
[image: Oracle Corporation]

Oracle® Database

Utilities

11g Release 1 (11.1)

B28319-02

September 2007

Oracle Database Utilities, 11g Release 1 (11.1)

B28319-02

Copyright © 1996, 2007, Oracle. All rights reserved.

Primary Author: Kathy Rich

Contributors: Lee Barton, Ellen Batbouta, Janet Blowney, George Claborn, Jay Davison, Steve DiPirro, Marcus Fallen, Bill Fisher, Steve Fogel, Dean Gagne, John Galanes, John Kalogeropoulos, Jonathan Klein, Cindy Lim, Eric Magrath, Brian McCarthy, Rod Payne, Ray Pfau, Rich Phillips, Paul Reilly, Mike Sakayeda, Francisco Sanchez, Marilyn Saunders, Jim Stenoish, Carol Tagliaferri, Hailing Yu

The Programs (which include both the software and documentation) contain proprietary information; they are provided under a license agreement containing restrictions on use and disclosure and are also protected by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly, or decompilation of the Programs, except to the extent required to obtain interoperability with other independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in the documentation, please report them to us in writing. This document is not warranted to be error-free. Except as may be expressly permitted in your license agreement for these Programs, no part of these Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup, redundancy and other measures to ensure the safe use of such applications if the Programs are used for such purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites. You bear all risks associated with the use of such content. If you choose to purchase any products or services from a third party, the relationship is directly between you and the third party. Oracle is not responsible for: (a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the third party, including delivery of products or services and warranty obligations related to purchased products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from dealing with any third party.

Contents

List of Examples

List of Figures

List of Tables

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Syntax Diagrams
	Conventions

What's New in Database Utilities?

	New Features in Oracle Database 11g Release 1

Part I Oracle Data Pump

1 Overview of Oracle Data Pump

	Data Pump Components
	How Does Data Pump Move Data?
	Using Data File Copying to Move Data
	Using Direct Path to Move Data
	Using External Tables to Move Data
	Using Network Link Import to Move Data

	What Happens During Execution of a Data Pump Job?
	Coordination of a Job
	Tracking Progress Within a Job
	Filtering Data and Metadata During a Job
	Transforming Metadata During a Job
	Maximizing Job Performance
	Loading and Unloading of Data

	Monitoring Job Status
	Monitoring the Progress of Executing Jobs

	File Allocation
	Specifying Files and Adding Additional Dump Files
	Default Locations for Dump, Log, and SQL Files
	Using Directory Objects When Automatic Storage Management Is Enabled

	Setting Parallelism
	Using Substitution Variables

	Moving Data Between Different Database Versions

2 Data Pump Export

	What Is Data Pump Export?
	Invoking Data Pump Export
	Data Pump Export Interfaces
	Data Pump Export Modes
	Full Export Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Export Operations
	Data Filters
	Metadata Filters

	Parameters Available in Export's Command-Line Mode
	ATTACH
	COMPRESSION
	CONTENT
	DATA_OPTIONS
	DIRECTORY
	DUMPFILE
	ENCRYPTION
	ENCRYPTION_ALGORITHM
	ENCRYPTION_MODE
	ENCRYPTION_PASSWORD
	ESTIMATE
	ESTIMATE_ONLY
	EXCLUDE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	LOGFILE
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	QUERY
	REMAP_DATA
	REUSE_DUMPFILES
	SAMPLE
	SCHEMAS
	STATUS
	TABLES
	TABLESPACES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	TRANSPORTABLE
	VERSION

	How Data Pump Export Parameters Map to Those of the Original Export Utility
	Commands Available in Export's Interactive-Command Mode
	ADD_FILE
	CONTINUE_CLIENT
	EXIT_CLIENT
	FILESIZE
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Export
	Performing a Table-Mode Export
	Data-Only Unload of Selected Tables and Rows
	Estimating Disk Space Needed in a Table-Mode Export
	Performing a Schema-Mode Export
	Performing a Parallel Full Database Export
	Using Interactive Mode to Stop and Reattach to a Job

	Syntax Diagrams for Data Pump Export

3 Data Pump Import

	What Is Data Pump Import?
	Invoking Data Pump Import
	Data Pump Import Interfaces
	Data Pump Import Modes
	Full Import Mode
	Schema Mode
	Table Mode
	Tablespace Mode
	Transportable Tablespace Mode

	Network Considerations

	Filtering During Import Operations
	Data Filters
	Metadata Filters

	Parameters Available in Import's Command-Line Mode
	ATTACH
	CONTENT
	DATA_OPTIONS
	DIRECTORY
	DUMPFILE
	ENCRYPTION_PASSWORD
	ESTIMATE
	EXCLUDE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	HELP
	INCLUDE
	JOB_NAME
	LOGFILE
	NETWORK_LINK
	NOLOGFILE
	PARALLEL
	PARFILE
	PARTITION_OPTIONS
	QUERY
	REMAP_DATA
	REMAP_DATAFILE
	REMAP_SCHEMA
	REMAP_TABLE
	REMAP_TABLESPACE
	REUSE_DATAFILES
	SCHEMAS
	SKIP_UNUSABLE_INDEXES
	SQLFILE
	STATUS
	STREAMS_CONFIGURATION
	TABLE_EXISTS_ACTION
	TABLES
	TABLESPACES
	TRANSFORM
	TRANSPORT_DATAFILES
	TRANSPORT_FULL_CHECK
	TRANSPORT_TABLESPACES
	TRANSPORTABLE
	VERSION

	How Data Pump Import Parameters Map to Those of the Original Import Utility
	Commands Available in Import's Interactive-Command Mode
	CONTINUE_CLIENT
	EXIT_CLIENT
	HELP
	KILL_JOB
	PARALLEL
	START_JOB
	STATUS
	STOP_JOB

	Examples of Using Data Pump Import
	Performing a Data-Only Table-Mode Import
	Performing a Schema-Mode Import
	Performing a Network-Mode Import

	Syntax Diagrams for Data Pump Import

4 Data Pump Performance

	Data Performance Improvements for Data Pump Export and Import
	Tuning Performance
	Controlling Resource Consumption
	Effects of Compression and Encryption on Performance

	Initialization Parameters That Affect Data Pump Performance
	Setting the Size Of the Buffer Cache In a Streams Environment

5 The Data Pump API

	How Does the Client Interface to the Data Pump API Work?
	Job States

	What Are the Basic Steps in Using the Data Pump API?
	Examples of Using the Data Pump API

Part II SQL*Loader

6 SQL*Loader Concepts

	SQL*Loader Features
	SQL*Loader Parameters
	SQL*Loader Control File
	Input Data and Datafiles
	Fixed Record Format
	Variable Record Format
	Stream Record Format
	Logical Records
	Data Fields

	LOBFILEs and Secondary Datafiles (SDFs)
	Data Conversion and Datatype Specification
	Discarded and Rejected Records
	The Bad File
	SQL*Loader Rejects
	Oracle Database Rejects

	The Discard File

	Log File and Logging Information
	Conventional Path Loads, Direct Path Loads, and External Table Loads
	Conventional Path Loads
	Direct Path Loads
	Parallel Direct Path

	External Table Loads
	Choosing External Tables Versus SQL*Loader

	Loading Objects, Collections, and LOBs
	Supported Object Types
	column objects
	row objects

	Supported Collection Types
	Nested Tables
	VARRAYs

	Supported LOB Types

	Partitioned Object Support
	Application Development: Direct Path Load API
	SQL*Loader Case Studies
	Case Study Files
	Running the Case Studies
	Case Study Log Files
	Checking the Results of a Case Study

7 SQL*Loader Command-Line Reference

	Invoking SQL*Loader
	Alternative Ways to Specify Parameters

	Command-Line Parameters
	BAD (bad file)
	BINDSIZE (maximum size)
	COLUMNARRAYROWS
	CONTROL (control file)
	DATA (datafile)
	DATE_CACHE
	DIRECT (data path)
	DISCARD (filename)
	DISCARDMAX (integer)
	ERRORS (errors to allow)
	EXTERNAL_TABLE
	Restrictions When Using EXTERNAL_TABLE

	FILE (tablespace file to load into)
	LOAD (number of records to load)
	LOG (log file)
	MULTITHREADING
	PARALLEL (parallel load)
	PARFILE (parameter file)
	READSIZE (read buffer size)
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS (rows per commit)
	SILENT (feedback mode)
	SKIP (records to skip)
	SKIP_INDEX_MAINTENANCE
	SKIP_UNUSABLE_INDEXES
	STREAMSIZE
	USERID (username/password)

	Exit Codes for Inspection and Display

8 SQL*Loader Control File Reference

	Control File Contents
	Comments in the Control File

	Specifying Command-Line Parameters in the Control File
	OPTIONS Clause

	Specifying Filenames and Object Names
	Filenames That Conflict with SQL and SQL*Loader Reserved Words
	Specifying SQL Strings
	Operating System Considerations
	Specifying a Complete Path
	Backslash Escape Character
	Nonportable Strings
	Using the Backslash as an Escape Character
	Escape Character Is Sometimes Disallowed

	Identifying XMLType Tables
	Specifying Datafiles
	Examples of INFILE Syntax
	Specifying Multiple Datafiles

	Identifying Data in the Control File with BEGINDATA
	Specifying Datafile Format and Buffering
	Specifying the Bad File
	Examples of Specifying a Bad File Name
	How Bad Files Are Handled with LOBFILEs and SDFs
	Criteria for Rejected Records

	Specifying the Discard File
	Specifying the Discard File in the Control File
	Specifying the Discard File from the Command Line
	Examples of Specifying a Discard File Name
	Criteria for Discarded Records
	How Discard Files Are Handled with LOBFILEs and SDFs
	Limiting the Number of Discarded Records

	Handling Different Character Encoding Schemes
	Multibyte (Asian) Character Sets
	Unicode Character Sets
	Database Character Sets
	Datafile Character Sets
	Input Character Conversion
	Considerations When Loading Data into VARRAYs or Primary-Key-Based REFs
	CHARACTERSET Parameter
	Control File Character Set
	Character-Length Semantics

	Shift-sensitive Character Data

	Interrupted Loads
	Discontinued Conventional Path Loads
	Discontinued Direct Path Loads
	Load Discontinued Because of Space Errors
	Load Discontinued Because Maximum Number of Errors Exceeded
	Load Discontinued Because of Fatal Errors
	Load Discontinued Because a Ctrl+C Was Issued

	Status of Tables and Indexes After an Interrupted Load
	Using the Log File to Determine Load Status
	Continuing Single-Table Loads

	Assembling Logical Records from Physical Records
	Using CONCATENATE to Assemble Logical Records
	Using CONTINUEIF to Assemble Logical Records

	Loading Logical Records into Tables
	Specifying Table Names
	INTO TABLE Clause

	Table-Specific Loading Method
	Loading Data into Empty Tables
	Loading Data into Nonempty Tables

	Table-Specific OPTIONS Parameter
	Loading Records Based on a Condition
	Using the WHEN Clause with LOBFILEs and SDFs

	Specifying Default Data Delimiters
	fields_spec
	termination_spec
	enclosure_spec

	Handling Short Records with Missing Data
	TRAILING NULLCOLS Clause

	Index Options
	SORTED INDEXES Clause
	SINGLEROW Option

	Benefits of Using Multiple INTO TABLE Clauses
	Extracting Multiple Logical Records
	Relative Positioning Based on Delimiters

	Distinguishing Different Input Record Formats
	Relative Positioning Based on the POSITION Parameter

	Distinguishing Different Input Row Object Subtypes
	Loading Data into Multiple Tables
	Summary

	Bind Arrays and Conventional Path Loads
	Size Requirements for Bind Arrays
	Performance Implications of Bind Arrays
	Specifying Number of Rows Versus Size of Bind Array
	Calculations to Determine Bind Array Size
	Determining the Size of the Length Indicator
	Calculating the Size of Field Buffers

	Minimizing Memory Requirements for Bind Arrays
	Calculating Bind Array Size for Multiple INTO TABLE Clauses

9 SQL*Loader Field List Reference

	Field List Contents
	Specifying the Position of a Data Field
	Using POSITION with Data Containing Tabs
	Using POSITION with Multiple Table Loads
	Examples of Using POSITION

	Specifying Columns and Fields
	Specifying Filler Fields
	Specifying the Datatype of a Data Field

	SQL*Loader Datatypes
	Nonportable Datatypes
	INTEGER(n)
	SMALLINT
	FLOAT
	DOUBLE
	BYTEINT
	ZONED
	DECIMAL
	VARGRAPHIC
	VARCHAR
	VARRAW
	LONG VARRAW

	Portable Datatypes
	CHAR
	Datetime and Interval Datatypes
	GRAPHIC
	GRAPHIC EXTERNAL
	Numeric EXTERNAL
	RAW
	VARCHARC
	VARRAWC
	Conflicting Native Datatype Field Lengths
	Field Lengths for Length-Value Datatypes

	Datatype Conversions
	Datatype Conversions for Datetime and Interval Datatypes
	Specifying Delimiters
	TERMINATED Fields
	ENCLOSED Fields
	Syntax for Termination and Enclosure Specification
	Delimiter Marks in the Data
	Maximum Length of Delimited Data
	Loading Trailing Blanks with Delimiters

	Conflicting Field Lengths for Character Datatypes
	Predetermined Size Fields
	Delimited Fields
	Date Field Masks

	Specifying Field Conditions
	Comparing Fields to BLANKS
	Comparing Fields to Literals

	Using the WHEN, NULLIF, and DEFAULTIF Clauses
	Examples of Using the WHEN, NULLIF, and DEFAULTIF Clauses

	Loading Data Across Different Platforms
	Byte Ordering
	Specifying Byte Order
	Using Byte Order Marks (BOMs)
	Suppressing Checks for BOMs

	Loading All-Blank Fields
	Trimming Whitespace
	Datatypes for Which Whitespace Can Be Trimmed
	Specifying Field Length for Datatypes for Which Whitespace Can Be Trimmed
	Predetermined Size Fields
	Delimited Fields

	Relative Positioning of Fields
	No Start Position Specified for a Field
	Previous Field Terminated by a Delimiter
	Previous Field Has Both Enclosure and Termination Delimiters

	Leading Whitespace
	Previous Field Terminated by Whitespace
	Optional Enclosure Delimiters

	Trimming Trailing Whitespace
	Trimming Enclosed Fields

	How the PRESERVE BLANKS Option Affects Whitespace Trimming
	How [NO] PRESERVE BLANKS Works with Delimiter Clauses

	Applying SQL Operators to Fields
	Referencing Fields
	Common Uses of SQL Operators in Field Specifications
	Combinations of SQL Operators
	Using SQL Strings with a Date Mask
	Interpreting Formatted Fields
	Using SQL Strings to Load the ANYDATA Database Type

	Using SQL*Loader to Generate Data for Input
	Loading Data Without Files
	Setting a Column to a Constant Value
	CONSTANT Parameter

	Setting a Column to an Expression Value
	EXPRESSION Parameter

	Setting a Column to the Datafile Record Number
	RECNUM Parameter

	Setting a Column to the Current Date
	SYSDATE Parameter

	Setting a Column to a Unique Sequence Number
	SEQUENCE Parameter

	Generating Sequence Numbers for Multiple Tables
	Example: Generating Different Sequence Numbers for Each Insert

10 Loading Objects, LOBs, and Collections

	Loading Column Objects
	Loading Column Objects in Stream Record Format
	Loading Column Objects in Variable Record Format
	Loading Nested Column Objects
	Loading Column Objects with a Derived Subtype
	Specifying Null Values for Objects
	Specifying Attribute Nulls
	Specifying Atomic Nulls

	Loading Column Objects with User-Defined Constructors

	Loading Object Tables
	Loading Object Tables with a Subtype

	Loading REF Columns
	Specifying Table Names in a REF Clause
	System-Generated OID REF Columns
	Primary Key REF Columns
	Unscoped REF Columns That Allow Primary Keys

	Loading LOBs
	Loading LOB Data from a Primary Datafile
	LOB Data in Predetermined Size Fields
	LOB Data in Delimited Fields
	LOB Data in Length-Value Pair Fields

	Loading LOB Data from LOBFILEs
	Dynamic Versus Static LOBFILE Specifications
	Examples of Loading LOB Data from LOBFILEs
	Considerations When Loading LOBs from LOBFILEs

	Loading BFILE Columns
	Loading Collections (Nested Tables and VARRAYs)
	Restrictions in Nested Tables and VARRAYs
	Secondary Datafiles (SDFs)

	Dynamic Versus Static SDF Specifications
	Loading a Parent Table Separately from Its Child Table
	Memory Issues When Loading VARRAY Columns

11 Conventional and Direct Path Loads

	Data Loading Methods
	Loading ROWID Columns

	Conventional Path Load
	Conventional Path Load of a Single Partition
	When to Use a Conventional Path Load

	Direct Path Load
	Data Conversion During Direct Path Loads
	Direct Path Load of a Partitioned or Subpartitioned Table
	Direct Path Load of a Single Partition or Subpartition
	Advantages of a Direct Path Load
	Restrictions on Using Direct Path Loads
	Restrictions on a Direct Path Load of a Single Partition
	When to Use a Direct Path Load
	Integrity Constraints
	Field Defaults on the Direct Path
	Loading into Synonyms

	Using Direct Path Load
	Setting Up for Direct Path Loads
	Specifying a Direct Path Load
	Building Indexes
	Improving Performance
	Temporary Segment Storage Requirements

	Indexes Left in an Unusable State
	Using Data Saves to Protect Against Data Loss
	Using the ROWS Parameter
	Data Save Versus Commit

	Data Recovery During Direct Path Loads
	Media Recovery and Direct Path Loads
	Instance Recovery and Direct Path Loads

	Loading Long Data Fields
	Loading Data As PIECED

	Optimizing Performance of Direct Path Loads
	Preallocating Storage for Faster Loading
	Presorting Data for Faster Indexing
	SORTED INDEXES Clause
	Unsorted Data
	Multiple-Column Indexes
	Choosing the Best Sort Order

	Infrequent Data Saves
	Minimizing Use of the Redo Log
	Disabling Archiving
	Specifying the SQL*Loader UNRECOVERABLE Clause
	Setting the SQL NOLOGGING Parameter

	Specifying the Number of Column Array Rows and Size of Stream Buffers
	Specifying a Value for the Date Cache

	Optimizing Direct Path Loads on Multiple-CPU Systems
	Avoiding Index Maintenance
	Direct Loads, Integrity Constraints, and Triggers
	Integrity Constraints
	Enabled Constraints
	Disabled Constraints
	Reenable Constraints

	Database Insert Triggers
	Replacing Insert Triggers with Integrity Constraints
	When Automatic Constraints Cannot Be Used
	Preparation
	Using an Update Trigger
	Duplicating the Effects of Exception Conditions
	Using a Stored Procedure

	Permanently Disabled Triggers and Constraints
	Increasing Performance with Concurrent Conventional Path Loads

	Parallel Data Loading Models
	Concurrent Conventional Path Loads
	Intersegment Concurrency with Direct Path
	Intrasegment Concurrency with Direct Path
	Restrictions on Parallel Direct Path Loads
	Initiating Multiple SQL*Loader Sessions
	Parameters for Parallel Direct Path Loads
	Using the FILE Parameter to Specify Temporary Segments

	Enabling Constraints After a Parallel Direct Path Load
	PRIMARY KEY and UNIQUE KEY Constraints

	General Performance Improvement Hints

Part III External Tables

12 External Tables Concepts

	How Are External Tables Created?
	Access Parameters
	Location of Datafiles and Output Files
	Example: Creating and Loading an External Table Using ORACLE_LOADER

	Using External Tables to Load and Unload Data
	Loading Data
	Unloading Data Using the ORACLE_DATAPUMP Access Driver
	Dealing with Column Objects

	Datatype Conversion During External Table Use
	Parallel Access to External Tables
	Parallel Access with ORACLE_LOADER
	Parallel Access with ORACLE_DATAPUMP

	Performance Hints When Using External Tables
	Performance Hints Specific to the ORACLE_LOADER Access Driver

	External Table Restrictions
	Restrictions Specific to the ORACLE_DATAPUMP Access Driver

	Behavior Differences Between SQL*Loader and External Tables
	Multiple Primary Input Datafiles
	Syntax and Datatypes
	Byte-Order Marks
	Default Character Sets, Date Masks, and Decimal Separator
	Use of the Backslash Escape Character

13 The ORACLE_LOADER Access Driver

	access_parameters Clause
	record_format_info Clause
	FIXED length
	VARIABLE size
	DELIMITED BY
	CHARACTERSET
	LANGUAGE
	TERRITORIES
	DATA IS...ENDIAN
	BYTEORDERMARK (CHECK | NOCHECK)
	STRING SIZES ARE IN
	LOAD WHEN
	BADFILE | NOBADFILE
	DISCARDFILE | NODISCARDFILE
	LOG FILE | NOLOGFILE
	SKIP
	READSIZE
	DISABLE_DIRECTORY_LINK_CHECK
	DATE_CACHE
	string
	condition_spec
	[directory object name:] filename
	condition
	range start : range end

	field_definitions Clause
	delim_spec
	Example: External Table with Terminating Delimiters
	Example: External Table with Enclosure and Terminator Delimiters
	Example: External Table with Optional Enclosure Delimiters

	trim_spec
	MISSING FIELD VALUES ARE NULL
	field_list
	pos_spec Clause
	start
	*
	increment
	end
	length

	datatype_spec Clause
	[UNSIGNED] INTEGER [EXTERNAL] [(len)]
	DECIMAL [EXTERNAL] and ZONED [EXTERNAL]
	ORACLE_DATE
	ORACLE_NUMBER
	Floating-Point Numbers
	DOUBLE
	FLOAT [EXTERNAL]
	BINARY_DOUBLE
	BINARY_FLOAT
	RAW
	CHAR
	date_format_spec
	VARCHAR and VARRAW
	VARCHARC and VARRAWC

	init_spec Clause

	column_transforms Clause
	transform
	column_name
	NULL
	CONSTANT
	CONCAT
	LOBFILE
	lobfile_attr_list

	Reserved Words for the ORACLE_LOADER Access Driver

14 The ORACLE_DATAPUMP Access Driver

	access_parameters Clause
	comments
	COMPRESSION
	ENCRYPTION
	LOGFILE | NOLOGFILE
	Filenames for LOGFILE

	VERSION Clause
	Effects of Using the SQL ENCRYPT Clause

	Unloading and Loading Data with the ORACLE_DATAPUMP Access Driver
	Parallel Loading and Unloading
	Combining Dump Files

	Supported Datatypes
	Unsupported Datatypes
	Unloading and Loading BFILE Datatypes
	Unloading LONG and LONG RAW Datatypes
	Unloading and Loading Columns Containing Final Object Types
	Tables of Final Object Types

	Reserved Words for the ORACLE_DATAPUMP Access Driver

Part IV Other Utilities

15 ADRCI: ADR Command Interpreter

	About the ADR Command Interpreter (ADRCI)
	Definitions
	Starting ADRCI and Getting Help
	Using ADRCI in Interactive Mode
	Getting Help
	Using ADRCI in Batch Mode

	Setting the ADRCI Homepath Before Using ADRCI Commands
	Viewing the Alert Log
	Finding Trace Files
	Viewing Incidents
	Packaging Incidents
	About Packaging Incidents
	Creating Incident Packages
	Creating a Logical Incident Package
	Adding Diagnostic Information to a Logical Incident Package
	Generating a Physical Incident Package

	ADRCI Command Reference
	CREATE REPORT
	ECHO
	EXIT
	HOST
	IPS
	Using the <ADR_HOME> and <ADR_BASE> Variables in IPS Commands
	IPS ADD
	IPS ADD FILE
	IPS ADD NEW INCIDENTS
	IPS COPY IN FILE
	IPS COPY OUT FILE
	IPS CREATE PACKAGE
	IPS DELETE PACKAGE
	IPS FINALIZE
	IPS GENERATE PACKAGE
	IPS GET MANIFEST
	IPS GET METADATA
	IPS PACK
	IPS REMOVE
	IPS REMOVE FILE
	IPS SET CONFIGURATION
	IPS SHOW CONFIGURATION
	IPS SHOW FILES
	IPS SHOW INCIDENTS
	IPS UNPACK FILE

	PURGE
	QUIT
	RUN
	SET BASE
	SET BROWSER
	SET CONTROL
	SET ECHO
	SET EDITOR
	SET HOMEPATH
	SET TERMOUT
	SHOW ALERT
	SHOW BASE
	SHOW CONTROL
	SHOW HM_RUN
	SHOW HOMEPATH
	SHOW HOMES
	SHOW INCDIR
	SHOW INCIDENT
	SHOW PROBLEM
	SHOW REPORT
	SHOW TRACEFILE
	SPOOL

	Troubleshooting ADRCI

16 DBVERIFY: Offline Database Verification Utility

	Using DBVERIFY to Validate Disk Blocks of a Single Datafile
	Syntax
	Parameters
	Sample DBVERIFY Output For a Single Datafile

	Using DBVERIFY to Validate a Segment
	Syntax
	Parameters
	Sample DBVERIFY Output For a Validated Segment

17 DBNEWID Utility

	What Is the DBNEWID Utility?
	Ramifications of Changing the DBID and DBNAME
	Considerations for Global Database Names

	Changing the DBID and DBNAME of a Database
	Changing the DBID and Database Name
	Changing Only the Database ID
	Changing Only the Database Name
	Troubleshooting DBNEWID

	DBNEWID Syntax
	Parameters
	Restrictions and Usage Notes
	Additional Restrictions for Releases Prior to Oracle Database 10g

18 Using LogMiner to Analyze Redo Log Files

	LogMiner Benefits
	Introduction to LogMiner
	LogMiner Configuration
	Sample Configuration
	Requirements

	Directing LogMiner Operations and Retrieving Data of Interest

	LogMiner Dictionary Files and Redo Log Files
	LogMiner Dictionary Options
	Using the Online Catalog
	Extracting a LogMiner Dictionary to the Redo Log Files
	Extracting the LogMiner Dictionary to a Flat File

	Redo Log File Options

	Starting LogMiner
	Querying V$LOGMNR_CONTENTS for Redo Data of Interest
	How the V$LOGMNR_CONTENTS View Is Populated
	Querying V$LOGMNR_CONTENTS Based on Column Values
	The Meaning of NULL Values Returned by the MINE_VALUE Function
	Usage Rules for the MINE_VALUE and COLUMN_PRESENT Functions

	Querying V$LOGMNR_CONTENTS Based on XMLType Columns and Tables
	Restrictions When Using LogMiner With XMLType Data
	Example of a PL/SQL Procedure for Assembling XMLType Data

	Filtering and Formatting Data Returned to V$LOGMNR_CONTENTS
	Showing Only Committed Transactions
	Skipping Redo Corruptions
	Filtering Data by Time
	Filtering Data by SCN
	Formatting Reconstructed SQL Statements for Re-execution
	Formatting the Appearance of Returned Data for Readability

	Reapplying DDL Statements Returned to V$LOGMNR_CONTENTS
	Calling DBMS_LOGMNR.START_LOGMNR Multiple Times
	Supplemental Logging
	Database-Level Supplemental Logging
	Minimal Supplemental Logging
	Database-Level Identification Key Logging

	Disabling Database-Level Supplemental Logging
	Table-Level Supplemental Logging
	Table-Level Identification Key Logging
	Table-Level User-Defined Supplemental Log Groups
	Usage Notes for User-Defined Supplemental Log Groups

	Tracking DDL Statements in the LogMiner Dictionary
	DDL_DICT_TRACKING and Supplemental Logging Settings
	DDL_DICT_TRACKING and Specified Time or SCN Ranges

	Accessing LogMiner Operational Information in Views
	Querying V$LOGMNR_LOGS
	Querying Views for Supplemental Logging Settings

	Steps in a Typical LogMiner Session
	Enable Supplemental Logging
	Extract a LogMiner Dictionary
	Specify Redo Log Files for Analysis
	Start LogMiner
	Query V$LOGMNR_CONTENTS
	End the LogMiner Session

	Examples Using LogMiner
	Examples of Mining by Explicitly Specifying the Redo Log Files of Interest
	Example 1: Finding All Modifications in the Last Archived Redo Log File
	Example 2: Grouping DML Statements into Committed Transactions
	Example 3: Formatting the Reconstructed SQL
	Example 4: Using the LogMiner Dictionary in the Redo Log Files
	Example 5: Tracking DDL Statements in the Internal Dictionary
	Example 6: Filtering Output by Time Range

	Examples of Mining Without Specifying the List of Redo Log Files Explicitly
	Example 1: Mining Redo Log Files in a Given Time Range
	Example 2: Mining the Redo Log Files in a Given SCN Range
	Example 3: Using Continuous Mining to Include Future Values in a Query

	Example Scenarios
	Scenario 1: Using LogMiner to Track Changes Made by a Specific User
	Scenario 2: Using LogMiner to Calculate Table Access Statistics

	Supported Datatypes, Storage Attributes, and Database and Redo Log File Versions
	Supported Datatypes and Table Storage Attributes
	Unsupported Datatypes and Table Storage Attributes
	Supported Databases and Redo Log File Versions

19 Using the Metadata API

	Why Use the Metadata API?
	Overview of the Metadata API
	Using the Metadata API to Retrieve an Object's Metadata
	Typical Steps Used for Basic Metadata Retrieval
	Retrieving Multiple Objects
	Placing Conditions on Transforms
	Accessing Specific Metadata Attributes

	Using the Metadata API to Re-Create a Retrieved Object
	Retrieving Collections of Different Object Types
	Filtering the Return of Heterogeneous Object Types

	Performance Tips for the Programmatic Interface of the Metadata API
	Example Usage of the Metadata API
	What Does the Metadata API Example Do?
	Output Generated from the GET_PAYROLL_TABLES Procedure

	Summary of DBMS_METADATA Procedures

20 Original Export and Import

	What Are the Export and Import Utilities?
	Before Using Export and Import
	Running catexp.sql or catalog.sql
	Ensuring Sufficient Disk Space for Export Operations
	Verifying Access Privileges for Export and Import Operations

	Invoking Export and Import
	Invoking Export and Import As SYSDBA
	Command-Line Entries
	Parameter Files
	Interactive Mode
	Restrictions When Using Export's Interactive Method

	Getting Online Help

	Importing Objects into Your Own Schema
	Importing Grants
	Importing Objects into Other Schemas
	Importing System Objects
	Processing Restrictions

