
[image: Oracle Corporation]

Oracle® Database

Concepts

11g Release 1 (11.1)

B28318-06

January 2011

Oracle Database Concepts, 11g Release 1 (11.1)

B28318-06

Copyright © 1993, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Richard Strohm

Contributing Authors: Lance Ashdown, Mark Bauer, Michele Cyran, Steve Fogel, Janis Greenberg, Sumit Jeloka, Paul Lane, Diana Lorentz, Jack Melnick, Sheila Moore, Antonio Romero, Vivian Schupmann, Cathy Shea, Douglas Williams

Contributors: Omar Alonso, Penny Avril, Hermann Baer, Sandeepan Banerjee, Bill Bridge, Sandra Cheevers, Carol Colrain, Vira Goorah, Mike Hartstein, John Haydu, Wei Hu, Ramkumar Krishnan, Vasudha Krishnaswamy, Bill Lee, Bryn Llewellyn, Rich Long, Paul Manning, Mughees Minhas, Valarie Moore, Gopal Mulagund, Muthu Olagappan, Jennifer Polk, Kathy Rich, John Russell, Bob Thome, Randy Urbano, Mark Van de Wiel, Michael Verheij, Ron Weiss, Steve Wertheimer

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Contents

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

Part I What Is Oracle?

1 Introduction to Oracle Database

	Oracle Database Architecture
	Overview of Grid Architecture
	Overview of Application Architecture
	Overview of Physical Database Structures
	Overview of Logical Database Structures
	Overview of Schemas and Common Schema Objects
	Overview of the Oracle Database Data Dictionary
	Overview of the Oracle Database Instance
	Overview of Accessing the Database
	Overview of Oracle Database Utilities

	Oracle Database Features
	Overview of Oracle Real Application Testing
	Overview of Concurrency Features
	Overview of Manageability Features
	Overview of Diagnosability Features
	Overview of Database Backup and Recovery Features
	Overview of High Availability Features
	Overview of Business Intelligence Features
	Overview of Content Management Features
	Overview of Security Features
	Overview of Data Integrity and Triggers
	Overview of Information Integration Features

	Oracle Database Application Development
	Overview of Oracle SQL
	Overview of PL/SQL
	Overview of Java
	Overview of Application Programming Languages (APIs)
	Overview of Application Development Environments
	Overview of Datatypes
	Overview of Globalization

Part II Oracle Database Architecture

2 Data Blocks, Extents, and Segments

	Introduction to Data Blocks, Extents, and Segments
	Overview of Data Blocks
	Data Block Format
	Free Space Management
	PCTFREE, PCTUSED, and Row Chaining

	Overview of Extents
	When Extents Are Allocated
	Determine the Number and Size of Extents
	How Extents Are Allocated
	When Extents Are Deallocated

	Overview of Segments
	Introduction to Data Segments
	Introduction to Index Segments
	Introduction to Temporary Segments
	Introduction to Undo Segments and Automatic Undo Management

3 Tablespaces, Datafiles, and Control Files

	Introduction to Tablespaces, Datafiles, and Control Files
	Oracle-Managed Files
	Allocate More Space for a Database

	Overview of Tablespaces
	Bigfile Tablespaces
	The SYSTEM Tablespace
	The SYSAUX Tablespace
	Undo Tablespaces
	Default Temporary Tablespace
	Using Multiple Tablespaces
	Managing Space in Tablespaces
	Multiple Block Sizes
	Online and Offline Tablespaces
	Read-Only Tablespaces
	Temporary Tablespaces
	Transport of Tablespaces Between Databases

	Overview of Datafiles
	Datafile Contents
	Size of Datafiles
	Offline Datafiles
	Temporary Datafiles

	Overview of Control Files
	Control File Contents
	Multiplexed Control Files

4 Transaction Management

	Introduction to Transactions
	Statement Execution and Transaction Control
	Statement-Level Rollback
	Resumable Space Allocation

	Overview of Transaction Management
	Commit Transactions
	Rollback of Transactions
	Savepoints In Transactions
	Transaction Naming
	The Two-Phase Commit Mechanism

	Overview of Autonomous Transactions
	Autonomous PL/SQL Blocks

5 Schema Objects

	Introduction to Schema Objects
	Overview of Tables
	How Table Data Is Stored
	Table Compression
	Nulls Indicate Absence of Value
	Default Values for Columns
	Partitioned Tables
	Nested Tables
	Temporary Tables
	External Tables

	Overview of Views
	How Views are Stored
	How Views Are Used
	Mechanics of Views
	Dependencies and Views
	Updatable Join Views
	Object Views
	Inline Views

	Overview of Materialized Views
	Define Constraints on Views
	Refresh Materialized Views
	Materialized View Logs

	Overview of Dimensions
	Overview of the Sequence Generator
	Overview of Synonyms
	Overview of Indexes
	Unique and Nonunique Indexes
	Visible and Invisible Indexes
	Composite Indexes
	Indexes and Keys
	Indexes and Nulls
	Function-Based Indexes
	How Indexes Are Stored
	Index Unique Scan
	Index Range Scan
	Key Compression
	Reverse Key Indexes
	Bitmap Indexes
	Bitmap Join Indexes

	Overview of Index-Organized Tables
	Benefits of Index-Organized Tables
	Index-Organized Tables with Row Overflow Area
	Secondary Indexes on Index-Organized Tables
	Bitmap Indexes on Index-Organized Tables
	Partitioned Index-Organized Tables
	B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables
	Index-Organized Table Applications

	Overview of Application Domain Indexes
	Overview of Clusters
	Overview of Hash Clusters

6 Schema Object Dependencies

	Overview of Schema Object Dependencies
	Querying Object Dependencies
	Object Status
	Invalidation of Dependent Objects
	Session State and Referenced Packages
	Security Authorization

	Guidelines for Reducing Invalidation
	Add New Items to End of Package
	Reference Each Table Through a View

	Object Revalidation
	Name Resolution in Schema Scope
	Local Dependency Management
	Remote Dependency Management
	Dependencies Among Local and Remote Database Procedures
	Dependencies Among Other Remote Objects
	Dependencies of Applications

	Remote Procedure Call (RPC) Dependency Management
	Time-Stamp Checking
	Signature Checking
	Controlling Remote Dependencies

	Shared SQL Dependency Management

7 The Data Dictionary

	Introduction to the Data Dictionary
	Structure of the Data Dictionary
	SYS, Owner of the Data Dictionary

	How the Data Dictionary Is Used
	How Oracle Database Uses the Data Dictionary
	How to Use the Data Dictionary

	Dynamic Performance Tables
	Database Object Metadata

8 Memory Architecture

	Introduction to Oracle Database Memory Structures
	Basic Memory Structures

	Overview of the System Global Area
	Database Buffer Cache
	Redo Log Buffer
	Shared Pool
	Large Pool
	Java Pool
	Streams Pool

	Overview of the Program Global Area
	Content of the PGA
	PGA Memory Use in Dedicated and Shared Server Modes

	Overview of Memory Management Methods
	About Software Code Areas

9 Process Architecture

	Introduction to Processes
	Multiple-Process Oracle Systems
	Types of Processes

	Overview of User Processes
	Connections and Sessions

	Overview of Oracle Database Processes
	Oracle Database Server Processes
	Oracle Database Background Processes
	Oracle Database Trace Files and the Alert Log

	Shared Server Architecture
	Dispatcher Request and Response Queues
	Restricted Operations of the Shared Server

	Dedicated Server Configuration
	Database Resident Connection Pooling
	Using Database Resident Connection Pooling

	The Program Interface
	Program Interface Structure
	Program Interface Drivers
	Communications Software for the Operating System

10 Application Architecture

	Introduction to Client/Server Architecture
	Overview of Multitier Architecture
	Clients
	Application Servers
	Database Servers

	Overview of Oracle Net Services
	How Oracle Net Services Works
	The Listener

11 Oracle Database Utilities

	Introduction to Oracle Database Utilities
	Overview of Data Pump Export and Import
	Data Pump Export
	Data Pump Import

	Overview of the Data Pump API
	Overview of the Metadata API
	Overview of SQL*Loader
	Overview of External Tables
	Overview of LogMiner
	Overview of DBVERIFY Utility
	Overview of DBNEWID Utility
	ADRCI: ADR Command Interpreter

12 Database and Instance Startup and Shutdown

	Introduction to an Oracle Instance
	The Instance and the Database
	Connection with Administrator Privileges
	Initialization Parameter Files and Server Parameter Files

	Overview of Instance and Database Startup
	How an Instance Is Started
	How a Database Is Mounted
	What Happens When You Open a Database

	Overview of Database and Instance Shutdown
	Close a Database
	Unmount a Database
	Shut Down an Instance

Part III Oracle Database Features

13 Data Concurrency and Consistency

	Introduction to Data Concurrency and Consistency in a Multiuser Environment
	Preventable Phenomena and Transaction Isolation Levels
	Overview of Locking Mechanisms

	How Oracle Database Manages Data Concurrency and Consistency
	Multiversion Concurrency Control
	Statement-Level Read Consistency
	Transaction-Level Read Consistency
	Read Consistency with Oracle Real Application Clusters
	Oracle Database Isolation Levels
	Comparison of Read Committed and Serializable Isolation
	Choice of Isolation Level

	How Oracle Database Locks Data
	Transactions and Data Concurrency
	Deadlocks
	Types of Locks
	DML Locks
	DDL Locks
	Latches and Internal Locks
	Explicit (Manual) Data Locking
	Oracle Database Lock Management Services

	Overview of Oracle Flashback Query
	Flashback Query Benefits
	Some Uses of Flashback Query

14 Manageability

	Installing Oracle Database 11g and Getting Started
	Simplified Database Creation
	Instant Client
	Automated Upgrades
	Basic Initialization Parameters
	Data Loading, Transfer, and Archiving

	Intelligent Infrastructure
	Automatic Workload Repository
	Automatic Maintenance Tasks
	Fault Diagnosability Infrastructure
	Server-Generated Alerts
	Advisor Framework
	Hang Manager

	Performance Diagnostics and Troubleshooting
	Application and SQL Tuning
	Memory Management
	Space Management
	Automatic Undo Management
	Oracle-Managed Files
	Free Space Management
	Proactive Space Management
	Intelligent Capacity Planning
	Space Reclamation

	Automatic Storage Management
	Backup and Recovery
	Recovery Manager
	Mean Time to Recovery
	Self Service Error Correction

	Configuration Management
	Workload Management
	Overview of the Database Resource Manager
	Overview of Services

	Oracle Scheduler
	What Can the Scheduler Do?

15 Backup and Recovery

	Introduction to Backup and Recovery
	Flash Recovery Area

	Database Backups
	What Are Database Backups?
	Whole Database and Partial Database Backups
	Consistent and Inconsistent Backups
	RMAN and User-Managed Backups

	Problems Requiring Data Repair
	Media Failures
	User Errors

	Data Repair
	Data Recovery Advisor
	Oracle Flashback Technology
	Media Recovery

16 Business Intelligence

	Introduction to Data Warehousing and Business Intelligence
	Characteristics of Data Warehousing
	Differences Between Data Warehouse and OLTP Systems
	Data Warehouse Architecture

	Overview of Extraction, Transformation, and Loading (ETL)
	Transportable Tablespaces
	Table Functions
	External Tables
	Table Compression
	Change Data Capture

	Overview of Materialized Views for Data Warehouses
	Overview of Bitmap Indexes in Data Warehousing
	Overview of Parallel Execution
	How Parallel Execution Works

	Overview of Analytic SQL
	SQL for Aggregation
	SQL for Analysis
	SQL for Modeling

	Overview of OLAP Capabilities
	Full Integration of Multidimensional Technology
	Ease of Application Development
	Ease of Administration
	Security
	Unmatched Performance and Scalability
	Reduced Costs

	Overview of Data Mining

17 High Availability

	Introduction to High Availability
	Causes Of Downtime
	Protection Against Computer Failures
	Overview of Enterprise Grids with Oracle Real Application Clusters and Oracle Clusterware
	Fast Start Fault Recovery
	Oracle Data Guard
	Oracle Streams

	Protection Against Data Failures
	Protecting Against Storage Failures
	Protecting Against Human Errors

	Avoiding Downtime During Planned Maintenance
	Avoiding Downtime for Data Changes
	Avoiding Downtime for System Changes

	Maximum Availability Architecture (MAA) Best Practices

18 Very Large Databases (VLDB)

	Introduction to Partitioning
	Partition Key
	Partitioned Tables
	Partitioned Index-Organized Tables
	Partitioning Methods

	Overview of Partitioned Indexes
	Local Partitioned Indexes
	Global Partitioned Indexes
	Global Nonpartitioned Indexes
	Miscellaneous Information about Creating Indexes on Partitioned Tables
	Using Partitioned Indexes in OLTP Applications
	Using Partitioned Indexes in Data Warehousing and DSS Applications
	Partitioned Indexes on Composite Partitions

	Partitioning to Improve Performance
	Partition Pruning
	Partition-wise Joins

19 Content Management

	Introduction to Content Management
	Overview of XML in Oracle Database
	Overview of LOBs
	Overview of Oracle Text
	Oracle Text Index Types
	Oracle Text Document Services
	Oracle Text Query Package
	Oracle Text Advanced Features

	Overview of Oracle Ultra Search
	Overview of Oracle Multimedia
	Overview of Oracle Spatial

20 Database Security

	Introduction to Database Security
	Database Users and Schemas
	Privileges
	Roles
	Storage Settings and Quotas

	Overview of Transparent Data Encryption
	Tablespace Encryption

	Overview of Authentication Methods
	Authentication by the Operating System
	Authentication by the Network
	Authentication by Oracle Database
	Multitier Authentication and Authorization
	Authentication by the Secure Socket Layer Protocol
	Authentication of Database Administrators

	Overview of Authorization
	User Resource Limits and Profiles
	Introduction to Privileges
	Introduction to Roles
	Secure Application Roles

	Overview of Access Restrictions on Tables, Views, Synonyms, or Rows
	Fine-Grained Access Control
	Application Context
	Fine-Grained Auditing

	Overview of Security Policies
	System Security Policy
	Data Security Policy
	User Security Policy
	Password Management Policy
	Auditing Policy

	Overview of Database Auditing
	Types and Records of Auditing

21 Data Integrity

	Introduction to Data Integrity
	Data Integrity Rules
	How Oracle Database Enforces Data Integrity
	Constraint States

	Overview of Integrity Constraints
	Advantages of Integrity Constraints
	The Performance Cost of Integrity Constraints

	Types of Integrity Constraints
	NOT NULL Integrity Constraints
	UNIQUE Key Integrity Constraints
	PRIMARY KEY Integrity Constraints
	Referential Integrity Constraints
	CHECK Integrity Constraints

	The Mechanisms of Constraint Checking
	Default Column Values and Integrity Constraint Checking

	Deferred Constraint Checking
	Constraint Attributes
	SET CONSTRAINTS Mode
	Unique Constraints and Indexes

22 Triggers

	Introduction to Triggers
	How Triggers Are Used

	Components of a Trigger
	The Triggering Event or Statement
	Trigger Restriction
	Trigger Action

	Types of Triggers
	Row Triggers and Statement Triggers
	BEFORE and AFTER Triggers
	Compound Triggers
	INSTEAD OF Triggers
	Triggers on System Events and User Events

	Trigger Execution
	The Execution Model for Triggers and Integrity Constraint Checking
	Data Access for Triggers
	Storage of PL/SQL Triggers
	Execution of Triggers
	Dependency Maintenance for Triggers

23 Information Integration

	Introduction to Oracle Information Integration
	Federated Access
	Distributed SQL
	Location Transparency
	SQL and COMMIT Transparency
	Distributed Query Optimization

	Information Sharing
	Oracle Streams
	Materialized Views

	Data Comparison and Convergence at Oracle Databases
	Integrating Non-Oracle Systems
	Generic Connectivity
	Oracle Database Gateways

Part IV Oracle Database Application Development

24 SQL

	Introduction to SQL
	SQL Statements
	Data Manipulation Language Statements
	Data Definition Language Statements
	Transaction Control Statements
	Session Control Statements
	System Control Statements
	Embedded SQL Statements

	Cursors
	Scrollable Cursors

	Shared SQL Areas
	Parsing
	Query Processing
	SQL Processing
	flowchart of SQL Statement Execution
	Description of SQL Statement Processing
	Processing Other Types of SQL Statements

	Overview of the Optimizer
	SQL Plan Management (SPM)
	Execution Plans

25 Supported Application Development Languages

	Introduction to Oracle Application Development Languages
	Overview of C/C++ Programming Languages
	Overview of Oracle Call Interface (OCI)
	Overview of Oracle C++ Call Interface (OCCI)
	Overview of the Oracle Type Translator
	Overview of Pro*C/C++ Precompiler

	Overview of PL/SQL
	How PL/SQL Runs
	Language Constructs for PL/SQL
	PL/SQL Program Units
	Stored Procedures and Functions
	PL/SQL Packages
	PL/SQL Collections and Records
	PL/SQL Server Pages

	Overview of Java
	Java and Object-Oriented Programming Terminology
	Class Hierarchy
	Interfaces
	Polymorphism
	Overview of the Java Virtual Machine (JVM)
	Why Use Java in Oracle Database?
	Oracle's Java Application Strategy

	Overview of Microsoft Programming Languages
	Open Database Connectivity
	Overview of Oracle Objects for OLE
	Oracle Data Provider for .NET

	Overview of Legacy Languages
	Overview of Pro*COBOL Precompiler
	Overview of Pro*FORTRAN Precompiler

26 Oracle Data Types

	Introduction to Oracle Datatypes
	Overview of Character Datatypes
	CHAR Datatype
	VARCHAR2 and VARCHAR Datatypes
	Length Semantics for Character Datatypes
	NCHAR and NVARCHAR2 Datatypes
	Use of Unicode Data in Oracle Database
	LOB Character Datatypes
	LONG Datatype

	Overview of Numeric Datatypes
	NUMBER Datatype
	Floating-Point Numbers

	Overview of DATE Datatype
	Use of Julian Dates
	Date Arithmetic
	Centuries and the Year 2000
	Daylight Savings Support
	Time Zones

	Overview of LOB Datatypes
	BLOB Datatype
	CLOB and NCLOB Datatypes
	BFILE Datatype

	Overview of RAW and LONG RAW Datatypes
	Overview of ROWID and UROWID Datatypes
	The ROWID Pseudocolumn
	Physical Rowids
	Logical Rowids
	Rowids in Non-Oracle Databases

	Overview of ANSI, DB2, and SQL/DS Datatypes
	Overview of XML Datatypes
	XMLType Datatype

	Overview of URI Datatypes
	Overview of Object Datatypes and Object Views
	Data Conversion

Glossary

Index

Preface

This manual describes all features of the Oracle database server, an object-relational database management system. It describes how the Oracle database server functions, and it lays a conceptual foundation for much of the practical information contained in other manuals. Information in this manual applies to the Oracle database server running on all operating systems.

This preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Conventions

Audience

Oracle Database Concepts is intended for database administrators, system administrators, and database application developers.

To use this document, you must know the following:

	
Relational database concepts in general

	
Concepts and terminology in Chapter 1, "Introduction to Oracle Database"

	
The operating system environment under which you are running Oracle

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documentation

For more information, see these Oracle resources:

	
Oracle Database Upgrade Guide for information about upgrading a previous release of Oracle

	
Oracle Database Administrator's Guide for information about how to administer the Oracle database server

	
Oracle Database Advanced Application Developer's Guide for information about developing Oracle database applications

	
Oracle Database Performance Tuning Guide for information about optimizing performance of an Oracle database

	
Oracle Database Data Warehousing Guide for information about data warehousing and business intelligence

	
Oracle Database Utilities for information about the utilities mentioned in this document

Many books in the documentation set use the sample schemas of the seed database, which is installed by default when you install Oracle. Refer to Oracle Database Sample Schemas for information on how these schemas were created and how you can use them yourself.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

Part I

What Is Oracle?

Part I provides an overview of Oracle Database concepts and terminology. It contains the following chapter:

	
Chapter 1, "Introduction to Oracle Database"

1 Introduction to Oracle Database

This chapter provides an overview of the Oracle database server. The topics include:

	
Oracle Database Architecture

	
Oracle Database Features

	
Oracle Database Application Development

Oracle Database Architecture

A database is a collection of data treated as a unit. The purpose of a database is to store and retrieve related information. A database server is the key to information management. In general, a server reliably manages a large amount of data in a multiuser environment so that many users can concurrently access the same data. A database server also prevents unauthorized access and provides efficient solutions for failure recovery.

Oracle Database is the first database designed for enterprise grid computing, the most flexible and cost-effective way to manage information and applications. Enterprise grid computing creates large pools of industry-standard, modular storage and servers. With this architecture, each new system can be rapidly provisioned from the pool of components. There is no need to provide extra hardware to support peak workloads, because capacity can be easily added or reallocated from the resource pools as needed.

The database has physical structures and logical structures. Because the physical and logical structures are separate, the physical storage of data can be managed without affecting access to logical storage structures.

The section contains the following topics:

	
Overview of Grid Architecture

	
Overview of Application Architecture

	
Overview of Physical Database Structures

	
Overview of Logical Database Structures

	
Overview of Schemas and Common Schema Objects

	
Overview of the Oracle Database Data Dictionary

	
Overview of the Oracle Database Instance

	
Overview of Accessing the Database

	
Overview of Oracle Database Utilities

Overview of Grid Architecture

Grid computing is an information technology (IT) architecture that produces more resilient and lower cost enterprise information systems. With grid computing, groups of independent, modular hardware and software components can be connected and rejoined on demand to meet the changing needs of businesses.

The grid style of computing solves some common problems with enterprise IT:

	
Application silos that lead to underutilized, dedicated hardware resources

	
Monolithic, unwieldy systems that are expensive to maintain and difficult to change

	
Fragmented and disintegrated information that cannot be fully exploited by the enterprise as a whole.

Compared with other models of computing, IT systems designed and implemented in the grid style deliver higher quality of service, lower cost, and greater flexibility. Higher quality of service is achieved because there is no single point of failure, there is a robust security infrastructure, and management is centralized and policy-driven. Lower costs derive from increasing the utilization of resources and dramatically reducing management and maintenance costs. Rather than dedicating a stack of software and hardware to a specific task, all resources are pooled and allocated on demand, thus eliminating underutilized capacity and redundant capabilities. Greater flexibility is achieved because grid computing also enables the use of smaller individual hardware components, thus reducing the cost of each individual component and enabling the enterprise to devote resources in accordance with changing needs.

Overview of Application Architecture

The two most common database architectures are client/server and multitier. As internet computing becomes more prevalent in computing environments, many database management systems are moving to a multitier environment.

This section includes the following topics:

	
Client/Server Architecture

	
Multitier Architecture: Application Servers

	
Multitier Architecture: Service-Oriented Architecture

Client/Server Architecture

An Oracle database system can easily take advantage of distributed processing by using its client/server architecture. In this architecture, the database system has two parts: a front-end or a client, and a back-end or a server.

The Client

The client is a database application that initiates a request for an operation to be performed on the database server. It requests, processes, and presents data managed by the server. The client workstation can be optimized for its job. For example, the client might not need large disk capacity, or it might benefit from graphic capabilities. Often, the client runs on a different computer than the database server. Many clients can simultaneously run against one server.

The Server

The server runs Oracle Database software and handles the functions required for concurrent, shared data access. The server receives and processes requests that originate from client applications. The computer that manages the server can be optimized for its duties. For example, the server computer can have large disk capacity and fast processors.

Multitier Architecture: Application Servers

A traditional multitier architecture has the following components:

	
A client or initiator process that starts an operation

	
One or more application servers that perform parts of the operation. An application server contains a large part of the application logic, provides access to the data for the client, and performs some query processing, thus removing some of the load from the database server. The application server can serve as an interface between clients and multiple database servers and can provide an additional level of security.

	
An end server or database server that stores most of the data used in the operation

This architecture enables use of an application server to do the following:

	
Validate the credentials of a client, such as a Web browser

	
Connect to an Oracle Database server

	
Perform the requested operation on behalf of the client

If proxy authentication is being used, then the identity of the client is maintained throughout all tiers of the connection.

Multitier Architecture: Service-Oriented Architecture

Service-oriented architecture (SOA) is a multitier architecture in which application functionality is encapsulated in services. SOA services are usually implemented as Web services. Web services can be accessed with the HTTP protocol and are based on a set of XML-based open standards, such as WSDL and SOAP.

Beginning with Oracle Database 11g, Oracle Database can act as a Web service provider in a traditional multitier or SOA environment.

	
See Also:

	
"Oracle Database as a Web Service Provider" for more information about Oracle Database as a Web service provider

	
Oracle XML DB Developer's Guide for more information about using Web services with the database

Overview of Physical Database Structures

The following sections explain the physical database structures of an Oracle database, including datafiles, control files, redo log files, archived redo log files, parameter files, alert and trace log files, and backup files.

This section includes the following topics:

	
Datafiles

	
Control Files

	
Online Redo Log Files

	
Archived Redo Log Files

	
Parameter Files

	
Alert and Trace Log Files

	
Backup Files

Datafiles

Every Oracle database has one or more physical datafiles, which contain all the database data. The data of logical database structures, such as tables and indexes, is physically stored in the datafiles allocated for a database.

Datafiles have the following characteristics:

	
One or more datafiles form a logical unit of database storage called a tablespace.

	
A datafile can be associated with only one tablespace.

	
Datafiles can be defined to extend automatically when they are full.

Data in a datafile is read, as needed, during normal database operation and stored in the memory cache of Oracle Database. For example, if a user wants to access some data in a table of a database, and if the requested information is not already in the memory cache for the database, then it is read from the appropriate datafiles and stored in memory.

Modified or new data is not necessarily written to a datafile immediately. To reduce the amount of disk access and to increase performance, data is pooled in memory and written to the appropriate datafiles all at once, as determined by the background process database writer process (DBWn).

Datafiles that are stored in temporary tablespaces are called tempfiles. Tempfiles are subject to some restrictions, as described in "Temporary Datafiles".

	
See Also:

"Overview of the Oracle Database Instance" for more information about the Oracle Database memory and process structures

Control Files

Every Oracle database has a control file. A control file contains entries that specify the physical structure of the database, including the following information:

	
Database name

	
Names and locations of datafiles and redo log files

	
Timestamp of database creation

Oracle Database can multiplex the control file, that is, simultaneously maintain a number of identical control file copies, to protect against a failure involving the control file.

Every time an instance of an Oracle database is started, its control file identifies the datafiles, tempfiles, and redo log files that must be opened for database operation to proceed. If the physical makeup of the database is altered (for example, if a new datafile or redo log file is created), then the control file is automatically modified by Oracle Database to reflect the change. A control file is also used in database recovery.

	
See Also:

Chapter 3, "Tablespaces, Datafiles, and Control Files"

Online Redo Log Files

Every Oracle Database has a set of two or more online redo log files. These online redo log files, together with archived copies of redo log files, are collectively known as the redo log for the database. A redo log is made up of redo entries (also called redo records), which record all changes made to data. If a failure prevents modified data from being permanently written to the datafiles, then the changes can be obtained from the redo log, so work is never lost.

To protect against a failure involving the redo log itself, Oracle Database lets you create a multiplexed redo log so that two or more copies of the redo log can be maintained on different disks.

	
See Also:

"Overview of Database Backup and Recovery Features"

Archived Redo Log Files

Archived redo log files are database-generated offline copies of online redo log files. Oracle Database automatically archives redo log files when the database is in ARCHIVELOG mode. Oracle recommends that you enable automatic archiving of the online redo log.

Parameter Files

Parameter files contain a list of configuration parameters for that instance and database. Both parameter files (pfiles) and server parameter files (spfiles) let you store and manage your initialization parameters persistently in a server-side disk file. A server parameter file has these additional advantages:

	
The file is concurrently updated when some parameter values are changed in the active instance.

	
The file is centrally located for access by all instance in a Real Application Services database.

Oracle recommends that you create a server parameter file as a dynamic means of maintaining initialization parameters.

	
See Also:

	
"Initialization Parameter Files and Server Parameter Files"

	
Oracle Database Administrator's Guide for information about creating and changing parameter files

Alert and Trace Log Files

Each server and background process can write to an associated trace file. When an internal error is detected by a process, the process dumps information about the error to its trace file. Some of the information written to a trace file is intended for the database administrator, while other information is for Oracle Support Services. Trace file information is also used to tune applications and instances. The alert file, or alert log, is a special trace file. The alert log of a database is a chronological log of messages and errors.

The following features provide automation and assistance in the collection and interpretation of trace and alert file information:

	
The Automatic Diagnostic Repository (ADR) is a system-managed repository for storing and organizing trace files and other error diagnostic data. ADR provides a comprehensive view of all the critical errors encountered by the database and maintains all relevant data needed for problem diagnosis and eventual resolution. When the same type of incident occurs too frequently, ADR performs flood control to avoid excessive dumping of diagnostic information.

	
The Incident Packaging Service (IPS) extracts diagnostic and test case data associated with critical errors from the ADR and packages the data for transport to Oracle.

	
See Also:

Oracle Database Administrator's Guide for more information

Backup Files

To restore a file is to replace it with a backup file. Typically, you restore a file when a media failure or user error has damaged or deleted the original file.

User-managed backup and recovery requires you to actually restore backup files before you can perform a trial recovery of the backups.

Server-managed backup and recovery manages the backup process, such as scheduling of backups, as well as the recovery process, such as applying the correct backup file when recovery is needed.

	
See Also:

	
Chapter 15, "Backup and Recovery"

	
Oracle Database Backup and Recovery User's Guide

Overview of Logical Database Structures

This section discusses logical storage structures: data blocks, extents, segments, and tablespaces. These logical storage structures enable Oracle Database to have fine-grained control of disk space use.

This section includes the following topics:

	
Oracle Database Data Blocks

	
Extents

	
Segments

	
Tablespaces

Oracle Database Data Blocks

At the finest level of granularity, Oracle Database data is stored in data blocks. One data block corresponds to a specific number of bytes of physical database space on disk. The standard block size is specified by the DB_BLOCK_SIZE initialization parameter. In addition, you can specify up to four other block sizes. A database uses and allocates free database space in Oracle Database data blocks.

