A typical relational implementation for such a data warehouse is a star schema. The fact information is stored in what is called a fact table, whereas the dimensional information is stored in dimension tables. In our example, each sales transaction record is uniquely defined as for each customer, for each product, for each sales channel, for each promotion, and for each day (time).

	
See Also:

Chapter 19, "Schema Modeling Techniques" for further details

In Oracle Database, the dimensional information itself is stored in a dimension table. In addition, the database object dimension helps to organize and group dimensional information into hierarchies. This represents natural 1:n relationships between columns or column groups (the levels of a hierarchy) that cannot be represented with constraint conditions. Going up a level in the hierarchy is called rolling up the data and going down a level in the hierarchy is called drilling down the data. In the retailer example:

	
Within the time dimension, months roll up to quarters, quarters roll up to years, and years roll up to all years.

	
Within the product dimension, products roll up to subcategories, subcategories roll up to categories, and categories roll up to all products.

	
Within the customer dimension, customers roll up to city. Then cities roll up to state. Then states roll up to country. Then countries roll up to subregion. Finally, subregions roll up to region, as shown in Figure 10-1.

Figure 10-1 Sample Rollup for a Customer Dimension

[image: Description of Figure 10-1 follows]

Data analysis typically starts at higher levels in the dimensional hierarchy and gradually drills down if the situation warrants such analysis.

Dimensions do not have to be defined. However, if your application uses dimensional modeling, it is worth spending time creating them as it can yield significant benefits, because they help query rewrite perform more complex types of rewrite. Dimensions are also beneficial to certain types of materialized view refresh operations and with the SQL Access Advisor. They are only mandatory if you use the SQL Access Advisor (a GUI tool for materialized view and index management) without a workload to recommend which materialized views and indexes to create, drop, or retain.

	
See Also:

Chapter 17, "Basic Query Rewrite" for further details regarding query rewrite and the Oracle Database Performance Tuning Guide for further details regarding the SQL Access Advisor

In spite of the benefits of dimensions, you must not create dimensions in any schema that does not fully satisfy the dimensional relationships described in this chapter. Incorrect results can be returned from queries otherwise.

Creating Dimensions

Before you can create a dimension object, the dimension tables must exist in the database possibly containing the dimension data. For example, if you create a customer dimension, one or more tables must exist that contain the city, state, and country information. In a star schema data warehouse, these dimension tables already exist. It is therefore a simple task to identify which ones will be used.

Now you can draw the hierarchies of a dimension as shown in Figure 10-1. For example, city is a child of state (because you can aggregate city-level data up to state), and country. This hierarchical information will be stored in the database object dimension.

In the case of normalized or partially normalized dimension representation (a dimension that is stored in more than one table), identify how these tables are joined. Note whether the joins between the dimension tables can guarantee that each child-side row joins with one and only one parent-side row. In the case of denormalized dimensions, determine whether the child-side columns uniquely determine the parent-side (or attribute) columns. If you use constraints to represent these relationships, they can be enabled with the NOVALIDATE and RELY clauses if the relationships represented by the constraints are guaranteed by other means.

You may want the capability to skip NULL levels in a dimension. An example of this is with Puerto Rico. You may want Puerto Rico to be included within a region of North America, but not include it within the state category. If you want this capability, use the SKIP WHEN NULL clause. See the sample dimension later in this section for more information and Oracle Database SQL Language Reference for syntax and restrictions.

You create a dimension using either the CREATE DIMENSION statement or the Dimension Wizard in Oracle Enterprise Manager. Within the CREATE DIMENSION statement, use the LEVEL clause to identify the names of the dimension levels.

	
See Also:

Oracle Database SQL Language Reference for a complete description of the CREATE DIMENSION statement

This customer dimension contains a single hierarchy with a geographical rollup, with arrows drawn from the child level to the parent level, as shown in Figure 10-1.

Each arrow in this graph indicates that for any child there is one and only one parent. For example, each city must be contained in exactly one state and each state must be contained in exactly one country. States that belong to more than one country violate hierarchical integrity. Also, you must use the SKIP WHEN NULL clause if you want to include cities that do not belong to a state, such as Washington D.C. Hierarchical integrity is necessary for the correct operation of management functions for materialized views that include aggregates.

For example, you can declare a dimension products_dim, which contains levels product, subcategory, and category:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category) ...

Each level in the dimension must correspond to one or more columns in a table in the database. Thus, level product is identified by the column prod_id in the products table and level subcategory is identified by a column called prod_subcategory in the same table.

In this example, the database tables are denormalized and all the columns exist in the same table. However, this is not a prerequisite for creating dimensions. "Using Normalized Dimension Tables" shows how to create a dimension customers_dim that has a normalized schema design using the JOIN KEY clause.

The next step is to declare the relationship between the levels with the HIERARCHY statement and give that hierarchy a name. A hierarchical relationship is a functional dependency from one level of a hierarchy to the next level in the hierarchy. Using the level names defined previously, the CHILD OF relationship denotes that each child's level value is associated with one and only one parent level value. The following statement declares a hierarchy prod_rollup and defines the relationship between products, subcategory, and category:

HIERARCHY prod_rollup
 (product CHILD OF
 subcategory CHILD OF
 category)

In addition to the 1:n hierarchical relationships, dimensions also include 1:1 attribute relationships between the hierarchy levels and their dependent, determined dimension attributes. For example, the dimension times_dim, as defined in Oracle Database Sample Schemas, has columns fiscal_month_desc, fiscal_month_name, and days_in_fiscal_month. Their relationship is defined as follows:

LEVEL fis_month IS TIMES.FISCAL_MONTH_DESC
...
ATTRIBUTE fis_month DETERMINES
 (fiscal_month_name, days_in_fiscal_month)

The ATTRIBUTE ... DETERMINES clause relates fis_month to fiscal_month_name and days_in_fiscal_month. Note that this is a unidirectional determination. It is only guaranteed, that for a specific fiscal_month, for example, 1999-11, you will find exactly one matching values for fiscal_month_name, for example, November and days_in_fiscal_month, for example, 28. You cannot determine a specific fiscal_month_desc based on the fiscal_month_name, which is November for every fiscal year.

In this example, suppose a query were issued that queried by fiscal_month_name instead of fiscal_month_desc. Because this 1:1 relationship exists between the attribute and the level, an already aggregated materialized view containing fiscal_month_desc can be joined back to the dimension information and used to identify the data.

	
See Also:

Chapter 17, "Basic Query Rewrite" for further details of using dimensional information

A sample dimension definition follows:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory) [SKIP WHEN NULL]
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category)
 ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

Alternatively, the extended_attribute_clause could have been used instead of the attribute_clause, as shown in the following example:

CREATE DIMENSION products_dim
 LEVEL product IS (products.prod_id)
 LEVEL subcategory IS (products.prod_subcategory)
 LEVEL category IS (products.prod_category)
 HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF
 category
)
 ATTRIBUTE product_info LEVEL product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size, prod_status, prod_list_price, prod_min_price)
 ATTRIBUTE subcategory DETERMINES
 (prod_subcategory, prod_subcategory_desc)
 ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

The design, creation, and maintenance of dimensions is part of the design, creation, and maintenance of your data warehouse schema. Once the dimension has been created, verify that it meets these requirements:

	
There must be a 1:n relationship between a parent and children. A parent can have one or more children, but a child can have only one parent.

	
There must be a 1:1 attribute relationship between hierarchy levels and their dependent dimension attributes. For example, if there is a column fiscal_month_desc, then a possible attribute relationship would be fiscal_month_desc to fiscal_month_name. For skip NULL levels, if a row of the relation of a skip level has a NULL value for the level column, then that row must have a NULL value for the attribute-relationship column, too.

	
If the columns of a parent level and child level are in different relations, then the connection between them also requires a 1:n join relationship. Each row of the child table must join with one and only one row of the parent table unless you use the SKIP WHEN NULL clause. This relationship is stronger than referential integrity alone, because it requires that the child join key must be non-null, that referential integrity must be maintained from the child join key to the parent join key, and that the parent join key must be unique.

	
You must ensure (using database constraints if necessary) that the columns of each hierarchy level are non-null unless you use the SKIP WHEN NULL clause and that hierarchical integrity is maintained.

	
An optional join key is a join key that connects the immediate non-skip child (if such a level exists), CHILDLEV, of a skip level to the nearest non-skip ancestor (again, if such a level exists), ANCLEV, of the skip level in the hierarchy. Also, this joinkey is allowed only when CHILDLEV and ANCLEV are defined over different relations.

	
The hierarchies of a dimension can overlap or be disconnected from each other. However, the columns of a hierarchy level cannot be associated with more than one dimension.

	
Join relationships that form cycles in the dimension graph are not supported. For example, a hierarchy level cannot be joined to itself either directly or indirectly.

	
Note:

The information stored with a dimension objects is only declarative. The previously discussed relationships are not enforced with the creation of a dimension object. You should validate any dimension definition with the DBMS_DIMENSION.VALIDATE_DIMENSION procedure, as discussed in "Validating Dimensions".

Dropping and Creating Attributes with Columns

You can use the attribute clause in a CREATE DIMENSION statement to specify one or multiple columns that are uniquely determined by a hierarchy level.

If you use the extended_attribute_clause to create multiple columns determined by a hierarchy level, you can drop one attribute column without dropping them all. Alternatively, you can specify an attribute name for each attribute clause CREATE or ALTER DIMENSION statement so that an attribute name is specified for each attribute clause where multiple level-to-column relationships can be individually specified.

The following statement illustrates how you can drop a single column without dropping all columns:

CREATE DIMENSION products_dim
LEVEL product IS (products.prod_id)
LEVEL subcategory IS (products.prod_subcategory)
LEVEL category IS (products.prod_category)
HIERARCHY prod_rollup (
 product CHILD OF
 subcategory CHILD OF category)
ATTRIBUTE product DETERMINES
 (products.prod_name, products.prod_desc,
 prod_weight_class, prod_unit_of_measure,
 prod_pack_size,prod_status, prod_list_price, prod_min_price)
ATTRIBUTE subcategory_att DETERMINES
 (prod_subcategory, prod_subcategory_desc)
ATTRIBUTE category DETERMINES
 (prod_category, prod_category_desc);

ALTER DIMENSION products_dim
DROP ATTRIBUTE subcategory_att LEVEL subcategory COLUMN prod_subcategory;

	
See Also:

Oracle Database SQL Language Reference for a complete description of the CREATE DIMENSION statement

Multiple Hierarchies

A single dimension definition can contain multiple hierarchies. Suppose our retailer wants to track the sales of certain items over time. The first step is to define the time dimension over which sales will be tracked. Figure 10-2 illustrates a dimension times_dim with two time hierarchies.

Figure 10-2 times_dim Dimension with Two Time Hierarchies

[image: Description of Figure 10-2 follows]

From the illustration, you can construct the hierarchy of the denormalized time_dim dimension's CREATE DIMENSION statement as follows. The complete CREATE DIMENSION statement as well as the CREATE TABLE statement are shown in Oracle Database Sample Schemas.

CREATE DIMENSION times_dim
 LEVEL day IS times.time_id
 LEVEL month IS times.calendar_month_desc
 LEVEL quarter IS times.calendar_quarter_desc
 LEVEL year IS times.calendar_year
 LEVEL fis_week IS times.week_ending_day
 LEVEL fis_month IS times.fiscal_month_desc
 LEVEL fis_quarter IS times.fiscal_quarter_desc
 LEVEL fis_year IS times.fiscal_year
 HIERARCHY cal_rollup (
 day CHILD OF
 month CHILD OF
 quarter CHILD OF
 year
)
 HIERARCHY fis_rollup (
 day CHILD OF
 fis_week CHILD OF
 fis_month CHILD OF
 fis_quarter CHILD OF
 fis_year
) <attribute determination clauses>;

Using Normalized Dimension Tables

The tables used to define a dimension may be normalized or denormalized and the individual hierarchies can be normalized or denormalized. If the levels of a hierarchy come from the same table, it is called a fully denormalized hierarchy. For example, cal_rollup in the times_dim dimension is a denormalized hierarchy. If levels of a hierarchy come from different tables, such a hierarchy is either a fully or partially normalized hierarchy. This section shows how to define a normalized hierarchy.

Suppose the tracking of a customer's location is done by city, state, and country. This data is stored in the tables customers and countries. The customer dimension customers_dim is partially normalized because the data entities cust_id and country_id are taken from different tables. The clause JOIN KEY within the dimension definition specifies how to join together the levels in the hierarchy. The dimension statement is partially shown in the following. The complete CREATE DIMENSION statement as well as the CREATE TABLE statement are shown in Oracle Database Sample Schemas.

CREATE DIMENSION customers_dim
 LEVEL customer IS (customers.cust_id)
 LEVEL city IS (customers.cust_city)
 LEVEL state IS (customers.cust_state_province)
 LEVEL country IS (countries.country_id)
 LEVEL subregion IS (countries.country_subregion)
 LEVEL region IS (countries.country_region)
 HIERARCHY geog_rollup (
 customer CHILD OF
 city CHILD OF
 state CHILD OF
 country CHILD OF
 subregion CHILD OF
 region
 JOIN KEY (customers.country_id) REFERENCES country);

If you use the SKIP WHEN NULL clause, you can use the JOIN KEY clause to link levels that have a missing level in their hierarchy. For example, the following statement enables a state level that has been declared as SKIP WHEN NULL to join city and country:

JOIN KEY (city.country_id) REFERENCES country;

This ensures that the rows at customer and city levels can still be associated with the rows of country, subregion, and region levels.

Viewing Dimensions

Dimensions can be viewed through one of two methods:

	
Using Oracle Enterprise Manager

	
Using the DESCRIBE_DIMENSION Procedure

Using Oracle Enterprise Manager

All of the dimensions that exist in the data warehouse can be viewed using Oracle Enterprise Manager. Select the Dimension object from within the Schema icon to display all of the dimensions. Select a specific dimension to graphically display its hierarchy, levels, and any attributes that have been defined.

Using the DESCRIBE_DIMENSION Procedure

To view the definition of a dimension, use the DESCRIBE_DIMENSION procedure in the DBMS_DIMENSION package. For example, if a dimension is created in the sh sample schema with the following statements:

CREATE DIMENSION channels_dim
 LEVEL channel IS (channels.channel_id)
 LEVEL channel_class IS (channels.channel_class)
 HIERARCHY channel_rollup (
 channel CHILD OF channel_class)
 ATTRIBUTE channel DETERMINES (channel_desc)
 ATTRIBUTE channel_class DETERMINES (channel_class);

Execute the DESCRIBE_DIMENSION procedure as follows:

SET SERVEROUTPUT ON FORMAT WRAPPED; --to improve the display of info
EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');

You then see the following output results:

EXECUTE DBMS_DIMENSION.DESCRIBE_DIMENSION('SH.CHANNELS_DIM');
 DIMENSION SH.CHANNELS_DIM
 LEVEL CHANNEL IS SH.CHANNELS.CHANNEL_ID
 LEVEL CHANNEL_CLASS IS SH.CHANNELS.CHANNEL_CLASS

 HIERARCHY CHANNEL_ROLLUP (
 CHANNEL CHILD OF
 CHANNEL_CLASS)

 ATTRIBUTE CHANNEL LEVEL CHANNEL DETERMINES
SH.CHANNELS.CHANNEL_DESC
 ATTRIBUTE CHANNEL_CLASS LEVEL CHANNEL_CLASS DETERMINES
SH.CHANNELS.CHANNEL_CLASS

Using Dimensions with Constraints

Constraints play an important role with dimensions. Full referential integrity is sometimes enabled in data warehouses, but not always. This is because operational databases normally have full referential integrity and you can ensure that the data flowing into your data warehouse never violates the already established integrity rules.

It is recommended that constraints be enabled and, if validation time is a concern, then the NOVALIDATE clause should be used as follows:

ENABLE NOVALIDATE CONSTRAINT pk_time;

Primary and foreign keys should be implemented also. Referential integrity constraints and NOT NULL constraints on the fact tables provide information that query rewrite can use to extend the usefulness of materialized views.

In addition, you should use the RELY clause to inform query rewrite that it can rely upon the constraints being correct as follows:

ALTER TABLE time MODIFY CONSTRAINT pk_time RELY;

This information is also used for query rewrite. See Chapter 17, "Basic Query Rewrite" for more information.

If you use the SKIP WHEN NULL clause, at least one of the referenced level columns should not have NOT NULL constraints.

Validating Dimensions

The information of a dimension object is declarative only and not enforced by the database. If the relationships described by the dimensions are incorrect, incorrect results could occur. Therefore, you should verify the relationships specified by CREATE DIMENSION using the DBMS_DIMENSION.VALIDATE_DIMENSION procedure periodically.

This procedure is easy to use and has only four parameters:

	
dimension: the owner and name.

	
incremental: set to TRUE to check only the new rows for tables of this dimension.

	
check_nulls: set to TRUE to verify that all columns that are not in the levels containing a SKIP WHEN NULL clause are not null.

	
statement_id: a user-supplied unique identifier to identify the result of each run of the procedure.

The following example validates the dimension TIME_FN in the sh schema:

@utldim.sql
EXECUTE DBMS_DIMENSION.VALIDATE_DIMENSION ('SH.TIME_FN', FALSE, TRUE,
 'my first example');

Before running the VALIDATE_DIMENSION procedure, you need to create a local table, DIMENSION_EXCEPTIONS, by running the provided script utldim.sql. If the VALIDATE_DIMENSION procedure encounters any errors, they are placed in this table. Querying this table will identify the exceptions that were found. The following illustrates a sample:

SELECT * FROM dimension_exceptions
WHERE statement_id = 'my first example';

STATEMENT_ID OWNER TABLE_NAME DIMENSION_NAME RELATIONSHIP BAD_ROWID
------------ ----- ---------- -------------- ------------ ---------
my first example SH MONTH TIME_FN FOREIGN KEY AAAAuwAAJAAAARwAAA

However, rather than query this table, it may be better to query the rowid of the invalid row to retrieve the actual row that has violated the constraint. In this example, the dimension TIME_FN is checking a table called month. It has found a row that violates the constraints. Using the rowid, you can see exactly which row in the month table is causing the problem, as in the following:

SELECT * FROM month
WHERE rowid IN (SELECT bad_rowid
 FROM dimension_exceptions
 WHERE statement_id = 'my first example');

MONTH QUARTER FISCAL_QTR YEAR FULL_MONTH_NAME MONTH_NUMB
------ ------- ---------- ---- --------------- ----------
199903 19981 19981 1998 March 3

Altering Dimensions

You can modify a dimension using the ALTER DIMENSION statement. You can add or drop a level, hierarchy, or attribute from the dimension using this command.