	Table Objects: Order of Import
	Importing into Existing Tables
	Manually Creating Tables Before Importing Data
	Disabling Referential Constraints
	Manually Ordering the Import

	Effect of Schema and Database Triggers on Import Operations
	Export and Import Modes
	Table-Level and Partition-Level Export
	Table-Level Export
	Partition-Level Export

	Table-Level and Partition-Level Import
	Guidelines for Using Table-Level Import
	Guidelines for Using Partition-Level Import
	Migrating Data Across Partitions and Tables

	Export Parameters
	BUFFER
	Example: Calculating Buffer Size

	COMPRESS
	CONSISTENT
	CONSTRAINTS
	DIRECT
	FEEDBACK
	FILE
	FILESIZE
	FLASHBACK_SCN
	FLASHBACK_TIME
	FULL
	Points to Consider for Full Database Exports and Imports

	GRANTS
	HELP
	INDEXES
	LOG
	OBJECT_CONSISTENT
	OWNER
	PARFILE
	QUERY
	Restrictions When Using the QUERY Parameter

	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	STATISTICS
	TABLES
	Table Name Restrictions

	TABLESPACES
	TRANSPORT_TABLESPACE
	TRIGGERS
	TTS_FULL_CHECK
	USERID (username/password)
	VOLSIZE

	Import Parameters
	BUFFER
	COMMIT
	COMPILE
	CONSTRAINTS
	DATAFILES
	DESTROY
	FEEDBACK
	FILE
	FILESIZE
	FROMUSER
	FULL
	GRANTS
	HELP
	IGNORE
	INDEXES
	INDEXFILE
	LOG
	PARFILE
	RECORDLENGTH
	RESUMABLE
	RESUMABLE_NAME
	RESUMABLE_TIMEOUT
	ROWS
	SHOW
	SKIP_UNUSABLE_INDEXES
	STATISTICS
	STREAMS_CONFIGURATION
	STREAMS_INSTANTIATION
	TABLES
	Table Name Restrictions

	TABLESPACES
	TOID_NOVALIDATE
	TOUSER
	TRANSPORT_TABLESPACE
	TTS_OWNERS
	USERID (username/password)
	VOLSIZE

	Example Export Sessions
	Example Export Session in Full Database Mode
	Example Export Session in User Mode
	Example Export Sessions in Table Mode
	Example 1: DBA Exporting Tables for Two Users
	Example 2: User Exports Tables That He Owns
	Example 3: Using Pattern Matching to Export Various Tables

	Example Export Session Using Partition-Level Export
	Example 1: Exporting a Table Without Specifying a Partition
	Example 2: Exporting a Table with a Specified Partition
	Example 3: Exporting a Composite Partition

	Example Import Sessions
	Example Import of Selected Tables for a Specific User
	Example Import of Tables Exported by Another User
	Example Import of Tables from One User to Another
	Example Import Session Using Partition-Level Import
	Example 1: A Partition-Level Import
	Example 2: A Partition-Level Import of a Composite Partitioned Table
	Example 3: Repartitioning a Table on a Different Column

	Example Import Using Pattern Matching to Import Various Tables

	Using Export and Import to Move a Database Between Platforms
	Warning, Error, and Completion Messages
	Log File
	Warning Messages
	Nonrecoverable Error Messages
	Completion Messages

	Exit Codes for Inspection and Display
	Network Considerations
	Transporting Export Files Across a Network
	Exporting and Importing with Oracle Net

	Character Set and Globalization Support Considerations
	User Data
	Effect of Character Set Sorting Order on Conversions

	Data Definition Language (DDL)
	Single-Byte Character Sets and Export and Import
	Multibyte Character Sets and Export and Import

	Materialized Views and Snapshots
	Snapshot Log
	Snapshots
	Importing a Snapshot
	Importing a Snapshot into a Different Schema

	Transportable Tablespaces
	Read-Only Tablespaces
	Dropping a Tablespace
	Reorganizing Tablespaces
	Support for Fine-Grained Access Control
	Using Instance Affinity with Export and Import
	Reducing Database Fragmentation
	Using Storage Parameters with Export and Import
	The OPTIMAL Parameter
	Storage Parameters for OID Indexes and LOB Columns
	Overriding Storage Parameters
	The Export COMPRESS Parameter

	Information Specific to Export
	Conventional Path Export Versus Direct Path Export
	Invoking a Direct Path Export
	Security Considerations for Direct Path Exports
	Performance Considerations for Direct Path Exports
	Restrictions for Direct Path Exports

	Exporting from a Read-Only Database
	Considerations When Exporting Database Objects
	Exporting Sequences
	Exporting LONG and LOB Datatypes
	Exporting Foreign Function Libraries
	Exporting Offline Locally Managed Tablespaces
	Exporting Directory Aliases
	Exporting BFILE Columns and Attributes
	Exporting External Tables
	Exporting Object Type Definitions
	Exporting Nested Tables
	Exporting Advanced Queue (AQ) Tables
	Exporting Synonyms
	Possible Export Errors Related to Java Synonyms

	Information Specific to Import
	Error Handling During an Import Operation
	Row Errors
	Errors Importing Database Objects

	Controlling Index Creation and Maintenance
	Delaying Index Creation
	Index Creation and Maintenance Controls

	Importing Statistics
	Tuning Considerations for Import Operations
	Changing System-Level Options
	Changing Initialization Parameters
	Changing Import Options
	Dealing with Large Amounts of LOB Data
	Dealing with Large Amounts of LONG Data

	Considerations When Importing Database Objects
	Importing Object Identifiers
	Importing Existing Object Tables and Tables That Contain Object Types
	Importing Nested Tables
	Importing REF Data
	Importing BFILE Columns and Directory Aliases
	Importing Foreign Function Libraries
	Importing Stored Procedures, Functions, and Packages
	Importing Java Objects
	Importing External Tables
	Importing Advanced Queue (AQ) Tables
	Importing LONG Columns
	Importing LOB Columns When Triggers Are Present
	Importing Views
	Importing Partitioned Tables

	Using Export and Import to Partition a Database Migration
	Advantages of Partitioning a Migration
	Disadvantages of Partitioning a Migration
	How to Use Export and Import to Partition a Database Migration

	Using Different Releases and Versions of Export
	Restrictions When Using Different Releases and Versions of Export and Import
	Examples of Using Different Releases of Export and Import
	Creating Oracle Release 8.0 Export Files from an Oracle9i Database

21 Enterprise Manager Configuration Assistant (EMCA)

	Configuring Database Control with EMCA
	Configuring Software Library With EMCA
	Using an Input File for EMCA Parameters
	Using EMCA With Oracle Real Application Clusters
	Specifying the Ports Used by EMCA
	EMCA Troubleshooting Tips
	Using EMCA After Changing the Database Listener Port
	Upgrading Database or ASM Instances With 11g Release 1 Grid Control Agents
	Using EMCA When Database Host Name or IP Address Changes
	Using EMCA When the TNS Configuration Is Changed

Part V Appendixes

A SQL*Loader Syntax Diagrams

Index

List of Examples

	2-1 Performing a Table-Mode Export
	2-2 Data-Only Unload of Selected Tables and Rows
	2-3 Estimating Disk Space Needed in a Table-Mode Export
	2-4 Performing a Schema Mode Export
	2-5 Parallel Full Export
	2-6 Stopping and Reattaching to a Job
	3-1 Performing a Data-Only Table-Mode Import
	3-2 Performing a Schema-Mode Import
	3-3 Network-Mode Import of Schemas
	5-1 Performing a Simple Schema Export
	5-2 Importing a Dump File and Remapping All Schema Objects
	5-3 Using Exception Handling During a Simple Schema Export
	6-1 Loading Data in Fixed Record Format
	6-2 Loading Data in Variable Record Format
	6-3 Loading Data in Stream Record Format
	8-1 Sample Control File
	8-2 Identifying XMLType Tables in the SQL*Loader Control File
	8-3 CONTINUEIF THIS Without the PRESERVE Parameter
	8-4 CONTINUEIF THIS with the PRESERVE Parameter
	8-5 CONTINUEIF NEXT Without the PRESERVE Parameter
	8-6 CONTINUEIF NEXT with the PRESERVE Parameter
	9-1 Field List Section of Sample Control File
	9-2 DEFAULTIF Clause Is Not Evaluated
	9-3 DEFAULTIF Clause Is Evaluated
	9-4 DEFAULTIF Clause Specifies a Position
	9-5 DEFAULTIF Clause Specifies a Field Name
	10-1 Loading Column Objects in Stream Record Format
	10-2 Loading Column Objects in Variable Record Format
	10-3 Loading Nested Column Objects
	10-4 Loading Column Objects with a Subtype
	10-5 Specifying Attribute Nulls Using the NULLIF Clause
	10-6 Loading Data Using Filler Fields
	10-7 Loading a Column Object with Constructors That Match
	10-8 Loading a Column Object with Constructors That Do Not Match
	10-9 Using SQL to Load Column Objects When Constructors Do Not Match
	10-10 Loading an Object Table with Primary Key OIDs
	10-11 Loading OIDs
	10-12 Loading an Object Table with a Subtype
	10-13 Loading System-Generated REF Columns
	10-14 Loading Primary Key REF Columns
	10-15 Loading LOB Data in Predetermined Size Fields
	10-16 Loading LOB Data in Delimited Fields
	10-17 Loading LOB Data in Length-Value Pair Fields
	10-18 Loading LOB DATA with One LOB per LOBFILE
	10-19 Loading LOB Data Using Predetermined Size LOBs
	10-20 Loading LOB Data Using Delimited LOBs
	10-21 Loading LOB Data Using Length-Value Pair Specified LOBs
	10-22 Loading Data Using BFILEs: Only Filename Specified Dynamically
	10-23 Loading Data Using BFILEs: Filename and Directory Specified Dynamically
	10-24 Loading a VARRAY and a Nested Table
	10-25 Loading a Parent Table with User-Provided SIDs
	10-26 Loading a Child Table with User-Provided SIDs
	11-1 Setting the Date Format in the SQL*Loader Control File
	11-2 Setting an NLS_DATE_FORMAT Environment Variable
	19-1 Using the DBMS_METADATA Programmatic Interface to Retrieve Data
	19-2 Using the DBMS_METADATA Browsing Interface to Retrieve Data
	19-3 Retrieving Multiple Objects
	19-4 Placing Conditions on Transforms
	19-5 Modifying an XML Document
	19-6 Using Parse Items to Access Specific Metadata Attributes
	19-7 Using the Submit Interface to Re-Create a Retrieved Object
	19-8 Retrieving Heterogeneous Object Types
	19-9 Filtering the Return of Heterogeneous Object Types
	21-1 Sample EMCA Input File

List of Figures

	6-1 SQL*Loader Overview
	9-1 Example of Field Conversion
	9-2 Relative Positioning After a Fixed Field
	9-3 Relative Positioning After a Delimited Field
	9-4 Relative Positioning After Enclosure Delimiters
	9-5 Fields Terminated by Whitespace
	9-6 Fields Terminated by Optional Enclosure Delimiters
	11-1 Database Writes on SQL*Loader Direct Path and Conventional Path
	18-1 Sample LogMiner Database Configuration
	18-2 Decision Tree for Choosing a LogMiner Dictionary

List of Tables

	2-1 Original Export Parameters and Their Counterparts in Data Pump Export
	2-2 Supported Activities in Data Pump Export's Interactive-Command Mode
	3-1 Valid Object Types For the Data Pump Export TRANSFORM Parameter
	3-2 Original Import Parameters and Their Counterparts in Data Pump Import
	3-3 Supported Activities in Data Pump Import's Interactive-Command Mode
	5-1 Valid Job States in Which DBMS_DATAPUMP Procedures Can Be Executed
	6-1 Case Studies and Their Related Files
	7-1 Exit Codes for SQL*Loader
	8-1 Parameters for the INFILE Keyword
	8-2 Parameters for the CONTINUEIF Clause
	8-3 Fixed-Length Fields
	8-4 Nongraphic Fields
	8-5 Graphic Fields
	8-6 Variable-Length Fields
	9-1 Parameters for the Position Specification Clause
	9-2 Datatype Conversions for Datetime and Interval Datatypes
	9-3 Parameters Used for Specifying Delimiters
	9-4 Parameters for the Field Condition Clause
	9-5 Behavior Summary for Trimming Whitespace
	9-6 Parameters Used for Column Specification
	15-1 ADRCI Command Line Parameters for Batch Operation
	15-2 List of ADRCI commands
	15-3 IPS Command Set
	15-4 Arguments of IPS ADD command
	15-5 Arguments of IPS CREATE command
	15-6 Arguments of IPS PACK command
	15-7 Arguments of IPS REMOVE command
	15-8 IPS Configuration Parameters
	15-9 Flags for the PURGE command
	15-10 Flags for the SHOW ALERT command
	15-11 Alert Fields for SHOW ALERT
	15-12 Fields for Health Monitor Runs
	15-13 Flags for SHOW INCIDENT command
	15-14 Incident Fields for SHOW INCIDENT
	15-15 Flags for SHOW PROBLEM command
	15-16 Problem Fields for SHOW PROBLEM
	15-17 Arguments for SHOW TRACEFILE Command
	15-18 Flags for SHOW TRACEFILE Command
	17-1 Parameters for the DBNEWID Utility
	19-1 DBMS_METADATA Procedures Used for Retrieving Multiple Objects
	19-2 DBMS_METADATA Procedures Used for the Browsing Interface
	19-3 DBMS_METADATA Procedures and Functions for Submitting XML Data
	20-1 Privileges Required to Import Objects into Your Own Schema
	20-2 Privileges Required to Import Grants
	20-3 Objects Exported and Imported in Each Mode
	20-4 Sequence of Events During Updates by Two Users
	20-5 Maximum Size for Dump Files
	20-6 Exit Codes for Export and Import
	20-7 Using Different Releases of Export and Import
	21-1 EMCA Command-Line Operations
	21-2 EMCA Command-Line Flags
	21-3 EMCA Command-Line Parameters

Preface

This document describes how to use the Oracle Database utilities for data transfer, data maintenance, and database administration. The preface contains these topics:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Conventions

Audience

The utilities described in this book are intended for database administrators (DBAs), application programmers, security administrators, system operators, and other Oracle users who perform the following tasks:

	
Archive data, back up an Oracle database, or move data between Oracle databases using the Export and Import utilities (both the original versions and the Data Pump versions)

	
Load data into Oracle tables from operating system files using SQL*Loader, or from external sources using the external tables feature

	
Perform a physical data structure integrity check on an offline database, using the DBVERIFY utility

	
Maintain the internal database identifier (DBID) and the database name (DBNAME) for an operational database, using the DBNEWID utility

	
Extract and manipulate complete representations of the metadata for database objects, using the Metadata API

	
Query and analyze redo log files (through a SQL interface), using the LogMiner utility

To use this manual, you need a working knowledge of SQL and of Oracle fundamentals. You can find such information in Oracle Database Concepts. In addition, to use SQL*Loader, you must know how to use the file management facilities of your operating system.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible, with good usability, to the disabled community. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services

Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services within the United States of America 24 hours a day, 7 days a week. For TTY support, call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documentation

For more information, see these Oracle resources:

The Oracle Database documentation set, especially:

	
Oracle Database Concepts

	
Oracle Database SQL Language Reference

	
Oracle Database Administrator's Guide

	
Oracle Database PL/SQL Packages and Types Reference

Some of the examples in this book use the sample schemas of the seed database, which is installed by default when you install Oracle Database. Refer to Oracle Database Sample Schemas for information about how these schemas were created and how you can use them yourself.

Oracle error message documentation is only available in HTML. If you only have access to the Oracle Database Documentation CD, you can browse the error messages by range. Once you find the specific range, use your browser's "find in page" feature to locate the specific message. When connected to the Internet, you can search for a specific error message using the error message search feature of the Oracle online documentation.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other collateral, please visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at

http://www.oracle.com/technology

If you already have a username and password for OTN, then you can go directly to the documentation section of the OTN Web site at

http://www.oracle.com/technology

Syntax Diagrams

Syntax descriptions are provided in this book for various SQL, PL/SQL, or other command-line constructs in graphic form or Backus Naur Form (BNF). See Oracle Database SQL Language Reference for information about how to interpret these descriptions.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
	italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
	monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.

What's New in Database Utilities?

This section describes new features of the Oracle Database 11g utilities, and provides pointers to additional information. For information about features that were introduced in earlier releases of Oracle Database, refer to the documentation for those releases.

New Features in Oracle Database 11g Release 1

This section lists the major new features that have been added for Oracle Database 11g Release 1 (11.1).

Data Pump Export and Data Pump Import

For the Data Pump Export and Data Pump Import products, new features have been added that allow you to do the following:

	
Compress both data and metadata, only data, only metadata, or no data during an export. See COMPRESSION.

	
Specify additional encryption options in the following areas:

	
You can choose to encrypt both data and metadata, only data, only metadata, no data, or only encrypted columns during an export. See ENCRYPTION.

	
You can specify a specific encryption algorithm to use during an export. See ENCRYPTION_ALGORITHM.

	
You can specify the type of security to use for performing encryption and decryption during an export. For example, perhaps the dump file set will be imported into a different or remote database and it must remain secure in transit. Or perhaps the dump file set will be imported onsite using the Oracle Encryption Wallet but it may also need to be imported offsite where the Oracle Encryption Wallet is not available. See ENCRYPTION_MODE.

	
Perform table mode exports and imports using the transportable method. For information on using this feature during export, see the export TRANSPORTABLE parameter. For information on using this feature during import, see the import TRANSPORTABLE parameter.

	
Specify how partitioned tables should be handled during import operations. See PARTITION_OPTIONS for a description of using this parameter during an import.

	
Overwrite existing dump files during an export operation. See REUSE_DUMPFILES.

	
Rename tables during an import operation. See REMAP_TABLE.

	
Specify that a data load should proceed even if non-deferred constraint violations are encountered. This is valid only for import operations that use the external tables access method. See the import DATA_OPTIONS parameter.

	
Specify that XMLType columns are to be exported in uncompressed CLOB format regardless of the XMLType storage format that was defined for them. See the export DATA_OPTIONS parameter.

	
During an export, specify a remap function that takes as a source the original value of the designated column and returns a remapped value that will replace the original value in the dump file. See the export REMAP_DATA parameter.

	
During an import, remap data as it is being loaded into a new database. See the import REMAP_DATA parameter.

	
Automatic restart of workers on the same instance.

Additionally, Data Pump will now perform a one-time automatic restart of workers (on the same instance) that have stopped due to certain errors. For example, if someone manually stops a process, the worker is automatically restarted one time, on the same instance. If the process stops a second time, it must be manually restarted.

External Tables

For the External Tables functionality, the following new features have been added:

	
Ability to compress data before it is written to the dump file set. See COMPRESSION.

	
Ability to encrypt data before it is written to the dump file set. See ENCRYPTION.

LogMiner Utility

LogMiner now provides the following additional support:

	
The LogMiner utility now supports XMLType data when it is stored in CLOB format.

See Supported Datatypes and Table Storage Attributes.

Automatic Diagnostic Repository Command Interpreter (ADRCI)

The Automatic Diagnostic Repository Command Interpreter (ADRCI) provides a way for you to work with the diagnostic data contained in the Automatic Diagnostic Repository (ADR). The ADR is a file-based repository for database diagnostic data, such as traces, dumps, the alert log, health monitor reports, and more. It has a unified directory structure across multiple instances and multiple products.

See Chapter 15, "ADRCI: ADR Command Interpreter" for more information.

Enterprise Manager Configuration Assistant (EMCA)

The Enterprise Manager Configuration Assistant (EMCA) is now documented in this book. Prior to Oracle Database 11g Release 1, it was documented in Oracle Enterprise Manager Advanced Configuration. The EMCA provides a command-line interface for configuring Database Control.

See Chapter 21, "Enterprise Manager Configuration Assistant (EMCA)" for more information.

Part I

Oracle Data Pump

This part contains the following chapters:

	
Chapter 1, "Overview of Oracle Data Pump"

This chapter provides an overview of Oracle Data Pump technology, which enables very high-speed movement of data and metadata from one database to another.

	
Chapter 2, "Data Pump Export"

This chapter describes the Oracle Data Pump Export utility, which is used to unload data and metadata into a set of operating system files called a dump file set.

	
Chapter 3, "Data Pump Import"

This chapter describes the Oracle Data Pump Import utility, which is used to load an export dump file set into a target system. It also describes how to perform a network import to load a target database directly from a source database with no intervening files.

	
Chapter 4, "Data Pump Performance"

This chapter discusses why the performance of Data Pump Export and Import is better than that of original Export and Import. It also suggests specific steps you can take to enhance performance of export and import operations.

	
Chapter 5, "The Data Pump API"

This chapter describes how the Data Pump API, DBMS_DATAPUMP, works.

1 Overview of Oracle Data Pump

Oracle Data Pump technology enables very high-speed movement of data and metadata from one database to another.

This chapter discusses the following topics:

	
Data Pump Components

	
How Does Data Pump Move Data?

	
What Happens During Execution of a Data Pump Job?

	
Monitoring Job Status

	
File Allocation

	
Moving Data Between Different Database Versions

Data Pump Components

Oracle Data Pump is made up of three distinct parts:

	
The command-line clients, expdp and impdp

	
The DBMS_DATAPUMP PL/SQL package (also known as the Data Pump API)

	
The DBMS_METADATA PL/SQL package (also known as the Metadata API)

The Data Pump clients, expdp and impdp, invoke the Data Pump Export utility and Data Pump Import utility, respectively. They provide a user interface that closely resembles the original Export (exp) and Import (imp) utilities.

	
Note:

Dump files generated by the Data Pump Export utility are not compatible with dump files generated by the original Export utility. Therefore, files generated by the original Export (exp) utility cannot be imported with the Data Pump Import (impdp) utility.
In most cases, Oracle recommends that you use the Data Pump Export and Import utilities. They provide enhanced data movement performance in comparison to the original Export and Import utilities.

See Chapter 20, "Original Export and Import" for information about situations in which you should still use the original Export and Import utilities.

The expdp and impdp clients use the procedures provided in the DBMS_DATAPUMP PL/SQL package to execute export and import commands, using the parameters entered at the command-line. These parameters enable the exporting and importing of data and metadata for a complete database or for subsets of a database.

When metadata is moved, Data Pump uses functionality provided by the DBMS_METADATA PL/SQL package. The DBMS_METADATA package provides a centralized facility for the extraction, manipulation, and resubmission of dictionary metadata.

The DBMS_DATAPUMP and DBMS_METADATA PL/SQL packages can be used independently of the Data Pump clients.

	
Note:

All Data Pump Export and Import processing, including the reading and writing of dump files, is done on the system (server) selected by the specified database connect string. This means that, for nonprivileged users, the database administrator (DBA) must create directory objects for the Data Pump files that are read and written on that server file system. For privileged users, a default directory object is available. See Default Locations for Dump, Log, and SQL Files for more information about directory objects.

	
Note:

Data Pump Export and Import are not supported on physical or logical standby databases except for initial table instantiation on a logical standby.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for descriptions of the DBMS_DATAPUMP and DBMS_METADATA packages

How Does Data Pump Move Data?

Data Pump uses four mechanisms for moving data in and out of databases. They are as follows, in order of decreasing speed:

	
Data file copying

	
Direct path

	
External tables

	
Network link import

	
Note:

Data Pump will not load tables with disabled unique indexes. If the data needs to be loaded into the table, the indexes must be either dropped or reenabled.

	
Note:

There are a few situations in which Data Pump will not be able to load data into a table using either direct path or external tables. This occurs when there are conflicting table attributes. For example, a conflict occurs if a table contains a column of datatype LONG (which requires the direct path access method) but also has a condition that prevents use of direct path access. In such cases, an ORA-39242 error message is generated. To work around this, prior to import, create the table with a LOB column instead of a LONG column. You can then perform the import and use the TABLE_EXISTS_ACTION parameter with a value of either APPEND or TRUNCATE.

The following sections briefly explain how and when each of these data movement mechanisms is used.

Using Data File Copying to Move Data

The fastest method of moving data is to copy the database data files to the target database without interpreting or altering the data. With this method, Data Pump Export is used to unload only structural information (metadata) into the dump file. This method is used in the following situations:

	
The TRANSPORT_TABLESPACES parameter is used to specify a transportable mode export. Only metadata for the specified tablespaces is exported.

	
The TRANSPORTABLE=ALWAYS parameter is supplied on a table mode export (specified with the TABLES parameter). Only metadata for the tables, partitions, and subpartitions specified on the TABLES parameter is exported.

When an export operation uses data file copying, the corresponding import job always also uses data file copying. During the ensuing import operation, you will be loading both the data files and the export dump file.

When data is moved by using data file copying, the character sets must be identical on both the source and target databases. Therefore, in addition to copying the data, you may need to prepare it by using the Recovery Manager (RMAN) CONVERT command to perform some data conversions. You can generally do this at either the source or target database.

	
See Also:

	
Oracle Database Backup and Recovery Reference for information about the RMAN CONVERT command

	
Oracle Database Administrator's Guide for a description and example (including how to convert the data) of transporting tablespaces between databases

Using Direct Path to Move Data

After data file copying, direct path is the fastest method of moving data. In this method, the SQL layer of the database is bypassed and rows are moved to and from the dump file with only minimal interpretation. Data Pump automatically uses the direct path method for loading and unloading data when the structure of a table allows it. Note that if the table has any columns of datatype LONG, then direct path must be used.

The following sections describe situations in which direct path cannot be used for loading and unloading.

Situations in Which Direct Path Load Is Not Used

If any of the following conditions exist for a table, Data Pump uses external tables rather than direct path to load the data for that table:

	
A global index on multipartition tables exists during a single-partition load. This includes object tables that are partitioned.

	
A domain index exists for a LOB column.

	
A table is in a cluster.

	
There is an active trigger on a pre-existing table.

	
Fine-grained access control is enabled in insert mode on a pre-existing table.

	
A table contains BFILE columns or columns of opaque types.

	
A referential integrity constraint is present on a pre-existing table.

	
A table contains VARRAY columns with an embedded opaque type.

	
The table has encrypted columns

	
The table into which data is being imported is a pre-existing table and at least one of the following conditions exists:

	
There is an active trigger

	
The table is partitioned

	
Fine-grained access control is in insert mode

	
A referential integrity constraint exists

	
A unique index exists

	
Supplemental logging is enabled and the table has at least one LOB column.

	
The Data Pump command for the specified table used the QUERY, SAMPLE, or REMAP_DATA parameter.

Situations in Which Direct Path Unload Is Not Used

If any of the following conditions exist for a table, Data Pump uses the external table method to unload data, rather than direct path:

	
Fine-grained access control for SELECT is enabled.

	
The table is a queue table.

	
The table contains one or more columns of type BFILE or opaque, or an object type containing opaque columns.

	
The table contains encrypted columns.

	
The table contains a column of an evolved type that needs upgrading.

	
The table contains a column of type LONG or LONG RAW that is not last.

	
The Data Pump command for the specified table used the QUERY, SAMPLE, or REMAP_DATA parameter.

Using External Tables to Move Data

When data file copying is not selected and the data cannot be moved using direct path, the external table mechanism is used. The external table mechanism creates an external table that maps to the dump file data for the database table. The SQL engine is then used to move the data. If possible, the APPEND hint is used on import to speed the copying of the data into the database. The representation of data for direct path data and external table data is the same in a dump file. Therefore, Data Pump might use the direct path mechanism at export time, but use external tables when the data is imported into the target database. Similarly, Data Pump might use external tables for the export, but use direct path for the import.

In particular, Data Pump uses external tables in the following situations:

	
Loading and unloading very large tables and partitions in situations where parallel SQL can be used to advantage

	
Loading tables with global or domain indexes defined on them, including partitioned object tables

	
Loading tables with active triggers or clustered tables

	
Loading and unloading tables with encrypted columns

	
Loading tables with fine-grained access control enabled for inserts

	
Loading tables that are partitioned differently at load time and unload time

	
Note:

When Data Pump uses external tables as the data access mechanism, it uses the ORACLE_DATAPUMP access driver. However, it is important to understand that the files that Data Pump creates when it uses external tables are not compatible with files created when you manually create an external table using the SQL CREATE TABLE ... ORGANIZATION EXTERNAL statement. One of the reasons for this is that a manually created external table unloads only data (no metadata), whereas Data Pump maintains both data and metadata information for all objects involved.

	
See Also:

Chapter 14, "The ORACLE_DATAPUMP Access Driver"

When the Export NETWORK_LINK parameter is used to specify a network link for an export operation, a variant of the external tables method is used. In this case, data is selected from across the specified network link and inserted into the dump file using an external table.

	
See Also:

	
NETWORK_LINK for information about using the Export NETWORK_LINK parameter

	
Oracle Database SQL Language Reference for information about using the APPEND hint

Using Network Link Import to Move Data

When the Import NETWORK_LINK parameter is used to specify a network link for an import operation, SQL is directly used to move the data using an INSERT SELECT statement. The SELECT clause retrieves the data from the remote database over the network link. The INSERT clause uses SQL to insert the data into the target database. There are no dump files involved.

When you perform an export over a database link, the data from the source database instance is written to dump files on the connected database instance. The source database can be a read-only database.

Because the link can identify a remotely networked database, the terms database link and network link are used interchangeably.

Because reading over a network is generally slower than reading from a disk, network link is the slowest of the four access methods used by Data Pump and may be undesirable for very large jobs.

Supported Link Types

The following types of database links are supported for use with Data Pump Export and Import:

	
Public (both public and shared)

	
Fixed-user

	
Connected user

Unsupported Link Types

The database link type, Current User, is not supported for use with Data Pump Export or Import:

	
See Also:

	
The Export NETWORK_LINK parameter for information about performing exports over a database link

	
The Import NETWORK_LINK parameter for information about performing imports over a database link

	
Oracle Database SQL Language Reference for information about database links

What Happens During Execution of a Data Pump Job?

Data Pump jobs use a master table, a master process, and worker processes to perform the work and keep track of progress.

Coordination of a Job

For every Data Pump Export job and Data Pump Import job, a master process is created. The master process controls the entire job, including communicating with the clients, creating and controlling a pool of worker processes, and performing logging operations.

Tracking Progress Within a Job

While the data and metadata are being transferred, a master table is used to track the progress within a job. The master table is implemented as a user table within the database. The specific function of the master table for export and import jobs is as follows:

	
For export jobs, the master table records the location of database objects within a dump file set. Export builds and maintains the master table for the duration of the job. At the end of an export job, the content of the master table is written to a file in the dump file set.

