
Oracle® Database
Advanced Replication Management API Reference

11g Release 1 (11.1)

B28327-03

August 2008

Oracle Database Advanced Replication Management API Reference, 11g Release 1 (11.1)

B28327-03

Copyright © 1996, 2008, Oracle. All rights reserved.

Primary Author: Randy Urbano

Contributors: N. Arora, S. Balaraman, Y. Chan, A. Downing, C. Elsbernd, Y. Feng, J. Galagali, D. Goddard,
L. Kaplan, V. Krishnamurthy, A. Lakshminath, P. Lane, J. Liu, E. Lu, P. McElroy, V. Moore, M. Pratt, A.
Rajaram, N. Shodhan, W. Smith, J. Stamos, J. Stern, M. Subramaniam, L. Wong, D. Zhang

The Programs (which include both the software and documentation) contain proprietary information; they
are provided under a license agreement containing restrictions on use and disclosure and are also protected
by copyright, patent, and other intellectual and industrial property laws. Reverse engineering, disassembly,
or decompilation of the Programs, except to the extent required to obtain interoperability with other
independently created software or as specified by law, is prohibited.

The information contained in this document is subject to change without notice. If you find any problems in
the documentation, please report them to us in writing. This document is not warranted to be error-free.
Except as may be expressly permitted in your license agreement for these Programs, no part of these
Programs may be reproduced or transmitted in any form or by any means, electronic or mechanical, for any
purpose.

If the Programs are delivered to the United States Government or anyone licensing or using the Programs on
behalf of the United States Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, use, duplication, disclosure, modification, and adaptation of the Programs, including documentation
and technical data, shall be subject to the licensing restrictions set forth in the applicable Oracle license
agreement, and, to the extent applicable, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software--Restricted Rights (June 1987). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA
94065.

The Programs are not intended for use in any nuclear, aviation, mass transit, medical, or other inherently
dangerous applications. It shall be the licensee's responsibility to take all appropriate fail-safe, backup,
redundancy and other measures to ensure the safe use of such applications if the Programs are used for such
purposes, and we disclaim liability for any damages caused by such use of the Programs.

Oracle, JD Edwards, PeopleSoft, and Siebel are registered trademarks of Oracle Corporation and/or its
affiliates. Other names may be trademarks of their respective owners.

The Programs may provide links to Web sites and access to content, products, and services from third
parties. Oracle is not responsible for the availability of, or any content provided on, third-party Web sites.
You bear all risks associated with the use of such content. If you choose to purchase any products or services
from a third party, the relationship is directly between you and the third party. Oracle is not responsible for:
(a) the quality of third-party products or services; or (b) fulfilling any of the terms of the agreement with the
third party, including delivery of products or services and warranty obligations related to purchased
products or services. Oracle is not responsible for any loss or damage of any sort that you may incur from
dealing with any third party.

iii

Contents

Preface ... xv

Audience... xv
Documentation Accessibility ... xvi
Related Documents ... xvi
Conventions .. xvii

Part I Configuring Your Replication Environment

1 Overview of Advanced Replication

Overview of Creating a Replication Environment .. 1-1
Before You Start .. 1-2

2 Configuring the Replication Sites

Overview of Setting Up Replication Sites .. 2-1
Setting Up Master Sites... 2-3

Setting Up orc1.example.com... 2-4
Setting Up orc2.example.com... 2-7
Setting Up orc3.example.com.. 2-10
Creating Scheduled Links Between the Master Sites... 2-13

Setting Up Materialized View Sites .. 2-16
Setting Up mv1.example.com.. 2-16
Setting Up mv2.example.com.. 2-21

3 Creating a Master Group

Overview of Creating a Master Group... 3-1
Before You Start.. 3-2

Creating a Master Group .. 3-4

4 Creating a Deployment Template

Oracle Deployment Templates Concepts .. 4-1
Before Creating the Deployment Template... 4-2
Creating a Deployment Template ... 4-2
Packaging a Deployment Template for Instantiation ... 4-9

Packaging a Deployment Template.. 4-10

iv

Packaging a Deployment Template for Offline Instantiation ... 4-11
Packaging a Deployment Template for Online Instantiation.. 4-11

Saving an Instantiation Script to File.. 4-12
Distributing Instantiation Files .. 4-14
Instantiating a Deployment Template... 4-14
Refreshing a Refresh Group After Instantiation .. 4-16

5 Creating a Materialized View Group

Overview of Creating a Materialized View Group ... 5-1
Creating a Materialized View Group ... 5-2

Creating the Materialized View Group at mv1.example.com... 5-3
Creating the Materialized View Group at mv2.example.com... 5-8

6 Configuring Conflict Resolution

Preparing for Conflict Resolution... 6-1
Creating Conflict Resolution Methods for Update Conflicts.. 6-2

Overwrite and Discard Conflict Resolution Methods .. 6-2
Minimum and Maximum Conflict Resolution Methods.. 6-4
Timestamp Conflict Resolution Methods... 6-6
Additive and Average Conflict Resolution Methods ... 6-9
Priority Groups Conflict Resolution Methods .. 6-11
Site Priority Conflict Resolution Methods... 6-15

Creating Conflict Resolution Methods for Uniqueness Conflicts .. 6-19
Creating Conflict Avoidance Methods for Delete Conflicts... 6-23
Using Dynamic Ownership Conflict Avoidance... 6-27

Workflow.. 6-27
Token Passing .. 6-27
Locating the Owner of a Row.. 6-29
Obtaining Ownership... 6-29
Applying the Change ... 6-30

Auditing Successful Conflict Resolution ... 6-30
Collecting Conflict Resolution Statistics .. 6-30
Viewing Conflict Resolution Statistics ... 6-30
Canceling Conflict Resolution Statistics ... 6-31
Clearing Statistics Information.. 6-31

Part II Managing and Monitoring Your Replication Environment

7 Managing a Master Replication Environment

Changing the Master Definition Site ... 7-1
Option 1: All Master Sites Are Available.. 7-1
Option 2: The Old Master Definition Site Is Not Available ... 7-2

Adding New Master Sites... 7-2
Adding New Master Sites Without Quiescing the Master Group.. 7-3

Using Full Database Export/Import or Change-Based Recovery 7-6
Using Object-Level Export/Import... 7-14

v

Adding New Master Sites to a Quiesced Master Group ... 7-23
Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure............. 7-23
Adding New Master Sites with Offline Instantiation Using Export/Import 7-25

Removing a Master Site from a Master Group.. 7-31
Removing an Unavailable Master Site ... 7-32

Updating the Comments Fields in Data Dictionary Views... 7-33
Using Procedural Replication ... 7-34

Restrictions on Procedural Replication.. 7-34
User-Defined Types and Procedural Replication... 7-36
Serializing Transactions ... 7-36
Generating Support for Replicated Procedures.. 7-37

8 Managing a Materialized View Replication Environment

Refreshing Materialized Views ... 8-1
Changing a Materialized View Group's Master Site... 8-2
Dropping Materialized View Groups and Objects ... 8-2

Dropping a Materialized View Group Created with a Deployment Template 8-3
Using the Public Version of DROP_SITE_INSTANTIATION ... 8-3
Using the Private Version of DROP_SITE_INSTANTIATION.. 8-5

Dropping a Materialized View Group or Objects Created Manually .. 8-6
Dropping a Materialized View Group Created Manually.. 8-7
Dropping Objects at a Materialized View Site.. 8-7

Cleaning Up a Master Site or Master Materialized View Site ... 8-8
Cleaning Up After Dropping a Materialized View Group ... 8-8
Cleaning Up Individual Materialized View Support ... 8-10

Managing Materialized View Logs.. 8-12
Altering Materialized View Logs.. 8-12

Altering Materialized View Log Storage Parameters... 8-12
Altering a Materialized View Log to Add Columns .. 8-12

Managing Materialized View Log Space... 8-13
Purging Rows from a Materialized View Log ... 8-13
Truncating a Materialized View Log .. 8-14

Reorganizing Master Tables that Have Materialized View Logs .. 8-15
Reorganization Notification ... 8-15
Truncating Masters .. 8-15
Methods of Reorganizing a Database Table... 8-16

Dropping a Materialized View Log.. 8-17
Performing an Offline Instantiation of a Materialized View Site Using Export/Import 8-18
Using a Group Owner for a Materialized View Group ... 8-27

9 Managing Replication Objects and Queues

Altering a Replicated Object in a Quiesced Master Group ... 9-1
Modifying Tables without Replicating the Modifications .. 9-4

Disabling Replication... 9-5
Reenabling Replication.. 9-5
Ensuring that Replicated Triggers Fire Only Once ... 9-6

vi

Converting a LONG Column to a LOB Column in a Replicated Table... 9-6
Determining Differences Between Replicated Tables .. 9-7

Using the DIFFERENCES Procedure .. 9-8
Using the RECTIFY Procedure... 9-8

Managing the Deferred Transactions Queue ... 9-11
Pushing the Deferred Transaction Queue ... 9-11
Purging the Deferred Transaction Queue ... 9-12
Using the ANYDATA Type to Determine the Value of an Argument in a Deferred Call ... 9-13

Managing the Error Queue .. 9-15
Reexecuting Error Transaction as the Receiver .. 9-15
Reexecuting Error Transaction as Alternate User .. 9-15

10 Monitoring a Replication Environment

Monitoring Master Replication Environments ... 10-1
Monitoring Master Sites ... 10-2

Listing General Information About a Master Site ... 10-2
Monitoring Master Groups.. 10-3

Listing the Master Sites Participating in a Master Group.. 10-3
Listing General Information About Master Groups ... 10-3

Monitoring Masters .. 10-4
Listing Information About Materialized Views Based on a Master 10-4
Listing Information About the Materialized View Logs at a Master 10-5
Listing the Materialized Views that Use a Materialized View Log 10-6
Listing Information About the Deployment Templates at a Master 10-7

Monitoring Materialized View Sites ... 10-8
Listing General Information About a Materialized View Site.. 10-8
Listing General Information About Materialized View Groups.. 10-9
Listing Information About Materialized Views ... 10-9

Listing Master Information For Materialized Views .. 10-9
Listing the Properties of Materialized Views ... 10-10

Listing Information About the Refresh Groups at a Materialized View Site 10-11
Determining the Job ID for Each Refresh Job at a Materialized View Site 10-11
Determining Which Materialized Views Are Currently Refreshing 10-12

Monitoring Administrative Requests ... 10-13
Listing General Information About Administrative Requests ... 10-13
Determining the Cause of Administrative Request Errors ... 10-13
Listing General Information About the Job that Executes Administrative Requests 10-14

Checking the Definition of Each do_deferred_repcat_admin Job 10-15
Monitoring the Deferred Transactions Queue .. 10-15

Monitoring Transaction Propagation... 10-15
Listing the Number of Deferred Transactions for Each Destination Master Site 10-15
Listing General Information About the Push Jobs at a Replication Site 10-16
Determining the Next Start Time and Interval for the Push Jobs................................... 10-16
Determining the Total Number of Transactions Queued for Propagation 10-17

Monitoring Purges of Successfully Propagated Transactions .. 10-17
Listing General Information About the Purge Job.. 10-17
Checking the Definition of the Purge Job... 10-18

vii

Determining the Amount of Time Since the Last Purge .. 10-18
Determining the Total Number of Purged Transactions ... 10-19

Monitoring the Error Queue ... 10-19
Listing General Information About the Error Transactions at a Replication Site................ 10-19
Determining the Percentage of Error Transactions.. 10-20
Listing the Number of Error Transactions from Each Origin Master Site 10-20
Listing the Error Messages for the Error Transactions at a Replication Site 10-21
Determining the Error Operations at a Replication Site.. 10-21

Monitoring Performance in a Replication Environment... 10-22
Tracking the Average Number of Row Changes in a Replication Transaction 10-22
Tracking the Rate of Transactions Entering the Deferred Transactions Queue................... 10-22
Determining the Average Network Traffic Created to Propagate a Transaction................ 10-22
Determining the Average Amount of Time to Apply Transactions at Remote Sites.......... 10-23
Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping 10-24
Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View 10-24
Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP 10-24

Determining the Databases to Which You Are Propagating Deferred Transactions .. 10-25
Determining the Transactions Currently Being Propagated to a Remote Master........ 10-25

Part III Replication Management API Packages Reference

11 Introduction to the Replication Management API Reference

Examples of Using Oracle's Replication Management API .. 11-1
Issues to Consider When Using the Replication Management API.. 11-2
The Advanced Replication Interface and the Replication Management API 11-2
Abbreviations for Datetime and Interval Data Types.. 11-2

12 DBMS_DEFER

Summary of DBMS_DEFER Subprograms .. 12-2
CALL Procedure.. 12-3
COMMIT_WORK Procedure .. 12-4
datatype_ARG Procedure.. 12-5
TRANSACTION Procedure... 12-7

13 DBMS_DEFER_QUERY

Summary of DBMS_DEFER_QUERY Subprograms.. 13-2
GET_ARG_FORM Function .. 13-3
GET_ARG_TYPE Function .. 13-4
GET_CALL_ARGS Procedure .. 13-6
GET_datatype_ARG Function .. 13-7
GET_OBJECT_NULL_VECTOR_ARG Function.. 13-9

14 DBMS_DEFER_SYS

Summary of DBMS_DEFER_SYS Subprograms .. 14-2
ADD_DEFAULT_DEST Procedure .. 14-4

viii

CLEAR_PROP_STATISTICS Procedure .. 14-5
DELETE_DEFAULT_DEST Procedure .. 14-6
DELETE_DEF_DESTINATION Procedure ... 14-7
DELETE_ERROR Procedure.. 14-8
DELETE_TRAN Procedure.. 14-9
DISABLED Function... 14-10
EXCLUDE_PUSH Function ... 14-11
EXECUTE_ERROR Procedure .. 14-12
EXECUTE_ERROR_AS_USER Procedure... 14-13
PURGE Function ... 14-14
PUSH Function ... 14-16
REGISTER_PROPAGATOR Procedure ... 14-19
SCHEDULE_PURGE Procedure ... 14-20
SCHEDULE_PUSH Procedure.. 14-22
SET_DISABLED Procedure ... 14-24
UNREGISTER_PROPAGATOR Procedure... 14-26
UNSCHEDULE_PURGE Procedure... 14-27
UNSCHEDULE_PUSH Procedure ... 14-28

15 DBMS_OFFLINE_OG

Summary of DBMS_OFFLINE_OG Subprograms ... 15-2
BEGIN_INSTANTIATION Procedure ... 15-3
BEGIN_LOAD Procedure .. 15-5
END_INSTANTIATION Procedure... 15-6
END_LOAD Procedure.. 15-7
RESUME_SUBSET_OF_MASTERS Procedure ... 15-9

16 DBMS_RECTIFIER_DIFF

Summary of DBMS_RECTIFIER_DIFF Subprograms .. 16-2
DIFFERENCES Procedure ... 16-3
RECTIFY Procedure.. 16-6

17 DBMS_REFRESH

Summary of DBMS_REFRESH Subprograms... 17-2
ADD Procedure ... 17-3
CHANGE Procedure .. 17-4
DESTROY Procedure.. 17-6
MAKE Procedure .. 17-7
REFRESH Procedure... 17-9
SUBTRACT Procedure ... 17-10

18 DBMS_REPCAT

Summary of DBMS_REPCAT Subprograms ... 18-2
ADD_GROUPED_COLUMN Procedure... 18-6
ADD_MASTER_DATABASE Procedure... 18-7
ADD_NEW_MASTERS Procedure... 18-8

ix

ADD_PRIORITY_datatype Procedure... 18-13
ADD_SITE_PRIORITY_SITE Procedure.. 18-15
ADD_conflicttype_RESOLUTION Procedure .. 18-16
ALTER_CATCHUP_PARAMETERS Procedure .. 18-20
ALTER_MASTER_PROPAGATION Procedure... 18-22
ALTER_MASTER_REPOBJECT Procedure... 18-23
ALTER_MVIEW_PROPAGATION Procedure... 18-25
ALTER_PRIORITY Procedure... 18-26
ALTER_PRIORITY_datatype Procedure... 18-27
ALTER_SITE_PRIORITY Procedure .. 18-28
ALTER_SITE_PRIORITY_SITE Procedure.. 18-29
CANCEL_STATISTICS Procedure ... 18-30
COMMENT_ON_COLUMN_GROUP Procedure ... 18-31
COMMENT_ON_MVIEW_REPSITES Procedure.. 18-32
COMMENT_ON_PRIORITY_GROUP Procedures ... 18-33
COMMENT_ON_REPGROUP Procedure .. 18-34
COMMENT_ON_REPOBJECT Procedure .. 18-35
COMMENT_ON_REPSITES Procedure .. 18-36
COMMENT_ON_SITE_PRIORITY Procedure ... 18-37
COMMENT_ON_conflicttype_RESOLUTION Procedure ... 18-38
COMPARE_OLD_VALUES Procedure ... 18-40
CREATE_MASTER_REPGROUP Procedure .. 18-42
CREATE_MASTER_REPOBJECT Procedure.. 18-43
CREATE_MVIEW_REPGROUP Procedure .. 18-46
CREATE_MVIEW_REPOBJECT Procedure.. 18-48
DEFINE_COLUMN_GROUP Procedure... 18-51
DEFINE_PRIORITY_GROUP Procedure .. 18-52
DEFINE_SITE_PRIORITY Procedure... 18-53
DO_DEFERRED_REPCAT_ADMIN Procedure... 18-54
DROP_COLUMN_GROUP Procedure .. 18-55
DROP_GROUPED_COLUMN Procedure... 18-56
DROP_MASTER_REPGROUP Procedure... 18-57
DROP_MASTER_REPOBJECT Procedure .. 18-58
DROP_MVIEW_REPGROUP Procedure... 18-59
DROP_MVIEW_REPOBJECT Procedure .. 18-60
DROP_PRIORITY Procedure .. 18-61
DROP_PRIORITY_GROUP Procedure .. 18-62
DROP_PRIORITY_datatype Procedure... 18-63
DROP_SITE_PRIORITY Procedure .. 18-64
DROP_SITE_PRIORITY_SITE Procedure.. 18-65
DROP_conflicttype_RESOLUTION Procedure .. 18-66
EXECUTE_DDL Procedure ... 18-68
GENERATE_MVIEW_SUPPORT Procedure.. 18-69
GENERATE_REPLICATION_SUPPORT Procedure... 18-71
MAKE_COLUMN_GROUP Procedure ... 18-73
PREPARE_INSTANTIATED_MASTER Procedure ... 18-74
PURGE_MASTER_LOG Procedure.. 18-76

x

PURGE_STATISTICS Procedure .. 18-77
REFRESH_MVIEW_REPGROUP Procedure .. 18-78
REGISTER_MVIEW_REPGROUP Procedure... 18-80
REGISTER_STATISTICS Procedure ... 18-81
RELOCATE_MASTERDEF Procedure... 18-82
REMOVE_MASTER_DATABASES Procedure... 18-84
RENAME_SHADOW_COLUMN_GROUP Procedure... 18-85
REPCAT_IMPORT_CHECK Procedure .. 18-86
RESUME_MASTER_ACTIVITY Procedure .. 18-87
RESUME_PROPAGATION_TO_MDEF Procedure... 18-88
SEND_OLD_VALUES Procedure... 18-89
SET_COLUMNS Procedure... 18-91
SPECIFY_NEW_MASTERS Procedure .. 18-93
STREAMS_MIGRATION Procedure.. 18-95
SUSPEND_MASTER_ACTIVITY Procedure .. 18-96
SWITCH_MVIEW_MASTER Procedure ... 18-97
UNDO_ADD_NEW_MASTERS_REQUEST Procedure.. 18-98
UNREGISTER_MVIEW_REPGROUP Procedure .. 18-100
VALIDATE Function .. 18-101
WAIT_MASTER_LOG Procedure .. 18-103

19 DBMS_REPCAT_INSTANTIATE

Summary of DBMS_REPCAT_INSTANTIATE Subprograms ... 19-2
DROP_SITE_INSTANTIATION Procedure .. 19-3
INSTANTIATE_OFFLINE Function .. 19-4
INSTANTIATE_ONLINE Function ... 19-6

20 DBMS_REPCAT_ADMIN

Summary of DBMS_REPCAT_ADMIN Subprograms.. 20-2
GRANT_ADMIN_ANY_SCHEMA Procedure .. 20-3
GRANT_ADMIN_SCHEMA Procedure.. 20-4
REGISTER_USER_REPGROUP Procedure ... 20-5
REVOKE_ADMIN_ANY_SCHEMA Procedure... 20-7
REVOKE_ADMIN_SCHEMA Procedure.. 20-8
UNREGISTER_USER_REPGROUP Procedure... 20-9

21 DBMS_REPCAT_RGT

Summary of DBMS_REPCAT_RGT Subprograms .. 21-2
ALTER_REFRESH_TEMPLATE Procedure.. 21-4
ALTER_TEMPLATE_OBJECT Procedure ... 21-6
ALTER_TEMPLATE_PARM Procedure.. 21-8
ALTER_USER_AUTHORIZATION Procedure.. 21-10
ALTER_USER_PARM_VALUE Procedure ... 21-11
COMPARE_TEMPLATES Function... 21-13
COPY_TEMPLATE Function .. 21-14
CREATE_OBJECT_FROM_EXISTING Function.. 21-16

xi

CREATE_REFRESH_TEMPLATE Function.. 21-18
CREATE_TEMPLATE_OBJECT Function... 21-20
CREATE_TEMPLATE_PARM Function ... 21-22
CREATE_USER_AUTHORIZATION Function ... 21-24
CREATE_USER_PARM_VALUE Function... 21-25
DELETE_RUNTIME_PARMS Procedure.. 21-27
DROP_ALL_OBJECTS Procedure .. 21-28
DROP_ALL_TEMPLATE_PARMS Procedure ... 21-29
DROP_ALL_TEMPLATE_SITES Procedure ... 21-30
DROP_ALL_TEMPLATES Procedure ... 21-31
DROP_ALL_USER_AUTHORIZATIONS Procedure ... 21-32
DROP_ALL_USER_PARM_VALUES Procedure... 21-33
DROP_REFRESH_TEMPLATE Procedure.. 21-34
DROP_SITE_INSTANTIATION Procedure .. 21-35
DROP_TEMPLATE_OBJECT Procedure... 21-36
DROP_TEMPLATE_PARM Procedure.. 21-37
DROP_USER_AUTHORIZATION Procedure.. 21-38
DROP_USER_PARM_VALUE Procedure... 21-39
GET_RUNTIME_PARM_ID Function ... 21-40
INSERT_RUNTIME_PARMS Procedure... 21-41
INSTANTIATE_OFFLINE Function .. 21-43
INSTANTIATE_ONLINE Function ... 21-45
LOCK_TEMPLATE_EXCLUSIVE Procedure ... 21-47
LOCK_TEMPLATE_SHARED Procedure... 21-48

22 DBMS_REPUTIL

Summary of DBMS_REPUTIL Subprograms.. 22-2
REPLICATION_OFF Procedure ... 22-3
REPLICATION_ON Procedure .. 22-4
REPLICATION_IS_ON Function ... 22-5
FROM_REMOTE Function .. 22-6
GLOBAL_NAME Function.. 22-7
MAKE_INTERNAL_PKG Procedure... 22-8
SYNC_UP_REP Procedure .. 22-9

Part IV Replication Data Dictionary Reference

23 Replication Catalog Views

Summary of Replication Catalog Views ... 23-2
DBA_REGISTERED_MVIEW_GROUPS ... 23-5
ALL_REPCAT_REFRESH_TEMPLATES ... 23-6
ALL_REPCAT_TEMPLATE_OBJECTS .. 23-7
ALL_REPCAT_TEMPLATE_PARMS ... 23-9
ALL_REPCAT_TEMPLATE_SITES ... 23-11
ALL_REPCAT_USER_AUTHORIZATIONS ... 23-12
ALL_REPCAT_USER_PARM_VALUES .. 23-13

xii

ALL_REPCATLOG .. 23-15
ALL_REPCOLUMN ... 23-16
ALL_REPCOLUMN_GROUP .. 23-18
ALL_REPCONFLICT ... 23-19
ALL_REPDDL ... 23-20
ALL_REPGENOBJECTS .. 23-21
ALL_REPGROUP ... 23-22
ALL_REPGROUP_PRIVILEGES .. 23-23
ALL_REPGROUPED_COLUMN ... 23-24
ALL_REPKEY_COLUMNS .. 23-25
ALL_REPOBJECT .. 23-26
ALL_REPPARAMETER_COLUMN ... 23-28
ALL_REPPRIORITY .. 23-29
ALL_REPPRIORITY_GROUP .. 23-30
ALL_REPPROP .. 23-31
ALL_REPRESOL_STATS_CONTROL .. 23-32
ALL_REPRESOLUTION ... 23-33
ALL_REPRESOLUTION_METHOD ... 23-34
ALL_REPRESOLUTION_STATISTICS ... 23-35
ALL_REPSITES ... 23-36
DBA_REPCAT_REFRESH_TEMPLATES ... 23-37
DBA_REPCAT_TEMPLATE_OBJECTS .. 23-38
DBA_REPCAT_TEMPLATE_PARMS .. 23-39
DBA_REPCAT_TEMPLATE_SITES .. 23-40
DBA_REPCAT_USER_AUTHORIZATIONS .. 23-41
DBA_REPCAT_USER_PARM_VALUES .. 23-42
DBA_REPCATLOG ... 23-43
DBA_REPCOLUMN .. 23-44
DBA_REPCOLUMN_GROUP ... 23-45
DBA_REPCONFLICT .. 23-46
DBA_REPDDL .. 23-47
DBA_REPEXTENSIONS ... 23-48
DBA_REPGENOBJECTS ... 23-51
DBA_REPGROUP .. 23-52
DBA_REPGROUP_PRIVILEGES ... 23-53
DBA_REPGROUPED_COLUMN .. 23-54
DBA_REPKEY_COLUMNS .. 23-55
DBA_REPOBJECT .. 23-56
DBA_REPPARAMETER_COLUMN ... 23-57
DBA_REPPRIORITY .. 23-58
DBA_REPPRIORITY_GROUP ... 23-59
DBA_REPPROP .. 23-60
DBA_REPRESOL_STATS_CONTROL ... 23-61
DBA_REPRESOLUTION .. 23-62
DBA_REPRESOLUTION_METHOD .. 23-63
DBA_REPRESOLUTION_STATISTICS .. 23-64
DBA_REPSITES .. 23-65

xiii

DBA_REPSITES_NEW ... 23-66
USER_REPCAT_REFRESH_TEMPLATES ... 23-67
USER_REPCAT_TEMPLATE_OBJECTS .. 23-68
USER_REPCAT_TEMPLATE_PARMS ... 23-69
USER_REPCAT_TEMPLATE_SITES .. 23-70
USER_REPCAT_USER_AUTHORIZATION.. 23-71
USER_REPCAT_USER_PARM_VALUES .. 23-72
USER_REPCATLOG .. 23-73
USER_REPCOLUMN .. 23-74
USER_REPCOLUMN_GROUP .. 23-75
USER_REPCONFLICT .. 23-76
USER_REPDDL .. 23-77
USER_REPGENOBJECTS ... 23-78
USER_REPGROUP .. 23-79
USER_REPGROUP_PRIVILEGES ... 23-80
USER_REPGROUPED_COLUMN .. 23-81
USER_REPKEY_COLUMNS .. 23-82
USER_REPOBJECT .. 23-83
USER_REPPARAMETER_COLUMN ... 23-84
USER_REPPRIORITY .. 23-85
USER_REPPRIORITY_GROUP .. 23-86
USER_REPPROP .. 23-87
USER_REPRESOL_STATS_CONTROL .. 23-88
USER_REPRESOLUTION ... 23-89
USER_REPRESOLUTION_METHOD .. 23-90
USER_REPRESOLUTION_STATISTICS .. 23-91
USER_REPSITES .. 23-92

24 Replication Dynamic Performance Views

V$MVREFRESH ... 24-2
V$REPLPROP ... 24-3
V$REPLQUEUE .. 24-5

25 Deferred Transaction Views

DEFCALL ... 25-2
DEFCALLDEST .. 25-3
DEFDEFAULTDEST .. 25-4
DEFERRCOUNT .. 25-5
DEFERROR ... 25-6
DEFLOB ... 25-7
DEFPROPAGATOR ... 25-8
DEFSCHEDULE ... 25-9
DEFTRAN .. 25-12
DEFTRANDEST ... 25-13

xiv

26 Materialized View and Refresh Group Views

Part V Appendixes

A Security Options

Security Setup for Multimaster Replication .. A-1
Trusted Compared with Untrusted Security .. A-2

Security Setup for Materialized View Replication... A-5
Trusted Compared with Untrusted Security .. A-6

B User-Defined Conflict Resolution Methods

User-Defined Conflict Resolution Methods .. B-1
Conflict Resolution Method Parameters.. B-1
Resolving Update Conflicts ... B-2
Resolving Uniqueness Conflicts ... B-2
Resolving Delete Conflicts ... B-3
Multitier Materialized Views and User-Defined Conflict Resolution Methods B-3
Restrictions for User-Defined Conflict Resolution Methods .. B-3

SQL Statement Restrictions for User-Defined Conflict Resolution Methods.................... B-3
Column Subsetting Restrictions for User-Defined Conflict Resolution Methods............ B-4

Examples of User-Defined Conflict Resolution Method ... B-4
Maximum User Function .. B-4
Additive User Function... B-5

User-Defined Conflict Notification Methods.. B-5
Creating a Conflict Notification Log .. B-6

Sample Conflict Notification Log Table ... B-6
Creating a Conflict Notification Package .. B-6

Sample Conflict Notification Package .. B-6
Viewing Conflict Resolution Information ... B-8

Index

xv

Preface

Oracle Database Advanced Replication Management API Reference contains information
that describes the features and functionality of the replication management API.
Specifically, the Oracle Database Advanced Replication Management API Reference contains
reference information for the packages in the replication management API, as well as
examples of their use.

In addition, Oracle Database Advanced Replication Management API Reference
contains reference information about the replication catalog and other data dictionary
views that are important for replication.

This Preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Advanced Replication Management API Reference is intended for database
administrators and application developers who develop and maintain replication
environments. These administrators and application developers perform one or more
of the following tasks:

■ Configure replication sites

■ Create master groups

■ Create deployment templates

■ Create materialized view groups

■ Configure conflict resolution

■ Manage replication environments

■ Use the replication management API

■ Monitor replication environments using data dictionary views

■ Plan and configure security options

To use this document, you must be familiar with relational database concepts,
distributed database administration, PL/SQL (if using procedural replication), and the
operating system under which you run an Advanced Replication environment.

xvi

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible, with good usability, to the disabled community. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be
accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

TTY Access to Oracle Support Services
Oracle provides dedicated Text Telephone (TTY) access to Oracle Support Services
within the United States of America 24 hours a day, 7 days a week. For TTY support,
call 800.446.2398. Outside the United States, call +1.407.458.2479.

Related Documents
For more information, see these Oracle resources:

■ Oracle Database Advanced Replication

■ Oracle Database Concepts

■ Oracle Database Administrator's Guide

■ Oracle Database SQL Language Reference

■ Oracle Database PL/SQL Language Reference

■ Oracle Streams Replication Administrator's Guide if you want to migrate your
Advanced Replication environment to Oracle Streams

Many of the examples in this book use the sample schemas of the sample database,
which is installed by default when you install Oracle Database. Refer to Oracle
Database Sample Schemas for information about how these schemas were created and
how you can use them yourself.

Printed documentation is available for sale in the Oracle Store at

http://oraclestore.oracle.com/

To download free release notes, installation documentation, white papers, or other
collateral, please visit the Oracle Technology Network (OTN). You must register online
before using OTN; registration is free and can be done at

http://www.oracle.com/technology/membership/

xvii

If you already have a user name and password for OTN, then you can go directly to
the documentation section of the OTN Web site at

http://www.oracle.com/technology/documentation/

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

xviii

Part I
Configuring Your Replication Environment

Part I contains instructions for using the replication management API to set up both
multimaster replication and materialized view replication. This part also contains
instructions for configuring conflict resolution methods using the replication
management API.

Part I contains the following chapters:

■ Chapter 1, "Overview of Advanced Replication"

■ Chapter 2, "Configuring the Replication Sites"

■ Chapter 3, "Creating a Master Group"

■ Chapter 4, "Creating a Deployment Template"

■ Chapter 5, "Creating a Materialized View Group"

■ Chapter 6, "Configuring Conflict Resolution"

Overview of Advanced Replication 1-1

1
Overview of Advanced Replication

This chapter reviews the process of building a replication environment with the
replication management API.

This chapter contains these topics:

■ Overview of Creating a Replication Environment

■ Before You Start

Overview of Creating a Replication Environment
Figure 1–1 illustrates the basic steps required to build a replication environment.
Regardless of the type of replication site or sites that you are building, you begin by
setting up the replicated site.

After you have set up your replication sites, you are ready to begin building your
master groups and materialized view groups. After you have built your replication
environment, ensure that you review Chapter 6 and the chapters in Part II, "Managing
and Monitoring Your Replication Environment", to learn about conflict resolution and
managing your replication environment.

Before You Start

1-2 Oracle Database Advanced Replication Management API Reference

Figure 1–1 Create Replication Environment Process

Before You Start
Before you begin setting up your replication site, ensure that you plan your replication
environment so that it meets your needs. Planning considerations include:

■ Designing your replicated database objects

■ Deciding on the settings of initialization parameters that are important for
replication

■ Deciding whether you want to create a multimaster replication environment or a
materialized view replication environment, or if you want to combine both types
of replication environments into a hybrid environment

■ Deciding how you want to configure your scheduled links

■ Deciding how you want to configure your scheduled purges

■ Deciding whether you want to use serial or parallel propagation

■ If you use parallel propagation, then deciding on the degree of parallelism

What type
of replication

site?

No

Yes

Set Up Master Sites
(Chapter 2)

1

Configure Conflict Resolution
Methods on Master
(Chapter 6)

3

Create Master Group
(Chapter 3)

2

Master
Materialized

View

1

Are
data conflicts

possible?

No

Yes

Does
master for

materialized view site
exist?

How do
you want to build the

environment?

At Master site with
Deployment
Template

At Materialized
View
Site

2

3

Create Materialized View Group
(Chapter 5)

Create a Deployment
(Chapter 4)

Package for Instantiation and
Instantiate Deployment Template
(Chapter 4)

2

START

END

Set Up Materialized View
(Chapter 2)

1

Before You Start

Overview of Advanced Replication 1-3

■ If you plan to create a materialized view environment, then deciding whether you
want to use deployment templates to create the environment

■ Analyzing your environment for possible conflicts and, if conflicts are possible,
then deciding which conflict resolution methods to use

■ Configuring security for your replication environment

■ Designing your replication environment for survivability

See Also: Oracle Database Advanced Replication for more
information planning your replication environment

Before You Start

1-4 Oracle Database Advanced Replication Management API Reference

Configuring the Replication Sites 2-1

2
Configuring the Replication Sites

This chapter illustrates how to set up both a master site and a materialized view
replication site using the replication management API.

This chapter contains these topics:

■ Overview of Setting Up Replication Sites

■ Setting Up Master Sites

■ Setting Up Materialized View Sites

Overview of Setting Up Replication Sites
Before you build your replication environment, you must set up the sites that will
participate in the replication environment. As illustrated in Figure 2–2 and Figure 2–3,
there are separate processes for setting up a master site versus setting up a
materialized view site.

The examples in this book use the following databases:

■ orc1.example.com

■ orc2.example.com

■ orc3.example.com

■ orc4.example.com

■ orc5.example.com

■ mv1.example.com

■ mv2.example.com

Chapters 2 - 6 work with the replication environment illustrated in Figure 2–1. You
start to create this environment using the instructions in this chapter. Notice that
mv2.example.com is a materialized view based on the mv1.example.com
materialized view, creating a multitier materialized view environment. The arrows in
Figure 2–1 represent database links.

Overview of Setting Up Replication Sites

2-2 Oracle Database Advanced Replication Management API Reference

Figure 2–1 Three Master Sites and Two Materialized View Sites

Follow the procedures identified in Figure 2–2 when you build a new master site or in
Figure 2–3 when you build a new materialized view site.

orc1.example.com orc2.example.com

mv1.example.commv2.example.com orc3.example.com

Materialized
View
Site

Materialized
View
Site

Master
Site

Master
Site

Master
Site

Setting Up Master Sites

Configuring the Replication Sites 2-3

Figure 2–2 Setting Up Master Sites

Setting Up Master Sites
The following sections contain step-by-step instructions for setting up the three master
sites in our sample replication environment: orc1.example.com,
orc2.example.com, and orc3.example.com. Before you set up the master sites,
configure your network and Oracle Net so that all three databases can communicate
with each other.

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

1

Add
Materialized View

Support?

START

Register Receiver
5

1
Schedule Purge at Master Site

1
Register Propagator

4

1
Grant Privileges to Replication
Administrator

3

1
Create Scheduled Links

9

1
Create Database Links
Between Master Sites

8

1
Create Replication
Administrator

2

Connect as System at
Master Site

1

6

1
Create Proxy Master Site Users

7

Yes

Add
another site?*

No

No

Yes

END

* Multiple master sites (multimaster replication) can be
used only with the Enterprise Edition of Oracle.

Setting Up Master Sites

2-4 Oracle Database Advanced Replication Management API Reference

Setting Up orc1.example.com
Complete the following steps to set up the orc1.example.com master site.

Step 1 Connect as SYSTEM at a master site at orc1.example.com.
Connect as SYSTEM to the database that you want to set up for replication. After you
set up orc1.example.com, begin again with Step 1 for site orc2.example.com on
page 2-7 and Step 1 for site orc3.example.com on page 2-10.

*/

SET ECHO ON

SPOOL setup_masters.out

CONNECT system@orc1.example.com

/*

Step 2 Create the replication administrator at orc1.example.com.
The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*/

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER repadmin IDENTIFIED BY &password;

/*

Step 3 Grant privileges to the replication administrator at orc1.example.com.
Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the replication
administrator powerful privileges to create and manage a replicated environment.

*/

BEGIN
 DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username => 'repadmin');
END;
/

/*

If you want your repadmin to be able to create materialized view logs for any
replicated table, then grant COMMENT ANY TABLE and LOCK ANY TABLE to repadmin:

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

Note: Enter an appropriate password for the administrative user.

See Also: Oracle Database Security Guide for guidelines for choosing
passwords

Setting Up Master Sites

Configuring the Replication Sites 2-5

/*

If you want your repadmin to be able to connect to the Advanced Replication
interface in Oracle Enterprise Manager, then grant SELECT ANY DICTIONARY to
repadmin:

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register the propagator at orc1.example.com.
The propagator is responsible for propagating the deferred transaction queue to other
master sites.

*/

BEGIN
 DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username => 'repadmin');
END;
/

/*

Step 5 Register the receiver at orc1.example.com.
The receiver receives the propagated deferred transactions sent by the propagator
from other master sites.

*/

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site orc1.example.com.
In order to keep the size of the deferred transaction queue in check, you should purge
successfully completed deferred transactions. The SCHEDULE_PURGE procedure
automates the purge process for you. You must execute this procedure as the
replication administrator.

Note: Date expressions are used for the NEXT_DATE and
INTERVAL parameters. For example:

■ Now is specified as: SYSDATE

■ An interval of one hour is specified as: SYSDATE + 1/24

■ An interval of seven days could be specified as: SYSDATE + 7

Setting Up Master Sites

2-6 Oracle Database Advanced Replication Management API Reference

*/

CONNECT repadmin@orc1.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 Create proxy master site users at orc1.example.com.
If you plan to create materialized view sites based on this master site, then create
proxy master site users at orc1.example.com that correspond to users at the
materialized view site.

Create the proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target master site on
behalf of the materialized view administrator at the materialized view site.

*/

CONNECT system@orc1.example.com

CREATE USER proxy_mviewadmin IDENTIFIED BY &password;

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites to be able
to perform administrative operations using the Advanced Replication interface in
Oracle Enterprise Manager, then grant SELECT_CATALOG_ROLE to
proxy_mviewadmin:

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

Granting this privilege to the proxy_mviewadmin is not required if you do not plan
to use the Advanced Replication interface in Oracle Enterprise Manager. However, if
you plan to use the Advanced Replication interface, then move the GRANT statement to
the line directly after the previous REGISTER_USER_REPGROUP statement.

Create the proxy refresher.

See Also: Oracle Database Administrator's Guide and Oracle
Database SQL Language Reference for more information about date
expressions

Setting Up Master Sites

Configuring the Replication Sites 2-7

The proxy refresher performs tasks at the master site on behalf of the refresher at the
materialized view site.

*/

CREATE USER proxy_refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

Setting Up orc2.example.com
Complete the following steps to set up the orc2.example.com master site.

Step 1 Connect as SYSTEM at orc2.example.com.
You must connect as SYSTEM to the database that you want to set up for replication.
After you set up orc2.example.com, begin with Step 1 for site orc3.example.com
on page 2-10.

*/

CONNECT system@orc2.example.com

/*

Step 2 Create the replication administrator at orc2.example.com.
The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*/

CREATE USER repadmin IDENTIFIED BY &password;

/*

Step 3 Grant privileges to replication administrator at orc2.example.com.
Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the replication
administrator powerful privileges to create and manage a replicated environment.

*/

BEGIN
 DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username => 'repadmin');
END;
/

See Also: "Security Setup for Materialized View Replication" on
page A-5

Note: Enter an appropriate password for the administrative user.

See Also: Oracle Database Security Guide for guidelines for choosing
passwords

Setting Up Master Sites

2-8 Oracle Database Advanced Replication Management API Reference

/*

If you want your repadmin to be able to create materialized view logs for any
replicated table, then grant COMMENT ANY TABLE and LOCK ANY TABLE privileges to
repadmin:

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

/*

If you want your repadmin to be able to connect to the Advanced Replication
interface in Oracle Enterprise Manager, then grant SELECT ANY DICTIONARY to
repadmin:

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register the propagator at orc2.example.com.
The propagator is responsible for propagating the deferred transaction queue to other
master sites.

*/

BEGIN
 DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username => 'repadmin');
END;
/

/*

Step 5 Register the receiver at orc2.example.com.
The receiver receives the propagated deferred transactions sent by the propagator
from the other master sites.

*/

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site at orc2.example.com.
In order to keep the size of the deferred transaction queue in check, you should purge
successfully completed deferred transactions. The SCHEDULE_PURGE procedure
automates the purge process for you. You must execute this procedure as the
replication administrator.

Setting Up Master Sites

Configuring the Replication Sites 2-9

*/

CONNECT repadmin@orc2.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 Create proxy master site users at orc2.example.com.
If you plan to create materialized view sites based on this master site, then create
proxy master site users at orc2.example.com that correspond to users at the
materialized view site.

Create the proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target master site on
behalf of the materialized view administrator at the materialized view site.

*/

CONNECT system@orc2.example.com

CREATE USER proxy_mviewadmin IDENTIFIED BY &password;

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites to be able
to perform administrative operations using the Advanced Replication interface in
Oracle Enterprise Manager, then grant SELECT_CATALOG_ROLE to
proxy_mviewadmin:

*/

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

/*

Granting this privilege to the proxy_mviewadmin is not required if you do not plan
to use the Advanced Replication interface in Oracle Enterprise Manager. However, if
you plan to use the Advanced Replication interface, then move the GRANT statement to
the line directly after the previous REGISTER_USER_REPGROUP statement.

Create the proxy refresher.

Setting Up Master Sites

2-10 Oracle Database Advanced Replication Management API Reference

The proxy refresher performs tasks at the master site on behalf of the refresher at the
materialized view site.

*/

CREATE USER proxy_refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

Setting Up orc3.example.com
Complete the following steps to set up the orc3.example.com master site.

Step 1 Connect as SYSTEM at orc3.example.com.
You must connect as SYSTEM to the database that you want to set up for replication.

*/

CONNECT system@orc3.example.com

/*

Step 2 Create the replication administrator at orc3.example.com.
The replication administrator must be granted the necessary privileges to create and
manage a replication environment. The replication administrator must be created at
each database that participates in the replication environment.

*/

CREATE USER repadmin IDENTIFIED BY &password;

/*

Step 3 Grant privileges to replication administrator at orc3.example.com.
Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant the replication
administrator powerful privileges to create and manage a replicated environment.

*/

BEGIN
 DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username => 'repadmin');
END;
/

/*

See Also: "Security Setup for Materialized View Replication" on
page A-5

Note: Enter an appropriate password for the administrative user.

See Also: Oracle Database Security Guide for guidelines for choosing
passwords

Setting Up Master Sites

Configuring the Replication Sites 2-11

If you want your repadmin to be able to create materialized view logs for any
replicated table, then grant COMMENT ANY TABLE and LOCK ANY TABLE to repadmin:

*/

GRANT COMMENT ANY TABLE TO repadmin;
GRANT LOCK ANY TABLE TO repadmin;

/*

If you want your repadmin to be able to connect to the Advanced Replication
interface in Oracle Enterprise Manager, then grant SELECT ANY DICTIONARY to
repadmin:

*/

GRANT SELECT ANY DICTIONARY TO repadmin;

/*

Step 4 Register the propagator at orc3.example.com.
The propagator is responsible for propagating the deferred transaction queue to other
master sites.

*/

BEGIN
 DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username => 'repadmin');
END;
/

/*

Step 5 Register the receiver at orc3.example.com.
The receiver receives the propagated deferred transactions sent by the propagator
from the other master sites.

*/

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'repadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Step 6 Schedule purge at master site at orc3.example.com.
In order to keep the size of the deferred transaction queue in check, you should purge
successfully completed deferred transactions. The SCHEDULE_PURGE API automates
the purge process for you. You must execute this procedure as the replication
administrator.

*/

CONNECT repadmin@orc3.example.com

Setting Up Master Sites

2-12 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0);
END;
/

/*

Step 7 Create proxy master site users at orc1.example.com.
If you plan to create materialized view sites based on this master site, then create
proxy master site users at orc1.example.com that correspond to users at the
materialized view site.

Create the proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target master site on
behalf of the materialized view administrator at the materialized view site.

*/

CONNECT system@orc3.example.com

CREATE USER proxy_mviewadmin IDENTIFIED BY &password;

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites to be able
to perform administrative operations using the Advanced Replication interface in
Oracle Enterprise Manager, then grant SELECT_CATALOG_ROLE to
proxy_mviewadmin:

*/

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

/*

Granting this privilege to the proxy_mviewadmin is not required if you do not plan
to use the Advanced Replication interface in Oracle Enterprise Manager. However, if
you plan to use the Advanced Replication interface, then move the GRANT statement to
the line directly after the previous REGISTER_USER_REPGROUP statement.

Create proxy refresher.

The proxy refresher performs tasks at the master site on behalf of the refresher at the
materialized view site.

*/

Setting Up Master Sites

Configuring the Replication Sites 2-13

CREATE USER proxy_refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

Creating Scheduled Links Between the Master Sites
Complete the following steps to create scheduled links between the master sites.

Step 1 Create database links between master sites.
The database links provide the necessary distributed mechanisms to allow the
different replication sites to replicate data among themselves. Before you create any
private database links, you must create the public database links that each private
database link will use. You then must create a database link between all replication
administrators at each of the master sites that you have set up.

*/

CONNECT system@orc1.example.com
CREATE PUBLIC DATABASE LINK orc2.example.com USING 'orc2.example.com';
CREATE PUBLIC DATABASE LINK orc3.example.com USING 'orc3.example.com';

CONNECT repadmin@orc1.example.com
CREATE DATABASE LINK orc2.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;
CREATE DATABASE LINK orc3.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;

CONNECT system@orc2.example.com
CREATE PUBLIC DATABASE LINK orc1.example.com USING 'orc1.example.com';
CREATE PUBLIC DATABASE LINK orc3.example.com USING 'orc3.example.com';

CONNECT repadmin@orc2.example.com
CREATE DATABASE LINK orc1.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;
CREATE DATABASE LINK orc3.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;

CONNECT system@orc3.example.com
CREATE PUBLIC DATABASE LINK orc1.example.com USING 'orc1.example.com';
CREATE PUBLIC DATABASE LINK orc2.example.com USING 'orc2.example.com';

CONNECT repadmin@orc3.example.com
CREATE DATABASE LINK orc1.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;
CREATE DATABASE LINK orc2.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;

/*

See Also: "Security Setup for Materialized View Replication" on
page A-5

See Also: Oracle Database Administrator's Guide for more
information about database links

Setting Up Master Sites

2-14 Oracle Database Advanced Replication Management API Reference

Step 2 Define a schedule for each database link to create scheduled links.
Create a scheduled link by defining a database link when you execute the
SCHEDULE_PUSH procedure. The scheduled link determines how often your deferred
transaction queue is propagated to each of the other master sites. You must execute the
SCHEDULE_PUSH procedure for each database link that you created in Step 1. The
database link is specified in the destination parameter of the SCHEDULE_PUSH
procedure.

Even when using Oracle's asynchronous replication mechanisms, you can configure a
scheduled link to simulate continuous, real-time replication. The scheduled links in
this example simulate continuous replication.

*/

CONNECT repadmin@orc1.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc3.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

CONNECT repadmin@orc2.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc1.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,

See Also: Oracle Database Advanced Replication for more
information about simulating continuous replication

Setting Up Master Sites

Configuring the Replication Sites 2-15

 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc3.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

CONNECT repadmin@orc3.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc1.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc2.example.com',
 interval => 'SYSDATE + (1/144)',
 next_date => SYSDATE,
 parallelism => 1,
 execution_seconds => 1500,
 delay_seconds => 1200);
END;
/

SET ECHO OFF

SPOOL OFF

/**************************END OF SCRIPT***********************************/

Setting Up Materialized View Sites

2-16 Oracle Database Advanced Replication Management API Reference

Setting Up Materialized View Sites

Figure 2–3 Setting Up Materialized View Sites

Setting Up mv1.example.com
Complete the following steps to set up the mv1.example.com master materialized
view site. mv1.example.com is a master materialized view site because
mv2.example.com will be based on it. Before you set up the materialized sites,
configure your network and Oracle Net so that all mv1.example.com can
communicate with orc1.example.com and mv2.example.com can communicate
with mv1.example.com.

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

1

Add
another

site?

END

START

Schedule Push at Materialized
View Site

5

1
Create Proxy Users

1
Schedule Purge At Materialized
View Site

4

1
Create Database Links
to Master

3

1
Create Materialized View
Site Users

2

Connect as System at
Materialized View Site

1

6

NO

YES

Setting Up Materialized View Sites

Configuring the Replication Sites 2-17

Step 1 Connect as SYSTEM at materialized view site at mv1.example.com.
You must connect as SYSTEM to the database that you want to set up as a materialized
view site.

*/

SET ECHO ON

SPOOL setup_mvs.out

CONNECT system@mv1.example.com

/*

Step 2 Create materialized view site users at mv1.example.com.
Several users must be created at the materialized view site. These users are:

■ Materialized view administrator

■ Propagator

■ Refresher

■ Receiver (if the site will serve as a master materialized view site for other
materialized views, as mv1.example.com is)

Complete the following tasks to create these users.

Create the materialized view administrator.

The materialized view administrator is responsible for creating and managing the
materialized view site. Execute the GRANT_ADMIN_ANY_SCHEMA procedure to grant
the materialized view administrator the appropriate privileges.

*/

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER mviewadmin IDENTIFIED BY &password;

BEGIN
 DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username => 'mviewadmin');
END;
/

GRANT COMMENT ANY TABLE TO mviewadmin;

GRANT LOCK ANY TABLE TO mviewadmin;

/*

If you want your mviewadmin to be able to connect to the Advanced Replication
interface in Oracle Enterprise Manager, then grant SELECT ANY DICTIONARY to
mviewadmin:

*/

GRANT SELECT ANY DICTIONARY TO mviewadmin;

/*

Setting Up Materialized View Sites

2-18 Oracle Database Advanced Replication Management API Reference

Create the propagator.

The propagator is responsible for propagating the deferred transaction queue to the
target master site.

*/

CREATE USER propagator IDENTIFIED BY &password;

BEGIN
 DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username => 'propagator');
END;
/

/*

Create the refresher.

The refresher is responsible for "pulling" changes made to the replicated tables at the
target master site to the materialized view site. This user refreshes one or more
materialized views. If you want the mviewadmin user to be the refresher, then this
step is not required.

*/

CREATE USER refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO refresher;

GRANT ALTER ANY MATERIALIZED VIEW TO refresher;

/*

Register the receiver.

The receiver receives the propagated deferred transactions sent by the propagator
from materialized view sites. The receiver is necessary only if the site will function as a
master materialized view site for other materialized view sites.

*/

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'mviewadmin',
 privilege_type => 'receiver',
 list_of_gnames => NULL);
END;
/

/*

Note: Enter appropriate passwords for the administrative users.

See Also: Oracle Database Security Guide for guidelines for choosing
passwords

Setting Up Materialized View Sites

Configuring the Replication Sites 2-19

Step 3 Create database links to the master site.
Create a public database link.

*/

CONNECT system@mv1.example.com

CREATE PUBLIC DATABASE LINK orc1.example.com USING 'orc1.example.com';

/*

Create the materialized view administrator database link.

You must create a database link from the materialized view administrator at the
materialized view site to the proxy materialized view administrator at the master site.

*/

CONNECT mviewadmin@mv1.example.com;

CREATE DATABASE LINK orc1.example.com
 CONNECT TO proxy_mviewadmin IDENTIFIED BY &password;

/*

Create the propagator/receiver database link.

You must create a database link from the propagator at the materialized view site to
the receiver at the master site. The receiver was defined when you created the master
site.

*/

CONNECT propagator@mv1.example.com

CREATE DATABASE LINK orc1.example.com
 CONNECT TO repadmin IDENTIFIED BY &password;

/*

Step 4 Schedule purge at the mv1.example.com materialized view site.
In order to keep the size of the deferred transaction queue in check, you should purge
successfully completed deferred transactions. The SCHEDULE_PURGE procedure
automates the purge process for you. If your materialized view site only contains
"read-only" materialized views, then you do not need to execute this procedure.

*/

CONNECT mviewadmin@mv1.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
END;
/

See Also: Step 5 on page 2-5

Setting Up Materialized View Sites

2-20 Oracle Database Advanced Replication Management API Reference

/*

Step 5 Schedule push at the mv1.example.com materialized view site (optional).
If the materialized view site has a constant connection to its master site, then you
optionally can schedule push at the mv1.example.com materialized view site. If the
materialized view site is disconnected from its master site for extended periods of
time, then it is typically better not to schedule push and refresh on demand, which
pushes changes to the master site.

The SCHEDULE_PUSH procedure schedules when the deferred transaction queue
should be propagated to the target master site.

*/

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'orc1.example.com',
 interval => 'SYSDATE + 1/24',
 next_date => SYSDATE,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
END;
/

/*

Step 6 Create proxy users at the mv1.example.com materialized view site.
Create the proxy materialized view administrator.

The proxy materialized view administrator performs tasks at the target master
materialized view site on behalf of the materialized view administrator at the
materialized view sites based on this materialized view site. This user is not required if
the site will not function as a master materialized view site for other materialized view
sites.

*/

CONNECT system@mv1.example.com

CREATE USER proxy_mviewadmin IDENTIFIED BY &password;

BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username => 'proxy_mviewadmin',
 privilege_type => 'proxy_snapadmin',
 list_of_gnames => NULL);
END;
/

-- Place GRANT SELECT_CATALOG_ROLE statement here if necessary.

/*

If you want your materialized view administrator at materialized view sites based on
this materialized view site to be able to perform administrative operations using the
Advanced Replication interface in Oracle Enterprise Manager, then grant
SELECT_CATALOG_ROLE to proxy_mviewadmin:

GRANT SELECT_CATALOG_ROLE TO proxy_mviewadmin;

Setting Up Materialized View Sites

Configuring the Replication Sites 2-21

Granting this privilege to the proxy_mviewadmin is not required if you do not plan
to use the Advanced Replication interface in Oracle Enterprise Manager. However, if
you plan to use the Advanced Replication interface, then move the GRANT statement to
the line directly after the previous REGISTER_USER_REPGROUP statement.

Create the proxy refresher.

The proxy refresher performs tasks at the master materialized view site on behalf of
the refresher at the materialized view sites based on this materialized view site. This
user is not required if the site will not function as a master materialized view site for
other materialized view sites.

*/

CREATE USER proxy_refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO proxy_refresher;
GRANT SELECT ANY TABLE TO proxy_refresher;

/*

Setting Up mv2.example.com
Complete the following steps to set up the mv2.example.com materialized view site.
mv2.example.com is part of a multitier materialized view configuration because it is
based on mv1.example.com, another materialized view.

Step 1 Connect as SYSTEM at level 2 materialized view site mv2.example.com.
You must connect as SYSTEM to the database that you want to set up as a level 2
materialized view site. This site, mv2.example.com, will be a materialized view site
that is based on mv1.example.com.

*/

CONNECT system@mv2.example.com

/*

Step 2 Create level 2 materialized view site users at mv2.example.com.
Several users must be created at the level 2 materialized view site. These users are:

■ Materialized view administrator

■ Propagator

■ Refresher

Complete the following tasks to create these users.

Create the materialized view administrator.

The materialized view administrator is responsible for creating and managing the
level 2 materialized view site. Execute the GRANT_ADMIN_ANY_SCHEMA procedure to
grant the materialized view administrator the appropriate privileges.

*/

CREATE USER mviewadmin IDENTIFIED BY &password;

See Also: "Security Setup for Materialized View Replication" on
page A-5

Setting Up Materialized View Sites

2-22 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username => 'mviewadmin');
END;
/

/*

If you want your mviewadmin to be able to connect to the Advanced Replication
interface in Oracle Enterprise Manager, then grant SELECT ANY DICTIONARY to
mviewadmin:

*/

GRANT SELECT ANY DICTIONARY TO mviewadmin;

/*

Create the propagator.

The propagator is responsible for propagating the deferred transaction queue to the
target master materialized view site.

*/

CREATE USER propagator IDENTIFIED BY &password;

BEGIN
 DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username => 'propagator');
END;
/

/*

Create the refresher.

The refresher is responsible for "pulling" changes made to the replicated materialized
views at the target master materialized view site to the level 2 materialized view site.

*/

CREATE USER refresher IDENTIFIED BY &password;

GRANT CREATE SESSION TO refresher;
GRANT ALTER ANY MATERIALIZED VIEW TO refresher;

/*

Step 3 Create database links to master materialized view site.
Create a public database link.

*/

Note: Enter appropriate passwords for the administrative users.

See Also: Oracle Database Security Guide for guidelines for choosing
passwords

Setting Up Materialized View Sites

Configuring the Replication Sites 2-23

CONNECT system@mv2.example.com

CREATE PUBLIC DATABASE LINK mv1.example.com USING 'mv1.example.com';

/*

Create materialized view administrator database link.

You must create a database link from the materialized view administrator at the level 2
materialized view site to the proxy materialized view administrator at the master
materialized view site.

*/

CONNECT mviewadmin@mv2.example.com;

CREATE DATABASE LINK mv1.example.com
 CONNECT TO proxy_mviewadmin IDENTIFIED BY &password;

/*

Create a propagator/receiver database link.

You must create a database link from the propagator at the level 2 materialized view
site to the receiver at the master materialized view site. The receiver was defined when
you created the master materialized view site.

*/

CONNECT propagator@mv2.example.com

CREATE DATABASE LINK mv1.example.com
 CONNECT TO mviewadmin IDENTIFIED BY &password;

/*

Step 4 Schedule purge at level 2 materialized view site at mv2.example.com.
In order to keep the size of the deferred transaction queue in check, you should purge
successfully completed deferred transactions. The SCHEDULE_PURGE procedure
automates the purge process for you. If your level 2 materialized view site only
contains "read-only" materialized views, then you do not need to execute this
procedure.

*/

CONNECT mviewadmin@mv2.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE (
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 delay_seconds => 0,
 rollback_segment => '');
END;
/

/*

Setting Up Materialized View Sites

2-24 Oracle Database Advanced Replication Management API Reference

Step 5 Schedule push at the mv2.example.com materialized view site (optional).
If the materialized view site has a constant connection to its master materialized view
site, then you optionally can schedule push at the mv2.example.com materialized
view site. If the materialized view site is disconnected from its master materialized
view site for extended periods of time, then it is typically better not to schedule push
and refresh on demand, which pushes changes to the master materialized view site.

The SCHEDULE_PUSH procedure schedules when the deferred transaction queue
should be propagated to the target master materialized view site.

*/

CONNECT mviewadmin@mv2.example.com

BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination => 'mv1.example.com',
 interval => 'SYSDATE + 1/24',
 next_date => SYSDATE,
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating a Master Group 3-1

3
Creating a Master Group

This chapter illustrates how to create a master group at a master replication site.

 This chapter contains these topics:

■ Overview of Creating a Master Group

■ Creating a Master GroupCreating a Master Group

Overview of Creating a Master Group
After you have set up your master sites, you are ready to build a master group. As
illustrated in Figure 3–2, you must follow a specific sequence to successfully build a
replication environment.

In this chapter, you create the hr_repg master group and replicate the objects
illustrated in Figure 3–1.

See Also: "Configuring the Replication Sites" on page 2-1 for
information about setting up master sites

Overview of Creating a Master Group

3-2 Oracle Database Advanced Replication Management API Reference

Figure 3–1 Replicate the Tables in the hr Schema Between All Sites

Before You Start
In order for the script in this chapter to work as designed, it is assumed that the hr
schema exists at orc1.example.com, orc2.example.com, and
orc3.example.com. The hr schema includes the following database objects:

■ countries table

■ departments table

■ employees table

■ jobs table

■ job_history table

■ locations table

■ regions table

■ dept_location_ix index

■ emp_department_ix index

■ emp_job_ix index

■ emp_manager_ix index

■ jhist_department_ix index

■ jhist_employee_ix index

■ jhist_job_ix index

■ loc_country_ix index

orc2.example.com

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc1.example.com

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

orc3.example.com

hr_mg
hr.employees
hr.departments
hr.locations
hr.countries
hr.job_history
hr.jobs
hr.regions

Overview of Creating a Master Group

Creating a Master Group 3-3

The indexes listed are the indexes based on foreign key columns in the hr schema.
When replicating tables with foreign key referential constraints, Oracle recommends
that you always index foreign key columns and replicate these indexes, unless no
updates and deletes are allowed in the parent table. Indexes are not replicated
automatically.

By default, the hr schema is installed automatically when you install Oracle Database.
The example script in this chapter assumes that the hr schema exists at all master sites
and that the schema contains all of these database objects at each site. The example
script also assumes that the tables contain the data that is inserted automatically
during Oracle installation. If the hr schema is not installed at your replication sites,
then you can install it manually.

Figure 3–2 Creating a Master Group

Add
another object?

START

1
Add objects to Master Group

3

Configure Confilict Resolution
Methods

5

1
Create Master Group

2

Create Schema At Master Sites
1

1
Add Additional Master Sites

4

1
Generate Replication Support

6

1
Resume Replication

7

No

More
Support?

No

Add
another master

site?

No

Yes

Yes

Are
data conflicts

possible?

Yes

No

Yes

Repeat
STEP 6 for
each object
that was
added during
STEP 3.

END

Creating a Master Group

3-4 Oracle Database Advanced Replication Management API Reference

Creating a Master Group
Complete the following steps to create the hr_repg master group.

/************************* BEGINNING OF SCRIPT ******************************/

SET ECHO ON

SPOOL create_mg.out

CONNECT repadmin@orc1.example.com

/*

Step 1 Create the schema at master sites.
If the schema does not already exist at all of the master sites participating in the master
group, then create the schema now and grant it all of the necessary privileges. This
example uses the hr schema, which is one of the sample schemas that are installed by
default when you install Oracle. So, the hr schema should exist at all master sites.

*/

PAUSE Press <RETURN> to continue when the schema exists at all master sites.

/*

Step 2 Create the master group.
Use the CREATE_MASTER_REPGROUP procedure to define a new master group. When
you add an object to your master group or perform other replication administrative
tasks, you reference the master group name defined during this step. This step must be
completed by the replication administrator.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPGROUP (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add objects to master group.
Use the CREATE_MASTER_REPOBJECT procedure to add an object to your master
group. In most cases, you probably will be adding tables and indexes to your master
group, but you can also add procedures, views, synonyms, and so on.

See Also: Oracle Database Sample Schemas for information about
the hr schema and the other sample schemas, and for information
about installing the sample schemas manually

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating a Master Group

Creating a Master Group 3-5

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'countries',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'departments',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'jobs',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'job_history',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

Creating a Master Group

3-6 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'locations',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'regions',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'dept_location_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_department_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_job_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'emp_manager_ix',

Creating a Master Group

Creating a Master Group 3-7

 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_department_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_employee_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'jhist_job_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'INDEX',
 oname => 'loc_country_ix',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

/*

Step 4 Add additional master sites.
After you have defined your master group at the master definition site (the site where
the master group was created becomes the master definition site by default), you can
define the other sites that will participate in the replication environment. You might
have guessed that you will be adding the orc2.example.com and
orc3.example.com sites to the replication environment. This example creates the
master group at all master sites, but you have the option of creating the master group

Creating a Master Group

3-8 Oracle Database Advanced Replication Management API Reference

at one master site now and adding additional master sites later without quiescing the
database. In this case, you can skip this step.

In this example, the use_existing_objects parameter in the
ADD_MASTER_DATABASE procedure is set to TRUE because it is assumed that the hr
schema already exists at all master sites. In other words, it is assumed that the objects
in the hr schema are precreated at all master sites. Also, the copy_rows parameter is
set to FALSE because it is assumed that the identical data is stored in the tables at each
master site.

*/

BEGIN
 DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname => 'hr_repg',
 master => 'orc2.example.com',
 use_existing_objects => TRUE,
 copy_rows => FALSE,
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

*/

PAUSE Press <RETURN> to continue.

BEGIN
 DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname => 'hr_repg',
 master => 'orc3.example.com',
 use_existing_objects => TRUE,
 copy_rows => FALSE,
 propagation_mode => 'ASYNCHRONOUS');
END;
/

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-3 for more information

Note: When adding a master site to a master group that contains
tables with circular dependencies or a table that contains a self-
referential constraint, you must precreate the table definitions and
manually load the data at the new master site. The following is an
example of a circular dependency: Table A has a foreign key
constraint on table B, and table B has a foreign key constraint on
table A.

Note: You should wait until orc2.example.com appears in the
DBA_REPSITES view before continuing. Execute the following
SELECT statement in another SQL*Plus session to ensure that
orc2.example.com has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME = 'HR_REPG';

Creating a Master Group

Creating a Master Group 3-9

/*

*/

PAUSE Press <RETURN> to continue.

/*

Step 5 If conflicts are possible, then configure conflict resolution methods.

*/

PAUSE Press <RETURN> to continue after configuring conflict resolution methods
or if no conflict resolution methods are required.

/*

Step 6 Generate replication support.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'departments',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

Note: You should wait until orc3.example.com appears in the
DBA_REPSITES view before continuing. Execute the following
SELECT statement in another SQL*Plus session to ensure that
orc3.example.com has appeared:

SELECT DBLINK FROM DBA_REPSITES WHERE GNAME = 'HR_REPG';

See Also: Chapter 6, "Configuring Conflict Resolution" for
information about configuring conflict resolution methods

Creating a Master Group

3-10 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'job_history',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

*/

PAUSE Press <RETURN> to continue.

/*

Step 7 Start replication.
After creating your master group, adding replication objects, generating replication
support, and adding additional master databases, you must start replication activity.
Use the RESUME_MASTER_ACTIVITY procedure to "turn on" replication for the
specified master group.

*/

Note: You should wait until the DBA_REPCATLOG view is empty
before resuming master activity. Execute the following SELECT
statement to monitor your DBA_REPCATLOG view:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

Creating a Master Group

Creating a Master Group 3-11

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating a Master Group

3-12 Oracle Database Advanced Replication Management API Reference

Creating a Deployment Template 4-1

4
Creating a Deployment Template

This chapter illustrates how to build a deployment template using the replication
management API.

This chapter contains these topics:

■ Oracle Deployment Templates Concepts

■ Before Creating the Deployment Template

■ Creating a Deployment Template

■ Packaging a Deployment Template for Instantiation

■ Distributing Instantiation Files

■ Instantiating a Deployment Template

■ Refreshing a Refresh Group After Instantiation

Before you build materialized view environments, you must set up your master site,
create a master group, and set up your intended materialized view sites. Also, if
conflicts are possible at the master site due to activity at the materialized view sites
you are creating, then configure conflict resolution for the master tables of the
materialized views before you create the materialized view group.

Oracle Deployment Templates Concepts
Oracle offers deployment templates to allow the database administrator to package a
materialized view environment for easy, custom, and secure distribution and
installation. A deployment template can be simple (for example, it can contain a single
materialized view with a fixed data set), or complex (for example, it can contain
hundreds of materialized views with a dynamic data set based on one or more
variables). The goal is to define the environment once and deploy the deployment
template as often as necessary. Oracle deployment templates feature:

■ Central control

■ Repeated deployment of a materialized view environment

See Also:

■ "Setting Up Master Sites" on page 2-3

■ "Overview of Creating a Master Group" on page 3-1

■ "Setting Up Materialized View Sites" on page 2-16

■ Chapter 6, "Configuring Conflict Resolution"

Before Creating the Deployment Template

4-2 Oracle Database Advanced Replication Management API Reference

■ Data subsetting at remote sites using template parameters

■ Authorized user list to control template instantiation and data access

To prepare a materialized view environment for deployment, the DBA creates a
deployment template at the master site. This template stores all of the information
needed to deploy a materialized view environment, including the DDL to create the
objects at the remote site and the target refresh group. This template also maintains
links to user security information and template parameters for custom materialized
view creation.

You cannot use deployment templates to instantiate the following types of objects:

■ User-defined types

■ User-defined type bodies

■ User-defined operators

■ Indextypes

Nor can you use deployment templates to instantiate any objects based on these types
of objects.

Before Creating the Deployment Template
If you want one of your master sites to support a materialized views that can be fast
refreshed, then you must create materialized view logs for each master table that is
replicated to a materialized view.

The example in this chapter uses the hr sample schema. Enter the following to create
materialized view logs for the tables in the hr schema:

CONNECT hr@orc3.example.com
Enter password: password

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

Creating a Deployment Template
This section contains a complete script example of how to construct a deployment
template using the replication management API.

See Also: Oracle Database Advanced Replication for more
conceptual information about deployment templates

See Also: The CREATE MATERIALIZED VIEW LOG statement in
the Oracle Database SQL Language Reference for detailed information
about this SQL statement

See Also: Oracle Database Advanced Replication for conceptual and
architectural information about deployment templates

Creating a Deployment Template

Creating a Deployment Template 4-3

Figure 4–1 Creating a Deployment Template

Be sure to read the comments contained within the scripts, as they contain important
and useful information about building templates with the replication management
API.

Add
another object?

START

Authorize Users for Private
Template

1
Add Objects to Template

2

Create Deployment Template
1

1
Define Parameter Defaults

3

1
Define User Parameter Values

4

No

Define
another

parameter?

Authorize
users?

No

No

Define
another

parameter?

No

END

Yes

Yes

Yes

Authorize
additional users?

No

5

Yes

Yes

Creating a Deployment Template

4-4 Oracle Database Advanced Replication Management API Reference

/************************* BEGINNING OF SCRIPT ******************************

This script creates a private deployment template that contains four template objects,
two template parameters, a set of user parameter values, and an authorized user.
Complete the following steps to build a template:

Step 1 Create the deployment template.
Before assembling the components of your deployment template, use the
CREATE_RERESH_TEMPLATE procedure to define the name of your deployment
template, along with several other template characteristics (Public/Private status,
target refresh group, and owner).

*/

SET ECHO ON

SPOOL create_dt.out

CONNECT repadmin@orc3.example.com

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE (
 owner => 'hr',
 refresh_group_name => 'hr_refg',
 refresh_template_name => 'hr_refg_dt',
 template_comment => 'Human Resources Deployment Template',
 public_template => 'N');
END;
/

/*

Step 2 Add objects to template.
Create countries_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;

Note:

■ You must use the Advanced Replication interface in Oracle
Enterprise Manager if you want to create materialized views
with a subset of the columns their master tables. See Oracle
Database Advanced Replication and the Advanced Replication
interface online Help for more information about column
subsetting.

■ If you are viewing this document online, then you can copy the
text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the
text to create a script for your environment.

Creating a Deployment Template

Creating a Deployment Template 4-5

BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.countries_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 country_id, country_name, region_id
 FROM hr.countries@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'countries_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Whenever you create a materialized view, always specify the schema name of the table
owner in the query for the materialized view. In the example previously, hr is
specified as the owner of the countries table.

Create departments_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.departments_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 department_id, department_name, manager_id, location_id
 FROM hr.departments@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'departments_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Create employees_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.employees_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, first_name, last_name, email, phone_number,
 hire_date, job_id, salary, commission_pct, manager_id,
 department_id
 FROM hr.employees@:dblink WHERE department_id = :dept';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'employees_mv',

Creating a Deployment Template

4-6 Oracle Database Advanced Replication Management API Reference

 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Create jobs_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.jobs_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 job_id, job_title, min_salary, max_salary
 FROM hr.jobs@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'jobs_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Create job_history_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.job_history_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 employee_id, start_date, end_date, job_id, department_id
 FROM hr.job_history@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'job_history_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
 END;
/

/*

Create locations_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;

Creating a Deployment Template

Creating a Deployment Template 4-7

BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.locations_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 location_id, street_address, postal_code, city,
 state_province, country_id
 FROM hr.locations@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'locations_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Create regions_mv materialized view.

*/

DECLARE
 tempstring VARCHAR2(3000);
 a NUMBER;
BEGIN
 tempstring := 'CREATE MATERIALIZED VIEW hr.regions_mv
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT
 region_id, region_name
 FROM hr.regions@:dblink';
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name => 'hr_refg_dt',
 object_name => 'regions_mv',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => tempstring,
 master_rollback_seg => 'rbs');
END;
/

/*

Step 3 Define parameter defaults.
Rather than using the CREATE_* functions and procedures as in the other steps, use
the ALTER_TEMPLATE_PARM procedure to define a template parameter value and
prompt string. You use the ALTER_* procedure because the actual parameter was
created in Step 1. Recall that you defined the :dblink and :dept template
parameters in the ddl_text parameter. Oracle detects these parameters in the DDL
and automatically creates the template parameter. Use the ALTER_TEMPLATE_PARM
procedure to define the remainder of the template parameter information (that is,
default parameter value and prompt string).

Complete the following tasks to define parameter defaults.

Define the default value for the dept parameter.

*/

BEGIN
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dept',
 new_default_parm_value => '30',

Creating a Deployment Template

4-8 Oracle Database Advanced Replication Management API Reference

 new_prompt_string => 'Enter your department number:',
 new_user_override => 'Y');
END;
/

/*

Define the default value for the dblink parameter.

*/

BEGIN
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dblink',
 new_default_parm_value => 'orc3.example.com',
 new_prompt_string => 'Enter your master site:',
 new_user_override => 'Y');
END;
/

/*

Step 4 Define user parameter values.
To automate the instantiation of custom data sets at individual remote materialized
view sites, you can define user parameter values that will be used automatically when
the specified user instantiates the target template. The CREATE_USER_PARM_VALUE
procedure enables you to assign a value to a parameter for a user.

Complete the following tasks to define user parameter values.

Define dept user parameter value for user hr.

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dept',
 user_name => 'hr',
 parm_value => '20');
END;
/

/*

Define dblink user parameter value for user hr.

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name => 'hr_refg_dt',
 parameter_name => 'dblink',
 user_name => 'hr',
 parm_value => 'orc3.example.com');
END;

Packaging a Deployment Template for Instantiation

Creating a Deployment Template 4-9

/

/*

Step 5 Authorize users for private template.
Because this is a private template (public_template => 'N' in the
DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE function defined in Step 1 on
page 4-4), you must authorize users to instantiate the dt_personnel deployment
template. Use the CREATE_USER_AUTHORIZATION function in the
DBMS_REPCAT_RGT package to create authorized users.

*/

DECLARE
 a NUMBER;
BEGIN
 a := DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (
 user_name => 'hr',
 refresh_template_name => 'hr_refg_dt');
END;
/

COMMIT;

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Packaging a Deployment Template for Instantiation
After building your deployment template, you must package the template for
instantiation. This example illustrates how to use both the online and offline
instantiation procedures. Notice that the instantiation procedures are very similar: you
simply use either the INSTANTIATE_ONLINE function or INSTANTIATE_OFFLINE
function according to your needs. This section describes two tasks: create the
instantiation script and save the instantiation script to a file.

Packaging a Deployment Template for Instantiation

4-10 Oracle Database Advanced Replication Management API Reference

Figure 4–2 Packaging and Instantiating a Deployment Template

Packaging a Deployment Template
When you execute either the INSTANTIATE_OFFLINE or the INSTANTIATE_ONLINE
function, Oracle populates the USER_REPCAT_TEMP_OUTPUT data dictionary view
with the script to create the remote materialized view environment. Both online and
offline scripts contain the SQL statements to create the objects specified in the
deployment template. The difference is that an offline instantiation script also contains
the data to populate the objects. The online instantiation script does not contain the
data. Rather, during online instantiation, the materialized view site connects to the
master site to download the data.

Complete the steps in either the "Packaging a Deployment Template for Offline
Instantiation" or "Packaging a Deployment Template for Online Instantiation"
according to your needs.

Note: If you must execute either the INSTANTIATE_OFFLINE or
the INSTANTIATE_ONLINE function more than once for a
particular materialized view site, then run the
DROP_SITE_INSTANTIATION procedure in the
DBMS_REPCAT_RGT package before you attempt to repackage a
template for the site. Otherwise, Oracle returns an error stating that
there is a duplicate template site.

Package Template
1

Save Instantiation Script to File
2

Distribute Files
3

START

Use SQL*Plus to Instantiate
Deployment Template

4

Use Advanced Replication interface
in Enterprise Manager or
Replication Management API
(PL/SQL) to Refresh After
Instantiation

5

END

Was template
instantiated online

or offline?

Offline

Online

Packaging a Deployment Template for Instantiation

Creating a Deployment Template 4-11

Packaging a Deployment Template for Offline Instantiation
The INSTANTIATE_OFFLINE function creates a script that creates the materialized
view environment according to the contents of a specified deployment template. In
addition to containing the DDL (CREATE statements) to create the materialized view
environment, this script also contains the DML (INSERT statements) to populate the
materialized view environment with the appropriate data set.

--Use the INSTANTIATE_OFFLINE function to package the
--template for offline instantiation by a remote materialized view
--site. Executing this procedure both creates a script that
--creates that materialized view environment and populates the
--environment with the proper data set. This script is stored
--in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin@orc3.example.com
Enter password: password

SET SERVEROUTPUT ON
DECLARE
 dt_num NUMBER;
BEGIN
 dt_num := DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.example.com',
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)');
 DBMS_OUTPUT.PUT_LINE('Template ID = ' || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use this
number when you select from the USER_REPCAT_TEMP_OUTPUT data dictionary view
to retrieve the generated script. Be sure that you complete the steps in "Saving an
Instantiation Script to File" on page 4-12 after you complete this section. This script is
unique to an individual materialized view site and cannot be used for other
materialized view sites.

Packaging a Deployment Template for Online Instantiation
The INSTANTIATE_ONLINE function creates a script that creates the materialized
view environment according to the contents of a specified deployment template. When
this script is executed at the remote materialized view site, Oracle creates the
materialized view site according to the DDL (CREATE statements) in the script and
populates the environment with the appropriate data set from the master site. This
requires that the remote materialized view site has a "live" connection to the master
site.

Note: If you are packaging your template at the same master site
that contains the target master objects for your deployment
template, then you must create a loopback database link.

See Also: Oracle Database Advanced Replication for additional
materialized view site requirements

Packaging a Deployment Template for Instantiation

4-12 Oracle Database Advanced Replication Management API Reference

--Use the INSTANTIATE_ONLINE function to "package" the
--template for online instantiation by a remote materialized view
--site. Executing this procedure creates a script which can
--then be used to create a materialized view environment. This script
--is stored in the temporary USER_REPCAT_TEMP_OUTPUT view.

CONNECT repadmin@orc3.example.com
Enter password: password

SET SERVEROUTPUT ON
DECLARE
 dt_num NUMBER;
BEGIN
 dt_num := DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.example.com',
 next_date => SYSDATE,
 interval => 'SYSDATE + (1/144)');
 DBMS_OUTPUT.PUT_LINE('Template ID = ' || dt_num);
END;
/
COMMIT;
/

Make a note of the number that is returned for the dt_num variable. You must use this
number when you select from the USER_REPCAT_TEMP_OUTPUT data dictionary view
to retrieve the generated script. Be sure that you complete the steps in "Saving an
Instantiation Script to File" after you complete this task.

Saving an Instantiation Script to File
The best way to save the contents of the USER_REPCAT_TEMP_OUTPUT data
dictionary view is to use the UTL_FILE package to save the contents of the TEXT
column in the USER_REPCAT_TEMP_OUTPUT view to a file.

These contents are saved to a directory that corresponds to a directory object. To create
a directory object, the CREATE ANY DIRECTORY privilege is required. If the replication
administrator does not have this privilege, then connect as an administrative user who
can grant privileges. For example:

GRANT CREATE ANY DIRECTORY TO repadmin;

Enter the following to save the deployment template script to a file.

Note: The following action must be performed immediately after
you have called either the INSTANTIATE_OFFLINE or
INSTANTIATE_ONLINE functions, because the contents of the
USER_REPCAT_TEMP_OUTPUT data dictionary view are temporary.
If you have not completed the steps in "Packaging a Deployment
Template" on page 4-10, then do so now and then complete the
following action.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the UTL_FILE package

Packaging a Deployment Template for Instantiation

Creating a Deployment Template 4-13

DECLARE
 fh UTL_FILE.FILE_TYPE;
 CURSOR ddlcursor(myid NUMBER) IS
 SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT WHERE OUTPUT_ID = myid ORDER BY LINE;
BEGIN
 fh := UTL_FILE.FOPEN ('file_location', 'file_name', 'w');
 UTL_FILE.PUT_LINE (fh, 'SET ECHO OFF;');
 FOR myrec IN ddlcursor(template_id) LOOP
 UTL_FILE.PUT_LINE(fh, myrec.text);
 END LOOP;
 UTL_FILE.PUT_LINE (fh, 'SET ECHO ON;');
 UTL_FILE.FFLUSH(fh);
 UTL_FILE.FCLOSE(fh);
END;
/

Notice that file_location, file_name, and template_id are placeholders.
Substitute the correct values for your environment:

■ Replace the file_location placeholder with the name of a directory object that
represents the directory where you want to save the template script.

■ Replace the file_name placeholder with name you want to use for the template
script.

■ Replace the template_id placeholder with the number returned by the
INSTANTIATE_OFFLINE or INSTANTIATE_ONLINE function when you
packaged the template previously.

 For example, suppose you have the following values:

Given these values, connect to the master site as the replication administrator and run
the following procedure to save the template script to a file:

CONNECT repadmin@orc3.example.com
Enter password: password

CREATE DIRECTORY GFILES AS '/home/gen_files';

DECLARE
 fh UTL_FILE.FILE_TYPE;
 CURSOR ddlcursor(myid NUMBER) IS
 SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT WHERE OUTPUT_ID = myid
 ORDER BY LINE;
BEGIN
 fh := UTL_FILE.FOPEN ('GFILES', 'sf.sql', 'w');
 UTL_FILE.PUT_LINE (fh, 'SET ECHO OFF;');
 FOR myrec IN ddlcursor(18) LOOP
 UTL_FILE.PUT_LINE(fh, myrec.text);
 END LOOP;
 UTL_FILE.PUT_LINE (fh, 'SET ECHO ON;');
 UTL_FILE.FFLUSH(fh);
 UTL_FILE.FCLOSE(fh);
END;

Placeholder Value

file_location /home/gen_files/

file_name sf.sql

template_id 18

Distributing Instantiation Files

4-14 Oracle Database Advanced Replication Management API Reference

/

Distributing Instantiation Files
After creating the instantiation script and saving it to a file, you must distribute this
file to the remote materialized view sites that need to instantiate the template. You can
distribute this file by posting the file on an FTP site or saving the file to a CD-ROM,
floppy disk, or other distribution medium. You can also transfer the file using the
DBMS_FILE_TRANSFER package.

Instantiating a Deployment Template
After the instantiation script has been distributed to the remote materialized view
sites, you are ready to instantiate the deployment template at the remote materialized
view site. Ensure that you have set up the materialized view site before you instantiate
the deployment template. The following script demonstrates how to complete the
instantiation process at a remote materialized view site.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If it does not exist, then create the schema at materialized view site.
Before executing the instantiation script at the remote materialized view site, you must
create the schema that contains the replicated objects.

The following illustrates creating the hr schema. This schema might already exist in
your database. In this case, the schema might need additional privileges, such as
CREATE MATERIALIZED VIEW, ALTER ANY MATERIALIZED VIEW, and CREATE
DATABASE LINK.

*/

SET ECHO ON

SPOOL instant_mv.out

CONNECT system@mv4.example.com

CREATE TABLESPACE demo_mv
 DATAFILE 'demo_mv.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv
 TEMPFILE 'temp_mv.dbf' SIZE 5M AUTOEXTEND ON;

See Also:

■ Oracle Database Advanced Replication for materialized view site
requirements that must be met before instantiating your
deployment template

■ "Setting Up Materialized View Sites" on page 2-16

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Instantiating a Deployment Template

Creating a Deployment Template 4-15

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER hr IDENTIFIED BY &password;

ALTER USER hr DEFAULT TABLESPACE demo_mv
 QUOTA UNLIMITED ON demo_mv;

ALTER USER hr TEMPORARY TABLESPACE temp_mv;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

Step 2 If they do not already exist, then create database links for the schema.
Before instantiating the deployment template, you must ensure that the necessary
database links exist for the replicated schema. The owner of the materialized views
needs a database link pointing to the proxy_refresher that was created when the
master site was set up.

*/

CREATE PUBLIC DATABASE LINK orc3.example.com USING 'orc3.example.com';

CONNECT hr@mv4.example.com

CREATE DATABASE LINK orc3.example.com
 CONNECT TO proxy_refresher IDENTIFIED BY &password;

/*

Step 3 Execute the instantiation script.
*/

CONNECT mviewadmin@mv4.example.com

@d:\sf.sql

SET ECHO OFF

SPOOL OFF

/*

See Also: Step 7 on page 2-6 for more information about creating
proxy master site users

Refreshing a Refresh Group After Instantiation

4-16 Oracle Database Advanced Replication Management API Reference

Depending on the size of the materialized view environment created and the amount
of data loaded, the instantiation procedure might take a substantial amount of time.

************************** END OF SCRIPT **********************************/

Refreshing a Refresh Group After Instantiation
If you have just instantiated a deployment template using the offline instantiation
method, then you should perform a refresh of the refresh group as soon as possible by
issuing the following execute statement:

CONNECT hr@mv4.example.com
Enter password: password

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

Creating a Materialized View Group 5-1

5
Creating a Materialized View Group

This chapter illustrates how to create a materialized view group at a remote
materialized view replication site.

This chapter contains these topics:

■ Overview of Creating a Materialized View Group

■ Creating a Materialized View Group

Before you build materialized view environments, you must set up your master site,
create a master group, and set up your intended materialized view sites. Also, if
conflicts are possible at the master site due to activity at the materialized view sites
you are creating, then configure conflict resolution for the master tables of the
materialized views before you create the materialized view group.

Overview of Creating a Materialized View Group
After setting up your materialized view site and creating at least one master group,
you are ready to create a materialized view group at a remote materialized view site.
Figure 5–1 illustrates the process of creating a materialized view group.

See Also:

■ "Setting Up Master Sites" on page 2-3

■ "Overview of Creating a Master Group" on page 3-1

■ "Setting Up Materialized View Sites" on page 2-16

■ Chapter 6, "Configuring Conflict Resolution"

See Also: Chapter 2, "Configuring the Replication Sites" for
information about setting up a materialized view site, and see
Chapter 3, "Creating a Master Group" for information about
creating a master group.

Creating a Materialized View Group

5-2 Oracle Database Advanced Replication Management API Reference

Figure 5–1 Creating a Materialized View Group

Creating a Materialized View Group
This chapter guides you through the process of creating two materialized view groups
at two different materialized view sites: mv1.example.com and mv2.example.com:

■ The materialized view group at mv1.example.com is based on the objects in the
hr_repg master group at the orc1.example.com master site.

■ The materialized view group at mv2.example.com is based on the objects in the
hr_repg materialized view group at the mv1.example.com materialized view
site.

Therefore, the examples in this chapter illustrate how to create a multitier materialized
view environment, where one or more materialized views are based on other
materialized views.

Complete the following steps to create these two materialized view groups.

Add
another
object?

START

1
Add Objects to Materialized
View Group

5

1
Add Objects to Refresh Group

6

1
Create Refresh Group

4

1
Create Materialized View Group

3

1
Create Replicated Schema
and Links

2

Create Materialized View Logs
at Master

1

YES

NO

Add
another
object?

YES

NO

END

Repeat STEP 6 for
each object that
was added during
STEP 5.

Creating a Materialized View Group

Creating a Materialized View Group 5-3

/************************* BEGINNING OF SCRIPT ******************************

Creating the Materialized View Group at mv1.example.com
Complete the following steps to create the hr_repg materialized view group at the
mv1.example.com materialized view site. This materialized view group is based on
the hr_repg master group at the orc1.example.com master site.

Step 1 Create materialized view logs at the master site.
If you want one of your master sites to support a materialized view site, then you must
create materialized view logs for each master table that is replicated to a materialized
view. Recall from Figure 2–1 on page 2-2 that orc1.example.com serves as the target
master site for the mv1.example.com materialized view site. The required
materialized view logs must be created at orc1.example.com.

*/

SET ECHO ON

SPOOL create_mv_group.out

CONNECT hr@orc1.example.com

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

/*

Step 2 If they do not already exist, then create the replicated schema and its
database link.
Before building your materialized view group, you must ensure that the replicated
schema exists at the remote materialized view site and that the necessary database
links have been created.

In this example, if the hr schema does not exist, then create the schema. If the hr
schema already exists at the materialized view site, then grant any necessary privileges
and go to the next task in this step.

*/

CONNECT system@mv1.example.com

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also: The CREATE MATERIALIZED VIEW LOG statement in
the Oracle Database SQL Language Reference for detailed information
about this SQL statement

Creating a Materialized View Group

5-4 Oracle Database Advanced Replication Management API Reference

CREATE TABLESPACE demo_mv1
 DATAFILE 'demo_mv1.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv1
 TEMPFILE 'temp_mv1.dbf' SIZE 5M AUTOEXTEND ON;

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER hr IDENTIFIED BY &password;

ALTER USER hr DEFAULT TABLESPACE demo_mv1
 QUOTA UNLIMITED ON demo_mv1;

ALTER USER hr TEMPORARY TABLESPACE temp_mv1;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

If it does not already exist, then create the database link for the replicated schema.

Before building your materialized view group, you must ensure that the necessary
database links exist for the replicated schema. The owner of the materialized views
needs a database link pointing to the proxy_refresher that was created when the
master site was set up.

*/

CONNECT hr@mv1.example.com

CREATE DATABASE LINK orc1.example.com
 CONNECT TO proxy_refresher IDENTIFIED BY &password;

/*

Step 3 Create the materialized view group.
The following procedures must be executed by the materialized view administrator at
the remote materialized view site.

*/

CONNECT mviewadmin@mv1.example.com

/*

The master group that you specify in the gname parameter must match the name of
the master group that you are replicating at the target master site.

Creating a Materialized View Group

Creating a Materialized View Group 5-5

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.example.com',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 4 Create the refresh group.
All materialized views that are added to a particular refresh group are refreshed at the
same time. This ensures transactional consistency between the related materialized
views in the refresh group.

*/

BEGIN
 DBMS_REFRESH.MAKE (
 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

/*

Step 5 Add objects to the materialized view group.
Create the materialized views based on the master tables.

Whenever you create a materialized view, always specify the schema name of the table
owner in the query for the materialized view. In the following examples, hr is
specified as the owner of the table in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries@orc1.example.com;

CREATE MATERIALIZED VIEW hr.departments_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.example.com;

CREATE MATERIALIZED VIEW hr.employees_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.example.com;

CREATE MATERIALIZED VIEW hr.jobs_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs@orc1.example.com;

Creating a Materialized View Group

5-6 Oracle Database Advanced Replication Management API Reference

CREATE MATERIALIZED VIEW hr.job_history_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history@orc1.example.com;

CREATE MATERIALIZED VIEW hr.locations_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations@orc1.example.com;

CREATE MATERIALIZED VIEW hr.regions_mv1
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions@orc1.example.com;

/*

Add the objects to the materialized view group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

Creating a Materialized View Group

Creating a Materialized View Group 5-7

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_mv1',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*

Step 6 Add objects to the refresh group.
All of the materialized view group objects that you add to the refresh group are
refreshed at the same time to preserve referential integrity between related
materialized views.