Extents

The next level of logical database space is an extent. An extent is a specific number of contiguous data blocks, obtained in a single allocation, used to store a specific type of information.

Segments

Above extents, the level of logical database storage is a segment. A segment is a set of extents allocated for a table, index, rollback segment, or for temporary use by a session, transaction, or SQL parser. In relation to physical database structures, all extents belonging to a segment exist in the same tablespace, but they may be in different data files.

When the extents of a segment are full, Oracle Database dynamically allocates another extent for that segment. Because extents are allocated as needed, the extents of a segment may or may not be contiguous on disk.

Tablespaces

A database is divided into logical storage units called tablespaces, which group related data blocks, extents, and segments. For example, tablespaces commonly group together all application objects to simplify some administrative operations.

Each database is logically divided into two or more tablespaces. One or more datafiles are explicitly created for each tablespace to physically store the data of all logical structures in a tablespace. The combined size of the datafiles in a tablespace is the total storage capacity of the tablespace.

Every Oracle database contains a SYSTEM tablespace and a SYSAUX tablespace. Oracle Database creates them automatically when the database is created. The system default is to create a smallfile tablespace, which is the traditional type of Oracle tablespace. The SYSTEM and SYSAUX tablespaces are created as smallfile tablespaces.

Oracle Database also lets you create bigfile tablespaces, which are made up of single large file rather than numerous smaller ones. Bigfile tablespaces let Oracle Database utilize the ability of 64-bit systems to create and manage ultralarge files. As a result, Oracle Database can scale up to 8 exabytes in size. With Oracle-Managed Files, bigfile tablespaces make datafiles completely transparent for users. In other words, you can perform operations on tablespaces, rather than the underlying datafiles.

	
See Also:

	
Chapter 2, "Data Blocks, Extents, and Segments"

	
Chapter 3, "Tablespaces, Datafiles, and Control Files"

	
"Introduction to Undo Segments and Automatic Undo Management"

	
"Read Consistency"

	
"Overview of Database Backup and Recovery Features"

Online and Offline Tablespaces

A tablespace can be online or offline. A tablespace is generally online, so that users can access the information in the tablespace. However, to simplify administration, sometimes a tablespace is taken offline to make a portion of the database unavailable while allowing normal access to the remainder of the database.

Read-only Tablespaces

A tablespace can be read only, which means that data in the tablespace cannot be modified. The primary purpose of read-only tablespaces is to eliminate the need to perform backup and recovery of large, static portions of a database. Oracle Database never updates the files of a read-only tablespace, and therefore the files can reside on read-only media such as CD-ROMs or WORM drives.

Overview of Schemas and Common Schema Objects

A schema is a collection of database objects. A schema is owned by a database user and has the same name as that user. Schema objects are the logical structures that directly refer to the database's data. There is no relationship between a tablespace and a schema. Objects in the same schema can be in different tablespaces, and a tablespace can hold objects from different schemas. Schema objects include structures such as tables, views, and indexes. Some of the most common schema objects are defined in the sections that follow.

This section includes the following topics:

	
Tables

	
Indexes

	
Views

	
Clusters

	
Synonyms

Tables

Tables are the basic unit of data storage in an Oracle database. Database tables hold all user-accessible data. Each table has columns and rows. A table that has employee information, for example, can have a column called employee_number, and each row in that column is an employee number.

Indexes

Indexes are optional structures associated with tables. You can create indexes to increase the performance of data retrieval. Just as the index in this manual helps you quickly locate specific information, an Oracle database index provides an access path to table data.

When processing a request, Oracle Database can use some or all of the available indexes to locate the requested rows efficiently. Indexes are useful when applications frequently query a table for a range of rows (for example, all employees with a salary greater than 1000) or a specific row (for example, the employee with the highest salary).

You create an index on one or more columns of a table. Thereafter, Oracle Database automatically uses and maintains the index. Changes to table data (such as adding new rows, updating rows, or deleting rows) are automatically incorporated into all relevant indexes.

Views

Views are customized presentations of data in one or more tables or other views. A view can also be considered a stored query. Views do not contain actual data. Rather, they derive their data from the tables on which they are based, referred to as the base tables of the views.

You can query, update, insert into, and delete views as you can with tables, with some restrictions. If the view is updatable, then all operations performed on the view actually affect the base tables of the view.

Views can provide table security by restricting access to a predetermined set of rows and columns of a table. They also hide data complexity and store complex queries.

Clusters

Clusters are groups of one or more tables physically stored together because they share common columns and are often used together. Because related rows are physically stored together, disk access time improves.

Like indexes, clusters do not affect application design. Whether a table is part of a cluster is transparent to users and to applications. SQL statements access data stored in a clustered table in the same way that they access data stored in a nonclustered table.

Synonyms

A synonym is an alias for any table, view, materialized view, sequence, operator, procedure, function, package, Java class schema object, user-defined object type, or another synonym. A synonym is simply an alias, so it requires no storage other than its definition in the data dictionary.

	
See Also:

Chapter 5, "Schema Objects" for more information on these and other schema objects

Overview of the Oracle Database Data Dictionary

Each Oracle database has a data dictionary, which is a set of tables and views that serve as a reference about the database. For example, a data dictionary stores information about both the logical and physical structure of the database. A data dictionary also stores the valid users of an Oracle database, information about integrity constraints defined for tables in the database, and the amount of space allocated for a schema object and how much of that space is in use, among much other information.

A data dictionary is created when a database is created. To accurately reflect the status of the database at all times, the data dictionary is automatically updated by Oracle Database in response to specific actions, such as when the structure of the database is altered. Database users cannot modify the data dictionary. Various database processes rely on the data dictionary to record, verify, and conduct ongoing work. For example, during database operation, Oracle Database reads the data dictionary to verify that schema objects exist and that users have proper access to them.

	
See Also:

Chapter 7, "The Data Dictionary" for more information

Overview of the Oracle Database Instance

An Oracle Database server consists of an Oracle Database and one or more Oracle Database instances. Every time a database is started, a shared memory area called the system global area (SGA) is allocated and Oracle Database background processes are started. The combination of the background processes and the SGA is called an Oracle Database instance.

Oracle Real Application Clusters

Some hardware architectures (for example, shared disk systems) enable multiple computers to share access to data, software, or peripheral devices. Oracle Real Application Clusters (Oracle RAC) comprises two or more Oracle Database instances running on multiple clustered computers that communicate with each other by means of an interconnect. Oracle RAC uses Oracle Clusterware to access a shared database that resides on shared disks. Oracle RAC combines the processing power of these multiple interconnected computers to provide system redundancy, near linear scalability, and high availability. Oracle RAC also offers significant advantages for both OLTP and data warehouse systems, and all systems and applications can efficiently exploit clustered environments.

You can scale applications in Oracle RAC environments to meet increasing data processing demands without changing the application code. When you add resources such as nodes or storage, Oracle RAC extends the processing powers of these resources beyond the limits of the individual components.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide

When users connect to an Oracle Database server, they are connected to an Oracle Database instance. The database instance services those users by allocating other memory areas in addition to the SGA, and starting other processes in addition to the Oracle Database background processes. The following sections describe the various Oracle Database memory areas and processes:

	
Oracle Database Background Processes

	
Instance Memory Structures

Oracle Database Background Processes

An Oracle database uses memory structures and processes to manage and access the database. All memory structures exist in the main memory of the computers that constitute the database system. A process is a mechanism in an operating system that can run a series of steps. Some operating systems use the terms job or task. Oracle Database server uses three types of processes: Oracle processes—which include server processes and background processes—and user processes. On almost all systems, the Oracle processes and the user processes are on separate computers.

	
Oracle Database creates a set of background processes for each instance. The background processes consolidate functions that would otherwise be handled by multiple Oracle Database programs running for each user process. They asynchronously perform I/O and monitor other Oracle Database processes to provide increased parallelism for better performance and reliability.

	
See Also:

"Oracle Database Background Processes" for more information on some of the most common background processes

	
User processes—sometimes called client processes—are created and maintained to run the software code of an application program (such as an OCI or OCCI program) or an Oracle tool (such as Oracle Enterprise Manager). Most environments have separate machines (laptops, desktops, and so forth) for the client processes. User processes also manage communication with the server process through the program interface, which is described in a later section.

	
Oracle Database creates server processes to handle requests from connected user processes. A server process communicates with the user process and interacts with Oracle Database to carry out requests from the associated user process. For example, if a user queries some data not already in the database buffers of the SGA, then the associated server process reads the proper data blocks from the datafiles into the SGA.

Oracle Database can be configured to vary the number of user processes for each server process. In a dedicated server configuration, a server process handles requests for a single user process. A shared server configuration lets many user processes share a small number of server processes, minimizing the number of server processes and maximizing the use of available system resources.

	
See Also:

Chapter 9, "Process Architecture"

Instance Memory Structures

Oracle Database creates and uses memory structures for various purposes. For example, memory stores program code being run, data shared among users, and private data areas for each connected user. Two basic memory structures are associated with an Oracle Database:

	
The System Global Area (SGA) is a group of shared memory structures, known as SGA components, that contain data and control information for one Oracle Database instance. The SGA is shared by all server and background processes. Examples of data stored in the SGA include cached data blocks and shared SQL areas.

	
The Program Global Areas (PGA) are memory regions that contain data and control information for a server or background process. A PGA is nonshared memory created by Oracle Database when a server or background process is started. Access to the PGA is exclusive to the process. Each server process and background process has its own PGA.

	
See Also:

Chapter 8, "Memory Architecture" for more information

Overview of Accessing the Database

This section describes Oracle Net Services, as well as how to start up the database, in the following sections:

	
Network Connections

	
Starting Up the Database

	
How Oracle Database Works

Network Connections

Oracle Net Services is the interface between Oracle Database and the network communication protocols that facilitate distributed processing and distributed databases. Communication protocols define the way that data is transmitted and received on a network. Oracle Net Services supports communications on all major network protocols, including TCP/IP, HTTP, FTP, and WebDAV.

Using Oracle Net Services, application developers do not need to be concerned with supporting network communications in a database application. If a new protocol is used, then the database administrator makes some minor changes, and the application requires no modifications and continues to function.

Oracle Net, a component of Oracle Net Services, establishes and maintains a network session from a client application to an Oracle Database server. Once a network session is established, Oracle Net acts as the data courier for both the client application and the database server, exchanging messages between them. Oracle Net can perform these jobs because it is located on each computer in the network.

	
See Also:

	
Oracle Database Net Services Administrator's Guide for more information about network connections

	
Oracle XML DB Developer's Guide for information about using WebDAV with the database

Starting Up the Database

The three steps to starting an Oracle database and making it available for systemwide use are:

	
Start an instance.

	
Mount the database.

	
Open the database.

A database administrator can perform these steps using Oracle Enterprise Manager, the SQL*Plus STARTUP statement, the srvctl command-line tool, or the Express Edition START command. When Oracle Database starts an instance, it reads the server parameter file (spfile) or initialization parameter file (pfile) to determine the values of initialization parameters. Then, it allocates an SGA and creates background processes.

	
See Also:

Chapter 12, "Database and Instance Startup and Shutdown"

How Oracle Database Works

The following example describes Oracle Database operations at the most basic level. This illustrates an Oracle Database configuration where the user and associated server process are on separate computers, connected through a network.

	
An instance has started on the computer running Oracle Database, often called the host or database server.

	
A computer running an application (a local computer or client workstation) runs an application in a user process. The client application attempts to establish a connection to the server using the proper Oracle Net Services driver.

	
The server is running the proper Oracle Net Services driver. The server detects the connection request from the application and creates a dedicated server process on behalf of the user process.

	
The user runs a SQL statement and commits the transaction. For example, the user changes a name in a row of a table.

	
The server process receives the statement and checks the shared pool (an SGA component) for any shared SQL area that contains a similar SQL statement. If a shared SQL area is found, then the server process checks the user's access privileges to the requested data, and the existing shared SQL area is used to process the statement. If not, then a new shared SQL area is allocated for the statement, so it can be parsed and processed.

	
The server process retrieves any necessary data values, either from the actual datafile (table) or those stored in the SGA.

	
The server process modifies data in the system global area. The database writer process (DBWn) writes modified blocks permanently to disk when doing so is efficient. Because the transaction is committed, the log writer process (LGWR) immediately records the transaction in the redo log file.

	
If the transaction is successful, then the server process sends a message across the network to the application. If it is not successful, then an error message is transmitted.

	
Throughout this entire procedure, the other background processes run, watching for conditions that require intervention. In addition, the database server manages other users' transactions and prevents contention between transactions that request the same data.

	
See Also:

Chapter 9, "Process Architecture" for more information background processes

Overview of Oracle Database Utilities

Oracle Database provides several utilities for data transfer, data maintenance, and database administration They are described briefly in Chapter 11, "Oracle Database Utilities" and more fully in Oracle Database Utilities.

Oracle Database Features

This section contains the following topics:

	
Overview of Oracle Real Application Testing

	
Overview of Concurrency Features

	
Overview of Manageability Features

	
Overview of Diagnosability Features

	
Overview of Database Backup and Recovery Features

	
Overview of High Availability Features

	
Overview of Business Intelligence Features

	
Overview of Content Management Features

	
Overview of Security Features

	
Overview of Data Integrity and Triggers

	
Overview of Information Integration Features

Overview of Oracle Real Application Testing

System changes, such as hardware and software upgrades and patch application, are essential for businesses for compliance and security purposes or to maintain their competitive edge. Oracle Real Application Testing helps you fully assess the effect of system changes on real-world applications in test environments before deploying them in production. Oracle Real Application Testing consists of two features:

	
Database Replay

	
SQL Performance Analyzer

Database Replay

Database Replay enables realistic testing of system changes by essentially re-creating the production workload environment on a test system. It does this by capturing a workload on the production system and then replaying it on a test system with the exact timing, concurrency, and transaction characteristics of the original workload. This makes possible complete assessment of the impact of the change including undesired results, new contention points, and performance regressions. Extensive analysis and reporting is provided to help identify any potential problems, such as new errors encountered and performance divergences.

With Database Replay, businesses can rapidly test changes and adopt new technologies with a high degree of confidence in the overall success of the effort and at significantly lower risk.

Database Replay can be used to assess the impact of the following types of system changes:

	
Database upgrades, patches, parameter, and schema changes

	
Configuration changes, such as conversion from a single instance to Oracle Real Application Clusters and Automatic Storage Management

	
Storage, network, and interconnect changes

	
Operating system patches, upgrades, and parameter changes and hardware migrations

SQL Performance Analyzer

Changes that affect SQL execution plans can severely impact system performance and availability. As a result, DBAs spend considerable time in identifying and fixing SQL statements that have regressed due to a change.

SQL Performance Analyzer automates the process of assessing the overall effect of a change on the full SQL workload by identifying performance divergence for each statement. A report that shows the net impact on the workload performance due to the change is provided. For regressed SQL statements, appropriate execution plan details, along with recommendations to tune them, is also provided. As a result, DBAs can remedy any negative outcome before their end users are affected and can confirm, with significant time and cost savings, that the system change to the production environment will, in fact, result in net improvement.

You can use the SQL Performance Analyzer to analyze the SQL performance impact of any type of system change. Examples of common system changes include:

	
Database upgrades

	
Configuration changes to the operating system, hardware, or database

	
Database initialization parameter changes

	
Schema changes, such as adding new indexes or materialized views

	
Gathering optimizer statistics

	
SQL tuning actions, such as creating SQL profiles

	
See Also:

Oracle Database Performance Tuning Guide to learn how to use the SQL Performance Analyzer

Overview of Concurrency Features

All information management systems have these important requirements:

	
Data concurrency of a multiuser system must be maximized.

	
Data must be read and modified in a consistent fashion. The data a user is viewing or changing must not changed (by other users) until the first user is finished with the data.

	
High performance is required for maximum productivity from the many users of the database system.

Oracle Database contains several software mechanisms that satisfy these requirements. This contains the following sections:

	
Concurrency

	
Read Consistency

	
Caching Mechanisms

	
Locking Mechanisms

Concurrency

A primary feature of a multiuser database management system is concurrency, which is the simultaneous access of the same data by many users. Without adequate concurrency controls, data could be updated or changed improperly, compromising data integrity.

One way to manage data concurrency is to make each user wait for a turn. The goal of a database management system is to reduce that wait so it is either nonexistent or not noticeable to users. Data manipulation language operations (inserts, updates, and deletes) should proceed with as little interference as possible, and destructive interactions between concurrent transactions must be prevented. A destructive interaction is one that incorrectly updates data or incorrectly alters underlying data structures. Neither performance nor data integrity can be sacrificed.

Oracle Database resolves these issues by using various types of locks and a multiversion consistency model. These features are based on the concept of a transaction.

The transaction is key to the Oracle Database strategy for providing read consistency. This unit of committed (or uncommitted) SQL statements:

	
Dictates the start point for read-consistent views generated on behalf of readers

	
Controls when modified data can be seen by other transactions of the database for reading or updating

It is the application designer's responsibility to ensure that transactions fully exploit these concurrency and consistency features.

	
See Also:

Chapter 4, "Transaction Management"

Read Consistency

Read consistency, as provided by Oracle Database, achieves the following goals:

	
Guarantees that the set of data seen by a statement is consistent with respect to a single point in time and does not change during statement execution (statement-level read consistency)

	
Ensures that readers of database data do not wait for writers or other readers of the same data

	
Ensures that writers of database data do not wait for readers of the same data

	
Ensures that writers only wait for other writers if they attempt to update identical rows in concurrent transactions

In the Oracle Database implementation of read consistency, it is as if each user operates a private copy of the database. This is sometimes called a multiversion consistency model.

	
See Also:

Chapter 13, "Data Concurrency and Consistency"

Read Consistency, Undo Records, and Transactions

To manage the multiversion consistency model, Oracle Database uses current information in the System Global Area and information in the undo records to construct a read-consistent view of a table's data for a query. When an update occurs, the original data values are recorded in the database undo records. As long as this update remains part of an uncommitted transaction, any user that later queries the modified data views the original data values. Only when a transaction is committed are the changes of the transaction made permanent. Queries that are initiated after the transaction is committed see the changes made by the committed transaction.

Read-Only Transactions

By default, Oracle Database guarantees statement-level read consistency. The set of data returned by a single query is consistent with respect to a single point in time. However, in some situations, you might also require transaction-level read consistency. This is the ability to run multiple queries within a single transaction, all of which are read-consistent with respect to the same point in time, so that queries in this transaction do not see the effects of intervening committed transactions. If you want to run a number of queries against multiple tables and if you are not doing any updating, you can initiate the transaction with commands that define it as a read-only transaction.

	
See Also:

Oracle Database Concepts for more information on transaction-level read consistency

Caching Mechanisms

Oracle Database optimizes database performance by caching in memory user data, log data, dictionary data, and other types of data.

Oracle Database also caches query results, so that if a query is repeated, the database can return results from the cache instead of reprocessing the query and reading data from storage. The cached results are stored in a dedicated portion of the shared pool. Query retrieval from the query result cache is faster than rerunning the query. The query result cache enables explicit caching of results in database memory. Frequently executed queries especially see performance improvements when using the query result cache.

Locking Mechanisms

Oracle Database also uses locks to control concurrent access to data. When updating information, the data server holds that information with a lock until the update is submitted or committed. Until that happens, no one else can make changes to the locked information. This ensures the data integrity of the system.

Oracle Database provides unique nonescalating row-level locking. Unlike other data servers that escalate locks to cover entire groups of rows or even the entire table, Oracle Database always locks only the row of information being updated. Because the database includes the locking information with the actual rows themselves, it can lock an unlimited number of rows so users can work concurrently without unnecessary delays.

Automatic Locking

Oracle Database locking is performed automatically and requires no user action. Implicit locking occurs for SQL statements as necessary, depending on the action requested.

The Oracle Database lock manager maintains several different types of row locks, depending on what type of operation established the lock. The two general types of locks are exclusive locks and share locks. Only one exclusive lock can be placed on a resource (such as a row or a table); however, many share locks can be placed on a single resource. Both exclusive and share locks always permit queries on the locked resource but prohibit other activity on the resource (such as updates and deletes).

Manual Locking

Under some circumstances, you might want to override default locking. With Oracle Database, you can manually override automatic locking features at both the row level (by first querying for the rows that will be updated in a subsequent statement) and the table level.

Overview of Manageability Features

People who administer the operation of an Oracle database system, known as database administrators (DBAs), are responsible for creating Oracle databases, ensuring their smooth operation, and monitoring their use. In addition to the many alerts and advisors Oracle provides, Oracle Database also offers features described in the following sections:

	
Self-Managing Database

	
Automatic Maintenance Tasks

	
Oracle Enterprise Manager

	
SQL Developer and SQL*Plus

	
Automatic Memory Management

	
Automatic Storage Management

	
Automatic Database Diagnostic Monitor

	
SQL Tuning Advisor

	
SQL Access Advisor

	
Streams Tuning Advisor

	
The Scheduler

	
Database Resource Manager

Self-Managing Database

Oracle Database provides a high degree of self-management by automating routine DBA tasks and reducing complexity of space, memory, and resource administration. Oracle Database self-managing features include the following: automatic undo management, automatic server memory management, Oracle-managed files, free space management, and Recovery Manager (RMAN).

Automatic Maintenance Tasks

Oracle Database automatically schedules periodic maintenance tasks such as statistics collection and space recovery. These tasks run in a set of Oracle Scheduler windows known as maintenance windows. You can control the start time and duration of these maintenance windows, and limit the amount of CPU and I/O resources that they consume.

Oracle Enterprise Manager

Oracle Enterprise Manager is a system management tool that provides central management of your database environment. Combining a graphical console, Oracle Management Servers, Oracle Intelligent Agents, common services, and administrative tools, Oracle Enterprise Manager provides a comprehensive systems management platform for managing Oracle products.

From the client interface, the Oracle Enterprise Manager Console, you can perform the following tasks:

	
Administer the entire Oracle environment, including databases, Oracle Application Server servers, applications, and services

	
Diagnose, modify, and tune multiple databases

	
Schedule tasks on multiple systems at varying time intervals

	
Monitor database conditions throughout the network

	
Administer multiple network nodes and services from many locations

	
Share tasks with other administrators

	
Group related targets together to facilitate administration tasks

	
Launch integrated Oracle and third-party tools

	
Customize the display of an Oracle Enterprise Manager administrator

SQL Developer and SQL*Plus

Oracle SQL Developer is a graphical development tool that provides a convenient way to perform these tasks:

	
Browse, create, edit, and delete (drop) database objects

	
Edit and debug PL/SQL code

	
Run SQL statements and scripts

	
Manipulate and export data

	
Create and view reports

With SQL Developer, you can connect to any target Oracle database schema using standard Oracle database authentication. Once connected, you can perform operations on objects in the database. You can also connect to schemas for selected third-party (non-Oracle) databases, such as MySQL, Microsoft SQL Server, and Microsoft Access, view metadata and data in these databases, and migrate these databases to Oracle.

SQL*Plus is a basic command-line tool for entering and running ad hoc database statements. It lets you run SQL statements and PL/SQL blocks, and perform many additional tasks as well.

	
See Also:

Oracle Database SQL Developer User's Guide and SQL*Plus User's Guide and Reference for more information on these tools

Automatic Memory Management

Beginning with Oracle Database 11g, Release 1, Oracle Database can manage the System Global Area (SGA) memory and instance Program Global Area (PGA) memory completely automatically. You designate only the total memory size to be used by the instance, and Oracle Database dynamically exchanges memory between the SGA and the instance PGA as needed to meet processing demands. This capability is referred to as automatic memory management. In this memory management mode, the database also dynamically tunes the sizes of the individual SGA components and the sizes of the individual PGAs.

	
See Also:

Oracle Database 2 Day DBA for more information

Automatic Storage Management

Automatic Storage Management automates and simplifies the management of all types of database files. Database files are automatically distributed across all available disks, and database storage is rebalanced automatically whenever the storage configuration changes. Automatic Storage Management also provides redundancy through the mirroring of database files.

Oracle Database has built-in support for the network file system (NFS) and does not depend on OS support for NFS. This improves manageability and diagnosability of network attached storage accessed with NFS.

Automatic Database Diagnostic Monitor

The Automatic Database Diagnostic Monitor (ADDM) lets you conduct performance analyzes over any time period defined by a pair of Automatic Workload Repository (AWR) snapshots taken on a particular instance. Analysis is performed top down, first identifying symptoms and then refining them to reach the root causes of performance problems. ADDM also documents non-problem areas of the system. For example, wait event classes that are not significantly affecting the performance of the system are identified and removed from the tuning consideration at an early stage, saving time and effort that would be spent on items with little or no impact on overall system performance.

In addition to problem diagnostics, ADDM recommends possible solutions. When appropriate, ADDM recommends multiple solutions for the DBA to choose from. ADDM considers a variety of changes to a system while generating its recommendations, which include hardware changes, database configuration changes, modification of schema objects, modification of applications, and referrals to other advisors.

	
See Also:

Oracle Database 2 Day DBA for more information about Automatic Database Diagnostic Monitor and Oracle Database Performance Tuning Guide for more information about Automatic Workload Repository

SQL Tuning Advisor

Oracle Database provides a server utility called the SQL Tuning Advisor. The SQL Tuning Advisor takes one or more SQL statements as input and invokes the Automatic SQL Tuning Advisor to perform SQL tuning on the statements. The output of the SQL Tuning Advisor is in the form of an advice or recommendation, along with a rationale for each recommendation and its expected benefit. The recommendation relates to collection of statistics on objects, creation of new indexes, restructuring of the SQL statement, or creation of SQL Profile. Users can choose whether or not to accept the recommendation to complete the tuning of the SQL statements.

	
See Also:

Oracle Database Performance Tuning Guide for more information

SQL Access Advisor

The SQL Access Advisor makes schema modification recommendations. It can recommend that you create access structures such as indexes and materialized views to optimize SQL queries. It can also recommend that you partition tables, indexes, or materialized views to improve query performance.

The SQL Access Advisor takes a SQL workload as input. You can select your workload from various sources, including current and recent SQL activity, a SQL repository, or a user-defined workload such as from a development environment. The advisor then recommends changes to improve the performance of the workload as a whole.

	
See Also:

Oracle Database 2 Day + Performance Tuning Guide for more information

Streams Tuning Advisor

A Streams topology is a representation of the databases in a Streams environment, the Streams components configured in these databases, and the flow of messages between these components. The Streams Performance Advisor reports performance measurements for a Streams topology, including throughput and latency measurements. The Streams Performance Advisor also identifies bottlenecks in a Streams topology so that they can be corrected. In addition, the Streams Performance advisor examines the Streams components in a Streams topology and recommends ways to improve their performance.

	
See Also:

Oracle Streams Concepts and Administration for more information

The Scheduler

To help simplify management tasks, as well as providing a rich set of functionality for complex scheduling needs, Oracle Database provides a collection of functions and procedures in the DBMS_SCHEDULER package. Collectively, these functions are called the Scheduler, and they are callable from any PL/SQL program.

The Scheduler lets database administrators and application developers control when and where various tasks take place in the database environment. For example, database administrators can schedule and monitor database maintenance jobs such as backups or nightly data warehousing loads and extracts.

Database Resource Manager

Traditionally, operating systems regulated resource management among various applications, including Oracle databases, that run on a system. The Database Resource Manager controls the distribution of resources among various sessions by controlling the execution schedule inside the database. By controlling which sessions run and for how long, the Database Resource Manager can ensure that resource distribution matches the plan directive and hence, the business objectives.

	
See Also:

Chapter 14, "Manageability" for more information on Database Resource Manager

Overview of Diagnosability Features

Beginning with Oracle Database 11g, Oracle Database includes an advanced fault diagnosability infrastructure for preventing, detecting, diagnosing, and resolving problems. The problems that are targeted are critical errors such as those caused by database code bugs, metadata corruption, and customer data corruption. For information on the goals of this infrastructure and the Oracle technologies that achieve these goals, see "Fault Diagnosability Infrastructure".

Overview of Database Backup and Recovery Features

The possibility of a system or hardware failure exists in every database system. The purpose of a backup and recovery strategy is to protect the database against data loss caused by failures and reconstruct the database after data loss.

RMAN and User-Managed Backup and Recovery Database backups are the cornerstone of any backup and recovery strategy. A backup is a copy of data. This copy can include important parts of the database such as datafiles, the control file, and the server parameter file. Media recovery is the application of redo logs or incremental backups to a restored backup datafile or individual data block. By reapplying the lost changes, recovery rolls the backup forward in time.

When implementing a backup and recovery strategy, you have the following solutions available:

	
Recovery Manager (RMAN). This tool integrates with sessions running on an Oracle database to perform a range of backup and recovery activities, including maintaining an RMAN repository of historical data about backups. You can access RMAN through the command line or through Enterprise Manager.

	
User-managed backup and recovery. In this solution, you perform backup and recovery with a mixture of host operating system commands and SQL*Plus recovery commands.

Both of the preceding solutions are supported by Oracle and are fully documented, but RMAN is the preferred solution for database backup and recovery. RMAN provides access to several backup and recovery techniques and features not available with user-managed backup and recovery. The most noteworthy are the following:

	
Incremental backups

	
Block media recovery

	
Unused block compression

	
Binary compression

	
Encrypted backups

Whether you use RMAN or user-managed methods, you can supplement physical backups with logical backups of schema objects made with Data Pump Export utility. You can later use Data Pump Import to re-create data after restore and recovery.

	
See Also:

"RMAN and User-Managed Backups" for more information about these backup methods and Oracle Database Utilities for more information about Data Pump

Oracle Flashback Technology Most Oracle flashback features operate at the logical level, enabling you to view and manipulate database objects. The logical-level flashback features of Oracle do not depend on RMAN and are available whether or not RMAN is part of your backup strategy. With the exception of Flashback Drop, the logical flashback features rely on undo data, which are records of the effects of each database update and the values overwritten in the update. Oracle Database includes the following logical flashback features:

	
Oracle Flashback Query

	
Oracle Flashback Version Query

	
Oracle Flashback Transaction Query

	
Oracle Flashback Transaction

	
Oracle Flashback Table

	
Oracle Flashback Drop

	
Flashback Data Archive

	
See Also:

"Oracle Flashback Technology" for more information about these features

Data Recovery Advisor Oracle Database includes a Data Recovery Advisor tool that automatically diagnoses persistent data failures, presents appropriate repair options, and executes repairs at your request. The Data Recovery Advisor provides a single point of entry for Oracle backup and recovery solutions. You can use Data Recovery Advisor through the Enterprise Manager Database Control or Grid Control console or through the RMAN command-line client.