Referring to the time dimension in Figure 10-2, you can remove the attribute fis_year, drop the hierarchy fis_rollup, or remove the level fiscal_year. In addition, you can add a new level called f_year as in the following:

ALTER DIMENSION times_dim DROP ATTRIBUTE fis_year;
ALTER DIMENSION times_dim DROP HIERARCHY fis_rollup;
ALTER DIMENSION times_dim DROP LEVEL fis_year;
ALTER DIMENSION times_dim ADD LEVEL f_year IS times.fiscal_year;

If you used the extended_attribute_clause when creating the dimension, you can drop one attribute column without dropping all attribute columns. This is illustrated in "Dropping and Creating Attributes with Columns", which shows the following statement:

ALTER DIMENSION product_dim
DROP ATTRIBUTE size LEVEL prod_type COLUMN Prod_TypeSize;

If you try to remove anything with further dependencies inside the dimension, Oracle Database rejects the altering of the dimension. A dimension becomes invalid if you change any schema object that the dimension is referencing. For example, if the table on which the dimension is defined is altered, the dimension becomes invalid.

You can modify a dimension by adding a level containing a SKIP WHEN NULL clause, as in the following statement:

ALTER DIMENSION times_dim
ADD LEVEL f_year IS times.fiscal_year SKIP WHEN NULL;

You cannot, however, modify a level that contains a SKIP WHEN NULL clause. Instead, you need to drop the level and re-create it.

To check the status of a dimension, view the contents of the column invalid in the ALL_DIMENSIONS data dictionary view. To revalidate the dimension, use the COMPILE option as follows:

ALTER DIMENSION times_dim COMPILE;

Dimensions can also be modified or deleted using Oracle Enterprise Manager.

Deleting Dimensions

A dimension is removed using the DROP DIMENSION statement. For example, you could issue the following statement:

DROP DIMENSION times_dim;

Part IV

Managing the Data Warehouse Environment

This section discusses the tasks necessary for managing a data warehouse.

It contains the following chapters:

	
Chapter 11, "Overview of Extraction, Transformation, and Loading"

	
Chapter 12, "Extraction in Data Warehouses"

	
Chapter 13, "Transportation in Data Warehouses"

	
Chapter 14, "Loading and Transformation"

	
Chapter 15, "Maintaining the Data Warehouse"

	
Chapter 16, "Change Data Capture"

11 Overview of Extraction, Transformation, and Loading

This chapter discusses the process of extracting, transporting, transforming, and loading data in a data warehousing environment. It includes the following topics:

	
Overview of ETL in Data Warehouses

	
ETL Tools for Data Warehouses

Overview of ETL in Data Warehouses

You need to load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To do this, data from one or more operational systems needs to be extracted and copied into the data warehouse. The challenge in data warehouse environments is to integrate, rearrange and consolidate large volumes of data over many systems, thereby providing a new unified information base for business intelligence.

The process of extracting data from source systems and bringing it into the data warehouse is commonly called ETL, which stands for extraction, transformation, and loading. Note that ETL refers to a broad process, and not three well-defined steps. The acronym ETL is perhaps too simplistic, because it omits the transportation phase and implies that each of the other phases of the process is distinct. Nevertheless, the entire process is known as ETL.

The methodology and tasks of ETL have been well known for many years, and are not necessarily unique to data warehouse environments: a wide variety of proprietary applications and database systems are the IT backbone of any enterprise. Data has to be shared between applications or systems, trying to integrate them, giving at least two applications the same picture of the world. This data sharing was mostly addressed by mechanisms similar to what we now call ETL.

ETL Basics in Data Warehousing

What happens during the ETL process? The following tasks are the main actions in the process.

Extraction of Data

During extraction, the desired data is identified and extracted from many different sources, including database systems and applications. Very often, it is not possible to identify the specific subset of interest, therefore more data than necessary has to be extracted, so the identification of the relevant data will be done at a later point in time. Depending on the source system's capabilities (for example, operating system resources), some transformations may take place during this extraction process. The size of the extracted data varies from hundreds of kilobytes up to gigabytes, depending on the source system and the business situation. The same is true for the time delta between two (logically) identical extractions: the time span may vary between days/hours and minutes to near real-time. Web server log files, for example, can easily grow to hundreds of megabytes in a very short period of time.

Transportation of Data

After data is extracted, it has to be physically transported to the target system or to an intermediate system for further processing. Depending on the chosen way of transportation, some transformations can be done during this process, too. For example, a SQL statement which directly accesses a remote target through a gateway can concatenate two columns as part of the SELECT statement.

The emphasis in many of the examples in this section is scalability. Many long-time users of Oracle Database are experts in programming complex data transformation logic using PL/SQL. These chapters suggest alternatives for many such data manipulation operations, with a particular emphasis on implementations that take advantage of Oracle's new SQL functionality, especially for ETL and the parallel query infrastructure.

ETL Tools for Data Warehouses

Designing and maintaining the ETL process is often considered one of the most difficult and resource-intensive portions of a data warehouse project. Many data warehousing projects use ETL tools to manage this process. Oracle Warehouse Builder, for example, provides ETL capabilities and takes advantage of inherent database abilities. Other data warehouse builders create their own ETL tools and processes, either inside or outside the database.

Besides the support of extraction, transformation, and loading, there are some other tasks that are important for a successful ETL implementation as part of the daily operations of the data warehouse and its support for further enhancements. Besides the support for designing a data warehouse and the data flow, these tasks are typically addressed by ETL tools such as Oracle Warehouse Builder.

Oracle is not an ETL tool and does not provide a complete solution for ETL. However, Oracle does provide a rich set of capabilities that can be used by both ETL tools and customized ETL solutions. Oracle offers techniques for transporting data between Oracle databases, for transforming large volumes of data, and for quickly loading new data into a data warehouse.

Daily Operations in Data Warehouses

The successive loads and transformations must be scheduled and processed in a specific order. Depending on the success or failure of the operation or parts of it, the result must be tracked and subsequent, alternative processes might be started. The control of the progress as well as the definition of a business workflow of the operations are typically addressed by ETL tools such as Oracle Warehouse Builder.

Evolution of the Data Warehouse

As the data warehouse is a living IT system, sources and targets might change. Those changes must be maintained and tracked through the lifespan of the system without overwriting or deleting the old ETL process flow information. To build and keep a level of trust about the information in the warehouse, the process flow of each individual record in the warehouse can be reconstructed at any point in time in the future in an ideal case.

12 Extraction in Data Warehouses

This chapter discusses extraction, which is the process of taking data from an operational system and moving it to your data warehouse or staging system. The chapter discusses:

	
Overview of Extraction in Data Warehouses

	
Introduction to Extraction Methods in Data Warehouses

	
Data Warehousing Extraction Examples

Overview of Extraction in Data Warehouses

Extraction is the operation of extracting data from a source system for further use in a data warehouse environment. This is the first step of the ETL process. After the extraction, this data can be transformed and loaded into the data warehouse.

The source systems for a data warehouse are typically transaction processing applications. For example, one of the source systems for a sales analysis data warehouse might be an order entry system that records all of the current order activities.

Designing and creating the extraction process is often one of the most time-consuming tasks in the ETL process and, indeed, in the entire data warehousing process. The source systems might be very complex and poorly documented, and thus determining which data needs to be extracted can be difficult. The data has to be extracted normally not only once, but several times in a periodic manner to supply all changed data to the data warehouse and keep it up-to-date. Moreover, the source system typically cannot be modified, nor can its performance or availability be adjusted, to accommodate the needs of the data warehouse extraction process.

These are important considerations for extraction and ETL in general. This chapter, however, focuses on the technical considerations of having different kinds of sources and extraction methods. It assumes that the data warehouse team has already identified the data that will be extracted, and discusses common techniques used for extracting data from source databases.

Designing this process means making decisions about the following two main aspects:

	
Which extraction method do I choose?

This influences the source system, the transportation process, and the time needed for refreshing the warehouse.

	
How do I provide the extracted data for further processing?

This influences the transportation method, and the need for cleaning and transforming the data.

Introduction to Extraction Methods in Data Warehouses

The extraction method you should choose is highly dependent on the source system and also from the business needs in the target data warehouse environment. Very often, there is no possibility to add additional logic to the source systems to enhance an incremental extraction of data due to the performance or the increased workload of these systems. Sometimes even the customer is not allowed to add anything to an out-of-the-box application system.

Logical Extraction Methods

There are two types of logical extraction:

	
Full Extraction

	
Incremental Extraction

Full Extraction

The data is extracted completely from the source system. Because this extraction reflects all the data currently available on the source system, there's no need to keep track of changes to the data source since the last successful extraction. The source data will be provided as-is and no additional logical information (for example, timestamps) is necessary on the source site. An example for a full extraction may be an export file of a distinct table or a remote SQL statement scanning the complete source table.

Incremental Extraction

At a specific point in time, only the data that has changed since a well-defined event back in history will be extracted. This event may be the last time of extraction or a more complex business event like the last booking day of a fiscal period. To identify this delta change there must be a possibility to identify all the changed information since this specific time event. This information can be either provided by the source data itself such as an application column, reflecting the last-changed timestamp or a change table where an appropriate additional mechanism keeps track of the changes besides the originating transactions. In most cases, using the latter method means adding extraction logic to the source system.

Many data warehouses do not use any change-capture techniques as part of the extraction process. Instead, entire tables from the source systems are extracted to the data warehouse or staging area, and these tables are compared with a previous extract from the source system to identify the changed data. This approach may not have significant impact on the source systems, but it clearly can place a considerable burden on the data warehouse processes, particularly if the data volumes are large.

Oracle's Change Data Capture (CDC) mechanism can extract and maintain such delta information. See Chapter 16, "Change Data Capture" for further details about the Change Data Capture framework.

Physical Extraction Methods

Depending on the chosen logical extraction method and the capabilities and restrictions on the source side, the extracted data can be physically extracted by two mechanisms. The data can either be extracted online from the source system or from an offline structure. Such an offline structure might already exist or it might be generated by an extraction routine.

There are the following methods of physical extraction:

	
Online Extraction

	
Offline Extraction

Online Extraction

The data is extracted directly from the source system itself. The extraction process can connect directly to the source system to access the source tables themselves or to an intermediate system that stores the data in a preconfigured manner (for example, snapshot logs or change tables). Note that the intermediate system is not necessarily physically different from the source system.

With online extractions, you need to consider whether the distributed transactions are using original source objects or prepared source objects.

Offline Extraction

The data is not extracted directly from the source system but is staged explicitly outside the original source system. The data already has an existing structure (for example, redo logs, archive logs or transportable tablespaces) or was created by an extraction routine.

You should consider the following structures:

	
Flat files

Data in a defined, generic format. Additional information about the source object is necessary for further processing.

	
Dump files

Oracle-specific format. Information about the containing objects may or may not be included, depending on the chosen utility.

	
Redo and archive logs

Information is in a special, additional dump file.

	
Transportable tablespaces

A powerful way to extract and move large volumes of data between Oracle databases. A more detailed example of using this feature to extract and transport data is provided in Chapter 13, "Transportation in Data Warehouses". Oracle recommends that you use transportable tablespaces whenever possible, because they can provide considerable advantages in performance and manageability over other extraction techniques.

See Oracle Database Utilities for more information on using export/import.

Change Data Capture

An important consideration for extraction is incremental extraction, also called Change Data Capture. If a data warehouse extracts data from an operational system on a nightly basis, then the data warehouse requires only the data that has changed since the last extraction (that is, the data that has been modified in the past 24 hours). Change Data Capture is also the key-enabling technology for providing near real-time, or on-time, data warehousing.

When it is possible to efficiently identify and extract only the most recently changed data, the extraction process (as well as all downstream operations in the ETL process) can be much more efficient, because it must extract a much smaller volume of data. Unfortunately, for many source systems, identifying the recently modified data may be difficult or intrusive to the operation of the system. Change Data Capture is typically the most challenging technical issue in data extraction.

Because change data capture is often desirable as part of the extraction process and it might not be possible to use the Change Data Capture mechanism, this section describes several techniques for implementing a self-developed change capture on Oracle Database source systems:

	
Timestamps

	
Partitioning

	
Triggers

These techniques are based upon the characteristics of the source systems, or may require modifications to the source systems. Thus, each of these techniques must be carefully evaluated by the owners of the source system prior to implementation.

Each of these techniques can work in conjunction with the data extraction technique discussed previously. For example, timestamps can be used whether the data is being unloaded to a file or accessed through a distributed query. See Chapter 16, "Change Data Capture" for further details.

Timestamps

The tables in some operational systems have timestamp columns. The timestamp specifies the time and date that a given row was last modified. If the tables in an operational system have columns containing timestamps, then the latest data can easily be identified using the timestamp columns. For example, the following query might be useful for extracting today's data from an orders table:

SELECT * FROM orders
WHERE TRUNC(CAST(order_date AS date),'dd') =
 TO_DATE(SYSDATE,'dd-mon-yyyy');

If the timestamp information is not available in an operational source system, you will not always be able to modify the system to include timestamps. Such modification would require, first, modifying the operational system's tables to include a new timestamp column and then creating a trigger to update the timestamp column following every operation that modifies a given row.

Partitioning

Some source systems might use range partitioning, such that the source tables are partitioned along a date key, which allows for easy identification of new data. For example, if you are extracting from an orders table, and the orders table is partitioned by week, then it is easy to identify the current week's data.

Triggers

Triggers can be created in operational systems to keep track of recently updated records. They can then be used in conjunction with timestamp columns to identify the exact time and date when a given row was last modified. You do this by creating a trigger on each source table that requires change data capture. Following each DML statement that is executed on the source table, this trigger updates the timestamp column with the current time. Thus, the timestamp column provides the exact time and date when a given row was last modified.

A similar internalized trigger-based technique is used for Oracle materialized view logs. These logs are used by materialized views to identify changed data, and these logs are accessible to end users. However, the format of the materialized view logs is not documented and might change over time.

If you want to use a trigger-based mechanism, use synchronous change data capture. It is recommended that you use synchronous Change Data Capture for trigger based change capture, because CDC provides an externalized interface for accessing the change information and provides a framework for maintaining the distribution of this information to various clients.

Materialized view logs rely on triggers, but they provide an advantage in that the creation and maintenance of this change-data system is largely managed by the database.

However, Oracle recommends the usage of synchronous Change Data Capture for trigger-based change capture, since CDC provides an externalized interface for accessing the change information and provides a framework for maintaining the distribution of this information to various clients

Trigger-based techniques might affect performance on the source systems, and this impact should be carefully considered prior to implementation on a production source system.

Data Warehousing Extraction Examples

You can extract data in two ways:

	
Extraction Using Data Files

	
Extraction Through Distributed Operations

Extraction Using Data Files

Most database systems provide mechanisms for exporting or unloading data from the internal database format into flat files. Extracts from mainframe systems often use COBOL programs, but many databases, as well as third-party software vendors, provide export or unload utilities.

Data extraction does not necessarily mean that entire database structures are unloaded in flat files. In many cases, it may be appropriate to unload entire database tables or objects. In other cases, it may be more appropriate to unload only a subset of a given table such as the changes on the source system since the last extraction or the results of joining multiple tables together. Different extraction techniques vary in their capabilities to support these two scenarios.

When the source system is an Oracle database, several alternatives are available for extracting data into files:

	
Extracting into Flat Files Using SQL*Plus

	
Extracting into Flat Files Using OCI or Pro*C Programs

	
Exporting into Export Files Using the Export Utility

	
Extracting into Export Files Using External Tables

Extracting into Flat Files Using SQL*Plus

The most basic technique for extracting data is to execute a SQL query in SQL*Plus and direct the output of the query to a file. For example, to extract a flat file, country_city.log, with the pipe sign as delimiter between column values, containing a list of the cities in the US in the tables countries and customers, the following SQL script could be run:

SET echo off SET pagesize 0 SPOOL country_city.log
SELECT distinct t1.country_name ||'|'|| t2.cust_city
FROM countries t1, customers t2 WHERE t1.country_id = t2.country_id
AND t1.country_name= 'United States of America';
SPOOL off

The exact format of the output file can be specified using SQL*Plus system variables.

This extraction technique offers the advantage of storing the result in a customized format. Note that, using the external table data pump unload facility, you can also extract the result of an arbitrary SQL operation. The example previously extracts the results of a join.

This extraction technique can be parallelized by initiating multiple, concurrent SQL*Plus sessions, each session running a separate query representing a different portion of the data to be extracted. For example, suppose that you wish to extract data from an orders table, and that the orders table has been range partitioned by month, with partitions orders_jan1998, orders_feb1998, and so on. To extract a single year of data from the orders table, you could initiate 12 concurrent SQL*Plus sessions, each extracting a single partition. The SQL script for one such session could be:

SPOOL order_jan.dat
SELECT * FROM orders PARTITION (orders_jan1998);
SPOOL OFF

These 12 SQL*Plus processes would concurrently spool data to 12 separate files. You can then concatenate them if necessary (using operating system utilities) following the extraction. If you are planning to use SQL*Loader for loading into the target, these 12 files can be used as is for a parallel load with 12 SQL*Loader sessions. See Chapter 13, "Transportation in Data Warehouses" for an example.

Even if the orders table is not partitioned, it is still possible to parallelize the extraction either based on logical or physical criteria. The logical method is based on logical ranges of column values, for example:

SELECT ... WHERE order_date
BETWEEN TO_DATE('01-JAN-99') AND TO_DATE('31-JAN-99');

The physical method is based on a range of values. By viewing the data dictionary, it is possible to identify the Oracle Database data blocks that make up the orders table. Using this information, you could then derive a set of rowid-range queries for extracting data from the orders table:

SELECT * FROM orders WHERE rowid BETWEEN value1 and value2;

Parallelizing the extraction of complex SQL queries is sometimes possible, although the process of breaking a single complex query into multiple components can be challenging. In particular, the coordination of independent processes to guarantee a globally consistent view can be difficult. Unlike the SQL*Plus approach, using the external table data pump unload functionality provides transparent parallel capabilities.

Note that all parallel techniques can use considerably more CPU and I/O resources on the source system, and the impact on the source system should be evaluated before parallelizing any extraction technique.

Extracting into Flat Files Using OCI or Pro*C Programs

OCI programs (or other programs using Oracle call interfaces, such as Pro*C programs), can also be used to extract data. These techniques typically provide improved performance over the SQL*Plus approach, although they also require additional programming. Like the SQL*Plus approach, an OCI program can extract the results of any SQL query. Furthermore, the parallelization techniques described for the SQL*Plus approach can be readily applied to OCI programs as well.

When using OCI or SQL*Plus for extraction, you need additional information besides the data itself. At minimum, you need information about the extracted columns. It is also helpful to know the extraction format, which might be the separator between distinct columns.