*/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.countries_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.departments_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.employees_mv1',
 lax => TRUE);

Creating a Materialized View Group

5-8 Oracle Database Advanced Replication Management API Reference

END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.locations_mv1',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.regions_mv1',
 lax => TRUE);
END;
/

/*

Creating the Materialized View Group at mv2.example.com
Complete the following steps to create the hr_repg materialized view group at the
mv2.example.com materialized view site. This materialized view group is based on
the hr_repg materialized view group at the mv1.example.com materialized view
site.

Step 1 Create materialized view logs at the master materialized view site.
If you want one of your master materialized view sites to support another
materialized view site, then you must create materialized view logs for each
materialized view that is replicated to another materialized view site. Recall from
Figure 2–1 on page 2-2 that mv1.example.com serves as the target master
internalized view site for the mv2.example.com materialized view site. The required
materialized view logs must be created at mv1.example.com.

*/

CONNECT hr@mv1.example.com

CREATE MATERIALIZED VIEW LOG ON hr.countries_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.departments_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.employees_mv1;

Creating a Materialized View Group

Creating a Materialized View Group 5-9

CREATE MATERIALIZED VIEW LOG ON hr.jobs_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.job_history_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.locations_mv1;
CREATE MATERIALIZED VIEW LOG ON hr.regions_mv1;

/*

Step 2 If they do not already exist, then create the replicated schema and its
database link.
Before building your materialized view group, you must ensure that the replicated
schema exists at the remote materialized view site and that the necessary database
links have been created.

For this example, if the hr schema does not exist, then create the schema. If the hr
schema already exists at the materialized view site, then go to the next task in this step.

*/

CONNECT system@mv2.example.com
CREATE TABLESPACE demo_mv2
 DATAFILE 'demo_mv2.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv2
 TEMPFILE 'temp_mv2.dbf' SIZE 5M AUTOEXTEND ON;

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER hr IDENTIFIED BY &password;

ALTER USER hr DEFAULT TABLESPACE demo_mv2
 QUOTA UNLIMITED ON demo_mv2;

ALTER USER hr TEMPORARY TABLESPACE temp_mv2;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

If it does not already exist, then create the database link for the replicated schema.

Before building your materialized view group, you must ensure that the necessary
database links exist for the replicated schema. The owner of the materialized views

See Also: The CREATE MATERIALIZED VIEW LOG statement in
the Oracle Database SQL Language Reference for detailed information
about this SQL statement

Creating a Materialized View Group

5-10 Oracle Database Advanced Replication Management API Reference

needs a database link pointing to the proxy_refresher that was created when the
master materialized view site was set up.

*/

CONNECT hr@mv2.example.com

CREATE DATABASE LINK mv1.example.com
 CONNECT TO proxy_refresher IDENTIFIED BY &password;

/*

Step 3 Create the materialized view group.
The following procedures must be executed by the materialized view administrator at
the remote materialized view site.

*/

CONNECT mviewadmin@mv2.example.com

/*

The replication group that you specify in the gname parameter must match the name
of the replication group that you are replicating at the target master materialized view
site.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'mv1.example.com',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 4 Create the refresh group.
All materialized views that are added to a particular refresh group are refreshed at the
same time. This ensures transactional consistency between the related materialized
views in the refresh group.

*/

BEGIN
 DBMS_REFRESH.MAKE (
 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

See Also: Step 6 on page 2-12 for more information about creating
proxy master materialized view site users

Creating a Materialized View Group

Creating a Materialized View Group 5-11

/*

Step 5 Add objects to the materialized view group.
Create the materialized views based on the master materialized views.

Whenever you create a materialized view that is based on another materialized view,
always specify the schema name of the materialized view owner in the query for the
materialized view. In the following examples, hr is specified as the owner of the
materialized view in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.departments_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.employees_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.jobs_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.job_history_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.locations_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations_mv1@mv1.example.com;

CREATE MATERIALIZED VIEW hr.regions_mv2
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions_mv1@mv1.example.com;

/*

Add the materialized views to the materialized view group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',

Creating a Materialized View Group

5-12 Oracle Database Advanced Replication Management API Reference

 oname => 'departments_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_mv2',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*

Creating a Materialized View Group

Creating a Materialized View Group 5-13

Step 6 Add objects to the refresh group.
All of the materialized view group objects that you add to the refresh group are
refreshed at the same time to preserve referential integrity between related
materialized views.

*/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.countries_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.departments_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.employees_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.locations_mv2',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.regions_mv2',
 lax => TRUE);

Creating a Materialized View Group

5-14 Oracle Database Advanced Replication Management API Reference

END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Configuring Conflict Resolution 6-1

6
Configuring Conflict Resolution

This chapter illustrates how to define conflict resolution methods for your replication
environment.

This chapter contains these topics:

■ Preparing for Conflict Resolution

■ Creating Conflict Resolution Methods for Update Conflicts

■ Creating Conflict Resolution Methods for Uniqueness Conflicts

■ Creating Conflict Avoidance Methods for Delete Conflicts

■ Using Dynamic Ownership Conflict Avoidance

■ Auditing Successful Conflict Resolution

Preparing for Conflict Resolution
Though you might design your database and front-end application to avoid conflicts
between multiple sites in a replication environment, you might not be able to
completely eliminate the possibility of conflicts. One of the most important aspects of
replication is to ensure data convergence at all sites participating in the replication
environment.

When data conflicts occur, you need a mechanism to ensure that the conflict is
resolved in accordance with your business rules and that the data converges correctly
at all sites.

Advanced Replication lets you define a conflict resolution system for your database
that resolves conflicts in accordance with your business rules. If you have a unique
situation that Oracle's prebuilt conflict resolution methods cannot resolve, then you
have the option of building and using your own conflict resolution methods.

Before you begin implementing conflict resolution methods for your replicated tables,
analyze the data in your system to determine where the most conflicts can occur. For
example, static data such as an employee number might change very infrequently and
is not subject to a high occurrence of conflicts. An employee's customer assignments,
however, might change often and would therefore be prone to data conflicts.

After you have determined where the conflicts are most likely to occur, you must
determine how to resolve the conflict. For example, do you want the latest change to
have precedence, or should one site have precedence over another?

As you read each of the sections describing the different conflict resolution methods,
you will learn what each method is best suited for. So, read each section and then think
about how your business would want to resolve any potential conflicts.

Creating Conflict Resolution Methods for Update Conflicts

6-2 Oracle Database Advanced Replication Management API Reference

After you have identified the potential problem areas and have determined what
business rules would resolve the problem, use Oracle's conflict resolution methods (or
one of your own) to implement a conflict resolution system.

Creating Conflict Resolution Methods for Update Conflicts
The most common data conflict occurs when the same row at two or more different
sites are updated at nearly the same time, or before the deferred transaction from one
site was successfully propagated to the other sites.

One method to avoid update conflicts is to implement a synchronous replication
environment, though this solution requires large network resource.

The other solution is to use the Oracle conflict resolution methods to deal with update
conflicts that can occur when the same row receives two or more updates.

Overwrite and Discard Conflict Resolution Methods
The overwrite and discard methods ignore the values from either the originating or
destination site and therefore can never guarantee convergence with more than one
master site. These methods are designed to be used by a single master site and
multiple materialized view sites, or with some form of a user-defined notification
facility.

The overwrite method replaces the current value at the destination site with the new
value from the originating site. Conversely, the discard method ignores the new value
from the originating site.

Complete the following steps to create an overwrite or discard conflict resolution
method. This example illustrates the use of the discard conflict resolution method at
the master site. Therefore, in the event of a conflict, the data from a materialized view
site is discarded and the master site data remains.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

*/

SET ECHO ON

See Also: Oracle Database Advanced Replication for conceptual
information about conflict resolution methods and detailed
information about data convergence for each method

See Also: "ADD_conflicttype_RESOLUTION Procedure" on
page 18-16 and Oracle Database Advanced Replication for more
information about overwrite and discard

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-3

SPOOL discard_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define overwrite or discard conflict resolution methods, quiesce the master
group that contains the table to which you want to apply the conflict resolution
method. In a single master replication environment, quiescing the master group might
not be required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.
All Oracle conflict resolution methods are based on logical column groupings called
column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 list_of_column_names => 'manager_id,location_id');
END;
/

/*

Step 4 Define the conflict resolution method for a specified table.
This example creates an OVERWRITE conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'departments',
 column_group => 'dep_cg',
 sequence_no => 1,
 method => 'DISCARD',
 parameter_column_name => 'manager_id,location_id');
END;
/

/*

Creating Conflict Resolution Methods for Update Conflicts

6-4 Oracle Database Advanced Replication Management API Reference

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'departments',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume master activity after replication support has been regenerated.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Minimum and Maximum Conflict Resolution Methods
When Advanced Replication detects a conflict with a column group and calls either
the minimum or maximum value conflict resolution methods, it compares the new
value from the originating site with the current value from the destination site for a
designated column in the column group. You must designate this column when you
define your conflict resolution method.

If the new value of the designated column is less than or greater than (depending on the
method used) the current value, then the column group values from the originating
site are applied at the destination site, assuming that all other errors were successfully
resolved for the row. Otherwise the rows remain unchanged.

Complete the following steps to create an maximum or minimum conflict resolution
method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-5

*/

SET ECHO ON

SPOOL min_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define maximum or minimum conflict resolution methods, quiesce the
master group that contains the table to which you want to apply the conflict resolution
method. In a single master replication environment, quiescing the master group might
not be required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.
All Oracle conflict resolution methods are based on logical column groupings called
column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 list_of_column_names => 'min_salary');
END;
/

/*

Step 4 Define the conflict resolution method for a specified table.
This example creates a MINIMUM conflict resolution method.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'jobs',
 column_group => 'job_minsal_cg',
 sequence_no => 1,
 method => 'MINIMUM',
 parameter_column_name => 'min_salary');
END;
/

Creating Conflict Resolution Methods for Update Conflicts

6-6 Oracle Database Advanced Replication Management API Reference

/*

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'jobs',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Timestamp Conflict Resolution Methods
The earliest time stamp and latest time stamp methods are variations on the minimum
and maximum value methods. To use the time stamp method, you must designate a
column in the replicated table of type DATE. When an application updates any column
in a column group, the application must also update the value of the designated time
stamp column with the local SYSDATE. For a change applied from another site, the
time stamp value should be set to the time stamp value from the originating site.

 Two elements are needed to make time stamp conflict resolution work well:

■ Synchronized time settings between computers

■ Timestamp field and trigger to automatically record time stamp

Complete the following steps to create a time stamp conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-7

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

*/

SET ECHO ON

SPOOL timestamp_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before defining time stamp conflict resolution methods, quiesce the master group that
contains the table to which you want to apply the conflict resolution method. In a
single master replication environment, quiescing the master group might not be
required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add an additional column to your table to record the timestamp value
when a row is inserted or updated.
If the target table does not already contain a time stamp field, then add an additional
column to your table to record the time stamp value when a row is inserted or
updated. You must use the ALTER_MASTER_REPOBJECT procedure to apply the DDL
to the target table. Simply issuing the DDL might cause the replicated object to become
invalid.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.countries ADD (timestamp DATE)');
END;
/

/*

Step 4 Regenerate replication support for the altered table.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',

Creating Conflict Resolution Methods for Update Conflicts

6-8 Oracle Database Advanced Replication Management API Reference

 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a trigger that records the timestamp when a row is either inserted
or updated.
This recorded value is used in the resolution of conflicts based on the Timestamp
method. Instead of directly executing the DDL, you should use the
DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure to create the trigger and
add it to your master group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_time',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_time
 BEFORE
 INSERT OR UPDATE ON hr.countries FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 :NEW.TIMESTAMP := SYSDATE;
 END IF;
 END;');
END;
/

/*

Step 6 Create a column group for your target table.
All Oracle conflict resolution methods are based on logical column groupings called
column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 list_of_column_names => 'country_name,region_id,timestamp');
END;
/

/*

Note: You cannot use columns of datetime and interval data
types for priority group conflict resolution.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-9

Step 7 Define the conflict resolution method for a specified table.
This example specifies the LATEST TIMESTAMP conflict resolution method using the
timestamp column that you created earlier.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'countries',
 column_group => 'countries_timestamp_cg',
 sequence_no => 1,
 method => 'LATEST TIMESTAMP',
 parameter_column_name => 'timestamp');
END;
/

/*

Step 8 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'countries',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 9 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Additive and Average Conflict Resolution Methods
The additive and average methods work with column groups consisting of a single
numeric column only. Instead of "accepting" one value over another, this conflict
resolution method either adds the two compared values together or takes an average
of the two compared values.

Complete the following steps to create an additive or average conflict resolution
method. This example averages the commission percentage for an employee in the
event of a conflict.

Creating Conflict Resolution Methods for Update Conflicts

6-10 Oracle Database Advanced Replication Management API Reference

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

*/

SET ECHO ON

SPOOL average_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define additive and average conflict resolution methods, quiesce the master
group that contains the table to which you want to apply the conflict resolution
method. In a single master replication environment, quiescing the master group might
not be required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a column group for your target table.
All Oracle conflict resolution methods are based on logical column groupings called
column groups.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'employees',
 column_group => 'commission_average_cg',
 list_of_column_names => 'commission_pct');
END;
/

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-11

Step 4 Define the conflict resolution method for a specified table.
This example specifies the AVERAGE conflict resolution method using the sal column.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 column_group => 'commission_average_cg',
 sequence_no => 1,
 method => 'AVERAGE',
 parameter_column_name => 'commission_pct');
END;
/

/*

Step 5 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 6 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Priority Groups Conflict Resolution Methods
Priority groups allow you to assign a priority level to each possible value of a
particular column. If Oracle detects a conflict, then Oracle updates the table whose
"priority" column has a lower value using the data from the table with the higher
priority value.

Complete the following steps to create a priority groups conflict resolution method.

Creating Conflict Resolution Methods for Update Conflicts

6-12 Oracle Database Advanced Replication Management API Reference

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

*/

SET ECHO ON

SPOOL priority_groups_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define a priority groups conflict resolution method, quiesce the master
group that contains the table to which you want to apply the conflict resolution
method. In a single master replication environment, quiescing the master group might
not be required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Ensure that the job_id column is part of the column group for which your
site priority conflict resolution mechanism is used.
Use the ADD_GROUPED_COLUMN procedure to add this column to an existing column
group. If you do not already have a column group, then you can create a new column
group using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 list_of_column_names => 'manager_id,hire_date,salary,job_id');
END;
/

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-13

Step 4 Before you begin assigning a priority value to the values in your table,
create a priority group that holds the values you defined.
*/

BEGIN
 DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
 gname => 'hr_repg',
 pgroup => 'job_pg',
 datatype => 'VARCHAR2');
END;
/

/*

Step 5 Define a priority value for all possible table values.
The DBMS_REPCAT.ADD_PRIORITY_datatype procedure is available in several
different versions. There is a version for each available data type (NUMBER, VARCHAR2,
and so on). Execute this procedure as often as necessary until you have defined a
priority value for all possible table values.

*/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'ad_pres',
 priority => 100);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_man',
 priority => 80);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'sa_rep',
 priority => 60);
END;
/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'pu_clerk',
 priority => 40);
END;

See Also: "ADD_PRIORITY_datatype Procedure" on page 18-13
for more information

Creating Conflict Resolution Methods for Update Conflicts

6-14 Oracle Database Advanced Replication Management API Reference

/

BEGIN
 DBMS_REPCAT.ADD_PRIORITY_VARCHAR2(
 gname => 'hr_repg',
 pgroup => 'job_pg',
 value => 'st_clerk',
 priority => 20);
END;
/

/*

Step 6 Add the PRIORITY GROUP resolution method to your replicated table.
The following example shows that it is the second conflict resolution method for the
specified column group (sequence_no parameter).

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 column_group => 'employees_priority_cg',
 sequence_no => 2,
 method => 'PRIORITY GROUP',
 parameter_column_name => 'job_id',
 priority_group => 'job_pg');
END;
/

/*

Step 7 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 8 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-15

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Site Priority Conflict Resolution Methods
Site priority is a specialized form of a priority group. Therefore, many of the
procedures associated with site priority behave similarly to the procedures associated
with priority groups. Instead of resolving a conflict based on the priority of a field's
value, the conflict is resolved based on the priority of the sites involved.

For example, if you assign orc2.example.com a higher priority value than
orc1.example.com and a conflict arises between these two sites, then the value from
orc2.example.com is used.

Complete the following steps to create a site priority conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
The procedures in the following steps must be executed by the replication
administrator.

*/

SET ECHO ON

SPOOL site_priority_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define a site priority conflict resolution method, quiesce the master group
that contains the table to which you want to apply the conflict resolution method. In a
single master replication environment, quiescing the master group might not be
required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Update Conflicts

6-16 Oracle Database Advanced Replication Management API Reference

Step 3 Add a site column to your table to store the site value.
Use the DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure to apply the DDL to
the target table. Simply issuing the DDL might cause the replicated object to become
invalid.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.regions ADD (site VARCHAR2(20))');
END;
/

/*

Step 4 Regenerate replication support for the affected object.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a trigger that records the global name of the site when a row is
either inserted or updated.
This recorded value is used in the resolution of conflicts based on the site priority
method. Instead of directly executing the DDL, you should use the
DBMS_REPCAT.CREATE_MASTER_REPOBJECT procedure to create the trigger and
add it to your master group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TRIGGER',
 oname => 'insert_site',
 sname => 'hr',
 ddl_text => 'CREATE TRIGGER hr.insert_site
 BEFORE
 INSERT OR UPDATE ON hr.regions FOR EACH ROW
 BEGIN
 IF DBMS_REPUTIL.FROM_REMOTE = FALSE THEN
 SELECT global_name INTO :NEW.SITE FROM GLOBAL_NAME;
 END IF;
 END;');
END;
/

/*

Creating Conflict Resolution Methods for Update Conflicts

Configuring Conflict Resolution 6-17

Step 6 Ensure that the new column is part of the column group for which your
site priority conflict resolution mechanism is used.
Use the ADD_GROUPED_COLUMN procedure to add this column to an existing column
group. If you do not already have a column group, then you can create a new column
group using the DBMS_REPCAT.MAKE_COLUMN_GROUP procedure.

*/

BEGIN
 DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 list_of_column_names => 'region_id,region_name,site');
END;
/

/*

Step 7 Before assigning a site priority value to the sites in your replicated
environment, create a site priority group that holds the values you defined.
*/

BEGIN
 DBMS_REPCAT.DEFINE_SITE_PRIORITY (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg');
END;
/

/*

Step 8 Define the priority value for each of the sites in your replication
environment.
Execute this procedure as often as necessary until you have defined a site priority
value for each of the sites in our replication environment.

*/

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc1.example.com',
 priority => 100);
END;
/

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc2.example.com',
 priority => 50);
END;
/

Creating Conflict Resolution Methods for Update Conflicts

6-18 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname => 'hr_repg',
 name => 'regions_sitepriority_pg',
 site => 'orc3.example.com',
 priority => 25);
END;
/

/*

Step 9 Add the SITE PRIORITY resolution method to your replicated table.
The following example shows that it is the third conflict resolution method for the
specified column group (sequence_no parameter).

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'regions',
 column_group => 'regions_sitepriority_cg',
 sequence_no => 1,
 method => 'SITE PRIORITY',
 parameter_column_name => 'site',
 priority_group => 'regions_sitepriority_pg');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict
resolution method.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'regions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

Creating Conflict Resolution Methods for Uniqueness Conflicts

Configuring Conflict Resolution 6-19

/************************* END OF SCRIPT **********************************/

Creating Conflict Resolution Methods for Uniqueness Conflicts
In a replication environment, you might have situations where you encounter a
conflict on a unique constraint, often resulting from an insert. If your business rules
allow you to delete the duplicate row, then you can define a resolution method with
Oracle's prebuilt conflict resolution methods.

More often, however, you probably want to modify the conflicting value so that it no
longer violates the unique constraint. Modifying the conflicting value ensures that you
do not lose important data. Oracle's prebuilt uniqueness conflict resolution method
can make the conflicting value unique by appending a site name or a sequence
number to the value.

An additional component that accompanies the uniqueness conflict resolution method
is a notification facility. The conflicting information is modified by Oracle so that it can
be inserted into the table, but you should be notified so that you can analyze the
conflict to determine whether the record should be deleted, or the data merged into
another record, or a completely new value be defined for the conflicting data.

A uniqueness conflict resolution method detects and resolves conflicts encountered on
columns with a UNIQUE constraint. The example in this section uses the employees
table in the hr sample schema, which has the unique constraint emp_email_uk on
the email column.

Complete the following steps to create a uniqueness conflict resolution method.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator.
*/

SET ECHO ON

SPOOL unique_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Note: To add unique conflict resolution method for a column, the
name of the unique index on the column must match the name of
the unique or primary key constraint.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Resolution Methods for Uniqueness Conflicts

6-20 Oracle Database Advanced Replication Management API Reference

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
Before you define a uniqueness conflict resolution method, ensure that the master
group that contains the table to which you want to apply the conflict resolution
method is quiesced.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Create a table that stores the messages received from your notification
facility.
In this example, the table name is conf_report.

*/

BEGIN
 DBMS_REPCAT.EXECUTE_DDL (
 gname => 'hr_repg',
 ddl_text => 'CREATE TABLE hr.conf_report (
 line NUMBER(2),
 txt VARCHAR2(80),
 timestamp DATE,
 table_name VARCHAR2(30),
 table_owner VARCHAR2(30),
 conflict_type VARCHAR2(7))');
END;
/

/*

Step 4 Connect as the owner of the table you created in Step 3.
*/

CONNECT hr@orc1.example.com

/*

Step 5 Create a package that sends a notification to the conf_report table when a
conflict is detected.
In this example, the package name is notify.

*/

CREATE OR REPLACE PACKAGE notify AS
 FUNCTION emp_unique_violation (email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN;

See Also: Appendix B, "User-Defined Conflict Resolution
Methods" describes the conflict resolution notification package that
is created in this script

Creating Conflict Resolution Methods for Uniqueness Conflicts

Configuring Conflict Resolution 6-21

END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
 TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
 PROCEDURE report_conflict(conflict_report IN MESSAGE_TABLE,
 report_length IN NUMBER,
 conflict_time IN DATE,
 conflict_table IN VARCHAR2,
 table_owner IN VARCHAR2,
 conflict_type IN VARCHAR2) IS
 BEGIN
 FOR idx IN 1..report_length LOOP
 BEGIN
 INSERT INTO hr.conf_report
 (line, txt, timestamp, table_name, table_owner, conflict_type)
 VALUES (idx, SUBSTR(conflict_report(idx),1,80), conflict_time,
 conflict_table, table_owner, conflict_type);
 EXCEPTION WHEN others THEN NULL;
 END;
 END LOOP;
 END report_conflict;
 FUNCTION emp_unique_violation(email IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN IS
 local_node VARCHAR2(128);
 conf_report MESSAGE_TABLE;
 conf_time DATE := SYSDATE;
 BEGIN
 BEGIN
 SELECT global_name INTO local_node FROM global_name;
 EXCEPTION WHEN others THEN local_node := '?';
 END;
 conf_report(1) := 'UNIQUENESS CONFLICT DETECTED IN EMPLOYEES ON ' ||
 TO_CHAR(conf_time, 'MM-DD-YYYY HH24:MI:SS');
 conf_report(2) := ' AT NODE ' || local_node;
 conf_report(3) := 'ATTEMPTING TO RESOLVE CONFLICT USING' ||
 ' APPEND SITE NAME METHOD';
 conf_report(4) := 'EMAIL: ' || email;
 conf_report(5) := NULL;
 report_conflict(conf_report,5,conf_time,'employees','hr','UNIQUE');
 discard_new_values := FALSE;
 RETURN FALSE;
 END emp_unique_violation;
END notify;
/

/*

Step 6 Connect as the replication administrator.
*/

CONNECT repadmin@orc1.example.com

/*

Creating Conflict Resolution Methods for Uniqueness Conflicts

6-22 Oracle Database Advanced Replication Management API Reference

Step 7 Replicate the package you created in Step 5 to all of the master sites in
your replication environment.
This step ensures that the notification facility is available at all master sites.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'notify',
 sname => 'hr');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'notify',
 sname => 'hr');
END;
/

/*

Step 8 Add the notification facility as one of your conflict resolution methods.
Add it even though it only notifies of a conflict. The following example demonstrates
adding the notification facility as a USER FUNCTION.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 1,
 method => 'USER FUNCTION',
 comment => 'Notify DBA',
 parameter_column_name => 'email',
 function_name => 'hr.notify.emp_unique_violation');
END;
/

/*

Step 9 Add the actual conflict resolution method to your table.
The following example demonstrates adding the APPEND SITE NAME uniqueness
conflict resolution method to your replicated table.

*/

BEGIN
 DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname => 'hr',
 oname => 'employees',
 constraint_name => 'emp_email_uk',
 sequence_no => 2,

Creating Conflict Avoidance Methods for Delete Conflicts

Configuring Conflict Resolution 6-23

 method => 'APPEND SITE NAME',
 parameter_column_name => 'email');
END;
/

/*

Step 10 Regenerate replication support for the table that received the conflict
resolution methods.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 11 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Creating Conflict Avoidance Methods for Delete Conflicts
Unlike update conflicts, where there are two values to compare, simply deleting a row
makes the update conflict resolution methods described in the previous section
ineffective because only one value would exist.

The best way to deal with deleting rows in a replication environment is to avoid the
conflict by marking a row for deletion and periodically purging the table of all marked
records. Because you are not physically removing this row, your data can converge at
all master sites if a conflict arises because you still have two values to compare,
assuming that no other errors have occurred. After you are sure that your data has
converged, you can purge marked rows using a replicated purge procedure.

When developing the front-end application for your database, you probably want to
filter out the rows that have been marked for deletion, because doing so makes it
appear to your users as though the row was physically deleted. Simply exclude the
rows that have been marked for deletion in the SELECT statement for your data set.

For example, a select statement for a current employee listing might be similar to the
following:

SELECT * FROM hr.locations WHERE remove_date IS NULL;

Creating Conflict Avoidance Methods for Delete Conflicts

6-24 Oracle Database Advanced Replication Management API Reference

This section describes how to prepare your replicated table to avoid delete conflicts.
You also learn how to use procedural replication to purge those records that have been
marked for deletion.

Complete the following steps to create a conflict avoidance method for delete conflicts.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect as the replication administrator at the master definition site.
*/

SET ECHO ON

SPOOL delete_conflictres.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Quiesce the master group that contains the table to which you want to
apply the conflict resolution method.
*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Add a column to the replicated table that stores the mark for deleted
records.
It is advisable to use a time stamp to mark your records for deletion (time stamp
reflects when the record was marked for deletion). Because you are using a time
stamp, the new column can be a DATE data type. Use the
DBMS_REPCAT.ALTER_MASTER_REPOBJECT procedure to add the remove_date
column to your existing replicated table.

*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.locations ADD (remove_date DATE)');
END;
/

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Creating Conflict Avoidance Methods for Delete Conflicts

Configuring Conflict Resolution 6-25

Step 4 Regenerate replication support for the altered table.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'locations',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 5 Create a package that is replicated to all of the master sites in your
replication environment.
This package purges all marked records from the specified table.

*/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE',
 oname => 'purge',
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE hr.purge AS
 PROCEDURE remove_locations(purge_date DATE);
 END;');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'PACKAGE BODY',
 oname => 'purge',
 sname => 'hr',
 ddl_text => 'CREATE OR REPLACE PACKAGE BODY hr.purge AS
 PROCEDURE remove_locations(purge_date IN DATE) IS
 BEGIN
 DBMS_REPUTIL.REPLICATION_OFF;
 LOCK TABLE hr.locations IN EXCLUSIVE MODE;
 DELETE hr.locations WHERE remove_date IS NOT NULL
 AND remove_date < purge_date;
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN others THEN
 DBMS_REPUTIL.REPLICATION_ON;
 END;
 END;');
END;
/

/*

Step 6 Generate replication support for each package and package body.
After generating replication support, a synonym is created for you and added to your
master group as a replicated object. This synonym is labeled as
defer_purge.remove_locations.

Creating Conflict Avoidance Methods for Delete Conflicts

6-26 Oracle Database Advanced Replication Management API Reference

*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'purge',
 type => 'PACKAGE BODY',
 min_communication => TRUE);
END;
/

/*

Step 7 In a separate terminal window, manually push any administrative requests
at all other master sites.
You might need to execute the DO_DEFERRED_REPCAT_ADMIN procedure in the
DBMS_REPCAT package several times, because some administrative operations have
multiple steps. The following is an example:

*/

BEGIN
 DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname => 'hr_repg',
 all_sites => FALSE);
END;
/

*/

PAUSE Press <RETURN> to continue when you have verified that there are no
pending administrative requests in the DBA_REPCATLOG data dictionary view.

/*

Step 8 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using Dynamic Ownership Conflict Avoidance

Configuring Conflict Resolution 6-27

Using Dynamic Ownership Conflict Avoidance
This section describes a more advanced method of designing your applications to
avoid conflicts. This method, known as token passing, is similar to the workflow
method described in the following sections. Although this section describes how to
use this method to control the ownership of an entire row, you can use a modified
form of this method to control ownership of the individual column groups within a
row.

Both workflow and token passing allow dynamic ownership of data. With dynamic
ownership, only one site at a time is allowed to update a row, but ownership of the
row can be passed from site to site. Both workflow and token passing use the value of
one or more "identifier" columns to determine who is currently allowed to update the
row.

Workflow
With workflow partitioning, you can think of data ownership as being "pushed" from
site to site. Only the current owner of the row is allowed to push the ownership of the
row to another site, by changing the value of the "identifier" columns.

Take the simple example of separate sites for ordering, shipping, and billing. Here, the
identifier columns are used to indicate the status of an order. The status determines
which site can update the row. After a user at the ordering site has entered the order,
the user updates the status of this row to ship. Users at the ordering site are no longer
allowed to modify this row — ownership has been pushed to the shipping site.

After shipping the order, the user at the shipping site updates the status of this row to
bill, thus pushing ownership to the billing site, and so on.

To successfully avoid conflicts, applications implementing dynamic data ownership
must ensure that the following conditions are met:

■ Only the owner of the row can update the row.

■ The row is never owned by more than one site.

■ Ordering conflicts can be successfully resolved at all sites.

With workflow partitioning, only the current owner of the row can push the
ownership of the row to the next site by updating the "identifier" columns. No site is
given ownership unless another site has given up ownership; thus ensuring there is
never more than one owner.

Because the flow of work is ordered, ordering conflicts can be resolved by applying the
change from the site that occurs latest in the flow of work. Any ordering conflicts can
be resolved using a form of the priority conflict resolution method, where the priority
value increases with each step in the work flow process. The priority conflict
resolution method successfully converges for more than one master site as long as the
priority value is always increasing.

Token Passing
Token passing uses a more generalized approach to meeting these criteria. To
implement token passing, instead of the "identifier" columns, your replicated tables
must have owner and epoch columns. The owner column stores the global database
name of the site currently believed to own the row.

Once you have designed a token passing mechanism, you can use it to implement a
variety of forms of dynamic partitioning of data ownership, including workflow.

Using Dynamic Ownership Conflict Avoidance

6-28 Oracle Database Advanced Replication Management API Reference

You should design your application to implement token passing for you automatically.
You should not allow the owner or epoch columns to be updated outside this
application.

Whenever you attempt to update a row, your application should:

1. Locate the current owner of the row.

2. Establish ownership of the row.

3. Lock the row to prevent updates while ownership is changing.

4. Perform the update.

Oracle releases the lock when you commit your transaction.

For example, Figure 6–1 illustrates how ownership of employee 100 passes from the
acct_sf database to the acct_ny database.

Figure 6–1 Grabbing the Token

acct_ny.ny.example.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_hq.hq.example.com
acct_hq.hq.example.com

Step 1. Identify True Owner

Step 2. Grab Ownership and Broadcast Change

acct_hq.hq.example.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_sf.sf.example.com
acct_hq.hq.example.com

acct_sf.sf.example.com

empno ename deptno owner

100

101

Jones

Kim

10

20

acct_sf.sf.example.com

acct_hq.hq.example.com

acct_la.la.example.com

empno ename deptno owner

100

101

Jones

Kim

10

20

acct_hq.hq.example.com

acct_hq.hq.example.com

acct_ny.ny.example.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_ny.ny.example.com
acct_hq.hq.example.com

acct_hq.hq.example.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_sf.sf.example.com
acct_hq.hq.example.com

acct_sf.sf.example.com

empno ename deptno

100
101

Jones
Kim

10
20

acct_ny.ny.example.com
acct_hq.hq.example.com

acct_la.la.example.com

empno ename deptno owner

100
101

Jones
Kim

10
20

acct_hq.hq.example.com
acct_hq.hq.example.com

asynch

synchronous

owner

Using Dynamic Ownership Conflict Avoidance

Configuring Conflict Resolution 6-29

Locating the Owner of a Row
To obtain ownership, the acct_ny database uses a simple recursive algorithm to
locate the owner of the row. The sample code for this algorithm is shown as follows:

-- Sample code for locating the token owner.
-- This is for a table TABLE_NAME with primary key PK.
-- Initial call should initialize loc_epoch to 0 and loc_owner
-- to the local global name.
get_owner(PK IN primary_key_type, loc_epoch IN OUT NUMBER,
 loc_owner IN OUT VARCHAR2)
{
 -- use dynamic SQL (dbms_sql) to perform a select similar to
 -- the following:
 SELECT owner, epoch into rmt_owner, rmt_epoch
 FROM TABLE_NAME@loc_owner
 WHERE primary_key = PK FOR UPDATE;
 IF rmt_owner = loc_owner AND rmt_epoch >= loc_epoch THEN
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSIF rmt_epoch >= loc_epoch THEN
 get_owner(PK, rmt_epoch, rmt_owner);
 loc_owner := rmt_owner;
 loc_epoch := rmt_epoch;
 RETURN;
 ELSE
 raise_application_error(-20000, 'No owner for row');
 END IF;}

Obtaining Ownership
After locating the owner of the row, the acct_ny site gets ownership from the
acct_sf site by completing the following steps:

1. Lock the row at the sf site to prevent any changes from occurring while
ownership is being exchanged.

This operation ensures that only one site considers itself to be the owner at all
times. The update at the sf site should not be replicated using
DBMS_REPUTIL.REPLICATION_OFF. The replicated change of ownership at the
ny site in Step 4 will ultimately be propagated to all other sites in the replication
environment, including the sf site, where it will have no effect.

2. Synchronously update the owner information at both the sf and ny sites.

3. Update the row information at the new owner site, ny, with the information from
the current owner site, sf.

This data is guaranteed to be the most recent. This time, the change at the ny site
should not be replicated. Any queued changes to this data at the sf site are
propagated to all other sites in the usual manner. When the sf change is
propagated to ny, it is ignored because of the values of the epoch numbers, as
described in the next bullet point.

4. Update the epoch number at the new owner site to be one greater than the value at
the previous site.

Perform this update at the new owner only, and then asynchronously propagate
this update to the other master sites. Incrementing the epoch number at the new
owner site prevents ordering conflicts.

Auditing Successful Conflict Resolution

6-30 Oracle Database Advanced Replication Management API Reference

When the sf changes (that were in the deferred queue in Step 2 preceding) are
ultimately propagated to the ny site, the ny site ignores them because they have a
lower epoch number than the epoch number at the ny site for the same data.

As another example, suppose the hq site received the sf changes after receiving
the ny changes, the hq site would ignore the sf changes because the changes
applied from the ny site would have the greater epoch number.

Applying the Change
You should design your application to implement this method of token passing for
you automatically whenever you perform an update. You should not allow the owner
or epoch columns to be updated outside this application. The lock that you grab when
you change ownership is released when you apply your actual update. The changed
information, along with the updated owner and epoch information, are
asynchronously propagated to the other sites in the usual manner.

Auditing Successful Conflict Resolution
Whenever Oracle detects and successfully resolves an update, delete, or uniqueness
conflict, you can view information about what method was used to resolve the conflict
by querying the ALL_REPRESOLUTION_STATISTICS data dictionary view. This view
is updated only if you have enabled conflict resolution statistics gathering for the table
involved in the conflict.

Collecting Conflict Resolution Statistics
Use the REGISTER_STATISTICS procedure in the DBMS_REPCAT package to collect
information about the successful resolution of update, delete, and uniqueness conflicts
for a table. The following example gathers statistics for the employees table in the hr
schema:

BEGIN
 DBMS_REPCAT.REGISTER_STATISTICS (
 sname => 'hr',
 oname => 'employees');
END;
/

Viewing Conflict Resolution Statistics
After calling REGISTER_STATISTICS for a table, each conflict that is successfully
resolved for that table is logged in the ALL_REPRESOLUTION_STATISTICS data
dictionary view. Information about unresolved conflicts is always logged in the
DEFERROR view, whether the object is registered or not.

See Also: The ALL_REPRESOLUTION_STATISTICS view on
page 23-35 for more information

See Also: The ALL_REPRESOLUTION_STATISTICS view on
page 23-35 and the DEFERROR view on page 25-6 for more
information

Auditing Successful Conflict Resolution

Configuring Conflict Resolution 6-31

Canceling Conflict Resolution Statistics
Use the CANCEL_STATISTICS procedure in the DBMS_REPCAT package if you no
longer want to collect information about the successful resolution of update, delete,
and uniqueness conflicts for a table. The following example cancels statistics gathering
on the employees table in the hr schema:

BEGIN
 DBMS_REPCAT.CANCEL_STATISTICS (
 sname => 'hr',
 oname => 'employees');
END;
/

Clearing Statistics Information
If you registered a table to log information about the successful resolution of update,
delete, and uniqueness conflicts, then you can remove this information from the
DBA_REPRESOLUTION_STATISTICS data dictionary view by calling the
PURGE_STATISTICS procedure in the DBMS_REPCAT package.

The following example purges the statistics gathered about conflicts resolved due to
inserts, updates, and deletes on the employees table between January 1 and
March 31:

BEGIN
 DBMS_REPCAT.PURGE_STATISTICS (
 sname => 'hr',
 oname => 'employees',
 start_date => '01-JAN-2001',
 end_date => '31-MAR-2001');
END;
/

Auditing Successful Conflict Resolution

6-32 Oracle Database Advanced Replication Management API Reference

Part II
Managing and Monitoring Your Replication

Environment

Part II contains instructions on using the replication management API to manage your
replication environment, as well as instructions on using the data dictionary to
monitor your replication environment.

Part II contains the following chapters:

■ Chapter 7, "Managing a Master Replication Environment"

■ Chapter 8, "Managing a Materialized View Replication Environment"

■ Chapter 9, "Managing Replication Objects and Queues"

■ Chapter 10, "Monitoring a Replication Environment"

Managing a Master Replication Environment 7-1

7
Managing a Master Replication Environment

As your data delivery needs change due to growth, shrinkage, or emergencies, you are
undoubtedly going to need to change the configuration of your replication
environment. This chapter discusses managing the master sites of your replication
environment. Specifically, this section describes altering and reconfiguring your
master sites.

This chapter contains these topics:

■ Changing the Master Definition Site

■ Adding New Master Sites

■ Removing a Master Site from a Master Group

■ Updating the Comments Fields in Data Dictionary Views

■ Using Procedural Replication

Changing the Master Definition Site
Many replication administrative tasks can be performed only from the master
definition site. Use the RELOCATE_MASTERDEF procedure in the DBMS_REPCAT
package to move the master definition site to another master site. This API is
especially useful when the master definition site becomes unavailable and you need to
specify a new master definition site (see "Option 2: The Old Master Definition Site Is
Not Available" on page 7-2).

Option 1: All Master Sites Are Available
Perform the actions in this section to change the master definition site if all master sites
are available. Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Any Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps:

Step 1 In SQL*Plus, connect to a master site as the replication administrator.
See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Adding New Master Sites

7-2 Oracle Database Advanced Replication Management API Reference

Step 2 Relocate the master definition site.
BEGIN
 DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname => 'hr_repg',
 old_masterdef => 'orc1.example.com',
 new_masterdef => 'orc2.example.com',
 notify_masters => TRUE,
 include_old_masterdef => TRUE);
END;
/

Option 2: The Old Master Definition Site Is Not Available
Perform the actions in this section to change the master definition site if the old master
definition site is not available. Meet the following requirements to complete these
actions:

Executed As: Replication Administrator

Executed At: Any Master Site

Replication Status: Normal

Complete the following steps:

Step 1 In SQL*Plus, connect to a master site as the replication administrator.
See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Step 2 Relocate the master definition site.
BEGIN
 DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname => 'hr_repg',
 old_masterdef => 'orc1.example.com',
 new_masterdef => 'orc2.example.com',
 notify_masters => TRUE,
 include_old_masterdef => FALSE);
END;
/

Adding New Master Sites
As your replication environment expands, you might need to add new master sites to
a master group. You can either add new master sites to a master group that is running
normally or to a master group that is quiesced. If the master group is not quiesced,
then users can perform data manipulation language (DML) operations on the data
while the new master sites are being added. However, more administrative actions are
required when adding new master sites if the master group is not quiesced.

Note: When adding a master site to a master group that contains
tables with circular dependencies or a table that contains a self-
referential constraint, you must precreate the table definitions and
manually load the data at the new master site. The following is an
example of a circular dependency: Table A has a foreign key
constraint on table B, and table B has a foreign key constraint on
table A.

Adding New Master Sites

Managing a Master Replication Environment 7-3

Follow the instructions in the appropriate section to add new master sites to a master
group:

■ Adding New Master Sites Without Quiescing the Master Group

■ Adding New Master Sites to a Quiesced Master Group

Adding New Master Sites Without Quiescing the Master Group
This section contains procedures for adding new master sites to an existing master
group that is not quiesced. These new sites might or might not already be replication
sites (master sites or materialized view sites) in other replication groups.

You can use one of the following methods when you are adding a new master site
without quiescing the master group:

■ Use full database export/import or change-based recovery to add a new master
site that does not currently have any replication groups. See "Using Full Database
Export/Import or Change-Based Recovery" on page 7-6 for instructions.

■ Use object-level export/import to add a new master site that already has other
replication groups or to add a new master site that does not currently have any
replication groups. See "Using Object-Level Export/Import" on page 7-14 for
instructions.

Use full database export/import and change-based recovery to add all of the
replication groups at the master definition site to the new master sites. When you use
this method, the following conditions apply:

■ The new master sites cannot have any existing replication groups.

■ The master definition site cannot have any materialized view groups.

■ The master definition site must be the same for all of the master groups. If one or
more of these master groups have a different master definition site, then do not
use full database export/import or change-based recovery. Use object-level
export/import instead.

■ The new master site must include all of the replication groups in the master
definition site when the extension process is complete. That is, you cannot add a
subset of the master groups at the master definition site to the new master site. All
of the groups must be added.

If your environment does not meet all of these conditions, then you must use object-
level export/import to add the new master sites. Figure 7–1 summarizes these
conditions.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ. This
condition does not apply to full database export/import.

Adding New Master Sites

7-4 Oracle Database Advanced Replication Management API Reference

Figure 7–1 Determining Which Method to Use When Adding Master Sites

Use object-level export/import to add a master group to master sites that already have
other replication groups or to add a master group to master sites that do not currently
have any replication groups. This method can add one or more master groups to new
master sites at a time, and you can choose a subset of the master groups at the master
definition site to add to the new master sites during the operation.

If you use object-level export/import and there are integrity constraints that span
more than one master group, then you must temporarily disable these integrity
constraints on the table being added to a new master site, if the other tables to which
these constraints refer already exist at the new master site. Initially, there are two rows
in the DEFSCHEDULE data dictionary view that refer to the new master sites. When
propagation is caught up, there is one row in this view, and when propagation from all
the master sites to the new master site is caught up, you can reenable the integrity
constraints you disabled.

Again, the two methods for adding new master sites without quiescing the master
groups are the following:

■ Full database export/import or change-based recovery

■ Object-level export/import

END

Set up new master sites for
multimaster replication.

No

Do the
new master sites

have one or more existing
replication groups?

No

Does the
master definition site

have any materialized view
groups?

No

Do any of
the master groups

have a different master
definition site?

Do you
want to add a subset

of the master groups to the
new master sites?

START

Use full database export / import
or change-based recovery to add
new databases.

Use object-level export / import
to add new master sites.

Yes

Yes

Yes

Yes

No

Adding New Master Sites

Managing a Master Replication Environment 7-5

When you use either method, propagation of deferred transactions to the new master
site is partially or completely disabled while the new master sites are being added.
Therefore, ensure that each existing master site has enough free space to store the
largest unpropagated deferred transaction queue that you might encounter.

In addition, the following restrictions apply to both methods:

■ All affected master groups must be using asynchronous replication. Synchronous
replication is not allowed.

■ All scheduled links must use parallel propagation with parallelism set to 1 or
higher.

■ Either the database links of all affected master groups must have no connection
qualifier or they must all have the same connection qualifier.

■ After you begin the process of adding new master sites to one or more master
groups, you must wait until these new master sites are added before you begin to
add another set of master sites to any of the affected master groups. If there is
information about an affected master group in the DBA_NEW_REPSITES data
dictionary view at the master definition site, then the process is started and is not
yet complete for that master group.

■ After you begin the process of adding new master sites to one or more master
groups, you cannot relocate the master definition site for these master groups until
the new master sites are added. If there is information about an affected master
group in the DBA_NEW_REPSITES data dictionary view, then the process is started
and is not yet complete for that master group.

■ Only one add master site request at a time is allowed at a master site. For example,
if hq1.example.com is the master definition site for mgroup1 and
hq2.example.com is the master definition site for mgroup2, then you cannot
add hq1.example.com to mgroup2 and hq2.example.com to mgroup1 at the
same time.

■ If you are using object-level or full database export/import, then ensure that there
is enough space in your rollback segments or undo tablespace for the export.

Also, before adding new master sites with either method, ensure that you properly set
up your new master sites for multimaster replication.

Note: If progress appears to stop during one of the procedures
described in the following sections, then check your trace files and
the alert log for messages.

See Also:

■ "Setting Up Master Sites" on page 2-3 for information about
setting up your new master sites for multimaster replication

■ Oracle Database Administrator's Guide for more information
about trace files and the alert log

■ Oracle Database Administrator's Guide for information about
managing undo space

Adding New Master Sites

7-6 Oracle Database Advanced Replication Management API Reference

Using Full Database Export/Import or Change-Based Recovery
Figure 7–2 shows the major steps for using full database export/import or change-
based recovery to add new master sites to a master group without quiescing. The
following example script adds the new master sites orc4.example.com and
orc5.example.com to the hr_repg master group. In this example,
orc4.example.com is added using full database export/import and
orc5.example.com is added using change-based recovery.

Figure 7–2 Using Full Database Export/Import or Change-Based Recovery

Meet the following requirements to complete these actions:

Executed As: Replication Administrator, unless specified otherwise

Executed At:

■ Step 1 at Each New Master Site

■ Steps 2 - 5 at Master Definition Site

END

Are you
using full database

export / import or change-
based recovery?

START

Perform change-based recovery.Perform full database export of
master database.

Add new master sites.

Specify new master sites for
each master group.

Change-based
recovery

Full database
export / import

Allow new masters to receive
deferred transactions.

Resume propagation to master
definition site.

Transfer export dump file to
new master sites.

Perform full database import.

Allow new masters to receive
deferred transactions.

Adding New Master Sites

Managing a Master Replication Environment 7-7

■ Step 6 at the Master Definition Site and at Each New Master Site

■ Step 7 requires an export at the Master Definition site and a file transfer between
sites.

■ Steps 8 - 10 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use full database export/import or change-based
recovery to add sites to a master group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If you are using full database export/import, then create the databases
that you want to add to the master group.
This step is not required if you are using change-based recovery.

*/

SET ECHO ON

SPOOL add_masters_full.out

PAUSE Press <RETURN> when the databases for the new master sites are created.

/*

Step 2 Set up each new master site as a replication site.
Remember that you need to configure the following:

*/

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also: Oracle Database Administrator's Guide for information
about creating a database

See Also:

■ Oracle Database Advanced Replication for information about
scheduled links

■ "Setting Up Master Sites" on page 2-3

■ "Creating Scheduled Links Between the Master Sites" on
page 2-13

Adding New Master Sites

7-8 Oracle Database Advanced Replication Management API Reference

■ The replication administrator at each new master site

■ A scheduled link from each existing master site to each new master site

■ A scheduled link from each new master site to each existing master site

■ A schedule purge job at each new master site

Step 3 Connect as the replication administrator to the master definition site.
*/

CONNECT repadmin@orc1.example.com

/*

Step 4 Specify new master sites for each master group.
Before you begin, create the required scheduled links between existing master sites
and each new master site if they do not already exist.

*/

BEGIN
 DBMS_REPCAT.SPECIFY_NEW_MASTERS (
 gname => 'HR_REPG',
 master_list => 'orc4.example.com,orc5.example.com');
END;
/

/*

You can begin to track the extension process by querying the following data dictionary
views in another SQL*Plus session:

■ DBA_REPSITES_NEW

■ DBA_REPEXTENSIONS

*/

PAUSE Press <RETURN> when you have completed the these steps.

/*

Step 5 Add the new master sites.
Before running the following procedure, ensure that there are an adequate number of
background jobs running at each new master site. If you are using full database
export/import, then ensure that there is enough space in your rollback segments or
undo tablespace for the export before you run this procedure.

See Also:

■ Oracle Database Advanced Replication for information about
scheduled links

■ "Creating Scheduled Links Between the Master Sites" on
page 2-13 for examples

Adding New Master Sites

Managing a Master Replication Environment 7-9

*/

VARIABLE masterdef_flashback_scn NUMBER;
VARIABLE extension_id VARCHAR2(32);
BEGIN
 DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required => TRUE,
 available_master_list => NULL,
 masterdef_flashback_scn => :masterdef_flashback_scn,
 extension_id => :extension_id,
 break_trans_to_masterdef => FALSE,
 break_trans_to_new_masters => FALSE,
 percentage_for_catchup_mdef => 80,
 cycle_seconds_mdef => 60,
 percentage_for_catchup_new => 80,
 cycle_seconds_new => 60);
END;
/

/*

The values for masterdef_flashback_scn and extension_id are saved into
variables to be used later in the process. To see these values, you can query the
DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

*/

PAUSE Press <RETURN> when you have completed the these steps.

/*

If you need to undo the changes made to a particular master site by the
SPECIFY_NEW_MASTERS and ADD_NEW_MASTERS procedures, then use the
DBMS_REPCAT.UNDO_ADD_NEW_MASTERS_REQUEST procedure.

For the export_required parameter, TRUE is specified because
orc4.example.com is being added using full database export/import. Although
orc5.example.com is using change-based recovery, the TRUE setting is correct
because at least one new master site is added using export/import.

After successfully executing this procedure, monitor its progress by querying the
DBA_REPCATLOG data dictionary view in another SQL*Plus session. Do not proceed to
Step 7 until there is no remaining information in this view about adding the new
master sites. Assuming no extraneous information exists in DBA_REPCATLOG from
other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA_REPCATLOG;

All of the processing is complete when this statement returns zero (0).

*/

See Also:

■ Oracle Database Advanced Replication for information about
setting the JOB_QUEUE_PROCESSES initialization parameter
properly for a replication environment

■ Oracle Database Administrator's Guide for information about
managing undo space

Adding New Master Sites

7-10 Oracle Database Advanced Replication Management API Reference

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 6 If you are using full database export/import, then create a directory object
at each database.
For master sites being added using change-based recovery, this step is not required
and you can proceed to Step 8 on page 7-12.

Each database involved in this operation must have a directory object to hold the Data
Pump dump file, and the user who will perform the export or import must have READ
and WRITE privileges on this directory object. In this example, a Data Pump export is
performed at the master definition site, and a Data Pump import is performed at each
new master site.

If you are using full database export/import, then, while connected in SQL*Plus to the
a database as an administrative user who can create directory objects using the SQL
statement CREATE DIRECTORY, create a directory object to hold the Data Pump dump
file and log files. For example:

*/

CONNECT system@orc1.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@orc4.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@orc5.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

/*

In this example, SYSTEM user performs all exports and imports. If a user other than the
user who created the directory object will perform the export or import, then grant this
user READ and WRITE privileges on the directory object.

Ensure that you complete these actions at each database involved in the operation.

Step 7 Perform the following substeps for the master sites being added using full
database export/import.
For master sites being added using change-based recovery, these substeps are not
required and you can proceed to Step 8 on page 7-12.

Perform full database export of the master definition database. Use the system change
number (SCN) returned by the masterdef_flashback_scn parameter in Step 5 for
the FLASHBACK_SCN export parameter.

You can query the DBA_REPEXTENSIONS data dictionary view for the
FLASHBACK_SCN value:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS;

In this example, assume that the value returned by this query is 124723.

In this example, orc4.example.com is using full database export/import. Therefore,
perform the full database export of the master definition database so that it can be

Adding New Master Sites

Managing a Master Replication Environment 7-11

imported into orc4.example.com during a later step. However, the
orc5.example.com database is using change-based recovery. Therefore, the export
would not be required if you were adding only orc5.example.com.

On a command line, perform the export. This example connects as the SYSTEM user.
The following is an example Data Pump export command:

expdp system FULL=y DIRECTORY=DPUMP_DIR DUMPFILE=fulldb_orc1.dmp
FLASHBACK_SCN=124723

Consider the following when you run the Export utility:

■ Only users with the DBA role or the EXP_FULL_DATABASE role can export in full
database mode.

■ Ensure that the UNDO_RETENTION initialization parameter is set correctly before
performing the export.

*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

Resume propagation to the master definition site.

Running the following procedure indicates that export is effectively finished and
propagation can be enabled for both extended and unaffected master groups at the
master sites.

*/

BEGIN
 DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
 extension_id => :extension_id);
END;
/

/*

You can find the extension_id by querying the DBA_REPSITES_NEW data
dictionary view.

Transfer the export dump file to the new master sites.

Using the DBMS_FILE_TRANSFER package, FTP, or some other method, transfer the
export dump file to the other new master sites that are being added with full database
export/import. You will need this export dump file at each new site to perform the
import described in the next step.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

/*

See Also:

■ Oracle Database Utilities for information about performing a
Data Pump export

■ Oracle Database Administrator's Guide for information about
managing undo space and setting this parameter

Adding New Master Sites

7-12 Oracle Database Advanced Replication Management API Reference

Set the JOB_QUEUE_PROCESSES initialization parameter to zero for each new master
site.

*/

PAUSE Press <RETURN> to continue after JOB_QUEUE_PROCESSES is set to zero at each
new master site.

/*

Step 8 Perform import or change-based recovery at each new master site.
If you are using full database export/import, then complete the full database import of
the database you exported in Step 7 at each new master site that is being added with
full database export/import.

Perform the import. This example connects as the SYSTEM user to perform the import
at orc4.example.com. The following is an example import command:

impdp system FULL=y DIRECTORY=DPUMP_DIR DUMPFILE=fulldb_orc1.dmp

Only users with the DBA role or the IMP_FULL_DATABASE role can import in full
database mode.

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

If you are using change-based recovery, then perform change-based recovery using the
system change number (SCN) returned by the masterdef_flashback_scn
parameter in Step 5. You can query the DBA_REPEXTENSIONS data dictionary view
for the masterdef_flashback_scn value.

You can perform a change-based recovery in one of the following ways:

■ Using the SQL*Plus RECOVER command. See the Oracle Database Backup and
Recovery User's Guide for instructions.

■ Using the Recovery Manager (RMAN) DUPLICATE command. See the Oracle
Database Backup and Recovery User's Guide for instructions.

Connect to the site where you will perform the change-based recovery:

*/

CONNECT repadmin@orc5.example.com

PAUSE Press <RETURN> to continue when the change-based recovery is complete. You
can use a separate terminal window to perform the change-based recovery.

/*

See Also: Oracle Database Utilities for information about
performing a Data Pump import

Adding New Master Sites

Managing a Master Replication Environment 7-13

Step 9 Configure the new sites for multimaster replication by completing the
following steps:
1. Ensure that the database structures, such as the data files, exist for the replicated

schemas at each new master site. In this example, the replicated schema is hr.

2. Set the global name for each new master site. The global name for each new
master site must match the global names specified in the SPECIFY_NEW_MASTERS
procedure that you ran in Step 4. You can query the DBLINK column in the
DBA_REPSITES_NEW data dictionary view to see the global name for each new
master site.

You can set the global name using the ALTER DATABASE statement, as in the
following example:

ALTER DATABASE RENAME GLOBAL_NAME TO orc4.example.com;

3. Create the appropriate scheduled links between the new master sites and the
existing master sites, including the master definition site.

*/

PAUSE Press <RETURN> when you have completed the these steps.

/*

Step 10 Allow new masters to receive deferred transactions.
The following procedure enables the propagation of deferred transactions from other
prepared new master sites and existing master sites to the invocation master site. This
procedure also enables the propagation of deferred transactions from the invocation
master site to the other new master sites and existing master sites.

*/

CONNECT repadmin@orc4.example.com

BEGIN
 DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id => :extension_id);
END;
/

CONNECT repadmin@orc5.example.com

See Also: "Creating Scheduled Links Between the Master Sites"
on page 2-13 for information

Caution: Do not invoke this procedure until instantiation (export/
import or change-based recovery) of the new master site is
complete.

Do not allow any data manipulation language (DML) statements
directly on the objects in the extended master group in the new
master site until execution of this procedure returns successfully,
because these DML statements might not be replicated.

Adding New Master Sites

7-14 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id => :extension_id);
END;
/

SET ECHO OFF

SPOOL OFF

/*

************************** END OF SCRIPT **********************************/

Using Object-Level Export/Import
Figure 7–3 shows the major steps for using object-level export/import to add new
master sites to a master group without quiescing. The following example procedure
adds the new master sites orc4.example.com and orc5.example.com to the
hr_repg master group. An object-level export/import involves exporting and
importing the tables in a master group. When you export and import the tables, other
dependent database objects, such as indexes, are exported and imported as well.

If you have an integrity constraint that spans two master groups, then you have a child
table in one master group (the child master group) and a parent table in a different
master group (the parent master group). In this case, Oracle recommends that you add
new master sites to both master groups at the same time. However, if you cannot do
this, then you must quiesce the child master group before adding new master sites to
it. Here, the child table includes a foreign key, which makes it dependent on the values
in the parent table. If you do not quiesce the child master group, then conflicts might
result when you add master sites to it. You can still add master sites to the parent
master group without quiescing it.

Note: You can find the extension_id by querying the
DBA_REPSITES_NEW data dictionary view.

Adding New Master Sites

Managing a Master Replication Environment 7-15

Figure 7–3 Using Object-Level Export/Import

Meet the following requirements to complete these actions:

Executed As: Replication Administrator, unless specified otherwise

Executed At:

■ Steps 1 - 6 at Master Definition Site

■ Step 7 at the Master Definition Site and at Each New Master Site

■ Steps 8 - 9 at Master Definition Site

■ Step 10 requires a file transfer between sites.

■ Steps 11 - 12 at Each New Master Site

Replication Status: Running Normally (Not Quiesced)

Complete the following steps to use object-level export/import to add sites to a master
group.

END

START

Add new master sites.

Specify new master sites for
each master group.

Perform object-level export of
each table in master groups.

Resume propagation to the
master definition site.

Transfer export dump file to
new master sites.

Perfom object-level imports of
all exported tables.

Allow new masters to receive
deferred transactions.

Adding New Master Sites

7-16 Oracle Database Advanced Replication Management API Reference

/************************* BEGINNING OF SCRIPT ******************************

Step 1 If the users for the replicated schemas do not exist at the new master
sites, then create them now.
In this example, the replicated schema is hr. This schema probably already exist at the
new master sites because it is a sample schema that is installed when you install
Oracle.

*/

SET ECHO ON

SPOOL add_masters_object.out

PAUSE Press <RETURN> to continue when the users are created at the new master
sites.

/*

Step 2 If any of the tables in the master group have circular dependencies, then
precreate these tables at the new master sites.
Failure to precreate these tables will result in errors later in the procedure. If there are
no circular dependencies, then this step is not required, and you can proceed to Step 3.

Some of the tables in the hr schema contain circular dependencies. Therefore, in this
example, the tables in the hr schema must be precreated at each new master site.
Again, the hr schema tables are typically created during Oracle installation and so
might already exist at the new master sites.

If you need to precreate tables, then disable referential integrity constraints for these
tables at the new master sites before the import. Referential integrity constraints can
cause errors when you import data into existing tables. This example disables the
referential integrity constraints for the precreated tables in the hr schema at the new
master sites.

Further, the precreated tables at the new master sites should not contain any data. This
example truncates the tables in the hr schema at the new master sites to ensure that
they do not contain any data.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also: Oracle Database Sample Schemas for general information
about the sample schemas and for information about installing
them

See Also:

■ The note under "Adding New Master Sites" on page 7-2 for
more information about circular dependencies

■ Oracle Database Utilities for information about importing data
into existing tables

Adding New Master Sites

Managing a Master Replication Environment 7-17

*/

PAUSE Press <RETURN> to continue when the tables are precreated at the new
master sites, if table precreation is required. After the tables are
precreated, the following statements disable the referential integrity
constraints related to the hr schema and truncate the tables in the hr schema
at the new site.

CONNECT oe@orc4.example.com

ALTER TABLE oe.warehouses
 DISABLE CONSTRAINT warehouses_location_fk;

ALTER TABLE oe.customers
 DISABLE CONSTRAINT customers_account_manager_fk;

ALTER TABLE oe.orders
 DISABLE CONSTRAINT orders_sales_rep_fk;

CONNECT hr@orc4.example.com

ALTER TABLE hr.countries
 DISABLE CONSTRAINT countr_reg_fk;

ALTER TABLE hr.departments
 DISABLE CONSTRAINT dept_mgr_fk
 DISABLE CONSTRAINT dept_loc_fk;

ALTER TABLE hr.employees
 DISABLE CONSTRAINT emp_dept_fk
 DISABLE CONSTRAINT emp_job_fk
 DISABLE CONSTRAINT emp_manager_fk;

ALTER TABLE hr.job_history
 DISABLE CONSTRAINT jhist_job_fk
 DISABLE CONSTRAINT jhist_emp_fk
 DISABLE CONSTRAINT jhist_dept_fk;

ALTER TABLE hr.locations
 DISABLE CONSTRAINT loc_c_id_fk;

TRUNCATE TABLE hr.countries;
TRUNCATE TABLE hr.departments;
TRUNCATE TABLE hr.employees;
TRUNCATE TABLE hr.jobs;
TRUNCATE TABLE hr.job_history;
TRUNCATE TABLE hr.locations;
TRUNCATE TABLE hr.regions;

CONNECT oe@orc5.example.com

ALTER TABLE oe.warehouses
 DISABLE CONSTRAINT warehouses_location_fk;

ALTER TABLE oe.customers
 DISABLE CONSTRAINT customers_account_manager_fk;

ALTER TABLE oe.orders
 DISABLE CONSTRAINT orders_sales_rep_fk;

Adding New Master Sites

7-18 Oracle Database Advanced Replication Management API Reference

CONNECT hr@orc5.example.com

ALTER TABLE hr.countries
 DISABLE CONSTRAINT countr_reg_fk;

ALTER TABLE hr.departments
 DISABLE CONSTRAINT dept_mgr_fk
 DISABLE CONSTRAINT dept_loc_fk;

ALTER TABLE hr.employees
 DISABLE CONSTRAINT emp_dept_fk
 DISABLE CONSTRAINT emp_job_fk
 DISABLE CONSTRAINT emp_manager_fk;

ALTER TABLE hr.job_history
 DISABLE CONSTRAINT jhist_job_fk
 DISABLE CONSTRAINT jhist_emp_fk
 DISABLE CONSTRAINT jhist_dept_fk;

ALTER TABLE hr.locations
 DISABLE CONSTRAINT loc_c_id_fk;

TRUNCATE TABLE hr.countries;
TRUNCATE TABLE hr.departments;
TRUNCATE TABLE hr.employees;
TRUNCATE TABLE hr.jobs;
TRUNCATE TABLE hr.job_history;
TRUNCATE TABLE hr.locations;
TRUNCATE TABLE hr.regions;

/*

Step 3 Set up each new master site as a replication site.
Remember that you need to configure the following:

■ The replication administrator at each new master site

■ A scheduled link from each existing master site to each new master site

■ A scheduled link from each new master site to each existing master site

■ A schedule purge job at each new master site

*/

PAUSE Press <RETURN> to continue the new master sites have been setup and the
required scheduled links have been created.

/*

See Also:

■ Oracle Database Advanced Replication for information about
scheduled links

■ "Setting Up Master Sites" on page 2-3

■ "Creating Scheduled Links Between the Master Sites" on
page 2-13

Adding New Master Sites

Managing a Master Replication Environment 7-19

Step 4 Connect to the master definition site as the replication administrator.
*/

CONNECT repadmin@orc1.example.com

/*

Step 5 Specify new master sites for each master group.
*/

BEGIN
 DBMS_REPCAT.SPECIFY_NEW_MASTERS (
 gname => 'hr_repg',
 master_list => 'orc4.example.com,orc5.example.com');
END;
/

/*

You can begin to track the extension process by querying the following data dictionary
views in another SQL*Plus session:

■ DBA_REPSITES_NEW

■ DBA_REPEXTENSIONS

Step 6 Add the new master sites.
Before running the following procedure, ensure that there are an adequate number of
background jobs running at each new master site. Also, ensure that there is enough
space in your rollback segments or undo tablespace for the export before you run this
procedure.

*/

VARIABLE masterdef_flashback_scn NUMBER;
VARIABLE extension_id VARCHAR2(32);
BEGIN
 DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required => TRUE,
 available_master_list => 'orc4.example.com,orc5.example.com',
 masterdef_flashback_scn => :masterdef_flashback_scn,
 extension_id => :extension_id,
 break_trans_to_masterdef => FALSE,
 break_trans_to_new_masters => FALSE,
 percentage_for_catchup_mdef => 80,
 cycle_seconds_mdef => 60,
 percentage_for_catchup_new => 80,
 cycle_seconds_new => 60);
END;
/

See Also:

■ Oracle Database Advanced Replication for information about
setting the JOB_QUEUE_PROCESSES initialization parameter
properly for a replication environment

■ Oracle Database Administrator's Guide for information about
managing undo space

Adding New Master Sites

7-20 Oracle Database Advanced Replication Management API Reference

/*

The sites specified for the available_master_list parameter must be same as the
sites specified in the SPECIFY_NEW_MASTERS procedure in Step 5.

The values for masterdef_flashback_scn and extension_id are saved into
variables to be used later in the process. To see these values, you can also query the
DBA_REPSITES_NEW and DBA_REPEXTENSIONS data dictionary views.

If you need to undo the changes made to a particular master site by the
SPECIFY_NEW_MASTERS and ADD_NEW_MASTERS procedures, then use the
UNDO_ADD_NEW_MASTERS_REQUEST procedure.

After successfully executing this procedure, monitor its progress by querying the
DBA_REPCATLOG data dictionary view in another SQL*Plus session. Do not proceed to
Step 8 until there is no remaining information in this view about adding the new
master sites. Assuming there is no extraneous information in DBA_REPCATLOG from
other operations, you can enter the following statement:

SELECT COUNT(*) FROM DBA_REPCATLOG;

All of the processing is complete when this statement returns zero (0).

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 7 Create a directory object at each database.
Each database involved in this operation must have a directory object to hold the Data
Pump dump file, and the user who will perform the export or import must have READ
and WRITE privileges on this directory object. In this example, a Data Pump export is
performed at the master definition site, and a Data Pump import is performed at each
new master site.

While connected in SQL*Plus to the a database as an administrative user who can
create directory objects using the SQL statement CREATE DIRECTORY, create a
directory object to hold the Data Pump dump file and log files. For example:

*/

CONNECT system@orc1.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@orc4.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@orc5.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

/*

In this example, SYSTEM user performs all exports and imports. If a user other than the
user who created the directory object will perform the export or import, then grant this
user READ and WRITE privileges on the directory object.

Adding New Master Sites

Managing a Master Replication Environment 7-21

Ensure that you complete these actions at each database involved in the operation.

Step 8 Perform object-level export of tables at master definition database.
At the master definition database, perform an object-level export for each master table
in the master groups that will be created at the new master sites. An object-level export
includes exports performed in table mode, user mode, or tablespace mode.

Use the system change number (SCN) returned by the masterdef_flashback_scn
parameter in Step 6 for the FLASHBACK_SCN export parameter. You can query the
DBA_REPEXTENSIONS data dictionary view for the FLASHBACK_SCN value:

SELECT FLASHBACK_SCN FROM DBA_REPEXTENSIONS;

In this example, assume that the SCN value is 3456871.

On a command line, perform the export. This example connects as the SYSTEM user.
The following is an example Data Pump export command:

expdp system TABLES=HR.COUNTRIES,HR.DEPARTMENTS,HR.EMPLOYEES,
HR.JOB_HISTORY,HR.JOBS,HR.LOCATIONS,HR.REGIONS DIRECTORY=DPUMP_DIR
DUMPFILE=hr_tables.dmp CONTENT=data_only FLASHBACK_SCN=3456871

The CONTENT parameter is used in this example because the tables already exist at the
import sites. You might not need to specify this parameter.

Ensure that the UNDO_RETENTION initialization parameter is set correctly before
performing the export.

*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

Step 9 Resume propagation to the master definition site.
Running the following procedure indicates that export is effectively finished and
propagation can be enabled for both extended and unaffected master groups at the
master sites.

*/

CONNECT repadmin@orc1.example.com

BEGIN
 DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
 extension_id => :extension_id);
END;
/

/*

See Also:

■ Oracle Database Utilities for information about performing a
Data Pump export

■ Oracle Database Administrator's Guide for information about
managing undo space and setting the UNDO_RETENTION
initialization parameter

Adding New Master Sites

7-22 Oracle Database Advanced Replication Management API Reference

You can find the extension_id by querying the DBA_REPSITES_NEW data
dictionary view.

Step 10 Transfer the export dump files to the new master sites.
Using the DBMS_FILE_TRANSFER package, FTP, or some other method, transfer the
export dump files to the other new master sites that are being added with object-level
export/import. You will need these export dump files at each new site to perform the
import described in the next step.

*/

PAUSE Press <RETURN> to continue when the export dump files have been
transfered to the new master sites that are being added with object-level
export/import.

/*

Step 11 Perform object-level imports at each new master site of each object you
exported in Step 8.
On a command line, perform the import. This example connects as the SYSTEM user.
The following is an example import command:

impdp system TABLES=HR.COUNTRIES,HR.DEPARTMENTS,HR.EMPLOYEES,
HR.JOB_HISTORY,HR.JOBS,HR.LOCATIONS,HR.REGIONS DIRECTORY=DPUMP_DIR
DUMPFILE=hr_tables.dmp CONTENT=data_only TABLE_EXISTS_ACTION=append

Other objects, such as the indexes based on the tables, are imported automatically. The
CONTENT and TABLE_EXISTS_ACTION parameters are used in this example because
the tables already exist at the import sites. You might not need to specify these
parameters.

Perform the object-level imports at each site:

*/

PAUSE Press <RETURN> to continue when the imports are complete at each site. You
can use a separate terminal window to perform the object-level imports.

/*

Step 12 Allow new masters to receive deferred transactions.
The following procedure enables the propagation of deferred transactions from other
prepared new master sites and existing master sites to the invocation master site. This
procedure also enables the propagation of deferred transactions from the invocation
master site to the other new master sites and existing master sites.

See Also: Oracle Database Utilities for information about
performing a Data Pump import

Caution: Do not invoke this procedure until object-level export/
import for the new master site is complete.

Do not allow any data manipulation language (DML) statements
directly on the objects in the extended master group in the new
master site until execution of this procedure returns successfully,
because these DML statements might not be replicated.

Adding New Master Sites

Managing a Master Replication Environment 7-23

*/

CONNECT repadmin@orc4.example.com

BEGIN
 DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id => :extension_id);
END;
/

CONNECT repadmin@orc5.example.com

BEGIN
 DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id => :extension_id);
END;
/

SET ECHO OFF

SPOOL OFF

/*

************************** END OF SCRIPT **********************************/

Adding New Master Sites to a Quiesced Master Group
You can add new master sites to a quiesced master group in one of the following ways:

■ Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure

■ Adding New Master Sites with Offline Instantiation Using Export/Import

Typically, you should only use the ADD_MASTER_DATABASE procedure if you have a
relatively small master group or if you plan to precreate the replication tables and load
the data into them at the new master sites. If this is not the case, the
ADD_MASTER_DATABASE procedure might not be a good option because the entire
master group is copied over the network. For larger master groups, either precreate
the objects in the master group at the new master sites or use offline instantiation.

Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure
You can use the ADD_MASTER_DATABASE procedure to add additional master sites to
an existing master group that is quiesced. Executing this procedure replicates existing
master objects to the new site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to use the ADD_MASTER_DATABASE procedure to add
sites to a master group.

Note: You can find the extension_id by querying the
DBA_REPSITES_NEW data dictionary view.

Adding New Master Sites

7-24 Oracle Database Advanced Replication Management API Reference

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Set up the new master site.
Ensure that the appropriate schema and database links have been created before
adding your new master site. Be sure to create the database links from the new master
site to each of the existing masters sites. Also, create a database link from each of the
existing master sites to the new master site. After the database links have been created,
ensure that you also define the scheduled links for each of the new database links.

*/

SET ECHO ON

SPOOL add_masters_quiesced.out

PAUSE Press <RETURN> to the new master site has been set up.

/*

Step 2 Connect to the master definition site as the replication administrator.
*/

CONNECT repadmin@orc1.example.com

/*

Step 3 If the replication status is normal, then change the status to quiesced.
*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 4 Add the new master sites.
This example assumes that the replicated objects do not exist at the new master site.
Therefore, the copy_rows parameter is set to TRUE to copy the rows in the replicated
objects at the master definition site to the new master site, and the
use_existing_objects parameter is set to FALSE so that Advanced Replication

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also:

■ "Setting Up Master Sites" on page 2-3

■ "Creating Scheduled Links Between the Master Sites" on
page 2-13

Adding New Master Sites

Managing a Master Replication Environment 7-25

creates the replicated objects at the new site. If the replicated objects already exist at
the new site but do not contain any data, then set use_existing_objects to TRUE.

*/

BEGIN
 DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname => 'hr_repg',
 master => 'orc4.example.com',
 use_existing_objects => FALSE,
 copy_rows => TRUE,
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

You should wait until the DBA_REPCATLOG view is empty. This view has temporary
information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT COUNT(*) FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

All of the processing is complete when this statement returns zero (0).

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 5 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Adding New Master Sites with Offline Instantiation Using Export/Import
Expanding established replication environments can cause network traffic when you
add a new master site to your replication environment using the
ADD_MASTER_DATABASE procedure. This is caused by propagating the entire contents
of the table or materialized view through the network to the new replicated site.

To minimize such network traffic, you can expand your replication environment by
using the offline instantiation procedure. Offline instantiation takes advantage of
Oracle's Export and Import utilities, which allow you to create an export file and
transfer the data to the new site through another storage medium, such as CD-ROM,
tape, and so on.

The following script is an example of how to perform an offline instantiation of a
master site. This script can potentially eliminate large amounts of network traffic

Adding New Master Sites

7-26 Oracle Database Advanced Replication Management API Reference

caused by the other method of adding a new master site to an existing quiesced master
group. The script assumes that the hr schema does not exist at the new master site and
instantiates this schema at the new master site. The hr schema is created automatically
when Oracle is installed. You can choose to drop the hr schema at the new master site
before you start this example.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator, unless specified otherwise

Executed At: Master Definition Site and New Master Site

Replication Status: Quiesced and Partial

Complete the following steps to use offline instantiation to add sites to a master group.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Set up the new master site.
Ensure that the appropriate schema and database links have been created before
performing the offline instantiation of your new master site. Be sure to create the
database links from the new master site to each of the existing masters sites. Also,
create a database link from each of the existing master sites to the new master site.
After the database links have been created, ensure that you also define the scheduled
links for each of the new database links.

*/

SET ECHO ON

SPOOL add_masters_instant.out

PAUSE Press <RETURN> to the new master site has been set up.

/*

Step 2 Connect to the master definition site as the replication administrator.
*/

CONNECT repadmin@orc1.example.com

/*

Step 3 Suspend master activity.
You need to suspend master activity for the existing master sites before exporting your
master data and beginning the offline instantiation process.

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also:

■ "Setting Up Master Sites" on page 2-3

■ "Creating Scheduled Links Between the Master Sites" on
page 2-13

Adding New Master Sites

Managing a Master Replication Environment 7-27

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 4 Verify that there are no pending transactions in a separate SQL*Plus
session.
This includes pushing any outstanding deferred transactions, resolving any error
transactions, and pushing any administrative transactions. This step must be
performed at each of the existing master sites.

Check the error transaction queue.

SELECT * FROM DEFERROR;

If any deferred transactions have been entered into the error queue, then you need to
resolve the error situation and then manually reexecute the deferred transaction. The
following is an example:

BEGIN
 DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id => '128323',
 destination => 'orc1.example.com');
END;
/

Check for outstanding administrative requests.

SELECT * FROM DBA_REPCATLOG;

If any administrative requests remain, then you can manually execute these requests
or wait for them to be executed automatically. You might need to execute the
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN procedure several times, because
some administrative operations have multiple steps. The following is an example:

BEGIN
 DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname => 'hr_repg',
 all_sites => TRUE);
END;
/

*/

PAUSE Press <RETURN> to continue when you have verified that there are no pending
requests.

/*

Step 5 Begin offline instantiation procedure.
*/

BEGIN
 DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (
 gname => 'hr_repg',

Adding New Master Sites

7-28 Oracle Database Advanced Replication Management API Reference

 new_site => 'orc4.example.com');
END;
/

/*

You should wait until the DBA_REPCATLOG view is empty. This view has temporary
information that is cleared after successful execution. Execute the following SELECT
statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 6 Create a directory object at each database.
Each database involved in this operation must have a directory object to hold the Data
Pump dump file, and the user who will perform the export or import must have READ
and WRITE privileges on this directory object. In this example, a Data Pump export is
performed at the master definition site, and a Data Pump import is performed at the
new master site.

While connected in SQL*Plus to a database as an administrative user who can create
directory objects using the SQL statement CREATE DIRECTORY, create a directory
object to hold the Data Pump dump file and log files. For example:

*/

CONNECT system@orc1.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@orc4.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

/*

Ensure that you complete these actions at both databases involved in the operation. In
this example, SYSTEM user creates the directory objects and performs all exports and
imports. If a user who does not own the directory object will perform the export or
import, then grant the user READ and WRITE privileges on the directory object.

Step 7 In a separate terminal window, perform the export.
On a command line, perform the export. This example connects as the SYSTEM user.
The following is an example Data Pump export command:

expdp system SCHEMAS=hr DIRECTORY=DPUMP_DIR DUMPFILE=hr_schema.dmp

When you export tables, their indexes are exported automatically.

*/

See Also: Oracle Database Utilities for information about
performing a Data Pump export

Adding New Master Sites

Managing a Master Replication Environment 7-29

PAUSE Press <RETURN> to continue when the export is complete.

/*

Step 8 Resume partial replication activity.
Because it might take some time to complete the offline instantiation process, you can
resume replication activity for the remaining master sites (excluding the new master
site) by executing the RESUME_SUBSET_OF_MASTERS procedure in the
DBMS_OFFLINE_OG package after the export is complete. In the following example,
replication activity is resumed at all master sites except the new master site --
orc4.example.com.

*/

CONNECT repadmin@orc1.example.com

BEGIN
 DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS (
 gname => 'hr_repg',
 new_site => 'orc4.example.com');
END;
/

/*

Step 9 Transfer the export dump files to the new master site.
Using the DBMS_FILE_TRANSFER package, FTP, or some other method, transfer the
export dump file to the new master site. You will need this export dump file at the new
site to perform the import described in the next step.

*/

PAUSE Press <RETURN> to continue when the export dump file has been
transfered to the new master site.

/*

Step 10 Connect to the new master site as the replication administrator.
*/

CONNECT repadmin@orc4.example.com

/*

Step 11 Prepare the new master site.
You must prepare the new site to import the data in your export file. Ensure that you
execute the following procedure at the new master site.

*/

BEGIN
 DBMS_OFFLINE_OG.BEGIN_LOAD (
 gname => 'hr_repg',
 new_site => 'orc4.example.com');
END;
/

/*

Adding New Master Sites

7-30 Oracle Database Advanced Replication Management API Reference

Step 12 In a separate terminal window, import data from export dump file.
On a command line, perform the import. This example connects as the SYSTEM user.
The following is an example import command:

impdp system SCHEMAS=hr DIRECTORY=DPUMP_DIR DUMPFILE=hr_schema.dmp

Other objects, such as the indexes based on the tables, are imported automatically.

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

Step 13 Complete the load process at new master site.
After importing the export file, you are ready to complete the offline instantiation
process at the new master site. Executing the DBMS_OFFLINE_OG.END_LOAD
procedure prepares the new site for normal replication activity.

*/

BEGIN
 DBMS_OFFLINE_OG.END_LOAD (
 gname => 'hr_repg',
 new_site => 'orc4.example.com');
END;
/

/*

Step 14 Connect to the master definition site as the replication administrator.
*/

CONNECT repadmin@orc1.example.com

/*

Step 15 Complete instantiation process.
After completing the steps at the new master site, you are ready to complete the offline
instantiation process. Executing the END_INSTANTIATION procedure in the
DBMS_OFFLINE_OG package completes the process and resumes normal replication
activity at all master sites. Ensure that you execute the following procedure at the
master definition site.

*/

BEGIN
 DBMS_OFFLINE_OG.END_INSTANTIATION (
 gname => 'hr_repg',
 new_site => 'orc4.example.com');
END;
/

SET ECHO OFF

See Also: Oracle Database Utilities for information about
performing a Data Pump import

Removing a Master Site from a Master Group

Managing a Master Replication Environment 7-31

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Removing a Master Site from a Master Group
When it becomes necessary to remove a master site from a master group, use the
REMOVE_MASTER_DATABASES procedure to drop one or more master sites.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to remove a master site.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master definition site as the replication administrator.
*/

SET ECHO ON

SPOOL remove_masters.out

CONNECT repadmin@orc1.example.com

/*

Step 2 If the replication status is normal for the master group, then change the
status to quiesced.
*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 3 Remove the master site.
*/

BEGIN
 DBMS_REPCAT.REMOVE_MASTER_DATABASES (
 gname => 'hr_repg',
 master_list => 'orc4.example.com');
END;
/

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Removing a Master Site from a Master Group

7-32 Oracle Database Advanced Replication Management API Reference

/*

You should wait until the DBA_REPCATLOG view is empty. Execute the following
SELECT statement in another SQL*Plus session to monitor the DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty for the master group.

/*

Step 4 Resume master activity for the master group.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Removing an Unavailable Master Site
The sites being removed from a master group do not have to be accessible. When a
master site will not be available for an extended period of time due to a system or
network failure, you might decide to drop the master site from the master group.

However, because the site is unavailable, you most likely cannot suspend replication
activity for the master group. You can use the REMOVE_MASTER_DATABASES
procedure in the DBMS_REPCAT package to remove master sites from a master group,
even if the master group is not quiesced.

If this is the case, you are responsible for:

■ Cleaning the deferred transaction queue

■ Removing any data inconsistencies

Specifically, the next time that you suspend replication activity for a master group, you
must complete the following steps as soon as possible after the unavailable master
sites are removed:

Step 1 Suspend replication activity for the master group.
See "SUSPEND_MASTER_ACTIVITY Procedure" on page 18-96 for information.

Step 2 Delete all deferred transactions from each master site where the
destination for the transaction is a removed master site.
See "DELETE_TRAN Procedure" on page 14-9 for information.

Step 3 Remove all deferred transactions from removed master sites.
See "DELETE_TRAN Procedure" on page 14-9 for information.

Updating the Comments Fields in Data Dictionary Views

Managing a Master Replication Environment 7-33

Step 4 Reexecute or delete all error transactions at each remaining master site.
See "Managing the Error Queue" on page 9-15 for information about reexecuting error
transactions, and see "DELETE_TRAN Procedure" on page 14-9 for information about
removing error transactions.

Step 5 Ensure that no deferred or error transactions exist at each remaining
master.
If you cannot remove one or more deferred transactions from a remaining master,
execute the DBMS_DEFER_SYS.DELETE_TRAN procedure at the master site.

Step 6 Ensure that all replicated data is consistent.
See Chapter 16, "DBMS_RECTIFIER_DIFF" for information about determining and
correcting differences.

Step 7 Resume replication activity for the master group.
See "RESUME_MASTER_ACTIVITY Procedure" on page 18-87 for information.

Updating the Comments Fields in Data Dictionary Views
Several procedures in the DBMS_REPCAT package enable you to update the comment
information in the various data dictionary views associated with replication. Table 7–1
lists the appropriate procedure to call for each view.

Note: After dropping an unavailable master site from a master
group, you should also remove the master group from the dropped
site to finish the cleanup.

Table 7–1 Updating Comments in Advanced Replication Views

View DBMS_REPCAT Procedure See for Parameter Information

DBA_REPGROUP COMMENT_ON_REPGROUP(
 gname IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_REPGROUP Procedure" on
page 18-34.

DBA_REPOBJECT COMMENT_ON_REPOBJECT(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2)

 "COMMENT_ON_REPOBJECT Procedure"
on page 18-35.

DBA_REPSITES COMMENT_ON_REPSITES(
 gname IN VARCHAR2,
 master IN VARCHAR,
 comment IN VARCHAR2)

"COMMENT_ON_REPSITES Procedure" on
page 18-36.

DBA_REPCOLUMN_GROUP COMMENT_ON_COLUMN_GROUP(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_COLUMN_GROUP
Procedure" on page 18-31.

DBA_REPPRIORITY_GROUP COMMENT_ON_PRIORITY_GROUP(
 gname IN VARCHAR2,
 pgroup IN VARCHAR2)
 comment IN VARCHAR2)

"COMMENT_ON_PRIORITY_GROUP
Procedures" on page 18-33.

Using Procedural Replication

7-34 Oracle Database Advanced Replication Management API Reference

Using Procedural Replication
Procedural replication can offer performance advantages for large batch-oriented
operations operating on large numbers of rows that can be run serially within a
replication environment.

A good example of an appropriate application is a purge operation, also referred to as
an archive operation, that you run infrequently (for example, once in each quarter)
during off hours to remove old data, or data that was "logically" deleted from the
online database. An example using procedural replication to purge deleted rows is
described in the "Avoiding Delete Conflicts" section in Chapter 5, "Conflict Resolution
Concepts and Architecture", of Oracle Database Advanced Replication.

Restrictions on Procedural Replication
All parameters for a replicated procedure must be IN parameters; OUT and IN/OUT
modes are not supported. The following data types are supported for these
parameters:

■ VARCHAR2

■ NVARCHAR2

■ NUMBER

■ DATE

■ RAW

■ ROWID

■ CHAR

■ NCHAR

DBA_REPPRIORITY_GROUP
(site priority group)

COMMENT_ON_SITE_PRIORITY(
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2)

"COMMENT_ON_PRIORITY_GROUP
Procedures" on page 18-33.

DBA_REPRESOLUTION
(uniqueness conflicts)

COMMENT_ON_UNIQUE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the
COMMENT_ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_RESOLUTION
Procedure" on page 18-38.

DBA_REPRESOLUTION
(update conflicts)

COMMENT_ON_UPDATE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the
COMMENT_ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_RESOLUTION
Procedure" on page 18-38.

DBA_REPRESOLUTION
(delete conflicts)

COMMENT_ON_DELETE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2)

The parameters for the
COMMENT_ON_UNIQUE_RESOLUTION
procedures are described in
"COMMENT_ON_conflicttype_RESOLUTION
Procedure" on page 18-38.

Table 7–1 (Cont.) Updating Comments in Advanced Replication Views

View DBMS_REPCAT Procedure See for Parameter Information

Using Procedural Replication

Managing a Master Replication Environment 7-35

■ Binary LOB (BLOB)

■ Character LOB (CLOB)

■ National character LOB (NCLOB)

■ User-defined data types

Oracle cannot detect update conflicts produced by replicated procedures. Replicated
procedures must detect and resolve conflicts themselves. Because of the difficulties
involved in writing your own conflict resolution routines, it is best to simply avoid the
possibility of conflicts altogether.

Adhering to the following guidelines helps you ensure that your tables remain
consistent at all sites when you plan to use procedural replication:

■ You must disable row-level replication within the body of the deferred procedure.
See "Updating the Comments Fields in Data Dictionary Views" on page 7-33.

■ Only one replicated procedure should be run at a time, as described in "Serializing
Transactions" on page 7-36.

■ Deferred transactions should be propagated serially. For more information about
guidelines for scheduled links, see Oracle Database Advanced Replication.

■ The replicated procedure must be packaged and the package cannot contain any
functions. Standalone deferred procedures and standalone or packaged deferred
functions are not currently supported.

■ The deferred procedures must reference only locally owned data.

■ The procedures should not use locally generated fields, values, or environmentally
dependent SQL functions. For example, the procedure should not call SYSDATE.

■ Your data ownership should be statically partitioned. That is, ownership of a row
should not change between sites.

■ If you have multiple master groups at a master site, and one or more master
groups are quiesced, then you cannot perform procedural replication on any
master group at the master site. This restriction is enforced because a procedure in
one master group can update objects in another master group. You can only
perform procedural replication when all of the master groups on a master site are
replicating data normally (that is, when none of the master groups is quiesced).

For example, if you have a procedure named sal_raise in master group A on
master site db1, then you cannot run the sal_raise procedure if master group B
on master site db1 is quiesced, even if master group A is replicating normally.

■ When using procedural replication, a procedure call is only propagated to master
replication sites. The procedure call is not propagated to materialized view sites.
However, procedural replication can be initiated at a materialized view site. In this
case, the procedure call is propagated to all of the master sites in the replication
environment, but the procedure call is not propagated to any other materialized
view sites. Other materialized view sites must pull changes made at the master
site by performing a materialized view refresh.

For example, suppose a replication environment includes two master sites named
msite1 and msite2 and two materialized view sites named mview1 and
mview2. If procedural replication is initiated at mview1, then the procedure is run
at mview1 and the procedure call is propagated to the two master sites, msite1
and msite2, where the procedure is also run. However, the procedure call is not
propagated to mview2. Therefore, during the next refresh, mview2 pulls down all
of the changes made by the procedure at its master site.

Using Procedural Replication

7-36 Oracle Database Advanced Replication Management API Reference

User-Defined Types and Procedural Replication
When using procedural replication, the user-defined types and the objects referenced
in the procedure must meet the following conditions:

■ For an object type, all replication sites must agree about the order of attributes in
the object type. You establish the attribute order when you create the object type.
Consider the following object type:

CREATE TYPE cust_address_typ AS OBJECT
 (street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(30),
 state_province VARCHAR2(10),
 country_id CHAR(2));
/

At all replication sites, street_address must be the first attribute,
postal_code must be the second attribute, city must be the third attribute, and
so on.

■ For an Oracle object, all replication sites must have the same object identifier
(OID), schema owner, and type name for each replicated object type.

You can meet these conditions by always using distributed schema management
to create or modify any replicated object, including object types, tables with
column objects, and object tables. If you do not use distributed schema
management to create and modify object types, then replication errors can result.

Serializing Transactions
Serial execution ensures that your data remains consistent. The replication facility
propagates and executes replicated transactions one at a time. For example, assume
that you have two procedures, A and B, that perform updates on local data. Now
assume that you perform the following actions, in order:

1. Execute A and B locally.

2. Queue requests to execute other replicas of A and B on other nodes.

3. Commit.

The replicas of A and B on the other nodes are executed completely serially, in the
same order that they were committed at the originating site. If A and B execute
concurrently at the originating site, however, then they can produce different results
locally than they do remotely. Executing A and B serially at the originating site ensures
that all sites have identical results. Propagating the transaction serially ensures that A
and B are executing in serial order at the target site in all cases.

Alternatively, you could write the procedures carefully, to ensure serialization. For
example, you could use SELECT... FOR UPDATE for queries to ensure serialization at
the originating site and at the target site if you are using parallel propagation.

See Also: Oracle Database Advanced Replication for more
information about type agreement at replication sites

Using Procedural Replication

Managing a Master Replication Environment 7-37

Generating Support for Replicated Procedures
You must disable row-level replication support at the start of your procedure, and then
reenable support at the end. This operation ensures that any updates that occur as a
result of executing the procedure are not propagated to other sites. Row-level
replication is enabled and disabled by calling the following procedures, respectively:

■ DBMS_REPUTIL.REPLICATION_ON

■ DBMS_REPUTIL.REPLICATION_OFF

When you generate replication support for your replicated package, Oracle creates a
wrapper package in the schema of the replication propagator.

The wrapper package has the same name as the original package, but its name is
prefixed with the string you supply when you generate replication support for the
procedure. If you do not supply a prefix, then Oracle uses the default prefix, defer_.
The wrapper procedure has the same parameters as the original, along with two
additional parameters: call_local and call_remote. These two CHAR parameters
determine where the procedure is executed. When call_local is 'Y', the procedure
is executed locally. When call_remote is 'Y', the procedure will ultimately be
executed at all other master sites in the replication environment.

The remote procedures are called directly if you are propagating changes
synchronously, or calls to these procedures are added to the deferred transaction
queue if you are propagating changes asynchronously. By default, call_local is
'N', and call_remote is 'Y'.