	
For import jobs, the master table is loaded from the dump file set and is used to control the sequence of operations for locating objects that need to be imported into the target database.

The master table is created in the schema of the current user performing the export or import operation. Therefore, that user must have the CREATE TABLE system privilege and a sufficient tablespace quota for creation of the master table. The name of the master table is the same as the name of the job that created it. Therefore, you cannot explicitly give a Data Pump job the same name as a preexisting table or view.

For all operations, the information in the master table is used to restart a job.

The master table is either retained or dropped, depending on the circumstances, as follows:

	
Upon successful job completion, the master table is dropped.

	
If a job is stopped using the STOP_JOB interactive command, the master table is retained for use in restarting the job.

	
If a job is killed using the KILL_JOB interactive command, the master table is dropped and the job cannot be restarted.

	
If a job terminates unexpectedly, the master table is retained. You can delete it if you do not intend to restart the job.

	
If a job stops before it starts running (that is, before any database objects have been copied), the master table is dropped.

	
See Also:

JOB_NAME for more information about how job names are formed.

Filtering Data and Metadata During a Job

Within the master table, specific objects are assigned attributes such as name or owning schema. Objects also belong to a class of objects (such as TABLE, INDEX, or DIRECTORY). The class of an object is called its object type. You can use the EXCLUDE and INCLUDE parameters to restrict the types of objects that are exported and imported. The objects can be based upon the name of the object or the name of the schema that owns the object. You can also specify data-specific filters to restrict the rows that are exported and imported.

	
See Also:

	
Filtering During Export Operations

	
Filtering During Import Operations

Transforming Metadata During a Job

When you are moving data from one database to another, it is often useful to perform transformations on the metadata for remapping storage between tablespaces or redefining the owner of a particular set of objects. This is done using the following Data Pump Import parameters: REMAP_DATAFILE, REMAP_SCHEMA, REMAP_TABLE,REMAP_TABLESPACE, TRANSFORM and PARTITION_OPTIONS.

Maximizing Job Performance

Data Pump can employ multiple worker processes, running in parallel, to job increase performance. Use the PARALLEL parameter to set a degree of parallelism that takes maximum advantage of current conditions. For example, to limit the effect of a job on a production system, the database administrator (DBA) might wish to restrict the parallelism. The degree of parallelism can be reset at any time during a job. For example, PARALLEL could be set to 2 during production hours to restrict a particular job to only two degrees of parallelism, and during nonproduction hours it could be reset to 8. The parallelism setting is enforced by the master process, which allocates work to be executed to worker processes that perform the data and metadata processing within an operation. These worker processes operate in parallel. In general, the degree of parallelism should be set to no more than twice the number of CPUs on an instance.

	
Note:

The ability to adjust the degree of parallelism is available only in the Enterprise Edition of Oracle Database.

Loading and Unloading of Data

The worker processes are the ones that actually unload and load metadata and table data in parallel. Worker processes are created as needed until the number of worker processes is equal to the value supplied for the PARALLEL command-line parameter. The number of active worker processes can be reset throughout the life of a job.

	
Note:

The value of PARALLEL is restricted to 1 in the Standard Edition of Oracle Database.

When a worker process is assigned the task of loading or unloading a very large table or partition, it may choose to use the external tables access method to make maximum use of parallel execution. In such a case, the worker process becomes a parallel execution coordinator. The actual loading and unloading work is divided among some number of parallel I/O execution processes (sometimes called slaves) allocated from the Oracle RAC-wide pool of parallel I/O execution processes.

	
See Also:

	
The Export PARALLEL parameter

	
The Import PARALLEL parameter

Monitoring Job Status

The Data Pump Export and Import utilities can be attached to a job in either interactive-command mode or logging mode. In logging mode, real-time detailed status about the job is automatically displayed during job execution. The information displayed can include the job and parameter descriptions, an estimate of the amount of data to be exported, a description of the current operation or item being processed, files used during the job, any errors encountered, and the final job state (Stopped or Completed).

	
See Also:

	
The Export STATUS parameter for information about changing the frequency of the status display in command-line Export

	
The Import STATUS parameter for information about changing the frequency of the status display in command-line Import

Job status can be displayed on request in interactive-command mode. The information displayed can include the job description and state, a description of the current operation or item being processed, files being written, and a cumulative status.

	
See Also:

	
The interactive Export STATUS command

	
The interactive Import STATUS command

A log file can also be optionally written during the execution of a job. The log file summarizes the progress of the job, lists any errors that were encountered along the way, and records the completion status of the job.

	
See Also:

	
The Export LOGFILE parameter for information on how to set the file specification for an export log file

	
The Import LOGFILE parameter for information on how to set the file specification for a import log file

An alternative way to determine job status or to get other information about Data Pump jobs, would be to query the DBA_DATAPUMP_JOBS, USER_DATAPUMP_JOBS, or DBA_DATAPUMP_SESSIONS views. See Oracle Database Reference for descriptions of these views.

Monitoring the Progress of Executing Jobs

Data Pump operations that transfer table data (export and import) maintain an entry in the V$SESSION_LONGOPS dynamic performance view indicating the job progress (in megabytes of table data transferred). The entry contains the estimated transfer size and is periodically updated to reflect the actual amount of data transferred.

Use of the COMPRESSION, ENCRYPTION, ENCRYPTION_ALGORITHM, ENCRYPTION_MODE, ENCRYPTION_PASSWORD, QUERY, REMAP_DATA, and SAMPLE parameters will not be reflected in the determination of estimate values.

The usefulness of the estimate value for export operations depends on the type of estimation requested when the operation was initiated, and it is updated as required if exceeded by the actual transfer amount. The estimate value for import operations is exact.

The V$SESSION_LONGOPS columns that are relevant to a Data Pump job are as follows:

	
USERNAME - job owner

	
OPNAME - job name

	
TARGET_DESC - job operation

	
SOFAR - megabytes (MB) transferred thus far during the job

	
TOTALWORK - estimated number of megabytes (MB) in the job

	
UNITS - 'MB'

	
MESSAGE - a formatted status message of the form:

'job_name: operation_name : nnn out of mmm MB done'

File Allocation

Data Pump jobs manage the following types of files:

	
Dump files to contain the data and metadata that is being moved

	
Log files to record the messages associated with an operation

	
SQL files to record the output of a SQLFILE operation. A SQLFILE operation is invoked using the Data Pump Import SQLFILE parameter and results in all of the SQL DDL that Import will be executing based on other parameters, being written to a SQL file.

	
Files specified by the DATA_FILES parameter during a transportable import.

An understanding of how Data Pump allocates and handles these files will help you to use Export and Import to their fullest advantage.

Specifying Files and Adding Additional Dump Files

For export operations, you can specify dump files at the time the job is defined, as well as at a later time during the operation. For example, if you discover that space is running low during an export operation, you can add additional dump files by using the Data Pump Export ADD_FILE command in interactive mode.

For import operations, all dump files must be specified at the time the job is defined.

Log files and SQL files will overwrite previously existing files. For dump files, you can use the Export REUSE_DUMPFILES parameter to specify whether or not to overwrite a preexisting dump file.

Default Locations for Dump, Log, and SQL Files

Because Data Pump is server-based, rather than client-based, dump files, log files, and SQL files are accessed relative to server-based directory paths. Data Pump requires you to specify directory paths as directory objects. A directory object maps a name to a directory path on the file system.

For example, the following SQL statement creates a directory object named dpump_dir1 that is mapped to a directory located at /usr/apps/datafiles.

SQL> CREATE DIRECTORY dpump_dir1 AS '/usr/apps/datafiles';

The reason that a directory object is required is to ensure data security and integrity. For example:

	
If you were allowed to specify a directory path location for an input file, you might be able to read data that the server has access to, but to which you should not.

	
If you were allowed to specify a directory path location for an output file, the server might overwrite a file that you might not normally have privileges to delete.

On Unix and Windows NT systems, a default directory object, DATA_PUMP_DIR, is created at database creation or whenever the database dictionary is upgraded. By default, it is available only to privileged users.

If you are not a privileged user, before you can run Data Pump Export or Data Pump Import, a directory object must be created by a database administrator (DBA) or by any user with the CREATE ANY DIRECTORY privilege.

After a directory is created, the user creating the directory object needs to grant READ or WRITE permission on the directory to other users. For example, to allow the Oracle database to read and write files on behalf of user hr in the directory named by dpump_dir1, the DBA must execute the following command:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir1 TO hr;

Note that READ or WRITE permission to a directory object only means that the Oracle database will read or write that file on your behalf. You are not given direct access to those files outside of the Oracle database unless you have the appropriate operating system privileges. Similarly, the Oracle database requires permission from the operating system to read and write files in the directories.

Data Pump Export and Import use the following order of precedence to determine a file's location:

	
If a directory object is specified as part of the file specification, then the location specified by that directory object is used. (The directory object must be separated from the filename by a colon.)

	
If a directory object is not specified for a file, then the directory object named by the DIRECTORY parameter is used.

	
If a directory object is not specified, and if no directory object was named by the DIRECTORY parameter, then the value of the environment variable, DATA_PUMP_DIR, is used. This environment variable is defined using operating system commands on the client system where the Data Pump Export and Import utilities are run. The value assigned to this client-based environment variable must be the name of a server-based directory object, which must first be created on the server system by a DBA. For example, the following SQL statement creates a directory object on the server system. The name of the directory object is DUMP_FILES1, and it is located at '/usr/apps/dumpfiles1'.

SQL> CREATE DIRECTORY DUMP_FILES1 AS '/usr/apps/dumpfiles1';

Then, a user on a UNIX-based client system using csh can assign the value DUMP_FILES1 to the environment variable DATA_PUMP_DIR. The DIRECTORY parameter can then be omitted from the command line. The dump file employees.dmp, as well as the log file export.log, will be written to '/usr/apps/dumpfiles1'.

%setenv DATA_PUMP_DIR DUMP_FILES1
%expdp hr TABLES=employees DUMPFILE=employees.dmp

	
If none of the previous three conditions yields a directory object and you are a privileged user, then Data Pump attempts to use the value of the default server-based directory object, DATA_PUMP_DIR. This directory object is automatically created at database creation or when the database dictionary is upgraded. You can use the following SQL query to see the path definition for DATA_PUMP_DIR:

SQL> SELECT directory_name, directory_path FROM dba_directories
2 WHERE directory_name='DATA_PUMP_DIR';

If you are not a privileged user, access to the DATA_PUMP_DIR directory object must have previously been granted to you by a DBA.

Do not confuse the default DATA_PUMP_DIR directory object with the client-based environment variable of the same name.

Using Directory Objects When Automatic Storage Management Is Enabled

If you use Data Pump Export or Import with Automatic Storage Management (ASM) enabled, you must define the directory object used for the dump file so that the ASM disk-group name is used (instead of an operating system directory path). A separate directory object, which points to an operating system directory path, should be used for the log file. For example, you would create a directory object for the ASM dump file as follows:

SQL> CREATE or REPLACE DIRECTORY dpump_dir as '+DATAFILES/';

Then you would create a separate directory object for the log file:

SQL> CREATE or REPLACE DIRECTORY dpump_log as '/homedir/user1/';

To enable user hr to have access to these directory objects, you would assign the necessary privileges, for example:

SQL> GRANT READ, WRITE ON DIRECTORY dpump_dir TO hr;
SQL> GRANT READ, WRITE ON DIRECTORY dpump_log TO hr;

You would then use the following Data Pump Export command (you will be prompted for a password):

> expdp hr DIRECTORY=dpump_dir DUMPFILE=hr.dmp LOGFILE=dpump_log:hr.log

	
See Also:

	
The Export DIRECTORY parameter

	
The Import DIRECTORY parameter

	
Oracle Database SQL Language Reference for information about the CREATE DIRECTORY command

	
Oracle Database Administrator's Guide for more information about Automatic Storage Management (ASM)

Setting Parallelism

For export and import operations, the parallelism setting (specified with the PARALLEL parameter) should be less than or equal to the number of dump files in the dump file set. If there are not enough dump files, the performance will not be optimal because multiple threads of execution will be trying to access the same dump file.

The PARALLEL parameter is valid only in the Enterprise Edition of Oracle Database.

Using Substitution Variables

Instead of, or in addition to, listing specific filenames, you can use the DUMPFILE parameter during export operations to specify multiple dump files, by using a substitution variable (%U) in the filename. This is called a dump file template. The new dump files are created as they are needed, beginning with 01 for %U, then using 02, 03, and so on. Enough dump files are created to allow all processes specified by the current setting of the PARALLEL parameter to be active. If one of the dump files becomes full because its size has reached the maximum size specified by the FILESIZE parameter, it is closed, and a new dump file (with a new generated name) is created to take its place.

If multiple dump file templates are provided, they are used to generate dump files in a round-robin fashion. For example, if expa%U, expb%U, and expc%U were all specified for a job having a parallelism of 6, the initial dump files created would be expa01.dmp, expb01.dmp, expc01.dmp, expa02.dmp, expb02.dmp, and expc02.dmp.

For import and SQLFILE operations, if dump file specifications expa%U, expb%U, and expc%U are specified, then the operation will begin by attempting to open the dump files expa01.dmp, expb01.dmp, and expc01.dmp. It is possible for the master table to span multiple dump files, so until all pieces of the master table are found, dump files continue to be opened by incrementing the substitution variable and looking up the new filenames (for example, expa02.dmp, expb02.dmp, and expc02.dmp). If a dump file does not exist, the operation stops incrementing the substitution variable for the dump file specification that was in error. For example, if expb01.dmp and expb02.dmp are found but expb03.dmp is not found, then no more files are searched for using the expb%U specification. Once the entire master table is found, it is used to determine whether all dump files in the dump file set have been located.

Moving Data Between Different Database Versions

Because most Data Pump operations are performed on the server side, if you are using any version of the database other than COMPATIBLE, you must provide the server with specific version information. Otherwise, errors may occur. To specify version information, use the VERSION parameter.

	
See Also:

	
The Export VERSION parameter

	
The Import VERSION parameter

Keep the following information in mind when you are using Data Pump Export and Import to move data between different database versions:

	
If you specify a database version that is older than the current database version, certain features may be unavailable. For example, specifying VERSION=10.1 will cause an error if data compression is also specified for the job because compression was not supported in 10.1.

	
On a Data Pump export, if you specify a database version that is older than the current database version, then a dump file set is created that you can import into that older version of the database. However, the dump file set will not contain any objects that the older database version does not support. For example, if you export from a version 10.2 database to a version 10.1 database, comments on indextypes will not be exported into the dump file set.

	
Data Pump Import can always read dump file sets created by older versions of the database.

	
Data Pump Import cannot read dump file sets created by a database version that is newer than the current database version, unless those dump file sets were created with the version parameter set to the version of the target database. Therefore, the best way to perform a downgrade is to perform your Data Pump export with the VERSION parameter set to the version of the target database.

	
When operating across a network link, Data Pump requires that the remote database version be either the same as the local database or one version older, at the most. For example, if the local database is version 11.1, the remote database must be either version 10.2 or 11.1.

2 Data Pump Export

This chapter describes the Oracle Data Pump Export utility. The following topics are discussed:

	
What Is Data Pump Export?

	
Invoking Data Pump Export

	
Filtering During Export Operations

	
Parameters Available in Export's Command-Line Mode

	
How Data Pump Export Parameters Map to Those of the Original Export Utility

	
Commands Available in Export's Interactive-Command Mode

	
Examples of Using Data Pump Export

	
Syntax Diagrams for Data Pump Export

What Is Data Pump Export?

	
Note:

Although Data Pump Export (expdp) functionality is similar to that of the original Export utility (exp), they are completely separate utilities and their files are not compatible. See Chapter 20, "Original Export and Import" for a description of the original Export utility.

Data Pump Export (hereinafter referred to as Export for ease of reading) is a utility for unloading data and metadata into a set of operating system files called a dump file set. The dump file set can be imported only by the Data Pump Import utility. The dump file set can be imported on the same system or it can be moved to another system and loaded there.

The dump file set is made up of one or more disk files that contain table data, database object metadata, and control information. The files are written in a proprietary, binary format. During an import operation, the Data Pump Import utility uses these files to locate each database object in the dump file set.

Because the dump files are written by the server, rather than by the client, the data base administrator (DBA) must create directory objects. See Default Locations for Dump, Log, and SQL Files for more information about directory objects.

Data Pump Export enables you to specify that a job should move a subset of the data and metadata, as determined by the export mode. This is done using data filters and metadata filters, which are specified through Export parameters. See Filtering During Export Operations.

To see some examples of the various ways in which you can use Data Pump Export, refer to Examples of Using Data Pump Export.

Invoking Data Pump Export

The Data Pump Export utility is invoked using the expdp command. The characteristics of the export operation are determined by the Export parameters you specify. These parameters can be specified either on the command line or in a parameter file.

	
Note:

Do not invoke Export as SYSDBA, except at the request of Oracle technical support. SYSDBA is used internally and has specialized functions; its behavior is not the same as for general users.

The following sections contain more information about invoking Export:

	
Data Pump Export Interfaces

	
Data Pump Export Modes

	
Network Considerations

	
Note:

It is not possible to start or restart Data Pump jobs on one instance in an Oracle Real Application Clusters (RAC) environment if there are Data Pump jobs currently running on other instances in the Oracle RAC environment.

Data Pump Export Interfaces

You can interact with Data Pump Export by using a command line, a parameter file, or an interactive-command mode.

	
Command-Line Interface: Enables you to specify most of the Export parameters directly on the command line. For a complete description of the parameters available in the command-line interface, see Parameters Available in Export's Command-Line Mode.

	
Parameter File Interface: Enables you to specify command-line parameters in a parameter file. The only exception is the PARFILE parameter, because parameter files cannot be nested. The use of parameter files is recommended if you are using parameters whose values require quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

	
Interactive-Command Interface: Stops logging to the terminal and displays the Export prompt, from which you can enter various commands, some of which are specific to interactive-command mode. This mode is enabled by pressing Ctrl+C during an export operation started with the command-line interface or the parameter file interface. Interactive-command mode is also enabled when you attach to an executing or stopped job.

For a complete description of the commands available in interactive-command mode, see Commands Available in Export's Interactive-Command Mode.

Data Pump Export Modes

Export provides different modes for unloading different portions of the database. The mode is specified on the command line, using the appropriate parameter. The available modes are as follows:

	
Full Export Mode

	
Schema Mode

	
Table Mode

	
Tablespace Mode

	
Transportable Tablespace Mode

	
Note:

A number of system schemas cannot be exported because they are not user schemas; they contain Oracle-managed data and metadata. Examples of system schemas that are not exported include SYS, ORDSYS, and MDSYS.

	
See Also:

Examples of Using Data Pump Export

Full Export Mode

A full export is specified using the FULL parameter. In a full database export, the entire database is unloaded. This mode requires that you have the EXP_FULL_DATABASE role.

	
See Also:

FULL for a description of the Export FULL parameter

Schema Mode

A schema export is specified using the SCHEMAS parameter. This is the default export mode. If you have the EXP_FULL_DATABASE role, then you can specify a list of schemas and optionally include the schema definitions themselves, as well as system privilege grants to those schemas. If you do not have the EXP_FULL_DATABASE role, you can export only your own schema.

The SYS schema cannot be used as a source schema for export jobs.

Cross-schema references are not exported unless the referenced schema is also specified in the list of schemas to be exported. For example, a trigger defined on a table within one of the specified schemas, but that resides in a schema not explicitly specified, is not exported. This is also true for external type definitions upon which tables in the specified schemas depend. In such a case, it is expected that the type definitions already exist in the target instance at import time.

	
See Also:

SCHEMAS for a description of the Export SCHEMAS parameter

Table Mode

A table mode export is specified using the TABLES parameter. In table mode, only a specified set of tables, partitions, and their dependent objects are unloaded.

If you specify the TRANSPORTABLE=ALWAYS parameter in conjunction with the TABLES parameter, then only object metadata is unloaded. To move the actual data, you copy the data files to the target database. This results in quicker export times. If you are moving data files between versions or platforms, the data files may need to be processed by Oracle Recovery Manager (RMAN).

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information on transporting data across platforms

You must have the EXP_FULL_DATABASE role to specify tables that are not in your own schema. All specified tables must reside in a single schema. Note that type definitions for columns are not exported in table mode. It is expected that the type definitions already exist in the target instance at import time. Also, as in schema exports, cross-schema references are not exported.

	
See Also:

	
TABLES for a description of the Export TABLES parameter

	
TRANSPORTABLE for a description of the Export TRANSPORTABLE parameter

Tablespace Mode

A tablespace export is specified using the TABLESPACES parameter. In tablespace mode, only the tables contained in a specified set of tablespaces are unloaded. If a table is unloaded, its dependent objects are also unloaded. Both object metadata and data are unloaded. In tablespace mode, if any part of a table resides in the specified set, then that table and all of its dependent objects are exported. Privileged users get all tables. Nonprivileged users get only the tables in their own schemas.

	
See Also:

	
TABLESPACES for a description of the Export TABLESPACES parameter

Transportable Tablespace Mode

A transportable tablespace export is specified using the TRANSPORT_TABLESPACES parameter. In transportable tablespace mode, only the metadata for the tables (and their dependent objects) within a specified set of tablespaces is exported. The tablespace datafiles are copied in a separate operation. Then, a transportable tablespace import is performed to import the dump file containing the metadata and to specify the datafiles to use.

Transportable tablespace mode requires that the specified tables be completely self-contained. That is, all storage segments of all tables (and their indexes) defined within the tablespace set must also be contained within the set. If there are self-containment violations, Export identifies all of the problems without actually performing the export.

Transportable tablespace exports cannot be restarted once stopped. Also, they cannot have a degree of parallelism greater than 1.

Encrypted columns are not supported in transportable tablespace mode.

	
Note:

You cannot export transportable tablespaces and then import them into a database at a lower release level. The target database must be at the same or higher release level as the source database.

	
See Also:

	
TRANSPORT_FULL_CHECK

	
TRANSPORT_TABLESPACES

	
Oracle Database Administrator's Guide for more information about transportable tablespaces

Network Considerations

You can specify a connect identifier in the connect string when you invoke the Data Pump Export utility. This identifier can specify a database instance that is different from the current instance identified by the current Oracle System ID (SID). The connect identifier can be an Oracle*Net connect descriptor or a name that maps to a connect descriptor. This requires an active listener (to start the listener, enter lsnrctl start) that can be located using the connect descriptor. The following example invokes Export for user hr, using the connect descriptor named inst1:

expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Export: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 10:15:45

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password@inst1

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Data Mining and Real Application Testing options

The local Export client connects to the database instance identified by the connect descriptor inst1 (a simple net service name, usually defined in a tnsnames.ora file), to export the data on that instance.

Do not confuse invoking the Export utility using a connect identifier with an export operation specifying the Export NETWORK_LINK command-line parameter. When you perform an export and use the NETWORK_LINK parameter, the export is initiated over a database link. Whereas, when you start an export operation and specify a connect identifier, the local Export client connects to the database instance identified by the command-line connect string, retrieves the data to be exported from the database instance identified by the database link, and writes the data to a dump file set on the connected database instance.

	
See Also:

	
NETWORK_LINK

	
Oracle Database Net Services Administrator's Guide

	
Oracle Database Heterogeneous Connectivity Administrator's Guide

Filtering During Export Operations

Data Pump Export provides much greater data and metadata filtering capability than was provided by the original Export utility.

Data Filters

Data specific filtering is implemented through the QUERY and SAMPLE parameters, which specify restrictions on the table rows that are to be exported.

Data filtering can also occur indirectly as a result of metadata filtering, which can include or exclude table objects along with any associated row data.

Each data filter can be specified once per table within a job. If different filters using the same name are applied to both a particular table and to the whole job, the filter parameter supplied for the specific table will take precedence.

Metadata Filters

Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. The EXCLUDE and INCLUDE parameters are mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from an Export or Import operation. For example, you could request a full export, but without Package Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent objects of an identified object are processed along with the identified object. For example, if a filter specifies that an index is to be included in an operation, then statistics from that index will also be included. Likewise, if a table is excluded by a filter, then indexes, constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, an implicit AND operation is applied to them. That is, objects pertaining to the job must pass all of the filters applied to their object types.

The same metadata filter name can be specified multiple times within a job.

To see which objects can be filtered, you can query the following views: DATABASE_EXPORT_OBJECTS for Full-mode exports, SCHEMA_EXPORT_OBJECTS for schema-mode exports, and TABLE_EXPORT_OBJECTS for table-mode and tablespace-mode exports. For example, you could perform the following query:

SQL> SELECT OBJECT_PATH, COMMENTS FROM SCHEMA_EXPORT_OBJECTS
 2 WHERE OBJECT_PATH LIKE '%GRANT' AND OBJECT_PATH NOT LIKE '%/%';

The output of this query looks similar to the following:

OBJECT_PATH
--
COMMENTS
--
GRANT
Object grants on the selected tables

OBJECT_GRANT
Object grants on the selected tables

PROCDEPOBJ_GRANT
Grants on instance procedural objects

PROCOBJ_GRANT
Schema procedural object grants in the selected schemas

ROLE_GRANT
Role grants to users associated with the selected schemas

SYSTEM_GRANT
System privileges granted to users associated with the selected schemas

	
See Also:

EXCLUDE and INCLUDE

Parameters Available in Export's Command-Line Mode

This section provides descriptions of the parameters available in the command-line mode of Data Pump Export. Many of the descriptions include an example of how to use the parameter.

Using the Export Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the following:

	
After you enter the username and parameters as shown in the example, Export is started and you are prompted for a password before a database connection is made:

Export: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 11:45:35

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Data Mining and Real Application Testing options

	
Most of the examples use the sample schemas of the seed database, which is installed by default when you install Oracle Database. In particular, the human resources (hr) schema is often used.

	
The examples assume that the directory objects, dpump_dir1 and dpump_dir2, already exist and that READ and WRITE privileges have been granted to the hr schema for these directory objects. See Default Locations for Dump, Log, and SQL Files for information about creating directory objects and assigning privileges to them.

	
Some of the examples require the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles. The examples assume that the hr schema has been granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning the necessary privileges and roles.

Syntax diagrams of these parameters are provided in Syntax Diagrams for Data Pump Export.

Unless specifically noted, these parameters can also be specified in a parameter file.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems require that quotation marks on the command line be preceded by an escape character, such as the backslash. If the backslashes were not present, the command-line parser that Export uses would not understand the quotation marks and would remove them, resulting in an error. In general, Oracle recommends that you place such statements in a parameter file because escape characters are not necessary in parameter files.

	
See Also:

	
Default Locations for Dump, Log, and SQL Files for information about creating default directory objects

	
Examples of Using Data Pump Export

	
Oracle Database Sample Schemas

	
Note:

If you are accustomed to using the original Export utility (exp), you may be wondering which Data Pump parameters are used to perform the operations you used to perform with original Export. For a comparison, see How Data Pump Export Parameters Map to Those of the Original Export Utility.

ATTACH

Default: job currently in the user's schema, if there is only one

Purpose

Attaches the client session to an existing export job and automatically places you in the interactive-command interface. Export displays a description of the job to which you are attached and also displays the Export prompt.

Syntax and Description

ATTACH [=[schema_name.]job_name]

The schema_name is optional. To specify a schema other than your own, you must have the EXP_FULL_DATABASE role.

The job_name is optional if only one export job is associated with your schema and the job is active. To attach to a stopped job, you must supply the job name. To see a list of Data Pump job names, you can query the DBA_DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Export displays a description of the job and then displays the Export prompt.

Restrictions

	
When you specify the ATTACH parameter, the only other Data Pump parameter you can specify on the command line is ENCRYPTION_PASSWORD.

	
If the job you are attaching to was initially started using an encryption password, then when you attach to the job you must again enter the ENCRYPTION_PASSWORD parameter on the command line to re-specify that password. The only exception to this is if the job was initially started with the ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the encryption password is not needed when attaching to the job.

	
You cannot attach to a job in another schema unless it is already running.

	
If the dump file set or master table for the job have been deleted, the attach operation will fail.

	
Altering the master table in any way will lead to unpredictable results.

Example

The following is an example of using the ATTACH parameter. It assumes that the job, hr.export_job, already exists.

> expdp hr ATTACH=hr.export_job

	
See Also:

Commands Available in Export's Interactive-Command Mode

COMPRESSION

Default: METADATA_ONLY

Purpose

Specifies which data to compress before writing to the dump file set.

Syntax and Description

COMPRESSION={ALL | DATA_ONLY | METADATA_ONLY | NONE}

	
ALL enables compression for the entire export operation.

	
DATA_ONLY results in all data being written to the dump file in compressed format.

	
METADATA_ONLY results in all metadata being written to the dump file in compressed format. This is the default.

	
NONE disables compression for the entire export operation.

Restrictions

	
To make full use of all these compression options, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

	
The METADATA_ONLY option can be used even if the COMPATIBLE initialization parameter is set to 10.2.

Example

The following is an example of using the COMPRESSION parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_comp.dmp
COMPRESSION=METADATA_ONLY

This command will execute a schema-mode export that will compress all metadata before writing it out to the dump file, hr_comp.dmp. It defaults to a schema-mode export because no export mode is specified.

CONTENT

Default: ALL

Purpose

Enables you to filter what Export unloads: data only, metadata only, or both.

Syntax and Description

CONTENT={ALL | DATA_ONLY | METADATA_ONLY}

	
ALL unloads both data and metadata. This is the default.

	
DATA_ONLY unloads only table row data; no database object definitions are unloaded.

	
METADATA_ONLY unloads only database object definitions; no table row data is unloaded.

Restrictions

	
The CONTENT=METADATA_ONLY parameter cannot be used in conjunction with the parameter TRANSPORT_TABLESPACES (transportable-tablespace-mode).

Example

The following is an example of using the CONTENT parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp CONTENT=METADATA_ONLY

This command will execute a schema-mode export that will unload only the metadata associated with the hr schema. It defaults to a schema-mode export of the hr schema because no export mode is specified.

DATA_OPTIONS

Default: There is no default. If this parameter is not used, then the special data handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter provides options for how to handle certain types of data during exports and imports. For export operations, the only valid option for the DATA_OPTIONS parameter is XML_CLOBS.

Syntax and Description

DATA_OPTIONS=XML_CLOBS

The XML_CLOBS option specifies that XMLType columns are to be exported in uncompressed CLOB format regardless of the XMLType storage format that was defined for them.