	
See Also:

	
Chapter 15, "Backup and Recovery" for more information about Oracle backup and recovery methods

	
"Data Recovery Advisor" for more information about this tool

Overview of High Availability Features

Computing environments configured to provide nearly full-time availability are known as high availability systems. Such systems typically have redundant hardware and software that makes the system available despite failures. Well-designed high availability systems avoid having single points of failure.

Oracle Database includes a number of products and features that provide high availability in cases of unplanned downtime or planned downtime. These features, which are described in the sections that follow, can be used in various combinations to meet specific high availability needs.

Oracle Real Application Clusters Oracle Real Application Clusters (Oracle RAC) allows Oracle Database to run any packaged or custom application unchanged across a set of clustered servers. This capability provides the highest levels of availability and the most flexible scalability. If a clustered server fails, Oracle Database continues running on the surviving servers. When more processing power is needed, you can add another server without interrupting access to data.

Oracle Data Guard Oracle Data Guard provides a comprehensive set of services that create, maintain, manage, and monitor one or more standby databases to enable production Oracle databases to survive failures, disasters, errors, and data corruption. Data Guard maintains these standby databases as transactionally consistent copies of the production database. If the production database becomes unavailable due to a planned or an unplanned outage, Data Guard can switch any standby database to the production role, thus greatly reducing the downtime caused by the outage.

Oracle Streams Oracle Streams enables the propagation and management of data, transactions, and events in a data stream, either within a database or from one database to another. Streams provides a set of elements that enables you to control what information is put into a data stream, how the stream is routed from node to node, what happens to events in the stream as they flow into each node, and how the stream terminates.

Oracle Flashback Technology Flashback technology provides a set of features that let you switch between views of the data as it existed at different points in time. Using flashback features you can query past versions of schema objects and historical data. You can also perform change analysis and self-service repair to recover from logical corruption while the database is online. Flashback technology is unique to Oracle Database and supports recovery at all levels including row, transaction, table, tablespace, and database.

Online Table Redefinition Oracle provides a Reorganize Objects wizard in Oracle Enterprise Manager that can automatically generate a script and perform online table reorganization. The entire redefinition process occurs while users have full access to the table.

Automatic Storage Management Automatic Storage Management (ASM) provides a vertically integrated file system and volume manager directly in the Oracle kernel. ASM spreads files across all available storage. To protect against data loss, ASM extends the concept of SAME (stripe and mirror everything) and adds more flexibility in that it can mirror at the database file level rather than the entire disk level. DBAs using ASM create and administer a large-grained object called a disk group. The disk group identifies the set of disks that are managed as a logical unit. Automation of file naming and placement of the underlying database files save DBAs time and ensures adherence to standard best practices.

Recovery Manager is an Oracle Database utility to manage the backup and recovery of the database. RMAN determines the most efficient method of executing the requested backup, restoration, or recovery operation and then submits these operations to the Oracle Database server for processing. RMAN and the server automatically identify modifications to the structure of the database and dynamically adjust the required operation to adapt to the changes.

Flash Recovery Area The flash recovery area is a unified storage location for all recovery-related files and activities in Oracle Database. When this feature is enabled, all RMAN backups, archive logs, control file autobackups, and datafile copies are automatically written to a specified file system or to an Automatic Storage Management disk group. The management of this disk space is handled by RMAN and the database server. The flash recovery area eliminates the bottleneck of writing to tape. Further, if database media recovery is required, then datafile backups are readily available.

	
See Also:

Chapter 17, "High Availability"

Overview of Business Intelligence Features

This section describes the following business intelligence features:

	
Data Warehousing

	
Materialized Views

	
Table Compression

	
Parallel Execution

	
Analytic SQL

	
OLAP Capabilities

	
Data Mining

	
Very Large Databases (VLDB)

Data Warehousing

A data warehouse is a relational database designed for query and analysis rather than for transaction processing. It usually contains historical data derived from transaction data, but it can include data from other sources. It separates analysis workload from transaction workload and enables an organization to consolidate data from several sources.

In addition to a relational database, a data warehouse environment includes an extraction, transformation, and loading (ETL) solution, an online analytical processing (OLAP) engine, client analysis tools, and other applications that manage the process of gathering data and delivering it to business users.

Extraction, Transformation, and Loading (ETL) You must load your data warehouse regularly so that it can serve its purpose of facilitating business analysis. To perform this operation, data from one or more operational systems must be extracted and copied into the warehouse. The process of extracting data from source systems and bringing it into the data warehouse is commonly called ETL, which stands for extraction, transformation, and loading.

Bitmap Indexes in Data Warehousing The purpose of an index is to provide pointers to the rows in a table that contain a given key value. In a regular index, this is achieved by storing a list of rowids for each key corresponding to the rows with that key value. Oracle Database stores each key value repeatedly with each stored rowid. Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of space because the indexes can be several times larger than the table data.

In a bitmap index, the database stores a bitmap for each key value instead of a list of rowids. Bitmap indexes are typically only a fraction of the size of the indexed data in the table. Data warehousing environments typically have large amounts of data and ad hoc queries, but a low level of concurrent database manipulation language (DML) transactions. For such applications, bitmap indexing provides several advantages:

	
Reduced response time for large classes of ad hoc queries

	
Reduced storage requirements compared with other indexing techniques

	
Dramatic performance gains even on hardware with a relatively small number of CPUs or a small amount of memory

	
Efficient maintenance during parallel DML and loads

In addition, bitmap join indexes improve query performance for typical data warehouse queries—which often include dimension/fact table joins—with about the same space usage as regular bitmap indexes.

Materialized Views

A materialized view provides access to table data by storing the results of a query in a separate schema object. Unlike an ordinary view, which does not take up any storage space or contain any data, a materialized view contains the rows resulting from a query against one or more base tables or views. Query response time is improved because the query accesses the materialized view instead of executing against the base tables. A materialized view can be stored in the same database as its base tables or in a different database.

Materialized views stored in the same database as their base tables can further improve query performance through query rewrite. Query rewrite is a mechanism that automatically rewrites a SQL query to use a materialized view instead of its base tables. With query rewrite, developers need not rewrite applications to take advantage of materialized views. Query rewrite is particularly useful in a data warehouse environment.

Table Compression

Oracle provides comprehensive data compression capabilities to compress all types of data, backups, and network traffic in an application transparent manner. These capabilities include table compression targeted at OLTP workloads, resulting in reduced storage consumption and improved query performance while incurring minimal write performance overhead. Table compression can be used to compress any relational data. To compress unstructured content use SecureFiles compression. Deduplication provides the ability to automatically eliminate redundant copies of SecureFiles data. A new faster compression algorithm is included to speed up RMAN backups. Data Pump exports can now be compressed to reduce disk space requirements. Finally, Data Guard can compress redo data resulting in reduced network traffic and faster gap resolution.

	
See Also:

"Table Compression"

Parallel Execution

When Oracle Database runs SQL statements in parallel, multiple processes work together simultaneously to run a single SQL statement. By dividing the work necessary to run a statement among multiple processes, Oracle Database can run the statement more quickly than if only a single process ran it. This is called parallel execution or parallel processing. Parallel execution dramatically reduces response time for data-intensive operations on large databases.

Analytic SQL

Oracle Database has many SQL operations for performing analytic operations in the database. These include ranking, moving averages, cumulative sums, ratio-to-reports, and period-over-period comparisons.

OLAP Capabilities

Oracle online analytical processing (OLAP) provides native multidimensional storage and speed-of-thought response times when analyzing data across multiple dimensions. The database provides rich support for analytics such as time series calculations, forecasting, advanced aggregation with additive and nonadditive operators, and allocation operators. These capabilities make the Oracle database a complete analytical platform, capable of supporting the entire spectrum of business intelligence and advanced analytical applications. Oracle OLAP is fully integrated in the database, so that you can use standard SQL administrative, querying, and reporting tools.

Data Mining

With Oracle Data Mining, data never leaves the database — the data, data preparation, model building, and model scoring results all remain in the database. This enables Oracle Database to provide an infrastructure for application developers to integrate data mining seamlessly with database applications. Typical applications of data mining include call centers, ATMs, E-business relational management (ERM), and business planning. Oracle Data mining supports a PL/SQL API, a Java API, SQL functions for model scoring, and a graphical user interface called Oracle Data Miner.

	
See Also:

Chapter 16, "Business Intelligence" for more information about Oracle Data Mining

Very Large Databases (VLDB)

Partitioning is a critical feature for managing very large databases (VLDB). Growth is the basic challenge that partitioning addresses, and partitioning allows a database to scale for very large datasets while maintaining consistent performance, without unduly increasing administrative or hardware resources. Partitioning allows a table, index, or index-organized table to be subdivided into smaller pieces called partitions. No modifications to applications are necessary when accessing a partitioned table using SQL DML statements.

Partitioning can provide tremendous benefit to a wide variety of applications by improving availability, manageability, and performance.

Information Lifecycle Management (ILM)

Information Lifecycle Management (ILM) is a set of processes and policies for managing data throughout its useful life. One of the benefits of implementing an ILM solution is to reduce costs, by leveraging appropriate storage tiers, while maintaining all of the data required for business or regulatory purposes. Partitioning is the capability that enables an ILM solution to be implemented within the database.

	
See Also:

Chapter 18, "Very Large Databases (VLDB)" for more information about VLDB topics

Overview of Content Management Features

Oracle Database includes datatypes to handle all the types of rich content such as XML, text, audio, video, image, medical image, and spatial. These datatypes appear as native types in the database. They can all be queried using SQL. A single SQL statement can include data belonging to any or all of these datatypes.

This section includes the following topics:

	
XML in Oracle Database

	
LOBs

	
SecureFiles

	
Oracle Text

	
Oracle Ultra Search

	
Oracle Multimedia

	
Oracle Spatial

XML in Oracle Database

Oracle XML DB is a set of Oracle Database technologies related to high-performance XML storage and retrieval. It provides native XML support by encompassing both SQL and XML data models in an interoperable manner. Oracle XML DB includes the following features:

	
Support for the World Wide Web Consortium (W3C) XML and XML Schema data models and standard access methods for navigating and querying XML. The data models are incorporated into Oracle Database.

	
The ability to store, query, update, and transform XML data while accessing it using SQL.

	
The ability to perform XML operations on SQL data.

	
A simple, lightweight XML repository where you can organize and manage database content, including XML, using a file/folder/URL metaphor.

	
An infrastructure independent of storage format, content, and programming language for storing and managing XML data. This infrastructure provides new ways of navigating and querying XML content stored in the database. For example, Oracle XML DB Repository facilitates this by managing XML document hierarchies.

	
Industry-standard access to and update of XML. The standards include the W3C XPath recommendation and the ISO-ANSI SQL/XML standard. FTP, HTTP(S), and WebDAV can be used to move XML content into and out of Oracle Database. Industry-standard APIs provide programmatic access and manipulation of XML content using Java, C, and PL/SQL.

	
XML-specific memory management and optimizations.

	
Enterprise-level Oracle Database features for XML content: reliability, availability, scalability, and security.

Oracle XML DB can be used in conjunction with Oracle XML Developer's Kit (XDK) to build applications that run in the middle tier in either Oracle Application Server or Oracle Database.

LOBs

The LOB datatypes BLOB, CLOB, NCLOB, and BFILE enable you to store and manipulate large blocks of unstructured data (such as text, graphic images, video clips, and sound waveforms) in binary or character format. They provide efficient, random, piece-wise access to the data.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information about SecureFiles LOBs

SecureFiles

SecureFiles is a new feature in Oracle Database 11g that offers the best solution for storing file content, such as images, audio, video, PDFs, and spreadsheets. Traditionally, relational data is stored in a database, while unstructured content—both semi-structured and unstructured—is stored as files in file systems. SecureFiles is a major paradigm shift in the choice of files storage. SecureFiles is specifically engineered to deliver high performance for file data comparable to that of traditional file systems, while retaining the advantages of Oracle Database. SecureFiles offers the best database and file system architecture attributes for storing unstructured content.

Key Technical Advantages SecureFiles includes advanced features, typically found in high-end file systems, such as:

	
Deduplication: Oracle Database automatically detects multiple, identical SecureFiles data and stores only one copy, thereby saving storage space. In addition to storing only one copy, SecureFiles maintains references to other duplicates. Deduplication is completely transparent to applications and, in addition to simplifying storage management, it also results in significantly better performance, especially for copy operations. Duplicate detection happens within a LOB segment. The lob_storage_clause allows for specifying deduplication at a partition level so that duplicate detection does not span across partitions or subpartitions for partitioned SecureFiles columns.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information about deduplication

SecureFiles deduplication is part of the Advanced Compression option.

	
Compression: SecureFiles data is compressed using industry standard compression algorithms. Compression not only results in significant savings in storage but also improved performance by reducing I/O, buffer cache requirements, redo generation, and encryption overhead. If the compression does not yield any savings or if the data is already compressed, SecureFiles automatically turns off compression for such columns. Compression is performed on the server side and allows for random reads and writes to SecureFiles data. SecureFiles provides for varying degrees of compression: MEDIUM (default) and HIGH, which represent a trade-off between storage savings and latency.

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information about compression

SecureFiles compression is part of the Advanced Compression option.

	
Encryption: In Oracle Database 11g, Oracle has extended the encryption capability to SecureFiles and uses the Transparent Data Encryption (TDE) syntax. Oracle Database supports automatic key management for all SecureFiles columns within a table and transparently encrypts and decrypts data, backups, and redo log files. Applications require no changes and can take advantage of Oracle Database 11g SecureFiles using TDE semantics. SecureFiles supports the following encryption algorithms:

	
3DES168: Triple Data Encryption Standard with a 168-bit key size

	
AES128: Advanced Encryption Standard with a 128 bit key size

	
AES192: Advanced Encryption Standard with a 192-bit key size (default)

	
AES256: Advanced Encryption Standard with a 256-bit key size

	
See Also:

Oracle Database SecureFiles and Large Objects Developer's Guide for more information about encryption

SecureFiles encryption is part of the Advanced Security option.

	
File System-like Logging: Modern file systems have the ability to keep a running log of the file system metadata. Putting this metadata into a running log (called a journal) that is flushed in a lazy fashion increases performance and removes the need for file system checking operations like fsck. SecureFiles' file system-like logging provides this same high performance journaling. File system-like logging also allows for soft corruptions, so that if an error is found on a block, SecureFiles returns a block with the LOB fill character. This allows the application to detect the error by seeing known invalid data and to recover either through deletion of the LOB (something that is not possible with the original implementation of LOBs) or by other means.

In addition to the aforementioned advanced file system features, SecureFiles can take advantage of several advanced Oracle Database capabilities, including:

	
Transactions, read consistency, and flashback

	
100% backward compatibility with LOB interfaces

	
Readable standby, consistent backup, and point-in-time recovery

	
Fine-grained auditing and label security

	
XML indexing, XML queries, and XPath

	
Oracle Real Application Clusters

	
Automatic Storage Management

	
Partitioning and ILM

	
Search across metadata and file content

High Performance SecureFiles is designed from the ground up for high performance and scalability. SecureFiles delivers comparable file system-like performance for basic read and write operations. The optimized algorithms with SecureFiles make it up to 10 times faster than LOBs. The scalability associated with SecureFiles goes far beyond what is offered in file systems. Organizations can scale-up using large SMP systems, or scale-out using Oracle Real Application Clusters to hundreds of computers while still preserving a single system image. Scaling of CPUs and disks can be done independently and transparently. With Oracle Database 11g, organizations can store all types of content and scale to store petabytes or exabytes of data.

Oracle Text

Oracle Text indexes any document or textual content to add fast, accurate retrieval of information. Oracle Text lets you combine text searches with regular database searches in a single SQL statement. The ability to find documents based on their textual content, metadata, or attributes, makes the Oracle Database the single point of integration for all data management.

The Oracle Text SQL API makes it simple and intuitive for application developers and DBAs to create and maintain Text indexes and run Text searches.

Oracle Ultra Search

Oracle Ultra Search lets you index and search Web sites, database tables, files, mailing lists, Oracle Application Server Portals, and user-defined data sources. This search capability lets you use Oracle Ultra Search to build different kinds of search applications.

Oracle Multimedia

Oracle Multimedia provides an array of services to simplify the development of applications that include images, audio, and video. Oracle Multimedia objects are accessed as columns in tables, like other more typical relational data. Multimedia content can be stored and managed internally in the database, or externally by storing references to the content in the database. Java and PL/SQL APIs provide metadata extraction, image format conversion, and thumbnail image generation to greatly reduce application development and maintenance costs. Excellent integration with application development tools such as Oracle JDeveloper, Application Express, and Oracle Application Server Portal enable application developers to create and maintain media-rich applications with ease. In addition, Oracle Multimedia provides similar support for Digital Imaging and Communications in Medicine (DICOM) content such as single-frame and multiframe images, waveforms, slices of 3-D volumes, video segments, and structured reports.

	
See Also:

Chapter 19, "Content Management" for more information about Oracle Multimedia

Oracle Spatial

Oracle Database includes built-in spatial features that let you store, index, and manage location content—assets, buildings, roads, land parcels, sales regions, and so on—and query location relationships using the power of the database. The Oracle Spatial option adds advanced spatial features such as linear reference support and coordinate systems.

	
See Also:

Chapter 19, "Content Management" for more information about Oracle Spatial

Overview of Security Features

Oracle Database includes security features that control how a database is accessed and used. Security mechanisms are needed for several purposes:

	
To prevent unauthorized database access

	
To prevent unauthorized access to schema objects

	
To audit user actions

Associated with each database user is a schema by the same name. By default, each database user creates and has access to all objects in the corresponding schema.

Database security can be classified into two categories: system security and data security.

System security lets you control access to and use of the database at the system level. System security mechanisms check whether a user is authorized to connect to the database, whether database auditing is active, and which system operations a user can perform. For example, system security includes:

	
Valid user name/password combinations

	
The amount of disk space available to a user's schema objects

	
The resource limits for a user

Data security lets you control access to and use of the database at the schema object level. For example, data security determines:

	
Which users have access to a specific schema object and the specific types of actions allowed for each user on the schema object (for example, user SCOTT can issue SELECT and INSERT statements but not DELETE statements using the employees table)

	
The actions, if any, that are audited for each schema object

	
Data encryption to prevent unauthorized users from bypassing Oracle Database and accessing data

Security Mechanisms

Oracle Database provides discretionary access control, which is a means of restricting access to information based on privileges. The appropriate privilege must be assigned to a user in order for that user to access a schema object. Appropriately privileged users can grant other users privileges at their discretion.

Oracle Database manages database security using several different facilities:

	
Authentication to validate the identity of the entities using your networks, databases, and applications

	
Authorization processes to limit access and actions, limits that are linked to user's identities and roles

	
Access restrictions on objects such as tables or rows

	
Security policies

	
Database auditing

	
See Also:

Chapter 20, "Database Security" for more information on security mechanisms

Overview of Data Integrity and Triggers

Data must adhere to certain business rules, as determined by the database administrator or application developer. For example, assume that a business rule says that no row in the inventory table can contain a numeric value greater than nine in the sale_discount column. If an INSERT or UPDATE statement attempts to violate this integrity rule, Oracle Database must undo the invalid statement and return an error to the application. Oracle Database provides integrity constraints and database triggers to manage data integrity rules.

	
Note:

Database triggers let you define and enforce integrity rules, but a database trigger is not the same as an integrity constraint. Among other things, a database trigger does not check data already loaded into a table. Therefore, Oracle strongly recommends that you use database triggers only when the integrity rule cannot be enforced by integrity constraints.

This section includes the following topics:

	
Integrity Constraints

	
Triggers

Integrity Constraints

An integrity constraint is a declarative way to define a business rule for a column of a table. An integrity constraint is a statement about table data that is always true and that follows these rules:

	
If an integrity constraint is created for a table and some existing table data does not satisfy the constraint, then the constraint cannot be enforced.

	
After a constraint is defined, if any of the results of a DML statement violate the integrity constraint, then the statement is rolled back, and an error is returned.

Integrity constraints are stored as part of the table's definition in the data dictionary, so that all database applications adhere to the same set of rules. When a rule changes, you define it only once at the database level and not once for each application. A key is the column or set of columns included in the definition of certain types of integrity constraints. Keys describe the relationships between the different tables and columns of a relational database. Individual values in a key are called key values.

The following integrity constraints are supported by Oracle Database:

	
A not null constraint disallows nulls (empty entries) in a table's column.

	
A unique constraint disallows duplicate values in a column or set of columns. The unique key is the column or set of columns included in the definition of a unique constraint.

	
A primary key constraint disallows duplicate values and nulls in a column or set of columns. The primary key is the column or set of columns included in the definition of a table's primary key constraint. The primary key values uniquely identify the rows in a table. You can define only one primary key for each table.

	
A foreign key constraint—sometimes called a referential integrity constraint—requires each value in a column or set of columns to match a value in another table's unique key or primary key. Foreign key constraints also define referential integrity actions that dictate what Oracle Database should do with dependent data if the data it references is altered. The foreign key is the column or set of columns included in the definition of the foreign key constraint. The referenced key is the unique key or primary key of the same or a different table referenced by a foreign key.

	
A check constraint disallows values that do not satisfy the logical expression of the constraint.

	
See Also:

Chapter 21, "Data Integrity" for more information about integrity constraints

Triggers

Triggers are procedures written in PL/SQL, Java, or C that run (fire) implicitly whenever a table or view is modified or when some user actions or database system actions occur.

Triggers supplement the standard capabilities of Oracle Database to provide a highly customized database management system. For example, a trigger can restrict DML operations against a table to those issued during regular business hours.

	
See Also:

Chapter 22, "Triggers" for more information about triggers

Overview of Information Integration Features

A distributed environment is a network of disparate systems that seamlessly communicate with each other. Each system in the distributed environment is called a node. The system to which a user is directly connected is called the local system. Any additional systems accessed by this user are called remote systems. A distributed environment lets applications access and exchange data from the local and remote systems. All the data can be simultaneously accessed and modified.

This section includes the following topics:

	
Distributed SQL

	
Oracle Streams

	
Oracle Database Gateways and Generic Connectivity

Distributed SQL

A homogeneous distributed database system is a network of two or more Oracle databases that reside on one or more computers. Distributed SQL enables applications and users to simultaneously access or modify the data in several databases as easily as they access or modify a single database.

A distributed Oracle database system can appear as though it is a single Oracle database. Companies can use this distributed SQL feature to make all its Oracle databases look like one and thus reduce some of the complexity of the distributed system.

Oracle Database uses database links to enable users on one database to access objects in a remote database. A local user can access a link to a remote database without having to be a user on the remote database.

Location Transparency

Location transparency occurs when the physical location of data is transparent to applications and users. For example, a view that joins table data from several databases provides location transparency because the user of the view does not need to know from where the data originates.

SQL and Transaction Transparency

Oracle Database provides query, update, and transaction transparency. For example, standard SQL statements like SELECT, INSERT, UPDATE, and DELETE manipulate data just as they do in a nondistributed database environment. Applications can control transactions using the standard SQL statements COMMIT, SAVEPOINT, and ROLLBACK. Oracle Database ensures the integrity of data in a distributed transaction using the two-phase commit mechanism, whereby all nodes in a distributed system are instructed to commit the transaction. If this is not possible, then all nodes roll back the transaction.

	
See Also:

Oracle Database Administrator's Guide for more information on the two-phase commit mechanism

Distributed Query Optimization

Distributed query optimization uses cost-based optimization to find or generate SQL expressions that extract only the necessary data from remote tables, process that data at a remote site or sometimes at the local site, and send the results to the local site for final processing. This operation reduces the amount of required data transfer when compared to the time it takes to transfer all the table data to the local site for processing.

Oracle Streams

Oracle Streams enables the propagation and management of data, transactions, and events in a data stream either within a database or from one database to another. The stream conveys published information to subscribed destinations.

Oracle Streams lets users control what information is put into a stream, how the stream flows or is routed from node to node, what happens to events in the stream as they flow into each node, and how the stream terminates. By specifying the configuration of the elements acting on the stream, a user can address specific requirements, such as message queuing or data replication.

Capture

Oracle Streams implicitly and explicitly captures events and places them in the staging area. Database events, such as DML and DDL operations, are implicitly captured by mining the redo log files. Sophisticated subscription rules can determine what events should be captured.

Staging

The staging area is a queue that stores and manages captured events. Changes to database tables are formatted as logical change records (LCRs), and stored in a staging area until subscribers consume them. LCR staging provides a secure holding area and supports auditing and tracking of LCR data.

Consumption

Messages in a staging area are consumed by the apply engine, where changes are applied to a database or consumed by an application. A flexible apply engine lets you use a standard or custom apply function. Support for explicit dequeue lets application developers use Oracle Streams to reliably exchange messages. They can also notify applications of changes to data.

Message Queuing

Oracle Streams Advanced Queuing is built on the flexible Oracle Streams infrastructure. It provides a unified framework for processing events. Events generated in applications, in workflow, or implicitly captured from redo logs or database triggers can be captured in a queue. These events can be consumed in a variety of ways. They can be automatically applied with a user-defined function or database table operation, can be explicitly dequeued, or a notification can be sent to the consuming application. These events can be transformed at any stage. If the consuming application is on a different database, then the events are automatically propagated to the appropriate database. Operations on these events can be automatically audited, and the history can be retained for a user-specified duration.

Data Replication

Replication is the maintenance of database objects in two or more databases. Oracle Streams provides powerful replication features that can be used to synchronize multiple copies of distributed objects.

Oracle Streams automatically determines what information is relevant and shares that information with those who need it. This active sharing of information includes capturing and managing events in the database, including data changed with DML operations, and propagating those events to other databases and applications. Data changes can be applied directly to the replica database, or can call a user-defined procedure to perform alternative work at the destination database, for example, populate a staging table used to load a data warehouse.

Oracle Streams is an open information sharing solution, supporting heterogeneous replication between Oracle and non-Oracle systems. Using a transparent gateway, DML changes initiated at Oracle databases can be applied on non-Oracle platforms.

Oracle Streams is fully interoperational with materialized views, which can maintain updatable or read-only, point-in-time copies of data. They can contain a full copy of a table or a defined subset of the rows in the master table that satisfy a value-based selection criterion. Materialized views can be multitier, where one materialized view is a subset of another materialized view. Materialized views are periodically updated, or refreshed, from their associated master tables through transactionally consistent batch updates.

Oracle Database Gateways and Generic Connectivity

Oracle Database Gateways and Generic Connectivity extend distributed Oracle database features to non-Oracle systems. Generic Connectivity is a generic solution. Oracle Database Gateways are tailored solutions, specifically coded for a particular non-Oracle system. Oracle Database can work with non-Oracle data sources, non-Oracle message queuing systems, and non-SQL applications, ensuring interoperability with other vendors' products and technologies.

Oracle Database Gateways and Generic Connectivity can be used for synchronous access, using distributed SQL, and for asynchronous access, using Oracle Streams. Introducing a Transparent Gateway into an Oracle Streams environment enables replication of data from an Oracle database to a non-Oracle database.

Oracle Database Gateways and Generic Connectivity translate third-party SQL dialects, data dictionaries, and datatypes into Oracle Database formats, thus making the non-Oracle data store appear as a remote Oracle database. These features enable companies to seamlessly integrate the different systems and provide a consolidated view of the company as a whole.

	
See Also:

Chapter 23, "Information Integration"

Oracle Database Application Development

SQL and PL/SQL form the core of the Oracle Database application development stack:

	
Most enterprise back-ends run SQL

	
Web applications accessing databases do so using SQL (wrapped by Java classes as JDBC)

	
Enterprise Application Integration applications generate XML from SQL queries

	
Content-repositories are built on top of SQL tables

SQL and PL/SQL provide a simple, widely understood, unified data model. They are used standalone in many applications, but are also invoked directly from Java (JDBC), Oracle Call Interface (OCI), Oracle C++ Call Interface (OCCI), or XSU (XML SQL Utility). Stored packages, procedures, and triggers can all be written in PL/SQL or in Java.

This section includes the following topics:

	
Overview of Oracle SQL

	
Overview of PL/SQL

	
Overview of Java

	
Overview of Application Programming Languages (APIs)

	
Overview of Application Development Environments

	
Overview of Datatypes

	
Overview of Globalization

Overview of Oracle SQL

Structured query language (SQL—pronounced "sequel") is the programming language that defines and manipulates the database. SQL databases are relational databases, which means that data is stored in a set of simple relations.

SQL Statements

All operations on the information in an Oracle database are performed using SQL statements. A SQL statement is a string of SQL text. A statement must be the equivalent of a complete SQL sentence, as in:

SELECT last_name, department_id FROM employees;

	
Note:

The end of a SQL statement is indicated differently in different programming environments. This documentation set uses the default SQL*Plus character, the semicolon (;).

Only a complete SQL statement can run successfully. A sentence fragment like the following one generates an error indicating that more text is required:

SELECT last_name

A SQL statement can be thought of as a very simple but powerful computer program or instruction. SQL statements are divided into the following categories:

Data definition language (DDL) statements create, alter, maintain, and drop schema objects. DDL statements also include statements that permit a user to grant other users the privileges to access the database and specific objects within the database.

Data manipulation language (DML) statements manipulate data. Querying, inserting, updating, and deleting rows of a table are all DML operations. The most common SQL statement is the SELECT statement, which retrieves data from the database. Locking a table or view and examining the execution plan of a SQL statement are also DML operations.

Transaction control statements manage the changes made by DML statements. They enable a user to group changes into logical transactions. Examples include COMMIT, ROLLBACK, and SAVEPOINT.

Session control statements let a user control the properties of the current session, including enabling and disabling roles and changing language settings. The two session control statements are ALTER SESSION and SET ROLE.

System control statements changes the properties of the Oracle database instance. ALTER SYSTEM is the only system control statement. It lets you change settings, such as the minimum number of shared servers. It also lets you terminate a session and perform other systemwide tasks.

Embedded SQL statements incorporate DDL, DML, and transaction control statements in a procedural language program, such as those used with the Oracle precompilers. Examples include OPEN, CLOSE, FETCH, and EXECUTE.