Oracle generates replication support for a package in two phases. The first phase
creates the package specification at all sites. Phase two generates the package body at
all sites. These two phases are necessary to support synchronous replication.

For example, suppose you create the package emp_mgmt containing the procedure
new_dept, which takes one argument, email. To replicate this package to all master
sites in your system, you can use the Advanced Replication interface in Oracle
Enterprise Manager to add the package to a master group and then generate
replication support for the object. After completing these steps, an application can call
procedure in the replicated package as follows:

BEGIN
defer_emp_mgmt.new_dept(email => 'jones',
 call_local => 'Y',
 call_remote => 'Y');
END;
/

See Also:

■ "Disabling Replication" on page 9-5

■ "REPLICATION_ON Procedure" on page 22-4

■ "REPLICATION_OFF Procedure" on page 22-3

Note: Unregistering the current propagator drops all existing
generated wrappers in the propagator's schema. Replication
support for wrapped stored procedures must be regenerated after
you register a new propagator.

Using Procedural Replication

7-38 Oracle Database Advanced Replication Management API Reference

As shown in Figure 7–4, the logic of the wrapper procedure ensures that the procedure
is called at the local site and subsequently at all remote sites. The logic of the wrapper
procedure also ensures that when the replicated procedure is called at the remote sites,
call_remote is FALSE, ensuring that the procedure is not further propagated.

If you are operating in a mixed replication environment with static partitioning of data
ownership (that is, if you are not preventing row-level replication), then Advanced
Replication preserves the order of operations at the remote node, because both row-
level and procedural replication use the same asynchronous queue.

Figure 7–4 Asynchronous Procedural Replication

See Also: The Advanced Replication interface's online Help for
more information about managing master groups and replicated
objects using the Advanced Replication interface in Oracle
Enterprise Manager

new_dept(arg1)
BEGIN
 lock table in EXCLUSIVE mode
 disable row–level replication
 update employees
 enable row–level replication
END;

new_dept(arg1)
BEGIN
 lock table in EXCLUSIVE mode
 disable row–level replication
 update employees
 enable row–level replication
END;

Wrapper

defer_emp_mgmt.new_dept('Jones' 'Y', 'Y')

Deferred Transaction Queue

. . . packagename procname . . .

Employees table

employee_id last_name department_id

100
101
102

Jones

Braun

20
20
20

Kim

Employees table

employee_id last_name department_id

100
101
102

Jones

Braun

20
20
20

Kim

update(oldargs newargs)
insert(newargs)
update(oldargs newargs)
delete(oldargs)
new_dept(Jones)

new_dept(args...)

if call_local='Y'
 call new_dept(Jones)
if call_remote='Y'
 build call to new_dept
 for deferred queue
 with call_remote='N'

Site A Site B

Managing a Materialized View Replication Environment 8-1

8
Managing a Materialized View Replication

Environment

Materialized view replication provides the flexibility to build data sets to meet the
needs of your users and front-end applications, while still meeting the requirements of
your security configuration. This chapter describes how to manage materialized view
sites with the replication management API.

This chapter contains these topics:

■ Refreshing Materialized Views

■ Changing a Materialized View Group's Master Site

■ Dropping Materialized View Groups and Objects

■ Managing Materialized View Logs

■ Performing an Offline Instantiation of a Materialized View Site Using Export/
Import

■ Using a Group Owner for a Materialized View Group

Refreshing Materialized Views
Refreshing a materialized view synchronizes the data in the materialized view's
master(s) and the data in the materialized view. You can either refresh all of the
materialized views in a refresh group at once, or you can refresh materialized views
individually. If you have applications that depend on more than one materialized view
at a materialized view site, then Oracle recommends using refresh groups so that the
data is transactionally consistent in all of the materialized views used by the
application.

The following example refreshes the hr_refg refresh group:

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

The following example refreshes the hr.departments_mv materialized view:

BEGIN
 DBMS_MVIEW.REFRESH (
 list => 'hr.departments_mv',
 method => '?');
END;
/

Changing a Materialized View Group's Master Site

8-2 Oracle Database Advanced Replication Management API Reference

Changing a Materialized View Group's Master Site
To change the master site of a materialized view group at a level 1 materialized view
site to another master site, call the SWITCH_MVIEW_MASTER procedure in the
DBMS_REPCAT package, as shown in the following example:

BEGIN
 DBMS_REPCAT.SWITCH_MVIEW_MASTER (
 gname => 'hr_repg',
 master => 'orc3.example.com');
END;
/

In this example, the master site for the hr_repg replication group is changed to the
orc3.example.com master site. You must call this procedure at the materialized
view site whose master site you want to change. The new database must be a master
site in the replication environment. When you call this procedure, Oracle uses the new
master to perform a full refresh of each materialized view in the local materialized
view group. Ensure that you have set up the materialized view site to use the new
master site before you run the SWITCH_MVIEW_MASTER procedure.

The entries in the SYS.SLOG$ table at the old master site for the switched materialized
view are not removed. As a result, the materialized view log (MLOG$ table) of the
switched updatable materialized view at the old master site has the potential to grow
indefinitely, unless you purge it by calling DBMS_MVIEW.PURGE_LOG.

Dropping Materialized View Groups and Objects
You might need to drop replication activity at a materialized view site for a number of
reasons. Perhaps the data requirements have changed or an employee has left the
company. In any case, as a DBA you will need to drop the replication support for the
target materialized view site.

Note: Do not use the DBMS_MVIEW.REFRESH_ALL_MVIEWS or
the DBMS_MVIEW.REFRESH_DEPENDENT procedure to refresh
materialized views used in a replication environment. Instead, use
the DBMS_REFRESH.REFRESH or the DBMS_MVIEW.REFRESH
procedure to refresh materialized views in a replication
environment.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Note: You cannot switch the master of materialized views that are
based on other materialized views (level 2 and greater materialized
views). Such a materialized view must be dropped and re-created if
you want to base it on a different master.

See Also: "Setting Up Materialized View Sites" on page 2-16

Dropping Materialized View Groups and Objects

Managing a Materialized View Replication Environment 8-3

This section contains the following sections:

■ Dropping a Materialized View Group Created with a Deployment Template

■ Dropping a Materialized View Group or Objects Created Manually

■ Cleaning Up a Master Site or Master Materialized View Site

Dropping a Materialized View Group Created with a Deployment Template
If a materialized view group was created with a deployment template, then, before
you drop the materialized view group at the remote materialized view site, you need
to execute the DROP_SITE_INSTANTIATION procedure at the target master site of the
materialized view group. In addition to removing the metadata relating to the
materialized view group, this procedure also removes the related deployment
template data regarding this site.

The DROP_SITE_INSTANTIATION procedure has a public and a private version. The
public version allows the owner of the materialized view group to drop the
materialized view site, while the private version allows the replication administrator
to drop a materialized view site on behalf of the materialized view group owner.

Using the Public Version of DROP_SITE_INSTANTIATION
Meet the following requirements to complete these actions:

Executed As:

■ Materialized View Group Owner at Master Site

■ Materialized View Administrator at Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a
deployment template.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the materialized view group owner.
*/

SET ECHO ON

SPOOL drop_mv_group_public.out

CONNECT hr@orc3.example.com

/*

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Dropping Materialized View Groups and Objects

8-4 Oracle Database Advanced Replication Management API Reference

Step 2 Drop the instantiated materialized view site from the master site.
*/

BEGIN
 DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
 refresh_template_name => 'hr_refg_dt',
 site_name => 'mv4.example.com');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin@mv4.example.com

/*

If you are not able to connect to the remote materialized view site, then the target
materialized view group cannot refresh, but the existing data still remains at the
materialized view site.

Step 4 Drop the materialized view group.
*/

BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

/*

If you want to physically remove the contents of the materialized view group from the
materialized view database, then be sure that you specify TRUE for the
drop_contents parameter.

Step 5 Remove the refresh group.
Connect as the refresh group owner and remove the refresh group.

*/

CONNECT hr@mv4.example.com

BEGIN
 DBMS_REFRESH.DESTROY (
 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Dropping Materialized View Groups and Objects

Managing a Materialized View Replication Environment 8-5

Using the Private Version of DROP_SITE_INSTANTIATION
The following steps are to be performed by the replication administrator on behalf of
the materialized view group owner. Meet the following requirements to complete
these actions:

Executed As:

■ Replication Administrator at Master Site

■ Materialized View Administrator at Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ Materialized View Site

Replication Status: Normal

Complete the following steps to drop a materialized view group created with a
deployment template.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site as the replication administrator.
*/

SET ECHO ON

SPOOL drop_mv_group_private.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Drop the instantiated materialized view site from the master site.
*/

BEGIN
 DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (
 refresh_template_name => 'hr_refg_dt',
 user_name => 'hr',
 site_name => 'mv4.example.com');
END;
/

/*

Step 3 Connect to the remote materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin@mv4.example.com

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Dropping Materialized View Groups and Objects

8-6 Oracle Database Advanced Replication Management API Reference

/*

If you are unable to connect to the remote materialized view site, then the target
materialized view group cannot refresh, but the existing data still remains at the
materialized view site.

Step 4 Drop the materialized view group.
*/

BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE,
 gowner => 'hr');
END;
/

/*

If you want to physically remove the contents of the materialized view group from the
materialized view database, then be sure that you specify TRUE for the
drop_contents parameter.

Step 5 Remove the refresh group.
Connect as the refresh group owner and remove the refresh group.

*/

CONNECT hr@mv4.example.com

BEGIN
 DBMS_REFRESH.DESTROY (
 name => 'hr_refg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Dropping a Materialized View Group or Objects Created Manually
The most secure method of removing replication support for a materialized view site
is to physically drop the replicated objects or groups at the materialized view site. The
following two sections describe how to drop these objects and groups while connected
to the materialized view group.

Ideally, these procedures should be executed while the materialized view is connected
to its target master site or master materialized view site. A connection ensures that any
related metadata at the master site or master materialized view site is removed. If a
connection to the master site or master materialized view site is not possible, then be
sure to complete the procedure described in "Cleaning Up a Master Site or Master
Materialized View Site" on page 8-8 to manually remove the related metadata.

Dropping Materialized View Groups and Objects

Managing a Materialized View Replication Environment 8-7

Dropping a Materialized View Group Created Manually
When it becomes necessary to remove a materialized view group from a materialized
view site, use the DROP_MVIEW_REPGROUP procedure to drop a materialized view
group. When you execute this procedure and are connected to the target master site or
master materialized view site, the metadata for the target materialized view group at
the master site or master materialized view site is removed. If you cannot connect,
then see "Cleaning Up a Master Site or Master Materialized View Site" on page 8-8 for
more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop a materialized view group at a materialized view
site:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin@mv1.example.com
Enter password: password

Step 2 Drop the materialized view group.
BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname => 'hr_repg',
 drop_contents => TRUE);
END;
/

If you want to physically remove the contents of the materialized view group from the
materialized view database, then be sure that you specify TRUE for the
drop_contents parameter.

Dropping Objects at a Materialized View Site
When it becomes necessary to remove an individual materialized view from a
materialized view site, use the DROP_MVIEW_REPOBJECT procedure API to drop a
materialized view. When you execute this procedure and are connected to the target
master site or master materialized view site, the metadata for the target materialized
view at the master site or master materialized view site is removed. If you cannot
connect, then see "Cleaning Up a Master Site or Master Materialized View Site" on
page 8-8 for more information.

Meet the following requirements to complete these actions:

Executed As: Materialized View Administrator

Executed At: Remote Materialized View Site

Replication Status: N/A

Complete the following steps to drop an individual materialized view at a
materialized view site.

Dropping Materialized View Groups and Objects

8-8 Oracle Database Advanced Replication Management API Reference

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin@mv1.example.com
Enter password: password

Step 2 Drop the materialized view.
BEGIN
 DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname => 'hr',
 oname => 'employees_mv1',
 type => 'SNAPSHOT',
 drop_objects => TRUE);
END;
/

If you want to physically remove the contents of the materialized view from the
materialized view database, then be sure that you specify TRUE for the
drop_contents parameter.

Cleaning Up a Master Site or Master Materialized View Site
If you are unable to drop a materialized view group or materialized view object while
connected to the target master site or master materialized view site, then you must
remove the related metadata at the master site or master materialized view site
manually. Cleaning up the metadata also ensures that you are not needlessly
maintaining master table or master materialized view changes to a materialized view
log. The following sections describe how to clean up your master site or master
materialized view site after dropping a materialized view group or object.

Cleaning Up After Dropping a Materialized View Group
If you have executed the steps described in "Dropping a Materialized View Group
Created Manually" on page 8-7 and were not connected to the master site or master
materialized view site, then you are encouraged to complete the following steps to
clean up the target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized
View Site

Replication Status: Normal

Complete the following steps to clean up a master site or master materialized view site
after dropping a materialized view group:

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Dropping Materialized View Groups and Objects

Managing a Materialized View Replication Environment 8-9

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
*/

SET ECHO ON

SPOOL cleanup_master1.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Unregister the materialized view groups.
*/

BEGIN
 DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
 gname => 'hr_repg',
 mviewsite => 'mv1.example.com');
END;
/

/*

Step 3 Purge the materialized view logs of the entries that were marked for the
target materialized views.
Execute the PURGE_MVIEW_FROM_LOG procedure for each materialized view that was
in the materialized view groups you unregistered in Step 2.

*/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'countries_mv1',
 mviewsite => 'mv1.example.com');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'departments_mv1',
 mviewsite => 'mv1.example.com');
END;
/

Note: If for some reason unregistering the materialized view
group fails, then you should still complete this step.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Dropping Materialized View Groups and Objects

8-10 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.example.com');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'jobs_mv1',
 mviewsite => 'mv1.example.com');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'job_history_mv1',
 mviewsite => 'mv1.example.com');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'locations_mv1',
 mviewsite => 'mv1.example.com');
END;
/

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'regions_mv1',
 mviewsite => 'mv1.example.com');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Cleaning Up Individual Materialized View Support
If you have executed the steps described in "Dropping Objects at a Materialized View
Site" on page 8-7 and were not connected to the master site or master materialized
view site, then you are encouraged to complete the following steps to clean up the
target master site or master materialized view site.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Site or Master Materialized View Site for Target Materialized
View Site

Replication Status: Normal

Dropping Materialized View Groups and Objects

Managing a Materialized View Replication Environment 8-11

Complete the following steps to clean up a master site or master materialized view site
after dropping an individual materialized view.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Connect to the master site or master materialized view site as the
replication administrator.
*/

SET ECHO ON

SPOOL cleanup_master2.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Unregister the materialized view.
*/

BEGIN
 DBMS_MVIEW.UNREGISTER_MVIEW (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.example.com');
END;
/

/*

Step 3 Purge the associated materialized view log of the entries that were
marked for the target materialized views.

*/

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Note: If for some reason unregistering the materialized view fails,
then you should still complete this step.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Managing Materialized View Logs

8-12 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_MVIEW.PURGE_MVIEW_FROM_LOG (
 mviewowner => 'hr',
 mviewname => 'employees_mv1',
 mviewsite => 'mv1.example.com');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Managing Materialized View Logs
The following sections explain how to manage materialized view logs:

■ Altering Materialized View Logs

■ Managing Materialized View Log Space

■ Reorganizing Master Tables that Have Materialized View Logs

■ Dropping a Materialized View Log

Altering Materialized View Logs
After creating a materialized view log, you can alter its storage parameters and
support for corresponding materialized views. The following sections explain more
about altering materialized view logs. Only the following users can alter a
materialized view log:

■ The owner of the master table or master materialized view.

■ A user with the SELECT privilege for the master table or master materialized view
and ALTER privilege on the MLOG$_master_name, where master_name is the name of
the master for the materialized view log. For example, if the master table is
employees, then the materialized view log table name is MLOG$_employees.

Altering Materialized View Log Storage Parameters
To alter a materialized view log's storage parameters, use the ALTER MATERIALIZED
VIEW LOG statement. For example, the following statement alters a materialized view
log on the employees table in the hr schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 PCTFREE 25
 PCTUSED 40;

Altering a Materialized View Log to Add Columns
To add new columns to a materialized view log, use the SQL statement ALTER
MATERIALIZED VIEW LOG. For example, the following statement alters a materialized
view log on the customers table in the sales schema:

ALTER MATERIALIZED VIEW LOG ON hr.employees
 ADD (department_id);

Managing Materialized View Logs

Managing a Materialized View Replication Environment 8-13

Managing Materialized View Log Space
Oracle automatically tracks which rows in a materialized view log have been used
during the refreshes of materialized views, and purges these rows from the log so that
the log does not grow endlessly. Because multiple simple materialized views can use
the same materialized view log, rows already used to refresh one materialized view
might still be needed to refresh another materialized view. Oracle does not delete rows
from the log until all materialized views have used them.

For example, suppose two materialized views were created against the customers
table in a master site. Oracle refreshes the customers materialized view at the spdb1
database. However, the server that manages the master table and associated
materialized view log does not purge the materialized view log rows used during the
refresh of this materialized view until the customers materialized view at the spdb2
database also refreshes using these rows.

Because Oracle must wait for all dependent materialized views to refresh before
purging rows from a materialized view log, unwanted situations can occur that cause
a materialized view log to grow indefinitely when multiple materialized views are
based on the same master table or master materialized view.

For example, such situations can occur when more than one materialized view is
based on a master table or master materialized view and one of the following
conditions is true:

■ One materialized view is not configured for automatic refreshes and has not been
manually refreshed for a long time.

■ One materialized view has an infrequent refresh interval, such as every year (365
days).

■ A network failure has prevented an automatic refresh of one or more of the
materialized views based on the master table or master materialized view.

■ A network or site failure has prevented a master table or master materialized view
from becoming aware that a materialized view has been dropped.

Purging Rows from a Materialized View Log
Always try to keep a materialized view log as small as possible to minimize the
database space that it uses. To remove rows from a materialized view log and make
space for newer log records, you can perform one of the following actions:

■ Refresh the materialized views associated with the log so that Oracle can purge
rows from the materialized view log.

■ Manually purge records in the log by deleting rows required only by the nth least
recently refreshed materialized views.

To manually purge rows from a materialized view log, execute the PURGE_LOG
procedure of the DBMS_MVIEW package at the database that contains the log. For
example, to purge entries from the materialized view log of the customers table that

See Also: Oracle Database Advanced Replication for more
information about adding columns to a materialized view log

Note: If you purge or TRUNCATE a materialized view log before a
materialized view has refreshed the changes that were deleted, then
the materialized view must perform a complete refresh.

Managing Materialized View Logs

8-14 Oracle Database Advanced Replication Management API Reference

are necessary only for the least recently refreshed materialized view, execute the
following procedure:

BEGIN
 DBMS_MVIEW.PURGE_LOG (
 master => 'hr.employees',
 num => 1,
 flag => 'DELETE');
END;
/

Only the owner of a materialized view log or a user with the EXECUTE privilege for
the DBMS_MVIEW package can purge rows from the materialized view log by executing
the PURGE_LOG procedure.

Truncating a Materialized View Log
If a materialized view log grows and allocates many extents, then purging the log of
rows does not reduce the amount of space allocated for the log. In such cases, you
should truncate the materialized view log. Only the owner of a materialized view log
or a user with the DELETE ANY TABLE system privilege can truncate a materialized
view log.

To reduce the space allocated for a materialized view log by truncating it, complete the
following steps:

Step 1 Acquire an exclusive lock on the master table or master materialized
view to prevent updates during the following process.
For example, issue a statement similar to the following:

LOCK TABLE hr.employees IN EXCLUSIVE MODE;

Step 2 Using a second database session, copy the rows in the materialized view
log (in other words, the MLOG$ table) to a temporary table.
For example, issue a statement similar to the following:

CREATE TABLE hr.templog AS SELECT * FROM hr.MLOG$_employees;

Step 3 Using the second session, truncate the log using the SQL statement
TRUNCATE TABLE.
For example, issue a statement similar to the following:

TRUNCATE TABLE hr.MLOG$_employees;

Step 4 Using the second session, reinsert the old rows.
Perform this step so that you do not have to perform a complete refresh of the
dependent materialized views.

For example, issue statements similar to the following:

INSERT INTO hr.MLOG$_employees SELECT * FROM hr.templog;

DROP TABLE hr.templog;

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Managing Materialized View Logs

Managing a Materialized View Replication Environment 8-15

Step 5 Using the first session, release the exclusive lock on the master table or
master materialized view.
You can accomplish this by performing a rollback:

ROLLBACK;

Reorganizing Master Tables that Have Materialized View Logs
To improve performance and optimize disk use, you can periodically reorganize
master tables. This section describes how to reorganize a master and preserve the fast
refresh capability of associated materialized views.

Reorganization Notification
When you reorganize a table, any ROWID information of the materialized view log
must be invalidated. Oracle detects a table reorganization automatically only if the
table is truncated as part of the reorganization.

If the table is not truncated, then Oracle must be notified of the table reorganization. To
support table reorganizations, two procedures in the DBMS_MVIEW package,
BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION, notify
Oracle that the specified table has been reorganized. The procedures perform clean-up
operations, verify the integrity of the logs and triggers that the fast refresh mechanism
needs, and invalidate the ROWID information in the table's materialized view log. The
inputs are the owner and name of the master to be reorganized. There is no output.

Truncating Masters
When a table is truncated, its materialized view log is also truncated. However, for
primary key materialized views, you can preserve the materialized view log, allowing
fast refreshes to continue. Although the information stored in a materialized view log
is preserved, the materialized view log becomes invalid with respect to rowids when
the master is truncated. The rowid information in the materialized view log will seem
to be newly created and cannot be used by rowid materialized views for fast refresh.

The PRESERVE MATERIALIZED VIEW LOG option is the default. Therefore, if you
specify the PRESERVE MATERIALIZED VIEW LOG option or no option, then the
information in the master's materialized view log is preserved, but current rowid

Note: Any changes made to the master table or master
materialized view between the time you copy the rows to a new
location and when you truncate the log do not appear until after
you perform a complete refresh.

Note: These sections do not discuss online redefinition of tables.
Online redefinition is not allowed on master tables with
materialized view logs, master materialized views, or materialized
views. Online redefinition is allowed only on master tables that do
not have materialized view logs. See the Oracle Database
Administrator's Guide for more information about online
redefinition of tables.

See Also: "Method 2 for Reorganizing Table employees" on
page 8-16

Managing Materialized View Logs

8-16 Oracle Database Advanced Replication Management API Reference

materialized views can use the log for a fast refresh only after a complete refresh has
been performed.

If the PURGE MATERIALIZED VIEW LOG option is specified, then the materialized view
log is purged along with the master.

Examples Either of the following two statements preserves materialized view log
information when the master table named employees is truncated:

TRUNCATE TABLE hr.employees PRESERVE MATERIALIZED VIEW LOG;
TRUNCATE TABLE hr.employees;

The following statement truncates the materialized view log along with the master
table:

TRUNCATE TABLE hr.employees PURGE MATERIALIZED VIEW LOG;

Methods of Reorganizing a Database Table
Oracle provides four table reorganization methods that preserve the capability for fast
refresh. These appear in the following sections. Other reorganization methods require
an initial complete refresh to enable subsequent fast refreshes.

Method 1 for Reorganizing Table employees Complete the following steps:

1. Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

2. Rename table employees to employees_old.

3. Create table employees as SELECT * FROM employees_old.

4. Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 2 for Reorganizing Table employees Complete the following steps:

1. Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

2. Export table employees.

3. Truncate table employees with PRESERVE MATERIALIZED VIEW LOG option.

Note: To ensure that any previously fast refreshable materialized
view is still refreshable, follow the guidelines in "Methods of
Reorganizing a Database Table" on page 8-16.

Note: Do not use Direct Loader during a reorganization of a
master. Direct Loader can cause reordering of the columns, which
could invalidate the log information used in subquery and LOB
materialized views.

Caution: When a table is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

Managing Materialized View Logs

Managing a Materialized View Replication Environment 8-17

4. Import table employees using conventional path.

5. Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 3 for Reorganizing Table employees Complete the following steps:

1. Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

2. Export table employees.

3. Rename table employees to employees_old.

4. Import table employees using conventional path.

5. Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Method 4 for Reorganizing Table employees Complete the following steps:

1. Call DBMS_MVIEW.BEGIN_TABLE_REORGANIZATION for table employees.

2. Select contents of table employees to a flat file.

3. Rename table employees to employees_old.

4. Create table employees with the same shape as employees_old.

5. Run SQL*Loader using conventional path.

6. Call DBMS_MVIEW.END_TABLE_REORGANIZATION for new table employees.

Ensure that no transaction is issued against the reorganized table between calling
BEGIN_TABLE_REORGANIZATION and END_TABLE_REORGANIZATION.

Dropping a Materialized View Log
You can delete a materialized view log regardless of its master or any existing
materialized views. For example, you might decide to drop a materialized view log if
one of the following conditions is true:

Caution: When you truncate masters as part of a reorganization,
you must use the PRESERVE MATERIALIZED VIEW LOG clause of
the truncate table DDL.

Caution: When a table is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

Caution: When a table is renamed, its associated PL/SQL triggers
are also adjusted to the new name of the table.

See Also: Oracle Database PL/SQL Packages and Types Reference for
more information about the DBMS_MVIEW package

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

8-18 Oracle Database Advanced Replication Management API Reference

■ All materialized views of a master have been dropped.

■ All materialized views of a master are to be refreshed using complete refresh, not
fast refresh.

■ A master no longer supports materialized views that require fast refreshes.

Here, a master can be a master table or a master materialized view. To delete a
materialized view log, execute the DROP MATERIALIZED VIEW LOG statement in
SQL*Plus. For example, the following statement deletes the materialized view log for a
table named customers in the sales schema:

DROP MATERIALIZED VIEW LOG ON hr.employees;

Only the owner of the master or a user with the DROP ANY TABLE system privilege can
drop a materialized view log.

Performing an Offline Instantiation of a Materialized View Site Using
Export/Import

Adding a new materialized view site to your replication environment can cause
network traffic. The network traffic is caused by propagating the entire contents of
tables or materialized views through the network to the new materialized view site.

To minimize such network traffic, you can add a new materialized view site using
offline instantiation procedure. With offline instantiation, you can create a new
materialized view group at a materialized view site. Offline instantiation uses of
Oracle's Export and Import utilities, which allow you to create an export file and
transfer the data to the new site through a storage medium, such as CD-ROM, tape,
and so on. Offline instantiation is especially useful for materialized views, because the
target computer could be a laptop using a modem connection.

The following script performs an offline instantiation for a new materialized view
group at a new materialized view site. The materialized view group is based on an
existing master group at a master site. Meet the following requirements to complete
these actions:

Executed As:

■ Replication Administrator at Master Site

■ Materialized View Administrator at New Materialized View Site

Executed At:

■ Master Site for Target Materialized View Site

■ New Materialized View Site

Replication Status: Normal

Materialized View Site:

■ Set up materialized view site. In this example, the materialized view site is
mview.example.com and the master site is orc1.example.com.

■ Ensure that the appropriate schema has been created before the offline
instantiation of your materialized view site.

■ Create proxy users at the master site if they do not exist.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Managing a Materialized View Replication Environment 8-19

Complete the following steps to set up a materialized view site named
mview.example.com.

/************************ BEGINNING OF SCRIPT *********************************

Step 1 Connect to the master site as the replication administrator.
*/

SET ECHO ON

SPOOL offline.out

CONNECT repadmin@orc1.example.com

/*

Step 2 Create the necessary materialized view logs, if they do not exist.
If materialized view logs do not already exist for the relevant master tables, then create
them at the master site.

*/

CREATE MATERIALIZED VIEW LOG ON hr.countries;
CREATE MATERIALIZED VIEW LOG ON hr.departments;
CREATE MATERIALIZED VIEW LOG ON hr.employees;
CREATE MATERIALIZED VIEW LOG ON hr.jobs;
CREATE MATERIALIZED VIEW LOG ON hr.job_history;
CREATE MATERIALIZED VIEW LOG ON hr.locations;
CREATE MATERIALIZED VIEW LOG ON hr.regions;

/*

Step 3 Create a temporary schema at the master site for the materialized views.
To prepare materialized views for export, you must create the schema that contains the
replicated objects.

In this example, create a temporary schema temp_schema.

*/

CONNECT system@orc1.example.com

See Also:

■ For more information about setting up a master site and
creating proxy users at a master site, see "Setting Up Master
Sites" on page 2-3

■ For more information about setting up materialized view sites,
see "Setting Up Materialized View Sites" on page 2-16

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

8-20 Oracle Database Advanced Replication Management API Reference

CREATE TABLESPACE offline_mview
 DATAFILE 'offline_mview.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE offline_temp_mview
 TEMPFILE 'offline_temp_mview.dbf' SIZE 5M AUTOEXTEND ON;

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER temp_schema IDENTIFIED BY &password;

ALTER USER temp_schema DEFAULT TABLESPACE offline_mview
 QUOTA UNLIMITED ON offline_mview;

ALTER USER temp_schema TEMPORARY TABLESPACE offline_temp_mview;

GRANT ALTER SESSION, CREATE CLUSTER, CREATE DATABASE LINK, CREATE SEQUENCE,
 CREATE SESSION, CREATE SYNONYM, CREATE TABLE, CREATE VIEW, CREATE INDEXTYPE,
 CREATE OPERATOR, CREATE PROCEDURE, CREATE TRIGGER, CREATE TYPE,
 CREATE MATERIALIZED VIEW, SELECT ANY TABLE
TO temp_schema;

CONNECT temp_schema@orc1.example.com;

/*

Step 4 Create temporary materialized views at the master site in the separate
schema you created in Step 3.
These materialized views contain the data that you transfer to your new materialized
view site using the Export utility.

*/

CREATE MATERIALIZED VIEW temp_schema.countries
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.countries@orc1.example.com;

CREATE MATERIALIZED VIEW temp_schema.departments
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.departments@orc1.example.com;

CREATE MATERIALIZED VIEW temp_schema.employees
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.employees@orc1.example.com;

CREATE MATERIALIZED VIEW temp_schema.jobs
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.jobs@orc1.example.com;

CREATE MATERIALIZED VIEW temp_schema.job_history
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.job_history@orc1.example.com;

Note: Ensure that the SELECT statements include the database
link. In this example, the database link is orc1.example.com.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Managing a Materialized View Replication Environment 8-21

CREATE MATERIALIZED VIEW temp_schema.locations
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.locations@orc1.example.com;

CREATE MATERIALIZED VIEW temp_schema.regions
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE AS SELECT *
 FROM hr.regions@orc1.example.com;

/*

Step 5 Create a directory object at each database.
Each database involved in this operation must have a directory object to hold the Data
Pump dump file, and the user who will perform the export or import must have READ
and WRITE privileges on this directory object. In this example, a Data Pump export is
performed at the master site, and a Data Pump import is performed at the
materialized view site.

While connected in SQL*Plus to a database as an administrative user who can create
directory objects using the SQL statement CREATE DIRECTORY, create a directory
object to hold the Data Pump dump file and log files. For example:

*/

CONNECT system@orc1.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

CONNECT system@mview.example.com

CREATE DIRECTORY DPUMP_DIR AS '/usr/dpump_dir';

/*

Ensure that you complete these actions at both databases involved in the operation. In
this example, SYSTEM user creates the directory objects and performs all exports and
imports. If a user who does not own the directory object will perform the export or
import, then grant the user READ and WRITE privileges on the directory object.

Step 6 Perform a schema-level export of the schema containing the materialized
views.
On a command line, perform the export that will contain all data and metadata for the
materialized views. This example connects as the SYSTEM user. The following is an
example Data Pump export command:

expdp system SCHEMAS=temp_schema DIRECTORY=DPUMP_DIR
DUMPFILE=temp_schema.dmp

*/

PAUSE Press <RETURN> to continue when the export is complete.

/*

See Also: Oracle Database Utilities for information about
performing a Data Pump export

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

8-22 Oracle Database Advanced Replication Management API Reference

Step 7 Connect to the new materialized view site as SYSTEM user.
*/

CONNECT system@mview.example.com

/*

Step 8 Drop the hr User
This example creates the materialized views in the hr schema at the materialized view
site. This schema is created when Oracle is installed. This step drops the schema, but
the schema will be re-created and populated with materialized views later in this
example.

*/

DROP USER hr CASCADE;

/*

Step 9 Create necessary schema and database link at the materialized view site,
if they do not exist.
Before you perform the offline instantiation of your materialized views, create the
schema that will contain the materialized views at the new materialized view site and
the database link from the materialized view site to the master site. The materialized
views must be in the same schema that contains the master objects at the master site. If
the schema exists, then grant the necessary privileges and create the database link.

*/

CREATE TABLESPACE demo_mview
 DATAFILE 'demo_mview.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mview
 TEMPFILE 'temp_mview.dbf' SIZE 5M AUTOEXTEND ON;

CREATE USER hr IDENTIFIED BY &password;

ALTER USER hr DEFAULT TABLESPACE demo_mview
 QUOTA UNLIMITED ON demo_mview;

ALTER USER hr TEMPORARY TABLESPACE temp_mview;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,
 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
TO hr;

CONNECT hr@mview.example.com

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Managing a Materialized View Replication Environment 8-23

CREATE DATABASE LINK orc1.example.com CONNECT TO hr IDENTIFIED by &password;

/*

Step 10 Connect to the new materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin@mview.example.com

/*

Step 11 Create an empty materialized view group.
Run the DBMS_REPCAT.CREATE_MVIEW_REPGROUP procedure at the new
materialized view site to create an empty materialized view group into which you will
add your materialized views.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.example.com',
 propagation_mode => 'ASYNCHRONOUS');
END;
/

/*

Step 12 Create an empty refresh group.
All materialized views that are added to a particular refresh group are refreshed at the
same time. This ensures transactional consistency between the related materialized
views in the refresh group.

*/

BEGIN
 DBMS_REFRESH.MAKE (
 name => 'mviewadmin.hr_refg',
 list => '',
 next_date => SYSDATE,
 interval => 'SYSDATE + 1/24',
 implicit_destroy => FALSE,
 rollback_seg => '',
 push_deferred_rpc => TRUE,
 refresh_after_errors => FALSE);
END;
/

/*

Step 13 In a separate terminal window, transfer the export dump file to the new
materialized view site.
Using the DBMS_FILE_TRANSFER package, FTP or some other method, transfer the
export dump file to the new materialized view site.

*/

PAUSE Press <RETURN> to continue after transferring the dump file.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

8-24 Oracle Database Advanced Replication Management API Reference

/*

Step 14 In a separate terminal window, import the materialized views to the
owner at the new materialized view site.
On a command line, perform the import of the file that you exported in Step 5. This
example connects as the SYSTEM user.

If you use Data Pump, then ensure that you import your data using the
REMAP_SCHEMA parameter to import the data from the temporary user you created at
the master site to the owner of the materialized views at the materialized view site. In
this example, the temporary user at the master site is temp_schema and the
materialized view owner at the materialized view site is hr.

Also, if you use Data Pump, then you can use the REMAP_TABLESPACE parameter if
the tablespace is different at the master site and the materialized view site. In this
example, the tablespace at the master site is offline_mview (created in Step 3) and
the tablespace at the materialized view site is demo_mview (created in Step 9).

The following is an example import command:

impdp system DIRECTORY=DPUMP_DIR DUMPFILE=temp_schema.dmp
REMAP_SCHEMA=temp_schema:hr REMAP_TABLESPACE=offline_mview:demo_mview

Only users with the DBA role or the IMP_FULL_DATABASE role can import using the
REMAP_SCHEMA parameter.

*/

PAUSE Press <RETURN> to continue when the import is complete.

/*

Step 15 Add materialized views to the materialized view group.
Execute the DBMS_REPCAT.CREATE_MVIEW_REPOBJECT procedure to add the
materialized views to the materialized view group you created in Step 9.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;

See Also: Oracle Database Utilities for information about
performing a Data Pump import

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

Managing a Materialized View Replication Environment 8-25

/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'jobs',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions',
 type => 'SNAPSHOT',
 min_communication => TRUE);
END;
/

/*

Step 16 Add the materialized views to the refresh group.
All of the materialized view group objects that you add to the refresh group are
refreshed at the same time to preserve referential integrity between related
materialized views. Execute the DBMS_REFRESH.ADD procedure to add the
materialized views to the refresh group you created in Step 12.

Performing an Offline Instantiation of a Materialized View Site Using Export/Import

8-26 Oracle Database Advanced Replication Management API Reference

*/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.countries',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.departments',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.employees',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.jobs',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.job_history',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.locations',
 lax => TRUE);
END;
/

BEGIN
 DBMS_REFRESH.ADD (
 name => 'mviewadmin.hr_refg',
 list => 'hr.regions',
 lax => TRUE);
END;
/

/*

Using a Group Owner for a Materialized View Group

Managing a Materialized View Replication Environment 8-27

Step 17 Refresh materialized views to register them at master site.
In addition to retrieving the latest changes from the master tables, refreshing the
materialized views at the new materialized view site registers the offline instantiated
materialized views at the target master site.

*/

EXECUTE DBMS_REFRESH.REFRESH ('hr_refg');

/*

Step 18 Connect to the master site as SYSTEM user.
*/

CONNECT system@orc1.example.com

/*

Step 19 Drop the temporary schema to delete the temporary materialized views
you created in Step 4 at the master site.
*/

DROP USER temp_schema CASCADE;

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Using a Group Owner for a Materialized View Group
Specifying a group owner when you define a new materialized view group and its
related objects enables you to create multiple materialized view groups based on the
same replication group at a single materialized view site. Also, specifying group
owners enables you to create multiple materialized view groups that are based on the
same replication group at a master site or master materialized view site. You
accomplish this by creating the materialized view groups under different schemas at
the materialized view site. This example uses the schemas bob and jane as group
owners and assumes that these schemas exist at the materialized view site.

Executed As:

■ Materialized View Administrator at New Materialized View Site

Executed At:

■ Materialized View Site

Replication Status: Normal

Materialized View Site:

■ Set up materialized view site. In this example, the materialized view site is
mv1.example.com and the master site is orc1.example.com.

■ Create proxy users at the master site if they do not exist.

■ Create materialized view logs for the tables in the hr schema at the master site if
they do not exist.

Using a Group Owner for a Materialized View Group

8-28 Oracle Database Advanced Replication Management API Reference

Complete the following steps to use a group owner.

/************************* BEGINNING OF SCRIPT ******************************

Step 1 Create a database link from the hr schema to the master site
Before building your materialized view group, you must ensure that the replicated
schema exists at the remote materialized view site and that the necessary database
links have been created.

In this example, if the hr schema does not exist, then create the schema. If the hr
schema already exists at the materialized view site, then grant any necessary
privileges.

*/

CONNECT system@mv1.example.com

CREATE TABLESPACE demo_mv1
 DATAFILE 'demo_mv1.dbf' SIZE 10M AUTOEXTEND ON
 EXTENT MANAGEMENT LOCAL AUTOALLOCATE;

CREATE TEMPORARY TABLESPACE temp_mv1
 TEMPFILE 'temp_mv1.dbf' SIZE 5M AUTOEXTEND ON;

ACCEPT password PROMPT 'Enter password for user: ' HIDE

CREATE USER hr IDENTIFIED BY &password;

ALTER USER hr DEFAULT TABLESPACE demo_mv1
 QUOTA UNLIMITED ON demo_mv1;

ALTER USER hr TEMPORARY TABLESPACE temp_mv1;

GRANT
 CREATE SESSION,
 CREATE TABLE,
 CREATE PROCEDURE,
 CREATE SEQUENCE,
 CREATE TRIGGER,
 CREATE VIEW,

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

See Also:

■ Oracle Database Advanced Replication for a complete description
of using group owners and the advantages of using multiple
data sets

■ For more information about setting up a master site and
creating proxy users at a master site, see "Setting Up Master
Sites" on page 2-3

■ For more information about setting up materialized view sites,
see "Setting Up Materialized View Sites" on page 2-16

Using a Group Owner for a Materialized View Group

Managing a Materialized View Replication Environment 8-29

 CREATE SYNONYM,
 ALTER SESSION,
 CREATE MATERIALIZED VIEW,
 ALTER ANY MATERIALIZED VIEW,
 CREATE DATABASE LINK
 TO hr;

/*

If it does not already exist, then create the database link for the replicated schema.

Before building your materialized view group, you must ensure that the necessary
database links exist for the replicated schema. The owner of the materialized views
needs a database link pointing to the proxy_refresher that was created when the
master site was set up.

*/

SET ECHO ON

SPOOL mv_group_owner.out

CONNECT hr@mv1.example.com

CREATE DATABASE LINK orc1.example.com
 CONNECT TO proxy_refresher IDENTIFIED BY &password;

/*

Step 2 Connect to the materialized view site as the materialized view
administrator.
*/

CONNECT mviewadmin@mv1.example.com

/*

Step 3 Create materialized view group with group owner (gowner) bob using the
CREATE_MVIEW_REPGROUP procedure.
The replication group that you specify in the gname parameter must match the name
of the replication group that you are replicating at the target master site or master
materialized view site. The gowner parameter enables you to specify an additional
identifier that lets you create multiple materialized view groups based on the same
replication group at the same materialized view site.

In this example, materialized view groups are created for the group owners bob and
jane, and these two materialized view groups are based on the same replication
group.

*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.example.com',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'bob');
END;
/

Using a Group Owner for a Materialized View Group

8-30 Oracle Database Advanced Replication Management API Reference

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname => 'hr_repg',
 master => 'orc1.example.com',
 propagation_mode => 'ASYNCHRONOUS',
 gowner => 'jane');
END;
/

/*

Step 4 Create the materialized views owned by bob.
The gowner value used when creating your materialized view objects must match the
gowner value specified when you created the materialized view group in the previous
procedures. After creating the materialized view groups, you can create materialized
views based on the same master in the hr_repg materialized view group owned by
bob and jane. This example assumes that these users exist.

Whenever you create a materialized view, always specify the schema name of the table
owner in the query for the materialized view. In the following examples, hr is
specified as the owner of the table in each query.

*/

CREATE MATERIALIZED VIEW hr.countries_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.countries@orc1.example.com;

CREATE MATERIALIZED VIEW hr.departments_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.example.com;

CREATE MATERIALIZED VIEW hr.employees_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.example.com;

CREATE MATERIALIZED VIEW hr.jobs_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.jobs@orc1.example.com;

CREATE MATERIALIZED VIEW hr.job_history_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.job_history@orc1.example.com;

CREATE MATERIALIZED VIEW hr.locations_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.locations@orc1.example.com;

Caution: Each object must have a unique name. When using a
gowner to create multiple materialized view groups, duplicate
object names could become a problem. To avoid any object-naming
conflicts, you might want to append the gowner value to the end of
the object name that you create, as illustrated in the following
procedures (that is, create materialized view
hr.countries_bob). Such a naming method ensures that you do
not create any objects with conflicting names.

Using a Group Owner for a Materialized View Group

Managing a Materialized View Replication Environment 8-31

CREATE MATERIALIZED VIEW hr.regions_bob
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.regions@orc1.example.com;

/*

Step 5 Create the materialized views owned by jane.
*/

CREATE MATERIALIZED VIEW hr.departments_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.departments@orc1.example.com;

CREATE MATERIALIZED VIEW hr.employees_jane
 REFRESH FAST WITH PRIMARY KEY FOR UPDATE
 AS SELECT * FROM hr.employees@orc1.example.com;

/*

Step 6 Add the materialized views owned by bob to the materialized view group.
*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'countries_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'employees_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',

Using a Group Owner for a Materialized View Group

8-32 Oracle Database Advanced Replication Management API Reference

 oname => 'jobs_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'job_history_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'locations_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'regions_bob',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'bob');
END;
/

/*

Step 7 Add the materialized views owned by jane to the materialized view group.
*/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',
 oname => 'departments_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

BEGIN
 DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 gname => 'hr_repg',
 sname => 'hr',

Using a Group Owner for a Materialized View Group

Managing a Materialized View Replication Environment 8-33

 oname => 'employees_jane',
 type => 'SNAPSHOT',
 min_communication => TRUE,
 gowner => 'jane');
END;
/

SET ECHO OFF

SPOOL OFF

/*

Step 8 Add your materialized views to a refresh group.

/************************* END OF SCRIPT **********************************/

See Also: Chapter 5, "Creating a Materialized View Group" (Step
6) for more information about adding materialized views to a
refresh group

Using a Group Owner for a Materialized View Group

8-34 Oracle Database Advanced Replication Management API Reference

Managing Replication Objects and Queues 9-1

9
Managing Replication Objects and Queues

This chapter illustrates how to manage the replication objects and queues in your
replication environment using the replication management API.

This chapter contains these topics:

■ Altering a Replicated Object in a Quiesced Master Group

■ Modifying Tables without Replicating the Modifications

■ Converting a LONG Column to a LOB Column in a Replicated Table

■ Determining Differences Between Replicated Tables

■ Managing the Deferred Transactions Queue

■ Managing the Error Queue

Altering a Replicated Object in a Quiesced Master Group
As your database needs change, you might need to modify the characteristics of your
replicated objects. It is important that you do not directly execute DDL to alter your
replicated objects. Doing so might cause your replication environment to fail.

Use the ALTER_MASTER_REPOBJECT procedure in the DBMS_REPCAT package to alter
the characteristics of your replicated objects in a quiesced master group. From the
example following, notice that you simply include the necessary DDL within the
procedure call (see the ddl_text parameter).

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Master Definition Site

Replication Status: Quiesced

Complete the following steps to alter a replicated object in a quiesced master group.

/************************* BEGINNING OF SCRIPT ******************************

Note: If you are viewing this document online, then you can copy
the text from the "BEGINNING OF SCRIPT" line after this note to
the "END OF SCRIPT" line into a text editor and then edit the text
to create a script for your environment.

Altering a Replicated Object in a Quiesced Master Group

9-2 Oracle Database Advanced Replication Management API Reference

Step 1 If you are altering a master table, and there are updatable materialized
views based on the master table, then refresh the updatable materialized views.
Refresh the updatable materialized views to push any changes from them to the
master table. See "Refreshing Materialized Views" on page 8-1 for instructions.

*/

PAUSE Press <RETURN> to continue when all of the updatable materialized views that
are based on the master table have been refreshed.

/*

Step 2 Connect to the master definition site as the replication administrator.
*/

SET ECHO ON

SPOOL alter_rep_object.out

CONNECT repadmin@orc1.example.com

/*

Step 3 If necessary, then quiesce the master group.
See the "ALTER_MASTER_REPOBJECT Procedure" on page 18-23 for information
about when quiesce is required.

*/

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

/*

Step 4 In a separate SQL*Plus session, check the status of the master group you
are quiescing.
Do not proceed until the group's status is QUIESCED.

To check the status, run the following query:

SELECT GNAME, STATUS FROM DBA_REPGROUP;

*/

PAUSE Press <RETURN> to continue when the master group's status is QUIESCED.

/*

Step 5 Alter the replicated object.
*/

BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'hr',
 oname => 'employees',

Altering a Replicated Object in a Quiesced Master Group

Managing Replication Objects and Queues 9-3

 type => 'TABLE',
 ddl_text => 'ALTER TABLE hr.employees ADD (timestamp DATE)');
END;
/

/*

Step 6 Regenerate replication support for the altered object.
*/

BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'hr',
 oname => 'employees',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

/*

Step 7 In a separate SQL*Plus session, check if DBA_REPCATLOG is empty.
Do not proceed until this view is empty.

Execute the following SELECT statement in another SQL*Plus session to monitor the
DBA_REPCATLOG view:

SELECT * FROM DBA_REPCATLOG WHERE GNAME = 'HR_REPG';

*/

PAUSE Press <RETURN> to continue when DBA_REPCATLOG is empty.

/*

Step 8 Re-create the Materialized View Log for a Master Table, If Necessary
If you altered a master table with fast-refreshable materialized views based on it, then
the materialized view log must be dropped and re-created if any of the following
conditions are met:

■ The materialized view log must contain one or more new columns that were
added to the master table. In this case, you can choose to alter the materialized
view log to add the columns. See "Altering a Materialized View Log to Add
Columns" on page 8-12.

■ The materialized view log contains one or more columns in the master table that
were altered.

■ The materialized view log contains one more columns that were deleted from the
master table.

*/

PAUSE Press <RETURN> to continue after the materialized view logs are re-created.

/*

Modifying Tables without Replicating the Modifications

9-4 Oracle Database Advanced Replication Management API Reference

Step 9 Re-create Materialized Views, If Necessary
If you altered a master table with updatable materialized views based on it, then all of
these updatable materialized views must be re-created.

If you altered a master table with read-only materialized views based on it, then these
read-only materialized views must be re-created if any of the following conditions are
met:

■ The read-only materialized view must reference one or more columns that were
added to the master table.

■ The read-only materialized view references one or more columns in the master
table that were altered.

■ The read-only materialized view references one or more columns that were
deleted from the master table.

*/

PAUSE Press <RETURN> to continue after the materialized views are re-created.

/*

Step 10 Resume replication activity.
*/

BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

SET ECHO OFF

SPOOL OFF

/************************* END OF SCRIPT **********************************/

Modifying Tables without Replicating the Modifications
You might have a situation in which you need to modify a replicated object, but you
do not want this modification replicated to the other sites in the replication
environment. For example, you might want to disable replication in the following
situations:

■ When you are using procedural replication to propagate a change, always disable
row-level replication at the start of your procedure.

■ You might need to disable replication in triggers defined on replicated tables to
avoid replicating trigger actions multiple times. See "Ensuring that Replicated
Triggers Fire Only Once" on page 9-6.

■ Sometimes when you manually resolve a conflict, you might not want to replicate
this modification to the other copies of the table.

You might need to do this, for example, if you need to correct the state of a record at
one site so that a conflicting replicated update will succeed when you reexecute the
error transaction. Or, you might use an unreplicated modification to undo the effects of
a transaction at its origin site because the transaction could not be applied at the

Modifying Tables without Replicating the Modifications

Managing Replication Objects and Queues 9-5

destination site. In this example, you can use the Advanced Replication interface in
Oracle Enterprise Manager to delete the conflicting transaction from the destination
site.

To modify tables without replicating the modifications, use the REPLICATION_ON and
REPLICATION_OFF procedures in the DBMS_REPUTIL package. These procedures
take no arguments and are used as flags by the generated replication triggers.

Disabling Replication
The DBMS_REPUTIL.REPLICATION_OFF procedure sets the state of an internal
replication variable for the current session to FALSE. Because all replicated triggers
check the state of this variable before queuing any transactions, modifications made to
the replicated tables that use row-level replication do not result in any queued
deferred transactions.

If you are using procedural replication, then call REPLICATION_OFF at the start of
your procedure, as shown in the following example. This ensures that the replication
facility does not attempt to use row-level replication to propagate the changes that you
make.

CREATE OR REPLACE PACKAGE update_objects AS
 PROCEDURE update_emp(adjustment IN NUMBER);
END;
/

CREATE OR REPLACE PACKAGE BODY update_objects AS
 PROCEDURE update_emp(adjustment IN NUMBER) IS
 BEGIN
 --turn off row-level replication for set update
 DBMS_REPUTIL.REPLICATION_OFF;
 UPDATE emp . . .;
 --reenable replication
 DBMS_REPUTIL.REPLICATION_ON;
 EXCEPTION WHEN OTHERS THEN
 . . .
 DBMS_REPUTIL.REPLICATION_ON;
 END;
END;
/

Reenabling Replication
After resolving any conflicts, or at the end of your replicated procedure, be certain to
call DBMS_REPUTIL.REPLICATION_ON to resume normal replication of changes to
your replicated tables or materialized views. This procedure takes no arguments.
Calling REPLICATION_ON sets the internal replication variable to TRUE.

Note: To enable and disable replication, you must have the
EXECUTE privilege on the DBMS_REPUTIL package.

Caution: Turning replication on or off affects only the current
session. That is, other users currently connected to the same server
are not restricted from placing committed changes in the deferred
transaction queue.

Converting a LONG Column to a LOB Column in a Replicated Table

9-6 Oracle Database Advanced Replication Management API Reference

Ensuring that Replicated Triggers Fire Only Once
If you have defined a replicated trigger on a replicated table, then you might need to
ensure that the trigger fires only once for each change that you make. Typically, you
only want the trigger to fire when the change is first made, and you do not want the
remote trigger to fire when the change is replicated to the remote site.

You should check the value of the DBMS_REPUTIL.FROM_REMOTE package variable at
the start of your trigger. The trigger should update the table only if the value of this
variable is FALSE.

Alternatively, you can disable replication at the start of the trigger and reenable it at
the end of the trigger when modifying rows other than the one that caused the trigger
to fire. Using this method, only the original change is replicated to the remote sites.
Then the replicated trigger fires at each remote site. Any updates performed by the
replicated trigger are not pushed to any other sites.

Using this approach, conflict resolution is not invoked. Therefore, you must ensure
that the changes resulting from the trigger do not affect the consistency of the data.

Converting a LONG Column to a LOB Column in a Replicated Table
LOB columns can be replicated, but LONG columns cannot be replicated. You can
convert the data type of a LONG column to a CLOB column and the data type of a
LONG_RAW column to a BLOB column.

Converting a LONG column to a LOB column can result in increased network
bandwidth requirements because the data in such a column is replicated after
conversion. Ensure that you have adequate network bandwidth before completing the
procedure in this section.

Complete the following steps to convert a LONG column to a LOB column in a
replicated table:

Step 1 Ensure that the data in the LONG column is consistent at all replication
sites.
If a table containing a LONG column is configured as a master table, then Oracle does
not replicate changes to the data in the LONG column. Therefore, the data in the LONG
column might not match at all of your replication sites. You must ensure that the data
in the LONG column matches at all master sites before proceeding.

Step 2 Connect to the master definition site as the replication administrator.
CONNECT repadmin@orc1.example.com

Step 3 If the replication status is normal, then change the status to quiesced.
BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'sales_mg');
END;
/

See Also: Oracle Database SecureFiles and Large Objects Developer's
Guide for more information about applications and LONG to LOB
conversion

Determining Differences Between Replicated Tables

Managing Replication Objects and Queues 9-7

Step 4 Convert the LONG column to a LOB column.
BEGIN
 DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 ddl_text => 'ALTER TABLE staff.positions MODIFY (job_desc CLOB)');
END;
/

A LONG_RAW column can be converted to a BLOB column using a similar ALTER
TABLE statement.

Step 5 Regenerate replication support for the altered master table.
BEGIN
 DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname => 'staff',
 oname => 'positions',
 type => 'TABLE',
 min_communication => TRUE);
END;
/

Step 6 Resume replication.
BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'sales_mg');
END;
/

Step 7 If materialized views are based on the altered table at any of the master
sites, then rebuild these materialized views.
Rebuild materialized views if necessary.

Determining Differences Between Replicated Tables
It is possible for the differences to arise in replicated tables. When administering a
replication environment, you might want to check, periodically, whether the contents
of two replicated tables are identical. The following procedures in the
DBMS_RECTIFIER_DIFF package let you identify, and optionally rectify, the
differences between two tables.

Note: You can also determine differences between database objects
and converge them using the DBMS_COMPARISON package.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_COMPARISON package

■ Oracle Database 2 Day + Data Replication and Integration Guide and
Oracle Streams Replication Administrator's Guide for information
about using the DBMS_COMPARISON package

Determining Differences Between Replicated Tables

9-8 Oracle Database Advanced Replication Management API Reference

Using the DIFFERENCES Procedure
The DIFFERENCES procedure compares two replicas of a table, and determines all
rows in the first replica that are not in the second and all rows in the second that are
not in the first. The output of this procedure is stored in two user-created tables. The
first table stores the values of the missing rows, and the second table is used to
indicate which site contains each row.

Using the RECTIFY Procedure
The RECTIFY procedure uses the information generated by the DIFFERENCES
procedure to rectify the two tables. Any rows found in the first table and not in the
second are inserted into the second table. Any rows found in the second table and not
in the first are deleted from the second table.

To restore equivalency between all copies of a replicated table, complete the following
steps:

Step 1 Select one copy of the table to be the "reference" table.
This copy will be used to update all other replicas of the table as needed.

Step 2 Determine if it is necessary to check all rows and columns in the table for
differences, or only a subset.
For example, it might not be necessary to check rows that have not been updated since
the last time that you checked for differences. Although it is not necessary to check all
columns, your column list must include all columns that make up the primary key (or
that you designated as a substitute identity key) for the table.

Step 3 After determining which columns you will be checking in the table, create
two tables to hold the results of the comparison.
You must create one table that can hold the data for the columns being compared. For
example, if you decide to compare the employee_id, salary, and department_id
columns of the employees table, then your CREATE statement would need to be
similar to the following:

CREATE TABLE hr.missing_rows_data (
 employee_id NUMBER(6),
 salary NUMBER(8,2),
 department_id NUMBER(4));

You must also create a table that indicates where the row is found. This table must
contain three columns with the data types shown in the following example:

CREATE TABLE hr.missing_rows_location (
 present VARCHAR2(128),
 absent VARCHAR2(128),
 r_id ROWID);

Step 4 Suspend replication activity for the replication group containing the
tables that you want to compare.
Although suspending replication activity for the group is not a requirement, rectifying
tables that were not quiesced first can result in inconsistencies in your data.

CONNECT repadmin

BEGIN
 DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname => 'hr_repg');

Determining Differences Between Replicated Tables

Managing Replication Objects and Queues 9-9

END;
/

Step 5 At the site containing the "reference" table, call the DIFFERENCES
procedure.
For example, if you wanted to compare the employees tables at the New York and
San Francisco sites, then your procedure call would look similar to the following:

BEGIN
 DBMS_RECTIFIER_DIFF.DIFFERENCES (
 sname1 => 'hr',
 oname1 => 'employees',
 reference_site => 'ny.example.com',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.example.com',
 where_clause => '',
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.example.com',
 max_missing => 500,
 commit_rows => 50);
END;
/

Figure 9–1 shows an example of two replicas of the employees table and what the
resulting missing rows tables would look like if you executed the DIFFERENCES
procedure on these replicas.

Determining Differences Between Replicated Tables

9-10 Oracle Database Advanced Replication Management API Reference

Figure 9–1 Determining Differences Between Replicas

Notice that the two missing rows tables are related by the ROWID and r_id columns.

Step 6 Rectify the table at the "comparison" site to be equivalent to the table at
the "reference" site.
BEGIN
 DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 => 'hr',
 oname1 => 'employees',
 reference_site => 'ny.example.com',
 sname2 => 'hr',
 oname2 => 'employees',
 comparison_site => 'mv4.example.com',
 column_list => 'employee_id,salary,department_id',
 missing_rows_sname => 'hr',
 missing_rows_oname1 => 'missing_rows_data',
 missing_rows_oname2 => 'missing_rows_location',
 missing_rows_site => 'ny.example.com',
 commit_rows => 50);
END;
/

The RECTIFY procedure temporarily disables replication at the "comparison" site
while it performs the necessary insertions and deletions, as you would not want to
propagate these changes. RECTIFY first performs all of the necessary DELETE

employees Table at NY.EXAMPLE.COM

employee_id last_name department_id

100
101

102

Jones

Braun

20
20

20

Kim

salary commission_pct

55,000
62,000

43,500

.4

.25

.1

employees Table at SF.EXAMPLE.COM

employee_id last_name department_id

100
101

102

Jones

Braun

20
20

20

Kim

salary commission_pct

55,000
62,000

43,500

.4

.3

.1
103 Rama 20 48,750 .35

missing_rows_data Table

employee_id

101

101
103

salary commission_pct

62,000

62,000
48,750

.25

.3

.35

rowid

000015E8.0000.0002

000015E8.0001.0002
000015E8.0002.0002

missing_rows_location Table

present

ny.com

sf.com
sf.com

absent

sf.example.com

ny.example.com
ny.example.com

r_id

000015E8.0000.0002

000015E8.0001.0002
000015E8.0002.0002

Replicas

Managing the Deferred Transactions Queue

Managing Replication Objects and Queues 9-11

operations and then performs all of the INSERT operations. This ensures that there are
no violations of a PRIMARY KEY constraint.

After you have successfully executed the RECTIFY procedure, your missing rows
tables should be empty.

Step 7 Repeat Steps 5 and 6 for the remaining copies of the replicated table.
Remember to use the same "reference" table each time to ensure that all copies are
identical when you complete this procedure.

Step 8 Resume replication activity for the master group.
BEGIN
 DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname => 'hr_repg');
END;
/

Managing the Deferred Transactions Queue
Typically, Advanced Replication is configured to push and purge the deferred
transaction queue automatically. At times, however, you might need to push or purge
the deferred transaction queue manually. The process for pushing the deferred
transaction queue is the same at master sites and materialized view sites.

Pushing the Deferred Transaction Queue
Master sites are configured to push the deferred transaction queue automatically at set
intervals. At materialized view sites, if you do not automatically propagate the
transactions in your deferred transaction queue during the refresh of your
materialized view, then you must complete the following steps to propagate changes
made to the updatable materialized view to its master table or master materialized
view.

This example illustrates pushing the deferred transaction queue at a materialized view
site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin@mv1.example.com

Caution: If you have any additional constraints on the
"comparison" table, then you must ensure that they are not violated
when you call RECTIFY. You might need to update the table
directly using the information in the missing rows table. If so, then
be sure to DELETE the appropriate rows from the missing rows
tables.

Managing the Deferred Transactions Queue

9-12 Oracle Database Advanced Replication Management API Reference

Step 2 Execute the following SELECT statement to view the deferred
transactions and their destinations.
Propagation of the deferred transaction queue is based on the destination of the
transaction. Each distinct destination and the number of transactions pending for the
destination will be displayed.

SELECT DISTINCT(dblink), COUNT(deferred_tran_id)
 FROM deftrandest GROUP BY dblink;

Step 3 Execute the DBMS_DEFER_SYS.PUSH function for each site that is listed
as a destination for a deferred transaction.
DECLARE
 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PUSH (
 destination => 'orc1.example.com',
 stop_on_error => FALSE,
 delay_seconds => 0,
 parallelism => 0);
END;
/

Run the PUSH procedure for each destination that was returned in the SELECT
statement you ran in Step 2.

Purging the Deferred Transaction Queue
If your system is not set to automatically purge the successfully propagated
transactions in your deferred transaction queue periodically, then you must complete
the following steps to purge them manually.

This example illustrates purging the deferred transaction queue at a materialized view
site, but the process is the same at master sites and materialized view sites.

Executed As: Materialized View Administrator

Executed At: Materialized View Site

Complete the following steps:

Step 1 Connect to the materialized view site as the materialized view
administrator.
CONNECT mviewadmin@mv1.example.com

Step 2 Purge the deferred transaction queue.
DECLARE
 temp INTEGER;
BEGIN
 temp := DBMS_DEFER_SYS.PURGE (
 purge_method => DBMS_DEFER_SYS.PURGE_METHOD_QUICK);
END;
/

Managing the Deferred Transactions Queue

Managing Replication Objects and Queues 9-13

Using the ANYDATA Type to Determine the Value of an Argument in a Deferred Call
If you are using column objects, collections, or REFs in a replicated table, then you can
use the GET_ANYDATA_ARG function in the DBMS_DEFER_QUERY package to
determine the value of an argument in a deferred call that involves one of these user-
defined types.

The following example illustrates how to use the GET_ANYDATA_ARG function. This
example uses the following user-defined types in the oe sample schema.

CREATE TYPE phone_list_typ AS VARRAY(5) OF VARCHAR2(25);
/

CREATE TYPE warehouse_typ AS OBJECT
 (warehouse_id NUMBER(3),
 warehouse_name VARCHAR2(35),
 location_id NUMBER(4)
);
/

CREATE TYPE inventory_typ AS OBJECT
 (product_id NUMBER(6),
 warehouse warehouse_typ,
 quantity_on_hand NUMBER(8)
);
/

CREATE TYPE inventory_list_typ AS TABLE OF inventory_typ;
/

The following procedure retrieves the argument value for collection, object, and REF
instances of calls stored in the deferred transactions queue. This procedure assumes
that the call number and transaction id are available.

The user who creates the procedure must have EXECUTE privilege on the
DBMS_DEFER_QUERY package and must have CREATE PROCEDURE privilege. This
example uses the oe sample schema. Therefore, to run the example, you must grant
the oe user these privileges. Connect as an administrative user and enter the
following:

GRANT EXECUTE ON DBMS_DEFER_QUERY TO oe;

GRANT CREATE PROCEDURE TO oe;

CONNECT oe@orc1.example.com

CREATE OR REPLACE PROCEDURE get_userdef_arg AS
 call_no NUMBER := 0;
 txn_id VARCHAR2(128) := 'xx.xx.xx';
 anydata_val ANYDATA;
 t ANYTYPE;
 data_pl phone_list_typ; -- varray

Note: If you use the purge_method_quick parameter, deferred
transactions and deferred procedure calls that have been
successfully pushed can remain in the DEFTRAN and DEFCALL data
dictionary views for longer than expected before they are purged.
See the "Usage Notes" for DBMS_DEFER_SYS.PURGE on page 14-15
for details.

Managing the Deferred Transactions Queue

9-14 Oracle Database Advanced Replication Management API Reference

 data_ntt inventory_list_typ; -- nested table type
 data_p warehouse_typ; -- object type
 ref1 REF inventory_typ; -- REF type
 rval PLS_INTEGER; -- return value
 tc PLS_INTEGER; -- return value
 prec PLS_INTEGER; -- precision
 scale PLS_INTEGER; -- scale
 len PLS_INTEGER; -- length
 csid PLS_INTEGER; -- character set id
 csfrm PLS_INTEGER; -- character set form
 cnt PLS_INTEGER; -- count of varray elements or number of
 -- object attributes
 sname VARCHAR2(35); -- schema name
 type_name VARCHAR2(35); -- type name
 version VARCHAR2(35);
BEGIN
 FOR i IN 1 .. 5 LOOP
 anydata_val := DBMS_DEFER_QUERY.GET_ANYDATA_ARG(call_no, i, txn_id);
 -- Get the type information, including type name.
 tc := anydata_val.GetType(t);
 tc := t.GetInfo(prec, scale, len, csid, csfrm, sname, type_name,
 version, cnt);
 -- Based on the type name, convert the anydata value to the appropriate
 -- user-defined types.
 IF type_name = 'PHONE_LIST_TYP'
 THEN
 -- The anydata_val contains phone_list_typ varray instance.
 rval := anydata_val.GetCollection(data_pl);
 -- Do something with data_pl.
 ELSIF type_name = 'INVENTORY_LIST_TYP'
 THEN
 -- anydata_val contains inventory_list_typ nested table instance.
 rval := anydata_val.GetCollection(data_ntt);
 -- Do something with data_ntt.
 ELSIF type_name = 'WAREHOUSE_TYP'
 THEN
 -- The anydata_val contains warehouse_typ object instance.
 rval := anydata_val.GetObject(data_p);
 -- Do something with data_p.
 ELSIF type_name = 'INVENTORY_TYP'
 THEN
 -- The anydata_val contains a reference to inventory_typ object instance.
 rval := anydata_val.GetRef(ref1);
 -- Do something with ref1.
 END IF;
 END LOOP;
END;
/

See Also:

■ "GET_datatype_ARG Function" on page 13-7

■ Oracle Database SQL Language Reference, Oracle Database Object-
Relational Developer's Guide, and Oracle Database PL/SQL
Packages and Types Reference for more information about the
ANYDATA data type

Managing the Error Queue

Managing Replication Objects and Queues 9-15

Managing the Error Queue
As an administrator of a replication environment, you should regularly monitor the
error queue to determine if any deferred transactions were not successfully applied at
the target master site.

To check the error queue, issue the following SELECT statement (as the replication
administrator) when connected to the target master site:

SELECT * FROM deferror;

If the error queue contains errors, then you should resolve the error condition and
reexecute the deferred transaction. You have two options when reexecuting a deferred
transaction: you can reexecute in the security context of the user who received the
deferred transaction, or you can reexecute the deferred transaction with an alternate
security context.

Reexecuting Error Transaction as the Receiver
The following procedure reexecutes a specified deferred transaction in the security
context of the user who received the deferred transaction. This procedure should not
be executed until the error situation has been resolved.

Meet the following requirements to complete these actions:

Executed As: Replication Administrator

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 In SQL*Plus, connect to the master site as the replication administrator.
See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Step 2 Reexecute the error transaction.
BEGIN
 DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id => '1.12.2904',
 destination => 'orc2.example.com');
END;
/

Reexecuting Error Transaction as Alternate User
The following procedure reexecutes a specified deferred transaction in the security
context of the currently connected user. This procedure should not be executed until
the error situation has been resolved.

Caution: If you have multiple error transactions and you want to
ensure that they are reexecuted in the correct order, then you can
specify NULL for the deferred_tran_id parameter in the
procedures in the following sections. If you do not specify NULL,
then reexecuting individual transactions in the wrong order can
cause conflicts.

Managing the Error Queue

9-16 Oracle Database Advanced Replication Management API Reference

Meet the following requirements to complete these actions:

Executed As: Connected User

Executed At: Site Containing Errors

Replication Status: Normal

Complete the following steps:

Step 1 In SQL*Plus, connect to the master site as the alternate user.
See Oracle Database Administrator's Guide for information about connecting to a
database in SQL*Plus.

Step 2 Reexecute the error transaction.
BEGIN
 DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id => '1.12.2904',
 destination => 'orc2.example.com');
END;
/

Monitoring a Replication Environment 10-1

10
Monitoring a Replication Environment

This chapter illustrates how to monitor a replication a replication environment using
the data dictionary.

This chapter contains these topics:

■ Monitoring Master Replication Environments

■ Monitoring Materialized View Sites

■ Monitoring Administrative Requests

■ Monitoring the Deferred Transactions Queue

■ Monitoring the Error Queue

■ Monitoring Performance in a Replication Environment

Monitoring Master Replication Environments
This section contains queries that you can run to display information about a master
replication environment. The replication environment can be a multimaster
environment, a master materialized view environment, or a hybrid environment that
includes multiple master sites and materialized views.

This section contains the following topics:

■ Monitoring Master Sites

■ Monitoring Master Groups

■ Monitoring Masters

Note: The Advanced Replication interface in Oracle Enterprise
Manager is also an excellent way to monitor a replication
environment. Most of the information obtained by the queries in
this chapter can be found by using the Advanced Replication
interface. See the Advanced Replication interface online Help for
more information.

See Also: Part IV, "Replication Data Dictionary Reference"

Monitoring Master Replication Environments

10-2 Oracle Database Advanced Replication Management API Reference

Monitoring Master Sites
This section contains queries that you can run to display information about master
sites.

Listing General Information About a Master Site
You can find the following general information about a master site by running the
query in this section:

■ The number of administrative requests.

■ The number of administrative request errors.

■ The number of unpropagated deferred transaction-destination pairs. Each
deferred transaction can have multiple destinations to which it will be propagated,
and each destination is a single deferred transaction-destination pair.

For example, if there are ten deferred transactions and each one must be propagated to
three sites, then there are 30 deferred transaction-pairs returned by this query. After
some time, if the first deferred transaction is propagated to two of the three destination
sites, then there are still ten deferred transactions, but there are two fewer deferred-
transaction pairs, and this query returns 28 unpropagated deferred transaction-pairs.
In this case, the first deferred transaction only has one transaction-pair remaining.

■ The number of deferred transaction errors (error transactions).

■ The number of successfully propagated transactions that are still in the queue.
These transactions should be purged from the queue.

Run the following query to list this information for the current master site:

COLUMN GLOBAL_NAME HEADING 'Database' FORMAT A25
COLUMN ADMIN_REQUESTS HEADING 'Admin|Reqests' FORMAT 9999
COLUMN STATUS HEADING 'Admin|Errors' FORMAT 9999
COLUMN TRAN HEADING 'Def|Trans|Pairs' FORMAT 9999
COLUMN ERRORS HEADING 'Def|Trans|Errors' FORMAT 9999
COLUMN COMPLETE HEADING 'Propagated|Trans' FORMAT 9999

SELECT G.GLOBAL_NAME, D.ADMIN_REQUESTS, E.STATUS, DT.TRAN, DE.ERRORS, C.COMPLETE
 FROM (SELECT GLOBAL_NAME FROM GLOBAL_NAME) G,
 (SELECT COUNT(ID) ADMIN_REQUESTS FROM DBA_REPCATLOG) D,
 (SELECT COUNT(STATUS) STATUS FROM DBA_REPCATLOG WHERE STATUS = 'ERROR') E,
 (SELECT COUNT(*) TRAN FROM DEFTRANDEST) DT,
 (SELECT COUNT(*) ERRORS FROM DEFERROR) DE,
 (SELECT COUNT(A.DEFERRED_TRAN_ID) COMPLETE FROM DEFTRAN A
 WHERE A.DEFERRED_TRAN_ID NOT IN (
 SELECT B.DEFERRED_TRAN_ID FROM DEFTRANDEST B)) C;

Your output looks similar to the following:

 Def Def
 Admin Admin Trans Trans Propagated
Database Reqests Errors Pairs Errors Trans
------------------------- ------- ------ ----- ------ ----------
ORC1.EXAMPLE.COM 5 0 37 0 53

Note: This query can be expensive if you have a large number of
transactions in the deferred transactions queue.

Monitoring Master Replication Environments

Monitoring a Replication Environment 10-3

Monitoring Master Groups
This section contains queries that you can run to display information about the master
groups at a replication site.

Listing the Master Sites Participating in a Master Group
Run the following query to list the master sites for each master group at a replication
site and indicate which master site is the master definition site for each master group:

COLUMN GNAME HEADING 'Master Group' FORMAT A20
COLUMN DBLINK HEADING 'Sites' FORMAT A25
COLUMN MASTERDEF HEADING 'Master|Definition|Site?' FORMAT A10

SELECT GNAME, DBLINK, MASTERDEF
 FROM DBA_REPSITES
 WHERE MASTER = 'Y'
 AND GNAME NOT IN (SELECT GNAME FROM DBA_REPSITES WHERE SNAPMASTER = 'Y')
 ORDER BY GNAME;

The subquery in the SELECT statement ensures that materialized view groups do not
appear in the output. Your output looks similar to the following:

 Master
 Definition
Master Group Sites Site?
-------------------- ------------------------- ----------
HR_REPG ORC1.EXAMPLE.COM Y
HR_REPG ORC2.EXAMPLE.COM N
HR_REPG ORC3.EXAMPLE.COM N

This list indicates that orc1.example.com is the master definition site for the
hr_repg master group, which also includes the master sites orc2.example.com
and orc3.example.com.

Listing General Information About Master Groups
You can use the query in this section to list the following general information about the
master groups at a master site:

■ The name of each master group.

■ The number of unpropagated deferred transaction-destination pairs. Each
deferred transaction can have multiple destinations to which it will be propagated,
and each destination is a single deferred transaction-destination pair.

For example, if there are ten deferred transactions and each one must be propagated to
three sites, then there are 30 deferred transaction-pairs returned by this query. After
some time, if the first deferred transaction is propagated to two of the three destination
sites, then there are still ten deferred transactions, but there are two fewer deferred-
transaction pairs, and this query returns 28 unpropagated deferred transaction-pairs.
In this case, the first deferred transaction only has one transaction-pair remaining.

■ The number of deferred transaction errors (error transactions) for each master
group

■ The number of administrative requests for each master group

■ The number of administrative request errors for each master group

Run the following query to list this information:

Monitoring Master Replication Environments

10-4 Oracle Database Advanced Replication Management API Reference

COLUMN GNAME HEADING 'Master Group' FORMAT A15
COLUMN deftran HEADING 'Number of|Deferred|Transaction|Pairs' FORMAT 9999
COLUMN deftranerror HEADING 'Number of|Deferred|Transaction|Errors' FORMAT 9999
COLUMN adminreq HEADING 'Number of|Administrative|Requests' FORMAT 9999
COLUMN adminreqerror HEADING 'Number of|Administrative|Request|Errors'
COLUMN adminreqerror FORMAT 9999

SELECT G.GNAME,
 NVL(T.CNT1, 0) deftran,
 NVL(IE.CNT2, 0) deftranerror,
 NVL(A.CNT3, 0) adminreq,
 NVL(B.CNT4, 0) adminreqerror
 FROM
 (SELECT DISTINCT GNAME FROM DBA_REPGROUP WHERE MASTER='Y') G,
 (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT D.DEFERRED_TRAN_ID) CNT1
 FROM DBA_REPOBJECT RO, DEFCALL D, DEFTRANDEST TD
 WHERE RO.SNAME = D.SCHEMANAME
 AND RO.ONAME = D.PACKAGENAME
 AND RO.TYPE IN ('TABLE', 'PACKAGE', 'MATERIALIZED VIEW')
 AND TD.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
 GROUP BY RO.GNAME) T,
 (SELECT DISTINCT RO.GNAME, COUNT(DISTINCT E.DEFERRED_TRAN_ID) CNT2
 FROM DBA_REPOBJECT RO, DEFCALL D, DEFERROR E
 WHERE RO.SNAME = D.SCHEMANAME
 AND RO.ONAME = D.PACKAGENAME
 AND RO.TYPE IN ('TABLE', 'PACKAGE', 'MATERIALIZED VIEW')
 AND E.DEFERRED_TRAN_ID = D.DEFERRED_TRAN_ID
 AND E.CALLNO = D.CALLNO
 GROUP BY RO.GNAME) IE,
 (SELECT GNAME, COUNT(*) CNT3 FROM DBA_REPCATLOG GROUP BY GNAME) A,
 (SELECT GNAME, COUNT(*) CNT4 FROM DBA_REPCATLOG
 WHERE STATUS = 'ERROR'
 GROUP BY GNAME) B WHERE G.GNAME = IE.GNAME (+)
 AND G.GNAME = T.GNAME (+)
 AND G.GNAME = A.GNAME (+)
 AND G.GNAME = B.GNAME (+) ORDER BY G.GNAME;

Your output looks similar to the following:

 Number of Number of Number of
 Deferred Deferred Number of Administrative
 Transaction Transaction Administrative Request
Master Group Pairs Errors Requests Errors
--------------- ----------- ----------- -------------- --------------
HR_REPG 54 0 0 0
OE_RG 33 1 5 0

Monitoring Masters
A master can be either a master site or a master materialized view site. This section
contains queries that you can run to display information about masters.

Listing Information About Materialized Views Based on a Master
If you have materialized view sites based on a master, then you can use the query in
this section to list the following information about the master:

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Monitoring Master Replication Environments

Monitoring a Replication Environment 10-5

■ The number of replication groups at a master. The replication groups can be either
master groups or materialized view groups.

■ The number of registered materialized view groups based on the replication
groups at the master.

■ The number of registered materialized views based on objects at the master. The
objects can be either master tables or master materialized views.

■ The number of materialized view logs at the master.

■ The number of deployment templates at the master.

Run the following query to list this information:

COLUMN repgroup HEADING 'Number of|Replication|Groups' FORMAT 9999
COLUMN mvgroup HEADING 'Number of|Registered|MV Groups' FORMAT 9999
COLUMN mv HEADING 'Number of|Registered MVs' FORMAT 9999
COLUMN mvlog HEADING 'Number of|MV Logs' FORMAT 9999
COLUMN template HEADING 'Number of|Templates' FORMAT 9999

SELECT A.REPGROUP repgroup,
 B.MVGROUP mvgroup,
 C.MV mv,
 D.MVLOG mvlog,
 E.TEMPLATE template
 FROM (SELECT COUNT(G.GNAME) REPGROUP
 FROM DBA_REPGROUP G, DBA_REPSITES S
 WHERE G.MASTER = 'Y'
 AND S.MASTER = 'Y'
 AND G.GNAME = S.GNAME
 AND S.MY_DBLINK = 'Y') A,
 (SELECT COUNT(*) MVGROUP
 FROM DBA_REGISTERED_MVIEW_GROUPS) B,
 (SELECT COUNT(*) MV
 FROM DBA_REGISTERED_MVIEWS) C,
 (SELECT COUNT(*) MVLOG
 FROM (SELECT 1 FROM DBA_MVIEW_LOGS
 GROUP BY LOG_OWNER, LOG_TABLE)) D,
 (SELECT COUNT(*) TEMPLATE FROM DBA_REPCAT_REFRESH_TEMPLATES) E;

Your output looks similar to the following:

 Number of Number of
Replication Registered Number of Number of Number of
 Groups MV Groups Registered MVs MV Logs Templates
----------- ---------- -------------- --------- ---------
 1 5 27 6 3

Listing Information About the Materialized View Logs at a Master
A materialized view log enables you to perform a fast refresh on materialized views
based on a master. A master can be a master table or a master materialized view. If you
have materialized view logs based at a master, then you can use the query in this
section to list the following information about them:

■ The name of each log table that stores the materialized view log data

■ The owner of each materialized view log

■ The master on which each materialized view log is based

■ Whether a materialized view log is a row id materialized view log

Monitoring Master Replication Environments

10-6 Oracle Database Advanced Replication Management API Reference

■ Whether a materialized view log is a primary key materialized view log

■ Whether the materialized view log is an object id materialized view log

■ Whether a materialized view log has filter columns

Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Log|Owner' FORMAT A5
COLUMN MASTER HEADING 'Master' FORMAT A15
COLUMN ROWIDS HEADING 'Row|ID?' FORMAT A3
COLUMN PRIMARY_KEY HEADING 'Primary|Key?' FORMAT A7
COLUMN OBJECT_ID HEADING 'Object|ID?' FORMAT A6
COLUMN FILTER_COLUMNS HEADING 'Filter|Columns?' FORMAT A8

SELECT DISTINCT LOG_TABLE,
 LOG_OWNER,
 MASTER,
 ROWIDS,
 PRIMARY_KEY,
 OBJECT_ID,
 FILTER_COLUMNS
 FROM DBA_MVIEW_LOGS
 ORDER BY 1;

Your output looks similar to the following:

 Log Row Primary Object Filter
Log Table Owner Master ID? Key? ID? Columns?
-------------------- ----- --------------- --- ------- ------ --------
MLOG$_COUNTRIES HR COUNTRIES NO YES NO NO
MLOG$_DEPARTMENTS HR DEPARTMENTS NO YES NO NO
MLOG$_EMPLOYEES HR EMPLOYEES NO YES NO NO
MLOG$_JOBS HR JOBS NO YES NO NO
MLOG$_JOB_HISTORY HR JOB_HISTORY NO YES NO NO
MLOG$_LOCATIONS HR LOCATIONS NO YES NO NO
MLOG$_REGIONS HR REGIONS NO YES NO NO

Listing the Materialized Views that Use a Materialized View Log
More than one materialized view can use a materialized view log. If you have
materialized view logs based at a master, then you can use the query in this section to
list the following the materialized views that use each log:

■ The name of each log table that stores the materialized view log data

■ The owner of each materialized view log

■ The master on which each materialized view log is based

■ The materialized view identification number of each materialized view that uses
the materialized view log

■ The name of each materialized view that uses the materialized view log

Run the following query to list this information:

COLUMN LOG_TABLE HEADING 'Mview|Log Table' FORMAT A20
COLUMN LOG_OWNER HEADING 'Mview|Log Owner' FORMAT A10
COLUMN MASTER HEADING 'Master' FORMAT A20

See Also: Oracle Database Advanced Replication for information
about materialized view logs

Monitoring Master Replication Environments

Monitoring a Replication Environment 10-7

COLUMN MVIEW_ID HEADING 'Mview|ID' FORMAT 9999
COLUMN NAME HEADING 'Mview Name' FORMAT A20

SELECT L.LOG_TABLE, L.LOG_OWNER, B.MASTER, B.MVIEW_ID, R.NAME
FROM ALL_MVIEW_LOGS L, ALL_BASE_TABLE_MVIEWS B, ALL_REGISTERED_MVIEWS R
WHERE B.MVIEW_ID = R.MVIEW_ID
AND B.OWNER = L.LOG_OWNER
AND B.MASTER = L.MASTER;

Your output looks similar to the following:

Mview Mview Mview
Log Table Log Owner Master ID Mview Name
-------------------- ---------- -------------------- ----- --------------------
MLOG$_COUNTRIES HR COUNTRIES 21 COUNTRIES_MV1
MLOG$_DEPARTMENTS HR DEPARTMENTS 22 DEPARTMENTS_MV1
MLOG$_EMPLOYEES HR EMPLOYEES 23 EMPLOYEES_MV1
MLOG$_JOBS HR JOBS 24 JOBS_MV1
MLOG$_JOB_HISTORY HR JOB_HISTORY 25 JOB_HISTORY_MV1
MLOG$_LOCATIONS HR LOCATIONS 26 LOCATIONS_MV1
MLOG$_REGIONS HR REGIONS 27 REGIONS_MV1

Listing Information About the Deployment Templates at a Master
Deployment templates enable you to create multiple materialized view environments
quickly. They also enable you to use variables to customize each materialized view
environment for its individual needs. You can use the query in this section to list the
following information about the deployment templates at a master:

■ The name of each deployment template

■ The owner of each deployment template

■ Whether a deployment template is public

■ The number of instantiated materialized view sites based on each deployment
template

■ The comment associated with each deployment template

Run the following query to list this information:

COLUMN REFRESH_TEMPLATE_NAME HEADING 'Template|Name' FORMAT A10
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN PUBLIC_TEMPLATE HEADING 'Public?' FORMAT A7
COLUMN INSTANTIATED HEADING 'Number of|Instantiated|Sites' FORMAT 9999
COLUMN TEMPLATE_COMMENT HEADING 'Comment' FORMAT A35

SELECT DISTINCT RT.REFRESH_TEMPLATE_NAME,
 OWNER,
 PUBLIC_TEMPLATE,
 RS.INSTANTIATED,
 RT.TEMPLATE_COMMENT
 FROM DBA_REPCAT_REFRESH_TEMPLATES RT,
 (SELECT Y.REFRESH_TEMPLATE_NAME, COUNT(X.STATUS) INSTANTIATED
 FROM DBA_REPCAT_TEMPLATE_SITES X, DBA_REPCAT_REFRESH_TEMPLATES Y
 WHERE X.REFRESH_TEMPLATE_NAME(+) = Y.REFRESH_TEMPLATE_NAME
 GROUP BY Y.REFRESH_TEMPLATE_NAME) RS
 WHERE RT.REFRESH_TEMPLATE_NAME(+) = RS.REFRESH_TEMPLATE_NAME
 ORDER BY 1;

Your output looks similar to the following:

Monitoring Materialized View Sites

10-8 Oracle Database Advanced Replication Management API Reference

 Number of
Template Instantiated
Name Owner Public? Sites Comment
---------- ---------- ------- ------------ -----------------------------------
HR_REFG_DT HR N 2 Human Resources Deployment Template

The N in the Public? column means that the deployment template is private.
Therefore, it can only be instantiated by authorized users. A Y in this column means
that the deployment template is public. Any user can instantiate a public deployment
template.

Monitoring Materialized View Sites
This section contains queries that you can run to display information about the
materialized view sites. This section contains the following topics:

■ Listing General Information About a Materialized View Site

■ Listing General Information About Materialized View Groups

■ Listing Information About Materialized Views

■ Listing Information About the Refresh Groups at a Materialized View Site

■ Determining the Job ID for Each Refresh Job at a Materialized View Site

■ Determining Which Materialized Views Are Currently Refreshing

Listing General Information About a Materialized View Site
You can use the query in this section to list the following general information about the
current materialized view site:

■ The number of materialized view groups at the site

■ The number of materialized views at the site

■ The number of refresh groups at the site

Run the following query to list this information:

COLUMN MVGROUP HEADING 'Number of|Materialized|View Groups' FORMAT 9999
COLUMN MV HEADING 'Number of|Materialized|Views' FORMAT 9999
COLUMN RGROUP HEADING 'Number of|Refresh Groups' FORMAT 9999

SELECT A.MVGROUP, B.MV, C.RGROUP
 FROM
 (SELECT COUNT(S.GNAME) MVGROUP
 FROM DBA_REPSITES S
 WHERE S.SNAPMASTER = 'Y') A,
 (SELECT COUNT(*) MV
 FROM DBA_MVIEWS) B,
 (SELECT COUNT(*) RGROUP
 FROM DBA_REFRESH) C;

Your output looks similar to the following:

 Number of Number of
Materialized Materialized Number of
 View Groups Views Refresh Groups
------------ ------------ --------------
 5 25 5

Monitoring Materialized View Sites

Monitoring a Replication Environment 10-9

Listing General Information About Materialized View Groups
You can use the query in this section to list the following general information about the
materialized view groups at the current materialized view site:

■ The name of each materialized view group

■ The master of each materialized view group

■ The method of propagation to a materialized view group's master, either
asynchronous or synchronous

■ The comment associated with each materialized view group

Run the following query to list this information:

COLUMN GNAME HEADING 'Group Name' FORMAT A10
COLUMN DBLINK HEADING 'Master' FORMAT A25
COLUMN Propagation HEADING 'Propagation|Method' FORMAT A12
COLUMN SCHEMA_COMMENT HEADING 'Comment' FORMAT A30

SELECT S.GNAME,
 S.DBLINK,
 DECODE(S.PROP_UPDATES,
 0, 'ASYNCHRONOUS',
 1, 'SYNCHRONOUS') Propagation,
 G.SCHEMA_COMMENT
 FROM DBA_REPSITES S, DBA_REPGROUP G
 WHERE S.GNAME = G.GNAME
 AND S.SNAPMASTER = 'Y';

Your output looks similar to the following:

 Propagation
Group Name Master Method Comment
---------- ------------------------- ------------ ------------------------------
HR_REPG ORC1.EXAMPLE.COM ASYNCHRONOUS

Listing Information About Materialized Views
This section contains queries that you can run to display information about the
materialized views at a replication site.

Listing Master Information For Materialized Views
The following query shows the master for each materialized view at a replication site
and whether the materialized view can be fast refreshed:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN MASTER_LINK HEADING 'Master Link' FORMAT A30
COLUMN Fast_Refresh HEADING 'Fast|Refreshable?' FORMAT A16

SELECT MVIEW_NAME,
 OWNER,
 MASTER_LINK,
 DECODE(FAST_REFRESHABLE,
 'NO', 'NO',
 'DML', 'YES',
 'DIRLOAD', 'DIRECT LOAD ONLY',
 'DIRLOAD_DML', 'YES',
 'DIRLOAD_LIMITEDDML', 'LIMITED') Fast_Refresh
 FROM DBA_MVIEWS;

Monitoring Materialized View Sites

10-10 Oracle Database Advanced Replication Management API Reference

Your output looks similar to the following:

Materialized Fast
View Name Owner Master Link Refreshable?
--------------- ---------- ------------------------------ ----------------
COUNTRIES_MV1 HR @ORC1EXAMPLE.COM YES
DEPARTMENTS_MV1 HR @ORC1EXAMPLE.COM YES
EMPLOYEES_MV1 HR @ORC1EXAMPLE.COM YES
JOBS_MV1 HR @ORC1EXAMPLE.COM YES
JOB_HISTORY_MV1 HR @ORC1EXAMPLE.COM YES
LOCATIONS_MV1 HR @ORC1EXAMPLE.COM YES
REGIONS_MV1 HR @ORC1EXAMPLE.COM YES

Listing the Properties of Materialized Views
You can use the query in this section to list the following information about the
materialized views at the current replication site:

■ The name of each materialized view

■ The owner of each materialized view

■ The refresh method used by each materialized view: COMPLETE, FORCE, FAST, or
NEVER

■ Whether a materialized view is updatable

■ The last date on which each materialized view was refreshed

Run the following query to list this information:

COLUMN MVIEW_NAME HEADING 'Materialized|View Name' FORMAT A15
COLUMN OWNER HEADING 'Owner' FORMAT A10
COLUMN REFRESH_METHOD HEADING 'Refresh|Method' FORMAT A10
COLUMN UPDATABLE HEADING 'Updatable?' FORMAT A10
COLUMN LAST_REFRESH_DATE HEADING 'Last|Refresh|Date'
COLUMN LAST_REFRESH_TYPE HEADING 'Last|Refresh|Type' FORMAT A15

SELECT MVIEW_NAME,
 OWNER,
 REFRESH_METHOD,
 UPDATABLE,
 LAST_REFRESH_DATE,
 LAST_REFRESH_TYPE
 FROM DBA_MVIEWS;

Your output looks similar to the following:

 Last Last
Materialized Refresh Refresh Refresh
View Name Owner Method Updatable? Date Type
--------------- ---------- ---------- ---------- --------- ---------------
COUNTRIES_MV1 HR FAST Y 21-OCT-03 FAST
DEPARTMENTS_MV1 HR FAST Y 21-OCT-03 FAST
EMPLOYEES_MV1 HR FAST Y 21-OCT-03 FAST
JOBS_MV1 HR FAST Y 21-OCT-03 FAST
JOB_HISTORY_MV1 HR FAST Y 21-OCT-03 FAST
LOCATIONS_MV1 HR FAST Y 21-OCT-03 FAST
REGIONS_MV1 HR FAST Y 21-OCT-03 FAST

Monitoring Materialized View Sites

Monitoring a Replication Environment 10-11

Listing Information About the Refresh Groups at a Materialized View Site
Each refresh group at a materialized view site is associated with a refresh job that
refreshes the materialized views in the refresh group at a set interval. You can query
the DBA_REFRESH data dictionary view to list the following information about the
refresh jobs at a materialized view site:

■ The name of the refresh group.

■ The owner of the refresh group.

■ Whether the refresh job is broken.

■ The next date and time when the refresh job will run.