If a table has XMLType columns stored only as CLOBs, then it is not necessary to specify the XML_CLOBS option because Data Pump automatically exports them in CLOB format.If a table has XMLType columns stored as any combination of object-relational (schema-based), binary, or CLOB formats, Data Pump exports them in compressed format, by default. This is the preferred method. However, if you need to export the data in uncompressed CLOB format, you can use the XML_CLOBS option to override the default.

	
See Also:

Oracle XML DB Developer's Guide for information specific to exporting and importing XMLType tables

Restrictions

	
Using the XML_CLOBS option requires that the same XML schema be used at both export and import time.

	
The Export DATA_OPTIONS parameter requires the job version to be set at 11.0.0 or higher. See VERSION.

Example

This example shows an export operation in which any XMLType columns in the hr.xdb_tab1 table are exported in uncompressed CLOB format regardless of the XMLType storage format that was defined for them.

> expdp hr TABLES=hr.xdb_tab1 DIRECTORY=dpump_dir1
DUMPFILE=hr_xml.dmp VERSION=11.1 DATA_OPTIONS=xml_clobs

DIRECTORY

Default: DATA_PUMP_DIR

Purpose

Specifies the default location to which Export can write the dump file set and the log file.

Syntax and Description

DIRECTORY=directory_object

The directory_object is the name of a database directory object (not the file path of an actual directory). Upon installation, privileged users have access to a default directory object named DATA_PUMP_DIR. Users with access to DATA_PUMP_DIR need not use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE or LOGFILE parameter overrides any directory object that you specify for the DIRECTORY parameter.

Example

The following is an example of using the DIRECTORY parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=employees.dmp CONTENT=METADATA_ONLY

The dump file, employees.dmp, will be written to the path that is associated with the directory object dpump_dir1.

	
See Also:

	
Default Locations for Dump, Log, and SQL Files for more information about default directory objects

	
Oracle Database SQL Language Reference for information about the CREATE DIRECTORY command

DUMPFILE

Default: expdat.dmp

Purpose

Specifies the names, and optionally, the directory objects of dump files for an export job.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

The directory_object is optional if one has already been established by the DIRECTORY parameter. If you supply a value here, it must be a directory object that already exists and that you have access to. A database directory object that is specified as part of the DUMPFILE parameter overrides a value specified by the DIRECTORY parameter or by the default directory object.

You can supply multiple file_name specifications as a comma-delimited list or in separate DUMPFILE parameter specifications. If no extension is given for the filename, then Export uses the default file extension of .dmp. The filenames can contain a substitution variable (%U), which implies that multiple files may be generated. The substitution variable is expanded in the resulting filenames into a 2-digit, fixed-width, incrementing integer starting at 01 and ending at 99. If a file specification contains two substitution variables, both are incremented at the same time. For example, exp%Uaa%U.dmp would resolve to exp01aa01.dmp, exp02aa02.dmp, and so forth.

If the FILESIZE parameter is specified, each dump file will have a maximum of that size in bytes and be nonextensible. If more space is required for the dump file set and a template with a substitution variable (%U) was supplied, a new dump file is automatically created of the size specified by FILESIZE, if there is room on the device.

As each file specification or file template containing a substitution variable is defined, it is instantiated into one fully qualified filename and Export attempts to create it. The file specifications are processed in the order in which they are specified. If the job needs extra files because the maximum file size is reached, or to keep parallel workers active, then additional files are created if file templates with substitution variables were specified.

Although it is possible to specify multiple files using the DUMPFILE parameter, the export job may only require a subset of those files to hold the exported data. The dump file set displayed at the end of the export job shows exactly which files were used. It is this list of files that is required in order to perform an import operation using this dump file set.

Restrictions

	
Any resulting dump file names that match preexisting dump file names will generate an error and the preexisting dump files will not be overwritten. You can override this behavior by specifying the Export parameter REUSE_DUMPFILES=Y.

Example

The following is an example of using the DUMPFILE parameter:

> expdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp,
 exp2%U.dmp PARALLEL=3

The dump file, exp1.dmp, will be written to the path associated with the directory object dpump_dir2 because dpump_dir2 was specified as part of the dump file name, and therefore overrides the directory object specified with the DIRECTORY parameter. Because all three parallel processes will be given work to perform during this job, the exp201.dmp and exp202.dmp dump files will be created and they will be written to the path associated with the directory object, dpump_dir1, that was specified with the DIRECTORY parameter.

	
See Also:

	
File Allocation

ENCRYPTION

Default: The default value depends upon the combination of encryption-related parameters that are used. To enable encryption, either the ENCRYPTION or ENCRYPTION_PASSWORD parameter, or both, must be specified. If only the ENCRYPTION_PASSWORD parameter is specified, then the ENCRYPTION parameter defaults to ALL. If neither ENCRYPTION nor ENCRYPTION_PASSWORD is specified, then ENCRYPTION defaults to NONE.

Purpose

Specifies whether or not to encrypt data before writing it to the dump file set.

Syntax and Description

ENCRYPTION = {ALL | DATA_ONLY | ENCRYPTED_COLUMNS_ONLY | METADATA_ONLY | NONE}

ALL enables encryption for all data and metadata in the export operation.

DATA_ONLY specifies that only data is written to the dump file set in encrypted format.

ENCRYPTED_COLUMNS_ONLY specifies that only encrypted columns are written to the dump file set in encrypted format.

METADATA_ONLY specifies that only metadata is written to the dump file set in encrypted format.

NONE specifies that no data is written to the dump file set in encrypted format.

	
Note:

If the data being exported includes SecureFiles that you want to be encrypted, then you must specify ENCRYPTION=ALL to encrypt the entire dump file set. Encryption of the entire dump file set is the only way to achieve encryption security for SecureFiles during a Data Pump export operation. For more information about SecureFiles, see Oracle Database SecureFiles and Large Objects Developer's Guide.

Restrictions

	
To specify the ALL, DATA_ONLY, or METADATA_ONLY options, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

The following example performs an export operation in which only data is encrypted in the dump file:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp JOB_NAME=enc1
ENCRYPTION=data_only ENCRYPTION_PASSWORD=foobar

ENCRYPTION_ALGORITHM

Default: AES128

Purpose

Specifies which cryptographic algorithm should be used to perform the encryption.

Syntax and Description

ENCRYPTION_ALGORITHM = { AES128 | AES192 | AES256 }

See Oracle Database Advanced Security Administrator's Guide for information about encryption algorithms.

Restrictions

	
To use this encryption feature, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

	
The ENCRYPTION_ALGORITHM parameter requires that you also specify either the ENCRYPTION or ENCRYPTION_PASSWORD parameter; otherwise an error is returned.

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp
ENCRYPTION_PASSWORD=foobar ENCRYPTION_ALGORITHM=AES128

ENCRYPTION_MODE

Default: The default mode depends on which other encryption-related parameters are used. If only the ENCRYPTION parameter is specified, then the default mode is TRANSPARENT. If the ENCRYPTION_PASSWORD parameter is specified and the Oracle Encryption Wallet is open, then the default is DUAL. If the ENCRYPTION_PASSWORD parameter is specified and the Oracle Encryption Wallet is closed, then the default is PASSWORD.

Purpose

Specifies the type of security to use when encryption and decryption are performed.

Syntax and Description

ENCRYPTION_MODE = { DUAL | PASSWORD | TRANSPARENT }

DUAL mode creates a dump file set that can later be imported either transparently or by specifying a password that was used when the dual-mode encrypted dump file set was created. When you later import the dump file set created in DUAL mode, you can use either the Oracle Encryption Wallet or the password that was specified with the ENCRYPTION_PASSWORD parameter. DUAL mode is best suited for cases in which the dump file set will be imported onsite using the Oracle Encryption Wallet, but which may also need to be imported offsite where the Oracle Encryption Wallet is not available.

PASSWORD mode requires that you provide a password when creating encrypted dump file sets. You will need to provide the same password when you import the dump file set. PASSWORD mode requires that you also specify the ENCRYPTION_PASSWORD parameter. The PASSWORD mode is best suited for cases in which the dump file set will be imported into a different or remote database, but which must remain secure in transit.

TRANSPARENT mode allows an encrypted dump file set to be created without any intervention from a database administrator (DBA), provided the required Oracle Encryption Wallet is available. Therefore, the ENCRYPTION_PASSWORD parameter is not required, and will in fact, cause an error if it is used in TRANSPARENT mode. This encryption mode is best suited for cases in which the dump file set will be imported into the same database from which it was exported.

Restrictions

	
To use DUAL or TRANSPARENT mode, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

	
When you use the ENCRYPTION_MODE parameter, you must also use either the ENCRYPTION or ENCRYPTION_PASSWORD parameter. Otherwise, an error is returned.

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_enc.dmp
ENCRYPTION=all ENCRYPTION_PASSWORD=secretwords
ENCRYPTION_ALGORITHM=AES256 ENCRYPTION_MODE=dual

ENCRYPTION_PASSWORD

Default: There is no default; the value is user-provided.

Purpose

Specifies a password for encrypting encrypted column data, metadata, or table data in the export dumpfile. This prevents unauthorized access to an encrypted dump file set.

	
Note:

Data Pump encryption functionality has changed as of Oracle Database 11g release 1 (11.1). Prior to release 11.1, the ENCRYPTION_PASSWORD parameter applied only to encrypted columns. However, as of release 11.1, the new ENCRYPTION parameter provides options for encrypting other types of data. This means that if you now specify ENCRYPTION_PASSWORD without also specifying ENCRYPTION and a specific option, then all data written to the dump file will be encrypted (equivalent to specifying ENCRYPTION=ALL). If you want to re-encrypt only encrypted columns, you must now specify ENCRYPTION=ENCRYPTED_COLUMNS_ONLY in addition to ENCRYPTION_PASSWORD.

Syntax and Description

ENCRYPTION_PASSWORD = password

The password value that is supplied specifies a key for re-encrypting encrypted table columns, metadata, or table data so that they are not written as clear text in the dump file set. If the export operation involves encrypted table columns, but an encryption password is not supplied, then the encrypted columns will be written to the dump file set as clear text and a warning will be issued.

For export operations, this parameter is required if the ENCRYPTION_MODE parameter is set to either PASSWORD or DUAL.

	
Note:

There is no connection or dependency between the key specified with the Data Pump ENCRYPTION_PASSWORD parameter and the key specified with the ENCRYPT keyword when the table with encrypted columns was initially created. For example, suppose a table is created as follows, with an encrypted column whose key is xyz:

CREATE TABLE emp (col1 VARCHAR2(256) ENCRYPT IDENTIFIED BY "xyz");

When you export the emp table, you can supply any arbitrary value for ENCRYPTION_PASSWORD. It does not have to be xyz.

Restrictions

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

	
If ENCRYPTION_PASSWORD is specified but ENCRYPTION_MODE is not specified, then it is not necessary to have the Transparent Data Encryption option set up since ENCRYPTION_MODE will default to PASSWORD.

	
The ENCRYPTION_PASSWORD parameter is not valid if the requested encryption mode is TRANSPARENT.

	
To use the ENCRYPTION_PASSWORD parameter if ENCRYPTION_MODE is set to DUAL, you must have the Transparent Data Encryption option set up. See Oracle Database Advanced Security Administrator's Guide for more information about the Transparent Data Encryption option.

	
For network exports, the ENCRYPTION_PASSWORD parameter in conjunction with ENCRYPTED_COLUMNS_ONLY is not supported with user-defined external tables that have encrypted columns. The table will be skipped and an error message will be displayed, but the job will continue.

	
Encryption attributes for all columns must match between the exported table definition and the target table. For example, suppose you have a table, EMP, and one of its columns is named EMPNO. Both of the following situations would result in an error because the encryption attribute for the EMP column in the source table would not match the encryption attribute for the EMP column in the target table:

	
The EMP table is exported with the EMPNO column being encrypted, but prior to importing the table you remove the encryption attribute from the EMPNO column.

	
The EMP table is exported without the EMPNO column being encrypted, but prior to importing the table you enable encryption on the EMPNO column.

Example

In the following example, an encryption password, 123456, is assigned to the dump file, dpcd2be1.dmp.

expdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
DUMPFILE=dpcd2be1.dmp ENCRYPTION=ENCRYPTED_COLUMNS_ONLY
ENCRYPTION_PASSWORD=123456

Encrypted columns in the employee_s_encrypt table, will not be written as clear text in the dpcd2be1.dmp dump file. Note that in order to subsequently import the dpcd2be1.dmp file created by this example, you will need to supply the same encryption password. (See "ENCRYPTION_PASSWORD" for an example of an import operation using the ENCRYPTION_PASSWORD parameter.)

ESTIMATE

Default: BLOCKS

Purpose

Specifies the method that Export will use to estimate how much disk space each table in the export job will consume (in bytes). The estimate is printed in the log file and displayed on the client's standard output device. The estimate is for table row data only; it does not include metadata.

Syntax and Description

ESTIMATE={BLOCKS | STATISTICS}

	
BLOCKS - The estimate is calculated by multiplying the number of database blocks used by the source objects, times the appropriate block sizes.

	
STATISTICS - The estimate is calculated using statistics for each table. For this method to be as accurate as possible, all tables should have been analyzed recently.

Restrictions

	
If the Data Pump export job involves compressed tables, the default size estimation given for the compressed table is inaccurate when ESTIMATE=BLOCKS is used. This is because the size estimate does not reflect that the data was stored in a compressed form. To get a more accurate size estimate for compressed tables, use ESTIMATE=STATISTICS.

	
The estimate may also be inaccurate if the QUERY, SAMPLE, or REMAP_DATA parameter is used.

Example

The following example shows a use of the ESTIMATE parameter in which the estimate is calculated using statistics for the employees table:

> expdp hr TABLES=employees ESTIMATE=STATISTICS DIRECTORY=dpump_dir1
 DUMPFILE=estimate_stat.dmp

ESTIMATE_ONLY

Default: n

Purpose

Instructs Export to estimate the space that a job would consume, without actually performing the export operation.

Syntax and Description

ESTIMATE_ONLY={y | n}

If ESTIMATE_ONLY=y, then Export estimates the space that would be consumed, but quits without actually performing the export operation.

Example

The following shows an example of using the ESTIMATE_ONLY parameter to determine how much space an export of the HR schema will take.

> expdp hr ESTIMATE_ONLY=y NOLOGFILE=y SCHEMAS=HR

EXCLUDE

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object types that you want excluded from the export operation.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

All object types for the given mode of export will be included except those specified in an EXCLUDE statement. If an object is excluded, all of its dependent objects are also excluded. For example, excluding a table will also exclude all indexes and triggers on the table.

The name_clause is optional. It allows selection of specific objects within an object type. It is a SQL expression used as a filter on the type's object names. It consists of a SQL operator and the values against which the object names of the specified type are to be compared. The name clause applies only to object types whose instances have names (for example, it is applicable to TABLE, but not to GRANT). The name clause must be separated from the object type with a colon and enclosed in double quotation marks, because single-quotation marks are required to delimit the name strings. For example, you could set EXCLUDE=INDEX:"LIKE 'EMP%'" to exclude all indexes whose names start with EMP.

If no name_clause is provided, all objects of the specified type are excluded.

More than one EXCLUDE statement can be specified.

Oracle recommends that you place EXCLUDE clauses in a parameter file to avoid having to use escape characters on the command line.

	
See Also:

	
INCLUDE for an example of using a parameter file

	
Use of Quotation Marks On the Data Pump Command Line

If the object_type you specify is CONSTRAINT, GRANT, or USER, you should be aware of the effects this will have, as described in the following paragraphs.

Excluding Constraints

The following constraints cannot be explicitly excluded:

	
NOT NULL constraints

	
Constraints needed for the table to be created and loaded successfully; for example, primary key constraints for index-organized tables, or REF SCOPE and WITH ROWID constraints for tables with REF columns

This means that the following EXCLUDE statements will be interpreted as follows:

	
EXCLUDE=CONSTRAINT will exclude all (nonreferential) constraints, except for NOT NULL constraints and any constraints needed for successful table creation and loading.

	
EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained within users' schemas.

To exclude a specific user and all objects of that user, specify a filter such as the following (where hr is the schema name of the user you want to exclude):

EXCLUDE=SCHEMA:"='HR'"

If you try to exclude a user by using a statement such as EXCLUDE=USER:"='HR'", then only the information used in CREATE USER hr DDL statements will be excluded, and you may not get the results you expect.

Restrictions

	
The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example

The following is an example of using the EXCLUDE statement.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_exclude.dmp EXCLUDE=VIEW,
PACKAGE, FUNCTION

This will result in a schema-mode export in which all of the hr schema will be exported except its views, packages, and functions.

	
See Also:

	
Filtering During Export Operations for more information about the effects of using the EXCLUDE parameter

FILESIZE

Default: 0 (unlimited)

Purpose

Specifies the maximum size of each dump file. If the size is reached for any member of the dump file set, that file is closed and an attempt is made to create a new file, if the file specification contains a substitution variable.

Syntax and Description

FILESIZE=integer[B | K | M | G]

The integer can be followed by B, K, M, or G (indicating bytes, kilobytes, megabytes, and gigabytes respectively). Bytes is the default. The actual size of the resulting file may be rounded down slightly to match the size of the internal blocks used in dump files.

Restrictions

	
The minimum size for a file is ten times the default Data Pump block size, which is 4 kilobytes.

Example

The following shows an example in which the size of the dump file is set to 3 megabytes:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_3m.dmp FILESIZE=3M

If three megabytes had not been sufficient to hold all the exported data, then the following error would have been displayed and the job would have stopped:

ORA-39095: Dump file space has been exhausted: Unable to allocate 217088 bytes

The actual number of bytes that could not be allocated may vary. Also, this number does not represent the amount of space needed to complete the entire export operation. It indicates only the size of the current object that was being exported when the job ran out of dump file space.This situation can be corrected by first attaching to the stopped job, adding one or more files using the ADD_FILE command, and then restarting the operation.

FLASHBACK_SCN

Default: There is no default

Purpose

Specifies the system change number (SCN) that Export will use to enable the Flashback Query utility.

Syntax and Description

FLASHBACK_SCN=scn_value

The export operation is performed with data that is consistent as of the specified SCN. If the NETWORK_LINK parameter is specified, the SCN refers to the SCN of the source database.

Restrictions

	
FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

	
The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data Archive.

Example

The following example assumes that an existing SCN value of 384632 exists. It exports the hr schema up to SCN 384632.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr_scn.dmp FLASHBACK_SCN=384632

	
Note:

If you are on a logical standby system and using a network link to access the logical standby primary, the FLASHBACK_SCN parameter is ignored because SCNs are selected by logical standby. See Oracle Data Guard Concepts and Administration for information about logical standby databases.

FLASHBACK_TIME

Default: There is no default

Purpose

The SCN that most closely matches the specified time is found, and this SCN is used to enable the Flashback utility. The export operation is performed with data that is consistent as of this SCN.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP(time-value)"

Because the TO_TIMESTAMP value is enclosed in quotation marks, it would be best to put this parameter in a parameter file. Otherwise, you might need to use escape characters on the command line in front of the quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

Restrictions

	
FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

	
The FLASHBACK_TIME parameter pertains only to the flashback query capability of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data Archive.

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME procedure accepts. For example, suppose you have a parameter file, flashback.par, with the following contents:

DIRECTORY=dpump_dir1
DUMPFILE=hr_time.dmp
FLASHBACK_TIME="TO_TIMESTAMP('25-08-2003 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> expdp hr PARFILE=flashback.par

The export operation will be performed with data that is consistent with the SCN that most closely matches the specified time.

	
Note:

If you are on a logical standby system and using a network link to access the logical standby primary, the FLASHBACK_SCN parameter is ignored because SCNs are selected by logical standby. See Oracle Data Guard Concepts and Administration for information about logical standby databases.

	
See Also:

Oracle Database Advanced Application Developer's Guide for information about using Flashback Query

FULL

Default: n

Purpose

Specifies that you want to perform a full database mode export.

Syntax and Description

FULL={y | n}

FULL=y indicates that all data and metadata are to be exported. Filtering can restrict what is exported using this export mode. See Filtering During Export Operations.

To perform a full export, you must have the EXP_FULL_DATABASE role.

	
Note:

Be aware that when you later import a dump file that was created by a full-mode export, the import operation attempts to copy the password for the SYS account from the source database. This sometimes fails (for example, if the password is in a shared password file). If it does fail, then after the import completes, you must set the password for the SYS account at the target database to a password of your choice

Restrictions

	
A full export does not export system schemas that contain Oracle-managed data and metadata. Examples of system schemas that are not exported include SYS, ORDSYS, and MDSYS.

	
Grants on objects owned by the SYS schema are never exported.

	
If you are exporting data that is protected by a realm, you must have authorization for that realm.

	
See Also:

Oracle Database Vault Administrator's Guide for information about configuring realms

Example

The following is an example of using the FULL parameter. The dump file, expfull.dmp is written to the dpump_dir2 directory.

> expdp hr DIRECTORY=dpump_dir2 DUMPFILE=expfull.dmp FULL=y NOLOGFILE=y

HELP

Default: N

Purpose

Displays online help for the Export utility.

Syntax and Description

HELP = {y | n}

If HELP=y is specified, Export displays a summary of all Export command-line parameters and interactive commands.

Example

> expdp HELP = y

This example will display a brief description of all Export parameters and commands.

INCLUDE

Default: There is no default

Purpose

Enables you to filter the metadata that is exported by specifying objects and object types for the current export mode. The specified objects and all their dependent objects are exported. Grants on these objects are also exported.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

Only object types explicitly specified in INCLUDE statements, and their dependent objects, are exported. No other object types, including the schema definition information that is normally part of a schema-mode export when you have the EXP_FULL_DATABASE role, are exported.

To see a list of valid paths for use with the INCLUDE parameter, you can query the following views: DATABASE_EXPORT_OBJECTS for Full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and tablespace mode.

The name_clause is optional. It allows fine-grained selection of specific objects within an object type. It is a SQL expression used as a filter on the object names of the type. It consists of a SQL operator and the values against which the object names of the specified type are to be compared. The name clause applies only to object types whose instances have names (for example, it is applicable to TABLE, but not to GRANT). The optional name clause must be separated from the object type with a colon and enclosed in double quotation marks, because single-quotation marks are required to delimit the name strings.

Oracle recommends that INCLUDE statements be placed in a parameter file; otherwise you might have to use operating system-specific escape characters on the command line before quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

For example, suppose you have a parameter file named hr.par with the following content:

SCHEMAS=HR
DUMPFILE=expinclude.dmp
DIRECTORY=dpump_dir1
LOGFILE=expinclude.log
INCLUDE=TABLE:"IN ('EMPLOYEES', 'DEPARTMENTS')"
INCLUDE=PROCEDURE
INCLUDE=INDEX:"LIKE 'EMP%'"

You could then use the hr.par file to start an export operation, without having to enter any other parameters on the command line:

> expdp hr parfile=hr.par

Including Constraints

If the object_type you specify is a CONSTRAINT, you should be aware of the effects this will have.

The following constraints cannot be explicitly included:

	
NOT NULL constraints

	
Constraints needed for the table to be created and loaded successfully; for example, primary key constraints for index-organized tables, or REF SCOPE and WITH ROWID constraints for tables with REF columns

This means that the following INCLUDE statements will be interpreted as follows:

	
INCLUDE=CONSTRAINT will include all (nonreferential) constraints, except for NOT NULL constraints and any constraints needed for successful table creation and loading.

	
INCLUDE=REF_CONSTRAINT will include referential integrity (foreign key) constraints.

Restrictions

	
The INCLUDE and EXCLUDE parameters are mutually exclusive.

	
Grants on objects owned by the SYS schema are never exported.

Example

The following example performs an export of all tables (and their dependent objects) in the hr schema:

> expdp hr INCLUDE=TABLE DUMPFILE=dpump_dir1:exp_inc.dmp NOLOGFILE=y

JOB_NAME

Default: system-generated name of the form SYS_EXPORT_<mode>_NN

Purpose

Used to identify the export job in subsequent actions, such as when the ATTACH parameter is used to attach to a job, or to identify the job using the DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views. The job name becomes the name of the master table in the current user's schema. The master table is used to control the export job.

Syntax and Description

JOB_NAME=jobname_string

The jobname_string specifies a name of up to 30 bytes for this export job. The bytes must represent printable characters and spaces. If spaces are included, the name must be enclosed in single quotation marks (for example, 'Thursday Export'). The job name is implicitly qualified by the schema of the user performing the export operation.

The default job name is system-generated in the form SYS_EXPORT_<mode>_NN, where NN expands to a 2-digit incrementing integer starting at 01. An example of a default name is 'SYS_EXPORT_TABLESPACE_02'.

Example

The following example shows an export operation that is assigned a job name of exp_job:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=exp_job.dmp JOB_NAME=exp_job
NOLOGFILE=y

LOGFILE

Default: export.log

Purpose

Specifies the name, and optionally, a directory, for the log file of the export job.

Syntax and Description

LOGFILE=[directory_object:]file_name

You can specify a database directory_object previously established by the DBA, assuming that you have access to it. This overrides the directory object specified with the DIRECTORY parameter.

The file_name specifies a name for the log file. The default behavior is to create a file named export.log in the directory referenced by the directory object specified in the DIRECTORY parameter.

All messages regarding work in progress, work completed, and errors encountered are written to the log file. (For a real-time status of the job, use the STATUS command in interactive mode.)

A log file is always created for an export job unless the NOLOGFILE parameter is specified. As with the dump file set, the log file is relative to the server and not the client.

An existing file matching the filename will be overwritten.

Restrictions

	
To perform a Data Pump Export using Automatic Storage Management (ASM), you must specify a LOGFILE parameter that includes a directory object that does not include the ASM + notation. That is, the log file must be written to a disk file, and not written into the ASM storage. Alternatively, you can specify NOLOGFILE=Y. However, this prevents the writing of the log file.

Example

The following example shows how to specify a log file name if you do not want to use the default:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp LOGFILE=hr_export.log

	
Note:

Data Pump Export writes the log file using the database character set. If your client NLS_LANG environment setting sets up a different client character set from the database character set, then it is possible that table names may be different in the log file than they are when displayed on the client output screen.

	
See Also:

	
STATUS

	
Using Directory Objects When Automatic Storage Management Is Enabled for information about Automatic Storage Management and directory objects

NETWORK_LINK

Default: There is no default

Purpose

Enables an export from a (source) database identified by a valid database link. The data from the source database instance is written to a dump file set on the connected database instance.

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an export using a database link. This means that the system to which the expdp client is connected contacts the source database referenced by the source_database_link, retrieves data from it, and writes the data to a dump file set back on the connected system.

The source_database_link provided must be the name of a database link to an available database. If the database on that instance does not already have a database link, you or your DBA must create one. For more information about the CREATE DATABASE LINK statement, see Oracle Database SQL Language Reference.

If the source database is read-only, then the user on the source database must have a locally managed tablespace assigned as the default temporary tablespace. Otherwise, the job will fail. For further details about this, see the information about creating locally managed temporary tablespaces in the Oracle Database Administrator's Guide.

	
Caution:

If an export operation is performed over an unencrypted network link, then all data is exported as clear text even if it is encrypted in the database. See Oracle Database Advanced Security Administrator's Guide for information about network security.

Restrictions

	
When the NETWORK_LINK parameter is used in conjunction with the TABLES parameter, only whole tables can be exported (not partitions of tables).

	
The only types of database links supported by Data Pump Export are: public, fixed-user, and connected-user. Current-user database links are not supported.

Example

The following is an example of using the NETWORK_LINK parameter. The source_database_link would be replaced with the name of a valid database link that must already exist.

> expdp hr DIRECTORY=dpump_dir1 NETWORK_LINK=source_database_link
 DUMPFILE=network_export.dmp LOGFILE=network_export.log

NOLOGFILE

Default: n

Purpose

Specifies whether to suppress creation of a log file.

Syntax and Description

NOLOGFILE={y | n}

Specify NOLOGFILE=y to suppress the default behavior of creating a log file. Progress and error information is still written to the standard output device of any attached clients, including the client that started the original export operation. If there are no clients attached to a running job and you specify NOLOGFILE=y, you run the risk of losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter:

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp NOLOGFILE=y

This command results in a schema-mode export in which no log file is written.

PARALLEL

Default: 1

Purpose

Specifies the maximum number of threads of active execution operating on behalf of the export job. This execution set consists of a combination of worker processes and parallel I/O server processes. The master control process and worker processes acting as query coordinators in parallel query operations do not count toward this total.

This parameter enables you to make trade-offs between resource consumption and elapsed time.

Syntax and Description

PARALLEL=integer

The value you specify for integer should be less than, or equal to, the number of files in the dump file set (or you should specify substitution variables in the dump file specifications). Because each active worker process or I/O server process writes exclusively to one file at a time, an insufficient number of files can have adverse effects. Some of the worker processes will be idle while waiting for files, thereby degrading the overall performance of the job. More importantly, if any member of a cooperating group of parallel I/O server processes cannot obtain a file for output, then the export operation will be stopped with an ORA-39095 error. Both situations can be corrected by attaching to the job using the Data Pump Export utility, adding more files using the ADD_FILE command while in interactive mode, and in the case of a stopped job, restarting the job.

To increase or decrease the value of PARALLEL during job execution, use interactive-command mode. Decreasing parallelism does not result in fewer worker processes associated with the job; it merely decreases the number of worker processes that will be executing at any given time. Also, any ongoing work must reach an orderly completion point before the decrease takes effect. Therefore, it may take a while to see any effect from decreasing the value. Idle workers are not deleted until the job exits.

Increasing the parallelism takes effect immediately if there is work that can be performed in parallel.

	
See Also:

Controlling Resource Consumption

Restrictions

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

The following is an example of using the PARALLEL parameter:

> expdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_export.log
JOB_NAME=par4_job DUMPFILE=par_exp%u.dmp PARALLEL=4

This results in a schema-mode export of the hr schema in which up to four files could be created in the path pointed to by the directory object, dpump_dir1.

	
See Also:

	
DUMPFILE

	
Commands Available in Export's Interactive-Command Mode

	
Performing a Parallel Full Database Export

PARFILE

Default: There is no default

Purpose

Specifies the name of an export parameter file.

Syntax and Description

PARFILE=[directory_path]file_name

Unlike dump and log files, which are created and written by the Oracle database, the parameter file is opened and read by the client running the expdp image. Therefore, a directory object name is neither required nor appropriate. The directory path is an operating system-specific directory specification. The default is the user's current directory.