	
See Also:

Chapter 24, "SQL" for more information about SQL

Overview of PL/SQL

PL/SQL is the Oracle procedural language extension to SQL. PL/SQL combines the ease and flexibility of SQL with the procedural functionality of a structured programming language, including such routines as IF ... THEN, WHILE, and LOOP.

When designing a database application, consider the following advantages of using stored PL/SQL:

	
PL/SQL code can be stored in a database. Network traffic between applications and the database is reduced, so application and system performance increases. Even when PL/SQL is not stored in the database, applications can send to the database blocks of PL/SQL rather than individual SQL statements, thereby reducing network traffic.

	
Native compilation of PL/SQL code is very easy and offers significant performance advantages.

	
Data access can be controlled by stored PL/SQL code. PL/SQL users can access data only as intended by application developers, unless another access route is granted.

	
Oracle supports PL/SQL Server Pages, so your application logic can be invoked directly from your Web pages.

The following sections describe some of the PL/SQL program units that can be defined and stored centrally in a database.

Procedures and functions are sets of SQL and PL/SQL statements grouped together as a unit to solve a specific problem or to perform a set of related tasks. They are created and stored in compiled form in the database and can be run by a user or a database application. Procedures and functions are identical, except that functions always return a single value to the user. Procedures do not return values.

Packages encapsulate and store related procedures, functions, variables, and other constructs together as a unit in the database. They offer increased functionality. For example, global package variables can be declared and used by any procedure in the package. Packages also improve performance, because all objects of the package are parsed, compiled, and loaded into memory once.

	
See Also:

Chapter 24, "SQL" for more information about PL/SQL

Overview of Java

Java is an object-oriented programming language efficient for application-level programs. Oracle Database provides all types of JDBC drivers and enhances database access from Java applications. Java Stored Procedures are portable and secure in terms of access control, and they let non-Java and legacy applications transparently invoke Java. In addition, native compilation of Java code is very easy and offers significant performance advantages.

	
See Also:

"Overview of Java" for more information about Java

Overview of Application Programming Languages (APIs)

Oracle Database developers have a choice of languages for developing applications—C, C++, Java, COBOL, PL/SQL, PHP, and Visual Basic. The entire functionality of the database is available in all of the languages. All language-specific standards are supported. Developers can choose the languages in which they are most proficient or one that is most suitable for a specific task. For example, an application might use Java on the server side to create dynamic Web pages, PL/SQL to implement stored procedures in the database, and C++ to implement computationally intensive logic in the middle tier.

	
See Also:

The following books describe the various Oracle APIs:
	
Pro*C/C++ Programmer's Guide

	
Oracle Call Interface Programmer's Guide

	
Pro*COBOL Programmer's Guide

	
Oracle Database PL/SQL Language Reference

	
Oracle Database Data Cartridge Java API Reference

Also refer to Chapter 25, "Supported Application Development Languages" for more information.

Overview of Application Development Environments

Oracle provides different application development environments for different application developer needs.

	
Oracle Application Express is a hosted declarative development environment for developing and deploying database-centric Web applications. Using only a Web browser and limited programming experience, you can develop and deploy professional applications that are both fast and secure. The Application Express engine lives completely within your Oracle database and is written in PL/SQL. It renders applications in real time from data stored in database tables. When you create or extend an application, Oracle Application Express creates or modifies metadata stored in database tables. When the application is run, the Application Express engine then reads the metadata and displays the application. Oracle Application Express also transparently manages session state in the database. Application developers can get and set session state using simple substitutions as well as standard SQL bind variable syntax. Application Express is a tool to build Web-based applications and the application development environment is also conveniently Web based itself.

	
See Also:

Oracle Database Express Edition 2 Day Developer Guide for more information

	
PHP—a self-referencing acronym for PHP - Hypertext Preprocessor—is a popular scripting language commonly embedded with HTML to create dynamic web pages. PHP is perfect for rapidly developing Web 2.0 applications. PHP's oci8 extension is a stable, high-performance PHP database driver that is fully integrated with Oracle Database. Using PHP with Oracle Database, you can query and update data, execute stored procedures and functions, load images, and easily build scalable, global applications.

	
See Also:

Oracle Database 2 Day + PHP Developer's Guide for more information

	
In the Microsoft Windows environment, Oracle provides the following development environments:

	
The Oracle Data Provider for .NET (ODP.NET) features optimized data access to the Oracle database from a .NET environment. ODP.NET allows developers to take advantage of advanced Oracle database functionality, including Oracle Real Application Clusters, XML DB, and advanced security. The data provider can be used from any .NET language, including C# and Visual Basic .NET.

	
See Also:

Overview of Datatypes

Each column value and constant in a SQL statement has a datatype, which is associated with a specific storage format, constraints, and a valid range of values. When you create a table, you must specify a datatype for each of its columns.

Oracle Database lets you use many datatypes, in several categories:

	
Scalar datatypes, such as character, numeric, and datetime datatypes

	
Collection types such as variable-length arrays (varrays) and nested tables for more fine-graine3d organization of and access to data in the database

	
ANSI-supported types, which facilitates working with data from non-Oracle databases

	
Supplied datatypes, which are SQL-based interfaces for defining new types when the built-in or ANSI-supported types are not sufficient. The behavior for these types can be implemented in C/C++, Java, or PL/ SQL.

In addition, user-defined object types can be created from any built-in datatypes or any previously created object types, object references, and collection types. Metadata for user-defined types is stored in a schema available to SQL, PL/SQL, Java, and other published interfaces.

A user-defined object type differs from native SQL datatypes in that it specifies both the underlying persistent data (attributes) and the related behaviors (methods). Object types are abstractions of the real-world entities and are sometimes called abstract datatypes (ADTs).

	
See Also:

	
Oracle Database SQL Language Reference for a complete listing of the Oracle built-in and supplied datatypes

Chapter 26, "Oracle Data Types"

	
Oracle Database Object-Relational Developer's Guide

Overview of Globalization

Oracle databases can be deployed anywhere in the world, and a single instance of Oracle Database can be accessed by users across the globe. Information is presented to each user in the language and format specific to his or her location.

The Globalization Development Kit (GDK) simplifies the development process and reduces the cost of developing internet applications for a multilingual market. GDK lets a single program work with text in any language from anywhere in the world.

	
See Also:

Oracle Database Globalization Support Guide for more information about globalization

Part II

Oracle Database Architecture

Part II describes the basic structural architecture of the Oracle database, including physical and logical storage structures. Part II contains the following chapters:

	
Chapter 2, "Data Blocks, Extents, and Segments"

	
Chapter 3, "Tablespaces, Datafiles, and Control Files"

	
Chapter 4, "Transaction Management"

	
Chapter 5, "Schema Objects"

	
Chapter 6, "Schema Object Dependencies"

	
Chapter 7, "The Data Dictionary"

	
Chapter 8, "Memory Architecture"

	
Chapter 9, "Process Architecture"

	
Chapter 10, "Application Architecture"

	
Chapter 11, "Oracle Database Utilities"

	
Chapter 12, "Database and Instance Startup and Shutdown"

2 Data Blocks, Extents, and Segments

This chapter describes the nature of and relationships among the logical storage structures in the Oracle database server.

This chapter contains the following topics:

	
Introduction to Data Blocks, Extents, and Segments

	
Overview of Data Blocks

	
Overview of Extents

	
Overview of Segments

Introduction to Data Blocks, Extents, and Segments

Oracle Database allocates logical database space for all data in a database. The units of database space allocation are data blocks, extents, and segments. Figure 2-1 shows the relationships among these data structures.

Figure 2-1 The Relationships Among Segments, Extents, and Data Blocks

[image: Description of Figure 2-1 follows]

At the finest level of granularity, Oracle Database stores data in data blocks (also called logical blocks, Oracle blocks, or pages). One data block corresponds to a specific number of bytes of physical database space on disk.

The next level of logical database space is an extent. An extent is a specific number of contiguous data blocks allocated for storing a specific type of information.

The level of logical database storage greater than an extent is called a segment. A segment is a set of extents, each of which has been allocated for a specific data structure and all of which are stored in the same tablespace. For example, each table's data is stored in its own data segment, while each index's data is stored in its own index segment. If the table or index is partitioned, each partition is stored in its own segment.

Oracle Database allocates space for segments in units of one extent. When the existing extents of a segment are full, Oracle Database allocates another extent for that segment. Because extents are allocated as needed, the extents of a segment may or may not be contiguous on disk.

A segment and all its extents are stored in one tablespace. Within a tablespace, a segment can include extents from more than one file; that is, the segment can span datafiles. However, each extent can contain data from only one datafile.

Although you can allocate additional extents, the blocks themselves are allocated separately. If you allocate an extent to a specific instance, the blocks are immediately allocated to the free list. However, if the extent is not allocated to a specific instance, then the blocks themselves are allocated only when the high water mark moves. The high water mark is the boundary between used and unused space in a segment.

	
Note:

Oracle recommends that you manage free space automatically. See "Free Space Management".

Overview of Data Blocks

Oracle Database manages the storage space in the datafiles of a database in units called data blocks. A data block is the smallest unit of data used by a database. In contrast, at the physical, operating system level, all data is stored in bytes. Each operating system has a block size. Oracle Database requests data in multiples of Oracle Database data blocks, not operating system blocks.

The standard block size is specified by the DB_BLOCK_SIZE initialization parameter. In addition, you can specify of up to five nonstandard block sizes. The data block sizes should be a multiple of the operating system's block size within the maximum limit to avoid unnecessary I/O. Oracle Database data blocks are the smallest units of storage that Oracle Database can use or allocate.

This section includes the following topics:

	
Data Block Format

	
Free Space Management

	
PCTFREE, PCTUSED, and Row Chaining

	
See Also:

	
Your Oracle Database operating system-specific documentation for more information about data block sizes

	
Multiple Block Sizes

Data Block Format

The Oracle Database data block format is similar regardless of whether the data block contains table, index, or clustered data. Figure 2-2 illustrates the format of a data block.

Figure 2-2 Data Block Format

[image: Description of Figure 2-2 follows]

This section discusses the following components of the data block:

	
Header (Common and Variable)

	
Table Directory

	
Row Directory

	
Overhead

	
Row Data

	
Free Space

Header (Common and Variable)

The header contains general block information, such as the block address and the type of segment (for example, data or index).

Table Directory

This portion of the data block contains information about the table having rows in this block.

Row Directory

This portion of the data block contains information about the actual rows in the block (including addresses for each row piece in the row data area).

After the space has been allocated in the row directory of a data block's overhead, this space is not reclaimed when the row is deleted. Therefore, a block that is currently empty but had up to 50 rows at one time continues to have 100 bytes allocated in the header for the row directory. Oracle Database reuses this space only when new rows are inserted in the block.

Overhead

The data block header, table directory, and row directory are referred to collectively as overhead. Some block overhead is fixed in size; the total block overhead size is variable. On average, the fixed and variable portions of data block overhead total 84 to 107 bytes.

Row Data

This portion of the data block contains table or index data. Rows can span blocks.

	
See Also:

"Row Chaining and Migrating"

Free Space

Free space is allocated for insertion of new rows and for updates to rows that require additional space (for example, when a trailing null is updated to a nonnull value).

In data blocks allocated for the data segment of a table or cluster, or for the index segment of an index, free space can also hold transaction entries. A transaction entry is required in a block for each INSERT, UPDATE, DELETE, and SELECT...FOR UPDATE statement accessing one or more rows in the block. The space required for transaction entries is operating system dependent; however, transaction entries in most operating systems require approximately 23 bytes.

Free Space Management

Free space can be managed automatically or manually.

Free space can be managed automatically inside database segments. The in-segment free/used space is tracked using bitmaps, as opposed to free lists. Automatic segment-space management offers the following benefits:

	
Ease of use

	
Better space utilization, especially for the objects with highly varying row sizes

	
Better run-time adjustment to variations in concurrent access

	
Better multi-instance behavior in terms of performance/space utilization

You specify automatic segment-space management when you create a locally managed tablespace. The specification then applies to all segments subsequently created in this tablespace.

	
See Also:

Oracle Database Administrator's Guide

This section includes the following topics:

	
Availability and Optimization of Free Space in a Data Block

	
Row Chaining and Migrating

Availability and Optimization of Free Space in a Data Block

Two types of statements can increase the free space of one or more data blocks: DELETE statements, and UPDATE statements that update existing values to smaller values. The released space from these types of statements is available for subsequent INSERT statements under the following conditions:

	
If the INSERT statement is in the same transaction and subsequent to the statement that frees space, then the INSERT statement can use the space made available.

	
If the INSERT statement is in a separate transaction from the statement that frees space (perhaps being run by another user), then the INSERT statement can use the space made available only after the other transaction commits and only if the space is needed.

Released space may or may not be contiguous with the main area of free space in a data block. Oracle Database coalesces the free space of a data block only when (1) an INSERT or UPDATE statement attempts to use a block that contains enough free space to contain a new row piece, and (2) the free space is fragmented so the row piece cannot be inserted in a contiguous section of the block. Oracle Database does this compression only in such situations, because otherwise the performance of a database system decreases due to the continuous compression of the free space in data blocks.

Row Chaining and Migrating

In two circumstances, the data for a row in a table may be too large to fit into a single data block. In the first case, the row is too large to fit into one data block when it is first inserted. In this case, Oracle Database stores the data for the row in a chain of data blocks (one or more) reserved for that segment. Row chaining most often occurs with large rows, such as rows that contain a column of datatype LONG or LONG RAW. Row chaining in these cases is unavoidable.

However, in the second case, a row that originally fit into one data block is updated so that the overall row length increases, and the block's free space is already completely filled. In this case, Oracle Database migrates the data for the entire row to a new data block, assuming the entire row can fit in a new block. Oracle Database preserves the original row piece of a migrated row to point to the new block containing the migrated row. The rowid of a migrated row does not change.

When a row is chained or migrated, I/O performance associated with this row decreases because Oracle Database must scan more than one data block to retrieve the information for the row.

	
See Also:

	
"Row Format and Size" for more information on the format of a row and a row piece

	
"Rowids of Row Pieces" for more information on rowids

	
"Physical Rowids" for information about rowids

	
Oracle Database Performance Tuning Guide for information about reducing chained and migrated rows and improving I/O performance

PCTFREE, PCTUSED, and Row Chaining

For manually managed tablespaces, two space management parameters, PCTFREE and PCTUSED, enable you to control the use of free space for inserts and updates to the rows in all the data blocks of a particular segment. Specify these parameters when you create or alter a table or cluster (which has its own data segment). You can also specify the storage parameter PCTFREE when creating or altering an index (which has its own index segment).

This section includes the following topics:

	
The PCTFREE Parameter

	
The PCTUSED Parameter

	
How PCTFREE and PCTUSED Work Together

	
Note:

This discussion does not apply to LOB datatypes (BLOB, CLOB, NCLOB, and BFILE). They do not use the PCTFREE storage parameter or free lists.
See "Overview of LOB Datatypes" for information.

The PCTFREE Parameter

The PCTFREE parameter sets the minimum percentage of a data block to be reserved as free space for possible updates to rows that already exist in that block. For example, assume that you specify the following parameter within a CREATE TABLE statement:

PCTFREE 20

This states that 20% of each data block in this table's data segment be kept free and available for possible updates to the existing rows already within each block. New rows can be added to the row data area, and corresponding information can be added to the variable portions of the overhead area, until the row data and overhead total 80% of the total block size. Figure 2-3 illustrates PCTFREE.

Figure 2-3 PCTFREE

[image: Description of Figure 2-3 follows]

The PCTUSED Parameter

The PCTUSED parameter sets the minimum percentage of a block that can be used for row data plus overhead before new rows are added to the block. After a data block is filled to the limit determined by PCTFREE, Oracle Database considers the block unavailable for the insertion of new rows until the percentage of that block falls beneath the parameter PCTUSED. Until this value is achieved, Oracle Database uses the free space of the data block only for updates to rows already contained in the data block. For example, assume that you specify the following parameter in a CREATE TABLE statement:

PCTUSED 40

In this case, a data block used for this table's data segment is considered unavailable for the insertion of any new rows until the amount of used space in the block falls to 39% or less (assuming that the block's used space has previously reached PCTFREE). Figure 2-4 illustrates this.

Figure 2-4 PCTUSED

[image: Description of Figure 2-4 follows]

How PCTFREE and PCTUSED Work Together

PCTFREE and PCTUSED work together to optimize the use of space in the data blocks of the extents within a data segment. Figure 2-5 illustrates the interaction of these two parameters.

Figure 2-5 Maintaining the Free Space of Data Blocks with PCTFREE and PCTUSED

[image: Description of Figure 2-5 follows]

In a newly allocated data block, the space available for inserts is the block size minus the sum of the block overhead and free space (PCTFREE). Updates to existing data can use any available space in the block. Therefore, updates can reduce the available space of a block to less than PCTFREE, the space reserved for updates but not accessible to inserts.

For each data and index segment, Oracle Database maintains one or more free lists—lists of data blocks that have been allocated for that segment's extents and have free space greater than PCTFREE. These blocks are available for inserts. When you issue an INSERT statement, Oracle Database checks a free list of the table for the first available data block and uses it if possible. If the free space in that block is not large enough to accommodate the INSERT statement, and the block is at least PCTUSED, then Oracle Database takes the block off the free list. Multiple free lists for each segment can reduce contention for free lists when concurrent inserts take place.

After you issue a DELETE or UPDATE statement, Oracle Database processes the statement and checks to see if the space being used in the block is now less than PCTUSED. If it is, then the block goes to the beginning of the transaction free list, and it is the first of the available blocks to be used in that transaction. When the transaction commits, free space in the block becomes available for other transactions.

Overview of Extents

An extent is a logical unit of database storage space allocation made up of a number of contiguous data blocks. One or more extents in turn make up a segment. When the existing space in a segment is completely used, Oracle Database allocates a new extent for the segment.

This section includes the following topics:

	
When Extents Are Allocated

	
Determine the Number and Size of Extents

	
How Extents Are Allocated

	
When Extents Are Deallocated

When Extents Are Allocated

When you create a table, Oracle Database allocates to the table's data segment an initial extent of a specified number of data blocks. Although no rows have been inserted yet, the Oracle Database data blocks that correspond to the initial extent are reserved for that table's rows.

If the data blocks of a segment's initial extent become full and more space is required to hold new data, Oracle Database automatically allocates an incremental extent for that segment. An incremental extent is a subsequent extent of the same or greater size than the previously allocated extent in that segment.

For maintenance purposes, the header block of each segment contains a directory of the extents in that segment.

	
Note:

This chapter applies to serial operations, in which one server process parses and runs a SQL statement. Extents are allocated somewhat differently in parallel SQL statements, which entail multiple server processes.

Determine the Number and Size of Extents

Storage parameters expressed in terms of extents define every segment. Storage parameters apply to all types of segments. They control how Oracle Database allocates free database space for a given segment. For example, you can determine how much space is initially reserved for a table's data segment or you can limit the number of extents the table can allocate by specifying the storage parameters of a table in the STORAGE clause of the CREATE TABLE statement. If you do not specify a table's storage parameters, then it uses the default storage parameters of the tablespace.

You can have dictionary managed tablespaces, which rely on data dictionary tables to track space utilization, or locally managed tablespaces, which use bitmaps (instead of data dictionary tables) to track used and free space. Because of the better performance and easier manageability of locally managed tablespaces, the default for non-SYSTEM permanent tablespaces is locally managed whenever the type of extent management is not explicitly specified.

A tablespace that manages its extents locally can have either uniform extent sizes or variable extent sizes that are determined automatically by the system. When you create the tablespace, the UNIFORM or AUTOALLOCATE (system-managed) clause specifies the type of allocation.

	
For uniform extents, you can specify an extent size or use the default size, which is 1 MB. Ensure that each extent contains at least five database blocks, given the database block size. Temporary tablespaces that manage their extents locally can only use this type of allocation.

	
For system-managed extents, Oracle Database determines the optimal size of additional extents, with a minimum extent size of 64 KB. If the tablespaces are created with 'segment space management auto', and if the database block size is 16K or higher, then Oracle Database manages segment size by creating extents with a minimum size of 1M. This is the default for permanent tablespaces.

The storage parameters INITIAL, NEXT, PCTINCREASE, and MINEXTENTS cannot be specified at the tablespace level for locally managed tablespaces. They can, however, be specified at the segment level. In this case, INITIAL, NEXT, PCTINCREASE, and MINEXTENTS are used together to compute the initial size of the segment. After the segment size is computed, internal algorithms determine the size of each extent.

	
See Also:

	
"Managing Space in Tablespaces"

	
"Bigfile Tablespaces"

	
Oracle Database Administrator's Guide

How Extents Are Allocated

Oracle Database uses different algorithms to allocate extents, depending on whether they are locally managed or dictionary managed.

With locally managed tablespaces, Oracle Database looks for free space to allocate to a new extent by first determining a candidate datafile in the tablespace and then searching the datafile's bitmap for the required number of adjacent free blocks. If that datafile does not have enough adjacent free space, then Oracle Database looks in another datafile.

	
Note:

Oracle strongly recommends that you use locally managed tablespaces.

When Extents Are Deallocated

Oracle Database provides a Segment Advisor that helps you determine whether an object has space available for reclamation based on the level of space fragmentation within the object.

	
See Also:

	
Oracle Database Administrator's Guide for guidelines on reclaiming segment space

	
Oracle Database SQL Language Reference for SQL syntax and semantics

In general, the extents of a segment do not return to the tablespace until you drop the schema object whose data is stored in the segment (using a DROP TABLE or DROP CLUSTER statement). Exceptions to this include the following:

	
The owner of a table or cluster, or a user with the DELETE ANY privilege, can truncate the table or cluster with a TRUNCATE...DROP STORAGE statement.

	
A database administrator (DBA) can deallocate unused extents using the following SQL syntax:

ALTER TABLE table_name DEALLOCATE UNUSED;

	
Periodically, Oracle Database deallocates one or more extents of a rollback segment if it has the OPTIMAL size specified.

When extents are freed, Oracle Database modifies the bitmap in the datafile (for locally managed tablespaces) or updates the data dictionary (for dictionary managed tablespaces) to reflect the regained extents as available space. Any data in the blocks of freed extents becomes inaccessible.

This section includes the following topics:

	
Extents in Nonclustered Tables

	
Extents in Clustered Tables

	
Extents in Materialized Views and Their Logs

	
Extents in Indexes

	
Extents in Temporary Segments

	
Extents in Rollback Segments

	
See Also:

	
Oracle Database Administrator's Guide

	
Oracle Database SQL Language Reference

Extents in Nonclustered Tables

As long as a nonclustered table exists or until you truncate the table, any data block allocated to its data segment remains allocated for the table. Oracle Database inserts new rows into a block if there is enough room. Even if you delete all rows of a table, Oracle Database does not reclaim the data blocks for use by other objects in the tablespace.

After you drop a nonclustered table, this space can be reclaimed when other extents require free space. Oracle Database reclaims all the extents of the table's data and index segments for the tablespaces that they were in and makes the extents available for other schema objects in the same tablespace.

In dictionary managed tablespaces, when a segment requires an extent larger than the available extents, Oracle Database identifies and combines contiguous reclaimed extents to form a larger one. This is called coalescing extents. Coalescing extents is not necessary in locally managed tablespaces, because all contiguous free space is available for allocation to a new extent regardless of whether it was reclaimed from one or more extents.

Extents in Clustered Tables

Clustered tables store information in the data segment created for the cluster. Therefore, if you drop one table in a cluster, the data segment remains for the other tables in the cluster, and no extents are deallocated. You can also truncate clusters (except for hash clusters) to free extents.

Extents in Materialized Views and Their Logs

Oracle Database deallocates the extents of materialized views and materialized view logs in the same manner as for tables and clusters.

	
See Also:

"Overview of Materialized Views"

Extents in Indexes

All extents allocated to an index segment remain allocated as long as the index exists. When you drop the index or associated table or cluster, Oracle Database reclaims the extents for other uses within the tablespace.

Extents in Temporary Segments

When Oracle Database completes the execution of a statement requiring a temporary segment, Oracle Database automatically drops the temporary segment and returns the extents allocated for that segment to the associated tablespace. A single sort allocates its own temporary segment in a temporary tablespace of the user issuing the statement and then returns the extents to the tablespaces.

Multiple sorts, however, can use sort segments in temporary tablespaces designated exclusively for sorts. These sort segments are allocated only once for the instance, and they are not returned after the sort, but remain available for other multiple sorts.

A temporary segment in a temporary table contains data for multiple statements of a single transaction or session. Oracle Database drops the temporary segment at the end of the transaction or session, returning the extents allocated for that segment to the associated tablespace.

	
See Also:

	
"Introduction to Temporary Segments"

	
"Temporary Tables"

Extents in Rollback Segments

Oracle Database periodically checks the rollback segments of the database to see if they have grown larger than their optimal size. If a rollback segment is larger than is optimal (that is, it has too many extents), then Oracle Database automatically deallocates one or more extents from the rollback segment.

Overview of Segments

A segment is a set of extents that contains all the data for a specific logical storage structure within a tablespace. For example, for each table, Oracle Database allocates one or more extents to form that table's data segment, and for each index, Oracle Database allocates one or more extents to form its index segment.

This section contains the following topics:

	
Introduction to Data Segments

	
Introduction to Index Segments

	
Introduction to Temporary Segments

	
Introduction to Undo Segments and Automatic Undo Management

Introduction to Data Segments

A single data segment in an Oracle Database database holds all of the data for one of the following:

	
A table that is not partitioned or clustered

	
A partition of a partitioned table

	
A cluster of tables

Oracle Database creates this data segment when you create the table or cluster with the CREATE statement.

The storage parameters for a table or cluster determine how its data segment's extents are allocated. You can set these storage parameters directly with the appropriate CREATE or ALTER statement. These storage parameters affect the efficiency of data retrieval and storage for the data segment associated with the object.

	
Note:

Oracle Database creates segments for materialized views and materialized view logs in the same manner as for tables and clusters.

	
See Also:

	
Oracle Database Advanced Replication for information on materialized views and materialized view logs

	
Oracle Database SQL Language Reference for syntax

Introduction to Index Segments

Every nonpartitioned index in an Oracle database has a single index segment to hold all of its data. For a partitioned index, every partition has a single index segment to hold its data.

Oracle Database creates the index segment for an index or an index partition when you issue the CREATE INDEX statement. In this statement, you can specify storage parameters for the extents of the index segment and a tablespace in which to create the index segment. (The segments of a table and an index associated with it do not have to occupy the same tablespace.) Setting the storage parameters directly affects the efficiency of data retrieval and storage.

Introduction to Temporary Segments

When processing queries, Oracle Database often requires temporary workspace for intermediate stages of SQL statement parsing and execution. Oracle Database automatically allocates this disk space called a temporary segment. Typically, Oracle Database requires a temporary segment as a database area for sorting. Oracle Database does not create a segment if the sorting operation can be done in memory or if Oracle Database finds some other way to perform the operation using indexes.

This section includes the following topics:

	
Operations that Require Temporary Segments

	
Segments in Temporary Tables and Their Indexes

	
How Temporary Segments Are Allocated

Operations that Require Temporary Segments

The following statements sometimes require the use of a temporary segment:

	
CREATE INDEX

	
SELECT ... ORDER BY

	
SELECT DISTINCT ...

	
SELECT ... GROUP BY

	
SELECT . . . UNION

	
SELECT ... INTERSECT

	
SELECT ... MINUS

Some unindexed joins and correlated subqueries can require use of a temporary segment. For example, if a query contains a DISTINCT clause, a GROUP BY, and an ORDER BY, Oracle Database can require as many as two temporary segments.

Segments in Temporary Tables and Their Indexes

Oracle Database can also allocate temporary segments for temporary tables and indexes created on temporary tables. Temporary tables hold data that exists only for the duration of a transaction or session.

	
See Also:

"Temporary Tables"

How Temporary Segments Are Allocated

Oracle Database allocates temporary segments differently for queries and temporary tables.

This section includes the following topics:

	
Allocation of Temporary Segments for Queries

	
Allocation of Temporary Segments for Temporary Tables and Indexes

Allocation of Temporary Segments for Queries

Oracle Database allocates temporary segments as needed during a user session in one of the temporary tablespaces of the user issuing the statement. Specify these tablespaces with a CREATE USER or an ALTER USER statement using the TEMPORARY TABLESPACE clause.

	
Note:

You cannot assign a permanent tablespace as a user's temporary tablespace.

If no temporary tablespace is defined for the user, then the default temporary tablespace is the SYSTEM tablespace. The default storage characteristics of the containing tablespace determine those of the extents of the temporary segment. Oracle Database drops temporary segments when the statement completes.

Because allocation and deallocation of temporary segments occur frequently, create at least one special tablespace for temporary segments. By doing so, you can distribute I/O across disk devices, and you can avoid fragmentation of the SYSTEM and other tablespaces that otherwise hold temporary segments.

	
Note:

When the SYSTEM tablespace is locally managed, you must define a default temporary tablespace when creating a database. A locally managed SYSTEM tablespace cannot be used for default temporary storage.

Entries for changes to temporary segments used for sort operations are not stored in the redo log, except for space management operations on the temporary segment.

	
See Also:

	
"Bigfile Tablespaces"

	
Chapter 20, "Database Security" for more information about assigning a user's temporary segment tablespace

Allocation of Temporary Segments for Temporary Tables and Indexes

Oracle Database allocates segments for a temporary table when the first INSERT into that table is issued. (This can be an internal insert operation issued by CREATE TABLE AS SELECT.) The first INSERT into a temporary table allocates the segments for the table and its indexes, creates the root page for the indexes, and allocates any LOB segments.

Segments for a temporary table are allocated in a temporary tablespace of the user who created the temporary table.

Oracle Database drops segments for a transaction-specific temporary table at the end of the transaction and drops segments for a session-specific temporary table at the end of the session. If other transactions or sessions share the use of that temporary table, the segments containing their data remain in the table.