■ The current interval setting for the refresh job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_refresh HEADING 'Next Refresh'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT RNAME,
 ROWNER,
 BROKEN,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_refresh,
 INTERVAL
 FROM DBA_REFRESH
 ORDER BY 1;

Your output looks similar to the following:

Refresh Refresh
Group Group
Name Owner Broken? Next Refresh Interval
---------- ---------- ------- ----------------------- --------------------
HR_REFG MVIEWADMIN N 24-OCT-2003 07:18:44 AM SYSDATE + 1/24

The N in the Broken? column means that the job is not broken. Therefore, the refresh
job will run at the next start time. A Y in this column means that the job is broken.

Determining the Job ID for Each Refresh Job at a Materialized View Site
You can use the query in this section to list the following information about the refresh
jobs at a materialized view site:

■ The job identification number of each refresh job. Each job created by the
DBMS_JOB package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to the
job.

■ The schema that owns each refresh job. Typically, the materialized view
administrator owns a refresh job. A common user name for the materialized view
administrator is mviewadmin.

■ The name of the refresh group that the job refreshes.

■ The status of the refresh job, either normal or broken.

Monitoring Materialized View Sites

10-12 Oracle Database Advanced Replication Management API Reference

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN RNAME HEADING 'Refresh|Group|Name' FORMAT A10
COLUMN ROWNER HEADING 'Refresh|Group|Owner' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
 J.PRIV_USER,
 R.ROWNER,
 R.RNAME,
 J.BROKEN
 FROM DBA_REFRESH R, DBA_JOBS J
 WHERE R.JOB = J.JOB
 ORDER BY 1;

Your output looks similar to the following:

 Refresh Refresh
 Privilege Group Group
 Job ID Schema Owner Name Broken?
------- ---------- ---------- ---------- -------
 21 MVIEWADMIN MVIEWADMIN HR_REFG N

The N in the Broken? column means that the job is not broken. Therefore, the job will
run at the next start time. A Y in this column means that the job is broken.

Determining Which Materialized Views Are Currently Refreshing
The following query shows the materialized views that are currently refreshing:

COLUMN SID HEADING 'Session|Identifier' FORMAT 9999
COLUMN SERIAL# HEADING 'Serial|Number' FORMAT 999999
COLUMN CURRMVOWNER HEADING 'Owner' FORMAT A15
COLUMN CURRMVNAME HEADING 'Materialized|View' FORMAT A25

SELECT * FROM V$MVREFRESH;

Your output looks similar to the following:

 Session Serial Materialized
Identifier Number Owner View
---------- ------- --------------- -------------------------
 19 233 HR COUNTRIES_MV
 5 647 HR EMPLOYEES_MV

Note: The V$MVREFRESH dynamic performance view does not
contain information about updatable materialized views when the
materialized views' deferred transactions are being pushed to its
master.

Monitoring Administrative Requests

Monitoring a Replication Environment 10-13

Monitoring Administrative Requests
This section contains queries that you can run to display information about the
administrative requests at a master site. This section contains the following topics:

■ Listing General Information About Administrative Requests

■ Listing General Information About the Job that Executes Administrative Requests

■ Listing General Information About the Job that Executes Administrative Requests

Listing General Information About Administrative Requests
You can use the query in this section to list the following general information about the
administrative requests at a master site:

■ The identification number of each administrative request

■ The action requested by each administrative request

■ The status of each request

■ The master site where the request is being executed

The following query displays this information:

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A25
COLUMN STATUS HEADING 'Status' FORMAT A15
COLUMN MASTER HEADING 'Master|Site' FORMAT A25

SELECT ID, REQUEST, STATUS, MASTER FROM DBA_REPCATLOG;

Your output looks similar to the following:

 Admin
Request Master
 ID Request Status Site
------- ------------------------- --------------- -------------------------
 44 RESUME_MASTER_ACTIVITY AWAIT_CALLBACK ORC3EXAMPLE.COM

You can use the DO_DEFERRED_REPCAT_ADMIN procedure in the DBMS_REPCAT
package to execute administrative requests.

Determining the Cause of Administrative Request Errors
You can determine the cause of an administrative request error by displaying its error
message. The following query displays the error message for each administrative
request that resulted in an error:

COLUMN ID HEADING 'Admin|Request|ID' FORMAT 999999
COLUMN REQUEST HEADING 'Request' FORMAT A30
COLUMN ERRNUM HEADING 'Error|Number' FORMAT 999999
COLUMN MESSAGE HEADING 'Error|Message' FORMAT A32

SELECT ID, REQUEST, ERRNUM, MESSAGE
 FROM DBA_REPCATLOG WHERE STATUS = 'ERROR';

Your output looks similar to the following:

Monitoring Administrative Requests

10-14 Oracle Database Advanced Replication Management API Reference

 Admin
Request Error Error
 ID Request Number Message
------- ------------------------------ ------- ------------------------------
 70 CREATE_MASTER_REPOBJECT -2292 ORA-02292: integrity constrain
 t (HR.DEPT_LOC_FK) violated -
 child record found
 ORA-02266: unique/primary keys
 in table referenced by enable
 d foreign keys

 71 GENERATE_INTERNAL_PKG_SUPPORT -23308 ORA-23308: object HR.LOCATIONS
 does not exist or is invalid

Listing General Information About the Job that Executes Administrative Requests
Each master group is associated with a do_deferred_repcat_admin job that
executes administrative requests. You can query the DBA_JOBS data dictionary view
to list the following information about this job at a replication site:

■ The job identification number of each do_deferred_repcat_admin job. Each
job created by the DBMS_JOB package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to the
job.

■ The status of each do_deferred_repcat_admin job, either normal or broken.

■ The next date and time when each do_deferred_repcat_admin job will run.

■ The current interval setting for each do_deferred_repcat_admin job. The
interval setting specifies the amount of time between the start of a job and the next
start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A20

SELECT JOB,
 PRIV_USER,
 BROKEN,
 TO_CHAR(NEXT_DATE,'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Broken? Next Start Interval
------- ---------- ------- ----------------------- --------------------
 24 REPADMIN N 24-OCT-2003 07:23:48 AM SYSDATE + (1/144)

The N in the Broken? column means that the job is not broken. Therefore, the job will
run at the next start time. A Y in this column means that the job is broken.

Monitoring the Deferred Transactions Queue

Monitoring a Replication Environment 10-15

Checking the Definition of Each do_deferred_repcat_admin Job
You can query the DBA_JOBS data dictionary view to show the definition of each
do_deferred_repcat_admin job at a replication site. The following query shows
the definitions:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN WHAT HEADING 'Definitions of Admin Req Jobs' FORMAT A70

SELECT JOB, WHAT
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_repcat.do_deferred_repcat_admin%'
 ORDER BY 1;

Your output looks similar to the following:

 Job ID Definitions of Admin Req Jobs
------- --
 321 dbms_repcat.do_deferred_repcat_admin('"HR_REPG"', FALSE);
 342 dbms_repcat.do_deferred_repcat_admin('"OE_RG"', FALSE);

Monitoring the Deferred Transactions Queue
This section contains queries that you can run to display information about the
deferred transactions queue at a replication site. This section contains the following
topics:

■ Monitoring Transaction Propagation

■ Monitoring Purges of Successfully Propagated Transactions

Monitoring Transaction Propagation
This section contains queries that you can run to display information about
propagation of transactions in the deferred transactions queue.

Listing the Number of Deferred Transactions for Each Destination Master Site
You can find the number of unpropagated deferred transactions for each destination
master site by running the query in this section. This query shows each master site to
which the current master site is propagating deferred transactions and the number of
deferred transactions to be propagated to each destination site.

Run the following query to see the number of deferred and error transactions:

COLUMN DEST HEADING 'Destination' FORMAT A45
COLUMN TRANS HEADING 'Def Trans' FORMAT 9999

SELECT DBLINK DEST, COUNT(*) TRANS
 FROM DEFTRANDEST D
 GROUP BY DBLINK;

Your output looks similar to the following:

Destination Def Trans
--- ---------
ORC2.EXAMPLE.COM 1
ORC3.EXAMPLE.COM 1

Monitoring the Deferred Transactions Queue

10-16 Oracle Database Advanced Replication Management API Reference

Listing General Information About the Push Jobs at a Replication Site
Each scheduled link at a replication site is associated with a push job that propagates
deferred transactions in the deferred transaction queue to a destination site. You can
use the query in this section to list the following information about the push jobs at a
replication site:

■ The job identification number of each push job. Each job created by the DBMS_JOB
package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to the
job.

■ The destination site where the deferred transactions are pushed.

■ The status of the push job, either normal or broken.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN DBLINK HEADING 'Destination' FORMAT A40
COLUMN BROKEN HEADING 'Broken?' FORMAT A7

SELECT J.JOB,
 J.PRIV_USER,
 S.DBLINK,
 J.BROKEN
 FROM DEFSCHEDULE S, DBA_JOBS J
 WHERE S.DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
 AND S.JOB = J.JOB
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Destination Broken?
------- ---------- -- -------
 22 REPADMIN ORC2.EXAMEPLE.COM N
 23 REPADMIN ORC3.EXAMEPLE.COM N

The N in the Broken? column means that the job is not broken. Therefore, the job will
run at the next start time. A Y in this column means that the job is broken.

Determining the Next Start Time and Interval for the Push Jobs
Each scheduled link at a replication site is associated with a push job that propagates
deferred transactions in the deferred transaction queue to a destination site. You can
query the DEFSCHEDULE and DBA_JOBS data dictionary views to list the following
information about the push jobs at a replication site:

■ The job identification number of each push job. Each job created by the DBMS_JOB
package is assigned a unique identification number.

■ The destination site where the deferred transactions are pushed.

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Monitoring the Deferred Transactions Queue

Monitoring a Replication Environment 10-17

■ The next date and time when the push job will run.

■ The current interval setting for the push job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN DBLINK HEADING 'Destination' FORMAT A22
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
 DBLINK,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DEFSCHEDULE
 WHERE DBLINK != (SELECT GLOBAL_NAME FROM GLOBAL_NAME)
 AND JOB IS NOT NULL
 ORDER BY 1;

Your output looks similar to the following:

 Job ID Destination Next Start Interval
------- ---------------------- ----------------------- -------------------------
 22 ORC2.EXAMPLE.COM 24-OCT-2003 07:23:48 AM SYSDATE + (1/144)
 23 ORC3.EXAMPLE.COM 24-OCT-2003 07:23:48 AM SYSDATE + (1/144)

Determining the Total Number of Transactions Queued for Propagation
Run the following query to display the total number of transactions in the deferred
transaction queue that are waiting to be propagated:

SELECT COUNT(DISTINCT DEFERRED_TRAN_ID) "Transactions Queued"
 FROM DEFTRANDEST;

Your output looks similar to the following:

Transactions Queued

 37

Monitoring Purges of Successfully Propagated Transactions
This section contains queries that you can run to display information about purges of
successfully propagated transactions from the deferred transactions queue.

Listing General Information About the Purge Job
During standard setup of a replication site, you configure a purge job to remove
successfully propagated transactions from the deferred transactions queue. You can
query the DBA_JOBS data dictionary view to list the following information about the
purge job at a replication site:

Note: This query can be expensive if you have a large number of
transactions waiting to be propagated.

Monitoring the Deferred Transactions Queue

10-18 Oracle Database Advanced Replication Management API Reference

■ The job identification number of the purge job. Each job created by the DBMS_JOB
package is assigned a unique identification number.

■ The privilege schema, which is the schema whose default privileges apply to the
job.

■ The status of the job, either normal or broken.

■ The next date and time when the purge job will run.

■ The current interval setting for the purge job. The interval setting specifies the
amount of time between the start of a job and the next start of the same job.

The following query displays this information:

COLUMN JOB HEADING 'Job ID' FORMAT 999999
COLUMN PRIV_USER HEADING 'Privilege|Schema' FORMAT A10
COLUMN BROKEN HEADING 'Broken?' FORMAT A7
COLUMN next_start HEADING 'Next Start'
COLUMN INTERVAL HEADING 'Interval' FORMAT A25

SELECT JOB,
 PRIV_USER,
 BROKEN,
 TO_CHAR(NEXT_DATE, 'DD-MON-YYYY HH:MI:SS AM') next_start,
 INTERVAL
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_defer_sys.purge%'
 ORDER BY 1;

Your output looks similar to the following:

 Privilege
 Job ID Schema Broken? Next Start Interval
------- ---------- ------- ----------------------- -------------------------
 21 REPADMIN N 24-OCT-2003 07:42:18 AM SYSDATE + 1/24

The N in the Broken? column means that the job is not broken. Therefore, the job will
run at the next start time. A Y in this column means that the job is broken.

Checking the Definition of the Purge Job
You can query the DBA_JOBS data dictionary view to show the definition of the purge
job at a replication site. The following query shows the definition:

SELECT WHAT "Definition of the Purge Job"
 FROM DBA_JOBS
 WHERE WHAT LIKE '%dbms_defer_sys.purge%' ORDER BY 1;

Your output looks similar to the following:

Definition of the Purge Job
--
declare rc binary_integer; begin rc := sys.dbms_defer_sys.purge(delay_seconds=>
0); end;

Determining the Amount of Time Since the Last Purge
The following query shows the total amount of time, in minutes, since the successfully
propagated transactions were purged from the deferred transactions queue:

SELECT ((SYSDATE - LAST_PURGE_TIME) / 60) "Minutes Since Last Purge"
 FROM V$REPLQUEUE;

Monitoring the Error Queue

Monitoring a Replication Environment 10-19

Your output looks similar to the following:

Minutes Since Last Purge

 13.43333

Determining the Total Number of Purged Transactions
The following query shows the total number of successfully propagated transactions
that have been purged from the deferred transaction queue since the instance was last
started:

SELECT TXNS_PURGED "Transactions Purged"
 FROM V$REPLQUEUE;

Your output looks similar to the following:

Transactions Purged

 6541

Monitoring the Error Queue
This section contains queries that you can run to display information about the error
queue at a replication site. The error queue contains deferred transactions that resulted
in an error at the destination site. These error transactions are placed in the error queue
at the destination site.

This section contains the following topics:

■ Listing General Information About the Error Transactions at a Replication Site

■ Determining the Percentage of Error Transactions

■ Listing the Number of Error Transactions from Each Origin Master Site

■ Listing the Error Messages for the Error Transactions at a Replication Site

■ Determining the Error Operations at a Replication Site

Listing General Information About the Error Transactions at a Replication Site
The following query lists the general information about the error transactions at a
replication site:

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A16
COLUMN DESTINATION HEADING 'Destination|Database' FORMAT A16
COLUMN TIME_OF_ERROR HEADING 'Time of|Error' FORMAT A22
COLUMN ERROR_NUMBER HEADING 'Oracle|Error|Number' FORMAT 999999

SELECT DEFERRED_TRAN_ID,
 ORIGIN_TRAN_DB,
 DESTINATION,
 TO_CHAR(START_TIME, 'DD-Mon-YYYY hh24:mi:ss') TIME_OF_ERROR,
 ERROR_NUMBER
 FROM DEFERROR ORDER BY START_TIME;

Your output looks similar to the following:

Monitoring the Error Queue

10-20 Oracle Database Advanced Replication Management API Reference

Deferred Oracle
Transaction Origin Destination Time of Error
ID Database Database Error Number
----------- ---------------- ---------------- ---------------------- -------
1.8.2470 ORC2.EXAMPLE.COM ORC1.EXAMPLE.COM 22-Oct-2003 07:19:14 1403

You can use the deferred transaction ID and the destination database to either attempt
to rerun the transaction that caused the error or to delete the error.

For example, to attempt to rerun the transaction in the previous example, enter the
following:

EXECUTE DBMS_DEFER_SYS.EXECUTE_ERROR('1.8.2470', 'ORC1.EXAMPLE.COM');

To delete the error in the previous example, enter the following:

EXECUTE DBMS_DEFER_SYS.DELETE_ERROR('1.8.2470', 'ORC1.EXAMPLE.COM');

Typically, you should delete an error only if you have resolved it manually.

Determining the Percentage of Error Transactions
When propagating transactions to a remote master site, some transactions are
propagated and applied successfully while other transactions can result in errors at the
remote master site. Transactions that result in errors are called error transactions.

Run the following query to display the percentage of error transactions that resulted
from propagation to the remote master site orc2.example.com:

SELECT DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 (TOTAL_ERROR_COUNT/TOTAL_TXN_COUNT)*100) "ERROR PERCENTAGE"
 FROM DEFSCHEDULE
 WHERE DBLINK = 'ORC2.EXAMPLE.COM';

Your output looks similar to the following:

Error Percentage

 3.265

Listing the Number of Error Transactions from Each Origin Master Site
You can find the number of transaction errors resulting from pushes by each origin
master site by running the query in this section.

Run the following query to see the number of deferred and error transactions:

COLUMN SOURCE HEADING 'Origin' FORMAT A45
COLUMN ERRORS HEADING 'Def Trans Errors' FORMAT 9999

SELECT E.ORIGIN_TRAN_DB SOURCE, COUNT(*) ERRORS
 FROM DEFERROR E
 GROUP BY E.ORIGIN_TRAN_DB;

Note: If this query returns 'No transactions', then no
transactions have been propagated to the specified remote site since
the statistics were last cleared.

Monitoring the Error Queue

Monitoring a Replication Environment 10-21

Your output looks similar to the following:

Origin Def Trans Errors
--- ----------------
ORC2.EXAMPLE.COM 1
ORC3.EXAMPLE.COM 3

Listing the Error Messages for the Error Transactions at a Replication Site
The following query lists the error messages for the error transactions at a replication
site:

COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN ERROR_MSG HEADING 'Error Messages' FORMAT A68

SELECT DEFERRED_TRAN_ID, ERROR_MSG
 FROM DEFERROR;

Your output looks similar to the following:

Deferred
Transaction
ID Error Messages
----------- --
1.8.2470 ORA-01403: no data found

Determining the Error Operations at a Replication Site
The following query lists the type of operation that was attempted for each call that
caused an error at a replication site:

COLUMN CALLNO HEADING 'Call|Number' FORMAT 9999
COLUMN DEFERRED_TRAN_ID HEADING 'Deferred|Transaction|ID' FORMAT A11
COLUMN PACKAGENAME HEADING 'Package|Name' FORMAT A20
COLUMN PROCNAME HEADING 'Operation' FORMAT A15
COLUMN ORIGIN_TRAN_DB HEADING 'Origin|Database' FORMAT A16

SELECT /*+ ORDERED */
 C.CALLNO,
 C.DEFERRED_TRAN_ID,
 C.PACKAGENAME,
 C.PROCNAME, E.ORIGIN_TRAN_DB
 FROM DEFERROR E, DEFCALL C
 WHERE C.DEFERRED_TRAN_ID = E.DEFERRED_TRAN_ID
 AND C.CALLNO = E.CALLNO
 ORDER BY E.START_TIME;

Your output looks similar to the following:

 Deferred
 Call Transaction Package Origin
Number ID Name Operation Database
------ ----------- -------------------- --------------- ----------------
 0 1.8.2470 EMPLOYEES$RP REP_UPDATE ORC2.EXAMPLE.COM

Monitoring Performance in a Replication Environment

10-22 Oracle Database Advanced Replication Management API Reference

Monitoring Performance in a Replication Environment
This section contains queries that you can run to monitor the performance of your
replication environment. This section contains the following topics:

■ Tracking the Average Number of Row Changes in a Replication Transaction

■ Determining the Average Amount of Time to Apply Transactions at Remote Sites

■ Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping

■ Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View

■ Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP

Tracking the Average Number of Row Changes in a Replication Transaction
The following query shows the average number of row changes in a replication
transaction since instance startup:

SELECT DECODE(TXNS_ENQUEUED, 0, 'No Transactions Enqueued',
 (CALLS_ENQUEUED / TXNS_ENQUEUED)) "Average Number of Row Changes"
 FROM V$REPLQUEUE;

Your output looks similar to the following:

Average Number of Row Changes

 56.16

Tracking the Rate of Transactions Entering the Deferred Transactions Queue
The following query shows the average number of transactions for each second
entering at the deferred transactions queue at the current site since instance startup:

SELECT (R.TXNS_ENQUEUED / ((SYSDATE - I.STARTUP_TIME)*24*60*60)) "Average TPS"
 FROM V$REPLQUEUE R, V$INSTANCE I;

Your output looks similar to the following:

Average TPS

 150

Determining the Average Network Traffic Created to Propagate a Transaction
Propagation of deferred transactions creates a certain amount of traffic on your
network. Here, the network traffic created by a transaction is the number of bytes
being sent and received and the number of network round trips needed to propagate
the transaction.

A round trip is one or more consecutively sent messages followed by one or more
consecutively received messages. For example, both of the following scenarios
constitute only one round trip:

■ Site A sends one message to site B and then site B sends one message to site A.

■ Site A sends 20 messages to site B and then site B sends one message to site A.

Note: If this query returns 'No Transactions Enqueued', then
no transactions have been enqueued since the start of the instance.

Monitoring Performance in a Replication Environment

Monitoring a Replication Environment 10-23

These scenarios illustrate that the number of messages is irrelevant when evaluating
the number of round trips, because the number of round trips is the number of back
and forth communications between sites.

The following query shows the average network traffic created when propagating a
transaction to the orc2.example.com remote master site:

COLUMN AV_BYTES HEADING 'Average Bytes' FORMAT 999999999
COLUMN AV_TRIPS HEADING 'Average Round Trips' FORMAT 9999999

SELECT
 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 ((TOTAL_BYTES_SENT + TOTAL_BYTES_RECEIVED) / TOTAL_TXN_COUNT)) AV_BYTES,
 DECODE(TOTAL_TXN_COUNT, 0, 'No Transactions',
 (TOTAL_ROUND_TRIPS / TOTAL_TXN_COUNT)) AV_TRIPS
 FROM DEFSCHEDULE WHERE DBLINK = 'ORC2.EXAMPLE.COM';

Your output looks similar to the following:

Average Bytes Average Round Trips
---------------------- -------------------
69621.5 5

Determining the Average Amount of Time to Apply Transactions at Remote Sites
Average latency is the average number of seconds between the first call of a
transaction on the current site and the confirmation that the transaction was applied at
the remote site. The first call begins when the user makes the first data manipulation
language (DML) change, not when the transaction is committed.

The following query shows the average latency for applying transactions at the remote
master site orc2.example.com:

SELECT AVG_LATENCY "Average Latency"
 FROM DEFSCHEDULE
 WHERE DBLINK='ORC2.EXAMPLE.COM';

Your output looks similar to the following:

Note:

■ If this query returns 'No transactions' in both columns,
then no transactions have been propagated to the specified
remote site since the statistics were last cleared.

■ This query returns results only if parallel propagation is used
with the specified database link. To use parallel propagation,
set the parallelism parameter to 1 or greater when you run
the SCHEDULE_PUSH procedure in the DBMS_DEFER_SYS
package.

See Also:

■ Oracle Database Advanced Replication for information about parallel
propagation

■ "SCHEDULE_PUSH Procedure" on page 14-22

Monitoring Performance in a Replication Environment

10-24 Oracle Database Advanced Replication Management API Reference

Average Latency

 25.5

Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping
When the parallel propagation coordinator is inactive, it is sleeping. You control the
amount of time that the propagation coordinator sleeps using the delay_seconds
parameter in the DBMS_DEFER_SYS.PUSH procedure.

The following query shows the percentage of time that the parallel propagation
coordinator spends sleeping when propagating transactions to the
orc2.example.com remote master site:

SELECT DECODE(AVG_THROUGHPUT, 0, NULL,
 ((TOTAL_SLEEP_TIME / (TOTAL_TXN_COUNT / AVG_THROUGHPUT)) * 100))
 "Percent Sleep Time"
 FROM DEFSCHEDULE WHERE DBLINK = 'ORC2.EXAMPLE.COM';

Your output looks similar to the following:

Percent Sleep Time

 2

In this case, the parallel propagation coordinator is active 98% of the time.

Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View
To clear the propagation statistics in the DEFSCHEDULE view for a particular remote
master site, use the CLEAR_PROP_STATISTICS procedure in the DBMS_DEFER_SYS
package. For example, to clear the propagation statistics for the orc2.example.com
remote master site, run the following procedure:

BEGIN
 DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
 dblink => 'ORC2.EXAMPLE.COM');
END;
/

Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP
The V$REPLPROP dynamic performance view provides information about current
parallel propagation sessions.

Note: If this query returns a NULL, then no transactions have been
propagated to the specified remote site since the statistics were last
cleared or since the last database startup.

Note: The V$REPLPROP dynamic performance view is only
relevant if you are using parallel propagation of deferred
transactions. If you are using serial propagation, then this view is
empty.

Monitoring Performance in a Replication Environment

Monitoring a Replication Environment 10-25

Determining the Databases to Which You Are Propagating Deferred Transactions
Run the following query to list the database link of each database to which you are
currently propagating deferred transactions using parallel propagation:

SELECT DBLINK "Database Link"
 FROM V$REPLPROP
 WHERE NAME LIKE '%Coordinator%';

Your output looks similar to the following:

Database Link

ORC2.EXAMPLE.COM
ORC3.EXAMPLE.COM

Determining the Transactions Currently Being Propagated to a Remote Master
You can list the following information about the transactions that are currently being
propagated to a specified remote master site using parallel propagation:

■ The transaction identification number of each transaction.

■ The number of calls in each transaction.

■ The percentage of processed calls in each transaction. The number in this column
becomes larger as the calls in the transaction are processed. When the number
reaches 100, all of the calls are processed.

The following query displays this information:

SELECT /*+ ORDERED */ P.XID "Tran Being Propagated",
 (MAX(C.CALLNO) + 1) "Number of Calls in Tran",
 (P.SEQUENCE/MAX(C.CALLNO) + 1) * 100 "% Processed Calls"
 FROM V$REPLPROP P, DEFCALL C
 WHERE P.NAME LIKE '%SLAVE%'
 AND P.DBLINK = 'mv4.example.com'
 AND C.DEFERRED_TRAN_ID = P.XID
 GROUP BY P.XID, P.SEQUENCE;

Your output looks similar to the following:

Tran Being Propagated Number of Calls in Tran % Processed Calls
---------------------- ----------------------- -----------------
1.11.4264 43357 78
1.15.4256 23554 49

The transaction identification numbers should change as existing transactions are
pushed and new transactions are processed. This query can be particularly useful if
the any of the following conditions apply to your replication environment:

■ You push a large number of transactions on a regular basis.

■ You have some transactions that are very large.

■ You are simulating continuous push using asynchronous propagation.

If the first two bullets apply to your replication environment, then you can run this
query to check if the processes are pushing the transactions. In this type of
environment, the processes do not exist when they are not pushing transactions.

In replication environments that are simulating continuous push, the processes exist
whenever there are transactions to push in the deferred transactions queue. When
there are no transactions to push, the processes might not exist. So, when there are

Monitoring Performance in a Replication Environment

10-26 Oracle Database Advanced Replication Management API Reference

transactions to push, you can use this query to ensure that the processes exist and are
processing the transactions.

See Also: Oracle Database Advanced Replication for more
information about scheduling continuous push in your replication
environment

Part III
Replication Management API Packages

Reference

Part III includes reference information about the replication management API,
including:

■ The procedures and functions in each package

■ The parameters for each packaged procedure or function

■ Exceptions that each procedure or function can raise

This part contains the following chapters:

■ Chapter 11, "Introduction to the Replication Management API Reference"

■ Chapter 12, "DBMS_DEFER"

■ Chapter 13, "DBMS_DEFER_QUERY"

■ Chapter 14, "DBMS_DEFER_SYS"

■ Chapter 15, "DBMS_OFFLINE_OG"

■ Chapter 16, "DBMS_RECTIFIER_DIFF"

■ Chapter 17, "DBMS_REFRESH"

■ Chapter 18, "DBMS_REPCAT"

■ Chapter 19, "DBMS_REPCAT_INSTANTIATE"

■ Chapter 20, "DBMS_REPCAT_ADMIN"

■ Chapter 21, "DBMS_REPCAT_RGT"

■ Chapter 22, "DBMS_REPUTIL"

Note: Some of the PL/SQL procedures and functions described in
the chapters in this part are overloaded. That is, two or more
procedures or functions have the same name in a single package,
but their formal parameters differ in number, order, or data type
family. When a procedure or function is overloaded, it is noted in
the description. See the Oracle Database PL/SQL Language Reference
for more information about overloading and for more information
about PL/SQL in general.

Introduction to the Replication Management API Reference 11-1

11
Introduction to the Replication Management

API Reference

All installations of Advanced Replication include the replication management
application programming interface (API). This replication management API is a
collection of PL/SQL packages that administrators use to configure and manage
replication features at each site. The Advanced Replication interface in Oracle
Enterprise Manager also uses the procedures and functions of each site's replication
management API to perform work.

This chapter contains these topics:

■ Examples of Using Oracle's Replication Management API

■ Issues to Consider When Using the Replication Management API

■ The Advanced Replication Interface and the Replication Management API

■ Abbreviations for Datetime and Interval Data Types

Examples of Using Oracle's Replication Management API
To use Oracle's replication management API, you issue procedure or function calls
using a query tool such as SQL*Plus. For example, the following call to the DBMS_
REPCAT.CREATE_MASTER_REPOBJECT procedure creates a new replicated table
hr.employees in the hr_repg replication group:

BEGIN
 DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 gname => 'hr_repg',
 type => 'TABLE',
 oname => 'employees',
 sname => 'hr',
 use_existing_object => TRUE,
 copy_rows => FALSE);
END;
/

Note: Some of the PL/SQL procedures and functions described in
the chapters in this part are overloaded. That is, two or more
procedures or functions have the same name in a single package,
but their formal parameters differ in number, order, or data type
family. When a procedure or function is overloaded, it is noted in
the description. See the Oracle Database PL/SQL Language Reference
for more information about overloading and for more information
about PL/SQL in general.

Issues to Consider When Using the Replication Management API

11-2 Oracle Database Advanced Replication Management API Reference

To call a replication management API function, you must provide an environment to
receive the return value of the function. For example, the following anonymous
PL/SQL block calls the DBMS_DEFER_SYS.DISABLED function in an IF statement.

BEGIN
 IF DBMS_DEFER_SYS.DISABLED ('inst2') THEN
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is disabled.');
 ELSE
 DBMS_OUTPUT.PUT_LINE('Propagation to INST2 is enabled.');
 END IF;
END;
/

Issues to Consider When Using the Replication Management API
For many procedures and functions in the replication management API, there are
important issues to consider. For example:

■ Some procedures or functions are appropriate to call only from the master
definition site in a multimaster configuration.

■ To perform some administrative operations for master groups, you must first
suspend replication activity for the group before calling replication management
API procedures and functions.

■ The order in which you call different procedures and functions in Oracle's
replication management API is extremely important. See the next section for more
information about learning how to correctly issue replication management calls.

The Advanced Replication Interface and the Replication Management API
The Advanced Replication interface in Oracle Enterprise Manager uses the replication
management API to perform most of its functions. Using the Advanced Replication
interface is much more convenient than issuing replication management API calls
individually because the utility:

■ Provides a GUI interface to type in and adjust API call parameters

■ Automatically orders numerous, related API calls in the proper sequence

■ Displays output returned from API calls in message boxes and error files

Abbreviations for Datetime and Interval Data Types
Many of the datetime and interval data types have names that are too long to be used
with the procedures and functions in the replication management API. Therefore, you
must use abbreviations for these data types instead of the full names. The following
table lists each data type and its abbreviation. No abbreviation is necessary for the
DATE and TIMESTAMP data types.

Data Type Abbreviation

TIMESTAMP WITH TIME ZONE TSTZ

TIMESTAMP LOCAL TIME ZONE TSLTZ

INTERVAL YEAR TO MONTH IYM

INTERVAL DAY TO SECOND IDS

Abbreviations for Datetime and Interval Data Types

Introduction to the Replication Management API Reference 11-3

For example, if you want to use the DBMS_DEFER_QUERY.GET_datatype_ARG
function to determine the value of a TIMESTAMP LOCAL TIME ZONE argument in a
deferred call, then you substitute TSLTZ for datatype. Therefore, you run the DBMS_
DEFER_QUERY.GET_TSLTZ_ARG function.

Abbreviations for Datetime and Interval Data Types

11-4 Oracle Database Advanced Replication Management API Reference

DBMS_DEFER 12-1

12
DBMS_DEFER

DBMS_DEFER is the user interface to a replicated transactional deferred remote
procedure call facility. Replicated applications use the calls in this interface to queue
procedure calls for later transactional execution at remote nodes.

These procedures are typically called from either after row triggers or application
specified update procedures.

This chapter contains this topic:

■ Summary of DBMS_DEFER Subprograms

Summary of DBMS_DEFER Subprograms

12-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_DEFER Subprograms

Table 12–1 DBMS_DEFER Package Subprograms

Subprogram Description

"CALL Procedure" on
page 12-3

Builds a deferred call to a remote procedure.

"COMMIT_WORK
Procedure" on page 12-4

Performs a transaction commit after checking for well-formed
deferred remote procedure calls.

"datatype_ARG
Procedure" on page 12-5

Provides the data that is to be passed to a deferred remote
procedure call.

"TRANSACTION
Procedure" on page 12-7

Indicates the start of a new deferred transaction.

Summary of DBMS_DEFER Subprograms

DBMS_DEFER 12-3

CALL Procedure

This procedure builds a deferred call to a remote procedure.

Syntax
DBMS_DEFER.CALL (
 schema_name IN VARCHAR2,
 package_name IN VARCHAR2,
 proc_name IN VARCHAR2,
 arg_count IN NATURAL,
 { nodes IN node_list_t
 | group_name IN VARCHAR2 :=''});

Parameters

Exceptions

Note: This procedure is overloaded. The nodes and group_name
parameters are mutually exclusive.

Table 12–2 CALL Procedure Parameters

Parameter Description

schema_name Name of the schema in which the stored procedure is located.

package_name Name of the package containing the stored procedure. The stored
procedure must be part of a package. Deferred calls to standalone
procedures are not supported.

proc_name Name of the remote procedure to which you want to defer a call.

arg_count Number of parameters for the procedure. You must have one call to
DBMS_DEFER.datatype_ARG for each of these parameters.

Note: You must include all of the parameters for the procedure,
even if some of the parameters have defaults.

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred call. The table is indexed
starting at position 1 and continuing until a NULL entry is found, or
the no_data_found exception is raised. The data in the table is
case insensitive. This parameter is optional.

group_name Reserved for internal use.

Table 12–3 CALL Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous call was not correctly formed.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Destination list (specified by nodes or by a previous
DBMS_DEFER.TRANSACTION call) contains duplicates.

COMMIT_WORK Procedure

12-4 Oracle Database Advanced Replication Management API Reference

COMMIT_WORK Procedure

This procedure performs a transaction commit after checking for well-formed deferred
remote procedure calls.

Syntax
DBMS_DEFER.COMMIT_WORK (
 commit_work_comment IN VARCHAR2);

Parameters

Exceptions

Table 12–4 COMMIT_WORK Procedure Parameters

Parameter Description

commit_work_comment Equivalent to the COMMIT COMMENT statement in SQL.

Table 12–5 COMMIT_WORK Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Transaction was not correctly formed or terminated.

Summary of DBMS_DEFER Subprograms

DBMS_DEFER 12-5

datatype_ARG Procedure

This procedure provides the data that is to be passed to a deferred remote procedure
call. Depending upon the type of the data that you need to pass to a procedure, you
must call one of the following procedures for each argument to the procedure.

You must specify each parameter in your procedure using the datatype_ARG procedure
after you execute DBMS_DEFER.CALL. That is, you cannot use the default parameters
for the deferred remote procedure call. For example, suppose you have the following
procedure:

CREATE OR REPLACE PACKAGE my_pack AS
 PROCEDURE my_proc(a VARCHAR2, b VARCHAR2 DEFAULT 'SALES');
END;
/

When you run the DBMS_DEFER.CALL procedure, you must include a separate
procedure call for each parameter in the my_proc procedure:

CREATE OR REPLACE PROCEDURE load_def_tx IS
 node DBMS_DEFER.NODE_LIST_T;
BEGIN
 node(1) := 'MYCOMPUTER.EXAMPLE.COM';
 node(2) := NULL;
 DBMS_DEFER.TRANSACTION(node);
 DBMS_DEFER.CALL('PR', 'MY_PACK', 'MY_PROC', 2);
 DBMS_DEFER.VARCHAR2_ARG('TEST');
 DBMS_DEFER.VARCHAR2_ARG('SALES'); -- required, cannot omit to use default
END;
/

Syntax
DBMS_DEFER.ANYDATA_ARG (arg IN ANYDATA);
DBMS_DEFER.NUMBER_ARG (arg IN NUMBER);
DBMS_DEFER.DATE_ARG (arg IN DATE);
DBMS_DEFER.VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.CHAR_ARG (arg IN CHAR);
DBMS_DEFER.ROWID_ARG (arg IN ROWID);
DBMS_DEFER.RAW_ARG (arg IN RAW);
DBMS_DEFER.BLOB_ARG (arg IN BLOB);
DBMS_DEFER.CLOB_ARG (arg IN CLOB);
DBMS_DEFER.NCLOB_ARG (arg IN NCLOB);
DBMS_DEFER.NCHAR_ARG (arg IN NCHAR);

Note:

■ The ANYDATA_ARG procedure supports the following user-
defined types: object types, collections, and REFs. See Oracle
Database SQL Language Reference and Oracle Database Object-
Relational Developer's Guide for more information about the
ANYDATA data type.

■ This procedure uses abbreviations for some datetime and
interval data types. For example, TSTZ is used for the
TIMESTAMP WITH TIME ZONE data type. For information about
these abbreviations, see "Abbreviations for Datetime and
Interval Data Types" on page 11-2.

datatype_ARG Procedure

12-6 Oracle Database Advanced Replication Management API Reference

DBMS_DEFER.NVARCHAR2_ARG (arg IN NVARCHAR2);
DBMS_DEFER.ANY_CLOB_ARG (arg IN CLOB);
DBMS_DEFER.ANY_VARCHAR2_ARG (arg IN VARCHAR2);
DBMS_DEFER.ANY_CHAR_ARG (arg IN CHAR);
DBMS_DEFER.IDS_ARG (arg IN DSINTERVAL_UNCONSTRAINED);
DBMS_DEFER.IYM_ARG (arg IN YMINTERVAL_UNCONSTRAINED);
DBMS_DEFER.TIMESTAMP_ARG (arg IN TIMESTAMP_UNCONSTRAINED);
DBMS_DEFER.TSLTZ_ARG (arg IN TIMESTAMP_LTZ_UNCONSTRAINED);
DBMS_DEFER.TSTZ_ARG (arg IN TIMESTAMP_TZ_UNCONSTRAINED);

Parameters

Exceptions

Table 12–6 datatype_ARG Procedure Parameters

Parameter Description

arg Value of the parameter that you want to pass to the remote
procedure to which you previously deferred a call.

Table 12–7 datatype_ARG Procedure Exceptions

Exception Description

ORA-23323 Argument value is too long.

Summary of DBMS_DEFER Subprograms

DBMS_DEFER 12-7

TRANSACTION Procedure

This procedure indicates the start of a new deferred transaction. If you omit this call,
then Oracle considers your first call to DBMS_DEFER.CALL to be the start of a new
transaction.

Syntax
DBMS_DEFER.TRANSACTION (
 nodes IN node_list_t);

Parameters

Exceptions

Note: This procedure is overloaded. The behavior of the version
without an input parameter is similar to that of the version with an
input parameter, except that the former uses the nodes in the
DEFDEFAULTDEST view instead of using the nodes in the nodes
parameter.

Table 12–8 TRANSACTION Procedure Parameters

Parameter Description

nodes A PL/SQL index-by table of fully qualified database names to
which you want to propagate the deferred calls of the transaction.
The table is indexed starting at position 1 and continuing until a
NULL entry is found, or the no_data_found exception is raised.
The data in the table is case insensitive.

Table 12–9 TRANSACTION Procedure Exceptions

Exception Description

ORA-23304
(malformedcall)

Previous transaction was not correctly formed or terminated.

ORA-23319 Parameter value is not appropriate.

ORA-23352 Raised by DBMS_DEFER.CALL if the node list contains duplicates.

TRANSACTION Procedure

12-8 Oracle Database Advanced Replication Management API Reference

DBMS_DEFER_QUERY 13-1

13
DBMS_DEFER_QUERY

DBMS_DEFER_QUERY enables querying the deferred transactions queue data that is
not exposed through views.

This chapter contains this topic:

■ Summary of DBMS_DEFER_QUERY Subprograms

Summary of DBMS_DEFER_QUERY Subprograms

13-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_DEFER_QUERY Subprograms

Table 13–1 DBMS_DEFER_QUERY Package Subprograms

Subprogram Description

"GET_ARG_TYPE Function" on
page 13-4

Determines the form of an argument in a deferred call.

"GET_ARG_TYPE Function" on
page 13-4

Determines the type of an argument in a deferred call.

"GET_CALL_ARGS Procedure"
on page 13-6

Returns the text version of the various arguments for the
specified call.

"GET_datatype_ARG Function"
on page 13-7

Determines the value of an argument in a deferred call.

"GET_OBJECT_NULL_VECTO
R_ARG Function" on page 13-9

Returns the type information for a column object.

Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 13-3

GET_ARG_FORM Function

This function returns the character set form of a deferred call parameter.

Syntax
DBMS_DEFER_QUERY.GET_ARG_FORM (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

Returns

See Also: The Advanced Replication interface's online Help for
information about displaying deferred transactions and error
transactions in the Advanced Replication interface in Oracle
Enterprise Manager

Table 13–2 GET_ARG_FORM Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.

deferred_tran_id Deferred transaction identification.

Table 13–3 GET_ARG_FORM Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

Table 13–4 GET_ARG_FORM Function Returns

Constant Return Value Return Value Possible Data Type

DBMS_DEFER_QUERY.ARG_FORM_NONE 0 DATE
NUMBER
ROWID
RAW
BLOB
User-defined types

DBMS_DEFER_QUERY.ARG_FORM_IMPLICIT 1 CHAR
VARCHAR2
CLOB

DBMS_DEFER_QUERY.ARG_FORM_NCHAR 2 NCHAR
NVARCHAR2
NCLOB

GET_ARG_TYPE Function

13-4 Oracle Database Advanced Replication Management API Reference

GET_ARG_TYPE Function

This function determines the type of an argument in a deferred call. The type of the
deferred remote procedure call (RPC) parameter is returned.

Syntax
DBMS_DEFER_QUERY.GET_ARG_TYPE (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

Returns

See Also: The Advanced Replication interface's online Help for
information about displaying deferred transactions and error
transactions in the Advanced Replication interface in Oracle
Enterprise Manager

Table 13–5 GET_ARG_TYPE Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose type you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction.

Table 13–6 GET_ARG_TYPE Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

Table 13–7 GET_ARG_TYPE Function Returns

Constant Return Value
Return
Value

Corresponding Data
Type

DBMS_DEFER_QUERY.ARG_TYPE_VARCHAR2 1 VARCHAR2

DBMS_DEFER_QUERY.ARG_TYPE_NUM 2 NUMBER

DBMS_DEFER_QUERY.ARG_TYPE_ROWID 11 ROWID

DBMS_DEFER_QUERY.ARG_TYPE_DATE 12 DATE

DBMS_DEFER_QUERY.ARG_TYPE_RAW 23 RAW

DBMS_DEFER_QUERY.ARG_TYPE_CHAR 96 CHAR

DBMS_DEFER_QUERY.ARG_TYPE_ANYDATA 109 ANYDATA

Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 13-5

DBMS_DEFER_QUERY.ARG_TYPE_CLOB 112 CLOB

DBMS_DEFER_QUERY.ARG_TYPE_BLOB 113 BLOB

DBMS_DEFER_QUERY.ARG_TYPE_BFIL 114 BFILE

DBMS_DEFER_QUERY.ARG_TYPE_OBJECT_NULL_VECTOR 121 OBJECT_NULL_VECTOR

DBMS_DEFER_QUERY.ARG_TYPE_TIMESTAMP 180 TIMESTAMP

DBMS_DEFER_QUERY.ARG_TYPE_TSTZ 181 TSTZ

DBMS_DEFER_QUERY.ARG_TYPE_IYM 182 IYM

DBMS_DEFER_QUERY.ARG_TYPE_IDS 183 IDS

DBMS_DEFER_QUERY.ARG_TYPE_TSLTZ 231 TSLTZ

Note:

■ The ANYDATA data type supports the following user-defined
types: object types, collections, and REFs. See Oracle Database
SQL Language Reference and Oracle Database Object-Relational
Developer's Guide for more information about the ANYDATA data
type.

■ This function uses abbreviations for some datetime and interval
data types. For example, TSTZ is used for the TIMESTAMP
WITH TIME ZONE data type. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Data Types" on page 11-2.

Table 13–7 (Cont.) GET_ARG_TYPE Function Returns

Constant Return Value
Return
Value

Corresponding Data
Type

GET_CALL_ARGS Procedure

13-6 Oracle Database Advanced Replication Management API Reference

GET_CALL_ARGS Procedure

This procedure returns the text version of the various arguments for the specified call.
The text version is limited to the first 2000 bytes.

Syntax
DBMS_DEFER_QUERY.GET_CALL_ARGS (
 callno IN NUMBER,
 startarg IN NUMBER := 1,
 argcnt IN NUMBER,
 argsize IN NUMBER,
 tran_id IN VARCHAR2,
 date_fmt IN VARCHAR2,
 types OUT TYPE_ARY,
 forms OUT TYPE_ARY,
 vals OUT VAL_ARY);

Parameters

Exceptions

See Also:

■ "GET_datatype_ARG Function" on page 13-7

■ Oracle Database SQL Language Reference and Oracle Database
Object-Relational Developer's Guide for more information about
the ANYDATA data type

Table 13–8 GET_CALL_ARGS Procedure Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred remote
procedure call (RPC).

startarg Numerical position of the first argument you want described.

argcnt Number of arguments in the call.

argsize Maximum size of returned argument.

tran_id Identifier of the deferred transaction.

date_fmt Format in which the date is returned.

types Array containing the types of arguments.

forms Array containing the character set forms of arguments.

vals Array containing the values of the arguments in a textual form.

Table 13–9 GET_CALL_ARGS Procedure Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred call.

Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 13-7

GET_datatype_ARG Function

This function determines the value of an argument in a deferred call.

The ANYDATA type supports the following user-defined types: object types, collections
and REFs. Not all types supported by this function can be enqueued by the
ANYDATA_ARG procedure in the DBMS_DEFER package.

The returned text for type arguments includes the following values: type owner, type
name, type version, length, precision, scale, character set identifier, character set form,
and number of elements for collections or number of attributes for object types. These
values are separated by a colon (:).

Syntax
Depending upon the type of the argument value that you want to retrieve, the syntax
for the appropriate function is as follows. Each of these functions returns the value of
the specified argument.

DBMS_DEFER_QUERY.GET_datatype_ARG (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2 DEFAULT NULL)
 RETURN datatype;

where datatype is:

{ ANYDATA
| NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| ROWID
| BLOB
| CLOB
| NCLOB
| NCHAR
| NVARCHAR2
| IDS
| IYM
| TIMESTAMP

See Also:

■ "datatype_ARG Procedure" on page 12-5

■ The Advanced Replication interface's online Help for
information about displaying deferred transactions and error
transactions in the Advanced Replication interface in Oracle
Enterprise Manager

■ Oracle Database SQL Language Reference and Oracle Database
Object-Relational Developer's Guide for more information about
the ANYDATA data type

■ This function uses abbreviations for some datetime and interval
data types. For example, TSTZ is used for the TIMESTAMP
WITH TIME ZONE data type. For information about these
abbreviations, see "Abbreviations for Datetime and Interval
Data Types" on page 11-2.

GET_datatype_ARG Function

13-8 Oracle Database Advanced Replication Management API Reference

| TSLTZ
| TSTZ }

Parameters

Exceptions

Table 13–10 GET_datatype_ARG Function Parameters

Parameter Description

callno Identification number from the DEFCALL view of the deferred
remote procedure call.

arg_no Numerical position of the argument to the call whose value you
want to determine. The first argument to a procedure is in
position 1.

deferred_tran_id Identifier of the deferred transaction. Defaults to the last
transaction identifier passed to the GET_ARG_TYPE function. The
default is NULL.

Table 13–11 GET_datatype_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Argument in this position is not of the specified type or is not
one of the types supported by the ANYDATA type.

Summary of DBMS_DEFER_QUERY Subprograms

DBMS_DEFER_QUERY 13-9

GET_OBJECT_NULL_VECTOR_ARG Function

This function returns the type information for a column object, including the type
owner, name, and hashcode.

Syntax
DBMS_DEFER_QUERY.GET_OBJECT-NULL_VECTOR_ARG (
 callno IN NUMBER,
 arg_no IN NUMBER,
 deferred_tran_id IN VARCHAR2)
 RETURN SYSTEM.REPCAT$_OBJECT_NULL_VECTOR;

Parameters

Exceptions

Returns

Table 13–12 GET_OBJECT_NULL_VECTOR_ARG Function Parameters

Parameter Description

callno Call identifier from the DEFCALL view.

arg_no Position of desired parameter in calls argument list. Parameter
positions are 1...number of parameters in call.

deferred_tran_id Deferred transaction identification.

Table 13–13 GET_OBJECT_NULL_VECTOR_ARG Function Exceptions

Exception Description

NO_DATA_FOUND Input parameters do not correspond to a parameter of a deferred
call.

ORA-26564 Parameter is not an object_null_vector type.

Table 13–14 GET_OBJECT_NULL_VECTOR_ARG Function Returns

Return Value Type Definition

SYSTEM.REPCAT$_OBJECT_NULL_VECTOR
type

CREATE TYPE
SYSTEM.REPCAT$_OBJECT_NULL_VECTOR
AS OBJECT (
 type_owner VARCHAR2(30),
 type_name VARCHAR2(30),
 type_hashcode RAW(17),
 null_vector RAW(2000));

GET_OBJECT_NULL_VECTOR_ARG Function

13-10 Oracle Database Advanced Replication Management API Reference

DBMS_DEFER_SYS 14-1

14
DBMS_DEFER_SYS

DBMS_DEFER_SYS procedures manage default replication node lists. This package is
the system administrator interface to a replicated transactional deferred remote
procedure call facility. Administrators and replication daemons can execute
transactions queued for remote nodes using this facility, and administrators can
control the nodes to which remote calls are destined.

This chapter contains this topic:

■ Summary of DBMS_DEFER_SYS Subprograms

Summary of DBMS_DEFER_SYS Subprograms

14-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_DEFER_SYS Subprograms

Table 14–1 DBMS_DEFER_SYS Package Subprograms

Subprogram Description

"ADD_DEFAULT_DEST
Procedure" on page 14-4

Adds a destination database to the DEFDEFAULTDEST view.

"CLEAR_PROP_STATISTI
CS Procedure" on
page 14-5

Clears the propagation statistics in the DEFSCHEDULE data
dictionary view.

"DELETE_DEFAULT_DES
T Procedure" on page 14-6

Removes a destination database from the DEFDEFAULTDEST
view.

"DELETE_DEF_DESTINA
TION Procedure" on
page 14-7

Removes a destination database from the DEFSCHEDULE view.

"DELETE_ERROR
Procedure" on page 14-8

Deletes a transaction from the DEFERROR view.

"DELETE_TRAN
Procedure" on page 14-9

Deletes a transaction from the DEFTRANDEST view.

"DISABLED Function" on
page 14-10

Determines whether propagation of the deferred transaction
queue from the current site to a specified site is enabled.

EXCLUDE_PUSH
Function on page 14-11

Acquires an exclusive lock that prevents deferred transaction
PUSH.

"EXECUTE_ERROR
Procedure" on page 14-12

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the original
receiver of the transaction.

"EXECUTE_ERROR_AS_U
SER Procedure" on
page 14-13

Reexecutes a deferred transaction that did not initially
complete successfully in the security context of the user who
executes this procedure.

"PURGE Function" on
page 14-14

Purges pushed transactions from the deferred transaction
queue at your current master site or materialized view site.

"PUSH Function" on
page 14-16

Forces a deferred remote procedure call queue at your current
master site or materialized view site to be pushed to a remote
site.

"REGISTER_PROPAGATO
R Procedure" on
page 14-19

Registers the specified user as the propagator for the local
database.

"SCHEDULE_PURGE
Procedure" on page 14-20

Schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized
view site.

"SCHEDULE_PUSH
Procedure" on page 14-22

Schedules a job to push the deferred transaction queue to a
remote site.

"SET_DISABLED
Procedure" on page 14-24

Disables or enables propagation of the deferred transaction
queue from the current site to a specified destination site.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-3

"UNREGISTER_PROPAG
ATOR Procedure" on
page 14-26

Unregisters a user as the propagator from the local database.

"UNSCHEDULE_PURGE
Procedure" on page 14-27

Stops automatic purges of pushed transactions from the
deferred transaction queue at a master site or materialized
view site.

"UNSCHEDULE_PUSH
Procedure" on page 14-28

Stops automatic pushes of the deferred transaction queue from
a master site or materialized view site to a remote site.

Table 14–1 (Cont.) DBMS_DEFER_SYS Package Subprograms

Subprogram Description

ADD_DEFAULT_DEST Procedure

14-4 Oracle Database Advanced Replication Management API Reference

ADD_DEFAULT_DEST Procedure

This procedure adds a destination database to the DEFDEFAULTDEST data dictionary
view.

Syntax
DBMS_DEFER_SYS.ADD_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

Exceptions

Table 14–2 ADD_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
add to the DEFDEFAULTDEST view.

Table 14–3 ADD_DEFAULT_DEST Procedure Exceptions

Exception Description

ORA-23352 The dblink that you specified is already in the default list.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-5

CLEAR_PROP_STATISTICS Procedure

This procedure clears the propagation statistics in the DEFSCHEDULE data dictionary
view. When this procedure is executed successfully, all statistics in this view are
returned to zero and statistic gathering starts fresh.

Specifically, this procedure clears statistics from the following columns in the
DEFSCHEDULE data dictionary view:

■ TOTAL_TXN_COUNT

■ AVG_THROUGHPUT

■ AVG_LATENCY

■ TOTAL_BYTES_SENT

■ TOTAL_BYTES_RECEIVED

■ TOTAL_ROUND_TRIPS

■ TOTAL_ADMIN_COUNT

■ TOTAL_ERROR_COUNT

■ TOTAL_SLEEP_TIME

Syntax
DBMS_DEFER_SYS.CLEAR_PROP_STATISTICS (
 dblink IN VARCHAR2);

Parameters

Table 14–4 CLEAR_PROP_STATISTICS Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node whose statistics you
want to clear. The statistics to be cleared are the statistics for
propagation of deferred transactions from the current node to the
node you specify for dblink.

DELETE_DEFAULT_DEST Procedure

14-6 Oracle Database Advanced Replication Management API Reference

DELETE_DEFAULT_DEST Procedure

This procedure removes a destination database from the DEFDEFAULTDEST view.

Syntax
DBMS_DEFER_SYS.DELETE_DEFAULT_DEST (
 dblink IN VARCHAR2);

Parameters

Table 14–5 DELETE_DEFAULT_DEST Procedure Parameters

Parameter Description

dblink The fully qualified database name of the node that you want to
delete from the DEFDEFAULTDEST view. If Oracle does not find
this dblink in the view, then no action is taken.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-7

DELETE_DEF_DESTINATION Procedure

This procedure removes a destination database from the DEFSCHEDULE view.

Syntax
DBMS_DEFER_SYS.DELETE_DEF_DESTINATION (
 destination IN VARCHAR2,
 force IN BOOLEAN := FALSE);

Parameters

Table 14–6 DELETE_DEF_DESTINATION Procedure Parameters

Parameter Description

destination The fully qualified database name of the destination that you want
to delete from the DEFSCHEDULE view. If Oracle does not find this
destination in the view, then no action is taken.

force When set to TRUE, Oracle ignores all safety checks and deletes the
destination.

DELETE_ERROR Procedure

14-8 Oracle Database Advanced Replication Management API Reference

DELETE_ERROR Procedure

This procedure deletes a transaction from the DEFERROR view.

Syntax
DBMS_DEFER_SYS.DELETE_ERROR(
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14–7 DELETE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to remove from the DEFERROR view. If
this parameter is NULL, then all transactions meeting the
requirements of the other parameter are removed.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. If this
parameter is NULL, then all transactions meeting the requirements
of the other parameter are removed from the DEFERROR view.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-9

DELETE_TRAN Procedure

This procedure deletes a transaction from the DEFTRANDEST view. If there are no other
DEFTRANDEST or DEFERROR entries for the transaction, then the transaction is deleted
from the DEFTRAN and DEFCALL views as well.

Syntax
DBMS_DEFER_SYS.DELETE_TRAN (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Table 14–8 DELETE_TRAN Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFTRAN view of the deferred
transaction that you want to delete. If this is NULL, then all
transactions meeting the requirements of the other parameter are
deleted.

destination The fully qualified database name from the DEFTRANDEST view of
the database to which the transaction was originally queued. If
this is NULL, then all transactions meeting the requirements of the
other parameter are deleted.

DISABLED Function

14-10 Oracle Database Advanced Replication Management API Reference

DISABLED Function

This function determines whether propagation of the deferred transaction queue from
the current site to a specified site is enabled. The DISABLED function returns TRUE if
the deferred remote procedure call (RPC) queue is disabled for the specified
destination.

Syntax
DBMS_DEFER_SYS.DISABLED (
 destination IN VARCHAR2)
 RETURN BOOLEAN;

Parameters

Exceptions

Returns

Table 14–9 DISABLED Function Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to check.

Table 14–10 DISABLED Function Exceptions

Exception Description

NO_DATA_FOUND Specified destination does not appear in the DEFSCHEDULE
view.

Table 14–11 DISABLED Function Return Values

Value Description

TRUE Propagation to this site from the current site is disabled.

FALSE Propagation to this site from the current site is enabled.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-11

EXCLUDE_PUSH Function

This function acquires an exclusive lock that prevents deferred transaction PUSH
(either serial or parallel). This function performs a commit when acquiring the lock.
The lock is acquired with RELEASE_ON_COMMIT => TRUE, so that pushing of the
deferred transaction queue can resume after the next commit.

Syntax
DBMS_DEFER_SYS.EXCLUDE_PUSH (
 timeout IN INTEGER)
 RETURN INTEGER;

Parameters

Returns

Table 14–12 EXCLUDE_PUSH Function Parameters

Parameter Description

timeout Timeout in seconds. If the lock cannot be acquired within this time
period (either because of an error or because a PUSH is currently
under way), then the call returns a value of 1. A timeout value of
DBMS_LOCK.MAXWAIT waits indefinitely.

Table 14–13 EXCLUDE_PUSH Function Return Values

Value Description

0 Success, lock acquired.

1 Timeout, no lock acquired.

2 Deadlock, no lock acquired.

4 Already own lock.

EXECUTE_ERROR Procedure

14-12 Oracle Database Advanced Replication Management API Reference

EXECUTE_ERROR Procedure

This procedure reexecutes a deferred transaction that did not initially complete
successfully in the security context of the original receiver of the transaction.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Exceptions

Table 14–14 EXECUTE_ERROR Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. This
must not be NULL. If the provided database name is not fully
qualified or is invalid, no error will be raised.

Table 14–15 EXECUTE_ERROR Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters were
used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-13

EXECUTE_ERROR_AS_USER Procedure

This procedure reexecutes a deferred transaction that did not initially complete
successfully. Each transaction is executed in the security context of the connected user.

Syntax
DBMS_DEFER_SYS.EXECUTE_ERROR_AS_USER (
 deferred_tran_id IN VARCHAR2,
 destination IN VARCHAR2);

Parameters

Exceptions

Table 14–16 EXECUTE_ERROR_AS_USER Procedure Parameters

Parameter Description

deferred_tran_id Identification number from the DEFERROR view of the deferred
transaction that you want to reexecute. If this is NULL, then all
transactions queued for destination are reexecuted.

destination The fully qualified database name from the DEFERROR view of the
database to which the transaction was originally queued. This
must not be NULL.

Table 14–17 EXECUTE_ERROR_AS_USER Procedure Exceptions

Exception Description

ORA-24275 error Illegal combinations of NULL and non-NULL parameters were
used.

badparam Parameter value missing or invalid (for example, if destination
is NULL).

missinguser Invalid user.

PURGE Function

14-14 Oracle Database Advanced Replication Management API Reference

PURGE Function

This function purges pushed transactions from the deferred transaction queue at your
current master site or materialized view site.

Syntax
DBMS_DEFER_SYS.PURGE (
 purge_method IN BINARY_INTEGER := purge_method_quick,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 write_trace IN BOOLEAN := NULL);
 RETURN BINARY_INTEGER;

Parameters

Table 14–18 PURGE Function Parameters

Parameter Description

purge_method Controls how to purge the deferred transaction queue:
purge_method_quick costs less, while
purge_method_precise offers better precision.

Specify the following for this parameter to use
purge_method_quick:

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user
purge_method_precise:

dbms_defer_sys.purge_method_precise

If you use purge_method_quick, deferred transactions and
deferred procedure calls that have been successfully pushed can
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. See "Usage Notes" on
page 14-15 for more information.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If > 0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds.

transaction_count If > 0, then shut down cleanly after purging
transaction_count number of transactions.

write_trace When set to TRUE, Oracle records the result value returned by the
PURGE function in the server's trace file. When set to FALSE,
Oracle does not record the result value.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-15

Returns

Exceptions

Usage Notes
When you use the purge_method_quick for the purge_method parameter in the
DBMS_DEFER_SYS.PURGE function, deferred transactions and deferred procedure
calls can remain in the DEFCALL and DEFTRAN data dictionary views after they have
been successfully pushed. This behavior occurs in replication environments that have
more than one database link and the push is executed to only one database link.

To purge the deferred transactions and deferred procedure calls, perform one of the
following actions:

■ Use purge_method_precise for the purge_method parameter instead of the
purge_method_quick. Using purge_method_precise is more expensive, but
it ensures that the deferred transactions and procedure calls are purged after they
have been successfully pushed.

■ Using purge_method_quick for the purge_method parameter, push the
deferred transactions to all database links. The deferred transactions and deferred
procedure calls are purged efficiently when the push to the last database link is
successful.

Table 14–19 Purge Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds.

result_transaction_count Terminated by exceeding transaction_count.

result_errors Terminated after errors.

result_split_del_order_limit Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the purge. If the problem persists, then contact
Oracle Support Services.

result_purge_disabled Queue purging is disabled internally for synchronization
when adding new master sites without quiesce.

Table 14–20 PURGE Function Exceptions

Exception Description

argoutofrange Parameter value is out of a valid range.

executiondisabled Execution of purging is disabled.

defererror Internal error.

PUSH Function

14-16 Oracle Database Advanced Replication Management API Reference

PUSH Function

This function forces a deferred remote procedure call (RPC) queue at your current
master site or materialized view site to be pushed (propagated) to a remote site using
either serial or parallel propagation.

Syntax
DBMS_DEFER_SYS.PUSH (
 destination IN VARCHAR2,
 parallelism IN BINARY_INTEGER := 0,
 heap_size IN BINARY_INTEGER := 0,
 stop_on_error IN BOOLEAN := FALSE,
 write_trace IN BOOLEAN := FALSE,
 startup_seconds IN BINARY_INTEGER := 0,
 execution_seconds IN BINARY_INTEGER := seconds_infinity,
 delay_seconds IN BINARY_INTEGER := 0,
 transaction_count IN BINARY_INTEGER := transactions_infinity,
 delivery_order_limit IN NUMBER := delivery_order_infinity)
 RETURN BINARY_INTEGER;

Parameters

Table 14–21 PUSH Function Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, FALSE, indicates that the executor should continue
even if errors, such as conflicts, are encountered. If TRUE, then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

Note: If stop_on_error is set to TRUE and the parallelism
parameter is greater than 0 (zero), then transactions might
continue to be propagated and applied for a period of time after
an error is encountered.

write_trace When set to TRUE, Oracle records the result value returned by the
function in the server's trace file. When set to FALSE, Oracle does
not record the result value.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-17

Returns

execution_seconds If > 0, then stop push cleanly after the specified number of seconds
of real time. If transaction_count and execution_seconds
are zero (the default), then transactions are executed until there are
no more in the queue.

The execution_seconds parameter only controls the duration
of time that operations can be started. It does not include the
amount of time that the transactions require at remote sites.
Therefore, the execution_seconds parameter is not intended to
be used as a precise control to stop the propagation of transactions
to a remote site. If a precise control is required, use the
transaction_count or delivery_order parameters.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and
execution_seconds are zero (the default), then transactions are
executed until there are no more in the queue that need to be
pushed.

delivery_order_limit Stop execution cleanly before pushing a transaction where
delivery_order >= delivery_order_limit.

Table 14–22 PUSH Function Returns

Value Description

result_ok OK, terminated after delay_seconds expired.

result_startup_seconds Terminated by lock timeout while starting.

result_execution_seconds Terminated by exceeding execution_seconds.

result_transaction_count Terminated by exceeding transaction_count.

result_delivery_order_limit Terminated by exceeding delivery_order_limit.

result_errors Terminated after errors.

result_push_disabled Push was disabled internally. Typically, this return value
means that propagation to the destination was set to
disabled internally by Oracle for propagation
synchronization when adding a new master site to a
master group without quiescing the master group.
Oracle will enable propagation automatically at a later
time.

result_split_del_order_limit Terminated after failing to acquire the enqueue in
exclusive mode. If you receive this return code, then
retry the push. If the problem persists, then contact
Oracle Support Services.

Table 14–21 (Cont.) PUSH Function Parameters

Parameter Description

PUSH Function

14-18 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 14–23 PUSH Function Exceptions

Exception Description

incompleteparallelpush Serial propagation requires that parallel propagation shuts
down cleanly.

executiondisabled Execution of deferred remote procedure calls (RPCs) is
disabled at the destination.

crt_err_err Error while creating entry in DEFERROR.

deferred_rpc_quiesce Replication activity for replication group is suspended.

commfailure Communication failure during deferred remote procedure call
(RPC).

missingpropagator A propagator does not exist.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-19

REGISTER_PROPAGATOR Procedure

This procedure registers the specified user as the propagator for the local database. It
also grants the following privileges to the specified user (so that the user can create
wrappers):

■ CREATE SESSION

■ CREATE PROCEDURE

■ CREATE DATABASE LINK

■ EXECUTE ANY PROCEDURE

Syntax
DBMS_DEFER_SYS.REGISTER_PROPAGATOR (
 username IN VARCHAR2);

Parameter

Exceptions

Table 14–24 REGISTER_PROPAGATOR Procedure Parameter

Parameter Description

username Name of the user.

Table 14–25 REGISTER_PROPAGATOR Procedure Exceptions

Exception Description

missinguser Specified user does not exist.

alreadypropagator Specified user is already the propagator.

duplicatepropagator There is already a different propagator.

SCHEDULE_PURGE Procedure

14-20 Oracle Database Advanced Replication Management API Reference

SCHEDULE_PURGE Procedure

This procedure schedules a job to purge pushed transactions from the deferred
transaction queue at your current master site or materialized view site. You should
schedule one purge job.

Syntax
DBMS_DEFER_SYS.SCHEDULE_PURGE (
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := NULL,
 purge_method IN BINARY_INTEGER := NULL,
 rollback_segment IN VARCHAR2 := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL,
 write_trace IN BOOLEAN := NULL);

Parameters

See Also: Oracle Database Advanced Replication for information
about using this procedure to schedule continuous or periodic
purge of your deferred transaction queue

Table 14–26 SCHEDULE_PURGE Procedure Parameters

Parameter Description

interval Allows you to provide a function to calculate the next time to
purge. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, you must supply a value for
next_date.

next_date Allows you to specify a time to purge pushed transactions from
the site's queue. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, it is created with a value of
NULL. If you do not supply a value for this field, then you must
supply a value for interval.

reset Set to TRUE to reset LAST_TXN_COUNT, LAST_ERROR, and
LAST_MSG to NULL.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-21

purge_method Controls how to purge the deferred transaction queue:
purge_method_quick costs less, while
purge_method_precise offers better precision.

Specify the following for this parameter to use
purge_method_quick:

dbms_defer_sys.purge_method_quick

Specify the following for this parameter to user
purge_method_precise:

dbms_defer_sys.purge_method_precise

If you use purge_method_quick, deferred transactions and
deferred procedure calls that have been successfully pushed can
remain in the DEFTRAN and DEFCALL data dictionary views for
longer than expected before they are purged. For more
information, see "Usage Notes" on page 14-15. These usage notes
are for the DBMS_DEFER_SYS.PURGE function, but they also
apply to the DBMS_DEFER_SYS.SCHEDULE_PURGE procedure.

rollback_segment Name of rollback segment to use for the purge, or NULL for
default.

startup_seconds Maximum number of seconds to wait for a previous purge of the
same deferred transaction queue.

execution_seconds If >0, then stop purge cleanly after the specified number of
seconds of real time.

delay_seconds Stop purge cleanly after the deferred transaction queue has no
transactions to purge for delay_seconds.

transaction_count If > 0, then shut down cleanly after purging
transaction_count number of transactions.

write_trace When set to TRUE, Oracle records the result value returned by the
PURGE function in the server's trace file.

Table 14–26 (Cont.) SCHEDULE_PURGE Procedure Parameters

Parameter Description

SCHEDULE_PUSH Procedure

14-22 Oracle Database Advanced Replication Management API Reference

SCHEDULE_PUSH Procedure

This procedure schedules a job to push the deferred transaction queue to a remote site.
This procedure performs a COMMIT.

Syntax
DBMS_DEFER_SYS.SCHEDULE_PUSH (
 destination IN VARCHAR2,
 interval IN VARCHAR2,
 next_date IN DATE,
 reset IN BOOLEAN := FALSE,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL,
 stop_on_error IN BOOLEAN := NULL,
 write_trace IN BOOLEAN := NULL,
 startup_seconds IN BINARY_INTEGER := NULL,
 execution_seconds IN BINARY_INTEGER := NULL,
 delay_seconds IN BINARY_INTEGER := NULL,
 transaction_count IN BINARY_INTEGER := NULL);

Parameters

See Also: Oracle Database Advanced Replication for information
about using this procedure to schedule continuous or periodic push
of your deferred transaction queue

Table 14–27 SCHEDULE_PUSH Procedure Parameters

Parameter Description

destination The fully qualified database name of the master site or master
materialized view site to which you are forwarding changes.

interval Allows you to provide a function to calculate the next time to
push. This value is stored in the interval field of the
DEFSCHEDULE view and calculates the next_date field of this
view. If you use the default value for this parameter, NULL, then
the value of this field remains unchanged. If the field had no
previous value, it is created with a value of NULL. If you do not
supply a value for this field, then you must supply a value for
next_date.

next_date Allows you to specify a time to push deferred transactions to the
remote site. This value is stored in the next_date field of the
DEFSCHEDULE view. If you use the default value for this
parameter, NULL, then the value of this field remains unchanged.
If this field had no previous value, then it is created with a value
of NULL. If you do not supply a value for this field, then you must
supply a value for interval.

reset Set to TRUE to reset LAST_TXN_COUNT, LST_ERROR, and
LAST_MSG to NULL.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-23

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set the parameter unless so directed by Oracle
Support Services.

stop_on_error The default, FALSE, indicates that the executor should continue
even if errors, such as conflicts, are encountered. If TRUE, then
stops propagation at the first indication that a transaction
encountered an error at the destination site.

Note: If stop_on_error is set to TRUE and the parallelism
parameter is greater than 0 (zero), then transactions might
continue to be propagated and applied for a period of time after
an error is encountered.

write_trace When set to TRUE, Oracle records the result value returned by the
function in the server's trace file.

startup_seconds Maximum number of seconds to wait for a previous push to the
same destination.

execution_seconds If >0, then stop execution cleanly after the specified number of
seconds of real time. If transaction_count and
execution_seconds are zero (the default), then transactions are
executed until there are no more in the queue.

delay_seconds Do not return before the specified number of seconds have
elapsed, even if the queue is empty. Useful for reducing execution
overhead if PUSH is called from a tight loop.

transaction_count If > 0, then the maximum number of transactions to be pushed
before stopping. If transaction_count and
execution_seconds are zero (the default), then transactions are
executed until there are no more in the queue that need to be
pushed.

Table 14–27 (Cont.) SCHEDULE_PUSH Procedure Parameters

Parameter Description

SET_DISABLED Procedure

14-24 Oracle Database Advanced Replication Management API Reference

SET_DISABLED Procedure

To disable or enable propagation of the deferred transaction queue from the current
site to a specified destination site. If the disabled parameter is TRUE, then the
procedure disables propagation to the specified destination and future invocations of
PUSH do not push the deferred remote procedure call (RPC) queue. SET_DISABLED
eventually affects a session already pushing the queue to the specified destination, but
does not affect sessions appending to the queue with DBMS_DEFER.

If the disabled parameter is FALSE, then the procedure enables propagation to the
specified destination and, although this does not push the queue, it permits future
invocations of PUSH to push the queue to the specified destination. Whether the
disabled parameter is TRUE or FALSE, a COMMIT is required for the setting to take
effect in other sessions.

Syntax
DBMS_DEFER_SYS.SET_DISABLED (
 destination IN VARCHAR2,
 disabled IN BOOLEAN := TRUE,
 catchup IN RAW := '00',
 override IN BOOLEAN := FALSE);

Parameters

Table 14–28 SET_DISABLED Procedure Parameters

Parameter Description

destination The fully qualified database name of the node whose propagation
status you want to change.

disabled By default, this parameter disables propagation of the deferred
transaction queue from your current site to the specified
destination. Set this to FALSE to enable propagation.

catchup The extension identifier for adding new master sites to a master
group without quiescing the master group. The new master site is
the destination. Query the DEFSCHEDULE data dictionary view for
the existing extension identifiers.

override A FALSE setting, the default, specifies that Oracle raises the
cantsetdisabled exception if the disabled parameter is set to
FALSE and propagation was disabled internally by Oracle.

A TRUE setting specifies that Oracle ignores whether the disabled
state was set internally for synchronization and always tries to set
the state as specified by the disabled parameter.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-25

Exceptions

Table 14–29 SET_DISABLED Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the specified
destination.

cantsetdisabled The disabled status for this site is set internally by Oracle for
synchronization during adding a new master site to a master
group without quiescing the master group. Ensure that adding a
new master site without quiescing finished before invoking this
procedure.

UNREGISTER_PROPAGATOR Procedure

14-26 Oracle Database Advanced Replication Management API Reference

UNREGISTER_PROPAGATOR Procedure

To unregister a user as the propagator from the local database. This procedure:

■ Deletes the specified propagator from DEFPROPAGATOR.

■ Revokes privileges granted by REGISTER_PROPAGATOR from the specified user
(including identical privileges granted independently).

■ Drops any generated wrappers in the schema of the specified propagator, and
marks them as dropped in the replication catalog.

Syntax
DBMS_DEFER_SYS.UNREGISTER_PROPAGATOR (
 username IN VARCHAR2
 timeout IN INTEGER DEFAULT DBMS_LOCK.MAXWAIT);

Parameters

Exceptions

Table 14–30 UNREGISTER_PROPAGATOR Procedure Parameters

Parameter Description

username Name of the propagator user.

timeout Timeout in seconds. If the propagator is in use, then the procedure
waits until timeout. The default is DBMS_LOCK.MAXWAIT.

Table 14–31 UNREGISTER_PROPAGATOR Procedure Exceptions

Parameter Description

missingpropagator Specified user is not a propagator.

propagator_inuse Propagator is in use, and thus cannot be unregistered. Try later.

Summary of DBMS_DEFER_SYS Subprograms

DBMS_DEFER_SYS 14-27

UNSCHEDULE_PURGE Procedure

This procedure stops automatic purges of pushed transactions from the deferred
transaction queue at a master site or materialized view site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PURGE();

Parameters
None

UNSCHEDULE_PUSH Procedure

14-28 Oracle Database Advanced Replication Management API Reference

UNSCHEDULE_PUSH Procedure

This procedure stops automatic pushes of the deferred transaction queue from a
master site or materialized view site to a remote site.

Syntax
DBMS_DEFER_SYS.UNSCHEDULE_PUSH (
 dblink IN VARCHAR2);

Parameters

Exceptions

Table 14–32 UNSCHEDULE_PUSH Procedure Parameters

Parameter Description

dblink Fully qualified path name for the database at which you want to
unschedule periodic execution of deferred remote procedure calls.

Table 14–33 UNSCHEDULE_PUSH Procedure Exceptions

Exception Description

NO_DATA_FOUND No entry was found in the DEFSCHEDULE view for the specified
dblink.

DBMS_OFFLINE_OG 15-1

15
DBMS_OFFLINE_OG

The DBMS_OFFLINE_OG package contains public APIs for offline instantiation of
master groups.

This chapter contains this topic:

■ Summary of DBMS_OFFLINE_OG Subprograms

Note: These procedures are used in performing an offline
instantiation of a master table in a multimaster replication
environment.

These procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

Summary of DBMS_OFFLINE_OG Subprograms

15-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_OFFLINE_OG Subprograms

Table 15–1 DBMS_OFFLINE_OG Package Subprograms

Subprogram Description

"BEGIN_INSTANTIATION
Procedure" on page 15-3

Starts offline instantiation of a master group.

"BEGIN_LOAD Procedure"
on page 15-5

Disables triggers while data is imported to new master site
as part of offline instantiation.

"END_INSTANTIATION
Procedure" on page 15-6

Completes offline instantiation of a master group.

"END_LOAD Procedure" on
page 15-7

Reenables triggers after importing data to new master site
as part of offline instantiation.

"RESUME_SUBSET_OF_MAS
TERS Procedure" on
page 15-9

Resumes replication activity at all existing sites except the
new site during offline instantiation of a master group.

Summary of DBMS_OFFLINE_OG Subprograms

DBMS_OFFLINE_OG 15-3

BEGIN_INSTANTIATION Procedure

This procedure starts offline instantiation of a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 fname IN VARCHAR2);

Parameters

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-25 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Table 15–2 BEGIN_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you want to replicate to the
new site.

new_site The fully qualified database name of the new site to which you
want to replicate the replication group.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

BEGIN_INSTANTIATION Procedure

15-4 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 15–3 BEGIN_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

sitealreadyexists Specified site is already a master site for this replication
group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

dbms_repcat.missing_flavor If you receive this exception, contact Oracle Support
Services.

Summary of DBMS_OFFLINE_OG Subprograms

DBMS_OFFLINE_OG 15-5

BEGIN_LOAD Procedure

This procedure disables triggers while data is imported to the new master site as part
of offline instantiation. You must call this procedure from the new master site.

Syntax
DBMS_OFFLINE_OG.BEGIN_LOAD (
 gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters

Exceptions

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-25 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Table 15–4 BEGIN_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you are importing.

new_site The fully qualified database name of the new site at which you
will be importing the replication group members.

Table 15–5 BEGIN_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

END_INSTANTIATION Procedure

15-6 Oracle Database Advanced Replication Management API Reference

END_INSTANTIATION Procedure

This procedure completes offline instantiation of a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.END_INSTANTIATION (
 gname IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters

Exceptions

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-25 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Table 15–6 END_INSTANTIATION Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

Table 15–7 END_INSTANTIATION Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new master
site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

Summary of DBMS_OFFLINE_OG Subprograms

DBMS_OFFLINE_OG 15-7

END_LOAD Procedure

This procedure reenables triggers after importing data to new master site as part of
offline instantiation. You must call this procedure from the new master site.

Syntax
DBMS_OFFLINE_OG.END_LOAD (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 fname IN VARCHAR2);

Parameters

Exceptions

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-25 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Table 15–8 END_LOAD Procedure Parameters

Parameter Description

gname Name of the replication group whose members you have finished
importing.

new_site The fully qualified database name of the new site at which you
have imported the replication group members.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 15–9 END_LOAD Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

wrongsite This procedure must be called from the new master site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of the new master site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

END_LOAD Procedure

15-8 Oracle Database Advanced Replication Management API Reference

dbms_repcat.flavor_noobject If you receive this exception, contact Oracle Support
Services.

dbms_repcat.flavor_contains If you receive this exception, contact Oracle Support
Services.

Table 15–9 (Cont.) END_LOAD Procedure Exceptions

Exception Description

Summary of DBMS_OFFLINE_OG Subprograms

DBMS_OFFLINE_OG 15-9

RESUME_SUBSET_OF_MASTERS Procedure

When you add a new master site to a master group by performing an offline
instantiation of a master site, it might take some time to complete the offline
instantiation process. This procedure resumes replication activity at all existing sites,
except the new site, during offline instantiation of a master group. You typically
execute this procedure after executing the
DBMS_OFFLINE_OG.BEGIN_INSTANTIATION procedure. You must call this
procedure from the master definition site.

Syntax
DBMS_OFFLINE_OG.RESUME_SUBSET_OF_MASTERS (
 gname IN VARCHAR2,
 new_site IN VARCHAR2
 override IN BOOLEAN := FALSE);

Parameters

Note: This procedure is used to perform an offline instantiation of
a master table in a multimaster replication environment.

This procedure should not be confused with the procedures in the
DBMS_REPCAT_INSTANTIATE package (used for instantiating a
deployment template). See the documentation for this package for
more information about its use.

See Also: "Adding New Master Sites with Offline Instantiation
Using Export/Import" on page 7-25 for information about adding a
new master site to a master group by performing an offline
instantiation of a master site

Table 15–10 RESUME_SUBSET_OF_MASTERS Procedure Parameters

Parameter Description

gname Name of the replication group that you are replicating to the new
site.

new_site The fully qualified database name of the new site to which you are
replicating the replication group.

override If this is TRUE, then any pending administrative requests are
ignored and normal replication activity is restored at each master
as quickly as possible. The override parameter should be set to
TRUE only in emergency situations.

If this is FALSE, then normal replication activity is restored at each
master only when there is no pending administrative request for
gname at that master.

RESUME_SUBSET_OF_MASTERS Procedure

15-10 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 15–11 RESUME_SUBSET_OF_MASTERS Procedure Exceptions

Exception Description

badargument NULL or empty string for replication group or new
master site name.

dbms_repcat.nonmasterdef This procedure must be called from the master definition
site.

unknownsite Specified site is not recognized by replication group.

wrongstate Status of master definition site must be quiesced.

dbms_repcat.missingrepgroup gname does not exist as a master group.

DBMS_RECTIFIER_DIFF 16-1

16
DBMS_RECTIFIER_DIFF

The DBMS_RECTIFIER_DIFF package contains APIs used to detect and resolve data
inconsistencies between two replicated sites.

This chapter contains this topic:

■ Summary of DBMS_RECTIFIER_DIFF Subprograms

Note: You can also determine differences between database objects
and converge them using the DBMS_COMPARISON package.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for
information about the DBMS_COMPARISON package

■ Oracle Database 2 Day + Data Replication and Integration Guide and
Oracle Streams Replication Administrator's Guide for information
about using the DBMS_COMPARISON package

Summary of DBMS_RECTIFIER_DIFF Subprograms

16-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_RECTIFIER_DIFF Subprograms

Table 16–1 DBMS_RECTIFIER_DIFF Package Subprograms

Subprogram Description

"DIFFERENCES
Procedure" on
page 16-3

Determines the differences between two tables.

"RECTIFY Procedure"
on page 16-6

Resolves the differences between two tables.

Summary of DBMS_RECTIFIER_DIFF Subprograms

DBMS_RECTIFIER_DIFF 16-3

DIFFERENCES Procedure

This procedure determines the differences between two tables. It accepts the storage
table of a nested table.

Syntax
DBMS_RECTIFIER_DIFF.DIFFERENCES (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 where_clause IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN DBMS_UTILITY.NAME_ARRAY, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 max_missing IN INTEGER,
 commit_rows IN INTEGER := 500);

Parameters

Note: This procedure cannot be used on LOB columns, nor on
columns based on user-defined types.

Note: This procedure is overloaded. The column_list and
array_columns parameters are mutually exclusive.

Table 16–2 DIFFERENCES Procedure Parameters

Parameter Description

sname1 Name of the schema at reference_site.

oname1 Name of the table at reference_site.

reference_site Name of the reference database site. The default, NULL, indicates
the current site.

sname2 Name of the schema at comparison_site.

oname2 Name of the table at comparison_site.

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.

where_clause Only rows satisfying this clause are selected for comparison. The
default, NULL, indicates all rows are compared.

column_list A comma-delimited list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

DIFFERENCES Procedure

16-4 Oracle Database Advanced Replication Management API Reference

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_sname Name of the schema containing the tables with the missing rows.

missing_rows_oname1 Name of an existing table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site, and information
about the rows at comparison_site site that are missing from
the table at reference_site.

missing_rows_oname2 Name of an existing table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the R_ID column shows the rowid of the row in the
missing_rows_oname1 table, the PRESENT column shows the
name of the site where the row is present, and the ABSENT column
shows name of the site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

max_missing Integer that specifies the maximum number of rows that should be
inserted into the missing_rows_oname table. If more than
max_missing rows are missing, then that many rows are inserted
into missing_rows_oname, and the routine then returns
normally without determining whether more rows are missing.
This parameter is useful if the fragments are so different that the
missing rows table has too many entries and there is no point in
continuing. Raises exception badnumber if max_missing is less
than 1 or NULL.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIT occurs. By default, a COMMIT
occurs after 500 inserts or 500 deletes. An empty string (' ') or
NULL indicates that a COMMIT should be issued only after all rows
for a single table have been inserted or deleted.

Table 16–2 (Cont.) DIFFERENCES Procedure Parameters

Parameter Description

Summary of DBMS_RECTIFIER_DIFF Subprograms

DBMS_RECTIFIER_DIFF 16-5

Exceptions

Restrictions
The error ORA-00001 (unique constraint violated) is issued when there are any
unique or primary key constraints on the missing rows table.

Table 16–3 DIFFERENCES Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

missingprimarykey Column list must include primary key (or SET_COLUMNS
equivalent).

badname NULL or empty string for table or schema name.

cannotbenull Parameter cannot be NULL.

notshapeequivalent Tables being compared are not shape equivalent. Shape
refers to the number of columns, their column names, and
the column data types.

unknowncolumn Column does not exist.

unsupportedtype Type not supported.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_repcat.missingobject Table does not exist.

RECTIFY Procedure

16-6 Oracle Database Advanced Replication Management API Reference

RECTIFY Procedure

This procedure resolves the differences between two tables. It accepts the storage table
of a nested table.

Syntax
DBMS_RECTIFIER_DIFF.RECTIFY (
 sname1 IN VARCHAR2,
 oname1 IN VARCHAR2,
 reference_site IN VARCHAR2 := '',
 sname2 IN VARCHAR2,
 oname2 IN VARCHAR2,
 comparison_site IN VARCHAR2 := '',
 { column_list IN VARCHAR2 := '',
 | array_columns IN dbms_utility.name_array, }
 missing_rows_sname IN VARCHAR2,
 missing_rows_oname1 IN VARCHAR2,
 missing_rows_oname2 IN VARCHAR2,
 missing_rows_site IN VARCHAR2 := '',
 commit_rows IN INTEGER := 500);

Parameters

Note: This procedure cannot be used on LOB columns, nor on
columns based on user-defined types.

Note: This procedure is overloaded. The column_list and
array_columns parameters are mutually exclusive.

Table 16–4 RECTIFY Procedure Parameters

Parameter Description

sname1 Name of the schema at reference_site.

oname1 Name of the table at reference_site.

reference_site Name of the reference database site. The default, NULL, indicates
the current site.

sname2 Name of the schema at comparison_site.

oname2 Name of the table at comparison_site.

comparison_site Name of the comparison database site. The default, NULL,
indicates the current site.

column_list A comma-delimited list of one or more column names being
compared for the two tables. You must not have any spaces before
or after a comma. The default, NULL, indicates that all columns
will be compared.

array_columns A PL/SQL index-by table of column names being compared for
the two tables. Indexing begins at 1, and the final element of the
array must be NULL. If position 1 is NULL, then all columns are
used.

missing_rows_sname Name of the schema containing the tables with the missing rows.

Summary of DBMS_RECTIFIER_DIFF Subprograms

DBMS_RECTIFIER_DIFF 16-7

Exceptions

missing_rows_oname1 Name of the table at missing_rows_site that stores
information about the rows in the table at reference_site that
are missing from the table at comparison_site, and
information about the rows at comparison_site that are
missing from the table at reference_site.

missing_rows_oname2 Name of the table at missing_rows_site that stores
information about the missing rows. This table has three columns:
the rowid of the row in the missing_rows_oname1 table, the
name of the site at which the row is present, and the name of the
site from which the row is absent.

missing_rows_site Name of the site where the missing_rows_oname1 and
missing_rows_oname2 tables are located. The default, NULL,
indicates that the tables are located at the current site.

commit_rows Maximum number of rows to insert to or delete from the reference
or comparison table before a COMMIT occurs. By default, a
COMMIT occurs after 500 inserts or 500 deletes. An empty string ('
') or NULL indicates that a COMMIT should be issued only after all
rows for a single table have been inserted or deleted.

Table 16–5 RECTIFY Procedure Exceptions

Exception Description

nosuchsite Database site could not be found.

badnumber The commit_rows parameter is less than 1.

badname NULL or empty string for table or schema name.

dbms_repcat.commfailure Remote site is inaccessible.

dbms_repcat.missingobject Table does not exist.

Table 16–4 (Cont.) RECTIFY Procedure Parameters

Parameter Description

RECTIFY Procedure

16-8 Oracle Database Advanced Replication Management API Reference

DBMS_REFRESH 17-1

17
DBMS_REFRESH

DBMS_REFRESH enables you to create groups of materialized views that can be
refreshed together to a transactionally consistent point in time.

This chapter contains this topic:

■ Summary of DBMS_REFRESH Subprograms

Summary of DBMS_REFRESH Subprograms

17-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REFRESH Subprograms

Table 17–1 DBMS_REFRESH Package Subprograms

Subprogram Description

"ADD Procedure" on
page 17-3

Adds materialized views to a refresh group.

"CHANGE Procedure"
on page 17-4

Changes the refresh interval for a refresh group.

"DESTROY Procedure"
on page 17-6

Removes all of the materialized views from a refresh group and
deletes the refresh group.

"MAKE Procedure" on
page 17-7

Specifies the members of a refresh group and the time interval
used to determine when the members of this group should be
refreshed.

"REFRESH Procedure"
on page 17-9

Manually refreshes a refresh group.

"SUBTRACT
Procedure" on
page 17-10

Removes materialized views from a refresh group.

Summary of DBMS_REFRESH Subprograms

DBMS_REFRESH 17-3

ADD Procedure

This procedure adds materialized views to a refresh group.

Syntax
DBMS_REFRESH.ADD (
 name IN VARCHAR2,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY, }
 lax IN BOOLEAN := FALSE);

Parameters

See Also: Step 6, "Add objects to the refresh group.", on page 5-7
and Oracle Database Advanced Replication for more information

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 17–2 ADD Procedures Parameters

Parameter Description

name Name of the refresh group to which you want to add members, specified as
[schema_name.]refresh_group_name. If the schema is not specified, then
the current user is the default.

list Comma-delimited list of materialized views that you want to add to the refresh
group. Synonyms are not supported.

Each materialized view is specified as
[schema_name.]materialized_view_name. If the schema is not specified,
then the refresh group owner is the default.

tab Instead of a comma-delimited list, you can supply a PL/SQL index-by table of
type DBMS_UTILITY.UNCL_ARRAY, where each element is the name of a
materialized view. The first materialized view should be in position 1. The last
position must be NULL.

Each materialized view is specified as
[schema_name.]materialized_view_name. If the schema is not specified,
then the refresh group owner is the default.

lax A materialized view can belong to only one refresh group at a time. If you are
moving a materialized view from one group to another, then you must set the
lax flag to TRUE to succeed. Oracle then automatically removes the
materialized view from the other refresh group and updates its refresh interval
to be that of its new group. Otherwise, the call to ADD generates an error
message.

CHANGE Procedure

17-4 Oracle Database Advanced Replication Management API Reference

CHANGE Procedure

This procedure changes the refresh interval for a refresh group.

Syntax
DBMS_REFRESH.CHANGE (
 name IN VARCHAR2,
 next_date IN DATE := NULL,
 interval IN VARCHAR2 := NULL,
 implicit_destroy IN BOOLEAN := NULL,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := NULL,
 refresh_after_errors IN BOOLEAN := NULL,
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Parameters

See Also: Oracle Database Advanced Replication for more
information about refresh groups

Table 17–3 CHANGE Procedures Parameters

Parameter Description

name Name of the refresh group for which you want to alter the refresh
interval.

next_date Next date that you want a refresh to occur. By default, this date
remains unchanged.

interval Function used to calculate the next time to refresh the materialized
views in the refresh group. This interval is evaluated immediately
before the refresh. Thus, you should select an interval that is
greater than the time it takes to perform a refresh. By default, the
interval remains unchanged.

implicit_destroy Allows you to reset the value of the implicit_destroy flag. If
this flag is set, then Oracle automatically deletes the group if it no
longer contains any members. By default, this flag remains
unchanged.

rollback_seg Allows you to change the rollback segment used. By default, the
rollback segment remains unchanged. To reset this parameter to
use the default rollback segment, specify NULL, including the
quotes. Specifying NULL without quotes indicates that you do not
want to change the rollback segment currently being used.

push_deferred_rpc Used by updatable materialized views only. Set this parameter to
TRUE if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes might
appear to be temporarily lost. By default, this flag remains
unchanged.

refresh_after_errors Used by updatable materialized views only. Set this parameter to
TRUE if you want the refresh to proceed even if there are
outstanding conflicts logged in the DEFERROR view for the
materialized view's master table or master materialized view. By
default, this flag remains unchanged.