Exporting into Export Files Using the Export Utility

The Export utility allows tables (including data) to be exported into Oracle Database export files. Unlike the SQL*Plus and OCI approaches, which describe the extraction of the results of a SQL statement, Export provides a mechanism for extracting database objects. Thus, Export differs from the previous approaches in several important ways:

	
The export files contain metadata as well as data. An export file contains not only the raw data of a table, but also information on how to re-create the table, potentially including any indexes, constraints, grants, and other attributes associated with that table.

	
A single export file may contain a subset of a single object, many database objects, or even an entire schema.

	
Export cannot be directly used to export the results of a complex SQL query. Export can be used only to extract subsets of distinct database objects.

	
The output of the Export utility must be processed using the Import utility.

Oracle provides the original Export and Import utilities for backward compatibility and the data pump export/import infrastructure for high-performant, scalable and parallel extraction. See Oracle Database Utilities for further details.

Extracting into Export Files Using External Tables

In addition to the Export Utility, you can use external tables to extract the results from any SELECT operation. The data is stored in the platform independent, Oracle-internal data pump format and can be processed as regular external table on the target system. The following example extracts the result of a join operation in parallel into the four specified files. The only allowed external table type for extracting data is the Oracle-internal format ORACLE_DATAPUMP.

CREATE DIRECTORY def_dir AS '/net/dlsun48/private/hbaer/WORK/FEATURES/et';
DROP TABLE extract_cust;
CREATE TABLE extract_cust
ORGANIZATION EXTERNAL
(TYPE ORACLE_DATAPUMP DEFAULT DIRECTORY def_dir ACCESS PARAMETERS
(NOBADFILE NOLOGFILE)
LOCATION ('extract_cust1.exp', 'extract_cust2.exp', 'extract_cust3.exp',
 'extract_cust4.exp'))
PARALLEL 4 REJECT LIMIT UNLIMITED AS
SELECT c.*, co.country_name, co.country_subregion, co.country_region
FROM customers c, countries co where co.country_id=c.country_id;

The total number of extraction files specified limits the maximum degree of parallelism for the write operation. Note that the parallelizing of the extraction does not automatically parallelize the SELECT portion of the statement.

Unlike using any kind of export/import, the metadata for the external table is not part of the created files when using the external table data pump unload. To extract the appropriate metadata for the external table, use the DBMS_METADATA package, as illustrated in the following statement:

SET LONG 2000
SELECT DBMS_METADATA.GET_DDL('TABLE','EXTRACT_CUST') FROM DUAL;

Extraction Through Distributed Operations

Using distributed-query technology, one Oracle database can directly query tables located in various different source systems, such as another Oracle database or a legacy system connected with the Oracle gateway technology. Specifically, a data warehouse or staging database can directly access tables and data located in a connected source system. Gateways are another form of distributed-query technology. Gateways allow an Oracle database (such as a data warehouse) to access database tables stored in remote, non-Oracle databases. This is the simplest method for moving data between two Oracle databases because it combines the extraction and transformation into a single step, and requires minimal programming. However, this is not always feasible.

Suppose that you wanted to extract a list of employee names with department names from a source database and store this data into the data warehouse. Using an Oracle Net connection and distributed-query technology, this can be achieved using a single SQL statement:

CREATE TABLE country_city AS SELECT distinct t1.country_name, t2.cust_city
FROM countries@source_db t1, customers@source_db t2
WHERE t1.country_id = t2.country_id
AND t1.country_name='United States of America';

This statement creates a local table in a data mart, country_city, and populates it with data from the countries and customers tables on the source system.

This technique is ideal for moving small volumes of data. However, the data is transported from the source system to the data warehouse through a single Oracle Net connection. Thus, the scalability of this technique is limited. For larger data volumes, file-based data extraction and transportation techniques are often more scalable and thus more appropriate.

See Oracle Database Heterogeneous Connectivity Administrator's Guide and Oracle Database Concepts for more information on distributed queries.

13 Transportation in Data Warehouses

The following topics provide information about transporting data into a data warehouse:

	
Overview of Transportation in Data Warehouses

	
Introduction to Transportation Mechanisms in Data Warehouses

Overview of Transportation in Data Warehouses

Transportation is the operation of moving data from one system to another system. In a data warehouse environment, the most common requirements for transportation are in moving data from:

	
A source system to a staging database or a data warehouse database

	
A staging database to a data warehouse

	
A data warehouse to a data mart

Transportation is often one of the simpler portions of the ETL process, and can be integrated with other portions of the process. For example, as shown in Chapter 12, "Extraction in Data Warehouses", distributed query technology provides a mechanism for both extracting and transporting data.

Introduction to Transportation Mechanisms in Data Warehouses

You have three basic choices for transporting data in warehouses:

	
Transportation Using Flat Files

	
Transportation Through Distributed Operations

	
Transportation Using Transportable Tablespaces

Transportation Using Flat Files

The most common method for transporting data is by the transfer of flat files, using mechanisms such as FTP or other remote file system access protocols. Data is unloaded or exported from the source system into flat files using techniques discussed in Chapter 12, "Extraction in Data Warehouses", and is then transported to the target platform using FTP or similar mechanisms.

Because source systems and data warehouses often use different operating systems and database systems, using flat files is often the simplest way to exchange data between heterogeneous systems with minimal transformations. However, even when transporting data between homogeneous systems, flat files are often the most efficient and most easy-to-manage mechanism for data transfer.

Transportation Through Distributed Operations

Distributed queries, either with or without gateways, can be an effective mechanism for extracting data. These mechanisms also transport the data directly to the target systems, thus providing both extraction and transformation in a single step. Depending on the tolerable impact on time and system resources, these mechanisms can be well suited for both extraction and transformation.

As opposed to flat file transportation, the success or failure of the transportation is recognized immediately with the result of the distributed query or transaction. See Chapter 12, "Extraction in Data Warehouses" for further information.

Transportation Using Transportable Tablespaces

Oracle transportable tablespaces are the fastest way for moving large volumes of data between two Oracle databases. Previous to the introduction of transportable tablespaces, the most scalable data transportation mechanisms relied on moving flat files containing raw data. These mechanisms required that data be unloaded or exported into files from the source database, Then, after transportation, these files were loaded or imported into the target database. Transportable tablespaces entirely bypass the unload and reload steps.

Using transportable tablespaces, Oracle data files (containing table data, indexes, and almost every other Oracle database object) can be directly transported from one database to another. Furthermore, like import and export, transportable tablespaces provide a mechanism for transporting metadata in addition to transporting data.

Transportable tablespaces have some limitations: source and target systems must be running Oracle8i (or higher), must use the same character set, and, prior to Oracle Database 10g, must run on the same operating system. For details on how to transport tablespace between operating systems, see Oracle Database Concepts.

The most common applications of transportable tablespaces in data warehouses are in moving data from a staging database to a data warehouse, or in moving data from a data warehouse to a data mart.

Transportable Tablespaces Example

Suppose that you have a data warehouse containing sales data, and several data marts that are refreshed monthly. Also suppose that you are going to move one month of sales data from the data warehouse to the data mart.

Step 1 Place the Data to be Transported into its own Tablespace

The current month's data must be placed into a separate tablespace in order to be transported. In this example, you have a tablespace ts_temp_sales, which will hold a copy of the current month's data. Using the CREATE TABLE ... AS SELECT statement, the current month's data can be efficiently copied to this tablespace:

CREATE TABLE temp_jan_sales NOLOGGING TABLESPACE ts_temp_sales
AS SELECT * FROM sales
WHERE time_id BETWEEN '31-DEC-1999' AND '01-FEB-2000';

Following this operation, the tablespace ts_temp_sales is set to read-only:

ALTER TABLESPACE ts_temp_sales READ ONLY;

A tablespace cannot be transported unless there are no active transactions modifying the tablespace. Setting the tablespace to read-only enforces this.

The tablespace ts_temp_sales may be a tablespace that has been especially created to temporarily store data for use by the transportable tablespace features. Following "Copy the Datafiles and Export File to the Target System", this tablespace can be set to read/write, and, if desired, the table temp_jan_sales can be dropped, or the tablespace can be re-used for other transportations or for other purposes.

In a given transportable tablespace operation, all of the objects in a given tablespace are transported. Although only one table is being transported in this example, the tablespace ts_temp_sales could contain multiple tables. For example, perhaps the data mart is refreshed not only with the new month's worth of sales transactions, but also with a new copy of the customer table. Both of these tables could be transported in the same tablespace. Moreover, this tablespace could also contain other database objects such as indexes, which would also be transported.

Additionally, in a given transportable-tablespace operation, multiple tablespaces can be transported at the same time. This makes it easier to move very large volumes of data between databases. Note, however, that the transportable tablespace feature can only transport a set of tablespaces which contain a complete set of database objects without dependencies on other tablespaces. For example, an index cannot be transported without its table, nor can a partition be transported without the rest of the table. You can use the DBMS_TTS package to check that a tablespace is transportable.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the DBMS_TTS package

In this step, we have copied the January sales data into a separate tablespace; however, in some cases, it may be possible to leverage the transportable tablespace feature without even moving data to a separate tablespace. If the sales table has been partitioned by month in the data warehouse and if each partition is in its own tablespace, then it may be possible to directly transport the tablespace containing the January data. Suppose the January partition, sales_jan2000, is located in the tablespace ts_sales_jan2000. Then the tablespace ts_sales_jan2000 could potentially be transported, rather than creating a temporary copy of the January sales data in the ts_temp_sales.

However, the same conditions must be satisfied in order to transport the tablespace ts_sales_jan2000 as are required for the specially created tablespace. First, this tablespace must be set to READ ONLY. Second, because a single partition of a partitioned table cannot be transported without the remainder of the partitioned table also being transported, it is necessary to exchange the January partition into a separate table (using the ALTER TABLE statement) to transport the January data. The EXCHANGE operation is very quick, but the January data will no longer be a part of the underlying sales table, and thus may be unavailable to users until this data is exchanged back into the sales table after the export of the metadata. The January data can be exchanged back into the sales table after you complete step 3.

Step 2 Export the Metadata

The Export utility is used to export the metadata describing the objects contained in the transported tablespace. For our example scenario, the Export command could be:

EXP TRANSPORT_TABLESPACE=y TABLESPACES=ts_temp_sales FILE=jan_sales.dmp

This operation will generate an export file, jan_sales.dmp. The export file will be small, because it contains only metadata. In this case, the export file will contain information describing the table temp_jan_sales, such as the column names, column datatype, and all other information that the target Oracle database will need in order to access the objects in ts_temp_sales.

Step 3 Copy the Datafiles and Export File to the Target System

Copy the data files that make up ts_temp_sales, as well as the export file jan_sales.dmp to the data mart platform, using any transportation mechanism for flat files. Once the datafiles have been copied, the tablespace ts_temp_sales can be set to READ WRITE mode if desired.

Step 4 Import the Metadata

Once the files have been copied to the data mart, the metadata should be imported into the data mart:

IMP TRANSPORT_TABLESPACE=y DATAFILES='/db/tempjan.f'
 TABLESPACES=ts_temp_sales FILE=jan_sales.dmp

At this point, the tablespace ts_temp_sales and the table temp_sales_jan are accessible in the data mart. You can incorporate this new data into the data mart's tables.

You can insert the data from the temp_sales_jan table into the data mart's sales table in one of two ways:

INSERT /*+ APPEND */ INTO sales SELECT * FROM temp_sales_jan;

Following this operation, you can delete the temp_sales_jan table (and even the entire ts_temp_sales tablespace).

Alternatively, if the data mart's sales table is partitioned by month, then the new transported tablespace and the temp_sales_jan table can become a permanent part of the data mart. The temp_sales_jan table can become a partition of the data mart's sales table:

ALTER TABLE sales ADD PARTITION sales_00jan VALUES
 LESS THAN (TO_DATE('01-feb-2000','dd-mon-yyyy'));
ALTER TABLE sales EXCHANGE PARTITION sales_00jan
 WITH TABLE temp_sales_jan INCLUDING INDEXES WITH VALIDATION;

Other Uses of Transportable Tablespaces

The previous example illustrates a typical scenario for transporting data in a data warehouse. However, transportable tablespaces can be used for many other purposes. In a data warehousing environment, transportable tablespaces should be viewed as a utility (much like Import/Export or SQL*Loader), whose purpose is to move large volumes of data between Oracle databases. When used in conjunction with parallel data movement operations such as the CREATE TABLE ... AS SELECT and INSERT ... AS SELECT statements, transportable tablespaces provide an important mechanism for quickly transporting data for many purposes.

14 Loading and Transformation

This chapter helps you create and manage a data warehouse, and discusses:

	
Overview of Loading and Transformation in Data Warehouses

	
Loading Mechanisms

	
Transformation Mechanisms

	
Error Logging and Handling Mechanisms

	
Loading and Transformation Scenarios

Overview of Loading and Transformation in Data Warehouses

Data transformations are often the most complex and, in terms of processing time, the most costly part of the extraction, transformation, and loading (ETL) process. They can range from simple data conversions to extremely complex data scrubbing techniques. Many, if not all, data transformations can occur within an Oracle database, although transformations are often implemented outside of the database (for example, on flat files) as well.

This chapter introduces techniques for implementing scalable and efficient data transformations within the Oracle Database. The examples in this chapter are relatively simple. Real-world data transformations are often considerably more complex. However, the transformation techniques introduced in this chapter meet the majority of real-world data transformation requirements, often with more scalability and less programming than alternative approaches.

This chapter does not seek to illustrate all of the typical transformations that would be encountered in a data warehouse, but to demonstrate the types of fundamental technology that can be applied to implement these transformations and to provide guidance in how to choose the best techniques.

Transformation Flow

From an architectural perspective, you can transform your data in two ways:

	
Multistage Data Transformation

	
Pipelined Data Transformation

Multistage Data Transformation

The data transformation logic for most data warehouses consists of multiple steps. For example, in transforming new records to be inserted into a sales table, there may be separate logical transformation steps to validate each dimension key.

Figure 14-1 offers a graphical way of looking at the transformation logic.

Figure 14-1 Multistage Data Transformation

[image: Description of Figure 14-1 follows]

When using Oracle Database as a transformation engine, a common strategy is to implement each transformation as a separate SQL operation and to create a separate, temporary staging table (such as the tables new_sales_step1 and new_sales_step2 in Figure 14-1) to store the incremental results for each step. This load-then-transform strategy also provides a natural checkpointing scheme to the entire transformation process, which enables the process to be more easily monitored and restarted. However, a disadvantage to multistaging is that the space and time requirements increase.

It may also be possible to combine many simple logical transformations into a single SQL statement or single PL/SQL procedure. Doing so may provide better performance than performing each step independently, but it may also introduce difficulties in modifying, adding, or dropping individual transformations, as well as recovering from failed transformations.

Pipelined Data Transformation

The ETL process flow can be changed dramatically and the database becomes an integral part of the ETL solution.

The new functionality renders some of the former necessary process steps obsolete while some others can be remodeled to enhance the data flow and the data transformation to become more scalable and non-interruptive. The task shifts from serial transform-then-load process (with most of the tasks done outside the database) or load-then-transform process, to an enhanced transform-while-loading.

Oracle offers a wide variety of new capabilities to address all the issues and tasks relevant in an ETL scenario. It is important to understand that the database offers toolkit functionality rather than trying to address a one-size-fits-all solution. The underlying database has to enable the most appropriate ETL process flow for a specific customer need, and not dictate or constrain it from a technical perspective. Figure 14-2 illustrates the new functionality, which is discussed throughout later sections.

Figure 14-2 Pipelined Data Transformation

[image: Description of Figure 14-2 follows]

Loading Mechanisms

You can use the following mechanisms for loading a data warehouse:

	
Loading a Data Warehouse with SQL*Loader

	
Loading a Data Warehouse with External Tables

	
Loading a Data Warehouse with OCI and Direct-Path APIs

	
Loading a Data Warehouse with Export/Import

Loading a Data Warehouse with SQL*Loader

Before any data transformations can occur within the database, the raw data must become accessible for the database. One approach is to load it into the database. Chapter 13, "Transportation in Data Warehouses", discusses several techniques for transporting data to an Oracle data warehouse. Perhaps the most common technique for transporting data is by way of flat files.

SQL*Loader is used to move data from flat files into an Oracle data warehouse. During this data load, SQL*Loader can also be used to implement basic data transformations. When using direct-path SQL*Loader, basic data manipulation, such as datatype conversion and simple NULL handling, can be automatically resolved during the data load. Most data warehouses use direct-path loading for performance reasons.

The conventional-path loader provides broader capabilities for data transformation than a direct-path loader: SQL functions can be applied to any column as those values are being loaded. This provides a rich capability for transformations during the data load. However, the conventional-path loader is slower than direct-path loader. For these reasons, the conventional-path loader should be considered primarily for loading and transforming smaller amounts of data.

The following is a simple example of a SQL*Loader controlfile to load data into the sales table of the sh sample schema from an external file sh_sales.dat. The external flat file sh_sales.dat consists of sales transaction data, aggregated on a daily level. Not all columns of this external file are loaded into sales. This external file will also be used as source for loading the second fact table of the sh sample schema, which is done using an external table:

The following shows the control file (sh_sales.ctl) loading the sales table:

LOAD DATA INFILE sh_sales.dat APPEND INTO TABLE sales
FIELDS TERMINATED BY "|"
(PROD_ID, CUST_ID, TIME_ID, CHANNEL_ID, PROMO_ID, QUANTITY_SOLD, AMOUNT_SOLD)

It can be loaded with the following command:

$ sqlldr control=sh_sales.ctl direct=true
Username:
Password:

Loading a Data Warehouse with External Tables

Another approach for handling external data sources is using external tables. Oracle's external table feature enables you to use external data as a virtual table that can be queried and joined directly and in parallel without requiring the external data to be first loaded in the database. You can then use SQL, PL/SQL, and Java to access the external data.

External tables enable the pipelining of the loading phase with the transformation phase. The transformation process can be merged with the loading process without any interruption of the data streaming. It is no longer necessary to stage the data inside the database for further processing inside the database, such as comparison or transformation. For example, the conversion functionality of a conventional load can be used for a direct-path INSERT AS SELECT statement in conjunction with the SELECT from an external table.

The main difference between external tables and regular tables is that externally organized tables are read-only. No DML operations (UPDATE/INSERT/DELETE) are possible and no indexes can be created on them.

External tables are a mostly compliant to the existing SQL*Loader functionality and provide superior functionality in most cases. External tables are especially useful for environments where the complete external source has to be joined with existing database objects or when the data has to be transformed in a complex manner. For example, unlike SQL*Loader, you can apply any arbitrary SQL transformation and use the direct path insert method.