The use of parameter files is highly recommended if you are using parameters whose values require the use of quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

Restrictions

	
The PARFILE parameter cannot be specified within a parameter file.

Example

The content of an example parameter file, hr.par, might be as follows:

SCHEMAS=HR
DUMPFILE=exp.dmp
DIRECTORY=dpump_dir1
LOGFILE=exp.log

You could then issue the following Export command to specify the parameter file:

> expdp hr parfile=hr.par

QUERY

Default: There is no default

Purpose

Allows you to specify a query clause that is used to filter the data that gets exported.

Syntax and Description

QUERY = [schema.][table_name:] query_clause

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but could be any SQL clause. For example, an ORDER BY clause could be used to speed up a migration from a heap-organized table to an index-organized table. If a schema and table name are not supplied, the query is applied to (and must be valid for) all tables in the export job. A table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table name from the query clause. More than one table-specific query can be specified, but only one query can be specified per table.

The query must be enclosed in single or double quotation marks. Double quotation marks are recommended, because strings within the clause must be enclosed in single quotation marks. Oracle recommends that you place QUERY specifications in a parameter file to avoid having to use operating system-specific escape characters on the command line. See Use of Quotation Marks On the Data Pump Command Line.

To specify a schema other than your own in a table-specific query, you must be granted access to that specific table.

Restrictions

	
The QUERY parameter cannot be used in conjunction with the following parameters:

	
CONTENT=METADATA_ONLY

	
ESTIMATE_ONLY

	
TRANSPORT_TABLESPACES

	
When the QUERY parameter is specified for a table, Data Pump uses external tables to unload the target table. External tables uses a SQL CREATE TABLE AS SELECT statement. The value of the QUERY parameter is the WHERE clause in the SELECT portion of the CREATE TABLE statement. If the QUERY parameter includes references to another table with columns whose names match the table being unloaded, and if those columns are used in the query, then you will need to use a table alias to distinguish between columns in the table being unloaded and columns in the SELECT statement with the same name. The table alias used by Data Pump for the table being unloaded is KU$.

For example, suppose you want to export a subset of the sh.sales table based on the credit limit for a customer in the sh.customers table. In the following example, KU$ is used to qualify the cust_id field in the QUERY parameter for unloading sh.sales. As a result, Data Pump exports only rows for customers whose credit limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If, as in the following query, KU$ is not used for a table alias, the result will be that all rows are unloaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c
 WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

Example

The following is an example of using the QUERY parameter:

> expdp hr parfile=emp_query.par

The contents of the emp_query.par file are as follows:

QUERY=employees:"WHERE department_id > 10 AND salary > 10000"
NOLOGFILE=y
DIRECTORY=dpump_dir1
DUMPFILE=exp1.dmp

This example unloads all tables in the hr schema, but only the rows that fit the query expression. In this case, all rows in all tables (except employees) in the hr schema will be unloaded. For the employees table, only rows that meet the query criteria are unloaded.

REMAP_DATA

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to specify a remap function that takes as a source the original value of the designated column and returns a remapped value that will replace the original value in the dump file. A common use for this option is to mask data when moving from a production system to a test system. For example, a column of sensitive customer data such as credit card numbers could be replaced with numbers generated by a REMAP_DATA function. This would allow the data to retain its essential formatting and processing characteristics without exposing private data to unauthorized personnel.

The same function can be applied to multiple columns being dumped. This is useful when you want to guarantee consistency in remapping both the child and parent column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The description of each syntax element, in the order in which they appear in the syntax, is as follows:

schema1 -- the schema containing the table to be remapped. By default, this is the schema of the user doing the export.

tablename -- the table whose column will be remapped.

column_name -- the column whose data is to be remapped.

schema2 -- the schema containing the PL/SQL package you have created that contains the remapping function. As a default, this is the schema of the user doing the export.

pkg -- the name of the PL/SQL package you have created that contains the remapping function.

function -- the name of the function within the PL/SQL that will be called to remap the column table in each row of the specified table.

Restrictions

	
The data types of the source argument and the returned value should both match the data type of the designated column in the table.

	
Remapping functions should not perform commits or rollbacks.

Example

The following example assumes a package named remap has been created that contains functions named minus10 and plusx which change the values for employee_id and first_name in the employees table.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=remap1.dmp TABLES=employees
REMAP_DATA=hr.employees.employee_id:hr.remap.minus10
REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REUSE_DUMPFILES

Default: N

Purpose

Specifies whether or not to overwrite a preexisting dump file.

Syntax and Description

REUSE_DUMPFILES={Y | N}

Normally, Data Pump Export will return an error if you specify a dump file name that already exists. The REUSE_DUMPFILES parameter allows you to override that behavior and reuse a dump file name. For example, if you performed an export and specified DUMPFILE=hr.dmp and REUSE_DUMPFILES=Y, then hr.dmp would be overwritten if it already existed. Its previous contents would be lost and it would contain data for the current export instead.

Example

The following export operation creates a dump file named enc1.dmp, even if a dump file with that name already exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=enc1.dmp
TABLES=employees REUSE_DUMPFILES=y

SAMPLE

Default: There is no default

Purpose

Allows you to specify a percentage of the data blocks to be sampled and unloaded from the source database.

Syntax and Description

SAMPLE=[[schema_name.]table_name:]sample_percent

This parameter allows you to export subsets of data by specifying the percentage of data to be sampled and exported. The sample_percent indicates the probability that a block of rows will be selected as part of the sample. It does not mean that the database will retrieve exactly that amount of rows from the table. The value you supply for sample_percent can be anywhere from .000001 up to, but not including, 100.

The sample_percent can be applied to specific tables. In the following example, 50% of the HR.EMPLOYEES table will be exported:

SAMPLE="HR"."EMPLOYEES":50

If you specify a schema, you must also specify a table. However, you can specify a table without specifying a schema; the current user will be assumed. If no table is specified, then the sample_percent value applies to the entire export job.

Note that you can use this parameter in conjunction with the Data Pump Import PCTSPACE transform, so that the size of storage allocations matches the sampled data subset. (See TRANSFORM.)

Restrictions

	
The SAMPLE parameter is not valid for network exports.

Example

In the following example, the value 70 for SAMPLE is applied to the entire export job because no table name is specified.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=sample.dmp SAMPLE=70

SCHEMAS

Default: current user's schema

Purpose

Specifies that you want to perform a schema-mode export. This is the default mode for Export.

Syntax and Description

SCHEMAS=schema_name [, ...]

If you have the EXP_FULL_DATABASE role, then you can specify a single schema other than your own or a list of schema names. The EXP_FULL_DATABASE role also allows you to export additional nonschema object information for each specified schema so that the schemas can be re-created at import time. This additional information includes the user definitions themselves and all associated system and role grants, user password history, and so on. Filtering can further restrict what is exported using schema mode (see Filtering During Export Operations).

Restrictions

	
If you do not have the EXP_FULL_DATABASE role, then you can specify only your own schema.

	
The SYS schema cannot be used as a source schema for export jobs.

Example

The following is an example of using the SCHEMAS parameter. Note that user hr is allowed to specify more than one schema because the EXP_FULL_DATABASE role was previously assigned to it for the purpose of these examples.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp SCHEMAS=hr,sh,oe

This results in a schema-mode export in which the schemas, hr, sh, and oe will be written to the expdat.dmp dump file located in the dpump_dir1 directory.

STATUS

Default: 0

Purpose

Specifies the frequency at which the job status display is updated.

Syntax and Description

STATUS=[integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status should be displayed in logging mode. If no value is entered or if the default value of 0 is used, no additional information is displayed beyond information about the completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log file (if one is in effect).

Example

The following is an example of using the STATUS parameter.

> expdp hr DIRECTORY=dpump_dir1 SCHEMAS=hr,sh STATUS=300

This example will export the hr and sh schemas and display the status of the export every 5 minutes (60 seconds x 5 = 300 seconds).

TABLES

Default: There is no default

Purpose

Specifies that you want to perform a table-mode export.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name] [, ...]

Filtering can restrict what is exported using this mode (see Filtering During Export Operations). You can filter the data and metadata that is exported, by specifying a comma-delimited list of tables and partitions or subpartitions. If a partition name is specified, it must be the name of a partition or subpartition in the associated table. Only the specified set of tables, partitions, and their dependent objects are unloaded.

The table name that you specify can be preceded by a qualifying schema name. All table names specified must reside in the same schema. The schema defaults to that of the current user. To specify a schema other than your own, you must have the EXP_FULL_DATABASE role.

The use of wildcards is supported for one table name per export operation. For example, TABLES=emp% would export all tables having names that start with 'EMP'.

Using the Transportable Option During Table-Mode Export

To use the transportable option during a table-mode export, specify the TRANSPORTABLE=ALWAYS parameter in conjunction with the TABLES parameter. Metadata for the specified tables, partitions, or subpartitions is exported to the dump file. To move the actual data, you copy the data files to the target database.

When partitioned tables are exported using the transportable method, each partition and subpartition is promoted to its own table. During the subsequent import operation, the new table is automatically named by combining the table and partition name (that is, tablename_partitionname). You can override this automatic naming by using the Import REMAP_TABLE parameter.

	
See Also:

	
TRANSPORTABLE

	
The Import REMAP_TABLE command

	
Using Data File Copying to Move Data

Restrictions

	
Cross-schema references are not exported. For example, a trigger defined on a table within one of the specified schemas, but that resides in a schema not explicitly specified, is not exported.

	
Types used by the table are not exported in table mode. This means that if you subsequently import the dump file and the TYPE does not already exist in the destination database, the table creation will fail.

	
The use of synonyms as values for the TABLES parameter is not supported. For example, if the regions table in the hr schema had a synonym of regn, it would not be valid to use TABLES=regn. An error would be returned.

	
The export of individual table partitions is not supported when the NETWORK_LINK parameter is used.

	
The export of tables that include wildcards in the table name is not supported if the table has partitions.

	
The length of the table name list specified for the TABLES parameter is limited to a maximum of 4MB, unless you are using the NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is 4KB.

	
You can only specify partitions from one table if TRANSPORTABLE=ALWAYS is also set on the export.

Examples

The following example shows a simple use of the TABLES parameter to export three tables found in the hr schema: employees, jobs, and departments. Because user hr is exporting tables found in the hr schema, the schema name is not needed before the table names.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables.dmp
TABLES=employees,jobs,departments

The following example assumes that user hr has the EXP_FULL_DATABASE role. It shows the use of the TABLES parameter to export partitions.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tables_part.dmp
TABLES=sh.sales:sales_Q1_2000,sh.sales:sales_Q2_2000

This example exports the partitions, sales_Q1_2000 and sales_Q2_2000, from the table sales in the schema sh.

TABLESPACES

Default: There is no default

Purpose

Specifies a list of tablespace names to be exported in tablespace mode.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

In tablespace mode, only the tables contained in a specified set of tablespaces are unloaded. If a table is unloaded, its dependent objects are also unloaded. Both object metadata and data are unloaded. If any part of a table resides in the specified set, then that table and all of its dependent objects are exported. Privileged users get all tables. Nonprivileged users get only the tables in their own schemas

Filtering can restrict what is exported using this mode (see Filtering During Export Operations).

Restrictions

	
The length of the tablespace name list specified for the TABLESPACES parameter is limited to a maximum of 4MB, unless you are using the NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is 4KB.

Example

The following is an example of using the TABLESPACES parameter. The example assumes that tablespaces tbs_4, tbs_5, and tbs_6 already exist.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tbs.dmp
TABLESPACES=tbs_4, tbs_5, tbs_6

This results in a tablespace export in which tables (and their dependent objects) from the specified tablespaces (tbs_4, tbs_5, and tbs_6) will be unloaded.

TRANSPORT_FULL_CHECK

Default: n

Purpose

Specifies whether or not to check for dependencies between those objects inside the transportable set and those outside the transportable set. This parameter is applicable only to a transportable-tablespace mode export.

Syntax and Description

TRANSPORT_FULL_CHECK={y | n}

If TRANSPORT_FULL_CHECK=y, then Export verifies that there are no dependencies between those objects inside the transportable set and those outside the transportable set. The check addresses two-way dependencies. For example, if a table is inside the transportable set but its index is not, a failure is returned and the export operation is terminated. Similarly, a failure is also returned if an index is in the transportable set but the table is not.

If TRANSPORT_FULL_CHECK=n, then Export verifies only that there are no objects within the transportable set that are dependent on objects outside the transportable set. This check addresses a one-way dependency. For example, a table is not dependent on an index, but an index is dependent on a table, because an index without a table has no meaning. Therefore, if the transportable set contains a table, but not its index, then this check succeeds. However, if the transportable set contains an index, but not the table, the export operation is terminated.

There are other checks performed as well. For instance, export always verifies that all storage segments of all tables (and their indexes) defined within the tablespace set specified by TRANSPORT_TABLESPACES are actually contained within the tablespace set.

Example

The following is an example of using the TRANSPORT_FULL_CHECK parameter. It assumes that tablespace tbs_1 exists.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=y LOGFILE=tts.log

TRANSPORT_TABLESPACES

Default: There is no default

Purpose

Specifies that you want to perform a transportable-tablespace-mode export.

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for which object metadata will be exported from the source database into the target database.

The log file for the export lists the datafiles that are used in the transportable set, the dump files, and any containment violations.

The TRANSPORT_TABLESPACES parameter exports metadata for all objects within the specified tablespace. If you want to perform a transportable export of only certain tables, partitions, or subpartitions, you must use the TABLES parameter in conjunction with the TRANSPORTABLE=ALWAYS parameter.

	
Note:

You cannot export transportable tablespaces and then import them into a database at a lower release level. The target database must be at the same or higher release level as the source database.

Restrictions

	
Transportable jobs are not restartable.

	
Transportable jobs are restricted to a degree of parallelism of 1.

	
Transportable tablespace mode requires that you have the EXP_FULL_DATABASE role.

	
Transportable mode does not support encrypted columns.

	
The default tablespace of the user performing the export must not be set to one of the tablespaces being transported.

	
The SYS and SYSAUX tablespaces are not transportable.

	
All tablespaces in the transportable set must be set to read-only.

Example 1

The following is an example of using the TRANSPORT_TABLESPACES parameter in a file-based job (rather than network-based). The tablespace tbs_1 is the tablespace being moved. This example assumes that tablespace tbs_1 exists and that it has been set to read-only. This examples also assumes that the default tablespace was changed prior to this export command.

> expdp hr DIRECTORY=dpump_dir1 DUMPFILE=tts.dmp
TRANSPORT_TABLESPACES=tbs_1 TRANSPORT_FULL_CHECK=y LOGFILE=tts.log

	
See Also:

	
Transportable Tablespace Mode

	
Using Data File Copying to Move Data

	
Oracle Database Administrator's Guide for detailed information about transporting tablespaces between databases

TRANSPORTABLE

Default: NEVER

Purpose

Specifies whether or not the transportable option should be used during a table mode export (specified with the TABLES parameter) to export metadata for specific tables, partitions, and subpartitions.

Syntax and Description

TRANSPORTABLE = {ALWAYS | NEVER}

The definitions of the allowed values are as follows:

ALWAYS - Instructs the export job to use the transportable option. If transportable is not possible, the job will fail. The transportable option exports only metadata for the specified tables, partitions, or subpartitions specified by the TABLES parameter. You must copy the actual data files to the target database. See Using Data File Copying to Move Data.

NEVER - Instructs the export job to use either the direct path or external table method to unload data rather than the transportable option. This is the default.

	
Note:

If you want to export an entire tablespace in transportable mode, use the TRANSPORT_TABLESPACES parameter.

Restrictions

	
The TRANSPORTABLE parameter is only valid in table mode exports.

	
The schema performing a transportable export requires the EXP_FULL_DATABASE privilege.

	
Tablespaces associated with tables, partitions, and subpartitions must be read-only.

	
Transportable mode does not export any data. Data is copied when the tablespace data files are copied from the source system to the target system. The tablespaces that must be copied are listed at the end of the log file for the export operation.

	
To make use of the TRANSPORTABLE parameter, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

	
The default tablespace of the user performing the export must not be set to one of the tablespaces being transported.

Example

The following example assumes that the sh schema has the EXP_FULL_DATABASE privilege and that table sales2 is partitioned and contained within tablespace tbs2. (The tbs2 tablespace must be set to read-only in the source database.)

> expdp sh DIRECTORY=dpump_dir1 DUMPFILE=tto1.dmp
TABLES=sh.sales2 TRANSPORTABLE=always

After the export completes successfully, you must copy the data files to the target database area. You could then perform an import operation using the PARTITION_OPTIONS and REMAP_SCHEMA parameters to make each of the partitions in sales2 its own table.

> impdp system PARTITION_OPTIONS=departition
TRANSPORT_DATAFILES=oracle/dbs/tbs2 DIRECTORY=dpump_dir1
DUMPFILE=tto1.dmp REMAP_SCHEMA=sh:dp

VERSION

Default: COMPATIBLE

Purpose

Specifies the version of database objects to be exported. This can be used to create a dump file set that is compatible with a previous release of Oracle Database. Note that this does not mean that Data Pump Export can be used with versions of Oracle Database prior to 10.1. Data Pump Export only works with Oracle Database 10g release 1 (10.1) or later. The VERSION parameter simply allows you to identify the version of the objects being exported.

Syntax and Description

VERSION={COMPATIBLE | LATEST | version_string}

The legal values for the VERSION parameter are as follows:

	
COMPATIBLE - This is the default value. The version of the metadata corresponds to the database compatibility level. Database compatibility must be set to 9.2 or higher.

	
LATEST - The version of the metadata corresponds to the database version.

	
version_string - A specific database version (for example, 11.1.0). In Oracle Database 11g, this value cannot be lower than 9.2.

Database objects or attributes that are incompatible with the specified version will not be exported. For example, tables containing new datatypes that are not supported in the specified version will not be exported.

	
See Also:

Moving Data Between Different Database Versions

Example

The following example shows an export for which the version of the metadata will correspond to the database version:

> expdp hr TABLES=hr.employees VERSION=LATEST DIRECTORY=dpump_dir1
DUMPFILE=emp.dmp NOLOGFILE=y

How Data Pump Export Parameters Map to Those of the Original Export Utility

Table 2-1 maps, as closely as possible, Data Pump Export parameters to original Export parameters. In some cases, because of feature redesign, the original Export parameter is no longer needed, so there is no Data Pump parameter to compare it to. Also, as shown in the table, some of the parameter names may be the same, but the functionality is slightly different.

Table 2-1 Original Export Parameters and Their Counterparts in Data Pump Export

	Original Export Parameter	Comparable Data Pump Export Parameter
	

BUFFER

	
A parameter comparable to BUFFER is not needed.

	

COMPRESS

	
A parameter comparable to COMPRESS is not needed.

	

CONSISTENT

	
A parameter comparable to CONSISTENT is not needed. Use FLASHBACK_SCN and FLASHBACK_TIME for this functionality.

	

CONSTRAINTS

	
EXCLUDE=CONSTRAINT

	

DIRECT

	
A parameter comparable to DIRECT is not needed. Data Pump Export automatically chooses the best method (direct path mode or external tables mode).

	

FEEDBACK

	
STATUS

	

FILE

	
DUMPFILE

	

FILESIZE

	
FILESIZE

	

FLASHBACK_SCN

	
FLASHBACK_SCN

	

FLASHBACK_TIME

	
FLASHBACK_TIME

	

FULL

	
FULL

	

GRANTS

	
EXCLUDE=GRANT

	

HELP

	
HELP

	

INDEXES

	
EXCLUDE=INDEX

	

LOG

	
LOGFILE

	

OBJECT_CONSISTENT

	
A parameter comparable to OBJECT_CONSISTENT is not needed.

	

OWNER

	
SCHEMAS

	

PARFILE

	
PARFILE

	

QUERY

	
QUERY

	

RECORDLENGTH

	
A parameter comparable to RECORDLENGTH is not needed because sizing is done automatically.

	

RESUMABLE

	
A parameter comparable to RESUMABLE is not needed. This functionality is automatically provided for users who have been granted the EXP_FULL_DATABASE role.

	

RESUMABLE_NAME

	
A parameter comparable to RESUMABLE_NAME is not needed. This functionality is automatically provided for users who have been granted the EXP_FULL_DATABASE role.

	

RESUMABLE_TIMEOUT

	
A parameter comparable to RESUMABLE_TIMEOUT is not needed. This functionality is automatically provided for users who have been granted the EXP_FULL_DATABASE role.

	

ROWS=N

	
CONTENT=METADATA_ONLY

	

ROWS=Y

	
CONTENT=ALL

	

STATISTICS

	
A parameter comparable to STATISTICS is not needed. Statistics are always saved for tables.

	

TABLES

	
TABLES

	

TABLESPACES

	
TABLESPACES (Same parameter; slightly different behavior)

	

TRANSPORT_TABLESPACE

	
TRANSPORT_TABLESPACES (Same parameter; slightly different behavior)

	

TRIGGERS

	
EXCLUDE=TRIGGER

	

TTS_FULL_CHECK

	
TRANSPORT_FULL_CHECK

	

USERID

	
A parameter comparable to USERID is not needed. This information is supplied as the username and password when you invoke Export.

	

VOLSIZE

	
A parameter comparable to VOLSIZE is not needed.

This table does not list all Data Pump Export command-line parameters. For information about all Export command-line parameters, see Parameters Available in Export's Command-Line Mode.

	
See Also:

Chapter 20, "Original Export and Import" for details about original Export

Commands Available in Export's Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the terminal is suspended and the Export prompt (Export>) is displayed.

	
Note:

Data Pump Export interactive-command mode is different from the interactive mode for original Export, in which Export prompted you for input. See Interactive Mode for information about interactive mode in original Export.

To start interactive-command mode, do one of the following:

	
From an attached client, press Ctrl+C.

	
From a terminal other than the one on which the job is running, specify the ATTACH parameter in an expdp command to attach to the job. This is a useful feature in situations in which you start a job at one location and need to check on it at a later time from a different location.

Table 2-2 lists the activities you can perform for the current job from the Data Pump Export prompt in interactive-command mode.

Table 2-2 Supported Activities in Data Pump Export's Interactive-Command Mode

	Activity	Command Used
	
Add additional dump files.

	
ADD_FILE

	
Exit interactive mode and enter logging mode.

	
CONTINUE_CLIENT

	
Stop the export client session, but leave the job running.

	
EXIT_CLIENT

	
Redefine the default size to be used for any subsequent dump files.

	
FILESIZE

	
Display a summary of available commands.

	
HELP

	
Detach all currently attached client sessions and kill the current job.

	
KILL_JOB

	
Increase or decrease the number of active worker processes for the current job. This command is valid only in the Enterprise Edition of Oracle Database 11g.

	
PARALLEL

	
Restart a stopped job to which you are attached.

	
START_JOB

	
Display detailed status for the current job and/or set status interval.

	
STATUS

	
Stop the current job for later restart.

	
STOP_JOB

The following are descriptions of the commands available in the interactive-command mode of Data Pump Export.

ADD_FILE

Purpose

Adds additional files or substitution variables to the export dump file set.

Syntax and Description

ADD_FILE=[directory_object:]file_name [,...]

The file_name must not contain any directory path information. However, it can include a substitution variable, %U, which indicates that multiple files may be generated using the specified filename as a template. It can also specify another directory_object.

The size of the file being added is determined by the setting of the FILESIZE parameter.

	
See Also:

File Allocation for information about the effects of using substitution variables

Example

The following example adds two dump files to the dump file set. A directory object is not specified for the dump file named hr2.dmp, so the default directory object for the job is assumed. A different directory object, dpump_dir2, is specified for the dump file named hr3.dmp.

Export> ADD_FILE=hr2.dmp, dpump_dir2:hr3.dmp

CONTINUE_CLIENT

Purpose

Changes the Export mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, status is continually output to the terminal. If the job is currently stopped, then CONTINUE_CLIENT will also cause the client to attempt to start the job.

Example

Export> CONTINUE_CLIENT

EXIT_CLIENT

Purpose

Stops the export client session, exits Export, and discontinues logging to the terminal, but leaves the current job running.

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time. To see the status of the job, you can monitor the log file for the job or you can query the USER_DATAPUMP_JOBS view or the V$SESSION_LONGOPS view.

Example

Export> EXIT_CLIENT

FILESIZE

Purpose

Redefines the default size to be used for any subsequent dump files.

Syntax and Description

FILESIZE=number

The file size can be followed by B, K, M, or G to indicate that the size is expressed in bytes, kilobytes, megabytes, or gigabytes, respectively. The default is B.

A file size of 0 indicates that there will not be any size restrictions on new dump files. They will be extended as needed until the limits of the containing device are reached.

Example

Export> FILESIZE=100M

HELP

Purpose

Provides information about Data Pump Export commands available in interactive-command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Export> HELP

KILL_JOB

Purpose

Detaches all currently attached client sessions and then kills the current job. It exits Export and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is killed using KILL_JOB cannot be restarted. All attached clients, including the one issuing the KILL_JOB command, receive a warning that the job is being killed by the current user and are then detached. After all clients are detached, the job's process structure is immediately run down and the master table and dump files are deleted. Log files are not deleted.

Example

Export> KILL_JOB

PARALLEL

Purpose

Enables you to increase or decrease the number of active processes (worker and parallel slaves) for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter and as an interactive-command mode parameter. (It is only available in Enterprise Edition.) You set it to the desired number of parallel processes (worker and parallel slaves). An increase takes effect immediately if there are sufficient files and resources. A decrease does not take effect until an existing process finishes its current task. If the value is decreased, workers are idled but not deleted until the job exits.

	
See Also:

PARALLEL for more information about parallelism

Example

Export> PARALLEL=10

START_JOB

Purpose

Starts the current job to which you are attached.

Syntax and Description

START_JOB

The START_JOB command restarts the current job to which you are attached (the job cannot be currently executing). The job is restarted with no data loss or corruption after an unexpected failure or after you issued a STOP_JOB command, provided the dump file set and master table have not been altered in any way.

Transportable-tablespace-mode exports are not restartable.

Example

Export> START_JOB

STATUS

Purpose

Displays cumulative status of the job, along with a description of the current operation. An estimated completion percentage for the job is also returned. Also allows resetting the display interval for logging mode status.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be displayed in logging mode. If no value is entered or if the default value of 0 is used, the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file (even if one is in effect).

Example

The following example will display the current job status and change the logging mode display interval to five minutes (300 seconds):

Export> STATUS=300

STOP_JOB

Purpose

Stops the current job either immediately or after an orderly shutdown, and exits Export.

Syntax and Description

STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB command is issued, the job can be attached to and restarted at a later time with the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A warning requiring confirmation will be issued. An orderly shutdown stops the job after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring confirmation will be issued. All attached clients, including the one issuing the STOP_JOB command, receive a warning that the job is being stopped by the current user and they will be detached. After all clients are detached, the process structure of the job is immediately run down. That is, the master process will not wait for the worker processes to finish their current tasks. There is no risk of corruption or data loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were incomplete at the time of shutdown may have to be redone at restart time.

Example

Export> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Export

This section provides the following examples of using Data Pump Export:

	
Performing a Table-Mode Export

	
Data-Only Unload of Selected Tables and Rows

	
Estimating Disk Space Needed in a Table-Mode Export

	
Performing a Schema-Mode Export

	
Performing a Parallel Full Database Export

	
Using Interactive Mode to Stop and Reattach to a Job

For information that will help you to successfully use these examples, see Using the Export Parameter Examples.

Performing a Table-Mode Export

Example 2-1 shows a table-mode export, specified using the TABLES parameter. Issue the following Data Pump export command to perform a table export of the tables employees and jobs from the human resources (hr) schema:

Example 2-1 Performing a Table-Mode Export

expdp hr TABLES=employees,jobs DUMPFILE=dpump_dir1:table.dmp NOLOGFILE=y

Because user hr is exporting tables in his own schema, it is not necessary to specify the schema name for the tables. The NOLOGFILE=y parameter indicates that an Export log file of the operation will not be generated.

Data-Only Unload of Selected Tables and Rows

Example 2-2 shows the contents of a parameter file (exp.par) that you could use to perform a data-only unload of all tables in the human resources (hr) schema except for the tables countries and regions. Rows in the employees table are unloaded that have a department_id other than 50. The rows are ordered by employee_id.

Example 2-2 Data-Only Unload of Selected Tables and Rows

DIRECTORY=dpump_dir1
DUMPFILE=dataonly.dmp
CONTENT=DATA_ONLY
EXCLUDE=TABLE:"IN ('COUNTRIES', 'REGIONS')"
QUERY=employees:"WHERE department_id !=50 ORDER BY employee_id"

You can issue the following command to execute the exp.par parameter file:

> expdp hr PARFILE=exp.par

A schema-mode export (the default mode) is performed, but the CONTENT parameter effectively limits the export to an unload of just the table's data. The DBA previously created the directory object dpump_dir1 which points to the directory on the server where user hr is authorized to read and write export dump files. The dump file dataonly.dmp is created in dpump_dir1.

Estimating Disk Space Needed in a Table-Mode Export

Example 2-3 shows the use of the ESTIMATE_ONLY parameter to estimate the space that would be consumed in a table-mode export, without actually performing the export operation. Issue the following command to use the BLOCKS method to estimate the number of bytes required to export the data in the following three tables located in the human resource (hr) schema: employees, departments, and locations.

Example 2-3 Estimating Disk Space Needed in a Table-Mode Export

> expdp hr DIRECTORY=dpump_dir1 ESTIMATE_ONLY=y TABLES=employees,
departments, locations LOGFILE=estimate.log

The estimate is printed in the log file and displayed on the client's standard output device. The estimate is for table row data only; it does not include metadata.

Performing a Schema-Mode Export

Example 2-4 shows a schema-mode export of the hr schema. In a schema-mode export, only objects belonging to the corresponding schemas are unloaded. Because schema mode is the default mode, it is not necessary to specify the SCHEMAS parameter on the command line, unless you are specifying more than one schema or a schema other than your own.

Example 2-4 Performing a Schema Mode Export

> expdp hr DUMPFILE=dpump_dir1:expschema.dmp LOGFILE=dpump_dir1:expschema.log

Performing a Parallel Full Database Export

Example 2-5 shows a full database Export that will have up to 3 parallel processes (worker or PQ slaves).