Summary of DBMS_REFRESH Subprograms

DBMS_REFRESH 17-5

purge_option If you are using the parallel propagation mechanism (that is,
parallelism is set to 1 or greater), then:

■ 0 = do not purge

■ 1 = lazy (default)

■ 2 = aggressive

In most cases, lazy purge is the optimal setting. Set purge to
aggressive to trim back the queue if multiple master replication
groups are pushed to different target sites, and updates to one or
more replication groups are infrequent and infrequently pushed. If
all replication groups are infrequently updated and pushed, then
set purge to do not purge and occasionally execute PUSH with purge
set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 17–3 (Cont.) CHANGE Procedures Parameters

Parameter Description

DESTROY Procedure

17-6 Oracle Database Advanced Replication Management API Reference

DESTROY Procedure

This procedure removes all of the materialized views from a refresh group and delete
the refresh group.

Syntax
DBMS_REFRESH.DESTROY (
 name IN VARCHAR2);

Parameters

See Also: Oracle Database Advanced Replication for more
information refresh groups

Table 17–4 DESTROY Procedure Parameters

Parameter Description

name Name of the refresh group that you want to destroy.

Summary of DBMS_REFRESH Subprograms

DBMS_REFRESH 17-7

MAKE Procedure

This procedure specifies the members of a refresh group and the time interval used to
determine when the members of this group should be refreshed.

Syntax
DBMS_REFRESH.MAKE (
 name IN VARCHAR2
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY,}
 next_date IN DATE,
 interval IN VARCHAR2,
 implicit_destroy IN BOOLEAN := FALSE,
 lax IN BOOLEAN := FALSE,
 job IN BINARY_INTEGER := 0,
 rollback_seg IN VARCHAR2 := NULL,
 push_deferred_rpc IN BOOLEAN := TRUE,
 refresh_after_errors IN BOOLEAN := FALSE
 purge_option IN BINARY_INTEGER := NULL,
 parallelism IN BINARY_INTEGER := NULL,
 heap_size IN BINARY_INTEGER := NULL);

Parameters

See Also: Step 4, "Create the refresh group.", on page 5-5 and
Oracle Database Advanced Replication for more information

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 17–5 MAKE Procedure Parameters

Parameter Description

name Unique name used to identify the refresh group, specified as
[schema_name.]refresh_group_name. If the schema is not
specified, then the current user is the default. Refresh groups must
follow the same naming conventions as tables.

list Comma-delimited list of materialized views that you want to
refresh. Synonyms are not supported. These materialized views
can be located in different schemas and have different master
tables or master materialized views. However, all of the listed
materialized views must be in your current database.

Each materialized view is specified as
[schema_name.]materialized_view_name. If the schema is
not specified, then the refresh group owner is the default.

tab Instead of a comma-delimited list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the data type DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

Each materialized view is specified as
[schema_name.]materialized_view_name. If the schema is
not specified, then the refresh group owner is the default.

MAKE Procedure

17-8 Oracle Database Advanced Replication Management API Reference

next_date Next date that you want a refresh to occur.

interval Function used to calculate the next time to refresh the materialized
views in the group. This field is used with the next_date value.

For example, if you specify NEXT_DAY(SYSDATE+1, "MONDAY")
as your interval, and if your next_date evaluates to Monday,
then Oracle refreshes the materialized views every Monday. This
interval is evaluated immediately before the refresh. Thus, you
should select an interval that is greater than the time it takes to
perform a refresh.

implicit_destroy Set this to TRUE if you want to delete the refresh group
automatically when it no longer contains any members. Oracle
checks this flag only when you call the SUBTRACT procedure. That
is, setting this flag still enables you to create an empty refresh
group.

lax A materialized view can belong to only one refresh group at a
time. If you are moving a materialized view from an existing
group to a new refresh group, then you must set this to TRUE to
succeed. Oracle then automatically removes the materialized view
from the other refresh group and updates its refresh interval to be
that of its new group. Otherwise, the call to MAKE generates an
error message.

job Needed by the Import utility. Use the default value, 0.

rollback_seg Name of the rollback segment to use while refreshing materialized
views. The default, NULL, uses the default rollback segment.

push_deferred_rpc Used by updatable materialized views only. Use the default value,
TRUE, if you want to push changes from the materialized view to
its associated master table or master materialized view before
refreshing the materialized view. Otherwise, these changes might
appear to be temporarily lost.

refresh_after_errors Used by updatable materialized views only. Set this to 0 if you
want the refresh to proceed even if there are outstanding conflicts
logged in the DEFERROR view for the materialized view's master
table or master materialized view.

purge_option If you are using the parallel propagation mechanism (in other
words, parallelism is set to 1 or greater), then 0 = do not purge; 1 =
lazy (default); 2 = aggressive. In most cases, lazy purge is the
optimal setting.

Set purge to aggressive to trim back the queue if multiple master
replication groups are pushed to different target sites, and updates
to one or more replication groups are infrequent and infrequently
pushed. If all replication groups are infrequently updated and
pushed, then set purge to do not purge and occasionally execute
PUSH with purge set to aggressive to reduce the queue.

parallelism 0 specifies serial propagation.

n > 1 specifies parallel propagation with n parallel processes.

1 specifies parallel propagation using only one parallel process.

heap_size Maximum number of transactions to be examined simultaneously
for parallel propagation scheduling. Oracle automatically
calculates the default setting for optimal performance.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 17–5 (Cont.) MAKE Procedure Parameters

Parameter Description

Summary of DBMS_REFRESH Subprograms

DBMS_REFRESH 17-9

REFRESH Procedure

This procedure manually refreshes a refresh group.

Syntax
DBMS_REFRESH.REFRESH (
 name IN VARCHAR2);

Parameter

See Also: Oracle Database Advanced Replication for more
information about refresh groups

Table 17–6 REFRESH Procedure Parameter

Parameter Description

name Name of the refresh group that you want to refresh manually.

SUBTRACT Procedure

17-10 Oracle Database Advanced Replication Management API Reference

SUBTRACT Procedure

This procedure removes materialized views from a refresh group.

Syntax
DBMS_REFRESH.SUBTRACT (
 name IN VARCHAR2,
 { list IN VARCHAR2,
 | tab IN DBMS_UTILITY.UNCL_ARRAY, }
 lax IN BOOLEAN := FALSE);

Parameters

See Also: Oracle Database Advanced Replication for more
information about refresh groups

Note: This procedure is overloaded. The list and tab
parameters are mutually exclusive.

Table 17–7 SUBTRACT Procedure Parameters

Parameter Description

name Name of the refresh group from which you want to remove
members.

list Comma-delimited list of materialized views that you want to
remove from the refresh group. (Synonyms are not supported.)
These materialized views can be located in different schemas and
have different master tables or master materialized views.
However, all of the listed materialized views must be in your
current database.

tab Instead of a comma-delimited list, you can supply a PL/SQL
index-by table of names of materialized views that you want to
refresh using the data type DBMS_UTILITY.UNCL_ARRAY. If the
table contains the names of n materialized views, then the first
materialized view should be in position 1 and the n + 1 position
should be set to NULL.

lax Set this to FALSE if you want Oracle to generate an error message
if the materialized view you are attempting to remove is not a
member of the refresh group.

DBMS_REPCAT 18-1

18
DBMS_REPCAT

DBMS_REPCAT provides routines to administer and update the replication catalog and
environment.

This chapter contains this topic:

■ Summary of DBMS_REPCAT Subprograms

Summary of DBMS_REPCAT Subprograms

18-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REPCAT Subprograms

Table 18–1 DBMS_REPCAT Package Subprograms

Subprogram Description

"ADD_GROUPED_COLUMN
Procedure" on page 18-6

Adds members to an existing column group.

"ADD_MASTER_DATABASE
Procedure" on page 18-7

Adds another master site to your replication
environment.

"ADD_NEW_MASTERS Procedure" on
page 18-8

Adds the master sites in the
DBA_REPSITES_NEW data dictionary view to the
replication catalog at all available master sites.

"ADD_PRIORITY_datatype Procedure"
on page 18-13

Adds a member to a priority group.

"ADD_SITE_PRIORITY_SITE
Procedure" on page 18-15

Adds a new site to a site priority group.

"ADD_conflicttype_RESOLUTION
Procedure" on page 18-16

Designates a method for resolving an update,
delete, or uniqueness conflict.

"ALTER_CATCHUP_PARAMETERS
Procedure" on page 18-20

Alters the values for parameters stored in the
DBA_REPEXTENSIONS data dictionary view.

"ALTER_MASTER_PROPAGATION
Procedure" on page 18-22

Alters the propagation method for a specified
replication group at a specified master site.

"ALTER_MASTER_REPOBJECT
Procedure" on page 18-23

Alters an object in your replication environment.

"ALTER_MVIEW_PROPAGATION
Procedure" on page 18-25

Alters the propagation method for a specified
replication group at the current materialized
view site.

"ALTER_PRIORITY Procedure" on
page 18-26

Alters the priority level associated with a
specified priority group member.

"ALTER_PRIORITY_datatype
Procedure" on page 18-27

Alters the value of a member in a priority group.

"ALTER_SITE_PRIORITY Procedure" on
page 18-28

Alters the priority level associated with a
specified site.

"ALTER_SITE_PRIORITY_SITE
Procedure" on page 18-29

Alters the site associated with a specified priority
level.

"CANCEL_STATISTICS Procedure" on
page 18-30

Stops collecting statistics about the successful
resolution of update, uniqueness, and delete
conflicts for a table.

"COMMENT_ON_COLUMN_GROUP
Procedure" on page 18-31

Updates the comment field in the
ALL_REPCOLUMN_GROUP view for a column
group.

"COMMENT_ON_MVIEW_REPSITES
Procedure" on page 18-32

Updates the SCHEMA_COMMENT field in the
ALL_REPGROUP view for a materialized view
site.

"COMMENT_ON_PRIORITY_GROUP
Procedures" on page 18-33

Updates the comment field in the
ALL_REPPRIORITY_GROUP view for a priority
group.

"COMMENT_ON_REPGROUP
Procedure" on page 18-34

Updates the comment field in the
ALL_REPGROUP view for a master group.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-3

"COMMENT_ON_REPOBJECT
Procedure" on page 18-35

Updates the comment field in the
ALL_REPOBJECT view for a replicated object.

"COMMENT_ON_REPSITES
Procedure" on page 18-36

Updates the comment field in the ALL_REPSITE
view for a replicated site.

"COMMENT_ON_SITE_PRIORITY
Procedure" on page 18-37

Updates the comment field in the
ALL_REPPRIORITY_GROUP view for a site
priority group.

"COMMENT_ON_conflicttype_RESOL
UTION Procedure" on page 18-38

Updates the comment field in the
ALL_REPRESOLUTION view for a conflict
resolution routine.

"COMPARE_OLD_VALUES Procedure"
on page 18-40

Specifies whether to compare old column values
at each master site for each nonkey column of a
replicated table for updates and deletes.

"CREATE_MASTER_REPGROUP
Procedure" on page 18-42

Creates a new, empty, quiesced master group.

"CREATE_MASTER_REPOBJECT
Procedure" on page 18-43

Specifies that an object is a replicated object.

"CREATE_MVIEW_REPGROUP
Procedure" on page 18-46

Creates a new, empty materialized view group in
your local database.

"CREATE_MVIEW_REPOBJECT
Procedure" on page 18-48

Adds a replicated object to a materialized view
group.

"DEFINE_COLUMN_GROUP
Procedure" on page 18-51

Creates an empty column group.

"DEFINE_PRIORITY_GROUP
Procedure" on page 18-52

Creates a new priority group for a master group.

"DEFINE_SITE_PRIORITY Procedure"
on page 18-53

Creates a new site priority group for a master
group.

"DO_DEFERRED_REPCAT_ADMIN
Procedure" on page 18-54

Executes the local outstanding deferred
administrative procedures for the specified
master group at the current master site, or for all
master sites.

"DROP_COLUMN_GROUP Procedure"
on page 18-55

Drops a column group.

"DROP_GROUPED_COLUMN
Procedure" on page 18-56

Removes members from a column group.

"DROP_MASTER_REPGROUP
Procedure" on page 18-57

Drops a master group from your current site.

"DROP_MASTER_REPOBJECT
Procedure" on page 18-58

Drops a replicated object from a master group.

"DROP_MVIEW_REPGROUP
Procedure" on page 18-59

Drops a replicated object from a master group.

"DROP_MVIEW_REPGROUP
Procedure" on page 18-59

Drops a materialized view site from your
replication environment.

"DROP_MVIEW_REPOBJECT
Procedure" on page 18-60

Drops a replicated object from a materialized
view site.

"DROP_PRIORITY Procedure" on
page 18-61

Drops a member of a priority group by priority
level.

Table 18–1 (Cont.) DBMS_REPCAT Package Subprograms

Subprogram Description

Summary of DBMS_REPCAT Subprograms

18-4 Oracle Database Advanced Replication Management API Reference

"DROP_PRIORITY_GROUP Procedure"
on page 18-62

Drops a priority group for a specified master
group.

"DROP_PRIORITY_datatype Procedure"
on page 18-63

Drops a member of a priority group by value.

"DROP_SITE_PRIORITY Procedure" on
page 18-64

Drops a site priority group for a specified master
group.

"DROP_SITE_PRIORITY_SITE
Procedure" on page 18-65

Drops a specified site, by name, from a site
priority group.

"DROP_conflicttype_RESOLUTION
Procedure" on page 18-66

Drops an update, delete, or uniqueness conflict
resolution method.

"EXECUTE_DDL Procedure" on
page 18-68

Supplies DDL that you want to have executed at
each master site.

"GENERATE_MVIEW_SUPPORT
Procedure" on page 18-69

Activates triggers and generate packages needed
to support the replication of updatable
materialized views or procedural replication.

"GENERATE_REPLICATION_SUPPOR
T Procedure" on page 18-71

Generates the triggers, packages, and procedures
needed to support replication for a specified
object.

"MAKE_COLUMN_GROUP Procedure"
on page 18-73

Creates a new column group with one or more
members.

"PREPARE_INSTANTIATED_MASTER
Procedure" on page 18-74

Changes the global name of the database you are
adding to a master group.

"PURGE_MASTER_LOG Procedure" on
page 18-76

Removes local messages in the DBA_REPCATLOG
associated with a specified identification number,
source, or master group.

"PURGE_STATISTICS Procedure" on
page 77

Removes information from the
ALL_REPRESOLUTION_STATISTICS view.

"REFRESH_MVIEW_REPGROUP
Procedure" on page 18-78

Refreshes a materialized view group with the
most recent data from its associated master site or
master materialized view site.

REGISTER_MVIEW_REPGROUP
Procedure on page 18-80

Facilitates the administration of materialized
views at their respective master sites or master
materialized view sites by inserting, modifying,
or deleting from
DBA_REGISTERED_MVIEW_GROUPS.

"REGISTER_STATISTICS Procedure" on
page 18-81

Collects information about the successful
resolution of update, delete, and uniqueness
conflicts for a table.

"RELOCATE_MASTERDEF Procedure"
on page 82

Changes your master definition site to another
master site in your replication environment.

"REMOVE_MASTER_DATABASES
Procedure" on page 18-84

Removes one or more master databases from a
replication environment.

"RENAME_SHADOW_COLUMN_GRO
UP Procedure" on page 18-85

Renames the shadow column group of a
replicated table to make it a named column
group.

"REPCAT_IMPORT_CHECK Procedure"
on page 18-86

Ensures that the objects in the master group have
the appropriate object identifiers and status
values after you perform an export/import of a
replicated object or an object used by the
advanced replication facility.

Table 18–1 (Cont.) DBMS_REPCAT Package Subprograms

Subprogram Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-5

"RESUME_MASTER_ACTIVITY
Procedure" on page 18-87

Resumes normal replication activity after
quiescing a replication environment.

"RESUME_PROPAGATION_TO_MDEF
Procedure" on page 18-88

Indicates that export is effectively finished and
propagation for both extended and unaffected
replication groups existing at master sites can be
enabled.

"SEND_OLD_VALUES Procedure" on
page 18-89

Specifies whether to send old column values for
each nonkey column of a replicated table for
updates and deletes.

"SET_COLUMNS Procedure" on
page 18-91

Specifies use of an alternate column or group of
columns, instead of the primary key, to determine
which columns of a table to compare when using
row-level replication.

"SPECIFY_NEW_MASTERS Procedure"
on page 18-93

Specifies the master sites you intend to add to an
existing replication group without quiescing the
group.

"STREAMS_MIGRATION Procedure"
on page 18-95

Generates a migration script that migrates an
Advanced Replication environment to a Streams
environment.

"SUSPEND_MASTER_ACTIVITY
Procedure" on page 18-96

Suspends replication activity for a master group.

"SWITCH_MVIEW_MASTER
Procedure" on page 18-97

Changes the master site of a materialized view
group to another master site.

"UNDO_ADD_NEW_MASTERS_REQU
EST Procedure" on page 18-98

Undoes all of the changes made by the
SPECIFY_NEW_MASTERS and
ADD_NEW_MASTERS procedures for a specified
extension_id.

"UNREGISTER_MVIEW_REPGROUP
Procedure" on page 18-100

Facilitates the administration of materialized
views at their respective master sites and master
materialized view sites by inserting, modifying,
or deleting from
DBA_REGISTERED_MVIEW_GROUPS.

"VALIDATE Function" on page 18-101 Validates the correctness of key conditions of a
multimaster replication environment.

"WAIT_MASTER_LOG Procedure" on
page 18-103

Determines whether changes that were
asynchronously propagated to a master site have
been applied.

Table 18–1 (Cont.) DBMS_REPCAT Package Subprograms

Subprogram Description

ADD_GROUPED_COLUMN Procedure

18-6 Oracle Database Advanced Replication Management API Reference

ADD_GROUPED_COLUMN Procedure

This procedure adds members to an existing column group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.ADD_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Exceptions

Table 18–2 ADD_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table with which the column group is
associated. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding members.

list_of_column_names Names of the columns that you are adding to the designated
column group. This can either be a comma-delimited list or a PL/
SQL index-by table of column names. The PL/SQL index-by table
must be of type DBMS_REPCAT.VARCHAR2. Use the single value
'*' to create a column group that contains all of the columns in
your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.

Table 18–3 ADD_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

missingcolumn Specified column does not exist in the specified table.

duplicatecolumn Specified column is already a member of another column group.

missingschema Specified schema does not exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-7

ADD_MASTER_DATABASE Procedure

This procedure adds another master site to your replication environment. This
procedure regenerates all the triggers and their associated packages at existing master
sites. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ADD_MASTER_DATABASE (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 use_existing_objects IN BOOLEAN := TRUE,
 copy_rows IN BOOLEAN := TRUE,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL);

Parameters

Exceptions

Table 18–4 ADD_MASTER_DATABASE Procedure Parameters

Parameter Description

gname Name of the replication group being replicated. This replication
group must already exist at the master definition site.

master Fully qualified database name of the new master database.

use_existing_objects Indicate TRUE if you want to reuse any objects of the same type
and shape that already exist in the schema at the new master site.

copy_rows Indicate TRUE if you want the initial contents of a table at the new
master site to match the contents of the table at the master
definition site.

comment This comment is added to the MASTER_COMMENT field of the
DBA_REPSITES view.

propagation_mode Method of forwarding changes to and receiving changes from new
master database. Accepted values are synchronous and
asynchronous.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

Table 18–5 ADD_MASTER_DATABASE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Replication has not been suspended for the master group.

missingrepgroup Replication group does not exist at the specified database site.

commfailure New master is not accessible.

typefailure An incorrect propagation mode was specified.

duplrepgrp Master site already exists.

ADD_NEW_MASTERS Procedure

18-8 Oracle Database Advanced Replication Management API Reference

ADD_NEW_MASTERS Procedure

This procedure adds the master sites in the DBA_REPSITES_NEW data dictionary view
to the master groups specified when the SPECIFY_NEW_MASTERS procedure was run.
Information about these new master sites are added to the replication catalog at all
available master sites.

All master sites instantiated with object-level export/import must be accessible at this
time. Their new replication groups are added in the quiesced state. Master sites
instantiated through full database export/import or through changed-based recovery
do not need to be accessible.

Run this procedure after you run the SPECIFY_NEW_MASTERS procedure.

Syntax
DBMS_REPCAT.ADD_NEW_MASTERS (
 export_required IN BOOLEAN,
 { available_master_list IN VARCHAR2,
 | available_master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 masterdef_flashback_scn OUT NUMBER,
 extension_id OUT RAW,
 break_trans_to_masterdef IN BOOLEAN := FALSE,
 break_trans_to_new_masters IN BOOLEAN := FALSE,
 percentage_for_catchup_mdef IN BINARY_INTEGER := 100,
 cycle_seconds_mdef IN BINARY_INTEGER := 60,
 percentage_for_catchup_new IN BINARY_INTEGER := 100,
 cycle_seconds_new IN BINARY_INTEGER := 60);

Caution: After running this procedure, do not disable or enable
propagation of the deferred transactions queue until after the new
master sites are added. The DBA_REPEXTENSIONS data dictionary
view must be clear before you disable or enable propagation. You
can use the Advanced Replication interface in Oracle Enterprise
Manager or the SET_DISABLED procedure in the
DBMS_DEFER_SYS package to disable or enable propagation.

See Also:

■ "SPECIFY_NEW_MASTERS Procedure" on page 18-93

■ "Adding New Master Sites" on page 7-2 for more information
about adding master sites to a master group

Note: This procedure is overloaded. The
available_master_list and available_master_table
parameters are mutually exclusive.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-9

Parameters

Table 18–6 ADD_NEW_MASTERS Procedure Parameters

Parameter Description

export_required Set to TRUE if either object-level or full database export is
required for at least one of the new master sites. Set to
FALSE if you are using change-based recovery for all of
the new master sites.

available_master_list A comma-delimited list of the new master sites to be
instantiated using object-level export/import. The sites
listed must match the sites specified in the
SPECIFY_NEW_MASTERS procedure. List only the new
master sites, not the existing master sites. Do not put any
spaces between site names.

Specify NULL if all masters will be instantiated using full
database export/import or change-based recovery.

available_master_table A table that lists the new master sites to be instantiated
using object-level export/import. The sites in the table
must match the sites specified in the
SPECIFY_NEW_MASTERS procedure. Do not specify
masters that will be instantiated using full database
export/import or change-based recovery.

In the table that lists the master sites to be instantiated
using object-level export/import, list only the new
master sites for the master groups being extended. Do
not list the existing master sites in the master groups
being extended. The first master site should be at
position 1, the second at position 2, and so on.

masterdef_flashback_scn This OUT parameter returns a system change number
(SCN) that must be used during export or change-based
recovery. Use the value returned by this parameter for
the FLASHBACK_SCN export parameter when you
perform the export. You can find the flashback_scn
value by querying the DBA_REPEXTENSIONS data
dictionary view.

extension_id This OUT parameter returns an identifier for the current
pending request to add master databases without
quiesce. You can find the extension_id by querying
the DBA_REPSITES_NEW and DBA_REPEXTENSIONS
data dictionary views.

ADD_NEW_MASTERS Procedure

18-10 Oracle Database Advanced Replication Management API Reference

break_trans_to_masterdef This parameter is meaningful only if
export_required is set to TRUE.

If break_trans_to_masterdef is set to TRUE, then
existing masters can continue to propagate their deferred
transactions to the master definition site for replication
groups that are not adding master sites. Deferred
transactions for replication groups that are adding
master sites cannot be propagated until the export
completes.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to FALSE and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction might be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that might be
violated by this behavior until the new master sites are
added.

If break_trans_to_masterdef is set to FALSE, then
existing masters cannot propagate their deferred
transactions to the master definition site.

break_trans_to_new_masters If break_trans_to_new_masters is set to TRUE, then
existing master sites can continue to propagate deferred
transactions to the new master sites for replication
groups that are not adding master sites.

Each deferred transaction is composed of one or more
remote procedure calls (RPCs). If set to TRUE and a
transaction occurs that references objects in both
unaffected master groups and master groups that are
being extended, then the transaction might be split into
two parts and sent to a destination in two separate
transactions at different times. Such transactions are
called split-transactions. If split-transactions are possible,
then you must disable integrity constraints that might be
violated by this behavior until the new master sites are
added.

If break_trans_to_new_masters is set to FALSE,
then propagation of deferred transaction queues to the
new masters is disabled.

percentage_for_catchup_mdef This parameter is meaningful only if
export_required and
break_trans_to_masterdef are both set to TRUE.

The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when
percentage_for_catchup_mdef is both meaningful
and set to a value between 10 and 90, inclusive. In this
case, propagation to the master definition site alternates
between replication groups that are not being extended
and replication groups that are being extended, with one
push to each during each cycle. This parameter indicates
the length of the cycle in seconds.

Table 18–6 (Cont.) ADD_NEW_MASTERS Procedure Parameters

Parameter Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-11

Exceptions

Usage Notes
For a new master site to be instantiated using change-based recovery or full database
export/import, the following conditions apply:

■ The new master sites cannot have any existing replication groups.

■ The master definition site cannot have any materialized view groups.

■ The master definition site must be the same for all of the master groups. If one or
more of these master groups have a different master definition site, then do not
use change-based recovery or full database export/import. Use object-level
export/import instead.

■ The new master site must include all of the replication groups in the master
definition site when the extension process is complete. That is, you cannot add a
subset of the master groups at the master definition site to the new master site; all
of the groups must be added.

For object-level export/import, before importing ensure that all the requests in the
DBA_REPCATLOG data dictionary view for the extended groups have been processed
without any error.

percentage_for_catchup_new This parameter is meaningful only if
break_trans_to_new_masters is set to TRUE.

The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when
percentage_for_catchup_new is both meaningful
and set to a value between 10 and 90, inclusive. In this
case, propagation to a new master alternates between
replication groups that are not being extended and
replication groups that are being extended, with one
push to each during each cycle. This parameter indicates
the length of the cycle in seconds.

Table 18–7 ADD_NEW_MASTERS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

typefailure The parameter value specified for one of the parameters is not
appropriate.

novalidextreq No valid extension request. The extension_id is not valid.

nonewsites No new master sites to be added for the specified extension
request.

notanewsite Not a new site for extension request. A site was specified that was
not specified when you ran the SPECIFY_NEW_MASTERS
procedure.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

Table 18–6 (Cont.) ADD_NEW_MASTERS Procedure Parameters

Parameter Description

ADD_NEW_MASTERS Procedure

18-12 Oracle Database Advanced Replication Management API Reference

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-13

ADD_PRIORITY_datatype Procedure

This procedure adds a member to a priority group. You must call this procedure from
the master definition site. The procedure that you must call is determined by the data
type of your priority column. You must call this procedure once for each of the
possible values of the priority column.

Syntax
DBMS_REPCAT.ADD_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype,
 priority IN NUMBER);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–8 ADD_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group.

value Value of the priority group member. This is one of the possible
values of the associated priority column of a table using this
priority group.

priority Priority of this value. The higher the number, the higher the
priority.

ADD_PRIORITY_datatype Procedure

18-14 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 18–9 ADD_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue Specified value already exists in the priority group.

duplicatepriority Specified priority already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

typefailure Specified value has the incorrect data type for the priority group.

notquiesced Specified master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-15

ADD_SITE_PRIORITY_SITE Procedure

This procedure adds a new site to a site priority group. You must call this procedure
from the master definition site.

Syntax
DBMS_REPCAT.ADD_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 site IN VARCHAR2,
 priority IN NUMBER);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–10 ADD_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group for which you are adding a site to a group.

name Name of the site priority group to which you are adding a
member.

site Global database name of the site that you are adding.

priority Priority level of the site that you are adding. A higher number
indicates a higher priority level.

Table 18–11 ADD_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

duplicatepriority Specified priority level already exists for another site in the group.

duplicatevalue Specified site already exists in the site priority group.

notquiesced Master group is not quiesced.

ADD_conflicttype_RESOLUTION Procedure

18-16 Oracle Database Advanced Replication Management API Reference

ADD_conflicttype_RESOLUTION Procedure

These procedures designate a method for resolving an update, delete, or uniqueness
conflict. You must call these procedures from the master definition site. The procedure
that you need to call is determined by the type of conflict that the routine resolves.

Syntax
DBMS_REPCAT.ADD_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 priority_group IN VARCHAR2 := NULL,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

DBMS_REPCAT.ADD_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 parameter_column_name IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s,
 function_name IN VARCHAR2,
 comment IN VARCHAR2 := NULL
 method IN VARCHAR2 := 'USER FUNCTION');

DBMS_REPCAT.ADD_UNIQUE_RESOLUTION(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 method IN VARCHAR2,
 parameter_column_name IN VARCHAR2
 | DBMS_REPCAT.VARCHAR2s
 | DBMS_UTILITY.LNAME_ARRAY,
 function_name IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := NULL);

Table 18–12 ADD_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update ADD_UPDATE_RESOLUTION

uniqueness ADD_UNIQUE_RESOLUTION

delete ADD_DELETE_RESOLUTION

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about
designating methods to resolve update conflicts, selecting
uniqueness conflict resolution methods, and assigning delete
conflict resolution methods

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-17

Parameters

Table 18–13 ADD_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema containing the table to be replicated.

oname Name of the table to which you are adding a conflict resolution
routine. The table can be the storage table of a nested table.

column_group Name of the column group to which you are adding a conflict
resolution routine. Column groups are required for update
conflict resolution routines only.

constraint_name Name of the unique constraint or unique index for which you
are adding a conflict resolution routine. Use the name of the
unique index if it differs from the name of the associated unique
constraint. Constraint names are required for uniqueness conflict
resolution routines only.

sequence_no Order in which the designated conflict resolution methods
should be applied.

method Type of conflict resolution routine that you want to create. This
can be the name of one of the standard routines provided with
advanced replication, or, if you have written your own routine,
you should choose user function, and provide the name of
your method as the function_name parameter.

The standard methods supported in this release for update
conflicts are:

■ minimum

■ maximum

■ latest timestamp

■ earliest timestamp

■ additive, average

■ priority group

■ site priority

■ overwrite

■ discard

The standard methods supported in this release for uniqueness
conflicts are: append site name, append sequence, and
discard. There are no built-in (Oracle supplied) methods for
delete conflicts.

ADD_conflicttype_RESOLUTION Procedure

18-18 Oracle Database Advanced Replication Management API Reference

parameter_column_name Name of the columns used to resolve the conflict. The standard
methods operate on a single column. For example, if you are
using the latest timestamp method for a column group,
then you should pass the name of the column containing the
time stamp value as this parameter. If your are using a user
function, then you can resolve the conflict using any number
of columns.

For update or unique conflicts, this parameter accepts either a
comma-delimited list of column names, or a PL/SQL index-by
table of type DBMS_REPCAT.VARCHAR2 or
DBMS_UTILITY.LNAME_ARRAY. Use
DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which might occur when you specify
the attributes of column objects.

For delete conflicts, this parameter accepts either a comma-
delimited list of column names or a PL/SQL index-by table of
type DBMS_REPCAT.VARCHAR2.

The single value '*' indicates that you want to use all of the
columns in the table (or column group, for update conflicts) to
resolve the conflict. If you specify '*', then the columns are
passed to your function in alphabetical order.

LOB columns cannot be specified for this parameter.

See Also: "Usage Notes" on page 18-19 if you are using column
objects

priority_group If you are using the priority group or site priority
update conflict resolution method, then you must supply the
name of the priority group that you have created.

See Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information. If you are
using a different method, you can use the default value for this
parameter, NULL. This parameter is applicable to update
conflicts only.

function_name If you selected the user function method, or if you are adding
a delete conflict resolution routine, then you must supply the
name of the conflict resolution routine that you have written. If
you are using one of the standard methods, then you can use the
default value for this parameter, NULL.

comment This user comment is added to the DBA_REPRESOLUTION view.

Table 18–13 (Cont.) ADD_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-19

Exceptions

Usage Notes
If you are using column objects, then whether you can specify the attributes of the
column objects for the parameter_column_name parameter depends on whether the
conflict resolution method is built-in (Oracle supplied) or user-created:

■ If you are using a built-in conflict resolution method, then you can specify
attributes of objects for this parameter. For example, if a column object named
cust_address has street_address as an attribute, then you can specify
cust_address.street_address for this parameter.

■ If you are using a built-in conflict resolution method, the following types of
columns cannot be specified for this parameter: LOB attribute of a column object,
collection or collection attribute of a column object, REF, or an entire column
object.

■ If you are using a user-created conflict resolution method, then you must specify
an entire column object. You cannot specify the attributes of a column object. For
example, if a column object named cust_address has street_address as an
attribute (among other attributes), then you can specify only cust_address for
this parameter.

Table 18–14 ADD_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
using row-level replication.

missingschema Specified schema does not exist.

missingcolumn Column that you specified as part of the
parameter_column_name parameter does not exist.

missinggroup Specified column group does not exist.

missingprioritygroup The priority group that you specified does not exist for the table.

invalidmethod Resolution method that you specified is not recognized.

invalidparameter Number of columns that you specified for the
parameter_column_name parameter is invalid. (The standard
routines take only one column name.)

missingfunction User function that you specified does not exist.

missingconstraint Constraint that you specified for a uniqueness conflict does not
exist.

notquiesced Replication group to which the specified table belongs is not
quiesced.

duplicateresolution Specified conflict resolution method is already registered.

duplicatesequence The specified sequence number already exists for the specified
object.

invalidprioritygroup The specified priority group does not exist.

paramtype Type is different from the type assigned to the priority group.

ALTER_CATCHUP_PARAMETERS Procedure

18-20 Oracle Database Advanced Replication Management API Reference

ALTER_CATCHUP_PARAMETERS Procedure

This procedure alters the values for the following parameters stored in the
DBA_REPEXTENSIONS data dictionary view:

■ percentage_for_catchup_mdef

■ cycle_seconds_mdef

■ percentage_for_catchup_new

■ cycle_seconds_new

These parameters were originally set by the ADD_NEW_MASTERS procedure. The new
values you specify for these parameters are used during the remaining steps in the
process of adding new master sites to a master group. These changes are only to the
site at which it is executed. Therefore, it must be executed at each master site,
including the master definition site, if you want to alter parameters at all sites.

Syntax
DBMS_REPCAT.ALTER_CATCHUP_PARAMETERS (
 extension_id IN RAW,
 percentage_for_catchup_mdef IN BINARY_INTEGER := NULL,
 cycle_seconds_mdef IN BINARY_INTEGER := NULL,
 percentage_for_catchup_new IN BINARY_INTEGER := NULL,
 cycle_seconds_new IN BINARY_INTEGER := NULL);

Parameters

See Also:

■ "ADD_NEW_MASTERS Procedure" on page 18-8

■ "Adding New Master Sites" on page 7-2 for more information
about adding master sites to a master group

Table 18–15 ALTER_CATCHUP_PARAMETERS Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add
master database without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW
and DBA_REPEXTENSIONS data dictionary views.

percentage_for_catchup_mdef The percentage of propagation resources that should be
used for catching up propagation to the master definition
site. Must be a multiple of 10 and must be between 0 and
100.

cycle_seconds_mdef This parameter is meaningful when
percentage_for_catchup_mdef is both meaningful
and set to a value between 10 and 90, inclusive. In this
case, propagation to the master definition site alternates
between replication groups that are not being extended
and replication groups that are being extended, with one
push to each during each cycle. This parameter indicates
the length of the cycle in seconds.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-21

Exceptions

percentage_for_catchup_new The percentage of propagation resources that should be
used for catching up propagation to new master sites.
Must be a multiple of 10 and must be between 0 and 100.

cycle_seconds_new This parameter is meaningful when
percentage_for_catchup_new is both meaningful
and set to a value between 10 and 90, inclusive. In this
case, propagation to a new master alternates between
replication groups that are not being extended and
replication groups that are being extended, with one push
to each during each cycle. This parameter indicates the
length of the cycle in seconds.

Table 18–16 ALTER_CATCHUP_PARAMETERS Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

Table 18–15 (Cont.) ALTER_CATCHUP_PARAMETERS Procedure Parameters

Parameter Description

ALTER_MASTER_PROPAGATION Procedure

18-22 Oracle Database Advanced Replication Management API Reference

ALTER_MASTER_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at a
specified master site. This replication group must be quiesced. You must call this
procedure from the master definition site. If the master appears in the dblink_list
or dblink_table, then ALTER_MASTER_PROPAGATION ignores that database link.
You cannot change the propagation mode from a master to itself.

Syntax
DBMS_REPCAT.ALTER_MASTER_PROPAGATION (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 { dblink_list IN VARCHAR2,
 | dblink_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 propagation_mode IN VARCHAR2 : ='ASYNCHRONOUS',
 comment IN VARCHAR2 := '');

Parameters

Exceptions

Note: This procedure is overloaded. The dblink_list and
dblink_table parameters are mutually exclusive.

Table 18–17 ALTER_MASTER_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group to which to alter the propagation
mode.

master Name of the master site at which to alter the propagation mode.

dblink_list A comma-delimited list of database links for which to alter the
propagation method. If NULL, then all masters except the master
site being altered are used by default.

dblink_table A PL/SQL index-by table, indexed from position 1, of database
links for which to alter propagation.

propagation_mode Determines the manner in which changes from the specified
master site are propagated to the sites identified by the list of
database links. Appropriate values are synchronous and
asynchronous.

comment This comment is added to the DBA_REPPROP view.

Table 18–18 ALTER_MASTER_PROPAGATION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Invocation site is not quiesced.

typefailure Propagation mode specified was not recognized.

nonmaster List of database links includes a site that is not a master site.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-23

ALTER_MASTER_REPOBJECT Procedure

This procedure alters an object in your replication environment. You must call this
procedure from the master definition site.

This procedure requires that you quiesce the master group of the object if either of the
following conditions is true:

■ You are altering a table in a multimaster replication environment.

■ You are altering a table with the safe_table_change parameter set to FALSE in
a single master replication environment.

You can use this procedure to alter non table objects without quiescing the master
group.

Syntax
DBMS_REPCAT.ALTER_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := FALSE
 safe_table_change IN BOOLEAN := FALSE);

Parameters

Table 18–19 ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Schema containing the object that you want to alter.

oname Name of the object that you want to alter. The object cannot be a
storage table for a nested table.

type Type of the object that you are altering. The following types are
supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

ddl_text The DDL text that you want used to alter the object. Oracle does
not parse this DDL before applying it. Therefore, you must ensure
that your DDL text provides the appropriate schema and object
name for the object being altered.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator's schema. Be sure
to specify the schema if it is other than the replication
administrator's schema.

comment If not NULL, then this comment is added to the COMMENT field of
the DBA_REPOBJECT view.

retry If retry is TRUE, then ALTER_MASTER_REPOBJECT alters the
object only at masters whose object status is not VALID.

ALTER_MASTER_REPOBJECT Procedure

18-24 Oracle Database Advanced Replication Management API Reference

Exceptions

safe_table_change Specify TRUE if the change to a table is safe. Specify FALSE if the
change to a table is unsafe.

You can make safe changes to a master table in a single master
replication environment without quiescing the master group that
contains the table. To make unsafe changes, you must quiesce the
master group.

Only specify this parameter for tables in single master replication
environments. This parameter is ignored in multimaster
replication environments and when the object specified is not a
table. In multimaster replication environments, you must quiesce
the master group to run the ALTER_MASTER_REPOBJECT
procedure on a table.

The following are safe changes:

■ Changing storage and extent information

■ Making existing columns larger. For example, changing a
VARCHAR2(20) column to a VARCHAR2(50) column.

■ Adding non primary key constraints

■ Altering non primary key constraints

■ Enabling and disabling non primary key constraints

The following are unsafe changes:

■ Changing the primary key by adding or deleting columns in
the key

■ Adding or deleting columns

■ Making existing columns smaller. For example, changing a
VARCHAR2(50) column to a VARCHAR2(20) column.

■ Disabling a primary key constraint

■ Changing the data type of an existing column

■ Dropping an existing column

If you are unsure whether a change is safe or unsafe, then quiesce
the master group before you run the ALTER_MASTER_REPOBJECT
procedure.

Table 18–20 ALTER_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Associated replication group has not been suspended.

missingobject Object identified by sname and oname does not exist.

typefailure Specified type parameter is not supported.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

Table 18–19 (Cont.) ALTER_MASTER_REPOBJECT Procedure Parameters

Parameter Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-25

ALTER_MVIEW_PROPAGATION Procedure

This procedure alters the propagation method for a specified replication group at the
current materialized view site. This procedure pushes the deferred transaction queue
at the materialized view site, locks the materialized views, and regenerates any
triggers and their associated packages. You must call this procedure from the
materialized view site.

Syntax
DBMS_REPCAT.ALTER_MVIEW_PROPAGATION (
 gname IN VARCHAR2,
 propagation_mode IN VARCHAR2,
 comment IN VARCHAR2 := '',
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Table 18–21 ALTER_MVIEW_PROPAGATION Procedure Parameters

Parameter Description

gname Name of the replication group for which to alter the propagation
method.

propagation_mode Manner in which changes from the current materialized view site
are propagated to its associated master site or master materialized
view site. Appropriate values are synchronous and
asynchronous.

comment This comment is added to the DBA_REPPROP view.

gowner Owner of the materialized view group.

Table 18–22 ALTER_MVIEW_PROPAGATION Procedure Exceptions

Exception Description

missingrepgroup Specified replication group does not exist.

typefailure Propagation mode was specified incorrectly.

nonmview Current site is not a materialized view site for the specified
replication group.

commfailure Cannot contact master site or master materialized view site.

failaltermviewrop Materialized view group propagation can be altered only when
there are no other materialized view groups with the same master
site or master materialized view site sharing the materialized view
site.

ALTER_PRIORITY Procedure

18-26 Oracle Database Advanced Replication Management API Reference

ALTER_PRIORITY Procedure

This procedure alters the priority level associated with a specified priority group
member. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_PRIORITY (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–23 ALTER_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the priority that you want
to alter.

old_priority Current priority level of the priority group member.

new_priority New priority level that you want assigned to the priority group
member.

Table 18–24 ALTER_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatepriority New priority level already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingvalue Value was not registered by a call to
DBMS_REPCAT.ADD_PRIORITY_datatype.

missingprioritygroup Specified priority group does not exist.

notquiesced Specified master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-27

ALTER_PRIORITY_datatype Procedure

This procedure alters the value of a member in a priority group. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the data type of your priority column.

Syntax
DBMS_REPCAT.ALTER_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 old_value IN datatype,
 new_value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–25 ALTER_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the value that you want to
alter.

old_value Current value of the priority group member.

new_value New value that you want assigned to the priority group member.

Table 18–26 ALTER_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicatevalue New value already exists in the priority group.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

missingvalue Old value does not exist.

paramtype New value has the incorrect data type for the priority group.

typefailure Specified value has the incorrect data type for the priority group.

notquiesced Specified master group is not quiesced.

ALTER_SITE_PRIORITY Procedure

18-28 Oracle Database Advanced Replication Management API Reference

ALTER_SITE_PRIORITY Procedure

This procedure alters the priority level associated with a specified site. You must call
this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_priority IN NUMBER,
 new_priority IN NUMBER);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–27 ALTER_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_priority Current priority level of the site whose priority level you want to
change.

new_priority New priority level for the site. A higher number indicates a higher
priority level.

Table 18–28 ALTER_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Old priority level is not associated with any group members.

duplicatepriority New priority level already exists for another site in the group.

missingvalue Old value does not already exist.

paramtype New value has the incorrect data type for the priority group.

notquiesced Master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-29

ALTER_SITE_PRIORITY_SITE Procedure

This procedure alters the site associated with a specified priority level. You must call
this procedure from the master definition site.

Syntax
DBMS_REPCAT.ALTER_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 old_site IN VARCHAR2,
 new_site IN VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–29 ALTER_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are altering.

old_site Current global database name of the site to disassociate from the priority
level.

new_site New global database name that you want to associate with the current
priority level.

Table 18–30 ALTER_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

missingvalue Old site is not a group member.

notquiesced Master group is not quiesced.

CANCEL_STATISTICS Procedure

18-30 Oracle Database Advanced Replication Management API Reference

CANCEL_STATISTICS Procedure

This procedure stops the collection of statistics about the successful resolution of
update, uniqueness, and delete conflicts for a table.

Syntax
DBMS_REPCAT.CANCEL_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

Parameters

Exceptions

Table 18–31 CANCEL_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you do not want to gather conflict
resolution statistics.

Table 18–32 CANCEL_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Specified table is not currently registered to collect statistics.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-31

COMMENT_ON_COLUMN_GROUP Procedure

This procedure updates the comment field in the DBA_REPCOLUMN_GROUP view for a
column group. This comment is not added at all master sites until the next call to
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–33 COMMENT_ON_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the replicated table with which the column group is
associated.

column_group Name of the column group.

comment Text of the updated comment that you want included in the
GROUP_COMMENT field of the DBA_REPCOLUMN_GROUP view.

Table 18–34 COMMENT_ON_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missinggroup Specified column group does not exist.

missingobj Object is missing.

COMMENT_ON_MVIEW_REPSITES Procedure

18-32 Oracle Database Advanced Replication Management API Reference

COMMENT_ON_MVIEW_REPSITES Procedure

This procedure updates the SCHEMA_COMMENT field in the DBA_REPGROUP data
dictionary view for the specified materialized view group. The group name must be
registered locally as a replicated materialized view group. This procedure must be
executed at the materialized view site.

Syntax
DBMS_REPCAT.COMMENT_ON_MVIEW_REPSITES (
 gowner IN VARCHAR2,
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–35 COMMENT_ON_MVIEW_REPSITES Procedure Parameters

Parameter Description

gowner Owner of the materialized view group.

gname Name of the materialized view group.

comment Updated comment to include in the SCHEMA_COMMENT field of the
DBA_REPGROUP view.

Table 18–36 COMMENT_ON_MVIEW_REPSITES Procedure Exceptions

Parameter Description

missingrepgroup The materialized view group does not exist.

nonmview The connected site is not a materialized view site.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-33

COMMENT_ON_PRIORITY_GROUP Procedures

This procedure updates the comment field in the DBA_REPPRIORITY_GROUP view for
a priority group. This comment is not added at all master sites until the next call to
GENERATE_REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–37 COMMENT_ON_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Name of the master group.

pgroup Name of the priority group.

comment Text of the updated comment that you want included in the
PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP
view.

Table 18–38 COMMENT_ON_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

COMMENT_ON_REPGROUP Procedure

18-34 Oracle Database Advanced Replication Management API Reference

COMMENT_ON_REPGROUP Procedure

This procedure updates the comment field in the DBA_REPGROUP view for a master
group. This procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPGROUP (
 gname IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–39 COMMENT_ON_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to comment on.

comment Updated comment to include in the SCHEMA_COMMENT field of the
DBA_REPGROUP view.

Table 18–40 COMMENT_ON_REPGROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

commfailure At least one master site is not accessible.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-35

COMMENT_ON_REPOBJECT Procedure

This procedure updates the comment field in the DBA_REPOBJECT view for a
replicated object in a master group. This procedure must be issued at the master
definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–41 COMMENT_ON_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to comment on. The object
cannot be a storage table for a nested table.

type Type of the object. The following types are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

comment Text of the updated comment that you want to include in the
OBJECT_COMMENT field of the DBA_REPOBJECT view.

Table 18–42 COMMENT_ON_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.

COMMENT_ON_REPSITES Procedure

18-36 Oracle Database Advanced Replication Management API Reference

COMMENT_ON_REPSITES Procedure

If the replication group is a master group, then this procedure updates the
MASTER_COMMENT field in the DBA_REPSITES view for a master site. If the replication
group is a materialized view group, this procedure updates the SCHEMA_COMMENT
field in the DBA_REPGROUP view for a materialized view site.

This procedure can be executed at either a master site or a materialized view site. If
you execute this procedure on a a materialized view site, then the materialized view
group owner must be PUBLIC.

Syntax
DBMS_REPCAT.COMMENT_ON_REPSITES (
 gname IN VARCHAR2,
 [master IN VARCHAR,]
 comment IN VARCHAR2);

Parameters

Exceptions

See Also: "COMMENT_ON_conflicttype_RESOLUTION
Procedure" on page 18-38 for instructions on placing a comment in
the SCHEMA_COMMENT field of the DBA_REPGROUP view for a
materialized view site if the materialized view group owner is not
PUBLIC

Table 18–43 COMMENT_ON_REPSITES Procedure Parameters

Parameter Description

gname Name of the replication group. This avoids confusion if a database
is a master site in more than one replication environment.

master The fully qualified database name of the master site on which you
want to comment. If you are executing the procedure on a master
site, then this parameter is required. To update comments at a
materialized view site, omit this parameter. This parameter is
optional.

comment Text of the updated comment that you want to include in the
comment field of the appropriate dictionary view. If the site is a
master site, then this procedure updates the MASTER_COMMENT
field of the DBA_REPSITES view. If the site is a materialized view
site, then this procedure updates the SCHEMA_COMMENT field of
the DBA_REPGROUP view.

Table 18–44 COMMENT_ON_REPSITES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible.

missingrepgroup Replication group does not exist.

commfailure One or more master sites are not accessible.

corrupt There is an inconsistency in the replication catalog views.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-37

COMMENT_ON_SITE_PRIORITY Procedure

This procedure updates the comment field in the DBA_REPPRIORITY_GROUP view for
a site priority group. This procedure is a wrapper for the
COMMENT_ON_COLUMN_GROUP procedure and is provided as a convenience only. This
procedure must be issued at the master definition site.

Syntax
DBMS_REPCAT.COMMENT_ON_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2);

Parameters

Exceptions

Table 18–45 COMMENT_ON_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Name of the master group.

name Name of the site priority group.

comment Text of the updated comment that you want included in the
PRIORITY_COMMENT field of the DBA_REPPRIORITY_GROUP
view.

Table 18–46 COMMENT_ON_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

COMMENT_ON_conflicttype_RESOLUTION Procedure

18-38 Oracle Database Advanced Replication Management API Reference

COMMENT_ON_conflicttype_RESOLUTION Procedure

This procedure updates the RESOLUTION_COMMENT field in the
DBA_REPRESOLUTION view for a conflict resolution routine. The procedure that you
need to call is determined by the type of conflict that the routine resolves. These
procedures must be issued at the master definition site.

The comment is not added at all master sites until the next call to
GENERATE_REPLICATION_SUPPORT.

Syntax
DBMS_REPCAT.COMMENT_ON_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

DBMS_REPCAT.COMMENT_ON_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER,
 comment IN VARCHAR2);

Table 18–47 COMMENT_ON_conflicttype_RESOLUTION Procedures

Conflict Type Procedure Name

update COMMENT_ON_UPDATE_RESOLUTION

uniqueness COMMENT_ON_UNIQUE_RESOLUTION

delete COMMENT_ON_DELETE_RESOLUTION

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-39

Parameters

Exceptions

Table 18–48 COMMENT_ON_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Name of the schema.

oname Name of the replicated table with which the conflict resolution
routine is associated.

column_group Name of the column group with which the update conflict
resolution routine is associated.

constraint_name Name of the unique constraint with which the uniqueness conflict
resolution routine is associated.

sequence_no Sequence number of the conflict resolution procedure.

comment The text of the updated comment that you want included in the
RESOLUTION_COMMENT field of the DBA_REPRESOLUTION view.

Table 18–49 COMMENT_ON_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

missingresolution Specified conflict resolution routine is not registered.

COMPARE_OLD_VALUES Procedure

18-40 Oracle Database Advanced Replication Management API Reference

COMPARE_OLD_VALUES Procedure

This procedure specifies whether to compare old column values during propagation of
deferred transactions at each master site for each nonkey column of a replicated table
for updates and deletes. The default is to compare old values for all columns. You can
change this behavior at all master sites and materialized view sites by invoking
DBMS_REPCAT.COMPARE_OLD_VALUES at the master definition site.

When you use user-defined types, you can specify leaf attributes of a column object, or
you can specify an entire column object. For example, if a column object named
cust_address has street_address as an attribute, then you can specify
cust_address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address.

When performing equality comparisons for conflict detection, Oracle treats objects as
equal only if one of the following conditions is true:

■ Both objects are atomically NULL (the entire object is NULL)

■ All of the corresponding attributes are equal in the objects

Given these conditions, if one object is atomically NULL while the other is not, then
Oracle does not consider the objects to be equal. Oracle does not consider MAP and
ORDER methods when performing equality comparisons.

Syntax
DBMS_REPCAT.COMPARE_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 compare IN BOOLEAN := TRUE);

Parameters

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

Table 18–50 COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of a
nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which might occur when you specify the
attributes of column objects.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-41

Exceptions

operation Possible values are: update, delete, or the asterisk wildcard '*',
which means update and delete.

compare If compare is TRUE, the old values of the specified columns are
compared when sent. If compare is FALSE, the old values of the
specified columns are not compared when sent. Unspecified
columns and unspecified operations are not affected. The specified
change takes effect at the master definition site as soon as
min_communication is TRUE for the table. The change takes
effect at a master site or at a materialized view site the next time
replication support is generated at that site with
min_communication TRUE.

Note: The operation parameter enables you to decide whether
or not to compare old values for nonkey columns when rows are
deleted or updated. If you do not compare the old value, then
Oracle assumes the old value is equal to the current value of the
column at the target side when the update or delete is applied.

See Oracle Database Advanced Replication for more information about
reduced data propagation using the COMPARE_OLD_VALUES
procedure before changing the default behavior of Oracle.

Table 18–51 COMPARE_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to compare the attributes of
column objects. In this case, all databases must be at 9.2.0 or
higher compatibility level.

Table 18–50 (Cont.) COMPARE_OLD_VALUES Procedure Parameters

Parameter Description

CREATE_MASTER_REPGROUP Procedure

18-42 Oracle Database Advanced Replication Management API Reference

CREATE_MASTER_REPGROUP Procedure

This procedure creates a new, empty, quiesced master group.

Syntax
DBMS_REPCAT.CREATE_MASTER_REPGROUP (
 gname IN VARCHAR2,
 group_comment IN VARCHAR2 := '',
 master_comment IN VARCHAR2 := '',
 qualifier IN VARCHAR2 := '');

Parameters

Exceptions

Table 18–52 CREATE_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to create.

group_comment This comment is added to the DBA_REPGROUP view.

master_comment This comment is added to the DBA_REPSITES view.

qualifier Connection qualifier for master group. Be sure to use the @ sign.
See Oracle Database Advanced Replication and Oracle Database
Administrator's Guide for more information about connection
qualifiers.

Table 18–53 CREATE_MASTER_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Master group already exists.

norepopt Advanced replication option is not installed.

missingrepgroup Master group name was not specified.

qualifiertoolong Connection qualifier is too long.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-43

CREATE_MASTER_REPOBJECT Procedure

This procedure makes an object a replicated object by adding the object to a master
group. This procedure preserves the object identifier for user-defined types and object
tables at all replication sites.

Replication of clustered tables is supported, but the use_existing_object
parameter cannot be set to FALSE for clustered tables. In other words, you must create
the clustered table at all master sites participating in the master group before you
execute the CREATE_MASTER_REPOBJECT procedure. However, these tables do not
need to contain the table data. So, the copy_rows parameter can be set to TRUE for
clustered tables.

Syntax
DBMS_REPCAT.CREATE_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 use_existing_object IN BOOLEAN := TRUE,
 ddl_text IN VARCHAR2 := NULL,
 comment IN VARCHAR2 := '',
 retry IN BOOLEAN := FALSE,
 copy_rows IN BOOLEAN := TRUE,
 gname IN VARCHAR2 := '');

Parameters

Table 18–54 CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters Description

sname Name of the schema in which the object that you want to
replicate is located.

oname Name of the object you are replicating. If ddl_text is NULL, then
this object must already exist in the specified schema. To ensure
uniqueness, table names should be a maximum of 27 bytes long,
and package names should be no more than 24 bytes. The object
cannot be a storage table for a nested table.

type Type of the object that you are replicating. The following types
are supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

CREATE_MASTER_REPOBJECT Procedure

18-44 Oracle Database Advanced Replication Management API Reference

Exceptions

use_existing_object Indicate TRUE if you want to reuse any objects of the same type
and shape at the current master sites. See Table 18–56 for more
information.

Note: This parameter must be set to TRUE for clustered tables.

ddl_text If the object does not already exist at the master definition site,
then you must supply the DDL text necessary to create this object.
PL/SQL packages, package bodies, procedures, and functions
must have a trailing semicolon. SQL statements do not end with
trailing semicolon. Oracle does not parse this DDL before
applying it; therefore, you must ensure that your DDL text
provides the appropriate schema and object name for the object
being created.

If the DDL is supplied without specifying a schema (sname
parameter), then the default schema is the replication
administrator's schema. Be sure to specify the schema if it is other
than the replication administrator's schema.

Note: Do not use the ddl_text parameter to add user-defined
types or object tables. Instead, create the object first and then add
the object.

comment This comment is added to the OBJECT_COMMENT field of the
DBA_REPOBJECT view.

retry Indicate TRUE if you want Oracle to reattempt to create an object
that it was previously unable to create. Use this if the error was
transient or has since been rectified, or if you previously had
insufficient resources. If this is TRUE, then Oracle creates the
object only at master sites whose object status is not VALID.

copy_rows Indicate TRUE if you want the initial contents of a newly
replicated object to match the contents of the object at the master
definition site. See Table 18–56 for more information.

gname Name of the replication group in which you want to create the
replicated object. The schema name is used as the default
replication group name if none is specified, and a replication
group with the same name as the schema must exist for the
procedure to complete successfully in that case.

Table 18–55 CREATE_MASTER_REPOBJECT Procedure Exceptions

Exceptions Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiesced.

duplicateobject Specified object already exists in the master group and retry is
FALSE, or if a name conflict occurs.

missingobject Object identified by sname and oname does not exist and
appropriate DDL has not been provided.

typefailure Objects of the specified type cannot be replicated.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

Table 18–54 (Cont.) CREATE_MASTER_REPOBJECT Procedure Parameters

Parameters Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-45

Object Creations

Table 18–56 Object Creation at Master Sites

Object

Already

Exists? COPY_ROWS
USE_EXISTING_
OBJECTS Result

yes TRUE TRUE duplicatedobject message if objects do
not match. For tables, use data from master
definition site.

yes FALSE TRUE duplicatedobject message if objects do
not match. For tables, DBA must ensure
contents are identical.

yes TRUE/FALSE FALSE duplicatedobject message.

no TRUE TRUE/FALSE Object is created. Tables populated using
data from master definition site.

no FALSE TRUE/FALSE Object is created. DBA must populate
tables and ensure consistency of tables at
all sites.

CREATE_MVIEW_REPGROUP Procedure

18-46 Oracle Database Advanced Replication Management API Reference

CREATE_MVIEW_REPGROUP Procedure

This procedure creates a new, empty materialized view group in your local database.
CREATE_MVIEW_REPGROUP automatically calls REGISTER_MIEW_REPGROUP, but
ignores any errors that might have happened during registration.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 comment IN VARCHAR2 := '',
 propagation_mode IN VARCHAR2 := 'ASYNCHRONOUS',
 fname IN VARCHAR2 := NULL
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Table 18–57 CREATE_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group. This group must exist at the specified
master site or master materialized view site.

master Fully qualified database name of the database in the replication
environment to use as the master site or master materialized view site.
You can include a connection qualifier if necessary. See Oracle Database
Advanced Replication and Oracle Database Administrator's Guide for
information about using connection qualifiers.

comment This comment is added to the DBA_REPGROUP view.

propagation_mode Method of propagation for all updatable materialized views in the
replication group. Acceptable values are synchronous and
asynchronous.

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

Table 18–58 CREATE_MVIEW_REPGROUP Procedure Exceptions

Exception Description

duplicaterepgroup Replication group already exists at the invocation site.

nonmaster Specified database is not a master site or master materialized view
site.

commfailure Specified database is not accessible.

norepopt Advanced replication option is not installed.

typefailure Propagation mode was specified incorrectly.

missingrepgroup Replication group does not exist at master site.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-47

invalidqualifier Connection qualifier specified for the master site or master
materialized view site is not valid for the replication group.

alreadymastered At the local site, there is another materialized view group with the
same group name, but different master site or master materialized
view site.

Table 18–58 (Cont.) CREATE_MVIEW_REPGROUP Procedure Exceptions

Exception Description

CREATE_MVIEW_REPOBJECT Procedure

18-48 Oracle Database Advanced Replication Management API Reference

CREATE_MVIEW_REPOBJECT Procedure

This procedure adds a replicated object to a materialized view group.

Syntax
DBMS_REPCAT.CREATE_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 ddl_text IN VARCHAR2 := '',
 comment IN VARCHAR2 := '',
 gname IN VARCHAR2 := '',
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := TRUE,
 generate_80_compatible IN BOOLEAN := TRUE,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18–59 CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located. The schema
must be same as the schema that owns the master table or
master materialized view on which this materialized view is
based.

oname Name of the object that you want to add to the replicated
materialized view group.

type Type of the object that you are replicating. The following types
are supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

Use SNAPSHOT type of the object is a materialized view.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-49

ddl_text For objects of type MATERIALIZED VIEW, the DDL needed to
create the object. For other types, use the default:

'' (an empty string)

If a materialized view with the same name already exists, then
Oracle ignores the DDL and registers the existing materialized
view as a replicated object. If the master table or master
materialized view for a materialized view does not exist in the
replication group of the master designated for this schema,
then Oracle raises a missingobject error.

If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator's schema. Be
sure to specify the schema if it is other than the replication
administrator's schema.

If the object is not of type MATERIALIZED VIEW, then the
materialized view site connects to the master site or master
materialized view site and pulls down the DDL text to create
the object. If the object type is TYPE or TYPE BODY, then the
object identifier (OID) for the object at the materialized view
site is the same as the OID at the master site or master
materialized view site.

comment This comment is added to the OBJECT_COMMENT field of the
DBA_REPOBJECT view.

gname Name of the replicated materialized view group to which you
are adding an object. The schema name is used as the default
group name if none is specified, and a materialized view group
with the same name as the schema must exist for the procedure
to complete successfully.

gen_objs_owner Name of the user you want to assign as owner of the
transaction.

min_communication This parameter is obsolete. Use the default value (TRUE).

generate_80_compatible Set to FALSE because interoperability is not supported between
Oracle8i databases and Oracle 11g or later databases.

gowner Owner of the materialized view group.

Table 18–59 (Cont.) CREATE_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

CREATE_MVIEW_REPOBJECT Procedure

18-50 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 18–60 CREATE_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

missingobject Specified object does not exist in the master's replication group.

duplicateobject Specified object already exists with a different shape.

typefailure Type is not an allowable type.

ddlfailure DDL did not succeed.

commfailure Master site or master materialized view site is not accessible.

missingschema Schema does not exist as a database schema.

badmviewddl DDL was executed but materialized view does not exist.

onlyonemview Only one materialized view for master table or master
materialized view can be created.

badmviewname Materialized view differs from master table or master materialized
view.

missingrepgroup Replication group at the master does not exist.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-51

DEFINE_COLUMN_GROUP Procedure

This procedure creates an empty column group. You must call this procedure from the
master definition site.

Syntax
DBMS_REPCAT.DEFINE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 comment IN VARCHAR2 := NULL);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–61 DEFINE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a column
group.

column_group Name of the column group that you want to create.

comment This user text is displayed in the DBA_REPCOLUMN_GROUP view.

Table 18–62 DEFINE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

duplicategroup Specified column group already exists for the table.

notquiesced Replication group to which the specified table belongs is not
quiesced.

DEFINE_PRIORITY_GROUP Procedure

18-52 Oracle Database Advanced Replication Management API Reference

DEFINE_PRIORITY_GROUP Procedure

This procedure creates a new priority group for a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 datatype IN VARCHAR2,
 fixed_length IN INTEGER := NULL,
 comment IN VARCHAR2 := NULL);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–63 DEFINE_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group for which you are creating a priority group.

pgroup Name of the priority group that you are creating.

datatype Data type of the priority group members. The data types
supported are: CHAR, VARCHAR2, NUMBER, DATE, RAW, NCHAR, and
NVARCHAR2.

fixed_length You must provide a column length for the CHAR data type. All
other types can use the default, NULL.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 18–64 DEFINE_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicatepriority
group

Specified priority group already exists in the master group.

typefailure Specified data type is not supported.

notquiesced Master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-53

DEFINE_SITE_PRIORITY Procedure

This procedure creates a new site priority group for a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DEFINE_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 comment IN VARCHAR2 := NULL);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–65 DEFINE_SITE_PRIORITY Procedure Parameters

Parameter Description

gname The master group for which you are creating a site priority group.

name Name of the site priority group that you are creating.

comment This user comment is added to the DBA_REPPRIORITY view.

Table 18–66 DEFINE_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

duplicate
prioritygroup

Specified site priority group already exists in the master group.

notquiesced Master group is not quiesced.

DO_DEFERRED_REPCAT_ADMIN Procedure

18-54 Oracle Database Advanced Replication Management API Reference

DO_DEFERRED_REPCAT_ADMIN Procedure

This procedure executes the local outstanding deferred administrative procedures for
the specified master group at the current master site, or (with assistance from job
queues) for all master sites.

DO_DEFERRED_REPCAT_ADMIN executes only those administrative requests
submitted by the connected user who called DO_DEFERRED_REPCAT_ADMIN.
Requests submitted by other users are ignored.

Syntax
DBMS_REPCAT.DO_DEFERRED_REPCAT_ADMIN (
 gname IN VARCHAR2,
 all_sites IN BOOLEAN := FALSE);

Parameters

Exceptions

Table 18–67 DO_DEFERRED_REPCAT_ADMIN Procedure Parameters

Parameter Description

gname Name of the master group.

all_sites If this is TRUE, then use a job to execute the local administrative
procedures at each master site.

Table 18–68 DO_DEFERRED_REPCAT_ADMIN Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

commfailure At least one master site is not accessible and all_sites is TRUE.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-55

DROP_COLUMN_GROUP Procedure

This procedure drops a column group. You must call this procedure from the master
definition site.

Syntax
DBMS_REPCAT.DROP_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–69 DROP_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table whose column group you are
dropping.

column_group Name of the column group that you want to drop.

Table 18–70 DROP_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

referenced Specified column group is being used in conflict detection and
resolution.

missingobject Specified table does not exist.

missinggroup Specified column group does not exist.

notquiesced Master group to which the table belongs is not quiesced.

DROP_GROUPED_COLUMN Procedure

18-56 Oracle Database Advanced Replication Management API Reference

DROP_GROUPED_COLUMN Procedure

This procedure removes members from a column group. You must call this procedure
from the master definition site.

Syntax
DBMS_REPCAT.DROP_GROUPED_COLUMN (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–71 DROP_GROUPED_COLUMN Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table in which the column group is located.
The table can be the storage table of a nested table.

column_group Name of the column group from which you are removing
members.

list_of_column_names Names of the columns that you are removing from the designated
column group. This can either be a comma-delimited list or a PL/
SQL index-by table of column names. The PL/SQL index-by table
must be of type DBMS_REPCAT.VARCHAR2.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object, then you can specify SYS_NC_OID$ to add
the object identifier column to the column group. This column
tracks the object identifier of each row object.

If the table is a storage table of a nested table, then you can specify
NESTED_TABLE_ID to add the column that tracks the identifier
for each row of the nested table.

Table 18–72 DROP_GROUPED_COLUMN Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified table does not exist.

notquiesced Master group that the table belongs to is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-57

DROP_MASTER_REPGROUP Procedure

This procedure drops a master group from your current site. To drop the master group
from all master sites, including the master definition site, you can call this procedure at
the master definition site, and set all_sites to TRUE.

Syntax
DBMS_REPCAT.DROP_MASTER_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := FALSE,
 all_sites IN BOOLEAN := FALSE);

Parameters

Exceptions

Table 18–73 DROP_MASTER_REPGROUP Procedure Parameters

Parameter Description

gname Name of the master group that you want to drop from the current
master site.

drop_contents By default, when you drop the replication group at a master site,
all of the objects remain in the database. They simply are no longer
replicated. That is, the replicated objects in the replication group
no longer send changes to, or receive changes from, other master
sites. If you set this to TRUE, then any replicated objects in the
master group are dropped from their associated schemas.

all_sites If this is TRUE and if the invocation site is the master definition
site, then the procedure synchronously multicasts the request to all
masters. In this case, execution is immediate at the master
definition site and might be deferred at all other master sites.

Table 18–74 DROP_MASTER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

nonmasterdef Invocation site is not the master definition site and all_sites is
TRUE.

commfailure At least one master site is not accessible and all_sites is TRUE.

fullqueue Deferred remote procedure call (RPC) queue has entries for the
master group.

masternotremoved Master does not recognize the master definition site and
all_sites is TRUE.

DROP_MASTER_REPOBJECT Procedure

18-58 Oracle Database Advanced Replication Management API Reference

DROP_MASTER_REPOBJECT Procedure

This procedure drops a replicated object from a master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_MASTER_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := FALSE);

Parameters

Exceptions

Table 18–75 DROP_MASTER_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to remove from the master
group. The object cannot be a storage table for a nested table.

type Type of object that you want to drop. The following types are
supported:

FUNCTION SYNONYM
INDEX TABLE
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

drop_objects By default, the object remains in the schema, but is dropped from
the master group. That is, any changes to the object are no longer
replicated to other master and materialized view sites. To
completely remove the object from the replication environment,
set this parameter to TRUE. If the parameter is set to TRUE, the
object is dropped from the database at each master site.

Table 18–76 DROP_MASTER_REPOBJECT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

commfailure At least one master site is not accessible.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-59

DROP_MVIEW_REPGROUP Procedure

This procedure drops a materialized view site from your replication environment.
DROP_MVIEW_REPGROUP automatically calls UNREGISTER_MVIEW_REPGROUP at the
master site or master materialized view site to unregister the materialized view, but
ignores any errors that might have occurred during unregistration. If
DROP_MVIEW_REPGROUP is unsuccessful, then connect to the master site or master
materialized view site and run UNREGISTER_MVIEW_REPGROUP.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_contents IN BOOLEAN := FALSE,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Table 18–77 DROP_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group that you want to drop from the
current materialized view site. All objects generated to support
replication, such as triggers and packages, are dropped.

drop_contents By default, when you drop the replication group at a materialized
view site, all of the objects remain in their associated schemas.
They simply are no longer replicated. If you set this to TRUE, then
any replicated objects in the replication group are dropped from
their schemas.

gowner Owner of the materialized view group.

Table 18–78 DROP_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingrepgroup Specified replication group does not exist.

DROP_MVIEW_REPOBJECT Procedure

18-60 Oracle Database Advanced Replication Management API Reference

DROP_MVIEW_REPOBJECT Procedure

This procedure drops a replicated object from a materialized view site.

Syntax
DBMS_REPCAT.DROP_MVIEW_REPOBJECT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 drop_objects IN BOOLEAN := FALSE);

Parameters

Exceptions

Table 18–79 DROP_MVIEW_REPOBJECT Procedure Parameters

Parameter Description

sname Name of the schema in which the object is located.

oname Name of the object that you want to drop from the replication
group.

type Type of the object that you want to drop. The following types are
supported:

FUNCTION SNAPSHOT
INDEX SYNONYM
INDEXTYPE TRIGGER
OPERATOR TYPE
PACKAGE TYPE BODY
PACKAGE BODY VIEW
PROCEDURE

Use SNAPSHOT to drop a materialized view.

drop_objects By default, the object remains in its associated schema, but is
dropped from its associated replication group. To completely
remove the object from its schema at the current materialized view
site, set this parameter to TRUE. If the parameter is set to TRUE, the
object is dropped from the database at the materialized view site.

Table 18–80 DROP_MVIEW_REPOBJECT Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

missingobject Specified object does not exist.

typefailure Specified type parameter is not supported.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-61

DROP_PRIORITY Procedure

This procedure drops a member of a priority group by priority level. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_PRIORITY(
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 priority_num IN NUMBER);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–81 DROP_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

priority_num Priority level of the priority group member that you want to
remove from the group.

Table 18–82 DROP_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

notquiesced Master group is not quiesced.

DROP_PRIORITY_GROUP Procedure

18-62 Oracle Database Advanced Replication Management API Reference

DROP_PRIORITY_GROUP Procedure

This procedure drops a priority group for a specified master group. You must call this
procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_PRIORITY_GROUP (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–83 DROP_PRIORITY_GROUP Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group that you want to drop.

Table 18–84 DROP_PRIORITY_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-63

DROP_PRIORITY_datatype Procedure

This procedure drops a member of a priority group by value. You must call this
procedure from the master definition site. The procedure that you must call is
determined by the data type of your priority column.

Syntax
DBMS_REPCAT.DROP_PRIORITY_datatype (
 gname IN VARCHAR2,
 pgroup IN VARCHAR2,
 value IN datatype);

where datatype:

{ NUMBER
| VARCHAR2
| CHAR
| DATE
| RAW
| NCHAR
| NVARCHAR2 }

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–85 DROP_PRIORITY_datatype Procedure Parameters

Parameter Description

gname Master group with which the priority group is associated.

pgroup Name of the priority group containing the member that you want
to drop.

value Value of the priority group member that you want to remove from
the group.

Table 18–86 DROP_PRIORITY_datatype Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingprioritygroup Specified priority group does not exist.

paramtype,
typefailure

Value has the incorrect data type for the priority group.

notquiesced Specified master group is not quiesced.

DROP_SITE_PRIORITY Procedure

18-64 Oracle Database Advanced Replication Management API Reference

DROP_SITE_PRIORITY Procedure

This procedure drops a site priority group for a specified master group. You must call
this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY (
 gname IN VARCHAR2,
 name IN VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–87 DROP_SITE_PRIORITY Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group that you want to drop.

Table 18–88 DROP_SITE_PRIORITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

referenced Specified site priority group is being used in conflict resolution.

notquiesced Specified master group is not quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-65

DROP_SITE_PRIORITY_SITE Procedure

This procedure drops a specified site, by name, from a site priority group. You must
call this procedure from the master definition site.

Syntax
DBMS_REPCAT.DROP_SITE_PRIORITY_SITE (
 gname IN VARCHAR2,
 name IN VARCHAR2,
 site IN VARCHAR2);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–89 DROP_SITE_PRIORITY_SITE Procedure Parameters

Parameter Description

gname Master group with which the site priority group is associated.

name Name of the site priority group whose member you are dropping.

site Global database name of the site you are removing from the
group.

Table 18–90 DROP_SITE_PRIORITY_SITE Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingrepgroup Specified master group does not exist.

missingpriority Specified site priority group does not exist.

notquiesced Specified master group is not quiesced.

DROP_conflicttype_RESOLUTION Procedure

18-66 Oracle Database Advanced Replication Management API Reference

DROP_conflicttype_RESOLUTION Procedure

This procedure drops an update, delete, or uniqueness conflict resolution routine. You
must call these procedures from the master definition site. The procedure that you
must call is determined by the type of conflict that the routine resolves.

Conflict Resolution Routines
Table 18–91 shows the procedure name for each conflict resolution routine.

Syntax
DBMS_REPCAT.DROP_UPDATE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_DELETE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 sequence_no IN NUMBER);

DBMS_REPCAT.DROP_UNIQUE_RESOLUTION (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 constraint_name IN VARCHAR2,
 sequence_no IN NUMBER);

Parameters

Table 18–91 Conflict Resolution Routines

Routine Procedure Name

update DROP_UPDATE_RESOLUTION

uniqueness DROP_UNIQUE_RESOLUTION

delete DROP_DELETE_RESOLUTION

Table 18–92 DROP_conflicttype_RESOLUTION Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table for which you want to drop a conflict resolution
routine.

column_group Name of the column group for which you want to drop an update
conflict resolution routine.

constraint_name Name of the unique constraint for which you want to drop a
unique conflict resolution routine.

sequence_no Sequence number assigned to the conflict resolution method that
you want to drop. This number uniquely identifies the routine.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-67

Exceptions

Table 18–93 DROP_conflicttype_RESOLUTION Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema, or
a conflict resolution routine with the specified sequence number is
not registered.

notquiesced Master group is not quiesced.

EXECUTE_DDL Procedure

18-68 Oracle Database Advanced Replication Management API Reference

EXECUTE_DDL Procedure

This procedure supplies DDL that you want to have executed at some or all master
sites. You can call this procedure only from the master definition site.

Syntax
DBMS_REPCAT.EXECUTE_DDL (
 gname IN VARCHAR2,
 { master_list IN VARCHAR2 := NULL,
 | master_table IN DBMS_UTILITY.DBLINK_ARRAY,}
 DDL_TEXT IN VARCHAR2);

Parameters

Exceptions

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

Table 18–94 EXECUTE_DDL Procedure Parameters

Parameter Description

gname Name of the master group.

master_list A comma-delimited list of master sites at which you want to
execute the supplied DDL. Do not put any spaces between site
names. The default value, NULL, indicates that the DDL should be
executed at all sites, including the master definition site.

master_table A table that lists the master sites where you want to execute the
supplied DDL. The first master should be at position 1, the second
at position 2, and so on.

ddl_text The DDL that you want to execute at each of the specified master
sites. If the DDL is supplied without specifying a schema, then the
default schema is the replication administrator's schema. Be sure
to specify the schema if it is other than the replication
administrator's schema.

Table 18–95 EXECUTE_DDL Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one site is not a master site.

ddlfailure DDL at the master definition site did not succeed.

commfailure At least one master site is not accessible.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-69

GENERATE_MVIEW_SUPPORT Procedure

This procedure activates triggers and generate packages needed to support the
replication of updatable materialized views or procedural replication.You must call
this procedure from the materialized view site.

Syntax
DBMS_REPCAT.GENERATE_MVIEW_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 gen_objs_owner IN VARCHAR2 := '',
 min_communication IN BOOLEAN := TRUE,
 generate_80_compatible IN BOOLEAN := TRUE);

Parameters

Exceptions

Note: CREATE_MVIEW_REPOBJECT automatically generates
materialized view support for updatable materialized views.

Table 18–96 GENERATE_MVIEW_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname The name of the object for which you are generating support.

type Type of the object. The types supported are MATERIALIZED
VIEW, PACKAGE, and PACKAGE BODY.

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in SNAME.

min_communication If TRUE, then the update trigger sends the new value of a
column only if the update statement modifies the column. The
update trigger sends the old value of the column only if it is a
key column or a column in a modified column group.

generate_80_compatible Set to FALSE because interoperability is not supported
between Oracle8i databases and Oracle 11g or later databases.

Table 18–97 GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions

nonmview Invocation site is not a materialized view site.

missingobject Specified object does not exist as a materialized view in the
replicated schema waiting for row/column-level replication
information or as a package (body) waiting for wrapper
generation.

typefailure Specified type parameter is not supported.

missingschema Specified owner of generated objects does not exist.

missingremoteobject Object at master site or master materialized view site has not yet
generated replication support.

GENERATE_MVIEW_SUPPORT Procedure

18-70 Oracle Database Advanced Replication Management API Reference

commfailure Master site or master materialized view site is not accessible.

Table 18–97 (Cont.) GENERATE_MVIEW_SUPPORT Procedure Exceptions

Exceptions Descriptions

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-71

GENERATE_REPLICATION_SUPPORT Procedure

This procedure generates the triggers and packages needed to support replication for a
specified object. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.GENERATE_REPLICATION_SUPPORT (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 type IN VARCHAR2,
 package_prefix IN VARCHAR2 := NULL,
 procedure_prefix IN VARCHAR2 := NULL,
 distributed IN BOOLEAN := TRUE,
 gen_objs_owner IN VARCHAR2 := NULL,
 min_communication IN BOOLEAN := TRUE,
 generate_80_compatible IN BOOLEAN := TRUE);

Parameters

Table 18–98 GENERATE_REPLICATION_SUPPORT Procedure Parameters

Parameter Description

sname Schema in which the object is located.

oname Name of the object for which you are generating replication
support.

type Type of the object. The types supported are: TABLE, PACKAGE,
and PACKAGE BODY.

package_prefix For objects of type PACKAGE or PACKAGE BODY this value is
prepended to the generated wrapper package name. The
default is DEFER_.

procedure_prefix For objects of type PACKAGE or PACKAGE BODY, this value is
prepended to the generated wrapper procedure names. By
default, no prefix is assigned.

distributed This must be set to TRUE.

gen_objs_owner For objects of type PACKAGE or PACKAGE BODY, the schema in
which the generated object should be created. If NULL, the
objects are created in sname.

min_communication This parameter is obsolete. Use the default value (TRUE).

generate_80_compatible Set to FALSE because interoperability is not supported
between Oracle8i databases and Oracle 11g or later databases.

GENERATE_REPLICATION_SUPPORT Procedure

18-72 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 18–99 GENERATE_REPLICATION_SUPPORT Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information or as a package
(body) waiting for wrapper generation.

typefailure Specified type parameter is not supported.

notquiesced Replication group has not been quiesced.

commfailure At least one master site is not accessible.

missingschema Schema does not exist.

duplicateobject Object already exists.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-73

MAKE_COLUMN_GROUP Procedure

This procedure creates a new column group with one or more members. You must call
this procedure from the master definition site.

Syntax
DBMS_REPCAT.MAKE_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 column_group IN VARCHAR2,
 list_of_column_names IN VARCHAR2 | DBMS_REPCAT.VARCHAR2s);

Parameters

Exceptions

See Also: Chapter 6, "Configuring Conflict Resolution" and Oracle
Database Advanced Replication for more information about conflict
resolution methods

Table 18–100 MAKE_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table for which you are creating a new
column group. The table can be the storage table of a nested table.

column_group Name that you want assigned to the column group that you are
creating.

list_of_column_names Names of the columns that you are grouping. This can either be a
comma-delimited list or a PL/SQL index-by table of column
names. The PL/SQL index-by table must be of type
DBMS_REPCAT.VARCHAR2. Use the single value '*' to create a
column group that contains all of the columns in your table.

You can specify column objects, but you cannot specify attributes
of column objects.

If the table is an object table, then you can specify SYS_NC_OID$
to add the object identifier column to the column group. This
column tracks the object identifier of each row object.

If the table is the storage table of a nested table, then you can
specify NESTED_TABLE_ID to add the column that tracks the
identifier for each row of the nested table.

Table 18–101 MAKE_COLUMN_GROUP Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

duplicategroup Specified column group already exists for the table.

missingobject Specified table does not exist.

missingcolumn Specified column does not exist in the designated table.

duplicatecolumn Specified column is already a member of another column group.

notquiesced Master group is not quiesced.

PREPARE_INSTANTIATED_MASTER Procedure

18-74 Oracle Database Advanced Replication Management API Reference

PREPARE_INSTANTIATED_MASTER Procedure

This procedure enables the propagation of deferred transactions from other prepared
new master sites and existing master sites to the invocation master site. This procedure
also enables the propagation of deferred transactions from the invocation master site
to the other prepared new master sites and existing master sites.

If you performed a full database export/import or a change-based recovery, then the
new master site includes all of the deferred transactions that were in the deferred
transactions queue at the master definition site. Because these deferred transactions
should not exist at the new master site, this procedure deletes all transactions in the
deferred transactions queue and error queue if full database export/import or change-
based recovery was used.

For object-level export/import, ensure that all the requests in the DBA_REPCATLOG
data dictionary view for the extended groups have been processed without error
before running this procedure.

Syntax
DBMS_REPCAT.PREPARE_INSTANTIATED_MASTER (
 extension_id IN RAW);

Parameters

Caution:

■ Do not invoke this procedure until instantiation (export/import
or change-based recovery) for the new master site is complete.

■ Do not allow any data manipulation language (DML)
statements directly on the objects in the extended master group
in the new master site until execution of this procedure returns
successfully. These DML statements might not be replicated.

■ Do not use the DBMS_DEFER package to create deferred
transactions until execution of this procedure returns
successfully. These deferred transactions might not be
replicated.

Note: To use change-based recovery, the existing master site and
the new master site must be running under the same operating
system, although the release of the operating system can differ.

Table 18–102 PREPARE_INSTANTIATED_MASTER Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and
DBA_REPEXTENSIONS data dictionary views.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-75

Exceptions

Table 18–103 PREPARE_INSTANTIATED_MASTER Procedure Exceptions

Exception Description

typefailure The parameter value specified for one of the parameters is not
appropriate.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

PURGE_MASTER_LOG Procedure

18-76 Oracle Database Advanced Replication Management API Reference

PURGE_MASTER_LOG Procedure

This procedure removes local messages in the DBA_REPCATLOG view associated with
a specified identification number, source, or master group.

To purge all of the administrative requests from a particular source, specify NULL for
the id parameter. To purge all administrative requests from all sources, specify NULL
for both the id parameter and the source parameter.

Syntax
DBMS_REPCAT.PURGE_MASTER_LOG (
 id IN BINARY_INTEGER,
 source IN VARCHAR2,
 gname IN VARCHAR2);

Parameters

Exceptions

Table 18–104 PURGE_MASTER_LOG Procedure Parameters

Parameter Description

id Identification number of the request, as it appears in the
DBA_REPCATLOG view.

source Master site from which the request originated.

gname Name of the master group for which the request was made.

Table 18–105 PURGE_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster gname is not NULL, and the invocation site is not a master site.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-77

PURGE_STATISTICS Procedure

This procedure removes information from the DBA_REPRESOLUTION_STATISTICS
view.

Syntax
DBMS_REPCAT.PURGE_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 start_date IN DATE,
 end_date IN DATE);

Parameters

Exceptions

Table 18–106 PURGE_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the replicated table is located.

oname Name of the table whose conflict resolution statistics you want to
purge.

start_date/end_date Range of dates for which you want to purge statistics. If
start_date is NULL, then purge all statistics up to the
end_date. If end_date is NULL, then purge all statistics after the
start_date.

Table 18–107 PURGE_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

statnotreg Table not registered to collect statistics.

REFRESH_MVIEW_REPGROUP Procedure

18-78 Oracle Database Advanced Replication Management API Reference

REFRESH_MVIEW_REPGROUP Procedure

This procedure refreshes a materialized view group with the most recent data from its
associated master site or master materialized view site.

Syntax
DBMS_REPCAT.REFRESH_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 drop_missing_contents IN BOOLEAN := FALSE,
 refresh_mviews IN BOOLEAN := FALSE,
 refresh_other_objects IN BOOLEAN := FALSE,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18–108 REFRESH_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the replication group.

drop_missing_contents If an object was dropped from the replication group at the
master site or master materialized view site, then it is not
automatically dropped from the schema at the materialized view
site. It is simply no longer replicated. That is, changes to this
object are no longer sent to its associated master site or master
materialized view site. Materialized views can continue to be
refreshed from their associated master tables or master
materialized views. However, any changes to an updatable
materialized view are lost. When an object is dropped from the
replication group, you can choose to have it dropped from the
schema entirely by setting this parameter to TRUE.

refresh_mviews Set to TRUE to refresh the contents of the materialized views in
the replication group.

refresh_other_objects Set this to TRUE to refresh the contents of the non materialized
view objects in the replication group. Non materialized view
objects can include the following:

■ Tables

■ Views

■ Indexes

■ PL/SQL packages and package bodies

■ PL/SQL procedures and functions

■ Triggers

■ Synonyms

gowner Owner of the materialized view group.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-79

Exceptions

Table 18–109 REFRESH_MVIEW_REPGROUP Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Master is no longer a master site or master materialized view site.

commfailure Master site or master materialized view site is not accessible.

missingrepgroup Replication group name not specified.

REGISTER_MVIEW_REPGROUP Procedure

18-80 Oracle Database Advanced Replication Management API Reference

REGISTER_MVIEW_REPGROUP Procedure

This procedure facilitates the administration of materialized views at their respective
master sites or master materialized view sites by inserting or modifying a materialized
view group in DBA_REGISTERED_MVIEW_GROUPS.

Syntax
DBMS_REPCAT.REGISTER_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 comment IN VARCHAR2 := NULL,
 rep_type IN NUMBER := reg_unknown,
 fname IN VARCHAR2 := NULL,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Table 18–110 REGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be registered.

mviewsite Global name of the materialized view site.

comment Comment for the materialized view site or update for an existing
comment.

rep_type Version of the materialized view group. Valid constants that can be
assigned include the following:

■ dbms_repcat.reg_unknown (the default)

■ dbms_repcat.reg_v7_group

■ dbms_repcat.reg_v8_group

fname This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by Oracle
Support Services.

gowner Owner of the materialized view group.

Table 18–111 REGISTER_MVIEW_REPGROUP Procedure Exceptions

Exception Description

failregmviewrepgroup Registration of materialized view group failed.

missingrepgroup Replication group name not specified.

nullsitename A materialized view site was not specified.

nonmaster Procedure must be executed at the materialized view's master site
or master materialized view site.

duplicaterepgroup Replication group already exists.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-81

REGISTER_STATISTICS Procedure

This procedure collects information about the successful resolution of update, delete,
and uniqueness conflicts for a table.

Syntax
DBMS_REPCAT.REGISTER_STATISTICS (
 sname IN VARCHAR2,
 oname IN VARCHAR2);

Parameters

Exceptions

Table 18–112 REGISTER_STATISTICS Procedure Parameters

Parameter Description

sname Name of the schema in which the table is located.

oname Name of the table for which you want to gather conflict resolution
statistics.

Table 18–113 REGISTER_STATISTICS Procedure Exceptions

Exception Description

missingschema Specified schema does not exist.

missingobject Specified table does not exist.

RELOCATE_MASTERDEF Procedure

18-82 Oracle Database Advanced Replication Management API Reference

RELOCATE_MASTERDEF Procedure

This procedure changes your master definition site to another master site in your
replication environment.

It is not necessary for either the old or new master definition site to be available when
you call RELOCATE_MASTERDEF. In a planned reconfiguration, you should invoke
RELOCATE_MASTERDEF with notify_masters set to TRUE and
include_old_masterdef set to TRUE.

Syntax
DBMS_REPCAT.RELOCATE_MASTERDEF (
 gname IN VARCHAR2,
 old_masterdef IN VARCHAR2,
 new_masterdef IN VARCHAR2,
 notify_masters IN BOOLEAN := TRUE,
 include_old_masterdef IN BOOLEAN := TRUE,
 require_flavor_change IN BOOLEAN := FALSE);

Parameters

Table 18–114 RELOCATE_MASTERDEF Procedure Parameters

Parameter Description

gname Name of the replication group whose master definition you
want to relocate.

old_masterdef Fully qualified database name of the current master definition
site.

new_masterdef Fully qualified database name of the existing master site that
you want to make the new master definition site.

notify_masters If this is TRUE, then the procedure synchronously multicasts
the change to all masters (including old_masterdef only if
include_old_masterdef is TRUE). If any master does not
make the change, then roll back the changes at all masters.

If just the master definition site fails, then you should invoke
RELOCATE_MASTERDEF with notify_masters set to TRUE
and include_old_masterdef set to FALSE. If several
master sites and the master definition site fail, then the
administrator should invoke RELOCATE_MASTERDEF at each
operational master with notify_masters set to FALSE.

include_old_masterdef If notify_masters is TRUE and if
include_old_masterdef is also TRUE, then the old master
definition site is also notified of the change.

require_flavor_change This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-83

Exceptions

Table 18–115 RELOCATE_MASTERDEF Procedure Exceptions

Exception Description

nonmaster new_masterdef is not a master site or the invocation site is not a
master site.

nonmasterdef old_masterdef is not the master definition site.

commfailure At least one master site is not accessible and notify_masters is
TRUE.

REMOVE_MASTER_DATABASES Procedure

18-84 Oracle Database Advanced Replication Management API Reference

REMOVE_MASTER_DATABASES Procedure

This procedure removes one or more master databases from a replication environment.
This procedure regenerates the triggers and their associated packages at the remaining
master sites. You must call this procedure from the master definition site.

Syntax
DBMS_REPCAT.REMOVE_MASTER_DATABASES (
 gname IN VARCHAR2,
 master_list IN VARCHAR2 |
 master_table IN DBMS_UTILITY.DBLINK_ARRAY);

Parameters

Exceptions

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

Table 18–116 REMOVE_MASTER_DATABASES Procedure Parameters

Parameter Description

gname Name of the replication group associated with the replication
environment. This prevents confusion if a master database is
involved in more than one replication environment.

master_list A comma-delimited list of fully qualified master database names
that you want to remove from the replication environment. There
must be no spaces between names in the list.

master_table In place of a list, you can specify the database names in a PL/SQL
index-by table of type DBMS_UTILITY.DBLINK_ARRAY.

Table 18–117 REMOVE_MASTER_DATABASES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

nonmaster At least one of the specified databases is not a master site.

reconfigerror One of the specified databases is the master definition site.

commfailure At least one remaining master site is not accessible.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-85

RENAME_SHADOW_COLUMN_GROUP Procedure

This procedure renames the shadow column group of a replicated table to make it a
named column group. The replicated table's master group does not need to be
quiesced to run this procedure.

Syntax
DBMS_REPCAT.RENAME_SHADOW_COLUMN_GROUP (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 new_col_group_name IN VARCHAR2)

Parameters

Exceptions

Table 18–118 RENAME_SHADOW_COLUMN_GROUP Procedure Parameters

Parameter Description

sname Schema in which the replicated table is located.

oname Name of the replicated table.

new_col_group_name Name of the new column group. The columns currently in the
shadow group are placed in a column group with the name you
specify.