You can create an external table named sales_transactions_ext, representing the structure of the complete sales transaction data, represented in the external file sh_sales.dat. The product department is especially interested in a cost analysis on product and time. We thus create a fact table named cost in the sales history schema. The operational source data is the same as for the sales fact table. However, because we are not investigating every dimensional information that is provided, the data in the cost fact table has a coarser granularity than in the sales fact table, for example, all different distribution channels are aggregated.

We cannot load the data into the cost fact table without applying the previously mentioned aggregation of the detailed information, due to the suppression of some of the dimensions.

The external table framework offers a solution to solve this. Unlike SQL*Loader, where you would have to load the data before applying the aggregation, you can combine the loading and transformation within a single SQL DML statement, as shown in the following. You do not have to stage the data temporarily before inserting into the target table.

The object directories must already exist, and point to the directory containing the sh_sales.dat file as well as the directory containing the bad and log files.

CREATE TABLE sales_transactions_ext
(PROD_ID NUMBER, CUST_ID NUMBER,
 TIME_ID DATE, CHANNEL_ID NUMBER,
 PROMO_ID NUMBER, QUANTITY_SOLD NUMBER,
 AMOUNT_SOLD NUMBER(10,2), UNIT_COST NUMBER(10,2),
 UNIT_PRICE NUMBER(10,2))
ORGANIZATION external (TYPE oracle_loader
 DEFAULT DIRECTORY data_file_dir ACCESS PARAMETERS
 (RECORDS DELIMITED BY NEWLINE CHARACTERSET US7ASCII
 BADFILE log_file_dir:'sh_sales.bad_xt'
 LOGFILE log_file_dir:'sh_sales.log_xt'
 FIELDS TERMINATED BY "|" LDRTRIM
 (PROD_ID, CUST_ID,
 TIME_ID DATE(10) "YYYY-MM-DD",
 CHANNEL_ID, PROMO_ID, QUANTITY_SOLD, AMOUNT_SOLD,
 UNIT_COST, UNIT_PRICE))
 location ('sh_sales.dat')
)REJECT LIMIT UNLIMITED;

The external table can now be used from within the database, accessing some columns of the external data only, grouping the data, and inserting it into the costs fact table:

INSERT /*+ APPEND */ INTO COSTS
(TIME_ID, PROD_ID, UNIT_COST, UNIT_PRICE)
SELECT TIME_ID, PROD_ID, AVG(UNIT_COST), AVG(amount_sold/quantity_sold)
FROM sales_transactions_ext GROUP BY time_id, prod_id;

	
See Also:

Oracle Database SQL Language Reference for a complete description of external table syntax and restrictions and Oracle Database Utilities for usage examples

Loading a Data Warehouse with OCI and Direct-Path APIs

OCI and direct-path APIs are frequently used when the transformation and computation are done outside the database and there is no need for flat file staging.

Loading a Data Warehouse with Export/Import

Export and import are used when the data is inserted as is into the target system. No complex extractions are possible. See Chapter 12, "Extraction in Data Warehouses" for further information.

Transformation Mechanisms

You have the following choices for transforming data inside the database:

	
Transforming Data Using SQL

	
Transforming Data Using PL/SQL

	
Transforming Data Using Table Functions

Transforming Data Using SQL

Once data is loaded into the database, data transformations can be executed using SQL operations. There are four basic techniques for implementing SQL data transformations:

	
CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

	
Transforming Data Using UPDATE

	
Transforming Data Using MERGE

	
Transforming Data Using Multitable INSERT

CREATE TABLE ... AS SELECT And INSERT /*+APPEND*/ AS SELECT

The CREATE TABLE ... AS SELECT statement (CTAS) is a powerful tool for manipulating large sets of data. As shown in the following example, many data transformations can be expressed in standard SQL, and CTAS provides a mechanism for efficiently executing a SQL query and storing the results of that query in a new database table. The INSERT /*+APPEND*/ ... AS SELECT statement offers the same capabilities with existing database tables.

In a data warehouse environment, CTAS is typically run in parallel using NOLOGGING mode for best performance.

A simple and common type of data transformation is data substitution. In a data substitution transformation, some or all of the values of a single column are modified. For example, our sales table has a channel_id column. This column indicates whether a given sales transaction was made by a company's own sales force (a direct sale) or by a distributor (an indirect sale).

You may receive data from multiple source systems for your data warehouse. Suppose that one of those source systems processes only direct sales, and thus the source system does not know indirect sales channels. When the data warehouse initially receives sales data from this system, all sales records have a NULL value for the sales.channel_id field. These NULL values must be set to the proper key value. For example, you can do this efficiently using a SQL function as part of the insertion into the target sales table statement. The structure of source table sales_activity_direct is as follows:

DESC sales_activity_direct
Name Null? Type
------------ ----- ----------------
SALES_DATE DATE
PRODUCT_ID NUMBER
CUSTOMER_ID NUMBER
PROMOTION_ID NUMBER
AMOUNT NUMBER
QUANTITY NUMBER

The following SQL statement inserts data from sales_activity_direct into the sales table of the sample schema, using a SQL function to truncate the sales date values to the midnight time and assigning a fixed channel ID of 3.

INSERT /*+ APPEND NOLOGGING PARALLEL */
INTO sales SELECT product_id, customer_id, TRUNC(sales_date), 3,
 promotion_id, quantity, amount
FROM sales_activity_direct;

Transforming Data Using UPDATE

Another technique for implementing a data substitution is to use an UPDATE statement to modify the sales.channel_id column. An UPDATE will provide the correct result. However, if the data substitution transformations require that a very large percentage of the rows (or all of the rows) be modified, then, it may be more efficient to use a CTAS statement than an UPDATE.

Transforming Data Using MERGE

Oracle Database's merge functionality extends SQL, by introducing the SQL keyword MERGE, in order to provide the ability to update or insert a row conditionally into a table or out of line single table views. Conditions are specified in the ON clause. This is, besides pure bulk loading, one of the most common operations in data warehouse synchronization.

Merge Examples

The following discusses various implementations of a merge. The examples assume that new data for the dimension table products is propagated to the data warehouse and has to be either inserted or updated. The table products_delta has the same structure as products.

Example 14-1 Merge Operation Using SQL

MERGE INTO products t USING products_delta s
ON (t.prod_id=s.prod_id)
WHEN MATCHED THEN UPDATE SET
 t.prod_list_price=s.prod_list_price, t.prod_min_price=s.prod_min_price
WHEN NOT MATCHED THEN INSERT (prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_status,
 prod_list_price, prod_min_price)
VALUES (s.prod_id, s.prod_name, s.prod_desc, s.prod_subcategory,
 s.prod_subcategory_desc, s.prod_category, s.prod_category_desc,
 s.prod_status, s.prod_list_price, s.prod_min_price);

Transforming Data Using Multitable INSERT

Many times, external data sources have to be segregated based on logical attributes for insertion into different target objects. It is also frequent in data warehouse environments to fan out the same source data into several target objects. Multitable inserts provide a new SQL statement for these kinds of transformations, where data can either end up in several or exactly one target, depending on the business transformation rules. This insertion can be done conditionally based on business rules or unconditionally.

It offers the benefits of the INSERT ... SELECT statement when multiple tables are involved as targets. In doing so, it avoids the drawbacks of the two obvious alternatives. You either had to deal with n independent INSERT … SELECT statements, thus processing the same source data n times and increasing the transformation workload n times. Alternatively, you had to choose a procedural approach with a per-row determination how to handle the insertion. This solution lacked direct access to high-speed access paths available in SQL.

As with the existing INSERT ... SELECT statement, the new statement can be parallelized and used with the direct-load mechanism for faster performance.

Example 14-2 Unconditional Insert

The following statement aggregates the transactional sales information, stored in sales_activity_direct, on a daily basis and inserts into both the sales and the costs fact table for the current day.

INSERT ALL
 INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, promotion_id, 3,
 product_cost, product_price)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, p.prod_min_price*0.8 AS product_cost, p.prod_list_price
 AS product_price
FROM sales_activity_direct s, products p
WHERE s.product_id = p.prod_id AND TRUNC(sales_date) = TRUNC(SYSDATE)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id, s.promotion_id,
 p.prod_min_price*0.8, p.prod_list_price;

Example 14-3 Conditional ALL Insert

The following statement inserts a row into the sales and costs tables for all sales transactions with a valid promotion and stores the information about multiple identical orders of a customer in a separate table cum_sales_activity. It is possible two rows will be inserted for some sales transactions, and none for others.

INSERT ALL
WHEN promotion_id IN (SELECT promo_id FROM promotions) THEN
 INTO sales VALUES (product_id, customer_id, today, 3, promotion_id,
 quantity_per_day, amount_per_day)
 INTO costs VALUES (product_id, today, promotion_id, 3,
 product_cost, product_price)
WHEN num_of_orders > 1 THEN
 INTO cum_sales_activity VALUES (today, product_id, customer_id,
 promotion_id, quantity_per_day, amount_per_day, num_of_orders)
SELECT TRUNC(s.sales_date) AS today, s.product_id, s.customer_id,
 s.promotion_id, SUM(s.amount) AS amount_per_day, SUM(s.quantity)
 quantity_per_day, COUNT(*) num_of_orders, p.prod_min_price*0.8
 AS product_cost, p.prod_list_price AS product_price
FROM sales_activity_direct s, products p
WHERE s.product_id = p.prod_id
AND TRUNC(sales_date) = TRUNC(SYSDATE)
GROUP BY TRUNC(sales_date), s.product_id, s.customer_id,
 s.promotion_id, p.prod_min_price*0.8, p.prod_list_price;

Example 14-4 Conditional FIRST Insert

The following statement inserts into an appropriate shipping manifest according to the total quantity and the weight of a product order. An exception is made for high value orders, which are also sent by express, unless their weight classification is not too high. All incorrect orders, in this simple example represented as orders without a quantity, are stored in a separate table. It assumes the existence of appropriate tables large_freight_shipping, express_shipping, default_shipping, and incorrect_sales_order.

INSERT FIRST WHEN (sum_quantity_sold > 10 AND prod_weight_class < 5) AND
sum_quantity_sold >=1) OR (sum_quantity_sold > 5 AND prod_weight_class > 5) THEN
 INTO large_freight_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class, sum_quantity_sold)
 WHEN sum_amount_sold > 1000 AND sum_quantity_sold >=1 THEN
 INTO express_shipping VALUES
 (time_id, cust_id, prod_id, prod_weight_class,
 sum_amount_sold, sum_quantity_sold)
WHEN (sum_quantity_sold >=1) THEN INTO default_shipping VALUES
 (time_id, cust_id, prod_id, sum_quantity_sold)
ELSE INTO incorrect_sales_order VALUES (time_id, cust_id, prod_id)
SELECT s.time_id, s.cust_id, s.prod_id, p.prod_weight_class,
 SUM(amount_sold) AS sum_amount_sold,
 SUM(quantity_sold) AS sum_quantity_sold
FROM sales s, products p
WHERE s.prod_id = p.prod_id AND s.time_id = TRUNC(SYSDATE)
GROUP BY s.time_id, s.cust_id, s.prod_id, p.prod_weight_class;

Example 14-5 Mixed Conditional and Unconditional Insert

The following example inserts new customers into the customers table and stores all new customers with cust_credit_limit higher then 4500 in an additional, separate table for further promotions.

INSERT FIRST WHEN cust_credit_limit >= 4500 THEN INTO customers
 INTO customers_special VALUES (cust_id, cust_credit_limit)
 ELSE INTO customers
SELECT * FROM customers_new;

See Chapter 15, "Maintaining the Data Warehouse" for more information regarding MERGE operations.

Transforming Data Using PL/SQL

In a data warehouse environment, you can use procedural languages such as PL/SQL to implement complex transformations in the Oracle Database. Whereas CTAS operates on entire tables and emphasizes parallelism, PL/SQL provides a row-based approached and can accommodate very sophisticated transformation rules. For example, a PL/SQL procedure could open multiple cursors and read data from multiple source tables, combine this data using complex business rules, and finally insert the transformed data into one or more target table. It would be difficult or impossible to express the same sequence of operations using standard SQL statements.

Using a procedural language, a specific transformation (or number of transformation steps) within a complex ETL processing can be encapsulated, reading data from an intermediate staging area and generating a new table object as output. A previously generated transformation input table and a subsequent transformation will consume the table generated by this specific transformation. Alternatively, these encapsulated transformation steps within the complete ETL process can be integrated seamlessly, thus streaming sets of rows between each other without the necessity of intermediate staging. You can use table functions to implement such behavior.

Transforming Data Using Table Functions

Table functions provide the support for pipelined and parallel execution of transformations implemented in PL/SQL, C, or Java. Scenarios as mentioned earlier can be done without requiring the use of intermediate staging tables, which interrupt the data flow through various transformations steps.

What is a Table Function?

A table function is defined as a function that can produce a set of rows as output. Additionally, table functions can take a set of rows as input. Prior to Oracle9i, PL/SQL functions:

	
Could not take cursors as input.

	
Could not be parallelized or pipelined.

Now, functions are not limited in these ways. Table functions extend database functionality by allowing:

	
Multiple rows to be returned from a function.

	
Results of SQL subqueries (that select multiple rows) to be passed directly to functions.

	
Functions take cursors as input.

	
Functions can be parallelized.

	
Returning result sets incrementally for further processing as soon as they are created. This is called incremental pipelining

Table functions can be defined in PL/SQL using a native PL/SQL interface, or in Java or C using the Oracle Data Cartridge Interface (ODCI).

	
See Also:

Oracle Database PL/SQL Language Reference for further information and Oracle Database Data Cartridge Developer's Guide

Figure 14-3 illustrates a typical aggregation where you input a set of rows and output a set of rows, in that case, after performing a SUM operation.

Figure 14-3 Table Function Example

[image: Description of Figure 14-3 follows]

The pseudocode for this operation would be similar to:

INSERT INTO Out SELECT * FROM ("Table Function"(SELECT * FROM In));

The table function takes the result of the SELECT on In as input and delivers a set of records in a different format as output for a direct insertion into Out.

Additionally, a table function can fan out data within the scope of an atomic transaction. This can be used for many occasions like an efficient logging mechanism or a fan out for other independent transformations. In such a scenario, a single staging table will be needed.

Figure 14-4 Pipelined Parallel Transformation with Fanout

[image: Description of Figure 14-4 follows]

The pseudocode for this would be similar to:

INSERT INTO target SELECT * FROM (tf2(SELECT *
FROM (tf1(SELECT * FROM source))));

This will insert into target and, as part of tf1, into Stage Table 1 within the scope of an atomic transaction.

INSERT INTO target SELECT * FROM tf3(SELT * FROM stage_table1);

Example 14-6 Table Functions Fundamentals

The following examples demonstrate the fundamentals of table functions, without the usage of complex business rules implemented inside those functions. They are chosen for demonstration purposes only, and are all implemented in PL/SQL.

Table functions return sets of records and can take cursors as input. Besides the sh sample schema, you have to set up the following database objects before using the examples:

CREATE TYPE product_t AS OBJECT (
 prod_id NUMBER(6)
 , prod_name VARCHAR2(50)
 , prod_desc VARCHAR2(4000)
 , prod_subcategory VARCHAR2(50)
 , prod_subcategory_desc VARCHAR2(2000)
 , prod_category VARCHAR2(50)
 , prod_category_desc VARCHAR2(2000)
 , prod_weight_class NUMBER(2)
 , prod_unit_of_measure VARCHAR2(20)
 , prod_pack_size VARCHAR2(30)
 , supplier_id NUMBER(6)
 , prod_status VARCHAR2(20)
 , prod_list_price NUMBER(8,2)
 , prod_min_price NUMBER(8,2)
);
/
CREATE TYPE product_t_table AS TABLE OF product_t;
/
COMMIT;

CREATE OR REPLACE PACKAGE cursor_PKG AS
 TYPE product_t_rec IS RECORD (
 prod_id NUMBER(6)
 , prod_name VARCHAR2(50)
 , prod_desc VARCHAR2(4000)
 , prod_subcategory VARCHAR2(50)
 , prod_subcategory_desc VARCHAR2(2000)
 , prod_category VARCHAR2(50)
 , prod_category_desc VARCHAR2(2000)
 , prod_weight_class NUMBER(2)
 , prod_unit_of_measure VARCHAR2(20)
 , prod_pack_size VARCHAR2(30)
 , supplier_id NUMBER(6)
 , prod_status VARCHAR2(20)
 , prod_list_price NUMBER(8,2)
 , prod_min_price NUMBER(8,2));
 TYPE product_t_rectab IS TABLE OF product_t_rec;
 TYPE strong_refcur_t IS REF CURSOR RETURN product_t_rec;
 TYPE refcur_t IS REF CURSOR;
END;
/

REM artificial help table, used later
CREATE TABLE obsolete_products_errors (prod_id NUMBER, msg VARCHAR2(2000));

The following example demonstrates a simple filtering; it shows all obsolete products except the prod_category Electronics. The table function returns the result set as a set of records and uses a weakly typed REF CURSOR as input.

CREATE OR REPLACE FUNCTION obsolete_products(cur cursor_pkg.refcur_t)
RETURN product_t_table
IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
 objset product_t_table := product_t_table();
 i NUMBER := 0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 -- Category Electronics is not meant to be obsolete and will be suppressed
 IF prod_status='obsolete' AND prod_category != 'Electronics' THEN
 -- append to collection
 i:=i+1;
 objset.extend;
 objset(i):=product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price);
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN objset;
END;
/

You can use the table function in a SQL statement to show the results. Here we use additional SQL functionality for the output:

SELECT DISTINCT UPPER(prod_category), prod_status
FROM TABLE(obsolete_products(
 CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size,
 supplier_id, prod_status, prod_list_price, prod_min_price
 FROM products)));

The following example implements the same filtering than the first one. The main differences between those two are:

	
This example uses a strong typed REF CURSOR as input and can be parallelized based on the objects of the strong typed cursor, as shown in one of the following examples.

	
The table function returns the result set incrementally as soon as records are created.

CREATE OR REPLACE FUNCTION
 obsolete_products_pipe(cur cursor_pkg.strong_refcur_t) RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' AND prod_category !='Electronics' THEN
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price));
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

You can use the table function as follows:

SELECT DISTINCT prod_category,
 DECODE(prod_status,'obsolete','NO LONGER AVAILABLE','N/A')
FROM TABLE(obsolete_products_pipe(
 CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size,
 supplier_id, prod_status, prod_list_price, prod_min_price
 FROM products)));

We now change the degree of parallelism for the input table products and issue the same statement again:

ALTER TABLE products PARALLEL 4;

The session statistics show that the statement has been parallelized:

SELECT * FROM V$PQ_SESSTAT WHERE statistic='Queries Parallelized';

STATISTIC LAST_QUERY SESSION_TOTAL
-------------------- ---------- -------------
Queries Parallelized 1 3

1 row selected.