Example 2-5 Parallel Full Export

> expdp hr FULL=y DUMPFILE=dpump_dir1:full1%U.dmp, dpump_dir2:full2%U.dmp
FILESIZE=2G PARALLEL=3 LOGFILE=dpump_dir1:expfull.log JOB_NAME=expfull

Because this is a full database export, all data and metadata in the database will be exported. Dump files full101.dmp, full201.dmp, full102.dmp, and so on will be created in a round-robin fashion in the directories pointed to by the dpump_dir1 and dpump_dir2 directory objects. For best performance, these should be on separate I/O channels. Each file will be up to 2 gigabytes in size, as necessary. Initially, up to three files will be created. More files will be created, if needed. The job and master table will have a name of expfull. The log file will be written to expfull.log in the dpump_dir1 directory.

Using Interactive Mode to Stop and Reattach to a Job

To start this example, reexecute the parallel full export in Example 2-5. While the export is running, press Ctrl+C. This will start the interactive-command interface of Data Pump Export. In the interactive interface, logging to the terminal stops and the Export prompt is displayed.

Example 2-6 Stopping and Reattaching to a Job

At the Export prompt, issue the following command to stop the job:

Export> STOP_JOB=IMMEDIATE
Are you sure you wish to stop this job ([y]/n): y

The job is placed in a stopped state and exits the client.

Enter the following command to reattach to the job you just stopped:

> expdp hr ATTACH=EXPFULL

After the job status is displayed, you can issue the CONTINUE_CLIENT command to resume logging mode and restart the expfull job.

Export> CONTINUE_CLIENT

A message is displayed that the job has been reopened, and processing status is output to the client.

Syntax Diagrams for Data Pump Export

This section provides syntax diagrams for Data Pump Export. These diagrams use standard SQL syntax notation. For more information about SQL syntax notation, see Oracle Database SQL Language Reference.

ExpInit

[image: Description of expinit.gif follows]

ExpStart

[image: Description of expstart.gif follows]

ExpModes

[image: Description of expmodes.gif follows]

ExpOpts

[image: Description of expopts.gif follows]

ExpEncrypt

[image: Description of expencrypt.gif follows]

ExpFilter

[image: Description of expfilter.gif follows]

ExpRemap

[image: Description of expremap.gif follows]

ExpFileOpts

[image: Description of expfileopts.gif follows]

ExpDynOpts

[image: Description of expdynopts.gif follows]

3 Data Pump Import

This chapter describes the Oracle Data Pump Import utility. The following topics are discussed:

	
What Is Data Pump Import?

	
Invoking Data Pump Import

	
Filtering During Import Operations

	
Parameters Available in Import's Command-Line Mode

	
How Data Pump Import Parameters Map to Those of the Original Import Utility

	
Commands Available in Import's Interactive-Command Mode

	
Examples of Using Data Pump Import

	
Syntax Diagrams for Data Pump Import

What Is Data Pump Import?

	
Note:

Although Data Pump Import (impdp) functionality is similar to that of the original Import utility (imp), they are completely separate utilities and their files are not compatible. See Chapter 20, "Original Export and Import" for a description of the original Import utility.

Data Pump Import (hereinafter referred to as Import for ease of reading) is a utility for loading an export dump file set into a target system. The dump file set is made up of one or more disk files that contain table data, database object metadata, and control information. The files are written in a proprietary, binary format. During an import operation, the Data Pump Import utility uses these files to locate each database object in the dump file set.

Import can also be used to load a target database directly from a source database with no intervening dump files. This is known as a network import.

Data Pump Import enables you to specify whether a job should move a subset of the data and metadata from the dump file set or the source database (in the case of a network import), as determined by the import mode. This is done using data filters and metadata filters, which are implemented through Import commands. See Filtering During Import Operations.

To see some examples of the various ways in which you can use Import, refer to Examples of Using Data Pump Import.

Invoking Data Pump Import

The Data Pump Import utility is invoked using the impdp command. The characteristics of the import operation are determined by the import parameters you specify. These parameters can be specified either on the command line or in a parameter file.

	
Note:

Do not invoke Import as SYSDBA, except at the request of Oracle technical support. SYSDBA is used internally and has specialized functions; its behavior is not the same as for general users.

	
Note:

Be aware that if you are performing a Data Pump Import into a table or tablespace created with the NOLOGGING clause enabled, a redo log file may still be generated. The redo that is generated in such a case is generally for maintenance of the master table or related to underlying recursive space transactions, data dictionary changes, and index maintenance for indices on the table that require logging.

The following sections contain more information about invoking Import:

	
Data Pump Import Interfaces

	
Data Pump Import Modes

	
Network Considerations

	
Note:

It is not possible to start or restart Data Pump jobs on one instance in an Oracle Real Application Clusters (RAC) environment if there are Data Pump jobs currently running on other instances in the Oracle RAC environment.

Data Pump Import Interfaces

You can interact with Data Pump Import by using a command line, a parameter file, or an interactive-command mode.

	
Command-Line Interface: Enables you to specify the Import parameters directly on the command line. For a complete description of the parameters available in the command-line interface, see Parameters Available in Import's Command-Line Mode.

	
Parameter File Interface: Enables you to specify command-line parameters in a parameter file. The only exception is the PARFILE parameter because parameter files cannot be nested. The use of parameter files is recommended if you are using parameters whose values require quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

	
Interactive-Command Interface: Stops logging to the terminal and displays the Import prompt, from which you can enter various commands, some of which are specific to interactive-command mode. This mode is enabled by pressing Ctrl+C during an import operation started with the command-line interface or the parameter file interface. Interactive-command mode is also enabled when you attach to an executing or stopped job.

For a complete description of the commands available in interactive-command mode, see Commands Available in Import's Interactive-Command Mode.

Data Pump Import Modes

One of the most significant characteristics of an import operation is its mode, because the mode largely determines what is imported. The specified mode applies to the source of the operation, either a dump file set or another database if the NETWORK_LINK parameter is specified.

When the source of the import operation is a dump file set, specifying a mode is optional. If no mode is specified, then Import attempts to load the entire dump file set in the mode in which the export operation was run.

The mode is specified on the command line, using the appropriate parameter. The available modes are as follows:

	
Full Import Mode

	
Schema Mode

	
Table Mode

	
Tablespace Mode

	
Transportable Tablespace Mode

	
Note:

When you import a dump file that was created by a full-mode export, the import operation attempts to copy the password for the SYS account from the source database. This sometimes fails (for example, if the password is in a shared password file). If it does fail, then after the import completes, you must set the password for the SYS account at the target database to a password of your choice.

	
Note:

Jobs (created by the Oracle Database job scheduler) are always imported to the schema of the importing user. After an import, if you query the DBA_JOBS view you will see that LOG_USER and PRIV_USER values are set to the importing user, regardless of how they were set on the export platform.
To work around this, you must perform both the export and the import as the job owner.

Full Import Mode

A full import is specified using the FULL parameter. In full import mode, the entire content of the source (dump file set or another database) is loaded into the target database. This is the default for file-based imports. You must have the IMP_FULL_DATABASE role if the source is another database.

Cross-schema references are not imported for non-privileged users. For example, a trigger defined on a table within the importing user's schema, but residing in another user's schema, is not imported.

The IMP_FULL_DATABASE role is required on the target database and the EXP_FULL_DATABASE role is required on the source database if the NETWORK_LINK parameter is used for a full import.

	
See Also:

FULL

Schema Mode

A schema import is specified using the SCHEMAS parameter. In a schema import, only objects owned by the specified schemas are loaded. The source can be a full, table, tablespace, or schema-mode export dump file set or another database. If you have the IMP_FULL_DATABASE role, then a list of schemas can be specified and the schemas themselves (including system privilege grants) are created in the database in addition to the objects contained within those schemas.

Cross-schema references are not imported for non-privileged users unless the other schema is remapped to the current schema. For example, a trigger defined on a table within the importing user's schema, but residing in another user's schema, is not imported.

	
See Also:

SCHEMAS

Table Mode

A table-mode import is specified using the TABLES parameter. In table mode, only the specified set of tables, partitions, and their dependent objects are loaded. The source can be a full, schema, tablespace, or table-mode export dump file set or another database. You must have the IMP_FULL_DATABASE role to specify tables that are not in your own schema.

You can use the transportable option during a table-mode import by specifying the TRANPORTABLE=ALWAYS parameter in conjunction with the TABLES parameter. Note that this requires use of the NETWORK_LINK parameter, as well.

	
See Also:

	
TABLES

	
TRANSPORTABLE

	
Using Data File Copying to Move Data

Tablespace Mode

A tablespace-mode import is specified using the TABLESPACES parameter. In tablespace mode, all objects contained within the specified set of tablespaces are loaded, along with the dependent objects. The source can be a full, schema, tablespace, or table-mode export dump file set or another database. For unprivileged users, objects not remapped to the current schema will not be processed.

	
See Also:

TABLESPACES

Transportable Tablespace Mode

A transportable tablespace import is specified using the TRANSPORT_TABLESPACES parameter. In transportable tablespace mode, the metadata from a transportable tablespace export dump file set or from another database is loaded. The datafiles, specified by the TRANSPORT_DATAFILES parameter, must be made available from the source system for use in the target database, typically by copying them over to the target system.

Encrypted columns are not supported in transportable tablespace mode.

This mode requires the IMP_FULL_DATABASE role.

	
Note:

You cannot export transportable tablespaces and then import them into a database at a lower release level. The target database must be at the same or higher release level as the source database.

	
See Also:

	
TRANSPORT_TABLESPACES

	
TRANSPORT_FULL_CHECK

	
TRANSPORT_DATAFILES

Network Considerations

You can specify a connect identifier in the connect string when you invoke the Data Pump Import utility. This identifier can specify a database instance that is different from the current instance identified by the current Oracle System ID (SID). The connect identifier can be an Oracle*Net connect descriptor or a name that maps to a connect descriptor. This requires an active listener (to start the listener, enter lsnrctl start) that can be located using the connect descriptor.

The following example invokes Import for user hr, using the connect descriptor named inst1:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp TABLES=employees

Import: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 12:25:57

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password@inst1

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Data Mining and Real Application Testing options

The local Import client connects to the database instance identified by the connect descriptor inst1 (a simple net service name, usually defined in a tnsnames.ora file), to import the data from the dump file set to that database.

Do not confuse invoking the Import utility using a connect identifier with an import operation specifying the Import NETWORK_LINK command-line parameter, which initiates an import using a database link. In this case, the local Import client connects to the database instance identified by the command-line connect string, retrieves the data to be imported from the database instance identified by the database link, and writes the data to the connected database instance. There is no dump file set involved.

	
See Also:

	
NETWORK_LINK

	
Oracle Database Net Services Administrator's Guide

	
Oracle Database Heterogeneous Connectivity Administrator's Guide

Filtering During Import Operations

Data Pump Import provides much greater data and metadata filtering capability than was provided by the original Import utility.

Data Filters

Data specific filtering is implemented through the QUERY and SAMPLE parameters, which specify restrictions on the table rows that are to be imported. Data filtering can also occur indirectly as a result of Metadata filtering, which can include or exclude table objects along with any associated row data.

Each data filter can only be specified once per table and once per job. If different filters using the same name are applied to both a particular table and to the whole job, the filter parameter supplied for the specific table will take precedence.

Metadata Filters

Data Pump Import provides much greater metadata filtering capability than was provided by the original Import utility. Metadata filtering is implemented through the EXCLUDE and INCLUDE parameters. The EXCLUDE and INCLUDE parameters are mutually exclusive.

Metadata filters identify a set of objects to be included or excluded from a Data Pump operation. For example, you could request a full import, but without Package Specifications or Package Bodies.

To use filters correctly and to get the results you expect, remember that dependent objects of an identified object are processed along with the identified object. For example, if a filter specifies that a package is to be included in an operation, then grants upon that package will also be included. Likewise, if a table is excluded by a filter, then indexes, constraints, grants, and triggers upon the table will also be excluded by the filter.

If multiple filters are specified for an object type, an implicit AND operation is applied to them. That is, objects participating in the job must pass all of the filters applied to their object types.

The same filter name can be specified multiple times within a job.

To see which objects can be filtered, you can query the following views: DATABASE_EXPORT_OBJECTS for Full-mode imports, SCHEMA_EXPORT_OBJECTS for schema-mode imports, and TABLE_EXPORT_OBJECTS for table-mode and tablespace-mode imports. Note that full object path names are determined by the export mode, not by the import mode.

For an example of this, see Metadata Filters.

	
See Also:

	
Metadata Filters for an example of using filtering

	
The Import EXCLUDE parameter

	
The Import INCLUDE parameter

Parameters Available in Import's Command-Line Mode

This section provides descriptions of the parameters available in the command-line mode of Data Pump Import. Many of the descriptions include an example of how to use the parameter.

Using the Import Parameter Examples

If you try running the examples that are provided for each parameter, be aware of the following:

	
After you enter the username and parameters as shown in the example, Import is started and you are prompted for a password before a database connection is made:

Import: Release 11.1.0.6.0 - Production on Monday, 27 August, 2007 12:15:55

Copyright (c) 2003, 2007, Oracle. All rights reserved.

Password: password

Connected to: Oracle Database 11g Enterprise Edition Release 11.1.0.6.0 - Production
With the Partitioning, Data Mining and Real Application Testing options

	
Most of the examples use the sample schemas of the seed database, which is installed by default when you install Oracle Database. In particular, the human resources (hr) schema is often used.

	
Examples that specify a dump file to import assume that the dump file exists. Wherever possible, the examples use dump files that are generated when you run the Export examples in Chapter 2.

	
The examples assume that the directory objects, dpump_dir1 and dpump_dir2, already exist and that READ and WRITE privileges have been granted to the hr schema for these directory objects. See Default Locations for Dump, Log, and SQL Files for information about creating directory objects and assigning privileges to them.

	
Some of the examples require the EXP_FULL_DATABASE and IMP_FULL_DATABASE roles. The examples assume that the hr schema has been granted these roles.

If necessary, ask your DBA for help in creating these directory objects and assigning the necessary privileges and roles.

Syntax diagrams of these parameters are provided in Syntax Diagrams for Data Pump Import.

Unless specifically noted, these parameters can also be specified in a parameter file.

Use of Quotation Marks On the Data Pump Command Line

Some operating systems require that quotation marks on the command line be preceded by an escape character, such as the backslash. If the backslashes were not present, the command-line parser that Import uses would not understand the quotation marks and would remove them, resulting in an error. In general, Oracle recommends that you place such statements in a parameter file because escape characters are not necessary in parameter files.

	
See Also:

	
Default Locations for Dump, Log, and SQL Files for information about creating default directory objects

	
Examples of Using Data Pump Import

	
Oracle Database Sample Schemas

	
Note:

If you are accustomed to using the original Import utility, you may be wondering which Data Pump parameters are used to perform the operations you used to perform with original Import. For a comparison, see How Data Pump Import Parameters Map to Those of the Original Import Utility.

ATTACH

Default: current job in user's schema, if there is only one running job.

Purpose

Attaches the client session to an existing import job and automatically places you in interactive-command mode.

Syntax and Description

ATTACH [=[schema_name.]job_name]

Specify a schema_name if the schema to which you are attaching is not your own. You must have the IMP_FULL_DATABASE role to do this.

A job_name does not have to be specified if only one running job is associated with your schema and the job is active. If the job you are attaching to is stopped, you must supply the job name. To see a list of Data Pump job names, you can query the DBA_DATAPUMP_JOBS view or the USER_DATAPUMP_JOBS view.

When you are attached to the job, Import displays a description of the job and then displays the Import prompt.

Restrictions

	
When you specify the ATTACH parameter, the only other Data Pump parameter you can specify on the command line is ENCRYPTION_PASSWORD.

	
If the job you are attaching to was initially started using an encryption password, then when you attach to the job you must again enter the ENCRYPTION_PASSWORD parameter on the command line to re-specify that password. The only exception to this is if the job was initially started with the ENCRYPTION=ENCRYPTED_COLUMNS_ONLY parameter. In that case, the encryption password is not needed when attaching to the job.

	
You cannot attach to a job in another schema unless it is already running.

	
If the dump file set or master table for the job have been deleted, the attach operation will fail.

	
Altering the master table in any way will lead to unpredictable results.

Example

The following is an example of using the ATTACH parameter.

> impdp hr ATTACH=import_job

This example assumes that a job named import_job exists in the hr schema.

	
See Also:

Commands Available in Import's Interactive-Command Mode

CONTENT

Default: ALL

Purpose

Enables you to filter what is loaded during the import operation.

Syntax and Description

CONTENT={ALL | DATA_ONLY | METADATA_ONLY}

	
ALL loads any data and metadata contained in the source. This is the default.

	
DATA_ONLY loads only table row data into existing tables; no database objects are created.

	
METADATA_ONLY loads only database object definitions; no table row data is loaded.

Restrictions

	
The CONTENT=METADATA_ONLY parameter and value cannot be used in conjunction with parameter TRANSPORT_TABLESPACES (transportable-tablespace-mode).

	
The CONTENT=ALL and CONTENT=DATA_ONLY parameter and values cannot be used in conjunction with the SQLFILE parameter.

Example

The following is an example of using the CONTENT parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp CONTENT=METADATA_ONLY

This command will execute a full import that will load only the metadata in the expfull.dmp dump file. It executes a full import because that is the default for file-based imports in which no import mode is specified.

DATA_OPTIONS

Default: There is no default. If this parameter is not used, then the special data handling options it provides simply do not take effect.

Purpose

The DATA_OPTIONS parameter provides options for how to handle certain types of data during exports and imports. For import operations, the only valid option for the DATA_OPTIONS parameter is SKIP_CONSTRAINT_ERRORS.

Syntax and Description

DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS

The SKIP_CONSTRAINT_ERRORS option affects how non-deferred constraint violations are handled while a data object (table, partition, or subpartition) is being loaded. It has no effect on the load if deferred constraint violations are encountered. Deferred constraint violations always cause the entire load to be rolled back.

The SKIP_CONSTRAINT_ERRORS option specifies that you want the import operation to proceed even if non-deferred constraint violations are encountered. It logs any rows that cause non-deferred constraint violations, but does not stop the load for the data object experiencing the violation.

If SKIP_CONSTRAINT_ERRORS is not set, then the default behavior is to roll back the entire load of the data object on which non-deferred constraint violations are encountered.

Restrictions

	
If SKIP_CONSTRAINT_ERRORS is used and if a data object has unique indexes or constraints defined on it at the time of the load, then the APPEND hint will not be used for loading that data object. Therefore, loading such data objects will take longer when the SKIP_CONSTRAINT_ERRORS option is used.

	
Even if SKIP_CONSTRAINT_ERRORS is specified, it is not used unless a data object is being loaded using the external table access method.

Example

This example shows a data-only table mode import with SKIP_CONSTRAINT_ERRORS enabled:

> impdp hr TABLES=employees CONTENT=DATA_ONLY
DUMPFILE=dpump_dir1:table.dmp DATA_OPTIONS=skip_constraint_errors

If any non-deferred constraint violations are encountered during this import operation, they will be logged and the import will continue on to completion.

DIRECTORY

Default: DATA_PUMP_DIR

Purpose

Specifies the default location in which the import job can find the dump file set and where it should create log and SQL files.

Syntax and Description

DIRECTORY=directory_object

The directory_object is the name of a database directory object (not the file path of an actual directory). Upon installation, privileged users have access to a default directory object named DATA_PUMP_DIR. Users with access to DATA_PUMP_DIR need not use the DIRECTORY parameter at all.

A directory object specified on the DUMPFILE, LOGFILE, or SQLFILE parameter overrides any directory object that you specify for the DIRECTORY parameter. You must have Read access to the directory used for the dump file set and Write access to the directory used to create the log and SQL files.

Example

The following is an example of using the DIRECTORY parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
LOGFILE=dpump_dir2:expfull.log

This command results in the import job looking for the expfull.dmp dump file in the directory pointed to by the dpump_dir1 directory object. The dpump_dir2 directory object specified on the LOGFILE parameter overrides the DIRECTORY parameter so that the log file is written to dpump_dir2.

	
See Also:

	
Default Locations for Dump, Log, and SQL Files for more information about default directory objects

	
Oracle Database SQL Language Reference for more information about the CREATE DIRECTORY command

DUMPFILE

Default: expdat.dmp

Purpose

Specifies the names and optionally, the directory objects of the dump file set that was created by Export.

Syntax and Description

DUMPFILE=[directory_object:]file_name [, ...]

The directory_object is optional if one has already been established by the DIRECTORY parameter. If you do supply a value here, it must be a directory object that already exists and that you have access to. A database directory object that is specified as part of the DUMPFILE parameter overrides a value specified by the DIRECTORY parameter.

The file_name is the name of a file in the dump file set. The filenames can also be templates that contain the substitution variable, %U. If %U is used, Import examines each file that matches the template (until no match is found) in order to locate all files that are part of the dump file set. The %U expands to a 2-digit incrementing integer starting with 01.

Sufficient information is contained within the files for Import to locate the entire set, provided the file specifications in the DUMPFILE parameter encompass the entire set. The files are not required to have the same names, locations, or order that they had at export time.

Example

The following is an example of using the Import DUMPFILE parameter. You can create the dump files used in this example by running the example provided for the Export DUMPFILE parameter. See DUMPFILE.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=dpump_dir2:exp1.dmp, exp2%U.dmp

Because a directory object (dpump_dir2) is specified for the exp1.dmp dump file, the import job will look there for the file. It will also look in dpump_dir1 for dump files of the form exp2<nn>.dmp. The log file will be written to dpump_dir1.

	
See Also:

	
File Allocation

	
Performing a Data-Only Table-Mode Import

ENCRYPTION_PASSWORD

Default: There is no default; the value is user-supplied.

Purpose

Specifies a password for accessing encrypted column data in the dump file set. This prevents unauthorized access to an encrypted dump file set.

Syntax and Description

ENCRYPTION_PASSWORD = password

This parameter is required on an import operation if an encryption password was specified on the export operation. The password that is specified must be the same one that was specified on the export operation.

Restrictions

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

	
The ENCRYPTION_PASSWORD parameter is not valid if the dump file set was created using the transparent mode of encryption.

	
The ENCRYPTION_PASSWORD parameter is not valid for network import jobs.

	
Encryption attributes for all columns must match between the exported table definition and the target table. For example, suppose you have a table, EMP, and one of its columns is named EMPNO. Both of the following situations would result in an error because the encryption attribute for the EMP column in the source table would not match the encryption attribute for the EMP column in the target table:

	
The EMP table is exported with the EMPNO column being encrypted, but prior to importing the table you remove the encryption attribute from the EMPNO column.

	
The EMP table is exported without the EMPNO column being encrypted, but prior to importing the table you enable encryption on the EMPNO column.

Example

In the following example, the encryption password, 123456, must be specified because it was specified when the dpcd2be1.dmp dump file was created (see "ENCRYPTION_PASSWORD").

> impdp hr TABLES=employee_s_encrypt DIRECTORY=dpump_dir
 DUMPFILE=dpcd2be1.dmp ENCRYPTION_PASSWORD=123456

During the import operation, any columns in the employee_s_encrypt table that were encrypted during the export operation are decrypted before being imported.

ESTIMATE

Default: BLOCKS

Purpose

Instructs the source system in a network import operation to estimate how much data will be generated.

Syntax and Description

ESTIMATE={BLOCKS | STATISTICS}

The valid choices for the ESTIMATE parameter are as follows:

	
BLOCKS - The estimate is calculated by multiplying the number of database blocks used by the source objects times the appropriate block sizes.

	
STATISTICS - The estimate is calculated using statistics for each table. For this method to be as accurate as possible, all tables should have been analyzed recently.

The estimate that is generated can be used to determine a percentage complete throughout the execution of the import job.

Restrictions

	
The Import ESTIMATE parameter is valid only if the NETWORK_LINK parameter is also specified.

	
When the import source is a dump file set, the amount of data to be loaded is already known, so the percentage complete is automatically calculated.

	
The estimate may be inaccurate if the QUERY, SAMPLE, or REMAP_DATA parameter is used.

Example

In the following example, source_database_link would be replaced with the name of a valid link to the source database.

> impdp hr TABLES=job_history NETWORK_LINK=source_database_link
 DIRECTORY=dpump_dir1 ESTIMATE=statistics

The job_history table in the hr schema is imported from the source database. A log file is created by default and written to the directory pointed to by the dpump_dir1 directory object. When the job begins, an estimate for the job is calculated based on table statistics.

EXCLUDE

Default: There is no default

Purpose

Enables you to filter the metadata that is imported by specifying objects and object types that you want to exclude from the import job.

Syntax and Description

EXCLUDE=object_type[:name_clause] [, ...]

For the given mode of import, all object types contained within the source (and their dependents) are included, except those specified in an EXCLUDE statement. If an object is excluded, all of its dependent objects are also excluded. For example, excluding a table will also exclude all indexes and triggers on the table.

The name_clause is optional. It allows fine-grained selection of specific objects within an object type. It is a SQL expression used as a filter on the object names of the type. It consists of a SQL operator and the values against which the object names of the specified type are to be compared. The name clause applies only to object types whose instances have names (for example, it is applicable to TABLE and VIEW, but not to GRANT). The optional name clause must be separated from the object type with a colon and enclosed in double quotation marks, because single-quotation marks are required to delimit the name strings. For example, you could set EXCLUDE=INDEX:"LIKE 'DEPT%'" to exclude all indexes whose names start with dept.

More than one EXCLUDE statement can be specified. Oracle recommends that you place EXCLUDE statements in a parameter file to avoid having to use operating system-specific escape characters on the command line.

As explained in the following sections, you should be aware of the effects of specifying certain objects for exclusion, in particular, CONSTRAINT, GRANT, and USER.

Excluding Constraints

The following constraints cannot be excluded:

	
NOT NULL constraints.

	
Constraints needed for the table to be created and loaded successfully (for example, primary key constraints for index-organized tables or REF SCOPE and WITH ROWID constraints for tables with REF columns).

This means that the following EXCLUDE statements will be interpreted as follows:

	
EXCLUDE=CONSTRAINT will exclude all nonreferential constraints, except for NOT NULL constraints and any constraints needed for successful table creation and loading.

	
EXCLUDE=REF_CONSTRAINT will exclude referential integrity (foreign key) constraints.

Excluding Grants and Users

Specifying EXCLUDE=GRANT excludes object grants on all object types and system privilege grants.

Specifying EXCLUDE=USER excludes only the definitions of users, not the objects contained within users' schemas.

To exclude a specific user and all objects of that user, specify a filter such as the following (where hr is the schema name of the user you want to exclude):

EXCLUDE=SCHEMA: "= 'HR' "

If you try to exclude a user by using a statement such as EXCLUDE=USER:"= 'HR'", only CREATE USER hr DDL statements will be excluded, and you may not get the results you expect.

Restrictions

	
The EXCLUDE and INCLUDE parameters are mutually exclusive.

Example

Assume the following is in a parameter file, exclude.par, being used by a DBA or some other user with the IMP_FULL_DATABASE role. (If you want to try the example, you will need to create this file.)

EXCLUDE=FUNCTION
EXCLUDE=PROCEDURE
EXCLUDE=PACKAGE
EXCLUDE=INDEX:"LIKE 'EMP%' "

You could then issue the following command. You can create the expfull.dmp dump file used in this command by running the example provided for the Export FULL parameter. See FULL.

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp PARFILE=exclude.par

All data from the expfull.dmp dump file will be loaded except for functions, procedures, packages, and indexes whose names start with emp.

	
See Also:

Filtering During Import Operations for more information about the effects of using the EXCLUDE parameter

FLASHBACK_SCN

Default: There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the Flashback utility.

Syntax and Description

FLASHBACK_SCN=scn_number

The import operation is performed with data that is consistent as of the specified scn_number.

	
Note:

If you are on a logical standby system, the FLASHBACK_SCN parameter is ignored because SCNs are selected by logical standby. See Oracle Data Guard Concepts and Administration for information about logical standby databases.

Restrictions

	
The FLASHBACK_SCN parameter is valid only when the NETWORK_LINK parameter is also specified.

	
The FLASHBACK_SCN parameter pertains only to the Flashback Query capability of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data Archive.

	
FLASHBACK_SCN and FLASHBACK_TIME are mutually exclusive.

Example

The following is an example of using the FLASHBACK_SCN parameter.

> impdp hr DIRECTORY=dpump_dir1 FLASHBACK_SCN=123456
NETWORK_LINK=source_database_link

The source_database_link in this example would be replaced with the name of a source database from which you were importing data.

FLASHBACK_TIME

Default: There is no default

Purpose

Specifies the system change number (SCN) that Import will use to enable the Flashback utility.

Syntax and Description

FLASHBACK_TIME="TO_TIMESTAMP()"

The SCN that most closely matches the specified time is found, and this SCN is used to enable the Flashback utility. The import operation is performed with data that is consistent as of this SCN. Because the TO_TIMESTAMP value is enclosed in quotation marks, it would be best to put this parameter in a parameter file. Otherwise, you might need to use escape characters on the command line in front of the quotation marks. See Use of Quotation Marks On the Data Pump Command Line.

	
Note:

If you are on a logical standby system, the FLASHBACK_TIME parameter is ignored because SCNs are selected by logical standby. See Oracle Data Guard Concepts and Administration for information about logical standby databases.

Restrictions

	
This parameter is valid only when the NETWORK_LINK parameter is also specified.

	
The FLASHBACK_TIME parameter pertains only to the flashback query capability of Oracle Database. It is not applicable to Flashback Database, Flashback Drop, or Flashback Data Archive.

	
FLASHBACK_TIME and FLASHBACK_SCN are mutually exclusive.

Example

You can specify the time in any format that the DBMS_FLASHBACK.ENABLE_AT_TIME procedure accepts,. For example, suppose you have a parameter file, flashback_imp.par, that contains the following:

FLASHBACK_TIME="TO_TIMESTAMP('25-08-2003 14:35:00', 'DD-MM-YYYY HH24:MI:SS')"

You could then issue the following command:

> impdp hr DIRECTORY=dpump_dir1 PARFILE=flashback_imp.par NETWORK_LINK=source_database_link

The import operation will be performed with data that is consistent with the SCN that most closely matches the specified time.

	
See Also:

Oracle Database Advanced Application Developer's Guide for information about using flashback

FULL

Default: Y

Purpose

Specifies that you want to perform a full database import.

Syntax and Description

FULL=y

A value of FULL=y indicates that all data and metadata from the source (either a dump file set or another database) is imported.

Filtering can restrict what is imported using this import mode (see Filtering During Import Operations).