Table 18–119 RENAME_SHADOW_COLUMN_GROUP Procedure Exceptions

Exception Description

missmview The specified schema does not exist.

nonmasterdef Invocation site is not the master definition site.

missingobject The specified object does not exist.

duplicategroup The column group that was specified for creation already exists.

REPCAT_IMPORT_CHECK Procedure

18-86 Oracle Database Advanced Replication Management API Reference

REPCAT_IMPORT_CHECK Procedure

This procedure ensures that the objects in the master group have the appropriate
object identifiers and status values after you perform an export/import of a replicated
object or an object used by Advanced Replication.

Syntax
DBMS_REPCAT.REPCAT_IMPORT_CHECK (
 gname IN VARCHAR2,
 master IN BOOLEAN,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Table 18–120 REPCAT_IMPORT_CHECK Procedure Parameters

Parameter Description

gname Name of the master group. If you omit both parameters, then the
procedure checks all master groups at your current site.

master Set this to TRUE if you are checking a master site and FALSE if you
are checking a materialized view site.

gowner Owner of the master group.

Table 18–121 REPCAT_IMPORT_CHECK Procedure Exceptions

Exception Description

nonmaster master is TRUE and either the database is not a master site for the
replication group or the database is not the expected database.

nonmview master is FALSE and the database is not a materialized view site
for the replication group.

missingobject A valid replicated object in the replication group does not exist.

missingrepgroup The specified replicated replication group does not exist.

missingschema The specified replicated replication group does not exist.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-87

RESUME_MASTER_ACTIVITY Procedure

This procedure resumes normal replication activity after quiescing a replication
environment.

Syntax
DBMS_REPCAT.RESUME_MASTER_ACTIVITY (
 gname IN VARCHAR2,
 override IN BOOLEAN := FALSE);

Parameters

Exceptions

Table 18–122 RESUME_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group.

override If this is TRUE, then it ignores any pending administrative requests
and restores normal replication activity at each master as quickly
as possible. This should be considered only in emergency
situations.

If this is FALSE, then it restores normal replication activity at each
master only when there is no pending administrative request for
gname at that master.

Table 18–123 RESUME_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notquiesced Master group is not quiescing or quiesced.

commfailure At least one master site is not accessible.

notallgenerated Generate replication support before resuming replication activity.

RESUME_PROPAGATION_TO_MDEF Procedure

18-88 Oracle Database Advanced Replication Management API Reference

RESUME_PROPAGATION_TO_MDEF Procedure

During the process of adding new master sites to a master group without quiesce, this
procedure indicates that export is effectively finished and propagation to the master
definition site for both extended and unaffected replication groups existing at master
sites can be enabled. Run this procedure after the export required to add new master
sites to a master group is complete.

Syntax
DBMS_REPCAT.RESUME_PROPAGATION_TO_MDEF (
 extension_id IN RAW);

Parameters

Exceptions

See Also: "Adding New Master Sites" on page 7-2 for more
information about adding master sites to a master group

Table 18–124 RESUME_PROPAGATION_TO_MDEF Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and
DBA_REPEXTENSIONS data dictionary views.

Table 18–125 RESUME_PROPAGATION_TO_MDEF Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

extstinapp Extension status is inappropriate. The extension status should be
EXPORTING when you run this procedure. To check the extension
status, query the DBA_REPEXTENSIONS data dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-89

SEND_OLD_VALUES Procedure

You have the option of sending old column values during propagation of deferred
transactions for each nonkey column of a replicated table when rows are updated or
deleted in the table. When min_communication is set to TRUE, the default is the
following:

■ For a deleted row, to send old values for all columns

■ For an updated row, to send old values for key columns and the modified columns
in a column group

You can change this behavior at all master sites and materialized view sites by
invoking DBMS_REPCAT.SEND_OLD_VALUES at the master definition site. Then,
generate replication support at all master sites and at each materialized view site.

When you use user-defined types, you can specify the leaf attributes of a column
object, or an entire column object. For example, if a column object named
cust_address has street_address as an attribute, then you can specify
cust_address.street_address for the column_list parameter or as part of the
column_table parameter, or you can specify only cust_address.

Syntax
DBMS_REPCAT.SEND_OLD_VALUES(
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2,
 | column_table IN DBMS_UTILITY.VARCHAR2s | DBMS_UTILITY.LNAME_ARRAY,}
 operation IN VARCHAR2 := 'UPDATE',
 send IN BOOLEAN := TRUE);

Parameters

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

Table 18–126 SEND_OLD_VALUES Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the replicated table. The table can be the storage table of a
nested table.

column_list A comma-delimited list of the columns in the table. There must be
no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_REPCAT.VARCHAR2 or DBMS_UTILITY.LNAME_ARRAY to
contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which might occur when you specify the
attributes of column objects.

SEND_OLD_VALUES Procedure

18-90 Oracle Database Advanced Replication Management API Reference

Exceptions

operation Possible values are: update, delete, or the asterisk wildcard '*',
which means update and delete.

send If TRUE, then the old values of the specified columns are sent. If
FALSE, then the old values of the specified columns are not sent.
Unspecified columns and unspecified operations are not affected.

The specified change takes effect at the master definition site as
soon as min_communication is TRUE for the table. The change
takes effect at a master site or at a materialized view site the next
time replication support is generated at that site with
min_communication TRUE.

Note: The operation parameter enables you to specify whether
or not to transmit old values for nonkey columns when rows are
deleted or updated. If you do not send the old value, then Oracle
sends a NULL in place of the old value and assumes the old value is
equal to the current value of the column at the target side when the
update or delete is applied.

See Oracle Database Advanced Replication for information about
reduced data propagation using the SEND_OLD_VALUES procedure
before changing the default behavior of Oracle.

Table 18–127 SEND_OLD_VALUES Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Master group has not been quiesced.

typefailure An illegal operation is specified.

keysendcomp A specified column is a key column in a table.

dbnotcompatible Feature is incompatible with database version. Typically, this
exception arises when you are trying to send the attributes of
column objects. In this case, all databases must be at 9.2.0 or
higher compatibility level.

Table 18–126 (Cont.) SEND_OLD_VALUES Procedure Parameters

Parameter Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-91

SET_COLUMNS Procedure

This procedure enables you to use an alternate column or group of columns, instead of
the primary key, to determine which columns of a table to compare when using row-
level replication. You must call this procedure from the master definition site.

When you use column objects, if an attribute of a column object can be used as a
primary key or part of a primary key, then the attribute can be part of an alternate key
column. For example, if a column object named cust_address has
street_address as a VARCHAR2 attribute, then you can specify
cust_address.street_address for the column_list parameter or as part of the
column_table parameter. However, the entire column object, cust_address,
cannot be specified.

For the storage table of a nested table column, this procedure accepts the
NESTED_TABLE_ID as an alternate key column.

When you use object tables, you cannot specify alternate key columns. If the object
identifier (OID) is system-generated for an object table, then Oracle uses the OID
column in the object table as the key for the object table. If the OID is user-defined for
an object table, then Oracle uses the primary key in the object table as the key.

The following types of columns cannot be alternate key columns:

■ LOB or LOB attribute of a column object

■ Collection or collection attribute of a column object

■ REF

■ An entire column object

Syntax
DBMS_REPCAT.SET_COLUMNS (
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 { column_list IN VARCHAR2
 | column_table IN DBMS_UTILITY.NAME_ARRAY | DBMS_UTILITY.LNAME_ARRAY });

See Also: The constraint_clause in Oracle Database SQL Language
Reference for more information about restrictions on primary key
columns

Note: This procedure is overloaded. The column_list and
column_table parameters are mutually exclusive.

SET_COLUMNS Procedure

18-92 Oracle Database Advanced Replication Management API Reference

Parameters

Exceptions

Table 18–128 SET_COLUMNS Procedure Parameters

Parameter Description

sname Schema in which the table is located.

oname Name of the table.

column_list A comma-delimited list of the columns in the table that you want
to use as a primary key. There must be no spaces between entries.

column_table Instead of a list, you can use a PL/SQL index-by table of type
DBMS_UTILITY.NAME_ARRAY or DBMS_UTILITY.LNAME_ARRAY
to contain the column names. The first column name should be at
position 1, the second at position 2, and so on.

Use DBMS_UTILITY.LNAME_ARRAY if any column name is greater
than or equal to 30 bytes, which might occur when you specify the
attributes of column objects.

Table 18–129 SET_COLUMNS Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

missingobject Specified object does not exist as a table in the specified schema
waiting for row-level replication information.

missingcolumn At least one column is not in the table.

notquiesced Replication group is not quiescing or quiesced.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-93

SPECIFY_NEW_MASTERS Procedure

This procedure specifies the master sites you intend to add to an existing replication
group without quiescing the group. This procedure must be run at the master
definition site of the specified master group.

If necessary, this procedure creates an extension_id that tracks the process of
adding new master sites to a master group. You use this extension_id in the other
procedures that you run at various stages in the process. You can view information
about the extension_id in the DBA_REPSITES_NEW and DBA_REPEXTENSIONS
data dictionary views.

This procedure adds the new master sites to the DBA_REPSITES_NEW data dictionary
view for the specified replication group. This procedure can be run any number of
times for a given replication group. If it is run more than once, then it replaces any
masters in the local DBA_REPSITES_NEW data dictionary view for the specified
replication group with the masters specified in the master_list/master_table
parameters.

You must run this procedure before you run the ADD_NEW_MASTERS procedure. No
new master sites are added to the master group until you run the ADD_NEW_MASTERS
procedure.

Syntax
DBMS_REPCAT.SPECIFY_NEW_MASTERS (
 gname IN VARCHAR2,
 { master_list IN VARCHAR2
 | master_table IN DBMS_UTILITY.DBLINK_ARRAY});

See Also:

■ "ADD_NEW_MASTERS Procedure" on page 18-8

■ "Adding New Master Sites" on page 7-2 for more information
about adding master sites to a master group

Note: This procedure is overloaded. The master_list and
master_table parameters are mutually exclusive.

SPECIFY_NEW_MASTERS Procedure

18-94 Oracle Database Advanced Replication Management API Reference

Parameters

Exceptions

Table 18–130 SPECIFY_NEW_MASTERS Procedure Parameters

Parameter Description

gname Master group to which you are adding new master sites.

master_list A comma-delimited list of new master sites that you want to add to the
master group. List only the new master sites, not the existing master sites.
Do not put any spaces between site names.

If master_list is NULL, all master sites for the given replication group
are removed from the DBA_REPSITES_NEW data dictionary view. Specify
NULL to indicate that the master group is not being extended.

master_table A table that lists the new master sites that you want to add to the master
group. In the table, list only the new master sites, not the existing master
sites. The first master site should be at position 1, the second at position 2,
and so on.

If the table is empty, then all master sites for the specified replication
group are removed from the DBA_REPSITES_NEW data dictionary view.
Use an empty table to indicate that the master group is not being
extended.

Table 18–131 SPECIFY_NEW_MASTERS Procedure Exceptions

Exception Description

duplicaterepgroup A master site that you are attempting to add is already part of the
master group.

nonmasterdef Invocation site is not the master definition site.

propmodenotallowed Synchronous propagation mode not allowed for this operation.
Only asynchronous propagation mode is allowed.

extstinapp Extension request with status not allowed. There must either be no
extension_id for the master group or the extension_id
status must be READY. You can view the status for each
extension_id at a master site in the DBA_REPEXTENSIONS data
dictionary view.

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

notsamecq Master groups do not have the same connection qualifier.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-95

STREAMS_MIGRATION Procedure

Generates a migration script that migrates an Advanced Replication environment to a
Streams environment. Specifically, this procedure generates a script that sets up a
Streams environment for the specified replication groups. The generated script can be
customized and run at each master site to perform the migration.

Syntax
DBMS_REPCAT.STREAMS_MIGRATION (
 gnames IN DBMS_UTILITY.NAME_ARRAY,
 file_location IN VARCHAR2,
 filename IN VARCHAR2);

Parameters

See Also: Oracle Streams Replication Administrator's Guide for
detailed information about migrating from Advanced Replication
to Streams

Table 18–132 STREAMS_MIGRATION Procedure Parameters

Parameter Description

gnames List of replication groups to migrate to Streams. The replication groups
listed must all contain exactly the same master sites. An error is raised if
the replication groups have different masters.

file_location Directory location of the migration script. The specified location should
be a directory object that is accessible to PL/SQL. You can use the SQL
statement CREATE DIRECTORY to create a directory object.

See Also: Oracle Database SQL Language Reference for more information
about the CREATE DIRECTORY statement

filename Name of the migration script.

SUSPEND_MASTER_ACTIVITY Procedure

18-96 Oracle Database Advanced Replication Management API Reference

SUSPEND_MASTER_ACTIVITY Procedure

This procedure suspends replication activity for a master group. You use this
procedure to quiesce the master group. You must call this procedure from the master
definition site.

Syntax
DBMS_REPCAT.SUSPEND_MASTER_ACTIVITY (
 gname IN VARCHAR2);

Parameters

Exceptions

Table 18–133 SUSPEND_MASTER_ACTIVITY Procedure Parameters

Parameter Description

gname Name of the master group for which you want to suspend activity.

Table 18–134 SUSPEND_MASTER_ACTIVITY Procedure Exceptions

Exception Description

nonmasterdef Invocation site is not the master definition site.

notnormal Master group is not in normal operation.

commfailure At least one master site is not accessible.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-97

SWITCH_MVIEW_MASTER Procedure

This procedure changes the master site of a materialized view group to another master
site. This procedure does a full refresh of the affected materialized views and
regenerates the triggers and their associated packages as needed. This procedure does
not push the queue to the old master site before changing master sites.

Syntax
DBMS_REPCAT.SWITCH_MVIEW_MASTER (
 gname IN VARCHAR2,
 master IN VARCHAR2,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Exceptions

Note: You cannot switch the master of materialized views that are
based on other materialized views (level 2 and greater materialized
views). Such a materialized view must be dropped and re-created if
you want to base it on a different master.

See Also: "GENERATE_MVIEW_SUPPORT Procedure" on
page 18-69

Table 18–135 SWITCH_MVIEW_MASTER Procedure Parameters

Parameter Description

gname Name of the materialized view group for which you want to
change the master site.

master Fully qualified database name of the new master site to use for the
materialized view group.

gowner Owner of the materialized view group.

Table 18–136 SWITCH_MVIEW_MASTER Procedure Exceptions

Exception Description

nonmview Invocation site is not a materialized view site.

nonmaster Specified database is not a master site.

commfailure Specified database is not accessible.

missingrepgroup Materialized view group does not exist.

qrytoolong Materialized view definition query is greater 32 KB.

alreadymastered At the local site, there is another materialized view group with the
same group name mastered at the old master site.

UNDO_ADD_NEW_MASTERS_REQUEST Procedure

18-98 Oracle Database Advanced Replication Management API Reference

UNDO_ADD_NEW_MASTERS_REQUEST Procedure

This procedure undoes all of the changes made by the SPECIFY_NEW_MASTERS and
ADD_NEW_MASTERS procedures for a specified extension_id.

This procedure is executed at one master site, which can be the master definition site,
and it only affects that master site. If you run this procedure at one master site affected
by the request, you must run it at all new and existing master sites affected by the
request. You can query the DBA_REPSITES_NEW data dictionary view to see the new
master sites affected by the extension_id. This data dictionary view also lists the
replication group name, and you must run this procedure at all existing master sites in
the replication group.

Syntax
DBMS_REPCAT.UNDO_ADD_NEW_MASTERS_REQUEST (
 extension_id IN RAW,
 drop_contents IN BOOLEAN := TRUE);

Parameters

Caution: This procedure is not normally called. Use this
procedure only if the adding new masters without quiesce
operation cannot proceed at one or more master sites. Run this
procedure after you have already run the SPECIFY_NEW_MASTERS
and ADD_NEW_MASTERS procedures, but before you have run the
RESUME_PROPAGATION_TO_MDEF and
PREPARE_INSTANTIATED_MASTER procedures.

Do not run this procedure after you have run either
RESUME_PROPAGATION_TO_MDEF or
PREPARE_INSTANTIATED_MASTER for a particular
extension_id.

See Also:

■ "SPECIFY_NEW_MASTERS Procedure" on page 18-93

■ "ADD_NEW_MASTERS Procedure" on page 18-8

■ "RESUME_PROPAGATION_TO_MDEF Procedure" on
page 18-88

■ "PREPARE_INSTANTIATED_MASTER Procedure" on
page 18-74

Table 18–137 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Parameters

Parameter Description

extension_id The identifier for the current pending request to add master
databases to a master group without quiesce. You can find the
extension_id by querying the DBA_REPSITES_NEW and
DBA_REPEXTENSIONS data dictionary views.

drop_contents Specify TRUE, the default, to drop the contents of objects in new
replication groups being extended at the local site. Specify FALSE
to retain the contents.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-99

Exceptions

Table 18–138 UNDO_ADD_NEW_MASTERS_REQUEST Procedure Exceptions

Exception Description

dbnotcompatible Feature is incompatible with database version. All databases must
be at 9.2.0 or higher compatibility level.

typefail A parameter value that you specified is not appropriate.

UNREGISTER_MVIEW_REPGROUP Procedure

18-100 Oracle Database Advanced Replication Management API Reference

UNREGISTER_MVIEW_REPGROUP Procedure

This procedure facilitates the administration of materialized views at their respective
master sites or master materialized view sites by deleting a materialized view group
from DBA_REGISTERED_MVIEW_GROUPS. Run this procedure at the master site or
master materialized view site.

Syntax
DBMS_REPCAT.UNREGISTER_MVIEW_REPGROUP (
 gname IN VARCHAR2,
 mviewsite IN VARCHAR2,
 gowner IN VARCHAR2 := 'PUBLIC');

Parameters

Table 18–139 UNREGISTER_MVIEW_REPGROUP Procedure Parameters

Parameter Description

gname Name of the materialized view group to be unregistered.

mviewsite Global name of the materialized view site.

gowner Owner of the materialized view group.

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-101

VALIDATE Function

This function validates the correctness of key conditions of a multimaster replication
environment.

Syntax
DBMS_REPCAT.VALIDATE (
 gname IN VARCHAR2,
 check_genflags IN BOOLEAN := FALSE,
 check_valid_objs IN BOOLEAN := FALSE,
 check_links_sched IN BOOLEAN := FALSE,
 check_links IN BOOLEAN := FALSE,
 error_table OUT DBMS_REPCAT.VALIDATE_ERR_TABLE)
 RETURN BINARY_INTEGER;

DBMS_REPCAT.VALIDATE (
 gname IN VARCHAR2,
 check_genflags IN BOOLEAN := FALSE,
 check_valid_objs IN BOOLEAN := FALSE,
 check_links_sched IN BOOLEAN := FALSE,
 check_links IN BOOLEAN := FALSE,
 error_msg_table OUT DBMS_UTILITY.UNCL_ARRAY,
 error_num_table OUT DBMS_UTILITY.NUMBER_ARRAY)
 RETURN BINARY_INTEGER;

Parameters

Note: This function is overloaded. The return value of VALIDATE
is the number of errors found. The function's OUT parameter
returns any errors that are found. In the first interface function
shown under "Syntax" on page 18-101, the error_table consists
of an array of records. Each record has a VARCHAR2 and a NUMBER
in it. The string field contains the error message, and the number
field contains the Oracle error number.

The second interface function shown under "Syntax" on
page 18-101 is similar except that there are two OUT arrays: a
VARCHAR2 array with the error messages and a NUMBER array with
the error numbers.

Table 18–140 VALIDATE Function Parameters

Parameter Description

gname Name of the master group to validate.

check_genflags Check whether all the objects in the group are generated. This
must be done at the master definition site only.

check_valid_objs Check that the underlying objects for objects in the group valid.
This must be done at the master definition site only. The master
definition site goes to all other sites and checks that the underlying
objects are valid. The validity of the objects is checked within the
schema of the connected user.

check_links_sched Check whether the links are scheduled for execution. This should
be invoked at each master site.

VALIDATE Function

18-102 Oracle Database Advanced Replication Management API Reference

Exceptions

Usage Notes
The return value of VALIDATE is the number of errors found. The function's OUT
parameter returns any errors that are found. In the first interface function, the
error_table consists of an array of records. Each record has a VARCHAR2 and a
NUMBER in it. The string field contains the error message and the number field contains
the Oracle error number.

The second interface is similar except that there are two OUT arrays. A VARCHAR2
array with the error messages and a NUMBER array with the error numbers.

check_links Check whether the connected user (repadmin), as well as the
propagator, have correct links for replication to work properly.
Checks that the links exist in the database and are accessible. This
should be invoked at each master site.

error_table Returns the messages and numbers of all errors that are found.

error_msg_table Returns the messages of all errors that are found.

error_num_table Returns the numbers of all errors that are found.

Table 18–141 VALIDATE Function Exceptions

Exception Description

missingdblink Database link does not exist in the schema of the replication
propagator or has not been scheduled. Ensure that the database
link exists in the database, is accessible, and is scheduled for
execution.

dblinkmismatch Database link name at the local node does not match the global
name of the database that the link accesses. Ensure that the
GLOBAL_NAMES initialization parameter is set to TRUE and the
link name matches the global name.

dblinkuidmismatch User name of the replication administration user at the local node
and the user name at the node corresponding to the database link
are not the same. Advanced Replication expects the two users to
be the same. Ensure that the user identification of the replication
administration user at the local node and the user identification at
the node corresponding to the database link are the same.

objectnotgenerated Object has not been generated at other master sites or is still being
generated. Ensure that the object is generated by calling
GENERATE_REPLICATION_SUPPORT and
DO_DEFERRED_REPCAT_ADMIN for the object at the master
definition site.

Table 18–140 (Cont.) VALIDATE Function Parameters

Parameter Description

Summary of DBMS_REPCAT Subprograms

DBMS_REPCAT 18-103

WAIT_MASTER_LOG Procedure

This procedure determines whether changes that were asynchronously propagated to
a master site have been applied.

Syntax
DBMS_REPCAT.WAIT_MASTER_LOG (
 gname IN VARCHAR2,
 record_count IN NATURAL,
 timeout IN NATURAL,
 true_count OUT NATURAL);

Parameters

Exceptions

Table 18–142 WAIT_MASTER_LOG Procedure Parameters

Parameter Description

gname Name of the master group.

record_count Procedure returns whenever the number of incomplete activities is
at or below this threshold.

timeout Maximum number of seconds to wait before the procedure
returns.

true_count
(out parameter)

Returns the number of incomplete activities.

Table 18–143 WAIT_MASTER_LOG Procedure Exceptions

Exception Description

nonmaster Invocation site is not a master site.

WAIT_MASTER_LOG Procedure

18-104 Oracle Database Advanced Replication Management API Reference

DBMS_REPCAT_INSTANTIATE 19-1

19
DBMS_REPCAT_INSTANTIATE

DBMS_REPCAT_INSTANTIATE package instantiates deployment templates.

This chapter contains this topic:

■ Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

19-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

Table 19–1 DBMS_REPCAT_INSTANTIATE Package Subprograms

Subprogram Description

DROP_SITE_INSTANTIATION
Procedure on page 19-3

Public procedure that removes the target site from the
DBA_REPCAT_TEMPLATE_SITES view.

INSTANTIATE_OFFLINE
Function on page 19-4

Public function that generates a script at the master site that
is used to create the materialized view environment at the
remote materialized view site while offline.

INSTANTIATE_ONLINE
Function on page 19-6

Public function that generates a script at the master site that
is used to create the materialized view environment at the
remote materialized view site while online.

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DBMS_REPCAT_INSTANTIATE 19-3

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at a target site. This procedure removes
all related metadata at the master site and disables the specified site from refreshing its
materialized views. You must execute this procedure as the user who originally
instantiated the template. To see who instantiated the template, query the
ALL_REPCAT_TEMPLATE_SITES view.

Syntax
DBMS_REPCAT_INSTANTIATE.DROP_SITE_INSTANTIATION(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2);

Parameters

Table 19–2 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_name The name of the deployment template to be dropped.

site_name Identifies the master site where you want to drop the specified
template instantiation.

INSTANTIATE_OFFLINE Function

19-4 Oracle Database Advanced Replication Management API Reference

INSTANTIATE_OFFLINE Function

This function generates a file at the master site that is used to create the materialized
view environment at the remote materialized view site while offline. This generated
file is an offline instantiation file and should be used at remote materialized view sites
that are not able to remain connected to the master site for an extended amount of
time.

This is an ideal solution when the remote materialized view site is a laptop. Use the
packaging interface in the Advanced Replication interface in Oracle Enterprise
Manager to package the generated file and data into a single file that can be posted on
an FTP site or loaded to a CD-ROM, floppy disk, and so on. You can also transfer the
file using the DBMS_FILE_TRANSFER package.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Advanced
Replication interface in Oracle Enterprise Manager, during the distribution of
deployment templates. The number returned by this function is used to retrieve the
appropriate information from the USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the
instantiated template at the specified site.

Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_OFFLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := TRUE)
 return NUMBER;

Note: This function is used in performing an offline instantiation
of a deployment template.

This function should not be confused with the procedures in the
DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table). See the documentation for this
package for more information about their usage.

See Also:

■ "Packaging a Deployment Template for Instantiation" on
page 4-9

■ Oracle Database Advanced Replication

■ The Advanced Replication interface's online Help in Oracle
Enterprise Manager

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DBMS_REPCAT_INSTANTIATE 19-5

Parameters

Exceptions

Returns

Table 19–3 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined run-time parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the run-time parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date The next refresh date value to be used when creating the refresh
group.

interval The refresh interval to be used when creating the refresh group.

use_default_gowner If TRUE, then any materialized view groups created are owned
by the default user PUBLIC. If FALSE, then any materialized
view groups created are owned by the user performing the
instantiation.

Table 19–4 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.

Table 19–5 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.

INSTANTIATE_ONLINE Function

19-6 Oracle Database Advanced Replication Management API Reference

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the materialized
view environment at the remote materialized view site while online. This generated
script should be used at remote materialized view sites that are able to remain
connected to the master site for an extended amount of time, as the instantiation
process at the remote materialized view site might be lengthy (depending on the
amount of data that is populated to the new materialized views).

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Advanced
Replication interface in Oracle Enterprise Manager, during the distribution of
deployment templates. The number returned by this function is used to retrieve the
appropriate information from the USER_REPCAT_TEMP_OUTPUT view.

The user who executes this public function becomes the "registered" user of the
instantiated template at the specified site.

Syntax
DBMS_REPCAT_INSTANTIATE.INSTANTIATE_ONLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := TRUE)
 return NUMBER;

See Also:

■ "Packaging a Deployment Template for Instantiation" on
page 4-9

■ Oracle Database Advanced Replication

■ The Advanced Replication interface's online Help in Oracle
Enterprise Manager

Summary of DBMS_REPCAT_INSTANTIATE Subprograms

DBMS_REPCAT_INSTANTIATE 19-7

Parameters

Exceptions

Returns

Table 19–6 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_name The name of the deployment template to be instantiated.

site_name The name of the remote site that is instantiating the deployment
template.

runtime_parm_id If you have defined run-time parameter values using the
INSERT_RUNTIME_PARMS procedure, specify the identification
used when creating the run-time parameters (the identification
was retrieved by using the GET_RUNTIME_PARM_ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If TRUE, then any materialized view groups created are owned
by the default user PUBLIC. If FALSE, then any materialized
view groups created are owned by the user performing the
instantiation.

Table 19–7 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

dupl_template_site The deployment template has already been instantiated at the
materialized view site. A deployment template can be
instantiated only once at a particular materialized view site.

not_authorized The user attempting to instantiate the deployment template is
not authorized to do so.

Table 19–8 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT view to
retrieve the generated instantiation script.

INSTANTIATE_ONLINE Function

19-8 Oracle Database Advanced Replication Management API Reference

DBMS_REPCAT_ADMIN 20-1

20
DBMS_REPCAT_ADMIN

DBMS_REPCAT_ADMIN enables you to create users with the privileges needed by the
symmetric replication facility.

This chapter contains this topic:

■ Summary of DBMS_REPCAT_ADMIN Subprograms

Summary of DBMS_REPCAT_ADMIN Subprograms

20-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REPCAT_ADMIN Subprograms

Table 20–1 DBMS_REPCAT_ADMIN Package Subprograms

Subprogram Description

"GRANT_ADMIN_ANY_SC
HEMA Procedure" on
page 20-3

Grants the necessary privileges to the replication
administrator to administer any replication group at the
current site.

"GRANT_ADMIN_SCHEMA
Procedure" on page 20-4

Grants the necessary privileges to the replication
administrator to administer a schema at the current site.

"REGISTER_USER_REPGRO
UP Procedure" on page 5

Assigns proxy materialized view administrator or receiver
privileges at the master site or master materialized view site
for use with remote sites.

"REVOKE_ADMIN_ANY_SC
HEMA Procedure" on
page 20-7

Revokes the privileges and roles from the replication
administrator that were granted by
GRANT_ADMIN_ANY_SCHEMA.

"REVOKE_ADMIN_SCHEM
A Procedure" on page 20-8

Revokes the privileges and roles from the replication
administrator that were granted by
GRANT_ADMIN_SCHEMA.

"UNREGISTER_USER_REPG
ROUP Procedure" on
page 20-9

Revokes the privileges and roles from the proxy
materialized view administrator or receiver that were
granted by the REGISTER_USER_REPGROUP procedure.

Summary of DBMS_REPCAT_ADMIN Subprograms

DBMS_REPCAT_ADMIN 20-3

GRANT_ADMIN_ANY_SCHEMA Procedure

This procedure grants the necessary privileges to the replication administrator to
administer any replication groups at the current site.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

Table 20–2 GRANT_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator to whom you want to grant
the necessary privileges and roles to administer any replication
groups at the current site.

Table 20–3 GRANT_ADMIN_ANY_REPGROUP Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

GRANT_ADMIN_SCHEMA Procedure

20-4 Oracle Database Advanced Replication Management API Reference

GRANT_ADMIN_SCHEMA Procedure

This procedure grants the necessary privileges to the replication administrator to
administer a schema at the current site. This procedure is most useful if your
replication group does not span schemas.

The privileges granted by this procedure are more limited than the privileges granted
by GRANT_ADMIN_ANY_SCHEMA. However, a replication administrator who is granted
privileges with GRANT_ADMIN_SCHEMA still can perform certain administrative
activities on replication groups owned by other replication administrators. For
example, a replication administrator who is granted privileges with
GRANT_ADMIN_SCHEMA can drop replication groups and replication objects owned by
other replication administrators.

Syntax
DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

Note: If you want to restrict different users to different replicated
groups, then you can write a wrapper package on top of the
DBMS_REPCAT package and grant EXECUTE privilege on the new
package, but not on the DBMS_REPCAT package, to each user. The new
package performs security checks. For example, the new package can
dictate that hr can administer the hr_rg replication group, but no
other replication group, and that hr only can administer objects in the
hr schema. If the security checks are passed, then the new package
calls a subprogram in the DBMS_REPCAT package. If the security
checks are not passed, then the new package could log the failure,
commit, and raise an exception.

See Also: "GRANT_ADMIN_ANY_SCHEMA Procedure" on
page 20-3

Table 20–4 GRANT_ADMIN_REPSCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator. This user is then granted
the necessary privileges and roles to administer the schema of the
same name within a replication group at the current site.

Table 20–5 GRANT_ADMIN_REPSCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Summary of DBMS_REPCAT_ADMIN Subprograms

DBMS_REPCAT_ADMIN 20-5

REGISTER_USER_REPGROUP Procedure

This procedure assigns proxy materialized view administrator or receiver privileges at
the master site or master materialized view site for use with remote sites. This
procedure grants only the necessary privileges to the proxy materialized view
administrator or receiver. It does not grant the powerful privileges granted by the
GRANT_ADMIN_SCHEMA or GRANT_ADMIN_ANY_SCHEMA procedures.

Syntax
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP (
 username IN VARCHAR2,
 privilege_type IN VARCHAR2,
 {list_of_gnames IN VARCHAR2 |
 table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Parameters

See Also: Appendix A, "Security Options" for more information
about trusted versus untrusted security models

Note: This procedure is overloaded. The list_of_gnames and
table_of_gnames parameters are mutually exclusive.

Table 20–6 REGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user to whom you are giving either proxy
materialized view administrator or receiver privileges.

privilege_type Specifies the privilege type you are assigning. Use the following
values for to define your privilege_type:

■ receiver for receiver privileges

■ proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-delimited list of replication groups you want a user
registered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is registered for all replication groups, even
replication groups that are not yet known when this procedure is
called. You must use named notation in order to set
list_of_gnames to NULL. An invalid replication group in the
list causes registration to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
registered for receiver privileges. The PL/SQL index-by table must
be of type DBMS_UTILITY.NAME_ARRAY. This table is 1-based (the
positions start at 1 and increment by 1). Use the single value NULL
to register the user for all replication groups. An invalid
replication group in the table causes registration to fail for the
entire table.

REGISTER_USER_REPGROUP Procedure

20-6 Oracle Database Advanced Replication Management API Reference

Exceptions

Table 20–7 REGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.

Summary of DBMS_REPCAT_ADMIN Subprograms

DBMS_REPCAT_ADMIN 20-7

REVOKE_ADMIN_ANY_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator that
were granted by GRANT_ADMIN_ANY_SCHEMA.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_ANY_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_ANY_SCHEMA are also revoked.

Table 20–8 REVOKE_ADMIN_ANY_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 20–9 REVOKE_ADMIN_ANY_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

REVOKE_ADMIN_SCHEMA Procedure

20-8 Oracle Database Advanced Replication Management API Reference

REVOKE_ADMIN_SCHEMA Procedure

This procedure revokes the privileges and roles from the replication administrator that
were granted by GRANT_ADMIN_SCHEMA.

Syntax
DBMS_REPCAT_ADMIN.REVOKE_ADMIN_SCHEMA (
 username IN VARCHAR2);

Parameters

Exceptions

Note: Identical privileges and roles that were granted
independently of GRANT_ADMIN_SCHEMA are also revoked.

Table 20–10 REVOKE_ADMIN_SCHEMA Procedure Parameters

Parameter Description

username Name of the replication administrator whose privileges you want
to revoke.

Table 20–11 REVOKE_ADMIN_SCHEMA Procedure Exceptions

Exception Description

ORA-01917 User does not exist.

Summary of DBMS_REPCAT_ADMIN Subprograms

DBMS_REPCAT_ADMIN 20-9

UNREGISTER_USER_REPGROUP Procedure

This procedure revokes the privileges and roles from the proxy materialized view
administrator or receiver that were granted by the REGISTER_USER_REPGROUP
procedure.

Syntax
DBMS_REPCAT_ADMIN.UNREGISTER_USER_REPGROUP (
 username IN VARCHAR2,
 privilege_type IN VARCHAR2,
 {list_of_gnames IN VARCHAR2 |
 table_of_gnames IN DBMS_UTILITY.NAME_ARRAY)};

Parameters

Exceptions

Note: This procedure is overloaded. The list_of_gnames and
table_of_gnames parameters are mutually exclusive.

Table 20–12 UNREGISTER_USER_REPGROUP Procedure Parameters

Parameter Description

username Name of the user you are unregistering.

privilege_type Specifies the privilege type you are revoking. Use the following
values for to define your privilege_type:

■ receiver for receiver privileges

■ proxy_snapadmin for proxy materialized view
administration privileges

list_of_gnames Comma-delimited list of replication groups you want a user
unregistered for receiver privileges. There must be no spaces
between entries in the list. If you set list_of_gnames to NULL,
then the user is unregistered for all replication groups registered.
You must use named notation in order to set list_of_gnames to
NULL. An invalid replication group in the list causes unregistration
to fail for the entire list.

table_of_gnames PL/SQL index-by table of replication groups you want a user
unregistered for receiver privileges. The PL/SQL index-by table
must be of type DBMS_UTILITY.NAME_ARRAY. This table is 1-
based (the positions start at 1 and increment by 1). Use the single
value NULL to unregister the user for all replication groups
registered. An invalid replication group in the table causes
unregistration to fail for the entire table.

Table 20–13 UNREGISTER_USER_REPGROUP Procedure Exceptions

Exception Description

nonmaster Specified replication group does not exist or the invocation
database is not a master site or master materialized view site.

ORA-01917 User does not exist.

typefailure Incorrect privilege type was specified.

UNREGISTER_USER_REPGROUP Procedure

20-10 Oracle Database Advanced Replication Management API Reference

DBMS_REPCAT_RGT 21-1

21
DBMS_REPCAT_RGT

DBMS_REPCAT_RGT controls the maintenance and definition of refresh group
templates.

This chapter contains this topic:

■ Summary of DBMS_REPCAT_RGT Subprograms

Summary of DBMS_REPCAT_RGT Subprograms

21-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REPCAT_RGT Subprograms

Table 21–1 DBMS_REPCAT_RGT Package Subprograms

Subprogram Description

"ALTER_REFRESH_TEMPLATE
Procedure" on page 21-4

Allows the DBA to alter existing deployment templates.

"ALTER_TEMPLATE_OBJECT
Procedure" on page 21-6

Alters objects that have been added to a specified
deployment template.

"ALTER_TEMPLATE_PARM
Procedure" on page 21-8

Allows the DBA to alter the parameters for a specific
deployment template.

"ALTER_USER_AUTHORIZATI
ON Procedure" on page 21-10

Alters the contents of the
DBA_REPCAT_USER_AUTHORIZATIONS view.

"ALTER_USER_PARM_VALUE
Procedure" on page 21-11

Changes existing parameter values that have been
defined for a specific user.

"COMPARE_TEMPLATES
Function" on page 21-13

Allows the DBA to compare the contents of two
deployment templates.

"COPY_TEMPLATE Function"
on page 21-14

Allows the DBA to copy a deployment template.

"CREATE_OBJECT_FROM_EXIS
TING Function" on page 21-16

Creates a template object definition from existing
database objects and adds it to a target deployment
template.

"CREATE_REFRESH_TEMPLAT
E Function" on page 21-18

Creates the deployment template, which allows the DBA
to define the template name, private/public status, and
target refresh group.

"CREATE_TEMPLATE_OBJECT
Function" on page 21-20

Adds object definitions to a target deployment template
container.

"CREATE_TEMPLATE_PARM
Function" on page 21-22

Creates parameters for a specific deployment template to
allow custom data sets to be created at the remote
materialized view site.

"CREATE_USER_AUTHORIZAT
ION Function" on page 21-24

Authorizes specific users to instantiate private
deployment templates.

"CREATE_USER_PARM_VALUE
Function" on page 21-25

Predefines deployment template parameter values for
specific users.

"DELETE_RUNTIME_PARMS
Procedure" on page 21-27

Deletes a run-time parameter value that you defined
using the INSERT_RUNTIME_PARMS procedure.

"DROP_ALL_OBJECTS
Procedure" on page 21-28

Allows the DBA to drop all objects or specific object
types from a deployment template.

"DROP_ALL_TEMPLATE_PAR
MS Procedure" on page 21-29

Allows the DBA to drop template parameters for a
specified deployment template.

"DROP_ALL_TEMPLATE_SITES
Procedure" on page 21-30

Removes all entries from the
DBA_REPCAT_TEMPLATE_SITES view.

"DROP_ALL_TEMPLATES
Procedure" on page 21-31

Removes all deployment templates at the site where the
procedure is called.

"DROP_ALL_USER_AUTHORI
ZATIONS Procedure" on
page 21-32

Allows the DBA to drop all user authorizations for a
specified deployment template.

"DROP_ALL_USER_PARM_VA
LUES Procedure" on page 21-33

Drops user parameter values for a specific deployment
template.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-3

"DROP_REFRESH_TEMPLATE
Procedure" on page 21-34

Drops a deployment template.

"DROP_SITE_INSTANTIATION
Procedure" on page 21-35

Removes the target site from the
DBA_REPCAT_TEMPLATE_SITES view.

"DROP_TEMPLATE_OBJECT
Procedure" on page 21-36

Removes a template object from a specific deployment
template.

"DROP_TEMPLATE_PARM
Procedure" on page 21-37

Removes an existing template parameter from the
DBA_REPCAT_TEMPLATE_PARMS view.

DROP_USER_AUTHORIZATIO
N Procedure on page 21-38

Removes a user authorization entry from the
DBA_REPCAT_USER_AUTHORIZATIONS view.

"DROP_USER_PARM_VALUE
Procedure" on page 21-39

Removes a predefined user parameter value for a specific
deployment template.

"GET_RUNTIME_PARM_ID
Function" on page 21-40

Retrieves an identification to be used when defining a
run-time parameter value.

"INSERT_RUNTIME_PARMS
Procedure" on page 21-41

Defines run-time parameter values prior to instantiating
a template.

"INSTANTIATE_OFFLINE
Function" on page 21-43

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while offline.

"INSTANTIATE_ONLINE
Function" on page 21-45

Generates a script at the master site that is used to create
the materialized view environment at the remote
materialized view site while online.

"LOCK_TEMPLATE_EXCLUSIV
E Procedure" on page 47

Prevents users from reading or instantiating the template
when a deployment template is being updated or
modified.

"LOCK_TEMPLATE_SHARED
Procedure" on page 21-48

Makes a specified deployment template read-only.

Table 21–1 (Cont.) DBMS_REPCAT_RGT Package Subprograms

Subprogram Description

ALTER_REFRESH_TEMPLATE Procedure

21-4 Oracle Database Advanced Replication Management API Reference

ALTER_REFRESH_TEMPLATE Procedure

This procedure allows the DBA to alter existing deployment templates. Alterations can
include defining a new deployment template name, a new refresh group, or a new
owner and changing the public/private status.

Syntax
DBMS_REPCAT_RGT.ALTER_REFRESH_TEMPLATE (
 refresh_template_name IN VARCHAR2,
 new_owner IN VARCHAR2 := '-',
 new_refresh_group_name IN VARCHAR2 := '-',
 new_refresh_template_name IN VARCHAR2 := '-',
 new_template_comment IN VARCHAR2 := '-',
 new_public_template IN VARCHAR2 := '-',
 new_last_modified IN DATE := to_date('1', 'J'),
 new_modified_by IN NUMBER := -1e-130);

Parameters

Table 21–2 ALTER_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name The name of the deployment template that you want to
alter.

new_owner The name of the new deployment template owner. Do not
specify a value to keep the current owner.

new_refresh_group_name If necessary, use this parameter to specify a new refresh
group name to which the template objects will be added. Do
not specify a value to keep the current refresh group.

new_refresh_template_name Use this parameter to specify a new deployment template
name. Do not specify a value to keep the current
deployment template name.

new_template_comment New deployment template comments. Do not specify a
value to keep the current template comment.

new_public_template Determines whether the deployment template is public or
private. Only acceptable values are 'Y' and 'N' ('Y' =
public and 'N' = private). Do not specify a value to keep
the current value.

new_last_modified Contains the date of the last modification made to this
deployment template. If a value is not specified, then the
current date is automatically used.

new_modified_by Contains the name of the user who last modified this
deployment template. If a value is not specified, then the
current user is automatically used.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-5

Exceptions

Table 21–3 ALTER_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

bad_public_template The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

dupl_refresh_template A template with the specified name already exists. See the
ALL_REPCAT_REFRESH_TEMPLATES view.

ALTER_TEMPLATE_OBJECT Procedure

21-6 Oracle Database Advanced Replication Management API Reference

ALTER_TEMPLATE_OBJECT Procedure

This procedure alters objects that have been added to a specified deployment
template. The most common changes are altering the object DDL and assigning the
object to a different deployment template.

Changes made to the template are reflected only at new sites instantiating the
deployment template. Remote sites that have already instantiated the template must
reinstantiate the deployment template to apply the changes.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_object_name IN VARCHAR2 := '-',
 new_object_type IN VARCHAR2 := '-',
 new_ddl_text IN CLOB := '-',
 new_master_rollback_seg IN VARCHAR2 := '-',
 new_flavor_id IN NUMBER := -1e-130);

Parameters

Table 21–4 ALTER_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the object that you
want to alter.

object_name Name of the template object that you want to alter.

object_type Type of object that you want to alter.

new_refresh_template_name Name of the new deployment template to which you want
to reassign this object. Do not specify a value to keep the
object assigned to the current deployment template.

new_object_name New name of the template object. Do not specify a value to
keep the current object name.

new_object_type If specified, then the new object type. Objects of the
following type can be specified:

MATERIALIZED VIEW PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

new_ddl_text New object DDL for specified object. Do not specify any
new DDL text to keep the current object DDL.

new_master_rollback_seg New master rollback segment for specified object. Do not
specify a value to keep the current rollback segment.

new_flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-7

Exceptions

Usage Notes
Because the ALTER_TEMPLATE_OBJECT procedure utilizes a CLOB, you must use the
DBMS_LOB package when using the ALTER_TEMPLATE_OBJECT procedure. The
following example illustrates how to use the DBMS_LOB package with the
ALTER_TEMPLATE_OBJECT procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *
 FROM sales WHERE salesperson = :salesid and region_id = :region';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_OBJECT(
 refresh_template_name => 'rgt_personnel',
 object_name => 'MVIEW_SALES',
 object_type => 'MATERIALIZED VIEW',
 new_ddl_text => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 21–5 ALTER_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_flavor_id If you receive this exception, contact Oracle Support Services.

bad_object_type Object type is specified incorrectly. See Table 21–4 for a list of
valid object types.

miss_template_object Template object name specified is invalid or does not exist.

dupl_template_object New template name specified in the
new_refresh_template_name parameter already exists.

ALTER_TEMPLATE_PARM Procedure

21-8 Oracle Database Advanced Replication Management API Reference

ALTER_TEMPLATE_PARM Procedure

This procedure allows the DBA to alter the parameters for a specific deployment
template. Alterations include renaming the parameter and redefining the default value
and prompt string.

Syntax
DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_parameter_name IN VARCHAR2 := '-',
 new_default_parm_value IN CLOB := NULL,
 new_prompt_string IN VARCHAR2 := '-',
 new_user_override IN VARCHAR2 := '-');

Parameters

Exceptions

Table 21–6 ALTER_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the
parameter that you want to alter.

parameter_name Name of the parameter that you want to alter.

new_refresh_template_name Name of the deployment template that the specified
parameter should be reassigned to (useful when you want
to move a parameter from one template to another). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name New name of the template parameter. Do not specify a
value to keep the current parameter name.

new_default_parm_value New default value for the specified parameter. Do not
specify a value to keep the current default value.

new_prompt_string New prompt text for the specified parameter. Do not specify
a value to keep the current prompt string.

new_user_override Determines whether the user can override the default value
if prompted during the instantiation process. The user is
prompted if no user parameter value has been defined for
this parameter. Set this parameter to 'Y' to allow a user to
override the default value or set this parameter to 'N' to
prevent an override.

Table 21–7 ALTER_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_template_parm Template parameter specified is invalid or does not exist.

dupl_template_parm Combination of new_refresh_template_name and
new_parameter_name already exists.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-9

Usage Notes
Because the ALTER_TEMPLATE_PARM procedure utilizes a CLOB, you must use the
DBMS_LOB package when using the ALTER_TEMPLATE_PARM procedure. The
following example illustrates how to use the DBMS_LOB package with the
ALTER_TEMPLATE_PARM procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_TEMPLATE_PARM(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 new_default_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

ALTER_USER_AUTHORIZATION Procedure

21-10 Oracle Database Advanced Replication Management API Reference

ALTER_USER_AUTHORIZATION Procedure

This procedure alters the contents of the DBA_REPCAT_USER_AUTHORIZATIONS
view. Specifically, you can change user/deployment template authorization
assignments. This procedure is helpful, for example, if an employee is reassigned and
requires the materialized view environment of another deployment template. The
DBA simply assigns the employee the new deployment template and the user is
authorized to instantiate the target template.

Syntax
DBMS_REPCAT_RGT.ALTER_USER_AUTHORIZATION (
 user_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2,
 new_user_name IN VARCHAR2 := '-',
 new_refresh_template_name IN VARCHAR2 := '-');

Parameters

Exceptions

Table 21–8 ALTER_USER_AUTHORIZATION Procedure Parameters

Parameter Description

user_name Name of the user whose authorization you want to alter.

refresh_template_name Name of the deployment template that is currently assigned
to the specified user that you want to alter.

new_user_name Use this parameter to define a new user for this template
authorization. Do not specify a value to keep the current
user.

new_refresh_template_name The deployment template that the specified user (either the
existing or, if specified, the new user) is authorized to
instantiate. Do not specify a value to keep the current
deployment template.

Table 21–9 ALTER_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user_authorization The combination of user_name and
refresh_template_name values specified does not exist in
the DBA_REPCAT_USER_AUTHORIZATIONS view.

miss_user The user name specified for the new_user_name or
user_name parameter is invalid or does not exist.

miss_refresh_template The deployment template specified for the
new_refresh_template parameter is invalid or does not
exist.

dupl_user_authorization A row already exists for the specified user name and
deployment template name. See the
ALL_REPCAT_USER_AUTHORIZATIONS view.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-11

ALTER_USER_PARM_VALUE Procedure

This procedure changes existing parameter values that have been defined for a specific
user. This procedure is especially helpful if your materialized view environment uses
assignment tables. Change a user parameter value to quickly and securely change the
data set of a remote materialized view site.

Syntax
DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2 := '-',
 new_parameter_name IN VARCHAR2 := '-',
 new_user_name IN VARCHAR2 := '-',
 new_parm_value IN CLOB := NULL);

Parameters

See Also: Oracle Database Advanced Replication for more
information about using assignment tables

Table 21–10 ALTER_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
parameter value that you want to alter.

parameter_name Name of the parameter that you want to alter.

user_name Name of the user whose parameter value you want to alter.

new_refresh_template_name Name of the deployment template that the specified user
parameter value should be reassigned to (useful when you
are authorizing a user for a different template). Do not
specify a value to keep the parameter assigned to the
current template.

new_parameter_name The new template parameter name. Do not specify a value
to keep the user value defined for the existing parameter.

new_user_name The new user name that this parameter value is for. Do not
specify a value to keep the parameter value assigned to the
current user.

new_parm_value The new parameter value for the specified user parameter.
Do not specify a value to keep the current parameter value.

ALTER_USER_PARM_VALUE Procedure

21-12 Oracle Database Advanced Replication Management API Reference

Exceptions

Usage Notes
Because the ALTER_USER_PARM_VALUE procedure utilizes a CLOB, you must use the
DBMS_LOB package when using the ALTER_USER_PARM_VALUE procedure. The
following example illustrates how to use the DBMS_LOB package with the
ALTER_USER_PARM_VALUE procedure:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.ALTER_USER_PARM_VALUE(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 user_name => 'BOB',
 new_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 21–11 ALTER_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_template_parm Template parameter specified is invalid or does not exist.

miss_user User name specified for the user_name or
new_user_name parameters is invalid or does not exist.

miss_user_parm_values User parameter value specified does not exist.

dupl_user_parm_values New user parameter specified already exists.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-13

COMPARE_TEMPLATES Function

This function allows a DBA to compare the contents of two deployment templates.
Any discrepancies between the two deployment templates is stored in the
USER_REPCAT_TEMP_OUTPUT temporary view.

The COMPARE_TEMPLATES function returns a number that you specify in the WHERE
clause when querying the USER_REPCAT_TEMP_OUTPUT temporary view. For
example, if the COMPARE_TEMPLATES procedure returns the number 10, you would
execute the following SELECT statement to view all discrepancies between two
specified templates (your SELECT statement returns no rows if the templates are
identical):

SELECT TEXT FROM USER_REPCAT_TEMP_OUTPUT
 WHERE OUTPUT_ID = 10 ORDER BY LINE;

The contents of the USER_REPCAT_TEMP_OUTPUT temporary view are lost after you
disconnect or a rollback has been performed.

Syntax
DBMS_REPCAT_RGT.COMPARE_TEMPLATES (
 source_template_name IN VARCHAR2,
 compare_template_name IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

Returns

Table 21–12 COMPARE_TEMPLATES Function Parameters

Parameter Description

source_template_name Name of the first deployment template to be compared.

compare_template_name Name of the second deployment template to be compared.

Table 21–13 COMPARE_TEMPLATES Function Exceptions

Exception Description

miss_refresh_template The deployment template name to be compared is invalid or
does not exist.

Table 21–14 COMPARE_TEMPLATES Function Returns

Return Value Description

<system-generated
number>

Specifies the number returned for the output_id value when you
select from the USER_REPCAT_TEMP_OUTPUT temporary view to
view the discrepancies between the compared templates.

COPY_TEMPLATE Function

21-14 Oracle Database Advanced Replication Management API Reference

COPY_TEMPLATE Function

This function enables you to copy a deployment template and is helpful when a new
deployment template uses many of the objects contained in an existing deployment
template. This function copies the deployment template, template objects, template
parameters, and user parameter values. The DBA can optionally have the function
copy the user authorizations for this template. The number returned by this function is
used internally by Oracle to manage deployment templates.

This function also allows the DBA to copy a deployment template to another master
site, which is helpful for deployment template distribution and to split network loads
between multiple sites.

Syntax
DBMS_REPCAT_RGT.COPY_TEMPLATE (
 old_refresh_template_name IN VARCHAR2,
 new_refresh_template_name IN VARCHAR2,
 copy_user_authorizations IN VARCHAR2,
 dblink IN VARCHAR2 := NULL)
 RETURN NUMBER;

Parameters

Exceptions

Note: The values in the DBA_REPCAT_TEMPLATE_SITES view
are not copied.

Table 21–15 COPY_TEMPLATE Function Parameters

Parameter Description

old_refresh_template_name Name of the deployment template to be copied.

new_refresh_template_name Name of the new deployment template.

copy_user_authorizations Specifies whether the template authorizations for the
original template should be copied for the new deployment
template. Valid values for this parameter are Y, N, and NULL.

Note: All users must exist at the target database.

dblink Optionally defines where the deployment template should
be copied from (this is helpful to distribute deployment
templates to other master sites). If none is specified, then the
deployment template is copied from the local master site.

Table 21–16 COPY_TEMPLATE Function Exceptions

Exception Description

miss_refresh_template Deployment template name to be copied is invalid or does not
exist.

dupl_refresh_template Name of the new refresh template specified already exists.

bad_copy_auth Value specified for the copy_user_authorization
parameter is invalid. Valid values are Y, N, and NULL.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-15

Returns

Table 21–17 COPY_TEMPLATES Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

CREATE_OBJECT_FROM_EXISTING Function

21-16 Oracle Database Advanced Replication Management API Reference

CREATE_OBJECT_FROM_EXISTING Function

This function creates a template object definition from existing database objects and
adds it to a target deployment template. The object DDL that created the original
database object is executed when the target deployment template is instantiated at the
remote materialized view site. This is ideal for adding existing triggers and procedures
to your template. The number returned by this function is used internally by Oracle to
manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_OBJECT_FROM_EXISTING(
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 sname IN VARCHAR2,
 oname IN VARCHAR2,
 otype IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

Table 21–18 CREATE_OBJECT_FROM_EXISTING Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to which you want to add
this object.

object_name Optionally, the new name of the existing object that you are
adding to your deployment template (enables you to define a
new name for an existing object).

sname The schema that contains the object that you are creating your
template object from.

oname Name of the object that you are creating your template object
from.

otype The type of database object that you are adding to the template
(that is, PROCEDURE, TRIGGER, and so on). Objects of the
following types can be specified (DATABASE LINK,
MATERIALIZED VIEW, and MATERIALIZED VIEW are not valid
object types for this function):

SEQUENCE PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER

Table 21–19 CREATE_OBJECT_FROM_EXISTING Function Exceptions

Exception Description

miss_refresh_template The specified refresh template name is invalid or missing. Query
the DBA_REPCAT_REFRESH_TEMPLATES view for a list of
existing deployment templates.

bad_object_type The object type is specified incorrectly.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-17

Returns

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

objectmissing The object specified does not exist.

Table 21–20 CREATE_OBJECT_FROM_EXISTING Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

Table 21–19 (Cont.) CREATE_OBJECT_FROM_EXISTING Function Exceptions

Exception Description

CREATE_REFRESH_TEMPLATE Function

21-18 Oracle Database Advanced Replication Management API Reference

CREATE_REFRESH_TEMPLATE Function

This function creates the deployment template, which enables you to define the
template name, private/public status, and target refresh group. Each time that you
create a template object, user authorization, or template parameter, you reference the
deployment template created with this function. This function adds a row to the
DBA_REPCAT_REFRESH_TEMPLATES view. The number returned by this function is
used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_REFRESH_TEMPLATE (
 owner IN VARCHAR2,
 refresh_group_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2,
 template_comment IN VARCHAR2 := NULL,
 public_template IN VARCHAR2 := NULL,
 last_modified IN DATE := SYSDATE,
 modified_by IN VARCHAR2 := USER,
 creation_date IN DATE := SYSDATE,
 created_by IN VARCHAR2 := USER)
 RETURN NUMBER;

Parameters

Table 21–21 CREATE_REFRESH_TEMPLATE Function Parameters

Parameter Description

owner User name of the deployment template owner is specified with
this parameter. If an owner is not specified, then the name of the
user creating the template is automatically used.

refresh_group_name Name of the refresh group that is created when this template is
instantiated. All objects created by this template are assigned to
the specified refresh group.

refresh_template_name Name of the deployment template that you are creating. This
name is referenced in all activities that involve this deployment
template.

template_comment User comments defined with this parameter are listed in the
DBA_REPCAT_REFRESH_TEMPLATES view.

public_template Specifies whether the deployment template is public or private.
Only acceptable values are 'Y' and 'N' ('Y' = public and 'N'
= private).

last_modified The date of the last modification made to this deployment
template. If a value is not specified, then the current date is
automatically used.

modified_by Name of the user who last modified this deployment template. If
a value is not specified, then the current user is automatically
used.

creation_date The date that this deployment template was created. If a value is
not specified, then the current date is automatically used.

created_by Name of the user who created this deployment template. If a
value is not specified, then the current user is automatically
used.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-19

Exceptions

Returns

Table 21–22 CREATE_REFRESH_TEMPLATE Function Exceptions

Exception Description

dupl_refresh_template A template with the specified name already exists. See the
ALL_REPCAT_REFRESH_TEMPLATES view to see a list of
existing templates.

bad_public_template The public_template parameter is specified incorrectly. The
public_template parameter must be specified as a 'Y' for a
public template or an 'N' for a private template.

Table 21–23 CREATE_REFRESH_TEMPLATE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

CREATE_TEMPLATE_OBJECT Function

21-20 Oracle Database Advanced Replication Management API Reference

CREATE_TEMPLATE_OBJECT Function

This function adds object definitions to a target deployment template container. The
specified object DDL is executed when the target deployment template is instantiated
at the remote materialized view site. In addition to adding materialized views, this
function can add tables, procedures, and other objects to your template. The number
returned by this function is used internally by Oracle to manage deployment
templates.

Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2,
 ddl_text IN CLOB,
 master_rollback_seg IN VARCHAR2 := NULL,
 flavor_id IN NUMBER := -1e-130)
 RETURN NUMBER;

Parameters

Table 21–24 CREATE_TEMPLATE_OBJECT Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to which you want to add
this object.

object_name Name of the template object that you are creating.

object_type The type of database object that you are adding to the template
(that is, MATERIALIZED VIEW, TRIGGER, PROCEDURE, and so
on). Objects of the following types can be specified:

MATERIALIZED VIEW PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

ddl_text Contains the DDL that creates the object that you are adding to
the template. Be sure to end your DDL with a semi-colon. You
can use a colon (:) to create a template parameter for your
template object. See Chapter 4, "Creating a Deployment
Template" for more information.

When you add a materialized view with a CREATE
MATERIALIZED VIEW statement, ensure that you specify the
schema name of the owner of the master table in the
materialized view query.

master_rollback_seg Specifies the name of the rollback segment to use when
executing the defined object DDL at the remote materialized
view site.

flavor_id This parameter is for internal use only.

Note: Do not set this parameter unless directed to do so by
Oracle Support Services.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-21

Exceptions

Returns

Usage Notes
Because CREATE_TEMPLATE_OBJECT utilizes a CLOB, you must use the DBMS_LOB
package when using the CREATE_TEMPLATE_OBJECT function. The following
example illustrates how to use the DBMS_LOB package with the
CREATE_TEMPLATE_OBJECT function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'CREATE MATERIALIZED VIEW mview_sales AS SELECT *
 FROM sales WHERE salesperson = :salesid';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_OBJECT(
 refresh_template_name => 'rgt_personnel',
 object_name => 'mview_sales',
 object_type => 'MATERIALIZED VIEW',
 ddl_text => templob,
 master_rollback_seg => 'RBS');
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 21–25 CREATE_TEMPLATE_OBJECT Function Exceptions

Exception Description

miss_refresh_template Specified refresh template name is invalid or missing. Query the
DBA_REPCAT_REFRESH_TEMPLATES view for a list of existing
deployment templates.

bad_object_type Object type is specified incorrectly. See Table 21–24 for a list of
valid object types.

dupl_template_object An object of the same name and type has already been added to
the specified deployment template.

Table 21–26 CREATE_TEMPLATE_OBJECT Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

CREATE_TEMPLATE_PARM Function

21-22 Oracle Database Advanced Replication Management API Reference

CREATE_TEMPLATE_PARM Function

This function creates parameters for a specific deployment template to allow custom
data sets to be created at the remote materialized view site. This function is only
required when the DBA wants to define a set of template variables before adding any
template objects. When objects are added to the template using the
CREATE_TEMPLATE_OBJECT function, any variables in the object DDL are
automatically added to the DBA_REPCAT_TEMPLATE_PARMS view.

The DBA typically uses the ALTER_TEMPLATE_PARM function to modify the default
parameter values or prompt strings or both (see "ALTER_TEMPLATE_PARM
Procedure" on page 21-8 for more information). The number returned by this function
is used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 default_parm_value IN CLOB := NULL,
 prompt_string IN VARCHAR2 := NULL,
 user_override IN VARCHAR2 := NULL)
 RETURN NUMBER;

Parameters

Exceptions

Table 21–27 CREATE_TEMPLATE_PARM Function Parameters

Parameter Description

refresh_template_name Name of the deployment template for which you want to create
the parameter.

parameter_name Name of the parameter you are creating.

default_parm_value Default values for this parameter are defined using this
parameter. If a user parameter value or run-time parameter
value is not present, then this default value is used during the
instantiation process.

prompt_string The descriptive prompt text that is displayed for this template
parameter during the instantiation process.

user_override Determines whether the user can override the default value if
prompted during the instantiation process. The user is prompted
if no user parameter value has been defined for this parameter.
Set this parameter to 'Y' to allow a user to override the default
value or set this parameter to 'N' to not allow an override.

Table 21–28 CREATE_TEMPLATE_PARM Function Exceptions

Exception Description

miss_refresh_template The specified refresh template name is invalid or missing.

dupl_template_parm A parameter of the same name has already been defined for the
specified deployment template.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-23

Returns

Usage Notes
Because the CREATE_TEMPLATE_PARM function utilizes a CLOB, you must use the
DBMS_LOB package when using the CREATE_TEMPLATE_PARM function. The
following example illustrates how to use the DBMS_LOB package with the
CREATE_TEMPLATE_PARM function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_TEMPLATE_PARM(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 default_parm_value => templob,
 prompt_string => 'Enter your region ID:',
 user_override => 'Y');
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Table 21–29 CREATE_TEMPLATE_PARM Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

CREATE_USER_AUTHORIZATION Function

21-24 Oracle Database Advanced Replication Management API Reference

CREATE_USER_AUTHORIZATION Function

This function authorizes specific users to instantiate private deployment templates.
Users not authorized for a private deployment template are not able to instantiate the
private template. This function adds a row to the
DBA_REPCAT_USER_AUTHORIZATIONS view.

Before you authorize a user, verify that the user exists at the master site where the user
will instantiate the deployment template. The number returned by this function is
used internally by Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_USER_AUTHORIZATION (
 user_name IN VARCHAR2,
 refresh_template_name IN VARCHAR2)
 RETURN NUMBER;

Parameters

Exceptions

Returns

Table 21–30 CREATE_USER_AUTHORIZATION Function Parameters

Parameter Description

user_name Name of the user that you want to authorize to instantiate the
specified template. Specify multiple users by separating user
names with a comma (for example, 'john, mike, bob')

refresh_template_name Name of the template that you want to authorize the specified
user to instantiate.

Table 21–31 CREATE_USER_AUTHORIZATION Function Exceptions

Exception Description

miss_user User name supplied is invalid or does not exist.

miss_refresh_template Refresh template name supplied is invalid or does not exist.

dupl_user_authorization An authorization has already been created for the specified
user and deployment template. See the
ALL_REPCAT_USER_AUTHORIZATIONS view for a listing
of template authorizations.

Table 21–32 CREATE_USER_AUTHORIZATION Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-25

CREATE_USER_PARM_VALUE Function

This function predefines deployment template parameter values for specific users. For
example, if you want to predefine the region parameter as west for user 33456, then
you would use the this function.

Any values specified with this function take precedence over default values specified
for the template parameter. The number returned by this function is used internally by
Oracle to manage deployment templates.

Syntax
DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2,
 parm_value IN CLOB := NULL)
 RETURN NUMBER;

Parameters

Exceptions

Returns

Table 21–33 CREATE_USER_PARM_VALUE Function Parameters

Parameter Description

refresh_template_name Specifies the name of the deployment template that contains the
parameter you are creating a user parameter value for.

parameter_name Name of the template parameter that you are defining a user
parameter value for.

user_name Specifies the name of the user that you are predefining a user
parameter value for.

parm_value The predefined parameter value that will be used during the
instantiation process initiated by the specified user.

Table 21–34 CREATE_USER_PARM_VALUE Function Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or missing.

dupl_user_parm_values A parameter value for the specified user, parameter, and
deployment template has already been defined. Query the
DBA_REPCAT_USER_PARM_VALUES view for a listing of
existing user parameter values.

miss_template_parm Specified deployment template parameter name is invalid or
missing.

miss_user Specified user name is invalid or missing.

Table 21–35 CREATE_USER_PARM_VALUE Function Returns

Return Value Description

<system-generated
number>

System-generated number used internally by Oracle.

CREATE_USER_PARM_VALUE Function

21-26 Oracle Database Advanced Replication Management API Reference

Usage Notes
Because the CREATE_USER_PARM_VALUE function utilizes a CLOB, you must use the
DBMS_LOB package when using the this function. The following example illustrates
how to use the DBMS_LOB package with the CREATE_USER_PARM_VALUE function:

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
 a NUMBER;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 a := DBMS_REPCAT_RGT.CREATE_USER_PARM_VALUE(
 refresh_template_name => 'rgt_personnel',
 parameter_name => 'region',
 user_name => 'BOB',
 user_parm_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-27

DELETE_RUNTIME_PARMS Procedure

Use this procedure before instantiating a deployment template to delete a run-time
parameter value that you defined using the INSERT_RUNTIME_PARMS procedure.

Syntax
DBMS_REPCAT_RGT.DELETE_RUNTIME_PARMS(
 runtime_parm_id IN NUMBER,
 parameter_name IN VARCHAR2);

Parameters

Exceptions

Table 21–36 DELETE_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id Specifies the identification that you previously assigned the run-
time parameter value to (this value was retrieved using the
GET_RUNTIME_PARM_ID function).

parameter_name Specifies the name of the parameter value that you want to drop
(query the DBA_REPCAT_TEMPLATE_PARMS view for a list of
deployment template parameters).

Table 21–37 DELETE_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_template_parm The specified deployment template parameter name is invalid or
missing.

DROP_ALL_OBJECTS Procedure

21-28 Oracle Database Advanced Replication Management API Reference

DROP_ALL_OBJECTS Procedure

This procedure allows the DBA to drop all objects or specific object types from a
deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_OBJECTS (
 refresh_template_name IN VARCHAR2,
 object_type IN VARCHAR2 := NULL);

Parameters

Exceptions

Caution: This is a dangerous procedure that cannot be undone.

Table 21–38 DROP_ALL_OBJECTS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the objects that
you want to drop.

object_type If NULL, then all objects in the template are dropped. If an object
type is specified, then only objects of that type are dropped.
Objects of the following types can be specified:

MATERIALIZED VIEW PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 21–39 DROP_ALL_OBJECTS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

bad_object_type Object type is specified incorrectly. See Table 21–38 for a list of
valid object types.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-29

DROP_ALL_TEMPLATE_PARMS Procedure

This procedure lets you drop template parameters for a specified deployment
template. You can use this procedure to drop all parameters that are not referenced by
a template object or to drop from the template all objects that reference any parameter,
along with all of the parameters themselves.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_PARMS (
 refresh_template_name IN VARCHAR2,
 drop_objects IN VARCHAR2 := n);

Parameters

Exceptions

Caution: This is a dangerous procedure that cannot be undone.

Table 21–40 DROP_ALL_TEMPLATE_PARMS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the parameters
and objects that you want to drop.

drop_objects If no value is specified, then this parameter defaults to N, which
drops all parameters not referenced by a template object.

If Y is specified, then all objects that reference any template
parameter and the template parameters themselves are dropped.
The objects are dropped from the template, not from the
database.

Table 21–41 DROP_ALL_TEMPLATE_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

DROP_ALL_TEMPLATE_SITES Procedure

21-30 Oracle Database Advanced Replication Management API Reference

DROP_ALL_TEMPLATE_SITES Procedure

This procedure removes all entries from the DBA_REPCAT_TEMPLATE_SITES view,
which keeps a record of sites that have instantiated a particular deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATE_SITES (
 refresh_template_name IN VARCHAR2);

Parameter

Exceptions

Caution: This is a dangerous procedure that cannot be undone.

Table 21–42 DROP_ALL_TEMPLATE_SITES Procedure Parameter

Parameter Description

refresh_template_name Name of the deployment template that contains the sites that
you want to drop.

Table 21–43 DROP_ALL_TEMPLATE_SITES Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-31

DROP_ALL_TEMPLATES Procedure

This procedure removes all deployment templates at the site where the procedure is
called.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_TEMPLATES;

Parameters
None

Caution: This is a dangerous procedure that cannot be undone.

DROP_ALL_USER_AUTHORIZATIONS Procedure

21-32 Oracle Database Advanced Replication Management API Reference

DROP_ALL_USER_AUTHORIZATIONS Procedure

This procedure enables the DBA to drop all user authorizations for a specified
deployment template. Executing this procedure removes rows from the
DBA_REPCAT_USER_AUTHORIZATIONS view.

This procedure might be implemented after converting a private template to a public
template and the user authorizations are no longer required.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_AUTHORIZATIONS (
 refresh_template_name IN VARCHAR2);

Parameters

Exceptions

Table 21–44 DROP_ALL_USER_AUTHORIZATIONS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the user
authorizations that you want to drop.

Table 21–45 DROP_ALL_USER_AUTHORIZATIONS Procedure Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-33

DROP_ALL_USER_PARM_VALUES Procedure

This procedure drops user parameter values for a specific deployment template. This
procedure is very flexible and enables you to define a set of user parameter values to
be deleted.

For example, defining the parameters shown in the following table has the described
results.

Syntax
DBMS_REPCAT_RGT.DROP_ALL_USER_PARMS (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2,
 parameter_name IN VARCHAR2);

Parameters

Exceptions

Parameter Result of Defining the Parameter

refresh_template_n
ame

Drops all user parameters for the specified deployment template

refresh_template_n
ame and user_name

Drops all of the specified user parameters for the specified
deployment template

refresh_template_n
ame and
parameter_name

Drops all user parameter values for the specified deployment
template parameter

refresh_template_n
ame, parameter_name,
and user_name

Drops the specified user's value for the specified deployment
template parameter (equivalent to drop_user_parm)

Table 21–46 DROP_ALL_USER_PARMS Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template that contains the parameter
values that you want to drop.

user_name Name of the user whose parameter values you want to drop.

parameter_name Template parameter that contains the values that you want to
drop.

Table 21–47 DROP_ALL_USER_PARMS Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination does
not exist in the DBA_REPCAT_USER_PARM_VALUES view.

DROP_REFRESH_TEMPLATE Procedure

21-34 Oracle Database Advanced Replication Management API Reference

DROP_REFRESH_TEMPLATE Procedure

This procedure drops a deployment template. Dropping a deployment template has a
cascading effect, removing all related template parameters, user authorizations,
template objects, and user parameters (this procedure does not drop template sites).

Syntax
DBMS_REPCAT_RGT.DROP_REFRESH_TEMPLATE (
 refresh_template_name IN VARCHAR2);

Parameters

Exceptions

Table 21–48 DROP_REFRESH_TEMPLATE Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template to be dropped.

Table 21–49 DROP_REFRESH_TEMPLATE Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist. Query the DBA_REPCAT_REFRESH_TEMPLATES view for
a list of deployment templates.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-35

DROP_SITE_INSTANTIATION Procedure

This procedure drops a template instantiation at any target site. This procedure
removes all related metadata at the master site and disables the specified site from
refreshing its materialized views.

Syntax
DBMS_REPCAT_RGT.DROP_SITE_INSTANTIATION (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2,
 site_name IN VARCHAR2);

Parameters

Exceptions

Table 21–50 DROP_SITE_INSTANTIATION Procedure Parameters

Parameter Description

refresh_template_name The name of the template that contains the site to be dropped.

user_name The name of the user who originally instantiated the template
at the remote materialized view site. Query the
ALL_REPCAT_TEMPLATE_SITES view to see the users that
instantiated templates. See the
ALL_REPCAT_TEMPLATE_SITES view on page 23-11 for
more information.

site_name Identifies the template site to be dropped.

Table 21–51 DROP_SITE_INSTANTIATION Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_user The user name specified does not exist.

miss_template_site The deployment template has not been instantiated for user and
site.

DROP_TEMPLATE_OBJECT Procedure

21-36 Oracle Database Advanced Replication Management API Reference

DROP_TEMPLATE_OBJECT Procedure

This procedure removes a template object from a specific deployment template. For
example, a DBA would use this procedure to remove an outdated materialized view
from a deployment template. Changes made to the template are reflected at new sites
instantiating the deployment template. Remote sites that have already instantiated the
template must reinstantiate the deployment template to apply the changes.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_OBJECT (
 refresh_template_name IN VARCHAR2,
 object_name IN VARCHAR2,
 object_type IN VARCHAR2);

Parameters

Exceptions

Table 21–52 DROP_TEMPLATE_OBJECT Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which you are dropping
the object.

object_name Name of the template object to be dropped.

object_type The type of object that is to be dropped. Objects of the following
types can be specified:

MATERIALIZED VIEW PROCEDURE
INDEX FUNCTION
TABLE PACKAGE
VIEW PACKAGE BODY
SYNONYM TRIGGER
SEQUENCE DATABASE LINK

Table 21–53 DROP_TEMPLATE_OBJECT Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_object The template object specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_OBJECTS view to see a list of
deployment template objects.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-37

DROP_TEMPLATE_PARM Procedure

This procedure removes an existing template parameter from the
DBA_REPCAT_TEMPLATE_PARMS view. This procedure is useful when you have
dropped a template object and a particular parameter is no longer needed.

Syntax
DBMS_REPCAT_RGT.DROP_TEMPLATE_PARM (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2);

Parameters

Exceptions

Table 21–54 DROP_TEMPLATE_PARM Procedure Parameters

Parameter Description

refresh_template_name The deployment template name that has the parameter that you
want to drop

parameter_name Name of the parameter that you want to drop.

Table 21–55 DROP_TEMPLATE_PARM Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does not
exist.

miss_template_parm The parameter name specified is invalid or does not exist. Query
the DBA_REPCAT_TEMPLATE_PARMS view to see a list of
template parameters.

DROP_USER_AUTHORIZATION Procedure

21-38 Oracle Database Advanced Replication Management API Reference

DROP_USER_AUTHORIZATION Procedure

This procedure removes a user authorization entry from the
DBA_REPCAT_USER_AUTHORIZATIONS view. This procedure is used when removing
a user's template authorization. If a user's authorization is removed, then the user is no
longer able to instantiate the target deployment template.

Syntax
DBMS_REPCAT_RGT.DROP_USER_AUTHORIZATION (
 refresh_template_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Exceptions

See Also: "DROP_ALL_USER_AUTHORIZATIONS Procedure"
on page 21-32

Table 21–56 DROP_USER_AUTHORIZATION Procedure Parameters

Parameter Description

refresh_template_name Name of the deployment template from which the user's
authorization is being removed.

user_name Name of the user whose authorization is being removed.

Table 21–57 DROP_USER_AUTHORIZATION Procedure Exceptions

Exception Description

miss_user Specified user name is invalid or does not exist.

miss_user_authorization Specified user and deployment template combination does
not exist. Query the
DBA_REPCAT_USER_AUTHORIZATIONS view to see a list of
user/deployment template authorizations.

miss_refresh_template Specified deployment template name is invalid or does not
exist.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-39

DROP_USER_PARM_VALUE Procedure

This procedure removes a predefined user parameter value for a specific deployment
template. This procedure is often executed after a user's template authorization has
been removed.

Syntax
DBMS_REPCAT_RGT.DROP_USER_PARM_VALUE (
 refresh_template_name IN VARCHAR2,
 parameter_name IN VARCHAR2,
 user_name IN VARCHAR2);

Parameters

Exceptions

Table 21–58 DROP_USER_PARM_VALUE Procedure Parameters

Parameter Description

refresh_template_name Deployment template name that contains the parameter value
that you want to drop.

parameter_name Parameter name that contains the predefined value that you
want to drop.

user_name Name of the user whose parameter value you want to drop.

Table 21–59 DROP_USER_PARM_VALUE Procedure Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not
exist.

miss_user User name specified is invalid or does not exist.

miss_user_parm_values Deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

GET_RUNTIME_PARM_ID Function

21-40 Oracle Database Advanced Replication Management API Reference

GET_RUNTIME_PARM_ID Function

This function retrieves an identification to be used when defining a run-time
parameter value. All run-time parameter values are assigned to this identification and
are also used during the instantiation process.

Syntax
DBMS_REPCAT_RGT.GET_RUNTIME_PARM_ID
 RETURN NUMBER;

Parameters
None

Returns

Table 21–60 GET_RUNTIME_PARM_ID Function Returns

Return Value Corresponding Data Type

<system-generated
number>

Runtime parameter values are assigned to the system-generated
number and are also used during the instantiation process.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-41

INSERT_RUNTIME_PARMS Procedure

This procedure defines run-time parameter values prior to instantiating a template.
This procedure should be used to define parameter values when no user parameter
values have been defined and you do not want to accept the default parameter values.

Before using the this procedure, be sure to execute the GET_RUNTIME_PARM_ID
function to retrieve a parameter identification to use when inserting a run-time
parameter. This identification is used for defining run-time parameter values and
instantiating deployment templates.

Syntax
DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS (
 runtime_parm_id IN NUMBER,
 parameter_name IN VARCHAR2,
 parameter_value IN CLOB);

Parameters

Exceptions

Usage Notes
Because the this procedure utilizes a CLOB, you must use the DBMS_LOB package when
using the INSERT_RUNTIME_PARMS procedure. The following example illustrates
how to use the DBMS_LOB package with the INSERT_RUNTIME_PARMS procedure:

Table 21–61 INSERT_RUNTIME_PARMS Procedure Parameters

Parameter Description

runtime_parm_id The identification retrieved by the GET_RUNTIME_PARM_ID
function. This identification is also used when instantiating the
deployment template. Be sure to use the same identification for all
parameter values for a deployment template.

parameter_name Name of the template parameter for which you are defining a run-
time parameter value. Query the
DBA_REPCAT_TEMPLATE_PARMS view for a list of template
parameters.

parameter_value The run-time parameter value that you want to use during the
deployment template instantiation process.

Table 21–62 INSERT_RUNTIME_PARMS Procedure Exceptions

Exception Description

miss_refresh_template The deployment template name specified is invalid or does
not exist.

miss_user The user name specified is invalid or does not exist.

miss_user_parm_values The deployment template, user, and parameter combination
does not exist in the DBA_REPCAT_USER_PARM_VALUES
view.

INSERT_RUNTIME_PARMS Procedure

21-42 Oracle Database Advanced Replication Management API Reference

DECLARE
 tempstring VARCHAR2(100);
 templob CLOB;
BEGIN
 DBMS_LOB.CREATETEMPORARY(templob, TRUE, DBMS_LOB.SESSION);
 tempstring := 'REGION 20';
 DBMS_LOB.WRITE(templob, length(tempstring), 1, tempstring);
 DBMS_REPCAT_RGT.INSERT_RUNTIME_PARMS(
 runtime_parm_id => 20,
 parameter_name => 'region',
 parameter_value => templob);
 DBMS_LOB.FREETEMPORARY(templob);
END;
/

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-43

INSTANTIATE_OFFLINE Function

This function generates a script at the master site that is used to create the materialized
view environment at the remote materialized view site while the materialized view
site disconnected from the master (that is, while the materialized view site is offline).
This generated script should be used at remote materialized view sites that are not
able to remain connected to the master site for an extended amount of time, as the
instantiation process at the remote materialized view site might be lengthy (depending
on the amount of data that is populated to the new materialized views). This function
must be executed separately for each user instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Advanced
Replication interface in Oracle Enterprise Manager, during the distribution of
deployment templates. The number returned by this function is used to retrieve the
appropriate information from the USER_REPCAT_TEMP_OUTPUT temporary view.

Syntax
DBMS_REPCAT_RGT.INSTANTIATE_OFFLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2,
 user_name IN VARCHAR2 := NULL,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := TRUE)
 RETURN NUMBER;

Note: This function is used to perform an offline instantiation of a
deployment template. Additionally, this function is for replication
administrators who are instantiating for another user. Users
wanting to perform their own instantiation should use the public
version of the INSTANTIATE_OFFLINE function. See the
"INSTANTIATE_OFFLINE Function" on page 21-43 for more
information.

This function should not be confused with the procedures in the
DBMS_OFFLINE_OG package (used for performing an offline
instantiation of a master table). See the documentation for this
package for more information about their usage.

INSTANTIATE_OFFLINE Function

21-44 Oracle Database Advanced Replication Management API Reference

Parameters

Exceptions

Returns

Table 21–63 INSTANTIATE_OFFLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined run-time parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the run-time parameters (the
identification was retrieved by using the
GET_RUNTIME_PARM_ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If TRUE, then any materialized view groups created are owned
by the default user PUBLIC. If FALSE, then any materialized
view groups created are owned by the user performing the
instantiation.

Table 21–64 INSTANTIATE_OFFLINE Function Exceptions

Exception Description

miss_refresh_template Deployment template name specified is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the
DBA_REPCAT_USER_AUTHORIZATIONS view. If user is not
listed, then the specified user is not authorized to instantiate the
target deployment template.

Table 21–65 INSTANTIATE_OFFLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the generated system number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT temporary
view to retrieve the generated instantiation script.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-45

INSTANTIATE_ONLINE Function

This function generates a script at the master site that is used to create the materialized
view environment at the remote materialized view site while the materialized view
site is connected to the master (that is, while the materialized view site is online). This
generated script should be used at remote materialized view sites that are able to
remain connected to the master site for an extended amount of time, as the
instantiation process at the remote materialized view site might be lengthy (depending
on the amount of data that is populated to the new materialized views). This function
must be executed separately for each user instantiation.

The script generated by this function is stored in the USER_REPCAT_TEMP_OUTPUT
temporary view and is used by several Oracle tools, including the Advanced
Replication interface in Oracle Enterprise Manager, during the distribution of
deployment templates. The number returned by this function is used to retrieve the
appropriate information from the USER_REPCAT_TEMP_OUTPUT temporary view.

Syntax
DBMS_REPCAT_RGT.INSTANTIATE_ONLINE(
 refresh_template_name IN VARCHAR2,
 site_name IN VARCHAR2 := NULL,
 user_name IN VARCHAR2 := NULL,
 runtime_parm_id IN NUMBER := -1e-130,
 next_date IN DATE := SYSDATE,
 interval IN VARCHAR2 := 'SYSDATE + 1',
 use_default_gowner IN BOOLEAN := TRUE)
 RETURN NUMBER;

Note: This function is for replication administrators who are
instantiating for another user. Users wanting to perform their own
instantiation should use the public version of the
INSTANTIATE_OFFLINE function, described in
"INSTANTIATE_OFFLINE Function" on page 21-43 section.

INSTANTIATE_ONLINE Function

21-46 Oracle Database Advanced Replication Management API Reference

Parameters

Exceptions

Returns

Table 21–66 INSTANTIATE_ONLINE Function Parameters

Parameter Description

refresh_template_name Name of the deployment template to be instantiated.

site_name Name of the remote site that is instantiating the deployment
template.

user_name Name of the authorized user who is instantiating the
deployment template.

runtime_parm_id If you have defined run-time parameter values using the
INSERT_RUNTIME_PARMS procedure, then specify the
identification used when creating the run-time parameters (the
identification was retrieved by using the
GET_RUNTIME_PARM_ID function).

next_date Specifies the next refresh date value to be used when creating
the refresh group.

interval Specifies the refresh interval to be used when creating the
refresh group.

use_default_gowner If TRUE, then any materialized view groups created are owned
by the default user PUBLIC. If FALSE, then any materialized
view groups created are owned by the user performing the
instantiation.

Table 21–67 INSTANTIATE_ONLINE Function Exceptions

Exception Description

miss_refresh_template Specified deployment template name is invalid or does not exist.

miss_user Name of the authorized user is invalid or does not exist. Verify
that the specified user is listed in the
DBA_REPCAT_USER_AUTHORIZATIONS view. If user is not
listed, then the specified user is not authorized to instantiate the
target deployment template.

bad_parms Not all of the template parameters were populated by the
defined user parameter values or template default values or
both. The number of predefined values might not have matched
the number of template parameters or a predefined value was
invalid for the target parameter (that is, type mismatch).

Table 21–68 INSTANTIATE_ONLINE Function Returns

Return Value Description

<system-generated
number>

Specifies the system-generated number for the output_id when
you select from the USER_REPCAT_TEMP_OUTPUT temporary
view to retrieve the generated instantiation script.

Summary of DBMS_REPCAT_RGT Subprograms

DBMS_REPCAT_RGT 21-47

LOCK_TEMPLATE_EXCLUSIVE Procedure

When a deployment template is being updated or modified, you should use the
LOCK_TEMPLATE_EXCLUSIVE procedure to prevent users from reading or
instantiating the template.

The lock is released when a ROLLBACK or COMMIT is performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_EXCLUSIVE();

Parameters
None

Note: This procedure should be executed before you make any
modifications to your deployment template.

LOCK_TEMPLATE_SHARED Procedure

21-48 Oracle Database Advanced Replication Management API Reference

LOCK_TEMPLATE_SHARED Procedure

The LOCK_TEMPLATE_SHARED procedure is used to make a specified deployment
template "read-only." This procedure should be called before instantiating a template,
as this ensures that nobody can change the deployment template while it is being
instantiated.

The lock is released when a ROLLBACK or COMMIT is performed.

Syntax
DBMS_REPCAT_RGT.LOCK_TEMPLATE_SHARED();

Parameters
None

DBMS_REPUTIL 22-1

22
DBMS_REPUTIL

DBMS_REPUTIL contains subprograms to generate shadow tables, triggers, and
packages for table replication, as well as subprograms to generate wrappers for
replication of standalone procedure invocations and packaged procedure invocations.
This package is referenced only by the generated code.

This chapter contains this topic:

■ Summary of DBMS_REPUTIL Subprograms

Summary of DBMS_REPUTIL Subprograms

22-2 Oracle Database Advanced Replication Management API Reference

Summary of DBMS_REPUTIL Subprograms

Table 22–1 DBMS_REPUTIL Package Subprograms

Subprogram Description

"REPLICATION_OFF
Procedure" on
page 22-3

Modifies tables without replicating the modifications to any other
sites in the replication environment, or disables row-level
replication when using procedural replication.

"REPLICATION_ON
Procedure" on
page 22-4

Reenables replication of changes after replication has been
temporarily suspended.

"REPLICATION_IS_ON
Function" on page 22-5

Determines whether or not replication is running.

FROM_REMOTE
Function on page 22-6

Returns TRUE at the beginning of procedures in the internal
replication packages, and returns FALSE at the end of these
procedures.

"GLOBAL_NAME
Function" on page 22-7

Determines the global database name of the local database (the
global name is the returned value).

"MAKE_INTERNAL_P
KG Procedure" on
page 22-8

Synchronizes internal packages and tables in the replication
catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

"SYNC_UP_REP
Procedure" on
page 22-9

Synchronizes internal triggers and tables/materialized views in
the replication catalog.

Note: Do not execute this procedure unless directed to do so by
Oracle Support Services.

Summary of DBMS_REPUTIL Subprograms

DBMS_REPUTIL 22-3

REPLICATION_OFF Procedure

This procedure enables you to modify tables without replicating the modifications to
any other sites in the replication environment. It also disables row-level replication
when using procedural replication. In general, you should suspend replication activity
for all master groups in your replication environment before setting this flag.

Syntax
DBMS_REPUTIL.REPLICATION_OFF();

Parameters
None

REPLICATION_ON Procedure

22-4 Oracle Database Advanced Replication Management API Reference

REPLICATION_ON Procedure

This procedure reenables replication of changes after replication has been temporarily
suspended.

Syntax
DBMS_REPUTIL.REPLICATION_ON();

Parameters
None

Summary of DBMS_REPUTIL Subprograms

DBMS_REPUTIL 22-5

REPLICATION_IS_ON Function

This function determines whether or not replication is running. A returned value of
TRUE indicates that the generated replication triggers are enabled. A return value of
FALSE indicates that replication is disabled at the current site for the replication group.

The returning value of this function is set by calling the REPLICATION_ON or
REPLICATION_OFF procedures in the DBMS_REPUTIL package.

Syntax
DBMS_REPUTIL.REPLICATION_IS_ON()
 return BOOLEAN;

Parameters
None

FROM_REMOTE Function

22-6 Oracle Database Advanced Replication Management API Reference

FROM_REMOTE Function

This function returns TRUE at the beginning of procedures in the internal replication
packages, and returns FALSE at the end of these procedures. You might need to check
this function if you have any triggers that could be fired as the result of an update by
an internal package.

Syntax
DBMS_REPUTIL.FROM_REMOTE()
 return BOOLEAN;

Parameters
None

Summary of DBMS_REPUTIL Subprograms

DBMS_REPUTIL 22-7

GLOBAL_NAME Function

This function determines the global database name of the local database (the global
name is the returned value).

Syntax
DBMS_REPUTIL.GLOBAL_NAME()
 return VARCHAR2;

Parameters
None

MAKE_INTERNAL_PKG Procedure

22-8 Oracle Database Advanced Replication Management API Reference

MAKE_INTERNAL_PKG Procedure

This procedure synchronizes the existence of an internal package with a table or
materialized view in the replication catalog. If the table has replication support, then
execute this procedure to create the internal package. If replication support does not
exist, then this procedure destroys any related internal package. This procedure does
not accept the storage table of a nested table.

Syntax
DBMS_REPUTIL.MAKE_INTERNAL_PKG (
 canon_sname IN VARCHAR2,
 canon_oname IN VARCHAR2);

Parameters

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.

Table 22–2 MAKE_INTERNAL_PKG Procedure Parameters

Parameter Description

canon_sname Schema containing the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

Summary of DBMS_REPUTIL Subprograms

DBMS_REPUTIL 22-9

SYNC_UP_REP Procedure

This procedure synchronizes the existence of an internal trigger with a table or
materialized view in the replication catalog. If the table or materialized view has
replication support, then execute this procedure to create the internal replication
trigger. If replication support does not exist, then this procedure destroys any related
internal trigger. This procedure does not accept the storage table of a nested table.

Syntax
DBMS_REPUTIL.SYNC_UP_REP (
 canon_sname IN VARCHAR2,
 canon_oname IN VARCHAR2);

Parameters

Caution: Do not execute this procedure unless directed to do so
by Oracle Support Services.

Table 22–3 SYNC_UP_REP Procedure Parameters

Parameter Description

canon_sname Schema containing the table or materialized view to be
synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

canon_oname Name of the table or materialized view to be synchronized.

This parameter value must be canonically defined (capitalization
must match object and must not be enclosed in double quotes).

SYNC_UP_REP Procedure

22-10 Oracle Database Advanced Replication Management API Reference

Part IV
Replication Data Dictionary Reference

Part IV describes data dictionary views that provide information about your
replication environment.

Part IV contains the following chapters:

■ Chapter 23, "Replication Catalog Views"

■ Chapter 24, "Replication Dynamic Performance Views"

■ Chapter 25, "Deferred Transaction Views"

■ Chapter 26, "Materialized View and Refresh Group Views"

Replication Catalog Views 23-1

23
Replication Catalog Views

When you install replication capabilities at a site, Oracle installs the replication catalog,
which consists of tables and views, at that site.

This chapter contains this topic:

■ Summary of Replication Catalog Views

Caution: Do not modify the replication catalog tables directly.
Instead, use the procedures provided in the DBMS_REPCAT
package.

See Also: Chapter 10, "Monitoring a Replication Environment"

Summary of Replication Catalog Views

23-2 Oracle Database Advanced Replication Management API Reference

Summary of Replication Catalog Views

Many data dictionary tables have three corresponding views:

■ An ALL_ view displays all the information accessible to the current user, including
information from the current user's schema as well as information from objects in
other schemas, if the current user has access to those objects by way of grants of
privileges or roles.