Table functions are also capable to fanout results into persistent table structures. This is demonstrated in the next example. The function filters returns all obsolete products except a those of a specific prod_category (default Electronics), which was set to status obsolete by error. The result set of the table function consists of all other obsolete product categories. The detected wrong prod_id IDs are stored in a separate table structure obsolete_products_error. Note that if a table function is part of an autonomous transaction, it must COMMIT or ROLLBACK before each PIPE ROW statement to avoid an error in the callings subprogram. Its result set consists of all other obsolete product categories. It furthermore demonstrates how normal variables can be used in conjunction with table functions:

CREATE OR REPLACE FUNCTION obsolete_products_dml(cur cursor_pkg.strong_refcur_t,
 prod_cat varchar2 DEFAULT 'Electronics') RETURN product_t_table
PIPELINED
PARALLEL_ENABLE (PARTITION cur BY ANY) IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 prod_id NUMBER(6);
 prod_name VARCHAR2(50);
 prod_desc VARCHAR2(4000);
 prod_subcategory VARCHAR2(50);
 prod_subcategory_desc VARCHAR2(2000);
 prod_category VARCHAR2(50);
 prod_category_desc VARCHAR2(2000);
 prod_weight_class NUMBER(2);
 prod_unit_of_measure VARCHAR2(20);
 prod_pack_size VARCHAR2(30);
 supplier_id NUMBER(6);
 prod_status VARCHAR2(20);
 prod_list_price NUMBER(8,2);
 prod_min_price NUMBER(8,2);
 sales NUMBER:=0;
BEGIN
 LOOP
 -- Fetch from cursor variable
 FETCH cur INTO prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price;
 EXIT WHEN cur%NOTFOUND; -- exit when last row is fetched
 IF prod_status='obsolete' THEN
 IF prod_category=prod_cat THEN
 INSERT INTO obsolete_products_errors VALUES
 (prod_id, 'correction: category '||UPPER(prod_cat)||' still
 available');
 COMMIT;
 ELSE
 PIPE ROW (product_t(prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price));
 END IF;
 END IF;
 END LOOP;
 CLOSE cur;
 RETURN;
END;
/

The following query shows all obsolete product groups except the prod_category Electronics, which was wrongly set to status obsolete:

SELECT DISTINCT prod_category, prod_status FROM TABLE(obsolete_products_dml(
CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price
FROM products)));

As you can see, there are some products of the prod_category Electronics that were obsoleted by accident:

SELECT DISTINCT msg FROM obsolete_products_errors;

Taking advantage of the second input variable, you can specify a different product group than Electronics to be considered:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(
CURSOR(SELECT prod_id, prod_name, prod_desc, prod_subcategory,
 prod_subcategory_desc, prod_category, prod_category_desc, prod_weight_class,
 prod_unit_of_measure, prod_pack_size, supplier_id, prod_status,
 prod_list_price, prod_min_price
FROM products),'Photo'));

Because table functions can be used like a normal table, they can be nested, as shown in the following:

SELECT DISTINCT prod_category, prod_status
FROM TABLE(obsolete_products_dml(CURSOR(SELECT *
FROM TABLE(obsolete_products_pipe(CURSOR(SELECT prod_id, prod_name, prod_desc,
 prod_subcategory, prod_subcategory_desc, prod_category, prod_category_desc,
 prod_weight_class, prod_unit_of_measure, prod_pack_size, supplier_id,
 prod_status, prod_list_price, prod_min_price
FROM products))))));

The biggest advantage of Oracle Database's ETL is its toolkit functionality, where you can combine any of the latter discussed functionality to improve and speed up your ETL processing. For example, you can take an external table as input, join it with an existing table and use it as input for a parallelized table function to process complex business logic. This table function can be used as input source for a MERGE operation, thus streaming the new information for the data warehouse, provided in a flat file within one single statement through the complete ETL process.

See Oracle Database PL/SQL Language Reference for details about table functions and the PL/SQL programming. For details about table functions implemented in other languages, see Oracle Database Data Cartridge Developer's Guide.

Error Logging and Handling Mechanisms

Having data that is not clean is very common when loading and transforming data, especially when dealing with data coming from a variety of sources, including external ones. If this dirty data causes you to abort a long-running load or transformation operation, a lot of time and resources will be wasted. The following sections discuss the two main causes of errors and how to address them:

	
Business Rule Violations

	
Data Rule Violations (Data Errors)

Business Rule Violations

Data that is logically not clean violates business rules that are known prior to any data consumption. Most of the time, handling these kind of errors will be incorporated into the loading or transformation process. However, in situations where the error identification for all records would become too expensive and the business rule can be enforced as a data rule violation, for example, testing hundreds of columns to see if they are NOT NULL, programmers often choose to handle even known possible logical error cases more generically. An example of this is shown in "Data Error Scenarios".

Incorporating logical rules can be as easy as applying filter conditions on the data input stream or as complex as feeding the dirty data into a different transformation workflow. Some examples are as follows:

	
Filtering of logical data errors using SQL. Data that does not adhere to certain conditions will be filtered out prior to being processed.

	
Identifying and separating logical data errors. In simple cases, this can be accomplished using SQL, as shown in Example 14-1, "Merge Operation Using SQL", or in more complex cases in a procedural approach, as shown in Example 14-6, "Table Functions Fundamentals".

Data Rule Violations (Data Errors)

Unlike logical errors, data rule violations are not usually anticipated by the load or transformation process. Such unexpected data rule violations (also known as data errors) that are not handled from an operation cause the operation to fail. Data rule violations are error conditions that happen inside the database and cause a statement to fail. Examples of this are data type conversion errors or constraint violations.

In the past, SQL did not offer a way to handle data errors on a row level as part of its bulk processing. The only way to handle data errors inside the database was to use PL/SQL. Now, however, you can log data errors into a special error table while the DML operation continues.

The following sections briefly discuss exception handling with PL/SQL and DML error logging tables.

Handling Data Errors in PL/SQL

The following statement is an example of how error handling can be done using PL/SQL. Note that you have to use procedural record-level processing to catch any errors. This statement is a rough equivalent of the statement discussed in "Handling Data Errors in PL/SQL".

DECLARE
errm number default 0;
BEGIN
FOR crec IN (SELECT product_id, customer_id, TRUNC(sales_date) sd,
 promotion_id, quantity, amount
 FROM sales_activity_direct) loop

BEGIN
 INSERT INTO sales VALUES (crec.product_id, crec.customer_id,
 crec.sd, 3, crec.promotion_id,
 crec.quantity, crec.amount);
exception
WHEN others then
 errm := sqlerrm;
 INSERT INTO sales_activity_error
 VALUES (errm, crec.product_id, crec.customer_id, crec.sd,
 crec.promotion_id, crec.quantity, crec.amount);
END;
END loop;
END;
/

Handling Data Errors with an Error Logging Table

DML error logging extends existing DML functionality by enabling you to specify the name of an error logging table into which Oracle should record errors encountered during DML operations. This enables you to complete the DML operation in spite of any errors, and to take corrective action on the erroneous rows at a later time.

This DML error logging table consists of several mandatory control columns and a set of user-defined columns that represent either all or a subset of the columns of the target table of the DML operation using a data type that is capable of storing potential errors for the target column. For example, you need a VARCHAR2 data type in the error logging table to store TO_NUM data type conversion errors for a NUMBER column in the target table. You should use the DBMS_ERRLOG package to create the DML error logging tables. See the Oracle Database PL/SQL Packages and Types Reference for more information about this package and the structure of the logging table.

The column name mapping between the DML target table and an error logging table determines which columns besides the control columns will be logged for a DML operation.

The following statement illustrates how to enhance the example in "Transforming Data Using SQL" with DML error logging:

INSERT /*+ APPEND PARALLEL */
INTO sales SELECT product_id, customer_id, TRUNC(sales_date), 3,
 promotion_id, quantity, amount
FROM sales_activity_direct
LOG ERRORS INTO sales_activity_errors('load_20040802')
REJECT LIMIT UNLIMITED

All data errors will be logged into table sales_activity_errors, identified by the optional tag load_20040802. The INSERT statement will succeed even in the presence of data errors. Note that you have to create the DML error logging table prior to using this statement.

If REJECT LIMIT X had been specified, the statement would have failed with the error message of error X=1. The error message can be different for different reject limits. In the case of a failing statement, only the DML statement is rolled back, not the insertion into the DML error logging table. The error logging table will contain X+1 rows.

A DML error logging table can be in a different schema than the executing user, but you must fully specify the table name in that case. Optionally, the name of the DML error logging table can be omitted; Oracle then assumes a default name for the table as generated by the DBMS_ERRLOG package.

Oracle logs the following errors during DML operations:

	
Column values that are too large.

	
Constraint violations (NOT NULL, unique, referential, and check constraints).

	
Errors raised during trigger execution.

	
Errors resulting from type conversion between a column in a subquery and the corresponding column of the table.

	
Partition mapping errors.

The following conditions cause the statement to fail and roll back without invoking the error logging capability:

	
Violated deferred constraints.

	
Out of space errors.

	
Any direct-path INSERT operation (INSERT or MERGE) that raises a unique constraint or index violation.

	
Any UPDATE operation (UPDATE or MERGE) that raises a unique constraint or index violation.

In addition, you cannot track errors in the error logging table for LONG, LOB, or object type columns. See Oracle Database SQL Language Reference for more information on restrictions when using error logging.

DML error logging can be applied to any kind of DML operation. Several examples are discussed in the following section.

Note that SQL*Loader as an external load utility offers the functionality of logging data errors as well, but lacks the advantage of the integrated ETL processing inside the database.

Loading and Transformation Scenarios

The following sections offer examples of typical loading and transformation tasks:

	
Key Lookup Scenario

	
Business Rule Violation Scenario

	
Data Error Scenarios

	
Business Rule Violation Scenario

	
Pivoting Scenarios

Key Lookup Scenario

A typical transformation is the key lookup. For example, suppose that sales transaction data has been loaded into a retail data warehouse. Although the data warehouse's sales table contains a product_id column, the sales transaction data extracted from the source system contains Uniform Price Codes (UPC) instead of product IDs. Therefore, it is necessary to transform the UPC codes into product IDs before the new sales transaction data can be inserted into the sales table.

In order to execute this transformation, a lookup table must relate the product_id values to the UPC codes. This table might be the product dimension table, or perhaps another table in the data warehouse that has been created specifically to support this transformation. For this example, we assume that there is a table named product, which has a product_id and an upc_code column.

This data substitution transformation can be implemented using the following CTAS statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS SELECT sales_transaction_id,
 product.product_id sales_product_id, sales_customer_id, sales_time_id,
 sales_channel_id, sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code;

This CTAS statement will convert each valid UPC code to a valid product_id value. If the ETL process has guaranteed that each UPC code is valid, then this statement alone may be sufficient to implement the entire transformation.

Business Rule Violation Scenario

In the preceding example, if you must also handle new sales data that does not have valid UPC codes (a logical data error), you can use an additional CTAS statement to identify the invalid rows:

CREATE TABLE temp_sales_step1_invalid NOLOGGING PARALLEL AS
SELECT * FROM temp_sales_step1 s
WHERE NOT EXISTS (SELECT 1 FROM product p WHERE p.upc_code=s.upc_code);

This invalid data is now stored in a separate table, temp_sales_step1_invalid, and can be handled separately by the ETL process.

Another way to handle invalid data is to modify the original CTAS to use an outer join, as in the following statement:

CREATE TABLE temp_sales_step2 NOLOGGING PARALLEL AS
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id, sales_quantity_sold,
 sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

Using this outer join, the sales transactions that originally contained invalidated UPC codes will be assigned a product_id of NULL. These transactions can be handled later. Alternatively, you could use a multi-table insert, separating the values with a product_id of NULL into a separate table; this might be a beneficial approach when the expected error count is relatively small compared to the total data volume. You do not have to touch the large target table but only a small one for a subsequent processing.

INSERT /*+ APPEND PARALLEL */ FIRST
WHEN sales_product_id IS NOT NULL THEN
 INTO temp_sales_step2
 VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
ELSE
 INTO temp_sales_step1_invalid
 VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

Note that for this solution, the empty tables temp_sales_step2 and temp_sales_step1_invalid must already exist.

Additional approaches to handling invalid UPC codes exist. Some data warehouses may choose to insert null-valued product_id values into their sales table, while others may not allow any new data from the entire batch to be inserted into the sales table until all invalid UPC codes have been addressed. The correct approach is determined by the business requirements of the data warehouse. Irrespective of the specific requirements, exception handling can be addressed by the same basic SQL techniques as transformations.

Data Error Scenarios

If the quality of the data is unknown, the example discussed in the preceding section could be enhanced to handle unexpected data errors, for example, data type conversion errors, as shown in the following:

INSERT /*+ APPEND PARALLEL */ FIRST
WHEN sales_product_id IS NOT NULL THEN
INTO temp_sales_step2
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED
ELSE
INTO temp_sales_step1_invalid
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+);

This statement will track the logical data error of not having a valid product UPC code in table temp_sales_step1_invalid and all other possible errors in a DML error logging table called sales_step2_errors. Note that an error logging table can be used for several DML operations.

An alternative to this approach would be to enforce the business rule of having a valid UPC code on the database level with a NOT NULL constraint. Using an outer join, all orders not having a valid UPC code would be mapped to a NULL value and then treated as data errors. This DML error logging capability is used to track these errors in the following statement:

INSERT /*+ APPEND PARALLEL */
INTO temp_sales_step2
VALUES (sales_transaction_id, sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount)
SELECT sales_transaction_id, product.product_id sales_product_id,
 sales_customer_id, sales_time_id, sales_channel_id,
 sales_quantity_sold, sales_dollar_amount
FROM temp_sales_step1, product
WHERE temp_sales_step1.upc_code = product.upc_code (+)
LOG ERRORS INTO sales_step2_errors('load_20040804')
REJECT LIMIT UNLIMITED;

The error logging table contains all records that would have caused the DML operation to fail. You can use its content to analyze and correct any error. The content in the error logging table is preserved for any DML operation, irrespective of the success of the DML operation itself. Let us assume the following SQL statement failed because the reject limit was reached:

SQL> INSERT /*+ APPEND NOLOGGING PARALLEL */ INTO sales_overall
2 SELECT * FROM sales_activity_direct
3 LOG ERRORS INTO err$_sales_overall ('load_test2')
4 REJECT LIMIT 10;
SELECT * FROM sales_activity_direct
*
ERROR at line 2:
ORA-01722: invalid number

The name of the error logging table, err$_sales_overall, is the default derived by using the DBMS_ERRLOG package. See Oracle Database PL/SQL Packages and Types Reference for more information.

The error message raised by Oracle occurs where the first after the error limit is reached. The next error (number 11) is the one that raised an error. The error message that is displayed is based on the error that exceeded the limit, so, for example, the ninth error could be different from the eleventh error.

The target table sales_overall will not show any records being entered (assumed that the table was empty before), but the error logging table will contain 11 rows (REJECT LIMIT + 1)

SQL> SELECT COUNT(*) FROM sales_overall;
COUNT(*)

0

SQL> SELECT COUNT(*) FROM err$_sales_overall;
COUNT(*)

11

A DML error logging table consists of several fixed control columns that are mandatory for every error logging table. Besides the Oracle error number, Oracle enforces storing the error message as well. In many cases, the error message provides additional information to analyze and resolve the root cause for the data error. The following SQL output of a DML error logging table shows this difference. Note that the second output contains the additional information for rows that were rejected due to NOT NULL violations.

SQL> SELECT DISTINCT ora_err_number$ FROM err$_sales_overall;

ORA_ERR_NUMBER$

 1400
 1722
 1830
 1847

SQL> SELECT DISTINCT ora_err_number$, ora_err_mesg$ FROM err$_sales_overall;

ORA_ERR_NUMBER$ ORA_ERR_MESG$
 1400 ORA-01400: cannot insert NULL into
 ("SH"."SALES_OVERALL"."CUST_ID")
 1400 ORA-01400: cannot insert NULL into
 ("SH"."SALES_OVERALL"."PROD_ID")
 1722 ORA-01722: invalid number
 1830 ORA-01830: date format picture ends before
 converting entire input string
 1847 ORA-01847: day of month must be between 1 and last
 day of month

See Oracle Database Administrator's Guide for a detailed description of control columns.

Pivoting Scenarios

A data warehouse can receive data from many different sources. Some of these source systems may not be relational databases and may store data in very different formats from the data warehouse. For example, suppose that you receive a set of sales records from a nonrelational database having the form:

product_id, customer_id, weekly_start_date, sales_sun, sales_mon, sales_tue,
 sales_wed, sales_thu, sales_fri, sales_sat

The input table looks like the following:

SELECT * FROM sales_input_table;

PRODUCT_ID CUSTOMER_ID WEEKLY_ST SALES_SUN SALES_MON SALES_TUE SALES_WED SALES_THU SALES_FRI SALES_SAT
---------- ----------- --------- ---------- ---------- ---------- -------------------- ---------- ----------
 111 222 01-OCT-00 100 200 300 400 500 600 700
 222 333 08-OCT-00 200 300 400 500 600 700 800
 333 444 15-OCT-00 300 400 500 600 700 800 900

In your data warehouse, you would want to store the records in a more typical relational form in a fact table sales of the sh sample schema:

prod_id, cust_id, time_id, amount_sold

	
Note:

A number of constraints on the sales table have been disabled for purposes of this example, because the example ignores a number of table columns for the sake of brevity.

Thus, you need to build a transformation such that each record in the input stream must be converted into seven records for the data warehouse's sales table. This operation is commonly referred to as pivoting, and Oracle Database offers several ways to do this.

The result of the previous example will resemble the following:

SELECT prod_id, cust_id, time_id, amount_sold FROM sales;

 PROD_ID CUST_ID TIME_ID AMOUNT_SOLD
---------- ---------- --------- -----------
 111 222 01-OCT-00 100
 111 222 02-OCT-00 200
 111 222 03-OCT-00 300
 111 222 04-OCT-00 400
 111 222 05-OCT-00 500
 111 222 06-OCT-00 600
 111 222 07-OCT-00 700
 222 333 08-OCT-00 200
 222 333 09-OCT-00 300
 222 333 10-OCT-00 400
 222 333 11-OCT-00 500
 222 333 12-OCT-00 600
 222 333 13-OCT-00 700
 222 333 14-OCT-00 800
 333 444 15-OCT-00 300
 333 444 16-OCT-00 400
 333 444 17-OCT-00 500
 333 444 18-OCT-00 600
 333 444 19-OCT-00 700
 333 444 20-OCT-00 800
 333 444 21-OCT-00 900

Example 14-7 Pivoting

The following example uses the multitable insert syntax to insert into the demo table sh.sales some data from an input table with a different structure. The multitable INSERT statement looks like the following:

INSERT ALL INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date, sales_sun)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+1, sales_mon)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+2, sales_tue)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+3, sales_wed)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+4, sales_thu)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+5, sales_fri)
 INTO sales (prod_id, cust_id, time_id, amount_sold)
 VALUES (product_id, customer_id, weekly_start_date+6, sales_sat)
SELECT product_id, customer_id, weekly_start_date, sales_sun,
 sales_mon, sales_tue, sales_wed, sales_thu, sales_fri, sales_sat
FROM sales_input_table;

This statement only scans the source table once and then inserts the appropriate data for each day.