	
See Also:

"Temporary Tables"

Introduction to Undo Segments and Automatic Undo Management

Oracle Database maintains information to reverse changes made to the database. This information consists of records of the actions of transactions, collectively known as undo. Undo is stored in undo segments in an undo tablespace. Oracle Database uses undo information to do the following:

	
Rollback an active transaction

	
Recover a terminated transaction

	
Provide read consistency

	
Recovery from logical corruptions

When a ROLLBACK statement is issued, undo records are used to undo changes that were made to the database by the uncommitted transaction. During database recovery, undo records are used to undo any uncommitted changes applied from the redo log to the datafiles. Undo records provide read consistency by maintaining the before image of the data for users who are accessing the data at the same time that another user is changing it. See "How Oracle Database Manages Data Concurrency and Consistency" for more information on read consistency.

Oracle Database provides a fully automated mechanism, referred to as automatic undo management, for managing undo information and space. In this management mode, for all current sessions, the server automatically manages undo segments and space in the undo tablespace.

Automatic undo management eliminates the complexities of managing rollback segment space. In addition, the system automatically tunes itself to provide the best possible retention of undo information to satisfy long-running queries that may require this undo information. Automatic undo management is the default for new installations of Oracle Database. The installation process automatically creates an undo tablespace.

Oracle Database contains an Undo Advisor that provides advice on and helps automate the establishment of your undo environment.

This section includes the following topics:

	
Manual Undo Management

	
Undo Quota

	
Automatic Undo Retention

	
See Also:

Oracle Database 2 Day DBA for information on the Undo Advisor and on how to use advisors and see Oracle Database Administrator's Guide for more information on using automatic undo management

Manual Undo Management

A database system can also run in manual undo management mode. In manual undo management mode, undo space is managed through rollback segments, and no undo tablespace is used.

Earlier releases of Oracle Database defaulted to manual undo management mode. To change to automatic undo management, it was necessary to first create an undo tablespace and then change an initialization parameter. If your Oracle Database is release 9i or later and you want to change to automatic undo management, see Oracle Database Upgrade Guide for instructions.

	
Note:

Space management for rollback segments is complex. Oracle strongly recommends using automatic undo management.

Undo Quota

In automatic undo management mode, the system controls exclusively the assignment of transactions to undo segments, and controls space allocation for undo segments. An ill-behaved transaction can potentially consume much of the undo space, thus paralyzing the entire system. The Resource Manager directive UNDO_POOL is a more explicit way to control large transactions. This lets database administrators group users into consumer groups, with each group assigned a maximum undo space limit. When the total undo space consumed by a group exceeds the limit, its users cannot make further updates until undo space is freed up by other member transactions ending.

The default value of UNDO_POOL is UNLIMITED, where users are allowed to consume as much undo space as the undo tablespace has. Database administrators can limit a particular user by using the UNDO_POOL directive.

Automatic Undo Retention

After a transaction is committed, undo data is no longer needed for rollback or transaction recovery purposes. However, for consistent read purposes, long-running queries may require this old undo information for producing older images of data blocks. Furthermore, the success of several Oracle Flashback features can also depend upon the availability of older undo information. For these reasons, it is desirable to retain the old undo information for as long as possible. If the undo tablespace has space available for new transactions, then old undo information can be retained. When available space in the tablespace becomes short, the database begins to overwrite old undo information for transactions that have been committed.

Oracle Database automatically tunes the system to provide the best possible undo retention for the current undo tablespace. The database collects usage statistics and tunes the undo retention period based on these statistics and the undo tablespace size. If the undo tablespace is configured with the AUTOEXTEND option, with maximum size not specified, undo retention tuning is slightly different. In this case, the database tunes the undo retention period to be slightly longer than the longest-running query, if space allows.

	
See Also:

Oracle Database Administrator's Guide for more details on automatic tuning of undo retention

3 Tablespaces, Datafiles, and Control Files

This chapter describes tablespaces, the primary logical database structures of any Oracle database, and the physical datafiles that correspond to each tablespace.

This chapter contains the following topics:

	
Introduction to Tablespaces, Datafiles, and Control Files

	
Overview of Tablespaces

	
Overview of Datafiles

	
Overview of Control Files

Introduction to Tablespaces, Datafiles, and Control Files

Oracle Database stores data logically in tablespaces and physically in datafiles associated with the corresponding tablespace. Figure 3-1 illustrates this relationship.

Figure 3-1 Datafiles and Tablespaces

[image: Description of Figure 3-1 follows]

Databases, tablespaces, and datafiles are closely related, but they have important differences:

	
An Oracle database consists of at least two logical storage units called tablespaces, which collectively store all of the database's data. You must have the SYSTEM and SYSAUX tablespaces and a third tablespace, called TEMP, is optional.

	
Each tablespace in an Oracle database consists of one or more files called datafiles, which are physical structures that conform to the operating system in which Oracle Database is running.

	
A database's data is collectively stored in the datafiles that constitute each tablespace of the database. For example, the simplest Oracle database would have one tablespace and one datafile. Another database can have three tablespaces, each consisting of two datafiles (for a total of six datafiles).

This section includes the following topics:

	
Oracle-Managed Files

	
Allocate More Space for a Database

Oracle-Managed Files

Oracle-managed files eliminate the need for you, the DBA, to directly manage the operating system files comprising an Oracle database. You specify operations in terms of database objects rather than filenames. Oracle Database internally uses standard file system interfaces to create and delete files as needed for the following database structures:

	
Tablespaces

	
Redo log files

	
Control files

Through initialization parameters, you specify the file system directory to be used for a particular type of file. Oracle Database then ensures that a unique file, an Oracle-managed file, is created and deleted when no longer needed.

	
See Also:

	
Oracle Database Administrator's Guide

	
"Automatic Storage Management"

Allocate More Space for a Database

The size of a tablespace is the size of the datafiles that constitute the tablespace. The size of a database is the collective size of the tablespaces that constitute the database.

You can enlarge a database in three ways:

	
Add a datafile to a tablespace

	
Add a new tablespace

	
Increase the size of a datafile

When you add another datafile to an existing tablespace, you increase the amount of disk space allocated for the corresponding tablespace. Figure 3-2 illustrates this kind of space increase.

Figure 3-2 Enlarging a Database by Adding a Datafile to a Tablespace

[image: Description of Figure 3-2 follows]

Alternatively, you can create a new tablespace (which contains at least one additional datafile) to increase the size of a database. Figure 3-3 illustrates this.

Figure 3-3 Enlarging a Database by Adding a New Tablespace

[image: Description of Figure 3-3 follows]

The third option for enlarging a database is to change a datafile's size or let datafiles in existing tablespaces grow dynamically as more space is needed. You accomplish this by altering existing files or by adding files with dynamic extension properties. Figure 3-4 illustrates this.

Figure 3-4 Enlarging a Database by Dynamically Sizing Datafiles

[image: Description of Figure 3-4 follows]

	
See Also:

Oracle Database Administrator's Guide for more information about increasing the amount of space in your database

Overview of Tablespaces

A database is divided into one or more logical storage units called tablespaces. Tablespaces are divided into logical units of storage called segments, which are further divided into extents. Extents are a collection of contiguous blocks.

This section includes the following topics about tablespaces:

	
Bigfile Tablespaces

	
The SYSTEM Tablespace

	
The SYSAUX Tablespace

	
Undo Tablespaces

	
Default Temporary Tablespace

	
Using Multiple Tablespaces

	
Managing Space in Tablespaces

	
Multiple Block Sizes

	
Online and Offline Tablespaces

	
Read-Only Tablespaces

	
Temporary Tablespaces

	
Transport of Tablespaces Between Databases

	
See Also:

	
Chapter 2, "Data Blocks, Extents, and Segments" for more information about segments and extents

	
Oracle Database Administrator's Guide for detailed information on creating and configuring tablespaces

Bigfile Tablespaces

Oracle Database lets you create bigfile tablespaces. This allows Oracle Database to contain tablespaces made up of single large files rather than numerous smaller ones. This lets Oracle Database utilize the ability of 64-bit systems to create and manage ultralarge files. The consequence of this is that Oracle Database can now scale up to 8 exabytes in size.

With Oracle-managed files, bigfile tablespaces make datafiles completely transparent for users. In other words, you can perform operations on tablespaces, rather than the underlying datafile. Bigfile tablespaces make the tablespace the main unit of the disk space administration, backup and recovery, and so on. Bigfile tablespaces also simplify datafile management with Oracle-managed files and Automatic Storage Management by eliminating the need for adding new datafiles and dealing with multiple files.

The system default is to create a smallfile tablespace, which is the traditional type of Oracle Database tablespace. The SYSTEM and SYSAUX tablespace types are always created using the system default type.

Bigfile tablespaces are supported only for locally managed tablespaces with automatic segment-space management. There are two exceptions: locally managed undo and temporary tablespaces can be bigfile tablespaces, even though their segments are manually managed.

An Oracle database can contain both bigfile and smallfile tablespaces. Tablespaces of different types are indistinguishable in terms of execution of SQL statements that do not explicitly refer to datafiles.

You can create a group of temporary tablespaces that let a user consume temporary space from multiple tablespaces. A tablespace group can also be specified as the default temporary tablespace for the database. This is useful with bigfile tablespaces, where you could need a lot of temporary tablespace for sorts.

This section includes the following topics:

	
Benefits of Bigfile Tablespaces

	
Considerations with Bigfile Tablespaces

Benefits of Bigfile Tablespaces

	
Bigfile tablespaces can significantly increase the storage capacity of an Oracle database. Smallfile tablespaces can contain up to 1024 files, but bigfile tablespaces contain only one file that can be 1024 times larger than a smallfile tablespace. The total tablespace capacity is the same for smallfile tablespaces and bigfile tablespaces. However, because there is limit of 64K datafiles for each database, a database can contain 1024 times more bigfile tablespaces than smallfile tablespaces, so bigfile tablespaces increase the total database capacity by 3 orders of magnitude. In other words, 8 exabytes is the maximum size of the Oracle database when bigfile tablespaces are used with the maximum block size (32 k).

	
Bigfile tablespaces simplify management of datafiles in ultra large databases by reducing the number of datafiles needed. You can also adjust parameters to reduce the SGA space required for datafile information and the size of the control file.

	
They simplify database management by providing datafile transparency.

Considerations with Bigfile Tablespaces

	
Bigfile tablespaces are intended to be used with Automatic Storage Management or other logical volume managers that support dynamically extensible logical volumes and striping or RAID.

	
Avoid creating bigfile tablespaces on a system that does not support striping because of negative implications for parallel execution and RMAN backup parallelization.

	
Avoid using bigfile tablespaces if there could possibly be no free space available on a disk group, and the only way to extend a tablespace is to add a new datafile on a different disk group.

	
Using bigfile tablespaces on platforms that do not support large file sizes is not recommended and can limit tablespace capacity. Refer to your operating system specific documentation for information about maximum supported file sizes.

	
Performance of database opens, checkpoints, and DBWR processes should improve if data is stored in bigfile tablespaces instead of traditional tablespaces. However, increasing the datafile size might increase time to restore a corrupted file or create a new datafile.

	
See Also:

Oracle Database Administrator's Guide for details on creating, altering, and administering bigfile tablespaces

The SYSTEM Tablespace

Every Oracle database contains a tablespace named SYSTEM, which Oracle Database creates automatically when the database is created. The SYSTEM tablespace is always online when the database is open.

To take advantage of the benefits of locally managed tablespaces, you can create a locally managed SYSTEM tablespace, or you can migrate an existing dictionary managed SYSTEM tablespace to a locally managed format.

In a database with a locally managed SYSTEM tablespace, dictionary managed tablespaces cannot be created. It is possible to plug in a dictionary managed tablespace using the transportable feature, but it cannot be made writable.

This section includes the following topics:

	
The Data Dictionary

	
PL/SQL Program Units Description

The Data Dictionary

The SYSTEM tablespace always contains the data dictionary tables for the entire database.

PL/SQL Program Units Description

All data stored on behalf of stored PL/SQL program units (that is, procedures, functions, packages, and triggers) resides in the SYSTEM tablespace. If the database contains many of these program units, then the database administrator must provide the space the units need in the SYSTEM tablespace.

	
See Also:

	
Oracle Database Administrator's Guide for information about creating or migrating to a locally managed SYSTEM tablespace

	
"Online and Offline Tablespaces" for information about the permanent online condition of the SYSTEM tablespace

	
Chapter 24, "SQL" and Chapter 22, "Triggers" for information about the space requirements of PL/SQL program units

The SYSAUX Tablespace

The SYSAUX tablespace is an auxiliary tablespace to the SYSTEM tablespace. Many database components use the SYSAUX tablespace as their default location to store data. Therefore, the SYSAUX tablespace is always created during database creation or database upgrade.

	
Note:

If the SYSAUX tablespace is unavailable, such as due to a media failure, then some database features may fail.

The SYSAUX tablespace provides a centralized location for database metadata that does not reside in the SYSTEM tablespace. It reduces the number of tablespaces created by default, both in the seed database and in user-defined databases.

During normal database operation, Oracle Database does not allow the SYSAUX tablespace to be dropped or renamed. Transportable tablespaces for SYSAUX is not supported.

	
See Also:

Oracle Database Administrator's Guide to learn about database components that use the SYSAUX tablespace

Undo Tablespaces

Undo tablespaces are special tablespaces used solely for storing undo information. You cannot create any other segment types (for example, tables or indexes) in undo tablespaces. Undo tablespaces are used only when the database is in automatic undo management mode (the default). A database can contain more than one undo tablespace, but only one can be in use at any time. Undo data is managed within an undo tablespace using undo segments that are automatically created and maintained by the database.

When the first DML operation is run within a transaction, the transaction is bound (assigned) to an undo segment (and therefore to a transaction table) in the current undo tablespace. In rare circumstances, if the instance does not have a designated undo tablespace, the transaction binds to the system undo segment.

Each undo tablespace is composed of a set of datafiles and is locally managed. Like other types of tablespaces, undo blocks are grouped in extents and the status of each extent is represented in the bitmap. At any point in time, an extent is either allocated to (and used by) a transaction table, or it is free.

You can create a bigfile undo tablespace.

	
See Also:

	
Oracle Database Administrator's Guide for information on managing the undo tablespace

	
"Bigfile Tablespaces"

Creation of Undo Tablespaces

An undo tablespace is automatically created with each new installation of Oracle Database. Earlier versions of Oracle Database may not include an undo tablespace and may instead use rollback segments. This is known as manual undo management mode. When upgrading to Oracle Database 11g you can migrate to automatic undo management by creating an undo tablespace and enabling automatic undo management mode. See Oracle Database Upgrade Guide for details.

Default Temporary Tablespace

When the SYSTEM tablespace is locally managed, you must define at least one default temporary tablespace when creating a database. A locally managed SYSTEM tablespace cannot be used for default temporary storage.

If SYSTEM is dictionary managed and if you do not define a default temporary tablespace when creating the database, then SYSTEM is still used for default temporary storage. However, you will receive a warning in ALERT.LOG saying that a default temporary tablespace is recommended and will be necessary in future releases.

How to Specify a Default Temporary Tablespace

Specify default temporary tablespaces when you create a database, using the DEFAULT TEMPORARY TABLESPACE extension to the CREATE DATABASE statement.

You can create bigfile temporary tablespaces. A bigfile temporary tablespace, like all temporary tablespaces, uses tempfiles instead of datafiles.

	
Note:

You cannot make a default temporary tablespace permanent or take it offline.

	
See Also:

	
Oracle Database SQL Language Reference for information about defining and altering default temporary tablespaces

	
"Bigfile Tablespaces"

Using Multiple Tablespaces

A very small database may need only the SYSTEM tablespace; however, Oracle recommends that you create at least one additional tablespace to store user data separate from data dictionary information. This gives you more flexibility in various database administration operations and reduces contention among dictionary objects and schema objects for the same datafiles.

You can use multiple tablespaces to perform the following tasks:

	
Control disk space allocation for database data

	
Assign specific space quotas for database users

	
Control availability of data by taking individual tablespaces online or offline

	
Perform partial database backup or recovery operations

	
Allocate data storage across devices to improve performance

A database administrator can perform the following actions:

	
Create new tablespaces

	
Add datafiles to tablespaces

	
Set and alter default segment storage settings for segments created in a tablespace

	
Make a tablespace read only or read/write

	
Make a tablespace temporary or permanent

	
Rename tablespaces

	
Drop tablespaces

	
Transport tablespaces across databases and platforms

Managing Space in Tablespaces

Tablespaces allocate space in extents. Tablespaces can use two different methods to keep track of their free and used space:

	
Locally managed tablespaces: Extent management by the bitmaps

	
Dictionary managed tablespaces: Extent management by the data dictionary

When you create a tablespace, you choose one of these methods of space management. Later, you can change the management method with the DBMS_SPACE_ADMIN PL/SQL package.

This section includes the following topics:

	
Locally Managed Tablespaces

	
Segment Space Management in Locally Managed Tablespaces

	
Dictionary Managed Tablespaces

	
See Also:

"Overview of Extents"

Locally Managed Tablespaces

A tablespace that manages its own extents maintains a bitmap in each datafile to keep track of the free or used status of blocks in that datafile. Each bit in the bitmap corresponds to a block or a group of blocks. When an extent is allocated or freed for reuse, Oracle Database changes the bitmap values to show the new status of the blocks.

Locally managed tablespaces have the following advantages over dictionary managed tablespaces:

	
Local management of extents automatically tracks adjacent free space, eliminating the need to coalesce free extents.

	
Local management of extents avoids recursive space management operations. Such recursive operations can occur in dictionary managed tablespaces if consuming or releasing space in an extent results in another operation that consumes or releases space in a data dictionary table or rollback segment.

The sizes of extents that are managed locally are determined automatically by the system. Alternatively, all extents can have the same size in a locally managed tablespace and override object storage options.

The LOCAL clause of the CREATE TABLESPACE or CREATE TEMPORARY TABLESPACE statement is specified to create locally managed permanent or temporary tablespaces, respectively.

Segment Space Management in Locally Managed Tablespaces

When you create a locally managed tablespace using the CREATE TABLESPACE statement, the SEGMENT SPACE MANAGEMENT clause lets you specify how free and used space within a segment is to be managed. Your choices are:

	
AUTO

This keyword tells Oracle Database that you want to use bitmaps to manage the free space within segments. A bitmap, in this case, is a map that describes the status of each data block within a segment with respect to the amount of space in the block available for inserting rows. As more or less space becomes available in a data block, its new state is reflected in the bitmap. Bitmaps enable Oracle Database to manage free space more automatically; thus, this form of space management is called automatic segment-space management.

Locally managed tablespaces using automatic segment-space management can be created as smallfile (traditional) or bigfile tablespaces. AUTO is the default.

	
MANUAL

This keyword tells Oracle Database that you want to use free lists for managing free space within segments. Free lists are lists of data blocks that have space available for inserting rows.

	
See Also:

	
Oracle Database SQL Language Reference for syntax

	
Oracle Database Administrator's Guide for more information about automatic segment space management

	
"Determine the Number and Size of Extents"

	
"Temporary Tablespaces" for more information about temporary tablespaces

Dictionary Managed Tablespaces

If you created your database with Oracle9i, you could be using dictionary managed tablespaces. For a tablespace that uses the data dictionary to manage its extents, Oracle Database updates the appropriate tables in the data dictionary whenever an extent is allocated or freed for reuse. Oracle Database also stores rollback information about each update of the dictionary tables. Because dictionary tables and rollback segments are part of the database, the space that they occupy is subject to the same space management operations as all other data.

	
Note:

If you do not specify extent management when you create a tablespace, then the default is locally managed.

Multiple Block Sizes

Oracle Database supports multiple block sizes in a database. The standard block size is used for the SYSTEM tablespace. This is set when the database is created and can be any valid size. You specify the standard block size by setting the initialization parameter DB_BLOCK_SIZE. Legitimate values are from 2K to 32K.

In the initialization parameter file or server parameter file, you can configure subcaches within the buffer cache for each of these block sizes. Subcaches can also be configured while an instance is running. You can create tablespaces having any of these block sizes. The standard block size is used for the system tablespace and most other tablespaces.

	
Note:

All partitions of a partitioned object must reside in tablespaces of a single block size.

Multiple block sizes are useful primarily when transporting a tablespace from an OLTP database to an enterprise data warehouse. This facilitates transport between databases of different block sizes.

	
See Also:

	
"Transport of Tablespaces Between Databases"

	
Oracle Database Data Warehousing Guide for information about transporting tablespaces in data warehousing environments

Online and Offline Tablespaces

A database administrator can bring any tablespace other than the SYSTEM tablespace online (accessible) or offline (not accessible) whenever the database is open. The SYSTEM tablespace is always online when the database is open because the data dictionary must always be available to Oracle Database.

A tablespace is usually online so that the data contained within it is available to database users. However, the database administrator can take a tablespace offline for maintenance or backup and recovery purposes.

Bringing Tablespaces Offline

When a tablespace goes offline, Oracle Database does not permit any subsequent SQL statements to reference objects contained in that tablespace. Active transactions with completed statements that refer to data in that tablespace are not affected at the transaction level. Oracle Database saves rollback data corresponding to those completed statements in a deferred rollback segment in the SYSTEM tablespace. When the tablespace is brought back online, Oracle Database applies the rollback data to the tablespace, if needed.

When a tablespace goes offline or comes back online, this is recorded in the data dictionary in the SYSTEM tablespace. If a tablespace is offline when you shut down a database, the tablespace remains offline when the database is subsequently mounted and reopened.

You can bring a tablespace online only in the database in which it was created because the necessary data dictionary information is maintained in the SYSTEM tablespace of that database. An offline tablespace cannot be read or edited by any utility other than Oracle Database. Thus, offline tablespaces cannot be transposed to other databases.

Oracle Database automatically switches a tablespace from online to offline when certain errors are encountered. For example, Oracle Database switches a tablespace from online to offline when the database writer process, DBWn, fails in several attempts to write to a datafile of the tablespace. Users trying to access tables in the offline tablespace receive an error. If the problem that causes this disk I/O to fail is media failure, you must recover the tablespace after you correct the problem.

	
See Also:

	
"Transport of Tablespaces Between Databases" for more information about transferring online tablespaces between databases

	
Oracle Database Utilities for more information about tools for data transfer

Read-Only Tablespaces

The primary purpose of read-only tablespaces is to eliminate the need to perform backup and recovery of large, static portions of a database. Oracle Database never updates the files of a read-only tablespace, and therefore the files can reside on read-only media such as CD-ROMs or WORM drives.

	
Note:

Because you can only bring a tablespace online in the database in which it was created, read-only tablespaces are not meant to satisfy archiving requirements.

Read-only tablespaces cannot be modified. To update a read-only tablespace, first make the tablespace read/write. After updating the tablespace, you can then reset it to be read only.

Because read-only tablespaces cannot be modified, and as long as they have not been made read/write at any point, they do not need repeated backup. Also, if you must recover your database, you do not need to recover any read-only tablespaces, because they could not have been modified.

	
See Also:

	
Oracle Database Administrator's Guide for information about changing a tablespace to read only or read/write mode

	
Oracle Database SQL Language Reference for more information about the ALTER TABLESPACE statement

	
Oracle Database Backup and Recovery User's Guide for more information about recovery

Temporary Tablespaces

You can manage space for sort operations more efficiently by designating one or more temporary tablespaces exclusively for sorts. Doing so effectively eliminates serialization of space management operations involved in the allocation and deallocation of sort space. A single SQL operation can use more than one temporary tablespace for sorting. For example, you can create indexes on very large tables, and the sort operation during index creation can be distributed across multiple tablespaces.

All operations that use sorts, including joins, index builds, ordering, computing aggregates (GROUP BY), and collecting optimizer statistics, benefit from temporary tablespaces. The performance gains are significant with Oracle Real Application Clusters.

This section includes the following topics:

	
Sort Segments

	
Creation of Temporary Tablespaces

Sort Segments

One or more temporary tablespaces can be used only for sort segments. A temporary tablespace is not the same as a tablespace that a user designates for temporary segments, which can be any tablespace available to the user. No permanent schema objects can reside in a temporary tablespace.

Sort segments are used when a segment is shared by multiple sort operations. One sort segment exists for every instance that performs a sort operation in a given tablespace.

Temporary tablespaces provide performance improvements when you have multiple sorts that are too large to fit into memory. The sort segment of a given temporary tablespace is created at the time of the first sort operation. The sort segment expands by allocating extents until the segment size is equal to or greater than the total storage demands of all of the active sorts running on that instance.

	
See Also:

Chapter 2, "Data Blocks, Extents, and Segments" for more information about segments

Creation of Temporary Tablespaces

Create temporary tablespaces by using the CREATE TABLESPACE or CREATE TEMPORARY TABLESPACE statement.

	
See Also:

	
"Temporary Datafiles" for information about TEMPFILES

	
"Managing Space in Tablespaces" for information about locally managed and dictionary managed tablespaces

	
Oracle Database SQL Language Reference for syntax

	
Oracle Database Performance Tuning Guide for information about setting up temporary tablespaces for sorts and hash joins

Transport of Tablespaces Between Databases

A transportable tablespace lets you move a subset of an Oracle database from one Oracle database to another, even across different platforms. You can clone a tablespace and plug it into another database, copying the tablespace between databases, or you can unplug a tablespace from one Oracle database and plug it into another Oracle database, moving the tablespace between databases.

Moving data by transporting tablespaces can be orders of magnitude faster than either export/import or unload/load of the same data, because transporting a tablespace involves only copying datafiles and integrating the tablespace metadata. When you transport tablespaces you can also move index data, so you do not have to rebuild the indexes after importing or loading the table data.

You can transport tablespaces across platforms. (Many, but not all, platforms are supported for cross-platform tablespace transport.) This can be used for the following:

	
Provide an easier and more efficient means for content providers to publish structured data and distribute it to customers running Oracle Database on a different platform

	
Simplify the distribution of data from a data warehouse environment to data marts which are often running on smaller platforms

	
Enable the sharing of read only tablespaces across a heterogeneous cluster

	
Allow a database to be migrated from one platform to another

This section includes the following topics:

	
Tablespace Repository

	
How to Move or Copy a Tablespace to Another Database

Tablespace Repository

A tablespace repository is a collection of tablespace sets. Tablespace repositories are built on file group repositories, but tablespace repositories only contain the files required to move or copy tablespaces between databases. Different tablespace sets may be stored in a tablespace repository, and different versions of a particular tablespace set also may be stored. A version of a tablespace set in a tablespace repository consists of the following files:

	
The Data Pump export dump file for the tablespace set

	
The Data Pump log file for the export

	
The datafiles that comprise the tablespace set

	
See Also:

Oracle Streams Concepts and Administration

How to Move or Copy a Tablespace to Another Database

To move or copy a set of tablespaces, you must make the tablespaces read only, copy the datafiles of these tablespaces, and use export/import to move the database information (metadata) stored in the data dictionary. Both the datafiles and the metadata export file must be copied to the target database. The transport of these files can be done using any facility for copying flat files, such as the operating system copying facility, ftp, or publishing on CDs.

After copying the datafiles and importing the metadata, you can optionally put the tablespaces in read/write mode.

The first time a tablespace's datafiles are opened under Oracle Database with the COMPATIBLE initialization parameter set to 10 or higher, each file identifies the platform to which it belongs. These files have identical on disk formats for file header blocks, which are used for file identification and verification. Read only and offline files get the compatibility advanced after they are made read/write or are brought online. This implies that tablespaces that are read only before Oracle Database 10g must be made read/write at least once before they can use the cross platform transportable feature.

	
Note:

In a database with a locally managed SYSTEM tablespace, dictionary tablespaces cannot be created. It is possible to plug in a dictionary managed tablespace using the transportable feature, but it cannot be made writable.

	
See Also:

	
Oracle Database Administrator's Guide for details about how to move or copy tablespaces to another database, including details about transporting tablespaces across platforms

	
Oracle Database Utilities for import/export information

	
Oracle Database PL/SQL Packages and Types Reference for information on the DBMS_FILE_TRANSFER package

	
Oracle Streams Concepts and Administration for more information on ways to copy or transport files

Overview of Datafiles

A tablespace in an Oracle database consists of one or more physical datafiles. A datafile can be associated with only one tablespace and only one database.

Oracle Database creates a datafile for a tablespace by allocating the specified amount of disk space plus the overhead required for the file header. When a datafile is created, the operating system under which Oracle Database runs is responsible for clearing old information and authorizations from a file before allocating it to Oracle Database. If the file is large, this process can take a significant amount of time. The first tablespace in any database is always the SYSTEM tablespace, so Oracle Database automatically allocates the first datafiles of any database for the SYSTEM tablespace during database creation.

This section includes the following topics:

	
Datafile Contents

	
Size of Datafiles

	
Offline Datafiles

	
Temporary Datafiles

	
See Also:

Your Oracle Database operating system-specific documentation for information about the amount of space required for the file header of datafiles on your operating system

Datafile Contents

When a datafile is first created, the allocated disk space is formatted but does not contain any user data. However, Oracle Database reserves the space to hold the data for future segments of the associated tablespace—it is used exclusively by Oracle Database. As the data grows in a tablespace, Oracle Database uses the free space in the associated datafiles to allocate extents for the segment.

The data associated with schema objects in a tablespace is physically stored in one or more of the datafiles that constitute the tablespace. Note that a schema object does not correspond to a specific datafile; rather, a datafile is a repository for the data of any schema object within a specific tablespace. Oracle Database allocates space for the data associated with a schema object in one or more datafiles of a tablespace. Therefore, a schema object can span one or more datafiles. Unless table striping is used (where data is spread across more than one disk), the database administrator and end users cannot control which datafile stores a schema object.

	
See Also:

Chapter 2, "Data Blocks, Extents, and Segments" for more information about use of space

Size of Datafiles

You can alter the size of a datafile after its creation or you can specify that a datafile should dynamically grow as schema objects in the tablespace grow. This functionality enables you to have fewer datafiles for each tablespace and can simplify administration of datafiles.

	
Note:

You need sufficient space on the operating system for expansion.

	
See Also:

Oracle Database Administrator's Guide for more information about resizing datafiles

Offline Datafiles

You can take tablespaces offline or bring them online at any time, except for the SYSTEM tablespace. All of the datafiles of a tablespace are taken offline or brought online as a unit when you take the tablespace offline or bring it online, respectively.

You can take individual datafiles offline. However, this is usually done only during some database recovery procedures.

Temporary Datafiles

Locally managed temporary tablespaces have temporary datafiles (tempfiles), which are similar to ordinary datafiles, with the following exceptions:

	
Tempfiles are always set to NOLOGGING mode.