■ A DBA_ view displays all relevant information in the entire database. DBA_ views
are intended only for administrators. They can be accessed only by users with the
SELECT ANY TABLE privilege. This privilege is assigned to the DBA role when
Oracle is initially installed.

■ A USER_ view displays all the information from the schema of the current user.
No special privileges are required to query these views.

The columns of the ALL_, DBA_, and USER_ views corresponding to a single data
dictionary table are usually nearly identical. Therefore, these views are described in
full only once in this chapter (for the ALL_ view). The views are listed without the full
description for DBA_ and USER_ views, but differences are noted.

As shown in Figure 23–1 on page 23-3, the replication catalog views are used by
master sites and materialized view sites to determine such information as what objects
are being replicated, where they are being replicated, and if any errors have occurred
during replication. Table 23–1 on page 23-4 lists all of the replication catalog views.

Summary of Replication Catalog Views

Replication Catalog Views 23-3

Figure 23–1 Replication Catalog Views and Replicated Objects

employee_id department_idlast_name
100
101
103
104

King
Kochhar
Hunold
Ernst

90
90
60
60

salary
8340
6650
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Master 1 (m1)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS Y NORMAL

RS
RS

M1
M2

Y
N

NULL
NULL

RS
RS
RS

EMPLOYEES
EMPLOYEES$RP
EMPLOYEES$RP

TABLE
PACKAGE
PACKAGE BODY

VALID
VALID
VALID

employee_id department_idlast_name
100
101

King
Kochhar

90
90

salary
8340
6650

employees

SELECT employee_id, last_name, department_id,
salary FROM employees@m1 WHERE department_id = 90;

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Materialized View 1 (department 90)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS N NULL

RS
RS

M1
M2

Y
N

Y
N

RS EMPLOYEES SNAPSHOT VALID

employee_id department_idlast_name
103
104

Hunold
Ernst

60
60

salary
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Materialized View 2 (department 60)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS N NULL

RS
RS

M1
M2

Y
N

N
Y

RS EMPLOYEES SNAPSHOT VALID

employee_id department_idlast_name
100
101
103
104

King
Kochhar
Hunold
Ernst

90
90
60
60

salary
8340
6650
9725
5890

employees

DBA_REPSITES

DBA_REPGROUP

DBA_REPOBJECT

Master 2 (m2)

GNAME STATUSMASTER SCHEMA_COMMENT

GNAME MASTERDEFDBLINK SNAPMASTER MASTER_
COMMENT

GNAME TYPEONAME STATUS OBJECT_
COMMENT

RS Y NORMAL

RS
RS

M1
M2

Y
N

NULL
NULL

RS
RS
RS

EMPLOYEES
EMPLOYEES$RP
EMPLOYEES$RP

TABLE
PACKAGE
PACKAGE BODY

VALID
VALID
VALID

SELECT employee_id, last_name, department_id,
salary FROM employees@m2 WHERE department_id = 60;

Summary of Replication Catalog Views

23-4 Oracle Database Advanced Replication Management API Reference

Table 23–1 Replication Catalog Views

ALL_ Views DBA_ Views USER_ Views

N/A DBA_REGISTERED_MVIEW_GRO
UPS

N/A

ALL_REPCAT_REFRESH_TEMPL
ATES

DBA_REPCAT_REFRESH_TEMPL
ATES

USER_REPCAT_REFRESH_TEMPL
ATES

ALL_REPCAT_TEMPLATE_OBJEC
TS

DBA_REPCAT_TEMPLATE_OBJEC
TS

USER_REPCAT_TEMPLATE_OBJE
CTS

ALL_REPCAT_TEMPLATE_PARM
S

DBA_REPCAT_TEMPLATE_PARM
S

USER_REPCAT_TEMPLATE_PAR
MS

ALL_REPCAT_TEMPLATE_SITES DBA_REPCAT_TEMPLATE_SITES USER_REPCAT_TEMPLATE_SITES

ALL_REPCAT_USER_AUTHORIZ
ATIONS

DBA_REPCAT_USER_AUTHORIZ
ATIONS

USER_REPCAT_USER_AUTHORIZ
ATION

ALL_REPCAT_USER_PARM_VAL
UES

DBA_REPCAT_USER_PARM_VAL
UES

USER_REPCAT_USER_PARM_VAL
UES

ALL_REPCATLOG DBA_REPCATLOG USER_REPCATLOG

ALL_REPCOLUMN DBA_REPCOLUMN USER_REPCOLUMN

ALL_REPCOLUMN_GROUP DBA_REPCOLUMN_GROUP USER_REPCOLUMN_GROUP

ALL_REPCONFLICT DBA_REPCONFLICT USER_REPCONFLICT

ALL_REPDDL DBA_REPDDL USER_REPDDL

N/A DBA_REPEXTENSIONS N/A

ALL_REPGENOBJECTS DBA_REPGENOBJECTS USER_REPGENOBJECTS

ALL_REPGROUP DBA_REPGROUP USER_REPGROUP

ALL_REPGROUP_PRIVILEGES DBA_REPGROUP_PRIVILEGES USER_REPGROUP_PRIVILEGES

ALL_REPGROUPED_COLUMN DBA_REPGROUPED_COLUMN USER_REPGROUPED_COLUMN

ALL_REPKEY_COLUMNS DBA_REPKEY_COLUMNS USER_REPKEY_COLUMNS

ALL_REPOBJECT DBA_REPOBJECT USER_REPOBJECT

ALL_REPPARAMETER_COLUMN DBA_REPPARAMETER_COLUMN USER_REPPARAMETER_COLUM
N

ALL_REPPRIORITY DBA_REPPRIORITY USER_REPPRIORITY

ALL_REPPRIORITY_GROUP DBA_REPPRIORITY_GROUP USER_REPPRIORITY_GROUP

ALL_REPPROP DBA_REPPROP USER_REPPROP

ALL_REPRESOL_STATS_CONTRO
L

DBA_REPRESOL_STATS_CONTR
OL

USER_REPRESOL_STATS_CONTR
OL

ALL_REPRESOLUTION DBA_REPRESOLUTION USER_REPRESOLUTION

ALL_REPRESOLUTION_METHOD DBA_REPRESOLUTION_METHO
D

USER_REPRESOLUTION_METHO
D

ALL_REPRESOLUTION_STATISTI
CS

DBA_REPRESOLUTION_STATISTI
CS

USER_REPRESOLUTION_STATIST
ICS

ALL_REPSITES DBA_REPSITES USER_REPSITES

N/A DBA_REPSITES_NEW N/A

Summary of Replication Catalog Views

Replication Catalog Views 23-5

DBA_REGISTERED_MVIEW_GROUPS

DBA_REGISTERED_MVIEW_GROUPS lists all the registered materialized view groups
at the master site or master materialized view site.

Column Data Type NULL Description

NAME VARCHAR2(30) - Name of the materialized view replication group

MVIEW_SITE VARCHAR2(128) - Site of the materialized view replication group

GROUP_COMMENT VARCHAR2(80) - Description of the materialized view replication
group

VERSION VARCHAR2(8) - Oracle version of the materialized view
replication group

Note: Oracle9i Database or later materialized view
groups show Oracle8.

FNAME VARCHAR2(30) - Name of the flavor of the materialized view group

OWNER VARCHAR2(30) - Owner of the materialized view replication group

ALL_REPCAT_REFRESH_TEMPLATES

23-6 Oracle Database Advanced Replication Management API Reference

ALL_REPCAT_REFRESH_TEMPLATES

Contains global information about each deployment template accessible to the current
user, such as the template name, template owner, what refresh group the template
objects belong to, and the type of template (private or public).

When the DBA adds materialized view definitions to the template container, the DBA
references the appropriate REFRESH_TEMPLATE_NAME. Any materialized views
added to a specific template are added to the refresh group specified in
REFRESH_GROUP_NAME.

Furthermore, deployment templates created as public are available to all users who
can connect to the master site. Deployment templates created as private are limited to
those users listed in the ALL_REPCAT_USER_AUTHORIZATIONS view.

Related Views:
■ DBA_REPCAT_REFRESH_TEMPLATES describes all deployment templates in the

database.

■ USER_REPCAT_REFRESH_TEMPLATES describes all deployment templates owned
by the current user.

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) - Name of the deployment template.

OWNER VARCHAR2(30) - Owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which the
template objects are added during the
instantiation process.

TEMPLATE_COMMENT VARCHAR2(2000
)

- User supplied comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

Summary of Replication Catalog Views

Replication Catalog Views 23-7

ALL_REPCAT_TEMPLATE_OBJECTS

Contains the individual object definitions that are contained in each deployment
template accessible to the current user. Individual objects are added to a template by
specifying the target template in REFRESH_TEMPLATE_NAME.

DDL_TEXT can contain variables to create parameterized templates. Variables are
created by placing a colon (:) at the beginning of the variable name (for example,
:region). Templates that use parameters allow for greater flexibility during the
template instantiation process (that is, in defining data sets specific for a materialized
view site).

When the object is added to the template, the specified DDL is examined and if any
parameters have been defined, Oracle automatically adds the parameter to the
ALL_REPCAT_TEMPLATE_PARMS view.

Related Views:
■ DBA_REPCAT_TEMPLATE_OBJECTS describes the object definitions for all

deployment templates in the database.

■ USER_REPCAT_TEMPLATE_OBJECTS describes the object definitions for each
deployment template owned by the current user.

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT
NULL

The name of the deployment template.

OBJECT_NAME VARCHAR2(30) NOT
NULL

The name of the deployment template object.

OBJECT_TYPE VARCHAR2(17) - The object type of the deployment template
object:

FUNCTION MATERIALIZED VIEW
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

DDL_NUM NUMBER NOT
NULL

Indicates the order in which to execute the
DDL statements stored in the DDL_TEXT
column when multiple DDL statements are
used to create the object.

DDL_TEXT CLOB(4000) - The DDL that is executed to create the
deployment template object.

MASTER_ROLLBACK_SEGMENT VARCHAR2(30) - The name of the rollback segment that is used
during the instantiation of the deployment
template object.

DERIVED_FROM_SNAME VARCHAR2(30) - If applicable, displays the schema that
contains the object from which the template
object was created.

DERIVED_FROM_ONAME VARCHAR2(30) - If applicable, displays the name of the object
from which the template object was created.

FLAVOR_ID NUMBER - The flavor ID of the deployment template
object.

ALL_REPCAT_TEMPLATE_OBJECTS

23-8 Oracle Database Advanced Replication Management API Reference

Because the DDL_TEXT column is defined as a CLOB, you receive an error if you
simply try to perform a SELECT on the ALL_REPCAT_TEMPLATE_OBJECTS view. If
you do not need to see the object DDL, then use the following select statement (be sure
to exclude the DDL_TEXT parameter):

SELECT REFRESH_TEMPLATE_NAME, OBJECT_NAME, OBJECT_TYPE, MASTER_ROLLBACK_SEG,
FLAVOR_ID FROM DBA_REPCAT_TEMPLATE_OBJECTS;

The following script uses cursors and the DBMS_LOB package to view the entire
contents of the ALL_REPCAT_TEMPLATE_OBJECTS view. Use this script to view the
entire contents of the ALL_REPCAT_TEMPLATE_OBJECTS view, including the
DDL_TEXT column:

SET SERVEROUTPUT ON

DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OBJECT_NAME, OBJECT_TYPE, DDL_TEXT,
 MASTER_ROLLBACK_SEG, FLAVOR_ID
 FROM DBA_REPCAT_TEMPLATE_OBJECTS;
 tempstring VARCHAR2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.ddl_text);
 DBMS_LOB.READ(myrec.ddl_text, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.object_name||' '||myrec.object_type||' '||tempstring||' '||
 myrec.master_rollback_seg||' '||myrec.flavor_id);
 END LOOP;
END;
/

See Also: Oracle Database Advanced Application Developer's Guide
for more information about using cursors. Also, see Oracle Database
SecureFiles and Large Objects Developer's Guide for more information
about using the DBMS_LOB package and LOBs in general.

Summary of Replication Catalog Views

Replication Catalog Views 23-9

ALL_REPCAT_TEMPLATE_PARMS

Contains parameters defined in the object DDL for all templates accessible to the
current user. When an object is added to a template, the DDL is examined for
variables. Any found parameters are automatically added to this view.

You can also define default parameter values and a prompt string in this view. These
can make the templates easier to use during the instantiation process.

Related Views:
■ DBA_REPCAT_TEMPLATE_PARMS describes the template parameters for all

deployment templates in the database.

■ USER_REPCAT_TEMPLATE_PARMS describes the template parameters for all
deployment templates owned by the current user.

Because the DEFAULT_PARM_VALUE column is defined as a CLOB, you receive an error
if you simply try to perform a SELECT on the ALL_REPCAT_TEMPLATE_PARMS view.
If you do not need to see the default parameter value, then use the following select
statement (be sure to exclude DEFAULT_PARM_VALUE):

SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
 PUBLIC_TEMPLATE, PARAMETER_NAME, PROMPT_STRING, USER_OVERRIDE
 FROM DBA_REPCAT_TEMPLATE_PARMS;

The following script uses cursors and the DBMS_LOB package to view the entire
contents of the ALL_REPCAT_TEMPLATE_PARMS view. Use this script to view the

See Also: ALL_REPCAT_TEMPLATE_OBJECTS on page 23-7

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT
NULL

The name of the deployment template.

OWNER VARCHAR2(30) NOT
NULL

The owner of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT
NULL

Name of the refresh group to which the
template objects are added to during the
instantiation process.

TEMPLATE_COMMENTS VARCHAR2(2000
)

- User specified comments.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

PARAMETER_NAME VARCHAR2(30) NOT
NULL

The name of the parameter.

DEFAULT_PARM_VALUE CLOB(4000) - The default parameter value.

PROMPT_STRING VARCHAR2(2000
)

- The prompt string for the parameter.

USER_OVERRIDE VARCHAR2(1) - If Y then the user can override the default
parameter value.

If N then the user cannot override the default
parameter value.

ALL_REPCAT_TEMPLATE_PARMS

23-10 Oracle Database Advanced Replication Management API Reference

entire contents of the ALL_REPCAT_TEMPLATE_PARMS view, including the
DEFAULT_PARM_VALUE column:

SET SERVEROUTPUT ON

DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
 TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER_NAME, DEFAULT_PARM_VALUE,
 PROMPT_STRING, USER_OVERRIDE
 FROM DBA_REPCAT_TEMPLATE_PARMS;
 tempstring VARCHAR2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.default_parm_value);
 DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.owner||' '||myrec.refresh_group_name||' '||
 myrec.template_comment||' '||myrec.public_template||' '||
 myrec.parameter_name||' '||tempstring||' '||myrec.prompt_string||' '||
 myrec.user_override);
 END LOOP;
END;
/

See Also: Oracle Database Advanced Application Developer's Guide
for more information about using cursors. Also, see Oracle Database
SecureFiles and Large Objects Developer's Guide for more information
about using the DBMS_LOB package and LOBs in general.

Summary of Replication Catalog Views

Replication Catalog Views 23-11

ALL_REPCAT_TEMPLATE_SITES

Contains information about the current status of template instantiation among the
sites of an enterprise network. This view contains information about instantiation sites
for deployment templates that are accessible to the current user. Specifically, the DBA
can monitor the installation and deletion of templates at specific sites.

Related Views:
■ DBA_REPCAT_TEMPLATE_SITES describes all remote instantiation sites for all

templates in the database.

■ USER_REPCAT_TEMPLATE_SITES describes remote instantiation sites for all
templates owned by the current user.

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT
NULL

Name of the deployment template.

REFRESH_GROUP_NAME VARCHAR2(30) - Name of the refresh group to which template
objects are added during the instantiation
process.

TEMPLATE_OWNER VARCHAR2(30) - Name of the user who is considered the owner
of the deployment template.

USER_NAME VARCHAR2(30) NOT
NULL

The name of the user who instantiated the
deployment template.

SITE_NAME VARCHAR2(128) - Target materialized view site of the
deployment template.

REPAPI_SITE_NAME VARCHAR2(128) - This column is intended for use in a future
release of Oracle.

STATUS VARCHAR2(10) - Displays the status of the deployment
template at the target materialized view site:

 0 = Not Installed

 1 = Installed

-1 = Installed with errors

INSTANTIATION_DATE DATE - Displays when the template was instantiated.
Is NULL if the template has not yet been
instantiated.

ALL_REPCAT_USER_AUTHORIZATIONS

23-12 Oracle Database Advanced Replication Management API Reference

ALL_REPCAT_USER_AUTHORIZATIONS

Lists the authorized users for private deployment templates accessible to the current
user. Users listed in this view have the ability to instantiate the specified template.
Users not listed in this view cannot instantiate the deployment template.

Related Views:
■ DBA_REPCAT_USER_AUTHORIZATIONS lists the authorized users for all the

private deployment templates in the database.

■ USER_REPCAT_USER_AUTHORIZATION lists the authorized users for private
deployment templates owned by the current user.

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT
NULL

Name of the deployment template that a user
has been authorized to instantiate.

OWNER VARCHAR2(30) NOT
NULL

Name of the owner of the deployment
template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT
NULL

Name of the refresh group to which template
objects are added during the instantiation
process.

TEMPLATE_COMMENT VARCHAR2(2000
)

- User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

USER_NAME VARCHAR2(30) NOT
NULL

Name of the user who has been authorized to
instantiate the deployment template.

Summary of Replication Catalog Views

Replication Catalog Views 23-13

ALL_REPCAT_USER_PARM_VALUES

This view describes the template parameters for all deployment templates accessible to
the current user. The DBA has the option of building a table of user parameters prior
to distributing the template for instantiation. When a template is instantiated by a
specified user, the values stored in the ALL_REPCAT_USER_PARM_VALUES view for
the specified user are used automatically.

Related Views:
■ DBA_REPCAT_USER_PARM_VALUES describes the template parameters for all

deployment templates in the database.

■ USER_REPCAT_USER_PARM_VALUES describes the template parameters for all
deployment templates owned by the current user.

Because DEFAULT_PARM_VALUE and PARM_VALUE columns are defined as CLOB data
types, you receive an error if you simply try to perform a SELECT on the
ALL_REPCAT_USER_PARM_VALUES view. If you do not need to see the default or user
parameter values, then use the following select statement (be sure to exclude
DEFAULT_PARM_VALUE and PARM_VALUE):

SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME, TEMPLATE_COMMENT,
 PUBLIC_TEMPLATE, PARAMETER_NAME, PROMPT_STRING, USER_NAME
 FROM DBA_REPCAT_USER_PARM_VALUES;

Column Data Type NULL Description

REFRESH_TEMPLATE_NAME VARCHAR2(30) NOT
NULL

The name of the deployment template for
which a user parameter value has been
defined.

OWNER VARCHAR2(30) NOT
NULL

The name of the owner of the deployment
template.

REFRESH_GROUP_NAME VARCHAR2(30) NOT
NULL

Name of the refresh group to which the
template objects are added to during the
instantiation process.

TEMPATE_COMMENT VARCHAR2(2000
)

- User specified comment.

PUBLIC_TEMPLATE VARCHAR2(1) - If Y then the deployment template is public.

If N then the deployment template is private.

PARAMETER_NAME VARCHAR2(30) NOT
NULL

The name of the parameter for which a user
parameter value has been defined.

DEFAULT_PARM_VALUE CLOB(4000) - The default value for the parameter.

PROMPT_STRING VARCHAR2(2000
)

- The prompt string for the parameter.

PARM_VALUE CLOB(4000) - The parameter value that has been defined for
the specified user.

USER_NAME VARCHAR2(30) NOT
NULL

The user name of the user for whom the
specified parameter value has been defined.

ALL_REPCAT_USER_PARM_VALUES

23-14 Oracle Database Advanced Replication Management API Reference

The following script uses cursors and the DBMS_LOB package to view the entire
contents of the ALL_REPCAT_USER_PARM_VALUES view. Use this script to view the
entire contents of the ALL_REPCAT_TEMPLATE_PARMS view, including the
DEFAULT_PARM_VALUE and PARM_VALUE columns:

SET SERVEROUTPUT ON

DECLARE
 CURSOR mycursor IS
 SELECT REFRESH_TEMPLATE_NAME, OWNER, REFRESH_GROUP_NAME,
 TEMPLATE_COMMENT, PUBLIC_TEMPLATE, PARAMETER_NAME, DEFAULT_PARM_VALUE,
 PROMPT_STRING, PARM_VALUE, USER_NAME
 FROM DBA_REPCAT_USER_PARM_VALUES;
 tempstring VARCHAR2(1000);
 tempstring2 varchar2(1000);
 len NUMBER;
BEGIN
 FOR myrec IN mycursor LOOP
 len := DBMS_LOB.GETLENGTH(myrec.default_parm_value);
 DBMS_LOB.READ(myrec.default_parm_value, len, 1, tempstring);
 DBMS_OUTPUT.PUT_LINE(myrec.refresh_template_name||' '||
 myrec.owner||' '||myrec.refresh_group_name||' '||
 myrec.template_comment||' '||myrec.public_template||' '||
 myrec.parameter_name||' '||tempstring||' '||myrec.prompt_string||' '||
 tempstring2||' '||myrec.user_name);
 END LOOP;
END;
/

See Also: Oracle Database Advanced Application Developer's Guide
for more information about using cursors. Also, see Oracle Database
SecureFiles and Large Objects Developer's Guide for more information
about using the DBMS_LOB package and LOBs in general.

Summary of Replication Catalog Views

Replication Catalog Views 23-15

ALL_REPCATLOG

Contains the interim status of any asynchronous administrative requests and any error
messages generated at each master site. All messages encountered while executing a
request are eventually transferred to the ALL_REPCATLOG view at the master site that
originated the request. If an administrative request completes without error, then
ultimately all traces of this request are removed from the ALL_REPCATLOG view. This
view contains administrative requests and error messages that are accessible to the
current user.

Related Views:
■ DBA_REPCATLOG describes the status for all asynchronous administrative requests

and all error messages in the database.

■ USER_REPCATLOG describes the status for all asynchronous administrative
requests and all error messages owned by the current user.

Column Data Type NULL Description

ID NUMBER - A sequence number. Together, the ID and
SOURCE columns identify all log records at all
master sites that pertain to a single
administrative request.

SOURCE VARCHAR2(128) - Location where the request originated.

USERID VARCHAR2(30) - Name of the user making the request.

TIMESTAMP DATE - When the request was made.

ROLE VARCHAR2(9) - Indicates if site is the master definition site
(masterdef) or a master site (master).

MASTER VARCHAR2(128) - If the role is 'masterdef' and the task is remote,
then indicates which master site is performing
the task.

SNAME VARCHAR2(30) - The name of the schema for the replicated
object, if applicable.

REQUEST VARCHAR2(29) - The name of the DBMS_REPCAT
administrative procedure that was run.

ONAME VARCHAR2(30) - The name of the replicated object, if
applicable.

TYPE VARCHAR2(12) - The type of replicated object:

FUNCTION MATERIALIZED VIEW
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

STATUS VARCHAR2(14) - The status of the administrative request:
READY, DO_CALLBACK, AWAIT_CALLBACK, or
ERROR.

MESSAGE VARCHAR2(200) - Any error message that has been returned.

ERRNUM NUMBER - The Oracle error number for the message.

GNAME VARCHAR2(30) - The name of the replication group.

ALL_REPCOLUMN

23-16 Oracle Database Advanced Replication Management API Reference

ALL_REPCOLUMN

Lists the replicated columns for the tables accessible to the current user.

If the table contains a column object, then this view displays a placeholder for the type
and one row for each type attribute. If the table contains a nested table, then this view
displays the storage table for the nested table as an independent table. If a table is an
object table, then this view displays the hidden object identifier column.

Related Views:
■ DBA_REPCOLUMN describes the replicated columns for all the tables in the

database.

■ USER_REPCOLUMN describes the replicated columns for all the tables owned by
the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the object owner.

ONAME VARCHAR2(30) NOT
NULL

The name of the object.

TYPE VARCHAR2(8) - The type of the object, either MATERIALIZED
VIEW or TABLE.

CNAME VARCHAR2(4000) - The name of the replicated column.

ID NUMBER - The ID number of the replicated column.

POS NUMBER - The ordering of the replicated column.

COMPARE_OLD_ON_DELETE VARCHAR2(1) - Indicates whether Oracle compares the old
value of the column in replicated deletes.

COMPARE_OLD_ON_UPDATE VARCHAR2(1) - Indicates whether Oracle compares the old
value of the column in replicated updates.

SEND_OLD_ON_DELETE VARCHAR2(1) - Indicates whether Oracle sends the old value
of the column in replicated deletes.

SEND_OLD_ON_UPDATE VARCHAR2(1) - Indicates whether Oracle sends the old value
of the column in replicated updates.

CTYPE VARCHAR2(30) - Displays the column type. For user-defined
types, displays the user-defined type name.

CTYPE_TOID RAW(16) - If user-defined type, displays the object
identifier (OID) of the type. Otherwise, this
field is NULL.

CTYPE_OWNER VARCHAR2(30) - If user-defined type, displays the owner of a
user-defined type. Otherwise, this field is
NULL.

CTYPE_HASHCODE VARCHAR2(34) - If user-defined type, displays the type's
hashcode. Otherwise, this field is NULL.

CTYPE_MOD VARCHAR2(3) - Displays REF for REF columns. Otherwise,
this field is NULL.

DATA_LENGTH VARCHAR2(40) - Displays the length of the column in bytes.

DATA_PRECISION VARCHAR2(40) - Displays the column precision in terms of
decimal digits for NUMBER columns or binary
digits for FLOAT columns.

Summary of Replication Catalog Views

Replication Catalog Views 23-17

DATA_SCALE VARCHAR2(40) - Displays the digits to right of decimal point in
a number.

NULLABLE VARCHAR2(1) - Indicates if the column allow NULL values.

CHARACTER_SET_NAME VARCHAR2(44) - If applicable, displays the name of character
set for the column.

TOP VARCHAR2(30) - Displays the top column for an attribute in a
column object. For example, in the
oe.customers table, cust_address is a
column object and street_address is one
of its attributes. For the street_address
attribute, cust_address is the TOP column.

For built-in data types, this field is NULL

CHAR_LENGTH NUMBER - Displays the length of the column in
characters. This value only applies to the
following data types:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

CHAR_USED VARCHAR2(1) - B indicates that the column uses BYTE length
semantics. C indicates that the column uses
CHAR length semantics. NULL indicates that
the data type is not any of the following:

■ CHAR

■ VARCHAR2

■ NCHAR

■ NVARCHAR2

Column Data Type NULL Description

ALL_REPCOLUMN_GROUP

23-18 Oracle Database Advanced Replication Management API Reference

ALL_REPCOLUMN_GROUP

Describes the column groups for each replicated table accessible to the current user.

Related Views:
■ DBA_REPCOLUMN_GROUP describes the column groups for all the tables in the

database.

■ USER_REPCOLUMN_GROUP describes the column groups for all the tables owned
by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the schema containing the
replicated table.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT
NULL

The column group name.

GROUP_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAME column is not present in the
USER_REPCOLUMN_GROUP view.

Summary of Replication Catalog Views

Replication Catalog Views 23-19

ALL_REPCONFLICT

Contains the name of each table accessible to the current user for which a conflict
resolution method has been defined and the type of conflict that the method is used to
resolve.

Related Views:
■ DBA_REPCONFLICT describes the conflict resolution method for all the tables in

the database on which a conflict resolution method has been defined.

■ USER_REPCONFLICT describes the conflict resolution method for all the tables
owned by the current user on which a conflict resolution method has been
defined.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the schema containing the
replicated table.

ONAME VARCHAR2(30) NOT
NULL

The name of the table for which a conflict
resolution method has been defined.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the conflict resolution
method is used to resolve: delete, uniqueness,
or update.

REFERENCE_NAME VARCHAR2(30) NOT
NULL

The object to which the method applies. For
delete conflicts, this is the table name. For
uniqueness conflicts, this is the constraint
name. For update conflicts, this is the column
group name.

Note: The SNAME column is not present in the
USER_REPCONFLICT view.

ALL_REPDDL

23-20 Oracle Database Advanced Replication Management API Reference

ALL_REPDDL

Contains the DDL for each replication object accessible to the current user.

Related Views:
■ DBA_REPDDL contains the DDL for each replicated object in the database.

■ USER_REPDDL contains the DDL for each replicated object owned by the current
user.

Column Data Type NULL Description

LOG_ID NUMBER - Identifying number of the ALL_REPCATLOG
record.

SOURCE VARCHAR2(128) - Name of the database at which the request
originated.

ROLE VARCHAR2(1) - If Y then this database is the master definition
site (masterdef) for the request.

If N then this database is a master site.

MASTER VARCHAR2(128) - Name of the database that processes this
request.

LINE NUMBER(38) - Ordering of records within a single request.

TEXT VARCHAR2(2000) - Portion of an argument or DDL text.

DDL_NUM NUMBER(38) - Indicates the order in which to execute the
DDL statements stored in the TEXT column
when multiple DDL statements are used.

Summary of Replication Catalog Views

Replication Catalog Views 23-21

ALL_REPGENOBJECTS

Describes each object accessible to the current user that was generated to support
replication.

Related Views:
■ DBA_REPGENOBJECTS describes each object in the database that was generated to

support replication.

■ USER_REPGENOBJECTS describes each object owned by the current user that was
generated to support replication.

Column Data Type NULL Description

SNAME VARCHAR2(30) - The name of the replicated schema.

ONAME VARCHAR2(30) - The name of the generated object.

TYPE VARCHAR2(12) - The type of the generated object, either
PACKAGE, PACKAGE BODY, TRIGGER, or
INTERNAL PACKAGE.

BASE_SNAME VARCHAR2(30) - The base object's owner.

BASE_ONAME VARCHAR2(30) - The object for which this object was generated.

BASE_TYPE VARCHAR2(12) - The type of the base object.

PACKAGE_PREFIX VARCHAR2(30) - The prefix for the package wrapper.

PROCEDURE_PREFIX VARCHAR2(30) - The procedure prefix for the package wrapper.

DISTRIBUTED VARCHAR2(1) - This column is obsolete.

REASON VARCHAR2(30) - The reason the object was generated.

ALL_REPGROUP

23-22 Oracle Database Advanced Replication Management API Reference

ALL_REPGROUP

Describes all of the replication groups that are accessible to the current user. The
members of each replication group are listed in a different view: ALL_REPOBJECT.

Related Views:
■ DBA_REPGROUP describes all of the replication groups in the database that are

being replicated.

■ USER_REPGROUP describes all of the replication groups owned by the current user
that are being replicated.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the replicated schema. This
column is obsolete.

MASTER VARCHAR2(1) - Y indicates that the current site is a master site.

N indicates the current site is a materialized
view site.

STATUS VARCHAR2(9) - Used at master sites only. Status can be:
normal, quiescing, or quiesced.

SCHEMA_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT
NULL

The name of the replication group.

FNAME VARCHAR2(30) - Flavor name.

RPC_PROCESSING_DISABLED VARCHAR2(1) - N indicates that this site can receive and apply
deferred remote procedure calls (RPCs).

Y indicates that this site cannot receive and
apply deferred remote procedure calls (RPCs).

OWNER VARCHAR2(30) NOT
NULL

Owner of the replication group.

Summary of Replication Catalog Views

Replication Catalog Views 23-23

ALL_REPGROUP_PRIVILEGES

Contains information about the users who are registered for privileges in replication
groups. Shows only those replication groups accessible to the current user.

Related Views:
■ DBA_REPGROUP_PRIVILEGES contains information about the users who are

registered for privileges in all the replication groups in the database.

■ USER_REPGROUP_PRIVILEGES contains information about the users who are
registered for privileges in the replication groups owned by the current user.

Column Data Type NULL Description

USERNAME VARCHAR2(30) NOT
NULL

Displays the name of the user.

GNAME VARCHAR2(30) - Displays the name of the replication group.

CREATED DATE NOT
NULL

Displays the date that the replication group was
registered.

RECEIVER VARCHAR2(1) - Indicates whether the user has receiver
privileges.

PROXY_SNAPADMIN VARCHAR2(1) - Indicates whether the user has
proxy_snapadmin privileges.

OWNER VARCHAR2(30) - Owner of the replication group.

ALL_REPGROUPED_COLUMN

23-24 Oracle Database Advanced Replication Management API Reference

ALL_REPGROUPED_COLUMN

Describes all of the columns that make up the column groups for each table accessible
to the current user.

Related Views:
■ DBA_REPGROUPED_COLUMN describes all of the columns that make up the column

groups for each table in the database.

■ USER_REPGROUPED_COLUMN describes all of the columns that make up the
column groups for each table owned by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the schema containing the
replicated table.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated table.

GROUP_NAME VARCHAR2(30) NOT
NULL

The name of the column group.

COLUMN_NAME VARCHAR2(30) NOT
NULL

The name of the column in the column group.

Note: The SNAME column is not present in the
USER_REPGROUPED_COLUMN version of the view.

Summary of Replication Catalog Views

Replication Catalog Views 23-25

ALL_REPKEY_COLUMNS

Describes the replication key column(s) accessible to the current user in each table.

The replication key column(s) is an alternate column or group of columns, instead of
the primary key, used to determine which columns of a table to compare when using
row-level replication. You can set the replication key columns using the SET_COLUMNS
procedure in the DBMS_REPCAT package.

The following types of columns cannot be replication key columns:

■ LOB or LOB attribute of a column object

■ Collection or collection attribute of a column object

■ REF

■ An entire column object

Related Views:
■ DBA_REPKEY_COLUMNS describes the replication key column(s) in each table in

the database.

■ USER_REPKEY_COLUMNS describes the replication key column(s) in each table
owned by the current user.

See Also: "SET_COLUMNS Procedure" on page 18-91

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

Owner of the replicated table.

ONAME VARCHAR2(30) NOT
NULL

Name of the replicated table.

COL VARCHAR2(4000) - Replication key column(s) in the table.

ALL_REPOBJECT

23-26 Oracle Database Advanced Replication Management API Reference

ALL_REPOBJECT

Contains information about the objects in each replication group accessible to the
current user. An object can belong to only one replication group. A replication group
can span multiple schemas.

Related Views:
■ DBA_REPOBJECT contains information about the objects in each replication group

in the database.

■ USER_REPOBJECT contains information about the objects owned by the current
user in each replication group.

Column Data Type NULL Description

SNAME VARCHAR2(30) - The name of the schema containing the
replicated object.

ONAME VARCHAR2(30) - The name of the replicated object.

TYPE VARCHAR2(16) - The type of replicated object:

FUNCTION MATERIALIZED VIEW
INDEX SYNONYM
INDEXTYPE TABLE
OPERATOR TRIGGER
PACKAGE TYPE
PACKAGE BODY TYPE BODY
PROCEDURE VIEW

STATUS VARCHAR2(10) - CREATE indicates that Oracle is applying user
supplied or Oracle-generated DDL to the local
database in an attempt to create the object
locally. When a local replica exists, Oracle
COMPAREs the replica with the master
definition to ensure that they are consistent.
When creation or comparison complete
successfully, Oracle updates the status to
VALID. Otherwise, it updates the status to
ERROR. If you drop an object, then Oracle
updates its status to DROPPED before deleting
the row from the ALL_REPOBJECT view.

GENERATION_STATUS VARCHAR2(9) - Specifies whether the object needs to generate
replication packages.

ID NUMBER - The identifier of the local database object, if
one exists.

OBJECT_COMMENT VARCHAR2(80) - Any user supplied comments.

GNAME VARCHAR2(30) - The name of the replication group to which
the object belongs.

MIN_COMMUNICATION VARCHAR2(1) - If Y then use minimum communication for an
update.

If N then send all old and all new values for an
update.

REPLICATION_TRIGGER_EXI
STS

VARCHAR2(1) - If Y then internal replication trigger exists.

If N then internal replication trigger does not
exist.

Summary of Replication Catalog Views

Replication Catalog Views 23-27

INTERNAL_PACKAGE_EXISTS VARCHAR2(1) - If Y then internal package exists.

If N then internal package does not exist.

GROUP_OWNER VARCHAR2(30) - Owner of the replication group.

NESTED_TABLE VARCHAR2(1) - If Y then the replicated object is the storage
table of a nested table.

If N then the replicated object is not a storage
table.

Column Data Type NULL Description

ALL_REPPARAMETER_COLUMN

23-28 Oracle Database Advanced Replication Management API Reference

ALL_REPPARAMETER_COLUMN

In addition to the information contained in the ALL_REPRESOLUTION view, the
ALL_REPPARAMETER_COLUMN view contains information about the columns that are
used to resolve conflicts for each replicated table accessible to the current user. These
are the column values that are passed as the list_of_column_names argument to
the ADD_conflicttype_RESOLUTION procedures in the DBMS_REPCAT package.

Related Views:
■ DBA_REPPARAMETER_COLUMN contains information about the columns that are

used to resolve conflicts for each replicated table in the database.

■ USER_REPPARAMETER_COLUMN contains information about the columns that are
used to resolve conflicts for each replicated table owned by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the schema containing the
replicated table.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the method is used to
resolve: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT
NULL

The object to which the method applies. For
delete conflicts, this is the table name. For
uniqueness conflicts, this is the constraint
name. For update conflicts, this is the column
group name.

SEQUENCE_NO NUMBER NOT
NULL

The order in which resolution methods are
applied, with 1 applied first.

METHOD_NAME VARCHAR2(80) NOT
NULL

The name of an Oracle-supplied conflict
resolution method. For user-supplied
methods, this value is 'user function'.

FUNCTION_NAME VARCHAR2(92) NOT
NULL

For methods of type 'user function', the name
of the user-supplied conflict resolution
method.

PRIORITY_GROUP VARCHAR2(30) - For methods of name 'priority group', the
name of the priority group.

PARAMETER_TABLE_NAME VARCHAR2(30) NOT
NULL

Displays the name of the table to which the
parameter column belongs.

PARAMETER_COLUMN_NAME VARCHAR2(4000) - The name of the column used as the IN
parameter for the conflict resolution method.

PARAMETER_SEQUENCE_NO NUMBER NOT
NULL

Ordering of column used as IN parameter.

Note: The SNAME column is not present in the
USER_REPPARAMETER_COLUMN view.

Summary of Replication Catalog Views

Replication Catalog Views 23-29

ALL_REPPRIORITY

Contains the value and priority level of each priority group member in each priority
group accessible to the current user. Priority group names must be unique within a
replication group. Priority levels and values must each be unique within a given
priority group.

Related Views:
■ DBA_REPPRIORITY contains the value and priority level of each priority group

member in each priority group in the database.

■ USER_REPPRIORITY contains the value and priority level of each priority group
member in each priority group owned by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the replicated schema. This
column is obsolete.

PRIORITY_GROUP VARCHAR2(30) NOT
NULL

The name of the priority group or site priority
group.

PRIORITY NUMBER NOT
NULL

The priority level of the member. The highest
number has the highest priority.

DATA_TYPE VARCHAR2(9) - The data type of the values in the priority
group.

FIXED_DATA_LENGTH NUMBER(38) - The maximum length of values of data type
CHAR.

CHAR_VALUE CHAR(255) - The value of the priority group member, if
DATA_TYPE is CHAR.

VARCHAR2_VALUE VARCHAR2(4000) - The value of the priority group member, if
DATA_TYPE is VARCHAR2.

NUMBER_VALUE NUMBER - The value of the priority group member, if
DATA_TYPE is NUMBER.

DATE_VALUE DATE - The value of the priority group member, if
DATA_TYPE is DATE.

RAW_VALUE RAW(2000) - The value of the priority group member, if
DATA_TYPE is RAW.

GNAME VARCHAR2(30) NOT
NULL

The name of the replication group.

NCHAR_VALUE NCHAR(500) - The value of the priority group member, if
DATA_TYPE is NCHAR.

NVARCHAR2_VALUE VARCHAR2(1000) - The value of the priority group member, if
DATA_TYPE is NVARCHAR2.

LARGE_CHAR_VALUE CHAR(2000) - The value of the priority group member, for
blank-padded character strings over 255
characters.

Note: The SNAME and GNAME columns are not present in the
USER_REPPRIORITY view.

ALL_REPPRIORITY_GROUP

23-30 Oracle Database Advanced Replication Management API Reference

ALL_REPPRIORITY_GROUP

Describes the priority group or site priority group defined for each replication group
accessible to the current user.

Related Views:
■ DBA_REPPRIORITY_GROUP describes the priority group or site priority group

defined for each replication group in the database.

■ USER_REPPRIORITY_GROUP describes the priority group or site priority group
defined for each replication group owned by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the replicated schema. This
column is obsolete.

PRIORITY_GROUP VARCHAR2(30) NOT
NULL

The name of the priority group or site priority
group.

DATA_TYPE VARCHAR2(9) - The data type of each value in the priority
group.

FIXED_DATA_LENGTH NUMBER(38) - The maximum length for values of data type
CHAR.

PRIORITY_COMMENT VARCHAR2(80) - Any user-supplied comments.

GNAME VARCHAR2(30) NOT
NULL

The name of the replication group.

Note: The SNAME and GNAME columns are not present in the
USER_REPPRIORITY view.

Summary of Replication Catalog Views

Replication Catalog Views 23-31

ALL_REPPROP

Indicates the technique used to propagate operations on each replicated object to the
same object at another master site. These operations might have resulted from a call to
a stored procedure or procedure wrapper, or might have been issued against a table
directly. This view shows objects accessible to the current user.

Related Views:
■ DBA_REPPROP indicates the technique used to propagate operations on each

replicated object to the same object at another master site. This view shows all
objects in the database.

■ USER_REPPROP indicates the technique used to propagate operations on each
replicated object to the same object at another master site. This view shows objects
owned by the current user

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the schema containing the
replicated object.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated object.

TYPE VARCHAR2(16) - The type of object being replicated:

FUNCTION PROCEDURE
INDEXTYPE MATERIALIZED VIEW
OPERATOR TABLE
PACKAGE TYPE
PACKAGE BODY TYPE BODY

DBLINK VARCHAR2(128) NOT
NULL

The fully qualified database name of the
master site to which changes are being
propagated.

HOW VARCHAR2(13) - How propagation is performed. Values
recognized are 'none' for the local master site,
and 'synchronous' or 'asynchronous' for all
others.

PROPAGATE_COMMENT VARCHAR2(80) - Any user-supplied comments.

ALL_REPRESOL_STATS_CONTROL

23-32 Oracle Database Advanced Replication Management API Reference

ALL_REPRESOL_STATS_CONTROL

Describes statistics collection for conflict resolutions for all replicated tables accessible
to the current user.

Related Views:
■ DBA_REPRESOL_STATS_CONTROL describes statistics collection for conflict

resolutions for all replicated tables in the database.

■ USER_REPRESOL_STATS_CONTROL describes statistics collection for conflict
resolutions for all replicated tables owned by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

Owner of the table.

ONAME VARCHAR2(30) NOT
NULL

Table name.

CREATED DATE NOT
NULL

Timestamp for when statistics collection was
first started.

STATUS VARCHAR2(9) - Status of statistics collection: ACTIVE or
CANCELLED.

STATUS_UPDATE_DATE DATE NOT
NULL

Timestamp for when the status was last
updated.

PURGED_DATE DATE - Timestamp for the last purge of statistics data.

LAST_PURGE_START_DATE DATE - The last start date of the statistics purging date
range.

LAST_PURGE_END_DATE DATE - The last end date of the statistics purging date
range.

Note: The SNAME column is not present in the
USER_REPRESOL_STATS_CONTROL view.

Summary of Replication Catalog Views

Replication Catalog Views 23-33

ALL_REPRESOLUTION

Indicates the methods used to resolve update, uniqueness, or delete conflicts for each
table accessible to the current user that is replicated using row-level replication for a
given schema.

Related Views:
■ DBA_REPRESOLUTION indicates the methods used to resolve update, uniqueness,

or delete conflicts for each table in the database that is replicated using row-level
replication for a given schema.

■ USER_REPRESOLUTION indicates the methods used to resolve update,
uniqueness, or delete conflicts for each table owned by the current user that is
replicated using row-level replication.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the replicated schema.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the method is used to
resolve: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT
NULL

The object to which the method applies. For
delete conflicts, this is the table name. For
uniqueness conflicts, this is the constraint
name. For update conflicts, this is the column
group name.

SEQUENCE_NO NUMBER NOT
NULL

The order that resolution methods are applied,
with 1 applied first.

METHOD_NAME VARCHAR2(80) NOT
NULL

The name of an Oracle-supplied conflict
resolution method. For user-supplied
methods, this value is 'user function'.

FUNCTION_NAME VARCHAR2(92) NOT
NULL

For methods of type 'user function', the name
of the user-supplied conflict resolution
method.

PRIORITY_GROUP VARCHAR2(30) - For methods of type 'priority group', the name
of the priority group.

RESOLUTION_COMMENT VARCHAR2(80) - Any user-supplied comments.

Note: The SNAME column is not present in the
USER_REPRESOLUTION view.

ALL_REPRESOLUTION_METHOD

23-34 Oracle Database Advanced Replication Management API Reference

ALL_REPRESOLUTION_METHOD

Lists all of the conflict resolution methods available in the database. Initially, this view
lists the standard methods provided with Advanced Replication. As you create new
user functions and add them as conflict resolution methods for an object in the
database, these functions are added to this view.

Related Views:
■ DBA_REPRESOLUTION_METHOD lists all of the conflict resolution methods

available in the database.

■ USER_REPRESOLUTION_METHOD lists all of the conflict resolution methods
available in the database.

Column Data Type NULL Description

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that the resolution method
is designed to resolve: update, uniqueness, or
delete.

METHOD_NAME VARCHAR2(80) NOT
NULL

The name of the Oracle-supplied method, or the
name of the user-supplied method.

Summary of Replication Catalog Views

Replication Catalog Views 23-35

ALL_REPRESOLUTION_STATISTICS

Lists information about successfully resolved update, uniqueness, and delete conflicts
for all replicated tables accessible to the current user. These statistics are gathered for a
table only if you have called the DBMS_REPCAT.REGISTER_STATISTICS procedure.

Related Views:
■ DBA_REPRESOLUTION_STATISTICS lists information about successfully

resolved update, uniqueness, and delete conflicts for all replicated tables in the
database.

■ USER_REPRESOLUTION_STATISTICS lists information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables owned
by the current user.

Column Data Type NULL Description

SNAME VARCHAR2(30) NOT
NULL

The name of the replicated schema.

ONAME VARCHAR2(30) NOT
NULL

The name of the replicated table.

CONFLICT_TYPE VARCHAR2(10) - The type of conflict that was successfully
resolved: delete, uniqueness, or update.

REFERENCE_NAME VARCHAR2(30) NOT
NULL

The object to which the conflict resolution
method applies. For delete conflicts, this is the
table name. For uniqueness conflicts, this is
the constraint name. For update conflicts, this
is the column group name.

METHOD_NAME VARCHAR2(80) NOT
NULL

The name of an Oracle-supplied conflict
resolution method. For user-supplied
methods, this value is 'user function'.

FUNCTION_NAME VARCHAR2(92) - For methods of type 'user function', the name
of the user supplied conflict resolution
method.

PRIORITY_GROUP VARCHAR2(30) - For methods of type 'priority group', the name
of the priority group.

RESOLVED_DATE DATE NOT
NULL

Date on which the conflict for this row was
resolved.

PRIMARY_KEY_VALUE VARCHAR2(2000) NOT
NULL

A concatenated representation of the row's
primary key.

Note: The SNAME column is not present in the
USER_REPRESOLUTION_STATISTICS view.

ALL_REPSITES

23-36 Oracle Database Advanced Replication Management API Reference

ALL_REPSITES

Lists the members of each replication group accessible to the current user.

Related Views:
■ DBA_REPSITES lists the members of each replication group in the database.

■ USER_REPSITES lists the members of each replication group owned by the
current user.

The DBA_REPSITES view has the following additional columns:

Column Data Type NULL Description

GNAME VARCHAR2(30) NOT
NULL

The name of the replication group.

DBLINK VARCHAR2(128) NOT
NULL

The database link to a master site for this
replication group.

MASTERDEF VARCHAR2(1) - Indicates which of the DBLINKs is the master
definition site.

SNAPMASTER VARCHAR2(1) - Used by materialized view sites to indicate
which of the DBLINKs to use when refreshing.

MASTER_COMMENT VARCHAR2(80) - User-supplied comments.

MASTER VARCHAR2(1) - If Y then the site is a master site for the
replicated group.

If N then the site is not a master site for the
replicated group.

GROUP_OWNER VARCHAR2(30) NOT
NULL

Owner of the replication group.

Column Data Type NULL Description

PROP_UPDATES NUMBER - Encoding of propagating technique for master
site.

MY_DBLINK VARCHAR2(1) - Used to detect problems after import. If Y then
the DBLINK is the global name.

Summary of Replication Catalog Views

Replication Catalog Views 23-37

DBA_REPCAT_REFRESH_TEMPLATES

This view contains global information about each deployment template in the
database, such as the template name, template owner, what refresh group the template
objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_REPCAT_REFRESH_TEMPLATES. For
detailed information about this view and its columns, see
ALL_REPCAT_REFRESH_TEMPLATES on page 23-6.

DBA_REPCAT_TEMPLATE_OBJECTS

23-38 Oracle Database Advanced Replication Management API Reference

DBA_REPCAT_TEMPLATE_OBJECTS

The DBA_REPCAT_TEMPLATE_OBJECTS view contains the individual object
definitions that are contained in all deployment templates in the database. Individual
objects are added to a template by specifying the target template in
REFRESH_TEMPLATE_NAME.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_OBJECTS. For detailed
information about this view and its columns, see
ALL_REPCAT_TEMPLATE_OBJECTS on page 23-7.

Summary of Replication Catalog Views

Replication Catalog Views 23-39

DBA_REPCAT_TEMPLATE_PARMS

Parameters defined in the object DDL for all templates in the database are stored in the
DBA_REPCAT_TEMPLATE_PARMS table. When an object is added to a template, the
DDL is examined for variables. Any found parameters are automatically added to this
view.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_PARMS. For detailed
information about this view and its columns, see ALL_REPCAT_TEMPLATE_PARMS
on page 23-9.

DBA_REPCAT_TEMPLATE_SITES

23-40 Oracle Database Advanced Replication Management API Reference

DBA_REPCAT_TEMPLATE_SITES

The DBA_REPCAT_TEMPLATE_SITES view provides the DBA with information about
the current status of template instantiation for all the sites of a enterprise network.
This view contains information about instantiation sites for all deployment templates
in the database. Specifically, the DBA can monitor the installation and deletion of
templates at specific sites. Its columns are the same as those in
ALL_REPCAT_TEMPLATE_SITES on page 23-11.

Summary of Replication Catalog Views

Replication Catalog Views 23-41

DBA_REPCAT_USER_AUTHORIZATIONS

The DBA_REPCAT_USER_AUTHORIZATIONS view lists the authorized users for all
templates in the database specified for private use. Users listed in this view have the
ability to instantiate the specified template. Users not contained in this view cannot
instantiate the template. Its columns are the same as those in
ALL_REPCAT_USER_AUTHORIZATIONS on page 23-12.

DBA_REPCAT_USER_PARM_VALUES

23-42 Oracle Database Advanced Replication Management API Reference

DBA_REPCAT_USER_PARM_VALUES

The DBA_REPCAT_USER_PARM_VALUES view describes the template parameters for
all deployment templates in the database. The DBA has the option of building a table
of user parameters prior to distributing the template for instantiation. When a
template is instantiated by a specified user, the values stored in the
DBA_REPCAT_USER_PARM_VALUES table for the specified user are used
automatically.

Its columns are the same as those in ALL_REPCAT_USER_PARM_VALUES. For detailed
information about this view and its columns, see
ALL_REPCAT_USER_PARM_VALUES on page 23-13.

Summary of Replication Catalog Views

Replication Catalog Views 23-43

DBA_REPCATLOG

The DBA_REPCATLOG view at each master site contains the interim status of any
asynchronous administrative requests and any error messages generated. All
messages encountered while executing a request are eventually transferred to the
DBA_REPCATLOG view at the master site that originated the request. If an
administrative request completes without error, then ultimately all traces of this
request are removed from the DBA_REPCATLOG view. Its columns are the same as
those in ALL_REPCATLOG on page 23-15.

DBA_REPCOLUMN

23-44 Oracle Database Advanced Replication Management API Reference

DBA_REPCOLUMN

The DBA_REPCOLUMN view lists the replicated columns for all the tables in the
database. Its columns are the same as those in ALL_REPCOLUMN on page 23-16.

Summary of Replication Catalog Views

Replication Catalog Views 23-45

DBA_REPCOLUMN_GROUP

The DBA_REPCOLUMN_GROUP view lists all the column groups each replicated table in
the database. Its columns are the same as those in ALL_REPCOLUMN_GROUP on
page 23-18.

DBA_REPCONFLICT

23-46 Oracle Database Advanced Replication Management API Reference

DBA_REPCONFLICT

The DBA_REPCONFLICT view displays the name of each table in the database on
which a conflict resolution method has been defined and the type of conflict that the
method is used to resolve. Its columns are the same as those in ALL_REPCONFLICT
on page 23-19.

Summary of Replication Catalog Views

Replication Catalog Views 23-47

DBA_REPDDL

The DBA_REPDDL contains the DDL for each replication object in the database. Its
columns are the same as those in ALL_REPDDL on page 23-20.

DBA_REPEXTENSIONS

23-48 Oracle Database Advanced Replication Management API Reference

DBA_REPEXTENSIONS

The DBA_REPEXTENSIONS view contains information about current operations that
are adding new master sites to a master group without quiescing the master group.

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-3 for information about the procedure
that adds new master sites to a replication environment

Column Data Type NULL Description

EXTENSION_ID RAW(16) NOT
NULL

The identifier for a current pending request
to add master databases to a master group
without quiesce.

REQUEST VARCHAR2(15) - Extension request type. Currently, the only
possible value is ADD_NEW_MASTERS, which
indicates a request to add new master sites to
a master group without quiescing.

MASTERDEF VARCHAR2(128) - The global name of the master definition site
of the master groups to which new master
sites are being added.

EXPORT_REQUIRED VARCHAR2(3) - YES indicates that one or more new master
sites will be added using export/import of
either the entire database or at the table level.

NO indicates that all new master sites will be
added using change-based recovery.

REPCATLOG_ID NUMBER - Identifier of replication catalog records
related to a replication extension, on which
the master definition site is waiting. This
value is only meaningful at the master
definition site.

EXTENSION_STATUS VARCHAR2(13) - Status of each replication extension. This
value is only meaningful at the master
definition site.

The possible values are:

READY: The extension request has been
created and is ready.

STOPPING: The new master sites have been
added to the master group and the master
definition site is attempting to stop
propagation from existing masters to new
master sites and to the master definition site.

EXPORTING: The propagation of deferred
transactions has been stopped from existing
master sites to new master sites and to the
master definition site. The master definition
site is waiting for the export to finish.

INSTANTIATING: The
DBMS_REPCAT.RESUME_PROPAGATION_TO
_MDEF procedure has been invoked (if
export was used), and the master definition
site is waiting for the new masters to
instantiate.

ERROR: An error occurred during the
execution of this extension request.

Summary of Replication Catalog Views

Replication Catalog Views 23-49

FLASHBACK_SCN NUMBER - The system change number (SCN) that must
be used during export or change-based
recovery when the new master sites are
added. The new master sites must be
consistent with the SCN listed.

BREAK_TRANS_TO_MASTERDEF VARCHAR2(3) - This value is meaningful only if
EXPORT_REQUIRED is TRUE.

If BREAK_TRANS_TO_MASTERDEF is TRUE,
then existing masters can continue to
propagate their deferred transactions to the
master definition site for replication groups
that are not adding master sites. Deferred
transactions for replication groups that are
adding master sites cannot be propagated
until the export completes.

If BREAK_TRANS_TO_MASTERDEF is FALSE,
then existing masters cannot propagate any
deferred transactions to the master definition
site.

BREAK_TRANS_TO_NEW_MASTE
RS

VARCHAR2(3) - If BREAK_TRANS_TO_NEW_MASTERS is
TRUE, then existing master sites can continue
to propagate deferred transactions to the
new master sites for replication groups that
are not adding master sites.

If BREAK_TRANS_TO_NEW_MASTERS is
FALSE, then propagation of deferred
transaction queues to the new masters is
disabled.

PERCENTAGE_FOR_CATCHUP_M
DEF

NUMBER - This value is meaningful only if
BREAK_TRANS_TO_MASTERDEF is TRUE.

The percentage of propagation resources that
should be used for catching up propagation
to the master definition site.

CYCLE_SECONDS_MDEF NUMBER - This value is meaningful when
PERCENTAGE_FOR_CATCHUP_MDEF is both
meaningful and is a value between 10 and
90, inclusive. In this case, propagation to the
master definition site alternates between
replication groups that are not being
extended and replication groups that are
being extended, with one push to each
during each cycle. This value indicates the
length of the cycle in seconds.

Column Data Type NULL Description

DBA_REPEXTENSIONS

23-50 Oracle Database Advanced Replication Management API Reference

PERCENTAGE_FOR_CATCHUP_N
EW

NUMBER - This value is meaningful only if
BREAK_TRANS_TO_NEW_MASTERS is TRUE.

The percentage of propagation resources that
should be used for catching up propagation
to new master sites.

CYCLE_SECONDS_NEW NUMBER - This value is meaningful when
PERCENTAGE_FOR_CATCHUP_NEW is both
meaningful and is a value between 10 and
90, inclusive. In this case, propagation to a
new master alternates between replication
groups that are not being extended and
replication groups that are being extended,
with one push to each during each cycle.
This value indicates the length of the cycle in
seconds.

Column Data Type NULL Description

Summary of Replication Catalog Views

Replication Catalog Views 23-51

DBA_REPGENOBJECTS

The DBA_REPGENOBJECTS view describes each object in the database that was
generated to support replication. Its columns are the same as those in
ALL_REPGENOBJECTS on page 23-21.

DBA_REPGROUP

23-52 Oracle Database Advanced Replication Management API Reference

DBA_REPGROUP

The DBA_REPGROUP view describes all of the replication groups in the database. The
members of each replication group are listed in a different view, DBA_REPOBJECT. The
DBA_REPGROUP view's columns are the same as those in ALL_REPGROUP on
page 23-22.

Summary of Replication Catalog Views

Replication Catalog Views 23-53

DBA_REPGROUP_PRIVILEGES

The DBA_REPGROUP_PRIVILEGES view contains information about the users who are
registered for privileges in replication groups. Shows all replication groups in the
database. Its columns are the same as those in ALL_REPGROUP_PRIVILEGES on
page 23-23.

DBA_REPGROUPED_COLUMN

23-54 Oracle Database Advanced Replication Management API Reference

DBA_REPGROUPED_COLUMN

The DBA_REPGROUPED_COLUMN view lists all of the columns that make up the column
groups for each table in the database. Its columns are the same as those in
ALL_REPGROUPED_COLUMN on page 23-24.

Summary of Replication Catalog Views

Replication Catalog Views 23-55

DBA_REPKEY_COLUMNS

The DBA_REPKEY_COLUMNS view describes the replication key column(s) in each table
in the database. Its columns are the same as those in ALL_REPKEY_COLUMNS on
page 23-25.

DBA_REPOBJECT

23-56 Oracle Database Advanced Replication Management API Reference

DBA_REPOBJECT

The DBA_REPOBJECT view contains information about the objects in each replication
group in the database. An object can belong to only one replication group. A
replication group can span multiple schemas. Its columns are the same as those in
ALL_REPOBJECT on page 23-26.

Summary of Replication Catalog Views

Replication Catalog Views 23-57

DBA_REPPARAMETER_COLUMN

In addition to the information contained in the DBA_REPRESOLUTION view, the
DBA_REPPARAMETER_COLUMN view contains information about the columns that are
used to resolve conflicts for each replicated table in the database. These are the column
values that are passed as the list_of_column_names argument to the
ADD_conflicttype_RESOLUTION procedures in the DBMS_REPCAT package. Its
columns are the same as those in ALL_REPPARAMETER_COLUMN on page 23-28.

DBA_REPPRIORITY

23-58 Oracle Database Advanced Replication Management API Reference

DBA_REPPRIORITY

The DBA_REPPRIORITY view contains the value and priority level of each priority
group member in each priority group in the database. Priority group names must be
unique within a replication group. Priority levels and values must each be unique
within a given priority group. Its columns are the same as those in
ALL_REPPRIORITY on page 23-29.

Summary of Replication Catalog Views

Replication Catalog Views 23-59

DBA_REPPRIORITY_GROUP

The DBA_REPPRIORITY_GROUP view describes the priority group or site priority
group defined for each replication group in the database. Its columns are the same as
those in ALL_REPPRIORITY_GROUP on page 23-30.

DBA_REPPROP

23-60 Oracle Database Advanced Replication Management API Reference

DBA_REPPROP

The DBA_REPPROP view indicates the technique used to propagate operations on each
replicated object to the same object at another master site. These operations might have
resulted from a call to a stored procedure or procedure wrapper, or might have been
issued against a table directly. This view shows all objects in the database. Its columns
are the same as those in ALL_REPPROP on page 23-31.

Summary of Replication Catalog Views

Replication Catalog Views 23-61

DBA_REPRESOL_STATS_CONTROL

The DBA_REPRESOL_STATS_CONTROL view describes statistics collection for conflict
resolutions for all replicated tables in the database. Its columns are the same as those in
ALL_REPRESOL_STATS_CONTROL on page 23-32.

DBA_REPRESOLUTION

23-62 Oracle Database Advanced Replication Management API Reference

DBA_REPRESOLUTION

The DBA_REPRESOLUTION view indicates the methods used to resolve update,
uniqueness, or delete conflicts for each table in the database that is replicated using
row-level replication for a given schema. Its columns are the same as those in
ALL_REPRESOLUTION on page 23-33.

Summary of Replication Catalog Views

Replication Catalog Views 23-63

DBA_REPRESOLUTION_METHOD

The DBA_REPRESOLUTION_METHOD view lists all of the conflict resolution methods
available in the database. Initially, this view lists the standard methods provided with
the advanced replication facility. As you create new user functions and add them as
conflict resolution methods for an object in the database, these functions are added to
this view. Its columns are the same as those in ALL_REPRESOLUTION_METHOD on
page 23-34.

DBA_REPRESOLUTION_STATISTICS

23-64 Oracle Database Advanced Replication Management API Reference

DBA_REPRESOLUTION_STATISTICS

The DBA_REPRESOLUTION_STATISTICS view lists information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables in the
database. These statistics are only gathered for a table if you have called the
DBMS_REPCAT.REGISTER_STATISTICS procedure. The
DBA_REPRESOLUTION_STATISTICS view's columns are the same as those in
ALL_REPRESOLUTION_STATISTICS on page 23-35.

Summary of Replication Catalog Views

Replication Catalog Views 23-65

DBA_REPSITES

The DBA_REPSITES view lists the members of each replication group in the database.

This view has the following additional columns that are not included in the
ALL_REPSITES and USER_REPSITES views:

Except for these additional columns, its columns are the same as those in
ALL_REPSITES on page 23-36.

Column Data Type NULL Description

PROP_UPDATES NUMBER - Encoding of propagating technique for master
site.

MY_DBLINK VARCHAR2(1) - Used to detect problem after import. If Y then
the dblink is the global name.

DBA_REPSITES_NEW

23-66 Oracle Database Advanced Replication Management API Reference

DBA_REPSITES_NEW

The DBA_REPSITES_NEW view lists the new replication sites that you plan to add to
your replication environment.

See Also: "Adding New Master Sites Without Quiescing the
Master Group" on page 7-3 for information about the procedure
that adds new master sites to a replication environment

Column Data Type NULL Description

EXTENSION_ID RAW(16) NOT
NULL

The identifier for a current pending request to
add master databases to a master group
without quiesce.

GOWNER VARCHAR2(30) NOT
NULL

The name of the user who owns the master
group.

GNAME VARCHAR2(30) NOT
NULL

The name of the master group.

DBLINK VARCHAR2(128) NOT
NULL

The database link for a new master site.

FULL_INSTANTIATION VARCHAR2(1) - Y indicates that the new database in DBLINK is
to be added using full database export/import
or change-based recovery.

N indicates that the new database in DBLINK is
to be added using object-level export/import.

MASTER_STATUS VARCHAR2(13) - The instantiation status of a new master site.
This value is only meaningful at the master
definition site.

The possible values are:

READY: The new master site is ready.

INSTANTIATING: The new master site is in
the process of being instantiated.

INSTANTIATED: The new master has been
instantiated and is being prepared for
replication activity. That is, the
DBMS_REPCAT.PREPARE_INSTANTIATED_M
ASTER procedure has been run.

PREPARED: The propagation of deferred
transactions is enabled from the new master
site to other prepared masters, to existing
masters, and to the master definition site. The
new master is now prepared to participate in
the replication environment.

Summary of Replication Catalog Views

Replication Catalog Views 23-67

USER_REPCAT_REFRESH_TEMPLATES

This view contains global information about each deployment template owned by the
current user, such as the template name, template owner, what refresh group the
template objects belong to, and the type of template (private or public).

Its columns are the same as those in ALL_REPCAT_REFRESH_TEMPLATES. For
detailed information about this view and its columns, see
ALL_REPCAT_REFRESH_TEMPLATES on page 23-6.

USER_REPCAT_TEMPLATE_OBJECTS

23-68 Oracle Database Advanced Replication Management API Reference

USER_REPCAT_TEMPLATE_OBJECTS

The USER_REPCAT_TEMPLATE_OBJECTS view contains the individual object
definitions that are contained in each deployment template owned by the current user.
Individual objects are added to a template by specifying the target template in
REFRESH_TEMPLATE_NAME.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_OBJECTS. For detailed
information about this view and its columns, see
ALL_REPCAT_TEMPLATE_OBJECTS on page 23-7.

Summary of Replication Catalog Views

Replication Catalog Views 23-69

USER_REPCAT_TEMPLATE_PARMS

Parameters defined in the object DDL for all templates owned by the current user are
stored in the USER_REPCAT_TEMPLATE_PARMS table. When an object is added to a
template, the DDL is examined for variables; any found parameters are automatically
added to this view.

Its columns are the same as those in ALL_REPCAT_TEMPLATE_PARMS. For detailed
information about this view and its columns, see ALL_REPCAT_TEMPLATE_PARMS
on page 23-9.

USER_REPCAT_TEMPLATE_SITES

23-70 Oracle Database Advanced Replication Management API Reference

USER_REPCAT_TEMPLATE_SITES

The USER_REPCAT_TEMPLATE_SITES view provides the user with information
about the current status of template instantiation among the sites of a enterprise
network. This view contains information about instantiation sites for deployment
templates that are owned by the current user. Specifically, the user can monitor the
installation and deletion of templates at specific sites. Its columns are the same as
those in ALL_REPCAT_TEMPLATE_SITES on page 23-11.

Summary of Replication Catalog Views

Replication Catalog Views 23-71

USER_REPCAT_USER_AUTHORIZATION

The USER_REPCAT_USER_AUTHORIZATION view lists the authorized users for all of
the templates that are owned by the current user and specified for private use. Users
listed in this view have the ability to instantiate the specified template. Users not
contained in this view cannot instantiate the template. Its columns are the same as
those in ALL_REPCAT_USER_AUTHORIZATIONS on page 23-12.

USER_REPCAT_USER_PARM_VALUES

23-72 Oracle Database Advanced Replication Management API Reference

USER_REPCAT_USER_PARM_VALUES

The USER_REPCAT_USER_PARM_VALUES view describes the template parameters for
all deployment templates owned by the current user. The DBA has the option of
building a table of user parameters prior to distributing the template for instantiation.
When a template is instantiated by a specified user, the values stored in the
USER_REPCAT_USER_PARM_VALUES view for the specified user are used
automatically.

Its columns are the same as those in ALL_REPCAT_USER_PARM_VALUES. For detailed
information about this view and its columns, see
ALL_REPCAT_USER_PARM_VALUES on page 23-13.

Summary of Replication Catalog Views

Replication Catalog Views 23-73

USER_REPCATLOG

The USER_REPCATLOG view at each master site contains the interim status of any
asynchronous administrative requests and any error messages generated. All
messages encountered while executing a request are eventually transferred to the
USER_REPCATLOG view at the master site that originated the request. If an
administrative request completes without error, then ultimately all traces of this
request are removed from the USER_REPCATLOG view.

This view contains asynchronous administrative requests and error messages that are
owned by the current user. Its columns are the same as those in ALL_REPCATLOG on
page 23-15.

USER_REPCOLUMN

23-74 Oracle Database Advanced Replication Management API Reference

USER_REPCOLUMN

The USER_REPCOLUMN view lists the replicated columns for all the tables owned by
the current user. Its columns are the same as those in ALL_REPCOLUMN on
page 23-16.

Summary of Replication Catalog Views

Replication Catalog Views 23-75

USER_REPCOLUMN_GROUP

The USER_REPCOLUMN_GROUP view lists the column groups for each replicated table
owned by the current user. Its columns are the same as those in
ALL_REPCOLUMN_GROUP on page 23-18.

Note: The SNAME column is not present in the
USER_REPCOLUMN_GROUP view. This column is available in the
ALL_REPCOLUMN_GROUP and DBA_REPCOLUMN_GROUP views.

USER_REPCONFLICT

23-76 Oracle Database Advanced Replication Management API Reference

USER_REPCONFLICT

The USER_REPCONFLICT view displays the name of each table owned by the current
user on which a conflict resolution method has been defined and the type of conflict
that the method is used to resolve. Its columns are the same as those in
ALL_REPCONFLICT on page 23-19.

Note: The SNAME column is not present in the
USER_REPCONFLICT view. This column is available in the
ALL_REPCONFLICT and DBA_REPCONFLICT views.

Summary of Replication Catalog Views

Replication Catalog Views 23-77

USER_REPDDL

The USER_REPDDL contains the DDL for each replication object owned by the current
user. Its columns are the same as those in ALL_REPDDL on page 23-20.

USER_REPGENOBJECTS

23-78 Oracle Database Advanced Replication Management API Reference

USER_REPGENOBJECTS

The USER_REPGENOBJECTS view describes each object owned by the current user
that was generated to support replication. Its columns are the same as those in
ALL_REPGENOBJECTS on page 23-21.

Summary of Replication Catalog Views

Replication Catalog Views 23-79

USER_REPGROUP

The USER_REPGROUP view describes all of the replication groups owned by the
current user. The members of each replication group are listed in a different view,
USER_REPOBJECT. The USER_REPGROUP view's columns are the same as those in
ALL_REPGROUP on page 23-22.

USER_REPGROUP_PRIVILEGES

23-80 Oracle Database Advanced Replication Management API Reference

USER_REPGROUP_PRIVILEGES

The USER_REPGROUP_PRIVILEGES view contains information about the users who
are registered for privileges in replication groups. Shows only those replication groups
owned by the current user. Its columns are the same as those in
ALL_REPGROUP_PRIVILEGES on page 23-23.

Summary of Replication Catalog Views

Replication Catalog Views 23-81

USER_REPGROUPED_COLUMN

The USER_REPGROUPED_COLUMN view lists all of the columns that make up the
column groups for each table. Its columns are the same as those in
ALL_REPGROUPED_COLUMN on page 23-24.

Note: The SNAME column is not present in the
USER_REPGROUPED_COLUMN view. This column is available in the
ALL_REPGROUPED_COLUMN and DBA_REPGROUPED_COLUMN
views.

USER_REPKEY_COLUMNS

23-82 Oracle Database Advanced Replication Management API Reference

USER_REPKEY_COLUMNS

The USER_REPKEY_COLUMNS view describes the replication key column(s) in each
table owned by the current user. Its columns are the same as those in
ALL_REPKEY_COLUMNS on page 23-25.

Summary of Replication Catalog Views

Replication Catalog Views 23-83

USER_REPOBJECT

The USER_REPOBJECT view contains information about the objects owned by the
current user in each replication group. An object can belong to only one replication
group. A replication group can span multiple schemas. Its columns are the same as
those in ALL_REPOBJECT on page 23-26.

USER_REPPARAMETER_COLUMN

23-84 Oracle Database Advanced Replication Management API Reference

USER_REPPARAMETER_COLUMN

In addition to the information contained in the USER_REPRESOLUTION view, the
USER_REPPARAMETER_COLUMN view contains information about the columns that are
used to resolve conflicts for each replicated table owned by the current user. These are
the column values that are passed as the list_of_column_names argument to the
ADD_conflicttype_RESOLUTION procedures in the DBMS_REPCAT package. Its
columns are the same as those in ALL_REPPARAMETER_COLUMN on page 23-28.

Note: The SNAME column is not present in the
USER_REPPARAMETER_COLUMN view. This column is available in
the ALL_REPPARAMETER_COLUMN and
DBA_REPPARAMETER_COLUMN views.

Summary of Replication Catalog Views

Replication Catalog Views 23-85

USER_REPPRIORITY

The USER_REPPRIORITY view contains the value and priority level of each priority
group member in each priority group owned by the current user. Priority group names
must be unique within a replication group. Priority levels and values must each be
unique within a given priority group. Its columns are the same as those in
ALL_REPPRIORITY on page 23-29.

Note: The SNAME column is not present in the
USER_REPPRIORITY view. This column is available in the
ALL_REPPRIORITY and DBA_REPPRIORITY views.

USER_REPPRIORITY_GROUP

23-86 Oracle Database Advanced Replication Management API Reference

USER_REPPRIORITY_GROUP

The USER_REPPRIORITY_GROUP view describes the priority group or site priority
group defined for each replication group owned by the current user. Its columns are
the same as those in ALL_REPPRIORITY_GROUP on page 23-30.

Summary of Replication Catalog Views

Replication Catalog Views 23-87

USER_REPPROP

The USER_REPPROP view indicates the technique used to propagate operations on
each replicated object to the same object at another master site. These operations might
have resulted from a call to a stored procedure or procedure wrapper, or might have
been issued against a table directly. This view shows objects owned by the current
user. Its columns are the same as those in ALL_REPPROP on page 23-31.

USER_REPRESOL_STATS_CONTROL

23-88 Oracle Database Advanced Replication Management API Reference

USER_REPRESOL_STATS_CONTROL

The USER_REPRESOL_STATS_CONTROL view describes statistics collection for
conflict resolutions for all replicated tables owned by the current user. Its columns are
the same as those in ALL_REPRESOL_STATS_CONTROL on page 23-32.

Note: The SNAME column is not present in the
USER_REPRESOL_STATS_CONTROL view. This column is available
in the ALL_REPRESOL_STATS_CONTROL and
DBA_REPRESOL_STATS_CONTROL views.

Summary of Replication Catalog Views

Replication Catalog Views 23-89

USER_REPRESOLUTION

The USER_REPRESOLUTION view indicates the methods used to resolve update,
uniqueness, or delete conflicts for each table owned by the current user that is
replicated using row-level replication for a given schema. Its columns are the same as
those in ALL_REPRESOLUTION on page 23-33.

Note: The SNAME column is not present in the
USER_REPREPRESOLUTION view. This column is available in the
ALL_REPREPRESOLUTION and DBA_REPREPRESOLUTION views.

USER_REPRESOLUTION_METHOD

23-90 Oracle Database Advanced Replication Management API Reference

USER_REPRESOLUTION_METHOD

The USER_REPRESOLUTION_METHOD view lists all of the conflict resolution methods
available in the database. Initially, this view lists the standard methods provided with
the advanced replication facility. As you create new user functions and add them as
conflict resolution methods for an object in the database, these functions are added to
this view. Its columns are the same as those in ALL_REPRESOLUTION_METHOD on
page 23-34.

Summary of Replication Catalog Views

Replication Catalog Views 23-91

USER_REPRESOLUTION_STATISTICS

The USER_REPRESOLUTION_STATISTICS view lists information about successfully
resolved update, uniqueness, and delete conflicts for all replicated tables owned by the
current user. These statistics are only gathered for a table if you have called the
DBMS_REPCAT.REGISTER_STATISTICS procedure. The
USER_REPRESOLUTION_STATISTICS view's columns are the same as those in
ALL_REPRESOLUTION_STATISTICS on page 23-35.

Note: The SNAME column is not present in the
USER_REPRESOLUTION_STATISTICS view. This column is
available in the ALL_REPRESOLUTION_STATISTICS and
DBA_REPRESOLUTION_STATISTICS views.

USER_REPSITES

23-92 Oracle Database Advanced Replication Management API Reference

USER_REPSITES

The USER_REPSITES view lists the members of each replication group owned by the
current user. Its columns are the same as those in ALL_REPSITES on page 23-36.

Replication Dynamic Performance Views 24-1

24
Replication Dynamic Performance Views

All Oracle installations include the dynamic performance views, often referred to as
V$ views, described in this chapter. These views are used by master sites and
materialized view sites to determine such information as which materialized views are
being refreshed currently and statistics about the deferred transaction queue.

This chapter contains these topics:

■ V$MVREFRESH

■ V$REPLPROP

■ V$REPLQUEUE

See Also: Chapter 10, "Monitoring a Replication Environment"

V$MVREFRESH

24-2 Oracle Database Advanced Replication Management API Reference

V$MVREFRESH

Contains information about the materialized views currently being refreshed.

Column Data Type Description

SID NUMBER Session identifier.

SERIAL# NUMBER Session serial number, which is used to identify uniquely a
session's objects. Guarantees that session-level commands
are applied to the correct session objects if the session ends
and another session begins with the same session ID.

CURRMVOWNER VARCHAR2(31) Owner of the materialized view currently being refreshed.
The materialized view resides in this user's schema.

CURRMVNAME VARCHAR2(31) Name of the materialized view currently being refreshed.

V$REPLPROP

Replication Dynamic Performance Views 24-3

V$REPLPROP

Contains information about the parallel propagation currently in progress at the
replication site. Use this view to determine which transactions are currently being
propagated, the number of calls propagated in each transaction, and the current
activity of the parallel propagation processes or parallel propagation coordinator
process.

Note: This view only contains data when deferred transactions are
being pushed using parallel propagation at the current site. The
parallelism parameter must be set to 1 or higher in the
DBMS_DEFER_SYS.PUSH function for a push to use parallel
propagation. Otherwise, the push uses serial propagation, and no
data appears in this view during the push.

Column Data Type Description

SID NUMBER Session identifier.

SERIAL# NUMBER Session serial number. Used to identify uniquely a
session's objects. Guarantees that session-level commands
are applied to the correct session objects if the session ends
and another session begins with the same session ID.

NAME VARCHAR2(71) Replication Parallel Prop Slave n indicates that
the process is active, either waiting, pushing deferred
transactions, purging metadata, or creating an error
transaction.

Replication Parallel Prop Coordinator indicates
that the coordinator process is active, either waiting,
sleeping, or scheduling processes to perform operations.

The Replication Parallel Prop Coordinator reads
transactions from the deferred transaction queue and
assigns them to the Replication Parallel Prop
Slaves. Then, the processes propagate the transactions to
the destination site. When the processes push transactions
in a push session, the processes remain active until the
push session completes, even if there are no more
transactions to push.

DBLINK VARCHAR2(128) Database link on which this replication session is
propagating.

V$REPLPROP

24-4 Oracle Database Advanced Replication Management API Reference

STATE VARCHAR2(12) WAIT indicates that either the slave or coordinator process
is waiting for an event (that is, a message).

SLEEP indicates that the coordinator process is sleeping
for the duration of the delay_seconds setting. You set
delay_seconds with the SCHEDULE_PUSH procedure in
the DBMS_DEFER_SYS package.

PUSH indicates that the slave process is pushing
transactions from the deferred transaction queue to the
remote site.

PURGE indicates that the slave process is purging metadata
related to successfully applied transactions from the
remote site.

CREATE ERROR indicates that the slave process is creating
an error transaction. In this case, an error or a conflict
occurred while the slave was pushing deferred
transactions to the remote site.

SCHEDULE TXN indicates that the coordinator process is
determining the order that transactions are applied and
assigning slave processes to execute the transactions.

XID VARCHAR2(22) If the session is a slave session, then indicates the
transaction id of the transaction that the slave is currently
propagating.

SEQUENCE NUMBER If the process is a slave process, then the sequence number
of the calls propagated in the current operation, if relevant.
Each transaction must process one or more calls, and the
value of SEQUENCE starts at zero and increases as each call
is processed. So, the SEQUENCE value shows the call that is
currently being processed in each transaction. This value
increases until the slave has processed all of the calls in a
transaction.

Column Data Type Description

V$REPLQUEUE

Replication Dynamic Performance Views 24-5

V$REPLQUEUE

Contains statistics about the replication deferred transactions queue. All values are
stored since the start of the current database instance.

Column Data Type Description

TXNS_ENQUEUED NUMBER Number of transactions enqueued in the deferred
transactions queue.

CALLS_ENQUEUED NUMBER Number of calls enqueued into the deferred transactions
queue.

TXNS_PURGED NUMBER Number of transactions purged from the deferred
transactions queue.

LAST_ENQUEUE_TIME DATE Date when the last transaction was enqueued into the
deferred transaction queue. NULL if no transactions have
been enqueued into the deferred transaction queue since
the instance started.

LAST_PURGE_TIME DATE Date when the last transaction was purged from the
deferred transaction queue. NULL if no transactions have
been purged from the deferred transaction queue since the
instance started.

V$REPLQUEUE

24-6 Oracle Database Advanced Replication Management API Reference

Deferred Transaction Views 25-1

25
Deferred Transaction Views

Oracle provides several views for you to use when administering deferred
transactions. These views provide information about each deferred transaction, such
as the transaction destinations, the deferred calls that make up the transactions, and
any errors encountered during attempted execution of the transaction.

This chapter contains these topics:

■ DEFCALL

■ DEFCALLDEST

■ DEFDEFAULTDEST

■ DEFERRCOUNT

■ DEFERROR

■ DEFLOB

■ DEFPROPAGATOR

■ DEFSCHEDULE

■ DEFTRAN

■ DEFTRANDEST

Caution: You should not modify the tables directly. Instead, use
the procedures provided in the DBMS_DEFER and
DBMS_DEFER_SYS packages.

See Also: Chapter 10, "Monitoring a Replication Environment"

DEFCALL

25-2 Oracle Database Advanced Replication Management API Reference

DEFCALL

Records all deferred remote procedure calls.

For calls placed in the queue using asynchronous replication, Oracle uses null
compression for column objects and object tables that contain three or more
consecutive nulls. Therefore, this view might show fewer attributes than the total
number of attributes in a column object and fewer columns than the total number for
an object table. For example, null compression can cause a column object with eight
attributes to show only five attributes.

Null compression does not apply to error transactions.

Column Data Type NULL Description

CALLNO NUMBER - The unique ID of a call within a transaction.

DEFERRED_TRAN_ID VARCHAR2(30) - The unique ID of the associated transaction.

SCHEMANAME VARCHAR2(30) - The schema name of the deferred call.

PACKAGENAME VARCHAR2(30) - The package name of the deferred call. For a
replicated table, this can refer to the table
name.

PROCNAME VARCHAR2(30) - The procedure name of the deferred call. For a
replicated table, this can refer to an operation
name.

ARGCOUNT NUMBER - The number of arguments in the deferred call.

DEFCALLDEST

Deferred Transaction Views 25-3

DEFCALLDEST

Lists the destinations for each deferred remote procedure call.

Column Data Type NULL Description

CALLNO NUMBER NOT
NULL

Unique ID of a call within a transaction.

DEFERRED_TRAN_ID VARCHAR2(30) NOT
NULL

Corresponds to the DEFERRED_TRAN_ID
column in the DEFTRAN view. Each deferred
transaction is made up of one or more
deferred calls.

DBLINK VARCHAR2(128) NOT
NULL

The fully qualified database name of the
destination database.

DEFDEFAULTDEST

25-4 Oracle Database Advanced Replication Management API Reference

DEFDEFAULTDEST

If you are not using Advanced Replication and do not supply a destination for a
deferred transaction or the calls within that transaction, then Oracle uses the
DEFDEFAULTDEST view to determine the destination databases to which you want to
defer a remote procedure call.

Column Data Type NULL Description

DBLINK VARCHAR2(128) NOT
NULL

The fully qualified database name to which a
transaction is replicated.

DEFERRCOUNT

Deferred Transaction Views 25-5

DEFERRCOUNT

Contains information about the error transactions for a destination.

Column Data Type NULL Description

ERRCOUNT NUMBER - Number of existing transactions that caused
an error for the destination.

DESTINATION VARCHAR2(128) - Database link used to address destination.

DEFERROR

25-6 Oracle Database Advanced Replication Management API Reference

DEFERROR

Contains the ID of each transaction that could not be applied. You can use this ID to
locate the queued calls associated with this transaction. These calls are stored in the
DEFCALL view. You can use the procedures in the DBMS_DEFER_QUERY package to
determine the arguments to the procedures listed in the DEFCALL view.

Column Data Type NULL Description

DEFERRED_TRAN_ID VARCHAR2(22) NOT
NULL

The ID of the transaction causing the error.

ORIGIN_TRAN_DB VARCHAR2(128) - The database originating the deferred
transaction.

ORIGIN_TRAN_ID VARCHAR2(22) - The original ID of the transaction.

CALLNO NUMBER - Unique ID of the call at DEFERRED_TRAN_ID.

DESTINATION VARCHAR2(128) - Database link used to address destination.

START_TIME DATE - Time when the original transaction was
enqueued.

ERROR_NUMBER NUMBER - Oracle error number.

ERROR_MSG VARCHAR2(2000) - Error message text.

RECEIVER VARCHAR2(30) - Original receiver of the deferred transaction.

DEFLOB

Deferred Transaction Views 25-7

DEFLOB

Contains the LOB parameters to deferred remote procedure calls (RPCs).

Column Data Type NULL Description

ID RAW(16) NOT
NULL

Identifier of the LOB parameter.

DEFERRED_TRAN_ID VARCHAR2(22) - Transaction ID for deferred remote procedure
calls (RPCs) with this LOB parameter.

BLOB_COL BLOB(4000) - The binary LOB parameter.

CLOB_COL CLOB(4000) - The character LOB parameter.

NCLOB_COL NCLOB(4000) - The national character LOB parameter.

DEFPROPAGATOR

25-8 Oracle Database Advanced Replication Management API Reference

DEFPROPAGATOR

Contains information about the local propagator.

Column Data Type NULL Description

USERNAME VARCHAR2(30) NOT
NULL

User name of the propagator.

USERID NUMBER NOT
NULL

User ID of the propagator.

STATUS VARCHAR2(7) - Status of the propagator.

CREATED DATE NOT
NULL

Time when the propagator was registered.

DEFSCHEDULE

Deferred Transaction Views 25-9

DEFSCHEDULE

Contains information about when a job is next scheduled to be executed and also
includes propagation statistics. The propagation statistics are for propagation of
deferred transactions from the current site to the site specified in the DBLINK column.

 To clear the propagation statistics for a remote site and start fresh, use the
CLEAR_PROP_STATISTICS procedure in the DBMS_DEFER_SYS package.

Note: The statistics in this view are populated only if parallel
propagation is used with a database link. To use parallel
propagation, set the parallelism parameter to 1 or greater when
you run the SCHEDULE_PUSH procedure in the DBMS_DEFER_SYS
package.

See Also:

■ Oracle Database Advanced Replication for information about parallel
propagation

■ "SCHEDULE_PUSH Procedure" on page 14-22

■ "CLEAR_PROP_STATISTICS Procedure" on page 14-5

Column Data Type NULL Description

DBLINK VARCHAR2(128) NOT
NULL

Fully qualified path name to the master site
for which you have scheduled periodic
execution of deferred remote procedure calls.

JOB NUMBER - Number assigned to job when you created it
by calling
DBMS_DEFER_SYS.SCHEDULE_PUSH. Query
the WHAT column of the USER_JOBS view to
determine what is executed when the job is
run.

INTERVAL VARCHAR2(200) - Function used to calculate the next time to
push the deferred transaction queue to
destination.

NEXT_DATE DATE - Next date that job is scheduled to be executed.

LAST_DATE DATE - Last time the queue was pushed (or attempted
to push) remote procedure calls to this
destination.

DISABLED CHAR(1) - If Y then propagation to destination is
disabled.

If N then propagation to the destination is
enabled.

LAST_TXN_COUNT NUMBER - Number of transactions pushed during last
attempt.

LAST_ERROR_NUMBER NUMBER - Oracle error number from last push.

LAST_ERROR_MESSAGE VARCHAR2(2000) - Error message from last push.

DEFSCHEDULE

25-10 Oracle Database Advanced Replication Management API Reference

CATCHUP RAW(16) NOT
NULL

The extension identifier associated with a new
master site that is being added to a master
group without quiescing the master group. If
there is no extension identifier for a master
site, then the value is 00.

TOTAL_TXN_COUNT NUMBER - Total combined number of successful
transactions and error transactions.

AVG_THROUGHPUT NUMBER - The average number of transactions for each
second that are propagated using parallel
propagation. The transactions include both
successfully applied transactions and error
transactions created on the remote site. Time
that has elapsed when the propagation
coordinator is inactive (sleeping) is included
in the calculation.

AVG_LATENCY NUMBER - If the transaction is successfully applied at the
remote site, then the average number of
seconds between the first call of a transaction
on the current site and the confirmation that
the transaction was applied at the remote site.
The first call begins when the user makes the
first data manipulation language (DML)
change, not when the transaction is
committed.

If the transaction is an error transaction, then
the average number of seconds between the
first call of a transaction on the current site
and the confirmation that the error transaction
is committed on the remote site.

TOTAL_BYTES_SENT NUMBER - Total number of bytes sent, including
replicated data and metadata.

TOTAL_BYTES_RECEIVED NUMBER - Total number of bytes received in propagation
confirmation messages.

TOTAL_ROUND_TRIPS NUMBER - Total number of network round trips
completed to replicate data. A round trip is
one or more consecutively sent messages
followed by one or more consecutively
received messages. So, if site A sends 20
messages to site B and then site B sends one
message to site A, then that is that one round
trip.

TOTAL_ADMIN_COUNT NUMBER - Total number of administrative requests sent
to maintain information about transactions
applied at the receiving site. The receiving site
is the site specified in the DBLINK column.
This special administration is only required
for parallel propagation.

TOTAL_ERROR_COUNT NUMBER - Total number of unresolved conflicts for
which a remote error was created.

Column Data Type NULL Description

DEFSCHEDULE

Deferred Transaction Views 25-11

TOTAL_SLEEP_TIME NUMBER - Total number of seconds the propagation
coordinator was inactive (sleeping). You
control the amount of time that the
propagation coordinator sleeps using the
delay_seconds parameter in the
DBMS_DEFER_SYS.PUSH function.

DISABLED_INTERNALLY_SET VARCHAR2(1) - This value is relevant only if DISABLED is Y.

If DISABLED_INTERNALLY_SET is Y then
propagation to destination was set to disabled
internally by Oracle for propagation
synchronization when adding a new master
site to a master group without quiescing the
master group. Oracle will enable propagation
automatically at a later time.

If DISABLED_INTERNALLY_SET is N then
propagation was not disabled internally.

Column Data Type NULL Description

DEFTRAN

25-12 Oracle Database Advanced Replication Management API Reference

DEFTRAN

Records all deferred transactions in the deferred transactions queue at the current site.

Column Data Type NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) - The transaction ID that enqueued the calls.

DELIVERY_ORDER NUMBER - An identifier that determines the order of
deferred transactions in the queue. The
identifier is derived from the system change
number (SCN) of the originating transaction.

DESTINATION_LIST VARCHAR2(1) - R indicates that the destinations are
determined by the ALL_REPSITES view.

D indicates that the destinations were
determined by the DEFDEFAULTDEST view or
the NODE_LIST argument to the
TRANSACTION or CALL procedures.

START_TIME DATE - The time that the original transaction was
enqueued.

DEFTRANDEST

Deferred Transaction Views 25-13

DEFTRANDEST

Lists the destinations for each deferred transaction in the deferred transactions queue
at the current site.

Column Data Type NULL Description

DEFERRED_TRAN_ID VARCHAR2(30) NOT
NULL

The transaction ID of the transaction to
replicate to the given database link.

DELIVERY_ORDER NUMBER - An identifier that determines the order of
deferred transactions in the queue. The
identifier is derived from the system change
number (SCN) of the originating transaction.

DBLINK VARCHAR2(128) NOT
NULL

The fully qualified database name of the
destination database.

DEFTRANDEST

25-14 Oracle Database Advanced Replication Management API Reference

Materialized View and Refresh Group Views 26-1

26
Materialized View and Refresh Group Views

This chapter lists the following data dictionary views, which provide information
about materialized views and materialized view refresh groups.

ALL_ Views DBA_ Views USER_ Views

ALL_BASE_TABLE_MVIEWS DBA_BASE_TABLE_MVIEWS USER_BASE_TABLE_MVIEWS

 N/A DBA_MVIEW_LOG_FILTER_COLS N/A

ALL_MVIEW_LOGS DBA_MVIEW_LOGS USER_MVIEW_LOGS

ALL_MVIEW_REFRESH_TIMES DBA_MVIEW_REFRESH_TIMES USER_MVIEW_REFRESH_TIMES

ALL_MVIEWS DBA_MVIEWS USER_MVIEWS

 N/A DBA_RCHILD N/A

ALL_REFRESH DBA_REFRESH USER_REFRESH

ALL_REFRESH_CHILDREN DBA_REFRESH_CHILDREN USER_REFRESH_CHILDREN

ALL_REGISTERED_MVIEWS DBA_REGISTERED_MVIEWS USER_REGISTERED_MVIEWS

 N/A DBA_RGROUP N/A

See Also:

■ Oracle Database Reference for more information about these
views

■ Chapter 10, "Monitoring a Replication Environment" for
example queries that use some of these views

26-2 Oracle Database Advanced Replication Management API Reference

Part V
Appendixes

Part V contains the following appendixes:

■ Appendix A, "Security Options"

■ Appendix B, "User-Defined Conflict Resolution Methods"

Security Options A-1

A
Security Options

This appendix describes security options for multimaster and materialized view
replication environments.