	
See Also:

	
"Pivoting Operations" for more information regarding pivoting

	
Oracle Database SQL Language Reference for pivot_clause syntax

15 Maintaining the Data Warehouse

This chapter discusses how to load and refresh a data warehouse, and discusses:

	
Using Partitioning to Improve Data Warehouse Refresh

	
Optimizing DML Operations During Refresh

	
Refreshing Materialized Views

	
Using Materialized Views with Partitioned Tables

Using Partitioning to Improve Data Warehouse Refresh

ETL (Extraction, Transformation and Loading) is done on a scheduled basis to reflect changes made to the original source system. During this step, you physically insert the new, clean data into the production data warehouse schema, and take all of the other steps necessary (such as building indexes, validating constraints, taking backups) to make this new data available to the end users. Once all of this data has been loaded into the data warehouse, the materialized views have to be updated to reflect the latest data.

The partitioning scheme of the data warehouse is often crucial in determining the efficiency of refresh operations in the data warehouse load process. In fact, the load process is often the primary consideration in choosing the partitioning scheme of data warehouse tables and indexes.

The partitioning scheme of the largest data warehouse tables (for example, the fact table in a star schema) should be based upon the loading paradigm of the data warehouse.

Most data warehouses are loaded with new data on a regular schedule. For example, every night, week, or month, new data is brought into the data warehouse. The data being loaded at the end of the week or month typically corresponds to the transactions for the week or month. In this very common scenario, the data warehouse is being loaded by time. This suggests that the data warehouse tables should be partitioned on a date column. In our data warehouse example, suppose the new data is loaded into the sales table every month. Furthermore, the sales table has been partitioned by month. These steps show how the load process will proceed to add the data for a new month (January 2001) to the table sales.

	
Place the new data into a separate table, sales_01_2001. This data can be directly loaded into sales_01_2001 from outside the data warehouse, or this data can be the result of previous data transformation operations that have already occurred in the data warehouse. sales_01_2001 has the exact same columns, datatypes, and so forth, as the sales table. Gather statistics on the sales_01_2001 table.

	
Create indexes and add constraints on sales_01_2001. Again, the indexes and constraints on sales_01_2001 should be identical to the indexes and constraints on sales. Indexes can be built in parallel and should use the NOLOGGING and the COMPUTE STATISTICS options. For example:

CREATE BITMAP INDEX sales_01_2001_customer_id_bix
 ON sales_01_2001(customer_id)
 TABLESPACE sales_idx NOLOGGING PARALLEL 8 COMPUTE STATISTICS;

Apply all constraints to the sales_01_2001 table that are present on the sales table. This includes referential integrity constraints. A typical constraint would be:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_customer_id
 REFERENCES customer(customer_id) ENABLE NOVALIDATE;

If the partitioned table sales has a primary or unique key that is enforced with a global index structure, ensure that the constraint on sales_pk_jan01 is validated without the creation of an index structure, as in the following:

ALTER TABLE sales_01_2001 ADD CONSTRAINT sales_pk_jan01
PRIMARY KEY (sales_transaction_id) DISABLE VALIDATE;

The creation of the constraint with ENABLE clause would cause the creation of a unique index, which does not match a local index structure of the partitioned table. You must not have any index structure built on the nonpartitioned table to be exchanged for existing global indexes of the partitioned table. The exchange command would fail.

	
Add the sales_01_2001 table to the sales table.

In order to add this new data to the sales table, we need to do two things. First, we need to add a new partition to the sales table. We will use the ALTER TABLE ... ADD PARTITION statement. This will add an empty partition to the sales table:

ALTER TABLE sales ADD PARTITION sales_01_2001
VALUES LESS THAN (TO_DATE('01-FEB-2001', 'DD-MON-YYYY'));

Then, we can add our newly created table to this partition using the EXCHANGE PARTITION operation. This will exchange the new, empty partition with the newly loaded table.

ALTER TABLE sales EXCHANGE PARTITION sales_01_2001 WITH TABLE sales_01_2001
INCLUDING INDEXES WITHOUT VALIDATION UPDATE GLOBAL INDEXES;

The EXCHANGE operation will preserve the indexes and constraints that were already present on the sales_01_2001 table. For unique constraints (such as the unique constraint on sales_transaction_id), you can use the UPDATE GLOBAL INDEXES clause, as shown previously. This will automatically maintain your global index structures as part of the partition maintenance operation and keep them accessible throughout the whole process. If there were only foreign-key constraints, the exchange operation would be instantaneous.

The benefits of this partitioning technique are significant. First, the new data is loaded with minimal resource utilization. The new data is loaded into an entirely separate table, and the index processing and constraint processing are applied only to the new partition. If the sales table was 50 GB and had 12 partitions, then a new month's worth of data contains approximately 4 GB. Only the new month's worth of data needs to be indexed. None of the indexes on the remaining 46 GB of data needs to be modified at all. This partitioning scheme additionally ensures that the load processing time is directly proportional to the amount of new data being loaded, not to the total size of the sales table.

Second, the new data is loaded with minimal impact on concurrent queries. All of the operations associated with data loading are occurring on a separate sales_01_2001 table. Therefore, none of the existing data or indexes of the sales table is affected during this data refresh process. The sales table and its indexes remain entirely untouched throughout this refresh process.

Third, in case of the existence of any global indexes, those are incrementally maintained as part of the exchange command. This maintenance does not affect the availability of the existing global index structures.

The exchange operation can be viewed as a publishing mechanism. Until the data warehouse administrator exchanges the sales_01_2001 table into the sales table, end users cannot see the new data. Once the exchange has occurred, then any end user query accessing the sales table will immediately be able to see the sales_01_2001 data.

Partitioning is useful not only for adding new data but also for removing and archiving data. Many data warehouses maintain a rolling window of data. For example, the data warehouse stores the most recent 36 months of sales data. Just as a new partition can be added to the sales table (as described earlier), an old partition can be quickly (and independently) removed from the sales table. These two benefits (reduced resources utilization and minimal end-user impact) are just as pertinent to removing a partition as they are to adding a partition.

Removing data from a partitioned table does not necessarily mean that the old data is physically deleted from the database. There are two alternatives for removing old data from a partitioned table. First, you can physically delete all data from the database by dropping the partition containing the old data, thus freeing the allocated space:

ALTER TABLE sales DROP PARTITION sales_01_1998;

Also, you can exchange the old partition with an empty table of the same structure; this empty table is created equivalent to steps 1 and 2 described in the load process. Assuming the new empty table stub is named sales_archive_01_1998, the following SQL statement will empty partition sales_01_1998:

ALTER TABLE sales EXCHANGE PARTITION sales_01_1998
WITH TABLE sales_archive_01_1998 INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Note that the old data is still existent as the exchanged, nonpartitioned table sales_archive_01_1998.

If the partitioned table was setup in a way that every partition is stored in a separate tablespace, you can archive (or transport) this table using Oracle Database's transportable tablespace framework before dropping the actual data (the tablespace). See "Transportation Using Transportable Tablespaces" for further details regarding transportable tablespaces.

In some situations, you might not want to drop the old data immediately, but keep it as part of the partitioned table; although the data is no longer of main interest, there are still potential queries accessing this old, read-only data. You can use Oracle's data compression to minimize the space usage of the old data. We also assume that at least one compressed partition is already part of the partitioned table. See Chapter 3, "Physical Design in Data Warehouses" for a generic discussion of table compression and Oracle Database VLDB and Partitioning Guide for partitioning and table compression.

Refresh Scenarios

A typical scenario might not only need to compress old data, but also to merge several old partitions to reflect the granularity for a later backup of several merged partitions. Let us assume that a backup (partition) granularity is on a quarterly base for any quarter, where the oldest month is more than 36 months behind the most recent month. In this case, we are therefore compressing and merging sales_01_1998, sales_02_1998, and sales_03_1998 into a new, compressed partition sales_q1_1998.

	
Create the new merged partition in parallel in another tablespace. The partition will be compressed as part of the MERGE operation:

ALTER TABLE sales MERGE PARTITIONS sales_01_1998, sales_02_1998, sales_03_1998
 INTO PARTITION sales_q1_1998 TABLESPACE archive_q1_1998
COMPRESS UPDATE GLOBAL INDEXES PARALLEL 4;

	
The partition MERGE operation invalidates the local indexes for the new merged partition. We therefore have to rebuild them:

ALTER TABLE sales MODIFY PARTITION sales_q1_1998
REBUILD UNUSABLE LOCAL INDEXES;

Alternatively, you can choose to create the new compressed table outside the partitioned table and exchange it back. The performance and the temporary space consumption is identical for both methods:

	
Create an intermediate table to hold the new merged information. The following statement inherits all NOT NULL constraints from the original table by default:

CREATE TABLE sales_q1_1998_out TABLESPACE archive_q1_1998
NOLOGGING COMPRESS PARALLEL 4 AS SELECT * FROM sales
WHERE time_id >= TO_DATE('01-JAN-1998','dd-mon-yyyy')
 AND time_id < TO_DATE('01-APR-1998','dd-mon-yyyy');

	
Create the equivalent index structure for table sales_q1_1998_out than for the existing table sales.

	
Prepare the existing table sales for the exchange with the new compressed table sales_q1_1998_out. Because the table to be exchanged contains data actually covered in three partitions, we have to create one matching partition, having the range boundaries we are looking for. You simply have to drop two of the existing partitions. Note that you have to drop the lower two partitions sales_01_1998 and sales_02_1998; the lower boundary of a range partition is always defined by the upper (exclusive) boundary of the previous partition:

ALTER TABLE sales DROP PARTITION sales_01_1998;
ALTER TABLE sales DROP PARTITION sales_02_1998;

	
You can now exchange table sales_q1_1998_out with partition sales_03_1998. Unlike what the name of the partition suggests, its boundaries cover Q1-1998.

ALTER TABLE sales EXCHANGE PARTITION sales_03_1998
WITH TABLE sales_q1_1998_out INCLUDING INDEXES WITHOUT VALIDATION
UPDATE GLOBAL INDEXES;

Both methods apply to slightly different business scenarios: Using the MERGE PARTITION approach invalidates the local index structures for the affected partition, but it keeps all data accessible all the time. Any attempt to access the affected partition through one of the unusable index structures raises an error. The limited availability time is approximately the time for re-creating the local bitmap index structures. In most cases, this can be neglected, because this part of the partitioned table should not be accessed too often.

The CTAS approach, however, minimizes unavailability of any index structures close to zero, but there is a specific time window, where the partitioned table does not have all the data, because we dropped two partitions. The limited availability time is approximately the time for exchanging the table. Depending on the existence and number of global indexes, this time window varies. Without any existing global indexes, this time window is a matter of a fraction to few seconds.

These examples are a simplification of the data warehouse rolling window load scenario. Real-world data warehouse refresh characteristics are always more complex. However, the advantages of this rolling window approach are not diminished in more complex scenarios.

Note that before you add single or multiple compressed partitions to a partitioned table for the first time, all local bitmap indexes must be either dropped or marked unusable. After the first compressed partition is added, no additional actions are necessary for all subsequent operations involving compressed partitions. It is irrelevant how the compressed partitions are added to the partitioned table. See Oracle Database VLDB and Partitioning Guide for further details about partitioning and table compression.

Scenarios for Using Partitioning for Refreshing Data Warehouses

This section contains two typical scenarios where partitioning is used with refresh.

Refresh Scenario 1

Data is loaded daily. However, the data warehouse contains two years of data, so that partitioning by day might not be desired.

The solution is to partition by week or month (as appropriate). Use INSERT to add the new data to an existing partition. The INSERT operation only affects a single partition, so the benefits described previously remain intact. The INSERT operation could occur while the partition remains a part of the table. Inserts into a single partition can be parallelized:

INSERT /*+ APPEND*/ INTO sales PARTITION (sales_01_2001)
SELECT * FROM new_sales;

The indexes of this sales partition will be maintained in parallel as well. An alternative is to use the EXCHANGE operation. You can do this by exchanging the sales_01_2001 partition of the sales table and then using an INSERT operation. You might prefer this technique when dropping and rebuilding indexes is more efficient than maintaining them.

Refresh Scenario 2

New data feeds, although consisting primarily of data for the most recent day, week, and month, also contain some data from previous time periods.

Solution 1

Use parallel SQL operations (such as CREATE TABLE ... AS SELECT) to separate the new data from the data in previous time periods. Process the old data separately using other techniques.

New data feeds are not solely time based. You can also feed new data into a data warehouse with data from multiple operational systems on a business need basis. For example, the sales data from direct channels may come into the data warehouse separately from the data from indirect channels. For business reasons, it may furthermore make sense to keep the direct and indirect data in separate partitions.

Solution 2

Oracle supports composite range-list partitioning. The primary partitioning strategy of the sales table could be range partitioning based on time_id as shown in the example. However, the subpartitioning is a list based on the channel attribute. Each subpartition can now be loaded independently of each other (for each distinct channel) and added in a rolling window operation as discussed before. The partitioning strategy addresses the business needs in the most optimal manner.

Optimizing DML Operations During Refresh

You can optimize DML performance through the following techniques:

	
Implementing an Efficient MERGE Operation

	
Maintaining Referential Integrity

	
Purging Data

Implementing an Efficient MERGE Operation

Commonly, the data that is extracted from a source system is not simply a list of new records that needs to be inserted into the data warehouse. Instead, this new data set is a combination of new records as well as modified records. For example, suppose that most of data extracted from the OLTP systems will be new sales transactions. These records will be inserted into the warehouse's sales table, but some records may reflect modifications of previous transactions, such as returned merchandise or transactions that were incomplete or incorrect when initially loaded into the data warehouse. These records require updates to the sales table.

As a typical scenario, suppose that there is a table called new_sales that contains both inserts and updates that will be applied to the sales table. When designing the entire data warehouse load process, it was determined that the new_sales table would contain records with the following semantics:

	
If a given sales_transaction_id of a record in new_sales already exists in sales, then update the sales table by adding the sales_dollar_amount and sales_quantity_sold values from the new_sales table to the existing row in the sales table.

	
Otherwise, insert the entire new record from the new_sales table into the sales table.

This UPDATE-ELSE-INSERT operation is often called a merge. A merge can be executed using one SQL statement.

Example 15-1 MERGE Operation

MERGE INTO sales s USING new_sales n
ON (s.sales_transaction_id = n.sales_transaction_id)
WHEN MATCHED THEN
UPDATE SET s.sales_quantity_sold = s.sales_quantity_sold + n.sales_quantity_sold,
 s.sales_dollar_amount = s.sales_dollar_amount + n.sales_dollar_amount
WHEN NOT MATCHED THEN INSERT (sales_transaction_id, sales_quantity_sold,
sales_dollar_amount)
VALUES (n.sales_transcation_id, n.sales_quantity_sold, n.sales_dollar_amount);

In addition to using the MERGE statement for unconditional UPDATE ELSE INSERT functionality into a target table, you can also use it to:

	
Perform an UPDATE only or INSERT only statement.

	
Apply additional WHERE conditions for the UPDATE or INSERT portion of the MERGE statement.

	
The UPDATE operation can even delete rows if a specific condition yields true.

Example 15-2 Omitting the INSERT Clause

In some data warehouse applications, it is not allowed to add new rows to historical information, but only to update them. It may also happen that you do not want to update but only insert new information. The following example demonstrates INSERT-only with UPDATE-only functionality:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products D1 -- Destination table 1
ON (D1.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET D1.PROD_STATUS = S.PROD_NEW_STATUS

Example 15-3 Omitting the UPDATE Clause

The following statement illustrates an example of omitting an UPDATE:

MERGE USING New_Product S -- Source/Delta table
INTO Products D2 -- Destination table 2
ON (D2.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

When the INSERT clause is omitted, Oracle performs a regular join of the source and the target tables. When the UPDATE clause is omitted, Oracle performs an antijoin of the source and the target tables. This makes the join between the source and target table more efficient.

Example 15-4 Skipping the UPDATE Clause

In some situations, you may want to skip the UPDATE operation when merging a given row into the table. In this case, you can use an optional WHERE clause in the UPDATE clause of the MERGE. As a result, the UPDATE operation only executes when a given condition is true. The following statement illustrates an example of skipping the UPDATE operation:

MERGE
USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN
UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional UPDATE

This shows how the UPDATE operation would be skipped if the condition P.PROD_STATUS <> "OBSOLETE" is not true. The condition predicate can refer to both the target and the source table.

Example 15-5 Conditional Inserts with MERGE Statements

You may want to skip the INSERT operation when merging a given row into the table. So an optional WHERE clause is added to the INSERT clause of the MERGE. As a result, the INSERT operation only executes when a given condition is true. The following statement offers an example:

MERGE USING Product_Changes S -- Source/Delta table
INTO Products P -- Destination table 1
ON (P.PROD_ID = S.PROD_ID) -- Search/Join condition
WHEN MATCHED THEN UPDATE -- update if join
SET P.PROD_LIST_PRICE = S.PROD_NEW_PRICE
WHERE P.PROD_STATUS <> "OBSOLETE" -- Conditional
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_STATUS, PROD_LIST_PRICE) -- insert if not join
VALUES (S.PROD_ID, S.PROD_NEW_STATUS, S.PROD_NEW_PRICE)
WHERE S.PROD_STATUS <> "OBSOLETE"; -- Conditional INSERT

This example shows that the INSERT operation would be skipped if the condition S.PROD_STATUS <> "OBSOLETE" is not true, and INSERT will only occur if the condition is true. The condition predicate can refer to the source table only. The condition predicate can only refer to the source table.

Example 15-6 Using the DELETE Clause with MERGE Statements

You may want to cleanse tables while populating or updating them. To do this, you may want to consider using the DELETE clause in a MERGE statement, as in the following example:

MERGE USING Product_Changes S
INTO Products D ON (D.PROD_ID = S.PROD_ID)
WHEN MATCHED THEN
UPDATE SET D.PROD_LIST_PRICE =S.PROD_NEW_PRICE, D.PROD_STATUS = S.PROD_NEWSTATUS
DELETE WHERE (D.PROD_STATUS = "OBSOLETE")
WHEN NOT MATCHED THEN
INSERT (PROD_ID, PROD_LIST_PRICE, PROD_STATUS)
VALUES (S.PROD_ID, S.PROD_NEW_PRICE, S.PROD_NEW_STATUS);

Thus when a row is updated in products, Oracle checks the delete condition D.PROD_STATUS = "OBSOLETE", and deletes the row if the condition yields true.