If the NETWORK_LINK parameter is used, the USERID that is executing the import job has the IMP_FULL_DATABASE role on the target database, then that user must also have the EXP_FULL_DATABASE role on the source database.

If you are an unprivileged user importing from a file, only schemas that map to your own schema are imported.

FULL is the default mode when you are performing a file-based import.

Example

The following is an example of using the FULL parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DUMPFILE=dpump_dir1:expfull.dmp FULL=y
LOGFILE=dpump_dir2:full_imp.log

This example imports everything from the expfull.dmp dump file. In this example, a DIRECTORY parameter is not provided. Therefore, a directory object must be provided on both the DUMPFILE parameter and the LOGFILE parameter. The directory objects can be different, as shown in this example.

HELP

Default: n

Purpose

Displays online help for the Import utility.

Syntax and Description

HELP=y

If HELP=y is specified, Import displays a summary of all Import command-line parameters and interactive commands.

Example

> impdp HELP = Y

This example will display a brief description of all Import parameters and commands.

INCLUDE

Default: There is no default

Purpose

Enables you to filter the metadata that is imported by specifying objects and object types for the current import mode.

Syntax and Description

INCLUDE = object_type[:name_clause] [, ...]

Only object types in the source (and their dependents) that are explicitly specified in the INCLUDE statement are imported.

The name_clause is optional. It allows fine-grained selection of specific objects within an object type. It is a SQL expression used as a filter on the object names of the type. It consists of a SQL operator and the values against which the object names of the specified type are to be compared. The name clause applies only to object types whose instances have names (for example, it is applicable to TABLE, but not to GRANT). The optional name clause must be separated from the object type with a colon and enclosed in double quotation marks, because single-quotation marks are required to delimit the name strings.

More than one INCLUDE statement can be specified. Oracle recommends that you place INCLUDE statements in a parameter file to avoid having to use operating system-specific escape characters on the command line.

To see a list of valid paths for use with the INCLUDE parameter, you can query the following views: DATABASE_EXPORT_OBJECTS for Full mode, SCHEMA_EXPORT_OBJECTS for schema mode, and TABLE_EXPORT_OBJECTS for table and tablespace mode.

Restrictions

	
The INCLUDE and EXCLUDE parameters are mutually exclusive.

Example

Assume the following is in a parameter file, imp_include.par, being used by a DBA or some other user with the IMP_FULL_DATABASE role:

INCLUDE=FUNCTION
INCLUDE=PROCEDURE
INCLUDE=PACKAGE
INCLUDE=INDEX:"LIKE 'EMP%' "

You can then issue the following command:

> impdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
PARFILE=imp_include.par

You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

The Import operation will load only functions, procedures, and packages from the hr schema and indexes whose names start with EMP. Although this is a privileged-mode import (the user must have the IMP_FULL_DATABASE role), the schema definition is not imported, because the USER object type was not specified in an INCLUDE statement.

JOB_NAME

Default: system-generated name of the form SYS_<IMPORT or SQLFILE>_<mode>_NN

Purpose

The job name is used to identify the import job in subsequent actions, such as when the ATTACH parameter is used to attach to a job, or to identify the job via the DBA_DATAPUMP_JOBS or USER_DATAPUMP_JOBS views. The job name becomes the name of the master table in the current user's schema. The master table controls the import job.

Syntax and Description

JOB_NAME=jobname_string

The jobname_string specifies a name of up to 30 bytes for this import job. The bytes must represent printable characters and spaces. If spaces are included, the name must be enclosed in single quotation marks (for example, 'Thursday Import'). The job name is implicitly qualified by the schema of the user performing the import operation.

The default job name is system-generated in the form SYS_IMPORT_mode_NN or SYS_SQLFILE_mode_NN, where NN expands to a 2-digit incrementing integer starting at 01. An example of a default name is 'SYS_IMPORT_TABLESPACE_02'.

Example

The following is an example of using the JOB_NAME parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp JOB_NAME=impjob01

LOGFILE

Default: import.log

Purpose

Specifies the name, and optionally, a directory object, for the log file of the import job.

Syntax and Description

LOGFILE=[directory_object:]file_name

If you specify a directory_object, it must be one that was previously established by the DBA and that you have access to. This overrides the directory object specified with the DIRECTORY parameter. The default behavior is to create import.log in the directory referenced by the directory object specified in the DIRECTORY parameter.

If the file_name you specify already exists, it will be overwritten.

All messages regarding work in progress, work completed, and errors encountered are written to the log file. (For a real-time status of the job, use the STATUS command in interactive mode.)

A log file is always created unless the NOLOGFILE parameter is specified. As with the dump file set, the log file is relative to the server and not the client.

	
Note:

Data Pump Import writes the log file using the database character set. If your client NLS_LANG environment sets up a different client character set from the database character set, then it is possible that table names may be different in the log file than they are when displayed on the client output screen.

Restrictions

	
To perform a Data Pump Import using Automatic Storage Management (ASM), you must specify a LOGFILE parameter that includes a directory object that does not include the ASM + notation. That is, the log file must be written to a disk file, and not written into the ASM storage. Alternatively, you can specify NOLOGFILE=Y. However, this prevents the writing of the log file.

Example

The following is an example of using the LOGFILE parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr SCHEMAS=HR DIRECTORY=dpump_dir2 LOGFILE=imp.log
 DUMPFILE=dpump_dir1:expfull.dmp

Because no directory object is specified on the LOGFILE parameter, the log file is written to the directory object specified on the DIRECTORY parameter.

	
See Also:

	
STATUS

	
Using Directory Objects When Automatic Storage Management Is Enabled for information about Automatic Storage Management and directory objects

NETWORK_LINK

Default: There is no default

Purpose

Enables an import from a (source) database identified by a valid database link. The data from the source database instance is written directly back to the connected database instance.

Syntax and Description

NETWORK_LINK=source_database_link

The NETWORK_LINK parameter initiates an import via a database link. This means that the system to which the impdp client is connected contacts the source database referenced by the source_database_link, retrieves data from it, and writes the data to the database on the connected instance. There are no dump files involved.

The source_database_link provided must be the name of a database link to an available database. If the database on that instance does not already have a database link, you or your DBA must create one. For more information about the CREATE DATABASE LINK statement, see Oracle Database SQL Language Reference.

When you perform a network import using the transportable method, you must copy the source data files to the target database before you start the import.

If the source database is read-only, then the connected user must have a locally managed tablespace assigned as the default temporary tablespace on the source database. Otherwise, the job will fail. For further details about this, see the information about creating locally managed temporary tablespaces in the Oracle Database Administrator's Guide.

This parameter is required when any of the following parameters are specified: FLASHBACK_SCN, FLASHBACK_TIME, ESTIMATE, TRANSPORT_TABLESPACES, or TRANSPORTABLE.

	
Caution:

If an import operation is performed over an unencrypted network link, then all data is imported as clear text even if it is encrypted in the database. See Oracle Database Advanced Security Administrator's Guide for more information about network security.

Restrictions

	
Network imports do not support the use of evolved types.

	
When the NETWORK_LINK parameter is used in conjunction with the TABLES parameter, only whole tables can be imported (not partitions of tables). The only exception to this is if TRANSPORTABLE=ALWAYS is also specified, in which case single or multiple partitions of a specified table can be imported.

	
If the USERID that is executing the import job has the IMP_FULL_DATABASE role on the target database, then that user must also have the EXP_FULL_DATABASE role on the source database.

	
The only types of database links supported by Data Pump Import are: public, fixed-user, and connected-user. Current-user database links are not supported.

Example

In the following example, the source_database_link would be replaced with the name of a valid database link.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link EXCLUDE=CONSTRAINT

This example results in an import of the employees table (excluding constraints) from the source database. The log file is written to dpump_dir1, specified on the DIRECTORY parameter.

NOLOGFILE

Default: n

Purpose

Specifies whether or not to suppress the default behavior of creating a log file.

Syntax and Description

NOLOGFILE={y | n}

If you specify NOLOGFILE=Y to suppress creation of a log file, progress and error information is still written to the standard output device of any attached clients, including the client that started the original export operation. If there are no clients attached to a running job and you specify NOLOGFILE=Y, you run the risk of losing important progress and error information.

Example

The following is an example of using the NOLOGFILE parameter.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp NOLOGFILE=Y

This command results in a full mode import (the default for file-based imports) of the expfull.dmp dump file. No log file is written because NOLOGFILE is set to y.

PARALLEL

Default: 1

Purpose

Specifies the maximum number of threads of active execution operating on behalf of the import job.

Syntax and Description

PARALLEL=integer

The value you specify for integer specifies the maximum number of threads of active execution operating on behalf of the import job. This execution set consists of a combination of worker processes and parallel I/O server processes. The master control process, idle workers, and worker processes acting as parallel execution coordinators in parallel I/O operations do not count toward this total. This parameter enables you to make trade-offs between resource consumption and elapsed time.

If the source of the import is a dump file set consisting of files, multiple processes can read from the same file, but performance may be limited by I/O contention.

To increase or decrease the value of PARALLEL during job execution, use interactive-command mode.

Parallelism is used for loading user data and package bodies, and for building indexes.

	
See Also:

Controlling Resource Consumption

Restrictions

	
This parameter is valid only in the Enterprise Edition of Oracle Database 11g.

Example

The following is an example of using the PARALLEL parameter.

> impdp hr DIRECTORY=dpump_dir1 LOGFILE=parallel_import.log
JOB_NAME=imp_par3 DUMPFILE=par_exp%U.dmp PARALLEL=3

This command imports the dump file set that is created when you run the example for the Export PARALLEL parameter. (See PARALLEL.) The names of the dump files are par_exp01.dmp, par_exp02.dmp, and par_exp03.dmp.

PARFILE

Default: There is no default

Purpose

Specifies the name of an import parameter file.

Syntax and Description

PARFILE=[directory_path]file_name

Unlike dump files, log files, and SQL files which are created and written by the server, the parameter file is opened and read by the client running the impdp image. Therefore, a directory object name is neither required nor appropriate. The default is the user's current directory. The use of parameter files is highly recommended if you are using parameters whose values require the use of quotation marks. (See Use of Quotation Marks On the Data Pump Command Line.)

Restrictions

	
The PARFILE parameter cannot be specified within a parameter file.

Example

The content of an example parameter file, hr_imp.par, might be as follows:

TABLES= countries, locations, regions
DUMPFILE=dpump_dir2:exp1.dmp,exp2%U.dmp
DIRECTORY=dpump_dir1
PARALLEL=3

You could then issue the following command to execute the parameter file:

> impdp hr PARFILE=hr_imp.par

The tables named countries, locations, and regions will be imported from the dump file set that is created when you run the example for the Export DUMPFILE parameter. (See DUMPFILE.) The import job looks for the exp1.dmp file in the location pointed to by dpump_dir2. It looks for any dump files of the form exp2<nn>.dmp in the location pointed to by dpump_dir1. The log file for the job will also be written to dpump_dir1.

PARTITION_OPTIONS

Default: The default is departition when partition names are specified on the TABLES parameter and TRANPORTABLE=ALWAYS is set (whether on the import operation or during the export). Otherwise, the default is none.

Purpose

Specifies how table partitions should be created during an import operation.

Syntax and Description

PARTITION_OPTIONS={none | departition | merge}

A value of none creates tables as they existed on the system from which the export operation was performed. You cannot use the none option or the merge option if the export was performed with the transportable method, along with a partition or subpartition filter. In such a case, you must use the departition option.

A value of departition promotes each partition or subpartition to a new individual table. The default name of the new table will be the concatenation of the table and partition name or the table and subpartition name, as appropriate.

A value of merge combines all partitions and subpartitions into one table.

Restrictions

	
If the export operation that created the dump file was performed with the transportable method and if a partition or subpartition was specified, then the import operation must use the departition option.

	
If the export operation that created the dump file was performed with the transportable method, then the import operation cannot use PARTITION_OPTIONS=merge.

	
If there are any grants on objects being departitioned, an error message is generated and the objects are not loaded.

Example

The following example assumes that the sh.sales table has been exported into a dump file named sales.dmp. It uses the MERGE option to merge all the partitions in sh.sales into one non-partitioned table in scott schema.

> impdp system TABLES=sh.sales PARTITION_OPTIONS=merge
DIRECTORY=dpump_dir1 DUMPFILE=sales.dmp REMAP_SCHEMA=sh:scott

	
See Also:

TRANSPORTABLE for an example of performing an import operation using PARTITION_OPTIONS=departition

QUERY

Default: There is no default

Purpose

Allows you to specify a query clause that filters the data that gets imported.

Syntax and Description

QUERY=[[schema_name.]table_name:]query_clause

The query_clause is typically a SQL WHERE clause for fine-grained row selection, but could be any SQL clause. For example, an ORDER BY clause could be used to speed up a migration from a heap-organized table to an index-organized table. If a schema and table name are not supplied, the query is applied to (and must be valid for) all tables in the source dump file set or database. A table-specific query overrides a query applied to all tables.

When the query is to be applied to a specific table, a colon must separate the table name from the query clause. More than one table-specific query can be specified, but only one query can be specified per table.

The query must be enclosed in single or double quotation marks. Double quotation marks are recommended, because strings within the clause must be enclosed in single quotation marks. Oracle recommends that you place QUERY specifications in a parameter file to avoid having to use operating system-specific escape characters on the command line. See Use of Quotation Marks On the Data Pump Command Line.

When the QUERY parameter is used, the external tables method (rather than the direct path method) is used for data access.

To specify a schema other than your own in a table-specific query, you must be granted access to that specific table.

Restrictions

	
The QUERY parameter cannot be used in conjunction with the following parameters:

	
CONTENT=METADATA_ONLY

	
SQLFILE

	
TRANSPORT_DATAFILES

	
When the QUERY parameter is specified for a table, Data Pump uses external tables to load the target table. External tables uses a SQL INSERT statement with a SELECT clause. The value of the QUERY parameter is included in the WHERE clause of the SELECT portion of the INSERT statement. If the QUERY parameter includes references to another table with columns whose names match the table being loaded, and if those columns are used in the query, then you will need to use a table alias to distinguish between columns in the table being loaded and columns in the SELECT statement with the same name. The table alias used by Data Pump for the table being loaded is KU$.

For example, suppose you are importing a subset of the sh.sales table based on the credit limit for a customer in the sh.customers table. In the following example, KU$ is used to qualify the cust_id field in the QUERY parameter for loading sh.sales. As a result, Data Pump imports only rows for customers whose credit limit is greater than $10,000.

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c WHERE cust_credit_limit > 10000 AND ku$.cust_id = c.cust_id)"'

If KU$ is not used for a table alias, the result will be that all rows are loaded:

QUERY='sales:"WHERE EXISTS (SELECT cust_id FROM customers c WHERE cust_credit_limit > 10000 AND cust_id = c.cust_id)"'

Example

The following is an example of using the QUERY parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL. Because the QUERY value uses quotation marks, Oracle recommends that you use a parameter file to avoid having to use escape characters on the command line. (See Use of Quotation Marks On the Data Pump Command Line.)

Suppose you have a parameter file, query_imp.par, that contains the following:

QUERY=departments:"WHERE department_id < 120"

You can then enter the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
 PARFILE=query_imp.par NOLOGFILE=Y

All tables in expfull.dmp are imported, but for the departments table, only data that meets the criteria specified in the QUERY parameter is imported.

REMAP_DATA

Default: There is no default

Purpose

The REMAP_DATA parameter allows you to remap data as it is being inserted into a new database. A common use is to regenerate primary keys to avoid conflict when importing a table into a pre-existing table on the target database.

You can specify a remap function that takes as a source the value of the designated column from either the dump file or a remote database. The remap function then returns a remapped value that will replace the original value in the target database.

The same function can be applied to multiple columns being dumped. This is useful when you want to guarantee consistency in remapping both the child and parent column in a referential constraint.

Syntax and Description

REMAP_DATA=[schema.]tablename.column_name:[schema.]pkg.function

The description of each syntax element, in the order in which they appear in the syntax, is as follows:

schema -- the schema containing the table to be remapped. By default, this is the schema of the user doing the import.

tablename -- the table whose column will be remapped.

column_name -- the column whose data is to be remapped.

schema -- the schema containing the PL/SQL package you created that contains the remapping function. As a default, this is the schema of the user doing the import.

pkg -- the name of the PL/SQL package you created that contains the remapping function.

function -- the name of the function within the PL/SQL that will be called to remap the column table in each row of the specified table.

Restrictions

	
The data types of the source argument and the returned value should both match the data type of the designated column in the table.

	
Remapping functions should not perform commits or rollbacks except in autonomous transactions.

Example

The following example assumes a package named remap has been created that contains a function named plusx that changes the values for first_name in the employees table.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_DATA=hr.employees.first_name:hr.remap.plusx

REMAP_DATAFILE

Default: There is no default

Purpose

Changes the name of the source datafile to the target datafile name in all SQL statements where the source datafile is referenced: CREATE TABLESPACE, CREATE LIBRARY, and CREATE DIRECTORY.

Syntax and Description

REMAP_DATAFILE=source_datafile:target_datafile

Remapping datafiles is useful when you move databases between platforms that have different file naming conventions. The source_datafile and target_datafile names should be exactly as you want them to appear in the SQL statements where they are referenced. Oracle recommends that you enclose datafile names in quotation marks to eliminate ambiguity on platforms for which a colon is a valid file specification character.

You must have the IMP_FULL_DATABASE role to specify this parameter.

Example

Because the REMAP_DATAFILE value uses quotation marks, Oracle recommends that you specify the parameter within a parameter file to avoid having to use escape characters on the command line. (See Use of Quotation Marks On the Data Pump Command Line.) For example, suppose you had a parameter file, payroll.par, with the following content:

DIRECTORY=dpump_dir1
FULL=Y
DUMPFILE=db_full.dmp
REMAP_DATAFILE="'DB1$:[HRDATA.PAYROLL]tbs6.f':'/db1/hrdata/payroll/tbs6.f'"

You can then issue the following command:

> impdp hr PARFILE=payroll.par

This example remaps a VMS file specification (DR1$:[HRDATA.PAYROLL]tbs6.f) to a UNIX file specification, (/db1/hrdata/payroll/tbs6.f) for all SQL DDL statements during the import. The dump file, db_full.dmp, is located by the directory object, dpump_dir1.

REMAP_SCHEMA

Default: There is no default

Purpose

Loads all objects from the source schema into a target schema.

Syntax and Description

REMAP_SCHEMA=source_schema:target_schema

Multiple REMAP_SCHEMA lines can be specified, but the source schema must be different for each one. However, different source schemas can map to the same target schema. The mapping may not be 100 percent complete, because there are certain schema references that Import is not capable of finding. For example, Import will not find schema references embedded within the body of definitions of types, views, procedures, and packages.

If the schema you are remapping to does not already exist, then the import operation creates it, provided that the dump file set contains the necessary CREATE USER metadata for the source schema, and provided that you are importing with enough privileges. For example, entering the following Export commands creates the dump file sets with the necessary metadata to create a schema, because the user SYSTEM has the necessary privileges:

> expdp system SCHEMAS=hr
Password: password

> expdp system FULL=y
Password: password

If your dump file set does not contain the metadata necessary to create a schema, or if you do not have privileges, then the target schema must be created before the import operation is performed. This is because the unprivileged dump files do not contain the necessary information for the import to create the schema automatically.

If the import operation does create the schema, then after the import is complete, you must assign it a valid password in order to connect to it. The SQL statement to do this, which requires privileges, is:

SQL> ALTER USER schema_name IDENTIFIED BY new_password

Restrictions

	
Unprivileged users can perform schema remaps only if their schema is the target schema of the remap. (Privileged users can perform unrestricted schema remaps.)

	
For example, SCOTT can remap his BLAKE's objects to SCOTT, but SCOTT cannot remap SCOTT's objects to BLAKE.

Example

Suppose that, as user SYSTEM, you execute the following Export and Import commands to remap the hr schema into the scott schema:

> expdp system SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp

> impdp system DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp REMAP_SCHEMA=hr.scott

In this example, if user scott already exists before the import, then the Import REMAP_SCHEMA command will add objects from the hr schema into the existing scott schema. You can connect to the scott schema after the import by using the existing password (without resetting it).

If user scott does not exist before you execute the import operation, Import automatically creates it with an unusable password. This is possible because the dump file, hr.dmp, was created by SYSTEM, which has the privileges necessary to create a dump file that contains the metadata needed to create a schema. However, you cannot connect to scott on completion of the import, unless you reset the password for scott on the target database after the import completes.

REMAP_TABLE

Default: There is no default

Purpose

Allows you to rename tables during an import operation performed with the transportable method.

Syntax and Description

REMAP_TABLE=[schema.]old_tablename[.partition]:new_tablename

You can use the REMAP_TABLE parameter to rename entire tables.

You can also use it to override the automatic naming of table partitions that were exported using the transportable method. When partitioned tables are exported using the transportable method, each partition and subpartition is promoted to its own table and by default the table is named by combining the table and partition name (that is, tablename_partitionname). You can use REMAP_TABLE to specify a name other than the default.

Restrictions

	
Only objects created by the Import will be remapped. In particular, preexisting tables will not be remapped if TABLE_EXISTS_ACTION is set to TRUNCATE or APPEND.

Example

The following is an example of using the REMAP_TABLE parameter to rename the employees table to a new name of emps:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
TABLES=hr.employees REMAP_TABLE=hr.employees:emps

REMAP_TABLESPACE

Default: There is no default

Purpose

Remaps all objects selected for import with persistent data in the source tablespace to be created in the target tablespace.

Syntax and Description

REMAP_TABLESPACE=source_tablespace:target_tablespace

Multiple REMAP_TABLESPACE parameters can be specified, but no two can have the same source tablespace. The target schema must have sufficient quota in the target tablespace.

Note that use of the REMAP_TABLESPACE parameter is the only way to remap a tablespace in Data Pump Import. This is a simpler and cleaner method than the one provided in the original Import utility. That method was subject to many restrictions (including the number of tablespace subclauses) which sometimes resulted in the failure of some DDL commands.

By contrast, the Data Pump Import method of using the REMAP_TABLESPACE parameter works for all objects, including the user, and it works regardless of how many tablespace subclauses are in the DDL statement.

Restrictions

	
Data Pump Import can only remap tablespaces for transportable imports in databases where the compatibility level is 10.1 or later.

	
Only objects created by the Import will be remapped. In particular, the tablespaces for preexisting tables will not be remapped if TABLE_EXISTS_ACTION is set to SKIP, TRUNCATE or APPEND.

Example

The following is an example of using the REMAP_TABLESPACE parameter.

> impdp hr REMAP_TABLESPACE=tbs_1:tbs_6 DIRECTORY=dpump_dir1
 DUMPFILE=employees.dmp

REUSE_DATAFILES

Default: n

Purpose

Specifies whether or not the import job should reuse existing datafiles for tablespace creation.

Syntax and Description

REUSE_DATAFILES={y | n}

If the default (n) is used and the datafiles specified in CREATE TABLESPACE statements already exist, an error message from the failing CREATE TABLESPACE statement is issued, but the import job continues.

If this parameter is specified as y, the existing datafiles are reinitialized. Be aware that specifying Y can result in a loss of data.

Example

The following is an example of using the REUSE_DATAFILES parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=reuse.log
REUSE_DATAFILES=Y

This example reinitializes datafiles referenced by CREATE TABLESPACE statements in the expfull.dmp file.

SCHEMAS

Default: There is no default

Purpose

Specifies that a schema-mode import is to be performed.

Syntax and Description

SCHEMAS=schema_name [,...]

If you have the IMP_FULL_DATABASE role, you can use this parameter to perform a schema-mode import by specifying a list of schemas to import. First, the user definitions are imported (if they do not already exist), including system and role grants, password history, and so on. Then all objects contained within the schemas are imported. Nonprivileged users can specify only their own schemas or schemas remapped to their own schemas. In that case, no information about the schema definition is imported, only the objects contained within it.

The use of filtering can restrict what is imported using this import mode. See Filtering During Import Operations.

Schema-mode is the default mode when you are performing a network-based import.

Example

The following is an example of using the SCHEMAS parameter. You can create the expdat.dmp file used in this example by running the example provided for the Export SCHEMAS parameter. See SCHEMAS.

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 LOGFILE=schemas.log
DUMPFILE=expdat.dmp

The hr schema is imported from the expdat.dmp file. The log file, schemas.log, is written to dpump_dir1.

SKIP_UNUSABLE_INDEXES

Default: the value of the Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES.

Purpose

Specifies whether or not Import skips loading tables that have indexes that were set to the Index Unusable state (by either the system or the user).

Syntax and Description

SKIP_UNUSABLE_INDEXES={y | n}

If SKIP_UNUSABLE_INDEXES is set to y, and a table or partition with an index in the Unusable state is encountered, the load of that table or partition proceeds anyway, as if the unusable index did not exist.

If SKIP_UNUSABLE_INDEXES is set to n, and a table or partition with an index in the Unusable state is encountered, that table or partition is not loaded. Other tables, with indexes not previously set Unusable, continue to be updated as rows are inserted.

If the SKIP_UNUSABLE_INDEXES parameter is not specified, then the setting of the Oracle Database configuration parameter, SKIP_UNUSABLE_INDEXES (whose default value is y), will be used to determine how to handle unusable indexes.

If indexes used to enforce constraints are marked unusable, then the data is not imported into that table.

	
Note:

This parameter is useful only when importing data into an existing table. It has no practical effect when a table is created as part of an import because in that case, the table and indexes are newly created and will not be marked unusable.

Example

The following is an example of using the SKIP_UNUSABLE_INDEXES parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp LOGFILE=skip.log
SKIP_UNUSABLE_INDEXES=y

SQLFILE

Default: There is no default

Purpose

Specifies a file into which all of the SQL DDL that Import would have executed, based on other parameters, is written.

Syntax and Description

SQLFILE=[directory_object:]file_name

The file_name specifies where the import job will write the DDL that would be executed during the job. The SQL is not actually executed, and the target system remains unchanged. The file is written to the directory object specified in the DIRECTORY parameter, unless another directory_object is explicitly specified here. Any existing file that has a name matching the one specified with this parameter is overwritten.

Note that passwords are not included in the SQL file. For example, if a CONNECT statement is part of the DDL that was executed, it will be replaced by a comment with only the schema name shown. In the following example, the dashes indicate that a comment follows, and the hr schema name is shown, but not the password.

-- CONNECT hr

Therefore, before you can execute the SQL file, you must edit it by removing the dashes indicating a comment and adding the password for the hr schema.

For Streams and other Oracle database options, anonymous PL/SQL blocks may appear within the SQLFILE output. They should not be executed directly.

Restrictions

	
If SQLFILE is specified, then the CONTENT parameter is ignored if it is set to either ALL or DATA_ONLY.

	
To perform a Data Pump Import to a SQL file using Automatic Storage Management (ASM), the SQLFILE parameter that you specify must include a directory object that does not use the ASM + notation. That is, the SQL file must be written to a disk file, not into the ASM storage.

Example

The following is an example of using the SQLFILE parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
SQLFILE=dpump_dir2:expfull.sql

A SQL file named expfull.sql is written to dpump_dir2.

STATUS

Default: 0

Purpose

Specifies the frequency at which the job status will be displayed.

Syntax and Description

STATUS[=integer]

If you supply a value for integer, it specifies how frequently, in seconds, job status should be displayed in logging mode. If no value is entered or if the default value of 0 is used, no additional information is displayed beyond information about the completion of each object type, table, or partition.

This status information is written only to your standard output device, not to the log file (if one is in effect).

Example

The following is an example of using the STATUS parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr NOLOGFILE=y STATUS=120 DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp

In this example, the status is shown every two minutes (120 seconds).

STREAMS_CONFIGURATION

Default: y

Purpose

Specifies whether or not to import any Streams metadata that may be present in the export dump file.

Syntax and Description

STREAMS_CONFIGURATION={y | n}

Example

The following is an example of using the STREAMS_CONFIGURATION parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp STREAMS_CONFIGURATION=n

	
See Also:

Oracle Streams Replication Administrator's Guide

TABLE_EXISTS_ACTION

Default: SKIP (Note that if CONTENT=DATA_ONLY is specified, the default is APPEND, not SKIP.)

Purpose

Tells Import what to do if the table it is trying to create already exists.

Syntax and Description

TABLE_EXISTS_ACTION={SKIP | APPEND | TRUNCATE | REPLACE}

The possible values have the following effects:

	
SKIP leaves the table as is and moves on to the next object. This is not a valid option if the CONTENT parameter is set to DATA_ONLY.

	
APPEND loads rows from the source and leaves existing rows unchanged.

	
TRUNCATE deletes existing rows and then loads rows from the source.

	
REPLACE drops the existing table and then creates and loads it from the source. This is not a valid option if the CONTENT parameter is set to DATA_ONLY.

The following considerations apply when you are using these options:

	
When you use TRUNCATE or REPLACE, make sure that rows in the affected tables are not targets of any referential constraints.

	
When you use SKIP, APPEND, or TRUNCATE, existing table-dependent objects in the source, such as indexes, grants, triggers, and constraints, are ignored. For REPLACE, the dependent objects are dropped and re-created from the source, if they were not explicitly or implicitly excluded (using EXCLUDE) and they exist in the source dump file or system.

	
When you use APPEND or TRUNCATE, checks are made to ensure that rows from the source are compatible with the existing table prior to performing any action.

If the existing table has active constraints and triggers, it is loaded using the external tables access method. If any row violates an active constraint, the load fails and no data is loaded. You can override this behavior by specifying DATA_OPTIONS=SKIP_CONSTRAINT_ERRORS on the Import command line.

If you have data that must be loaded, but may cause constraint violations, consider disabling the constraints, loading the data, and then deleting the problem rows before reenabling the constraints.

	
When you use APPEND, the data is always loaded into new space; existing space, even if available, is not reused. For this reason, you may wish to compress your data after the load.

Restrictions

	
TRUNCATE cannot be used on clustered tables or over network links.

Example

The following is an example of using the TABLE_EXISTS_ACTION parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr TABLES=employees DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp
TABLE_EXISTS_ACTION=REPLACE

TABLES

Default: There is no default

Purpose

Specifies that you want to perform a table-mode import.

Syntax and Description

TABLES=[schema_name.]table_name[:partition_name]

In a table-mode import, you can filter the data that is imported from the source by specifying a comma-delimited list of tables and partitions or subpartitions.