	
You cannot make a tempfile read only.

	
You cannot create a tempfile with the ALTER DATABASE statement.

	
Media recovery does not recognize tempfiles:

	
BACKUP CONTROLFILE does not generate any information for tempfiles.

	
CREATE CONTROLFILE cannot specify any information about tempfiles.

	
When you create or resize tempfiles, they are not always guaranteed allocation of disk space for the file size specified. On certain file systems (for example, UNIX) disk blocks are allocated not at file creation or resizing, but before the blocks are accessed.

	
Caution:

This enables fast tempfile creation and resizing; however, the disk could run out of space later when the tempfiles are accessed.

	
Tempfile information is shown in the dictionary view DBA_TEMP_FILES and the dynamic performance view V$TEMPFILE, but not in DBA_DATA_FILES or the V$DATAFILE view.

	
See Also:

"Managing Space in Tablespaces" for more information about locally managed tablespaces

Overview of Control Files

The database control file is a small binary file necessary for the database to start and operate successfully. A control file is updated continuously by Oracle Database during database use, so it must be available for writing whenever the database is open. If for some reason the control file is not accessible, then the database cannot function properly.

Each control file is associated with only one Oracle database.

This section includes the following topics:

	
Control File Contents

	
Multiplexed Control Files

Control File Contents

A control file contains information about the associated database that is required for access by an instance, both at startup and during normal operation. Control file information can be modified only by Oracle Database; no database administrator or user can edit a control file.

Among other things, a control file contains information such as:

	
The database name

	
The timestamp of database creation

	
The names and locations of associated datafiles and redo log files

	
Tablespace information

	
Datafile offline ranges

	
The log history

	
Archived log information

	
Backup set and backup piece information

	
Backup datafile and redo log information

	
Datafile copy information

	
The current log sequence number

	
Checkpoint information

The database name and timestamp originate at database creation. The database name is taken from either the name specified by the DB_NAME initialization parameter or the name used in the CREATE DATABASE statement.

Each time that a datafile or a redo log file is added to, renamed in, or dropped from the database, the control file is updated to reflect this physical structure change. These changes are recorded so that:

	
Oracle Database can identify the datafiles and redo log files to open during database startup

	
Oracle Database can identify files that are required or available in case database recovery is necessary

Therefore, if you make a change to the physical structure of your database (using ALTER DATABASE statements), then you should immediately make a backup of your control file.

Control files also record information about checkpoints. Every three seconds, the checkpoint process (CKPT) records information in the control file about the checkpoint position in the redo log. This information is used during database recovery to tell Oracle Database that all redo entries recorded before this point in the redo log group are not necessary for database recovery; they were already written to the datafiles.

	
See Also:

Oracle Database Backup and Recovery User's Guide for information about backing up a database's control file

Multiplexed Control Files

As with redo log files, Oracle Database enables multiple, identical control files to be open concurrently and written for the same database. By storing multiple control files for a single database on different disks, you can safeguard against a single point of failure with respect to control files. If a single disk that contained a control file crashes, then the current instance fails when Oracle Database attempts to access the damaged control file. However, when other copies of the current control file are available on different disks, an instance can be restarted without the need for database recovery.

If all control files of a database are permanently lost during operation, then the instance is aborted and media recovery is required. Media recovery is not straightforward if an older backup of a control file must be used because a current copy is not available. It is strongly recommended that you adhere to the following:

	
Use multiplexed control files with each database

	
Store each copy on a different physical disk

	
Use operating system mirroring

	
Monitor backups

4 Transaction Management

This chapter defines a transaction and describes how you can manage your work using transactions.

This chapter contains the following topics:

	
Introduction to Transactions

	
Overview of Transaction Management

	
Overview of Autonomous Transactions

Introduction to Transactions

A transaction is a logical unit of work that contains one or more SQL statements. A transaction is an atomic unit. The effects of all the SQL statements in a transaction can be either all committed (applied to the database) or all rolled back (undone from the database).

A transaction begins with the first executable SQL statement. A transaction ends when it is committed or rolled back, either explicitly with a COMMIT or ROLLBACK statement or implicitly when a DDL statement is issued.

To illustrate the concept of a transaction, consider a banking database. When a bank customer transfers money from a savings account to a checking account, the transaction can consist of three separate operations:

	
Decrement the savings account

	
Increment the checking account

	
Record the transaction in the transaction journal

Oracle Database must allow for two situations. If all three SQL statements can be performed to maintain the accounts in proper balance, the effects of the transaction can be applied to the database. However, if a problem such as insufficient funds, invalid account number, or a hardware failure prevents one or two of the statements in the transaction from completing, the entire transaction must be rolled back so that the balance of all accounts is correct.

Figure 4-1 illustrates the banking transaction example.

Figure 4-1 A Banking Transaction

[image: Description of Figure 4-1 follows]

This section includes the following topics:

	
Statement Execution and Transaction Control

	
Statement-Level Rollback

	
Resumable Space Allocation

Statement Execution and Transaction Control

A SQL statement that runs successfully is different from a committed transaction. Executing successfully means that a single statement was:

	
Parsed

	
Found to be a valid SQL construction

	
Run without error as an atomic unit. For example, all rows of a multirow update are changed.

However, until the transaction that contains the statement is committed, the transaction can be rolled back, and all of the changes of the statement can be undone. A statement, rather than a transaction, runs successfully.

Committing means that a user has explicitly or implicitly requested that the changes in the transaction be made permanent. An explicit request occurs when the user issues a COMMIT statement. An implicit request occurs after normal termination of an application or completion of a data definition language (DDL) operation. The changes made by the SQL statement(s) of a transaction become permanent and visible to other users only after that transaction commits. Queries that are issued after the transaction commits will see the committed changes.

You can name a transaction using the SET TRANSACTION ... NAME statement before you start the transaction. This makes it easier to monitor long-running transactions and to resolve in-doubt distributed transactions.

	
See Also:

"Transaction Naming"

Statement-Level Rollback

If at any time during execution a SQL statement causes an error, all effects of the statement are rolled back. The effect of the rollback is as if that statement had never been run. This operation is a statement-level rollback.

Errors discovered during SQL statement execution cause statement-level rollbacks. An example of such an error is attempting to insert a duplicate value in a primary key. Single SQL statements involved in a deadlock (competition for the same data) can also cause a statement-level rollback. Errors discovered during SQL statement parsing, such as a syntax error, have not yet been run, so they do not cause a statement-level rollback.

A SQL statement that fails causes the loss only of any work it would have performed itself. It does not cause the loss of any work that preceded it in the current transaction. If the statement is a DDL statement, then the implicit commit that immediately preceded it is not undone.

	
Note:

Users cannot directly refer to implicit savepoints in rollback statements.

	
See Also:

"Deadlocks"

Resumable Space Allocation

Oracle Database provides a means for suspending, and later resuming, the execution of large database operations in the event of space allocation failures. This enables an administrator to take corrective action, instead of the Oracle database server returning an error to the user. After the error condition is corrected, the suspended operation automatically resumes.

A statement runs in a resumable mode only when the client explicitly enables resumable semantics for the session using the ALTER SESSION statement.

Resumable space allocation is suspended when one of the following conditions occur:

	
Out of space condition

	
Maximum extents reached condition

	
Space quota exceeded condition

For nonresumable space allocation, these conditions result in errors and the statement is rolled back.

Suspending a statement automatically results in suspending the transaction. Thus all transactional resources are held through a statement suspend and resume.

When the error condition disappears (for example, as a result of user intervention or perhaps sort space released by other queries), the suspended statement automatically resumes execution.

	
See Also:

Oracle Database Administrator's Guide for information about enabling resumable space allocation, what conditions are correctable, and what statements can be made resumable.

Overview of Transaction Management

A transaction in Oracle Database begins when the first executable SQL statement is encountered. An executable SQL statement is a SQL statement that generates calls to an instance, including DML and DDL statements.

When a transaction begins, Oracle Database assigns the transaction to an available undo tablespace to record the rollback entries for the new transaction.

A transaction ends when any of the following occurs:

	
A user issues a COMMIT or ROLLBACK statement without a SAVEPOINT clause.

	
A user runs a DDL statement such as CREATE, DROP, RENAME, or ALTER. If the current transaction contains any DML statements, Oracle Database first commits the transaction, and then runs and commits the DDL statement as a new, single statement transaction.

	
A user disconnects from Oracle Database. The current transaction is committed.

	
A user process terminates abnormally. The current transaction is rolled back.

After one transaction ends, the next executable SQL statement automatically starts the following transaction.

This section includes the following topics:

	
Commit Transactions

	
Rollback of Transactions

	
Savepoints In Transactions

	
Transaction Naming

	
The Two-Phase Commit Mechanism

	
Note:

Applications should always explicitly commit or undo transactions before program termination.

Commit Transactions

Committing a transaction means making permanent the changes performed by the SQL statements within the transaction.

Before a transaction that modifies data is committed, the following has occurred:

	
Oracle Database has generated undo information. The undo information contains the old data values changed by the SQL statements of the transaction.

	
Oracle Database has generated redo log entries in the redo log buffer of the SGA. The redo log record contains the change to the data block and the change to the rollback block. These changes may go to disk before a transaction is committed.

	
The changes have been made to the database buffers of the SGA. These changes may go to disk before a transaction is committed.

	
Note:

The data changes for a committed transaction, stored in the database buffers of the SGA, are not necessarily written immediately to the datafiles by the database writer (DBWn) background process. This writing takes place when it is most efficient for the database to do so. It can happen before the transaction commits or, alternatively, it can happen some time after the transaction commits.

When a transaction is committed, the following occurs:

	
The internal transaction table for the associated undo tablespace records that the transaction has committed, and the corresponding unique system change number (SCN) of the transaction is assigned and recorded in the table.

	
The log writer process (LGWR) writes redo log entries in the SGA's redo log buffers to the redo log file. It also writes the transaction's SCN to the redo log file. This atomic event constitutes the commit of the transaction.

	
Oracle Database releases locks held on rows and tables.

	
Oracle Database marks the transaction complete.

	
Note:

The default behavior is for LGWR to write redo to the online redo log files synchronously and for transactions to wait for the redo to go to disk before returning a commit to the user. However, for lower transaction commit latency application developers can specify that redo be written asynchronously and that transactions do not need to wait for the redo to be on disk.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for more information on asynchronous commit

	
"Overview of Locking Mechanisms"

	
"Overview of Oracle Database Processes" for more information about the background processes LGWR and DBWn

Rollback of Transactions

Rolling back means undoing any changes to data that have been performed by SQL statements within an uncommitted transaction. Oracle Database uses undo tablespaces (or rollback segments) to store old values. The redo log contains a record of changes.

Oracle Database lets you roll back an entire uncommitted transaction. Alternatively, you can roll back the trailing portion of an uncommitted transaction to a marker called a savepoint.

All types of rollbacks use the same procedures:

	
Statement-level rollback (due to statement or deadlock execution error)

	
Rollback to a savepoint

	
Rollback of a transaction due to user request

	
Rollback of a transaction due to abnormal process termination

	
Rollback of all outstanding transactions when an instance terminates abnormally

	
Rollback of incomplete transactions during recovery

In rolling back an entire transaction, without referencing any savepoints, the following occurs:

	
Oracle Database undoes all changes made by all the SQL statements in the transaction by using the corresponding undo tablespace.

	
Oracle Database releases all the transaction's locks of data.

	
The transaction ends.

	
See Also:

	
"Savepoints In Transactions"

	
"Overview of Locking Mechanisms"

	
Oracle Database Backup and Recovery User's Guide for information about what happens to committed and uncommitted changes during recovery

Savepoints In Transactions

You can declare intermediate markers called savepoints within the context of a transaction. Savepoints divide a long transaction into smaller parts.

Using savepoints, you can arbitrarily mark your work at any point within a long transaction. You then have the option later of rolling back work performed before the current point in the transaction but after a declared savepoint within the transaction. For example, you can use savepoints throughout a long complex series of updates, so if you make an error, you do not need to resubmit every statement.

Savepoints are similarly useful in application programs. If a procedure contains several functions, then you can create a savepoint before each function begins. Then, if a function fails, it is easy to return the data to its state before the function began and re-run the function with revised parameters or perform a recovery action.

After a rollback to a savepoint, Oracle Database releases the data locks obtained by rolled back statements. Other transactions that were waiting for the previously locked resources can proceed. Other transactions that want to update previously locked rows can do so.

When a transaction is rolled back to a savepoint, the following occurs:

	
Oracle Database rolls back only the statements run after the savepoint.

	
Oracle Database preserves the specified savepoint, but all savepoints that were established after the specified one are lost.

	
Oracle Database releases all table and row locks acquired since that savepoint but retains all data locks acquired previous to the savepoint.

The transaction remains active and can be continued.

Whenever a session is waiting on a transaction, a rollback to savepoint does not free row locks. To make sure a transaction does not hang if it cannot obtain a lock, use FOR UPDATE ... NOWAIT before issuing UPDATE or DELETE statements. (This refers to locks obtained before the savepoint to which has been rolled back. Row locks obtained after this savepoint are released, as the statements executed after the savepoint have been rolled back completely.)

Transaction Naming

You can name a transaction, using a simple and memorable text string. This name is a reminder of what the transaction is about. Transaction names replace commit comments for distributed transactions, with the following advantages:

	
It is easier to monitor long-running transactions and to resolve in-doubt distributed transactions.

	
You can view transaction names along with transaction IDs in applications. For example, a database administrator can view transaction names in Enterprise Manager when monitoring system activity.

	
Transaction names are written to the transaction auditing redo record, if compatibility is set to Oracle9i or higher.

	
LogMiner can use transaction names to search for a specific transaction from transaction auditing records in the redo log.

	
You can use transaction names to find a specific transaction in data dictionary views, such as V$TRANSACTION.

This section includes the following topics:

	
How Transactions Are Named

	
Commit Comment

How Transactions Are Named

Name a transaction using the SET TRANSACTION ... NAME statement before you start the transaction.

When you name a transaction, you associate the transaction's name with its ID. Transaction names do not have to be unique; different transactions can have the same transaction name at the same time by the same owner. You can use any name that enables you to distinguish the transaction.

Commit Comment

In previous releases, you could associate a comment with a transaction by using a commit comment. However, a comment can be associated with a transaction only when a transaction is being committed.

Commit comments are still supported for backward compatibility. However, Oracle strongly recommends that you use transaction names. Commit comments are ignored in named transactions.

	
Note:

In a future release, commit comments will be deprecated.

	
See Also:

	
Oracle Database Administrator's Guide for more information about distributed transactions

	
Oracle Database SQL Language Reference for more information about transaction naming syntax

The Two-Phase Commit Mechanism

In a distributed database, Oracle Database must coordinate transaction control over a network and maintain data consistency, even if a network or system failure occurs.

A distributed transaction is a transaction that includes one or more statements that update data on two or more distinct nodes of a distributed database.

A two-phase commit mechanism guarantees that all database servers participating in a distributed transaction either all commit or all undo the statements in the transaction. A two-phase commit mechanism also protects implicit DML operations performed by integrity constraints, remote procedure calls, and triggers.

The Oracle Database two-phase commit mechanism is completely transparent to users who issue distributed transactions. In fact, users need not even know the transaction is distributed. A COMMIT statement denoting the end of a transaction automatically triggers the two-phase commit mechanism to commit the transaction. No coding or complex statement syntax is required to include distributed transactions within the body of a database application.

The recoverer (RECO) background process automatically resolves the outcome of in-doubt distributed transactions—distributed transactions in which the commit was interrupted by any type of system or network failure. After the failure is repaired and communication is reestablished, the RECO process of each local Oracle database automatically commits or rolls back any in-doubt distributed transactions consistently on all involved nodes.

In the event of a long-term failure, Oracle Database allows each local administrator to manually commit or undo any distributed transactions that are in doubt as a result of the failure. This option enables the local database administrator to free any locked resources that are held indefinitely as a result of the long-term failure.

If a database must be recovered to a point in the past, Oracle Database recovery facilities enable database administrators at other sites to return their databases to the earlier point in time also. This operation ensures that the global database remains consistent.

	
See Also:

Oracle Database Heterogeneous Connectivity Administrator's Guide

Overview of Autonomous Transactions

Autonomous transactions are independent transactions that can be called from within another transaction. An autonomous transaction lets you leave the context of the calling transaction, perform some SQL operations, commit or undo those operations, and then return to the calling transaction's context and continue with that transaction.

Once invoked, an autonomous transaction is totally independent of the main transaction that called it. It does not see any of the uncommitted changes made by the main transaction and does not share any locks or resources with the main transaction. Changes made by an autonomous transaction become visible to other transactions upon commit of the autonomous transactions.

One autonomous transaction can call another. There are no limits, other than resource limits, on how many levels of autonomous transactions can be called.

Deadlocks are possible between an autonomous transaction and its calling transaction. Oracle Database detects such deadlocks and returns an error. The application developer is responsible for avoiding deadlock situations.

Autonomous transactions are useful for implementing actions that need to be performed independently, regardless of whether the calling transaction commits or rolls back, such as transaction logging and retry counters.

Autonomous PL/SQL Blocks

You can call autonomous transactions from within a PL/SQL block. Use the pragma AUTONOMOUS_TRANSACTION. A pragma is a compiler directive. You can declare the following kinds of PL/SQL blocks to be autonomous:

	
Stored procedure or function

	
Local procedure or function

	
Package

	
Type method

	
Top-level anonymous block

When an autonomous PL/SQL block is entered, the transaction context of the caller is suspended. This operation ensures that SQL operations performed in this block (or other blocks called from it) have no dependence or effect on the state of the caller's transaction context.

When an autonomous block invokes another autonomous block or itself, the called block does not share any transaction context with the calling block. However, when an autonomous block invokes a non-autonomous block (that is, one that is not declared to be autonomous), the called block inherits the transaction context of the calling autonomous block.

Transaction Control Statements in Autonomous Blocks

Transaction control statements in an autonomous PL/SQL block apply only to the currently active autonomous transaction. Examples of such statements are:

SET TRANSACTION
COMMIT
ROLLBACK
SAVEPOINT
ROLLBACK TO SAVEPOINT

Similarly, transaction control statements in the main transaction apply only to that transaction and not to any autonomous transaction that it calls. For example, rolling back the main transaction to a savepoint taken before the beginning of an autonomous transaction does not undo the autonomous transaction.

	
See Also:

Oracle Database PL/SQL Language Reference

5 Schema Objects

This chapter discusses the different types of database objects contained in a user's schema.

This chapter contains the following topics:

	
Introduction to Schema Objects

	
Overview of Tables

	
Overview of Views

	
Overview of Materialized Views

	
Overview of Dimensions

	
Overview of the Sequence Generator

	
Overview of Synonyms

	
Overview of Indexes

	
Overview of Index-Organized Tables

	
Overview of Application Domain Indexes

	
Overview of Clusters

	
Overview of Hash Clusters

Introduction to Schema Objects

A schema is a collection of logical structures of data, or schema objects. A schema is owned by a database user and has the same name as that user. Each user owns a single schema. Schema objects can be created and manipulated with SQL and include the following types of objects:

	
Clusters

	
Constraints

	
Database links

	
Database triggers

	
Dimensions

	
External procedure libraries

	
Indexes and indextypes

	
Java classes, Java resources, and Java sources

	
Materialized views and materialized view logs

	
Object tables, object types, and object views

	
Operators

	
Sequences

	
Stored functions, procedures, and packages

	
Synonyms

	
Tables and index-organized tables

	
Views

Other types of objects are also stored in the database and can be created and manipulated with SQL but are not contained in a schema:

	
Contexts

	
Directories

	
Parameter files (PFILEs) and server parameter files (SPFILEs)

	
Profiles

	
Roles

	
Rollback segments

	
Tablespaces

	
Users

Schema objects are logical data storage structures. Schema objects do not have a one-to-one correspondence to physical files on disk that store their information. However, Oracle Database stores a schema object logically within a tablespace of the database. The data of each object is physically contained in one or more of the tablespace's datafiles. For some objects, such as tables, indexes, and clusters, you can specify how much disk space Oracle Database allocates for the object within the tablespace's datafiles.

There is no relationship between schemas and tablespaces: a tablespace can contain objects from different schemas, and the objects for a schema can be contained in different tablespaces.

Figure 5-1 illustrates the relationship among objects, tablespaces, and datafiles.

Figure 5-1 Schema Objects, Tablespaces, and Datafiles

[image: Description of Figure 5-1 follows]

	
See Also:

Oracle Database Administrator's Guide

Overview of Tables

Tables are the basic unit of data storage in an Oracle database. Data is stored in rows and columns. You define a table with a table name (such as employees) and set of columns. You give each column a column name (such as employee_id, last_name, and job_id), a datatype (such as VARCHAR2, DATE, or NUMBER), and a width. The width can be predetermined by the datatype, as in DATE. If columns are of the NUMBER datatype, define precision and scale instead of width.

You can specify rules called integrity constraints for each column. An example is a NOT NULL integrity constraint, which forces the column to have a value in every row.

A table can contain a virtual column, which unlike normal columns does not consume space on disk. Rather, the database derives the values in a virtual column on demand by computing a set of user-specified expressions or functions. Virtual columns can be used in queries, DML, and DDL statements. You can index virtual columns, collect statistics on them, and create integrity constraints. Thus, they can be treated much as nonvirtual columns.

You can also specify table columns for which data is encrypted before being stored in the datafile. Encryption prevents users from circumventing database access control mechanisms by looking inside datafiles directly with operating system tools.

After you create a table, insert rows of data using SQL statements. A row is a collection of column information corresponding to a single record. Table data can then be queried, deleted, or updated using SQL.

Figure 5-2 shows a sample table.

Figure 5-2 The EMP Table

[image: Description of Figure 5-2 follows]

This section includes the following topics:

	
How Table Data Is Stored

	
Table Compression

	
Nulls Indicate Absence of Value

	
Default Values for Columns

	
Partitioned Tables

	
Nested Tables

	
Temporary Tables

	
External Tables

	
See Also:

	
Oracle Database Administrator's Guide for information on managing tables

	
Oracle Database Advanced Security Administrator's Guide for information on transparent data encryption

	
Oracle Database SQL Language Reference for reference information about virtual columns

	
Chapter 26, "Oracle Data Types"

	
Chapter 21, "Data Integrity"

How Table Data Is Stored

When you create a table, Oracle Database automatically allocates a data segment in a tablespace to hold the table's future data. You can control the allocation and use of space for a table's data segment in the following ways:

	
You can control the amount of space allocated to the data segment by setting the storage parameters for the data segment.

	
You can control the use of the free space in the data blocks that constitute the data segment's extents by setting the PCTFREE and PCTUSED parameters for the data segment.

Oracle Database stores data for a clustered table in the data segment created for the cluster instead of in a data segment in a tablespace. Storage parameters cannot be specified when a clustered table is created or altered. The storage parameters set for the cluster always control the storage of all tables in the cluster.

A table's data segment (or cluster data segment, when dealing with a clustered table) is created in either the table owner's default tablespace or in a tablespace specifically named in the CREATE TABLE statement.

	
See Also:

"PCTFREE, PCTUSED, and Row Chaining"

This section includes the following topics:

	
Row Format and Size

	
Rowids of Row Pieces

	
Column Order

Row Format and Size

In the following circumstances, the data for a row in a table may be too large to fit into a single data block:

	
The row is too large to fit into one data block when it is first inserted.

In row chaining, Oracle Database stores the data for the row in a chain of one or more data blocks reserved for the segment. Row chaining most often occurs with large rows. Examples include rows that contain a column of data type LONG or LONG RAW, a VARCHAR2(4000) column in a 2 KB block, or a row with a huge number of columns. Row chaining in these cases is unavoidable.

	
A row that originally fit into one data block is updated so that the overall row length increases, but insufficient free space exists to hold the updated row.

In row migration, Oracle Database moves the entire row to a new data block, assuming the row can fit in a new block. The original row piece of a migrated row contains a pointer or "forwarding address" to the new block containing the migrated row. The rowid of a migrated row does not change.

	
A row has more than 255 columns.

Oracle Database can only store 255 columns in a row piece. Thus, if you insert a row into a table that has 1000 columns, then the database creates 4 row pieces, typically chained over multiple blocks.

When a row is chained or migrated, the amount of I/O necessary to retrieve the data increases because Oracle Database must scan more than one data block to retrieve the information for the row. For example, if the database performs one I/O to read an index and one I/O to read a table for a nonmigrated row, then the database requires an additional I/O to obtain the actual row data for a migrated row.

Each row piece, chained or unchained, contains a row header and data for all or some of the row's columns. Individual columns can also span row pieces and, consequently, data blocks. Figure 5-3 shows the format of a row piece.

Figure 5-3 The Format of a Row Piece

[image: Description of Figure 5-3 follows]

The row header precedes the data and contains information about:

	
Row pieces

	
Chaining (for chained row pieces only)

	
Columns in the row piece

	
Cluster keys (for clustered data only)

A row fully contained in one block has at least 3 bytes of row header. After the row header information, each row contains column length and data. The column length requires 1 byte for columns that store 250 bytes or less, or 3 bytes for columns that store more than 250 bytes, and precedes the column data. Space required for column data depends on the datatype. If the datatype of a column is variable length, then the space required to hold a value can grow and shrink with updates to the data.

To conserve space, a null in a column only stores the column length (zero). Oracle Database does not store data for the null column. Also, for trailing null columns, Oracle Database does not even store the column length.

	
Note:

Each row also uses 2 bytes in the data block header's row directory.

Clustered rows contain the same information as nonclustered rows. In addition, they contain information that references the cluster key to which they belong.

	
See Also:

	
Oracle Database Administrator's Guide for more information about clustered rows and tables

	
"Overview of Clusters"

	
"Row Chaining and Migrating"

	
"Nulls Indicate Absence of Value"

	
"Row Directory"

Rowids of Row Pieces

The rowid identifies each row piece by its location or address. After a rowid is assigned to a row piece, the rowid can change in certain circumstances. For example, if row movement is enabled, then the rowid can change because of partition key updates, flashback table operations, shrink table operations, and so on. If row movement is disabled, then a rowid can change if the row is exported and imported using Oracle Database utilities.

	
See Also:

"Physical Rowids"

Column Order

The column order is the same for all rows in a table. Columns are usually stored in the order in which they were listed in the CREATE TABLE statement, but this order is not guaranteed. For example, if a table has a column of datatype LONG, then Oracle Database always stores this column last. Also, if a table is altered so that a new column is added, then the new column becomes the last column stored.

In general, try to place columns that frequently contain nulls last so that rows take less space. Note, though, that if the table you are creating includes a LONG column as well, then the benefits of placing frequently null columns last are lost.

Table Compression

The Oracle Database table compression feature compresses data by eliminating duplicate values in a database block. Compressed data stored in a database block (also known as disk page) is self-contained. That is, all the information needed to re-create the uncompressed data in a block is available within that block. Duplicate values in all the rows and columns in a block are stored once at the beginning of the block, in what is called a symbol table for that block. All occurrences of such values are replaced with a short reference to the symbol table.

With the exception of a symbol table at the beginning, compressed database blocks look very much like regular database blocks. All database features and functions that work on regular database blocks also work on compressed database blocks. Database objects that can be compressed include tables and materialized views. For partitioned tables, you can choose to compress some or all partitions. Compression attributes can be declared for a tablespace, a table, or a partition of a table. If declared at the tablespace level, then all tables created in that tablespace are compressed by default. You can alter the compression attribute for a table (or a partition or tablespace), and the change only applies to new data going into that table. As a result, a single table or partition may contain some compressed blocks and some regular blocks. This guarantees that data size will not increase as a result of compression; in cases where compression could increase the size of a block, it is not applied to that block.

Using Table Compression

Compression can occur while data is being inserted, updated, bulk inserted, or bulk loaded into a compressed table. These operations include:

	
Direct path SQL*Loader

	
CREATE TABLE and AS SELECT statements

	
Parallel INSERT (or serial INSERT with an APPEND hint) statements

	
Single-row or array inserts

	
Single-row or array updates

Existing data in the database can also be compressed by moving it into compressed form through ALTER TABLE and MOVE statements. This operation takes an exclusive lock on the table, and therefore prevents any updates and loads until it completes. If this is not acceptable, the Oracle Database online redefinition utility (the DBMS_REDEFINITION PL/SQL package) can be used.

Data compression works for all datatypes except for all variants of LOBs and datatypes derived from LOBs, such as varrays stored out of line or the XML datatype stored in a CLOB.

Table compression is done as part of bulk loading data into the database or during single-row or array inserts and updates. The overhead associated with compression is most visible at that time. This overhead is the primary trade-off that must be taken into account when considering compression.

Compressed tables or partitions can be modified the same as other Oracle Database tables or partitions. Deleting compressed data is as fast as deleting uncompressed data. Inserting new data is also as fast. Updating compressed data can be slower in some cases. Because Oracle Database supports all DML operations (insert, update, delete) on compressed tables, table compression is suitable for OLTP applications as well as data warehousing applications. In both these environments, data should be organized so that read only or infrequently changing portions of the data (for example, historical data) are kept compressed.

Nulls Indicate Absence of Value

A null is the absence of a value in a column of a row. Nulls indicate missing, unknown, or inapplicable data. A null should not be used to imply any other value, such as zero. A column allows nulls unless a NOT NULL or PRIMARY KEY integrity constraint has been defined for the column, in which case no row can be inserted without a value for that column.

Nulls are stored in the database if they fall between columns with data values. In these cases they require 1 byte to store the length of the column (zero).

Trailing nulls in a row require no storage because a new row header signals that the remaining columns in the previous row are null. For example, if the last three columns of a table are null, no information is stored for those columns. In tables with many columns, the columns more likely to contain nulls should be defined last to conserve disk space.

Most comparisons between nulls and other values are by definition neither true nor false, but unknown. To identify nulls in SQL, use the IS NULL predicate. Use the SQL function NVL to convert nulls to non-null values.

Nulls are not indexed, except when the cluster key column value is null or the index is a bitmap index.

	
See Also:

	
Oracle Database SQL Language Reference for comparisons using IS NULL and the NVL function

	
"Indexes and Nulls"

	
"Bitmap Indexes and Nulls"

Default Values for Columns

If a default value is not explicitly defined for a column, then the default for the column is implicitly NULL. You can also assign a default value to a column of a table so that when a new row is inserted and a value for the column is omitted or keyword DEFAULT is supplied, a default value is supplied automatically.