The DELETE operation is not as same as that of a complete DELETE statement. Only the rows from the destination of the MERGE can be deleted. The only rows that will be affected by the DELETE are the ones that are updated by this MERGE statement. Thus, although a given row of the destination table meets the delete condition, if it does not join under the ON clause condition, it will not be deleted.

Example 15-7 Unconditional Inserts with MERGE Statements

You may want to insert all of the source rows into a table. In this case, the join between the source and target table can be avoided. By identifying special constant join conditions that always result to FALSE, for example, 1=0, such MERGE statements will be optimized and the join condition will be suppressed.

MERGE USING New_Product S -- Source/Delta table
INTO Products P -- Destination table 1
ON (1 = 0) -- Search/Join condition
WHEN NOT MATCHED THEN -- insert if no join
INSERT (PROD_ID, PROD_STATUS) VALUES (S.PROD_ID, S.PROD_NEW_STATUS)

Maintaining Referential Integrity

In some data warehousing environments, you might want to insert new data into tables in order to guarantee referential integrity. For example, a data warehouse may derive sales from an operational system that retrieves data directly from cash registers. sales is refreshed nightly. However, the data for the product dimension table may be derived from a separate operational system. The product dimension table may only be refreshed once for each week, because the product table changes relatively slowly. If a new product was introduced on Monday, then it is possible for that product's product_id to appear in the sales data of the data warehouse before that product_id has been inserted into the data warehouses product table.

Although the sales transactions of the new product may be valid, this sales data will not satisfy the referential integrity constraint between the product dimension table and the sales fact table. Rather than disallow the new sales transactions, you might choose to insert the sales transactions into the sales table. However, you might also wish to maintain the referential integrity relationship between the sales and product tables. This can be accomplished by inserting new rows into the product table as placeholders for the unknown products.

As in previous examples, we assume that the new data for the sales table will be staged in a separate table, new_sales. Using a single INSERT statement (which can be parallelized), the product table can be altered to reflect the new products:

INSERT INTO product
 (SELECT sales_product_id, 'Unknown Product Name', NULL, NULL ...
 FROM new_sales WHERE sales_product_id NOT IN
 (SELECT product_id FROM product));

Purging Data

Occasionally, it is necessary to remove large amounts of data from a data warehouse. A very common scenario is the rolling window discussed previously, in which older data is rolled out of the data warehouse to make room for new data.

However, sometimes other data might need to be removed from a data warehouse. Suppose that a retail company has previously sold products from XYZ Software, and that XYZ Software has subsequently gone out of business. The business users of the warehouse may decide that they are no longer interested in seeing any data related to XYZ Software, so this data should be deleted.

One approach to removing a large volume of data is to use parallel delete as shown in the following statement:

DELETE FROM sales WHERE sales_product_id IN (SELECT product_id
 FROM product WHERE product_category = 'XYZ Software');

This SQL statement will spawn one parallel process for each partition. This approach will be much more efficient than a serial DELETE statement, and none of the data in the sales table will need to be moved. However, this approach also has some disadvantages. When removing a large percentage of rows, the DELETE statement will leave many empty row-slots in the existing partitions. If new data is being loaded using a rolling window technique (or is being loaded using direct-path INSERT or load), then this storage space will not be reclaimed. Moreover, even though the DELETE statement is parallelized, there might be more efficient methods. An alternative method is to re-create the entire sales table, keeping the data for all product categories except XYZ Software.

CREATE TABLE sales2 AS SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software'
NOLOGGING PARALLEL (DEGREE 8)
#PARTITION ... ; #create indexes, constraints, and so on
DROP TABLE SALES;
RENAME SALES2 TO SALES;

This approach may be more efficient than a parallel delete. However, it is also costly in terms of the amount of disk space, because the sales table must effectively be instantiated twice.

An alternative method to utilize less space is to re-create the sales table one partition at a time:

CREATE TABLE sales_temp AS SELECT * FROM sales WHERE 1=0;
INSERT INTO sales_temp PARTITION (sales_99jan)
SELECT * FROM sales, product
WHERE sales.sales_product_id = product.product_id
AND product_category <> 'XYZ Software';
<create appropriate indexes and constraints on sales_temp>
ALTER TABLE sales EXCHANGE PARTITION sales_99jan WITH TABLE sales_temp;

Continue this process for each partition in the sales table.

Refreshing Materialized Views

When creating a materialized view, you have the option of specifying whether the refresh occurs ON DEMAND or ON COMMIT. In the case of ON COMMIT, the materialized view is changed every time a transaction commits, thus ensuring that the materialized view always contains the latest data. Alternatively, you can control the time when refresh of the materialized views occurs by specifying ON DEMAND. In this case, the materialized view can only be refreshed by calling one of the procedures in the DBMS_MVIEW package.

DBMS_MVIEW provides three different types of refresh operations.

	
DBMS_MVIEW.REFRESH

Refresh one or more materialized views.

	
DBMS_MVIEW.REFRESH_ALL_MVIEWS

Refresh all materialized views.

	
DBMS_MVIEW.REFRESH_DEPENDENT

Refresh all materialized views that depend on a specified master table or materialized view or list of master tables or materialized views.

	
See Also:

"Manual Refresh Using the DBMS_MVIEW Package" for more information about this package

Performing a refresh operation requires temporary space to rebuild the indexes and can require additional space for performing the refresh operation itself. Some sites might prefer not to refresh all of their materialized views at the same time: as soon as some underlying detail data has been updated, all materialized views using this data will become stale. Therefore, if you defer refreshing your materialized views, you can either rely on your chosen rewrite integrity level to determine whether or not a stale materialized view can be used for query rewrite, or you can temporarily disable query rewrite with an ALTER SYSTEM SET QUERY_REWRITE_ENABLED = FALSE statement. After refreshing the materialized views, you can re-enable query rewrite as the default for all sessions in the current database instance by specifying ALTER SYSTEM SET QUERY_REWRITE_ENABLED as TRUE. Refreshing a materialized view automatically updates all of its indexes. In the case of full refresh, this requires temporary sort space to rebuild all indexes during refresh. This is because the full refresh truncates or deletes the table before inserting the new full data volume. If insufficient temporary space is available to rebuild the indexes, then you must explicitly drop each index or mark it UNUSABLE prior to performing the refresh operation.

If you anticipate performing insert, update or delete operations on tables referenced by a materialized view concurrently with the refresh of that materialized view, and that materialized view includes joins and aggregation, Oracle recommends you use ON COMMIT fast refresh rather than ON DEMAND fast refresh.

	
See Also:

Oracle OLAP User's Guide for information regarding the refresh of cube organized materialized views

Complete Refresh

A complete refresh occurs when the materialized view is initially defined as BUILD IMMEDIATE, unless the materialized view references a prebuilt table. For materialized views using BUILD DEFERRED, a complete refresh must be requested before it can be used for the first time. A complete refresh may be requested at any time during the life of any materialized view. The refresh involves reading the detail tables to compute the results for the materialized view. This can be a very time-consuming process, especially if there are huge amounts of data to be read and processed. Therefore, you should always consider the time required to process a complete refresh before requesting it.

There are, however, cases when the only refresh method available for an already built materialized view is complete refresh because the materialized view does not satisfy the conditions specified in the following section for a fast refresh.

Fast Refresh

Most data warehouses have periodic incremental updates to their detail data. As described in "Materialized View Schema Design", you can use the SQL*Loader or any bulk load utility to perform incremental loads of detail data. Fast refresh of your materialized views is usually efficient, because instead of having to recompute the entire materialized view, the changes are applied to the existing data. Thus, processing only the changes can result in a very fast refresh time.

Partition Change Tracking (PCT) Refresh

When there have been some partition maintenance operations on the detail tables, this is the only method of fast refresh that can be used. PCT-based refresh on a materialized view is enabled only if all the conditions described in "Partition Change Tracking" are satisfied.

In the absence of partition maintenance operations on detail tables, when you request a FAST method (method => 'F') of refresh through procedures in DBMS_MVIEW package, Oracle will use a heuristic rule to try log-based rule fast refresh before choosing PCT refresh. Similarly, when you request a FORCE method (method => '?'), Oracle will choose the refresh method based on the following attempt order: log-based fast refresh, PCT refresh, and complete refresh. Alternatively, you can request the PCT method (method => 'P'), and Oracle will use the PCT method provided all PCT requirements are satisfied.

Oracle can use TRUNCATE PARTITION on a materialized view if it satisfies the conditions in "Benefits of Partitioning a Materialized View" and hence, make the PCT refresh process more efficient.

ON COMMIT Refresh

A materialized view can be refreshed automatically using the ON COMMIT method. Therefore, whenever a transaction commits which has updated the tables on which a materialized view is defined, those changes will be automatically reflected in the materialized view. The advantage of using this approach is you never have to remember to refresh the materialized view. The only disadvantage is the time required to complete the commit will be slightly longer because of the extra processing involved. However, in a data warehouse, this should not be an issue because there is unlikely to be concurrent processes trying to update the same table.

Manual Refresh Using the DBMS_MVIEW Package

When a materialized view is refreshed ON DEMAND, one of four refresh methods can be specified as shown in the following table. You can define a default option during the creation of the materialized view. Table 15-1 details the refresh options.

Table 15-1 ON DEMAND Refresh Methods

	Refresh Option	Parameter	Description
	
COMPLETE

	
C

	
Refreshes by recalculating the defining query of the materialized view.

	
FAST

	
F

	
Refreshes by incrementally applying changes to the materialized view.

For local materialized views, it chooses the refresh method which is estimated by optimizer to be most efficient. The refresh methods considered are log-based FAST and FAST_PCT.

	
FAST_PCT

	
P

	
Refreshes by recomputing the rows in the materialized view affected by changed partitions in the detail tables.

	
FORCE

	
?

	
Attempts a fast refresh. If that is not possible, it does a complete refresh.

For local materialized views, it chooses the refresh method which is estimated by optimizer to be most efficient. The refresh methods considered are log based FAST, FAST_PCT, and COMPLETE.

Three refresh procedures are available in the DBMS_MVIEW package for performing ON DEMAND refresh. Each has its own unique set of parameters.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information about the DBMS_MVIEW package and Oracle Database Advanced Replication for information showing how to use it in a replication environment

Refresh Specific Materialized Views with REFRESH

Use the DBMS_MVIEW.REFRESH procedure to refresh one or more materialized views. Some parameters are used only for replication, so they are not mentioned here. The required parameters to use this procedure are:

	
The comma-delimited list of materialized views to refresh

	
The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

	
The rollback segment to use

	
Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter will be set to the number of refreshes that failed, and a generic error message will indicate that failures occurred. The alert log for the instance will give details of refresh errors. If set to FALSE, the default, then refresh will stop after it encounters the first error, and any remaining materialized views in the list will not be refreshed.

	
The following four parameters are used by the replication process. For warehouse refresh, set them to FALSE, 0,0,0.

	
Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then the refresh of each specified materialized view is done in a separate transaction. If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_tolerated.

For example, to perform a fast refresh on the materialized view cal_month_sales_mv, the DBMS_MVIEW package would be called as follows:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV', 'F', '', TRUE, FALSE, 0,0,0, FALSE);

Multiple materialized views can be refreshed at the same time, and they do not all have to use the same refresh method. To give them different refresh methods, specify multiple method codes in the same order as the list of materialized views (without commas). For example, the following specifies that cal_month_sales_mv be completely refreshed and fweek_pscat_sales_mv receive a fast refresh:

DBMS_MVIEW.REFRESH('CAL_MONTH_SALES_MV, FWEEK_PSCAT_SALES_MV', 'CF', '',
 TRUE, FALSE, 0,0,0, FALSE);

If the refresh method is not specified, the default refresh method as specified in the materialized view definition will be used.

Refresh All Materialized Views with REFRESH_ALL_MVIEWS

An alternative to specifying the materialized views to refresh is to use the procedure DBMS_MVIEW.REFRESH_ALL_MVIEWS. This procedure refreshes all materialized views. If any of the materialized views fails to refresh, then the number of failures is reported.

The parameters for this procedure are:

	
The number of failures (this is an OUT variable)

	
The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

	
Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter will be set to the number of refreshes that failed, and a generic error message will indicate that failures occurred. The alert log for the instance will give details of refresh errors. If set to FALSE, the default, then refresh will stop after it encounters the first error, and any remaining materialized views in the list will not be refreshed.

	
Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then the refresh of each specified materialized view is done in a separate transaction. If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_tolerated.

An example of refreshing all materialized views is the following:

DBMS_MVIEW.REFRESH_ALL_MVIEWS(failures,'C','', TRUE, FALSE);

Refresh Dependent Materialized Views with REFRESH_DEPENDENT

The third procedure, DBMS_MVIEW.REFRESH_DEPENDENT, refreshes only those materialized views that depend on a specific table or list of tables. For example, suppose the changes have been received for the orders table but not for customer payments. The refresh dependent procedure can be called to refresh only those materialized views that reference the orders table.

The parameters for this procedure are:

	
The number of failures (this is an OUT variable)

	
The dependent table

	
The refresh method: F-Fast, P-Fast_PCT, ?-Force, C-Complete

	
The rollback segment to use

	
Refresh after errors (TRUE or FALSE)

A Boolean parameter. If set to TRUE, the number_of_failures output parameter will be set to the number of refreshes that failed, and a generic error message will indicate that failures occurred. The alert log for the instance will give details of refresh errors. If set to FALSE, the default, then refresh will stop after it encounters the first error, and any remaining materialized views in the list will not be refreshed.

	
Atomic refresh (TRUE or FALSE)

If set to TRUE, then all refreshes are done in one transaction. If set to FALSE, then the refresh of each specified materialized view is done in a separate transaction. If set to FALSE, Oracle can optimize refresh by using parallel DML and truncate DDL on a materialized views. When a materialized view is refreshed in atomic mode, it is eligible for query rewrite if the rewrite integrity mode is set to stale_tolerated.

	
Whether it is nested or not

If set to TRUE, refresh all the dependent materialized views of the specified set of tables based on a dependency order to ensure the materialized views are truly fresh with respect to the underlying base tables.

To perform a full refresh on all materialized views that reference the customers table, specify:

DBMS_MVIEW.REFRESH_DEPENDENT(failures, 'CUSTOMERS', 'C', '', FALSE, FALSE);

To obtain the list of materialized views that are directly dependent on a given object (table or materialized view), use the procedure DBMS_MVIEW.GET_MV_DEPENDENCIES to determine the dependent materialized views for a given table, or for deciding the order to refresh nested materialized views.

DBMS_MVIEW.GET_MV_DEPENDENCIES(mvlist IN VARCHAR2, deplist OUT VARCHAR2)

The input to this function is the name or names of the materialized view. The output is a comma-delimited list of the materialized views that are defined on it. For example, the following statement:

DBMS_MVIEW.GET_MV_DEPENDENCIES("JOHN.SALES_REG, SCOTT.PROD_TIME", deplist)

This populates deplist with the list of materialized views defined on the input arguments. For example:

deplist <= "JOHN.SUM_SALES_WEST, JOHN.SUM_SALES_EAST, SCOTT.SUM_PROD_MONTH".

Using Job Queues for Refresh

Job queues can be used to refresh multiple materialized views in parallel. If queues are not available, fast refresh will sequentially refresh each view in the foreground process. To make queues available, you must set the JOB_QUEUE_PROCESSES parameter. This parameter defines the number of background job queue processes and determines how many materialized views can be refreshed concurrently. Oracle tries to balance the number of concurrent refreshes with the degree of parallelism of each refresh. The order in which the materialized views are refreshed is determined by dependencies imposed by nested materialized views and potential for efficient refresh by using query rewrite against other materialized views (See "Scheduling Refresh" for details). This parameter is only effective when atomic_refresh is set to FALSE.

If the process that is executing DBMS_MVIEW.REFRESH is interrupted or the instance is shut down, any refresh jobs that were executing in job queue processes will be requeued and will continue running. To remove these jobs, use the DBMS_JOB.REMOVE procedure.

When Fast Refresh is Possible

Not all materialized views may be fast refreshable. Therefore, use the package DBMS_MVIEW.EXPLAIN_MVIEW to determine what refresh methods are available for a materialized view. See Chapter 8, "Basic Materialized Views" for further information about the DBMS_MVIEW package.

If you are not sure how to make a materialized view fast refreshable, you can use the DBMS_ADVISOR.TUNE_MVIEW procedure, which will provide a script containing the statements required to create a fast refreshable materialized view. See the Oracle Database Performance Tuning Guide for more information.

Recommended Initialization Parameters for Parallelism

The following initialization parameters need to be set properly for parallelism to be effective:

	
PARALLEL_MAX_SERVERS should be set high enough to take care of parallelism. You need to consider the number of slaves needed for the refresh statement. For example, with a degree of parallelism of eight, you need 16 slave processes.

	
PGA_AGGREGATE_TARGET should be set for the instance to manage the memory usage for sorts and joins automatically. If the memory parameters are set manually, SORT_AREA_SIZE should be less than HASH_AREA_SIZE.

	
OPTIMIZER_MODE should equal all_rows.

Remember to analyze all tables and indexes for better optimization.

See Chapter 25, "Using Parallel Execution" for further information.

Monitoring a Refresh

While a job is running, you can query the V$SESSION_LONGOPS view to tell you the progress of each materialized view being refreshed.

SELECT * FROM V$SESSION_LONGOPS;

To look at the progress of which jobs are on which queue, use:

SELECT * FROM DBA_JOBS_RUNNING;

Checking the Status of a Materialized View

Three views are provided for checking the status of a materialized view: DBA_MVEIWS, ALL_MVIEWS, and USER_MVIEWS. To check if a materialized view is fresh or stale, issue the following statement:

SELECT MVIEW_NAME, STALENESS, LAST_REFRESH_TYPE, COMPILE_STATE
FROM USER_MVIEWS ORDER BY MVIEW_NAME;

MVIEW_NAME STALENESS LAST_REF COMPILE_STATE
---------- --------- -------- -------------
CUST_MTH_SALES_MV NEEDS_COMPILE FAST NEEDS_COMPILE
PROD_YR_SALES_MV FRESH FAST VALID

If the compile_state column shows NEEDS COMPILE, the other displayed column values cannot be trusted as reflecting the true status. To revalidate the materialized view, issue the following statement:

ALTER MATERIALIZED VIEW [materialized_view_name] COMPILE;

Then reissue the SELECT statement.