If you do not supply a schema_name, it defaults to that of the current user. To specify a schema other than your own, you must either have the IMP_FULL_DATABASE role or remap the schema to the current user.

The use of filtering can restrict what is imported using this import mode. See Filtering During Import Operations.

If a partition_name is specified, it must be the name of a partition or subpartition in the associated table.

The use of wildcards to specify table names is also supported; however, only one table expression can be supplied. For example, TABLES=emp% would import all tables having names that start with 'EMP'.

Restrictions

	
The use of synonyms as values for the TABLES parameter is not supported. For example, if the regions table in the hr schema had a synonym of regn, it would not be valid to use TABLES=regn. An error would be returned.

	
If you specify more than one table_name, they must all reside in the same schema.

	
You can only specify partitions from one table if PARTITION_OPTIONS=DEPARTITION is also specified on the import.

	
When the NETWORK_LINK parameter is used in conjunction with the TABLES parameter, only whole tables can be imported (not partitions of tables). The only exception to this is if TRANSPORTABLE=ALWAYS is also specified, in which case single or multiple partitions of a specified table can be imported.

	
If you specify TRANSPORTABLE=ALWAYS, then all partitions specified on the TABLES parameter must be in the same table.

	
The length of the table name list specified for the TABLES parameter is limited to a maximum of 4MB, unless you are using the NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is 4KB.

Example

The following example shows a simple use of the TABLES parameter to import only the employees and jobs tables from the expfull.dmp file. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees,jobs

The following example shows the use of the TABLES parameter to import partitions:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expdat.dmp
TABLES=sh.sales:sales_Q1_2000,sh.sales:sales_Q2_2000

This example imports the partitions sales_Q1_2000 and sales_Q2_2000 for the table sales in the schema sh.

TABLESPACES

Default: There is no default

Purpose

Specifies that you want to perform a tablespace-mode import.

Syntax and Description

TABLESPACES=tablespace_name [, ...]

Use TABLESPACES to specify a list of tablespace names whose tables and dependent objects are to be imported from the source (full, schema, tablespace, or table-mode export dump file set or another database).

During the following import situations, Data Pump automatically creates the tablespaces into which the data will be imported:

	
The import is being done in FULL or TRANSPORT_TABLESPACES mode

	
The import is being done in table mode with TRANSPORTABLE=ALWAYS

In all other cases, the tablespaces for the selected objects must already exist on the import database. You could also use the Import REMAP_TABLESPACE parameter to map the tablespace name to an existing tablespace on the import database.

The use of filtering can restrict what is imported using this import mode. See Filtering During Import Operations.

Restrictions

	
The length of the list of tablespace names specified for the TABLESPACES parameter is limited to a maximum of 4MB, unless you are using the NETWORK_LINK parameter to a 10.2.0.3 or earlier database or to a read-only database. In such cases, the limit is 4KB.

Example

The following is an example of using the TABLESPACES parameter. It assumes that the tablespaces already exist. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLESPACES=tbs_1,tbs_2,tbs_3,tbs_4

This example imports all tables that have data in tablespaces tbs_1, tbs_2, tbs_3, and tbs_4.

TRANSFORM

Default: There is no default

Purpose

Enables you to alter object creation DDL for objects being imported.

Syntax and Description

TRANSFORM = transform_name:value[:object_type]

The transform_name specifies the name of the transform. The possible options are as follows:

	
SEGMENT_ATTRIBUTES - If the value is specified as y, then segment attributes (physical attributes, storage attributes, tablespaces, and logging) are included, with appropriate DDL. The default is y.

	
STORAGE - If the value is specified as y, the storage clauses are included, with appropriate DDL. The default is y. This parameter is ignored if SEGMENT_ATTRIBUTES=n.

	
OID - If the value is specified as n, the assignment of the exported OID during the creation of object tables and types is inhibited. Instead, a new OID is assigned. This can be useful for cloning schemas, but does not affect referenced objects. The default value is y.

	
PCTSPACE - The value supplied for this transform must be a number greater than zero. It represents the percentage multiplier used to alter extent allocations and the size of datafiles.

Note that you can use the PCTSPACE transform in conjunction with the Data Pump Export SAMPLE parameter so that the size of storage allocations matches the sampled data subset. (See SAMPLE.)

The type of value specified depends on the transform used. Boolean values (y/n) are required for the SEGMENT_ATTRIBUTES, STORAGE, and OID transforms. Integer values are required for the PCTSPACE transform.

The object_type is optional. If supplied, it designates the object type to which the transform will be applied. If no object type is specified then the transform applies to all valid object types. The valid object types for each transform are shown in Table 3-1.

Table 3-1 Valid Object Types For the Data Pump Export TRANSFORM Parameter

	
	SEGMENT_ATTRIBUTES	STORAGE	OID	PCTSPACE
	
CLUSTER

	
X

	
X

	
	
X

	
CONSTRAINT

	
X

	
X

	
	
X

	
INC_TYPE

	
	
	
X

	

	
INDEX

	
X

	
X

	
	
X

	
ROLLBACK_SEGMENT

	
X

	
X

	
	
X

	
TABLE

	
X

	
X

	
X

	
X

	
TABLESPACE

	
X

	
	
	
X

	
TYPE

	
	
	
X

	

Example

For the following example, assume that you have exported the employees table in the hr schema. The SQL CREATE TABLE statement that results when you then import the table is similar to the following:

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
) PCTFREE 10 PCTUSED 40 INITRANS 1 MAXTRANS 255 NOCOMPRESS LOGGING
 STORAGE(INITIAL 10240 NEXT 16384 MINEXTENTS 1 MAXEXTENTS 121
 PCTINCREASE 50 FREELISTS 1 FREELIST GROUPS 1 BUFFER_POOL DEFAULT)
 TABLESPACE "SYSTEM" ;

If you do not want to retain the STORAGE clause or TABLESPACE clause, you can remove them from the CREATE STATEMENT by using the Import TRANSFORM parameter. Specify the value of SEGMENT_ATTRIBUTES as n. This results in the exclusion of segment attributes (both storage and tablespace) from the table.

> impdp hr TABLES=hr.employees \
 DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp \
 TRANSFORM=SEGMENT_ATTRIBUTES:n:table

The resulting CREATE TABLE statement for the employees table would then look similar to the following. It does not contain a STORAGE or TABLESPACE clause; the attributes for the default tablespace for the HR schema will be used instead.

CREATE TABLE "HR"."EMPLOYEES"
 ("EMPLOYEE_ID" NUMBER(6,0),
 "FIRST_NAME" VARCHAR2(20),
 "LAST_NAME" VARCHAR2(25) CONSTRAINT "EMP_LAST_NAME_NN" NOT NULL ENABLE,
 "EMAIL" VARCHAR2(25) CONSTRAINT "EMP_EMAIL_NN" NOT NULL ENABLE,
 "PHONE_NUMBER" VARCHAR2(20),
 "HIRE_DATE" DATE CONSTRAINT "EMP_HIRE_DATE_NN" NOT NULL ENABLE,
 "JOB_ID" VARCHAR2(10) CONSTRAINT "EMP_JOB_NN" NOT NULL ENABLE,
 "SALARY" NUMBER(8,2),
 "COMMISSION_PCT" NUMBER(2,2),
 "MANAGER_ID" NUMBER(6,0),
 "DEPARTMENT_ID" NUMBER(4,0)
);

As shown in the previous example, the SEGMENT_ATTRIBUTES transform applies to both storage and tablespace attributes. To omit only the STORAGE clause and retain the TABLESPACE clause, you can use the STORAGE transform, as follows:

> impdp hr TABLES=hr.employees \
 DIRECTORY=dpump_dir1 DUMPFILE=hr_emp.dmp \
 TRANSFORM=STORAGE:n:table

The SEGMENT_ATTRIBUTES and STORAGE transforms can be applied to all applicable table and index objects by not specifying the object type on the TRANSFORM parameter, as shown in the following command:

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=hr.dmp \
 SCHEMAS=hr TRANSFORM=SEGMENT_ATTRIBUTES:n

TRANSPORT_DATAFILES

Default: There is no default

Purpose

Specifies a list of datafiles to be imported into the target database by a transportable-mode import, or by a table mode import if TRANSPORTABLE=ALWAYS was set during the export. The files must already have been copied from the source database system to the target database system.

Syntax and Description

TRANSPORT_DATAFILES=datafile_name

The datafile_name must include an absolute directory path specification (not a directory object name) that is valid on the system where the target database resides.

Example

The following is an example of using the TRANSPORT_DATAFILES parameter. Because the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle recommends that you use a parameter file to avoid having to use escape characters on the command line. (See Use of Quotation Marks On the Data Pump Command Line.) Assume you have a parameter file, trans_datafiles.par, with the following content:

DIRECTORY=dpump_dir1
DUMPFILE=tts.dmp
TRANSPORT_DATAFILES='/user01/data/tbs1.f'

You can then issue the following command:

> impdp hr PARFILE=trans_datafiles.par

TRANSPORT_FULL_CHECK

Default: n

Purpose

Specifies whether to verify that the specified transportable tablespace set is being referenced by objects in other tablespaces.

Syntax and Description

TRANSPORT_FULL_CHECK={y | n}

If TRANSPORT_FULL_CHECK=y, then Import verifies that there are no dependencies between those objects inside the transportable set and those outside the transportable set. The check addresses two-way dependencies. For example, if a table is inside the transportable set but its index is not, a failure is returned and the import operation is terminated. Similarly, a failure is also returned if an index is in the transportable set but the table is not.

If TRANSPORT_FULL_CHECK=n, then Import verifies only that there are no objects within the transportable set that are dependent on objects outside the transportable set. This check addresses a one-way dependency. For example, a table is not dependent on an index, but an index is dependent on a table, because an index without a table has no meaning. Therefore, if the transportable set contains a table, but not its index, then this check succeeds. However, if the transportable set contains an index, but not the table, the import operation is terminated.

In addition to this check, Import always verifies that all storage segments of all tables (and their indexes) defined within the tablespace set specified by TRANSPORT_TABLESPACES are actually contained within the tablespace set.

Restrictions

	
This parameter is valid for transportable mode (or table mode when TRANSPORTABLE=ALWAYS was specified on the export) only when the NETWORK_LINK parameter is specified.

Example

In the following example, source_database_link would be replaced with the name of a valid database link. The example also assumes that a datafile named tbs6.f already exists.

Because the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle recommends that you use a parameter file to avoid having to use escape characters on the command line. (See Use of Quotation Marks On the Data Pump Command Line.) For example, assume you have a parameter file, full_check.par, with the following content:

DIRECTORY=dpump_dir1
TRANSPORT_TABLESPACES=tbs_6
NETWORK_LINK=source_database_link
TRANSPORT_FULL_CHECK=y
TRANSPORT_DATAFILES='/wkdir/data/tbs6.f'

You can then issue the following command:

> impdp hr PARFILE=full_check.par

TRANSPORT_TABLESPACES

Default: There is no default

Purpose

Specifies that you want to perform a transportable-tablespace-mode import over a network link.

Syntax and Description

TRANSPORT_TABLESPACES=tablespace_name [, ...]

Use the TRANSPORT_TABLESPACES parameter to specify a list of tablespace names for which object metadata will be imported from the source database into the target database.

Because this is a transportable-mode import, the tablespaces into which the data is imported are automatically created by Data Pump.You do not need to pre-create them. However, the data files should be copied to the target database prior to starting the import.

Restrictions

	
You cannot export transportable tablespaces and then import them into a database at a lower release level. The target database into which you are importing must be at the same or higher release level as the source database.

	
The TRANSPORT_TABLESPACES parameter is valid only when the NETWORK_LINK parameter is also specified.

	
Transportable mode does not support encrypted columns.

Example

In the following example, the source_database_link would be replaced with the name of a valid database link. The example also assumes that a datafile named tbs6.f has already been copied from the source database to the local system. Because the TRANSPORT_DATAFILES value is enclosed in quotation marks, Oracle recommends that you use a parameter file to avoid having to use escape characters on the command line. (See Use of Quotation Marks On the Data Pump Command Line.) Suppose you have a parameter file, tablespaces.par, with the following content:

DIRECTORY=dpump_dir1
NETWORK_LINK=source_database_link
TRANSPORT_TABLESPACES=tbs_6
TRANSPORT_FULL_CHECK=n
TRANSPORT_DATAFILES='user01/data/tbs6.f'

You can then issue the following command:

> impdp hr PARFILE=tablespaces.par

TRANSPORTABLE

Default: NEVER

Purpose

Specifies whether or not the transportable option should be used when a table-mode import (specified with the TABLES parameter) is performed.

Syntax and Description

TRANSPORTABLE = {ALWAYS | NEVER}

The definitions of the allowed values are as follows:

ALWAYS - Instructs the import job to use the transportable option. If transportable is not possible, the job will fail.

NEVER - Instructs the import job to use either the direct path or external table method to load data rather than the transportable option. This is the default.

Restrictions

	
The TRANSPORTABLE parameter is valid only if the NETWORK_LINK parameter is also specified.

	
The TRANSPORTABLE parameter is only valid in table mode imports (the tables do not have to be partitioned or subpartitioned).

	
The schema performing a transportable import requires the EXP_FULL_DATABASE role on the source database and the IMP_FULL_DATABASE role on the target database.

	
To make full use of the TRANSPORTABLE parameter, the COMPATIBLE initialization parameter must be set to at least 11.0.0.

Example

The following example shows the use of the TRANSPORTABLE parameter during a network link import.

> impdp system TABLES=hr.sales TRANSPORTABLE=always
 DIRECTORY=dpump_dir1 NETWORK_LINK=dbs1 PARTITION_OPTIONS=departition
 TRANSPORT_DATAFILES=datafile_name

VERSION

Default: COMPATIBLE

Purpose

Specifies the version of database objects to be imported. Note that this does not mean that Data Pump Import can be used with versions of Oracle Database prior to 10.1. Data Pump Import only works with Oracle Database 10g release 1 (10.1) or later. The VERSION parameter simply allows you to identify the version of the objects being imported.

Syntax and Description

VERSION={COMPATIBLE | LATEST | version_string}

This parameter can be used to load a target system whose Oracle database is at an earlier compatibility version than that of the source system. Database objects or attributes on the source system that are incompatible with the specified version will not be moved to the target. For example, tables containing new datatypes that are not supported in the specified version will not be imported. Legal values for this parameter are as follows:

	
COMPATIBLE - This is the default value. The version of the metadata corresponds to the database compatibility level. Database compatibility must be set to 9.2.0 or higher.

	
LATEST - The version of the metadata corresponds to the database version.

	
version_string - A specific database version (for example, 11.1.0). In Oracle Database 11g, this value must be 9.2.0 or higher.

	
See Also:

Moving Data Between Different Database Versions

Example

The following is an example of using the VERSION parameter. You can create the expfull.dmp dump file used in this example by running the example provided for the Export FULL parameter. See FULL.

> impdp hr DIRECTORY=dpump_dir1 DUMPFILE=expfull.dmp TABLES=employees
VERSION=LATEST

How Data Pump Import Parameters Map to Those of the Original Import Utility

Table 3-2 maps, as closely as possible, Data Pump Import parameters to original Import parameters. In some cases, because of feature redesign, the original Import parameter is no longer needed so there is no Data Pump command to compare it to. Also, as shown in the table, some of the parameter names may be the same, but the functionality is slightly different.

Table 3-2 Original Import Parameters and Their Counterparts in Data Pump Import

	Original Import Parameter	Comparable Data Pump Import Parameter
	

BUFFER

	
A parameter comparable to BUFFER is not needed.

	

CHARSET

	
A parameter comparable to CHARSET is not needed.

	

COMMIT

	
A parameter comparable to COMMIT is not supported.

	

COMPILE

	
A parameter comparable to COMPILE is not supported.

	

CONSTRAINTS

	
EXCLUDE=CONSTRAINT

	

DATAFILES

	
TRANSPORT_DATAFILES

	

DESTROY

	
REUSE_DATAFILES

	

FEEDBACK

	
STATUS

	

FILE

	
DUMPFILE

	

FILESIZE

	
Not necessary. It is included in the dump file set.

	

FROMUSER

	
SCHEMAS

	

FULL

	
FULL

	

GRANTS

	
EXCLUDE=GRANT

	

HELP

	
HELP

	

IGNORE

	
TABLE_EXISTS_ACTION

	

INDEXES

	
EXCLUDE=INDEX

	

INDEXFILE

	
SQLFILE with INCLUDE INDEX

	

LOG

	
LOGFILE

	

PARFILE

	
PARFILE

	

RECORDLENGTH

	
A parameter comparable to RECORDLENGTH is not needed.

	

RESUMABLE

	
A parameter comparable to RESUMABLE is not needed. This functionality is automatically provided for users who have been granted the IMP_FULL_DATABASE role.

	

RESUMABLE_NAME

	
A parameter comparable to RESUMABLE_NAME is not needed. This functionality is automatically provided for users who have been granted the IMP_FULL_DATABASE role.

	

RESUMABLE_TIMEOUT

	
A parameter comparable to RESUMABLE_TIMEOUT is not needed. This functionality is automatically provided for users who have been granted the IMP_FULL_DATABASE role.

	

ROWS=N

	
CONTENT=METADATA_ONLY

	

ROWS=Y

	
CONTENT=ALL

	

SHOW

	
SQLFILE

	

SKIP_UNUSABLE_INDEXES

	
SKIP_UNUSABLE_INDEXES

	

STATISTICS

	
The STATISTICS parameter in Original Import took four possible values: ALWAYS, SAFE, RECALCULATE, and NONE.

The Data Pump parameter that is equivalent to Original Import's STATISTICS=NONE is EXCLUDE=STATISTICS.

A Data Pump Import parameter comparable to STATISTICS=ALWAYS|SAFE|RECALCULATE is not needed, because if the source table has statistics, they are imported by default.

	

STREAMS_CONFIGURATION

	
STREAMS_CONFIGURATION

	

STREAMS_INSTANTIATION

	
A parameter comparable to STREAMS_INSTANTIATION is not needed.

	

TABLES

	
TABLES

	

TABLESPACES

	
TABLESPACES

	

TOID_NOVALIDATE

	
A command comparable to TOID_NOVALIDATE is not needed. OIDs are no longer used for type validation.

	

TOUSER

	
REMAP_SCHEMA

	
TRANSPORT_TABLESPACE

	
A parameter comparable to TRANSPORT_TABLESPACE is not needed because metadata is stored in the dump file set.

	

TRANSPORT_TABLESPACE

	

	

TTS_OWNERS

	
A parameter comparable to TTS_OWNERS is not needed because the information is stored in the dump file set.

	

USERID

	
A parameter comparable to USERID is not needed. This information is supplied as the username and password when you invoke Import.

	

VOLSIZE

	
A parameter comparable to VOLSIZE is not needed because tapes are not supported.

Commands Available in Import's Interactive-Command Mode

In interactive-command mode, the current job continues running, but logging to the terminal is suspended and the Import prompt (Import>) is displayed.

	
Note:

Data Pump Import interactive-command mode is different from the interactive mode for original Import, in which Import prompted you for input. See Interactive Mode for information about interactive mode in original Import.

To start interactive-command mode, do one of the following:

	
From an attached client, press Ctrl+C.

	
From a terminal other than the one on which the job is running, use the ATTACH parameter to attach to the job. This is a useful feature in situations in which you start a job at one location and need to check on it at a later time from a different location.

Table 3-3 lists the activities you can perform for the current job from the Data Pump Import prompt in interactive-command mode.

Table 3-3 Supported Activities in Data Pump Import's Interactive-Command Mode

	Activity	Command Used
	
Exit interactive-command mode

	
CONTINUE_CLIENT

	
Stop the import client session, but leave the current job running

	
EXIT_CLIENT

	
Display a summary of available commands

	
HELP

	
Detach all currently attached client sessions and kill the current job

	
KILL_JOB

	
Increase or decrease the number of active worker processes for the current job. This command is valid only in the Enterprise Edition.

	
PARALLEL

	
Restart a stopped job to which you are attached

	
START_JOB

	
Display detailed status for the current job

	
STATUS

	
Stop the current job

	
STOP_JOB

The following are descriptions of the commands available in the interactive-command mode of Data Pump Import.

CONTINUE_CLIENT

Purpose

Changes the mode from interactive-command mode to logging mode.

Syntax and Description

CONTINUE_CLIENT

In logging mode, the job status is continually output to the terminal. If the job is currently stopped, then CONTINUE_CLIENT will also cause the client to attempt to start the job.

Example

Import> CONTINUE_CLIENT

EXIT_CLIENT

Purpose

Stops the import client session, exits Import, and discontinues logging to the terminal, but leaves the current job running.

Syntax and Description

EXIT_CLIENT

Because EXIT_CLIENT leaves the job running, you can attach to the job at a later time if it is still executing or in a stopped state. To see the status of the job, you can monitor the log file for the job or you can query the USER_DATAPUMP_JOBS view or the V$SESSION_LONGOPS view.

Example

Import> EXIT_CLIENT

HELP

Purpose

Provides information about Data Pump Import commands available in interactive-command mode.

Syntax and Description

HELP

Displays information about the commands available in interactive-command mode.

Example

Import> HELP

KILL_JOB

Purpose

Detaches all currently attached client sessions and then kills the current job. It exits Import and returns to the terminal prompt.

Syntax and Description

KILL_JOB

A job that is killed using KILL_JOB cannot be restarted. All attached clients, including the one issuing the KILL_JOB command, receive a warning that the job is being killed by the current user and are then detached. After all clients are detached, the job's process structure is immediately run down and the master table and dump files are deleted. Log files are not deleted.

Example

Import> KILL_JOB

PARALLEL

Purpose

Enables you to increase or decrease the number of active worker processes and/or PQ slaves for the current job.

Syntax and Description

PARALLEL=integer

PARALLEL is available as both a command-line parameter and an interactive-mode parameter. You set it to the desired number of parallel processes. An increase takes effect immediately if there are enough resources and if there is a sufficient amount of work requiring parallelization. A decrease does not take effect until an existing process finishes its current task. If the integer value is decreased, workers are idled but not deleted until the job exits.

	
See Also:

PARALLEL for more information about parallelism

Restrictions

	
PARALLEL is available only in Enterprise Edition.

Example

Import> PARALLEL=10

START_JOB

Purpose

Starts the current job to which you are attached.

Syntax and Description

START_JOB[=skip_current=y]

The START_JOB command restarts the job to which you are currently attached (the job cannot be currently executing). The job is restarted with no data loss or corruption after an unexpected failure or after you issue a STOP_JOB command, provided the dump file set and master table remain undisturbed.

The SKIP_CURRENT option allows you to restart a job that previously failed to restart because execution of some DDL statement failed. The failing statement is skipped and the job is restarted from the next work item.

Neither SQLFILE jobs nor transportable-tablespace-mode imports are restartable.

Example

Import> START_JOB

STATUS

Purpose

Displays the cumulative status of the job, along with a description of the current operation. A completion percentage for the job is also returned.

Syntax and Description

STATUS[=integer]

You have the option of specifying how frequently, in seconds, this status should be displayed in logging mode. If no value is entered or if the default value of 0 is used, the periodic status display is turned off and status is displayed only once.

This status information is written only to your standard output device, not to the log file (even if one is in effect).

Example

The following example will display the current job status and change the logging mode display interval to two minutes (120 seconds).

Import> STATUS=120

STOP_JOB

Purpose

Stops the current job either immediately or after an orderly shutdown, and exits Import.

Syntax and Description

STOP_JOB[=IMMEDIATE]

If the master table and dump file set are not disturbed when or after the STOP_JOB command is issued, the job can be attached to and restarted at a later time with the START_JOB command.

To perform an orderly shutdown, use STOP_JOB (without any associated value). A warning requiring confirmation will be issued. An orderly shutdown stops the job after worker processes have finished their current tasks.

To perform an immediate shutdown, specify STOP_JOB=IMMEDIATE. A warning requiring confirmation will be issued. All attached clients, including the one issuing the STOP_JOB command, receive a warning that the job is being stopped by the current user and they will be detached. After all clients are detached, the process structure of the job is immediately run down. That is, the master process will not wait for the worker processes to finish their current tasks. There is no risk of corruption or data loss when you specify STOP_JOB=IMMEDIATE. However, some tasks that were incomplete at the time of shutdown may have to be redone at restart time.

Example

Import> STOP_JOB=IMMEDIATE

Examples of Using Data Pump Import

This section provides examples of the following ways in which you might use Data Pump Import:

	
Performing a Data-Only Table-Mode Import

	
Performing a Schema-Mode Import

	
Performing a Network-Mode Import

For information that will help you to successfully use these examples, see Using the Import Parameter Examples.

Performing a Data-Only Table-Mode Import

Example 3-1 shows how to perform a data-only table-mode import of the table named employees. It uses the dump file created in Example 2-1.

Example 3-1 Performing a Data-Only Table-Mode Import

> impdp hr TABLES=employees CONTENT=DATA_ONLY DUMPFILE=dpump_dir1:table.dmp
NOLOGFILE=y

The CONTENT=DATA_ONLY parameter filters out any database object definitions (metadata). Only table row data is loaded.

Performing a Schema-Mode Import

Example 3-2 shows a schema-mode import of the dump file set created in Example 2-4.

Example 3-2 Performing a Schema-Mode Import

> impdp hr SCHEMAS=hr DIRECTORY=dpump_dir1 DUMPFILE=expschema.dmp
 EXCLUDE=CONSTRAINT,REF_CONSTRAINT,INDEX TABLE_EXISTS_ACTION=REPLACE

The EXCLUDE parameter filters the metadata that is imported. For the given mode of import, all the objects contained within the source, and all their dependent objects, are included except those specified in an EXCLUDE statement. If an object is excluded, all of its dependent objects are also excluded.The TABLE_EXISTS_ACTION=REPLACE parameter tells Import to drop the table if it already exists and to then re-create and load it using the dump file contents.

Performing a Network-Mode Import

Example 3-3 performs a network-mode import where the source is the database specified by the NETWORK_LINK parameter.

Example 3-3 Network-Mode Import of Schemas

> impdp hr TABLES=employees REMAP_SCHEMA=hr:scott DIRECTORY=dpump_dir1
NETWORK_LINK=dblink

This example imports the employees table from the hr schema into the scott schema. The dblink references a source database that is different than the target database.

To remap the schema, user hr must have the IMP_FULL_DATABASE role on the local database and the EXP_FULL_DATABASE role on the source database.

REMAP_SCHEMA loads all the objects from the source schema into the target schema.

	
See Also:

NETWORK_LINK for more information about database links

Syntax Diagrams for Data Pump Import

This section provides syntax diagrams for Data Pump Import. These diagrams use standard SQL syntax notation. For more information about SQL syntax notation, see Oracle Database SQL Language Reference.

ImpInit

[image: Description of impinit.gif follows]

ImpStart

[image: Description of impstart.gif follows]

ImpModes

[image: Description of impmodes.gif follows]

ImpOpts

[image: Description of impopts.gif follows]

ImpFilter

[image: Description of impfilter.gif follows]

ImpRemap

[image: Description of impremap.gif follows]

ImpFileOpts

[image: Description of impfileopts.gif follows]

ImpNetworkOpts

[image: Description of impnetopts.gif follows]

ImpDynOpts

[image: Description of impdynopts.gif follows]

4 Data Pump Performance

The Data Pump utilities are designed especially for very large databases. If your site has very large quantities of data versus metadata, you should experience a dramatic increase in performance compared to the original Export and Import utilities. This chapter briefly discusses why the performance is better and also suggests specific steps you can take to enhance performance of export and import operations.

This chapter contains the following sections:

	
Data Performance Improvements for Data Pump Export and Import

	
Tuning Performance

	
Initialization Parameters That Affect Data Pump Performance

Performance of metadata extraction and database object creation in Data Pump Export and Import remains essentially equivalent to that of the original Export and Import utilities.

Data Performance Improvements for Data Pump Export and Import

The improved performance of the Data Pump Export and Import utilities is attributable to several factors, including the following:

	
Multiple worker processes can perform intertable and interpartition parallelism to load and unload tables in multiple, parallel, direct-path streams.

	
For very large tables and partitions, single worker processes can choose intrapartition parallelism through multiple parallel queries and parallel DML I/O server processes when the external tables method is used to access data.

	
Data Pump uses parallelism to build indexes and load package bodies.

	
Dump files are read and written directly by the server and, therefore, do not require any data movement to the client.

	
The dump file storage format is the internal stream format of the direct path API. This format is very similar to the format stored in Oracle database datafiles inside of tablespaces. Therefore, no client-side conversion to INSERT statement bind variables is performed.

	
The supported data access methods, direct path and external tables, are faster than conventional SQL. The direct path API provides the fastest single-stream performance. The external tables feature makes efficient use of the parallel queries and parallel DML capabilities of the Oracle database.

	
Metadata and data extraction can be overlapped during export.

Tuning Performance

Data Pump technology fully uses all available resources to maximize throughput and minimize elapsed job time. For this to happen, a system must be well-balanced across CPU, memory, and I/O. In addition, standard performance tuning principles apply. For example, for maximum performance you should ensure that the files that are members of a dump file set reside on separate disks, because the dump files will be written and read in parallel. Also, the disks should not be the same ones on which the source or target tablespaces reside.

Any performance tuning activity involves making trade-offs between performance and resource consumption.

Controlling Resource Consumption

The Data Pump Export and Import utilities enable you to dynamically increase and decrease resource consumption for each job. This is done using the PARALLEL parameter to specify a degree of parallelism for the job. (The PARALLEL parameter is the only tuning parameter that is specific to Data Pump.) For maximum throughput, do not set PARALLEL to much more than twice the number of CPUs (two workers for each CPU).

	
See Also:

	
PARALLEL for more information about the Export PARALLEL parameter

	
PARALLEL for more information about the Import PARALLEL parameter

As you increase the degree of parallelism, CPU usage, memory consumption, and I/O bandwidth usage also increase. You must ensure that adequate amounts of these resources are available. If necessary, you can distribute files across different disk devices or channels to get the needed I/O bandwidth.

To maximize parallelism, you must supply at least one file for each degree of parallelism. The simplest way of doing this is to use substitution variables in your file names (for example, file%u.dmp). However, depending upon your disk set up (for example, simple, non-striped disks), you might not want to put all dump files on one device. In this case, it is best to specify multiple file names using substitution variables, with each in a separate directory resolving to a separate disk. Even with fast CPUs and fast disks, the path between the CPU and the disk may be the constraining factor in the amount of parallelism that can be sustained.

The PA