Default column values work as though an INSERT statement actually specifies the default value. The datatype of the default literal or expression must match or be convertible to the column datatype.

Integrity constraint checking occurs after the row with a default value is inserted. For example, in Figure 5-4, a row is inserted into the emp table that does not include a value for the department number of the employee. Because no value is supplied for the department number, Oracle Database inserts the deptno column's default value of 20. After inserting the default value, Oracle Database checks the FOREIGN KEY integrity constraint defined on the deptno column.

Figure 5-4 DEFAULT Column Values

[image: Description of Figure 5-4 follows]

For certain types of tables of column datatypes, when adding a column that has both a NOT NULL constraint and a default value, the database can optimize the operation and reduce the amount of time that the table is locked for DML.

	
See Also:

Chapter 21, "Data Integrity" for more information about integrity constraints

Partitioned Tables

Partitioned tables allow your data to be broken down into smaller, more manageable pieces called partitions, or even subpartitions. Indexes can be partitioned in similar fashion. Each partition can be managed individually, and can operate independently of the other partitions, thus providing a structure that can be better tuned for availability and performance.

	
Note:

To reduce disk use and memory use (specifically, the buffer cache), you can store tables and partitioned tables in a compressed format inside the database. This often leads to a better scaleup for read-only operations. Table compression can also speed up query execution. There is, however, a slight cost in CPU overhead.

	
See Also:

	
"Table Compression"

	
Oracle Database VLDB and Partitioning Guide

Nested Tables

You can create a table with a column whose datatype is another table. That is, tables can be nested within other tables as values in a column. The Oracle database server stores nested table data out of line from the rows of the parent table, using a store table that is associated with the nested table column. The parent row contains a unique set identifier value associated with a nested table instance.

	
See Also:

	
Oracle Database Object-Relational Developer's Guide for further information on nested tables

	
Oracle Database Advanced Application Developer's Guide

Temporary Tables

In addition to permanent tables, Oracle Database can create temporary tables to hold session-private data that exists only for the duration of a transaction or session.

The CREATE GLOBAL TEMPORARY TABLE statement creates a temporary table that can be transaction-specific or session-specific. For transaction-specific temporary tables, data exists for the duration of the transaction. For session-specific temporary tables, data exists for the duration of the session. Data in a temporary table is private to the session. Each session can only see and modify its own data. DML locks are not acquired on the data of the temporary tables. The LOCK statement has no effect on a temporary table, because each session has its own private data.

A TRUNCATE statement issued on a session-specific temporary table truncates data in its own session. It does not truncate the data of other sessions that are using the same table.

DML statements on temporary tables do not generate redo logs for the data changes. However, undo logs for the data and redo logs for the undo logs are generated. Data from the temporary table is automatically dropped in the case of session termination, either when the user logs off or when the session terminates abnormally such as during a session or instance failure.

You can create indexes for temporary tables using the CREATE INDEX statement. Indexes created on temporary tables are also temporary, and the data in the index has the same session or transaction scope as the data in the temporary table.

You can create views that access both temporary and permanent tables. You can also create triggers on temporary tables.

Oracle Database utilities can export and import the definition of a temporary table. However, no data rows are exported even if you use the ROWS clause. Similarly, you can replicate the definition of a temporary table, but you cannot replicate its data.

This section includes the following topics:

	
Segment Allocation

	
Parent and Child Transactions

Segment Allocation

Temporary tables use temporary segments. Unlike permanent tables, temporary tables and their indexes do not automatically allocate a segment when they are created. Instead, segments are allocated when the first INSERT (or CREATE TABLE AS SELECT) is performed. Consequently, if a SELECT, UPDATE, or DELETE is performed before the first INSERT, then the table appears to be empty.

You can perform DDL statements (ALTER TABLE, DROP TABLE, CREATE INDEX, and so on) on a temporary table only when no session is currently bound to it. A session gets bound to a temporary table when an INSERT is performed on it. The session gets unbound by a TRUNCATE, at session termination, or by doing a COMMIT or ROLLBACK for a transaction-specific temporary table.

Temporary segments are deallocated at the end of the transaction for transaction-specific temporary tables and at the end of the session for session-specific temporary tables.

	
See Also:

"Extents in Temporary Segments"

Parent and Child Transactions

Transaction-specific temporary tables are accessible by user transactions and their child transactions. However, a given transaction-specific temporary table cannot be used concurrently by two transactions in the same session, although it can be used by transactions in different sessions.

If a user transaction does an INSERT into the temporary table, then none of its child transactions can use the temporary table afterward.

If a child transaction does an INSERT into the temporary table, then at the end of the child transaction, the data associated with the temporary table goes away. After that, either the user transaction or any other child transaction can access the temporary table.

External Tables

External tables access data in external sources as if it were in a table in the database. You can connect to the database and create metadata for the external table using DDL. The DDL for an external table consists of two parts: one part that describes the Oracle Database column types, and another part (the access parameters) that describes the mapping of the external data to the Oracle Database data columns.

An external table does not describe any data that is stored in the database. Nor does it describe how data is stored in the external source. Instead, it describes how the external table layer must present the data to the server. It is the responsibility of the access driver and the external table layer to do the necessary transformations required on the data in the datafile so that it matches the external table definition.

External tables are read only; therefore, no DML operations are possible, and no index can be created on them. Also, virtual columns are not supported.

This section includes the following topics:

	
The Access Driver

	
Data Loading with External Tables

	
Parallel Access to External Tables

The Access Driver

When you create an external table, you specify its type. Each type of external table has its own access driver that provides access parameters unique to that type of external table. The access driver ensures that data from the data source is processed so that it matches the definition of the external table.

In the context of external tables, loading data refers to the act of reading data from an external table and loading it into a table in the database. Unloading data refers to the act of reading data from a table in the database and inserting it into an external table.

The default type for external tables is ORACLE_LOADER, which lets you read table data from an external table and load it into a database. Oracle Database also provides the ORACLE_DATAPUMP type, which lets you unload data (that is, read data from a table in the database and insert it into an external table) and then reload it into an Oracle database.

The definition of an external table is kept separately from the description of the data in the data source. This separation has the following implications:

	
The source file can contain more or fewer fields than there are columns in the external table.

	
The datatypes for fields in the data source can be different from the columns in the external table.

Data Loading with External Tables

The main use for external tables is to use them as a row source for loading data into an actual table in the database. After you create an external table, you can then use a CREATE TABLE AS SELECT or INSERT INTO ... AS SELECT statement, using the external table as the source of the SELECT clause.

	
Note:

You cannot insert data into external tables or update records in them; external tables are read only.

When you access the external table through a SQL statement, the fields of the external table can be used just like any other field in a regular table. In particular, you can use the fields as arguments for any SQL built-in function, PL/SQL function, or Java function. This lets you manipulate data from the external source. For data warehousing, you can do more sophisticated transformations in this way than you can with simple datatype conversions. You can also use this mechanism in data warehousing to do data cleansing.

While external tables cannot contain a column object, constructor functions can be used to build a column object from attributes in the external table

Parallel Access to External Tables

After the metadata for an external table is created, you can query the external data directly and in parallel, using SQL. As a result, the external table acts as a view, which lets you run any SQL query against external data without loading the external data into the database.

The degree of parallel access to an external table is specified using standard parallel hints and with the PARALLEL clause. Using parallelism on an external table allows for concurrent access to the datafiles that comprise an external table. Whether a single file is accessed concurrently is dependent upon the access driver implementation, and attributes of the datafile(s) being accessed (for example, record formats).

	
See Also:

	
Oracle Database Administrator's Guide for information about managing external tables, external connections, and directories

	
Oracle Database Performance Tuning Guide for information about tuning loads from external tables

	
Oracle Database Utilities for information about external tables and import and export

	
Oracle Database SQL Language Reference for information about creating and querying external tables

Overview of Views

A view is a tailored presentation of the data contained in one or more tables or other views. A view takes the output of a query and treats it as a table. Therefore, a view can be thought of as a stored query or a virtual table. You can use views in most places where a table can be used.

For example, the employees table has several columns and numerous rows of information. If you want users to see only five of these columns or only specific rows, then you can create a view of that table for other users to access.

Figure 5-5 shows an example of a view called staff derived from the base table employees. Notice that the view shows only five of the columns in the base table.

Figure 5-5 An Example of a View

[image: Description of Figure 5-5 follows]

Because views are derived from tables, they have many similarities. For example, you can define views with up to 1000 columns, just like a table. You can query views, and with some restrictions you can update, insert into, and delete from views. All operations performed on a view actually affect data in some base table of the view and are subject to the integrity constraints and triggers of the base tables.

You cannot explicitly define triggers on views, but you can define them for the underlying base tables referenced by the view. Oracle Database does support definition of logical constraints on views.

	
See Also:

Oracle Database SQL Language Reference

This section includes the following topics:

	
How Views are Stored

	
How Views Are Used

	
Mechanics of Views

	
Dependencies and Views

	
Updatable Join Views

	
Object Views

	
Inline Views

How Views are Stored

Unlike a table, a view is not allocated any storage space, nor does a view actually contain data. Rather, a view is defined by a query that extracts or derives data from the tables that the view references. These tables are called base tables. Base tables can in turn be actual tables or can be views themselves (including materialized views). Because a view is based on other objects, a view requires no storage other than storage for the definition of the view (the stored query) in the data dictionary.

How Views Are Used

Views provide a means to present a different representation of the data that resides within the base tables. Views are very powerful because they let you tailor the presentation of data to different types of users. Views are often used to:

	
Provide an additional level of table security by restricting access to a predetermined set of rows or columns of a table

For example, Figure 5-5 shows how the STAFF view does not show the salary or commission_pct columns of the base table employees.

	
Hide data complexity

For example, a single view can be defined with a join, which is a collection of related columns or rows in multiple tables. However, the view hides the fact that this information actually originates from several tables.

	
Simplify statements for the user

For example, views allow users to select information from multiple tables without actually knowing how to perform a join.

	
Present the data in a different perspective from that of the base table

For example, the columns of a view can be renamed without affecting the tables on which the view is based.

	
Isolate applications from changes in definitions of base tables

For example, if a view's defining query references three columns of a four column table, and a fifth column is added to the table, then the view's definition is not affected, and all applications using the view are not affected.

	
Express a query that cannot be expressed without using a view

For example, a view can be defined that joins a GROUP BY view with a table, or a view can be defined that joins a UNION view with a table.

	
Save complex queries

For example, a query can perform extensive calculations with table information. By saving this query as a view, you can perform the calculations each time the view is queried.

	
See Also:

Oracle Database SQL Language Reference for information about the GROUP BY or UNION views

Mechanics of Views

Oracle Database stores a view's definition in the data dictionary as the text of the query that defines the view. When you reference a view in a SQL statement, Oracle Database:

	
Merges the statement that references the view with the query that defines the view

	
Parses the merged statement in a shared SQL area

	
Executes the statement

Oracle Database parses a statement that references a view in a new shared SQL area only if no existing shared SQL area contains a similar statement. Therefore, you get the benefit of reduced memory use associated with shared SQL when you use views.

This section includes the following topics:

	
Globalization Support Parameters in Views

	
Use of Indexes Against Views

Globalization Support Parameters in Views

When Oracle Database evaluates views containing string literals or SQL functions that have globalization support parameters as arguments (such as TO_CHAR, TO_DATE, and TO_NUMBER), Oracle Database takes default values for these parameters from the globalization support parameters for the session. You can override these default values by specifying globalization support parameters explicitly in the view definition.

	
See Also:

Oracle Database Globalization Support Guide for information about globalization support

Use of Indexes Against Views

Oracle Database determines whether to use indexes for a query against a view by transforming the original query when merging it with the view's defining query.

Consider the following view:

CREATE VIEW employees_view AS
 SELECT employee_id, last_name, salary, location_id
 FROM employees JOIN departments USING (department_id)
 WHERE departments.department_id = 10;

Now consider the following user-issued query:

SELECT last_name
 FROM employees_view
 WHERE employee_id = 9876;

The final query constructed by Oracle Database is:

SELECT last_name
 FROM employees, departments
 WHERE employees.department_id = departments.department_id AND
 departments.department_id = 10 AND
 employees.employee_id = 9876;

In all possible cases, Oracle Database merges a query against a view with the view's defining query and those of any underlying views. Oracle Database optimizes the merged query as if you issued the query without referencing the views. Therefore, Oracle Database can use indexes on any referenced base table columns, whether the columns are referenced in the view definition or in the user query against the view.

In some cases, Oracle Database cannot merge the view definition with the user-issued query. In such cases, Oracle Database may not use all indexes on referenced columns.

	
See Also:

Oracle Database Performance Tuning Guide for more information about query optimization

Dependencies and Views

Because a view is defined by a query that references other objects (tables, materialized views, or other views), a view depends on the referenced objects. Oracle Database automatically handles the dependencies for views. For example, if you drop a base table of a view and then create it again, Oracle Database determines whether the new base table is acceptable to the existing definition of the view.

	
See Also:

Chapter 6, "Schema Object Dependencies"

Updatable Join Views

A join view is defined as a view that has more than one table or view in its FROM clause (a join) and that does not use any of these clauses: DISTINCT, aggregation, GROUP BY, START WITH, CONNECT BY, ROWNUM, and set operations (UNION ALL, INTERSECT, and so on).

An updatable join view is a join view that involves two or more base tables or views, where UPDATE, INSERT, and DELETE operations are permitted. The data dictionary views ALL_UPDATABLE_COLUMNS, DBA_UPDATABLE_COLUMNS, and USER_UPDATABLE_COLUMNS contain information that indicates which of the view columns are updatable. In order to be inherently updatable, a view cannot contain any of the following constructs:

	
A set operator

	
A DISTINCT operator

	
An aggregate or analytic function

	
A GROUP BY, ORDER BY, CONNECT BY, or START WITH clause

	
A collection expression in a SELECT list

	
A subquery in a SELECT list

	
Joins (with some exceptions)

Views that are not updatable can be modified using INSTEAD OF triggers.

	
See Also:

	
Oracle Database Administrator's Guide

	
Oracle Database SQL Language Reference for more information about updatable views

	
"INSTEAD OF Triggers"

Object Views

In the Oracle object-relational database, an object view let you retrieve, update, insert, and delete relational data as if it was stored as an object type. You can also define views with columns that are object datatypes, such as objects, REFs, and collections (nested tables and VARRAYs).

	
See Also:

	
Oracle Database Object-Relational Developer's Guide

	
Oracle Database Advanced Application Developer's Guide

Inline Views

An inline view is not a schema object. It is a subquery with an alias (correlation name) that you can use like a view within a SQL statement.

	
See Also:

	
Oracle Database SQL Language Reference for information about subqueries

	
Oracle Database Performance Tuning Guide for an example of an inline query causing a view

Overview of Materialized Views

Materialized views are schema objects that can be used to summarize, compute, replicate, and distribute data. They are suitable in various computing environments such as data warehousing, decision support, and distributed or mobile computing:

	
In data warehouses, materialized views are used to compute and store aggregated data such as sums and averages. Materialized views in these environments are typically referred to as summaries because they store summarized data. They can also be used to compute joins with or without aggregations. If compatibility is set to Oracle9i or higher, then materialized views can be used for queries that include filter selections.

The optimizer can use materialized views to improve query performance by automatically recognizing when a materialized view can and should be used to satisfy a request. The optimizer transparently rewrites the request to use the materialized view. Queries are then directed to the materialized view and not to the underlying detail tables or views.

	
In distributed environments, materialized views are used to replicate data at distributed sites and synchronize updates done at several sites with conflict resolution methods. The materialized views as replicas provide local access to data that otherwise has to be accessed from remote sites.

	
In mobile computing environments, materialized views are used to download a subset of data from central servers to mobile clients, with periodic refreshes from the central servers and propagation of updates by clients back to the central servers.

Materialized views are similar to indexes in several ways:

	
They consume storage space.

	
They must be refreshed when the data in their master tables changes.

	
They improve the performance of SQL execution when they are used for query rewrites.

	
Their existence is transparent to SQL applications and users.

Unlike indexes, materialized views can be accessed directly using a SELECT statement. Depending on the types of refresh that are required, they can also be accessed directly in an INSERT, UPDATE, or DELETE statement.

A materialized view can be partitioned. You can define a materialized view on a partitioned table and one or more indexes on the materialized view.

This section includes the following topics:

	
Define Constraints on Views

	
Refresh Materialized Views

	
Materialized View Logs

	
See Also:

	
"Overview of Indexes"

	
Oracle Database VLDB and Partitioning Guide

	
Oracle Database Data Warehousing Guide for information about materialized views in a data warehousing environment

Define Constraints on Views

Data warehousing applications recognize multidimensional data in the Oracle database by identifying Referential Integrity (RI) constraints in the relational schema. RI constraints represent primary and foreign key relationships among tables. By querying the Oracle Database data dictionary, applications can recognize RI constraints and therefore recognize the multidimensional data in the database. In some environments, database administrators, for schema complexity or security reasons, define views on fact and dimension tables. Oracle Database provides the ability to constrain views. By allowing constraint definitions between views, database administrators can propagate base table constraints to the views, thereby allowing applications to recognize multidimensional data even in a restricted environment.

Only logical constraints, that is, constraints that are declarative and not enforced by Oracle Database, can be defined on views. The purpose of these constraints is not to enforce any business rules but to identify multidimensional data. The following constraints can be defined on views:

	
Primary key constraint

	
Unique constraint

	
Referential Integrity constraint

Given that view constraints are declarative, DISABLE, NOVALIDATE is the only valid state for a view constraint. However, the RELY or NORELY state is also allowed, because constraints on views may be used to enable more sophisticated query rewrites; a view constraint in the RELY state allows query rewrites to occur when the rewrite integrity level is set to trusted mode.

	
Note:

Although view constraint definitions are declarative in nature, operations on views are subject to the integrity constraints defined on the underlying base tables, and constraints on views can be enforced through constraints on base tables.

Refresh Materialized Views

Oracle Database maintains the data in materialized views by refreshing them after changes are made to their master tables. The refresh method can be incremental (fast refresh) or complete. For materialized views that use the fast refresh method, a materialized view log or direct loader log keeps a record of changes to the master tables.

Materialized views can be refreshed either on demand or at regular time intervals. Alternatively, materialized views in the same database as their master tables can be refreshed whenever a transaction commits its changes to the master tables.

Materialized View Logs

A materialized view log is a schema object that records changes to a master table's data so that a materialized view defined on the master table can be refreshed incrementally.

Each materialized view log is associated with a single master table. The materialized view log resides in the same database and schema as its master table.

	
See Also:

	
Oracle Database Data Warehousing Guide for information about materialized views and materialized view logs in a warehousing environment

	
Oracle Database Advanced Replication for information about materialized views used for replication

Overview of Dimensions

A dimension defines hierarchical (parent/child) relationships between pairs of columns or column sets. Each value at the child level is associated with one and only one value at the parent level. A hierarchical relationship is a functional dependency from one level of a hierarchy to the next level in the hierarchy. A dimension is a container of logical relationships between columns, and it does not have any data storage assigned to it.

The CREATE DIMENSION statement specifies:

	
Multiple LEVEL clauses, each of which identifies a column or column set in the dimension

	
One or more HIERARCHY clauses that specify the parent/child relationships between adjacent levels

	
Optional ATTRIBUTE clauses, each of which identifies an additional column or column set associated with an individual level

The columns in a dimension can come either from the same table (denormalized) or from multiple tables (fully or partially normalized). To define a dimension over columns from multiple tables, connect the tables using the JOIN clause of the HIERARCHY clause.

For example, a normalized time dimension can include a date table, a month table, and a year table, with join conditions that connect each date row to a month row, and each month row to a year row. In a fully denormalized time dimension, the date, month, and year columns are all in the same table. Whether normalized or denormalized, the hierarchical relationships among the columns need to be specified in the CREATE DIMENSION statement.

	
See Also:

	
Oracle Database Data Warehousing Guide for information about how dimensions are used in a warehousing environment

	
Oracle Database SQL Language Reference for information about creating dimensions

Overview of the Sequence Generator

The sequence generator provides a sequential series of numbers. The sequence generator is especially useful in multiuser environments for generating unique sequential numbers without the overhead of disk I/O or transaction locking. For example, assume two users are simultaneously inserting new employee rows into the employees table. By using a sequence to generate unique employee numbers for the employee_id column, neither user has to wait for the other to enter the next available employee number. The sequence automatically generates the correct values for each user.

Therefore, the sequence generator reduces serialization where the statements of two transactions must generate sequential numbers at the same time. By avoiding the serialization that results when multiple users wait for each other to generate and use a sequence number, the sequence generator improves transaction throughput, and a user's wait is considerably shorter.

Sequence numbers are integers of up to 38 digits defined in the database. A sequence definition indicates general information, such as the following:

	
The name of the sequence

	
Whether the sequence ascends or descends

	
The interval between numbers

	
Whether Oracle Database should cache sets of generated sequence numbers in memory

Oracle Database stores the definitions of all sequences for a particular database as rows in a single data dictionary table in the SYSTEM tablespace. Therefore, all sequence definitions are always available, because the SYSTEM tablespace is always online.

Sequence numbers are used by SQL statements that reference the sequence. You can issue a statement to generate a new sequence number or use the current sequence number. After a statement in a user's session generates a sequence number, the particular sequence number is available only to that session. Each user that references a sequence has access to the current sequence number.

Sequence numbers are generated independently of tables. Therefore, the same sequence generator can be used for more than one table. Sequence number generation is useful to generate unique primary keys for your data automatically and to coordinate keys across multiple rows or tables. Individual sequence numbers can be skipped if they were generated and used in a transaction that was ultimately rolled back. Applications can make provisions to catch and reuse these sequence numbers, if desired.

	
Caution:

If your application can never lose sequence numbers, then you cannot use Oracle Database sequences, and you may choose to store sequence numbers in database tables. Be careful when implementing sequence generators using database tables. Even in a single instance configuration, for a high rate of sequence values generation, a performance overhead is associated with the cost of locking the row that stores the sequence value.

	
See Also:

	
Oracle Database Advanced Application Developer's Guide for performance implications when using sequences

	
Oracle Database SQL Language Reference for information about the CREATE SEQUENCE statement

Overview of Synonyms

A synonym is an alias for any table, view, materialized view, sequence, procedure, function, package, type, Java class schema object, user-defined object type, or another synonym. Because a synonym is simply an alias, it requires no storage other than its definition in the data dictionary.

Synonyms are often used for security and convenience. For example, they can do the following:

	
Mask the name and owner of an object

	
Provide location transparency for remote objects of a distributed database

	
Simplify SQL statements for database users

	
Enable restricted access similar to specialized views when exercising fine-grained access control

You can create both public and private synonyms. A public synonym is owned by the special user group named PUBLIC and every user in a database can access it. A private synonym is in the schema of a specific user who has control over its availability to others.

Synonyms are very useful in both distributed and nondistributed database environments because they hide the identity of the underlying object, including its location in a distributed system. This is advantageous because if the underlying object must be renamed or moved, then only the synonym must be redefined. Applications based on the synonym continue to function without modification.

Synonyms can also simplify SQL statements for users in a distributed database system. The following example shows how and why public synonyms are often created by a database administrator to hide the identity of a base table and reduce the complexity of SQL statements. Assume the following:

	
A table called SALES_DATA is in the schema owned by the user JWARD.

	
The SELECT privilege for the SALES_DATA table is granted to PUBLIC.

At this point, you must query the table SALES_DATA with a SQL statement similar to the following:

SELECT * FROM jward.sales_data;

Notice how you must include both the schema that contains the table along with the table name to perform the query.

Assume that the database administrator creates a public synonym with the following SQL statement:

CREATE PUBLIC SYNONYM sales FOR jward.sales_data;

After the public synonym is created, you can query the table SALES_DATA with a simple SQL statement:

SELECT * FROM sales;

Notice that the public synonym SALES hides the name of the table SALES_DATA and the name of the schema that contains the table.

Overview of Indexes

Indexes are optional structures associated with tables and clusters. You can create indexes on one or more columns of a table to speed SQL statement execution on that table. Just as the index in this manual helps you locate information faster than if there were no index, an Oracle Database index provides a faster access path to table data. Indexes are the primary means of reducing disk I/O when properly used.

You can create many indexes for a table as long as the combination of columns differs for each index. You can create more than one index using the same columns if you specify distinctly different combinations of the columns. For example, the following statements specify valid combinations:

CREATE INDEX employees_idx1 ON employees (last_name, job_id);
CREATE INDEX employees_idx2 ON employees (job_id, last_name);

Oracle Database provides several indexing schemes, which provide complementary performance functionality:

	
B-tree indexes

	
B-tree cluster indexes

	
Hash cluster indexes

	
Reverse key indexes

	
Bitmap indexes

	
Bitmap join indexes

Oracle Database also provides support for function-based indexes and domain indexes specific to an application or cartridge.

The absence or presence of an index does not require a change in the wording of any SQL statement. An index is merely a fast access path to the data. It affects only the speed of execution. Given a data value that has been indexed, the index points directly to the location of the rows containing that value.

Indexes are logically and physically independent of the data in the associated table. You can create or drop an index at any time without affecting the base tables or other indexes. If you drop an index, all applications continue to work. However, access of previously indexed data can be slower. Indexes, as independent structures, require storage space.

Oracle Database automatically maintains and uses indexes after they are created. Oracle Database automatically reflects changes to data, such as adding new rows, updating rows, or deleting rows, in all relevant indexes with no additional action by users.

Retrieval performance of indexed data remains almost constant, even as new rows are inserted. However, the presence of many indexes on a table decreases the performance of updates, deletes, and inserts, because Oracle Database must also update the indexes associated with the table.

The optimizer can use an existing index to build another index. This results in a much faster index build.

This section includes the following topics:

	
Unique and Nonunique Indexes

	
Visible and Invisible Indexes

	
Composite Indexes

	
Indexes and Keys

	
Indexes and Nulls

	
Function-Based Indexes

	
How Indexes Are Stored

	
Index Unique Scan

	
Index Range Scan

	
Key Compression

	
Reverse Key Indexes

	
Bitmap Indexes

	
Bitmap Join Indexes

Unique and Nonunique Indexes

Indexes can be unique or nonunique. Unique indexes guarantee that no two rows of a table have duplicate values in the key column (or columns). Nonunique indexes do not impose this restriction on the column values.

Oracle recommends that unique indexes be created explicitly, using CREATE UNIQUE INDEX. Creating unique indexes through a primary key or unique constraint is not guaranteed to create a new index, and the index they create is not guaranteed to be a unique index.

	
See Also:

Oracle Database Administrator's Guide for information about creating unique indexes explicitly

Visible and Invisible Indexes

Indexes can be visible or invisible. An invisible index is maintained by DML operations and cannot be used by the optimizer.

Making an index invisible is an alternative to making it unusable or dropping it.

	
See Also:

	
Oracle Database Administrator's Guide for information about creating invisible indexes

	
Oracle Database Administrator's Guide for information about making indexes invisible

Composite Indexes

A composite index (also called a concatenated index) is an index that you create on multiple columns in a table. Columns in a composite index can appear in any order and need not be adjacent in the table.

Composite indexes can speed retrieval of data for SELECT statements in which the WHERE clause references all or the leading portion of the columns in the composite index. Therefore, the order of the columns used in the definition is important. Generally, the most commonly accessed or most selective columns go first.

Figure 5-6 illustrates the VENDOR_PARTS table that has a composite index on the VENDOR_ID and PART_NO columns.

Figure 5-6 Composite Index Example

[image: Description of Figure 5-6 follows]

No more than 32 columns can form a regular composite index. For a bitmap index, the maximum number columns is 30. A key value cannot exceed roughly half (minus some overhead) the available data space in a data block.

	
See Also:

Oracle Database Performance Tuning Guide for more information about using composite indexes

Indexes and Keys

Although the terms are often used interchangeably, indexes and keys are different. Indexes are structures actually stored in the database, which users create, alter, and drop using SQL statements. You create an index to provide a fast access path to table data. Keys are strictly a logical concept. Keys correspond to another feature of Oracle Database called integrity constraints, which enforce the business rules of a database.

Because Oracle Database uses indexes to enforce some integrity constraints, the terms key and index are often are used interchangeably. However, do not confuse them with each other.

	
See Also:

Chapter 21, "Data Integrity"

Indexes and Nulls

NULL values in indexes are considered to be distinct except when all the non-NULL values in two or more rows of an index are identical, in which case the rows are considered to be identical. Therefore, UNIQUE indexes prevent rows containing NULL values from being treated as identical. This does not apply if there are no non-NULL values—in other words, if the rows are entirely NULL.

Oracle Database does not index table rows in which all key columns are NULL, except in the case of bitmap indexes or when the cluster key column value is NULL.

	
See Also:

"Bitmap Indexes and Nulls"

Function-Based Indexes

You can create indexes on functions and expressions that involve one or more columns in the table being indexed. A function-based index computes the value of the function or expression and stores it in the index. You can create a function-based index as either a B-tree or a bitmap index.

The function used for building the index can be an arithmetic expression or an expression that contains a PL/SQL function, package function, C callout, or SQL function. The expression cannot contain any aggregate functions, and it must be DETERMINISTIC. For building an index on a column containing an object type, the function can be a method of that object, such as a map method. However, you cannot build a function-based index on a LOB column, REF, or nested table column, nor can you build a function-based index if the object type contains a LOB, REF, or nested table.

This section includes the following topics:

	
Uses of Function-Based Indexes

	
Optimization with Function-Based Indexes

	
Dependencies of Function-Based Indexes

	
See Also:

	
"Bitmap Indexes"

	
Oracle Database Performance Tuning Guide for more information about using function-based indexes

Uses of Function-Based Indexes

Function-based indexes provide an efficient mechanism for evaluating statements that contain functions in their WHERE clauses. The value of the expression is computed and stored in the index. When it processes INSERT and UPDATE statements, however, Oracle Database must still evaluate the function to process the statement.