Viewing Partition Freshness

Several views are available that enable you to verify the status of base table partitions and determine which ranges of materialized view data are fresh and which are stale. The views are as follows:

	
*_USER_MVIEWS

To determine Partition Change Tracking (PCT) information for the materialized view.

	
*_USER_MVIEW_DETAIL_RELATIONS

To display partition information for the detail table a materialized view is based on.

	
*_USER_MVIEW_DETAIL_PARTITION

To determine which partitions are fresh.

	
*_USER_MVIEW_DETAIL_SUBPARTITION

To determine which subpartitions are fresh.

The use of these views is illustrated in the following examples. Figure 15-1 illustrates a range-list partitioned table and a materialized view based on it. The partitions are P1, P2, P3, and P4, while the subpartitions are SP1, SP2, and SP3.

Figure 15-1 Determining PCT Freshness

[image: Description of Figure 15-1 follows]

Examples of Using Views to Determine Freshness

This section illustrates examples of determining the PCT and freshness information for materialized views and their detail tables.

Example 15-8 Verifying the PCT Status of a Materialized View

Query USER_MVIEWS to access PCT information about the materialized view, as shown in the following:

SELECT MVIEW_NAME, NUM_PCT_TABLES, NUM_FRESH_PCT_REGIONS,
 NUM_STALE_PCT_REGIONS
FROM USER_MVIEWS
WHERE MVIEW_NAME = MV1;

MVIEW_NAME NUM_PCT_TABLES NUM_FRESH_PCT_REGIONS NUM_STALE_PCT_REGIONS
---------- -------------- --------------------- ---------------------
 MV1 1 9 3

Example 15-9 Verifying the PCT Status in a Materialized View's Detail Table

Query USER_MVIEW_DETAIL_RELATIONS to access PCT detail table information, as shown in the following:

SELECT MVIEW_NAME, DETAILOBJ_NAME, DETAILOBJ_PCT,
 NUM_FRESH_PCT_PARTITIONS, NUM_STALE_PCT_PARTITIONS
FROM USER_MVIEW_DETAIL_RELATIONS
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_OBJ_PCT NUM_FRESH_PCT_PARTITIONS NUM_STALE_PCT_PARTITIONS
---------- -------------- -------------- ------------------------ ------------------------
 MV1 T1 Y 3 1

Example 15-10 Verifying Which Partitions are Fresh

Query USER_MVIEW_DETAIL_PARTITION to access PCT freshness information for partitions, as shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME,
 DETAIL_PARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_PARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ_NAME DETAIL_PARTITION_NAME DETAIL_PARTITION_POSITION FRESHNESS
---------- -------------- --------------------- ------------------------- ---------
 MV1 T1 P1 1 FRESH
 MV1 T1 P2 2 FRESH
 MV1 T1 P3 3 STALE
 MV1 T1 P4 4 FRESH

Example 15-11 Verifying Which Subpartitions are Fresh

Query USER_MVIEW_DETAIL_SUBPARTITION to access PCT freshness information for subpartitions, as shown in the following:

SELECT MVIEW_NAME,DETAILOBJ_NAME,DETAIL_PARTITION_NAME, DETAIL_SUBPARTITION_NAME,
 DETAIL_SUBPARTITION_POSITION,FRESHNESS
FROM USER_MVIEW_DETAIL_SUBPARTITION
WHERE MVIEW_NAME = MV1;

MVIEW_NAME DETAILOBJ DETAIL_PARTITION DETAIL_SUBPARTITION_NAME DETAIL_SUBPARTITION_POS FRESHNESS
---------- --------- ---------------- ------------------------ ----------------------- ---------
 MV1 T1 P1 SP1 1 FRESH
 MV1 T1 P1 SP2 1 FRESH
 MV1 T1 P1 SP3 1 FRESH
 MV1 T1 P2 SP1 1 FRESH
 MV1 T1 P2 SP2 1 FRESH
 MV1 T1 P2 SP3 1 FRESH
 MV1 T1 P3 SP1 1 STALE
 MV1 T1 P3 SP2 1 STALE
 MV1 T1 P3 SP3 1 STALE
 MV1 T1 P4 SP1 1 FRESH
 MV1 T1 P4 SP2 1 FRESH
 MV1 T1 P4 SP3 1 FRESH

Scheduling Refresh

Very often you will have multiple materialized views in the database. Some of these can be computed by rewriting against others. This is very common in data warehousing environment where you may have nested materialized views or materialized views at different levels of some hierarchy.

In such cases, you should create the materialized views as BUILD DEFERRED, and then issue one of the refresh procedures in DBMS_MVIEW package to refresh all the materialized views. Oracle Database will compute the dependencies and refresh the materialized views in the right order. Consider the example of a complete hierarchical cube described in "Examples of Hierarchical Cube Materialized Views". Suppose all the materialized views have been created as BUILD DEFERRED. Creating the materialized views as BUILD DEFERRED will only create the metadata for all the materialized views. And, then, you can just call one of the refresh procedures in DBMS_MVIEW package to refresh all the materialized views in the right order:

DECLARE numerrs PLS_INTEGER;
BEGIN DBMS_MVIEW.REFRESH_DEPENDENT (
 number_of_failures => numerrs, list=>'SALES', method => 'C');
DBMS_OUTPUT.PUT_LINE('There were ' || numerrs || ' errors during refresh');
END;
/

The procedure will refresh the materialized views in the order of their dependencies (first sales_hierarchical_mon_cube_mv, followed by sales_hierarchical_qtr_cube_mv, then, sales_hierarchical_yr_cube_mv and finally, sales_hierarchical_all_cube_mv). Each of these materialized views will get rewritten against the one prior to it in the list).

The same kind of rewrite can also be used while doing PCT refresh. PCT refresh recomputes rows in a materialized view corresponding to changed rows in the detail tables. And, if there are other fresh materialized views available at the time of refresh, it can go directly against them as opposed to going against the detail tables.

Hence, it is always beneficial to pass a list of materialized views to any of the refresh procedures in DBMS_MVIEW package (irrespective of the method specified) and let the procedure figure out the order of doing refresh on materialized views.

Tips for Refreshing Materialized Views with Aggregates

Following are some guidelines for using the refresh mechanism for materialized views with aggregates.

	
For fast refresh, create materialized view logs on all detail tables involved in a materialized view with the ROWID, SEQUENCE and INCLUDING NEW VALUES clauses.

Include all columns from the table likely to be used in materialized views in the materialized view logs.

Fast refresh may be possible even if the SEQUENCE option is omitted from the materialized view log. If it can be determined that only inserts or deletes will occur on all the detail tables, then the materialized view log does not require the SEQUENCE clause. However, if updates to multiple tables are likely or required or if the specific update scenarios are unknown, make sure the SEQUENCE clause is included.

	
Use Oracle's bulk loader utility or direct-path INSERT (INSERT with the APPEND hint for loads).

This is a lot more efficient than conventional insert. During loading, disable all constraints and re-enable when finished loading. Note that materialized view logs are required regardless of whether you use direct load or conventional DML.

Try to optimize the sequence of conventional mixed DML operations, direct-path INSERT and the fast refresh of materialized views. You can use fast refresh with a mixture of conventional DML and direct loads. Fast refresh can perform significant optimizations if it finds that only direct loads have occurred, as illustrated in the following:

	
Direct-path INSERT (SQL*Loader or INSERT /*+ APPEND */) into the detail table

	
Refresh materialized view

	
Conventional mixed DML

	
Refresh materialized view

You can use fast refresh with conventional mixed DML (INSERT, UPDATE, and DELETE) to the detail tables. However, fast refresh will be able to perform significant optimizations in its processing if it detects that only inserts or deletes have been done to the tables, such as:

	
DML INSERT or DELETE to the detail table

	
Refresh materialized views

	
DML update to the detail table

	
Refresh materialized view

Even more optimal is the separation of INSERT and DELETE.

If possible, refresh should be performed after each type of data change (as shown earlier) rather than issuing only one refresh at the end. If that is not possible, restrict the conventional DML to the table to inserts only, to get much better refresh performance. Avoid mixing deletes and direct loads.

Furthermore, for refresh ON COMMIT, Oracle keeps track of the type of DML done in the committed transaction. Therefore, do not perform direct-path INSERT and DML to other tables in the same transaction, as Oracle may not be able to optimize the refresh phase.

For ON COMMIT materialized views, where refreshes automatically occur at the end of each transaction, it may not be possible to isolate the DML statements, in which case keeping the transactions short will help. However, if you plan to make numerous modifications to the detail table, it may be better to perform them in one transaction, so that refresh of the materialized view will be performed just once at commit time rather than after each update.

	
Oracle recommends partitioning the tables because it enables you to use:

	
Parallel DML

For large loads or refresh, enabling parallel DML will help shorten the length of time for the operation.

	
Partition Change Tracking (PCT) fast refresh

You can refresh your materialized views fast after partition maintenance operations on the detail tables. "Partition Change Tracking" for details on enabling PCT for materialized views.

	
Partitioning the materialized view will also help refresh performance as refresh can update the materialized view using parallel DML. For example, assume that the detail tables and materialized view are partitioned and have a parallel clause. The following sequence would enable Oracle to parallelize the refresh of the materialized view.

	
Bulk load into the detail table.

	
Enable parallel DML with an ALTER SESSION ENABLE PARALLEL DML statement.

	
Refresh the materialized view.

	
For refresh using DBMS_MVIEW.REFRESH, set the parameter atomic_refresh to FALSE.

	
For COMPLETE refresh, this will TRUNCATE to delete existing rows in the materialized view, which is faster than a delete.

	
For PCT refresh, if the materialized view is partitioned appropriately, this will use TRUNCATE PARTITION to delete rows in the affected partitions of the materialized view, which is faster than a delete.

	
For FAST or FORCE refresh, if COMPLETE or PCT refresh is chosen, this will be able to use the TRUNCATE optimizations described earlier.

	
When using DBMS_MVIEW.REFRESH with JOB_QUEUES, remember to set atomic to FALSE. Otherwise, JOB_QUEUES will not get used. Set the number of job queue processes greater than the number of processors.

If job queues are enabled and there are many materialized views to refresh, it is faster to refresh all of them in a single command than to call them individually.

	
Use REFRESH FORCE to ensure refreshing a materialized view so that it can definitely be used for query rewrite. The best refresh method will be chosen. If a fast refresh cannot be done, a complete refresh will be performed.

	
Refresh all the materialized views in a single procedure call. This gives Oracle an opportunity to schedule refresh of all the materialized views in the right order taking into account dependencies imposed by nested materialized views and potential for efficient refresh by using query rewrite against other materialized views.

Tips for Refreshing Materialized Views Without Aggregates

If a materialized view contains joins but no aggregates, then having an index on each of the join column rowids in the detail table will enhance refresh performance greatly, because this type of materialized view tends to be much larger than materialized views containing aggregates. For example, consider the following materialized view:

CREATE MATERIALIZED VIEW detail_fact_mv BUILD IMMEDIATE AS
SELECT s.rowid "sales_rid", t.rowid "times_rid", c.rowid "cust_rid",
 c.cust_state_province, t.week_ending_day, s.amount_sold
FROM sales s, times t, customers c
WHERE s.time_id = t.time_id AND s.cust_id = c.cust_id;

Indexes should be created on columns sales_rid, times_rid and cust_rid. Partitioning is highly recommended, as is enabling parallel DML in the session before invoking refresh, because it will greatly enhance refresh performance.

This type of materialized view can also be fast refreshed if DML is performed on the detail table. It is recommended that the same procedure be applied to this type of materialized view as for a single table aggregate. That is, perform one type of change (direct-path INSERT or DML) and then refresh the materialized view. This is because Oracle Database can perform significant optimizations if it detects that only one type of change has been done.

Also, Oracle recommends that the refresh be invoked after each table is loaded, rather than load all the tables and then perform the refresh.

For refresh ON COMMIT, Oracle keeps track of the type of DML done in the committed transaction. Oracle therefore recommends that you do not perform direct-path and conventional DML to other tables in the same transaction because Oracle may not be able to optimize the refresh phase. For example, the following is not recommended:

	
Direct load new data into the fact table

	
DML into the store table

	
Commit

Also, try not to mix different types of conventional DML statements if possible. This would again prevent using various optimizations during fast refresh. For example, try to avoid the following:

	
Insert into the fact table

	
Delete from the fact table

	
Commit

If many updates are needed, try to group them all into one transaction because refresh will be performed just once at commit time, rather than after each update.

In a data warehousing environment, assuming that the materialized view has a parallel clause, the following sequence of steps is recommended:

	
Bulk load into the fact table

	
Enable parallel DML

	
An ALTER SESSION ENABLE PARALLEL DML statement

	
Refresh the materialized view

Tips for Refreshing Nested Materialized Views

All underlying objects are treated as ordinary tables when refreshing materialized views. If the ON COMMIT refresh option is specified, then all the materialized views are refreshed in the appropriate order at commit time. In other words, Oracle builds a partially ordered set of materialized views and refreshes them such that, after the successful completion of the refresh, all the materialized views are fresh. The status of the materialized views can be checked by querying the appropriate USER_, DBA_, or ALL_MVIEWS view.

If any of the materialized views are defined as ON DEMAND refresh (irrespective of whether the refresh method is FAST, FORCE, or COMPLETE), you will need to refresh them in the correct order (taking into account the dependencies between the materialized views) because the nested materialized view will be refreshed with respect to the current contents of the other materialized views (whether fresh or not). This can be achieved by invoking the refresh procedure against the materialized view at the top of the nested hierarchy and specifying the nested parameter as TRUE.

If a refresh fails during commit time, the list of materialized views that has not been refreshed is written to the alert log, and you must manually refresh them along with all their dependent materialized views.

Use the same DBMS_MVIEW procedures on nested materialized views that you use on regular materialized views.

These procedures have the following behavior when used with nested materialized views:

	
If REFRESH is applied to a materialized view my_mv that is built on other materialized views, then my_mv will be refreshed with respect to the current contents of the other materialized views (that is, the other materialized views will not be made fresh first) unless you specify nested => TRUE.

	
If REFRESH_DEPENDENT is applied to materialized view my_mv, then only materialized views that directly depend on my_mv will be refreshed (that is, a materialized view that depends on a materialized view that depends on my_mv will not be refreshed) unless you specify nested => TRUE.

	
If REFRESH_ALL_MVIEWS is used, the order in which the materialized views will be refreshed is guaranteed to respect the dependencies between nested materialized views.

	
GET_MV_DEPENDENCIES provides a list of the immediate (or direct) materialized view dependencies for an object.

Tips for Fast Refresh with UNION ALL

You can use fast refresh for materialized views that use the UNION ALL operator by providing a maintenance column in the definition of the materialized view. For example, a materialized view with a UNION ALL operator can be made fast refreshable as follows:

CREATE MATERIALIZED VIEW fast_rf_union_all_mv AS
SELECT x.rowid AS r1, y.rowid AS r2, a, b, c, 1 AS marker
FROM x, y WHERE x.a = y.b
UNION ALL
SELECT p.rowid, r.rowid, a, c, d, 2 AS marker
FROM p, r WHERE p.a = r.y;

The form of a maintenance marker column, column MARKER in the example, must be numeric_or_string_literal AS column_alias, where each UNION ALL member has a distinct value for numeric_or_string_literal.

Tips After Refreshing Materialized Views

After you have performed a load or incremental load and rebuilt the detail table indexes, you need to re-enable integrity constraints (if any) and refresh the materialized views and materialized view indexes that are derived from that detail data. In a data warehouse environment, referential integrity constraints are normally enabled with the NOVALIDATE or RELY options. An important decision to make before performing a refresh operation is whether the refresh needs to be recoverable. Because materialized view data is redundant and can always be reconstructed from the detail tables, it might be preferable to disable logging on the materialized view. To disable logging and run incremental refresh non-recoverably, use the ALTER MATERIALIZED VIEW ... NOLOGGING statement prior to refreshing.

If the materialized view is being refreshed using the ON COMMIT method, then, following refresh operations, consult the alert log alert_SID.log and the trace file ora_SID_number.trc to check that no errors have occurred.

Using Materialized Views with Partitioned Tables

A major maintenance component of a data warehouse is synchronizing (refreshing) the materialized views when the detail data changes. Partitioning the underlying detail tables can reduce the amount of time taken to perform the refresh task. This is possible because partitioning enables refresh to use parallel DML to update the materialized view. Also, it enables the use of Partition Change Tracking.

Fast Refresh with Partition Change Tracking

In a data warehouse, changes to the detail tables can often entail partition maintenance operations, such as DROP, EXCHANGE, MERGE, and ADD PARTITION. To maintain the materialized view after such operations used to require manual maintenance (see also CONSIDER FRESH) or complete refresh. You now have the option of using an addition to fast refresh known as Partition Change Tracking (PCT) refresh.

For PCT to be available, the detail tables must be partitioned. The partitioning of the materialized view itself has no bearing on this feature. If PCT refresh is possible, it will occur automatically and no user intervention is required in order for it to occur. See "Partition Change Tracking" for PCT requirements.

The following examples illustrate the use of this feature. In "PCT Fast Refresh Scenario 1", assume sales is a partitioned table using the time_id column and products is partitioned by the prod_category column. The table times is not a partitioned table.

PCT Fast Refresh Scenario 1

	
The following materialized view satisfies requirements for PCT.

CREATE MATERIALIZED VIEW cust_mth_sales_mv
BUILD IMMEDIATE
REFRESH FAST ON DEMAND
ENABLE QUERY REWRITE AS
SELECT s.time_id, s.prod_id, SUM(s.quantity_sold), SUM(s.amount_sold),
 p.prod_name, t.calendar_month_name, COUNT(*),
 COUNT(s.quantity_sold), COUNT(s.amount_sold)
FROM sales s, products p, times t
WHERE s.time_id = t.time_id AND s.prod_id = p.prod_id
GROUP BY t.calendar_month_name, s.prod_id, p.prod_name, s.time_id;

	
You can use the DBMS_MVIEW.EXPLAIN_MVIEW procedure to determine which tables will allow PCT refresh.

MVNAME CAPABILITY_NAME POSSIBLE RELATED_TEXT MSGTXT
----------------- --------------- -------- ------------ ----------------
CUST_MTH_SALES_MV PCT Y SALES
CUST_MTH_SALES_MV PCT_TABLE Y SALES
CUST_MTH_SALES_MV PCT_TABLE N PRODUCTS no partition key
 or PMARKER
 in SELECT list
CUST_MTH_SALES_MV PCT_TABLE N TIMES relation is not
 partitionedtable

As can be seen from the partial sample output from EXPLAIN_MVIEW, any partition maintenance operation performed on the sales table will allow PCT fast refresh. However,