This appendix contains these topics:

■ Security Setup for Multimaster Replication

■ Security Setup for Materialized View Replication

Security Setup for Multimaster Replication
Nearly all users should find it easiest to use the configuration wizards in the
Advanced Replication interface in Oracle Enterprise Manager when configuring
multimaster replication security. However, in certain cases you might need to use the
replication management API to perform these setup operations.

To configure a replication environment, the database administrator must connect with
DBA privileges to grant the necessary privileges to the replication administrator.

First set up user accounts at each master site with the appropriate privileges to
configure and maintain the replication environment and to propagate and apply
replicated changes. You must also define links for users at each master site.

In addition to the end users who access replicated objects, there are three special
categories of "users" in a replication environment:

■ Replication administrators, who are responsible for configuring and maintaining a
replication environment.

■ Propagators, who are responsible for propagating deferred transactions.

■ Receivers at remote sites, who are responsible for applying these transactions.

Typically, a single user acts as administrator, propagator, and receiver. However, you
can have separate users perform each of these functions. You can choose to have a
single, global replication administrator or, if your replication groups do not span
schema boundaries, you might prefer to have separate replication administrators for
different schemas. Note, however, that you can have only one registered propagator
for each database.

Table A–1 on page A-3 describes the necessary privileges that must be assigned to
these specialized accounts. Most privileges needed by these users are granted to them
through calls to the replication management API. You also must grant certain
privileges directly, such as the privileges required to connect to the database and
manage database objects.

Security Setup for Multimaster Replication

A-2 Oracle Database Advanced Replication Management API Reference

Trusted Compared with Untrusted Security
In addition to the different types of users, you also need to determine which type of
security model you will implement: trusted or untrusted. With a trusted security
model, the receiver has access to all local master groups. Because the receiver performs
database activities at the local master site on behalf of the propagator at the remote
site, the propagator also has access to all master groups at the receiver's site.
Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A–1. Even though only Master Groups A
and C exist at Master Site B, the propagator has access to Master Groups A, B, C, and
D at Master Site A because the trusted security model has been used. While this
greatly increases the flexibility of database administration, due to the mobility of
remote database administration, it also increases the chances of a malicious user at a
remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate
privileges for objects as they are added to or removed from a replication environment.

Figure A–1 Trusted Security: Multimaster Replication

Untrusted security assigns only the privileges to the receiver that are required to work
with specified master groups. The propagator, therefore, can only access the specified
master groups that are local to the receiver. Figure A–2 illustrates an untrusted security
model. Because Master Site B contains only Master Groups A and C, the receiver at
Master Site A has been granted privileges for Master Groups A and C only, thereby
limiting the propagator's access at Master Site A.

Figure A–2 Untrusted Security: Multimaster Replication

Master Site A Master Site B

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Master
Group

A

Master
Group

C

re
ce

iv
er

p
ro

p
ag

at
o

r

Master Site A Master Site B

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Master
Group

A

Master
Group

C

re
ce

iv
er

p
ro

p
ag

at
o

r

Security Setup for Multimaster Replication

Security Options A-3

Typically, master sites are considered trusted and therefore the trusted security model
is used. If, however, your remote master sites are untrusted, then you might want to
use the untrusted model and assign your receiver limited privileges. A site might be
considered untrusted, for example, if a consulting shop performs work for multiple
customers. Use the appropriate API call listed for the receiver in Table A–1 to assign
the different users the appropriate privileges.

After you have created these accounts and assigned the appropriate privileges, create
the following private database links, including user name and password between each
site:

■ From the local replication administrator to the remote replication administrator.

■ From the local propagator to the remote receiver.

Assuming you have designated a single user account to act as replication
administrator, propagator, and receiver, you must create N(N-1) links, where N is the
number of master sites in your replication environment.

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and
DBMS_DEFER_SYS.SCHEDULE_PURGE, at each location, to define how frequently you
want to propagate your deferred transaction queue to each remote location, and how
frequently you want to purge this queue. You must call
DBMS_DEFER_SYS.SCHEDULE_PUSH multiple times at each site, once for each remote
location.

A sample script for setting up multimaster replication between hq.example.com and
sales.example.com is shown as follows:

/*--- Create global replication administrator at HQ ---*/
CONNECT system@hq.example.com
ACCEPT password PROMPT 'Enter password for user: ' HIDE
CREATE USER repadmin IDENTIFIED BY &password;
EXECUTE DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA(username => 'repadmin');

/*--- Create global replication administrator at Sales ---*/

Table A–1 Required User Accounts

User Privileges

global replication
administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

schema-level replication
administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_SCHEMA

propagator DBMS_DEFER_SYS.REGISTER_PROPAGATOR

receiver See "REGISTER_USER_REPGROUP Procedure" on page 20-5
for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => 'mastergroupname',
...

Security Setup for Multimaster Replication

A-4 Oracle Database Advanced Replication Management API Reference

CONNECT system@sales.example.com
CREATE USER repadmin IDENTIFIED BY &password;
EXECUTE DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA(username => 'repadmin');

/*--- Create single user to act as both propagator and receiver at HQ ---*/
CONNECT system@hq.example.com
CREATE USER prop_rec IDENTIFIED BY &password;
/*--- Grant privileges necessary to act as propagator ---*/
EXECUTE DBMS_DEFER_SYS.REGISTER_PROPAGATOR(username => 'prop_rec');
/*--- Grant privileges necessary to act as receiver ---*/
BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP(

username => 'prop_rec',
privilege_type => 'receiver',
list_of_gnames => NULL);

END;
/

/*--- Create single user to act as both propagator and receiver at Sales ---*/
CONNECT system@sales.example.com
CREATE USER prop_rec IDENTIFIED BY &password;
/*--- Grant privileges necessary to act as propagator ---*/execute
EXECUTE DBMS_DEFER_SYS.REGISTER_PROPAGATOR(username => 'prop_rec');
/*--- Grant privileges necessary to act as receiver ---*/
BEGIN
 DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP(

username => 'prop_rec',
privilege_type => 'receiver',
list_of_gnames => NULL);

END;
/

/*--- Create public link from HQ to Sales with necessary USING clause ---*/
CONNECT system@hq.example.com
CREATE PUBLIC DATABASE LINK sales.example.com USING 'sales.example.com';

/*--- Create private repadmin to repadmin link ---*/
CONNECT repadmin@hq.example.com
CREATE DATABASE LINK sales.example.com CONNECT TO repadmin
 IDENTIFIED BY &password;

/*--- Schedule replication from HQ to Sales ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH(
 destination => 'sales.example.com',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1);
END;
/

/*--- Schedule purge of def tran queue at HQ ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment => '');
END;

Security Setup for Materialized View Replication

Security Options A-5

/

/*--- Create link from propagator to receiver for scheduled push ---*/
CONNECT prop_rec/prop_rec@hq.example.com
CREATE DATABASE LINK sales.example.com CONNECT TO prop_rec
 IDENTIFIED BY &password;

/*--- Create public link from Sales to HQ with necessary USING clause ---*/
CONNECT system@sales.example.com
CREATE PUBLIC DATABASE LINK hq.example.com USING 'hq.example.com';

/*--- Create private repadmin to repadmin link ---*/
CONNECT repadmin@sales.example.com
CREATE DATABASE LINK hq.example.com CONNECT TO repadmin IDENTIFIED BY &password;

/*--- Schedule replication from Sales to HQ ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PUSH(
 destination => 'hq.example.com',
 interval => 'sysdate + 1/24',
 next_date => sysdate,
 stop_on_error => FALSE,
 parallelism => 1);
END;
/

/*--- Schedule purge of def tran queue at Sales ---*/
BEGIN
 DBMS_DEFER_SYS.SCHEDULE_PURGE(
 next_date => sysdate,
 interval => 'sysdate + 1',
 delay_seconds => 0,
 rollback_segment =>'');
END;
/

/*--- Create link from propagator to receiver for scheduled push ---*/
CONNECT prop_rec/prop_rec@sales.example.com
CREATE DATABASE LINK hq.example.com connect TO prop_rec IDENTIFIED BY &password;

Security Setup for Materialized View Replication
Nearly all users should find it easiest to use the configuration wizards in the
Advanced Replication interface in Oracle Enterprise Manager when configuring
materialized view replication security. However, for certain specialized cases, you
might need to use the replication management API to perform these setup operations.
To configure a replication environment, the database administrator must connect with
DBA privileges to grant the necessary privileges to the replication administrator.

First set up user accounts at each materialized view site with the appropriate
privileges to configure and maintain the replication environment and to propagate
replicated changes. You must also define links for these users to the associated master
site or master materialized view site. You might need to create additional users, or
assign additional privileges to users at the associated master site or master
materialized view site.

In addition to end users who will be accessing replicated objects, there are three special
categories of "users" at a materialized view site:

Security Setup for Materialized View Replication

A-6 Oracle Database Advanced Replication Management API Reference

■ Replication administrators, who are responsible for configuring and maintaining a
replication environment.

■ Propagators, who are responsible for propagating deferred transactions.

■ Refreshers, who are responsible for pulling down changes to the materialized
views from the associated master tables or master materialized views.

Typically, a single user performs each of these functions. However, there might be
situations where you need different users performing these functions. For example,
materialized views can be created by a materialized view site administrator and
refreshed by another end user.

Table A–2 describes the privileges needed to create and maintain a materialized view
site.

In addition to creating the appropriate users at the materialized view site, you might
need to create additional users at the associated master site or master materialized
view site, as well. Table A–3 on on page A-8 describes the privileges need by master
site or master materialized view site users to support a new materialized view site.

Trusted Compared with Untrusted Security
In addition to the different users at the master site or master materialized view site,
you also need to determine which type of security model you will implement: trusted
or untrusted. With a trusted security model, the receiver and proxy materialized view
administrator have access to all local replication groups. The receiver and proxy
materialized view administrator perform database activities at the local master site or
master materialized view site on behalf of the propagator and materialized view
administrator, respectively, at the remote materialized view site. Therefore, the
propagator and materialized view administrator at the remote materialized view site
also have access to all replication groups at the master site or master materialized view
site. Remember that a single receiver is used for all incoming transactions.

For example, consider the scenario in Figure A–3. Even though Materialized View
Groups A and C exist at the materialized view site (based on Master Groups A and C
at the Master Site), the propagator and materialized view administrator have access to
Master Groups A, B, C, and D at the Master Site because the trusted security model
has been used. While this greatly increases the flexibility of database administration,
because the DBA can perform administrative functions at any of these remote sites and
have these changes propagated to the master sites, it also increases the chances of a
malicious user at a remote site viewing or corrupting data at the master site.

Regardless of the security model used, Oracle automatically grants the appropriate
privileges for objects as they are added to or removed from a replication environment.

Table A–2 Required Materialized View Site User Accounts

User Privileges

Materialized view site
replication administrator

DBMS_REPCAT_ADMIN.GRANT_ADMIN_ANY_SCHEMA

Propagator DBMS_DEFER_SYS.REGISTER_PROPAGATOR

Refresher CREATE ANY MATERIALIZED VIEW
ALTER ANY MATERIALIZED VIEW

Security Setup for Materialized View Replication

Security Options A-7

Figure A–3 Trusted Security: Materialized View Replication

Untrusted security assigns only the privileges to the proxy materialized view
administrator and receiver that are required to work with specified replication groups.
The propagator and materialized view administrator, therefore, can only access these
specified replication groups at the Master Site. Figure A–4 illustrates an untrusted
security model with materialized view replication. Because the Materialized View Site
contains Materialized View Groups A and C, access to only Master Groups A and C
are required. Using untrusted security does not allow the propagator or the
materialized view administrator at the Materialized View Site to access Master Groups
B and D at the Master Site.

Figure A–4 Untrusted Security: Materialized View Replication

Typically, materialized view sites are more vulnerable to security breaches and
therefore the untrusted security model is used. There are very few reasons why you
would want to use a trusted security model with your materialized view site and it is
recommended that you use the untrusted security model with materialized view sites.

One reason you might choose to use a trusted security model is if your materialized
view site is considered a master site in every way (security, constant network
connectivity, resources) but is a materialized view only because of data subsetting
requirements. Remember that row and column subsetting are not supported in a
multimaster configuration.

Use the appropriate API calls listed for the proxy materialized view administrator and
receiver in Table A–3 to assign the different users the appropriate privileges.

Master Site Materialized View Site

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

re
ce

iv
er

p
ro

p
ag

at
o

r

Materialized
View

Group
A

Materialized
View

Group
C

Master Site Materialized View Site

Master
Group

A

Master
Group

C

Master
Group

B

Master
Group

D

Materialized
View

Group
A

re
ce

iv
er

p
ro

p
ag

at
o

r

Materialized
View

Group
C

Security Setup for Materialized View Replication

A-8 Oracle Database Advanced Replication Management API Reference

After creating the accounts at both the materialized view and associated master sites
or master materialized view sites, you need to create the following private database
links, including user name and password, from the materialized view site to the
master site or master materialized view site:

■ From the materialized view replication administrator to the proxy materialized
view replication administrator.

■ From the propagator to the receiver.

■ From the refresher to the proxy refresher.

■ From the materialized view owner to the master site or master materialized view
site for refreshes.

Assuming you have designated a single user account to act as materialized view
administrator, propagator, and refresher, you must create one link for each
materialized view site for those functions. You do not need a link from the master site
or master materialized view site to the materialized view site.

Table A–3 Required Master Site or Master Materialized View Site User Accounts

User Privileges

proxy materialized view
site administrator

See "REGISTER_USER_REPGROUP Procedure" on page 20-5
for details.

Trusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'proxy_snapadmin'
list_of_gnames => 'mastergroupname',
...

receiver See "REGISTER_USER_REPGROUP Procedure" on page 20-5
for details.

Trusted:
DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => NULL,
...

Untrusted:

DBMS_REPCAT_ADMIN.REGISTER_USER_REPGROUP
privilege => 'receiver'
list_of_gnames => 'mastergroupname',
...

proxy refresher Trusted:

Grant CREATE SESSION
Grant SELECT ANY TABLE

Untrusted:

Grant CREATE SESSION
Grant SELECT on necessary master tables or master
materialized views and materialized view logs

Security Setup for Materialized View Replication

Security Options A-9

After creating these links, you must call DBMS_DEFER_SYS.SCHEDULE_PUSH and
DBMS_DEFER_SYS.SCHEDULE_PURGE at the materialized view site to define how
frequently you want to propagate your deferred transaction queue to the associated
master site or master materialized view site, and how frequently you want to purge
this queue. You must also call DBMS_REFRESH.REFRESH at the materialized view site
to schedule how frequently to pull changes from the associated master site or master
materialized view site.

Security Setup for Materialized View Replication

A-10 Oracle Database Advanced Replication Management API Reference

User-Defined Conflict Resolution Methods B-1

B
User-Defined Conflict Resolution Methods

This appendix describes how to build user-defined conflict resolution methods and
user-defined conflict notification methods.

This appendix contains these topics:

■ User-Defined Conflict Resolution Methods

■ User-Defined Conflict Notification Methods

■ Viewing Conflict Resolution Information

User-Defined Conflict Resolution Methods
Oracle enables you to write your own conflict resolution or notification methods. A
user-defined conflict resolution method is a PL/SQL function that returns either TRUE
or FALSE. TRUE indicates that the method has successfully resolved all conflicting
modifications for a column group. If the method cannot successfully resolve a conflict,
then it should return FALSE. Oracle continues to evaluate available conflict resolution
methods, in sequence order, until either a method returns TRUE or there are no more
methods available.

If the conflict resolution method raises an exception, then Oracle stops evaluation of
the method, and, if any other methods were provided to resolve the conflict with a
later sequence number, then Oracle does not evaluate them.

Conflict Resolution Method Parameters
The parameters needed by a user-defined conflict resolution method are determined
by the type of conflict being resolved (uniqueness, update, or delete) and the columns
of the table being replicated. All conflict resolution methods take some combination of
old, new, and current column values for the table.

■ The old value represents the value of the row at the initiating site before you made
the change.

■ The new value represents the value of the row at the initiating site after you made
the change.

■ The current value represents the value of the equivalent row at the receiving site.

Note: Recall that Oracle uses the primary key, or the key specified
by SET_COLUMNS, to determine which rows to compare.

User-Defined Conflict Resolution Methods

B-2 Oracle Database Advanced Replication Management API Reference

The conflict resolution function should accept as parameters the values for the
columns specified in the PARAMETER_COLUMN_NAME argument to the
DBMS_REPCAT.ADD_conflicttype_RESOLUTION procedures. The column
parameters are passed to the conflict resolution method in the order listed in the
PARAMETER_COLUMN_NAME argument, or in ascending alphabetical order if you
specified '*' for this argument. When both old and new column values are passed as
parameters (for update conflicts), the old value of the column immediately precedes
the new value.

Resolving Update Conflicts
For update conflicts, a user-defined function should accept the following values for
each column in the column group:

■ Old column value from the initiating site. The mode for this parameter is IN. This
value should not be changed.

■ New column value from the initiating site. The mode for this parameter is IN OUT.
If the function can resolve the conflict successfully, then it should modify the new
column value as needed.

■ Current column value from the receiving site. The mode for this parameter is IN.

The old, new, and current values for a column are received consecutively. The final
argument to the conflict resolution method should be a Boolean flag. If this flag is
FALSE, then it indicates that you have updated the value of the IN OUT parameter
(new) and that you should update the current column value with this new value. If
this flag is TRUE, then it indicates that the current column value should not be
changed.

Resolving Uniqueness Conflicts
Uniqueness conflicts can occur as the result of an INSERT or UPDATE. Your uniqueness
conflict resolution method should accept the new column value from the initiating site
in IN OUT mode for each column in the column group. The final parameter to the
conflict resolution method should be a Boolean flag.

If the method can resolve the conflict, then it should modify the new column values so
that Oracle can insert or update the current row with the new column values. Your
function should set the Boolean flag to TRUE if it wants to discard the new column
values, and FALSE otherwise.

Because a conflict resolution method cannot guarantee convergence for uniqueness
conflicts, a user-defined uniqueness resolution method should include a notification
mechanism.

Note:

■ Type checking of parameter columns in user-defined conflict
resolution methods is not performed until you regenerate
replication support for the associated replicated table.

■ Attributes of column objects cannot be defined as column
parameters for user-defined conflict resolution methods.

User-Defined Conflict Resolution Methods

User-Defined Conflict Resolution Methods B-3

Resolving Delete Conflicts
Delete conflicts occur when you successfully delete from the local site, but the
associated row cannot be found at the remote site (for example, because it had been
updated). For delete conflicts, the function should accept old column values in IN OUT
mode for the entire row. The final parameter to the conflict resolution method should
be a Boolean flag.

If the conflict resolution method can resolve the conflict, then it modifies the old
column values so that Oracle can delete the current row that matches all old column
values. Your function should set the Boolean flag to TRUE if it wants to discard these
column values, and FALSE otherwise.

If you perform a delete at the local site and an update at the remote site, then the
remote site detects the delete conflict, but the local site detects an unresolvable update
conflict. This type of conflict cannot be handled automatically. The conflict raises a
NO_DATA_FOUND exception and Oracle logs the transaction as an error transaction.

Designing a mechanism to properly handle these types of update/delete conflicts is
difficult. It is far easier to avoid these types of conflicts entirely, by simply "marking"
deleted rows, and then purging them using procedural replication.

Multitier Materialized Views and User-Defined Conflict Resolution Methods
When you use user-defined conflict resolution methods with multitier materialized
views, the information about these methods is pulled down to the master materialized
view sites automatically. This information is stored in the data dictionary at the master
materialized view site. However, the user-defined conflict resolution methods
themselves cannot be pulled down from the master site. Therefore, you must re-create
these methods at the master materialized view site.

Restrictions for User-Defined Conflict Resolution Methods
The following sections describe restrictions for user-defined conflict resolution
methods.

SQL Statement Restrictions for User-Defined Conflict Resolution Methods
Avoid the following types of SQL statements in user-defined conflict resolution
methods. Use of such statements can result in unpredictable results.

■ Data definition language (DDL) statements (such as CREATE, ALTER, DROP)

■ Transaction control statements (such as COMMIT, ROLLBACK)

■ Session control (such as ALTER SESSION)

■ System control (such as ALTER SYSTEM)

See Also: "Creating Conflict Avoidance Methods for Delete
Conflicts" on page 6-23

See Also:

■ "Viewing Conflict Resolution Information" on page B-8 for
information about the data dictionary views that store
information about user-defined conflict resolution methods

■ Oracle Database Advanced Replication for more information about
conflict resolution and multitier materialized views

User-Defined Conflict Resolution Methods

B-4 Oracle Database Advanced Replication Management API Reference

Column Subsetting Restrictions for User-Defined Conflict Resolution Methods
Avoid subsetting the columns in a column group when you create updatable multitier
materialized views. Column subsetting excludes columns that are in master tables or
master materialized views from a materialized view based on these masters. You do
this by specifying certain select columns in the SELECT statement during materialized
view creation.

When you use conflict resolution with multitier materialized views, you cannot define
the conflict resolution methods at the materialized view site. Conflict resolution
methods are always pulled down from the master site. Therefore, if you subset the
columns in a column group that has a user-defined conflict resolution applied to it, the
conflict resolution method will not be able to find all of the columns in the column
group at a master materialized view site. When this happens, the conflict resolution
method returns the following error:

ORA-23460 missing value for column in resolution method

For example, consider a case where the job_id, salary, and commission_pct
columns in the hr.employees table are part of a column group name
employees_cg1 that has a user-defined conflict resolution method applied to it at the
master site hq.example.com. To protect the privacy of your sales staff, you create a
level 1 updatable materialized view that uses column subsetting to exclude the
salary and commission_pct columns at the ca.us office. When you create this
materialized view at the ca.us office, the conflict resolution method is pulled down
from hq.example.com. You then create an updatable multitier materialized view at
the sf.ca office based on the level 1 materialized view at the ca.us office.

Given this replication environment, if a conflict arises for a job_id value at the level 1
materialized view at the ca.us office, then the conflict resolution method fails to find
the salary and commission_pct columns and returns the ORA-23460 error
mentioned previously.

Examples of User-Defined Conflict Resolution Method
The following examples show user-defined methods that are variations on the
standard maximum and additive prebuilt conflict resolution methods. Unlike the
standard methods, these custom functions can handle nulls in the columns used to
resolve the conflict.

Maximum User Function
-- User function similar to MAXIMUM method.
-- If curr is null or curr < new, then use new values.
-- If new is null or new < curr, then use current values.
-- If both are null, then no resolution.
-- Does not converge with > 2 masters, unless
-- always increasing.

CREATE OR REPLACE FUNCTION max_null_loses(old IN NUMBER,
 new IN OUT NUMBER,
 cur IN NUMBER,
 ignore_discard_flag OUT BOOLEAN)
 RETURN BOOLEAN IS

See Also: Oracle Database Advanced Replication for more
information about column subsetting

User-Defined Conflict Notification Methods

User-Defined Conflict Resolution Methods B-5

BEGIN
 IF (new IS NULL AND cur IS NULL) OR new = cur THEN
 RETURN FALSE;
 END IF;
 IF new IS NULL THEN
 ignore_discard_flag := TRUE;
 ELSIF cur IS NULL THEN
 ignore_discard_flag := FALSE;
 ELSIF new < cur THEN
 ignore_discard_flag := TRUE;
 ELSE
 ignore_discard_flag := FALSE;
 END IF;
 RETURN TRUE;
END max_null_loses;
/

Additive User Function
-- User function similar to ADDITIVE method.
-- If old is null, then old = 0.
-- If new is null, then new = 0.
-- If curr is null, then curr = 0.
-- new = curr + (new - old) -> just like ADDITIVE method.

CREATE OR REPLACE FUNCTION additive_nulls(old IN NUMBER,
 new IN OUT NUMBER,
 cur IN NUMBER,
 ignore_discard_flag OUT BOOLEAN)
 RETURN BOOLEAN IS
 old_val NUMBER := 0.0;
 new_val NUMBER := 0.0;
 cur_val NUMBER := 0.0;
BEGIN
 IF old IS NOT NULL THEN
 old_val := old;
 END IF;
 IF new IS NOT NULL THEN
 new_val := new;
 END IF;
 IF cur IS NOT NULL THEN
 cur_val := cur;
 END IF;
 new := cur_val + (new_val - old_val);
 ignore_discard_flag := FALSE;
 RETURN TRUE;
END additive_nulls;
/

User-Defined Conflict Notification Methods
A conflict notification method is a user-defined function that provides conflict
notification rather than or in addition to conflict resolution. For example, you can
write your own conflict notification methods to log conflict information in a database
table, send an email message, or page an administrator. After you write a conflict
notification method, you can assign it to a column group (or constraint) in a specific
order so that Oracle notifies you when a conflict happens, before attempting
subsequent conflict resolution methods, or after Oracle attempts to resolve a conflict
but cannot do so.

User-Defined Conflict Notification Methods

B-6 Oracle Database Advanced Replication Management API Reference

To configure a replicated table with a user-defined conflict notification mechanism,
you must complete the following steps:

1. Create a conflict notification log.

2. Create the user-defined conflict notification method in a package.

The following sections explain each step.

Creating a Conflict Notification Log
When configuring a replicated table to use a user-defined conflict notification method,
the first step is to create a database table that can record conflict notifications. You can
create a table to log conflict notifications for one or many tables in a master group.

To create a conflict notification log table at all master sites, use the replication execute
DDL facility. For more information, see "EXECUTE_DDL Procedure" on page 18-68.
Do not generate replication support for the conflict notification tables because their
entries are specific to the site that detects a conflict.

Sample Conflict Notification Log Table
The following CREATE TABLE statement creates a table that you can use to log conflict
notifications from several tables in a master group.

CREATE TABLE sales.conf_report (
 line NUMBER(2), --- used to order message text
 txt VARCHAR2(80), --- conflict notification message
 timestamp DATE, --- time of conflict
 table_name VARCHAR2(30), --- table in which the
 --- conflict occurred
 table_owner VARCHAR2(30), --- owner of the table
 conflict_type VARCHAR2(6) --- INSERT, DELETE or UNIQUE
);

Creating a Conflict Notification Package
To create a conflict notification method, you must define the method in a PL/SQL
package and then replicate the package as part of a master group along with the
associated replicated table.

A conflict notification method can perform conflict notification only, or both conflict
notification and resolution. If possible, you should always use one of Oracle's prebuilt
conflict resolution methods to resolve conflicts. When a user-defined conflict
notification method performs only conflict notification, assign the user-defined
method to a column group (or constraint) along with conflict resolution methods that
can resolve conflicts.

Sample Conflict Notification Package
The following package and package body perform a simple form of conflict notification
by logging uniqueness conflicts for a CUSTOMERS table into the previously defined
CONF_REPORT table.

Note: If Oracle cannot ultimately resolve a replication conflict,
then Oracle rolls back the entire transaction, including any updates
to a notification table. If notification is necessary independent of
transactions, then you can design a notification mechanism to use
the Oracle DBMS_PIPES package.

User-Defined Conflict Notification Methods

User-Defined Conflict Resolution Methods B-7

CREATE OR REPLACE PACKAGE notify AS
 -- Report uniqueness constraint violations on CUSTOMERS table
 FUNCTION customers_unique_violation (
 first_name IN OUT VARCHAR2,
 last_name IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN;
END notify;
/

CREATE OR REPLACE PACKAGE BODY notify AS
 -- Define a PL/SQL index-by table to hold the notification message
 TYPE message_table IS TABLE OF VARCHAR2(80) INDEX BY BINARY_INTEGER;
 PROCEDURE report_conflict (
 conflict_report IN MESSAGE_TABLE,
 report_length IN NUMBER,
 conflict_time IN DATE,
 conflict_table IN VARCHAR2,
 table_owner IN VARCHAR2,
 conflict_type IN VARCHAR2) IS
 BEGIN
 FOR idx IN 1..report_length LOOP
 BEGIN
 INSERT INTO sales.conf_report
 (line, txt, timestamp, table_name, table_owner, conflict_type)
 VALUES (idx, SUBSTR(conflict_report(idx),1,80), conflict_time,
 conflict_table, table_owner, conflict_type);
 EXCEPTION WHEN others THEN NULL;
 END;
 END LOOP;
 END report_conflict;
 -- This is the conflict resolution method that is called first when
 -- a uniqueness constraint violated is detected in the CUSTOMERS table.
 FUNCTION customers_unique_violation (
 first_name IN OUT VARCHAR2,
 last_name IN OUT VARCHAR2,
 discard_new_values IN OUT BOOLEAN)
 RETURN BOOLEAN IS
 local_node VARCHAR2(128);
 conf_report MESSAGE_TABLE;
 conf_time DATE := SYSDATE;
 BEGIN
 -- Get the global name of the local site
 BEGIN
 SELECT global_name INTO local_node FROM global_name;
 EXCEPTION WHEN others THEN local_node := '?';
 END;

Note: This example of conflict notification does not resolve any
conflicts. You should either provide a method to resolve conflicts
(such as discard or overwrite), or provide a notification mechanism
that will succeed (for example, using e-mail) even if the error is not
resolved and the transaction is rolled back. With simple
modifications, the following user-defined conflict notification
method can take more active steps. For example, instead of just
recording the notification message, the package can use the
DBMS_OFFICE utility package to send an Oracle Office email
message to an administrator.

Viewing Conflict Resolution Information

B-8 Oracle Database Advanced Replication Management API Reference

 -- Generate a message for the DBA
 conf_report(1) := 'UNIQUENESS CONFLICT DETECTED IN TABLE CUSTOMERS ON ' ||
 TO_CHAR(conf_time, 'MM-DD-YYYY HH24:MI:SS');
 conf_report(2) := ' AT NODE ' || local_node;
 conf_report(3) := 'ATTEMPTING TO RESOLVE CONFLICT USING ' ||
 'APPEND SEQUENCE METHOD';
 conf_report(4) := 'FIRST NAME: ' || first_name;
 conf_report(5) := 'LAST NAME: ' || last_name;
 conf_report(6) := NULL;
 --- Report the conflict
 report_conflict(conf_report, 5, conf_time, 'CUSTOMERS',
 'OFF_SHORE_ACCOUNTS', 'UNIQUE');
 --- Do not discard the new column values. They are still needed by
 --- other conflict resolution methods.
 discard_new_values := FALSE;
 --- Indicate that the conflict was not resolved.
 RETURN FALSE;
 END customers_unique_violation;
END notify;
/

Viewing Conflict Resolution Information
Oracle provides replication catalog (REPCAT) views that you can use to determine
what conflict resolution methods are being used by each of the tables and column
groups in your replication environment. Each view has three versions: USER_*,
ALL_*, SYS.DBA_*. The available views are shown in the following table.

View Description

ALL_REPRESOLUTION_METHOD Lists all of the available conflict resolution methods.

ALL_REPCOLUMN_GROUP Lists all of the column groups defined for the
database.

ALL_REPGROUPED_COLUMN Lists all of the columns in each column group in the
database.

ALL_REPPRIORITY_GROUP Lists all of the priority groups and site priority groups
defined for the database.

ALL_REPPRIORITY Lists the values and corresponding priority levels for
each priority or site priority group.

ALL_REPCONFLICT Lists the types of conflicts (delete, update, or
uniqueness) for which you have specified a resolution
method, for the tables, column groups, and unique
constraints in the database.

ALL_REPRESOLUTION Shows more specific information about the conflict
resolution method used to resolve conflicts on each
object.

ALL_REPPARAMETER_COLUMN Shows which columns are used by the conflict
resolution methods to resolve a conflict.

See Also: Chapter 23, "Replication Catalog Views"

Index-1

Index

A
ADD procedure, 5-13, 8-26, 17-3
ADD_DEFAULT_DEST procedure, 14-4
ADD_DELETE_RESOLUTION procedure, 18-16
ADD_GROUPED_COLUMN procedure, 18-6
ADD_MASTER_DATABASE procedure, 3-8, 7-23,

7-25, 18-7
ADD_NEW_MASTERS procedure, 7-8, 7-19, 18-8
ADD_PRIORITY_CHAR procedure, 18-13
ADD_PRIORITY_datatype procedure, 18-13
ADD_PRIORITY_DATE procedure, 18-13
ADD_PRIORITY_NUMBER procedure, 18-13
ADD_PRIORITY_VARCHAR2 procedure, 18-13
ADD_SITE_PRIORITY_SITE procedure, 6-17, 18-15
ADD_UNIQUENESS_RESOLUTION

procedure, 18-16
ADD_UPDATE_RESOLUTION procedure, 6-3, 6-5,

6-9, 6-11, 6-14, 6-18, 18-16
administrative requests

ALL_REPCATLOG view, 23-15
executing, 7-27, 18-54
monitoring, 10-13

errors, 10-13
jobs, 10-14

purging, 18-76
administrators

for materialized view sites
creating, 2-17

Advanced Replication
migrating to Streams, 18-95

Advanced Replication interface
monitoring replication, 10-1

ALL_REPCAT_REFRESH_TEMPLATES view, 23-6
ALL_REPCAT_TEMPLATE_OBJECTS view, 23-7
ALL_REPCAT_TEMPLATE_PARMS view, 23-9
ALL_REPCAT_TEMPLATE_SITES view, 23-11
ALL_REPCAT_USER_AUTHORIZATIONS

view, 23-12
ALL_REPCAT_USER_PARM_VALUES view, 23-13
ALL_REPCATLOG view

administrative requests, 23-15
ALL_REPCOLUMN view, 23-16
ALL_REPCOLUMN_GROUP view, 23-18
ALL_REPCONFLICT view, 23-19
ALL_REPDDL view, 23-20

ALL_REPGENOBJECTS view, 23-21
ALL_REPGROUP view, 23-22
ALL_REPGROUP_PRIVILEGES view, 23-23
ALL_REPGROUPED_COLUMN view, 23-24
ALL_REPKEY_COLUMNS view, 23-25
ALL_REPOBJECT view, 23-26
ALL_REPPARAMETER_COLUMN view, 23-28
ALL_REPPRIORITY view, 23-29
ALL_REPPRIORITY_GROUP view, 23-30
ALL_REPPROP view, 23-31
ALL_REPRESOL_STATS_CONTROL view, 23-32
ALL_REPRESOLUTION view, 23-33
ALL_REPRESOLUTION_METHOD view, 23-34
ALL_REPRESOLUTION_STATISTICS view, 23-35

gathering statistics, 6-30
ALL_REPSITES view, 23-36
ALTER MATERIALIZED VIEW LOG

statement, 8-12
ALTER_CATCHUP_PARAMETERS

procedure, 18-20
ALTER_MASTER_PROPAGATION

procedure, 18-22
ALTER_MASTER_REPOBJECT procedure, 6-7, 6-16,

6-24, 9-1, 18-23
ALTER_MVIEW_PROPAGATION procedure, 18-25
ALTER_PRIORITY procedure, 18-26
ALTER_PRIORITY_CHAR procedure, 18-27
ALTER_PRIORITY_datatype procedure, 18-27
ALTER_PRIORITY_DATE procedure, 18-27
ALTER_PRIORITY_NUMBER procedure, 18-27
ALTER_PRIORITY_RAW procedure, 18-27
ALTER_REFRESH_TEMPLATE procedure, 21-4
ALTER_SITE_PRIORITY procedure, 18-28
ALTER_SITE_PRIORITY_SITE procedure, 18-29
ALTER_TEMPLATE_OBJECT procedure, 21-6
ALTER_TEMPLATE_PARM procedure, 21-8
ALTER_USER_AUTHORIZATION

procedure, 21-10
ALTER_USER_PARM_VALUE procedure, 21-11
ANY_CHAR_ARG procedure, 12-5
ANY_CLOB_ARG procedure, 12-5
ANY_VARCHAR2_ARG procedure, 12-5
ANYDATA

GET_ANYDATA_ARG function, 13-7
ANYDATA data type

replication, 9-13

Index-2

ANYDATA_ARG procedure, 12-5
authorization

template users, 4-9
availability

extended, 7-3, 18-8, 18-24, 18-74, 18-88, 18-93,
18-98

B
BEGIN_INSTANTIATION procedure, 7-27, 15-3
BEGIN_LOAD procedure, 7-29, 15-5
BEGIN_TABLE_REORGANIZATION, 8-15
BLOB_ARG procedure, 12-5

C
CALL procedure, 12-3
CANCEL_STATISTICS procedure, 6-31, 18-30
CHANGE procedure, 17-4
CHAR_ARG procedure, 12-5
CLEAR_PROP_STATISTICS procedure, 10-24, 14-5
CLOB_ARG procedure, 12-5
column objects

user-defined conflict resolution, B-2
column subsetting

user-defined conflict resolution methods, B-4
columns

adding to master tables, 18-85
column groups, 6-3, 6-5, 6-8, 6-10, 6-12, 6-17

adding members to, 18-6
creating, 18-51, 18-73
dropping, 18-55
removing members from, 18-56

COMMENT_ON_COLUMN_GROUP
procedure, 18-31

COMMENT_ON_DELETE_RESOLUTION
procedure, 18-38

COMMENT_ON_MVIEW_REPSITES
procedure, 18-32

COMMENT_ON_PRIORITY procedure, 18-33
COMMENT_ON_REPGROUP procedure, 18-34
COMMENT_ON_REPOBJECT procedure, 18-35
COMMENT_ON_REPSITES procedure, 18-36
COMMENT_ON_SITE_PRIORITY procedure, 18-37
COMMENT_ON_UNIQUE_RESOLUTION

procedure, 18-38
COMMENT_ON_UPDATE_RESOLUTION

procedure, 18-38
comments

comments field
updating in views, 7-33

updating, 7-33
COMMIT_WORK procedure, 12-4
COMPARE_OLD_VALUES procedure, 18-40
COMPARE_TEMPLATES function, 21-13
comparing

tables, 16-3
conflict resolution, 6-1

additive method, 6-9, 18-16
auditing, 6-30

average method, 6-9
column groups, 6-3, 6-5, 6-8, 6-10, 6-12, 6-17
DBA_REPRESOLUTION_STATISTICS view, 6-31
discard method, 6-2
information

viewing, B-8
maximum method, 6-4
minimum method, 6-4
overwrite method, 6-2
preparing for, 6-1
priority groups method, 6-11
procedural replication and, 7-36
site priority method, 6-15

sample trigger, 6-16
statistics, 18-30, 18-81

canceling, 6-31
collecting, 6-30
viewing, 6-30

time stamp method
sample trigger, 6-8

timestamp method, 6-6
uniqueness, 6-19
user-defined methods, B-1

column objects, B-2
column subsetting, B-4
example, B-4
for delete conflicts, B-3
for uniqueness conflicts, B-2
for update conflicts, B-2
multitier materialized views, B-3
parameters, B-1
restrictions, B-3

viewing information, B-8
conflicts

avoiding
delete, 6-23
dynamic ownership, 6-27

notification log table
creating, B-6
sample, B-6

notification methods
user-defined, B-5

notification package
creating, B-6
sample, B-6

token passing, 6-27
workflow, 6-27

COPY_TEMPLATE function, 21-14
CREATE_MASTER_REPGROUP procedure, 3-4,

18-42
CREATE_MASTER_REPOBJECT procedure, 6-8,

6-16, 18-43
CREATE_MVIEW_REPGROUP procedure, 5-5,

8-23, 8-27, 8-29, 18-46
CREATE_MVIEW_REPOBJECT procedure, 5-6, 5-7,

5-11, 5-12, 8-27, 8-31, 18-48
CREATE_OBJECT_FROM_EXISTING

function, 21-16
CREATE_REFRESH_TEMPLATE function, 21-18
CREATE_REFRESH_TEMPLATE procedure, 4-4

Index-3

CREATE_TEMPLATE_OBJECT function, 21-20
CREATE_TEMPLATE_OBJECT procedure, 4-5
CREATE_TEMPLATE_PARM function, 21-22
CREATE_USER_AUTHORIZATION function, 21-24
CREATE_USER_AUTHORIZATION procedure, 4-9
CREATE_USER_PARM_VALUE function, 21-25

D
data definition language

altering replicated objects, 18-23
asynchronous, 18-68

data dictionary views
comments

updating, 7-33
materialized views, 26-1
refresh groups, 26-1
replication, 10-1, 23-1

database links
creating, 2-13, 2-22, 4-15, 5-4, 5-9, 8-29

datatype_ARG procedure, 12-5
date expressions, 2-5
DATE_ARG procedure, 12-5
DBA_REGISTERED_MVIEW_GROUPS view, 23-5
DBA_REPCAT_REFRESH_TEMPLATES view, 23-37
DBA_REPCAT_TEMPLATE_OBJECTS view, 23-38
DBA_REPCAT_TEMPLATE_PARMS view, 23-39
DBA_REPCAT_TEMPLATE_SITES view, 23-40
DBA_REPCAT_USER_AUTHORIZATIONS

view, 23-41
DBA_REPCAT_USER_PARM_VALUES view, 23-42
DBA_REPCATLOG view, 23-43

purging requests from, 18-76
DBA_REPCOLUMN view, 23-44
DBA_REPCOLUMN_GROUP view, 23-45

updating, 18-31
DBA_REPCONFLICT view, 23-46
DBA_REPDDL view, 23-47
DBA_REPEXTENSIONS view, 23-48
DBA_REPGENOBJECTS view, 23-51
DBA_REPGROUP view, 23-52

updating, 18-34
DBA_REPGROUP_PRIVILEGES view, 23-53
DBA_REPGROUPED_COLUMN view, 23-54
DBA_REPKEY_COLUMNS view, 23-55
DBA_REPOBJECT view, 23-56

updating, 18-35
DBA_REPPARAMETER_COLUMN view, 23-57
DBA_REPPRIORITY view, 23-58
DBA_REPPRIORITY_GROUP view, 23-59
DBA_REPPRIORITYGROUP view

updating, 18-33, 18-37
DBA_REPPROP view, 23-60
DBA_REPRESOL_STATS_CONTROL view, 23-61
DBA_REPRESOLUTION view, 23-62

updating, 18-38
DBA_REPRESOLUTION_METHOD view, 23-63
DBA_REPRESOLUTION_STATISTICS view, 23-64

purging, 6-31, 18-77

DBA_REPSITES view, 23-65
updating, 18-36

DBA_REPSITES_NEW view, 23-66
DBMS_DEFER package, 12-1
DBMS_DEFER_QUERY package, 13-1

GET_ANYDATA_ARG function, 9-13
DBMS_DEFER_SYS package, 14-1

CLEAR_PROP_STATISTICS procedure, 10-24
EXECUTE_ERROR procedure, 7-27, 9-15
EXECUTE_ERROR_AS_USER procedure, 9-15
PURGE function, 9-12
PUSH function, 9-11
REGISTER_PROPAGATOR procedure, 2-5, 2-18,

2-22
SCHEDULE_PURGE procedure, 2-6, 2-19, 2-23
SCHEDULE_PUSH procedure, 2-14, 2-20, 2-24

DBMS_MVIEW package
BEGIN_TABLE_REORGANIZATION

procedure, 8-15
END_TABLE_REORGANIZATION

procedure, 8-15
PURGE_LOG procedure, 8-13
PURGE_MVIEW_FROM_LOG procedure, 8-8,

8-10, 8-12, 8-14
REFRESH procedure, 8-1, 8-27
UNREGISTER_MVIEW procedure, 8-10

DBMS_OFFLINE_OG package, 15-1
BEGIN_INSTANTIATION procedure, 7-27
BEGIN_LOAD procedure, 7-29
END_INSTANTIATION procedure, 7-30
END_LOAD procedure, 7-30
RESUME_SUBSET_OF_MASTERS

procedure, 7-29
DBMS_OFFLINE_SNAPSHOT package

END_LOAD procedure, 8-24, 8-25
DBMS_RECTIFIER_DIFF package, 9-7, 16-1

DIFFERENCES procedure, 9-8
RECTIFY procedure, 9-8

DBMS_REFRESH package, 17-1
ADD procedure, 5-13, 8-26
MAKE procedure, 5-5, 5-10, 8-23
REFRESH procedure, 8-1

DBMS_REPCAT package, 7-33, 18-1
ADD_MASTER_DATABASE procedure, 3-8,

7-23, 7-25
ADD_NEW_MASTERS procedure, 7-8, 7-19
ADD_SITE_PRIORITY_SITE procedure, 6-17
ADD_UPDATE_RESOLUTION procedure, 6-3,

6-5, 6-9, 6-11, 6-14, 6-18
ALTER_MASTER_REPOBJECT procedure, 6-7,

6-16, 6-24, 9-1
CANCEL_STATISTICS procedure, 6-31
CREATE_MASTER_REPGROUP procedure, 3-4
CREATE_MASTER_REPOBJECT procedure, 6-8,

6-16
CREATE_MVIEW_REPGROUP procedure, 5-5,

8-23, 8-27, 8-29
CREATE_MVIEW_REPOBJECT procedure, 5-6,

5-7, 5-11, 5-12, 8-27, 8-31
DEFINE_SITE_PRIORITY procedure, 6-17

Index-4

DO_DEFERRED_REPCAT_ADMIN
procedure, 6-26, 7-27

DROP_MVIEW_REPGROUP procedure, 8-3, 8-5,
8-7

DROP_MVIEW_REPOBJECT procedure, 8-7
GENERATE_REPLICATION_SUPPORT

procedure, 3-9, 3-10, 9-3
MAKE_COLUMN_GROUP procedure, 6-3, 6-5,

6-8, 6-10, 6-12, 6-17
PREPARE_INSTANTIATED_MASTER

procedure, 7-13, 7-22
PURGE_STATISTICS procedure, 6-31
REGISTER_STATISTICS procedure, 6-30
RELOCATE_MASTERDEF procedure, 7-2
REMOVE_MASTER_DATABASE

procedure, 7-31
RESUME_MASTER_ACTIVITY procedure, 3-11
RESUME_PROPAGATION_TO_MDEF

procedure, 7-11, 7-21
SPECIFY_NEW_MASTERS procedure, 7-8, 7-19
SWITCH_MVIEW_MASTER procedure, 8-2
UNREGISTER_MVIEW_REPGROUP

procedure, 8-8
DBMS_REPCAT_ADMIN package, 20-1

GRANT_ADMIN_ANY_SCHEMA
procedure, 2-4, 2-17, 2-22

REGISTER_USER_REPGROUP procedure, 2-5,
2-6, 2-9, 2-12, 2-18, 2-20

DBMS_REPCAT_INSTANTIATE package, 19-1
DROP_SITE_INSTANTIATION procedure, 8-3,

8-5
DBMS_REPCAT_RGT package, 21-1

CREATE_REFRESH_TEMPLATE procedure, 4-4
CREATE_TEMPLATE_OBJECT procedure, 4-5
CREATE_USER_AUTHORIZATION

procedure, 4-9
INSTANTIATE_OFFLINE procedure, 4-11
INSTANTIATE_ONLINE procedure, 4-12

DBMS_REPUTIL package, 22-1
REPLICATION_OFF procedure, 7-37, 9-5
REPLICATION_ON procedure, 7-37, 9-5

DDL. See data definition language
DEFCALL view, 25-2
DEFCALLDEST view, 25-3
DEFDEFAULTDEST view, 25-4

adding destinations to, 14-4
removing destinations from, 14-6, 14-7

DEFERRCOUNT view, 25-5
deferred transaction queues

deferred calls
determining value of, 9-13

managing, 9-11
purging propagated transactions, 9-12
pushing, 9-11

deferred transactions
data dictionary views, 25-1
DEFDEFAULTDEST view

adding destination to, 14-4
removing destinations from, 14-6

deferred remote procedure calls (RPCs)
argument types, 13-4
argument values, 13-7
arguments to, 12-5
building, 12-3
executing immediately, 14-16

DEFSCHEDULE view
clearing statistics, 14-5
removing destinations from, 14-7

deleting from queue, 14-9
monitoring, 10-15

purge job, 10-17, 10-18
push jobs, 10-16

reexecuting, 14-12
scheduling execution, 14-22
starting, 12-7

DEFERROR view, 9-15, 25-6
deleting transactions from, 14-8

DEFINE_COLUMN_GROUP procedure, 18-51
DEFINE_PRIORITY_GROUP procedure, 18-52
DEFINE_SITE_PRIORITY procedure, 6-17, 18-53
DEFLOB view, 25-7
DEFPROPAGATOR view, 25-8
DEFSCHEDULE view, 25-9

clearing statistics, 10-24, 14-5
DEFTRAN view, 25-12
DEFTRANDEST view, 25-13
DELETE_DEF_DESTINATION procedure, 14-7
DELETE_DEFAULT_DEST procedure, 14-6
DELETE_ERROR procedure, 14-8
DELETE_RUNTIME_PARMS procedure, 21-27
DELETE_TRAN procedure, 14-9
deployment templates

alter object, 21-6
alter parameters, 21-8
alter template, 21-4
alter user authorization, 21-10
alter user parameter values, 21-11
authorize users, 4-9
compare templates, 21-13
concepts, 4-1
copy template, 21-14
create object from existing, 21-16
create template, 21-18
creating, 4-2, 4-4
data dictionary views for, 23-6
distributing files, 4-14
drop site instantiation, 19-3
dropping, 21-34
dropping all, 21-31
dropping materialized view group, 8-3
flowchart for creating, 4-3
instantiating, 4-14
instantiation script, 4-12
lock template, 21-47, 21-48
monitoring, 10-7
objects

creating, 21-20
dropping, 21-36
dropping all, 21-28

Index-5

offline instantiation, 4-9, 19-4, 21-43
online instantiation, 19-6, 21-45
packaging, 4-9, 4-10

for offline instantiation, 4-11
for online instantiation, 4-11

parameters
creating, 4-7, 21-22
dropping, 21-37
dropping all, 21-29
user values, 4-8

run-time parameters
creating, 21-41
deleting, 21-27
get ID, 21-40
inserting, 21-41

sites
dropping, 21-35
dropping all, 21-30

user authorizations
creating, 21-24
dropping, 21-38
dropping all, 21-32

user parameter values
creating, 21-25
dropping, 21-39
dropping all, 21-33

user-defined types, 4-2
DESTROY procedure, 17-6
differences

between tables, 16-3
rectifying, 16-6

DIFFERENCES procedure, 9-8, 16-3
DISABLED function, 14-10
disabling

propagation, 14-24
DO_DEFERRED_REPCAT_ADMIN

procedure, 6-26, 7-27, 18-54
DROP MATERIALIZED VIEW LOG statement, 8-17
DROP_ALL_OBJECTS procedure, 21-28
DROP_ALL_TEMPLATE_PARMS procedure, 21-29
DROP_ALL_TEMPLATE_SITES procedure, 21-30
DROP_ALL_TEMPLATES procedure, 21-31
DROP_ALL_USER_AUTHORIZATIONS

procedure, 21-32
DROP_ALL_USER_PARM_VALUES

procedure, 21-33
DROP_COLUMN_GROUP procedure, 18-55
DROP_DELETE_RESOLUTION procedure, 18-66
DROP_GROUPED_COLUMN procedure, 18-56
DROP_MASTER_REPGROUP procedure, 18-57
DROP_MASTER_REPOBJECT procedure, 18-58
DROP_MVIEW_REPGROUP procedure, 8-3, 8-5,

18-59
DROP_MVIEW_REPOBJECT procedure, 8-7, 18-60
DROP_PRIORITY procedure, 18-61
DROP_PRIORITY_CHAR procedure, 18-63
DROP_PRIORITY_datatype procedure, 18-63
DROP_PRIORITY_DATE procedure, 18-63
DROP_PRIORITY_GROUP procedure, 18-62
DROP_PRIORITY_NUMBER procedure, 18-63

DROP_PRIORITY_VARCHAR2 procedure, 18-63
DROP_REFRESH_TEMPLATE procedure, 21-34
DROP_SITE_INSTANTIATION procedure, 8-3, 8-5,

19-3, 21-35
DROP_SITE_PRIORITY procedure, 18-64
DROP_SITE_PRIORITY_SITE procedure, 18-65
DROP_TEMPLATE_OBJECT procedure, 21-36
DROP_TEMPLATE_PARM procedure, 21-37
DROP_UNIQUE_RESOLUTION procedure, 18-66
DROP_UPDATE_RESOLUTION procedure, 18-66
DROP_USER_AUTHORIZATION procedure, 21-38
DROP_USER_PARM_VALUE procedure, 21-39
dynamic ownership

conflict avoidance and, 6-27
locating owner of a row, 6-29
obtaining ownership, 6-29
workflow partitioning, 6-27

dynamic performance views
replication, 24-1

E
END_INSTANTIATION procedure, 7-30, 15-6
END_LOAD procedure, 7-30, 8-24, 8-25, 15-7
END_TABLE_REORGANIZATION procedure, 8-15
Enterprise Manager

Advanced Replication interface, 10-1
errors

error queues
DEFERROR view, 9-15
managing, 9-15

error transactions
monitoring, 10-19
reexecuting as alternate user, 9-15
reexecuting as receiver, 9-15

EXCLUDE_PUSH function, 14-11
EXECUTE_DDL procedure, 18-68
EXECUTE_ERROR procedure, 7-27, 9-15, 14-12
EXECUTE_ERROR_AS_USER procedure, 9-15,

14-13
extended availability, 7-3, 18-8, 18-24, 18-74, 18-88,

18-93, 18-98

F
foreign key constraints

adding master sites, 7-2
FROM_REMOTE function, 22-6

G
GENERATE_MVIEW_SUPPORT procedure, 18-69
GENERATE_REPLICATION_SUPPORT

procedure, 3-9, 3-10, 9-3, 18-71
generating

replication support, 3-9
procedural replication, 7-37

GET_ANYDATA_ARG function, 9-13, 13-7
GET_ARG_FORM function, 13-3
GET_ARG_TYPE function, 13-4
GET_BLOB_ARG function, 13-7

Index-6

GET_CALL_ARGS procedure, 13-6
GET_CHAR_ARG function, 13-7
GET_CLOB_ARG function, 13-7
GET_datatype_ARG function, 13-7
GET_DATE_ARG function, 13-7
GET_IDS_ARG function, 13-7
GET_IYM_ARG function, 13-7
GET_NCHAR_ARG function, 13-7
GET_NCLOB_ARG function, 13-7
GET_NUMBER_ARG function, 13-7
GET_NVARCHAR2_ARG function, 13-7
GET_OBJECT_NULL_VECTOR_ARG function, 13-9
GET_RAW_ARG function, 13-7
GET_ROWID_ARG function, 13-7
GET_RUNTIME_PARM_ID function, 21-40
GET_TIMESTAMP_ARG function, 13-7
GET_TSLTZ_ARG function, 13-7
GET_TSTZ_ARG function, 13-7
GET_VARCHAR2_ARG function, 13-7
GLOBAL_NAME function, 22-7
GRANT_ADMIN_ANY_SCHEMA procedure, 2-4,

2-17, 2-22, 20-3
GRANT_ADMIN_SCHEMA procedure, 20-4

I
IDS_ARG procedure, 12-5
Import

replication groups
offline instantiation and, 15-5, 15-7

status check, 18-86
INSERT_RUNTIME_PARMS procedure, 21-41
INSTANTIATE_OFFLINE function, 19-4, 21-43
INSTANTIATE_OFFLINE procedure, 4-11
INSTANTIATE_ONLINE function, 19-6, 21-45
INSTANTIATE_ONLINE procedure, 4-12
instantiation, 4-14

DROP_SITE_INSTANTIATION procedure, 19-3,
21-35

offline, 4-9
INSTANTIATE_OFFLINE function, 19-4,

21-43
online

INSTANTIATE_ONLINE function, 19-6, 21-45
refreshing after, 4-16
script, 4-12

IYM_ARG procedure, 12-5

J
jobs

queues for
removing jobs from, 14-27, 14-28

L
LOCK_TEMPLATE_EXCLUSIVE procedure, 21-47
LOCK_TEMPLATE_SHARED procedure, 21-48
LONG columns

replication, 9-6

M
MAKE procedure, 5-5, 5-10, 8-23, 17-7
MAKE_COLUMN_GROUP procedure, 6-3, 6-5, 6-8,

6-10, 6-17, 18-73
MAKE_INTERNAL_PKG procedure, 22-8
master definition site

relocating, 18-82
master groups

adding master sites to
with quiesce, 7-23
without quiesce, 7-3

adding objects to, 3-4
creating, 3-1, 3-4, 18-42
dropping, 18-57
flowchart for creating, 3-3
monitoring, 10-3
quiescing, 18-96
removing master sites from, 7-31
resuming replication activity, 18-87

master materialized views
monitoring, 10-4
reorganizing, 8-15

master sites
adding, 3-7, 7-2

circular dependencies, 3-8, 7-2
flowchart for, 7-15
flowchart for determining method, 7-4
foreign key constraints, 7-2
restrictions, 7-5
restrictions for change-based recovery, 7-3
restrictions for full database

export/import, 7-3
self-referential constraints, 3-8, 7-2
using change-based recovery, 7-6
using full database export/import, 7-6
using object-level export/import, 7-14
using offline instantiation, 7-25
with quiesce, 7-23
without quiesce, 7-3

changing master definition site, 7-1
cleaning up, 8-8
creating, 18-7
creating users for, 2-6, 2-9, 2-12, 2-20
database links, 2-13
determining differences, 9-7
dropping, 18-84
flowchart for setting up, 2-3
monitoring, 10-2, 10-4
propagating changes between, 14-22
removing, 7-31
scheduled links for, 2-14
scheduled purges for, 2-5
setup, 2-3

master tables
adding columns to, 18-85
redefining online, 8-15
reorganizing, 8-15

methods, 8-16
truncating, 8-15

Index-7

materialized view groups
adding objects to, 5-6, 5-11, 8-31
changing masters, 8-2
creating, 5-2, 5-4, 5-10, 18-46
dropping, 8-3, 8-7
group owner, 8-27
monitoring, 10-9
refreshing, 18-78

materialized view logs
adding columns, 8-12
altering, 8-12

privileges required, 8-12
dropping, 8-17
managing, 8-12

space, 8-13
monitoring, 10-5
purging

materialized views from, 8-8, 8-10
privileges required, 8-14

purging rows from
manually, 8-13

reducing space allocated to, 8-14
reorganizing masters with, 8-15
truncating, 8-14
truncating master table with, 8-15

materialized view sites
adding

using offline instantiation, 8-18
administrators

creating, 2-17
changing masters, 18-97
database links

creating, 2-22, 4-15, 5-4, 5-9, 8-29
dropping, 8-2, 18-59
dropping objects from, 8-6
flowchart for setting up, 2-16
group owner

using, 8-27
monitoring, 10-8
multitier

setting up, 2-16
propagating changes to master, 14-22
refresher

creating, 2-17, 2-21
schedule purge, 2-19, 2-23
users

creating, 2-17
materialized views

data dictionary views, 26-1
deployment templates

user-defined types, 4-2
dropping, 8-7
generating support for, 18-69
monitoring, 10-8, 10-9
multitier

setting up, 5-2
user-defined conflict resolution, B-3

purging from materialized view logs, 8-8, 8-10

refresh groups
creating, 5-5, 5-10

refreshing, 4-16, 8-1, 8-27
security, A-5

trusted compared with untrusted, A-6
unregistering from master, 8-10

monitoring replication, 10-1
Advanced Replication interface, 10-1

multimaster replication
monitoring, 10-1
security

trusted compared with untrusted, A-2
multitier materialized views

setting up, 2-16

N
NCHAR_ARG procedure, 12-5
NCLOB_ARG procedure, 12-5
notification log table

conflicts
creating, B-6
sample, B-6

notification methods
user-defined, B-5

notification package
conflicts

creating, B-6
NUMBER_ARG procedure, 12-5
NVARCHAR2_ARG procedure, 12-5

O
objects

adding to materialized view sites, 18-48
altering, 18-23
creating

for master group, 18-42, 18-43
for materialized view sites, 18-48

dropping
from materialized view site, 8-6, 18-60

generating replication support for, 18-71
offline instantiation

adding a master site, 7-25
adding a materialized view site, 8-18
INSTANTIATE_OFFLINE function, 19-4, 21-43
replication groups, 15-3, 15-5, 15-6, 15-7, 15-9

online instantiation
INSTANTIATE_ONLINE function, 19-6, 21-45

online redefinition of tables, 8-15
Oracle Streams

migrating to, 18-95

P
packaging

deployment templates, 4-9
parallel propagation

monitoring, 10-24

Index-8

parameters
deployment templates, 4-7
user values, 4-8

performance
replication

monitoring, 10-22
planning

for replication, 1-2
PREPARE_INSTANTIATED_MASTER

procedure, 7-13, 7-22
PREPARE_INSTANTIATED_MASTERS

procedure, 18-74
PRESERVE MATERIALIZED VIEW LOG option

TRUNCATE TABLE statement, 8-15
priority groups

adding members to, 18-13
altering members

priorities, 18-26
values, 18-27

creating, 18-52
dropping, 18-62
removing members from, 18-61, 18-63
site priority groups

adding members to, 18-15
procedural replication

conflicts and, 7-36
generating replication support for, 7-37
restrictions, 7-34
serialization of transactions, 7-36
user-defined types, 7-36
using, 7-34

propagation
altering method, 18-22, 18-25
disabling, 14-24
of changes, 18-22
parallel

monitoring, 10-24
status of, 14-10

propagator
registering, 2-5, 14-19

proxy materialized view administrator
creating, 2-6, 2-9, 2-12, 2-20

PURGE function, 9-12, 14-14
PURGE_LOG procedure, 8-13
PURGE_MASTER_LOG procedure, 18-76
PURGE_MVIEW_FROM_LOG procedure, 8-8, 8-10,

8-12, 8-14
PURGE_STATISTICS procedure, 6-31, 18-77
purges

DBA_REPCATLOG table, 18-76
deferred transaction queue, 9-12

master sites, 2-5
materialized view sites, 2-19, 2-23
monitoring, 10-17

PUSH function, 9-11, 14-16
pushes

deferred transaction queue, 9-11

Q
quiescing

adding master sites with, 7-23
adding master sites without, 7-3
master groups, 18-96

R
RAW_ARG procedure, 12-5
receiver

registering, 2-5
RECTIFY procedure, 9-8, 16-6
rectifying

tables, 9-8, 16-6
redefining tables

online
replication, 8-15

refresh
materialized view sites, 18-78
materialized views, 8-1, 8-27
monitoring, 10-11, 10-12

refresh groups
adding members to, 17-3
adding objects to, 5-7, 5-13, 8-25
creating, 5-5, 5-10, 17-7
data dictionary views, 26-1
deleting, 17-6
monitoring, 10-11
refresh, 8-1
refresh interval

changing, 17-4
refreshing

manually, 17-9
removing members from, 17-10

REFRESH procedure, 8-1, 8-27, 17-9
REFRESH_ALL_MVIEWS procedure, 8-2
REFRESH_DEPENDENT procedure, 8-2
REFRESH_MVIEW_REPGROUP procedure, 18-78
refresher

creating, 2-17, 2-21
REGISTER_MVIEW_REPGROUP procedure, 18-80
REGISTER_PROPAGATOR procedure, 2-5, 2-18,

2-22, 14-19
REGISTER_STATISTICS procedure, 6-30, 18-81
REGISTER_USER_REPGROUP procedure, 2-5, 2-6,

2-9, 2-12, 2-18, 2-20, 20-5
RELOCATE_MASTERDEF procedure, 7-2, 18-82
REMOVE_MASTER_DATABASE procedure, 7-31
REMOVE_MASTER_DATABASES procedure, 18-84
RENAME_SHADOW_COLUMN_GROUP

procedure, 18-85
REPCAT_IMPORT_CHECK procedure, 18-86
replication

catalog views, 10-1, 23-1
column groups, 6-3, 6-5, 6-8, 6-10, 6-12, 6-17
conflict resolution, 6-1

uniqueness, 6-19
creating an environment, 1-1
data dictionary views, 10-1, 23-1

Index-9

database links
creating, 2-13

datetime data types
abbreviations, 11-2

deferred transaction queues
managing, 9-11

deferred transactions
data dictionary views, 25-1

deployment templates
user-defined types, 4-2

determining differences between tables, 9-7
disabling, 7-37, 9-4, 9-5, 22-3
dynamic performance views, 24-1
enabling, 7-37, 9-4, 9-5, 22-4
error queues

managing, 9-15
flowchart for creating environment, 1-1
generating support for, 3-9
interval data types

abbreviations, 11-2
LONG column

converting to LOB, 9-6
managing an environment, 6-1
master groups

creating, 3-1
master sites

adding, 3-7
materialized view groups

creating, 5-2, 5-4, 5-10
materialized view logs

managing, 8-12
monitoring, 10-1

deferred transactions, 10-15
error transactions, 10-19
master environments, 10-1
materialized view environments, 10-8
performance, 10-22

objects
adding to master group, 3-4
dropping from master sites, 18-58

parallel propagation
monitoring, 10-24

planning for, 1-2
procedural replication, 7-34

restrictions, 7-34
user-defined types, 7-36

propagator
registering, 2-5

receiver
registering, 2-5

replicated objects, 9-1
replication queues, 9-1
resuming, 3-10
scheduled links

creating, 2-14
security, A-1
setting up sites, 2-1
sites

setup, 2-1

statistics
clearing, 10-24

triggers, 9-6
replication catalog views, 23-1

comments
updating, 7-33

monitoring replication, 10-1
replication management API, 11-1

conflict resolution, 6-1
deployment templates

creating, 4-2
instantiating, 4-14
packaging, 4-9

examples, 11-1
managing a replication environment, 6-1
managing replicated objects, 9-1
managing replication queues, 9-1
master groups

creating, 3-1
materialized view groups

creating, 5-2
overview, 1-1
packages, 10-1
setting up replication sites, 2-1

replication objects
altering, 9-1
tables

altering, 9-4
REPLICATION_IS_ON function, 22-5
REPLICATION_OFF procedure, 22-3
REPLICATION_ON procedure, 7-37, 22-4
RESUME_MASTER_ACTIVITY procedure, 3-11,

18-87
RESUME_PROPAGATION_TO_MDEF

procedure, 7-11, 7-21, 18-88
RESUME_SUBSET_OF_MASTERS procedure, 7-29,

15-9
resuming replication activity, 18-87
REVOKE_ADMIN_ANY_SCHEMA procedure, 20-7
REVOKE_ADMIN_SCHEMA procedure, 20-8
ROWID_ARG procedure, 12-5

S
SCHEDULE_PURGE procedure, 2-6, 2-19, 2-23,

14-20
SCHEDULE_PUSH procedure, 2-14, 2-20, 2-24,

14-22
scheduled links

creating, 2-14
security

for materialized view replication, A-5
trusted compared with untrusted, A-6

for multimaster replication, A-1
trusted compared with untrusted, A-2

replication, A-1
trusted compared with untrusted, A-2, A-6

SEND_OLD_VALUES procedure, 18-89
serialization

of transactions, 7-36

Index-10

SET_COLUMNS procedure, 18-41, 18-91
SET_DISABLED procedure, 14-24
site priority

altering, 18-28
site priority groups

adding members to, 18-15
creating

syntax, 18-53
dropping, 18-64
removing members from, 18-65

snapshots. See materialized views
SPECIFY_NEW_MASTERS procedure, 7-8, 18-93
statistics

for conflict resolution
auditing, 6-30
cancelling, 6-31
clearing, 6-31, 18-77
collecting, 6-30, 18-81
viewing, 6-30

for propagation
clearing, 10-24, 14-5

status
propagation, 14-10

storage parameters
materialized view log

altering, 8-12
STREAMS_MIGRATION procedure, 18-95
SUBTRACT procedure, 17-10
SUSPEND_MASTER_ACTIVITY procedure, 18-96
SWITCH_MVIEW_MASTER procedure, 8-2, 18-97
SYNC_UP_REP procedure, 22-9

T
tables

altering
without replicating changes, 9-4

altering replicated, 9-1
comparing, 16-3
differences between, 9-7
rectifying, 9-8, 16-6
redefining online

replication, 8-15
updating comments, 7-33

templates. See deployment templates
TIMESTAMP_ARG procedure, 12-5
token passing, 6-27

sample implementation, 6-27
TRANSACTION procedure, 12-7
transactions

serialization of, 7-36
triggers

for site priority conflict resolution, 6-16
for time stamp conflict resolution, 6-8
replicating, 9-6

TRUNCATE statement, 8-14
TRUNCATE TABLE statement

PRESERVE MATERIALIZED VIEW LOG
option, 8-15

trusted security, A-2, A-6

TSLTZ_ARG procedure, 12-5

U
UNDO_ADD_NEW_MASTERS_REQUEST

procedure, 18-98
UNREGISTER_MVIEW procedure, 8-10
UNREGISTER_MVIEW_REPGROUP

procedure, 18-100
UNREGISTER_PROPAGATOR procedure, 14-26
UNREGISTER_USER_REPGROUP procedure, 20-9
UNSCHEDULE_PURGE procedure, 14-27
UNSCHEDULE_PUSH procedure, 14-28
USER_REPCAT_REFRESH_TEMPLATES

view, 23-67
USER_REPCAT_TEMP_OUTPUT view, 4-10
USER_REPCAT_TEMPLATE_OBJECTS view, 23-68
USER_REPCAT_TEMPLATE_PARMS view, 23-69
USER_REPCAT_TEMPLATE_SITES view, 23-70
USER_REPCAT_USER_AUTHORIZATIONS

view, 23-71
USER_REPCAT_USER_PARM_VALUES

view, 23-72
USER_REPCATLOG view, 23-73
USER_REPCOLUMN view, 23-74
USER_REPCOLUMN_GROUP view, 23-75
USER_REPCONFLICT view, 23-76
USER_REPDDL view, 23-77
USER_REPGENOBJECTS view, 23-78
USER_REPGROUP view, 23-79
USER_REPGROUP_PRIVILEGES view, 23-80
USER_REPGROUPED_COLUMN view, 23-81
USER_REPKEY_COLUMNS view, 23-82
USER_REPOBJECT view, 23-83
USER_REPPARAMETER_COLUMN view, 23-84
USER_REPPRIORITY view, 23-85
USER_REPPRIORITY_GROUP view, 23-86
USER_REPPROP view, 23-87
USER_REPRESOL_STATS_CONTROL view, 23-88
USER_REPRESOLUTION view, 23-89
USER_REPRESOLUTION_METHOD view, 23-90
USER_REPRESOLUTION_STATISTICS view, 23-91
USER_REPSITES view, 23-92
users

authorize for deployment template, 4-9
master materialized view sites, 2-20
master sites, 2-6, 2-9, 2-12
materialized view sites, 2-17

V
V$MVREFRESH view, 24-2
V$REPLPROP view, 10-24, 24-3
V$REPLQUEUE view, 24-5
VALIDATE procedure, 18-101
VARCHAR2_ARG procedure, 12-5

W
WAIT_MASTER_LOG procedure, 18-103
workflow, 6-27

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	Part I Configuring Your Replication Environment
	1 Overview of Advanced Replication
	Overview of Creating a Replication Environment
	Before You Start

	2 Configuring the Replication Sites
	Overview of Setting Up Replication Sites
	Setting Up Master Sites
	Setting Up orc1.example.com
	Setting Up orc2.example.com
	Setting Up orc3.example.com
	Creating Scheduled Links Between the Master Sites

	Setting Up Materialized View Sites
	Setting Up mv1.example.com
	Setting Up mv2.example.com

	3 Creating a Master Group
	Overview of Creating a Master Group
	Before You Start

	Creating a Master Group

	4 Creating a Deployment Template
	Oracle Deployment Templates Concepts
	Before Creating the Deployment Template
	Creating a Deployment Template
	Packaging a Deployment Template for Instantiation
	Packaging a Deployment Template
	Packaging a Deployment Template for Offline Instantiation
	Packaging a Deployment Template for Online Instantiation

	Saving an Instantiation Script to File

	Distributing Instantiation Files
	Instantiating a Deployment Template
	Refreshing a Refresh Group After Instantiation

	5 Creating a Materialized View Group
	Overview of Creating a Materialized View Group
	Creating a Materialized View Group
	Creating the Materialized View Group at mv1.example.com
	Creating the Materialized View Group at mv2.example.com

	6 Configuring Conflict Resolution
	Preparing for Conflict Resolution
	Creating Conflict Resolution Methods for Update Conflicts
	Overwrite and Discard Conflict Resolution Methods
	Minimum and Maximum Conflict Resolution Methods
	Timestamp Conflict Resolution Methods
	Additive and Average Conflict Resolution Methods
	Priority Groups Conflict Resolution Methods
	Site Priority Conflict Resolution Methods

	Creating Conflict Resolution Methods for Uniqueness Conflicts
	Creating Conflict Avoidance Methods for Delete Conflicts
	Using Dynamic Ownership Conflict Avoidance
	Workflow
	Token Passing
	Locating the Owner of a Row
	Obtaining Ownership
	Applying the Change

	Auditing Successful Conflict Resolution
	Collecting Conflict Resolution Statistics
	Viewing Conflict Resolution Statistics
	Canceling Conflict Resolution Statistics
	Clearing Statistics Information

	Part II Managing and Monitoring Your Replication Environment
	7 Managing a Master Replication Environment
	Changing the Master Definition Site
	Option 1: All Master Sites Are Available
	Option 2: The Old Master Definition Site Is Not Available

	Adding New Master Sites
	Adding New Master Sites Without Quiescing the Master Group
	Using Full Database Export/Import or Change-Based Recovery
	Using Object-Level Export/Import

	Adding New Master Sites to a Quiesced Master Group
	Adding New Master Sites Using the ADD_MASTER_DATABASE Procedure
	Adding New Master Sites with Offline Instantiation Using Export/Import

	Removing a Master Site from a Master Group
	Removing an Unavailable Master Site

	Updating the Comments Fields in Data Dictionary Views
	Using Procedural Replication
	Restrictions on Procedural Replication
	User-Defined Types and Procedural Replication
	Serializing Transactions
	Generating Support for Replicated Procedures

	8 Managing a Materialized View Replication Environment
	Refreshing Materialized Views
	Changing a Materialized View Group's Master Site
	Dropping Materialized View Groups and Objects
	Dropping a Materialized View Group Created with a Deployment Template
	Using the Public Version of DROP_SITE_INSTANTIATION
	Using the Private Version of DROP_SITE_INSTANTIATION

	Dropping a Materialized View Group or Objects Created Manually
	Dropping a Materialized View Group Created Manually
	Dropping Objects at a Materialized View Site

	Cleaning Up a Master Site or Master Materialized View Site
	Cleaning Up After Dropping a Materialized View Group
	Cleaning Up Individual Materialized View Support

	Managing Materialized View Logs
	Altering Materialized View Logs
	Altering Materialized View Log Storage Parameters
	Altering a Materialized View Log to Add Columns

	Managing Materialized View Log Space
	Purging Rows from a Materialized View Log
	Truncating a Materialized View Log

	Reorganizing Master Tables that Have Materialized View Logs
	Reorganization Notification
	Truncating Masters
	Examples

	Methods of Reorganizing a Database Table
	Method 1 for Reorganizing Table employees
	Method 2 for Reorganizing Table employees
	Method 3 for Reorganizing Table employees
	Method 4 for Reorganizing Table employees

	Dropping a Materialized View Log

	Performing an Offline Instantiation of a Materialized View Site Using Export/Import
	Using a Group Owner for a Materialized View Group

	9 Managing Replication Objects and Queues
	Altering a Replicated Object in a Quiesced Master Group
	Modifying Tables without Replicating the Modifications
	Disabling Replication
	Reenabling Replication
	Ensuring that Replicated Triggers Fire Only Once

	Converting a LONG Column to a LOB Column in a Replicated Table
	Determining Differences Between Replicated Tables
	Using the DIFFERENCES Procedure
	Using the RECTIFY Procedure

	Managing the Deferred Transactions Queue
	Pushing the Deferred Transaction Queue
	Purging the Deferred Transaction Queue
	Using the ANYDATA Type to Determine the Value of an Argument in a Deferred Call

	Managing the Error Queue
	Reexecuting Error Transaction as the Receiver
	Reexecuting Error Transaction as Alternate User

	10 Monitoring a Replication Environment
	Monitoring Master Replication Environments
	Monitoring Master Sites
	Listing General Information About a Master Site

	Monitoring Master Groups
	Listing the Master Sites Participating in a Master Group
	Listing General Information About Master Groups

	Monitoring Masters
	Listing Information About Materialized Views Based on a Master
	Listing Information About the Materialized View Logs at a Master
	Listing the Materialized Views that Use a Materialized View Log
	Listing Information About the Deployment Templates at a Master

	Monitoring Materialized View Sites
	Listing General Information About a Materialized View Site
	Listing General Information About Materialized View Groups
	Listing Information About Materialized Views
	Listing Master Information For Materialized Views
	Listing the Properties of Materialized Views

	Listing Information About the Refresh Groups at a Materialized View Site
	Determining the Job ID for Each Refresh Job at a Materialized View Site
	Determining Which Materialized Views Are Currently Refreshing

	Monitoring Administrative Requests
	Listing General Information About Administrative Requests
	Determining the Cause of Administrative Request Errors
	Listing General Information About the Job that Executes Administrative Requests
	Checking the Definition of Each do_deferred_repcat_admin Job

	Monitoring the Deferred Transactions Queue
	Monitoring Transaction Propagation
	Listing the Number of Deferred Transactions for Each Destination Master Site
	Listing General Information About the Push Jobs at a Replication Site
	Determining the Next Start Time and Interval for the Push Jobs
	Determining the Total Number of Transactions Queued for Propagation

	Monitoring Purges of Successfully Propagated Transactions
	Listing General Information About the Purge Job
	Checking the Definition of the Purge Job
	Determining the Amount of Time Since the Last Purge
	Determining the Total Number of Purged Transactions

	Monitoring the Error Queue
	Listing General Information About the Error Transactions at a Replication Site
	Determining the Percentage of Error Transactions
	Listing the Number of Error Transactions from Each Origin Master Site
	Listing the Error Messages for the Error Transactions at a Replication Site
	Determining the Error Operations at a Replication Site

	Monitoring Performance in a Replication Environment
	Tracking the Average Number of Row Changes in a Replication Transaction
	Tracking the Rate of Transactions Entering the Deferred Transactions Queue
	Determining the Average Network Traffic Created to Propagate a Transaction
	Determining the Average Amount of Time to Apply Transactions at Remote Sites
	Determining the Percentage of Time the Parallel Propagation Job Spends Sleeping
	Clearing the Statistics for a Remote Master Site in the DEFSCHEDULE View
	Monitoring Parallel Propagation of Deferred Transactions Using V$REPLPROP
	Determining the Databases to Which You Are Propagating Deferred Transactions
	Determining the Transactions Currently Being Propagated to a Remote Master

	Part III Replication Management API Packages Reference
	11 Introduction to the Replication Management API Reference
	Examples of Using Oracle's Replication Management API
	Issues to Consider When Using the Replication Management API
	The Advanced Replication Interface and the Replication Management API
	Abbreviations for Datetime and Interval Data Types

	12 DBMS_DEFER
	Summary of DBMS_DEFER Subprograms
	CALL Procedure
	COMMIT_WORK Procedure
	datatype_ARG Procedure
	TRANSACTION Procedure

	13 DBMS_DEFER_QUERY
	Summary of DBMS_DEFER_QUERY Subprograms
	GET_ARG_FORM Function
	GET_ARG_TYPE Function
	GET_CALL_ARGS Procedure
	GET_datatype_ARG Function
	GET_OBJECT_NULL_VECTOR_ARG Function

	14 DBMS_DEFER_SYS
	Summary of DBMS_DEFER_SYS Subprograms
	ADD_DEFAULT_DEST Procedure
	CLEAR_PROP_STATISTICS Procedure
	DELETE_DEFAULT_DEST Procedure
	DELETE_DEF_DESTINATION Procedure
	DELETE_ERROR Procedure
	DELETE_TRAN Procedure
	DISABLED Function
	EXCLUDE_PUSH Function
	EXECUTE_ERROR Procedure
	EXECUTE_ERROR_AS_USER Procedure
	PURGE Function
	PUSH Function
	REGISTER_PROPAGATOR Procedure
	SCHEDULE_PURGE Procedure
	SCHEDULE_PUSH Procedure
	SET_DISABLED Procedure
	UNREGISTER_PROPAGATOR Procedure
	UNSCHEDULE_PURGE Procedure
	UNSCHEDULE_PUSH Procedure

	15 DBMS_OFFLINE_OG
	Summary of DBMS_OFFLINE_OG Subprograms
	BEGIN_INSTANTIATION Procedure
	BEGIN_LOAD Procedure
	END_INSTANTIATION Procedure
	END_LOAD Procedure
	RESUME_SUBSET_OF_MASTERS Procedure

	16 DBMS_RECTIFIER_DIFF
	Summary of DBMS_RECTIFIER_DIFF Subprograms
	DIFFERENCES Procedure
	RECTIFY Procedure

	17 DBMS_REFRESH
	Summary of DBMS_REFRESH Subprograms
	ADD Procedure
	CHANGE Procedure
	DESTROY Procedure
	MAKE Procedure
	REFRESH Procedure
	SUBTRACT Procedure

	18 DBMS_REPCAT
	Summary of DBMS_REPCAT Subprograms
	ADD_GROUPED_COLUMN Procedure
	ADD_MASTER_DATABASE Procedure
	ADD_NEW_MASTERS Procedure
	ADD_PRIORITY_datatype Procedure
	ADD_SITE_PRIORITY_SITE Procedure
	ADD_conflicttype_RESOLUTION Procedure
	ALTER_CATCHUP_PARAMETERS Procedure
	ALTER_MASTER_PROPAGATION Procedure
	ALTER_MASTER_REPOBJECT Procedure
	ALTER_MVIEW_PROPAGATION Procedure
	ALTER_PRIORITY Procedure
	ALTER_PRIORITY_datatype Procedure
	ALTER_SITE_PRIORITY Procedure
	ALTER_SITE_PRIORITY_SITE Procedure
	CANCEL_STATISTICS Procedure
	COMMENT_ON_COLUMN_GROUP Procedure
	COMMENT_ON_MVIEW_REPSITES Procedure
	COMMENT_ON_PRIORITY_GROUP Procedures
	COMMENT_ON_REPGROUP Procedure
	COMMENT_ON_REPOBJECT Procedure
	COMMENT_ON_REPSITES Procedure
	COMMENT_ON_SITE_PRIORITY Procedure
	COMMENT_ON_conflicttype_RESOLUTION Procedure
	COMPARE_OLD_VALUES Procedure
	CREATE_MASTER_REPGROUP Procedure
	CREATE_MASTER_REPOBJECT Procedure
	CREATE_MVIEW_REPGROUP Procedure
	CREATE_MVIEW_REPOBJECT Procedure
	DEFINE_COLUMN_GROUP Procedure
	DEFINE_PRIORITY_GROUP Procedure
	DEFINE_SITE_PRIORITY Procedure
	DO_DEFERRED_REPCAT_ADMIN Procedure
	DROP_COLUMN_GROUP Procedure
	DROP_GROUPED_COLUMN Procedure
	DROP_MASTER_REPGROUP Procedure
	DROP_MASTER_REPOBJECT Procedure
	DROP_MVIEW_REPGROUP Procedure
	DROP_MVIEW_REPOBJECT Procedure
	DROP_PRIORITY Procedure
	DROP_PRIORITY_GROUP Procedure
	DROP_PRIORITY_datatype Procedure
	DROP_SITE_PRIORITY Procedure
	DROP_SITE_PRIORITY_SITE Procedure
	DROP_conflicttype_RESOLUTION Procedure
	EXECUTE_DDL Procedure
	GENERATE_MVIEW_SUPPORT Procedure
	GENERATE_REPLICATION_SUPPORT Procedure
	MAKE_COLUMN_GROUP Procedure
	PREPARE_INSTANTIATED_MASTER Procedure
	PURGE_MASTER_LOG Procedure
	PURGE_STATISTICS Procedure
	REFRESH_MVIEW_REPGROUP Procedure
	REGISTER_MVIEW_REPGROUP Procedure
	REGISTER_STATISTICS Procedure
	RELOCATE_MASTERDEF Procedure
	REMOVE_MASTER_DATABASES Procedure
	RENAME_SHADOW_COLUMN_GROUP Procedure
	REPCAT_IMPORT_CHECK Procedure
	RESUME_MASTER_ACTIVITY Procedure
	RESUME_PROPAGATION_TO_MDEF Procedure
	SEND_OLD_VALUES Procedure
	SET_COLUMNS Procedure
	SPECIFY_NEW_MASTERS Procedure
	STREAMS_MIGRATION Procedure
	SUSPEND_MASTER_ACTIVITY Procedure
	SWITCH_MVIEW_MASTER Procedure
	UNDO_ADD_NEW_MASTERS_REQUEST Procedure
	UNREGISTER_MVIEW_REPGROUP Procedure
	VALIDATE Function
	WAIT_MASTER_LOG Procedure

	19 DBMS_REPCAT_INSTANTIATE
	Summary of DBMS_REPCAT_INSTANTIATE Subprograms
	DROP_SITE_INSTANTIATION Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function

	20 DBMS_REPCAT_ADMIN
	Summary of DBMS_REPCAT_ADMIN Subprograms
	GRANT_ADMIN_ANY_SCHEMA Procedure
	GRANT_ADMIN_SCHEMA Procedure
	REGISTER_USER_REPGROUP Procedure
	REVOKE_ADMIN_ANY_SCHEMA Procedure
	REVOKE_ADMIN_SCHEMA Procedure
	UNREGISTER_USER_REPGROUP Procedure

	21 DBMS_REPCAT_RGT
	Summary of DBMS_REPCAT_RGT Subprograms
	ALTER_REFRESH_TEMPLATE Procedure
	ALTER_TEMPLATE_OBJECT Procedure
	ALTER_TEMPLATE_PARM Procedure
	ALTER_USER_AUTHORIZATION Procedure
	ALTER_USER_PARM_VALUE Procedure
	COMPARE_TEMPLATES Function
	COPY_TEMPLATE Function
	CREATE_OBJECT_FROM_EXISTING Function
	CREATE_REFRESH_TEMPLATE Function
	CREATE_TEMPLATE_OBJECT Function
	CREATE_TEMPLATE_PARM Function
	CREATE_USER_AUTHORIZATION Function
	CREATE_USER_PARM_VALUE Function
	DELETE_RUNTIME_PARMS Procedure
	DROP_ALL_OBJECTS Procedure
	DROP_ALL_TEMPLATE_PARMS Procedure
	DROP_ALL_TEMPLATE_SITES Procedure
	DROP_ALL_TEMPLATES Procedure
	DROP_ALL_USER_AUTHORIZATIONS Procedure
	DROP_ALL_USER_PARM_VALUES Procedure
	DROP_REFRESH_TEMPLATE Procedure
	DROP_SITE_INSTANTIATION Procedure
	DROP_TEMPLATE_OBJECT Procedure
	DROP_TEMPLATE_PARM Procedure
	DROP_USER_AUTHORIZATION Procedure
	DROP_USER_PARM_VALUE Procedure
	GET_RUNTIME_PARM_ID Function
	INSERT_RUNTIME_PARMS Procedure
	INSTANTIATE_OFFLINE Function
	INSTANTIATE_ONLINE Function
	LOCK_TEMPLATE_EXCLUSIVE Procedure
	LOCK_TEMPLATE_SHARED Procedure

	22 DBMS_REPUTIL
	Summary of DBMS_REPUTIL Subprograms
	REPLICATION_OFF Procedure
	REPLICATION_ON Procedure
	REPLICATION_IS_ON Function
	FROM_REMOTE Function
	GLOBAL_NAME Function
	MAKE_INTERNAL_PKG Procedure
	SYNC_UP_REP Procedure

	Part IV Replication Data Dictionary Reference
	23 Replication Catalog Views
	Summary of Replication Catalog Views
	DBA_REGISTERED_MVIEW_GROUPS
	ALL_REPCAT_REFRESH_TEMPLATES
	ALL_REPCAT_TEMPLATE_OBJECTS
	ALL_REPCAT_TEMPLATE_PARMS
	ALL_REPCAT_TEMPLATE_SITES
	ALL_REPCAT_USER_AUTHORIZATIONS
	ALL_REPCAT_USER_PARM_VALUES
	ALL_REPCATLOG
	ALL_REPCOLUMN
	ALL_REPCOLUMN_GROUP
	ALL_REPCONFLICT
	ALL_REPDDL
	ALL_REPGENOBJECTS
	ALL_REPGROUP
	ALL_REPGROUP_PRIVILEGES
	ALL_REPGROUPED_COLUMN
	ALL_REPKEY_COLUMNS
	ALL_REPOBJECT
	ALL_REPPARAMETER_COLUMN
	ALL_REPPRIORITY
	ALL_REPPRIORITY_GROUP
	ALL_REPPROP
	ALL_REPRESOL_STATS_CONTROL
	ALL_REPRESOLUTION
	ALL_REPRESOLUTION_METHOD
	ALL_REPRESOLUTION_STATISTICS
	ALL_REPSITES
	DBA_REPCAT_REFRESH_TEMPLATES
	DBA_REPCAT_TEMPLATE_OBJECTS
	DBA_REPCAT_TEMPLATE_PARMS
	DBA_REPCAT_TEMPLATE_SITES
	DBA_REPCAT_USER_AUTHORIZATIONS
	DBA_REPCAT_USER_PARM_VALUES
	DBA_REPCATLOG
	DBA_REPCOLUMN
	DBA_REPCOLUMN_GROUP
	DBA_REPCONFLICT
	DBA_REPDDL
	DBA_REPEXTENSIONS
	DBA_REPGENOBJECTS
	DBA_REPGROUP
	DBA_REPGROUP_PRIVILEGES
	DBA_REPGROUPED_COLUMN
	DBA_REPKEY_COLUMNS
	DBA_REPOBJECT
	DBA_REPPARAMETER_COLUMN
	DBA_REPPRIORITY
	DBA_REPPRIORITY_GROUP
	DBA_REPPROP
	DBA_REPRESOL_STATS_CONTROL
	DBA_REPRESOLUTION
	DBA_REPRESOLUTION_METHOD
	DBA_REPRESOLUTION_STATISTICS
	DBA_REPSITES
	DBA_REPSITES_NEW
	USER_REPCAT_REFRESH_TEMPLATES
	USER_REPCAT_TEMPLATE_OBJECTS
	USER_REPCAT_TEMPLATE_PARMS
	USER_REPCAT_TEMPLATE_SITES
	USER_REPCAT_USER_AUTHORIZATION
	USER_REPCAT_USER_PARM_VALUES
	USER_REPCATLOG
	USER_REPCOLUMN
	USER_REPCOLUMN_GROUP
	USER_REPCONFLICT
	USER_REPDDL
	USER_REPGENOBJECTS
	USER_REPGROUP
	USER_REPGROUP_PRIVILEGES
	USER_REPGROUPED_COLUMN
	USER_REPKEY_COLUMNS
	USER_REPOBJECT
	USER_REPPARAMETER_COLUMN
	USER_REPPRIORITY
	USER_REPPRIORITY_GROUP
	USER_REPPROP
	USER_REPRESOL_STATS_CONTROL
	USER_REPRESOLUTION
	USER_REPRESOLUTION_METHOD
	USER_REPRESOLUTION_STATISTICS
	USER_REPSITES

	24 Replication Dynamic Performance Views
	V$MVREFRESH
	V$REPLPROP
	V$REPLQUEUE

	25 Deferred Transaction Views
	DEFCALL
	DEFCALLDEST
	DEFDEFAULTDEST
	DEFERRCOUNT
	DEFERROR
	DEFLOB
	DEFPROPAGATOR
	DEFSCHEDULE
	DEFTRAN
	DEFTRANDEST

	26 Materialized View and Refresh Group Views

	Part V Appendixes
	A Security Options
	Security Setup for Multimaster Replication
	Trusted Compared with Untrusted Security

	Security Setup for Materialized View Replication
	Trusted Compared with Untrusted Security

	B User-Defined Conflict Resolution Methods
	User-Defined Conflict Resolution Methods
	Conflict Resolution Method Parameters
	Resolving Update Conflicts
	Resolving Uniqueness Conflicts
	Resolving Delete Conflicts
	Multitier Materialized Views and User-Defined Conflict Resolution Methods
	Restrictions for User-Defined Conflict Resolution Methods
	SQL Statement Restrictions for User-Defined Conflict Resolution Methods
	Column Subsetting Restrictions for User-Defined Conflict Resolution Methods

	Examples of User-Defined Conflict Resolution Method
	Maximum User Function
	Additive User Function

	User-Defined Conflict Notification Methods
	Creating a Conflict Notification Log
	Sample Conflict Notification Log Table

	Creating a Conflict Notification Package
	Sample Conflict Notification Package

	Viewing Conflict Resolution Information

	Index
	A
	B
	C
	D
	E
	F
	G
	I
	J
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