For example, if you create the following index:

CREATE INDEX idx ON table_1 (a + b * (c - 1), a, b);

Oracle Database can use it when processing queries such as this:

SELECT a FROM table_1 WHERE a + b * (c - 1) < 100;

Function-based indexes defined on UPPER(column_name) or LOWER(column_name) can facilitate case-insensitive searches. For example, the following index:

CREATE INDEX uppercase_idx ON employees (UPPER(first_name));

can facilitate processing queries such as this:

SELECT * FROM employees WHERE UPPER(first_name) = 'RICHARD';

A function-based index can also be used for a globalization support sort index that provides efficient linguistic collation in SQL statements.

	
See Also:

Oracle Database Globalization Support Guide for information about linguistic indexes

Optimization with Function-Based Indexes

You must gather statistics about function-based indexes for the optimizer. Otherwise, the indexes cannot be used to process SQL statements.

The optimizer can use an index range scan on a function-based index for queries with expressions in WHERE clause. For example, in this query:

SELECT * FROM t WHERE a + b < 10;

the optimizer can use index range scan if an index is built on a+b. The range scan access path is especially beneficial when the predicate (WHERE clause) has low selectivity. In addition, the optimizer can estimate the selectivity of predicates involving expressions more accurately if the expressions are materialized in a function-based index.

The optimizer performs expression matching by parsing the expression in a SQL statement and then comparing the expression trees of the statement and the function-based index. This comparison is case-insensitive and ignores blank spaces.

	
See Also:

Oracle Database Performance Tuning Guide for more information about gathering statistics

Dependencies of Function-Based Indexes

Function-based indexes depend on the function used in the expression that defines the index. If the function is a PL/SQL function or package function, the index is disabled by any changes to the function specification.

To create a function-based index, the user must be granted CREATE INDEX or CREATE ANY INDEX.

To use a function-based index:

	
The table must be analyzed after the index is created.

	
The query must be guaranteed not to need any NULL values from the indexed expression, because NULL values are not stored in indexes.

The following sections describe additional requirements.

DETERMINISTIC Functions

Any user-written function used in a function-based index must have been declared with the DETERMINISTIC keyword to indicate that the function will always return the same output return value for any given set of input argument values, now and in the future.

	
See Also:

Oracle Database Performance Tuning Guide

Privileges on the Defining Function

The index owner needs the EXECUTE privilege on the function used to define a function-based index. If the EXECUTE privilege is revoked, Oracle Database marks the index DISABLED. The index owner does not need the EXECUTE WITH GRANT OPTION privilege on this function to grant SELECT privileges on the underlying table.

Resolve Dependencies of Function-Based Indexes

A function-based index depends on any function that it is using. If the function or the specification of a package containing the function is redefined (or if the index owner's EXECUTE privilege is revoked), then the following conditions hold:

	
The index is marked as DISABLED.

	
Queries on a DISABLED index fail if the optimizer chooses to use the index.

	
DML operations on a DISABLED index fail unless the index is also marked UNUSABLE and the initialization parameter SKIP_UNUSABLE_INDEXES is set to true.

To re-enable the index after a change to the function, use the ALTER INDEX ... ENABLE statement.

How Indexes Are Stored

When you create an index, Oracle Database automatically allocates an index segment to hold the index's data in a tablespace. You can control allocation of space for an index's segment and use of this reserved space in the following ways:

	
Set the storage parameters for the index segment to control the allocation of the index segment's extents.

	
Set the PCTFREE parameter for the index segment to control the free space in the data blocks that constitute the index segment's extents.

The tablespace of an index's segment is either the owner's default tablespace or a tablespace specifically named in the CREATE INDEX statement. You do not have to place an index in the same tablespace as its associated table. Furthermore, you can improve performance of queries that use an index by storing an index and its table in different tablespaces located on different disk drives, because Oracle Database can retrieve both index and table data in parallel.

	
See Also:

"PCTFREE, PCTUSED, and Row Chaining"

This section includes the following topics:

	
Format of Index Blocks

	
The Internal Structure of Indexes

	
Index Properties

	
Advantages of B-tree Structure

Format of Index Blocks

Space available for index data is the Oracle Database block size minus block overhead, entry overhead, rowid, and one length byte for each value indexed.

When you create an index, Oracle Database fetches and sorts the columns to be indexed and stores the rowid along with the index value for each row. Then Oracle Database loads the index from the bottom up. For example, consider the statement:

CREATE INDEX employees_last_name ON employees(last_name);

Oracle Database sorts the employees table on the last_name column. It then loads the index with the last_name and corresponding rowid values in this sorted order. When it uses the index, Oracle Database does a quick search through the sorted last_name values and then uses the associated rowid values to locate the rows having the sought last_name value.

The Internal Structure of Indexes

Oracle Database uses B-trees to store indexes to speed up data access. With no indexes, you must do a sequential scan on the data to find a value. For n rows, the average number of rows searched is n/2. This does not scale very well as data volumes increase.

Consider an ordered list of the values divided into block-wide ranges (leaf blocks). The end points of the ranges along with pointers to the blocks can be stored in a search tree and a value in log(n) time for n entries could be found. This is the basic principle behind Oracle Database indexes.

Figure 5-7 illustrates the structure of a B-tree index.

Figure 5-7 Internal Structure of a B-tree Index

[image: Description of Figure 5-7 follows]

The upper blocks (branch blocks) of a B-tree index contain index data that points to lower-level index blocks. The lowest level index blocks (leaf blocks) contain every indexed data value and a corresponding rowid used to locate the actual row. The leaf blocks are doubly linked. Indexes in columns containing character data are based on the binary values of the characters in the database character set.

For a unique index, one rowid exists for each data value. For a nonunique index, the rowid is included in the key in sorted order, so nonunique indexes are sorted by the index key and rowid. Key values containing all nulls are not indexed, except for cluster indexes. Two rows can both contain all nulls without violating a unique index.

Index Properties

The two kinds of blocks:

	
Branch blocks for searching

	
Leaf blocks that store the values

Branch Blocks

Branch blocks store the following:

	
The minimum key prefix needed to make a branching decision between two keys

	
The pointer to the child block containing the key

If the blocks have n keys then they have n+1 pointers. The number of keys and pointers is limited by the block size.

Leaf Blocks

All leaf blocks are at the same depth from the root branch block. Leaf blocks store the following:

	
The complete key value for every row

	
ROWIDs of the table rows

All key and ROWID pairs are linked to their left and right siblings. They are sorted by (key, ROWID).

Advantages of B-tree Structure

The B-tree structure has the following advantages:

	
All leaf blocks of the tree are at the same depth, so retrieval of any record from anywhere in the index takes approximately the same amount of time.

	
B-tree indexes automatically stay balanced.

	
All blocks of the B-tree are three-quarters full on the average.

	
B-trees provide excellent retrieval performance for a wide range of queries, including exact match and range searches.

	
Inserts, updates, and deletes are efficient, maintaining key order for fast retrieval.

	
B-tree performance is good for both small and large tables and does not degrade as the size of a table grows.

	
See Also:

Computer science texts for more information about B-tree indexes

Index Unique Scan

Index unique scan is one of the most efficient ways of accessing data. This access method is used for returning the data from B-tree indexes. The optimizer chooses a unique scan when all columns of a unique (B-tree) index are specified with equality conditions.

Index Range Scan

Index range scan is a common operation for accessing selective data. It can be bounded (bounded on both sides) or unbounded (on one or both sides). Data is returned in the ascending order of index columns. Multiple rows with identical values are sorted (in ascending order) by the ROWIDs.

Key Compression

Key compression lets you compress portions of the primary key column values in an index or index-organized table, which reduces the storage overhead of repeated values.

Generally, keys in an index have two pieces, a grouping piece and a unique piece. If the key is not defined to have a unique piece, Oracle Database provides one in the form of a rowid appended to the grouping piece. Key compression is a method of breaking off the grouping piece and storing it so it can be shared by multiple unique pieces.

This section includes the following topics:

	
Prefix and Suffix Entries

	
Performance and Storage Considerations

	
Uses of Key Compression

Prefix and Suffix Entries

Key compression breaks the index key into a prefix entry (the grouping piece) and a suffix entry (the unique piece). Compression is achieved by sharing the prefix entries among the suffix entries in an index block. Only keys in the leaf blocks of a B-tree index are compressed. In the branch blocks the key suffix can be truncated, but the key is not compressed.

Key compression is done within an index block but not across multiple index blocks. Suffix entries form the compressed version of index rows. Each suffix entry references a prefix entry, which is stored in the same index block as the suffix entry.

By default, the prefix consists of all key columns excluding the last one. For example, in a key made up of three columns (column1, column2, column3) the default prefix is (column1, column2). For a list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated occurrences of (1,2), (1,3) in the prefix are compressed.

Alternatively, you can specify the prefix length, which is the number of columns in the prefix. For example, if you specify prefix length 1, then the prefix is column1 and the suffix is (column2, column3). For the list of values (1,2,3), (1,2,4), (1,2,7), (1,3,5), (1,3,4), (1,4,4) the repeated occurrences of 1 in the prefix are compressed.

The maximum prefix length for a nonunique index is the number of key columns, and the maximum prefix length for a unique index is the number of key columns minus one.

Prefix entries are written to the index block only if the index block does not already contain a prefix entry whose value is equal to the present prefix entry. Prefix entries are available for sharing immediately after being written to the index block and remain available until the last deleted referencing suffix entry is cleaned out of the index block.

Performance and Storage Considerations

Key compression can lead to a huge saving in space, letting you store more keys in each index block, which can lead to less I/O and better performance.

Although key compression reduces the storage requirements of an index, it can increase the CPU time required to reconstruct the key column values during an index scan. It also incurs some additional storage overhead, because every prefix entry has an overhead of 4 bytes associated with it.

Uses of Key Compression

Key compression is useful in many different scenarios, such as:

	
In a nonunique regular index, Oracle Database stores duplicate keys with the rowid appended to the key to break the duplicate rows. If key compression is used, Oracle Database stores the duplicate key as a prefix entry on the index block without the rowid. The rest of the rows are suffix entries that consist of only the rowid.

	
This same behavior can be seen in a unique index that has a key of the form (item, time stamp), for example (stock_ticker, transaction_time). Thousands of rows can have the same stock_ticker value, with transaction_time preserving uniqueness. On a particular index block a stock_ticker value is stored only once as a prefix entry. Other entries on the index block are transaction_time values stored as suffix entries that reference the common stock_ticker prefix entry.

	
In an index-organized table that contains a VARRAY or NESTED TABLE datatype, the object identifier is repeated for each element of the collection datatype. Key compression lets you compress the repeating object identifier values.

In some cases, however, key compression cannot be used. For example, in a unique index with a single attribute key, key compression is not possible, because even though there is a unique piece, there are no grouping pieces to share.

	
See Also:

"Overview of Index-Organized Tables"

Reverse Key Indexes

Creating a reverse key index, compared to a standard index, reverses the bytes of each column indexed (except the rowid) while keeping the column order. Such an arrangement can help avoid performance degradation with Oracle Real Application Clusters where modifications to the index are concentrated on a small set of leaf blocks. By reversing the keys of the index, the insertions become distributed across all leaf keys in the index.

Using the reverse key arrangement eliminates the ability to run an index range scanning query on the index. Because lexically adjacent keys are not stored next to each other in a reverse-key index, only fetch-by-key or full-index (table) scans can be performed.

Sometimes, using a reverse-key index can make an OLTP Oracle Real Application Clusters application faster. For example, keeping the index of mail messages in an e-mail application: some users keep old messages, and the index must maintain pointers to these as well as to the most recent.

The REVERSE keyword provides a simple mechanism for creating a reverse key index. You can specify the keyword REVERSE along with the optional index specifications in a CREATE INDEX statement:

CREATE INDEX i ON t (a,b,c) REVERSE;

You can specify the keyword NOREVERSE to REBUILD a reverse-key index into one that is not reverse keyed:

ALTER INDEX i REBUILD NOREVERSE;

Rebuilding a reverse-key index without the NOREVERSE keyword produces a rebuilt, reverse-key index.

Bitmap Indexes

The purpose of an index is to provide pointers to the rows in a table that contain a given key value. In a regular index, this is achieved by storing a list of rowids for each key corresponding to the rows with that key value. Oracle Database stores each key value repeatedly with each stored rowid. In a bitmap index, a bitmap for each key value is used instead of a list of rowids.

Each bit in the bitmap corresponds to a possible rowid. If the bit is set, then it means that the row with the corresponding rowid contains the key value. A mapping function converts the bit position to an actual rowid, so the bitmap index provides the same functionality as a regular index even though it uses a different representation internally. If the number of different key values is small, then bitmap indexes are very space efficient.

Bitmap indexing efficiently merges indexes that correspond to several conditions in a WHERE clause. Rows that satisfy some, but not all, conditions are filtered out before the table itself is accessed. This improves response time, often dramatically.

This section includes the following topics:

	
Benefits for Data Warehousing Applications

	
Cardinality

	
Bitmap Index Example

	
Bitmap Indexes and Nulls

	
Bitmap Indexes on Partitioned Tables

Benefits for Data Warehousing Applications

Bitmap indexing benefits data warehousing applications which have large amounts of data and ad hoc queries but a low level of concurrent transactions. For such applications, bitmap indexing provides:

	
Reduced response time for large classes of ad hoc queries

	
A substantial reduction of space use compared to other indexing techniques

	
Dramatic performance gains even on very low end hardware

	
Very efficient parallel DML and loads

Fully indexing a large table with a traditional B-tree index can be prohibitively expensive in terms of space, because the index can be several times larger than the data in the table. Bitmap indexes are typically only a fraction of the size of the indexed data in the table.

Bitmap indexes are not suitable for OLTP applications with large numbers of concurrent transactions modifying the data. These indexes are primarily intended for decision support in data warehousing applications where users typically query the data rather than update it.

Bitmap indexes are also not suitable for columns that are primarily queried with less than or greater than comparisons. For example, a salary column that usually appears in WHERE clauses in a comparison to a certain value is better served with a B-tree index. Bitmapped indexes are only useful with equality queries, especially in combination with AND, OR, and NOT operators.

Bitmap indexes are integrated with the Oracle Database optimizer and execution engine. They can be used seamlessly in combination with other Oracle Database execution methods. For example, the optimizer can decide to perform a hash join between two tables using a bitmap index on one table and a regular B-tree index on the other. The optimizer considers bitmap indexes and other available access methods, such as regular B-tree indexes and full table scan, and chooses the most efficient method, taking parallelism into account where appropriate.

Parallel query and parallel DML work with bitmap indexes as with traditional indexes. Bitmap indexes on partitioned tables must be local indexes. Parallel create index and concatenated indexes are also supported.

Cardinality

The advantages of using bitmap indexes are greatest for low cardinality columns: that is, columns in which the number of distinct values is small compared to the number of rows in the table. If the number of distinct values of a column is less than 1% of the number of rows in the table, or if the values in a column are repeated more than 100 times, then the column is a candidate for a bitmap index. Even columns with a lower number of repetitions and thus higher cardinality can be candidates if they tend to be involved in complex conditions in the WHERE clauses of queries.

For example, on a table with 1 million rows, a column with 10,000 distinct values is a candidate for a bitmap index. A bitmap index on this column can out-perform a B-tree index, particularly when this column is often queried in conjunction with other columns.

B-tree indexes are most effective for high-cardinality data: that is, data with many possible values, such as CUSTOMER_NAME or PHONE_NUMBER. In some situations, a B-tree index can be larger than the indexed data. Used appropriately, bitmap indexes can be significantly smaller than a corresponding B-tree index.

In ad hoc queries and similar situations, bitmap indexes can dramatically improve query performance. AND and OR conditions in the WHERE clause of a query can be quickly resolved by performing the corresponding Boolean operations directly on the bitmaps before converting the resulting bitmap to rowids. If the resulting number of rows is small, the query can be answered very quickly without resorting to a full table scan of the table.

Bitmap Index Example

Table 5-1 shows a portion of a company's customer data.

Table 5-1 Bitmap Index Example

	CUSTOMER #	MARITAL_ STATUS	REGION	GENDER	INCOME_ LEVEL
	
101

	
single

	
east

	
male

	
bracket_1

	
102

	
married

	
central

	
female

	
bracket_4

	
103

	
married

	
west

	
female

	
bracket_2

	
104

	
divorced

	
west

	
male

	
bracket_4

	
105

	
single

	
central

	
female

	
bracket_2

	
106

	
married

	
central

	
female

	
bracket_3

MARITAL_STATUS, REGION, GENDER, and INCOME_LEVEL are all low-cardinality columns. There are only three possible values for marital status and region, two possible values for gender, and four for income level. Therefore, it is appropriate to create bitmap indexes on these columns. A bitmap index should not be created on CUSTOMER# because this is a high-cardinality column. Instead, use a unique B-tree index on this column to provide the most efficient representation and retrieval.

Table 5-2 illustrates the bitmap index for the REGION column in this example. It consists of three separate bitmaps, one for each region.

Table 5-2 Sample Bitmap

	REGION='east'	REGION='central'	REGION='west'
	
1

	
0

	
0

	
0

	
1

	
0

	
0

	
0

	
1

	
0

	
0

	
1

	
0

	
1

	
0

	
0

	
1

	
0

Each entry or bit in the bitmap corresponds to a single row of the CUSTOMER table. The value of each bit depends upon the values of the corresponding row in the table. For instance, the bitmap REGION='east' contains a one as its first bit. This is because the region is east in the first row of the CUSTOMER table. The bitmap REGION='east' has a zero for its other bits because none of the other rows of the table contain east as their value for REGION.

An analyst investigating demographic trends of the company's customers can ask, "How many of our married customers live in the central or west regions?" This corresponds to the following SQL query:

SELECT COUNT(*) FROM CUSTOMER
 WHERE MARITAL_STATUS = 'married' AND REGION IN ('central','west');

Bitmap indexes can process this query with great efficiency by counting the number of ones in the resulting bitmap, as illustrated in Figure 5-8. To identify the specific customers who satisfy the criteria, the resulting bitmap can be used to access the table.

Figure 5-8 Running a Query Using Bitmap Indexes

[image: Description of Figure 5-8 follows]

Bitmap Indexes and Nulls

Bitmap indexes can include rows that have NULL values, unlike most other types of indexes. Indexing of nulls can be useful for some types of SQL statements, such as queries with the aggregate function COUNT.

Bitmap Indexes on Partitioned Tables

Like other indexes, you can create bitmap indexes on partitioned tables. The only restriction is that bitmap indexes must be local to the partitioned table—they cannot be global indexes. Global bitmap indexes are supported only on nonpartitioned tables.

	
See Also:

	
Oracle Database VLDB and Partitioning Guide for information about partitioned tables and descriptions of local and global indexes

	
Oracle Database VLDB and Partitioning Guide

	
Oracle Database Performance Tuning Guide for more information about using bitmap indexes, including an example of indexing null values

Bitmap Join Indexes

In addition to a bitmap index on a single table, you can create a bitmap join index, which is a bitmap index for the join of two or more tables. A bitmap join index is a space efficient way of reducing the volume of data that must be joined by performing restrictions in advance. For each value in a column of a table, a bitmap join index stores the rowids of corresponding rows in one or more other tables. In a data warehousing environment, the join condition is an equi-inner join between the primary key column or columns of the dimension tables and the foreign key column or columns in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views, an alternative for materializing joins in advance. This is because the materialized join views do not compress the rowids of the fact tables.

	
See Also:

Oracle Database Data Warehousing Guide for more information on bitmap join indexes

Overview of Index-Organized Tables

An index-organized table has a storage organization that is a variant of a primary B-tree. Unlike an ordinary (heap-organized) table whose data is stored as an unordered collection (heap), data for an index-organized table is stored in a B-tree index structure in a primary key sorted manner. Besides storing the primary key column values of an index-organized table row, each index entry in the B-tree stores the nonkey column values as well.

As shown in Figure 5-9, the index-organized table is somewhat similar to a configuration consisting of an ordinary table and an index on one or more of the table columns, but instead of maintaining two separate storage structures, one for the table and one for the B-tree index, the database system maintains only a single B-tree index. Also, rather than having a row's rowid stored in the index entry, the nonkey column values are stored. Thus, each B-tree index entry contains <primary_key_value, non_primary_key_column_values>.

Figure 5-9 Structure of a Regular Table Compared with an Index-Organized Table

[image: Description of Figure 5-9 follows]

Applications manipulate the index-organized table just like an ordinary table, using SQL statements. However, the database system performs all operations by manipulating the corresponding B-tree index.

Table 5-3 summarizes the differences between index-organized tables and ordinary tables.

Table 5-3 Comparison of Index-Organized Tables with Ordinary Tables

	Ordinary Table	Index-Organized Table
	
Rowid uniquely identifies a row. Primary key can be optionally specified

	
Primary key uniquely identifies a row. Primary key must be specified

	
Physical rowid in ROWID pseudocolumn allows building secondary indexes

	
Logical rowid in ROWID pseudocolumn allows building secondary indexes

	
Access is based on rowid

	
Access is based on logical rowid

	
Sequential scan returns all rows

	
Full-index scan returns all rows

	
Can be stored in a cluster with other tables

	
Cannot be stored in a cluster

	
Can contain a column of the LONG datatype and columns of LOB datatypes

	
Can contain LOB columns but not LONG columns

	
Can contain virtual columns (only relational heap tables are supported)

	
Cannot contain virtual columns

This section includes the following topics:

	
Benefits of Index-Organized Tables

	
Index-Organized Tables with Row Overflow Area

	
Secondary Indexes on Index-Organized Tables

	
Bitmap Indexes on Index-Organized Tables

	
Partitioned Index-Organized Tables

	
B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables

	
Index-Organized Table Applications

Benefits of Index-Organized Tables

Index-organized tables provide faster access to table rows by the primary key or any key that is a valid prefix of the primary key. Presence of nonkey columns of a row in the B-tree leaf block itself avoids an additional block access. Also, because rows are stored in primary key order, range access by the primary key (or a valid prefix) involves minimum block accesses.

In order to allow even faster access to frequently accessed columns, you can use a row overflow segment (as described later) to push out infrequently accessed nonkey columns from the B-tree leaf block to an optional (heap-organized) overflow segment. This allows limiting the size and content of the portion of a row that is actually stored in the B-tree leaf block, which may lead to a higher number of rows in each leaf block and a smaller B-tree.

Unlike a configuration of heap-organized table with a primary key index where primary key columns are stored both in the table and in the index, there is no such duplication here because primary key column values are stored only in the B-tree index.

Because rows are stored in primary key order, a significant amount of additional storage space savings can be obtained through the use of key compression.

Use of primary-key based logical rowids, as opposed to physical rowids, in secondary indexes on index-organized tables allows high availability. This is because, due to the logical nature of the rowids, secondary indexes do not become unusable even after a table reorganization operation that causes movement of the base table rows. At the same time, through the use of physical guess in the logical rowid, it is possible to get secondary index based index-organized table access performance that is comparable to performance for secondary index based access to an ordinary table.

	
See Also:

	
"Key Compression"

	
"Secondary Indexes on Index-Organized Tables"

	
Oracle Database Administrator's Guide for information about creating and maintaining index-organized tables

Index-Organized Tables with Row Overflow Area

B-tree index entries are usually quite small, because they only consist of the key value and a ROWID. In index-organized tables, however, the B-tree index entries can be large, because they consist of the entire row. This may destroy the dense clustering property of the B-tree index.

Oracle Database provides the OVERFLOW clause to handle this problem. You can specify an overflow tablespace so that, if necessary, a row can be divided into the following two parts that are then stored in the index and in the overflow storage area segment, respectively:

	
The index entry, containing column values for all the primary key columns, a physical rowid that points to the overflow part of the row, and optionally a few of the nonkey columns

	
The overflow part, containing column values for the remaining nonkey columns

With OVERFLOW, you can use two clauses, PCTTHRESHOLD and INCLUDING, to control how Oracle Database determines whether a row should be stored in two parts and if so, at which nonkey column to break the row. Using PCTTHRESHOLD, you can specify a threshold value as a percentage of the block size. If all the nonkey column values can be accommodated within the specified size limit, the row will not be broken into two parts. Otherwise, starting with the first nonkey column that cannot be accommodated, the rest of the nonkey columns are all stored in the row overflow segment for the table.

The INCLUDING clause lets you specify a column name so that any nonkey column, appearing in the CREATE TABLE statement after that specified column, is stored in the row overflow segment. Note that additional nonkey columns may sometimes need to be stored in the overflow due to PCTTHRESHOLD-based limits.

	
See Also:

Oracle Database Administrator's Guide for examples of using the OVERFLOW clause

Secondary Indexes on Index-Organized Tables

Secondary index support on index-organized tables provides efficient access to index-organized table using columns that are not the primary key nor a prefix of the primary key.

Oracle Database constructs secondary indexes on index-organized tables using logical row identifiers (logical rowids) that are based on the table's primary key. A logical rowid includes a physical guess, which identifies the block location of the row. Oracle Database can use these physical guesses to probe directly into the leaf block of the index-organized table, bypassing the primary key search. Because rows in index-organized tables do not have permanent physical addresses, the physical guesses can become stale when rows are moved to new blocks.

For an ordinary table, access by a secondary index involves a scan of the secondary index and an additional I/O to fetch the data block containing the row. For index-organized tables, access by a secondary index varies, depending on the use and accuracy of physical guesses:

	
Without physical guesses, access involves two index scans: a secondary index scan followed by a scan of the primary key index.

	
With accurate physical guesses, access involves a secondary index scan and an additional I/O to fetch the data block containing the row.

	
With inaccurate physical guesses, access involves a secondary index scan and an I/O to fetch the wrong data block (as indicated by the physical guess), followed by a scan of the primary key index.

	
See Also:

"Logical Rowids"

Bitmap Indexes on Index-Organized Tables

Oracle Database supports bitmap indexes on partitioned and nonpartitioned index-organized tables. A mapping table is required for creating bitmap indexes on an index-organized table.

Mapping Table

The mapping table is a heap-organized table that stores logical rowids of the index-organized table. Specifically, each mapping table row stores one logical rowid for the corresponding index-organized table row. Thus, the mapping table provides one-to-one mapping between logical rowids of the index-organized table rows and physical rowids of the mapping table rows.

A bitmap index on an index-organized table is similar to that on a heap-organized table except that the rowids used in the bitmap index on an index-organized table are those of the mapping table as opposed to the base table. There is one mapping table for each index-organized table and it is used by all the bitmap indexes created on that index-organized table.

In both heap-organized and index-organized base tables, a bitmap index is accessed using a search key. If the key is found, the bitmap entry is converted to a physical rowid. In the case of heap-organized tables, this physical rowid is then used to access the base table. However, in the case of index-organized tables, the physical rowid is then used to access the mapping table. The access to the mapping table yields a logical rowid. This logical rowid is used to access the index-organized table.

Though a bitmap index on an index-organized table does not store logical rowids, it is still logical in nature.

	
Note:

Movement of rows in an index-organized table does not leave the bitmap indexes built on that index-organized table unusable. Movement of rows in the index-organized table does invalidate the physical guess in some of the mapping table's logical rowid entries. However, the index-organized table can still be accessed using the primary key.

Partitioned Index-Organized Tables

You can partition an index-organized table by RANGE, HASH, or LIST on column values. The partitioning columns must form a subset of the primary key columns. Just like ordinary tables, local partitioned (prefixed and non-prefixed) index as well as global partitioned (prefixed) indexes are supported for partitioned index-organized tables.

B-tree Indexes on UROWID Columns for Heap- and Index-Organized Tables

UROWID datatype columns can hold logical primary key-based rowids identifying rows of index-organized tables. Oracle Database supports indexes on UROWID datatypes of a heap- or index-organized table. The index supports equality predicates on UROWID columns. For predicates other than equality or for ordering on UROWID datatype columns, the index is not used.

Index-Organized Table Applications

The superior query performance for primary key based access, high availability aspects, and reduced storage requirements make index-organized tables ideal for the following kinds of applications:

	
Online transaction processing (OLTP)

	
Internet (for example, search engines and portals)

	
E-commerce (for example, electronic stores and catalogs)

	
Data warehousing

	
Analytic functions

Overview of Application Domain Indexes

Oracle Database provides extensible indexing to accommodate indexes on customized complex datatypes such as documents, spatial data, images, and video clips and to make use of specialized indexing techniques. With extensible indexing, you can encapsulate application-specific index management routines as an indextype schema object and define a domain index (an application-specific index) on table columns or attributes of an object type. Extensible indexing also provides efficient processing of application-specific operators.

The application software, called the cartridge, controls the structure and content of a domain index. The Oracle database server interacts with the application to build, maintain, and search the domain index. The index structure itself can be stored in the Oracle database as an index-organized table or externally as a file.

	
See Also:

Oracle Database Data Cartridge Developer's Guide for information about using data cartridges within the Oracle database extensibility architecture

Overview of Clusters

Clusters are an optional method of storing table data. A cluster is a group of tables that share the same data blocks because they share common columns and are often used together. For example, the employees and departments table share the department_id column. When you cluster the employees and departments tables, Oracle Database physically stores all rows for each department from both the employees and departments tables in the same data blocks.

Figure 5-10 shows what happens when you cluster the employees and departments tables:

Figure 5-10 Clustered Table Data

[image: Description of Figure 5-10 follows]

Because clusters store related rows of different tables together in the same data blocks, properly used clusters offers these benefits:

	
Disk I/O is reduced for joins of clustered tables.

	
Access time improves for joins of clustered tables.

	
In a cluster, a cluster key value is the value of the cluster key columns for a particular row. Each cluster key value is stored only once each in the cluster and the cluster index, no matter how many rows of different tables contain the value. Therefore, less storage is required to store related table and index data in a cluster than is necessary in nonclustered table format. For example, in Figure 5-10, notice how each cluster key (each department_id) is stored just once for many rows that contain the same value in both the employees and departments tables.

	
See Also:

Oracle Database Administrator's Guide for information about creating and managing clusters

Overview of Hash Clusters

Hash clusters group table data in a manner similar to regular index clusters (clusters keyed with an index rather than a hash function). However, a row is stored in a hash cluster based on the result of applying a hash function to the row's cluster key value. All rows with the same key value are stored together on disk.

Hash clusters are a better choice than using an indexed table or index cluster when a table is queried frequently with equality queries (for example, return all rows for department 10). For such queries, the specified cluster key value is hashed. The resulting hash key value points directly to the area on disk that stores the rows.

Hashing is an optional way of storing tabl